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OBJECTIVES

After going through this chapter, you should be able to:

o describe random experiment
. erplain sample space

o know about algebra of events

o know probability of an event

' o know about'Odds in favoul aDd odde against an event

o know about adtlition theorem
o know about conditional probability and iadependent wents
. know about probabiliW naas function and probability density function

. know mean and variance, Joint and marginal probability mass function

o know about two dimensional dishibution function and sto€hastic independence.
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1.3 Event
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1.8 IndependentErperiments
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f .11 Marginal Distributiou Function
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. Further Readingis
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.. The words Probability' and .Chance' are quite famihar to everyone. Many atimes, we come across statements like ..probably ii may rain today',, Chances of hisvisit to the university are very few", "It is possibie that Le may pass the examinationwith good marks". In the above etatements, the words probab iy, chonc", possi.ble etc.,convey the sense ofuncertainty about the occurrence of eome event. ordinariry, it mayappear that there cannot be any exact measurement for these uncertainties, but inMathematics, we do have nethods for calculating th" d"gree of ce"tainty ofevents innumerical valuee, provided certain conditione are satisfiJd.

t.{ FTRODUCTTON

I.2 PROBABILITYAS A sET FUITIGTIoN

A random experiment is also known as
non-determinietic experirnent.

a probabilistic experirnent or as a

, Remark l. A die is a emall cube used in gambling. On its six faces, clote are marked as
anown below :

. . - ]]r9 theoV of probability which closely relates the theory of sets, was proposed
by A.N. Kolwogorov, a Russran mathematician in 1938. To understand the concept of
"Prohs6i1itrt .r a set function, we need some basic terminology of various terrns, like
randorn experiment, descrete and continuous sample spacel simple event, possible
and impossible event. Now, we discuss all these teims siated above in the {bllowins
sections.

Random Experiment
m-"1 y" perform experiments in science and engineering, repeatedly under

very nearly identical conditions, we get almost the same r-esult. such experiments arecalled deteminietic experinente.
Ther.e also erist experimente in which the results may not be essentially the

eame even ifthe experiment is performed under very nearly identical conditions. Such
experirnents are called random experiments. If we toss a coin, we may get,heacl, or.'tail'. This is a random experiment. Throwing ofa die is also a random exf,eriment as
any ofthe six faces ofthe die may come up. In this experirnent, there are six possibili_
ties (l or 2 or 3 or4 or b or6).

l . I l. .l |;; F--l trn F;;l| | | I I I lo ol lo ol l.ool
Numbers on a dis

Plural ofthe word die is dice. T'e outcome ofthrowing a die is the number ofdots on its
upper rnost face.

Renark 2. A poc,t of cords consists of four suits called Spodes, Hea s, l)iamonds nnd
Clubs. Dach suit consists of 13 cards, of which nine carde are oombered from 2 to 10, an ace, a
king, a queen and a jack (or knave). spades and clubs are black faeed cortls, while hear.ts and
diamonds are red foced cords. The kings, queens andjacks are called face cards.

Sample Space
The sanple space ofa random experiment is defined as the set ofall possible

outcomes of the experirnent. The possible outcornes are called sample points. The



sample space is generally denotcd by the letter S' The number of sample points in the

"".pr" "p"." 
s i denoted by n(S). A sample epace is c alled d,iscrew.lf it contains only

finitely many points and which can be arranged into a simple sequence tD1' $' """' '

We liet the sample space of some random experiments'

2. Tossing of unbiased coin twice S = HH, HT' TH' TTI

In S, the samPle point HT repreeent tead'on firgt togs and tsil on second toee'

3. Tossing of two unbiased coins S = (HH' I{t, TH' TT}

In S, the eample point [If represent tread on first coin and 'tail' on eecond coin'

4. Tossing of tbree unbiased coins S = {HHH, HHT, IITH' THH' HTT' THT'

Random ErPeriment
1. Tossing ofan unbiased coin S = (H' T)

Sanple Space

5. A family of two children

TTH, TIT}*
S = (BB, BG, GB' GGl.

In S, the eample point BG represent elder child,'Bo/ and youDger child'Girl"

In S, the sample point (1, 2) represent the situation that 1 appeared on the first

die and 2 on the eecond die. Thia sample space hae 6 x 6 = 36 sample points'

Note. The sanple sgncfdfa random erperinent is eitber 6nite or infinita' In our pr€8ent

6. Throwing of a fair die

?. Throwing of two fair die

S = tl,2, 3, 4' 5, 6).

S = (1,1) (1,2), (1,3), (1'4)' (1' 5)' (1, 6)'
(2, D, Q, 2\, Q, 3\, (2, 4), Q, 5)' (2' 6)'
(3, 1), (3, 2), (3,3), (3' 4)' (3, 5), (3' 6)'
(4, 1), (4, D,Q,$,(4,0,Q' 5), (4,6),

(5, 1), (5, 2), (5, 3), (5,4), (5' 5)' (5' 6)'

(6, 1), (6,2), (6,3), (6,4) (6,5), (6' 6)).

(ii) 2 balls
(iu) 4 bolls ?

course, we ehall reEtrict ourselves only to finite aample epacer'

ILLUSTRATIVE EXAMPLES

Erample !. A bag containe 4 red balte. What is the satnple sporc if thz rond'om

erperiment consists of choosing :

(i\ 1 ball
(iii) 3 balle
Sol. Let the red balla be denoted by \' $, Rr and Rr'

(i) In this experiment, one ball ia drawn.

No. of etremente in S = {q = 4

.'. s = {nr' &, &, RJ.
(ii) In this experiment, two balls are drawn'

No. of elements in s=acz=ffi=e
... s = (RrRz, RFs, RBRI, R4q, RlR3' R2R1l.

(iii) In this experiment ; three balls are drawn'

No. of elernents in s = acs = !r# 
= o

S = (Rr&Ba, &RsR1, RsR1Rl RlRrRzl.

NOTES

*Ifn coins are tossed, then the number of elements in its sample space is equal to 2n'

k$-lnstnrctionalMatefial !
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Gi) one ball red and, ottc batt yellotu

(iu) In this experiment, 4 balls are drawn.
No. of elements in S = 

aCr 
= I

s = {Rr&RaRJ.

. nysmple 2.Abag contains J red and, 2 white balls. What is the sample space ifthe rand,om e*periment cowhts of drawing (i) orc ba (ii) tio balls from the bag ?
Sol. Let Rr, &, Rs, Wt, W, repreeent the red and white balls.
Total no. of balls = 3 + 2 = 5
(i) No. of elemente in the sample epace, S = 6C, 

= b
S = (Rr, q,q, w' w2l.

(ii) No. of elements in the sample space = 
sC2 

= i# = ,O

S = (RrRz, RrRs, RrWl, RrW, , &Rr, &Wr, BrWr, RaWr, RaW2, WtW2).

'.3 
EVENT

ILLUSTRATIVE EXAMPLES

An event of a random erperiment is defind as a eubset of the sample space ofthe random experirrent. If the outcome of an experiment is an element ofan event A,we say that the event A has ocsurred. An event ie called an elernentary (or simple)
event,. if it contains only one sample point. I" tfr" 

"*p"i-"nt of rolling a die, the
3vent 

A,_o! Setting 3' is a simple event. We write A, =(gl. An event is called aninposdble event, if it caD never occur. In the above exumpte, the event B = {Zl ofgetting'7' is an inpossible event. on ttre other hand, an event'which is sure to occur is
called a gure event. In the above example of rolling a die, the event C of getting anumber less than 7 is a sure event. A sure event is Jso called a certain event.

Erample l. Thcre are 2 ehildren in a family, nnd, the events that :
.(i-) 

both chiWrcn dre buls (ii) onty oru of the children is a girl(iii) therc is at least ottz girl (iv) thz old.er child, is a boy.
Sol. Here S = {BB, BG, cB, cc}.
(i) Let A be the event that both children are bovs.

Example 2. Az urn contains 4 red. and, 6 yellow balls. TIao balls are draun atrandom from the urn. Find, the number of elements in the sample space. AIso find the
number of elements in the event of getting :

A = tBBl.
(ii) Iet A be the event that only one ofthe children is a girl.

A = (BG, GBl.
(iii) Let A be the event that there is at leaet one girl.

A = {BG, cB, cc}.
(iu) Let A be the event that the older child is a boy.

A = {BB, BG}.

(i) both balls red
(iii) both balls yellow.



Sol. Total number of balls = 4 + 6 = 10.
No. of elerrents is S = no. of ways of selecting 2 balls out of10 balls

= no. of combinations of l0 thingE taking 2 at a time
l0x9

= tvcz = .----------:_ = 4b.

(i) Let A be the events of getting 2 red balls.

... No. of etements in A = aC, ,, 6Co= 
{i} ' r = O.

(ir) L€t B be the event of getting one red and one yellow balls.

.'. No. of elenents in B = oq r tC, =4x6=24.
(iii) Let C be the event of getting 2 yellow balls,

... No. of etemenrs in c =acox uc, 
= I,( f# = tu

Algebra of Events
We know that the events of a random experiments

are sets, being subsets of the sample space. Thus, we
can use set operations to form new events.

Let A and B be any two events associated with a
random experiment.

Ttre event of occurence of either A or B or both
is written as 'A or B' and is denoted by the subset A u B
of the sample space. In other words, Au B represents
the event of occurrence of at least one ofA and B.

The event ofoccurence ofboth A and B is written
as .A and B' and is denoted by the subset A a B of the
sample space. For simplicity the event A n B is also
denoted by'AB'.

WI/JA<- a.'e

The event of non-occurrence of event A is written
as 'not A' and is denoted by the set A , which is the
complement of set A. The event A' ie called the
complementary event of the event A.

W77)*e'

ILLUSTRATIVE EXAMPLES

Exanple l. A coin is tossed. twice. If A denotes thz euent "number of head.s b
odd" and B denotes the event "number of tails is at least otw '. Find the cases fauourable
tothe euentAa B.

So!. Here S = {HH, HT, TH, TTI
A = {HT, TH}, B = (HT, TH, I'T}

.'. A^ B = event of occurring both A and B

= IHT, THI.

WlVllt<-a,a

Probability

NOTES

SeU-lnstructional Materiol 5
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Exanple 2. 14" B and, C are thrce euents associnted, uith thc sample space S of a
randnm *perimznt. If A" B and C also denote the subsets of S representing these euents,
uhat are the sets rcpre\enting the events :

(i) Out of the three events, only A occurs
(ii) Out of the three euents, not tnore than two occur

Gii) Out of the three eventa, only onc occurs
(iv) Out of thc three events, eractll two events ecur
fu) Out of the three euents, at balt two euents occur.

SoI. (i) In this event, A occurs and B, C do not occur?
.'. Required event = An B'n C'.
(ii) In this event, all events do not occur simultaneously
.'. Required event = (An B n C)'.

(iii) In this event, either only A occur or only B occur or only C occur.
.'. Required event = (A n B' n C') v (A' n B rr C') u (A'^ B' 

^ 
C).

(iu) In this event either only A, B occur or only B, C occur or only A, C occur.
.'. Required event = (A n B n C') u (A' n B n C) u (A n B' n C).
(u) In this event, either only A, B occur or only B, C occur or only A, C occur or

all occur.

.'. Required event = (A n B n Cl u (A' n B n C) u (A n B' n C) r.: (A n B n C).

PROBABILTTYOFANE'YENT

Equally Likely Outcomes
The outcomes ofa random experiment are called equally likely, ifall ofthese

have equal preferences. In the experiment of tossing a unbiased coin, the outcomes,
'Head' and Tail' are equally likely.

Exhaustive Outcones
Ttre outcomes ofa random experiment are called exhaustive, ifthese cover all

the possible outcomes ofthe experiment. In the experiment of rolling a die, the out-
comes 1, 2,3, 4,5,6 are exhaustive.

I.4 PROBABILITY OF AN EVENT

Suppose in a random experiment, there are z exhaustive, equally likely outcome.
[-et A be an event and there are rn outcomes (cases) favourable to the happening ofit.
The probability P(A) of the happening of the event A is defined as:

Total nu.mber of cases favourable to tbe hoDoeninc of A m
Total nunber of erhaustive equally likely casee n

It may be observed from this definition, that 0 3 rn ( z.

.'. o<11 <t or 0<P(A) <r.n



The number of cases favourable of the non-happening of the event A is rr - rn .

.. P(notA)= n-tn -n -^ =l-L =1-P(A).nnnn

.'. P(A) + P(not A) = I t.e., P(A) + P(A) = r

If A is a sure event. then P(A) =
n
n = l and if A

happens to be an impossible event, then P(A) = 
q 

= 0.

From now onward, we shall always assume that the outcomes of any given
random experiment are equally likely unless the contrary is stated explicitely.

Probability as a Set Function
A Purely rnathematical definition ofprobability cannot give us the actual value

of P(A), the probabilityrof occurrence of the event A and hence, P(A) must be consid-
ered as a function defined on all events, To define P(A) ae a set function, we need a
d.otnain space which is the o-field B ofthe events, generated by S, a rcnge spoce which
is the closed interval [0, 1] on the real line snd a rule which assigns a value to every
element of the domain space B.

