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Probability and

Distribution Theory 1.1 INTRO D UCTI ON

The words ‘Probability’ and ‘Chance’ are quite familiar to everyone. Many a
NOTES times, we come across statements like “Probably it may rain today”, Chances of his
visit to the university are very few”, “It is possible that he may pass the examination
with good marks”. In the above statements, the words probably, chance, possible etc.,
convey the sense of uncertainty about the occurrence of some event. Ordinarily, it may
appear that there cannot be any exact measurement for these uncertainties, but in
Mathematics, we do have methods for calculating the degree of certainty of events in
numerical values, provided certain conditions are satisfied.

1.2 PROBABILITY AS A SET FUNCTION

The theory of probability which closely relates the theory of sets, was proposed
by A.N. Kolwogorov, a Russran mathematician in 1933. To understand the concept of
“Probability as a set function, we need some basic terminology of various terms, like
random experiment, descrete and continuous sample space, simple event, possible
and impossible event. Now, we discuss all these terms stated above in the following
sections.

Random Experiment

When we perform experiments in science and engineering, repeatedly under
very nearly identical conditions, we get almost the same result. Such experiments are
called deterministic experiments.

There also exist experiments in which the results may not be essentially the
same even if the experiment is performed under very nearly identical conditions. Such
experiments are called random experiments. If we toss a coin, we may get ‘head’ or
‘tail’. This is a random experiment. Throwing of a die is also a random experiment as
any of the six faces of the die may come up. In this experiment, there are six possibili-
ties (1 or 2 or 3 or 4 or 5 or 6).

A random experiment is also known as a probabilistic experiment or as a
non-deterministic experiment.

Remark 1. A die is a small cube used in gambling. On its six faces, dots are marked as
shown below :

Numbers on a die

Plural of the word die is dice. The outcome of throwing a die is the number of dots on its
upper most face.

Remark 2. A pack of cards consists of four suits called Spades, Hearts, Diamonds and
Clubs. Each suit consists of 13 cards, of which nine cards are numbered from 2 to 10, an ace, a
king, a queen and a jack (or knave). Spades and clubs are black faced cards, while hearts and
diamonds are red faced cards. The kings, queens and jacks are called face cards.

Sample Space

The sample space of a random experiment is defined as the set of all possible
outcomes of the experiment. The possible outcomes are called sample points. The
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sample space is generally denoted by the letter S. The number of sample points in the
sample space S is denoted by n(S). A sample space is called discrete. If it contains only
finitely many points and which can be arranged into a simple sequence @, @,, ....... .
We list the sample space of some random experiments.

Random Experiment Sample Space
1. Tossing of an unbiased coin S =(H, T}
2. Tossing of unbiased coin twice S = (HH, HT, TH. AT
In S, the sample point HT represent ‘head’ on first toss and tail on second toss.
3. Tossing of two unbiased coins S = (HH, BT:TH, TT)
In S, the sample point HT represent ‘head’ on first coin and ‘tail’ on second coin.
4. Tossing of three unbiased coins S = (HHH, HHT, HTH, THH, HTT, THT,

TR TEE:
5. A family of two children S = {BB, BG, GB, GGJ.
In S, the sample point BG represent elder child, ‘Boy’ and younger child ‘Girl’.
6. Throwing of a fair die S=1(1,2,3,4,5,6)}.
7. Throwing of two fair die S=1{1,1(Q,2),(@,3),(1,4),(@1,5),(1,6),

2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3, 1), (3, 2), (8, 3),(3, 4), (3, 5), (3, 6),
(4,1), (4, 2), (4, 3), (4,4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4) (6, 5), (6, 6)).

In S, the sample point (1, 2) represent the situation that 1 appeared on the first
die and 2 on the second die. This sample space has 6 x 6 = 36 sample points.

Note. The sample space of a random experiment is either finite or infinite. In our present
course, we shall restrict ourselves only to finite sample spaces.

ILLUSTRATIVE EXAMPLES

Example 1. A bag contains 4 red balls. What is the sample space if the random
experiment consists of choosing :
(2) 1 ball (ii) 2 balls
(1ii) 3 balls (iv) 4 balls ?
Sol. Let the red balls be denoted by R,, Ry, R; and R,.
(i) In this experiment, one ball is drawn.

No. of elementsin S=4C, =4

ks S=(R,, R, Ry, RJ.
(ii) In this experiment, two balls are drawn.
4x3

40 ¢

i S = (R,R,, R,R;, RsR,, R.R,, R Ry, R,R,}.
(iii) In this experiment ; three balls are drawn.

4x3%2
s el g it Sl
No. of elements in S=%Cy = Py 4

S = (R,R,R,, R2R3R4’ R;R,R,, RR;R,}.

No. of elements in S =*4C,

*If n coins are tossed, then the number of elements in its sample space is equal to 2".
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Probability and (iv) In this experiment, 4 balls are drawn.

Dustribution Theory
il No. of elementsin S=*4C, =1
X S = (R;R,R,R,).
NOTES Example 2. A bag contains 3 red and 2 white balls. What is the sample space if

: the random experiment consists of drawing (i) one ball (ii) two balls from the bag ?

Sol. Let R,, R,, Ry, W,, W, represent the red and white balls.

Total no. of balls =3+ 2 =5

(©) No. of elements in the sample space, S = =S

S=(R,, R, Ry, W,, W,}.

5x4
158~
S = (R,R,, RR,, R,W,,R,W,, R,R;, R,W,, R,W,, R,W,, R,W,, W, W,).

10

(2) No. of elements in the sample space = SCy=

EVENTS AS SUBSETS OF SAMPLE SPACE

1.3 EVENT

An event of a random experiment is defind as a subset of the sample space of
the random experiment. If the outcome of an experiment is an element of an event A,
we say that the event A has occurred. An event is called an elementary (or simple)
event, if it contains only one sample point. In the experiment of rolling a die, the
event A of getting ‘3’ is a simple event. We write A’ = {3}. An event is called an
impossible event, if it can never occur. In the above example, the event B = {7} of
getting ‘7’ is an impossible event. On the other hand, an event which is sure to occur is
called a sure event. In the above example of rolling a die, the event C of getting a
number less than 7 is a sure event. A sure event is also called a certain event.

ILLUSTRATIVE EXAMPLES

Example 1. There are 2 children in a family. Find the events that :

(i) both children are boys (i2) only one of the children is a girl
(iii) there is at least one girl (iv) the older child is a boy.

Sol. Here S = (BB, BG, GB, GGJ.

(i) Let A be the event that both children are boys.

18 A = [BB).
(i) Let A be the event that only one of the children is a girl.
> A = {BG, GB).

(ii2) Let A be the event that there is at least one girl.

A = [BG, GB, GG}.

(2v) Let A be the event that the older child is a boy.

A = (BB, BG).

Example 2. An urn contains 4 red and 6 yellow balls. Two balls are drawn at
random from the urn. Find the number of elements in the sample space. Also find the
number of elements in the event of getting :

(Z) both balls red (i2) one ball red and one ball yellow

(iii) both balls yellow.
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Sol. Total number of balls = 4 + 6 = 10.

No. of elements is S = no. of ways of selecting 2 balls out of 10 balls
= no. of combinations of 10 things taking 2 at a time

10x9
2 1x2 45.
(i) Let A be the events of getting 2 red balls.
No. of elements in A = 4C, x 5C; = i:g

(i) Let B be the event of getting one red and one yellow balls.

No. of elements in B = C, x C, =4 x 6 = 24.
(ii1) Let C be the event of getting 2 yellow balls.
6x5 _
Tl

No. of elements in C = “C(J X "'Cz =1 x

Algebra of Events

We know that the events of a random experiments
are sets, being subsets of the sample space. Thus, we
can use set operations to form new events.

Let A and B be any two events associated with a
random experiment.

The event of occurrence of either A or B or both
is written as ‘A or B’ and is denoted by the subset A U B
of the sample space. In other words, A U B represents
the event of occurrence of at least one of A and B.

The event of occurrence of both A and B is written
as ‘A and B’ and is denoted by the subset A n B of the

sample space. For simplicity the event A n B is also
denoted by ‘AB’.

The event of non-occurrence of event A is written
as ‘not A’ and is denoted by the set A’, which is the
complement of set A. The event A’ is called the
complementary event of the event A.

wi=6

15.

Probability

NOTES
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ILLUSTRATIVE EXAMPLES

Example 1. A coin is tossed twice. If A denotes the event “number of heads is
odd” and B denotes the event “number of tails is at least one”. Find the cases favourable

to the event A n B.
Sol. Here S={HHHT TH. TT]

A={HT,TH), B={H%9, TH, TT}
A n B = event of occurring both A and B

= {HT, TH}.
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Probability and Example 2. A, B and C are three events associated with the sample space S of a
Distribution Theory random experiment. If A, B and C also denote the subsets of S representing these events,
what are the sets representing the events :

(£) Out of the three events, only A occurs
NOTES (1) Out of the three events, not more than two occur
(it7) Out of the three events, only one occurs
(iv) Out of the three events, exactly two events occur
(v) Out of the three events, at least two events occur.
Sol. (i) In this event, A occurs and B, C do not occur?
Required event=An B n C".
(i7) In this event, all events do not occur simultaneously.
Required event = (AN B n C)".
(iii) In this event, either only A occur or only B occur or only C occur.
Required event =(ANB' nCYU(A'NnBNC)U(A’'nB N C).
(v) In this event either only A, B occur or only B, C occur or only A, C occur.
Required event =(ANBNC)UA'AnBNC)U(ANnB NnC).

(v) In this event, either only A, B occur or only B, C occur or only A, C occur or
all occur.

Required event =(ANBNC)U(A'AnBNC)UANB NnC)U(ANBANQ).

PROBABILITY OF AN EVENT

Equally Likely Outcomes

The outcomes of a random experiment are called equally likely, if all of these
have equal preferences. In the experiment of tossing a unbiased coin, the outcomes,
‘Head’ and ‘Tail’ are equally likely.

Exhaustive Outcomes

The outcomes of a random experiment are called exhaustive, if these cover all
the possible outcomes of the experiment. In the experiment of rolling a die, the out-
comes 1, 2, 3, 4, 5, 6 are exhaustive.

1.4 PROBABILITY OF AN EVENT

Suppose in a random experiment, there are n exhaustive, equally likely outcome.
Let A be an event and there are m outcomes (cases) favourable to the happening of it.
The probability P(A) of the happening of the event A is defined as:
PA) = Total number of cases favourable to the happening of A i3
Total number of exhaustive equally likely cases
It may be observed from this definition, that 0 <m < n.

m
Tl

m
n

0s—<1 or 0<PA)<1.
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The number of cases favourable of the non-happening of the event A is n — m.

Prnot A)» BBl o l2

el e pud g4 LA % )
n n n n
. P(A)+P(notA)=1 ie, P(A)+P@A) =1
If A is a sure event, then P(A) = D o 1andifA //
n Kl/
happens to be an impossible event, then P(A) = 2 = 0. //// A

n
From now onward, we shall always assume that the outcomes of any given
random experiment are equally likely unless the contrary is stated explicitely.

Probability as a Set Function

A Purely mathematical definition of probability cannot give us the actual value
of P(A), the probability/of occurrence of the event A and hence, P(A) must be consid-
ered as a function defined on all events. To define P(A) as a set function, we need a
domain space which is the c-field B of the events, generated by S, a range space which
is the closed interval [0, 1] on the real line and a rule which assigns a value to every
element of the domain space B.

Definition. P(A) is the probability as a set function defined on a o-field B of
events if the following axioms are satisfied.

(i) For each A € B, P(A) is defined and P(A) = 0 (axiom of non-negativity)

(i1) P(S) = 1 (axiom of certainty)

(iti) For <An>, the sequence of disjoint events, we have

P[Ej An‘] =2 P&y (axiom of additivity)
i=j

The set function ‘P’ defined on o-field B, satisfying all the above axioms is called
probability measure. The set (S, B, P) is known as the probability space. In our practi-
cal problems, S is taken as finite and the o-field B is taken as the collection of all
subsets of S.

1.5 CONTINUITY AXIOM OF PROBABILITY

Let B,, B,, ..., B, ... be a countable sequence of events satisfying the following:
() B,,,c(B;(i=1,2,3,..)

(ii) [\1 B, =0

In words, (i) means that each succeeding event implies the proceeding event
and (ii) means that the simultaneous occurrence of all B, is an impossible event, then

Lt P(B,)=0

n—oo

1.6 BOREL-CANTELLI LEMMA

Let <A > be a sequence of events. Let A be the event “that an infinite number of
An occur”. This means that we A if we A for an infinite number of values of n (but not

Self-Instructional Material

Probability

NOTES

7



Probability and

Dlssribision Phaory necessarily every n). The set of such ® is denoted by Lt sup An or Lt An. Thus, the

event A “that an infinite number of An occur” is denoted by Lt A,.

Statement of Borel-Contelli Lemma

Statement. Let A, A,, ..., A be a sequence of events on the probability space
(S, B, P) and if

Lt A, = A, then we have

NOTES

P(A) = 0, provided ) P(A,)< =

n=1

In words, it states that if Z P(A, ) converges with probability one, then only a

n=1

finite number of A, A,, ..., A, occur.

Proof. Given Lt A =A = we can write

A=Tt A, = ﬁ

:er

A = Ac U A, for every n.

This implies for each n, P(A) < Z PA,)

m=n

Now we are given that Z P(A,) is convergent, therefore, Z P(A,,), being the

n=1 m=n

remainder term of a convergent series tends to zero as n — «. Hence P(A) < Z P(A )

m=n

m

—>0asn—o>« = P(A)=0.Hence the theorem.

Converse of Borel-Contelli Lemma

Statement. Let <A > be a sequence of mdependent events on the probability
space (S, B, P) and if Lt A, = A. Then

P(A) = 1, provided Z P@A,) =
n=1
Proof. Let X,, denotes the complement of A , i.e., Kn =S - A,. For any m,
n(m > n), we have

F] X C Fl] -A_},

k=n k=n

= P(HK) (HKJ | Ac B = P(A) < P(B)
= k=n
f P P(A,) A, A, .- A, are independent events

’ = Kn, s ...,Km are also independent events
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e = m —f: P(A,)
= P( N A,,)s 1 (1-P(A))S TT e™PAY _ ¢ i= kL)
k=n k=n k=n
| 1-x<e™*Vx20
Now z P(A,)=e | given
k=1
=» ZP(Ak)-aoo as m—»ee
k=n
-5 P(Ay)
e —0 as m—ooee
From (1), P[ﬁlﬂk] - (2)
Also, A= ﬁ G A,
n=1k=n
— A= 01 kﬂ < | De-Morgan’s Law
n=1k=n
= PASY P(ﬁ Kk)=o = PA)=0 | Using (2)
il k=n

= 1-PA)=0 = PA)=1
Hence the theorem.

1.7 ZERO-ONE LAW

Statement. If A, Ay, .., A, ... are independent and if E belongs to the field
generated by the class (A, A, ., ...) for every n, then P(E) = 0 or 1.

Proof. The proof directly follows from Borel-Cantelli lemma.

Example. Find the probability that in a sequence of Bernouli trials with
probability of success p for each trial, the pattern SFS, where S devotes success and F
denotes failure, appears infinitely of ten ?

Sol. Let A be the event that the trial numbern =k, k + 1, % + 2, generates the
sequence SFS (k£ =0, 1, 2, ...). then the events A, are not mutually independent but the
sequence A;, A, AL A, ...... contains only mutually independent events. (As n o two of
them do not depend upon the outcome of the same trials).

Also  P(A,) = P(SFS) = pgp = p?q = pk, is independent of k and hence the
series p, + p, + p, + ..., diverges.

By converse of the Borel-cantelli theorems, the pattern SFS appears infinitely
often with probability one.
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Probability and

Distribution Theory ILLUSTRATIVE EXAMPLES
Example 1. Three coins are tossed simultaneously. Write the sample space and
NOTES the probabilities of getting (i) no head and (ii) two heads.
Sol. Here S={HHH, BET, HTH, THH, HTT, THT, TFH, TTT)
B Pmeksad) =IenEEH . XTI 1
n(S) 8
3

(iz) P(two heads) = P({HHT, HTH, THH]}) = R
Remark. For the sake of simplicity, P({TTT}) is written as P(TTT).

‘Odds In Favour’ And ‘Odds Against’ An Event

Let A be an event of a random experiment. The ratio P(A) : P(A) is called the

odds in favour of happening of the event A. The ratio P(A) : P(A) is called the odds
against the happening of the event A.

Let odds in favour of an event Abe m : n.

Let PM)=p. o pil—p=m:n

P . m

— a— — - — = ey P(A) =
= % . ot e R e ()m+n

If odds in favour of A are m : n, then P(A) = ml-‘;-n'
Similarly, if odds against A are m : n then odds in favour of Aaren : m and P(A)
n
TS

Remark. Odds in favour of event A are same as odds against the complement A’ of A
and vice versa.

WORKING RULES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample space S of the given random
experiment. Write the sample space, if it is feasible to do so.

II. Out of the elements of the sample space, identify the elements which are
favourable to the event, A (say), whose probability is required. Write the
event A, if it is feasible to do so.

III. Divide n(A) by n(S). This is equal to the required probability, P(A).
Example 2. A bag contains 5 white, 7 black and 8 red balls. A ball is drawn at
random. Find the probability of getting :

(2) red ball (ii) non-white ball (iit) white ball or
black ball.
Sol. No. of white balls =5
No. of black balls =17
No. of red balls =8
Total number of balls=5 + 7 + 8 = 20. 5 White
(i) Let R = event of getting red ball 7 Black
Plred ball) = Pl = 20 o 2 . 2 s

nS) " 20 5
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(i) Let W = event of getting white ball

; = no.of non-whiteballs 7+8 15 3
P(non-white ball) = P(W) = S e TR Migresgs e

(iif) Let A = event of getting a white ball or a black ball

]

P(white ball or black ball) = P(A) = S wili S ke rt

Example 3. Find the probability that a leap year, selected at random, will con-
tain 53 sundays.
Sol. There are 366 days in a leap year. Now, 366 =7 x 52 + 2.

This leap year will contain at least 52 sundays. The possible combinations
for the remaining two days are :

(z) sunday and monday (z) monday and tuesday
(ii1) tuesday and wednesday (iv) wednesday and thursday
(v) thursday and friday (vi) friday and saturday

(vii) saturday and sunday.

Let A be the event of getting 53 sundays in the leap year. Therefore, only those
combinations will be favourable to the event A which contain ‘sunday’.

The combinations (i) and (vii) are favourable to the happening of A.

2
P(A) = 7
ADDITION THEOREMS

Mutually Exclusive Events

Two events associated with a random experiment are said to be mutually
exclusive, if both cannot occur together in the same trial. In the experiment of throwing
a die, the events A = (1, 4} and B = (2, 5, 6} are mutually exclusive events. In the same
experiment, the events A = {1, 4} and C = {2, 4, 5, 6} are not mutually exclusive because,
if 4 appear on the die, then it is favourable to both events A and C. The definition of
mutually exclusive events can also be extended to more than two events. We say that
more than two events are mutually exclusive, if the happening of one of these, rules
out the happening of all other events. The events A = {1, 2}, B = {3} and C = {6}, are
mutually exclusive in connection with the experiment of throwing a single die.

n events A, A,, ....., A associated with a random experiment are said to
mutually exclusive events if A, N A;=¢foralli jandi=# j

For example, let a pair of dice be thrown and let A, B, C be the events that the
sum is 7, sum is 8, sum is greater than 10 respectively,

A ={(1,6),(2,5),(3, 4), (4, 3), (5, 2), (6, 1)}
B ={(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
and C = {(5, 6), (6, 5), (6, 6)}
The events A, B and C are mutually exclusive.

Self-Instructional Material

Probabiliry

NOTES

11



Probability and Example. Two dice are rolled. A is the event that the sum of the numbers shown
Distribution Theory on the two dice is 5. B is the event that at least one of the dice show up a 3. Are the two
events A and B (i) mutually exclusive, (ii) exhaustive ? Give arguments in support of

your answer.

NOTES Sol. Here S ={(1,1),(1,2), (1, 3) ,......., (6, 5), (6, 6)}
We have A ={(1, 4),(2, 3), (3, 2), (4, )}
and B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (1, 3), (2, 3), (4, 3),
(5, 3), (6, 3)}
(i) The events A and B are not mutually exclusive because (2, 3), (3, 2) lies in
both A and B.

{(ii) The events A and B are not exhaustive because there are same elements in S
(like (1, 1), (1, 2), (1, 5)) which are neither in A nor in B.

Addition Theorem (For Mutually Exclusive Events)

Statement. If A and B are two mutually exclusive events associated with a
random experiment, then

P(A U B) = P(A) + P(B).

Proof. Let n be the total number of exhaustive, equally likely cases of the
experiment.

Let m, and m, be the number of cases favourable s
to the happening of the events A and B respectively.

P(A)= ™1 and P(B)= 2. O
n. n

Since the events are given to be mutually
exclusive, therefore, there cannot be any sample point
common to both events A and B.

The event A U B can happen in exactly m, + m, ways.

PA R - i o 1;1 + % =P(A) + P(B).
n

Hence, P(A U B) = P(A) + P(B).
Remark. This theorem can also be extended to more than two events.

Theorem L. If A, B, C are three mutually exclusive events associated with a
random experiment, then P(A v B v C) = P(A) + P(B) + P(C).

Proof. A, B, C are mutually exclusive elements.
% AnB=¢,BNnC=¢9,AnC=4.
We have AnBulC)=(AnB)VANC)=¢ud=¢
The events A and B U C are mutually exclusive.
By addition theorem, we have
PAuUBuU(C)=PA) +PBuUC)
=P(A) + (P(B) + P(C))
(By applying addition theorem, for the m.e. events B and C)
P (AuBuC) =PA) + P(B) + P(C).
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Theorem II. If A and B be two events associated with a random experiment, Probability
then show that :

(i) P(A ~B) =P(B)-P(An B)
(ii) P(A ~ B) = P(A) - P(A n B). NOTES

S

Proof. (i) (ANnB)U(ANB)=(AUA) B A .
=SAB=B X1

Also (AnB)Nn(AnB)=(ANnA)A(BANB)
=E g NN<7ns

The events A n B and A n B are m.e.

By addition theorem, we have
P(ANB)U(ANB)=P(A nB)+P(AnB)
= P(B)=P(A NnB)+(PAB) (Using (1))
= P(A N B) = P(B) -P(A n B).
(i) (AnB)U(ANB)=ANn(B UB)
=AnS=A ki)

Also (ANB)N(AnB)=(AnA) N (BN B)
=Aﬂ¢=¢, S

The events An B and A n B are m.e.

By addition theorem, we have

= A
PIANB)U(ANnB)=P(ANn B)+P(AnB) B
= P(A)=P(An B)+P(ANB) NN
(Using (1)) N R
= P(An B) =P(A) - P(A N B).

WORKING RULES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample space S of the given random
experiment. Write the sample space, if it is feasible to do so.

II. Designate the events as A and B the probability of whose union, A U B is to
be found out. Out of the elements of the sample space, identify the ele-
ments which are favourable to the events A and B both.

III. Make sure that the events A and B are mutually exclusive, i.e., the set
A n B is the empty set.

IV. Use P(A U B) = P(A) + P(B). This gives the required probability.

ILLUSTRATIVE EXAMPLES

Example 1. The probability that a bread prepared in a hotel is well baked is
0.81 and that it will have sufficient proteins is 0.54. Again the probability that it has

both is 0.78. Find the probability that a well-baked bread will contain sufficient pro-
teins.
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Probability and Sol. Let A = The event that a bread is baked
Binrbucim Theory B = The event that a bread has sufficient proteins.
Given P(A) = 0.81, P(B) = 0.54, P(An B) = 0.18.
NOTES . Required probability that a well baked bread will contain sufficient proteins
P(Au B)=PA) + P(B)-P(AnB)
=0.81+054-0.18=1.17.

Example 2. There are three events A, B, C one of which must happen and only
one can happen at a time. The odds are 8 to 3 against A, 5 to 2 against B, find the odds
against C.

Sol. The given events A, B and C are mutually exclusive and exhaustive.

PAUBuUC)=PA)+PB)+PC) andPAuBuUC)=1

P(A)+PB)+P(C)=1 A1
; 3 3
Odds against Aare8:3. .. P(A)=m=ﬁ
; 2 2
Odd B . = ==
s against B are 5 : 2 P(B) T

3 a - 2s rE=0] — 0% 534
1) = ﬁ+"‘+P(C)"‘1 = P(C)-l—l—i_?-T‘__ﬁ

; 34 34 43 34
Odds against C =P(C) : P(C)=1 - [T F W 77—43 34.

ADDITION THEOREM (GENERAL)

Statement. If A and B are two events not necessarily mutually exclusive,
associated with a random experiment, then

P(AUB)=P(A) + P(B)- P(An B).

Proof. Let n be the total number of exhaustive, equally likely cases of the
experiment.

Let m, and m, be the number of cases favourable to
the happening of the events A and B respectively.

PA) =L and PB)=22 .
n n

Since the events are given to be not necessarily
mutually exclusive, there may be some sample points
common to both events A and B.

Let m, be the number of these common sample points. m, will be zero in case
A and B are mutually exclusive.

P(ANB)= 28
n

The m, sample points, which are common to both events A and B, are included
in the events A and B separately.
Number of sample points in the event AU B =m, + m, — m,.

my is subtracted from m, + m, to avoid counting of common sample points twice.
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P(AUB)= —"—"-‘*—""fﬂ - ﬂnuﬂn&-% = P(A) + P(B) - P(A N B).

Hence, P(A U B) = P(A) + P(B) - P(A n B).

Corollary. If events A and B happen to be mutually exclusive events, then
P(A n B) = 0 and in this case addition theorem implies

P(A UB)=P(A) + P(B)-P(AnB)=P(A) + P(B)- 0 = P(A) + P(B)
This is the same as the addition theorem for mutually exclusive events.
Remark. This theorem can also be extended to more than two events.

Theorem 1. If A, B, C are three events associated with a random experiment,
then

PAVBUC)=PA) +PB)+P(C)-PANB)-PBNC)-PANC)

+P(ANnBnC).

Proof. Considering ‘B U C’ as one event and applying addition theorem to the events
‘A’ and ‘B U C’, we have

PAUBUC)=PAU(BuU(O)
=P(A)+ PBUC)-P(An(BuC)
=P(A)+(P(B)+ P(C)-P(BNC)-P(ANnB)U(ANC)
(By using addition theorem for the events B and C)
=P(A)+P(B)+P(C)-P(BNC)-(P(ANnB)+ P(ANnC)
-P(AnB)Nn(ANnC))
(By applying addition theorem for the events AnBand AN C)
=P(A)+P(B)+P(C)-P(BNnC)-P(ANnB)-P(AnC)
+P(ANBNC)
(- (AnB)n(AnC)= (AnA)NBNC=AnBn0C)
PAUBUC)=PA) +P(B)+P(C)-P(ANnB)-P(BNC)-P(ANC)

+P(AAnBNO).

WORKING RULES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample space S of the given random
experiment. Write the sample space, if it is feasible to do so.
I1. Designate the events as A and B the probability of whose union, A U B is
to be found out. Out of the elements of the sample space, identify the ele-
ments which are favourable to the events A and B both.

III. Write the event A N B and find its probability.
IV. Use P(A U B) = P(A) + P(B) - (A N B). This gives the required probability.

ILLUSTRATIVE EXAMPLES

Example 1. Find the probability of 4 turning up for at least once in two tosses of
a fair die.

Sol. Here S=1{(1,1),(1, 2),........ , (6, 5), (6, 6)).

Let A = event of getting 4 on the first die
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Probability and and B = event of getting 4 on the second die.
Distribution Theory A=1{(4 1), (4 2),(43),4,4),45),4,6)

and B ={(1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4)}.
B)=t g 1
PiA) - Dl S il BBiss . m L,
NQERS ) = )88 S 8 oasd X bnonBNin:08 11§
The events A and B are not m.e. because the sample (4, 4) is common to both.
AnB={(4,4) . P(AnB)= %

By addition theorem, the required probability of getting four at least once is

1ot 1 11
PAUB)=PA)+PB)-PAANB)= -+ = - — = —.
(A u B) = P(A) + P(B) - P(An B) 6+6 v iy

Example 2. Two dice are thrown once. Find the probability of getting an even
number on the first die or a total of 8.

Sol. Here S = {(1, 1), (1, 2),......, (6, ), (6, 6)}.
Let A = event of getting an even number on the first die
and B = event of getting a total 8.
A=1{(21),(2,2),(23),(2,4),(2,5),(2,6),(4,1), (4, 2), (4, 3), (4, 4),
(4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

and . = {(2 6), (8, 5), (4, 4), (5, 3), (6, 2)}
1 5
PA)=— = 3 and P(B)= 3%

The events A and B are not m.e. because the sample points (2, 6), (4, 4), (6, 2)
are common to both.

1
AnB={(26),(4,4),(6,2) .. PAnB)= E_E

By addition theorem, the required probability of getting an even number on the
first die or a total 8 is

By B = DAY+ PO - B B 4o =i;~.

Example 3. A and B are two non-mutually exclusive events. If P(A) = % , P(B)

o to

and P(A U B) = é find the values of P(A A B) and P(A ~ BY).

Sol. We have  P(A) = .i., P(B) = % P(Aw B)=2

By addition theorem, P(A U B) = P(A) + P(B) - P(A n B).
1 1

2
ZE Z+g—P(AnB)

2 i 5+8-10 3
k ; g5 2 20 20

Wehave, (ANBIN(ANnB)=AnB*nB)=Ané¢=9¢
The events A N B and A N B are mutually exclusive and
ANBYUANB) =An(B‘UB)=AnS=A (Sisthe sample space)
By addition theorem, P(A) = P(An B) + P(An B).
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Z=P(A(‘\B)+E
3 <8 1
or P(AnB =Z--§6=E.

Example 4. A, B, C are events such that P(A) = 0.3, P(B) = 0.4, P(C) = 0.8,
P(ANnB)=0.08, PANC) =028, PANnBNC)=0.02. IfPLAuBuUC) 20.75, then find
the minimum value of the probability of the event B N C.

Sol. We have 0.75<P(AuBuUC)<1.

Using addition theorem, we have
0.75<P(A)+ P(B)+ P(C)-P(ANnB)-P(BNnC)-P(An C)

+PANnBNC)<1
0.75<03+04+08-008-PBNC)-028+0.02<1
0.75<1.16-PBnC)<1
0.75-116<-P(BNnC)<1-1.16
-041<-P(BNnC)<-0.16

0412P(BnC)=0.16

ie., 0.16 <P(Bn C)<0.41.

Minimum value of P(B n C) = 0.16.

L ooy

INDEPENDENT EVENTS

Introduction
In the present chapter, we shall study the method of evaluating probabilities of

events relating to independent events and independent experiments. We shall also
study random variables and their probability distributions.

Conditional Probability

Let us consider the random experiment of throwing a die. Let A be the event of
‘getting an odd number on the die.

: S=1{1,2.3 4 5 B8] and A =1 3.6}
PA)=3_1
8 2.

Let B = {2, 3, 4, 5, 6}. If, after the die is thrown, we are given the information
that the event B has occurred, then the probability of event A will no more be 51,
because in this case, the favourable cases are three and the total number of possible
outcomes will be five and not six. The probability of event A, with the condition that
event B has happened will be 3/5. This conditional probability is denoted as P(A/B).
Let us define the concept of conditional probability in a formal manner.

Let A and B be any two events associated with a

random experiment. The probability of occurrence of event S
A when the event B has already occurred is called the //}
conditional probability of A when B is given and is » /;

AnB
denoted as P(A/B). The conditional probability P(A/B) is 2

meaningful only when P(B) # 0, i.e., when B is not an
impossible event.
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Probability and . By definition, =
Distribution Theory P(A/B) = Probability of occurrence of event A when the event B as
: already occurred.
_ No. of cases favourable to B which are also favourable to A
NOTES = No. of cases favourable to B
P(A/B) = No. of cases favourable to A "B
No. of cases favourable to B
No. of cases favourable to A "B

_ No. of cases in the sample space
e M No. of cases favourable to B

No. of cases in the sample space

P(A nB) ;
P(A/B) = W, provided P(B) = 0.

Similarly, we have

_P(AnB)
P(B/A) = —p o=

, provided P(A) = 0.

Independent Events

Let A and B be two events associated with a random experiment. We have

P(ANB)
P(A)
P(A n B) = P(A) P(B/A). .

In general P(B/A) may or may not be equal to P(B). When P(B/A) and P(B) are
equal, then the events A and B are of special importance.

Two events associated with a random experiment are said to be independent
events if the occurrence or non-occurrence of one event does not affect the probability
of the occurrence of the other event. For example, the events A and B are independent
events when P(A/B) = P(A) and P(B/A) = P(B).

Theorem II. Let A and B be events associated with a random experiment. The
events A and B are independent if and only if P(A n B) = P(A) P(B).

Proof. Let A and B be independent events.

P(B/A) = , provided P(A) # 0.

_(P(AnB) ¥
P(AB) = (———P(B) } P(B) = P(A/B) P(B)
PA N B)]
T b
( o P(B)
= P(A) P(B) (.- P(A/B)=P(A)
P(A ~ B) = P(A) P(B).
Conversely, let P(A n B) = P(A) P(B).
P(ANB) PA)P(B)
BABLE e o B T
PBAA) P(AnB) PQA)P®B)
and P(B/A) = T Y 7 T ERRRE i P(B).

P(A/B) = P(A) and P(B/A) = P(B).
A and B are independent events.

Remark 1. P(A n B) = P(A) P(B) is the necessary and sufficient condition for the events
A and B to be independent.
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Remark 2. Let A and B be events associated with a random experiment. Probability
(i)LetAand Bbem.e. .. P(AnB)=0 '
. P(A n B) # P(A) P(B) i.e., A and B are not independent events.
Mutually exclusive events cannot be independent.
(i) Let A and B be independent. NOTES
: P(A n B) = P(A) P(B) i.e., (AN B) # 0.
A and B are not mutually exclusive events. -
Independent events cannot be mutually exclusive.

Important observation. If A and B be any two events associated with a random
experiment, then their physical description is not sufficient to decide if A and B are
independent events or not. A and B are declared to be independent events only when
we have P(A n B) = P(A) P(B).

Dependent Events
Let A and B be two events associated with a random experiment. If A and B are
not independent events, then these are called dependent events.
In case of dependent events, we have P(A n B) = P(A) P(B/A).

Multiplication Rule of Probability
If A and B be any two events associated with a random experiment, then we
have ' ;
P(A n B) = P(A) P(B/A).
This is called the multiplication rule of probability.
In particular, if the events A and B are independent, then the multiplication
rule of probability becomes
P(A n B) = P(A) P(B).
Theorem 1. If A, B, C are three events associated with a random experiment,
then :
P(ANnBnNC)=P(A) P(B/A) P(C/A n B).
Proof. We have
P(CN(AnB) P(AnBNC)

PCANB =—30 B ~ PAnD
PAnBnC)=P(AnB) P(C’/AnB) )
P(BnA) P(ANB)
A T 7 TR 7
P(A A B) = P(A) P(B/A) (2)

(1) and (2) implies P(An B N C) = P(A) P(B/A) P(C/A n B).
Definition. Three events A, B, C associated with a random experiment are

called independent if A, B, C are pairwise independent and P(An B n C) = P(A) P(B)
P(C).

Theorem II. Let A and B be events associated with a random experiment. If A
and B are independent, then show that the events (i) A, B (ii) A, B (iii) A, B are also
independent.

Proof. The events A and B are independent.
; P(A n B) = P(A) P(B) snkl)
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Probability and
Distribution Theory

@) ((ANBN(ANB) =(ANA) N(BAB)=6nB=¢
and (AnB)UANB) =(AUA)NB=SNnB=B.
NOTES .. The events A n B and A N B are m.e. and their union is B.
By addition theorem, we have P(B) = P(An B) + P(AnB).
= P(AnB) = P(B) - P(A n B) = P(B) - P(A) P(B) (Using (1))
= (1- P(A)) P(B) = P(A) P(B)
P(An B) = P(A) P(B) i.e., A and B are independent.
@) ANBNANB)=(AnANBNB)=An¢=0¢
and (ANB)JUANB)=ANnBUB)=ANnS=A.

The events A~ B and A B are m.e. and their union is A.
By addition theorem, we have

P(A) = P(A n B) + P(AnB).
= P(A N B) = P(A) - P(A n B) = P(A) — P(A) P(B) (Using (1))
= P(A)X1 - P(B)) = P(A)P(B)

P(ANB) =P(A) P(B) i.e, Aand B are independent.
(i) AnB) n(AnB)=AnA)nBAB)=Ano=0
and AnNBIUANB)=AnBUB)=AnS=A

The events A nB and A n B are m.e. and their union is A.

By addition theorem, we have
PA) = PAnB) +PANB) i)
= P(A ~B) = P(A) - P(A ~ B)=P(A) - P(A) P(B) (Using part (i)
= P(A) (1- P(B)) = PA) P(B).
P(A~B) = P(A) P(B) i.e., A and B are independent.

WORKING RULES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample paper S of the given random
experiment. Write the sample space, if it is feasible to do so.
II. Designate the events, as A and B whose ‘independence’ is to be checked.
Out of the elements of the sample space, identify the elements which are
favourable to the events A and B. Also find, the event A n B.
ITII. Find P(A), P(B) and P(A n B).
IV. Find P(A) P(B). If P(A) P(B) is equal to P(A n B), then declare that the
given events A and B are independent events.
Example 1. IfA and B are independent events such that P(A uB) =0.6 and P(A)
= 0.2, find P(B).
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Sol. We have P(Au B)=0.6 and P(A) = 0.2.
By addition theorem, we have
P(AuUB)=P(A) + P(B)- P(AnB)

e P(A U B) = P(A) + P(B) - P(A) P(B)
(-~ A and B are independent)
= 0.6 = 0.2 + P(B) - (0.2) P(B)
= 04=P(B)(1-0.2)
= (0.8)P(B)=04 = P(B)= ik ol = 0.5:
08 2

Example 2. A pair of dice is thrown. A is the event : “the sum is 8” and B is the
event : “at least one odd number is obtained”. Show that the events A and B are dependent.

Sol. Let S be the sample space.
8 =1, DAY, 28 ...... , (6, 5), (6, 6)}.
A ={(2,6),(3,5), (4, 4), (5, 3), (6, 2))
B={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (3, 1), (3, 2), (8, 3), 3, 4), (3, 5),
(3, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (2, 1), (2, 3), (2, 5), (4, 1),
(4, 3), (4, 5), (6, 1), (6, 3), (6, 5)}.

5
P(A) = 36 and PB)=_-=—
Also, AnB={(3,5),(5,3). o EACEBl s =18

3
P(A) P(B) = §5§ o™ ZSS— # P(A n B). The events A and B are dependent.

INDEPENDENT EXPERIMENTS

1.8 INDEPENDENT EXPERIMENTS

Two random experiments are said to be independent if, for every pair of events
A and B where A is associated with the first and B with the second experiment, the
probability of simultaneous occurrence of the events A and B, when the two experi-
ments are performed, is equal to the product of the probabilities P(A) and P(B) calcu-
lated separately on the basis of two experiments.

The event ‘A and B’ of simultaneous occurrence of events A and B is denoted by
A N B or more briefly as AB.

Ilustration. Let E, and E, be random experiments of throwing a die and toss-
ing a coin respectively. Let S, and S, be their respective sample spaces.

S,=11,2,8,4,5,6} and S,={(H, T}
If S represents the sample space of combined experiment of E, and E,, then
S = (1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T).

The elementary events in each of E;, F, and their combined experiment are

equally likely.
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Probability and Let A = event of getting number less than 3, and
Distribution Theory B = event of getting tail.

{A) -2 % n(B) | {Pr o |

PA)="2 22 pB)= == ==xs=-—.

. (A) nS) 63’ (B) "8y 2 and thusP(A)P(B) The -
o n(AB) 2 1
Also, AB={1T, 2T} and P(AB)= e

P(AB) = P(A) P(B).

The above equality is not sufficient to infer that the experiments are independent,
because by definition, the experiments would be independent if the equality P(AB)
= P(A) P(B) holds for all possible events A in E,and Bin E,.

Next, we prove a theorem which will lay down a criterion for the independence
of experiments.

Theorem IIL. If the occurrence or non-occurrence of an event in one random
experiment does not in any way affect the probability of the occurrence of any event in
the other random experiment, then the experiments are independent.

Proof. Since the occurrence or non-occurrence of an event in the first experiment
is not affecting the probability of occurrence of any event in the second experiment,
the sample spaces of the experiments are not affected by the events.

Let n, and n, be the numbers of elementary events in the first and second
experiment respectively.

Let A and B be any events associated with first experiment and second
experiment respectively.

Let m, be the number of cases favourable to the happening to the event A out of
n, exhaustive, equally likely cases of the first experiment.

PA) = 1
m
Let m, be the number of cases favourable to the happening of the event B out of
n, exhaustive, equally likely cases of the second experiment.

P(B) = 22
ng

By the Fundamental principle of events, the number of cases favourable to
the happening of the event AB in this specified order is m,m,. Also the number of
elementary events in the combined experiment is nin,. s

PAB)= 2172 .1 ™ _ pay p(B).
iy Ny Ry
The experiments are independent.

Remark. If A and B are events associated with experiments which are not independent,
then the probability of the event ‘AB’ is found by using the result :

P(AB) = P(A) P(B/A).

This result can also be extended to more than two experiments. :

Important observation. If A and B be any two events associated with two
different random experiments, then we may use the formula :

P(A in first experiment and B in second experiment)

= P(A in first experiment) . P(B in second experiment),

if on the basis of physical description of the random experiments, the occurrence or
non-occurrence of an event in one random experiment does not affect the probability of
occurrence of an event in the other random experiment.
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WORKING RULES FOR SOLVING PROBLEMS

I. If A and B are mutually exclusive events in a random experiment, then
P(A U B) = P(A) + P(B).
I1. If A and B are events in a random experiment, then
P(A U B) =P(A) + P(B) - P(A n B).
IILI. If A and B are independent events in a random experiment then
P(A n B) = P(A) P(B). -
IV. If A and B are dependent events in a random experiment, then
P(A n B) = P(A) P(B/A).
V. If, on the basis of the physical description of two random experiments, the
occurrence of an event in one random experiment does not affect the
probability of the occurrence of an event in the other random experiment,

we conclude that the random experiments are independent and make use
of the result :

P(A in first experiment and B in second experiment)
= P(A in first experiment). P(B in second experiment).

ILLUSTRATIVE EXAMPLES

Example 1. A and B appeared for an interview for two posts. Probability of A’s
rejection is 2/5 and that of B’s selection is 4/7. Find the probability that only one of them
is selected.

Sol. The random experiments ‘interview of A’ and ‘interview of B’ are independ-

ent.
Let E = event that A is selected
and F = event that B is selected.
= 2 4
P(E) = 5 and P(F) = Ch
Also, P(E)=1-P(§)=i—%=-35- and P(?)=1—P(F)=1—%=§7--

Required probability = P(only one is selected)

= P(EF U EF) = P(EF) + P(EF)
(Using addition theorem)

= P(E) P(F) + P(E) P(F)
(Using multiplication theorem)
3-8 2 -4 948 17
i N s i N e e o i
B=id 8 LT 35 35
Example 2. A husband and a wife appear in an interview for two vacancies for

the same post. The probability of husband’s selection is 3/5 and that of wife’s selection
is 1/5. Find the probability that :
(i) both are selected (i) exactly one is selected
(iii) none is selected.