Definition. P(A) is the probability as a set function defined on a o-field B of
events if the following axiorns are satisfied.

(i) For each A e B, P(A) is defrned and P(A) ) 0 (axiom of non-negativity)
(tt) P(S) = 1(axiorn of certainty)
(iii) For <An >, the sequence of disjoint events, we have

P(Ai) (axiom of additivity)

The set function'P'defrned on o-field B, satisfying all the above axioms is called
probability rneasure. The set (S, B, P) is known as the probability space. In our practi-
cal problems, S is taken as finite and the o-freld B is taken as the collection of all
eubsets of S.

{.5 CONTINUITY AXIOM OF PROBABILIW

Let B' Br, ..., B,, ... be a countable sequence of events satisfying the following:
(i) B,*, c (Br (i = L,2,3, ...)

tiir i B, =q

In words, (i) means that each succeeding event implies the proceeding event
and (ii) means that the simultaneous occurrence ofall B, is an impossible event, then

Lt P(B" ) = 0.

I.6 BOREL.GANTELLI LEilIMA

Let <d> be a sequence ofevents. Let A be the event "that an infrnite number of
An occur". This means that roeA ifoeA- for an infinite number ofvalues ofz (but not

"[q,^,.l=i\.-J t ej

Probability

NOTES

Self-lnstructionalMaterial 7
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necessarily every z). The set of such ro is denoted by Lt sup An or I Az. Thus, the
event A 4that an infinite number of An occurt is denoted by Lt A,,".

Statement of Borel.C ontelll Lernma
Statement. Z€t A t Az .-, Aobe a sequcnce of euents on the probability space

(5, B, P) and if
Lt A, = A, thzn we haue

P(N = O, prouided > pA") < *
n=I

In words, it states that ifi P(A) converges with probability one, thzn only a

finite nutnber of Ap A2, ..,, A^ occur.

Proof. Given tt 4=e + we can write

e=LtA"= n- U A, + Ac [J A_ foreveryn.
n=t m=t

This impliee for each n, P(A) < > P(A.)

Now we are given that Z P(A,) is convergent, therefore, ) pte_), being the
,l m=a

remainder term of a convergent series t€nds to zero as z -+ -. Hence p<el < i e<e," I

-+ 0 as n -r 6 + P(A) = 0. Hence the theorem.

Converse of Borel-Contelli Lenn'na
Statenent. Iat <A,> be a sequence of indcpendent euents on the probability

space (5, B, P) and if Lt An = A. Then

p(A) = r, prouid.ea I efe,l = -

n(rn > n), we have

.fl Ar c.fl Ar
t=n E=i

lAcB=+P(A)<P(B)

4,, 4-r, ... \ are independent events

= fn, E"*r,...,I,n are also independent events

r.=1

Proof. Let E, denotes the complement of A, i.e., a-, = S - A,. For any rn,

/- - \ /nr- \+ Pl.1-l Ar lsPl .n Aa I
\i=n / \ll=n )

=.n P(A*)



= p f 6 r,'l . .fr (1- p(Ar)) < .fi ,-nrert = ,-I 
t'^"

\A=n ') h=L " l=n

tto' i rre*)=-

+ | eteul-* aa rrl -)€

- ! pre.r
.'. e.-^ --r0 aa nz-+-

/- - \.'. From (1), Pl n Ar | = 0\t=r l

Also, e= fr 0 a.
,t=1I=r

+ f=0frA.
,r=l l='r

: r/--\+ PG)<t Pl n Ar l=o * qIl = o
7=' \r=a -'l

+ 1- P(A) = 0 + p(A)=l
Hence the theorem.

...( 1)

l1-r<e-'Vr>0

lgiven

...Q)

I De-Morgan's Law

I Ueing (2)

Ptobabilitl

NOTES
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Statement. If Ar Ae ..., An ... are ind.ependznt and. if E belongs n the futd,
gen2rated by the class (A* Ao4, .) for euery n, thcn p(E) = O or I.

Pnoof. Ttre proof directly follows from Borel-Cantelli lernura.
Eronple. Find the probability that in a aequence of Bernouli trials with

probability of sttcceee p for earh trial, tlu pdttcrn sFS, wlure s dcwtcs surcess and. F
dcratcs failurc, appeare infinitely of tzn ?

Sot. L€t A, be the event that the hial number n = h,h + l, & + 2, generatee the
sequence SFS (fr = 0, 1, 2, ...). tben the wents Ao are not nrutually independent but the
sequence A' d, Ar, A1e, ...-. contains ooly mutually independent events. (As zo two of
tlrem do not depend upon the outrome of the same tf,ial8).

Also PGr) = P(SF$ = p<tp = p2q = p[, is indepeadent of& and hence the
aeries p, + p1+ p7 +..., diverges.

By converse of the Borel-cantelli theorems, the pattei:r SIT! appears inffnitely
often with probability one.

S.lfJntE Gtiorol ltot dal I
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ILLUSTRATIVE EXAMPLES

Erample l. Three coins are tossed simultaneously. Write the sample space o.ncl

tlu probabilities of getting (i) no head and. (ii) ttto heads.

Sol. Here S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TtT}

(i) P(no head) = F({T*" 4( lTrI) Irr,, =__;Gr_ =E-.

(ii) P(two heads) = P(IHHT, IITH. THH)) = I .
tt

Renrrk For the sate of aimplicity, P({TIT}) is writt€n ae P(T|T).

'Odds In Favou/ And'Odds Against'An Eveat

Let A be an event ofa random experiment. The ratio P(A) : P(A) is called the
oddg in favour ofhappening ofthe event A. The ratio Pd) : P(A) is called the odds
againat the happening of the eveat A.

Let odds in favour of an event A be rrr : n.
I,et P(A)=p. :. p:L-p= alp

p m m ."-., p(Al= m+ t_p=; - np= m-mp + p= fr; r., 
^*n

.'. If odds in favour of A are m : n, then P(A) = 
t 

.m+n
Similarly, ifodds againgt A are m : n then odds in favour ofA are n : rz and P(A)

=o.n+m
Remar}. Odds in favour of event A are same as odda againat the complement A' of A

and uis verw.

WORIING RI'I,ES FOR SOLVING PROBLEMS

I. Find the nurnber of elements in the sample space S of the given random
experiment. Write the eample space, if it is feaeible to do so.

II. Out of the elements of the sample space, identify the elements which are
favourable to the event, A (say), whose probability is required. Write the
event Ao if it is feasible to do so.

III. Divide n(A) by n(S). this is equal to the required pmbability, P(A).

Example 2.A bag' contains 5 white,7 blach and 8 red balls. A ball is drawn at
random, Find thc probability of gefting :

(il red boll G rcn-white ball Qii) uhite ball or
black ball.

Sol. No. of white ba[s = 5
No. ofblackballs =7
No, ofred balls = I
,', Total number ofballg = 5 + 7 + 8 = 20.
(i) Let R = event of getting red ball

,(Pr 8 2;. P(red ball) = P(R) = + = - - -nrJ) 20 - 5'

5 White
7 Black
8 Bed



(tt) Let W = event of g€tting whit€ ball

.'. P(non-white ball) = P(W) =
no. of norrwhite balls 7+8=n=total no. of balls

(jii) Lct A = event of getting a white ball or a black ball

.'. P(white ball or black ball) = P(A) = "111 = 
5!-7 

- -r2 3\uilur_!\Ar_,r(S) = m =20=5,

Erample 3. Find the probability thot a lzap year, sel.ected, at rand,om, will con-
tain 53 sund,ays.

Sol. Ttrere are 366 days in a leap year. Now, 366 = 7 x 52 + 2.
.'. Ttris leap year will contain at least 52 sundays. Ihe possible combinations

for tJ:e remaining two da;n are :

(r) sunday and rnonday (ii) rnonday and tuesday
(iii) tuesday and wednesday (iu) wednesday and thursday
(u) thursday and friday (ui) friday and saturday

(uii) saturday and sunday.
Let A be the event ofgetting 53 sundays in the leap year. Ttrerefore, only drose

combinatione will be favourable to the event A which contain .sunda;/.

.'. Ttre combinations (i) and (uii) are favourable to the happening ofA.

... p(A) =
2

ADDITIONTHEOREMS

Mutually Exclusive Eventg
T\ro events associated with a random experiment are said to be nutually

erclusive, if both cannot occut together in the sane trial. In the experiment of thmwing
a die, tlre events A = [1, 4] and B = 12,5,61are nutually exclusive events. In the sarne
experiment, the events A = (1, 4l and C = (2, 4, 5, 6l are not mutually exclusive because,
if4 appear on the die, then it i8 favourable to both events A and C. The definition of
mutually exclusive events can aleo be extended to rrore than two events. We say tl'at
more than two events are mutually exclusive, if the happening ofone of theee, rules
out the happening of all other events. Ttre events A = [1, 21, B = (3] and C = {6}, are
mutually exclusive in connection with t,he experiment of tbrowing a single die.

n eventg Ar, \, -.--.., An associated with a random experiment are said to
mutually erclueive eventa if{ n A, = Q for all r, j and i + j.

For example, let a pair of dice be tlrrown and let A B, C be the events that the
sum is 7, sum is 8, sum is great€r than 10 respectively,

... A = l(r,6\, (2,5), (3,4), (4,3), (5, 2), (6, 1)l
B = ((2, 6), (3, 5), (4,4), (5,3r, (6,2)l

and C = {(5,6), (6,5), (6,6)
Ttre events A, B and C are nutually exclueive.
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NOTF,s

A kuJnrtrwTiarral Uatciol

Pmbobility and Exanrple. Tlto dice are rolled.. A is the euent thqt thp sun of the numbere shanrn
Distribution Theort^ on the two d,ice is 5. B is the euent that at least one of the dice show up a 3. Are the two

events A and. B (i) mutually exclusive, fti) erhaustiue ? Giue argumente in support of
lour atu;wer,

Sol. Here S = l(1, 1I (1,2), (r,3),......., (6,5), (6,6)
We have A = l(1, 4), (2, 3), (3, 2), G, t)l

and B = (3, 1), (3,2), (3, 3), (3,4), (3, 5), (3,6), (1,3), (2,3), (4, 3),
(5, 3), (6, 3))

iii The events A and B are not mutually exclusive b€cause (2,3), (3, 2) lies in
both A and B.

( ii) The events A and B are not exhaustive because there are same elements in S
(like (1, 1), (1, 2), (1, 6)) which are neither in A nor in B.

Addition Theorem (For Mutually Erclusive Events)

Statemont. If A and B are two mutually erclusiue euents aesociated. wi'th a
random *periment, thcn

P(Aw B) = P(N + P(B).

hoof. Let r be the total number of exhauetive, equally likely csses of tJre

experimeDt.
I"et ne, and nr, be the number of cases favourable

to the happening of the events A and B respectively'

.'. P(A) = 4! anil PlJ.) = b.
nn

Since the eveDts are given to be mutually
erclusive, therefore, there cannot be auy sample point
common to both events A and B.

.', fire event A w B caa happen in exactly rnt + mzwaye'

... p(AvB) _Izr+nr2 =9.*b =p(A)+p(B).nnn
Hence, P(A w B) = P(A) + P(B).
Remar{r. firis theorem can also be extended to m@ than two eveots.

tbeorom L If A, B, C are three Lutuall! erclusive euents assor;htcd with a
rond.orn experiment, then P(Av B v C) = P(N + P(B) + P(C).

Proof. A B, C are mutually exclusive elements'

AnB=Q,BnC=0,A^C=0.
Itre bave A n (B v C) = (A n B) w (A n C) = 0 v 0 = 0

.'. the events A and B \., C are mutually exclusive,

:. By additinn tleotem, we have

P(Aw (B w C)) = P(A) + P(B w C)

= P(A) + (RB) + P(C))

(By applyins addirinn thcorcm, for the rn-e. events B and C)

.'. P (t,wB vC) - P(A) + P(B) + P(C).

s
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Theorem ll, If A and B be two events associated, with a random etperitnent,
thzn thow that :

G\P(Aar)=P(B)-P(A^B)
tii\ P(Ar\E) = PA) -P(A r\B).

Proof. (i) t En B) u (A 
^ 

B) = (E u A) n B
=SnB=B ...(1)

Also (f rrBln(AnB)=(f 
^A).\(B^B)

=0nB=0
.'. Ttre events E n B and A n B are nz.e.

\V addition thzorem, we have

P((f n B)w (A n BD = P(A n B) + P(An B)

+ P(B)=P(I 
^B)+(p^B)

+ P(l n B) = P(B) - P(A n B),

(rt) (A.r E)t.l(A^B)=An(B- uB)
=AnS=A

Alqo (A^B)^(A^B)=(AnA)n(FnB)
=An0=d.

.'. 'fhe evente A n B- and A n B are nr.e.

.', By a.ddition theorern, we have

P((A r\ F)u(A^B))=P(An E)*p(lnB)

N-o.'t
Nl*A.,t

(Using (r))

...(1)

P(A)=P(Ann-)+p(eng) N+_n.!6
(Using (1))

P(A.' B) = P(A) -P(AnB).

WORI{ING RI]LES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample space S of the given random
experiment. Write the sample apace, if it is feasible to do so.

II. Designate the events as A and B the probability ofwhose union, A v B is to
be found out. Out of tbe elernents of the sample space, identify the ele-
ments which are favourable to the events A and B both.

III. Make sure that the events A and B are mutually exclusive, i.e., the set
A n B is the empty set.

IV. Use P(A w B) = P(A) + P(B). this gives the required probability.

ILLUSTRATIVE EXAMPLES

Eranple l. Tlw probability thnt a bread prepared in a hotel is weII bakzd is
O.81 and tlwt it will have cufftrient prctains is 0.54. Again the prcbability that it has
both is 0.78. Find, thc probobility that a well-bahed bread. will antain sufficiznt pro-
teins.

N*n.'e

Prcbability

NOTES

SeU- I nstructionol Moteri. lt



Pmhqhilirv and
Distrib tion Theon

NOTES

14 SelfJnfltuctioaal Marerhl

Sol. Let A = The event that a bread ia baked

B = The event that a bread has sufrcient protcins.

Given P(A) = 0.81, P(B) = 0.54, P(A n B) = 0.18.
. Required probability that a well baked bread will contain sufrcient proteins

P(A w B) = P(A) + P(B) - P(A 
^ 

B)

= 0.81 + 0.54 - 0.18 = 1.17.

Example 2. ?ftere are three events A" B, C one of which must happen and only
onz can happen ot a time. The od.ds are I to 3 against A" 5 to 2 ageirct B, ft.nd thz odds
agai8t C.

Sol. The given events A, B and C are mutually exclusive and exhaustive.
;. P(AuBvC)=P(A)+P(B)+P(C) andP(Av BwC)= 1

;. P(A) + P(B) + P(C) = 1 ...(1)

Odds against A are 8 :3. .'. P(A) = ;t, = *
Odds against B rtresii- .'. P@=+ =Z5+2 t

x 2 e 2 77-21-22 34;. (1) + i+i+P(c)=1 + P(C)=1-i-i= , =A

.'. oddsagainstC =P(e):P(c) =r-#, u9!=#,fi =na,so.

N)DITION THEONDM (GENERAL

Statenent. If A and B are two euenta not necessarily mutually exclusive,
asseiated. with a rand.om eryeriment, then

P(A w B) = P(A) + P(B) - P(A rt B).

Proof. Lct z be the total number of exhaustive, equally likely cases of the
experiment.

Let rn, and m, be the number ofeas€s favourable to
the happening of the events A and B respectively.

... p(A) = 5 anrl p(B)= 2.
nn

Since the events are given to be not necessarily
mutually exclusive, there nay be some sample points
common to both eYents A and B.

Let zr. be the number of these common sample points. rn, will be zero in case
A and B are niutuallv exclueive.

.'. P(AnB)= E.
n

The rn. sample points, which are common to both events A and B, are included
in the events A and B separately.

.'. Number of sample points in the event A u B = mr + ,nz- tnl,.

m, is subtracted from m, + n, to avoid counting of common sanrple points twice.



j. P(Au B)= 7\+m2-n4 
=\+9-4 =1,1A)+F(B)-RAn.B).nnln

Hence, P(A v B) - P(A) + P(B) - p(A n B).
Corollary. If events A and B happen to be mutually exclusive events, then

P(A n B) = 0 and in this case addition tluorcm impliee
P(A w B) = P(A) + P(B) - P(A n B) = P(A) + p(B) - 0 = p(A) + p(B)

T?ris is tlre same as t}r'e addition theorzra for mutually exclusive events.
Remark This theorem can also be ext€nded to more than two eventg.

Tfreorem I. If 4 B, C are thrce euents associ.atcd, with a random expeiment,
tlen

P(A w B v C) = P(A) + p(B) + p(C) - p(A n B) _ p(B 
^ 

C) _ pA 
^ 

C)

+P(AaB aC).
ProoL Considering B u C' as one event and applJring addition theorem to the events

'A' and 'B w C', we have

P(A w B u C) = P(A r.,l (B w C))

= P(A) + P(B u C)- RA n (B u C))

= P(A) + (P(B) + RC) - P(B 
^ 

C)) - p((A 
^ 

B) r, (A 
^ 

C))
(By rr*ine, add,itinn theorcm for the etrents B and C)

= P(A) + P(B) + P(C) - p(B 
^ 

C) - (p(A 
^ 

B) + p(A^ C)

- P((A n B) n (An C)))
(By applying additinn thzorcm for the events A rt B and A n C)

= P(A) + P(B) + P(C)- P(B n C) - p(A nB) - p(An C)

+P(AnBnC)
('.' (AnB)n(AnC)= (AnA)nB nC =AnBnC)

.'. P(A w B u C) = P(A) + P(B) + P(C) - p(A 
^ 

B) - p(B 
^ 

C) - p(A n C)
+P(A^B^C).

WORrING RI'LES FOR SOLVING PROBI,EMST

I. Find the number of elemente in the sanple space S of tJ:e given random
experiment. Srrite the sample space, if it is feasible to do so.

II. Designate the events ag A and B the pmbability of whose union, A r..r B is
to be found out. Out of the elements of the eample space, identify the ele,
mente which are favourable to the events A and B both.

III. Writc the event A n B and find its probability.
fV. Use P(A u B) = P(A) + P(B) - (A n B). Ibis gives the required probability.

ILLUSTRANVE EXAMPLES

E:rample l. Frnd tle probability of 4 turning up for at least ottce in two &rrsea of
a fair diz.

Sol. Here S = ((r, t), (r, D,.......,(6, S), (6,6)).
I,Bt A = event ofgetting 4 on the first die

Ptubability
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Pnbqbilitv and and B = event of getting 4 on the second die.
Distributio, Ttrcd1. ... A= (4, 1), (4, 2),(4,3\,@,4),(4,5), (4,6))

and B = t(1' a), (2,4), (3,4), (4,4), (5' 4), (6,4)1.

NOTES ... p(A)_z(A)_ 6 _1 and p(B)=4?= 6 =1.n(S) 96 6 n(s) A6 6

The events A and B are not rn.e. because the sarnple (4, 4) is common to both.

.'. AnB=t(a,a)) .'. P(AnB)=]
JO

By addition theorern, the required probability of getting four at least once is

P(AtrB)=P(A)+P(B)-P(A^B)= I.I - + = 
tt''663636

Exanple 2,Two dice are thrown once. Find thz probability of getting an euen

nuntber on the first die or a total of 8.

Sol. Here S = {(1, 1), (1,2),......, (6,5), (6,6)}.

Let A = event of getting an even nurnber on the first die

and B = event of getting a total 8.

.'. A= tQ, L), (2'2), (2,3), Q,4), (2,5), (2,6)' (4' 1)' (4' 2)'(4,3)'(4,4)'
(4,5), (4,6), (6, 1), (6,2), (6,3), (6,4), (6, 5), (6, 6)l

and B = {(2,6), (3,5), (4' 4), (5, 3), (6, 2)
rR 1 5... P(A)===: and P(B)=*3tt z Jb

The events A and B are not rn.e. because the sample points (2, 6), (4, 4)' (6,2)
are common to both.

.'. A^B=((2,6),(a,4),(6,2)) .'. P(A^B)=* =;
By addition theorern, the required probability of getting an even number on the

first die or a total 8 is

P(Au B) = P(A) + P(B)- P(A n B) = 1- :-+ = I.23fjt29

Example 3.Aand B are two non-mutually erclusiue euents. If PA) = ) , CtAl

9'
= --; and. PA w B) = : , find the values of P(A n B) and P(A n B").

sol. we have ptA) = 1, p(B) = ?, p(Au B) = 14' 5 2
By o.d.dition theorem, P(A u B) = P(A) + P(B) - P(A n B).

.'. I= 1*2-P(A.'B)
2 45

.'. P(AnB)= i-?-i- !l# =*
We have, (An B")n (An B) =An(B" nB) = An4= 4

-'. Ttre events A rt B" and A 
^ 

B are mutually exclusive and
(A^8")r..l(A^B)=An(B"uB)=AnS=A (S is the sample space)

:. By adlition ttuorem, P(A)=P(AnB")+P(AnB).
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. +=ptAnB")+l4ZU

or P(AnB")=i-*=+
Example 4. A, B, C are euente such that P(A) = 0.3, P(B) = 0.4, P(C) = 0.8,

PAaD=0.08,P(AaC)=0.28,P(AnBnC)=0.02. If P(Aw B v C) 2 0.75, then find,
the minimum ualw of the probability of the event B 

^ 
C .

Sol. We have 0.75<P(AuBuC)<1.
Using addition theorem, we have

0.75 <P(A) + P(B) + P(C)-P(AnB)-P(Bn C)-P(An C)

+P(AnBnC)31
= 0.75 3 0.3 + 0.4 + 0.8- 0.08 - P(B n C)- 0.28 + 0.02 < I
= 0.75 < 1.16 - P(B .' C) < I
= 0.75 - 1.16 <-P(B 

^ 
C)< 1- 1.16

= -0.41 <-P(BnC)<-0.16
= 0.41 > P(B 

^ 
C) > 0.16

i.e., 0.16 < P(B n C) < 0.41.

.'. Minimum value of P(B n C) = O.16-

INDEPENDEI{I EVENTS

Introduction
In the present chapter, we shall study the method of evaluating probabilities of

events relating to independent events and independent experiments. We shall also
study random variables and their probability distributions.

Conditional Probability
Let us consider the random experiment of throwing a die. Let A be the event of

getting an odd number on the die.
... S = {1, 2, 3, 4, 5, 6} and A = {1, 3, 5}.

... P(A) = 
3= 1.
62

. Let B = {2, 3, 4, 5, 6}. If, after the die is thrown, we are given the information
that the event B has occurred, then the probability of event A will no more be ],
bbcause in this case, the favourable caaes are three and the total number of possible
outcomes will be five and not six. The probability of event A, with the condition that
event B has happened will be 3/5. This conditional probability is denoted as P(A/B).
Let us deline the concept of conditional probability in a formal manner.

Let A and B be any two events associated with a
random experiment. The probability ofoccurrence ofevent
A when the event B has already occurred is called the
conditional probability of A when B is given and is
denoted as P(A/B). T?re conditional probability P(A/B) is
meaningful only when P(B) + 0, i.e., when B is not an
impossible event-

Probobilitt'
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By definition,
P(A/B) = Probability of occurrence ofevent A when the event B as

already occurred.
No. of cases favourable tt B which are also favourable to A

No. of cases favourable to B

p(A/B) = 
No. of cases favourable to A n B

No. of cases favourable to B
No. of cages favourable to A n B

Also, P(A/B) =

No. of cases in the sample space
P{A ^ Rl... p(A/B) = :fi!fr, nrovided p(B) * 0.

Similarly, we have

P(B/A) = 
P(l I B). orovided P(A) + o.P(A) ''

Independent Events
Let A snd B be two events associated with a random experiment. We have

P(B/A) = 
P(4 

^ 
B) 

. provided P(A) * o.
P(A)

.'. P(A 
^ 

B) = P(A) P(B/A).
In general P(B/A) may or may not be equal to P(B). When P(B/A) and P(B) are

equal, then the events A and B are of special importance.
Two events associated with a random experirnent are said to be independent

events if the occurrence or non-occurrence ofone event does not affect the probabitity
ofthe occunence ofthe other event. For example, the events A and B are independent
events when P(A/B) = P(A) and P(B/A) = P(B).

Theorem II. Let A and B be euents associated with a rand.om experitnent. The
euents A and B are indzpendent if and only if P(A a B) = P(A) P(B).

Proof, Let A and B be independent events.

.'. p(A n B) = f 
Pe !,8) I p(B) = p(A./B) p(B)

\ P(ts) -/

(. eram, =+P)
('. P(A/B) = P(A))= P(A) P(B)

P(A n B) = P(A) P(B).

Convereely, let P(A n B) = P(A) P(B).
p/ { 

^ 
B) p(A) p(B) 

-, . ,.'. P(A/B) = +{E) =-Gt-=r(A,
PrB 

^ 
A) P(A n B) P(A) P(B)and P(B/A) = 

-': =-=-=P(B).P(A) P(A) P(A)
.'. P(A/B) = P(A) and P(B/A) = P(B).

.'. A and B are independent events.
R€;srk f. P(A 

^ 
B) = P(A) P(B) is the necessary and aulFrcient condition for the events

A and B to be indeDendent.

No. of cases in th---amtle space
--N;. oT cases-EGilAEb to B-



Prubabili4'Rernrrtr 2. let A and B be events asEociated with a random experiment.
(i) Let A and B be m.e. :- P(A n B) = 0

.'. P(A.r B) * P(A) RB) i.e-, A ard B are not independent events.

.'. Mutnally erclusive eveltt caDnot be independent-
{ii) IEt A and B be independent.

.'. P(A n B) = P(A) P(B) i.e., P(A n B) * 0.

.'. A and B ire not Eutually exclusive events.