Sol. The random experiments ‘interview of husband’ and interview of wife’ are
independent
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Probability and Let H = event that ‘Husband’ is selected

Distribution Theory and W= event that ‘Wife’ is selected.
P(H) =< and P(W)= l.
NOTES
Also, P(HE) = 1- P(H)-l—%—gandP(W)_l PW) =1-2=2.
(z) P(both are selected) = P(HW) = P(H) P(W)

(Using multiplication theorem)

ek S

5 5 25

(iz) P(exactly one is selected)= P(HW u HW)
= P(HW) + P(HW) (Using addition theorem)

= P(H)P(W) + P(H)P(W)
(Using multiplication theorem)
sl 5 B Sl
9.5 B B 25
(iii) P(none is selected) = P(HW) =P(H) PW)

(Using multiplication theorem)
4 8

5 25

2
=S
5

314825

Note. In this example, it is worth while to note that — + —
% 25 25 25

This has happened because the events : both are selected, exactly one is selected and
none is selected are mutually exclusive and exhaustive.

Example 3. The odds in favour of one student passing a test are 3 : 7. The odds
against another student passing it are 3 : 5. What is the probability that both pass the

test ?
Sol. Let A = event that first pass the test.
3 3
P(A) = a0
Let B = event that second pass the test.
5 256
b i
The random experiments of results of students are independent.
5 3
P(both the t P(AB) = P(A B——x—-:—
(both pass the test) = P(AB) = P(A) P(B) T

Example 4. Three group of children contain respectively 3 girls and 1 boy,
2 girls and 2 boys, 1 girl and 3 boys. One child is selected at random from each group.

13
Show that the chance that the group selected consists of 1 girl and 2 boys is 3

Sol. There are three possibilities :

(i) Boy is selected from group-I and girls from group-1I and group-III, or
(iz) Boy is selected from group-II and girls from group-I and group-I1I or
(zi2) Boy is selected from group-III and girls from group-I and group-II.

1 B 2 B 3 B
3G 2 G 1 6
I II III
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Required probability of selecting a group of 1 boy and 2 girls
1 2 1 2 3 1
C Cc C C C C 3 3 2
» 41><41X41]+(41X41X41]+4C‘x4clx4cl
C, *C G C, ¢ "G G v b e 6
2 6 .18 26 .13
= —  ——
3 64 64 64 32
Example 5. A bag contains 5 white and 3 black balls and another bag contains

3 white and 4 black balls. If one ball is drawn from each bag, what is the probability
that one is white and the other is black ?

Sol. The random experiments ‘drawing one ball from first bag’ and ‘drawing
one ball from second bag’ are independent.

5 White 3 White
3 Black 4 Black
Bag I Bag I1

Let W, and B, be the events of drawing white ball and black ball respectively
from the ith bag. i =1, 2.

Required probability = P (one is white and one is black) = P (W,B, or B;W,)
=P (W,B,) + P(B,W,) = P (W,) P(B,) + P(B,) P(W,)

5 4 3 8 | 209528

- X i X i So—— .
5+3 3+4 5+3 3+4 56 56 56

Example 6. A can hit a target 3 times in 5 shots, B 2 times in 5 shots, C 3 times
in 4 shots. Each fire a volley, what is the probability that 2 shots hit the target ?

Sol. The three random experiments of hitting target by A, B, C are independent.
Let A, B, C also represent the events that A, B, C respectively hit the target.
3 2 3
PlA)= 5 P(B) = 5 and P(C)= T

= 3 Z e r - % Lt |
W R L ey ] O L.
BCAY =4 - P(B) il and P(C) 327

Required probability = P(2 shots hit the target) = P(ABC or ABC or ABC)
_ P(ABC) + P(ABC) + P(ABC) = P(A)P(B)P(C) + P(A)P(B)P(C) + P(AA)P(B)P(C)
6 27 12 _ 45 _9

=_3_x2x_];+§xgx_3.+gxzxi=————+ +— = = —
EoE 4 s 4 Th e 100 100 100 100 20°

PROBABILITY DISTRIBUTION

Introduction

We have already studied a lot about frequency distributions. These distribu-
tions are based upon observations, i.e., the frequencies for different values of the vari-
able, under consideration, are based on actual observation. For example, if an unbi-
ased coin is tossed 100 times, we may get head 57 times. Here, 57 is the observed
frequency but theoretically we shall expect ‘head’, 50 times. In this section, we shall
study probability distributions and frequency distributions which are based upon theo-
retical considerations.
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Probability and

Distribution Theory 1.9 RANDOM VARIABLE

Let S be the sample space of a given random experiment. A real valued function
NOTES ‘«’ defined on the sample space S is called a random variable.

Thus, if s €S, then x(s) is a unique real number.

Remark. The values of a random variable are real numbers, connected with the out-
comes of the random experiment, under consideration.

In the random experiment of toss of two coins, if we define the random variable

(x) as the number of heads, then the values of the random variable x are B:30.0..2
corresponding to the outcomes TT, TH, HT, HH respectively.

We write, x(TT)=0* x(TH) = 1, x(HT) = 1, x(HH) = 2.

In case, there are three coins, then the values of this random variable are 0, 1,
1,1,2,2,2,3 corresponding to the outcomes TTT, TTH, THT, HTT, HHT, HTH, THH,
HHH respectively.

We can define any number of random variables on the same sample space. If x
denotes the random variable, defined as the cube of the number of tails, in the experi-
ment of toss of two coins, then we have

Sample points HH HT TH Tr

x 0¥=0 13¥=1 (1¥=1 (22 =8

Random variables are of two types : (i) discrete random variable and (if) con-

tinuous random variable.

(i) A random variable is called a discrete random variable if it can take only
finitely many values. For example, in the experiment of drawing three cards
from a pack of playing cards, the random variable “number of kings drawn”
is a discrete random variable taking value either 0 or 1 or 2 or 3.

(i) A random variable is called a continuous random variable if it can take
any value between certain limits. For example, height, weight of students in
a class are continuous random variables.

Probability Distribution of a Discrete Random Variable

Let x be a discrete random variable
assuming values x;, x,, X, ...... , X, corres-
ponding to the various outcomes of a random
experiment. If the probability of occurrence
ofx=x;is P(x;) =p,, 1 <i <n such thatp, +
Py + Py + ...... + p, = 1, then the function,
P(x;) = p;, 1 <i <n is called the probability
function of the random variable x and the
set (P(x,), P(x,), P(xy), ......, P(x )} is called P. |P: | P:gP. P.
the probability distribution of x. '

P(x)4

*Why this step. x(TT) = 0, because the number of heads in the sample point “TT is zero.
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- The graph of a probability distribution is also drawn as shown in the diagram. Probability
This is also known as a bar-chart.

Working Rules for Finding Probability Distribution
I. Identify the random variable and put it as x. NOTES

II. Find the possible values of x.
III. Find P(x) for all possible values of x and write P.D. of x.

IV. Check that the sum of all probabilities in the P.D. is one. If this sum is not
one, then some mistake is bound to have occurred in the calculation work.
Remove the mistake and again verify that the sum of all probabilities is
one.

1.10 DISTRIBUTION FUNCTION

Let X be a random variable. Define a function F(x) by

Fx)=PX<x) =P {w: X(w) £x), — o < x < = is called the distribution function of
the random variable X. A distribution function, is also known as cumulative distribu-
tion function. We, some times, denote the distribution function of the random variable
X, by Fy(x).

The domain of F(x) is (- =, «) and range is (0, 1}.

Properties of Distribution Function
The properties of distribution function are discussed in the following theorems.

Theorem L. Let F is the distribution function of the random variable X and
ifa < b, then :

P(a<X<b)=F(b)-Fla)
Proof. Consider the eventsa <X <b and X < a.
These two events are disjoint and their union is X < . By addition theorem of
probability,
Pl@a<X<bh)+PX<a)=PX<bh)
= Pla<X<b)=PX<b)-PX<a)=F®b)-Fla)
Theorem IL. If F is the distribution function of the random variable X and if
a < b, then
(1)P(@a<X<b)=F(b)-F(a) + PX=a)
(i) Pla<X<b)=F(b)-Fla)-P(X=5b)
(tii) Pla<X<b)=F(b)-F(a) + PX=a)-PX =b)

@) IfP(X=a)=0and P (X =b) =0, then (i), (ii) and (iii) have same probability
F(b) - Fla)

Proof. By above theorem,
Pla <X <b) =F(b) - Fla) :
(()Pl@a<X<h) =PlX=a)ula<X<b)
=PX=a)+Pla<X<bh) | Disjoint Events
=P (X =a) + F(b) - Fla)
(@)Pl@a<X<b)=Pla<X<b)-PX=b)
=F(b)-F@a)-PX=b)
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fpmllgab-j!iry and @ii)Pl@a<X<b)=Pla<X<b)+PX=a)
Distribution Theory =F0b)-Fla)+PX=a)-PX=20)
(V) IfP(X =a)=0and P (X =b5) =0, then (i), (i) and (iii) reduces to F(b) — F(a).

Theorem III. If F is distribution function of one-dimensional random variable,
NOTES S

(1))0<F(x)<1 (@) F(x)<F(y) = x<y
(fit) F(- ) =0 (iv) F(eo) = 1
Proof. (i) By definition of distribution function, the range of F(x) is [0, 1]
0<sFx) =1
(i) Flx)=P(X <x)and F(y) =P(Y <y)
Flx)sF(y) = PXSsx)=PX=y)
which holds ifx <y
(iii) Let S be the sample space of the random variable X, then

n=1 n=0

S={G (-n<XS—n+1)}u{CJ (n<X$n+1}

=i P(s)=z P(-n<X5—n+1)+z Pn<X<n+1

n=1 n=0
a b
= 1= lim 3" (F-n+D=Fn)+lim 3" (Fn+D-Fn))
a—eo s h—ro0 0
= lim (F(0) - F(-a) + lim (F(6 + 1) - F(0))
= {F(0) — F(= =)} + (F(=) - F(0))
1 = F(eo) - F(= o) A1)
Since — o0 < o0, F(— 00) < F(0), Also F(— =) 2 0 and F(e) £ 1
0<F(- =) SF(e) <1 A2)

From (1) and (2), F(— =) = 0 and F(e) = 1.

Discrete Distribution Function or Probability Mass Function

If X is a discrete random variable with distinct values x,, x,, ..., x ; then the
function py(x) defined by

PX=x)=pi, ifx=x;
px(x)= 0 = x#xi;i=112,31---

is known as Discrete distribution function or probability mass function
(abbreviated as p.m.f.) of the random variable X.

The set of ordered pairs ((x;, p(x;)) i=1,2, ... n, ...} or {(x,, py), E N - A TR
specifies the probability distribution of the random variable X

Also p(x)20Vi and Z plx))=1
i=1
Theorem IV. If F is the distribution function of the discrete random variable X,
then

plx)=PX= x) =F(x) - Flx,_ ). Interpret the result.
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Proof. Let x, <x,<x;<....,then Probability

i i

Fix)=PX<x)= ) PX=x)=) plx;)
Jj=1 J=1

s NOTES

i-1
F(x,-_l) = P(X < xl._l) = Z P(X = xt'—l) = Z p (xJ)
j=1

J=1 b

i i-1
Fix)-Flx,_) =Y px;)- plx;) = p(x,).
Jj=1 J=1

Interpretation. Given the distribution function of the discrete random variable,
its probability mass function can be obtained.

Continuous Distribution Function or Probability Density Function
Let X be a random variable and fix) be any continuous function of x so that
fix) dx represents the probability that X falls in the infinitesimal interval (x,x + dx) i.e.,
flx)dx=P(x <X <x +dx),
then the function f,(x) is known as continuous distribution function or probability
density function (abbreviated as p.d.f) or simply density function. Mathematically,

Plx<X <x+8x)
dx

The probability density function (p.d.f.) f.(x) or Ax) of a random variable X
satisfies the following properties

o= JH,

() fix) > 0 (ii) j"f(x)dx &

Remark. In case of continuous random variables, the probability at a point is always
zero. But, in case of discrete random variable, the probability at a point, i.e., P(x = ¢) is not zero
for some fixed c¢. Hence

PlasX<sP)=P(asX<P)=Pla<Xs<P)=Pla<X<p)
i.e., In case of continuous random variable, it does not matter whether we include the
end points of the interval from o to B. However, this result is not true in case of dis-
crete random variables. We are giving below some important formulae which will be

frequently used in the present chapter. Let flx) denotes the probability density func-
tion of the random variable X, then

b
(i) Arithmetic Mean = j x f(x) dx
a

(i) Harmonic Mean. Harmonic mean H is given by : % = Ib = . f(x) dx
a X

(iti) Geometric Mean. Geometric mean G is given by :

b
log G = _[ log x. f(x) dx
(iv) The rth moment,

b
(@) i, (about origin) = ["x"_f(x) dx

b
(b) i, (about the point x = A) = _[ (x-A) . f(x) dx
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Probability and b
Distribution Theory (¢) p, (about mean) = L (x — mean)” . f(x) dx
In particular,
b b
NOTES W', (about origin) = Mean = J x f(x)dx and Y’y = I %% f(x) dx
a a
o b 2
Hence, Hy= Wo—-pd= J x“ fx)dx - U x f(x) dx]
a a

(v) Median. Median is the point which divides the entire distribution in two
parts. In case of continuous distribution, median is the point which divides the area
into two equal parts. Thus if M is the median, then

J:[f(x) ditm j;f<x) e %

b
Thus solving IMf(x) dx = % or IM flx)dx= %
a

for M, we get the value of median.
(vi) Mean Deviation. Mean deviation about the mean u,’ is given by :

b
M.D= _[ | x —mean | f(x) dx
a
In general, mean deviation about an average ‘A’ is given by :
b
M.D. about ‘A’ = _[ |x—A|f(x)dx
a
(vii) Quartiles and Deciles. Q; and Q, are given by the equations :
Q 1 Qg 3
1, RO Dime] " pewe=g
D,, ith decile is given by :
Dl i .
ety =1.2 ... 9
[ f@dx=—
(viii) Mode. Mode is the value of x for which flx) is maximum. Mode is thus the
solution of f’(x) = 0 and f “(x) < 0, provided it lies in [a, b].

ILLUSTRATIVE EXAMPLES

Example 1. Find the probability distribution of the random variable “number
of heads” when :
(i) two coins are tossed (ii) one coin is tossed twice.
Sol. () Let S be the sample space.
S={HH. 0T, TH, TT}
Let x denotes the discrete random variable “number of heads”.
The possible values of x are 0, 1, 2.

We have P(x = 0) = P({TT}) = -

o B

P(x = 1) = P((HT, TH)) = =_;.

P(x = 2) = P(HH)) = —}
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The required probability distribution (P.D.) is

X

P(x)

= | o

1
2
2

= | o

(ii) Let H be the event of getting a head.
Let x denote the discrete random variable “number of heads” in two tosses.
The possible values of x are 0, 1, 2.

1
4

B | =

e =l . — 1
Wehave P(x=0)=P(HiHz2)=P(H;)P(H;)= 'Ex

P(x = 1) = P(H, Hz or HiH,) = P(H, Ha) + P(HiH,)

H 23 B I e o T T
=P(H1) P(H2)+P(H1)P(H2)= §x§+§x§=z+

| -
Do =

1 el (A |
P(x = 2) = P(H,H,) = P(H,) P(H,) = 2 X-2- v
The required probability distribution (P.D.) is

x 0 1 2

1 1 1
B i P 0

Example 2. Two cards are drawn successively with replacement from a well
shuffled pack of 52 cards. Find the probability distribution of number of queens.

Sol. Let Q be the event of drawing a queen from the pack of cards.

Let x denotes the discrete random variable “number of queens” in two draws.

The possible values of x are 0, 1, 2.

48 48 144
52 52 149
Px=1)=P(Q,Q, or Q) =P@Q,Q,) + P(Q,Q,)

- P~ 4 48 48 4 24
= P(Ql) P(Q2)+P(Q1) P(Q2)= —5-2-X5+5X5=-1—6—9-

Wehave Plx=0)= P(ﬁlﬁz )= P(al) P(-Qz) =

4 4 1
Px=2)= P(Q1Q2)"' P(QI) P(Q2)— ‘5—2")(5'—1'6'5.

The required probability distribution (P.D.) is

x 0 ! | >
144 24 1
i 169 169 169

Mean and Variance of a Random Variable

We know the method of finding the mean and variance of frequency distributions.
In a frequenf:y distribution, we have frequencies corresponding to different values of
the variable. Similarly, in a probability distribution, we have probabilities corresponding
to different admissible values of the discrete random variable.
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Probability and Now, we shall extend the idea of mean and variance for probability distribu-
Distribution Theory tions.

Let x be a discrete random variable assuming values x,, x,, ......, x, with respective
probabilities p,, p,, ...... ,p, withp, +p, + ...... +p,=1
NOTES v P2 n n1 2 P
Z Pi%E g n
We define, mean () = '=: = Zp,-x,- Z pi=1
i=1

ZP:‘ g
i=1

n
ZP;(’C;‘ -p)? ~
and variance = -‘f—l-n— = Z pilx; —p)?,
i=1

Pi
i=1

n n n n n
Wehave D pilx; —p)? = D pe +1* +2ux) =) pix® +p® Y pi-2m ) pix;
i=1 i=1 i=1 =1 i=]

. n
= Zpix,'z + }12.1— 2“’,[ = zpixiz = }12.
i=1

i=1

n n
‘Mean (u) = Zpixi and variance (¢2) = Zpixf -p2,
; i=1 i=1
In short, we write, 4 = Zpx and variance = Zpx2 — p2.
The mean of random variable x is called the expected value of x and is denoted
by E(x). The mean and variance of a random variable are also referred to as the mean

and variance of the corresponding P.D.

Remark. S.D. of probability distribution = yvariance =y Zpx® — .

WORKING RULES FOR SOLVING PROEI.EMS

I. Identify the random variable (x) and its possible values x,, x,, .......
II. Find probabilities for all values of the variable x.
III. Draw table and find IZpx and Zpx2.
IV. Find ;nearzl and variance by using the formulae p = Zpx and variance
= Ipx© — p-.

Example 3."A random variable x has the following probability distribution :

x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k
(£) Find the value of k.

(it) Calculate mean and variance of x.
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Sol. Calculation of mean and variance

x p px : px?
-2 0.1 -0.2 0.4
-1 k -k k
0 0.2 0 0
1 2k 2k 2k
2 0.3 0.6 1.2
3 k 3k 9k
Ip=4k+06 Ipx =4k + 0.4 Ipx2=12k + 1.6

(i) In a P.D., we have Zp = 1.
4k +06=1 or 4k=04o0rk =0.1.
(i1) Mean (u) = Zpx = 4k + 0.4 = 4(0.1) + 0.4 = 0.8,
Variance = Ipx? — p? = (12k + 1.6) — (0.8)2 = (12(0.1) + 1.6) — 0.64 = 2.16.

Example 4. Find the mean and variance of the number of heads in the two
tosses of a coin.

Sol. Let x denotes the random variable, “number of heads” in the two tosses.
The possible values of x are 0, 1, 2.

1

We have P(x = 0) = P(no head) = P(HiHz2) = P(H, )P(H,) = s

X

0| =
B =

where H, is the event of getting head in the ith toss, i = 1, 2.
P(x = 1) = P(one head) = P(H, Hp or H1 H,) = P(H,)P(H,) + P(H, ) P(H,)
(1 1) (1 1) 1
=|=x=|+|=%x=|==
2 2 2 -2 2

P(x = 2) = P(both heads) = P(H,H,) = P(H,)P(H,) = = x

b | =
b=
L}
PN

Calculation of mean and variance

x P px px?
0 i 0 0
4
1 1 1 1
2 2 2
2 l : 1
4 2
T
Ip=1 Zpx =1 Ipx e

Mean (u) =Zpx =1

Variance = Ipx? — u2 = % -(12=05.
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34

Probability and

Distribution Theory

NOTES

Example 5. Two cards are drawn successively with replacement from a well
shuffled pack of 52 cards. Find the mean and standard deviation for the number of
aces.

Sol. Let A be the event of getting an ace in a draw of one card.

12

i
P(A) = 52_ﬁ and P(A ) = 1-—5_15

Let x denotes the random variable “no. of aces”.
x can take values 0, 1, 2.

12 12 144
13 13 169

P(x = 1) = P(one ace) = P(A, A, or A; A,) = P(A)P(A,) + P(A1) P(A,)

(1 12} (12 1] 24
X +|—X—|=—
13713) (137 13) 169

P(x = 0) = P(no ace) = P(A1 A2) = P(A1) P(Ag) =

1 oE
P(x = 2) = P(both aces) = P(A,A,) = P(A))P(A,) = 13 TRETTR
Calculation of mean and S.D.
x p px px?
144
0 169 0 0
A 2 24 2
169 169 169
. o i 5 2 8
169 169 169
2 28
=1 X = — - TR
» e ZPx"= 169
Mean = Zpx £
13
S.D. = Zpx? —p? _[28 4 V2 246

169 169 18 L

Example 6. Two cards are drawn szmultaneously (or successively without
replacement) from a well shuffled pack of 52 cards. Compute the variance of the number
of aces.

Sol. Let two cards be drawn simultaneously from the well shuffled pack of 52
cards. Let x denotes the random variable “no. of aces”.

x can take values 0, 1, 2.

48
2 8¢, _188
P(x = 0) = P{no ace) = 02 5
4 48
P(x = 1) = P(one ace) = 015;—(:201= %
=
P(x = 2) = P(both aces) = 520 o
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Calculation of variance Probability

x p px px*
188 NOTES
0 251 0 0
A 32 32 32
221 221 221
: X - 4
221 221 221
=1 = ﬁ b3 L . ﬁ
s % = 901 PE= 291

Variance = Epx? — p? = Ipx? — (Zpx)?
36 _( 34 )2 _ 79561156 _ 6800 _ 400
~ 221 (221 48841 48841 2873°

Example 7. The diameter of an electric cable, say X, is assumed to be a continu-
ous random variable with p.d.f. flx) =6x(1-x), 0 sx <1

(a) Examine whether f(x) is a probability density function ?
(b) Determine b such that P (X <b)=P (X >b)

Sol. (a) For probability density function, we should have

(i) fx) 20, whichis truefor 0 <x <1

(ii) Jﬂlf(x) dx = 1, we check it.
;| 1 1
- — - i 2
Here jof(x)dx~J06x(1 x) dx Gjo(x x°)dx
2 33!
L I =6(-1-—1]=6.1=1
2 3 o 2= 8 6
(b) PX<b)=PX>b)

e j:f(x)dx " I:f(x)dx

b 1
= sjox(1-x)dx=6jbx(1-x)dx

i (1 1] I
— e v e ) = ) o e o e ot iy o

2 3 2 8 s
362-263=(1-3b2+2b3%) = 4b3-6b2+1=0
= (26-1)(262-2b-1)=0

U

1
26-1=0 = b=-2~or2b2—2b—1=0
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Probability and 2+./4+8 +
Distribution Theory = b= 4 ;3 : _ZJE 3

But be (0,1} : b=<.
NOTES -

Example 8. Let X be a continuous random variable with probability density
function given bv

f(x)=kx(2-x),0<x<2

(i) find mean, variance, B, and B, and hence show that the distribution is
symmetrical

(if) Find mean deviation about mean
(iit) For this distribution, Moy =0
" (iv) Find mode, median and harmonic mean of the distribution.
Sol. As f(x) is a probability density function

_[:f(x)dx =1 = j:kx(zw-x)dx =1

s 3
= bl S nad il
8 1
8
kl4-—|=
= ( BJ 1
4
= —k=1 = k=~3-
3 4
The rth moment about origin is given by
2 3 2 - 3'2)‘4-1
= " fxlde=~1 2@ - 2)dx = —avm—— P
e .[o" el 4.[0" e AN i
. o - e O Ry L
(E)Mean—ul-—?—l, uz——a-—s-, W3= 35 =%
and '——3'25 il
Me="e7 "7
; . e |
Hence, variance = p, = ', -, =g-1=——
,3_8 6

Hg = Wy — 3u5 By + 2, -3—3.g.l+2 =0

By = Wy — 4HG Wy + Bl pu? — 3

16 8 6 3
=—-4.—.1+46.—.1-3.1=—
7 5 5] 35
2
ud _ By _8/35 _15
B, = g =0 and B, 2 we? T

Since B, = 0, the distribution is symmetrical.
1
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(ii) Mean deviation about mean is given as

= [ ds = [ lx-1 e de+ [ 12~ 11 f0) d
0 0 1

U:(l—x)x(Z-x)dx+J-12(x— 1)x(2-x)dx]

o |

1 2
UO (2x-3x% +x%) dx + L (8x2% - 2% - 2x) dx]

i ' g 7 {3
=§. x2_3'x +x_ + 3x_._.x_..2i =_3.
4 8 AL § doptell$
2 2n+1 3 r? 2n+1
(iif) Haniy = [ (- mean) f(x)dx=zju (x - D2 2 (2-x) dx

3 12n+1 3 12n+] 2 =
‘41‘_3 ¢+ 11 :)dt_4j_lt (1-t%) dt wheret=x—1

Hence, Uy, =0.
(iit) Mode is the solution of fx) = 0 and f"(x) < 0

Now,  f)=2@2-20=0 = x=landf")= g(__2)=_2<0_
Hence mode = 1
Also, Harmonic mean H is given by :

1 21 3 (2 3 2
E='[0;f(:c)a!:.:_zjo(2-::)4::_E = H=%.

Finally, If M is the median,
1

M 1 3 (M
_[Of(:c).cianc-E - Zjox(2-x)dx—2

w | b

0
= 3M?2-M3}=2 = M3-8M?+2=0 = (M-1)(M2-2M-2)=0

M=10rM=2i_;ﬂ=1iJ§

The only value of M lying in [0, 2] is M = 1. Hence median is 1.

Two-dimensional Random Variable

Let X and Y be two random variables defined on the same sample space S, then
the function (X, Y) that assigns a point in R? (= R x R), is called a two-dimensional

random variable.

Joint Probability Mass Function

If(X, Y) is a two dimensional (discrete) random variable, then the joint probabil-

ity mass function of X, Y, denoted by pyy (x, ), is defined as

Probability

NOTES
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Probability and

Distribution Theory Pyy @, 3,) = {P X= -RZ;E)Y =y) (,3)eXY)

otherwise
Note (i) Z Z pxy (%, ;) = 1.
Gt

(ii) A two-dimensional random variable is called discrete if it takes at most countable
number of points of R2.

Marginal Probability Mass Function

Let (X, Y) be a discrete two-dimensional random variable, then the probability
distribution of X is obtained as follows.

px(xi) = P(X:xi)
=P(X=x‘-r'\Y=y1)+P(X=xEmY=y2)+ ...... +P(X=xiﬁY=ym)

NOTES

m
=pi1+p£2+p,'_3+ ...... +p£m=Zp‘_J =pi’

J=1
and is known as marginal probability mass function or discrete marginal density func-
tion of X
n n m
Also Z b= Z z pPj=1
i=1 i=1 j=1

Similarly, we can prove that

4 4
PyO)=P(¥=y)=2 pj=) plx,y;) =p
J=1 J=1
which is known as marginal probability mass function of Y.

Remark. A necessary and sufficient condition for the discrete random variables X and
Y to be independent is that

PX=x,Y=y)=PX=x)P(Y=y)forall(x,y)e X, Y)
Two-dimensional Distribution Function

Let Fyy (x, y) denotes the distribution function of the two-dimensional random
variable (X, Y), then we define

Foy @, y)=PX<x,Y<y)
Properties of Two-dimensional Distribution Function
Fyy (%, y) satisfies the following properties
Property 1. For the real numbers a, b, ¢, d
Pa<X<bc<Y<d)=F(b,d)-F(b,c)-F(a,d) + F(a,c)
wherea<b;c<dand Fyy=F
Proof. Define the events :
Now,A:(X<a};B:{X<b};C={Y<e;D=(Y<d);fora<b;c<d.
Pla<X<bne<Y<d)
=P[(B-A)n(D-0)
=PBNn(D-C)-AnD-0C)] »41)
(By distributive property of sets)
AlsoEcF = EnF=E, then
P(F-E)=P(EnF)=P(F)-P(EnNF)=P(F)-PE)
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Obviously AcB = [An(D-0)c(Bn(D-C) ..(2)
Using (2) in (1), we have
Pla@a<X<bne<Y<d)=P[BNn(D-C)-P[An(D-0C)]
=P[(BNnD)-(BnC)]-P(AnD)-(ANnCQC)]
=PBnNnD)-PBnNC)-P(AnD)+P(AnC) (3)
~ [From (2),sinceCcD = (BnCc(BnD)and (AnC)c(AnD)]
Wehave:P(BNnD)=P[X<sbnY<d]=F(b,d).
Similarly PBNC)=F (b,c);P(AnD)=F (a,d)and P(An C)=F (a, ¢)
Substituting in (3), we get
Pla<X<bnc<Y<d) =Fb,d) -Fb,c)-Fa,d) + Fla, c)
Property II. Fy, (x, y) is a monotonic non-decreasing function.
Proof. Consider the real numbers a, b, ¢, d such thata < b, ¢ < d, then
X<a,Y<b)+Pla<X<e, Y<sb)=X<e, YD)
As the events on the L.H.S are mutually exclusive
Fla,b) +P(a<X<e, Y<b)=F(,b)
= F(,b)-F@,b)=Pla<X<ec,Y<b)20
= F(c, b) > F(a, b)
Similarly, F(a, d) 2 F(a, b).
Property IIL. F (- o, y) = 0,
Flx,—=)=0,
F(—eo,e0)=1
32
dxdy

flx, y) is continuous at (x, y)

Also = flx, y), provided

1.11 MARGINAL DISTRIBUTION FUNCTION

From the joint distribution function Fyy (x, y), we can obtain the marginal dis-
tribution functions Fy(x) and Fy(y), as below.

Fyx)=PX<x)=PX=sx,y<e)= Lt Fyy(x, 5)
y-roe

= XY(x,W)
Also Fy()=P(Y<y)=PX <o, Y<sy)= Lt Fyy(x, y)=Fyy (oo, y)

In case of jointly discrete random variables,
Fyx)= ) PX<x,Y=y)
Y

Fy») =) PX=x,Ys<y)
X
In case of jointly continuous random variable,

Fy(x) = J:J:fxy(x, y)dy dx

Fy) = [ [ fre(x,5) dxdy
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Probability and Joint Density Function

Eacriiusion Shtory From the joint distribution function Fyy (x, y) of two-dimensional continuous
random variables, we can obtain the joint probability density function as below

NOTES _ 9*F(x,y) ] PlxsXsx+8,y<Y<y+dy)
Ll ity < rgad Sy

and is known as joint probability density function of X and Y. The marginal probabil-
ity function of X and Y can be obtained as below.

( Z Pxy (x,%), (In case of descrete variables)
fx(x) = 3.'
J fxy (x, ¥)dy, (In case of continuous variables)
L -0
( Z Pxy (x, ), (for discrete variable)
fy(y) =) :
I fxy (x, ¥) dx, (for continuous variables)
dF o
TR '
iF: dF\r(y) Ay =
f)= 0= fior ) dx

(a) Convolution of Random Variables
Def. Probability generating function (p.g.f.)
Let <a > be a sequence of real numbers such that

= 2 3
A(s) =Qy+ 0,8 +08°+a,5° + ...

- Z a,s" converges in some interval (- 8g» 8y), then the sum function A(s) is
n=1

known as the generating function of the sequence <a >.

(b) Convolution of Two Random Variables

Let x and y are non-negative independent discrete random variables and if P(s)
and R(s) are the corresponding probability generating function (p.g.f.) such that

Pis) = Z pis* where p,=Plx =k)
k=0

R(s)= ) rs* wherer, =P(y=k)

k=0
Take z=x+y and Pz=k)=w,
where  w,=py, + DT +Polpo* oot + P,y k 2 0 then the sequence <w ;> 1s

known as convolution of the sequences <p,> and <r,> where

<W,> = <p> * <>
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Theorem. If <p,> and <r,> are the sequences with p.g.f. P(s) and R(s) respec-
tively and <w,> is their convolution,

then w(s) = P(s) R(s) where

w(s) = Z w;,sk is the p.g.f. of the sumx +y =z.

k=0
Proof. By definition of convolution of two random variables, we know that
Wy =Poly +Pylyq * ceoeee SRR A

The probability generating function
for z = x + y is given by

w(s) = Z w;,s* = P(s) R(s)
k=0
Hence the theorem.

Stochastic or Statistical Independence

Two random variables X and Y with joint p.d.f (p.m.f) fyy (x, ¥) and marginal
p.d.f. (p.m.f) fy(x) and fy(y) respectively are said to be stochastically independent or
statistical Independent if

fiy® ¥) = fy () fy(y)
or Fyy(x,y) = Fx (x), Fy(y)
where Fyy (x, y) is the joint distribution function and Fy(x) and Fy(y) are the marginal
distribution functions respectively.

ILLUSTRATIVE EXAMPLES

Example 9. For the joint probability distribution of two random variables
X and Y, given below
(i) Find the marginal distributions of X and Y

(ii) Find the conditional distribution of X given that Y = 1 and that of Y given
that X =2

Probability

NOTES

X/Y 1 2 3 g Total
1 4 3 2 = A 10
36 36 36 26 36
g 2 3 3 g 5 2
36 36 36 36 36
3 B s ¥ in 1 S
36 36 36 36 36
P x 2 ab 5 ¥ 3
36 36 36 36 36
11 9 7 9
! AL — #4 i
ol 36 36 36 36 :

Sol. (i) Let py(x) denotes the marginal distribution of X,

Then,

pyx)=PX=x)=) PX=xY=y)
y
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PX=1= PX=LY=y)
y

=PX=1,Y=1)+PX=1,Y=2)+PX=1,Y=3)+PX=1,Y=4)
4 3 2. 1 10

~ 36736 36 36 36

S .. 84+ :8
=2= = — e — — = —
PX=2) ZP(X 2,Y=y) 36+36+36+36 =
8

y

5 1 4
P(X=3 IR R SO W g e, )
Kn3)= 3, Pie N =36%36736 36 " 36

)

R 9
PX=4 PX=4,Y=y) =—+— +—=—
- Z ( » 36 "3 736736 36
Hence, the margmal distribution of X is given below:
X i | 2 3 4
10 9 8 9
) 2= i i =
Pxl 36 36 36 36

Similarly, the marginal distribution of Y is given below:

¥ 1 2 3 4
11 9 ¥ 9
Py0) 3% % 3% %

(i) The conditional distribution of X given Y is given by

PE=s3¥=9)
PX= Y= = —
X=x]|Y=y PY =)
o PX=1Y=1_4/36 4
=l Xl
: PX=2Y=1 136 25
PX=2 Y=1_
' | ! PiY=1 “1U36 11
5/36 5
PX = 1)=—=—
fredd Tl 11/36 11’
1/36 o
Mt iV=lr e 0
The conditional distribution of X given Y = 1 is given below:
X : | 2 3 4
4 1 5 1
PX=x|Y=1) —I'I ﬁ ﬁ ﬁ




Similarly, the conditional distribution of Y for X = 2 is given below:

¥ 1 2 3 4

o

3
3

1 1
P(Y = X=2) = =
y | 9 3

PY=1,X=2) 136 l
P(X=2) 9/36 9°
Example 10. If the joint probability density function of two random variables
XandY is given by

Since, P(Y=1 | X=2)=

1
o -g(ﬁ-x—y), 0sx<2, 2sy<d4
0 , otherwise
(2) Find PX<1nY<3)
(ii) Find PX +Y < 3)

(i) PX<1|Y<3)

1 p3
sol.(i)P(X<1nY<3)=_[ j f(x, y)dx dy

2 3

Gx—f—-yx

d
2 Yy

jj—(G x— y)dxdy-%j: 3

"[18-2-3y)-a2-2-2y)
Y R

dy

(i) PX+Y<3)= J'j —(6 x-y)dydx

=~k

3-x

dx

2
6y - xy—-zz—

2
6(3 x)—x(3 - x)-—(3 :c)] i
E(l2 2x - 2)]

18 -6x - 3x+ x? -—(9+x —6x) - 12+2.1:+2)dx

31
(R

]

mll-

A1
k
J
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8 6|, 8\2 88 6
NOTES i 2B i
86 24

PX<1nY<3) 3/8 3

@H)PX<1|Y<3)= PY <3) =58"35 | Using (i) and (ii)

Example 11. The joint probability density function of two-dimensional random
variable (X, Y) is given below:

_ | & Ol Ocy<2
fz, y) = {O, otherwise

(i) Find the marginal density functions of X and Y

(ii) Find the conditional density function of Y given X = x and conditional den-
sity function of X given Y = y

(iit) Check for independence of X and Y.
Sol. The marginal density function of X, denoted by fy(x), is given by

fx(") = {J:fxv (x, y) dy =J: 2dy=2%, 0D<x<1

0, otherwise.
Similarly,

%] 1
fY(Y)= {J'___fXY (x,y)d.t:jy 2dx=2(1—y), D<y<l1

0, otherwise.
(i1) The conditional density function of Y given X (0 <x < 1) is

fxy(x,y)" 2 1

fwx(ylx)=w'§-;=;, leyvex

Similarly, the conditional density function of X giveny (0 <y < 1) is
fxy (JC, y) g 2 =
) Wy =grotr}
(#i1) Here fyy (x, y) = 2 ik A}
fx @) fly) =2x . 2(1 - y) R0
from (1) and (2) fyy (x, ¥) # fx(x) f()
X and Y are not independent

Example 12. The joint probability density function of two random variables X
and Y is given below:

fxiy ®ly) =

9I+x+y)
20+y d+x)*
Find (i) The marginal distribution of X and Y
(ii) The conditional distribution of Y for X =x

Sol. Let fy(x) denotes the marginal distribution of X and f,;(x) be the marginal
distribution of Y, Then,

flx,y) =

0Sx<oo,0<Sy<e
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s 9 =(l+y)+x
= [fa,ydy= d
Fx®) -[ofxy 2 rn" jo TP e

I
2(1+2)*

=
2(1+y)?

_[:{(1+y)'3 +x(1+y)4)dy (1)
T 2(1+x)* 3(1+9)°

O}
9 [1 x] 3 3+2«

i g e ————;0<x <oo.
2(1+x)

2 -3 4. Oaal’
Similarly,

&

0

oo [ 90+=x+y
o) = L flx,y) dx = L ir T

ofts ol sgol
2(1+ y*

_3 3+2y
- (Aey®
Also, the conditional distribution of Y for X = x is given by

j:[(1+x)‘3 +y(1+ y)“’]dy

O<y<o | Proceed from (1)

fxr@,y) _ 9(Q+x+y) x4(1+x)4
fx(® 20+2*Q+y* 8(3+2x)
__6Q0+x+y)
1+ 9% (3+2x)’

Example 13. The joint probability density function of two random variables X
and Y is given below:

fo(Y=y | X=x)=

<y < oo,

7
—(1+xy), <1l|yl<1
frrt, )= {2 (1+xy), |x| Iy!
,  otherwise
Show that X and Y are not independent, but X? and Y ? are independent

Sol. Let fy(x) and fy(y) be the marginal density function of the random variables
X and Y, then

1
1 B xy? e :
fw = [ flaydy=2y+2- | =gemleEc A1)
1 1
Similarly, fy(y)= I_lf(x, Pdz=—,-1<y<1 (2)

From (1), (2) fy y (x, ¥) # fx (*) fy (¥), X and Y are not independent.

Jx
Also  PXR*s®=P(X| <yp)= [ fr@ds

i (3)
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PX2<sxnY2<y) =P (|X|sVx n|Y|<4fy)

= I-f; [J‘.Jj; flu,v) dv] du= \/;\/;

=P(X?<x) . P(Y2<y) : [From (3)]
Hence, X? and Y? are independent.

SUMMARY

* Deterministic experiments are those experiments which give almost the same
result when performed under very nearly indentical conditions.

¢ Non-deterministic experiments are those experiments which do not give the
same results when performed under very nearly indentical conditions. Non-
deterministic experiments are also known as random experiment.

* Two events associated with a random experiment are said to be independent
if the occurrence or non-occurrence of one event does not affect the probability
of the occurrence of the other event.

* Two random variables X and Y are said to be stochastically independent if
fo®, ¥) = f(x) £,y

where fiy (x, ¥) is the joint p.d.f. (p.m.f), f.(x) and f;(y) are the marginal p.d.f.
(p.m.f.) respectively.

GLOSSARY

* Sample Space. The set of all possible outcomes of a random experiment is
known as sample space. The possible outcomes are known as sample points.

* Exhaustive Outcomes. The outcomes of a random experiment are called
exhaustive if these cover all the possible outcomes of the experiment.

e Mutually Exclusive Events. Two events associated with a random experi-
ment are said to be mutually exclusive if both cannot occur together in the
same trial.

» Addition Theorem. If A and B are two events, not necessarly mutually
exclusive, associated with a random experiment, then

P(AUB)=P(A) + P(B)- P(ANB)

¢ Independent Events: Two events A and B associated with a random ex-
periment are said to be independent if P(A N B) = P(A) . P(B), otherwise, they
are said to be dependent.

* Multiplication Theorem. If A and B are two events associated with a ran-
dom experiment, then

P(A n B) = P(A) P(B/A)

* Discrete Random Variable. A random variable if it can take only finite
values is said to be a discrete random variable, e.g., no. of heads in the toss of
two coin.

¢ Continuous Random Variable. A random variable if it can take any values

between certain limits, is said to be a continuous random variable, e.g., height
of students.



8.

10.

11.

12.
13.

14.

15.

REVIEW QUESTIONS

Three coins are tossed simultaneously. List the sample space for this random experi-
ment.

A bag contains 4 red balls and 3 black balls. What is the sample space if the random
experiment consists of drawing (i) one ball (i) two balls from the bag ?

From a group of 3 boys and 2 girls, we select two children. What would be the sample
space of this experiment ?

From a group of 3 boys and 2 girls, we select two children. What would be the sample
space of this random experiment ? Also, write the events of getting (;) both girls (ii) both
boys.

Two dice are thrown simultaneously. Find the number of elements in the event of get-
ting :
(i) sum 4 (i) sum 7

(zii) sum 11 (iv) sum not greater than 5.

A coin is tossed. Find the events A’, B’, A U B, A n B, where :

A = event of getting no head and B = event of getting one head.

A die is thrown. If :

A = event of getting a prime number and B = event of getting number greater than 3,
find the events A¢, B¢, Au B and An B.

What is the probability of getting an even number in the throw of an unbiased die ?

A and B are mutually exclusive events of an experiment. If P(‘not A”) = 0.65, P(A L B) =
0.65, and P(B) = p, find the value of p.

A box contains 4 red balls, 4 green balls and 7 white balls. What is the probability that a
ball drawn is either red or white ?

(i) If A and B are two events defined on a sample space such that

5 1
PAUB) =2, PAAB) =1,
(A v B) 5 (A ~ B) 3
P(B°) = % find P(A).

(#1) If A and B are two events such that P(A) =% s P(B)= -21- and P(A and B) = % , find (a)
P(A or B), (b) P(not A and not B). E
For any two events A and B, prove that P(A n B) < P(A) < P(A U B) £ P(A) + P(B).
For two events A and B, let P(A) = 0.4 and P(B) = p and P(AuU B) = 0.6
(i) Find p so that A and B are mutually exclusive.
(it) Find p so that A and B are independent.

(i) A coin is tossed twice and all possible outcomes are assumed to be equally likely. E is
the event : “at most one head has occurred” and F is the event : “at most one tail has
occurred”. Show that the events E and F are not independent.

(ii) A coin is tossed twice and all possible outcomes are assumed to be equally likely. A is
the event : both head and tail have occurred and B is the event : “at least one tail has
occurred”. Show that A and B are not independent.

(i) An unbiased die is thrown twice. Find the probability of getting a 4, 5, or 6 in the
first throw and a 1, 2, 3 or 4 in the second throw.