.', Independent events camot b€ mutually ercluslvG.
Importeat observation. IfA and B be any two events associated with a random

experiment, then their physical description is not sufficient to decide ifA and B are
independent events or not. A and B are declared to be independent events only when
we have P(A n B) = P(A) P(B).

Dependerrt Everts
Let A and B be two events associated with a random experiment. IfA and B are

not independent events, then these are called dependent events.
.'. In case of dependent events, Ire have P(A n B) = P(A) P(B/A).

Multiplication Rule of Probability
IfA and B be any two events associatd with a random experiment, then we

have
P(A n B) = P(A) P(BYA).

This is called the multlplication rule of probability.
In particular, if the events A and B are independent, then the multipliration

rub of probability becomes

P(A^B)=P(A)P(B).
Theorem I. If A, B, C ore three euents aasocioted with a random experinwnt,

thcn
P(A a B n C) = P(A) P(B lA) P(C lA n B).

Proof. We have

p(c/A n B) = 
P(9n (A!B) 

- 
p(4.18 

tr.c)RA.\B) P(A^B)
.'. P(A n B n C) = P(A n B) P(C1A n B) ...(1)

Atso, P(B/A) = 
P(gnA) - PqlB)

P(A) P(A)

.'. P(An B) = P(A) P(B/A) ...(2)
(1) and (2) implies P(A n B n C) = P(A) P(B/A) P(C/A n B).
Definitlon. Three events A, B, C associated with a random experiment are

called independent ifA, B, C are pairrvise independent and P(A rr B n C) = P(A) P(B)
P(C).

Tlreorem II. Let A and, B be events dssociatzd with o random erperiment. If A

and B are ind,epend.ent, th.en shaw tha,t the events O ErB fti) A,E Oii) arE are also
independznt.

Proof. The events A and B are independent.
.'. P(A n B) = P(A) P(B) ...(1)

NOTES
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NOTES

2O Sef-lnstuction rl Malerial

,::,::;,i;::;::,^, (r) (AnB)n (AnB) = (Anr) n(B^B)=o^B=o
and (An B) u (AnB) = (AuD n B = S n B = B.

.'. The events A n B and E n B are n.e. and their union is B.

.'. By ad.dition theorem, we have P(B) = P(A n B) + Pd n B).

+ P(AnB) = p(B) - p(A 
^ 

B) = p(B) - p(A) p(B) (Using (1))

= (1 _ P(A)) P(B) = ptll ptsl

... pd n B) = 
pGo p(B) j.e., f and B are independent,

(ii) (AnB)n (A^E) = (AnA)n (B^B) = A n9= q

and (An B)u (AnE) =An (BuB) =A.rS = A.

.'. The events A n B and A n E are rn.e. and their union is A.
: . By add.ition theorent, we have

P(A) = P(A n B) + P(A 
^ 

B-).

+ na n El = P(A) - p(A n B) = p(A) - p(A) p(B) (usins (1))

= P(AXI - P(B)) = P(A)P(B)

.'. P(A 
^ 

B-) = P(A) P(E) i.e., A and 3- are independent.

(iii) (f n Bt n (A n E) = (e.l Et.l (S.' gl = a..' O = O

and fInS)u(AnE) =JntguB)=AnS=E
.'. The events A- n B and I n B- are nr.e. and their union is I.
:. By a.ddition theorem, wehave

P(A) = P(AnB)+RAnB) ...( 1)

+ P(A n B) = P(A) - P(A n B) = P(A) - P(A) P(B) (Using part (i))

= P(f)(1-P(B)) = P(A)P(E).

... ptI n El = p(J) p(B) j.e., I and B- are independent.

WORIilNG RI,JLES FOR SOLVING PROBLEMS

I. Find the number of elements in the sample paper S of the given random
experiment. Write ttre sample space, if it is feasible to do so.

IL Designate the events, as A and B whose 'independence' is to be checked.
Out of the elements of the sanple space, identi$ the elements which are
favourable to the events A and B. Also find. the event A n B.

Itr. Find P(A), P(B) and P(A 
^ 

B).

IV. Find P(A) P(B). If P(A) P(B) is equal to P(A n B), then declare that thc
given events A and B are independent events.

Exanple l.If A and B are independpnt events snch that P(A w B) = 0.6 and P(A)

= 0.2, find PB).



Sol. We have P(A u B) = 0'6 and P(A) = 0.2

By addition theorem, we have

P(Av B) = P(A) + P(B) -P(Aa B)

- P(A u B) = P(A) + P(B) - P(A) P(B)
(.. A and B are indePendent)

= 0.6 = 0.2 + P(B) - (0.2) P(B)

i 0.4 = P(B) (1 - 0.2)

= (0.8)P(B)=0.4 + rrnr=:f,=j=0.s.

Example 2. A pair of d'ice is thrown. A is the euent : "the sum is 8" and B is the

euent : "at least one odd number is obtaincd". Show that the euents A and B are d'ependent'

Sol. Let S be the samPle sPace.

.. S = {(1' 1), (1' 2), ......, (6,5), (6' 6).
A = {(2, 6), (3, 5), (4' 4)' (5, 3)' (6' 2)}

B = t(1, 1), (1,2), (1,3), (1,4), (1' 5)' (1,6)' (3' 1)' (3' 2)' (3' 3), (3,4)' (3,5)'

(3,6), (5, 1), (5,2), (5,3), (5,4), (5,5), (5,6), (2' 1)' (2' 3)' (2' 5)' (4, 1),

(4, 3), (4, 5), (6, 1), (6, 3), (6, 5)).

Er7:l
.'. P(A) = f and P(B)= 86 =;

27
Also, AnB= {(3,5), (5,3)}. .. P(AnB)= 96=18

535
P(Ar P{B) = *";= * + P(A n B). The events A and B are dependent.

INDE PENDEI\TT EXPERIMEI{TS

Prohability

NOTES

1.8 II{DEPENDENT EXPERIMENTS

Two random experiments are said to be independent if, for every pair ofevents

A and B where A is associated with the first and B with the second experimeht, the
probability of simultaneous occurrence of the events A and B, when the two experi-

ments are perforrned, is equal to the product ofthe probabilities P(A) and P(B) calcu-

lated separately on the basis of two experirnents.

The event'A and B' of simultaneous occurrence ofevents A and B is denoted by

A n B or more briefly as AB.

Illustration. Let E, and E, be random experiments ofthrowing a die and toss-

ing a coin respectively. Let S, and S, be their respective sample spaces.

.'. Sr = {1,2, 3, 4, 5,6} and Sz = {H, t}.
IfS represents the sample space ofcombined experiment ofE, and E, then

S = {lH, 2H,3H,4H, 5H,6H, 1T,2T,3T' 4T,5T,6T}.
The elementary events in each of E' F, and their combined experiment are

equally likely.

Self-lt'Jtrtrc!ional Moreritl 2l
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A = event of getting number less than 3, and
B = event of getting tail.

I€t

Also, AB = (lT,2Tl and

.'. P(AB) = P(A) P(B).

P(A)=rl4l=?=!
z(S1) 6 3 ' "61=-P,=j ""a

P(AB)= +#=*=

trrusRa)rrnr=jxj=|.

The above equality is not eufficient to infer that the experiments are independent,
belause bV defrnition, the experinents would be independent if the equality p(AB)
= P(A) P(B) holals for all possible events A in E, and B in Er.

Next, we prove a theorem which will lay down a criterion for the independence
of experiments.

Tlreorem lII. If the occurrence or non-occunence of an euent in one rand.om
experimznt das nnt in ang way affect thz probabitity ofthz occunence of any euent in
thz othcr rand,orn erpeimcnt, thzn thz erperimznts are indzpend.ent.

Proof. since the occ'rrence or non-occurrence ofan event in trre fif't experiment
is not affecting the probability of occurrence of any event in the second 

"*p".i-"nt,the sample spaces of the experiments are not affect€d by the events.
Let z, and z, be the numbers of elementary events in the first and second

expreriment respectively.

Let A and B be any events associated with first experiment and second
experirnent respectively.

, Let n, be the.r-rumbe-r of casea favourable to the happening to the event A out ofz, exhaustive, equally likely cases of the first experiment.

"' P(A) = 3t
nL

, Letz, be the.r-rumber of cases favourable to the happening ofthe event B out of
n 2 exhaustive, equally likely cases of the second experiment.

... p(B=g
nQ

By the Fuqdamental principle of evente, the number ofcases favourable to
the happening of the event A! in- this specified order is rzrmr. Also the number of
elementar;r events in the combined experiment is nrnr.

;' P(AB1= mtnh 
=mr .n4 = P(A) P(B).ntne nt nZ

.'. Ttre experiments are independent.
R.emart IfA and B are eventa assosiated with experiments which are not independent,

then the probability ofthe eveDt .AB'is found by using the nesult :

P(AB) - P(A) P(B/A).
This result can also be extended to more than two experimeDts.
Important obscrvation. If A and B be any two events associated vrith two

difrerent random experinents, then we may use the formula :

P(A in frrst experiment and B in second experirnent)

= P(A in frrst experiment) . p(B in second experiment),
if on the baeis of physical description of the random experiments, the occurrence or
non-occurrence ofan event in one random experiment does not affect the probability of
occurrence of an event in the other random experiment.

/2 SelfJt s,ructional Material
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I. If A and B are mutually exclusive events in a random experimeut, then

P(A r..r B) = P(A) + P(B).

II. IfA and B are events in a random experiment, then

P(Au B) = P(A) + P(B) - P(An B).

III. IfA and B are independent events in a random experiment then

P(An B) = RA) P(B).

IV. IfA and B are dependent events in a random experiment, then

P(AnB) = RA) P(B/A).

V. If, on the baeis ofthe physical description oftwo random experimentst the
occurrence of an event in one random experiment does not affect the
probability of the occurrence of an event in the other random experiment'
we conclude that the randorn experirnents are independent and make use

of the result :

P(A in first experiment and B in second experiment)

= P(A in frrst experiment). P(B in second experiment).

ILLUSTRATIVE EXAMPLES

Eranple l. A and B appeared' for an interuicw for two postl. Probability of A's

rejectian is 215 and. thnt of B's *lectian is 417. Find. the probobility that only oru ofthzm

is selected.

Sol. The random experiments'interview of.N and 'interview ofB' are independ'

ent.
I.et E = event that A is selected

and F = event that B is gelect€d.

.'. P(El = I a,16 P1P = 1.o,

Also, p(E)= 1-rtE)=t-"3=; and P(F)= r-P(F)= ,-+=+
Required probab''" 

= ilT:;Ti"lr#i r"
(Ueing addition theorem)

P(E) RD+P(E)RT)
(Using multiPlication theorem)

3 3 2 4 9+8 1?
= 6*7*8"7= 3E =gb'

Example 2. A It usband and a wife appear in an intervizw for two uaconcizs for
thg sane post. Tfu probability of hn'sband's sekctinn is 315 and that of wife's selection

is 115. Find thz probability that :
( both ate setected Qi) exactl! onz is *bcted

Gii't rnne is sehcted.

Sol. The rardom experiments 'interview of husband' and interview of wife' are

independent

NOTES

Sclf- lnstmctional Mateiol 23



Ptobability and l€t
Distribution Theory and

NOTES

24 Self-lttsrruciutal Mate, ial

H = event that 'Husband'is selected
W = event that'Wife' is selected.

IrP(H)=; and P(W)= i.ob

Atso. p(H) = t-p(H)= r-*=3andp(-w) =1-p(w) = t-;=;
(i) P(both are selected) = P(HW) = P(H) p(W)

(Using multiplication theorem)
313
b"s=25

(ii) P(exactlv one is selected)= 

lH,: 
"""Y;, 

(using addition theoren)
= P(H)RW) + P(H-)P(W)

(Using multiplication theorem)
3x4+2xl_14.
555525

(iii) P(none is selected) = P(H W) = P(E) p(w)
(Using multiplication theoren)

Note. In this example, it is worth while to note that -l+ 14 * 8 
= 

25 
= 1.25 25 25 25

This has happened because the events : both are selected, exactly one is selected and
none is select€d are nutually ertlusive and exh.a.ustiue.

Example 3. ?he odds in fauour of one student passing a test are J : 7. The odds
against another student passing it are 3 : 5. What is the probability that both pass the
test ?

Sol. Let A = event that frrst pass the test.

.'. P(A) = 3 =3' 3+7 10
Let B = event that second pass the test.

.. P(B)= 5 
=g3+5 8

T?re random experiments of results of students are independent.

.'. P(both pass the test) = P(AB) = P(A) P(B) = 
gxg= X 

.10816
Exanple 4. Three group of children contain respectiuely J girls and, 1 boy,

2 girls and.2 boys, 1 girl and 3 boys. One child. is selected at rand,om from each grou.p.

Show that thc chance that the Ercup seleeted consists of I girl and 26oy" i" *.-32
Sol. There are three possibilities :

(i) Boy is selected fmm group-I and girls from group-Il and group-Ill, or
(ii) Boy is selected from group-Il and girls from group-I and group-Ill or

(ijl) Boy is selected from group-Ill and girls from group-I and group-Il.

lr-Fl l--r-Fl l-ti--ll3 Gl l2 cl ll cl
I II III

24 8
=-X-=-'oozo



.'. Required probability of selecting a group of 1 boy and 2 girls

( 'c, zc, tc' ') ('c, 'c' .. tc, ) 'c, 3c, 'c,I .------! x 
-! 