(#i) A die is thrown twice. Find the probability of getting an odd number in the first
throw and a multiple of 3 in the second throw.
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One ball is drawn from a bag containing 3 red and 2 black balls. Its colour is noted and
then it is put back in the bag. A second draw is made and the same procedure is repeated.
Find the probability of drawing : (i) two red balls (ii) one red and one black ball, and
(iif) two black balls.

From a well shuffled pack of 52 cards, 3 cards are drawn one-by-one with replacement.
Find the probability distribution of number of queens.

Find the mean and the variance of the following probability distributions :

(@) x 2 3 - 5
Px) 0 0.4 0.1 0.5

(z) & 1 2 3 4 5 6
Hx) |- =01 0.1 0.2 0.3 0.1 0.2

Two urns contain 5 black, 4 white balls and 4 black, 5 white balls. One ball is drawn
from each urn. Find the mean and variance of the probability distribution of the random
variable “no. of white balls drawn”.

Two-dimensional random variable (X, Y) have the joint density

8xy, O<x<yc<l
fix, ) ={ 0 otherwise

@ FindP[X<lnY<lJ.
2 4

(i) Find the marginal and conditional distributions.
(iii) Are X and Y independent ? Give reasons for your answer.

The two random variables X and Y have the joint probability density function :

ﬂx,y)=—12——,for15x<=oandl<y<x_
2x%y %

Derive the marginal distributions of X and Y. Further obtain the conditional distribu-
tion of Y for X = x and also that of X given Y = y.
A random variable X has F(x) as its distribution function [fx) is the density
function]. Find the distribution function and the density function of the random
variable :
(i) Y =a + bX, a and b are real numbers,
@Y=X1L[PX=0)=0],
(iii) Y =tan X, and (iv) Y = cos X.
A, B, C are three mutually exclusive and exhaustive events associated with a random

experiment. Find P(A), given that P(B) = % P(A) and P(C) = % P(B).

(i) Two dice are tossed together. Find the probability of getting a doublet or a total of 6.

(ii) A pair of dice is rolled. Find the probability of getting a doublet or sum of numbers to
be at least 10.

A coin is tossed three times and all possible outcomes are assumed to be equally likely.

E is the event : “both heads and tails have occurred”, and F is the event : “at most one

tail has occurred”. Show that the events E and F are independent.

(£) “A’ speaks truth in 65% cases and ‘B’ in 80% cases. In what percentage of cases are
they likely to contradict each other in stating the same fact ?

(i1) A speaks truth in 75% cases and B in 80% cases. In what percentage of cases are they
likely to contradict each other in stating the same fact.



27.

28.

= G, G R N B

Let X be a continuous random variable with p.d.f. fix). Let Y = X2, Show that the Probability
random variable Y has p.d.f. given by :

1 -
v ¥yl 0
PR e

0 Epsr T NOTES

Find the distribution and density functions for

) Y=aX+b,a#0,breal

(i) Y = ¢%, assuming that F(x) and f(x), the distribution and the density functions respec-
tively of X are known.

FURTHER READINGS

Introduction to Modern Probability Theory: B.R. Bhat : Wiley Eastern.
Introduction to probability and Mathematical Statics: V.K. Rohatagi: Wiley Eastern.

Discrete Distributions : N.L. Johnson and S. Kotz, John Wiley and Sons.

Continuous Univerate Distributions—1: N.L. Johnson and S.Kotz.

Continuous Univerate Distributions—2 : N.L. Johnson and S.Kotz, John Wiley and Sons.
Introduction to Probability Theory with Applications: W. Feller, Vol-1 : Wiley Astern.
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2

EXPECTATION

OBJECTIVES

After going through this chapter, you should be able to:

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

find the expected value of a random variable.

know the properties of expectation.

know how to use Chebychev’s Inequality.

know moment generating function.

know uniqueness theorem of moment generating function.

know about characteristic function, cumulants and Inversion theorem.

STRUCTURE

Basic Notions of Mathematical Expectation.
Expected Value of a Function of a Random Variable.
Properties of Expectation.

Conditional Expectation.

Moment Generating Function.
Characteristic Function.

Kologmorov Inequality.

Holder’s Inequality.

Minkowski’s Inequality.

e Summary

* Glossary

* Review Questions

o Further Readings

2.1 BASIC NOTIONS OF MATHEMATICAL EXPECTATION

850  Self-Instructional Material

If Ax) is the probability mass function of a discrete random variable X, then

EX)= Z xf(x), is known as expected value of X, provided the series is absolutely
x

convergent i.e., provided Z Jxfila) )= Z |x] flx) <ee



If fix) is the probability density function of a continuous random variable, then

EX)= r x f(x) dx, provided the integral is absolutely convergent i.e., provided

r|xf(x)1dx=r|x|f(x)dx<w

Remark. E(X) exists if E |X| exists

2.2 EXPECTED VALUE OF FUNCTION OF A RANDOM
VARIABLE

Let fix) is a probability density function (or probability mass function) of a random
variable X, and if g(X) is a random variable such that E (g(X)) exists. Then,

E@gX)) = J:g(x) f(x) dx, (for continuous random variable)

= z g(x) f(x), (for discrete random variable)

Particular Cases
1. If we take g(X) = X", r is a positive integer,

then EX")= | x" f(x)dx =, (about origin)

ie., W, = EX), W', = EX?
Mean = x = ', = EX)
Variance p, = j'y — W';% = EX?) - (EX))?
IL. If we take g(X) = X -EX) =X - %,

then, EX-EX) =[x~ f@de=p,
where p, = rth moment about mean
Hy=EX-E®P= [ (-2 fx) dx
IIL. If we take g(X) = ¢, then

E@X)=E@ = [ f@wdx=C[ fx)dx =c | Since j“ flx)dx =1

Remark. The corresponding formulae for the discrete random variable X can be obtained
on replacing integration by summation over the given range of the variable X in above
particular cases.

2.3 PROPERTIES OF EXPECTATION

Addition Theorem of Expectation

Property L. If X and Y are two random variables, then E (X +Y) = E (X) + E(Y),
provided E(X) and E(Y) exist.
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Probability and Proof. Let X and Y are continuous random variable and fxy (x, ¥) is the joint
Distribution Theory probability density function along with marginal probability density function fx(x) and
fy(¥) respectively, then

— EX+V = [ [ G+ fiy .y dxdy
= I:j:x fxy (x,y) dx dy + I:I:J’fXY (x,y) dx dy
= J:x U_:fxy (x, ) dy] dx + J:y U:fxy (x, ) dx] dy

= J:x fx () dx + J:y fe(3) dy

= EX) + E(Y) ;
Generalisation. If | e , X, are n random variables, where E(X)) exist
for all i, then

EX, + X+ 3k +X)= EX)) + E(X2) it - E(Xu)

or E

n n
Z X:’J = E(X;), provided all the expectation exist
i=1 i=1

Remark. The proof of property I for discrete random variable is similar to above if we
replace the integration sign by summation (£).

Property II. Multiplication Theorem of Expectation.
If X and Y are independent random variables, then
E(XY) = E(X) . E(Y)

Proof. Let fyy (x, y) is the joint probability density function of the random
variables and fy(x) and £, (y) are the marginal probabilities density function respectively,

then
EXY) = _E_Exy fxy(x, y) dx dy
= I:j:xy fx(x) fy(y) dx dy fXY(x’ y) = fx(x) fy») as
X, Y are independent
= [[ofx @ dx [ sy dy
= EX) E(Y)
Generalisation. If Wogy By sossi X, are n independent random variables, then

EXX, .....X,) = EX,) EX,) ...... EX,)

n n
or E (H Xi] = H E(X;), provided all X’s independent and E(X,) exist for all i.
i=1

i=1
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Property IIL If X is a random variable and c is any constant, then
(i) E(cg(X)) = ¢ E(g(X))
(ii) E(c + g(X)) = ¢ + E(g(X))
where g(X) is a function of a random variable X and all expectations exist.

Proof. (i) Let f(x) is the probability density function of the random variable X,
then

E(cg(X)) = j" cg(®) f(x)dx=c j" g(x) f(x) dx = cE@X))
i) Elc+g00) = j“ (c + gx) () dx
= r ¢ flx) dx+ j” g(x) f(x) dx

" J:f(x) dx + J'" 20) ) dx = ¢+ Blg(x)).

Particular Cases. If we take g(X) = X, then

(i) E(aX) = aE(X)

(ii) E(a + X) = a + EX)

If we take g(X) = 1, then E(a) =a

Property IV. If X is a random variable and a and b are constants,
then E(aX + b) = aE(X) + b, provided E(X) exists

Proof. Let fix) is the probability density functions of the random variable X,
then

Elax + b) = j“ (ax +b) f(x) dx

=a rxf(x) dx+b _[" f(x) dx =aEX) + b

Particular Case. If we takea=1,b = - X = - EX), then

EX-X)=EX) -X=EX) -EX) =0
Remark. If we take g(X) = aX + b, then
gEX)=aEX)+b
Also E@gX))=E@X +b)=aEX) + b
It implies E(gX)) =g [EX)],
provided g(X) is a linear function. However, this result is not true if g(X) is non-linear.
For example,
E(1/X) # VEX)
E(X12) # (E(X))\?
E(log X) # log E(X)
E(X?) # (EX))?
Property V. If X, X,, ..... X, are n random variables and aj, ay, ...... a aren
constants, then,

E@,X,+a,X, +...... +a,X)=0,EX)+a,EX,) +...... +a, EX),
provided all E(X;) exist
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Probability and Proof. E (@X; +a X, + ... + a,X)

Distribution Theory -E (alxl) +E (%XZ) & » E(ﬂ.nxn) | Property I
=a,EX,) + a,BEX,) + ...... +a,BEX)) | Property I11
NOTES Property VL. If X > 0, then E(X) >0

Proof. Let flzx) is the probability density function of the random variable, then

EX) = "xf(x)dx=j"0dx+j"xf(x)dx

=me flx)dx=0 IfX 20, then

flx)=0forall X <0
— EX)=20

Property VII. Let X and Y are two random variables such that X < Y, then
E(X) < E(Y), provided all expectation exist

Proof. GivenX<Y = X-Y<0 = Y-X20

=3 EY-X)20 | Property VI
= EY)-EX)z20

= E(Y) 2 EX)

- EX) < E(Y)

Property VIIL |EX)| <E|X|, provided E(X) exists
Proof. For each X, X < | X|

= EX)<E|X| ..{1) | Property VII
Also Xt

= E(-X) <E|X|

= -EX) <E|X| (2)

From (1) and (2), |E(X)| < E|X|

Theorem 1. If X is a random variable, then V(aX + b) = a®V(X), where a and b
are constants and V(X) is the variance of X

Proof.Let Y =aX +b. Then
EY)=E@X +b)=aEX)+b
Y-E(Y)=aX+ b -(@EX) + b) =a[X - EX)]
Squaring and taking expectation of both sides,
E[Y - E(Y)]? = a?[X - E(X)]2
= V(Y)=a?V(X) or V(aX +b)=a2V(X)
Particular Cases. (i) If b = 0, then Var (aX) = a2 V(X)
i.e., variance is not independent of change of scale.
(i) If a = 0, then V(b) = 0 i.e., variance of a constant is zero
(2i) If 0 = 1, then V(X + b) = V(X) i.e., variance is independent of change of origin
Def. Covariance. Let X and Y are two random variables, then covariance
between X and Y, denoted by Cov(X, Y), is defined by

Cov(X, Y) = E{X - EX)} {Y - E(V)}

= E[XY - XE(Y) - YEX) + EX) E(Y)]
= E(XY) - E(X) E(Y) - E(Y) EX) + EX) E(Y)
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= E(XY) - EX) E(Y) A Expectation
If X and Y are independent, then ;
EXY) = EX) E(Y) and hence from (1),
CoviX,Y)=EX) E(Y)-EX)E(Y)=0

Remark 1. Cov (@X, bY) = E [{aX — E(@X)} {bY — E(bY)}]

= E[la(X - EX)) (Y — E(Y)]

=abE [X - EX)) (Y - E(Y))]

=ab Cov(X,Y)
2.CoviX+a,Y+b)=Cov(X,Y)
3. Cov (aX + b, eY + d) = ac Cov (X, Y)
4. Cov X +Y,2)=Cov (X, 2) +Cov (Y, Z)
5. Cov (X + bY, cX + dY) = ac Var (X) + bd Var (Y) + (ad + be) Cov XY
Theorem IL If X, X,, ...... X, are n random variables, then

Var(a X, + a Xy + ... +a X)
=a/Var(X,) + a,? Var(Xy +...... +a? VarX))

NOTES

n n

+23 > aa; CovlX, X;) i<
i=1 j=1
Proof. Take U=a X, +a,X, + ... +a,X,
=5 E(U) = E(@, X, + a,X, + ...... +a,X)

=a,EX,; + a,EX)) + ...... +a EX)
U - EU) = a,X, - EX)) + a,(X; - EX,)) + ...... +a, X -EX))
Squaring and taking expectation both sides,
E[U - E(U))? =a,’E[X, - EX))? + a,? EX, - EX,))?

4o +a 2EX -EX)2+2) D aa; E X, - EX)} X; - EX))]
: i=1l j=1

= Var (U) = a,? Var X)) + a,? Var (X,) + ...... +a,?Var (X))

+2Z Z a;a;Cov X;, X),i<j ..(1)

i=l j=1
Particular Cases. L. If a,=a,=..... a, =1,
Then, Var (X, +X, +..2+X)
= Var(X,) + Var (Xp) + ... + Var X,) +2)" > Cov (X, X),i<j 458
i=1 j=1

HEXL.X, ... X, are pairwise independent, then Cov (X, XJ») =0foralli#j,
then from (1)

Var (@,X, + @,X; + ...... +a,X,) =a,2 Var X)) + a,> Var (X) + ... + a,?Var (X))

Also from (2)
Var X; + X, + ...... +X ) = Var (X)) + Var X) + ...... + Var (X))
L. Ifa,=1,a,=1andag=a,=...... a,=0,
then from (1)

Var (X + Y) = Var (X) + Var (Y) + 2 Cov (X, Y)
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Probability and
Distribution Theory

NOTES

If a;=1,a,=-1, and a3=a,=...a,=0,
then from (1)
Var(X - Y) = Var(X) + Var(Y) - 2 Cov(X, Y)
Var(X £ Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
If X and Y are independent, then Cov(X, Y) = 0 and hence
Var(X = Y) = Var(X) + Var(Y)

ILLUSTRATIVE EXAMPLES

Example 1. Let X be a random variable with the following probability
distribution

X -3 6 9
p(x) 1/6 1/2 1/3
(&) Find E(X) and E(X?)
(ii) Find E(2X + 1)?
Sol. E(X)=Zxp(x):(—3).~é—+6.%+9. =

EX?) = Z x? p(x)=9.%+36.%+81.

Wl |
n

E(2X +1)?>= E(4X2 + 1 + 4X)
=4E(X? +1+4 EX)

93 1l
= 4?+ 1+4? =209
Example 2. A random variable has the following probability distribution.
PX=0=PX=2)=p and
PX =1)=1-2p. For what value of p, Var(X) is maximum. It is given that

1
pspe
£

Sol. The random variable takes the values 0, 1, 2 with respective probabilities
p,1-2p,p
EX)=0xP+1x(1-2p)+2xp=1
E(X2)=0xp+1x(1-2p)+4xp=1+2p
Var(X) = EX*) - (EX)?=1+2p-1=2p

1 - 1
For0<p< 2 Var(X) is maximum when p = e Also,

1

Max. Var(X) = 2. Z =i

Example 3. Let X be a random variable with mean W and variance o°. Show
that E(X-b)?, as a function of b, is minimised when b = W or sum of squares of deviations
is minimum when taken about mean.
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Sol. EX-b?=E[X-p) +(u-5)?
=EX-pu2+Wu-562+2X-p) (u->5)
=EX-pP+EQu-562+2u-bEX-p

=ED(—E(X)]2+(}£—b)2 ]E(X-p):O
= Var (X) + (u - 5?2 2 Var (X)
= EX-b)22VarX) | Since (W—56)220

E(X - b)? is minimum when | = b and its minimum value is
EX - )2 = Var (X)

Example 4. If t is any positive real number, show that the function defined by
p(x) = e (1 -—e*)*! can represent a probability function of a random variable X which
takes the values 1, 2, 3, ...... . Find E(X) and Var (X) of the distribution.

Sol.Fort>0,ef>1 = et<l = 1-et>0
Also e“=-—lt—>0forallt>0
e

px)=e*(l-e*120forallt>0, x=1,23,....

oo

Also Z p(x) = i et (l_e—t )x—l

x=1 x=1

= e—t Z (l_e—t)f—l
x=1

-t x~1
=€ Za wherea=1-e!
z=1

=et(l+a+a+.... )=

Hence px) =e* (1 -y, 120,2=1,2,3, ..... represents the probability
funection of the random variable X.

Also EX) = Z xp(x) =Y xet (1-e)*!
x=1 x=1

- oo
-t x-1
= Z"“ wherea=1-e"
z=1

=et(1+2a+3a2+4a3+...... )
=et(l-a)?
=e—t(1_1 +e-t)—2=e-¢e21=et
Also EX2) =) 2°pa)=7) x’e”* (1-¢7)*"
. x=1

x=1

2 _x-1
=e"zx“ wherea=1-¢*
x=1
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Probability and =e'(l+4a +9a2+16a3+ ...... 0)
Distribution Theory =et(l+a)(l-a)d
=et(l+1-e)(e?)3
= e—t (2 b e—t) ea: = 82‘ (2 2 e—t)
Var (X) = E(X?) - (E(X))2 = e (2 — ™) — 2
=e* (2-et-1)=e%(1 +e)

NOTES

2.4 CONDITIONAL EXPECTATION

The conditional expectation of a discrete random variable X givenY =y ;18 defined
by

EX|Y=y)=) xPX=x|Y=y))
i=1
The conditional expectation of a continuous random variable X given Y =y is
defined as

[[xre yax
E (X Y - ) P . S T
|y )

ry f(x,y)dy
Similarly E(Y | X=2)e =
fx(x)

Theorem III. Chebychev’s Inequality
If X is a random variable with mean p and variance o®, then for a +ve number k,

P{(X—u)zkc}sfé- or

P{(X-u)<kc)}21—?:~2—

Proof. Case I. If X is a continuous random variable, then
0?=0’=E(X-EX)?=E (X - p)?

= _[ " (x - )2 f(x) dx, where fiz) is p.d.f. of X.

-k +k o0
=j" e -p? farde+ [ °(x-u)2f(x)dx+j - ? flx) de
oo o n+ko

H
n—k

—ko oo
2-[" (:YC-—]J.)2 f(x)+d:c+L*h (x—u,)2 f(x) dx Sk
We know that :
x<p-ko and x2p+ko & |x-p|2ko w(2)
Substituting in (1), we get
~k o :
o? > k2o? [_[" B ac s [ re dx] | Using (2)
—oo p+ko

=k%% [P(X<p-ko)+ P (X 2p + ko))
=k%?% . P(|X-u| 2ko) | Using (2)
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= P(|X-p|2ko)< VR ..(3)

Also since
i P{|X-u| 2ko)+P{|X-pu| <ko} =1, we get
P{|X-u| <ko}=1-P{|X-pn| > ko)l 21 - (1/k?) | Using (3)

Hence the first case.

Case II. When X is a discrete random variable, then the proof follows directly
as in case I on replacing integration by summation.

Particular Cases. Take ko = C, C > 0, then from (1) and (2),
o? o2
P[(X—u)kCISF and P[lX—u|<ClZl-F

Var(X)
C?

Var(X)

or P(X-EX)2C)< :
C

andP{| X-Ex)<C}z21-

Theorem IV. Markov’s Inequality

Let g(X) be a non-negative function of a random variable X, then for every k > 0,
we have

Pl|X|2k}sE(kX)

Proof. Let S denotes the set of all X and g(X) 2 k. i.e.,
S = {x : g(x) 2 &}, then
jde(x) =P(Xe 8) =P (gX) 2k,

where F(x) is the distribution function of X

E (gX)) = J'” g(x) dF(x) > js g(x) dF(x)

2 kP{g(x) 2 k} el
= Plglx)2k]s< @
Take g(X) = |X|, then
P[|X] 2k] £ E(;()

2.5 MOMENT GENERATING FUNCTION

The moment generating function (m.g.f) of a random variable X (about origin)
with probability distribution function f(x), is defined by
I e f(x)dx, for continuous random variable
BT
My(t) = E(™) = Y e*f(x), for discrete random variable

x

=
Theorem I. Show that My (t) = Z = T
r=0 p
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Probability and :
Distribution Theory : J‘ 2 fx)dx
s v b
TES ] 2 3
- Proof. My(f)=E(*)=E 1+ X+ ("2(1) +(‘§3 B
. 8

t
=1+tE(X)+'2—'E(X2)+-é—,E(X3)+

r=

Thus, coefficient of t—' in My(t) gives moments, hence My(#) is know as moment
r!
generating function.

The moment generating function of the random variable about the point X =@ is
defined as

M,(¢) = (about X = a) = E [e#X-a)]

2
=E[l+t(X—a)+%(X—a)2+ ...... +t—'(X-a)"+
- F e

t2 P
=1+tul+au2+.....+r—!u -

where u_= E[(X - a)], rth moment about the point X = a.

Theorem II. M (t) = My (ct), c is any constant

Proof. M () =E(*X) =L.H.S.

Also My (t) = E(e**) = R.H.S.

Hence the theorem

Theorem III. The moment generating function of the sum of a number of
independent random variables is equal to the product of their respective moment

generating functions. i.e., if X, X,, ...... X, are independent random variables, then
My, ix,4..ox,®=Mx @) Mx @).....Mx (1)
Proof. By definition.

My, x,o...ox, ) = B[+ sk0)
= E(e'x‘ .et%e ...e'x')

= E™1).E™?)...... E(e*") |X,,X,, .....X, are independent
= My, (@), My, @), ...... My, (.
Theorem 1IV. Effect of change of origin and scale on moment generating function.
Proof. Let X be a random variable. Transform X to the new variable U by
changing both the origin and scale in X by defining
X-a

U ='T, where a, h are constants.
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M(#) is the moment generating function of X about the origin
Particular Cases : Takea = E(X) =y, h = Var(X) = o,
X-EX) X-pu ‘"
“Var® o - s

then

e
Then  Myt)=e ° My (%)
Theorem. Uniqueness Theorem of Moment Generating Function
The moment generating function of a distribution, if it exists, uniquely
determines the distribution. This means, corresponding to a given probability
distribution, there is only one moment generating function, (provided it exists) and
corresponding to a given moment generating function, there is only one probability
distribution. Hence

My(#) = My(#) = XandY are identically distributed.

Cumulants
If 2(t) = log M(#), then k(¢) is known as cumulant generating function, provided
the right hand side can be expanded as a convergent series in powers of ¢.
t2 tr
Thus, ky(t) =kt + k22_! P ovs +k, e s i = log My(t)

> . t2 : t3 '
= log 1+p1t+u2.a+u3.§7+ ...... +u,.r—+ ......

r
where k_ = coefficient of t—' in ky(2), is called the rth cumulant. Hence
r!

t2 tr
kit + kg —+...... +k,—‘+ ......
r!
244, 2+ £ t3+ 1 s t? ’
=Mkt 2. Sot s 31 —-2-{;11 + Mo TR A TR ]
1 $ i Eia t? 2l ¥
+-§(}11t+u2.§—!+u3.-§—!+ ...... ] —Z(plti-}lga'l'usa-!' ...... )
@ v 8 § oot
R RLELH
log(l+x)=x——+—-"+ . ...
g Utx e

Equating the coefficients of like powers of ¢, we get
k, = u} = mean

Ry _up  ui gt
2073 Tar = kmHa-wew
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Probability and ’ i 3
Distribution Theory —’?-S-l- = %—3?- - .-2]L : E%L_?_ & l"'_;_
= kg = Wq =3y + 20)% = g
NOTES Similarly, u, =k, + 3k,?

2.6 CHARACTERISTIC FUNCTION

The characteristic function of a random variable, X, denoted by ¢(), is defined
by
e™ f(x)dx, for continuous r.v.X
= T{pitX) = ;
0x(t) = E(e™) = Z e'™ f(x), for discrete r.v. X

If Fy (x) is the distribution function of a continuous random variable X, then
ox(®) = [_e* dF().

Properties of Characteristic Function

Statement. For all real t,
(£) ¢(0) = 1 () | o) | <0

Proof. o) = j"e“‘ f(x) dax
%0 = [ f@ds =1

Also |o(8)] = | _[;e*'* f(x)dx’ < EJ e | flx) dx = J:f(x) dx 34

|]e‘“|=|costx+isin tx| =1

= 16 (®)] < 1= 06,8
Since |¢ (¢) | < 1, characteristic function always exists.

2.7 KOLMOGOROV INEQUALITY

If g(x) is continuous and convex function on an interval I and X is random variable
with values in with probability 1, then
E(g(x)) = g(E(x)), provided E(x) exists.

2.8 HOLDER’S INEQUALITY

Statement. If X and Y are two discrete random variables, then

B |5 ]
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Proof. Let G(¢) be a real valued function defined for ¢, such that

G(t) = EX + ty)? 1)
Since (x+ty)?20 = E@x+ty)220 = G{)20V¢t.
Now G(t) = E(x2 + t%2 + 2txy) 20
= E(x)? + t2 E(y?) + 2t E(xy)
= E(y?).12 + 2t E(xy) + E(x?),

which is quadratic int, say,
G(t) = At?2 + Bt + C, where
A=E(?), B=2E(y), C=Ex?

Since G(t) 2 0, It means that graph of G(¢) will either touch #-axis at one point or
does not touch ¢-axis.

We should have D < 0, where D is the discrimant of G(t)
| Since G(¢) has two distinct roots if D > 0

= —4AC<0
-t (2E (xy))? - 4. E(y2).E(x2) <0
= [E(xy)]2 < E(x2) E(y?) .2)

n
Take Ex2) = L. Z al,
B r=1
1v— o
EG?) == Vi
r=1

: )
E(xy) = ;rz—; XY

(2) gives

AR

which proves the result.

?-!Ir-i

2.9 MINKOWSKYF'S INEQUALITY

If x and y are two random variables (discrete or continuous). Then
E(x +y) = E(x) + E(y)

If Case I when x and y are continuous random variable. Let f(x), f (y) denotes
the probability density function of the random variables x and y and let & (x ¥) be the
joint p.d.f. of these random variables, then,

Ew = of,@ds, B = [ sf,»ndy
Also o P

Ex+y)= J:j:(x +¥) fyy (%, y)dxdy
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Probability and

Distribution Theory = j_:j:x fay(x, y)dxdy + Jl:j:y fey(x, y)dxdy
s = J: U fay (%, y)dy]dx 3 I [j fus %, y)dx]
=[x fiwrde+ j:y f,(» dy
= E(x) + E(y)

Theorem. State and Prove Inversion Theorem.

Let F(x) and ¢(¢) be the distribution function and the characteristic function
respectively, of random variable X, then forx € (a - h,a + h),

F(a+h)-Fa-h= Lt ; s‘“thT e 6(8) dt
sin ht ht o-ita

Define J = —j o(2) dt (1)

1 sin At 4, = i

- j T{—t- e Le fx) dx} dt
where dF(x) = flx) dx, fix) being the probability density function of X.

T dreminht ai-w

J=— ‘[_T{L M f () dx it (2)

Since the limits of integral over ¢ are finite and the integral in the R.H.S. is
absolutely convergent, i.e.,

sinht iix-a sin ht 3 IR
-‘:I__t .e f(x)|dx$£il - If(x)dx (= Je=] =)
sin ht

=J: ht

Changing the order of integration in (2)

h|f@des|hl [ f@dx=|n|,

_2 J’ { J‘ sm ht pitlx—a) f(x) dt} dx | Fubini’s theorem

= ?::-i: J:{I; Sh; it .cos t(x — a) dt} f(x) dx]

[L{_[ BN o v L) dt} £(x) dx}

sin At

¢ sin h / { ; ]
Since mt - cos t (x —a) is an even function of £ and .8in £ (x —a) is an odd

function of ¢, the second integral vanishes and we get

2 = [ ¢T sin ht
Jz;.[-{.l.o 1 .cost(x—a)dt}f(x)dx]

= r g(x, ) f(x) dx, e
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. Expeciation
sin ht a
; .cost(x—a)dt

2 (T
where g2x, T)= P .[o

1¢F1 :
=—T;Io-;[2cost(x-—a).smht]dt NOTES

T
=—£J‘ l[s;in(.::—a+J‘r.)t-—sii,n(x—a'.-h)t}dt
TJo ¢

1(T2 sin(x-a+h)t , 1 T2 sin(x-a-h)t

- — : -— ; dt
2Jdom t 2Jdom t
1 I
a—.8x-a+hT-—=8x-a-hT
2 2
We know that if
T gin ht
Sth, t)= -12-:-‘[0 g dt, where h isreal and T > 0,
then
-1 h<0
Lt Sh,T =% 0, h=0
T 1= k>0
1 1
=-2-S {x—(a—h),Tl—-z-S{x—(a+h),T},
=1, -1, (say) .(4)

Since S(k, T) is bounded, the right hand side in (4) is bounded and consequently
g(x, T) is bounded, i.e.,
lgix, T | < |k|,say, V T. kDY
From (3),

%1_1’11J =%1_12 _ﬂg(x,T) f(x) dx

oo

= 7 lim gx,T) f(x) dx .(6)

—o0 T'—yee

Now, consider the values of I, and I, in (4), for different ranges of x in the following
table.

x— x<a—h |"smt-h |a-R<x<a+h| x=a+h | z>a+h
I - 1/2 0 1/2 12 1/2 asT — o
L, -12 -1/2 -1/2 0 1/2 asT — e
IL-1, 0 1/2 1 1/2 0
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(0, x<a-h

1

E,x=a—h
ymgujm=~L a-h<x<a+h (T
7 l, x=a+h

2

10, x>a+h

Substituting these values in (6), we get
a
a

a-h +h
lmJ = | " lim g, T) () dx + J‘ , Jim g, ) f(x) dx

a+h
=0+I hf(x)dx+0

+h
=r_hf(x)dx=P(a—thSa+h)

=PX<a+h)-PX<a-h)
=F(a +h)-F(a-h) ...(8)
Substituting from (8) in (1), we get
Fla + h) - F(a - h) = lim L Me"‘“ o(t) dt,
TowegJ-T ¢
Hence the theorem.

SUMMARY

e If fix) is the probability mass function (or probability density function) of a
random variable, then the expected value of x is given by

z x f(x), for discrete random variable
Ex)=1{ =
x f(x)dx, for continuous random variable

* Ifg(x)is any linear function, then E(g(x)) = g(E(x)). But this result is not true
if g(x) is non-linear.

® If x and y are independent random variables, then cov (x, y) = 0. But the
converse is not true.

GLOSSARY

* m.g.f. The moment generating function of a random variable x(about origin)
with p.d.f. Ax) is given by
J. e™ f(x)dx, for continuous random variable

Z e” f(x), for discrete random variable
x

M,(#) = E(e™) =



l'

2.
3.

e Characteristic Function. The characteristic function of a random variable Expectation
x, is defined by

I e™ f(x)dx, for continuous random variable

— F(eitx) =
¢, (1) =B Z e f(x), for discrete random variable NOTES
x
REVIEW QUESTIONS
Prove the following formulae
(i) ky, = ! mean (1) ky = 1y
(iii) kg = Mg (iv) k, = 1, - 3ky?

X-p - t
If Z = ——, then show that My(¢) = € SM,.|—|.
o . c

IfX is a random variable with mean p and variance o2, then

p{X-EX)2c}s EEZ(—X—), where ¢ is same positive constant.
c

FURTHER READINGS

Introduction to Modern Probability Theory: B.R. Bhat: Wiley Eastern.

Introduction to probability and Mathematical Statistics: V.K. Rohatgi: Wiley Eastern.
Discrete Distributions: N.L. Johnson and S.Kotz, John Wiley and Sons.

Continuous Univarate distributions—1: N.L. Johnson and S.Kotz.
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CHAPTER

3

CONVERGENCE OF SEQUENCE OF

RANDOM VARIABLES

OBJECTIVES

After going through this chapter, you should be able to:

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

know about convergence of sequence of random variables in probability.
know about WLLN (weak law of large numbers)
know Markov’s theorem for WLLN

know the relation between central limit theorem and WLLN.

STRUCTURE

Introduction
Convergence in Probability
Types of Convergence and Interrelations,

Weak Law of Large Numbers for Independent and Identically Distributed
Kandom Variables

Kologmorov’s Strong Law of Large Numbers
State and Prove Linderberg-Levy Form of Central Limit Theorem
Lindeberg and Feller Conditions (Statement only)

Another Forms of Central Unit Theorem or Liapounov’s Form of Central
Limit Theorem.

e Sumary

® Glossary

e Review Questions
¢ Further Readings

3.1 INTRODUCTION
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A sequence of random variables X, X,, ..., X _is said to converge in probability

to a constant q, if for any ¢ > 0,



Lt P(|X -a|<g&=1 or xEt”P(IXn—a|2e)=0

X =0

y P
and we write X, —.» @,asn — oo,

3.2 CONVERGENCE IN PROBABILITY

P
If there exists a random variable X such that X - X — @, as n — «, we say
that the given sequence <X > of random variables converges in probability to the
random variables X.

3.3 TYPES OF CONVERGENCE AND INTERRELATIONS

Types of Convergence. There are two types of convergence, namely
(i) Convergence in probability
(i¢) Ordinary convergence

Interrelation: The concept of convergence in probability is basically different
from that of ordinary convergence of sequence of real numbers. But, the following
results also hold for the convergence in probability.

P P
IfX, — a,—l— — b,asn — «, then
n

P
)X Y, —s atbasn—ow
e P e
(i1) ==& 5y — b#0,a8n > e
T, b

Theorem 1. Chebyshev’'s Theorem on Convergence in Probability.

Statement. If X, X, ...... , X, is a sequence of random variables and if mean p,
and standard deviation 6, of X, exists for all n satisfying 6, = 0 as n — o, then

P
X —n, — 0,asn — e,
Proof. By Chebyshev’s inequality, if X is a random variable with mean p and
variable o2,
Then for any positive number %,

Var(X)

P(| X-p | 225

In our case, we have for € > 0,
.l
P{lx,-n, |28} —>0,asn >
£
By definition of convergence in probability,

P
X, -H, —> 0,asn — o, provided 6, = 0,n — e
Hence the theorem.

Convergence of Sequence

of Random Variables

NOTES
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Probability and Theorem II. Weak law of large numbers (Chebyshev’s Form)
Distribution Theory Statement. If X, X,, ..., X, be a sequence of random variables and pi;, My, ..., I,

be their respective means, satisfying Lt E'zg. — 0 where

n—co n

NOTES
B, =Var (X;+X,+... +X) <, then

P{' X;+Xp+..+X, Pithgt.tl,
n n

< E} 21-7m
for all n > n, where € and  are arbitrary small positive numbers.

Proof. By Chebyshev’s inequality, if X is a random variable with mean p and
variance o2, then

P(| X-EX) | <c}21- Y&

> TS I
n

In our case, replace X by

We have, fore > 0,

i

X1+X2+...+X,,)
n

(X1 +X2+...+Xn)_E[X1+X2+...+Xu)

n n 2

ne

<£}21——§—"—g

where Var(

1 B,
=?Var(Xl+X2+...+Xn)=?

. P{\[x1+x2:...+xl]_(pl+p,:...+p,,]

B,

n’e?

<e}21—

Since € is arbitrary, we assume 12"2 — 0 as n — o=. Also choose small positive
n‘e

B
numbers € and n and n, such that <2~ <n forn >n,
n°e

From above

A

Another form of Weak Law of Large Numbers

Theorem IIL. If X, X,, ..., X, be a sequence of random variables with u, y,, ...
u, as means, then

X )+ Xo+...+X, pyi+pp+. i,
n n

<E}:1—n foralln>n,

Pyl ! B
X, = P proutded-—;’é— —0,asn — oo,

Proof. From above theorem, if
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X+ X +...+X,

n
n

i 4

’

= +lg +.t
u,,:p’l l-lzn "L",then

B, =1 B—’z‘—ao,asn—)w
n

PUX, -0, |<el21-
n’e

= P{|X, -}, |<el =1

B
=1 0, as n — =, where

By definition, X, _P_., M, provided —2
n

B, = Var(X, + X, + ... + X))

3.4 WEAK LAW OF LARGE NUMBERS FOR INDEPENDENT
AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES

., X, are independent and identically distributed ran-

Theorem IV.If X, X,

dom variables i.e., if
EX,)=pand Var(X)=0® foralli=12,..,n,

- P
then X, — Lasn — e,

Proof. Here B, = Var (X, + ELt+o+XK)
= Var (X,) + Var(X,) + ... + Var(X))

=02+ 02+ ..+ 0% =nc?
|+ X,,X,, ..., X, are independent

2 2
G Bl L.
n— oo n2 [ n2 n—oe= n
X, + +...

P{ Rt rx. - <a}>1— B, Vn>n,

n ng?
or P{'X1+X2+'"+X“—u <£}—)1,asn——>oo

n

P(|X,-n|2el 2 0asn >

gi.
= X, — p,asn oo

Convergence of Sequence
of Random Variables

NOTES

3.5 KOLMOGOROV’S STRONG LAW OF LARGE NUMBERS

If x,, x,, ..., x, are independent random variables with means y; = E (x;) and

variances GZ2.
Let on=E(x; +x, + ... +x,) and

Self-Instructional Material

71



Probability and E@n) = E(x; +x, + ... +x,) = E(x)) + E(x,) + ... + E(x)
Distribution Theory =+l + .+ 1, =m, SaY,
then we say that the sequence <8n> obeys the strong law of large numbers if for € > 0,
8, -m
NOTES there exists n € N such that J"—an <eVn>N,

Markov’s Theorem V. The weak law of large numbers holds if for some & > 0,
E(] X; | *®) exist and are bounded Vi=1, 2, ...

Markov’s theorem gives only a necessary condition for the weak law of large
numbers to hold good. It means that, if for § > 0, E| X | 148 g unbounded, then weak
law of large numbers cannot hold for the sequence of random variables e TR

Khintchine’s Theorem VI. If X, X,, ..., X, are independent and identically
distributed random variables, then the only condition necessary for the weak law of
large numbers to hold is that EX),i=1,2, .., n, should exist.

Necessary and sufficient condition for the sequence <X > to satisfy weak
law of large numbers.

Theorem VII. A necessary and sufficient for the sequence <X > to satisfy the
weak law of large numbers is given by

e J
E 4 —=0,asn —
(1+Yn2

where Y

n

¥
=—"%, S,=X;+X,+..+X .

Y 2
Proof. Let E( > ';[ 2) — 0 as n — = and we show <X >, the sequence of ran-
+

n

dom variables satisfies weak law of large numbers. For this, we define an event A,
givenby A={| Y, | 2¢ ;
Let weA = |Y |28 = |Y |¥zef>0
Fora20,b>0,weknowa=2b = a+ab>b+ab _ (E)
Taking a = Yn2 and b = €2 in (1), we define another event B as follows :

2 2 2 2
B: Mi)zl = Yn > £
e?(1+Y,2) 1+Y,%) 1+¢®

Since weA = we B, AcB = P(A)<P(B)

' lae®
P(|Y, | >a)sP[1+’;{ S 21)
2 2
< E{%} [By Markov’s Inequality]
3 €

—0asn —ee

8-

P(]Y,|2e)>0asn > = lim P{
n

n-—se

25}—>0
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Thus weak law of large numbers holds for the sequence (X} of random vari-  Convergence of Sequence
of Random Variables

ables.
Converse. If <X >, the sequence of random variables, satisfies weak law of

large numbers, we show
NOTES

Y 2
E[ 3 '% 2) — 0, as n — o, For this, assume X/’s are continuous and if f,(y) be
+ n

the probability density function of Y,, then
2 s
E[__Yn_] > j 2 _f.(ydy

1+Y,12 1+ y°
2 2
b ¥
= (v dy + (y) dy
-[Iylzz 1+ y2 fnly Iylse 1+ y2 o

g 2
L ; Ja(y)d
= E[ ]SJ.Iylacl f,,(y)dy+j‘yls£y fu(y)dy

14X 2
2 2
[ Y _<1land lf 2<y2i|
i

2

1+y
<SP(A) + €2 Lc fu(y) dy (- OnAc:|y|<¢el
=P(A) + €2 . P(A®) < P(A) + €2 [+ PA9<])
v 2
= E{W} <P{|Y, | 2el+&2>0,asn >
Since (X} satisfies weak law of large numbers, we have '}1_131 PlY, | 2€ -0,

Hence the theorem.

ILLUSTRATIVE EXAMPLES

Example 1. Consider a discrete random variable with probability density func-
tion f(x), given by

1 6 1
flx) = E -j(x)+§-Ia(x) +§.I,(x)

Evaluate P{| X -, | 22 o /. Also compare your result with that obtained on by
using Chebyshev’s inequality.

Sol. Given probability distribution for the random variable X is shown in the
following table.

x -1 0 1
1 6 1

(x) - — 2
¥ 8 8 8

1 6 1
E(X)=—-1x8+0x§+1x-8-=0=p

x

¥ 6 ;e !
EX2) = =0 b APTe <l
(X2) 1x8+ xs-v-lx8 i Ts
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1

Var(X) = EX?) - (E(X))2 = % 0=
- .
LA

P{| X-p, | 220)=P(|X|21})=1-P[| X | <1]
=1-P-1<X<1)=1-PX=0)

3
_1 E_.z__l ‘Sv'f_‘
S SRR / g
Also by Chebyshev’s inequality, N

VarX) 1

20,2 4
In both cases, the results are same.

Example 2. Consider the distribution Px)=27%x=1,2,3, .. Using Chebyshev’s
inequality, show that

P[|X-p, |220])<

P{|X-2| <2} > , but the actual probability is ;5

Sol. We first find mean and variance of the given distribution.

Here EX) =) x.plx)= x.2i:
x=1 1
1 1 1
=1l.—+2.— +3. - +.
2 2* ¥
-2
21[1“'2 —+3 "'1T+)=—]-: 1_1
2 2 2
! 2 2
=§,4=2 [(1-2)2=1+2¢+38x%+
— - 1
EX?) =) . pisha ¥ adi
x=1 z=1
M T | g 1 Lo 1 1
—2+2.-2—2+3 2—"‘ —2(1+4—2-+9 =+ ]
1 iy 1
5(1+x)(1 —x) where e | See remark below

Var(X) = EX?) - (EX))2=6-4=2 = ¢= J2
Using Chebyshev’s inequality, we have

P(] X-EX) | <ko]21-kiz
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Takeko =2 = k=-~=—J-==J_ we have

2 e ¢
P[| X-2 2]21-—=—=
[ | <2 et

Also the actual probability is given by
P(|X-2|<s2)=P2-25sX52+2)
=P0<X<4)=PX=0)+PX=1)+PX=2)
+PX=3)+PX=4)

e | 1 i

=0+§+-2_2+Ei+24 = 16
Remark: Consider S =1+ 22 .a+3%.a% +4%. ad+52% . a+... T .
Multiplying (1) by — 3a, 3a%, — a® successively, we have
S =1 +4a + 9a? + 16a® + 25a% + ...... «{2)
—3aS= -3a-12a%2-27a%-48a%~...... ...(3)
3028 = 3a2 + 12a® + 27a* + ...... ..(4)
-a’S = ~ad-4at- ... .(5)

Adding (2), (3), (4) and (5) vertically, we get
(1-3a+3a2-a®)S=1+a
or 1-aP¥S=1+a = S=(1+a)(1-a)?®

Takea = % in above, we get

1+4. —+9 —2*+16-—+ (1+-1—] 1—1_3
2 2 93 2 2
3
=—.8=12.
2

Example 3. A symmetric die is thrown 600 times. Find the lower bound for the
probability of getting 80 to 120 sixes.
Sol. Let X denotes the total number of successes, p be the probability of getting

a six, thenp = E Also n = 600.

EX) = np = 600 x % =100

500
6

@ |en

Var(X) = npg = 100 x | Using Binomial distribution
Using Chebyshev’s inequality,

P(| X - EX) | <kol 21-%-

500 1
or {|x 100|<k1‘ s }-1—?-

Convergence of Sequence

of Random Variables

NOTES
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Distribution Theory o P[ 100 -k @2 <X <100+ E ’5_2_9} D] __12_ e 1)
v 6 k
\

- Take 100 +k‘f5—gﬂ =120 = k."% - 926
[6
=20 —
53 $ 500

From (1),

P(80<X<120)>1-5%0 1 _19
6 400 24

Example 4. Consider a sequence of random variables defined by
P(X,=+2k)=2-%1 P(X, = 0) = ] - 32

Examine whether weak law of large numbers can be applied to the sequence
<X,> of random variables.

Sol. Since X, assumes the values 2%, — 2k and 0.
E(X,) = 2k2-2k+1) . (L gk)  2~2k+1) 4 () (1 — 2-2k)
= 2-{(2k+1) (2k i 2&) =0
E(X,?) = (202 . 2-2k+D) y (L k)2 o-2k+D) 4 02 5 (1 _ o-2k)

1

=22 9-2k+D) 4 92 . 2-(2k+1) —
2

——1-+ =1
“ =

Also  Var(X,) = EX,) - [EX))?=1-0=1

B = Var[gl X,-_] = g Var(X)) = g 1D=n

[X), X,, ..., X, are independent]

Hence Weak Law of large numbers, holds for the sequence <X, > of independent
random variables.

Example 5. Consider a sequence <X 4> of independent and indentically distrib-
uted random variables defined as below.

P[IQ:(—I)"‘Rk}:—;;F;k:I,Z,.?, vl m L 28
I

Examine whether weak law of large numbers can be applied to the sequence
<X,> of random variables.

Sol. We shall apply Khintchine’s theorem

- o k]
Here  EX)=) (D' .k =8 5 - A1)
k=1

ﬂ2k2 2

L=
ik
R.H.S. of (1) is an alternating series with a, = % —0,ask > . Alsoa,,, = e
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Since k+1>k

s et
k+1 k
= ak+1<aka

(1) is convergent by using Leibnitz’s test.
From (1),

E(X5)=—62—(1—-1-+l—-!-+1...]
T 2.3 4 b

. log 2 = finite
=

By Khintchine’s theorem, weak law of large numbers can be applied to the
sequence <X,> of independent and identically distributed random variables.

Example 6. If X, X,, ..., X, be a sequence of random variables with equal
expectations and finite variation. Examine whether weak law of large numbers can be
applied to the sequence <X;>. It is given that all the covariances G;; are negative.

Sol. Since Var(X,) < ==, consider

B Var(X; +X, +...+X,) 1 | -
e 2 LRI
no = i<j=1
1 [~ _al: g :
p L z o’ | if all the covariances o;; are negative
: n
i=1
B 1|
lim —-< lim — Z c?(=0 (v o2i=1,2,..,n are finite)
n—o n n—s n i=1

Hence weak law of large numbers holds.

Statement of Central Limit Theorem
Theorem VIIL IfX,, X,, ..., X, are n independent random variables with means
Hys My, -y M, and variances a2, 0 s o,? respectively, then under certain good condi-
tions, thesum S =X, +X, + ... + X  is asymptotically normal with means and stan-
dard deviation ¢ where
R=ly + g+ .+, ;02202402 + ... +0,2
Note. The above theorem was stated by Laplace and its proof was given by Liapounov’s
under certain general conditions.
Theorem IX. De Moivre’s Central Limit Theorem
IfX, X, ..., X, be a sequence of independent and identically distributed random
variables such that
¥ - 1, with probability p
i = 10, with probability q,
Then the sum S, = X, + X, +... + X is asymptotically normal with mean p and
variance 6.

Convergence of S'eQIten ce

of Random Vaiiables

NOTES
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Proof. Let Mx, () denotes the moment generating function of the random vari-
able X, then :
My () = E™) = elp+etl g=pe' +q.

IfM s, (t) denotes the moment generating function of the sum S5,=X,+X,+......
+X , then

= (My, @&)" |X,, X,, ...... X, are independent
and identically distributed
= (g + pe')"
which is the moment generating function of the Binomial distribution with param-

eters n and p. Therefore, by uniqueness theorem of moment generating functions,
S, ~ B(n, p)

E(S,)=np =y, say, V(S ) = npq = o2, say,
_S5,-ES, 8,-u
-~ Jvars,)) o
If M,(t) denotes the moment generating function of Z, then
M, =Mg _, ®

4]

_u ;
=e © M (—
S, P

Take

__npt

=e Voo Msa i], where S, ~ N(u, 62)
(¢}

g+ pe®

- npt ¢
e""'pq[

npt g
e V"Pa q+pe;""q]

fi pt t ot \*

qe- Jnpa +pe;"‘°q Jnpq

(e tq
St

\
[ ¢ 8 2.9 %
= 1- P + P o L +p 1+_,tq_+ t q 1 7
I o " ¥ ssssas
| anq npq 2! ,npq npq 21

2
= |-(p+q)+[ ptq = ptq ]+%;(p+q)+0(n—312):r

+ pe
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£2 4
= |:1 +—+ O(n“"”z)]
2n

where O (n732) represents terms involving n%2? and its higher power of n in the
denominator. Taking n — «, we get

2 n
Lt M, = Lt [1+é—+o(n—3’2)]
n—yee n

n—reo

217 .
= Lt [14’5-—] =et =

n—eceo In
which is the moment generating function of the standard normal variate. Therefore,

n

by uniqueness theorem of moment generating functions, Z = s asymptotically

normal with mean 0 and variance 1.

S, =X, +X,+...... + X, is asymptotically normal with mean p and variance
ol

3.6 STATE AND PROVE LINDERBERG-LEVY FORM OF CEN-
TRAL LIMIT THEOREM

Theorem X. If X, X, ...... , X_are n independent and identically distributed
random variables with mean y and variance o2 i.e., E(X,) = pand Var (X) = c®Vi =1,
D ssides n, then thesum S, =X, + X, + ...... + X, is asymptotically normal with mean np
and variance n o2 respectively. It is given that E(X?) exists.

Proof. Given y, =EX;-p)=0

W, = EX, - p)?=co?

Let M(¢) denotes the moment generating function of each of the deviation X —y,

then
2 e
M) =1+ W'yt + Wy op + W 37+ oo

2
=1+ 02% + O(t3) )

where O(#3) contains terms in ¢3 and its higher order

Take z_Sa-mp X +Xpt...+X, -np
Yno? Jno
_i X;‘—ll‘
% i=1 noc
=M, LB =M, /
N x g £

Convergence of Sequence

of Random Variables

NOTES
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|

...... , X, are independent

1
e
=
>
|
=
—
|“
Nt
]
s
e
2

n 2 " =
={M(J£ H =|:1+;—n+0(n‘3"2)] | Using (1)
no

2 i 2 \" #
Lt My = Lt |14t 0] o dE T lt = oF
n—oo n—eo 2n A 2n
where the term O(n"¥2) — 0, as n — o,
: : : S,-nu .
By uniqueness theorem of moment generating function, Z = Tﬁ—-— is
n

asymptotically normal with mean ny and variance no?2.

3.7 LINDEBERG AND FELLER CONDITIONS (STATEMENT
ONLY)

If <X > be a sequence of independently and identically distributed random

| variables with mean 1 = E(X)) and variances 02, (i = 1, 2, ..., n) then the sum Xy + X9 +

.. + %, is asymptotically normal with mean nu and variance no? under the following
conditions, which are due to “Lindeberg and Feller”

() The random variables x,, x,, ..., x, are independent and identically distributed.
(i) E(x?) existsforalli=1,2, .., n.

2.8 ANOTHER FORMS OF CENTRAL UNIT THEOREM OR
LIAPOUNOV’S FORM OF CENTRAL LIMIT THEOREM

Theorem. XI. o i , X, be a sequence of n independent and identically
distributed random variables with mean p and variance o2, then
S, - ny 1 iyl
Lt Plas—2=——=sb|=¢b)-dla) = —== | e /2 wi1)
nR—e [ -J;O‘ ] ¢( ’ ¢(G V2n J-We o (

where ¢(.) is the distribution function of the standard normal variate and

(1) can also be written as

S, - E(S,)
Lt Plas———L-<b} = ¢(b) — dla).
n—see {a ,[Var(sn) } ¢( ¢ a)

Applications of Central Limit Theorem
Theorem XIL If X, X,,, ...... , X, are n independent and identically distributed
random variables following Binomial distribution with parameter r and p. Let
S, =X;+X, +...... + X, then
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Lt P {a < %;T(-% < b} = o(b) - (@), 0<p<1. Co;}‘;ﬁm Ll
Proof. ES,) =EX, +X, + ..... +X)
=EX) + EX,) + ...... + EX)) NOTES
=rp+7TP + . +1p
=nrp X; ~ B(r, p)

- mean = rp variance = rpq

Also Var(S,) = Var(X, + X, + ...... +X)
= Var(X,) + Var(X,) + ...... Var(X )
=rpg +1pg + ...... n times | X/s are independent
=nrpq = nrp(1 - p)

By Central Limit Theorem, we have

S, -E@S,)
Lt Plas=i—=L-<b}; =0(b) -
Lt {a Nar®,) } ®(b) — ¢(a)
or Lt PQSMSI) = o(b) — tla).
n—eo ’nrp(l_p)

Theorem XIII. IfY, is a Binomial variate with parameters n and p, then

Lt Plas—Yo—TP _<p|=o®)-oa),0<p<l.
n—soo fnp (1 o p)
Proof. We know that if X, X, ...... X is a sequence of independent and identically
distributed random variables following Bernouli’s distribution i.e., B(1, p), then

X, +X, + .o +X ~ B(n,p)
But it is given Y, ~ B(n, p), therefore, take Y, = S, and hence
E(Y,) = np, Var(Y,) = npq
By Central Limit Theorem,

S -E@S,)
Lt Plas—2——2-<b|=0¢(b) -
Lt l:a Var®,) :| o ¢(f1)
e Lt P[aSY"_npr}=¢(b)—¢(a)
n— Jnpq
Y,—np
= Lt Plas—=2—===xb|=9¢(b)-¢(a),0<p <1
n—ye Jnp(1-p)

Theorem XIV. If Y, is distributed as Poisson distribution with parameter n,
then

Lt P[a = Y':/:” < b] = &(b) - ¢(a)

n—see n

Also P(YnSn)aéasn—)m.
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Probability and Proof. If X, X, ...... , X, are n independent and identically distributed random

Distrbution Theory variables following Poisson distributions with parameter n, then
X, +X, +..... +X, ~ P(n)
= S, ~ P(n). Take Y, = Sn
Y. Y, - P(n)

Now mean of Poisson distribution is n and also variance of Poisson distribution
is alson
Le., E(Y,)=n,Var(Y,)) =n

By Central Limit Theorem,
S, -E@S,)
Lt P[a < W(—S_n—) < b] = (b) — ia)
= Lt Plas YD’E" < b] = o(b) - ¢(a)

Take a = — 0, b = 0 in above, we get

( — —_—
Lt Pasz’!—"sb]= Lt P[Y" nso]

n—e JE n— o J;
= Lt P(Y,<n) 1)
1
Also ¢(b)—¢(a)=¢(0)—¢(——°°)=§ (2}

From (1) and (2),

1
P(YnSn)—)-z-asn—)oo.

ILLUSTRATIVE EXAMPLES

Example 1. Let X i ey, ssdns , X, are independent and identically distributed
random variables following Poisson distribution with parameter A. Use Central Limit
Theorem, find P(120 < Sn < 160) where S, =X, +X,+...... +X ,A=2,n=75.

n’
Sol. Given X, » T , X, are independent and identically distributed Poisson
variates with parameter A, it implies
EX)=A VarX)=AVi=1,2, ... ,n
ES,)=EX;+X, +...... +X)

=EX)) + EX,) + ...... +EX)) | X;’s are independent
=A+A+..... +A
=ni
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1.

Using Linderberg-Levy theorem, for equation, S, ~ N (nA, nA). But n = 75,1 = 2

S, ~ N(150, 150) = N(u, 6*) where p = 150, o? = 150
Take = —}-(—_ﬁ%—o-
When X=120,Z= 123%50 = Jl:::) =-245
When X = 160,Z = 1631_‘5350 . Jigo - 0.82
P(120< S, < 160) = P[lz—(’Jl"—s_;éQsz 5-193-5—5_-;5%
= P(-2.45<Z<0.82) | Z ~ N, 1)

=P(-245<Z<0)+P(0<Z < 0.82)
=P(0<Z<245)+P(0<Z<0.82)
= 0.4929 + 0.2939 = 0.7868 (Using Normal Probability Tables)

SUMMARY

If a sequence of random variables x,, x,, ..., X, converges to x in probability then
the following are true.

P P
If X, —a, Y, —> b, asn— o, then

o
(i) X,+Y, — atbh asn— e,

P
i) ——>-g—,ba=0,asn—->oo.

n

GLOSSARY

WLLN. If the sequence <X;> of random variables has means [, Ky, ..., K- then

= .
X, — H,» provided &_)0 as n — oo

2

where B, = Nor (X, + X, + ... +X) ‘

C.L.T. If <X> is a sequence of random variables with means p,, W,, ..., i, and

variances 6,2, 0,2, ..., 6,2. Then the sum S =X, + X, + .. + X, is a normal

variable with mean p and variance 62, where
TS TRE R TR T o2=02+0.2+..+02

REVIEW QUESTIONS

A random variable X has a mean value of 5 and variance of 3.
(i) What is the least value of Prob {| X -5 | <3J?
(ii) What value of h guarantees that Prob (| X -5 | <k} 20.99?
(iii) What is the least value of Prob (| X-5 | <7.5)?

Convergence of Sequence

of Random Variables

NOTES
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7.

8.

9.

0.

1.

2.

3.

14,

15.

IfX denote the sum of the numbers obtained when two dice are thrown, use Chebyshev’s
inequality to obtain an upper bounds for P(| X -7 | > 4). Compare this with the actual
probability.

An unbiased coin is tossed 100 times. Show that the probability that the number of
heads will be between 30 and 70 is greater than 0.93.

Within what limits will the number of heads lie, with 95% probability, in 1,000 tosses of
a coin which is practically unbiased?

A symmetric die is thrown 720 times. Use Chebyshev’s inequality to find the lower bound
for the probability of getting 100 to 140 sixes.

Use Chebyshev’s inequality to determine how many times a fair coin must be tossed in
order that the probability will be at least 0.95 that the ratio of the number of heads to
the number of tosses will be between 0.45 and 0.55.

IfX is a r.v. such that E(X) = 8 and E(X2) = 13, use Chebyshev's inequality to determine
a lower bound for P(- 2 < X < 8).

State and prove Chebyshev’s inequality. Use it to prove that in 2,000 throws with a coin
the probability that the number of heads lies between 900 and 1,100 is at least 19/20.

A random variable X has the density function e~ for x > 0. Show that Chebychev’s in-
equality gives, P(| X -1 | >2) < :-41- and show that the actual probability is e=3.

Let X have the p.d.f.

ﬂx): ﬁ, - 3<I<‘J§

T elsewhere

: oo 3
Find the actual probability P(l X-pu| 250) and compare it with the upper bound

obtained by Chebyshev’s inequality.

If X has the distribution with p.d.f.flx) =e™ 0 <x < oo, use Chebyshev’s inequality to
obtain a lower bound to probability of the inequality - 1 <X <3, and compure it with the
actual probability.

X, X, .. X, be r.v.’s. with means My, Mg, ..., U, and standard deviations a;, Oy, ..., O,
respectively, and [Var(X, + X, +..+X )l/n? > 0 as n — o, show that fn - It, converges
to zero in probability.

Hence show that if m is the number of successes in n independent trials, the probability
of success at ith trial being p; then m/n converges in probability to (py+py+ ... +p)n.

X, k=1, 2, ... is a sequence of independent random variables each taking the values :
¢ 1

~1,0,1. Given that P(X, = 1) = = = P(X, =~ 1), P(X, =0) = 1 - % examine if the law of

large numbers holds for this sequence.

Examine whether the weak law of large numbers holds good for the sequence X, of

1 : d 2 1 1
independent random variables, where P| X = s =i X! = ==,

s [ " J 3 [ s -~ J 3
{X,} is a sequence of independent random variables such that

P(Xn =%] =pu’ P[Xn = 1+%] = 1 —pu

Examine whether the weak law of large numbers is applicable to the sequence (X, ).



16. IfXisar.uv. and E(X?) < e, then prove that P{| X | 2a} < —12- E(X?), for alla > 0.
a

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Use Chebychev’s inequality to show that for n > 36, the probability that in n throws of a
fair die, the number of sixes lies between —;-n — Jn and %n +4/n is at least -3—1
Let {X, ) be a sequence of mutually independent random variables such that :

X, = = 1 with probability and X, = + 2-" with probability i

1-27"
2

Examine whether the weak law of large numbers can be applied to the sequence X,
Examine whether the laws of large numbers holds for the sequence {X,] of independent

random variables defined by P(X, = £ k%) = %

State and prove Weak Law of Large Numbers. Determine whether it holds for the
following sequence of independent random variables :

P(anil)=-%-(1—-2—")=P(X"=—1).

A distribution with unknown mean H has variance equal to 1.5. Use central limit theo-
rem to find how large a sample should be taken from the distribution in order that the
probability will be at least 0.95 that the sample mean will be within 0.5 of the popula-
tion mean.

The life time of a certain brand of an electric bulb may be considered a random variable
with mean 1,200 hours and standard deviation 250 hours. Find the probability using
central limit theorem, that the average life-time of 60 bulbs exceeds 1,400 hours.
Decide whether the central limit theorem holds for the sequence of independent random
variables X, with distribution defined as P(X_=1)=p, and PX =0 =1-p,.

If X,, X,, X3 - is a sequence of independent random variables having the uniform
densities :

flx) = V@-ih0<x<2-i"
el [ 1) , elsewhere show that the central limit theorem holds.

Let X . be the sample mean of a random sample of size n from Rectangular distribution

on [0, 1]. Let U, = ¥n [in _%)
Show that F(u) = lim P(U, <u) exists and determine it.
n— o

Let X;, X5, -ooeee be a sequence of independent, identically distributed non-negative ran-
dom variables such that E(log X, is finite. Z, = (X,, Ry vniss , X, )Vn. Show that the posi-

tive constant ¢ can be so chosen that the random variable (e Z,,)J; has a non-degenerate

limit distribution function F(.) and determine F(.).

{X,} is a sequence of i.i.d. random variables. If n is a perfect square, then X, is Cauchy
1

variate with density : 3. , — oo < x < o, Otherwise X, has a distribution function
T l+x

F(x) with mean zero and finite variance o2. Discuss the asymptotic distribution of

X, + Xy + . + X )0

Let (X,), & 2 1 be a sequence of i.i.d. variates with flx) = —;— e 1Tl —ocx < oo,

Convergence of Sequence

of Random Variubles

NOTES
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E
Find the constants a, and b, such that {| X, | + | FoT [ +|X, | -alb, —
N(0,1).

n k = b

Using C.L.T., show that : lim [e-'* ;) %'-J = 51 = lim :%l%!idt.
Let (X ,n =1,2, ..} be a sequence of independent Bernoulli variates such that -

P('Xn=1)=pn=1—P(X"=0),n=1,2, ...... ,(q"=1—p").
Show thatif L p, g, =, (n =1, 2, ..... » =), then the CLT holds for the sequence X, ).
What happens if¥p,q, <e.
Derive weak low of large numbers from Chebychev’s inequality.
State and prove WLLN for i.i.d. random variables.
The necessary condition for the WLLN to hold is that EX),i=1,2, ..., n, should exist.
Write the name of this theorem.

FURTHER READINGS

Discrete Distributions: N.L. Johnson and S. Kotz, John Wiley and Sons

Continuous Univarate distribution—1: N.L. Johnson and S. Kotz

Continuous Univarate distributions—2: N.L. Johnson and S. Kotz, John Wiley and Sons
Introduction to Probability theory with applications: W. Feller, Vol-1: Wiley astern.




Discrete Distributions
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CHAPTER NOTES

4

DISCRETE DISTRIBUTIONS

OBJECTIVES

After going through this chapter, you should be able to:
e know the conditions for the applicability of binomial distribution
« know the techniques of solving the problems by using binomial distribution

e know the mean, varriance, S.D. and central moments for binomial distribution

e m.g.f. of the binomial distribution.

STRUCTURE

1. BINOMIAL DISTRIBUTION
4.1 Introduction
4.2 Conditions for Applicability of Binomial Distribution
4.3 Binomial Variable
4.4 Binomial Probability Function
4.5 Binomial Frequency Distribution
46 Histogram of Binomial Distribution
4.7 Shape of Binomial Distribution
4.8 Limiting Case of Binomial Distribution
4.9 Mean of Binomial Distribution
4.10 Variance and S.D. of Binomial Distribution
4.11 Reproductivity property (IF Exists)
4.12 Characteristic Function of Binomial Distribution
413 Recurrence Formula for Binomial Distribution
414 Compound Binomial Distribution
4.15 Compound Poisson Distribution

I1. POISSON DISTRIBUTION

4.16 Introduction
417 Conditions for Applicability of Poisson Distribution
4.18 Poisson Variable
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Probability and 4.19 Poisson Probability Function
Distribution Theory 4.20 Poisson Frequency Distribution
4.21 Shape of Poisson Distribution
4.22 Special Usefulness of Poisson Distribution
4.23 Mean of Poisson Distribution
4.24 Variance and S.D. of Poisson Distribution
4.25 Characteﬁétic Function of the Poisson Distribution
4.25 Recurrence Formula for Poisson Distribution

NOTES

4.26 Applications of Poisson Distribution
e Summary
¢ Glossary
* Review Question
* Further Readings

I. BINOMIAL DISTRIBUTION

4.1 INTRODUCTION

The binomial distribution is a particular type of probability distribution. This
was discovered by James Bernoulli (1654~1705) in the year 1700. This distribution
mainly deals with attributes. An attribute is either present or absent with respect to
elements of a population. For example, if a coin is tossed, we get either head or tail.
The workers of a factory may be classified as skilled and unskilled.

4.2 CONDITIONS FOR APPLICABILITY OF BINOMIAL
DISTRIBUTION

The following conditions are essential for the applicability of Binomial Distri-
bution :

() The random experiment is performed for a finite and fixed number
of trials. If in an experiment, a coin is tossed repeatedly or a ball is drawn from an
urn repeatedly, then each toss or draw is called a trial. For example, if a coin is tossed
6 times, then this experiment has 6 trials. The number of trials is an experiment is
generally denoted by ‘n’.

(ii) The trials are independent. By this we mean that the result of a particu-
lar trial should not affect the result of any other trial. For example, if a coin is tossed
or a die is thrown, then the trials would be independent. If from a pack of playing
cards, some draws of one card are made without replacing the cards, then the trials
would not be independent. But, if the card drawn is replaced before the next draw, the
trials would be independent.

(zii) Each trial must result in either “success” or “failure”. In other words,
in every trial, there should be only two possible outcomes i.e., success or failure. For
example, if a coin is tossed, then either head or tail is observed. Similarly, if an item is
examined, it is either defective or non-defective.
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(iv) The probability of success in each trial is same. In other words, this
condition requires that the probability of success should not change in different trials.
For example, if a sample of two items is drawn, then the probability of exactly one
being defective will be constant in different trials provided the items are replaced
before the next draw.

4.3 BINOMIAL VARIABLE

A random variable which counts the number of successes in a random experi-
ment with trials satisfying above four conditions is called a binomial variable.

For example, if a coin is tossed 5 times and the event of getting head is success,
then the possible values of the binomial variable are 0, 1, 2, 3, 4, 5. This is so, because,
the minimum number of successes is 0 and the maximum number of successes is 5.

4.4 BINOMIAL PROBABILITY FUNCTION

When a fair coin is tossed, we have only two possibilities : head and tail. Let us
call the occurrence of head as ‘success’. Therefore, the occurrence of tail would be a
‘failure’. Let this coin be tossed 5 times. Suppose we are interested in finding the
probability of getting 4 heads and 1 tail i.e., of getting 4 successes. If S and F denote
‘success’ and ‘failure’ in a trial respectively, then there are 5C, = 5 ways of having 4
successes.

These are : SSSSF, SSSFS, SSFSS, SFSSS, FSSSS.

4
The probability of getting 4 successes in each case is (%] (%] , because the
trials are independent.
By using addition theorem, the required probability of having 4

4
successes is °C, %] (%) , which is equal to 5532- . Now we shall generalise this method

of finding the probabilities for different values of a binomial variable.

Let a random experiment satisfying the conditions of binomial distribution
be performed. Let the number of trials in the experiment be n. Let p denotes the
probability of success in any trial.

Probability of failure, g =1 —p.
Let x denotes the binomial variable corresponding to this experiment.
The possible values of x are 0, 1, B cenie ST

If there are r successes in n trials, then there would be n — r failures. One of the
ways in which r successes may occur is

S AhuL s S ER.L 2 F
| Fa u]
rtimes n - rtimes

where S and F denote success and failure in the trials.
Now, P(SS ....... SFEF ... F)=PEPSE) ...... P(S)P(F)P(F) ..... P(F)
(- the trials are independent)

= JLB s Dl oosoess g=pa* "
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Probability and We know that "C_ is the number of combinations of n things taking r at a time.
Distribution Theory Therefore, the number of ways in which r successes can occur in n trials is equal to the
number of ways of choosing r trials (for successes) out of total n trials ie., it is "
Therefore, there are "C, ways in which we get r successes and n — r failures and
NOTES the probability of occurrence of each of these ways is p’q"~". Hence the probability of
r successes in n trials in any order is
Px=r)=p'q"-"+p"q"-"+ ...... "C,terms (By addition theorem)
or Px=r)= "C.b"q" ", 0<r<n.
This is called the binomial probability function. The corresponding bino-
mial distribution is

x 0 1 7 S B TR Ve e n
P(x) "'Copoq“ ”Clplq" =1 B Cgpzq” e 1D Ty *C.p'g 9
The probabilities of 0 success, 1 success, 2 successes, ...... , N successes are re-

spectively the 1st, 2nd, 3rd, ........ » (n + 1)th terms in binomial expansion of (g + p).
This is why, it is called binomial distribution.

4.5 BINOMIAL FREQUENCY DISTRIBUTION

If a random experiment, satisfying the requirements of binomial distribution,
is repeated N times, then the expected frequency of getting r(0 < r < n) successes is
given by

N.P(x=r) =N."C, p*q" *,0<r<n.

The frequencies of getting 0 success, 1 success, 2 successes, ...... , Il successes are
respectively the 1st, 2nd, 3rd, ...... ,(n+ Dth terms in the expansion of N(g + p)".

4.6 HISTOGRAM OF BINOMIAL DISTRIBUTION

We know the method of drawing histogram of a frequency distribution. The
method of drawing histogram of a binomial distribution is analogous to the procedure
of drawing histogram of a frequency distribution. In case of a binomial distribution,
we mark all the values of the random variable on the horizontal axis and their respec-
tive probabilities on the vertical axis. Rectangles of uniform width are constructed
with values of the variable at centre and heights equal to their corresponding prob-
abilities.

WORKING RULES FOR SOLVING PROBLEMS

L. Make sure that the trials in the random experiment are independent and
each trial result in either ‘success’ or ‘failure’.

IL. Define the binomial variable and find the values of n and p from the given
data. Also find g by using : g=1-p.
IIL. Put the values of n, P and q in the formula :

P(r successes) = C.rer=012... o 21)

IV. Express the event, whose probability is desired, in terms of values of the
binomial variable x. Use (1) to find the required probability.
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ILLUSTRATIVE EXAMPLES

Example 1. An unbiased coin is tossed 10 times. Find, by using binomial distri-
bution, the probability of getting at least 3 heads.

Sol. Let p be the probability of success, i.e., of getting head in the toss of the
coin.

1 1
n =10, p=73 and g=1-p=1- =3

Let x be the binomial variable, “no. of successes”.
By Binomial distribution, P(x =r) ="C_p"q¢"”,0<r<n.
1 r 1 10 -r 1 10 1
Pa=r)= 1°Cr (E] [E) = locr (EJ “’Cr '1'65'4' ’ 0<r<10.
Now, P(at least 3 heads) =P(x 23)=1-P(x < 3)
=1-[Px=0orx=1orx=2)
=1-[Px=0)+Plx=1)+Plx=2)]

1
g [mc" 1024 1°cl +10y 1024]

[IOC i lDC + 10C ]

:
2

-l

1024
- 1024-56 968 _ 121
=1—- — 45] = = = :
1024 R+ 48] = 0dt" " 108d 138
Example 2. A coin is tossed 7 times. What is the probability that head appears
an odd number of times.

Sol. Let p be the probability of success, i.e., of getting a head.

1 1
n="17, B and g=1-p= 1--2

Let x be the Binomial variable “no. of successes”.
By Binomial distribution, Pkx=r)="C p"¢"”",0sr=<n.

o T=-r
1 1
re=n=rc, (3] 3

7
=7C LY _C(l) 0<r<1.
rlg 128 ) °’

Required probability = P(head appearing an odd number of times)
=P(x=1lor3or50r7)=Plx=1)+Px=3)+Plx=5)+Plx=17)

=7, (g35) + "0 () + s () * 1 (ss)

1 64 1
=(7+35+21+1) (128] =—,

NIH

Example 3. Draw a histogram for the binomial probability distribution of the
number of heads in 5 tosses of coin.

Sol. Let p be the probability of success, i.e., of getting a head.
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Let x be the Bionomial variable “no. of successes”.
& A R S By
By Binomial distribution,

Px=r)="C p"q"",0<r<n.

r §—r 5
1 1 1 1
Px=r)= Cr(g] (2) Cr(zJ C,[32J,0 r<5

3 1 1 5

=0) =% =] 222 Yl —

P(x =0)=5C, [32J S Plx=1)=°C, [32) 3

1 10 1 10
= =5 an ] W = = =5 S - G So—

Pz i (32) "B b [32] 32

1 5 1 1

wdi w0 el = =Y ehewine | _ 2.
Plx=4)=°C, (32]-32 : P(x = 5) = °C; (32]— 3

The required probability distribution is

x 0 1 2 3 4 5
1 5 10 10 5 1
e 32 32 22 | 3 32 32

The histogram of the Binomial Probability Distribution is shown in the figure :

P(x)4 HISTOGRAM
10
32
5 |
32
+ 2 ° * . ® ] >
o 0 1 2 3 4 5 X

Example 4. In a hurdle race, a player has to cross 10 hurdles. The probability
that he will clear each hurdle is 5/6. What is the probability that he will knock down
fewer than 2 hurdles ?

Sol. Let p be the probability of success, i.e., of knocking down a hurdle.

5 i | 1 5
n—lO,p—l—E—6 and q—l—p—l-E—G.
Let x be the binomial variable “no. of successes”.

By Binomial distribution, P(x=r)= "C.p q"",0<r<n.
1 r 5 10-r
Plx=r)= lﬂcr (E] [E) G r< 30
Now, P(knocking down fewer than 2 hurdles)

1
=P <2)=Px=0)+P@x=1)= 1%, (E] (%J + 10¢, (l] (9}
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Example 5. The probability of @ man hitting a target is 1/4. He fires 7 times.
What is the probability of his hitting the target at least twice ?
Sol. Let p be the probability of success, i.e., of hitting the target.
1 1 3
n=7 p=— and g=1-p=1-—=—.
P 4 4 & 4 4
Let x be the binomial variable “no. of successes”.

By Binomial distribution, Pl =r)="C p"¢"",0srs<n.

NOTES

I 7-r
1 3
P(x=r)=7cr (Z] (1‘] L

Now, P(hitting at least twice) = P(x 2 2)
=1-Px<2)=1~-[P(x=0)+Px=1)]

a-fa o]

3Y (87 3‘5(3 7) 4547
=] - — — — =]1=|— e o —
2 | [lxlx(J +7x4x(4)] ¥ (4] T 8192
Example 6. The probability that a bulb produced by a factory will fuse after 100
days of use is 0 05. Find the probability that out of 5 such bulbs :

(1) none (ii) not more than one
(i11) more than one (tv) at least one,

will fuse after 100 days of use.
Sol. Let p be the probability of success, i.e., the bulb being fused after 100 days.
5 1 1 19
n=5 p=0.05= T and q-l-p_l—--éa_. =
Let x be the binomial variable “no. of successes”.
By Binomial distribution, Plx=r)="C p'¢"",0sr=<n.

1 r 19 5-r
e B o
Pix =r)=°C, (20) [20) SRS,

0 5 5
1 19
(i) P(none will fuse) =P(x =0) = 5(;'0 (56) (.2_0) £ (%g_} :

(ii) P(not more than one will fuse) = P(x<1)=P(x =0) + P(x = 1)
0 5 1 4
: & 19 1 19
e - i 5 L R A
ol (20) (20] %% [20) (20)

4 4
=(E) ]:lxlx1—9+5xlx1]= 1_9 (ﬁ
20 20 20 20) \5)°

skl 4
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Probability and 19 4 6
Distribution Theory (iii) P(more than one will fuse) =P(x>1)=1-Px<1)=1 - (53) ( E]
(Using part (ii))
NOTES (iv) P(at least one will fuse) = P(x > 1)=1-P(x < 1) = 1 — P(x = 0)

0 5 5
1 (3 (8] 1-(3)
20 20 20
Example 7. A bag contains 25 items of which 5 are defective. A random sample

of two is drawn (without replacement). What is the probability that (i) of both being
good (ii) of both being bad (iii) at least one being good.

Sol. Let p = The probability of getting a success i.e., the probability of having a
defective item.

Given, Pi= =0.2

QU et

"

25
g=1-p=1-02=08

Let x be a random variable following the Binomial distribution, then

PX=r)="C q"-" p",0<rsn
(2) Required probability = P( both items are good)

= 1 —- P(none is good)
= 1 - P(all items are defective)
=1-Plx=2)
=1-2C, (0.8)° (0.2)2
=1-0.04 =0.96

(it) Required probability = P(both items are bad)
=P(X=2)
=2C, (0.8)° (0.2)
= 0.04

(ézi) Required probability = P(at least one item is good)
= 1 - P(at most one item is bad)
=1-PX<1)
=1-(PX=0)+PX=1))
=1-PX=0-PX=1)
=1-2C, (0.8)2(0.2)°- 2C, (0.8)! (0.2)!
=1-064-2x08x0.2
=1-0.64-0.32
=1-0.96 =0.04.
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PROPERTIES OF BINOMIAL DISTRIBUTION

4.7 SHAPE OF BINOMIAL DISTRIBUTION

The shape of the binomial distribution
depends upon the probability of success (p) and the
number of trials in the experiment. If p = g = 2,
then the distribution will be symmetrical for every
value of n. If p # g, then the distribution would be o

asymmetrical, i.e., skewed. The magnitude of skewness varies as thedifference between
p and q.

The probabilities in binomial distribution depends upon n and p. These are
called the parameters of the distribution.

4.8 LIMITING CASE OF BINOMIAL DISTRIBUTION

As number of trials (n) in the binomial distribution increases, the number of
successes also increases. If neither p nor g is very small, then as n approaches infinity,
the skewness in the distribution disappears and it becomes continuous. Such a
continuous, bell shaped distribution is called normal distribution. Thus, the normal
distribution is limiting case of binomial distribution as n approaches infinity.

4.9 MEAN OF BINOMIAL DISTRIBUTION

Let x be a binomial variable and P(x = r) ="C_p’q"~",0<r<n.
Here n is the number of trials and p, the probability of success in a trial.
The mean of x is the average number of successes.

n

Mean, p= ir Px=r= Zr C p'g T

r=0 r=0
=0.7Coyp%" + 1."C,p'q"~ ' + 2°C,p%¢" % + ... +n."C,p" . ¢°
(n-1
=0+n.pq”"+£n—) 22 #....... +n.1lp"
1.2
=np {q”'1+n—1_lpq"'2+ ......... +p"_l}

=np {n-lco poqu-l + "'101 plqn—Z P + ﬂ—lcn_'l pn.-l qD}
=np(g +pY1=np (1)~ 1=np.
Mean (p) of x = np.

4.10 VARIANCE AND S.D. OF BINOMIAL DISTRIBUTION

Let x be a binomial variable and P(x =r) ="C_p’q¢" ~",0<r<n.
Here n is the number of trials and p, the probability of success in a trial.

The variance and standard deviation of x measures the dispersion of the bino-
mial distribution and are given by

Self-Instructional Material
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Probability and
Distribution Theory

o n
Variance = Zr2 Plx=r)-p? and S.D.:J sz.P(x:r)—§2 :
- 2

r=9 =0
n n
NOTES NOW, Zrz Plx=r)= Zrz .ncrprqn—r
r=0 r=0
=0."C, p%" + 12.°C, plg"-1+ 221G, p%q" -2+ P20, phgt 24 i,
+n2 ncnpnqo
2
- n -1 ioa Rin=1) o g, 3 .nln-1)n-2) s
—0+1.1pq" +2.———1‘2 pQtTi+ 309 PG
&L ptad

=np {qn—l & 2(n1— 1) pg"2 + 3(n —11:(;,— 2) Pl s +np"'1}

- np{[q“'l L | pg" 2+ n_Din-2) e oo p’!”lJ
1 1.2
(n-1) n-2 2An -1)(n - 2) 2 n-3
+( S SR s
=np (@ +pr1+(n-1)plg*2+(n- pg i + p"-2))
=np{l+(n-Dplg+pl2=np{l+(n — 1) p.1)
=np (1 +np —p}=np +n2p? - np2.

....+(n—1)p"'l]1

J

n
Variance = sz Pl =r)—p?=(np + n%? - np? - n2p2 = np — np?

r=0
=np(l -p)=npq.
Also, S.D. = vVariance = y/npq .

Theorem 1. Show that the first four moments about origin for the Binomial
distribution are given as

My =np,uy=nln-1) p?+np
Wy=nn-1)(n-2)p%+3n (n-1)p?+np
u;=n(n-1)(n—-2)(n—3)p4+6'n(n—1)(n—2)p3+ 7n(n-1)p°+np

From above results, derive the first four central moments viz, Ky Hy My and p,
Also find the values of B 1 Bs and v, v, respectively.

Proof. Let X denotes the random variable which follows binomial distribution
with parameters n and p, then

Px)=PX=x)= "C, g"*p*

The moments about origin are as unter

=B =3 x"C, p'g" =mp Y "C,,p" g

x=0 x=1

=np(q +p);'=np
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i T ol n(n-1)
C,=—, 1cx_1 =
x x(x-1)

Hence the mean of the binomial distribution is np.

n-2
Ris oL

u _E(Xz)z x2 nC px n-x
x=0

n("‘ 1) n-2 n-x
..;J[x(x bital—r =T C,.» p'g

n
=nn-1 p2 {Z n—ZCx_z px 2qn—:} np
x=2

=nn-1p2(@+pl2+np=n(n-1p2+np
| Using Binomial theorem,

Wy=EX) =) 2*px)=) (x(x-D(x-2)+3x(x-D+x "C, pq"*

x=0 x=0

n
=nn-1)(n-2)p* Y. "°C,3 p* """
=3

.n
+3n(n-1)p? Z"'2C 2 P v ap
x=2
=nn-1n-2)p*@+p)"3+3n(n-1) pg+p)-2+np
=n(n-1)(n-2)p3+3n(n-1)p%+np
Considerx*=Ax (x -1 (x-2)(x-3)+Bx(x-1)(x—2)+ Cx (x — 1) + Dx
Putx =1, in above, weget D=1
Put x = 2, in above, weget2C+2D =16 = C=7
Put x = 3, in above, we get 6B + 6C + 3D = 81
= 6B=81-42-3=36 = B=6
Equate the coefficient of x4, 1 = A
=xx-1D(x-2)x-3)+6x(x—-1)x-2)+Tx (x—-1) +x

n
W,=EXO =3+ "C, pra"
x=0
=nn-1n-2)(n-3)p*+6n(n-1)n-2)p*+Tn(n-1)p2+np
| Using Binomial theorem
To derive central Moments of Binomial Distribution:
My = py — 2 =n?p? —np? + np —n?p? = np (1 -p) = npq
Mg = W3 — 3H5 My + 21,7
=lntn-1Dn-2)p*+3n(n-1)p?+np)-3n(n-1)p?
+np} np + 2(np)?
=np (- 3np? + 3np + 2p% - 3p + 1 - 3npq)
=np {3np (1 —p) + 2p?-3p + 1 - 3npq}
=np(2p%2-3p + 1) =np (2p2-2p + q) = npq (1 — 2p)
=npq lg + p — 2p} = npg (g — p)

Discrete Distributions

NOTES

Self-Instructional Material

97



Probability and M= W~ 4o+ 6ps uy? - 3ust = npg (1 + 3 (n - 2) pg)
4 4 31 21 1
Distribution Theory | Using ', 1’ p,a W,
1 B9 s M4

Also B, = ﬁ= n’p*q® (g - p)® S p)?’ - (1-2p)°
NOTES T n®piq’ npq npq
B, = My _npq{1+3(n—2)pq]_1+3(n_2)pq_3 1-6pq
_Lg 2.3 2 * =3+
H2 L £ npq npq
g-p 1-2p 1-6pq
ne B g - s Ye =B —3 =54
1 \/_1 e Jhes g = s s

Cor. For the Binomial distribution, variance is less than mean.

Proof. Let X ~ B(n, p) i.e., X follows the Binomial distribution with parameters
n and p, then, from above theorem,

mean = np, variance = npq < np = mean. |0<g<1
Theorem IL Find the mean deviation about mean of the Binomial distribution.

Proof. Let X ~ B (n, p) i.e., X follows the Binomial distribution with parameters
n and p, then

plx)=pX=x)="C_qg"™ p*
Let n denotes the mean deviation about the mean np. Then

n n
n= Z |x - np| p(x) = Z jx~ap| *C_p g™ " (x being an integer)
x=0

x=0

np n
_ Z ol np) an p.tqn—.x 3 Z (x __np) an pan—x
x=0 x=np

=2 Z (x-np) "C, p*q"™*

x=np

x=0

n n
': Z x ncx > =np = Z (x - np) an p* " =0}
x=0
=ZZ (x_np)ncxp.tqn—.l" : \
m
n
= 22 [{xq-(n—x)pl *C, p’q""‘]
m

- n! " n! 5 :
=2 o O, .y S N e e
Zu: [(x—l)!(n-x)!p 2 2ln-z-n1° 1 ]

= n!
-9 T - R - i x+1_n-x
Zﬂ s ~hely okt = TR B 1Y
=2 (tu_l -t,)= 2t , |t,=0
n! n-p+1

=2—+—— plqg

(u-Dln-w! = 2npq "‘1CH_1 ph-1 gn-t,

| where u is greatest integer contained in np + 1.
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Moment Generating Function

Theorem IIl. To find the moment generating function of the Binomial
distribution.

Proof. Let X ~ B (n, p) i.e., X follows the Binomial distribution with parameters
n and p, then

px)=PX =x)="C_q¢"* p*
Let My(¢) denotes the moment generating function of the random variables X,
then

M) =E (e®) = ) ¢” "C, ¢"™ p.

x=0

=) "C.(pe)* q"" =(q +pe.
x=0

Probability Generating Function

Let P(S) be the probability generating function of the Binomial distribution,
then,

P = 2 PX=hs" =3 *C,p" " *)s*
k=0 k=0

n
= Z an (ps)kqn—k = (PS + q)4
k=0

The p.g.f. is the nth power of (ps + q).