X ----- l+l.1-X-.:-:x.:- | r -.--lX----r-X--= lr ocr " nct *ctJ \ "c, "ct "crJ ' acr oc, oc,

2 618 26 13
- --r-+-=-=--3 64 64 64 32'

Example 5. A bag contains 5 white and 3 blach balls and another bag contains

3 tuhite and 4 black baus. If one baII is drawn from each bag, what is the probability

that one is rohite dnd thz other is blqck ?

Sol. The random experiments 'drawing one ball from first bagi and 'drawing

one ball from second bag' are independent.

Let W, and B, be the events of drawing white ball and black ball respectively

from the rth bag. i = 1, 2.

Required probability = P (one is white and one is black) = P (WrB, or BtWr)

= P (WrB2) + P(B1W2) = P (Wr) P(B2) + P(Bt) P(Wr)

_ 5.,.4 _ 3 x 3 _20+9_29.=5+g'-3+4 b+3 " 3+4 56 56 56

Exarnple 6. A ca n hit a target 3 times in 5 shots, B 2 times in 5 shots, C 3 times

in 4 shots. Earh fire a volley, what is the probability that 2 shots hit the target ?

Sol. The three random experiments ofhitting target by A, B, C are independent'

Let A, B, C also represent the events that A, B, C respectively hit the target'
923

... P(A) = ;, P{B) = ! and P(C) = ;
-32--23e1.. ner =r-i=;, nst = r-i=i and P(c)='-i=;

Required probability = P(2 shots hit the target) = P(ABd or anC ot ISC)

= 
p(ABd) + P(AB"' * p143gl = P(A)P(B)P(c) + P(A)RB)RC) + PrelptelP(cl

3 2 1 3 3 3 2 2 3 - 6 27 -rZ - 45 I
= ;\ ;x ;+ ;x i' i* i*i' i = ro0 

* 
roo 

* 
Ioo = 1oo 

= 20'

l- s wh,t" I
I 3 Black I

Bag I

Fwh'ft I
| 4 Black 

I

Bag II

PROBABILITY DISTBIBUTION

Introduction
We have already studied a lot about frequency distributions' These distribu-

tions are based upon observations, i-e., the frequencies for different values ofthe vari-
able, under consideration, are based on actual observation. For example, if an unbi-

ased coin is tossed lfi) times, we may get head 5? times. Here, 57 is the observed

frequency but theoretically we shall expect tread', 50 times. In this section, we shall

strtdy probabitity d.istributians andfreqwncy distribulions which are based upon theo-

retical considerations.

Pnbabilin'

NOTI'S
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I.9 RAilDOU VARIABLE

Let S be the sarnple space ofa given ra.Ddom experiment. A real valued function
?' defined on the sample space S is called a random variable.

Thus, ifs e S, then r(s) is a uaique real number.
nsnark The values ofa random variable are real numbers, connected with the out_

comes ofthe random experiment, under consideration.

In the random experiment oftoss of two coins, if we define the random variabre
(r) as the number of head.s, then the values of the random variable r are 0, 1, l, z
corresponding to the outcomes fT, TH, HT, HH respectively.

We write, :(TT) = q*, r(T'It) = 1, :(H?) = l, r(HH) = 2.

In case, there are three coins, then the values of this randon variable are 0. l.
L,1,2,2,2,3 corresponding to the outcomes TTT, TTH, THT, HfT, HHT, HTH, THH,
HHH respectively.

We can define any nurnber ofrandom variables on the same sample space. Ifr
denotes the random variable, defined as the cube of the number oftails, in the experi-
ment of toss of two coins. then we have

Sanple points HH HT TH 'rt
(0)3 = 0 (1f=1 (r)3 = I Q)3=8

Random variables are of two types : (i) discrete random variabre and (ii) con-
tinuous random variable.

(i) A random variable is called a discrete random variable ifit can take onry
finitely rnany values. For example, in the experiment ofdrawing three cards
frorn a pack of playing cards, the randorn variable.number ofkings drawn"
is a discrete random variable taking value either 0 or I or 2 or 3.

(ii) A 
""n6o- 

n"riable is calred a continuoua random variable if it can take
any value between certain limits. For example, height, weight of students ir.)
a clasg are continuous random variables.

Probability Distribution of a Discrete Rendon Variable
Let r be a discrete random variable

assuming values rr, t,z *3, .....,, xa corres-
ponding to t,l:e various outcomes ofa random
experiment. Ifthe probability of occurrence
of .r = rr is P(ri) =pr,LSi3n such tlatp, +
p2 + p3 + ---... + Pn = 1, then the fi.rnction,
P(x,) = p,, 1 3 d 3 z is called the probability
function of the random variable * and the
set [P(rr), PGr), P(:.), ......, P(r")f is called
the probabilit5r digtribution of r.

x' x" & x." " "'4

X Self-lntrructional Mareial

*Why thls step. r(T'I) = 0, because the number ofheads in the sample point "IT' is zero.



. The gtaph of a probability distribution is also drawn as shown in the diagram. Probabiliry
Ttris is also kno\nn as a bar-chart.

Working Rules for Finding Probability Distribution
I. Identify the random variable and put it as r.

II. Find the possible values of.r.
III. Find P(c) for all possible values ofr and write P.D. ofr.
fV. Check that the sum of all probabilities in the P.D. is one. If this sum is not

one, then some mistake is bound to have occurred in the calculation work.
Remove the mistake and again veri$ that tJ:e sum of all probabilities ia
one.

{.tO D|aTRTBUTIOII FUNGTIOII

L€t X be a random variable. Define a function F(t) by
F(r) = P(X<r) = P (ru : X(ro) < r), -- <.r < - is called the distribution function of

the randorn variable X. A distribution function, is also known as cumulative distribu-
tion function. We, some times, denote the distribution function of the random variable
X, by Fr(r).

The domain of F(r) is (- -, -) and range is {0, U.

Propertiee of Distribution Function
The properties ofdistribution function are discussed in the following theorems.
Theorem I. Let F is the distibution furction of thz random varinble X and

ifo < b, thzn

P (a <X <b) = Fb) - F(a)
Proof. Consider the events c < X 3 b and X i o.
These two events are disjoint and their union is X g b. By addition theorem of

probability,
P (o <X<b) + P (XSa) = P(X<b)

= P (o <X3 b) = P (X< 6) - P (X<a) = F(6)- F(o)
Theorem II' If F is tlrz distributinn functinn of thz random uariable X and if

a < b, then
(i) P (a sX < b) = Fb) - Ftu) + P(X = a)
G P (a < X < b) = F b) - F(a) - P (X = b)

Gii) P h < X < b) = Fb) - It(a) + P(X = a) - P(X = b)
(iu) If P ($. = a) = 0 and, P (X = b) = 0, then (i), (ii) and (iii) have same probobility

F(U-Ffu)
Proof. By above theorem,

P(acX<6) =F(b)-F(a)
(j) P(c sX<6) =P[(X=a)v(c<X<bI

= P(X = o) + P (o < X < 6) lDisjointEvents
=P(X=a)+F(b)-F(o)

(jj) P (c < X < 6) = P(o < X < 6)- p (X = b)
=F(6)-F(a)-P(X=D)

NOTES
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(iii) P (a <X< 6) = P (a < X < 6) + P (X = a)

= F(b) -F(o) + P(X = a)- P (X = b)
(iu) If P (X = a) = 0 and P (X = b) = 0, then (i), (ii) and (iii) reduces to F(b) - F(o).

Theorem III. I/ F is distribution fzlnction of one-d.imensional rdndon va able ,

then
(i)0<F(x)<1

(iii) F(_ @) = o

(ii) F(x) <F(y) + rs!
(iu) F(6) = I

Proof. (i) By defrnition of disf,ribution function, the range of F(r) is [0, 1]

;. 03F(r)S I
(ii) F(r) = P(X < r) and F(y) = P(Y < y)

.'. F(r)<F(y) = P(X<r)<P(Y<y)
which holds ifr 3y

(iii) Let S be the sample space ofthe random variable X, then

r- I f- I
S={U (-n<X<-z+1)1u,1 U (n<X<n+lf

[a=1 J l"=0 )

+ p(s)=i P(-n<Xs-n+r)+i rtn<x<n+D
n-l a=0

ub
+ 1= lim I {F(-n +1)-F(-n)l+lim | {F(n + l)-F(n)l.--7: r'+--

= lim {F(0) - F(- c)} + lim {F(b + 1) - F(0)}
lt-aa

= {F(0) - F(- -)} + (F(-) - F(0)}

.'. I = F(-) - F(- -) ...(l)

Since - - < -, F(- -) < F(-). Also F(- -) > 0 and F(-) < 1

.'. 0<F(--)<F(-)<1 " (2)

From (1) and (2), F(- -) = 0 and F(-) = 1.

Discr€te Distribution Function or Probability Mass Function
If X is a discretc randorn variable with distinct values r' xz' ..., x; then t}c

function pr(r) defrned by

[P(X -- x;) = pi, if x = x,
Pxt:t = 1 0 , x*xi;i=1e2,3,...

is known as Discrete distribution function or probability mass function
(abbreviated as p.m.f.) ofthe random variable X.

Tlre set of ordered pairs {(ri,p(r; )) i = L,2, ... n, ..'l or l(xy P ),@2, p2), .. lxn,pnl,.l
specifies the probability distribution of the random variable X

Also p(r,)2oVi and i rt";l=r

Tlreoren IV.I/F is the distribution function of thz discrete rand'om uariable X'

thcn
p(x) = P$ = x) = Fk) - Fkt-). Interpret thz result-



Proof. Let xt < t2 < rs < ..,..., theu
.i

FGy'=P(xga,) = | Por=r,)=) r(r;)
j=t J=l

i-l i-l
F(r,-r) = P(X 3*,-r) = | P(X =r,-r) =l f (r;)j=r j=r

I i-1
.'. F(r,)-F(r,_r)= | rtr;)-l r/tx) = p1a.1.

J=l j=l

Interpretation. Given the digtribution function ofthe diecrete random variable.
its probability mass function can be obtained.

Continuoug Diatributlon Functlon or Probablllty Denelty Function
Let X be a raadom variable and 

^r) 
be any continuous function of r so that

fl*) d* represents the probability that X falls in the infinitesimal interv al (xt + dr.) i.e.,

f,k)d.x=P(r3XSr+dr),
then the function {,(r) ie known as continuoua distribution functiou or probability
density function (abbreviated as p.d.f) or eimply density function. Mathematically,

ro'=*"j.&P
The probability density function (p.d.f.) 1r,(r) or flr) of a random variable X

gatisfies the following properties

(d) flr) > 0 <iil ['f<daz =t
Remark" In case of continuous random variables, the pmbability at a point is always

z,ero. But, in case ofdiecr€te random variable, tbe probabitity at 8 point, i.e., p(r 
= c) ie not zero

for some fixed c. Hence

P (a<X< F) = P (cr3X< p) = P(c <X< p) = p(c <X< p)
1.e., In case of continuoug random variable, it does not matter whether rve include the
end points ofthe interval from c to p. However, this result is not true in case ofdis-
crete random variables' we are giving below eome important formulae which will be
frequently used in the present chapter. Letflr) denotes the probability deneity func-
tion of the random variable X, then

(i) Arithrnetic Mean = 
tb

J^" ful a"'

(ii) Earmonic Mean. Harmonic mean H ie siven bv : -jl rb 1

11= ).;'f<o a'
(iji) Geometric Mean. Geometric mean G is given by :

tb
IrC c = J" tog t fk) dx

(iu) The rth moment,

(c) p'" (about origia | = lb { .f("1dr
JN

(b) p'" (about the point r = A) = 
Jb 

<x- Ay .flidt

Pnhabilitr

NOTES

SclfJutructionalMatcrial 29



NOTES

9a ScltJnt rt iwt Matcinl

;t:rff:t:#;H" (c) p" (about nean) = [61r - mean)' ;/(r) dr

In particular,

F', (about origin) =Mean= Ji". rr.r* and.1t'"= f"'frrr*
Hence, rrz= tr'2-tr;2 = !!""' f<oa'-(!' " f@d')ro \do
(u) Median. Median is the point which divides the entire digtribution in two

parts. In caee of continuous dietribution, median ig the point which dividee the area
into two equal parts. lbus if M is the median, then

rMltblfiruesolving !,flA at=: or !*flr) dx=|

for M, we get the value of rnedian.
(ui) Megn Deviation. Mean deviation about the mean pr' is given by :

U.O = fd;: - mean l/(r) dr
J"

In gpneral, nrean deviation about an average'A'is given by :

M.D. about'A = Ju l* - /-lf <*> at
(uii) (luartiles and Decilee. Q, aod q, are given by the equations :

!'' f<oa'= i *u f' fk)&, =!
D,, ith decile is given by :

'D']-' f<o a*=4; i = r,2, --.,eJ" 10
(uiii) Mode, Mode is the value of: for which flr) is maximum. Mode is thus the

solution ofl'(r) = o and /"(:) < 0, provided it lies in [o, D].