1
x+a

1
Example. Prove E( ] = L t*! G(t) dt, a > 0 where G(t) is the p.g.f. of X. Find

1
also E(x s 1) when x ~ B(n,p).
1 1
Sol. Consider J 1 G@) dt = J t* 1 E(t*) dt
0 0

5 J‘::H [2, p(x) t’] dt

n

= [ o j:t“-‘"dz]

x=0
i [ ga-lexel 1
- p(x).[_.___]
= | a-1+x+1 6
L 1 1
= x) . =E
_xz=o plx) a+x (x+a} A1)

" n
Also, If x ~ B(n, p), then G(2) = Z t* p(x)
x=0

Discrete Distributions
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Probability and E =
BiN¥Htéon Theory =Y #7°C,p%" =Y. "C.(p)*q"* =(g+ pt)" (2)
x=0 x=0
For @ = 1, from (1), we have

NOTES

Bf - —le(t)dt=Il(q+bt)" | 'Using (1)
x+1) Jo 0

_{g+pt*** 1 _lgepht’ —g¥n
(n+Dp (n+ Db

l_qn+1
" a+Dp

4.11 REPRODUCTIVITY PROPERTY (IF EXISTS)

Statement. If X ~ B(n,, p;) and Y ~ B(n,, p,) are two independent random
variables then X + Y does not satisfy the additive or reproductive property. In other
words, the sum of two independent binomial variates is not a binomial variate.

Proof. Given X is a Binomial variate with parameters n, and p,, therefore its
moment generating function is
M(2) = (gy + pye')™

Also, Y is a Binomial variate with parameters n, and p,, its moment generating
function is M(¢) = (g3 + pye’)™

Consider My,  (£) = M(¢) . M,(2) | XY are independent

= (g1 + pye*)" (gy + pye' )™ (1)
Now (1) cannot be expressed in the form (g + pe‘)*. Therefore, by uniquencess
Theorem of moment generating function, X + Y is not a Binomial variate.

Cor. If we take Py =Py =p, then from (1), My, ,(t) = (g + pe')yn*m

Therefore, by uniquencess theorem of moment generating function, X + Yis a
binomial variate with parameter n, +n, and p. Thus, the reproductive property holds
when p, =p,.

Generalisation. If Xy; Xg, ..., X, are independent binomial variates with param-
eters (n;, p) i = 1, 2, ..., n), then their sum X; + X, + ... + x, is also a binomial variate
with parameters ny+n,+..+n, andp.

4.12 CHARACTERISTIC FUNCTION OF BINOMIAL
DISTRIBUTION

Let ¢,(¢) denotes the characteristic function of the Binomial distribution, then

0,(t) = E(e*™) = ) e p(x)

x=0

n n
= Z eux ncxpan—x = Z an (pe:r}x qn—x= (q +pe”}\.‘
x=0

x=0
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4.13 RECURRENCE FORMULA FOR BINOMIAL

DISTRIBUTION
Let x be a binomial variable and P(x =r) = "C_p"g"”" ,0<r<n.
For0<k<n, P(k) = *C, p* ¢™*
and Pk + 1) = "Cy,, p**lgn+D),
e P+l "G pttiet
Dividing, we get PR - "Coptg - *
= n! kin-%)! p n-k p
T (k+D!m-(k+1)! T n! g R+l g’
NS e BE

. —- < .
e P(k) for0<k<n

This is the required recurrence formula.

ILLUSTRATIVE EXAMPLES

Example 1. Find the expectation of the number of heads in 15 tosses of a coin.
Sol. Here n = 15. Let p be the probability of getting a head in a trial, i.e., in a loss.

-
p—z‘

Let x be the Binomial variable “no. of heads”.

1
Expectation of x = E(x) = mean = np = 15 x s 7.5

Example 2. Obtain the binomial distribution whose mean is 10 and standard
deviation is 2.[2 .
Sol. Let number of trials =n and probability of success = p.

P(r successes) ="C_p" ¢"",0<r<n.

We have mean=np =10 and S.D.= \npg = 2,2 .

J10g = 8 = q:E

1

]
| e

1 r 4 50-r
P(r successes) = 5C, (EJ (E] ,0<r<50.
Example 3. A discrete random variable x has mean score equal to ‘6’ and vari-
ance equal to 2’. Assuming that the underlying distribution of x is binomial, what is
the probability when 5 <x <6.
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NOTES

Sol. Wehave mean=np=6 = ak
and variance =npg = 2 . (2)
(1)and (2) = 6xq=2=>q=§-=—
1 2
e T
2
(1) = n[§)=6 =. =9,

P(r successes) ="C, p" q"",0srs<n

' 9-r
o, (2 (1) osres.
PG5<x<6)=Plx=50rx=6)=Px=5)+ P(x=6)
5 4 6 3
ave |23 41 9 E] 1
p 05(3] (3] ¥ C‘*(a [3)

9408
- i

1
=¥ [126 x 32 + 84 x 64] =
Example 4. (a) The sum of mean and variance of a binomial variance is 15 and
the sum of their squares is 117. Find the distribution.

(b) The sum and the product of the mean and variance of a binomial distribution
are 24 and 128 respectively. Find the distribution.

(c) If the probability of a defective bulb is 0.1, find the mean and the standard
deviation of defective bulbs in a total of 900.

Sol. (a) Let the binomial distribution be P(x =r) ="C, p" q"",0<r <n.

We have mean = np and variance = npq.

np +npqg =15 1) and (np)? + (npq)? = 117
..(2)
(1) = np(l+q)=15 ..(3) (2) = nPA1+4¢?)=117
..(4)
n’p’+q®) 117 lrq" - a1 lsg® = 13
= mpQ+g)® TWEE T Q+qf " 226 T 1+qi+29 - 25
2 8
= 25+25¢2=13+13¢2+269g = 6g2-13g+6=0 = gos, 5
2 3 G .
g because g = 3 >1lis impossible.
1
=l—g=1-—==
p q 3
) 1 2 . 1 1
Putting p = 393 in (3), we get, n . 3 [1+§J =15
5
= n 5 =D = =27
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and

1 r 2 27-r
Plx=r)=%C (EJ (E] ,0srs27.

(b) Let the Binomial distribution be
PX=r)="C _p'q"",0srs<n
Here mean = np and variance = npq
Given, np +npq =24 : D)
np .npq = 128 .(2)
Squaring (1) and dividing it by (2), we have

(np(1+q))2=576 - n?p?(1+g)? 9
n’p’.q 128 n’pt.q 2
= 2(1+q)%=9q
=5 29°+2+49=9q
= 2q2-5q+2=0
= 29°-49-q+2=0
= 2q(g-2)-(@-2)=0
= g-2)(2¢g-1=0
1
=5 9=2,3
1 A e |
But g=2 - Wetakeq=§ 3 p—1—§=5
Also from (1), np(1 + q) = 24
1 3
= n.§-§=24
= . n=232
Hence the required distribution is
1r 132-r
= Py WC 1 - <r<32.
PX=r) ,(2) (2] ,0<r<3
(¢) Given p = the probability of a bulb being defective

= 0.1
gq=1-p=1-01=0.9,n =900
Using Binomial distribution,
mean = np = 900 x 0.1 = 90
variance = npq
=90x0.9=81

Standard deviation = 1anq =./81
=9,

Example 5. If X is a binomial variate with parameters n and p, then show that

(i) E(X/n-p)2=£nq— (ii) Cov (E "‘X)z_ﬂ‘i_

n n n
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Probability and Sol. Given X ~ B (n, p), therefore E(X) = np, Var(X) = npq

Distribution Theory

1
Also E(X[n)=—1-E(X)=— -np=p
n n

e Var (X]n) = i2\{31‘ X) = —1? npq =-I:L—q
n n

(i) EX|n -p)?=E (X/n — E(X/n))? = Var (X/n) = %

Usin Cov (X, Y) = E [(X - EX)) (Y - E(Y))], we have

(i) Cov(%: n;X] . E[(%‘E(%'D[n;x 'E(n;xm

Example 6. (i) Determine the Binomial distribution for which the mean is 4 and
variance is 3. Also find its mode.

(it) Show that for p = 0.50, the Binomial distribution has a maximum probabil-

1 1 s 4
ityatX:En if niseven and at X = -5(71—1).5-(11+1) if n is odd.

Sol. (i) Given mean = np = 4, variance npqg =3

34
= = —=—,
np 4
o=
Also Sleg=l S =
p q iy

np =4 gives n = 16
The required distribution is given by

e
(q+p) =(Z+Z)
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To find mode, consider (n + 1) p = 17 -i- = 4.25, which is not an integer. Hence

the mode is unique and given by integeral part of (n + 1) p = 4.

. 1
(ii) Herep = 3 and consider (n + 1) p.

Case I. If n is even, say, n = 2m, then(n + 1) p = (2m + 1) 1 = m+l, not an

integer. Therefore, the mode is unique and value of mode = integeral part of m +%

=M=

M|

Case I1. If n is odd, say,n =2m + 1

: : 1
Consider (n + Dp=Cm +1+1) 3 =mt 1, which is an integer. Therefore, the
distribution is bimodal and the values of mode are given by

n-1 n-1 n+l n—-1
+1, or )
2 2 2

Example 7. If X is a binomial distribution with parameters n and p, what is the
distribution of Y =n - X.

m+1l,m or

Sol. We know that the moment generating function of the binomial variate is
M (t) = E(e®X) = (q + pe')
My(t) = E(e*Y) = E (e X))
=E (e™ . e~ X) = e E(e™*¥)
=e™ My(-t)
=e™ (g + pe*)"
= (ef (g + pe™))*
=(ge' +q)"

By uniqueness theorem of moment generating function, Y~B(n,q)ie,n-Xis
also a Binomial distribution with parameters n and q.

Example 8. If the independent random variables X and Y are binomially dis-

1
tributedwithn=3,p=-§andn=5,p=é.FindP(X+Y21).

Sol. Given X~ B [3, —I-J, Y~B [5, l)
3 3
= X+Y~B(3+5,-§-]or X+Y-—B(8,%) | Additive property
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Distribution Theory a1y
? PX+Y=r=8C, % <

NOTES Hence PX+Y21)=1-PX+Y<1)

=1-PX+Y=0)

8 0 8
2
3] 3 -0
3 3 3
Multinomial Distribution: This distribution is the generalisation of the
binomial distribution. When there are more than two mutually exclusive outcomes of

a trial, the observations lead to multinomial distribution. Let E,, E,, ...... , E, are
k mutually exclusive and exhaustive outcomes of a trial with respective probabilities
Py Dgiwvivein Py

Let the probability that

E, occurs x, times ;

E, occurs x, times ;

E, occurs x, times ;

in n independent observations, is given by

where Z x; =n and c is the number of permutations of the events BBy =

i=1

To determine ¢, we have to find the number of permutations of i objects of

which x, are of one kind, x, of another kind, ...... » x, of the kth kind, which is given by:
n!
i g ingl...... x,!
Hencep(xl, - , Xy) = ' T! : .pP B P,0<x.<n
Il H x2 ...... X

which is the required probability function of the multinomial distribution. It is so
called since (8.30) is the general term in the multinomial expansion:

k
Py + Py # ... +p,‘)",z pi=1

i=1
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Since, total probability is 1, we have
n! p
px) = [—-———p“ p"’......p"]:(p +p,+...... +p,)t=1
; ; silzgl ...l *® ’ e Py

Theorem 1IV. Find the moment generating function of the multinomial
distribution.

Proof. Let X ~ Multinomial distribution and M,(#) denotes the m.g.f., then,

The moment generating function is given by:

I k
Mx((‘.) = Mx‘.x2 ....... x‘i (tl,tz, ...... ’tk) = E[exp {Z tixi}j(

i=1

1 k
= Z ——E;—pf‘p;’ ...... D" exp [Z t,-x,-]:(
X

b;\:1!352!......3:,5! o
[ n! 1\ X £ \ X tp X
=Z —— (P )" (poe™)™ ... (ppe™ )™
5 _xl !32 b xk ! %
= (p1e" + poe’ +...... + ppe )t
where X=X X, ... X,).

4.14 COMPOUND BINOMIAL DISTRIBUTION

Compound distribution. Let X is a random variable such that its distribution
depends on a single parameter 6, where 0, instead of being regarded as a fixed constant
is also a random variable following a particular distribution. Then, we say, X follows a
compound distribution.

Theorem V. Find the mean and variance of the compound Binomial distribution.

Proof. LetX,, X, ...... , X, are independent and indentically distributed Bernouli
variates with P (X; = 1) = p and P(X, = 0) = ¢ = 1 — p then,

X=X, +X, + ..... +X ~ B (n,p)i.e., Xis a Binomial variate with parameters n
and p and hence its probability density function is

PX=r)="C,q"" p,r=0,1,2,....,n )

where P(X = r) is the probability of r successes in n independent trials with constant
probability ‘p’ of success for each trial.

Now suppose that n, instead of being regarded as a fixed constant, is also a
random variable following Poisson law with parameter A. Then

-Aqk

Pln=Fk)= s k=012, ...... -(2)
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Probability and In such a case X is said to have compound binomial distribution. The joint prob-
Dustribution Theory ability function of X and n is given by:

e—llk
k!

PE=rnn=k=Ph=PX=r|n=k)= o @,

NOTES

| using (1) and (2)
Since P (X = r | n = &) is probability of r successes in & trials. Obviously, r < k
= B2y
The marginal distribution of X is given by :

P(X=r)=z PXRX=roan==Fk)

k=r
e x’e k—r —l(@)r b (M)k—r
=X .0 k q €
= e - =
s Z‘ AT r = k-0t
= r = J
_t0er 5 —
rl =

= —e"l(lp)r .eM =-—-——————e—?p(Ap)r
r! r!

which is the probability function of a Poisson variate with parameter Ap.
Hence E(X) = Ap and Var (X) = Ap.

4.15 COMPOUND POISSON DISTRIBUTION

Theorem VI. Discuss compound Poisson distribution or if X is a Poisson variate
with parameter A, then show that the compound Poisson destribution of X is a negative
Binomial distribution with parameters (g, p).

Proof. Given X is a Poisson variable with parameter A and hence its probability |
density function is

~Anr
PX=r)="

=1 o PR HE
r!

Let us suppose that, A, instead of being a fixed constant, is itself a continuous
random variable with generalised gamma density, given by

—-aiyv-1
g0 = % A>0,a>0,V>0

0 2 A<0

Now, consider the two dimensional random vector (X, 1) in which one variable
is discrete and the other is continuous. For a constant 2 > 0 and A, > 0, the joint
density of X and A is given by :

PX=rnAsAsh+h) =P A<M +hA)PX=r|A SA<A +h)
Dividing both sides by & and proceeding the limits as A — 0, we get
. PX=rnA; <A +h)
lim
h—0 h
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P\, SASA, +h)
h

= IlmP(erlllslSll‘l'h)Xlim
h—0 h—0

T i L L2t R tim SR+ -G (y)

h—0 h h—0 h
where G(-) is the distribution function and g(-) is p.d.f. of A.

=G() =g (),

. PX=rni<AsA +h) _e?n] g
lim = ;
h—0 h I )

Integrating w.r.f. to A, over 0 to = and using Gamma integral, the marginal
probability function of X is given by :

?Lli—l e-ﬂll

G e il B ey St I'(r+v)
PE=r= l"(v)r!J'oe . dl_l"(u)r!'(1+a)”"

_[ a )”u(u+1)(u+2) ...... @+r-1

1+a (1+a) r!
== u(—l)’(‘”] 1 r-(‘”) ‘(-9)";r=0,1,2
it l+a r 1+.a r P q);r=0, 3 Ly seeees
where p=all+a),g=1-p=1U1+a).

Hence the marginal distribution of X is negative binomial with parameters (v, p).
Hence the theorem.

I1. POISSON DISTRIBUTION

4.16 INTRODUCTION

The Poisson distribution is also a discrete probability distribution. This was
discovered by French mathematician Simon Denis Poisson (1781-1840) in the year
1837. This distribution deals with the evaluation of probabilities of rare events such
as “number of car accidents on road”, “number of earthquakes in a year”, “number of
misprints in a book” etec.

4.17 CONDITIONS FOR APPLICABILITY OF POISSON
DIS TRIBUTION

The Poisson distribution is derived as a limiting case of the binomial distribution.
So, the conditions for the applicability of the Poisson distribution are same as those for the
applicability of Binomial distribution. Here the additional requirement is that the prob-
ability of ‘success’ is quite near to zero.
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Probability and
Distribution Theory

NOTES

4.18 POISSON VARIABLE

A random variable which counts the number of successes in a random experi-
ment with trials satisfying above conditions is called a Poisson variable. If the prob-
ability of an article being defective is 1/500 and the event of getting a defective
article is success and samples of 10 articles are checked for defective articles, then the
possible values of Poisson variable are 0, 1, 2, ...... , 10.

4.19 POISSON PROBABILITY FUNCTION

Let a random experiment satisfying the conditions for Poisson Distribution be
performed. Let the number of trials in the experiment be n, which is indefinitely large.
Let p denotes the probability of success in any trial. We assume that p is indefinitely
small, i.e., we are dealing with a rare event. Let x denotes the Poisson variable corre-
sponding to this random experiment.

The possible values of x are 0, 1, 2, ......, n.

The Poisson distribution is obtained as a limiting case of the corresponding
binomial distribution of the experiment under the conditions :

(i) n, the number of trials is indefinitely large, i.e., n — o.

(i1) p, the probability of success in a trial is indefinitely small, i.e., p — 0.

(izz) The product np of n and p is constant.

By Binomial distribution, P(x=r)="C.p'q"’,0<r<n,whereqg=1-p.

Letnp=m. .. p=2 and g=1-p=1-2,
R n
n! m i m L=
T e r] [I] [I‘XJ

_an-Dn-2)....n-r-Dn-n! m" 1_3]""
= ri(n-n! L n
m n n-1n-2 n-(r-1) ( mJ"[ m]_l
= —— — fl-—=] |1-—
Elan % n n n n

= %(1—%][1—%] ------ [1—’”;1)(1_13]" (1_%]

r e
lim Plemde e din [1—3] lim [1"2-] ...... i (1—” L)
n — oo ! n

m n
+ lim {1-»-—] =e™
n—oo n

3
(o]
3

= L ]

r!

E |
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N . e ™ m’ Discrete Distributions
When n is indefinitely large, we have P(x =r) = o s o | gy ER T,
r
This is called the Poisson probability function. The corresponding Poisson
distribution is

NOTES
x 0 1 2 -, |-
9 e-mmO e—mml e—mm2 e—-mmS
E 0! 11 21 7 i

The constant m is the product of n and p and is called the parameter of the
Poisson distribution.

4.20 POISSON FREQUENCY DISTRIBUTION

If a random experiment, satisfying the requirements of Poisson distribution, is
repeated N times, then the expected frequency of getting (0 < r < n) successes is given
by

e—m r

N.Px=r)=N ——n

. T 00 R e

WORKING RULES FOR SOLVING PROBLEMS

I. Make sure that the trials in the random experiment are independent and
the success is a rare event and each trial result in either success or failure.
II. Define the Poisson variable and find the value of n and p from the given
data. Find m = np. Sometimes, the value of m is directly given.
II1. Put the value of m in the formula :

-m r

P(r successes) = =l 12 . S T ..(D)

IV. Express the event, whose probability is desired in terms of values of the
Poisson variable x. Use (1) to find the required probability.

Remark 1. The distribution to be used in solving a problem is ge;mrally given is the
problem. If it is not given, then the student should make use of Poisson distribution only when
the event in the problem is of rare nature, i.e., the probability of happefing of event is quite
near to zero.

Remark 2. The value of e™™ required in any particular problem is generally given with
the problem itself. Otherwise, the value of e can be found out by using the table given in this
chapter. In the examination hall, generally the table of e™ is available for students. If at all the
value of e is neither given with the problem nor the table of e is supplied in the examination
hall, then the students are advised to retain their final result in terms of e".

ILLUSTRATIVE EXAMPLES

Example 1. Out of 100 bulbs sample, the probability of a bulb to be defective is
0.03. Using Poisson distribution, obtain the Probability that in a sample of 100 bulbs, |
none is defective.
[Given e = 0.04979]

Sol. Let x be the Poisson variable, “no. of defective bulbs in a sample of 100
bulbs”.
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-m . r
Distribution Theory By Poisson distribution, Px=r)= . s T | R T e
F-3
Here n=100,p=0.03. . m=np=100x0.03 =3.
-3
NOTES e e Sl 0,1,2, ..., 100.

e?(3° 004979 x1
=i 1

Example 2. There are 50 telephone lines in an exchange. The probability that

any one of them will be busy is 0.1. What is the probability that all the lines are busy ?

Sol. Let x be the Poisson variable, “no of busy lines in the exchange”.

P(none is defective) = P(x = 0) = = 0.04979.

By Poisson distribution, Px=r)= _':! s, 45D g
Here n=50,p=0.1. . m=np=50x01=5.
Plx=r)= e_sr('s)r S0 12, L8,
e (5)%

P(all lines are busy) = P(x = 50) = 501

Example 3. Eight per cent of the bolts produced in a certain factory turns out to
be defective. Find the probability, using Poisson distribution, that in a sample of 25
bolts chosen at random, (i) exactly 3 (ii) more than 3, will be defective.
[Take e = 0.135]

Sol. Let x be the Poisson variable, “no. of defective bolts in a sample of 25 bolts”.

-m !
By Poisson distribution, P(x=r)= - ey il 8 A
8 2 2
Heren =25 p-= o6 m=np=25x %5 =2
= 9
Plamr)s = r(, T
(Z) P(exactly 3 defectives)
-2 ()3
2 0135x 8
S =0.18. (Using e2 = 0.135)

3! 6
(i) P(more than 3 defectives) = P(x >3)=1-P(x < 3)
=1-Plx=0. or.x=1 or-x=2 or x=3)
=1-[Px=0)+Plx=1)+Plx =2) + Plx = 3)]
e [.«:*2(2)" B ) R e'2(2)3}
0! 1! 2! 3!

=1-¢2 [1+2+3+§]=1-0.135(1+2+2+i)
2 6 3

19
=1-0.135 x 5 ™ 0.145.
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Example 4. A box contains 200 tickets each bearing one of the numbers from 1
[to 200. 20 tickets are drawn successively with replacement from the box. Find the
probability that at most 4 tickets bear numbers divisible by 20.

Sol. Let x be the Poisson variable, “no. of tickets bearing number divisible by
207.

. ) 5 > e—m mr
By Poisson distribution, P(x=r)= ST TR e 01,2 ...

The numbers from 1 to 200 and divisible by 20 are 20, 40, 60, 80, 100, 120, 140,
160, 180, 200.
Let p be the probability of getting a ticket with number divisible by 20.
10 1

200 20°
Also n = number of trials = 20.

m:np=20)<56=‘1
-1 r =
p(x=r)=e (1) =e—-,r=0,1,2, ...... , 20
r! r!

P(at most 4 tickets bear number divisible by 20) = P(x < 4)
=Px=0)+Plx=1)+P(x=2)+P(x=3) + P(x = 4)

et ghnipd gf - g p S O | 65
—t—t—t—==|1+1+ =+ —| = —
Of “ESRe gt Y . 2 24 24e

PROPERTIES OF POISSON DISTRIBUTION

4.21 SHAPE OF POISSON DISTRIBUTION

The shape of the Poisson distribution depends upon the parameter m, the aver-
age number of successes per unit. As value of m increases, the graph of Poisson distri-
bution would get closer to a symmetrical continuous curve.

4.22 SPECIAL USEFULNESS OF POISSON DISTRIBUTION

The Poisson distribution is specially used when there are events which do not
occur as outcomes of a definite number of trials in an experiment, rather occur ran-
domly in nature. This distribution is used when the event under consideration is rare
and casual. In finding probabilities by Poisson distribution, we require only the meas-
ure of average chance of occurrence (m) based on past experience or a small sample
drawn for the purpose.
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P

Probability and

Distribution Theory 4.23 MEAN OF POISSON DISTR'BUT'ON

- r
e m

NOTES Let x be a Poisson variable and P(x =r) =

The mean of x is the average numbers of successes.

m..r

Mean, p= Zr.P(x=r)=Zr.e r|n
r=0 r=0 oo
-m, 0 -m__1 m. 2 -m__ 3
Y, Gt B Lo R i e e
0! 1! 21! 3!
2
1 2m  3m? m m
=0+me""[ﬁ+-£!l+?+ _______ ]=me—m{1+ﬁ+a+ ....... ]

=me™ e"=me=m.1l=m.

Mean (i) of x = m.

4.24 VARIANCE AND S.D. OF POISSON DISTRIBUTION

; : am’
Let x be a Poisson variable and P(x =r) =

The variance and standard deviation of x measures the dispersion of the Poisson
distribution and are given by

Variance = Z rPP(x=r)-p* and SD.= JZ rPasr-t.
r=0 r=0

r!

23 PPa=n=Y pa mm
r=0 r=0

- 2‘e‘"’m° 28 "m 92 & m2+32e’"m3+42 e "m %
0! 1! 2! 3! ' R
Sl (25 S 3m?  4m®

=0+ me™ (-1-!-+-—-—1' - 1 T ]

= me™ 1+_+m_2+.,ﬁ+ + ﬂ 2’_‘”2 inf_

= 5 RS | Ay T

]
3
-]
1
3
e ey,
o
3
-+
5 -
pr—————
-
+ "
|3
+
o|¥,
il
————t

= me™{e™ + me™) =me"™e™ (1 +m)=me’ (1 +m)

=m(l+m)=m + m2.
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Variance = z PPx=r)-p’=m+m?-m? - m.
r=0

Also, S.D. = Y Variance =

Theorem VII. Show that the first four moments about the origin for the Poisson
distribution with parameter A, are given as

Py=Aup=A2+A, ny =2+ 302 + A
p,=A+60% + 722 + .

From the above result, derive the first four central moments and hence find B,, B,
and v, Y, respectively.
Proof. Let X follows Poisson distribution with parameter A, then
—l x
i) = e, 0, 12, .
e

The moments about the origin are as under

o o —lkx e = l"‘l
=E® =) "P"‘-“=§ xSt l][zo (x—l)!}

x=0

2 3
=le"‘(1+l+%-|—+%+ ...... ]=l€—l-el

= A = Mean of the Poisson distribution

—lx

—E(X2)—pr(x A)= Z{x(x D+

x=0 x=0

PR al A e o gl i
_elg x(x—l);rl-;)xex! 2 A|:Z = 2)']

=A2eret+ A=A+

uy=EX3) =) 2° plx,n)

x=0
- ~-Aax
=3 e@-DE-2+3x@-D+x)° .
x=0
1) -A Ax oo B'A'A.x
= ( ( 2) +3 1
;)xx x— Zx(x ) ‘+§x e
] 7"1-3 g kx—2
= ‘113 3 -A ;\‘2
‘ ; -9 g; oz ) e

=e A er+3e M A2+ A=A3+ 302+ A
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Probability and -
py = EX4Y = z x4 plx,\)

Distribution Theory
x=0
—l x

NOTES -Z r@-1)(x-2)(x—3)+6x(x—1) (x—2) + Tx (x = 1) + 2}
x=0

R o lx—.‘i T s AJ..Z

} A {z }+7e A {22 o 2)!}

o x—4
= e"“l"‘{ A + 6e
; (x-4)! = (x—-3M

=At(e*er) +6A3 (et er) + TA2 (e et) + A

=AM +6A3 + TAZ + A
We now find the first four central moments as follows

=(A2+0M)-A%2=1

g = g -
Mg =My — 3, + 21,3 = (A3 + 3A2 + M) = 3L (A2 + A) + 2A3 = &,
Mg =Hg— 4 pgpy+6ujp,? — 3,7
~3\t=3A2+2

At +603+TA2+ M) -4 (A3 +302+0)+ 622 (A2 + )

Also coefficients of skewness and kurtosis are given by

2 2
g _A°_1
B = e— e— — and'y = = —
1 ug A % 1 Bl Ji..
Also BZ—E—;-=3+_and72__|32_3_%.
2

Moment Generating Function
Let M_(¢) denotes the m.g.f. of the poisson distribution, then

M, (t) = Z e p(x)

x=0

o8 -Aqx e —l = 2
=Ze"‘e . (") My,
x=0 x! = x! =
=e—l ekc' el(e’—l)

Probability Generating Function
The p.g.f. of Poisson distribution can be obtained as follows

P(S):iP(xzk) i w =i =
k=0

_LZ (ls) v = M-
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4.25 CHARACTERISTIC FUNCTION OF THE POISSON DIS-
TRIBUTION

Let ¢_(#) denotes the characteristic function of the poisson distribution, then

oo oo

i gy i
¢I(t) = E(e“x) = Z e"‘rp(x) = Z eux exl!

x=0 x=0

= i e_l_(?\ei?x B e_l{1+ Aett + —(A‘;)Z' + } - e ehu = e)‘(“u'n
x! !

x=0
Reproductive or Additive property of independent Poisson variates

Theorem VIIL If X, X,,, ......, X, are n independent poisson variates with pa-
rameters Ay, A, ...... A, thenX + X, +...... +X, is also a Poisson variate with parameter
T + A4,

Proof. Let My, (£) denotes the moment generating function of the random vari-
able X, then

[Since X, X, ...... , X, are independent.]

= eh(e'-n exgte‘-n mel,,(e‘-l) =e(1,+12+....n+1,,)(e‘—1)

which is the moment generating function of a Poisson variate with parameter A, + A,

n
S T + A,. Hence, by uniqueness theorem of moment generating functions Z X;is
i=1
also a Poisson variate with parameter A, + A, + ...... +A .
Cor. 1. Converse of reproductive property of Poisson distribution is also true.

n
Statement. If x,, x,, ..., X, are independent random variables and Z x; has a
r=1
Poisson distribution, then each of the random variable x,, x,, ..., x, has a Poisson
distribution.

Proof. We Prove the result for I = 2 i.e., If x, and x, are independent random
variables such that x, ~ P(A,) x; + x, ~ P(A; + A,), then we show that x, ~ P(A,)
AS x, and x, are independent,
M, .., =M, ®+M,@®

£ l.-
e M+ A e =D _ e 1’.Mx2(t)

p T o RN g= t_
— eMte n elg(e D, ek,(e 1)_ Mx ”
2

= etale' - = M, @)
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Probability and which is the moment generating function of a Poisson variate. By uniquencess theorem
Distribution Theory of moment generating function,

x2 ~ P(l2).
NOTES Cor. 2. Difference of two independent Poisson variates is not a Poisson variate.
4.26 RECURRENCE FORMULA FOR POISSON
DISTRIBUTION
e™ m’
Let x be a Poisson variable and P(x = r) = e iy 1,4, ...,
ri

Fork20, P =""" ond PG s o)

ork20, Pk)= an (+1)_W

Pk+1) _e™m**! i m

Dividing, we get

P(k) Rk+D! e™mF k+1l
Pk+1)=2_Pk), k=0,1,2, ...
k+1

This is the required recurrence formula.

4.27 APPLICATIONS OF POISSON DISTRIBUTION

This distribution is applied to problems concerning.
1. The number of persons born blind per year in a country.
2. The number of deaths by horse kick in an army corps.
3. The number of fragments from a shell hitting a target.
4. Demand pattern for certain spare parts.

ILLUSTRATIVE EXAMPLES

Example 1. A pair of dice is thrown 200 times. If getting a sum of 9 is consid-
ered as success, using Poisson distribution, find the mean and variance of the number
of successes.

Sol. Let p be the probability of getting sum 9 in a throw of pair of dice. Out of
total 36 outcomes, the favourable outcomes are (3, 6), (4, 5), (5, 4) and (6, 3).

. Twi
P=36"79
Also, n = 200.

m =np = 200 x Lo 22.22 | '+ Mean = Variance
9 9

Mean = m = 22.22 and variance = m = 22.22.
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Example 2. (i) For a Poisson distribution, it is given that, P(X = 1) = P(X = 2). Discrete Distributions
Find the value of mean of the distribution. Hence find P (X =0 and P(X =4).

(ii) A random variable X follows a Poisson distribution with Parameter 4. Find

the Probability that X assumes the values less than 2.
NOTES

-m r

Sol()Let ~ PX=r)=<—7—,r=0,1,2 ... A1)

where m is the average number of successes.
We havePX = 1) =PX =2)

o™ ml “ e ™ m2

TR

2
m=m—2- = m=2 (2 .m0}

Mean of the distribution, m = 2.

5 e™ m°
Using (1), we have PX=0)= o T e?
-m 4 -279\4
i PX=d4)= M _e (2) =Ee"2.
4! 24 3

(ii) Here m = 4. By using Poisson distribution

we know
e~ 1l s
PX=r)= T,r:O, A W,

Required Probability =PX<2)=PX<1)
=PX=0)+PX=1)=e™+e™.m | Using (1)
=e*(1+4)=>5e4=5x0.0183 = 0.09157.

Example 3. A telephone exchange receives on an average 4 calls per minute.

Find the probabilities on the basis of Poisson distribution (m = 4), of :
(i) 2 or less calls per minute (i) upto 4 calls per minute
(iii) more than 4 calls per minute.
Sol. Let x be the Poisson variable “no. of calls per minute”.

e ™ m"

By Poisson distribution, Px=r)= - - O dy @it

Here m = Average number of successes i.e., calls per minute = 4
-4 4
Par=ri= o o 048
sl
(i) P(2 or less calls per minute) = P(x <2) = P(x =0) + P(x=1) + Plx=2)
.40 ot 4l o442
r 5 e 0. P
0! 1! 2!
(ii) P(upto 4 calls per minute) = P(x <4) =Px = 0) + Px=1)+P@x=2)+Plx=3)
+Plx=4)

=e4 (1 + 4+ 8} =0.01832 x 13 = 0.2382.

ot Vgt gl glhugt it gt
+ + +
0! 1! 21 3! 4!
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Woiesoiiae 256
gy =e {1 +4+8+ % + 34—} = 0.01832 x 34.3333 = 0.6289.
(ii) P(more than 4 calls per minute) = P(x > 4) = 1 - P(x < 4) = 1 — 0.6289 =

NOTES 0.3711.

Example 4. A manufacturer of pins knows that on average 5% of his product is
defective. He sells pins in boxes of 100, and guarantees that not more than 4 pins will be
defective. What is the probability that a box will meet the guaranteed quality ? (e-5 =

0.0067)
Sol. Let p = The probability that a pin is defective = 5% = 0.05
Also n =100

A=np =100 x (0.05) =5
Using Poisson distribution, we have

-Aar

N ,r=0,1,2, ..

PX=r)=

The box will meet the guarantee if it contains at the most 4 pins defective.
Required probability = P(X < 4)
=PX=0+PX=1+PX=2+PX=3)+PX=4)

2 3 4
=e"‘+e‘1.l+e‘l.l-+e‘l.l.+e-h,l_
2! 6 24
25 125 625
=ed| 146+ —4+——Z—4+—
¢ [ 2 24]

=e® (6 + 12.5 + 20.83 + 26.04)
=7 (65.37) = 0.0067 x 65.37
= 0.44.

Example 5. Red blood cells deficiency may be determined by examining a speci-
men of blood under a microscope. Suppose a certain small fixed volume contains on an
average 20 red cells for normal persons. Using Poisson distribution, obtain the prob-
ability that a specimen from a normal person will contain less than 1 5 red cells.

Sol. Let x be the Poisson variable, “no. of red blood cells in the specimen”.

—-n r

e
By Poisson distribution, P(x=r)= p- ,m sl Baih. .

Here m = average number of R.B.C. in the specimen = 20

e 2020y

Plx=r)= ST

P(less than 15 R.B.C. in the specimen)
=Px<15)=Plx=0)+Plx=1)+ ... + P(x = 14)

R e 20, 14 2 (200
= £ (20 P (20) i o ok i I e =e20 Z :
0! 1! 141 & k!

Example 6. An electric bulb manufacturer finds that 4% of the bulbs are defective.
What is the probability that a random sample of 50 bulbs does not have a defective
bulb. ?
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Sol. Let p = The probability that a bulb is defective

4
=4% = 00 = 0.04 (very small)

Also n =50
A=np=50x004=2
By Poisson distribution,

e-—llr

ri

PX=r)=

g e

“A40
Required probability = P(X = 0) = fo—rl; =e*=¢2=(.1353.

Example 7. If X, and X, are independent random variable such that X, ~ P(A})
and X, + X, ~ P(A; + 1), then show that X2 ~ P(3,).

Sol. Let My(#) denotes the moment generating function of the random variable

X which follows Poisson distribution, then M,(¢) = ette-n

Mx] o x2 (t) = Mxl (:) Mx? (t)
=3 ehithale =D _ As(ef-1) My, @) | X,, X, are independent
— ea,w'—n ek.z(e’—ll =ell(e’—1) Mxi(t)

=5 Mx2 @) = elgl&'-l)

= X, ~ P(A,) | By uniqueness theorem of m.g.f.

Example 8. The Difference of two independent Poisson variates is not a Poisson
variate.

Sol. Let X, and X, are two Poisson variates with parameters A, and A, then

My, _x, ) =Mx_,(x, ()
= My (). M_x (-2)
= My, () Mx, ® | Mc, =My (Ct)
= eM@-D A1

Aqylef =D+ Ay(e™ -1

=

which cannot be put in the form MA-D By uniqueness theorem of moment generating
function, X, - X, cannot follow Poisson distribution.
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The Poisson distribution, then the two modes of the Poisson distribution are
given by x = A, A — 1. Given, the two modes are the points x = 1, 2. It implies A = 2.
Using Poisson distribution, P(X = x)

-Aqx -2 gx
A 2
ex' =eT,x=0, i B opeely.

I &

PX=1)=22PX=2)= = 2e?

Hence required probability
=PX=1)+PX=2)
=22+ 2%=4e2=0.542.
Example 9. Show that in a Poisson distribution with unit mean, mean devia-

tion about mean is g times the standard deviation.
e

Sol. Let X ~ P(), then using Poisson distribution,
-Aqx

X
PX=x)="——,x=0,1,2, ...
x:

But given mean = A =1

M.D. about mean 1 =E | X - 1|

=Y |x-1|PX=2)
x=0

B T i S BT |
i x! x!
x=0 x=0 :
=e’1[1+0+l+£+ ...... )

21 38!
_e-x[l+[1_i]+[i_i]+(i-i]+ ...... }

21 a1 3! !
e R Vg n__n+t 1-1
(n+1! (r+D!

.3 o Ntd - 1
o T (+D! (n+D!
_Exl "—l‘_ :
_e _n,! (n+1!
2 -
- standard deviation.
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SUMMARY

The Binomial distribution was discovered by James Bernouli in 1700. The
following are the essential conditions for the applicability of the Binomial dis-
tribution.

* The number of trials should be finite

* The tirals should be independent

* Each trial must result in either “success or failure”.
* The probability of a success is constant in each trial.

Histogram for B.D. To draw the histogram of a B-D, first mark all the values
of the random variable on the x-axis and their respective probability on y-axis.
Construct the rectangles of uniform width with values of the variables at the
centre and heights equal to their corresponding probabilities.

The Poisson distribution was discovered by a French mathematician, Simon
Denis Poisson, in 1837. It is a discrete probability distribution. This distribu-
tion is used when there are events which do not occur as outcomes occur ran-
domly in nature.

Mean and variance of the Poisson distribution are always equal.

IfX,, X,, ..., X, are Poisson variates with Parameter A Mgy s Ay respectively,

then Z X, is also a Poisson variate with parameter A, + A, + ... + A .

n
r=1 N

The Poisson distribution is the limiting case of the Binomial distribution.

GLOSSARY

Binomial Variable. A random variable which counts the number of successes
in a random experiment following Binomial distribution is called a Binomial
variable.

Compound distribution. If a random variable X is such that its distribution
depends upon a single parameter Q, then the distribution of ‘6’ will be known as
compound distribution of Q.

Poisson Variate. A random variable which follows the Poisson distribution is
known as Poisson variate.

Poisson frequency distribution. If a random experiment, is repeated N times,
then the expected frequency of getting r(0 < r < N) success is given by

N.e™ A\
NP(X=r)=—=—,r=0,12,..

where A is the parameter.
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11.

12.

13.
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REVIEW QUESTIONS

An unbiased coin is tossed 8 times. Find by using binomial distribution, the probability
of getting at least 3 heads.

5 dice are thrown simultaneously. If the occurrence of an even number in a single dic is
considered a success, find the probability of getting at most 3 successes.

A box contains 100 tickets each bearing one of the numbers from 1 to 100. If 5 tickets are
drawn successively with replacement from the box, find the probability that all the tickets
bear number divisible by 10.

A policeman fires 6 bullets on a dacoit. The probability that the dacoit will be killed by a
bullet is 0.6. What is the probability that the dacoit is still alive ?

Assume that the probability that a bomb dropped from an aeroplane will strike a certain
target is 0.2. If 6 bombs are dropped, find the probability that :

(i) exactly 2 will strike the target (i7) at least 2 will strike the target.
. 4 1 ;
For a binomial distribution with p = Z and n = 10, find mean and variance.

The mean and S.D. of a binomial distribution are 20 and 4 respectively, calculate n, p
and q.

() Find the binomial distribution when the sum of its mean and variance for five trials
is 4.8.

(iz) If the sum of the mean and variance of a binomial discribution for 6 trials be -—132 , find
the distribution.

It is known that 60% of mice inoculated with a serum are protected from a certain dis-
ease. If 5 mice are inoculated, find the prebability that :

(i) none contact the disease (i) more than 3 contact the disease.

Find the moment generating function of the standard binormal variate (X — np)/ Jm
and obtain its limiting form as n — . Also interpret the resuit.

Neyman’s Contagious (Compound) Distribution. Let X ~ P (A, ), where y itself
is an observation of a variate Y ~ P(X,). Find the unconditional distribution of X
and show that its mean is less than its variance.

—Aqr
If X has Poisson distribution: PX =r)= -er—? cnmlak 2o

where the parameter A is a random variable of the continuous type with the
density function:

()
L) = % e QD -2 >0,0>0,a> 0, derive the distribution of X.
v L]

Show that the characteristic function of X is given by:
Dy(t) = E (¢"X) = ¢* (1 - pe")*, where p = /(1 +a), g = 1 - p.
A company knows on the basis of its past experience that 3% of its bulbs are defective.

Using Poisson’s distribution, find the probability that in a sample of 100 bulbs, no bulb
is defective.

[Given e~ = 0.04979]
Six per cent of the bolts produced in a certain factory turn out to be defective. Find the

probability, using Poisson distribution, that in a sample of 10 bolts chosen at random (/)
exactly 2 (ii) more than 2, will be defective. [Take e~ %¢ = 0.549]



15.

16.

17.

18.

19.

20.

21.

Assume that the probability that a bomb dropped from an aeroplane will strike a certain
target is 1/5. If 6 bombs are dropped, find the probability that :

() exactly 2 will strike the target
(i) at least 2 will strike the target. [Use e-1-2 = 0.3012]

In a certain factory turning out razor blades, there is a small chance 1/500 for any blade
to be defective. The blades are in packets of 10. Use Poisson distribution to calculate the
approximate number of packets containing :

(Z) no defective (éi) one defective
(z12) two defective blades in a consignment of 10000 packets. (P.T.U., M.B.A. Dec. 2000)

Comment on the following statement : “The mean and variance of a Poisson distribution
are equal only if the average occurrence of the Poisson variance is < 4",

The standard deviation of a Poisson distribution is 3. Find the probability of getting 3
successes.