!"r<aa.=l!*rata,=l

I LLUSTRAI1VE EXAIIIIPLES

Erample l. Find the probobility distribution of the random uariable "number
of lwads' wlun :

(i) two coins atz toased' (ii) ore coin is tossed twice.

Sol. (i) Lct S be the sample space.

.'. s = tHH, HT, TtI, TTI
Let r denotes the discrete randon v ariable'number of lwads'.
,'. The poesible valuee ofr are 0, 1, 2.

We have P(t = 0) = P(frfl) = I4
P(' = r) = R(rrr, Tril) = +=l4Z

P(r=2)=P((ruIl)= 1.
4



.'. The required probability distribution (P.D.) ie

t 0 I 2

Rr) f
4

I
i

1

7
(it) Let H be the event of getting a head.

Let.r denote tbe discret€ random vaiable "number of iecds'in two togses.
.'. The possible valuee ofr are 0, 1, 2.

Wehave P(: = 0) = P(HlHr) =P(iil)P(Er) = ;t; = i
P(r = 1) = P(H, Ez or ff-rHr) = etU, ff-z ) + P( H-rH2)

= P(Hr) P(Fz ) + P(El ) P(H2) = ;"i.+"i=i.+=;
P(r = 2) = P(H1H') = RHr) P(H2) = i";=+

.'. The required probability diatribution (P.D.) is

E:anple 2. Two carde are drawn succeesively with replacem,ent from a well
shuftled pack of 52 cards. Find, tlu probabili! distribution of numfur of qucens.

Sol. L€t Q be the event of drawing a queen furn the pack of cards.
Letr denotee the discretc random v anable'nutnber of qaeezs" in two drawe.
.'. the possible values ofr are 0, 1,2.

Wehave P(r = 0) = P(qa, ) = P(4) P(er)= #r#=#
p(r = r) = p(er8, or Qq; = nerQ, ) + Rdrer)

= P(Q,) P(82 ) + p(Qr r<q,y = *"#. #"#= #
P(z = 2t = P(Q1Q2) = P(Q1) P(Qr) = #-#= #

.'. The required probability dietribution (P.D.) is

Meen and Variance of r nlndom Yariable
We know the method offinding the mean and variance of @uency distributions.

In a frequency distributioq we have frequencies colresponding to difierent values of
the variable. Similarly, in a prrobability distribtrtioa we have probabilities cor€sponding
to difier€nt admissible values o'f '\e discrete random variable.

0 I 2

rtt) l
4

I l
4

x 0 I 2

Pk)
t44
1@ 169

I
169
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Now, we shall ext€nd the idea of mean and variance for probability distribu-
tions.

Letr be a discrete random variable aesuming values.r1, 12, ..,..,, f,, with reepective
probabilities p' p 2r .....,, p nwitlll p t + p 2 + ...... + p 

^ 
= I.

I o,r,L/' ', '
1U; =i:J_=lriri

la i=r

) pi(r, - u)-

=lni{xi-D2

We define. mean t i-='l

and vanance =
,D:

We have lritti-tl2 =lnrt*," + st2 + zsu) =lnitr' * F" Zp, - 2pZp,t,
i=l i=l t=1 i=r i=l

= lc,r," + u2.r- zp.p = | piti2 - It2

Mean (p) = IExt and variance (og) = tprxi2 - p2 .

t=l i=r
In ghort, we write, p = IPr and variance = Epxt - p2.

The mean ofiandom variable * ie called the erpected value ofr and is denoted
by Ek). The mean and variance ofa random variable are also referred to as the mean
and variance of the corresponding P.D.

Romark S.D. of probability dietribution = rFiiin-6 =

WORI(ING RI,JLES FOR SOLVING PROBI,.EMS

I. Identify the random variable (r) and its possible valuel tv r,2, .......
II. Find probabilities for all vslues of the variable .f,.

III. Draw table and find lpr and lpr2.
IV. Fitrd mean and variance by using the formulae p = Ioor and variancc

= larz - p,z,

E:anple S.'A rond,om variable x hos the following probability distribution :

(i\ Find tlu ualue of h.
(ii\ Calculab mean and varianee of x.

r -2 0 2 3

P(x) o.1 h 0.2 2h 0.3 h



SoL Cdculatloo of ugal and varlance

t p px d
-2
-1

0

I
2

I

0,1

h

o.2

u
0.3

h

- 0.2

-h
0

U.

0.6

8l

0.,1

h

0

2h

t.2

9&

Ip=41 + 0.6 tpr=41 +0.4 Iprt=lill+1.6

(i) In a P.D., we have Ip o 1.

:. 4&+0.6=L ot 4a =0.4orrt =0.1.
(ii) Mean (r) = Ipr - & + O.4 = 4(O.L) + 0.4 = 0.8.

Variance = rprg - rts = (L27 + r.6) - (0.8)2 = (12(0.1) + 1.6) - 0.64 = 2.16.

E:ample 1. Find tlu mean dnd variane of tlu nwtber of lwads in tlp tun
tu*s of a coin,

8ol. Let.r denotes the random variable,'numbr of iea&'in the hro tosses.

.'. lhe poesible values of.r are 0, 1, 2.

We have P(.r = 0) = Rno head) = pfirEr) = P( Er )R E, ) = i" i= i
where H, is the event of getting head in the ith toss , i = l, 2.

P(r = 1) = P(on€ bead) = Rnr Fr orEr lL) = P(HI)P( F, ) + P( Er ) P(Hr)

(r r\ /1 r\ r
= lz"i)*lz'2)=i

ptr = z) = p(both heads) -- p(H1rr2) = RHr)p(rt) = +ri=i
Calsulstlon of mear ald verianco

;. Mean (p) = Ipr = 1

Variance = Xpl - uz = I -(fP=0.S.2

p pa pe

0

1

2

I
7
I
2
Ii

0

I
E

Ii

0

It

tp=1 Ipr=1 tp*' = lZ

tuldti,y

M)T8tl
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Exrmple 6. Ttuo ards art drdwn suocessively with replaremcnt from a well
ehuffIed pach of 52 cards. Fird ttle mzan and etand.ard deviation for the number of
ace8.

Sol. l,et A be the event of getting an ace in a draw of one card.

... P(A)= #=* *uP(rr= r- *=i;
l,et denotes the random variable "no. of aces",

.'. r can take values 0, 1,2.

P(* = 0) = P(no ace) = Pdrfz) = P(fr) P(fz) = 
y"9 =Y13 13 169

P(c = 1) = P(one ace) = P(Ar fz or aleo; = PG)P(Ez ) + P(A, P(A")
(r rz\ (rz r) zr

= t_x_ t+t_x_ t=_\rs r3l \r3 r3l 169

P(r = 2) = P(both aces) = P(Ar$) = P(A')P($) = + " * = #

Mean=I.or=i?

s.D. =

Eronple G. Two carda are d.rawn simultancouely (or successively without
replaenunt) fnm a well shuffled pach of 52 cards. Compute tlw variance of the rutmber
of aces-

Sol. kt two cards be drawn simultaneously from the well shuflled pack of 52
cards. [,et.r denotes the random vari able "no. of aces",

.'. r can take valuee 0, 1, 2.

p(r=o)=p(noace) = P^=#
P(r = l) = Rone ac^\ - 

oi 
" 

tsq 
- az,e)= --ff'd-= nr

P(r = 2) = P(both r 
{co Irces,= E6:=d

Calculation of mean and S.D.

t p px p*

0

I

2

t44
169
24

16e
I

169

169
2

169

24

169
4

169

Ep= I ,er= * '*,= f&



Celculafion of Yariance

p px pt'

0

1

2

t88
nl
82

2
I

nl

g2

221
2

m

92
221
4

22r

tp=1 *t=Lnt -36,px'=fr

Variance = Xp*2 - pz =>a* - QarP

36 ( g4 \2 7966-1156 6800 4oo
- 22r \22L) 48841 48841 2879'

E;ample 7 . Tln diontptcr of an ehctrb cablc, say X is a*umcd to be a continu'
ous random voriable utith p.d.f. fld = et (1 - x), O 3 t 3 1

(a) Eramine whcther ft*) is a probability density furutian ?

(b) Determhe b euch that P (X < b) = P (X > b)

Sol. (o) For probability density function, we thould have

(i) fr) > 0, wNdr ie true for 0 3 r < I
tl

Gi', loflx) dr = 1, we chech it.

el el .l^Here 
Jo 

f(*) d* = Jo 
6r (l- i dt = 6 

Jo 
(t - t") a"

=.f4-41'=6ft-t) = e.l= r
\2 3)o \2 3) 6

(6) p(X<b)=p(X>b)
tb tl

= lofeta' = )rf{x\dr
ftcl+ 6Jo r(1-rldr=6Jor(1-r)dr

1"" xslb l* "rlt+ lT-Tl.=lT-Tl,
( t" a') ff r 1) f b'z b')l= lT-TJ=Llt-BJ-|z-TJj

::) 3b2-Zbs =(1 -3b2+2b3\ 1 4b3-Ob2+ 1=0
* (2b - D Qbz - 2b - tl = O

.'. 2b-1=0 - U=+or2b2-2b-r=0

Pmbohilit\

NOTES

ScfJnt,J|uctionatHatcial tS
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+ b=

But D e (0, ll ..; D -;.

- Ennplc A. Let X b a conthuouc rzndnm variabk with probabitity dznsity
funaionghnnb ;

flx) e hr (2 - x),0 Sx 32
Gl find nean, wri4rwc, 91 and pr ond tvrw thow tholt the distribution is

eXnrutrial
(ii) Find nzan d,cviation about ttrrlatt

(iii) For thie distribatbn, pn., = O
' Gvl Fhd mde, ndizn and lwrmonb mean of tlu d.btribution.

8ol. Ae flr) is a prcbability density function

...( r)(r+2)(r+3)

.32.8
t c=;=-=E,

1r, = p:! -sp; pi + 2p,,3 = !-a.f . r* z = o

Itr = pi - 4pi pi + 612, tri2 - gpi.

= f;-r.|.r.o.f .r-a.r=$

.. P,=ii=' and P,= #=#=+
Siace pt = g, 35g dishibution is symrrntri.al.

f t<'t*=t - t*,<z-x)d.x=r

- rlrt_!|, =,| 2 8lo

:+ l(1-;)=,

+ $r=r = r=f
lte rth moment about origio is given by

,t, = l:* f@ d' = I !"*t(2 - t) dx

(i)Mean=rjr =# =L p;= g=*,

and -,,=g=f
Hence, variance = th = ttz - tt{2 =f - t=*

9.2,*r



(ii) Mean deviation about mean ie given as

= l'1"-tlf<oa" = f l"- !r<rra' *J'l'-tlf<oa*

= i [j.',t-, ",, - i a* + 
J2 

t' - l r rz - i ax)

= i[J.',r"-t"' * "') d, * !' @" -,t - u a'f

= 
g||", -3.*3 * rn 

lr *;r.rt -*o - zt' l'] - 
g

4U 3 4lo | 3 n zl,J 8

(iii) rr,".r = lo'tr--"a\)z"*r f(rrdt =ll'<,-tl'"-t "(2-r)d.r

= I I)i,*'c + r) (1 - r) dr = ? ll*' t - t2 t dtwhere l = r - 1

Hence, uzn.t= O.

(iii) Mode is the solution offl:) = 0 and f(r) < 0

Now, fo=|<z-ztl=0 + := landf-(*) =lrlrr=-2.0.
Hence mode = I
Also, Harmonic mean H is given by :

!= 1lirr,*=l!" <z- oa'=i = " = 3.
Finally, If M is the median,

Jirca,=t - lf,<z-aa.=l

" "t l" 2x- __l =_3lo 3

= 3M2-M3=2 =+ M3-3M2+2=O + (M-r)(M2-2M-2)=0
^. t'7

.'. M=lorM= 2t{=4*8 =ttJd
2

lhe only value of M Iying in [0, 2] is M = 1. Hence median is 1.

TVo-dinensional Random Varisble
Let X and Y be two random variables defined on the same sample space S, then

the function (X, Y) that assigns a point in R2 (= R x R), is called a two-dimensional
random variable.

.toint Probability Mass Function
If(X, Y) is a two dimensional (discrete) random variable, then the joint probabil-

ity mass function of X, Y, denoted byp*s (a y), is defined as

ProbabiW

NOTES
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Probabilifiatd , ff{X=q,V=y,), (r;,y;)e(dy)
Distribuitn Theory pl1y ki,yi) = 1 '6 otherwise

Note(d) | | *y (ri,ri) = r.

(ii) A two-dimensional random variable ie called discr€te if it tak6s at most countable
number ofpoints of R2.

Margtml Probability Mace Function
Let (X, Y) be a discrete twGdimensional random variable, then the probabiliW

distribution ofX is obtained as follows.