A car-hire firm has two cars, which it hires out day by day. The number of demands for
a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the
proportion of days on which neither car is used and the proportion of days on which
some demand is refused.

(e15=10.2231)

In a hospital, there are 20 kidney dialysis machines and that the chance of any one of

them to be out of service during a day is 0.02. Determine the probability that exactly 3
machines will be out of service on the same day.

Write a short note on poisson distribution.

FURTHER READINGS

Continuous Univarate distributions—2: N.L. Johnson and S.Kotz, John Wiley and Sons.
Introduction to Probability theory with applications: W. Feller, Vol-1: Wiley astern.
Introduction to Modern Probability Theory: B.R. Bhat: Wiley Eastern.

Introduction to probability and Mathematical Statistics: V.K.Rohatgi: Wiley Eastern.
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CHAPTER

3

CONTINUOUS DISTRIBUTIONS

OBJECTIVES

After going through this chapter, you should be able to:

know the basic properties of the normal distribution.
know the area property of the normal distribution.

know that moments of odd order for the normal distribution vanish.
know that mean mode and median of the normal distribution are equal.

2
know that the probable error (P.E.) is approximately equal to 3 times the
standard deviation.
know about various distribution like log normal, standard Laplace, two

_parameter Laplace, weibul and logistic distribution.

STRUCTURE

Introduction

Normal Distribution

Normal Variate

Normal Curve and its Properties

Basic Properties of Normal Distribution
Area Property of Normal Distribution
Moments of Normal Distribution
Variance of Normal Distribution
Reproductive Property

Probability Integral or Error Function
Applications of Normal Distribution
Standard form of Normal Distribution
Log-Normal Random Variable
Log-Normal Distribution

Laplace Double Exponential Distribution or Standard Laplace Distribution
Weibul Variable

Weibul Distribution




5.18 Standard Weibul Distribution
5.19 Logistic Distribution

e Summary

e Glossary

* Review Questions

e Further Readings

NORMAL DISTRIBUTIONS

5.1 INTRODUCTION

The normal distribution is a limiting case of the Binomial distribution under
the following conditions :
(1) When n, the number of trials is very large and

i §
(2) p, the probability of a success, is close to e

Remark : (i) The normal distribution was first discovered by De Moivre, in 1733, a
French mathematician.

(i1) The normal distribution is a continuous distribution.

5.2 NORMAL DISTRIBUTION

The general equation of the normal distribution is given by

_1(z-nY
ﬂx)= 1 e 2( o ]
c+2n
where J2r = 2.5066, e = 2.7183

The parameters p and o are respectively mean and standard deviation of the
distribution.

y,—o<x <o, ~0o<I<eo, 0>0;

5.3 NORMAL VARIATE

A random variable X is called a normal variate if it follows a normal distribu-
tion. If the random variable X follows a normal distribution with mean p and S.D. o,
then we write X ~ N (p, 62).

5.4 NORMAL CURVE AND ITS PROPERTIES

The graph of the normal distribution is called the normal curve.
Properties

(a) The graph of the normal distribution is bell-shaped and symmetrical about
the line x = u.
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Probability and (i.e., If we fold the normal curve about the
Distribution Theory line x = p, the two halves coincide). AY

(6) The normal curve is unimodal.

(¢) The line x = p divides the area un-
der the normal curves above x-axis into two
equal parts (Fig.).

(d) The area under the normal curve
between any two given ordinates x = x, and
x = x,, represents the probability of values o X=q
falling into the given interval.

NOTES

(e) The total area under the normal curve above the x-axis is 1.

5.5 BASIC PROPERTIES OF NORMAL DISTRIBUTION

The probability density function (p.d.f) of the normal variate X is given by

1 _l[ﬂ)”
f(Jt:)=—‘,2—e2 ¢/, —m<cx<om—o< U<, 050
ov2n

Then the curve y = f (x), known as normal probability curve and satisfies the
following properties.

(a) The normal distribution is syfnmetrical about the line x =

(b) It is unimodal

(c) For a normal distribution, mean = median = mode

(d) The area bounded by the curve y =f(x), and x-axisis 1 unit,i.e.,

r f(x) dx = 1. Also f(x) 2 0

2
(e) The points of inflexion of the normal curve (can be obtained by putting dl—zi =
dx

d3y

and verifying that at these points, d_3 #0)aregivenbyx=pto.
X

i.e., these points are equidistant from the mean on either side.

5.6 AREA PROPERTY OF NORMAL DISTRIBUTION

(1) The area under the normal curve between the ordinates x=p—-candx =p + g,
is 68.26%.

(2) The area under the normal curve between the ordinates x = p — 20 and
x =W+ 20 is8 95.44%.

(3) The area under the normal curves between the ordinates x = u — 3¢ and
x =+ 30 is 99.73%.
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©

S NOTES

©

= » X
X=—-0o X=g
e 3:/ X=p X = 3o
X=-2¢ 95.44% %
X =20
99.73%

Area property of normal curve

SRty e -~ 4
Theorem 1. For a normal distribution, the mean deviation about mean is 30'

Proof. We know that mean deviation about the mean u is given by

MD.=| |x-p|f@) de
1 x—uz
e i s
.__J' |2 -pl e 2\ o ) g, Put =z = dx=o0dz
—oe o+2n
22
=J- |zo]. : e 2 odz
e o+2n
i o
=-EJ.—‘, |z[e 2d2 '0)0
2T =L
____22i lzle % de |z|e 2 isan even function
VAT
=—0o0 °°.ze_§¢>3.-z
0
2 e 5
=£GJ‘ —tdt=J:c e S
T 0 n -1 0

=J§0(0+ 1)
n

\/gc =0.79790§ic.
n 5

-
Put?=t = zdz=dt
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NOTES Consider y,, , = J‘ (x-wW**! ) dx

- fa(x-—l-t)z'”l . 1 e—%(x‘_’")2 dx

= -[':n(zc‘!)z"+1 ———

Patz = ot = = =ldx
o} a

22
=02"+"J z"*1le 2 gy

2%

=0, since22**1, 2 is an odd function.

i.e., all odd order moments about the mean vanish.

Further, = | (-0 f()ds

=‘r (x- w2 . s .e_i[_"g)zdx

. -5 =
ﬂﬁj e ' 4

o.2n Jm Zn-1 e_
V2n J-e

Putx_u=z = dx=0dz

z |dz Integrating by parts,

2n e 2 ks
o 2n-1 2 r 2n-2 ;"2
= z —-e +| @n-D:z e % dz
V2n [ J —e
g™ - r 2n-2 “fgi
= 0-00+(2n-1 3= Ve dz
V2r —
_@n-1. Gznf %dz
O.2n—2 s _EE
=(2n-1)c2. = I 2 eotode
e )
Hence By, =(2n-1c® ., _, L
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Changing n ton — 1 in (1), we get Continuous Distributions

Hop _o=(2n-3)0%n, , . (2)
Using (2) in (1) , we get
My, =(2n-1)2n-3) ot p,, _, NOTES

=(2n-1)(2n-3)....31.0%p,
=(2n-1)(2n-3) ..... 3.1 . o2, | Hp=1

5.8 VARIANCE OF NORMAL DISTRIBUTION

If we put n =1, 2, in above, we get

Variance y, = 0%, 4, =3.1. o = 3 ¢*

2
B, = “La =0 | As odd order moments about the mean vanish
2
py _3¢*
=—=—+=3.
By 1122 Gt

Theorem II. For the normal distribution, show that the value of mode is given
by x = U, where  is the mean.

Proof. Let flx) be the probability density function of the normal distribution,
then

M

e y—0 <X <oo,—w< L <o, >0, =)
ov2n

Now, the mode is the solution of f“(x) = 0, and f” (x) < 0
Taking logarithm of (1), we get
lfx=p >
1 e
lo )=lo +loge 2 ©
g flx g C\/ﬁ g

2
=_1ogcm_%(x‘"]

g

2
= A—%['x;u) where A = log C /2n

Differentiating w.r.t. x, we get
f’(x)__(x—p.) 1 1

fim \ o IR

1 :
= fx)= —;ﬂx—u)f(x) i
Again differentiating,

)= —-(_:}2- [(x — p) (%) + flx)]
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e = o
- [——-("02 W f@+ f(x)]
—aiid
e ’:if) [1— < G,f) ] (3)

For mode, from (2) f'(x) = 0 gives
-—21(x—u)f(x) =0 = x-u=0
c

= X = |,l

Blso £,y = = =5 [y 1= 0)

A AN
o’ ov2n o®.2n
Hence the mode is given by x = .

Theorem III. Show that for the normal distribution, median is equal to the
mean of the distribution.

Proof. Let M denotes the median and flx) is the probability density function,
then

[fayde==
1 x—pz
= L ME_E( L) ) dx:l
6J2n —e= 2
Yx-p) 1(z-n)
_Yx-p o
= ljez(")dxi-ljeZ(")dx:l ~42)
C4/21 I o427 Ju 2
_Yfx-uy!
Consider . I e 2( e )dx
oy2n v
z=x—p = cifzzE
i ] G
1 J‘° -3t Whenx=u,z=0,
= e dz
21 I When x = -0,z > — oo
ik Ji_l
3211:' o
from (2)
1{x-p)°
M__
—1+ 1 J‘ e 2[ a ) dx:l
2 oy2n 2
1 x-pz
M—_—
O+/271 Y-u

which is possible only when p = M i.e., for the normal distribution mean = median
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Cor. Show that for the normal distribution, mean, median and mode consider.  Continuous Distributions
Hence, the normal distribution is symmetrical.

Proof. Use above two theorems, we get the required result.
Moment Generating Function

Theorem IV. Find the moment generating function of the normal distribution.

Proof. Let flx) denotes the probability density function of the normal distribution

and if My, (¢) denotes the moment generating function of the random variable X following
normal distribution, then

NOTES

1 355
ﬂx)= on—ne y

,— <X <eq,—0<L<e0, >0

M(t) = re"‘f(x) dx = 412_ Jme" exp [- (x - 1)?/202) dx

= % r exp {t(u + 02)) exp (- 22/2) dz,
n —0

= et J;_n[;exp{—%(zz-ztcz)}dz |Put z = x;u
=e"'ir exp| -2 ((z- o) - 6%2} | dz |=> =%
V2r J—= 2 o

_ ut+tial/2 . = __1. = 2
=e x—\lﬁj‘_ﬂexp{ 2(z ot)}dz

1 oo
= M2 o o 1" exn (- u272) du
il

1 & u?
= B e k) e 7 4
1 Jor Joe"P( 2] ¥

ey Lo R et
VJ2r e
pt4—
My®)=e 2.
Cor. Find the moment generating function of the standard normal variate.

Proof. Let X ~ N (u, 62) be a normal variate with parameters j1 and o.

Take Z = -)-(-;TH-, then

i _u ¢
Mz(t)=M¥;p(t)=€ U Mﬁ(ﬁ:é < MX(E]

[+ a
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Distribution Theory gt ’:: S |:_p,_t-+£ Ei:l g j:: etf 52' g eg_
¢.g° 2
NOTES Theorem V. Let X, X2, ...... , X, are n. independent normal variates with mean
Hy Mg -.p W, and variances 6 2, 6,5 ...... , 6,2 respectively, then show that a, X, + a,X,
g + a,X, is also a normal variate wtth a, a;iu; +a, + ... + W, and variances
afof+afe s .. +a,%0,? respectively.

Proof.Let X ~ N (u, 0% be a normal variate, then we know

t?o?
M(t) = exp (pt + 3 ] and

My, = exp {y; t + (20,2/2)) o 1)

n
The moment generating function of their linear combination Z a;X,;, where
i=1
a,, a,, ..., a, are constants, is given by:

n

MZ a,X,(t) o H Ma:xi (3] (-'. X’,-S are independent)
i i=1
= My (ayt). My (ast)...... My (a,?) [ M_x(2) = My(ct)]
1 2 n X X
From (1), we have My (g;2) = ¢" +t'alol/2 (2)
MZ oX; (t) |:el-\|f11+¢ ajol/2 % e“eﬂz“"tzﬂgz o3/2 5 ¢ eu,,a,,tﬂ’afcrﬁm]
[Using (2)

= exp HZ a,-ui] t+1t* (Z a? 05}2],
i1 i=1

which is the moment generating function of a normal variate with mean Z a;u; and
i=1

n
variance Z a,-20'2
i=1

Hence by uniqueness theorem of moment generating function.,

Z X~ N{Z ,u,,z a,?cf] E)

i=1
Cor L. IfX, ~ N (u,, 012) andX, ~ N (u.2 , 6,%) be two normal vanates with means
u; and p, and vanances o,% and 02 respectwely, then
@ X, +X, ~ N (, + 1y, 0, + 6,2
() X, - X, ~ N (1, -y, 0,2 + 6,2).
Proof. Take e, = 1,a, =1, a;=0,a,=0 ...... a, = 0 in above theorem, we get
(Using equation (3))
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X, + X, ~ N (4 + 1y, 6, + 6,%)
Again, take a,=1,a,=-1,a;= 0,a,=0, ... ,a,=0in (3), we get
X, - X, ~ N (4 = py, 6,% + 5,7).

5.9 REPRODUCTIVE PROPERTY

Cor IL KX, X, ...... , X are n independent normal variates with means p,, W,
...... , 1, and variances 0,2, G,%, ......, 0,2 then X, + X, + ... + X, is also a normal
variate with wean p; + [y + ...... + 1, and variances 0,% + G2 + ...... + 0,2 respectively.
This is called additive property or reproductive property of the normal
distribution.

Proof. Takea, =a, = ......
result.

Theorem VL If X, X,,

normal variates with mean |\ and variance o2, then their mean X is also a normal

=a, = 1 in (3) of above theorem, we get the required

...... , X, are n identically and independently distributed

: ; : o’
variate with mean | and variance —.
n

1
Proof. Takea, =a; = ..... =@, =— in (3) of above theorem, we get

5.10 PROBABILITY INTEGRAL OR ERROR FUNCTION

2
1 &
The integral P(z) = FJ‘Z e 2 dz,is known as probability integral or error
n Jo

function. We prove this.

We know that the probability of x lying between x, and x, is given by the area
under the normal curve from x, to x, i.e.,

_L'c—l.l)2

_[’2 e 29 dx (D)
|

P(Jc1 Sx<x,)=

1
oV2n

Put “:z = dx=0d,
X1 —
when x=x,,2z= = z,, say,
Xg —
when x=x,z= = z,, say,
(1) gives

Continuous Distributions

NOTES
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P(xleSx2)=7—2—nz e
1
NOTES 2 2
1 (2 3 ey =—
=—m=—| e ¥dz- e 2dz
2w 0 V2rn -[o

= P,(2) - P,(2)
2

: J.:e_fz_dz,

Dy wagge

which is called probability generating function.

Probable Error ())
It is defined as the deviation on either side of the arithmetic mean, the probabil-
ity of occurrence of which is equal to 0.5

i.e., It is the value of A, satisfying,

x J"Hl =5
e dx =0.5
oV2m Ju-2a
1 A o x -
= j"l e 2 .0dz Put B3 = dx=0dz
C+/2n &
A ps ~X
Whenx=u+l,z=—.Whenx:p—A,z:-—
G o
¥ IA 2 e
= ° e 2dz=05 e 2 is an even function
V2r Jo
-
= Jz_-fou e 2 dz=025
T
&
Usingthetable,%:l).ﬁ'? = N=067 6= 5
2
Hence the Probable error A = E o.

5.11 APPLICATIONS OF NORMAL DISTRIBUTION

This distribution is applied to Problems concerning :

(1) Calculation of hit probability of a shot.

(2) Statistical inference in most branches of science.

(3) Calculation of errors made by chance in experimental measurements.

5.12 STANDARD FORM OF NORMAL DISTRIBUTION

If x is a normal random variable with mean 1 and standard deviation o, then
the random variable defined by
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x-p
zZ= )

o
is said to be a standard normal variate with mean 0 and standard deviation 1-te;
z ~ N(0, 1).
The probability density function for the standard normal variate is given by

2
4
o

ﬂz)=me

z
The integral jo f(2) dz, cannot be evaluated analytically. The values of this

,—%0 <2 < oo,

integral for various positive values of z have been given in the table.

ILLUSTRATIVE EXAMPLES

Example 1. Let z be a standard normal variate, then find

(i) P0<z<142) (ii) Pz 2 - 1.28)
(iii) P(|z| <0.5) (V) P(-0.73<2<0)
() P(0.81 <z < 1.94) i) P(|z] 2 10.5)

(vii) P(- 0.75 <2 <0).
Sol. ({) We know that

P(0 <z £ 1.42) = Area under the standard normal curve between the ordinates
z=0andz=1.42
= 0.4222

(In the table given in the end, move down
the column marked z until we get the entry 1.42
and then move right to column marked 2. The
required entry is 0.4222.)

(iz) P (z 2 - 1.28) = Area under the stand- z=0 z=142
ard normal curve to the right of z = — 1.28

= (Area between z = - 1.28 and z = 0)
+ (Area to the right of z = 0)

=P(-1128<2<0)+P(z20)

=P(0<2<128)+P(z=20)

(Due to symmetry.)
=0.3997 + 0.5 | From normal table
| Pz20)=0.5 z=-128 z=0
= 0.89997.

(#Hi)P( | 2] £0.5)=P(0.5<2<0.5)
= Area betweenz =-0.5andz = 0.5
= 2 (Area between z = 0 and z = 0.5)
=2P(0<z=<0.5)
= 2(0.1915) = 0.3830.
| From normal table
(Iv)P(-0.73<2<0)
=P(0<2<0.73) | By symmetry 2=-05 2z=0 z=05
= 0.2673. : | From normal table
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Probability and (W) P(0.81<z<1.94)

Pt Sy = Area under the normal variate

between z = 0.81 and z = 1.94

NOTES = (Area between z=0and z = 1.94) —
(Area between z = 0 and z = 0.81)
=P(0<z<1.94)-P(0<z<0.81) 2=02=081 2=194
= 0.4738 - 0.2910 | From normal table
= (0.1828.

(wi)P(|z| 20.5)=P(z2050rz<0.5)

| la] 2b = a2boras-b
=P(z20.5)+P(z<~-0.5)
= (Area to the right of z = 0.5)

+ (Area to the left of z = - 0.5) z=-052=0 z=05
= 2(Area to the right of z = 0.5)
= 2 [(Area to the right of z = 0) — (Area between z = 0 and z = 0.5)]
=2[05-P(0<z<0.5)

= 2(0.5-0.1915) = 2 (0.3085) | From normal table
= 0.6170.
(wii) P(-.75<2<0)=P(0<2 <£0.75) = 0.2734. | Due to symmetry

Example 2. The income of a group of 10,000 persons was found to be normally
distributed with mean = Rs. 750 p.m. and standard deviation = Rs. 50. Show that of
this group about 95% had income exceeding Rs. 668 and only 5% had income exceeding
Rs. 832. What was the lowest income among the richest ?

Sol. Let x denote the income then, given,

x is a normal variate with mean p = 750 and S.D.
¢ = 50. Let z be the standard normal variate,

then
_x—uzx—750
ks 50
- 668 - 750
() When x = 668, 2 — z=-164 2=0
50
- 82
_.ﬁ=—1'64

Pi(x>668)=P(z>-1.64)
= Area to the right of z = - 1.64
= (Area betweenz = - 1.64 and z = 0)

+ (Area to the right of z = 0)
=P(-164<z<0)+Pz=20)
=P(0<2<1.64)+P(z=0)
= 0.4495+ 0.5 = 0.9495 | See normal table
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Hence required % of persons having income greater than Rs. 668
=94.95% = 95%

832 - 750
z2= ———

ii1) Wh = 832,
(zz) en x 50

= 1.64

P(x > 832) = P(z > 1.64)
= Area to the right of z = 1.64
= (Area to the right of 2 = 0) — (Area between z = 0 and z = 1.64)
=Pz20)-P(0<z<1.64)
= 0.5 - 0.4495 = 0.0505

Hence required % of persons having income
greater than Rs. 832 = 5.

Lastly, to find the lowest income among the

richest 100, we need to find the value of r such that z2=0 z=164
Plx2r)=0581
whenx=r z=x—u=r—750=z say
i o 50 5

Now Px2r)=0.01

=5 Pz 22,)=0.01

= 05-P(0<sz<2,)=0.01

= P(0<z<2,)=0.5-0.01=049

=3 2,=233 | See normal table

- £ 780 533 =r=1750+50(233) = 866.5

50

Hence the lowest income among the richest 100 = Rs. 866.50.

Example 3. The weekly wages of 1,000 workmen are normally distributed with
a mean of Rs. 70 and a standard deviation of Rs. 5. Estimate the number of workers
whose weekly wages will be between Rs. 69 and 72.

Sol. Let X be a random variable following normal distribution.
Givenu=70,0=5

Let Z = Sk be the standard normal variate

o l‘lll XL
69 - 70 m\
When X = 69, Z = =-0.2 :

5 2=02z=0 z=04

When X =72,Z = 72;70 =04

P69 <X <72)=P(-02<Z<04)
=P(-02<Z<0)+P0<Z<04)
=P(0<Z<02)+P(0<Z<0.4) | Due to symmetry
=0.0793 + .1554 = 0.2347 | Using normal table
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Probability and Hence, number of workers getting wages between Rs. 69 and 72
Distribution Theory = (0.2347) x 1000 = 234.7
= 234.
NOTES Example 4. A sample of 100 dry battery cells tested to find the length of life
produced the following results
x = 12 hours, 6 = 3 hours.

Assuming the data to be normally distributed, what percentage of battery cells
are expected to have

() more than 15 hours (i) less than 6 hours
(iit) between 10 and 14 hours ?
Sol. Here x denoted the length of life of dry battery cells.

x-% x-12
g 3
(i) Whenx=15,z=1
P(x>15)=P(z> 1)
=P(0<z<=)-P(0<z<1)
=0.5-0.3413 = 0.1587 Z=8 — fmi
= 15.87%.
(i) Whenx=6,z=-2
Pix<b)=P(z <-2)

Also 4 —

=Pz>2)

=P(0<z<«x)-P0<z<?2)

= 0.5 — 0.4772 = 0.0228 z=-2 -0 2=2
= 2.28%.

w| o

(Zii) Whenx = 10,z = — — = - 0.67

When x = 14, z=-§=0.67

P(10 <x<14)=P(-0.67 <z < 0.67)
=2P (0 <z < 0.67) = 2 x 0.2487
= 0.4974 = 49.74%.
Example 5. Given that the probability of committing an error of magnitude x

A 5als
isty'= ﬁe v , show that the probable error is 0.4769/h.

z=—0672z=0 z=0.67

Sol. Using normal distribution, we know

%(%]2 Y

y=fkx)= e

o421

Also given probability of committing an error is

b

e A2

=

y:
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From (1) and (2),

W b T TR oot S
o+2n Jn o2r Jr
. 1
— Gﬁ = 0= JEh
Required probable error
22,.2 1 42 04769
B e e i

Example 6. Assume that 4 percent of the population over 65 years old has
Alzheimer’s disease. Suppose a random sample of 3500 people over 65 is taken. Find
the probability that fewer than 150 of them have the disease.

Sol. Here n = 3500, p = 4% = 0.04
gq=1-p=1-0.04=0.96

4
Here H = mean = np = 3500 . T 140

Standard deviation

296
PASIE = (TS TV SN
Gann J 100 100

= J134.4 =116

Let x denote the number of people with Alzheimer’s disease, then we required to
find P(x < 150)

When x = 150, z =

- 0-140 1
xcu=15 W38 100 S

116 116 116
P(x < 150) = P(z < 0.86)
= Area under standard normal variate to the left of z = 0.86
= (Area to the left of 2 = 0) + (Area between z = 0 and z = 0.86)
=0.5+P(0<2<0.86)
= 0.5 + 0.3051 = 0.8051.
Example 7. The mean yield for 1 acre plot is 662 kilos with 8.D. of 32 kilos.
Assuming normal distribution, how many 1 acre plots in a batch of 1000 plots would

you expect to have yield (i) over 700 kilos (ii) below 650 kilos (iii) what is the lowest
yield of best 100 plots?

Sol. Given : mean p = 662. Standard deviation o = 32. Let x be the normal
variate. Also N = 100.

(i) When x = 700, z =

32 = EE = E = 1.1875

Required probability = N.P (x > 700)
= 1000 . P(z > 1.1875)
= 1000 (Area to the right of z = 1.1875)

x-p _700-662 38 19
==
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Probability and = 1000 [(Area to the right of z = 0) — (Area between z = 0 and z = 1.1875)]
Distribution Theory = 1000 [(P(z 2 0) - P(0 <z < 1.1875)]
= 1000 (0.5 — 0.3810] = 1000 . (.1190) = 119

NOTES L 650-662 -12 -3
(i) When x = 650,z = 32 e 5 gty 0.375
Required probability
= N.P(x < 650)
= 1000.P (z < — 0.375) :
= 1000 (Area to the right of z = 0.375)
=1000 [(P (z 2 0) - P(0 <z < 0.375)] z=0 z=11875
= 1000 (0.5 — 0.1443)
= 1000 x (0.3557) = 355.7
(iii) We now find the lowest yield of best
100 plots, we need to find the value of r such
that
P(x2r)=0.01 2=-0375 z=0
Whenx=r, z=%=fiszﬂ=zl,say

Now Px2r)=0.01 = P(22z)=0.01
= 05-P0=<z<2)=0.01

= P(0<z<2,)=05-0.01 =0.49

— 2, =233 | Sec table
r—-662

= 5 2.33

= r=662+ 32(2.33) = 662 + 74.56 = 736.

Example 8. The income distribution of workers in a certain factory was found
to be normal with mean of Rs. 500 and standard deviation of Rs. 50. There were 228
persons getting above Rs. 600. How many persons were there in all ?

Sol. Let X denote the income of the workers. Given p = 500, ¢ = 50
X-pn

Let Z =
variate.

be a standard normal

600 — 500
When X = 600, Z= S il 2 R
The probability of the persons getting - "’:':7:';""" """
above Rs. 600
=P(X > 600) = P(Z > 2)
=05-P0<Z<2)
=0.5-04772 | Using normal table
= 0.0228
Now, there are 228 persons getting salary above Rs. 600. Therefore total number
228
of persons = 00228 ~ 10,000.
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Example 9. The mean inside diameter of a sample of 500 washers produced by
a machine is 5.02 mm. and the standard deviation is 0.05 mm. The purpose for which
these washers are intended allows a maximum tolerance in the diameter of 4.96 to
5.08 mm, otherwise the washers are considered defective. Determine the percentage of
defective washers produced by the machine, assuming the diameters are normally
distributed.

Sol. Given sample mean p = 5.02 mm
Standard deviation ¢ = 0.05 mm

N
Let Z= = ~ be a standard normal variate.

496 - 5.02
WhenX=4.96,Z=—'r05——=—l.2

5.08 - 5.02

When X =5.08,Z = ~ e " 1.2

Probability of non-defective washers
=P(4.96 <X < 5.08)
=P(-12<Z<12)

=P(-12<Z<0)+P(0<Z<1.2)

=P(0<Z<12)+P(0<Z<12) | Due to symmetry
=2P(0<Z<1.2)
= 2(0.3849) = 0.7699 = 0.77 | Using normal table)

Percentage of non-defective washers = 77%
Required percentage of defective washers
=100 - 77 = 23.
Example 10. For a certain normal distribution, the first moment about 10 is 40

and the fourth moment about 50 is 48. Find the arithmetic mean and standard devia-
tion of the distribution.

Sol. If ', denotes the first moment about the point X = A, then
AM. =, + A=mean
But given y’; (about the point X = 10) = 40
mean =40 + 10 = 50
Also ', (about X = 50) = 48
= p, =48
Also for a normal distribution, we know
My=3c" = 48=30' = o4=16 = g=2.

Example 11. If X and Y are independent normal variates with means 6, 7 and
variance 9.16 respectively. Find the value of A such that

P2X+Y<N=P(4X-3Y>4)\).
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Sol. Given X ~N(6,9)
Y ~ N (7, 16)
X +Y~N@2x6+17,4x9+16)=N(19,52)
4X -3Y~N(4x6+(-3)x7,(16x9+9x 16)
=N (3, 288) | | See theorem
Now P(2X + Y<A) =P (U< A) where
U=2X+Y~N(19, 52)
A-19 U - 19
=Pl&s wherez ~ N (0, 1) Take Z=
( Js_z} J52
A=19
When U=A, Z = ——
J52
Also P[(4X—3Y)24l]=P(V24M
= P[ZEM] where Z ~ N (0, 1)
1242
Where V = 4X - 38Y ~ N (3, 288)
TakeZ=kE
288
4L -3 4A-3
WhenV=4AZ= =
J288 1242

Now it is given that

Pl(2X+Y)<A)] =P [(4X -3Y) 24A]

P(ZSL—19)=P[ZZ‘“_3]

J52 1242
2 1-19__(41-3]
J52 1242
. A-19 -(4r-3) P(Z<a)=P(Z2b)
2J13 1242 = a=-b
= (642 +4J13)A = 11442 + 3413
. 11442 +3413
T 6J2+4413

5.13 LOG-NORMAL RANDOM VARIABLE
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If X is a normal variable with mean p and variance o, then Y = e is called a

log-normal random variable where X =log Y is a normal random variable.



Theorem VIIL. Find the rth moment about origin i.e., ', for the log-normal dis-  Continuous Distributions
tribution.

Proof. By definition, if log X is a log-normal variable, then
W, = EX") = E(e'Y)

= My(r) | LogX=Y = X=eYf o

e exp[ur+%r20'2] |m.g.fof Y ~ N (u, 62

5.14 LOG-NORMAL DISTRIBUTION

A random variable X (X > 0) is said to have a log-normal distribution if log, X is
normally distributed.

Theorem VIIIL. To find the probability density function of the log-normal
distribution.

Proof. Take log, X ~ N (4, 62). For x > 0, we have
Fyx)=P(Xsx)= P(log, X < log,x)=P(Y< log, x)
| log X is monotonic increasing function.)

log x
PR J' exp {- (y - w)? / 262) dy | Y ~N (4, 6?)]
OA2m J—
1

x du
exp (- log u — p)? / 202 —_,
ov2n J.O % " * . u

y=logu
=5 dy:ldu
T}
Wheny=logx,u=2=x.

Wheny 5 -, u=e"*=0
For x <0, Fy(x) = P (X < x) = 0, because X is a positive random variable.

Lo — (log u - p)?
Define flw) = {oor exp [———202 o a0
L0 , w0

Then Fyl(x) = j " fx @) du, where f,(u)

is the probability density function of X.

5.15 LAPLACE DOUBLE EXPONENTIAL DISTRIBUTION OR
STANDARD LAPLACE DISTRIBUTION

A continuous random variable X is said to follow standard Laplace distribution
if its probability density function is given by

fix) = %e""',—w<x<w

Self-Instructional Material 145



Probability and Theorem IX. To find the characteristic function of the standard Laplace

Distribution Theory distribution.
Proof. Let ¢,(¢) denotes the characteristic function of the standard Laplacc

distribution then, by definition
o) = [ (e f@dx= [ el dx

NOTES

= 2 U” costtx.e "l dx+1i Jm gin tx e""'dx]

—oc —oa

1 . = 8| Sl ¢l is an odd function
- —.2_[ el - 5
2 0 I =i J sintr.e ™l dx=0

Px(t) = L e *costxdx =1—¢2 J.[:“e‘I cos tx dx
(On integration by parts)
=1-12 g42)
1
+#
Theorem X. Find the mean and variance of the standard Laplace distribution

and also obtain the following.

My =0,p,=36,B,=0,B,=9
Proof. By using the above theorem, the characteristic function of the standard
Laplace distribution is given by

= Px(t) = :

1
= - 2y-1
Pylt) = — (1+t%)

=Tt 58— ... oo
;58 il
sylgdil fppld o -
2 4!
Here kl=k3=0;kz=2,k4=4!=24

mean =k, =0, variance = U, = k, = 2
p3=k3=0,p4=k4+3k22=24+12=36

2
H3 Hy _36
B:—(:(LE):—‘—“—*:Q
Nou " gl L

Two Parameter Laplace Distribution
A continuous random variable X is said to have Laplace distribution with two
parameters A and  if its probability density function is given by
xou

f(x-H,U)=2—le A —cagx e NS0

If X is a continuous random variable following Laplace distribution with two
parameters A and p, then we write X ~ Lap (&, p).
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Theorem XI. To find the probability density function of the standard Laplace  Continuous Distributions
distribution by using two parameters Laplace distribution.

Proof. Let X ~ Lap (A, u) and

Z=¥ o NOTES
The probability density function of Z is given by
iy .. B ST,
g(Z) = f(x). 77| = ¢ A
=—1e'jz', —w<Z<oo
2

which is the p.d.f of standard Laplace distribution i.e., If X ~ Lap (A, u), then
g ol
Ac

Theorem XII. To find the characteristic function of the Laplace distribution
with two parameters.

Proof. Let X ~ Lap (A, p) and @4(¢) is the characteristic function of X, then
9x(t) = E(@*X) = E [e*#+}2)]  where Z = Z{_;_E ~ Lap (1, 0)

= E (e'MD = et g, (At)
i eitu
T 1+A%2

1
[ Zis standard Laplace variate with ¢(t) = T J

Theorem XIII. Find |}, W', and y, for the two parameters Laplace distribution.
Proof. Let X ~ Lap (A, p), then rth moment about origin is given by

’ , 308 r '_lx_”'l)
= EX") = — e Lot . 8 P
W, = E(X") 21‘[ x exp{ n dx

=§1_|"’°(zx‘u>" exp (- |Z]) dz, [zﬁ““

= El J':[Z °C; (ZA) ur’k}exp(—IZ[)dz
k=0

r

. .21.],:0 :"ck N ["2* exp (-[e)) dz]

" %’;0 i"Ck Ayt { _izke“z' dz + J:z" ot dz}]

= %;ﬂ :"Ck o {(- l)kj:e" X dz + J:e_z z* dz}]
= %H ["Cy ¥u™* Tk + D ((~ D* + 1]
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r

[Cy M R {1+ (- DY)

=3 W= 2
r 2k
Mean =’y =, 4

-

o = M2+ 2A% and variance = p, = p’, — ;"% = 202,

5.16 WEIBUL VARIABLE

A random variable X is said to be a Weibul variable with three parameters

[
C>0,0>0andp,ifY= (5—{;&] has the exponential distribution with p.d.f.

Py(y)=e?, y>0

5.17 WEIBUL DISTRIBUTION

A continuous random variable X is said to follow Weibul distribution with three
parameters C, o and p if its probability density function is given by

& (ﬂ]c_l e_(%)c

ﬂx;C.u.uJ=—a- -
C>0,a>0,x>u

) ki)

6.18 STANDARD WEIBUL DISTRIBUTION

Ifoo=1,t =0in eq. (1) we get, the p.d.f. of standard Weibul distribution,

fix, C) = Cxt-1 ¢*°, x> 0,C > 0.
Theorem XIV. To find the mean and variance of standard Weibul distribution.

X - \°
Proof. The standard Weibul variate is given by Y = (T!J] whereo=1,u=0

or Y =X€ where Y has the exponential distribution with p.d.f given
by
Pyy)=e?,y>0
The rth moment ', is given by
p’, = EX") = E(YVCy

= E (Y€)= I:e" y"'€ dy

e [L-p 1) l Fin)= jme""x”“] ox
O 0

Patr=1, py=mean=EX)=T [% - 1}

Variance (X) = E (X?) - (E (X))?

(g
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5.19 LOGISTIC DISTRIBUTION

A continuous random variable X is said to follow logistic distribution with
parameters o and B, if its distribution function is of the form NOTES

P
Fx(x)={1+e B :‘ ,p>0

- %[1+tanh%[x[;a):\, B> 0.

Theorem XV. Find the probability density function of logistic distributions with

parameters ccand B (B > 0).
Proof. The distribution function F(x) of logistic distribution is given by

ro=[ueemr {257

The probability density function flx) of the logistic distribution is given by

gl 5]

e It I

e —e™ I

& +e* 142

Consider tanh x =

L =y
14¢ ™ 14e™

1+tanhx=1+

1
=3 (1 +tanhx) = (1 + e %)}

Also 1+e”2"=——2—
1+ tanh x
i 2 1-tanh x
= e = -1=
1+tanh x 1+tanh x
From (1)
s 96—k
1-tanh ——
PR 2
B li+tanh2=-2% 1+tanh X -2
2p 28
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=— ( 1+ tanh X a] =
4B 1+tanh *
NOTES
1 2Xx—0 1 2 X—0
=—|1-t h ) ECI'I
4 ( 23 ] 4p 2p
Theorem XVI. To find the probability density function of the standard logistic

variate.

Proof.let Y=2>-% where X is a logistic variable.

Let gy(y) be the probability density function of the standard logistic variate Y,

then
dx
gy = flx) . & =e?(1+e?)? —co<y<oo | Using (1)
1 e 4
Zsech g =Xy <w | Using (2)

Theorem XVILI. Find the mean and variance of the standard logistic variable X
with parameters o. and . Also find B ;and B,

Proof. We first find the moment generating function of the standard logistic
variate Y where

y43-8 and X is a logistic variate

Let My (¢) denotes the moment generating function of Y, then

My(®) = ) = [ 8% gy(y) dy

e
=J- eYe(1+e?) 2 dy =j e”e"[if;J dy

- Jme"’ey(1+ e”) 2 dy

Putz=(1+¢)! = 1+ey=l
.4
= o=l_1.1-2
z z
1 i . =
= eydy=2( )2(1 Z)dz z 21+zdz=—21—dz
z z 2
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[ (25 (7 )
JlE ot 2

1
=_[0z“(1—z)‘dz wftt=t,1+2),1=£>0

% T(l-Ha(d+i) & rd-t)o(l+t)

T r(-t+1+2 r)
=l"(1-—t)(x(1+t)
=mntcosecmi,t <1
o x
But xcosecx=sinx— ﬁ xs_x7
1—3' a ? ......
1
G Pl e
1—31 R T
1
[ {xz PA ]:l
=|l-| ———+—......
3L-=51—7!
=1+ ﬁ_ﬁ+x_6. + E.Z_.._.':c:_.pﬁ
' IR s ST R e
2
=l+f— 4[i—L] ......
6 36- 120
2
=1+£—+—l—f ......
6 360
From (3)
(t)® 7 &
M. ()= 1+ +—(mt)* +......
2 6 360
Hence mean of Y = coefficient of £ in (4) = 0
t2 n?
H, = E(Y?) = coefficient of — =—
e
3
i, = E(Y?) = coefficient of 31 =0
tt %
i, = E(Y*) = coefficient of T

for standard logistic distribution,

.(3)

..(4)
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; n
mean = 0, variance u2=?
Also B—ﬁ—OB—“—“-Zﬁxi_63_42
e A T TR e
SUMMARY

* The graph of the normal distribution is known as normal curve. It is bell-
shaped and symmetrical about the line x = .

* The normal distribution is a continuous destribution.

* The normal curve is unimodal. This means that the normal curve has a unique
mode.

e The total area under the normal curve above x-axis 4 units.

* For a normal distribution, mean = median = mode.

» For standard Laplace distribution,
H3=0,p,=36,B,=0,B,=9.

* For standard logistic distribution, mean is zero.

GLOSSARY

* Standard Normal Variate. Let X be a normal variable with mean p and

variance o2, then Z = ~ is known as standard normal variable with mean

0 and variance only. :
* Error Function. The error function is defined by the following integral
2
1 z

¥ -3 J‘:e_7dz.

P(Z) =

It is also known as probability integral.

* Lognormal Variate. Let X be normal variable X with mean p and variable
o®. Then eX is called a log normal variate.

» Weibul Variate. A random variable X is said to be a Weibul variate with

c
three parameters C > 0, o > 0 and p. If Y = [X_;_p) has the exponential
distribution with p.d.f. P(y)=e?,y>0.

REVIEW QUESTIONS

The mean height of 500 male students in a certain college is 151 ecm and the standard
deviation is 15 cm. Assuming the heights are normally distributed, find how many stu-
dents have heights between 120 and 155 cm ?

Students of a class were given a mechanical aptitude test. This marks were found to be
normally distributed with mean 60 and standard deviation 5. What per cent of students
scored




3.

7.

10.
11.

12.
13.
14.

]

(i) more than 60 marks ? (i) less than 56 marks ?
(iii) between 45 and 65 marks ?

In an examination taken by 500 candidates, the average and the standard deviation of
marks obtained (normally distributed) are 40% and 10%. Find approximately

(i) how many will pass, if 50% is fixed as a minimum ?
(ii) what should be the minimum if 350 candidates are to pass ?

(iii) how many have scored marks above 60% ?
In a certain examination, the percentage of passes and distinction were 46 and 9 respec-
tively. Estimate the average marks obtained by the candidate, the minimum pass and
distinction marks, being 40 and 75 respectively. (Assume the distribution of marks to be
normal).
Suppose the waist measurements X of 800 girls are normally distributed with mean 66
em and standard deviation 5 cm. Find the number of girls with waist

(i) between 65 cm and 70 cm.

(ii) greater than or equal to 72 cm.

Write short note on normal distribution.

Distinguish between Binomial and normal distribution.
Distinguish between Poisson and normal distribution.

4
Show that, for a normal distribution, the mean deviation about mean is 3 times the

standard deviation.

For a normal distribution, §, =0, B, = 3.

Show that, the moment generators function for the standard normal variate Z is given
t!

by py(t)=e?.

Write five applications of normal distribution.

For the standerd Laplace distribution show that B, = 0, B, = 0.

For the standard logistic distribution, §, = 0, B, = 4.2.

FURTHER READING

Introduction to Probability theory with applications: W.Feller, Vol-1: Wiley astern
continuous Univarate distribution-2: N.L. Johnson and S.Kotz, John Wiley and Sons
Introduction to Modern Probability Theory: B.R. Bhat: Wiley Eastern.
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SAMPLING DISTRIBUTIONS

OBJECTIVES

After going through this chapter, you should be able to:

* know about sampling distributions like X2, ¢ and F.

¢ know about central and non-central distributions like X2, ¢ and F.
conditions for applying X2, ¢ and F test.

order statistics of single and two or more order.

STRUCTURE

6.1 Introduction
6.2 Chi-square Probability Curve
6.3 Central ¢-distribution or Student’s ‘# Distribution
6.4 Central F-distribution or Snedecor’s F-distribution
6.5 Non-central Distribution
6.6 Order Statistics

e Summary

e Glossary

* Review Questions

¢ Further Readings

6.1 INTRODUCTION

In this chapter, we will discuss central distributions of the central statistics x2,
t and F as well as non-central distributions of the non-central statistics 2, ¢ and F
respectively.

Central chi-square distribution. The square of a standard normal variate is
known as chi-square variate with 1 degree of freedom (d.f.), i.e., If X ~ N(u, 02), then
we know that the standard normal variate is given by

Z= bS] ~ N(0, 1) and its square
c
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2
72 = (X =t ) is known as chi-square variate with 1 d.f.

c
Generally, if X,, X,, X, ...... , X, are n independent normal variates with mean
Hy, Moy - W, and variances 6,2, 6,2, ...... , 6,2, then

n =+ 2
¥ = Z (—XL-—-ZPL, is a chi-square variate with n degree of freedom (d.f.)

=1 o,

Theorem 1. Using the method of moment generating function, derive the chi-
square distribution.

Proof. Let X,, X, ...... , X, are n independent normal variates, i.e., X; ~ N(y,,
6N inl B e .