P*(r)=P(X=r,)
= p Q( = 3, 6 f = /r) + P (X = r, n Y = yr) + ...... + P (X = r, n Y = y-)

= pit+ piz+pia *...... * r,^=i ou=o,
j=1

and ig known ae marginal probability mass function or discrete marginal density func-
tion of X

Also I"=IIou=t
i=l i=l j-:.

Similarb, we can prove that
44

py0)=P(Y=y,)=I pi' =l nki,t) =nij=r j=r
which is known as marginal probability mass function of Y.

Renarl. A necessary and eufficient condition for the dissr€te randorn variables X and
Y to be independent is that

P(X = ri, Y = yJ) = P (X = r,) P (Y = tj) for all (.r,, lr) e (X, Y)

Two.dinelslonal Dirtribution Functlon
Let Fo G, y) denotes the dietribution function of the twc'dimengional random

variable (X, Y), thern we define
F1y(ar)=P(X<r,Y<y)

Propertlea of Two-dineoelonel Distributlon Function
Fp (r, /) satisfies the following properties

Property I. For the reel nunbers a, b, c, d

P (4 <X3b, c <Y 3d) = Fb,0 - F(b, c) - F(a, d.) + F(a, c)

where a < b ; c < d. and Fxy = F
Proof. Define the events :

Now, A: lX<cl ; B: (X < bl ; C = (Y<ch D = {Y<d} ;fot a <b;c <d.
P(acX<bnc<Y3d)

=P lG-$n(D-c)l
=P [Bn(D-C)-An(D-C)l ...( r )

(By distributive property of sets)

AlsoEcF "+ EnF=E,then
P (F- E) = P (E n F) = P (F) - P (E n F) = P (F) - P(E)



Obviously AcB + tAn(D-C)l c [Bn(D-C)]
Using (2) in (1), we have

P (o <X( 6 nc <Y<d) = P tB n(D-C)l -PtAn (D-C)l
= P [(B n D) - (B 

^ 
C)l - P (An D) - (A n C)]

= P(B nD)-P(B nC)-P(An D) + P(An C)

. lFrorn (2), since C c D =r (B n C) c (B n D) and (A n C) c (A n D)]

Wehave:P(BnD)=PX<b^Y<dl = F (b, d).

Similarly P (B n C) = F (b, c) ; P (A n D) = F (o, d) and P (A n C) = F (a, c)

Substituting in (3), we get

P(a < X < 6 n c < Y 3 d) = F(b, d) - F(6, c) - F(o, d) + F(o, c)

Property tr. F"', (x, y) is a monotonic non4zcreasing functian.
Proof, Consider the real numbers a, 6, q d such that a < b, c < d, then

(X <o,Y<D) + P(c <X3c,Y3b) = (X<c,Y< b)

Ag the evente on the L.fI.S are nutually erclusive
.'. F(o, b) + P (o <X< c, Y< b) = F(c, b)

+ F(c, 6)-F(o,b) =P (a <X<c,Y3D) )0
+ F(q b) > F(o, b)
Similarly, F(o, d) > F(c, b).

Property III. F (- ao, y) = 0,

F(r,--)=0,
F(-6,6)=1

^, a2FAlso ffi = flr, y), provided

fl*, y) ie continuoue at (:, y)

...(3)

...(2) l\rtbahiliry

NOTES

I.I{ TARGINAL DISTRIBUTIOil FUNGTION

From the joint distribution function Fo (n y), we can obtain the marginal dis-
tribution functions F*(r) and Fr(t), as below.

Flr) = P(X s r) = P (X < r,y . -) = 
"Lj_ 

Fo (r, r)

= Fxv (r' -)
Also F{y)=P(Ysy)=P(X<"o,Y<y)= J,t Fs(ar)=F*"(-,y)
In case ofjointly digcrete randorn variables,

FlI)=: PO(<r,Y=v)
!

F"0)= 
T 

P(x=r,Y<v)

In case ofjointly continuoue random variable,

Fxk) = J_J:ixv G, i d.y dx

F"o') = J:J:i* G,id'xdv

SelfJns,ructionalMarcrial 39
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Joint Denelty Furrctlon
From the joint distribution function Fo (r, l) of two-dimengional continuous

random variables, we can obtain the joint probability density function as below

r ,_ ..\ azFb,i ,. P (r s X < r + 6r, y s y s y + fu)tp1,z,!)=6 =trq____o*d_
and ie known as joint probability denaity function ofX and Y. The marginal probabil-
ity function ofX and Y can be obtained as below.

lL on r",tr, (In case of descr€te variables)

fxtr) = I .j
lJw <x, t) ay, (In caee of continuous variables)

II Po tt,Yl, (for discrete variable)

fvOl = .l i
lJ-fxr tr' rl ar' (for continuoug variables)

Arso rx<*t = dlil') 
= llro r*, ,t a,

f*til = 
dAYt - [Jn ,,, r, *

(a) Convolution of Random Vsrisbles
Det, Profubility gewrating functtan (p.e.f.)

Let <ao> be a sequence of real numbere such that
A(a) = oo + drs + ors2 + orsS + ...

n
= L a^8" convergee in some interval (- so, so), then the sum function A(s) is

known as the generating function of the sequence <oo>.

(b) Convolution of Two R^sndom Variablee
Let r and y are non-negative independent discrete random variables and if P(s)

and R(s) are the corresponding probability generating function (p.g.f.) such that

Pts)= | pps* where po = P@ = ft)
l=0

R(s) = I 4si where tn =P(y = k)
l=0

Take z=x+! and P(z=h)=w*
where w h= pdth+ p rr*_t + pdrh_z + ....., + p*ro, ft 2 0 then the eequence <ru*> is

known as convolution of the sequencea <pt> and <ru> where

<uh>=<ph>*<rk>



llreorem. I/<pu> and <rr> are the sequences with p.g.f. P(s) and, R(s) respec- Probability

tively ond <wo> is thzir convolution,
then wk) =Pk) Rk) uh2re

€!
wk) = L wns" is the p.g.f. of the sum x + y = z.

h=0

Proof. By defrnition of convolution of two random variables, we know that
tDh= porh + p{L_r + ...... + pLrrr + ptro

.'. The probability generating function
for z = r +y is given by

L
w(sl= L lrrs'=P(8)R(s)

t=0
Hence the theorem.

Stochaetic or Stati8ticel Independence
TVo random variables X and Y with joint p.d.f (p.m.f) fi6y (t, y) and marginal

p.d.f. (p.m.f) /"(*) and /y(f) respectively are said to be stochastically independent or
statistical Independent if

fo/:, y) = f*(r) fy9)
or F*l*,y) = Fx (r)' Fv(Y)

where Fo (r, y) is the joint dietribution function and F*(r) and F"(t) are the rnarginal
distribution functions respectively.

ILLUSTRATIVE EXAMPLES

Erample 9. For the joint probability d.istribution of two random uariables
X and. Y, giuen below

(i) Find the marginal distributions of X and Y
U Find the cond,itional distribution of X given that Y = 1 and that of Y given

thatX=2

Sol. (i) Let p*(*) denotes the marginal distnibution of X,

Then, r;(r)=P(X=r)=| nCX=t,V=1;
t

xtY I 2 4 Total

I

2

4

4
36

l

36

5
36

1

36

36

3
36

t

36

2

36

2
36

3
36

,

E

36

a6

2

36

36

o

36

10
36

9
36

8
36

I
JO

Total
36

I
36 36

I
36

NOTES
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;. P(X=1)=z PCX=l,Y=y)
!

= P(X = r, Y = 1) + P(X = 1, Y = 2) + P (X = 1, Y = 3) + P(X = r, Y = 4)

432I10
36 36 36 36 36

P(x = 2)= | nx=z,v=y, = *.*.*.* = *t

P (x= s) = ) rcx=a,v=y) = **+*+.+ = :y 36 36 36 36 36

P(X=a)=l nx=+.v=rr=a*Z* 1*-L= 9
36 36 96 36 36t

Hence, the marginal distribution ofX is given below:

(ii) fire conditional tlietribution ofX given Y is given by
or\=a,Y=y)

P(X=r lY=v)='"'
Ry =y)

p^(= LY= t' 4t36 4.._ PLr(=1!Y=1r' Pff= D 1V36 11

P(X=2,Y=t) U36 IPfi=2 lY= lr=' "

"*=,;,=,,=_c=J 
tu36 1,

-' 1V36 11'

r /36 IP(X=4lY=l)=::-=-' tu36 11

.'. Tbe conditional digtribution ofX given Y = 1is given below:

x I 2 3 4

p)(ft) 10

36
9

36
8

36 ito

Similarly, the marginal distribution ofY is given below:

v.

pdv) 11

36
9

36
7

36
9

36

x I 2 3 4

P(x=xlY=r) 4
ll

I
ll

a

11

I

ll



Similarly, the conditional distribution ofY for X = 2 is given below:

Y t 2 3 4

p$=rlx=2) !
9

I
5

1
3

2
9

since, P(Y= I I x=z)= H = #=* "".
Example 1O. If the joint probability denzity furutian of two rand.om uariabks

X and. Y is giuen by
(,

-- -.' - l1(6-t-!), 0=t<2, 23Y<4ltt' Y = 18
l. O , otlurwie

$\ Find P(X < 1 aY < 3)

Gi\ Find A)K +Y < 3)
GiilPQr<1lY<3)

al 13
Sol.(i)P(X<1nY<3)= | | fk,tldsdyJ.J_

= f l,'*.-'-r&d', =*fl6 "-t-.li*
= * f |(" - ; - u)- <n - z - ut],,

=*f(' j-") * =tli,-+l:,,
r(7 1) I 6 3

8\2 2) 8 2 8

(ii) p(x + y < B) = | f,-' f,<a -, - r> a, *

=*lJl'-'- +li'*
_ 1 1'Jfr o -,r- <a -,1 - jra -,r,1] *= tJ.t -rri-u-ril"
= i f [" -*- sx + 12 - ]Q + 

"" -eo - n* z" * z)*

=iI(Z-*.f,)*

NOTES
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= 
tll *-r*,*41' = :fI-z*I'l = 

rfzr- rz+ r'1

812 6lo 8\2 6) E\ 6 )

110 5

86 24

P(X<1^Y<g) 3/8 3(iii)P(x< r IY<3)=ffi=;f =; IUsing(d)and(ii)

Erample ll. ?le joint probability dcnsity functbn of ttoo-dimpneianol rdnd.om
uariable (X, Y) is giuen below:

n- -, _ 12, 0<x<1, 0<y<x
'\'' t' - )0. otlnrwige

(i) Find the margi)at dpnsUy functions of X and. Y
(ii) Find. the cond.itional d.ensity function ofY giuen X = x and conditional den-

sity fanction of X given Y = y
(iii) Chzch for indzpendence of X and. Y.

Sol. The narginal density function of X, denoted by;r*(r), is given by

&k) = tj-i* 
k, ) aY = f zaY =?' 

"h;:Similarly,
[t- .l

/"0) = lj-fio k' v) d'x = lr2dx=2(r- v)' 0< v< I

(ii) The conditionatlensity nrnction orv gi"en x (; < r*n"*oo'

rtn\vtx\-p...,=*=:,1<! *
Sinilarly, the conditional density function ofX given y (0 < y < 1) ie

s t-t-.\-[g!:,1)- z - 1

fusy (* l/) = -f, (, = ,o_,) =14'! . r. t

Gii) Here fna.s", y) = 2 ...(1)

fx{.r) W\ = 2x .2(r - Y\ "(2\
from (1) and (2) fo @, t\ + fx(.r' f\b')

.'. X and Y are not independent
Exanple 12. Tlrc joint probability dcnsity function of two rond,om uarhblee X

and Y is giuen belaw:

frtrt=ffi,0=x<-,03Y<a
Find (i) The marginal distribution ofX and Y
(ii) The conditional distribution ofY for X =:
Sol. I,et f*(r) denotes the marginal distribution ofX and /y(r) be the marginal

distribution of Y, Ttren,



f*{r\ = !- f.'. y\ dy= *h J, Hff *
= ;d;f Jlnt + Y){ + r (1+ Y)< I dv ...(1)

=*:t[1"*[."1"#[J
9 /1 rl 3 3+2x ^= tffi'l.t*5j =;'(ffi; u <r < @'

Similarly,

t,o') = J- t@, t, de= J. AHft#*
= A*;,f lJtt+r)a + Y(1+Y){]dY

=9. "*'lr, o <y < - | hoceed from (1)
4 (1+ r).

Also, the conditional distribution ofY for X = * is given by

f*(r,i - 9(l+x+!)
6atv=" IX=r)= -i;la = r<*rf-W^E-<e*z"l

_ 6(ltr+y).0<v<_.
(1+ y)' (3 + 2r) 

-

Example 18. Thl joint probability densify function of two ta ndom variablec X
and Y is giuen below:

(,
f'Jt'Y) = 17{t+ry1' l*l< I' lYl< I

| 0 , otlurwise

Show thot X and Y are not indzpendznt, but X2 and Y 2 are independent

Sol. Let,'tlr) and /ty(r) be the marginal density function ofthe random variables
X and Y. then

rpt= [17<"'vtar=ilr-.+1,,=!,-r.*.1; "'(1)

simirarry, H"t = J)7', t> a'=|, - t.t. t
From ( 1), (2) fay G, yl * fx@) fv 0), X and Y are not independent.