Then, by definition,

B 2
= Xi—Hi _i 2 .
X2 = z =i = > u° whereu;= = ~ N(0, 1)

i=1 oF i=1 i

Given X’s are independent, it follows u‘.’s are also independent. Therefore,

M (0= My, (=1 M, = [M,, )",

Now Mu,:a (t) = E[exp(tu?)] = Jm exp (tu?) flx;) dx;

= 1
= | exp(tu?) exp {— (x. — n)%/202} dx.
[l ety :
PO 2 2 . e
= EL“ exp (fu;*) exp (- u,;*/2) du,, u; G
! 1-2¢
= mfﬂexp{—-[ 5 ]u,-z}du,-
1 Jn o 22 Jr
= = (1-2t) 2 S
Nor (1—2;‘)"2 { 5 |L=e a
2
M.@®)=01- - R | Using (1)

which is the moment generating function of a Gamma variate with parameters % and

1
—n.
2
Hence, by uniqueness theorem of moment generating functions,
x;

n 2
x2 = Z Zi~Hi | is a Gamma variate with parameters el —a
i Gi 2 B
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Therefore, we can write

n
et Vity

dp(x2) - (%)2 e‘EX {xz)

n
=21
2

dy?

1.2
1 ==y
-l

- .
22r(2)
2
Remark. If a random variable X has a 2 distribution with n degree of freedom, we
write X ~ x%(n) and its probability density function (p.d.f) is given as

1 _ﬁ -‘!._1
fx)= ————e 2% Q<x<oo

e2| R
&)
Theorem IL If X is a chi-square variate with n degree of freedom, then

—I—X ~ r(in]
2 2

n
Bizey
x?)? dy%0<sy2<w

Proof. Take Y = % X, then the probability density function of Y is given by

dx 1 X
s 7 (221 9
vl 2"°T6i2) "

g(y) = f(x) §

1 -y . (nf2)-1
= e ;0€y <o
/2. a

1 1
Y— 2X"’Y{-2-n)

Hence the theorem.

Moment Generating Function
Theorem IIL Find the moment generating function of the chi-square distribution.

Proof. Let X is a chi-square variate with n degree of freedom. If M (#) denotes
the moment generating function of X, then

Let X ~ 2., then

Mx(t) = E(etx) = J.owe‘x f(x) dx = Fz[}(TZ) J:etx . e_ﬂz x(nl:z)_l dx

1 o 1-2¢ n/2-1
S S by x21 iy
22 [(n/2) .L e’“’[ ( 2 H

1 (n/2)
= Gamma Integral
23 Pl 11 -2Y/22 | 0

=(1-2ty"2 |2 | <1
is the required moment generating function of the y2-variate with n degree of freedom
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Cor. R'=nn+2)(n+4)..... (n+2r-2)

.
Proof. From above theorem,

My (t) = (1- 21!)ﬁE

nin
s 370
=1l+— @20+ 2\2 ) @202+
B 21

=nn+2)(n+4)....(n+2r-2).

Hence proved
Theorem IV. Find the cumulant generating function of x2-distribution.
Proof. Let X is a chi-square variate with n degree of freedom, and K

the cumulant generating function of 2, then, we know

My(t) = (1-2¢) 2

n n 28)°  20° (2
Kx(t)=long(t)-—--——z-log(l—2t)=§[2t+ 5 + 3 + - +...

2
x, = Coefficient of ¢ in K(¢) = n, K, = Coefficient of g—' in K(#) = 2n,

4

3
K, = Coefficient of % in K(¢) = 8n, and x 4 = Coefficient of % in K(t) = 48n
¢
In general, « = Coefficient of = inK(@#)=n2-1(r-1)! il
Putting r=1,23,4in (1), we get
Mean =x, = n  Variance = Hy =X, =2n
B3 =K, = 8n, M, =K, + 3K,% = 48n + 12n2
2
ﬁ1=&%_—_§ and ﬁ2=.£42_=..]£+3
e - Ha o
Theorem V. For large value of n, where n is the degree of freedom, ¥? distribution

tends to normal distribution.

e

x(¢) denotes

Sampling Distributions
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Proof. Let X is a chi-square variate with n degree of freedom, then we know

_n
M) =(1-28) %,|2t| <1

X-u

Let Z=——, then

The moment generating function of Z, the standard y*-variate, is given as-
_u ¢
M,(5)= My_, (h=¢ °© M, (_)
- c

ot -ni2
= p—htlc i ~-n/2 _ -ntl2n [1 = ____]
e 1 - 2t) e \/-2—)1,

K, () =log M,(t) =-¢ J-g
=—t‘lE {t.Jz+
2 n
2 2
=_t\l—£ +t.\{£ +£——+0(n'1"2)=t—+0(n-”2),
2 2 2 2

n
+—_—
2

where O(n-Y2) denotes the terms containing n2 and higher powers of n in the
denominator.

2
lim K;(#) = 5-2— = Mz(t') = ot"/2 as n = oo,

n—oeeo

which is the moment generating function of a standard normal variate. Hence, by
uniqueness theorem of moment generating function Z is asymptotically normal. In
other words, standard x2 variate tends to standard normal variate as n — . Thus, r
distribution tends to normal distribution for large degree of freedom.

Characteristic Function

Theorem V1. Find the characteristic function of the y*-distribution.
Proof. Let X is a chi-square variate and ¢y(t) denotes the characteristic func-

tion of %2, then

ox(®) = Blexplit X)) = | exp (itx) f(x) dx

)

Theorem VIL. Prove that if X is a chi-square variate with n degree of freedom,

==

1—2i
= a2

dx = (1 - 2ity""?

el
T T Jy P {"(

is the required characteristic function of 2.

(i) mode of ® isn -2
(ii) For n = 1, y2-distribution is positively skewed.



Proof. (i) We know that if X is a chi-square variate with n degree of freedom,
then,

X n
1 o e

fo)e———e? x? 0g2<w et i
2r E)
s
Now mode of 2 is the solution of f"(x) = 0 and f(x) < 0.
Taking logarithm of (1), we have
= = =3
log Aix) = - log 22 F(%J +loge 2 + logx?
Differentiating w.r.t x, we get

f’(x)=0 1+[n 1) 1_n-2-«
X

flx) 2 2
S fi(x) = n-2-x fx).
2x

For mode, f’(x) = 0 gives

n-2-x

———flr)=0 = n-2-=x=0 | Ax) =0
2%

= x=n-2
y - Fla) = % (Fa) = % ["—’f—‘c’;ﬁ f(x)]

= n-—2—xf,(x)+ x(— 1)—(1;.—-2-—3:) TR

X X
=S (), =0+ 222D gy U@
; (n-2) n-2

mode of y2-distribution is n — 2.
(zi) Karl Pearson’s coefficient of skewness is given by :

Skewness = Mean — Mode 4 n—-(n-2) < I2

S.D. Von n

Since Pearson’s coefficient of skewness is greater than zero for n > 1, the
x*-distribution is positively skewed.

Theorem VIIIL. Reproductive property or Additive property of independent
xZ-variates.

KXyl i Xy, are n independent y?-variates with n,, S n, degree of
freedom, then X, + A ® ...... X, is also a chi-square variate with (n 1 2R ¥ ..., +n,)
degree of freedom.

Proof. Here X is a chi-square variate and if Mx, (#) is the moment generating

. function of X;, then we have My (¢) = (1-2)™"'%;i=12,.. . . k.
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Distribution Theory The moment generating function of the sum Z X, is given by:
i=1

NOTES M;x (8)=Mx (t) My, @) ...... My, @ [+ X/s are independent]

{1 23)‘”1’2(1_ Zt)‘nzifz oy zt)fn,,,fZ Bt - 2t)—(n1+n2+ w12

which is the moment of generating function of a x%-variate with (n, +n, + ..... +n,)df
Hence by uniqueness theorem of moment generating functions,
X+ X, +...... +X,) is also a chi-square variate with (n; +ny + ...... + n,) degree

of freedom.
Cor. Converse of the above theorem is also true. We prove it for n = 2. i.e.,

If X and Y are independent non-negative variates such that X + Y follows chi-
square distribution with n, + n, degree of freedom and if one of them say X is a x*-
variate with n, degree of freedom then the other, viz., Y isa xZ-variate with n, degree of

freedom.
Proof. Since X and Y are independent variates, My, y (£) = My(#) My(2)
= (1-20)" M2 = (122 My@)

=X +Y ~ x2(n]+n2)] and X - X ~ len,l]
My (#) = (1-28)™""%,
which is the moment generating function of x2-variate with n, degree of freedom. Hence

by uniqueness theorem of moment generating function Y ~ %2y i.e., Y is a chi-square
variate with n, degree of freedom. Hence the theorem.

6.2 CHI-SQUARE PROBABILITY CURVE

Theorem IX. Define chi-square probability curve and mention its properties.

Proof. The graph of the chi-square distribution is known as chi-square
probability curve. If X is a chi-square variate, with degree of freedom n, then we know

1 2% Beig
fx)=——e 2x? ,0Sx<e
22 r(ﬁ

2
Taking logarithm both sides,

n n

log flx) = - log 25“(2) +loge 2 +logx?

=_%]0g2—logl‘(%}—%+(%—l] log x

Differentiating w.r.t. x, we get

=1

n
' 1 (E-IJ
flx) 2 x

160  Self-Instructional Material



n-2-x
2x

Case 1. When n < 2. Since x > 0 and fix) being probability density function is

always non-negative, we get from (1),
f(x)<0if(n-2)<0,

for all values of x. Thus the x2-probability curve for 1 and 2 degrees of freedom is
monotonically decreasing.

Case II. When n > 2, then

>0,if x<(n-2)
flx)=4{=0,ifx=n-2

) flx) =

fx) (1)

<0,ifx>(n-2)

This implies that for n > 2, Ax) is monotonically increasing for 0 <x < (n — 2)
and monotonically decreasing for (n — 2) < x < o, while at x = n — 2, it attains the
maximum value.

f(x) A

0.5+

o Chi-square probability curve X

Forn 21, as x increases, flx) decreases rapidly and finally tends to zero as x —
>=. Thus for n > 1, the x2-probability curve is positively skewed towards higher values
of x. Moreover, x-axis is an asymptote to the curve. The shape of the curve forn =1, 2,
B . 6 is given in the figure. For n = 2, the curve will meet y=flx)axisatx =0, i.e.,
at flx) = 0.5. For n = 1, it will be an inverted J-shaped curve.

Another form of Chi-square Distribution

IfO,and E (i = 1, 2, ..., k), be a set of observed and expected frequencies, then

x2=z {(0 EE) :'wherezo ZE

i=1
follows chi-square distribution with (k - 1) d.f.
Another convenient form of this formula is as follows -

R L 2 k 2
o [0‘- +E,»E-20;'Ei]=z (0_1'4_}3__20‘_}
i=1 i i=1

Ma-
o
]
‘M@
t"'-cf,
|
=

k 02 k
=Z E‘ +ZE -2

i=1 i i=1 i=1 i=1 i

k k
where Z 0, = Z E, = N(say), is the total frequency.
i=1
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Probability and Applications of y* Test

b %2 test is one of the simplest and the most general test known. It is applicable to

a very large number of problems in practice which can be summed up under the following
heads :

() as a test of goodness of fit.

(i1) as a test of independence of attributes.
(ii1) as a test of homogeneity of independent estimates of the population variance.
(iv) as a test of the hypothetical value of the population variance ¢2.

(v) as a list of the homogeneity of independent estimates of the population
correlation coefficient.

NOTES

Conditions for Applying y? Test

Following are the conditions which should be satisfied before %? test can be
applied.

(a) N, the total number of frequencies should be large. It is difficult to say
what constitutes largeness, but as an arbitrary figure, we may say that N should be
at least 50, however, few the cells.

(b) No theoretical cell-frequency should be small. Here again, it is difficult to
say what constitutes smallness, but 5 should be regarded as the very minimum and 10
is better. If small theoretical frequencies occur (i.e., < 10), the difficulty is overcome
by grouping two or more classes together before calculating (O — F). It is important
to remember that the number of degrees of freedom is determined with the
number of classes after regrouping.

(¢) The constraints on the cell frequencies, if any, should be linear.

Note. If any one of the theoretical frequency is less than 5, then we apply a corrected
given by F Yates, which is usually known as ‘Yates correction for continuity’, we add 0.5 to the
cell frequency which is less than 5 and adjust the remaining cell frequency suitable so that the
marginal total is not changed.

The %2 Distribution
For large sample sizes, the sampling distribution of 2 can be closely approxi-

mated by a continuous curve known as the chi-square distribution. The probability
function of ¥? distribution is given by

A2 = e(y2)v2-1 e Y12
where e = 2.71828, v = number of the degrees of freedom ; ¢ = a constant depending
only on v.

Symbolically, the degrees of freedom are denoted by the symbol v or by d.f. and
are obtained by the rule v = n — k, where & refers to the number of independent con-
straints.

In general, when we fit a Binomial distribution, the number of degrees of free-
dom is one less than the number of classes. When we fit a Poisson distribution, the
degrees of freedom are 2 less than the number of classes, because we use the total
frequency and the arithmetic mean to get the parameter of the Poisson distribution.
When we fit a Normal curve, the number of degrees of freedom are 3 less than the

number of classes, but in this fitting, we use the total frequency, mean the standard
deviation.
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We may summarise the above explanation as follows :
If the data is given in series of “n” numbers. Then

In the case of Binomial distributiond.f. =n -1

In the case of Poisson distribution d.f. =n - 2

In the case of Normal distribution d.f. = n — 3.

%2 Test as a Test of Goodness of Fit

x? test enables us to ascertain how well the theoretical distributions such as
Binomial, Poisson or Normal ete., fit empirical distributions, i.e., distributions obtained
from sample data. If the calculated value of ¥? is less than the table value at a
specified level (generally 5%) of significance, the fit is considered to be good i.e.,
the divergence between actual and expected frequencies is attributed to fluctuations

of simple sampling. If the calculated value of %2 is greater than the table value, the fit
is considered to be poor.

ILLUSTRATIVE EXAMPLES

Example 1. The following table gives the number of accidents that take place in
an industry during various days of the week. Test if accidents are uniformly distrib-
uted over the week.

Day Mon Tue Wed Thu Fri Sat

No. of accidents 14 18 12 11 15 14

Sol. Null hypothesis H,. The accidents are uniformly distributed over the
week.

Under this H, the expected frequencies of the accidents on each of these days
84 '

v 14
Observed frequency O, 14 18 12 11 15 14
Expected frequency E, 14 14 14 14 14 14
(O, -E. ) 0 16 4 9 1 0

x%= M=% = 2.1428.

E.

Conclusion. Table value of x? at 5% level for (6 — 1 = 5 d.f.) is 11.09. (see x2-

table)

Since the calculated value of %2 is less than the tabulated value, H, is accepted
i.e., the accidents are uniformly distributed over the week.

Example 2. Records taken of the number of male and female births in 800 families
having four children are as follows :

No. of male births 0 2 2 3 4
No. of female births 4 3 2 1 0
No. of families .32 178 290 236 94
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Test whether the data are consistent with the hypothesis that the Binomial latww
holds and the chance of male birth is equal to that of female birth, namely p = q = 1/2.
Sol. Null Hypothesis H : The data are consistent with the hypothesis of equal
probability for male and female births. i.e., p =g = 1/2.
We use Binomial distribution to calculate theoretical frequency given by :
Nir)=NxPX=r)
where N is the total frequency, N(r) is the number of families with r male children
and
P(X - r) i nciprqn.-r,
where p and g are probability of male and female birth, n is the number of children.

4
N(0) = No. of families with 0 male children = 800 x "C0 (%J

1
-800x1x = 50

2 2
N(1) = 800 x *C ( ] ( ] = 200 ; N(2) = 800 x “C, (%J [%] =300

MI:—A

§ 1 10 /1)
N(3) = 800 x 4C [ J (E] =200; N4) =800 x *C, (5| 5] =50

Observed frequency O, 32 178 290 236 94
Expected frequency E, 50 200 - 300 200 50
(0,-E,)? 324 484 100 1296 1936
e
&EEL- 6.48 2.42 0.333 6.48 38.72
i
20, - E,)?
{2 = ———te—t— = 54.438.

E.

Conclusion. Table value of x2 at 5% level of significance for 5 — 1 = 4 d.f. is 9.49
(see x,-table). Since the calculated value of x? is greater than the tabulated value, H,
is rejected. i.e., the data are not consistent with the hypothesis that the Binomial law
holds and that the chance of a male birth is not equal to that of a female birth.

Note. Since the fitting is Binomial, the degrees of freedomv=n-1ie,v=5-1=4,
Example 3. Fit a Poisson distribution to the following :

X 0 1 2 3 4

fr . . A8 8N
Sol. Null Hypothesis H, : Poisson fit is a good fit to the data.

¥
b7 A

To fit a Poisson distribution, we require m

Here m=2x =097

Here mean of the given distribution = =097
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By Poisson distribution, the frequency of r success is

r

m
N(r)=Nxem. —,
r.

N(0) = 116 x %97 = 116 x 0.37 = 43.97 ;

N is the total frequency

Sampling Distributions

NOTES

2
N(2) = 116 x e 097 x M——- =118 x0.17 = 19.72
0.97)2
N(3) = 116 x e %97 x o S 6.688
0.97)*
N(4) = 116 x 7997 x 4—1) =1.62
0 1 2 3 4
" 46 38 22 9 1
E,- 43.97 41.76 19.72 6.68 1.62
0-~EF
£ 0.093 0.338 0.263 0.805 0.23
0 -E
W= J e 3190

Conclusion. The calculated value of x2 is 1.729. Also the tabulated value of 2
at 5% level of significance for v=5 -2 = 3 d.f. is 7.815 (see y2-table). Since the calcu-
lated value of x* at 5% level of significance is less than the tabulated value. Hence H,

i

is accepted i.e., Poisson distribution is a best fit to the given data.

Example 4. Fit a Binomial distribution to the following frequency distribution.

X

0

1 2

3 4 5

6

f

13

25 52

58 32 16

4

Sol. Null Hypothesis H, : Binomial distribution is a good fit to the given data.

We first find mean of the given distribution.

x; fr fixl'
0 13 0

1 25 25
2 52 104
3 58 174
4 32 128
5 16 80
6 4 24

N=Y 1 D

Zﬁxi
Here mean = ———
>

= DT oo
2675
= p=T =0.38

g=1-p=0.62
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When
When

P(X =0) =200 x 7C, (0.62)" = 7.043
, PX=1) =200 x "C, (0.38) (0.62)°
=200 x 7 x 0.38 x 0.0568 = 30.2176

When r=2, P(X=2) =200 x C, (0.38)? (0.62)°

=200 x 21 x 0.1444 x 0.0916 = 55.55
When r=3, P(X=3) =200 x ’C, (0.38)%0.62)"

= 200 x 35 x 0.054 x 0.1477 = 55.83
When r=4, P(X=4) =200 x C, (0.38)%0.62)

= 200 x 35 x 0.020 x 0.23 = 33.32
When r=5, P(X=5) =200 x "C, (0.38)° (0.62)

=200 x 21 x 0.0079 x 0.3844 = 12.75
When r=6, P(X=6) =200 x "C, x (0.38)%0.62)*
=200 x 7 x 0.0030 x 0.62 = 2.64

b S |
I
- O

(0; - E;)®

E, 0, (0,- E)? —E—‘
7.043 13 35.48 178.73
30.21 25 27.144 24.38
55.55 52 12.60 2.85
55.83 58 4.70 0.39
33.32 32 1.74 0.09
12.75 16 10.56 8.74
2.64 4 1.84 1.28

Total = 200

(adjust the observed frequencies such that their total sum = 200)

0~ EH
3= Z(—E— = 207.72

i

Conclusion : The tabulated value of 2 at 5 % level of significance for 7—-1=6
d.f 12.592 (See-chi-square table). Since the calculated value of x2 is the tabulated value
of 2 at 5% level of significance.

Therefore H, is rejected i.e., The Binomial law does not hold good according to
the given data.

x* Test as a Test of Independence

With the help of 2 test, we can find whether or not two attributes are associated.
We take the null hypothesis that there is no association betwean the attributes under
study, i.e., we assume that the two attributes are independent. If the calculated
value of ¥? is less than the table value at a specified level (generally 5%) of
significance, the hypothesis holds good, i.e., the attributes are independent and do
not bear any association. On the other hand, if the calculated value of ¥2 is greater
than the table value at a specified level of significance, we say that the results of the
experiment do not support the hypothesis. Thus a very useful application of %2 test is
to investigate the relationship between trials or attributes which can be classified into
two or more categories.

The sample data set out into two-way table, called contingency table.
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Let us consider two attributes A and B divided into r classes A}, A,, A,,
, B,. If (A), (B j) represents the number of
’ I‘,_j =1, 2,

and B divided into s classes B,, B,, B,

persons possessing the attributes A,, Bj respectively, (i = 1, 2, ......

and (A, B)) represent the number of persons possessing attributes A, and B;. Also we

have A, = Z B; = N, where N is the total frequency. The contingency table for
=1 i=1
r x s is given below :
A & A, A, ik, Total
B
B, (A,B,) (A,B,) D 4 s (A,B,) B,
B, (A,B,) (A,B) (A,B,) (A,B,) B,
B, (A,B,) (A,By 75NN (A,By) B,
B, (A,B) (A,B,) BT T o (A,B) (B,
Total (A) (Ay) (g UERD (A) N

NOTES

H, : Both the attributes are independent. i.e.,, A and B are independent under
the null hypothesis, we calculate the expected frequency as follows -

P(A,) = Probability that a person possesses the attribute

A
=Qi=1,2, ...... T

i

P(B) = Probability that a person possesses the attribute

B (B;)
J N
- : ‘ (A;B))
P(A;B)) = Probability that a person possesses both attributes A, and B, = —

If (A;B)), is the expected number of persons possessing both the attributes A,
and B ‘
J

(AB), = NP(AB) = NP(A,(B)

A B)_(AXB))

(*» A and B are independent)

N N N
L, [ —(A,-BJ-)]zjl
Hence =
; ,Zl (A;B,),

which is distributed as a x2 variate with (r — 1)(s — 1) degrees of freedom.
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Probability and

Distribution Theory Note 1. For a 2 x 2 contingency table where the frequencies are a_/_/j_ %? can be calculated
c

(@ +b+ec+d)ad - be)?
(a+bc+d)Xb+dNa+c)

NOTES from independent frequencies as ¥2 =

Note 2. If the contingency table is not 2 x 2, then the formula for calculating ¥2 as given
in note 1, cannot be used. Hence, we have another formula for calculating the expected fre-

A))B;
quency (AB)), = %J—)

Product of column total and row total

i.e., expected frequency in each cell is =
P *q Y e whole total

ad - be
ad + be

Note 3. If :—%’ is the 2 x 2 contingency table with two attributes, @ = is called

the coefficient of association.
If the attributes are independent then %“—" 5

Note 4. Yate’s Correction. In a 2 x 2 table, if the frequencies of a cell is small, we make
Yate’s correction to make %2 continuous.

i ¢
Decrease by Y those cell frequencies which are greater than expected frequencies, and

1 ] s 3
increase by s those which are less than expectation. This will not affect the marginal columns.
This correction is known as Yate’s correction to continuity.
1 2
N [bc -ad - 3 N)

’ : & s
After Yate's correction ¥2= (a+c)b+dXe +d)a+b) when ad-be<0

1.2
N(ad—bc-ﬂaN)

2_. —-—
= (a+e)b+d)e +d)a+b) when ad -be > 0.

Example 5. What are the expected frequencies of 2 x 2 contingency tables given

below :

@ b 2 10
(i) (it)

¢ d 6 6
Sol. Observed frequencies Expected frequencies
(7) a b a+b (@ +c)a+b) (b + d)a + b)

a+b+ec+d a+b+c+d
c d c+d A%

(a+e)e+d) b+ dMe + ¢
a+b+c+d a+b+c+d

a+c b+d|a+b+ec+d=N
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Sampling Distributions

Observed frequencies Expected frequencies

(i) 2 10 12 BEL i | B,
24 24
6 6 12 iy NOTES
8 16 24 BEAR e | AR g
24 24

Example 6. From the following table regarding the colour of eyes of fathers and
sons test if the colour of son’s eye is associated with that of the father.

Eye colour of son

Evye colour of father

Light Not light
Light 471 51
Not light 148 230

Sol. Null hypothesis H . The colour of son’s eye is not associated with that of
father. i.e., they are independent.

Degree of freedomv=(r-1)(s-1)=(2-1)(2-1)=1

Under H, we calculate the expected frequency in each cell as

% Product of column total and row total

Whole total
Expected frequencies are :
Eye colour
of son Light Not light Total
Evye colour
of father
! 619 x 522 L 289 x 522
Light T 359.02 - 167.62 522
619 x 378 289 x 378
i —_— = 259. — =1213 378
Not light 900 59.98 900 121.38
Total 619 289 900
4 2
(O; - E;)
X2 = z E.
=1 t
_ (471-359.02)°  (51-167.62)" (148-259.98)"  (230-121.38)"
359.02 167.62 259.98 121.38
= 261.498.

Also 2, o5 = Tabulated value of 2 at 5% level for 1 d.f. is 3.841.

Conclusion. Since the calculated value of x? > tabulated value of %%, H, is

rejected. They are dependent i.e., the colour of son’s eye is associated with that of the
father.
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Prv{bab.i!ir_\- and Example 7. A cigarette company interested in the effect of sex on the type of
Distribution Theory cigarettes smoked and has collected the following data from a random sample of 150

persons.
NOTES Cigarette size Number of people smoked Total
male female
Small 25 30 55
Medium 40 15 55
King size 30 10 40
Total 95 55 150

Test whether the type of cigarette smoked and sex are independent at level of
significance ot = 5% :
Sol. Let H; : The type of cigarette smoked and sex are independent
Degree of freedom =(r-1)(s-1)=(2-1)(3-1)=2
The given data can be shown in the form of 3 x 2 contingency table.

Observed Frequencies

Male Femaeale Total‘
Small 25 30 35
Medium 40 15 55
King size 30 10 40
Total 95 656 150

Expected Frequencies

95 x 55 b5 x 556 :
150 = 34.83 150 = 20716
95 x 55 55 x 55
50 - 34.83 150 = 20.16
95 x 40 55 x 40
T i 25.3 T 14.66
Calculate x?, we have the following table :
0, 25 30 40 15 30 10
E, 34.83 20.16 34.83 20.16 25.3 14.66
2
©; ;EE'T ) 2.774 4.80 0.76 1.32 0.873 1.481

S AR
x2 — Z '—E-'— =2774+480+0.76 + 1.32 + 0.873 + 1.48
i=1 t

12.008
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Also %2, ;5 = The tabulated value of y2 at 5% level of significance for 2d.f. = 5.991

Conclusion. The calculated value of %2 is greater than the tabulated value of
x2 at 5% level of significance. Hence H, is rejected. i.e., the type of cigarette smoked
and sex depends on each other.

Example 8. From the following data, use x*-test and conclude whether inocula-
tion is effective in preventing tuberculosis.

Attached Not-attached Total
Inoculated 31 469 500
Not-inoculated 185 1315 1500
Total 216 1784 2000

Sol. Null Hypothesis H,. The inoculation is not effective in presenting
tuberculosis

Degree of freedom=(r—-1)(s-1)=(2-1)(2-1)=1
The given data can be shown in the form of 2 x 2 contingency table.

Observed Frequencies

Attached Not-attached Total
Inoculated 31 469 500
Not-inoculated 185 1315 1500
Total 216 1784 2000
Expected Frequencies
216 x 500 =54 1784 x 500 ik
2000 2000
216 x 1500 A 1784 x 1500 - 1338
2000 2000
To calculate %, we have the following table :
O, 31 185 469 1315
E, 54 162 446 1338
(0, - E,* 529 529 529 529
(0; < B
E 9.79 3.26 1.186 0.395

i=1

- (0; - E 0, -E)?*
Z =9.79 + 3.26 + 1.186 + 0.395 = 14.631

Sampling Distributions

NOTES
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Probability and Also 2, .5 = The tabulated value of ¥2 at 5% level of significance for 1 d.f, = 3.841.

SNom i Thniry Conclusion. The calculated value of %2 is greater than the tabulated value of
x? at 5% level of significance for 1 d.f. .. H, is rejected i.e., the inoculation is effec-
tive in preventing tuberculosis.

NOTES .

6.3 CENTRAL t-DISTRIBUTION OR STUDENT'’S ‘¢’
DISTRIBUTION

X, X5 ... , X, be a random sample of size n from a normal population with

mean | and variance o2, Then, we define the student’s ¢’ by

-

f= ~(n-14d.f)
s/aln
_ 1 .
where r=— Z x;, the sample mean
n

=1

l n
& _ =2
R E] (x; - X)°,
i=

an unbaised estimate of the population variance o2
Also, the probability density function is given by

1 1
f(t):J_ = u+1,—o¢(t<oo
ot N
vﬁ(2’2] [1+L]2
v
Forv=1,
1 1 1 %
t) = : =—, ,—<t<oo
& B[l l) 1+t n 1+¢2
g=u

which is the probability density function of the standard Cauchy distribution.

{32

)
= [r[%)] O
P 1

Hence for v = 1, student’s ‘¢’ distribution tends to standard cauchy distribution.
Theorem X. Derive student’s t-distribution.
Proof. By definition, the student’s ¢ is defined as
x-p

sIJE

= Erl
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Squaring (1), and using s2 = —~

e E-win G- n-1
==t 2

s s?
(% —p)?
2 (x-p? c?/n
=5 = =
n-1 s? nS?
0.2

Since x(i = 1, 2, ......, n) is a random sample from the normal population with
mean |1 and variance 0%, ¥ ~ N(u, 6%/n) = ()

= 2
Hence ET“)-—, being the square of a standard normal variate is a chi-square
G*/n

variate with 1 d.f,

2
Also % is a y?-variate with (n — 1) d.f.
o

2z
Further since ¥ and S? are independently distributed, .

being the ratio of
n-1

two independent y2-variates with 1 and (n - 1) d.f. respectively, is a B, (l’ﬁ__l)
2 ail
variate and its distribution is given by :
L
1 (t?/v)?
dF(t) = TN NGk dt%v), 0<% < | wherev =(n-1)
B(é ; 5) (1 + w]
v
1 1
= 4y dt; —oo < t < oo
1 v 9 \(v+1V2 ’
v

the factor 2 disappearing since the integral from —  to « must be unity. This is the

required probability density function of Student’s ¢-distribution with v = (n-1)df.
Remark. If X, X,, » X, be a random sample from a normal population with mean
i and variance o2, then

(i) X ~ N(y, 6%n)

-2
G S oy [Xf‘x
Y =1 g

> ] is a x%-variate with (n — 1) d.f.
Confidence Limits or Fiducial Limits for IR

Let ¢, o, denotes the tabulated value of ¢ for v = (n — 1) degree of freedom, at 5%
level of significance, then

P(| £ | >505)=0.05 = P(| ¢ | <t,,,) = 0.95,

e 82, where S? is the sample variance, we have

Sampling Distributions

NOTES
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Probability and The 95% confidence limits for | and given by :
Distribution Theory

S/J_

Hence, 95% confidence limits for p are : ¥ 2, . (S/\/n)

2] Stoes Le,

= -t ——SUESx +t —_—
to.05 x 0.05 *. f_n 0.05 {_n
NOTES

Similarly, 99% confidence limits for pare: x *¢,,, - (S/{n)

where ¢, ,, is the tabulated value of t forv = (n — 1) d.f. at 1% level of signifi-
cance.

Theorem XI. For student’s ‘t’ distribution, prove the following.

(i) W,,,; (a@bout origin) =0, r=20, 1, 2, ...... , L.e., all the moments of odd order
about the origin vanish.

oy o Er=DEr-9...3.1
Mo = -2 n-4).n-2r) 2
Hence find the values of W, W, B, By

Proof. (i) By definition, the probability density function for student’s ‘¢’ is given

as

1 1
ﬂt)= e R
ki) ntl
sl 2
J;B(.‘Z’Z} (1+£—}2
n

Since f{t) is symmetrical about the line ¢ = 0, all the moments of odd order about
origin must vanish. Hence p,, , (about origin)=0,r =0, 1, 2

In particular, p,” (about origin) = 0 = mean
Central moments coincide with moments about origin i.e.,
Ryiyg =20 =0, 1,2, )
The moments of even order are given by :

—co g} oo

.......

My, = Wy, (about origin) = rﬂ t¥ ft)dt = 2J:t2" f(t) dt

E oo t2r
=2 ——— = L PR dt A1)
o) fon e
The integral (1) is absolutely convergent if 2r < n.
2
Pat 1+ vt gD 2tdt = — = dy
n y y

When ¢ =0,y = 1 and when ¢ = =, ¥ = 0. Therefore, (1) gives

" - IO e Rl
5 4
2 = _J—B( 1 n) 1 (1/y)(n w2 - 2ty2

Rk

j‘ ($2)2r-1/2 y[(n+1)l2l -2 dy
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1
In o (1=9)"2 enra-
» lnn J‘o n[ yy] ylnsvi2-2 g
o3 5)

1 r

-E[}—ﬁjj;y (1-y) dy-—B[l E].B(z r,r+2}n>2r.
2% 2
I'(n/2)-r] r(r+§1)
3 n' -(2)
r1/2)r'(n/2)

o302 23ata)

n
r/2)(n/2)-1{(n/2) -2 H%)— r} I(n/2)-r]

@Cr-1D(2r-3)...831 , n

a~Bn-9..a-20 '8 kil
Putr=1,2, 3, 4in (3), we get
: n
”‘2'"" (n_2) —m,(n>2) . (4)
2
and g e .. SR ...(5)

n-22n-4) (-2m-2)

2
Hence B1=E3—3=0 and B2=~E-‘*—=3(n'2];(n>4).

Mo ng n-4

Remark. Asn — oo, B, =0 and B, = lim 3(2=2)-3 lim |1=@/n) | _4
n—oo n-4 neyos 1—(4/’1)
Moment Generating Function
Theorem III. Moment generating function of t-distribution.

Proof. From above theorem, we have

e 2r-1D(2r-3)...... 3.1 L
T a~Dned),.. . 6=29 . 2

If % >r = 2r < n, it implies all the moments of order 2r < n exist, but the

moments of order 2r 2 n do not exist. Hence the moment generating function of
t-distribution does not exist.

ILLUSTRATIVE EXAMPLES

Example 1. If the random variables X, and X, are independent and follow chi-

square distribution with n degree of freedom show that Jn (X, - X,)/12 JX,X, is
distributed as Student’s t’ with n degree of freedom independently of X 1+ X,
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Probability and
Distribution Theory

NOTES

Sol. Since X, and X, are independent chi-square variates each with n degree of
freedom their joint probability density function is given by :

plxy, x5) = p,(x,) x pylx,)

1 _m n 1 n 1
=————.e 2 x4 %, ';05x, <00, 0<x,<0
2" [F(n/2) By S8 Lo
Put u=-—m and v=x, +x,
2,/xxx2
v
=g i _U_ 1+ 1 gy g T =~ 1- L
2 . n 2 (1 n )
+— F—
(1) 5
The Jacobian of transformation is J = ag)fl’ x;') = ¥
u,v

5 \3/2
et
2«5( + n]

The joint probability density function of u and v becomes
g(us U) =p(x11 xz) l J l

1 e—vlz un—l B
T 9T r(1/2) T(n/2) Jn B R s ol e s 5
- [1+ %J
n

By Legender’s duplication formula

rn)Jn

gn-1 r( f_"'l]
2

Mn) = 21 N(n/2) F(P;—I)/\E = Fni2)= , we get

2n-1
21 [(nf2) /2) 5 = 2 TVE (ﬁ) TS
gn-1 r[f! "'_1] 2
2
1.1 1 =
=0 F(n)ﬁB(E,EJ |r[2] ‘/T?
1 -v/2 n-1 1 3 [
(u,v) = ;
gu, v (2,, r(n)e v J B = 2 (n+1/2
i By [1+ —-)
n
O<v<o,—o<u<e
= 8g(u, v) = g,(u) g,(), =4d)
1 1
where g,(u) = A G —oco < U < oo = 1),
n
1 -v/2 _ n-1
and g,(v) = T v, 0<v<eo _ -(3)
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(1) = U=+vn X,-X,)2/XX, and V =X, +X, are independently M . i
distributed.

2) = U=+Jn X -X)/2/X X, ~t,and

= NOTES

@) = V=X +X, ~ y[a%,,,).

Example 2. Show that for t-distribution with n degree of freedom mean deviation
about mean is given by :

Jn Tln-1/21/ g T(n/2)

Sol. M.D. (about mean) = r || F(&) dt = 1 J"" |2]dt
-0 J_ _]: n N t2 (n+1)l2
g 10 {1+—}
n
- 2 r R r dy ¢
2 1.nYdo 2\m+D/2 ~ (1 pY )y (1+ y)@*D72’ =t |
el t el o n
J;B{z’z] [1+;] B(z’z)
e r i Pes Jn B(n-l 1) _YnTin-1/2)
B[1_ E) 0 =l B(g g)‘ - B Vr T(n/2)
22 (1+y) 2'2

Theorem XII. For large degree of freedom (n), show that t-distribution tends to
standard normal distribution.

Proof. The probability density function for ¢-distribution is given as
L

1
ﬂt)= i 1
~ 1l n il
nB(E’E) [1+f—2) >
n

Considere lim 1 Tln+1)/2]

bioed J‘B[ J=,Hm,/‘ r(1/2) T (n/2)

—co <} <o

1
B s
A 7o
T(n+k) r(m)T(n)
/2 d li b Blm, p)y= -7 )
l (1/2) = Y an i o = n*, B(m, n) s

: -1 1
. 2\ ]2 23
lim Ap) = lim ———— _  lim || 145 x lim | 145 p
n— e n— oo r—- ( ] n—yee n R—3%e )

exp (= #%/2), —eo <t < o

1
it V2
which is the probability density function of the standard normal variate. Hence, we
can say that, for large value of n, the degree of freedom, ¢-distribution tends to
standard normal distribution.
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Probability and Probability Curve for ¢-distribution

Bxstribuition Theovy The probability density function of ¢-distribution with n degree of freedom is

given as
1 1
NOTES ﬂt)= i ,—oo <o
J;B(l,i) 2Ys
22 (1+‘—)
n
_n+l
Y2
] 7 e (33
n+1
$#] 1
== fl=t)=¢| 1+— =flt)
n

Therefore, the probability curve is symmetrical about the line ¢ = 0, when ¢ is
large, f(t) becomes small and tends to zero when ¢ — . Hence ¢-axis is an asymptote to
the curve. We know

= s R
Ha n-2
3(n-2)
= ,n>4
Bz n-4 #

For n > 2, y, > 1 i.e., the variance of ¢-distribution is greater than that of
standard normal distribution and for n > 4, B, > 3 and thus ¢-distribution is more flat
on the top than the normal curve.

Normal curve
n=7

i 1 1
-0 -4 =3 -2 -1 t=0 +1 +2 +3 +4 o

Probability Curve of ¢-distribution
i.e., the tails of the ¢-distribution have a greater probability (area) than the tails of
standard normal distribution. Moreover for large n (d.f.), ¢-distribution tends to stan-
dard normal distribution.
Applications of ¢-distribution
The student’s ¢-distribution can be used.

(i) To test if the sample mean (¥) differs significantly from the population mean L.
(i) To test the significance of the difference between two sample means.

Properties of ¢-distribution
The following are the properties of ¢-distribution :
1. It is unimodal distribution.
2. The probability distribution curve is symmetrical about the line ¢ = 0.

178  Self-Instructional Material



3. It is bell-shaped curve just like a
Normal curve with its tail a little higher above
the abscissa than the Normal curve (see fig.)

4. The limiting form of ¢-distribution,
when its degree of freedom v — =, is given by

1.,
y= yoeit , which is a Normal curve.
This means that ¢ is normally distributed for large samples.
Critical value of ¢

The critical value or significant value of ¢ at level of significance o, degrees of
freedom v for two tailed test is given by
Pll¢t]|>¢t (@ =a
Pl|t]| <t (@l=1-a
The significant value of ¢ at level of significance o for a single tailed test can be
got from those of two tailed test by referring to the values at 2o.

Test I : ¢-test of Significance of the Mean of a Random Sample

To test whether the mean of a sample drawn from a Normal population deviates
significantly from a stated value when variance of the population is unknown.

H, : There is no significant difference between the sample mean ¥ and the
population mean [ i.e., we use the statistic

X-p

t= . where X is mean of the sample.
sifn

2=

: Y (X, - X)* with degrees of freedom (n - 1).
i=1

n-1
i

At given level of significance o and degrees of freedom (n — 1), we refer to ¢-table
t, (two tailed or one tailed).

If calculated value | ¢ | is such that | ¢ | <¢,, the null hypothesis is accepted.
ie, If | t | >¢,, H, is rejected.
Fiducial Limits of Population Mean

If t,, is the tabulated value of ¢ at level of significance o at (n — 1) degrees of

freedom. Then X <t for acceptance of H,.
s/JE
=> f—tus/ﬁ <u<§+tus/ﬁ;-i.e.,

95% confidence limits (level of significance 5%) are X +t, 45 s/\/n .

99% confidence limits (level of significance 1%) are X + to.01 sin .

Note. Instead of calculating s, we calculate S for the sample.

1 n n
Since s?= ni : Z X, - X2 . Sz=%z (X‘.—f)z.
=1 i=1

l:(n -1s%=ns?,s? = Ll s"’-]

n-—
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Probability and Theorem XIIL. To derive Snedecor’s F-distribution.

ok Proof. Let X and Y are two independent chi-square variates with v, and v,

degree of freedom respectively. Then their joint probability density function is given

b .
NOTES A
1 (wy/2! 1 (wg/2)-1
= {—m——exp (- x/2) x'™ X { —————exp (- v/2) y'2
e {2*’1’2 T/ 7 } {2"2’2 vy /2)
1 (0,/2)-1 , (v3/2)-1
= exp {— (x +y)/2) x x! y il ,0(x,y) <
2T [y 19) Mug/2) ¥ " 3
Consider the following transformation of variables :
F= 21y andu=y,s0that 0SF <o, 0<u<eo .. x=2L Fy andy = u
% ] v2 Ug
The Jacobian J of transformation is given by :
Ay
- o, y) =| Ve g e
oF, u) Up 1 Uy
U.z i

Hence, the joint probability density function of the transformed variables is :

1 4 (1,/2)-1
(F,u) = exp/_Y¥ s = x| =L wpf2)-1 | g
g 25 [y /2) T(0g/2) P { = [1+ S F]} (Uz Fu] Al 5

(vy/vg)" u v (03 +05)/2) -1 a0, /2)-1
= expi=Lly Vopll e ulth F“ :
201+"2 [y, /2) T(wy /2) i vy

O<u<eo,0sF <o ..(1)
Integrating (1) w.r.t. u over the range 0 to , we get

(,/2) @iy, /2)-1 o " » )
gl(F) = (01/02) i 4 X |:j0 exp {——;i[],+ _I.F]} u""i 2 W21-1 duj[

2(ul+v212)l’(v1!2l v, /2) Us
(01/02)!01.'2) Flulf2)—l r[(vl + !)2)/2]
= X
2(!)1-0-02}!2 r(vllz) r\(v2/2) 1 i (Ul+!}2)f2
1
=~ 1+—F
2 Ug
= . < oo =—
gl(F) ﬁ Uy 2 (0y+0)/2 ? 0<Fc« B(m, n) r(m £ n)
B 5o 1+-LF
e %

which is the required probability density function of F-distribution with (vy, vy) d.f.
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Theorem XIV. Show that, for F-distribution,

3
WY G0 T o 1 TS
r v U; Uy 2 2 P
) D
253
Hence find (i) u,’ 1y, 1g' 1y~
(iL) Wy Ky, Mg My

Proof. The probability density function of F-distribution with (vy, vy) degree of
freedom is given by

T

2
[ﬁ} 0%
U2 F2

gF) = 2 ,0sF <=

Uy Vg Uty

B{ 22 ] 1+9p]| 2

Ug
u,’ (about origin) = E(F") = j"F"g(F) dF
0
= (Ulfb'z)v!!z J_“,Fr F(u1121—1 p

B[ﬂ "_2] O (1 tip|@itey)

2° 2 vy 2

To evaluate the integral, put : Apa ¥, so that dF = a dy
Vg U

r+(v;/2)-1
2
s o [oy/up]"” ~(v1 ] % | g
= ,[ oz |5 | %
B(fl ) % (T gy
2°2

",

e
Vg
¥ [;;] J,,, yr+w]!2]-1 2
B(ﬂ U—2J o (1+y){v,l2)+r+l(’vgl2)-r'l
g2

22

=[u_] ._1__.B[r+ﬂ,v—2—r),v2>2r
B} B(Ui vz) 2 2

g
=l _F[r+(ull2)l"(v2/2)—r];r<v_2 sty > 2r
J £ T(0,/2) T, /2) 2
=01
Putr=1,2,3,4in (1), we get
e vy F+@/2ITw,/2) -1 vy P

v, ['(vy/2) Nvy/ 2) T vy -2
|on) =(n-1) (n — 1)

Thus the mean of F-distribution is independent of v,.

2
. _(v2) Tlwy/2)+21T(,/2) - 2]
Al " (vl] T N(0,/2) T(0y/2)
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where

=

=

I}
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g

o |
Va2 (v; +2) 0’

vy (v, —2) Wy —4) (v, - 2)°

My = “2' g 111'2 =

ol 2022 (02 + ) 2)
UI(U2 —2)2 (Uz e 4) 2

v2>4

1

v |2 w_y
Uz F2

g(F) = ; g ,0sF <
B[E; v_zJ e Y
' 3 (1+_1F]
Vs
Taking logarithm, we get
(_U_L]E ul_]
2
log (g(F)) = log 2 + log -4 —
B(ﬂ E%J 2o
2’2 {1+ -uiFJ
- - U2

vy vy 4 B o
=c+ -1 gt L =1
c [2 JlogF 2 log[1+v ,FJ

u

c=log| YL E——log B(ﬂ,—viJ
e 2°72

Differentiating (1) partially w.r.t. F, we get

s

2 K 2

ﬂ=o+[£1__1) 1 _uty o

AL
Up

For mode, put g’(F) = 0

[_"_1__1)’_1_01“”2_ vy g =0
2 F 2 v+, F

Uy -2 A (Ul+v2)U1 i
2F 20wy +u, F)

(Ul = 2)(02 + UIF) - (Ul + Uz) Uy F
2F(U2 + UIF)
vy, + 0, %F - 20, — 20, F - 0 ?F —v,0,F = 0
VU, — 20y = (20, +v,0,) F

=0

v, ) [,/2)+ 1] (vy/2) vy 2 (v, +2)
== . = ;05
((vy/2) - 1] [(p/2)-2]  wvy(vg ~2) (g -4)" 2

Similarly, on putting r = 3 and 4 in p’, we get p,’ and p,’ respectively, from
which the central moments u, and pi, can be obtained.

Theorem XV. Show that for F-distribution with (v,, v,) degree of freedom, mode
exists if fv, > 2. Also mode of F-distribution is always less than unity.

Proof. The Probability density function of F-distribution is given as

A1)



23 02(01 - 2)

.- £ Ul(vg + 2)

Also at = —=
UI(U2 + 2)

&' (F)<0

Hence mode of F-distribution is given by

i Uz(vl -~ 2)
vy(vg +2)
Further, since F > 0, we must have v, > 2
Also . mode = —2 '01—2 <1
Ug 5 2 U

Points of Inflexion

Theorem XVI. Show that the points of inflexion of F-distribution exist for v, >4
and are equidistant from mode. '

Proof. We have -:-1- = % ~ By(l, m), «(1)
P

where [=v,/2 andm =v,/2. We now find the points of inflexion of Beta distribution of
second kind with parameters [ and m. If X ~ B, (/, m), its Probability density function is :

xl—l

Bl m) A+ 0™
Points of inflexion are the solution of f“(x) = 0 and f"(x) # 0
From (2), log fix)=—log B, m) + (I -1)logx — (I + m) log (1 +x)
Differentiating twice w.r. to x, we get

f'(x)_l—l_l+m *

fix) =

0<x <o o)

F08). ik TR -3)
” = ’ 2 sy
Also f(x)f (x) 2[f (x)] =_(l 21]+ l+m2
[f ()] x (1+x)
2
”) = . Fr ) l—l) l+m
(x) =0, S b - Bt ] =N (=l
firs A [f(x)] (x2 T ar 0’
2
-1 l+m -1 l+m .
- —[ x 1+x] =_(x2 ]+(1+x)2 PR
=i I-DUl+m) Il+m B
£ .x_z(l—l—l)—Z e TS (1+x)2 x(l+m+1)=0

= (-1U-2X1+x2-2x1+0)U-DU+m)+221+m)l+m+1)=0
(4)
which is a quadratic in x. It can be easily verified that at these values of x, f"(x) # 0, if
1>2

The roots of (4) give the points of inflexion of B,(/, m) distribution. The sum of
the points of inflexion is equal to the sum of roots of (4) and is given by :

_[Coeﬂ'.ofxin(d:)]:_[ 20-D(-2)-20-D+m) ]

Coeff. of x* in (4) I-DU-2-20-DU+m)+U+m)I+m+1)
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Conclusion. If the calculated value of F exceeds F, . for ((n, — 1), (n, - 1))
degrees of freedom, we conclude that the ratio is significant at 5% level. i.e., we conclude
that the sample could have come from two Normal population with same variance.

The assumptions on which F-test is based are :
1. The populations for each sample must be normally distributed.
2. The samples must be random and independent.

3. The ratio of 6,2 to 6,2 should be equal to 1 or greater than 1. That is why we
take the larger variance in the Numerator of the ratio.

Method to Apply f-test
2 =9
We defined F = ﬂg, where 5,2 = M; w2 E 2R
Sy ny -1
Iy, - y)?
8,2 = L—?}l-—, el 2o m
n2 ST

Here s,2, 522 are called the unbiased estimates of the population variances.

If the calculated value of F exceeds the tabulated value (which depends on the
degree of freedom v, =(n, — 1) and Vv, = (n, = 1), then the null hypothesis H,is rejected,
If the calculated value of F is less than the tabulated value, then the null hypothesis
H, is accepted.

ILLUSTRATIVE EXAMPLES

Example 1. In two independent samples of sizes 8 and 10, the sum of squares of
deviations of the sample values from the respective sample means were 84.4 and 102.6.
Test whether the difference of variances of the populations is significant or not.

Sol. Null hypothesis H; : 6,% = 6,% = ¢ i.e., there is no significant difference
between population variance.

2
Under H,; : F= -.;3-17—-1?(\#1,\!2 d.f),
2
wherev, =n, -1, n, = Sample I size = 8 ; V, =n,—1, n, = Sample II size = 10
(X, -X,)? =84.4;2(X, - X,)% =1026
2 _ XX, -X,)? 844

s =12.057;
Here 1 — 7 5
1 B T '
s X, -X,)? _ 1026 _ i
n2 — 1 9
2
12.057
Pall . 5%ss . Pa = 1.0576.
8,7 The g 11.4 .

Conclusion. The tabulated value of F at 5% level of significance for (7, 9) d.f is
3.29.
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Fyps=329and | F | =1.0576>3.29 = Foos = Hyisaccepted.i.e., There  Sampling Distributions
is no significant difference between the variance of the populations.

Example 2. Two random samples are drawn from 2 Normal populations are as
follows :
NOTES

A 17 27 18 25 27 29 13 17
B 16 16 20 27 26 25 21

Test whether the samples are drawn from the same Normal population.

Sol. To test if two independent samples have been drawn from the same popu-
lation, we have to test (i) equality of the means by applying ¢-test and (ii) equality of
population variance by applying F-test.

Since t-test assumes that the sample variances are equal, we shall first apply
F-test.

Null hypothesis H; : 6,2 = 6,% i.e., the population variance do not differ
significantly.
Alternative hypothesis. H, : 6,% # 0,%.
2
Test statistic: F= 9'1—2, Gl t 0,
83

Computations for s,? and s,?

X, X;- X; Xy~ X X, X, - Xg XX,
17 - 4,625 21.39 16 -2.714 7.365
27 5.735 28.89 16 -2.714 7.365
18 - 3.625 13.14 20 1.286 1.653
25 3.375 11.39 27 8.286 68.657
27 5.735 28.89 26 7.286 53.085
29 7.735 54.39 25 6.286 39.513
13 - 8.625 74.39 21 2.286 5.226
17 - 4.625 21.39

X, =21.625;n, = 8; (X, - X,)? = 253.87
X, =18.714;n,=7; (X, - X,)* = 182.859

2 _ Z(X, -X,)* _25387

= 36.267 ;
nl = 1

8

22Xy —X,)° _ 182859
n2 _— 1

= 30.47

8y

2
F=5__36267 _, 9.
322 30.47
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Probability and Conclusion. The table value of F for v, = 7 and v, = 6 degrees of freedom at 5%
Distribution Theory level is 4.21. (See F-table) The calculated value of F is less than the tabulated value
of F. .. H; is accepted. Hence we conclude that the variability in two populations is

same.

NOTES E-toat
Null hypothesis. H : u, = p,, i.e., the population means are equal.
Alternative hypothesis. H, : p, # 1,

2 ZX; -X)? +E(X, -X,)® _25387+182859 _aap0s . o5.796

&
ny+ny—2 8+7-2

Moe, 3163618108 oerelisnte; +Rgo R an
1

s e +— 5.']’96Jl + 4

ny ng 8 i
Conclusion. The tabulated value of ¢ at 5% level of significance for 13 d.f. is
2.16. (See t-table) the calculated value of ¢ is less than the tabulated value. H, is
accepted, i.e., there is no significant difference between the population mean ;ie, p, =

Wy- - We conclude that the two samples have been drawn from the same normal
population.

t=

Example 3. Two independent sample of sizes 7 and 6 have the following values :

Sample A 28 30 32 33 31 29 34

Sample B 29 30 30 24 27 28

Examine whether the samples have been drawn from Normal populations having
the same variance.

Sol. Null Hypothesis H, : The variance are equal, i.e., 0,2 =0,2i.e, the samples
have been drawn from Normal populations with same variance.

Alternative Hypothesis H, : 6,2 # 0,2

Computations for s,> and s,?

. X,-X; x,-X, P X XX, Xy-X,7
28 -3 9 29 1  §
30 i 1 30 2
32 1 1 30 2 4
33 2 4 24 -4 16
31 0 0 27 -1 1
29 -2 . 4 28 0 0
34 3 9
28 26
X;=31, n=7; EX,-X,)*=28
X,=28 n,=6; I(X,-X,)?=26
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o ZX;-X,)? 28 22X, -X,)? 26

=— =4.666 ; _— = =
: ny-1 6 i, ny -1 § e
Under H,, th s,° _ 52
nder H, the test statistic F==2_-_"2__1 1158, g d 2
o 312 1666 SR R F R

Conclusion. (See F-table) The tabulated value of F at vi=6-landv,=7-1
d.f. for 5% level of significance is 4.39. Since the tabulated value of F is less than the
calculated value, H, is accepted, i.e., there is no significant difference between
the variance, i.e., the samples have been drawn from the Normal population with
same variance.

Example 4. The two random samples reveal the following data :

Sample no. Size Mean Variance
? 16 440 40
1 25 460 42

Test whether the samples come from the same normal population.

Sol. A Normal population has two parameters namely mean p and variance o2,
To test whether the two independent samples have been drawn from the same Normal
population, we have to test

(£) the equality of means (i) the equality of variance.

Since ¢-test assumes that the sample variance are equal, we first apply F-test.

Null hypothesis. H, : 6,2 = ¢,? i.e., the population variance do not differ
significantly.

Alternative hypothesis. H,: 6,% # ¢,?

2
Under H,, the test statistic is given by F = 31—2, (22 > 859
82

Given : n, =16, n, = 25; 8,% = 40, S,2 =42

"1312
5 L
Foll Mol 16x40, 2 _gg7se
So n282 15 25 x 42
ng—1
= F =0.9752

Conclusion. The calculated value of F is 0.9752. The tabulated value of F at
(16 — 1, 25 — 1 d.f) at 5% level of significance is 2.11 (see F-table). Since the
calculated value is less than that of the tabulated value, H is accepted ; i.e., the
population variance are equal.

t-test

Null hypothesis. H; : i, = l,, i.e., the population means are equal.

Alternative hypothesis. H, : p, # 1,
Given : n, = 16, n, = 25, Kl = 440, 5(—2 = 460
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2o MS +nysy”  16x40+25%42 _ 4493 . o _ G582
Ny +ng -2 16+25-2

——X!]__xi ~(n1 + g —2)df=L0—1%—6'9'1—
,_ -3 6.582J~-+-—
S n 16~ 25

= |t|=9.490.

Conclusion. The calculated value of | ¢ | is 9.490. The tabulated value of ¢ at
39 d.f. for 5% level of significance is 1.96 (see t-table). Since the calculated value is
greater than the tabulated value, H is rejected. i.e., there is significant difference
between means, i.e., 4, # .

Since there is significant difference between means and no significant difference
between variance, we conclude that the samples do not come from the same Normal
population.

Under H,, t= =-9.490

6.5 NON-CENTRAL DISTRIBUTIONS

In previous section, we derived central distributions of the central statistics 2,
t and F. In this section, we shall derive the non-central distributions of the non-central
statistics x2, ¢ and F.

Non-central chi-square. The non-central chi-square (x2) statistics is defined as

n 2
S . i
= G2
i=1 i
where X_v TR e , X, are n independent normal variates with means S S s My
and variances 6,2, 6,2, ...... B,

Theorem XVI. Derive non-central y? distribution of chi-square variate.

n 2 ]
Proof. Take w?2= z [“—‘2] and transform the variables x."3 to the variables
=1 c ‘

;% by assuming

=2

where the coefficients C,; satisfy the following.
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n
Z Cﬁx =1, ie., (C;=(Cy, Cpy, ......, C;,) are unitary

Z C,C;/=0=XC;C/,i'#ilie C; and C/, are orthogonal]

It is easy to verify that the variates y,’s are independent normal variates with

n . ; n ] 2
20y-3 %E(?J/,z b o uT

n n
and E(yj)=ZCJ~,- E{%‘]=Z C'-ﬁ=0,j=2,3, ...... (]
i=1 i i

i=1

The vectors Cj' are mutually orthogonal to the unit vector

[: b / J—f‘_

i=1 i FErE LY
n 1 n
2 < B
Vary-z Cji.—5 Varx; = Ci=1
i=1 oi i=1

Now x*= Z Zy; =% +Zy;’2=112+X22asaY

i=1 i =2

where ;2 has the distribution

1 g 2+vwdr2 2,73 2
— cos h(yyqy). (1) 2dy
m VX1 1 1
1 TR 2] o (v x)* 2\-V2 7., 2
= exp | ——(x," +v*°) el ()% dy
= [2x1wk§2k 2V dyy
g o Y e 2"'%
1 < [—2' ‘412) BXP[—EM ][511 ) X
= 3T em[3v]EL 2 i
=0 k! F(k+—)
2
and the distribution of x,? is
n-3
1 1 259 2
| R L i [—-2-122] (xz") 2 dXy

|

2

=
2
Remark 1. For joint distribution of x,? and x,?, let us make the transformations
xl=xcose,xz=xsin9,0<x<oe,0<e<1|:/2
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We find that the probability density function of x? (= x,% + 1-22) is
k
1 » (n—-2)
— k+
i (2 % ] 'y 2
k! l 5’-+k
i 22 r(g + k)

Remark 2. The p.d.f. of non-central x* is the weighted average of central x? p.d.f’s with

124 1 2]
ex e ex -
p[ 2“’] p[ 2 ¥

(2k + n) d f., the weights being the Poisson probabilities (y%/2)* exp [_ % ‘I’z] /k 1k=0:1,......n.

3. If y = 0 and k = 0, then the distribution of non-central %2 is the central
x2-distribution with n.d f.
Moment Generating Function

Theorem XVII. Find the moment generating function of the non-central F
distribution.

Proof. Assume X, X,, ......, X, are n independent normal variates with mean
Bhgsbhas wosin » 1, and variances unity, then the p.d.f. of X/’s is given by

1 -ax-p?

2
N

& MXD) = E[e*’] = _l__jmezﬁ o~ (UD(x—p)? dx
2n J—-
=-L J““ex i+ _];,_t xz— = 1 2 dx
N B 2 ol El-l
1 p= 1 " 2 |.12 uz lﬂ
=—=| exp|-|=-t¢ - = "
Jor j_.,, P[ (2 ]{[x 1—2t] +1—2t (1-2t)2J dx
= == eX] . . =
5o (2 |- (552 e 25 [
1 t“z o0 1 2 dZ
=—-—e — ol
3o L (377) i wher
g 2
Z=[I—'1_ugt]x-‘fl—2t =(1—2t) 2exp [ﬂ_]’t.(_l.

1-2¢ 2

flx) =

Theorem XVIII. State Reproductive property or additive property of non-cen-
tral chi-squares variates.

Statement. If ;v e , Y, are k independent non-central x2-variates with
n,, Ry, ...... , n,, degree of freedom, and non-central parameter y,, y,, ...... A

n

2
where yi= Z H‘—z, then

i=1 i

Y1 +Y¥+ ...... + ¥, is also a non-central y2-variate with D en,+ .0 +n,) degree

n

of freedom and non-central parameter X = Z v,
i=1
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and

Theorem XIX. Find the cumulants of non-central y2-distribution.

r

Proof. k, = rth camulant = coeff. of t—1 in log My?(¢) i.e.
r!

r

i
k, = coeff. ofﬁ nK.@=r! (-:-f-+ 2\11] gt

k=21 (r=1)!(n+2yr)
k,,=2"2(0r-2)![n+2y(r-1)]

2 =222 -1)=2(-1]!= y

dy n+2yr

i k, = (n+2yr) ;_w (k,_).

Non-central Student’s ¢-distribution

Theorem XX. If X is distributed as N(y, 6°) and Y is an independent y*-variate

with n.d.f., then

e Xlo
T J¥idn

has a non-central t-distribution with n.d.f. and with non-centrality parameter Wo.

Proof. Since X and Y are independent, their joint p.d.f. is

1 _2
1 _%3, 1,., -lew?

ed .y .e?2 o
ov2r 22 |

IF
b | S

_l(uz+x2+y) n

j:
i ek
z
_p_] Z_,wherez=x/0
c |

Now make the transformation (y, 2) — (¢, u) such that

JnZ

t= andu =Y = Y=u?and Z =tu/n
N /o
0 2u
. o A oy, 2) R ik 2u*
Jacobian J of transformationis J = —— = | —= —|=—F=
At,w) |dn Jn| n
Hence the joint probability density function of ¢ and u is
p? -
. = oo d 2 2 J
— : r=e 2 Z _1'.[5-] xexp[-%—(lht—ﬂ(—i[u:] w1 J]|
9 2 r(n]r(l] joo J'\O . o
2 2
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Distribution Theory 1 = Z iﬂ X OXP |~ | 142 {| ] g**
J1(+D/2 2 n

St z 1
2 Z s J=0
27 13 )(3)

NOTES Integrating this w.r.t. u between the limits 0 and «, we get the p.d.f. of non-
central ¢ with n.d.f. as

g n+j+1
o 7 r_
1 : (e ’-—[ 2 )
e E T O
i =
2
: 1 ] dt,—o <t <oo
9 \(n+j+1)/2
n

Non-central F-distribution

If x,2 be a non-central 2 with degree of freedom n, and non-centre parameter X
and let 3,? independent of x,2, is a central ¥2 with n, degree of freedom, then the ratio

2
x—lj-n—l is known as non-central F statistics with degree of freedom (ny, n,) and non-
X2 /ng
central parameter y2.

Theorem XXI. Derive the non-central distribution of x>,

Proof. Now the joint p.d.f. of x,% and Xo? is

A My s 1
(i 2 2y 92 2
exp [_%(112 +x22)] i LA T LI P ),

i1 1 p
Jj=0 J: 2-2~(n,+rl2)+J r(;: = J] r[ng]

Making the transformation (x,2, Xo2) — (F, v), such that

2
F= ____7612/'11 = - YL, 0= 2L 9
X2 /ng Ty
and v=Yx," = and y2=v

the joint p.d.f. of F and v can be obtained.
Integrating with respect to v between 0 and o we find the p.d.f. of F as

1 , J ny, +n,
=eE ke I +d
i 1 5 2 ¥ [ 2 J
ngy e (‘E‘P ]z T ; n n
J=0 r(—1+J] r[al)

2

ny+ns

)
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6.6 ORDER STATISTICS

Def. Let X, X,,, ...... , X, are n independent and identically distributed random
variables and F(x) be the common cumulative distribution function. We arrange X/’s in
ascending order of magnitude as

X £ X € e € X, then X, is known as rth order statistic where r can take
the values 1,2, 3, ...... ,n. As there is equality sign, then X 's are necessarily dependent.
Notations. We write X;, = min(X, X,, ..., X,)
= The smallest of X, X,, ...... X
X, = Max (X, X,, ..o , X))
= The largest of X, X, ...... K
X, =rth smallest of X, X, ...... , X
Cumulative Distribution Function
Theorem XXII. Find the cumulative distribution function of a single order
statistic. ‘
Proof. LetF (x) (r=1,2, ...... ,n) denotes the cumulative distribution function of
the rth order statistic X, ; therefore, the cumulative distribution function of the largest
order statistic X, is given by

F (x) = P[X(y <] = PMax X}, X,, ..., X,) S 2]

=PX;<x,i=1,2, ..., nl
=PX,sxnX;sxN ... XSl |X/s are independent
=P(X, sx) PX,£x) ...... , PX, s x)
=F(x) . Flx) ...... , F(x) = (F(x))"

Hence, the c.d.f. (comulative distribution function) of X, = (F(x))* where F(x) is

the c.d.f. of X, X,, ... o
We now find the c.d.f. of the smallest order statistic X ,,. Here
F,x) = PX;,s2)=1-PXy2 x)

=1-Plmin X, X, ...... , X)) 2x]
=1-PX;2%,i=1,2, ... o nl
=1—P[X12xﬁx22xh ...... o
=1-PX, 22) . PX; 2%) ... s PK 2 x)

=1- PX; 2%

i=1
=1-q -PX <)
i=1
=1-(1-F&)"
| Mgy Koy vty , X, independent and identically distributed random variables.
Theorem XXIII. Find the cumulative distribution function of the rth order
statistic X,
Proof. Let F (x) denotes the c.d.f. of the rth order statistic X, then
F.(x) = PIX,, s ]
= P(atleast r of the X/’s < x]
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Distribution Theory = Z P[Exactly J out of X, X,, ...... , X, are < x]
J=r
n
NOTES =Y "C; Fx) (1 - Fa-
J=r

Remark. We can also write

Fix)
F(x)= J Igf-l (1-t)"" dt | using Binomial Probability law

1
Bir,n=r+1Jo
Probability density function
Theorem XXIV. Find the probability density function of a single order statistic.

Proof. Let Bigs K o il » X, are independent and identically distributed random
variables and if fix) be the probability density function, then

fix) = F'(x) where F(x) is the cumulative distribution function of X’s.
Let f,(x) denotes the p.d.f. of rth order statistic, then

- i - i 1 Flx) r-1 n-r
f,(x)— ) [F,(x)] = P 'B(r,n-r+ D J.o t C152) dt k1)

Take g(2)= f (1= gt .(2)

Differentiating (2) w.r.t. t, we get
gW)=¢-1(1 -ty

..(3)
Integrating w.r.t. ¢, under the limits 0 to F(x),

Fix) 2 F(x) x I
[ a-omr ar =IO[ g0t =|g®|;" = g(Fx)) - g(0)

d Flx) r-1 n-r - i =
= = J‘O U (1-)""dt = = [g(F(x)JV— g(0)] = ﬁ-g(F(x))

| £(0) is constant

= g(F(x)) . gx- F(x) = 2(F(x) . fix) (4)
Using (1) and (4), we have
= 1 -1 =4 n—r :
fix)= TP (Fe)-1 (1 - Fx)* . Ax) | Using (3)

Joint Probability density function of two order statistics

Theorem XXV. To find the

Joint probability density function of two order
statistics.

Proof. Let f,s (x, y) denotes the joint probability density function of X, andX
where 1 <r <s <n, then

Px<X,, Sx+8xny<X . <y+8y]

(x,y)= lim
frlx, y et 575, (1)

The eventE = (x < X, Sx+dxny< X,) <y + 8y} can be represented as follows :

td———r-l———ﬂlld——S—?‘-l———H1H-——-n—s-——n
L L.d |

X x+8x y'y+8y
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X, <xforr-1oftheX’s,x <X <x+3x foroneX;
x+3x <X <yfor(s—r—-1)ofX’s,y <X;<y+dyfor one X,
and X, >y + 3y for (n—s)of the X/’s
By using multinomial probability law, we get
P(E)=Plx <X, sx+8xny<X <y+ ]

n! r-1 i) g
= DG Dillnon  ‘Pabi PupE” +(2)

where pl=P(X,.Sx)=F(x),p2=P(x<Xin+8x)=F(x+8x)—F(x)
pa=P(x+8x<Xisy)=F(y)—F(x+5x)
py=Ply <X <sy+3y)=F@+3y)-F@)
p5=p(X,>y+5y)=1—-P(Xl-Sy+8y)=1—F(y+8y)
Using (2) in (1), we have
lim P(E)
f"-"(x’y)= dx—0 8x8y'
dy—0
n! . [F(x+8x)-F(x)]
= r-1
-(r—l)!(s—r—l)!(n—s)!xF (x)xalxu_PD Sx

x lim [F(y) - F(x +3)]*" " x lim
dx—0 &

y—0

[F(y +8y) - F(y)]

]' = n-s
. ] Y [1-F(y + &)]

n!
= -Dls-r-D!(n-9!

Theorem XXVL To find the joint probability density function of k-order statistics.
Proof. Let f; 1, ....r, (X1, %25 oo ,%;) denotes the joint probability density func-

Fl(x). f(2).[F(y) - F@) " f().[1-F»I"™*

tion of the k-order statistics X ), Xz - 1 X(s,), Where 17 <ry < ..o, SIS and
1<k <n,then

n!
T -Dp - =Dl (i~ — D —1)!

x F (x,) % Fx) X [Flag) — Ple))? 7 x flxp)
x [Flxg) = Fle)l" " x flx3) X ... X f ) [1= Fl 1"

ILLUSTRATIVE EXAMPLES

Example 1. Let X, X, ...... , X, be a random sample from a population with
continuous density. Show that Y, = min (X, X, ...... , X)) is exponential with parameter
nA if and only if each X, is exponential with parameter A

Sol. Let fix) denotes the probability density function of the random sample X,
) op— £ L each X; is exponentially distributed with parameter A.

We show Y, = Min(X, X, ....... X, ) is exponentially distributed with parameter
nAi. Now
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Probability and flx)=A e 220 K>0
Distribution Theory

F(x) = PX <x) = J:f{u) du=» J‘:e_"“ du=1-¢

NOTES Distribution function G(.) of Y, = min (X,, o , X,) is given by :
Gy, () =P(Y,<y)=1-[1-Fy)" | Theorem
=1-[1-(1-e™M)*=1-enV,
which is the distribution function of exponential distribution with parameter nh.
Hence Y, = Min (X, X,, ......, X,) has exponential distribution with parameter nA.

Converse. Let Y, = Min Xy, X,, ..., X)) is exponentially distributed with
parameter ni. We show each X, is exponentially distributed with parameter n.

Since Y, = Min X, X, ..., X,) ~ exp(nl), we have
P(Y,sy)=1-e"» = P(Y,2y)=e",

= Plmin X, X,, ......,X,) < y] = eV

= PIX,29)nX,2y) N ...... X, 2yt = e

n
=5 n PX;2y)=e™ = [PX 2y)"=e [ X'sarei.i.d)]
i=

PX,2y)=e? = PX sy)=1-eW
which is distribution function of exp (1) distribution. Hence X’s are i.i.d. exp (A).
Example 2. Show that for a random sample of size 2 from N(0, o2) population,
E[X )] =-olx.
Sol. For n = 2, the p.d.f. filx) of X, is given by

Fi)= 2 (1= Feo) fx) = 2 (1 = Fo) . fix) s — oo < 2 < — o0

B(L2)
1 2 /0.2
h ) a5k -x“/20 B! < s
where flx Ume | X~ N(0,o?
EXyl =[x A@dr=2 [ (1-Fw).xf () da (1)
2
Also log flx) = — log (J2x o) - 5"_2 A(2)
o
Differentiating w.r. to x, we get
f’(x) e X 2 ’ . 2
i b [ @de=-c? [ £/ dx=-o?f() .(3)
Integrating (1) by parts and using (3), we get
EXgl =2 [(1-F@} -] -2 [ -0/} - f) de
i 2 a1 [ et
=-20 [ [f()® dx = [Foneiie e
i _‘/,i_ o J Pk dx=£
Rl T i i B
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Example 3. Show that in odd samples of size n from U[0, 1] population, the
mean and variance of the distribution of median are 1/2 and 1/[4(n + 2)] respectively.
Sol. Wehave flx)=1;0<x<1

Fix)= PX<$2)= J:f(u) F Lo _[0 T

Let n = 2m + 1 (odd), where m is a positive integer 2 1. Then median observation

is X,,,.;,- Taking r = (m + 1) the p.d.f. of median X, ., is given by :
1
f;n«—ltx)_ ﬁ(m+1’m+1) - (1—x)
1 1 Bm+2,m+1
E - —eeeeee m =2 m s 3
D(mul;] B{m+Lm+1) -[Oxx (1-x)" dx _ﬁ(m+1,m+1)
_Im+2)Tn+1 M2m+2) m+1 1
r@2m+3) Fm+DC(m+1) 2m+2 2
1 1 1
2 = 2 ey m+2 (1 _ am
E[an-l)] = jox m+1 (x) dx = B(m_+ L"m_"'_+ 1) 3 Jox (1 x) dx
_Bm+3,m+1) m+2

= BIx2 e T B ot e
Var(X,,,.,) = ElX{p.p] = [ElX )" = 22m+3) 4 4@2m+3) " 4(n+2)’

SUMMARY

e The m.g.f. of the chi-square distribution is My(t) = (1-2™"2, | 2¢ | <1.

« X2 test of independence is used to examine whether the attributes are inde-
pendent or not

e The 95% confidence limits for the mean u for t-test are given by ¥ + £, o5(S/jn)

« The points of inflexion of F(v,, v,) distribution exist for v; > 4 and are
equidistant from the mode.

e For large value of n, (n is the degree of freedom). X2 distribution tends to
normal distribution.

e For n > 1, X2-distribution is +ve skewed.
e The probability curve for the ¢-distribution is symmetrical about the line ¢ = 0.

GLOSSARY

« chi-square Variate. The square of a standard normal variate is known as
chi-square variate.
e F-Variate. If X and Y are two independent chi-square variates with v, and
v, degree of freedom, then, the F-variate is defined by
Fe X /v,
Y/vy
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- . f X,G

NOTES has a non-central distribution with n.d.f.

REVIEW QUESTIONS

1. The sales in a supermarket during a week are given below. Test the hypothesis that the
sales do not depend on the day of the week, using a significant level of 0.05.

Days - Mon Tues Wed Thurs Fri Sat
Sales (in 1000 Rs.) : 65 54 60 56 71 84
2. A survey of 800 families with 4 children each revealed the following distribution :
No. of boys : 0 1 2 3 4
No. of girls ; 4 3 2 1 0
No. of families : 32 178 290 236 64
Is this result consistent with the hypothesis that the male and female births are equally
probable ?
3. Fit a Poisson distribution to the following data and test the goodness of fit :
x 1 0 1 2 3 4
7.4 109 65 22 3 1
4. The number of scooter accidents per month in a certain town was as follows :
12 8 20 2 14 10 16 6 9 4

Use chi-square test to determine if these frequencies are in agreement with the belief
that accident conditions were the same during 10-month period.
5. 500 students at school were graded according to their intelligences and economic condi-

tions of their homes. Examine whether there is any association between economic condi-
tion and intelligence, from the following data :

Economic conditions Intelligence
Good Bad
Rich 85 75
Poor 165 175

6. In an experiment on the immunisation of goats from anthrox, the following results
were obtained. Derive your inferences on the efficiency of the vaccine.

Died anthrox Survived
Inoculated with vaccine 2 10
Not inoculated 6 6
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8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A survey among women was conducted to study the family life. The observation were as
follows :

Family Life
Happy Not happy
Educated 70 30
Non Educated 60 40

Test whether there is any association between family life and education.

A sample of 300 students of under-graduate and 300 students of post-graduate classes of

a university were asked to give their opinion towards the autonomous colleges. 190 of

the under-graduate and 210 of the post graduate students favoured the autonomous

status. Present the above fact in the form of a frequency table and test that opinions of

under-graduate and post-graduate students on autonomous status of colleges are

independent.

The following values give the lengths of 12 samples of egyptian cotton taken from

a consignment : 48, 46, 49, 46, 52, 45, 43, 47, 47, 46, 45, 50. Test if the mean length of the

consignment can be taken as 46.

A sample of 18 items has a mean 24 units and standard deviation 3 units. Test the

hypothesis that it is a random sample from a Normal population with mean 27 units.

A random sample of 10 boys had the 1.Q’s 70, 120, 110, 101, 88, 83, 95, 98, 107 and 100.

Do these data support the assumption of a population mean 1.Q of 160 ?

The mean life of 10 electric motors was found to be 1450 hrs with S.D. of 423 hrs. A

second sample of 17 motors chosen from a different batch showed a mean life of 1280 hrs

with a S.D. of 398 hrs. Is there a significant difference between means of the two samples ?

A group of 10 boys fed on diet A and another group of 8 boys fed on a different diet B

recorded the following increase in weight (kgs).

Diet A : 5 6 8 1 12 4 3 9 6 10

DietB : 2 3 6 8 10 1 2 8

Does it show the superiority of diet A over the diet B ?

To compare the prices of a certain product in two cities, 10 shops when related at ran-

dom in each town. The price was noted below :

City 1 : 61 63 56 63 56 63 59 56 44 61

City2 : 655 54 47 59 51 61 57 54 64 58

Test whether the average prices can be said to be the same in two cities.

The average number of articles produced by two machines per day are 200 and 250 with

standard deviation 20 and 25 respectively on the basis of records of 25 days production.

Can you regard both the machines equally efficient at 5% level of significance ?

The change in sleeping hours of 7 patients after taking a medicine are as follows :
0.7,0.1,-0.3,1.2, 1.0, 0.3 and — 0.4 hrs.

Do these data give evidence that the medicine produces additional hours of sleep ?

[Hint. | ¢ | = 1.439]

The daily wages in Rupees of skilled workers in two cities are as follows :
Size of sample of workers S.D. of wages in the sample
City A 16 25
City B 13 32

The standard deviation calculated from two random samples of sizes 9 and 13 are 2.1
and 1.8 respectively. Can the samples be regrated as drawn from normal populations
with the same standard deviation ?
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Probability and 19. LetX, X, ... » X, be n independent variates, X, having a geometric distribution with
Distribution Theory parameter p,, i.e., P(X;=x) = ;%! Diiy=1l-px,=1,23,...

Show that X, is distributed geometrically with parameter (1-q, q, ...... q,)

NOTES 20. For a random sample of size n from a continuous population whose p.d.f. p(x) is sym-
metrical at x = y, show that f,(4 +x) = frrs1(n = x), where £(.) is the p.d.f. or X

"
1 :
21. Show that thec.d.f. of the mid-point (or mid-range) M = = X, + X,,,], in random sample
of size n from a continuous population with ¢.d.f. F(x) is :

Fim)=P(M<Sm)=n jm (F2m - x) - FI"! . flx) dx

FURTHER READING

1. Introduction to probability and Mathematical Statistics: V.K. Rohatgi: Wiley Eastern.
2. Discrete Distributions: N.L. Johnson and S.Kotz, John Wiley and Sons

3. Continuous Univarate distributions-1: N.L.Johnson and S.Kotz

4. Continuous Univarate distributins-2: N.L.Johnson and S.Kotz, John Wiley
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APPENDIX

STATISTICAL TABLES

Table I: Area under the Normal curve from 0 to z = @ (z)

z | 000 |001 [002 |003 0.04 0.05 006 | 007 008 | 0.09

0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319| 0.0359
0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714| 0.0754
02 | 00793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141
03 | 01179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480| 0.1517
04 | 01554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879
0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 02123 | 02157 | 02190 | 0.2224
06 | 02258 | 02291 | 02324 | 02357 | 02389 | 02422 | 02454 | 02486 | 02518 | 0.2549
0.7 | 02580 | 02612 | 02642 | 02673 | 02704 | 02734 | 02764 | 02794 | 02823 | 0.2852
08 | 02881 102910 | 02939 | 02967 | 02996 | 03023 | 03051 | 0.3078 | 0.3106 | 0.3133
09 | 03159 | 03186 | 03212 | 03238 | 03264 | 03289 | 03315 | 0.3340 | 03365 | 03389
10 | 03413 | 03438 | 0.3461 | 0.3485 | 03508 | 03531 | 03554 | 03577 | 0.3599| 0.3621
1.1 | 03643 | 03665 | 03686 | 0.3708 | 03729 | 03749 | 03770 | 03790 | 03810 0.3830
12 | 03849 | 03869 | 03888 | 0.3907 | 03925 | 03944 | 03962 | 0.3980 | 03997 | 04015
13 | 04032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 04115 | 04131 | 04147 | 04162 | 04177
14 | 04192 | 04207 | 04222 | 04236 | 04251 | 04265 | 04279 | 04292 | 04306 | 04319
15 | 04332 | 04345 | 04357 | 04370 | 04382 | 04394 | 0.4406 | 04418 | 04429 | 04441
16 | 04452 | 04463 | 04474 | 04484 | 0.4495 | 04505 | 04515 | 04525 | 04535 | 0.4545
17 | 04554 | 04564 | 04573 | 0.4582 | 0.4591 | 04599 | 0.4608 | 0.4616 | 0.4625 | 0.4633
18 | 04641 | 04649 | 04656 | 0.4664 | 04671 | 04678 | 0.4686 | 04693 | 04699 | 0.4706
19 | 04713 | 04719 | 04726 | 04732 | 04738 | 04744 | 04750 | 04756 | 04761 | 04767
20 | 04772 | 04778 | 04783 | 04788 | 04793 | 04798 | 0.4803 | 0.4808 | 0.4812| 0.4817
04821 | 04826 | 04830 | 04834 | 0.4838 | 0.4842 | 0.4846 | 04850 | 0.4854 | 04857
04861 | 04864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 04881 | 0.4884 | 0.4887 | 0.48%0
04893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 04906 | 0.4909 | 04911 | 04913 | 0.4916
04918 | 04920 | 0.4922 | 04925 | 04927 | 04929 | 04931 | 04932 | 04934 | 04936
04938 | 04940 | 0.4941 | 04943 | 04945 | 04946 | 04948 | 0.4949 | 04951 | 0.4952
26 | 04953 | 04955 | 0.4956 | 0.4957 | 04959 | 04960 | 0.4961 | 0.4962 | 04963 | 0.4964
27 | 04965 | 04966 | 0.4967 | 0.4968 | 04969 | 04970 | 04971 | 04972 | 04973 | 0.4974
28 | 04974 | 04975 | 04976 | 0.4977 | 04977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981
29 | 04981 | 04982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986
30 | 04987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990
3.1 | 04990 | 04991 | 0.4991 | 04991 | 0.4992 | 0.4992 | 0.4992 | 0.4992 | 0.4993 | 0.4993
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Probability and

Distribution Theory
Table II : Values of t_ %
e o v o =0.10 a = 0.05 a = 0.025 o = 0.01 a = 0.005
1 3.078 6314 12.706 31.821 63.657
2 1.886 2920 4303 6.965 9.925
3 1.638 2353 3.182 4541 5841
- 1.533 2132 2.776 3.747 4,604
5 1.476 2015 2571 3365 4032
6 1.440 1.943 2447 3.143 3.707
7 1415 1.895 2365 2.998 349
8 1397 1.860 2306 2.89 3355
9 1383 1.833 2262 2.821 3250
10 1372 1.812 2228 2.764 3.169
11 1.363 1.79 2201 2718 3.106
12 1356 1.782 2179 2681 3.055
13 1350 L771 2.160 2650 3012
14 1345 1.761 2.145 2624 2917
15 1341 1.753 2.131 2602 2947
16 1337 1.746 2120 2583 2921
17 1333 1.740 2.110 2567 2898
18 1330 1.734 2.101 2552 2878
19 1328 1.729 2,093 2539 2.861
20 1.325 1.725 2.086 2528 2.845
21 1323 1.721 2080 2518 2.831
22 1.321 1.717 2074 2.508 23819
23 1319 1.714 2069 2.500 2.807
24 1318 1.711 2064 2492 2.797
25 1316 1.708 2.060 2485 2.787
26 1315 1.706 2.056 2479 27719
27 1314 1.703 2052 2473 2m
28 1313 L701 2048 2467 2763
29 1311 1.699 2.045 2462 2.756
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Table III : Values of x? with level of significance o

and degrees of freedom v

v 0 095 050 | 03 | 02 | omw0 00s | om
1 00002 | 0004 046 | 107 164 | 27 384 6.64
2 0,020 0.103 139 | 241 32 | 460 599 921
3 0.115 035 237 | 366 464 | 625 782 | 1134
4 030 071 336 | 488 599 | 778 949 | 1328
5 055 1.14 435 | 606 720 | 924 1107 | 1509
6 087 1.64 535 | 13 856 | 1064 1259 | 1681
7 124 217 635 | 838 980 | 1202 1407 | 1848
8 165 273 734 | 952 | 11.03 | 1336 1551 | 2009
9 2.9 332 834 | 1066 | 1224 | 1468 1692 | 2167

10 256 394 934 | 1178 | 1344 | 159 1831 | 2321
1 305 458 1034 | 129 | 1463 | 1728 1968 | 2472
12 357 523 1134 | 1401 1581 | 1855 2103 | 262
13 41 589 1234 | 1512 | 1698 | 1981 236 | 2769
14 466 657 1334 | 1622 | 1815 | 2106 2368 | 29.14
15 523 726 1434 | 1732 | 1931 | 2231 2500 | 3058
16 581 796 1534 | 1842 | 2046 | 2354 2630 | 3200
17 641 867 1634 | 1951 | 2162 | 2477 2759 | 3341
18 7.02 939 1734 | 2060 | 276 | 259 2887 | 3480
19 763 10.12 1834 | 2169 | 2390 | 2720 3014 | 36.19

2 826 10.85 1934 | 278 | 2504 | 2841 3141 | 3757

21 890 11.59 2034 | 238 | 2617 | 2962 3267 | 3893

y2) 9.54 1234 2134 | 2494 | 2730 | 3081 3392 | 4029

B 1020 13.09 234 | 2602 | 2843 | 3201 3501 | 4164

4 10.86 1385 2334 | 2710 | 2955 | 3320 3642 | 4298

2 1152 14.61 2434 | 2817 | 3068 | 3468 3765 | 4431

% 1220 | 1538 2534 | 2925 | 3180 | 3556 3888 | 4564

27 12.88 16.15 2634 | 3032 | 3291 | 3674 40.11 | 4696

23 13.56 1693 2734 | 3139 | 3403 | 3792 4134 | 4828

2 14.26 17.71 2834 | 3246 | 3514 | 3909 4256 | 4959

30 1495 1849 2034 | 3353 | 3625 | 4026 4371 | 5089
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