Arso ppp < r) = p( lx | < a6i) = [!n ,"o, *

...(3)=*i*='ilf*=a
S.U-lnstrr6lion tl M.t,cri.rl 15
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P(X2 <r nY2 3y) = P ( lxl< Jin lYl< Jt)

= P()P < r) . p(y2 < y)
Hence, X2 and Y2 are independent.

SUMMARY

Deterministic experiments are those experiments which give almost the same
result when performed under very nearly indentical conditions.
Non-deterministic experiments are those experiments which do not give the
same results when performed under very nearly indentical conditions. Non-
deterministic experiments are also known as random experiment.
T\vo events associat€d with a random experiment a re said tn be ind.epend,ent
ifthe occurrence or non-occurrence of one event does not affect the probability
of the occurrence of the other event.
TVo random variables X and Y are said to be stochasticallv independent if

fo&' t) = f"(x) frQ)
where /ry (r, y) is the jointp.d.f, @.m.f.), f,(x) and/r(l) are the mar ginal p.d,f.
(p.rz.f, ) respectively.

GLOSSARY

. Sanple Space. The set of all possible outcomes of a random experiment is
known as sample space. The possible outcomes are known as sample points.

. Exhaustive Outcomes. The outcomes of a random experiment are called
exhaustive if these cover all the possible outcomes ofthe experiment.

o Mutually Exclusive Eventg. Two events associated with a random experi-
ment are eaid to be mutually exclusive if both cannot occur together in the
same trial.

o Addition lbeorem. If A and B are two eventa, not necessarly mutually
exclusive, associated \rith a random experiment, then

P(A u B) = P(A) + P(B) - P(An B)
. Ildepe[dent Events: T\r'o events A and B associated with a random ex-

perirnent are said to be independent ifP(A n B) = p(A) . p(B), otherwise, they
are said to be dependent.

o Multiplicotion lteorem.If A and B are two events associated with a ran-
dorn experiment, then

P(A n B) = P(A) P(B/A)
r Discr,et€ R.andon Vorisble. A random variable if it can take only fmite

values is said to be a discrete random variable, e.g., no. ofheads in the toss of
two coin.

o Continuoug Random Variable. A random variable if it can take any values
between certain limits, is said to be a continuous random variable, eg., height
of students.

= t": f t": ru,utd,fau=Ji,-{r L,-{y I
lFron (3)l



REVIEW QUESNONS

l. Three coins are tossed simultaneously. List the sample space for this random experi-
ment.

2. A bag contains 4 red balls and 3 black balls. What i8 the sample space if the random
expsriment consists ofdrawing (i) one ball (ii) two balls &om the bag ?

3. Frorr a group of3 boys and 2 girl8, we select two children. What would be the Eample

Epace of this experiment ?

4. From a group of3 boys and 2 girls, we select two children. What would be the aample

space of this randon experiment ? Also, write the events ofgetting (i) both girls (ii) both

boys.

5. Two dice are thrown simultaneously. Find the number of elements in t}le event of get-

(i) sum 4

(iii) sun ll
(li) sum 7

(iu) sum not greater tfian 5.

6. A coin iE toEsed. Find tlte events A', B', A v B, A n B, where :

A = event of gptting no head and B = evelt of getting one head.

7. A die is thrown. If :

A = event of getting a prime number and B = event of getting number grester than 3,

find the events A", 8", A !., B and A 
^ 

B.

8. What is the probability of getting an even number in the throw ofan unbiased die ?

9. A and B are mutually exclusive €vents ofan experiment. If P('not.l0 = 0.65, P(A u B) =
0.65, and P(B) =p, find tJle value ofp.

1o. A box contains 4 red balls, 4 green balls anal 7 white balls. What is tbe probability that a
ball drawn ie either red or white ?

11, (i) IfA and B are two events defined on a sanple space euch that

P(AwB)=i,P(AnB)=i,63
p(8") = !, find p($.

(ii) IfAand B are two events such that P(61= I , p1g)= 1"nd RA anrl B) = -l , finil (a)

P(A or B), (b) P(not A and not B). 4 ' 2 a

12. For any two everts A and B, prove tbat P(A n B) < P(A) < RA L' B) < P(A) + P(B).

13. For two events A and B, let P(A) = 0.4 and P(B) =p and P(A u B) = 0.6
(i) Find p so tbat A and B are mutually exclusive,
(ii) Find p ao that A and B are independent.

14. (i) A coin is tossed twice and all posaible outcomee are assumed to be equally likely. E is
the event : 'at Doat oDe bead has ocsurred- and F is the event : "at most one tail bas
occurred". Show that the events E and F are not iDdependent.

(4) A coin ie tossed twice and all possible outoomea are agsumed to be equally likely. A is
the eveDt : both bead ald tail have occurred and B iE the event : "at least one tail has
occurred". Show that A and B are not ind

16. (i) An unbiaaed die iE thrown twice- Find the pnobability of gettilg a 4, 5, or 6 in the
frrrt thrpw and a 1, 2. I or 4 in tlre gecond tbrow.

(it) A die is tbr,own trice. Find the prcbability of getting an odd number in the 6ret
throw and a multiple of 3 in the aecond throw.

Pnbabilirt
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16. One ball is drawn from a bag contaidng 3 red ard 2 black baUs. Its colour iB noted and
then it is put back in the bag. A second draw is urade and the 8ame procedure is repeated .

Find the probability of drawing : (i) two red ballg (ii) one red and one black ball, and
(iii) two black balls.

17. From a well shufrled pack of52 cards, 3 cards are drawn one-by-one with replacem€nt.
Find the probability distribution of number of queens.

18. Find the mean and the variance ofthe following probability distributions :

19. Two urDs contaiD 5 black,4 white ball6 and 4 black, E whitc balls. One ball is drawn
fron each urn. Find the mean and variance ofthe prcbability di.tribution of the random
variable "no. of white balle drawn".

20. Two-dimensional random variable (X, y) have the joint density

o_..,_lgry, 0<.r<yclt\''t'- | O. otherwise

tilFi,,aPlx<1ny<1].
\ 2 4)

(ii) Find the marginal and conditional distributions.
(iii) Are X and Y independent ? Give reasons for your answer.

21. The two random variables X and Y have the joint probability density function :

J&', y1= 
=l,for 

l3r < - and !.r.t.
Zr"y

Derive the rnarginal distributions ofx and y. Furiher obtain the conditional dietribu-
tion ofY for X = r and also that ofX given y 

= y.
22. A randorn variable X has F(r) as its distribution function ffl.r) is the density

functionl. Find the dietribution function and the deneity function of the random
variable :

(i) Y = c + bX' o and 6 are real numbers.
(ii) Y = x-1, IP (x = 0) = ol,

(idi) Y =tan4 st6 (iu) Y = cos X.
28. A, B, C are three mutually exclusive and exhauetive events associat€d with a random

experirnent. Find P(A), given that RB) = f nOl and RC) = + 
p(B).

24. (i) Two dice are tossed together. Find the pmbability ofgetting a doublet or a total of6.
(ii) A pair ofdice is rolled. Find the probability ofgetting a doublet or sum ofnumbers to

be at least 10.

26, A coin ig toseed three times and all possible oukomeE are assumed to be equally likely.
E ie the event : "both headg and tails have occurred., and F is tbe event ; .at most one
tail ber occurred". Show that the events E and F are independent.

26. (i) 'A speak8 buth in 65% cases and'B'in 80% casee. In wbat percentage of caaes arc
they likely to contradist each otler in stating the aarne fact ?

(ii) A speats truth in 75% cageg and B in 80% cases. In what p€rc€ntag€ ofcases are they
likely to contradict each other in statiBg the salDe fact.

(r)

ui)

3 o

Ax) 0 0.4 0.1 0.5

I , 3 4 o 6

P(r) 0.1 0.1 o.2 0.3 0.1 o.2



27. Let X be a continuoug randmn viriable withp.d.f /(r). Let Y = )P. Show that the Prchability

random variable Y hagp.d.f given by :

( | ,^.,l-ilf(.ry)+ f(-.lr[, r>o4s)=14t'
[0 , rso

28. Find the dietribution aod dengity ftnctionr fc
(i)Y=aX+b,c*0,breal

(ii) Y = e', assunirg that Ftr) and flr), the dirtribution and the density functions respec-
tively ofX are tnown.

FURTHER REAI'I'IGS

l. Introduction to Modera Probability lbeory: B.R, Bhat : Wiley Eastern.

2. Introduction to probability and Mathsmatical Statics: V.K. Rohatagi: Xliley Eastcrn.

3. Discr€te Distributions : N.L. Jobneou and S, IGtz, John Wiley and Sons.

4" Continuous Univerate Distributions-l: N.L. Johneon and S.Kotz.

5. Continuous Univerate Distributiong-2 : N.L. Johnson and S.Kotz, Joln Wiley and Sons.

6. . Introduction to hobability Tbeory witJr Applicationa: W. Feller' Vol-l : Wiley Astero.
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CHAPTER

HKPECTATION

OBJECTIVES

After going through this chapter, you should be able to:
. fiad the expected value of a random variable.
. know the propertiee of erpectation.
o know how to use Chebycheds Inequality.
. know moment generating function.
o how uniquenegs theoren of moment generating fimction.

o know about charasteristic function, cumulants ald InverBion theorem.

STRUCTURE

2.1 Basic Notions of Mathematical Expectation.
2.2 Expected Value of a Function of a Random Variable.

2.3 Properties of Expectation.

2-4 ConditionalExpectation.
2.5 Moment Generating Function.

2.6 Characteristic Functioa.

2.7 Kologmorovlnequality.
2.8 Holdey'slnequality.
2.9 Minkoweki'slnequality.

. Summary

. Glossary

. Review Queetions
o F\rther Rearlings

ZI BI'IG IIOTIO]IS OF TATIIETATIGAL EXPEGTATbII

Ifflr) ie the pmbability mass function ofa discrete random variable X, then

nCX) = Z rf(r) , is known as expected value ofX, provided the series is abaolutely

convergent i.e., provitled I t"fOll=l lzlf(x)<-

t-



Ifflr) is the probability density function ofa continuous random variable, then ExPecrdiott

Efi) = [- r /(r) dr, provided the integral is absolutely convergent i.e., provided

J- t" rtrlta' = J- lxlflo) ax <*

Remerk. E(X) exists if E lXl exists

2.2 EXPEGTED VALUE OF FU]IGTIOX OF A RANDOM
VARIABLE

Let flr) is a probability density function (or probability mass function) ofa random

variable X, and ifg(X) is a random variable such that E @l(X)) exists. Then'

EG(X)) = | S(:.l fG) dr , (for continuoue randorn variable)

:
= I Ck) f(c) , <for digcrete random variable)

Particular Cases
I. If we take g(X) = X , r is a positive integer,

then E(X") = I x' fk) dx = p'" (about origin)

i.e., U:, = E(X), f', = E(X2)

... Mean =; =p', = E(X)

Variance pz= {z- lt'12 = E(X2) - (E(X)2

II. If we take 6(X) = (X - E(X)" = (X - - )',

rhen, E X-E(x)I" = [- t* -;)' f (x) dr = tt,

where l.t. = rth moment about mean

:. rtz= E (x - E(X))2 = !- <" - A2 f<tl ar

III. If we take g(X) = c, then

E(g(x))=E(c) = l;faa"=cJ tQ)dr =c lsi""" Jit"la' = r

Remark The corr€sponding formulae for the discrete random variable X can be obtained
on replacing integration by sunnation over tbe given range ofthe variable X in above
particular caaea,

2.3 PROPERTIES OF EXPEGTATION

Addltion Theoren of Expectation
Property I. fX and, Y are two random uariables, then E (X + Y) = E (X) + E(Y),

provided E(X) and E(Y) eist.

NOTES
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Probahilitv and Proof. I€t x and y are continuous random variable and 6o (r, y) is the jointDinribution Theory probability deneity firnction along witt matginat prouability densiiy function /*(r) and- f.r$) respectively, then

E(x + y) = JIJ-ft * 
", 

f* @, i d.r dy

= J-ji n" <", yt a* ay * llLyfn @, y) dx dy

= f ft-* G, i at]a,. l-:[fr* a, o *]at

= l' " f"<"1a, * [' t f"<t> at

= E(X) + E(y)
Geaeralieation. If X1, X2, ......, \ are z random variables, where E(X,) exist

for all i. then

E(Xr + Xz + ...... + X,.) = E(Xr) + E0fr) + ...... + E(X^)

(n \ nor Elt X, l=Y n{X,), erovided all the expectation existt,r ') E
kT** Tlr". o-of-of property I for discrete random variable is similar to above if wereplace the integration sign by summation (E).

Property tr. Multiplication 1beorem of E:pectation"
If X and Y are indzpendznt random uariables, th,en

E(xy) =E(X). E(y)

. _ _Proof. Let f*" (a y) is the joint probability density firnction of the random
variablee and f*(r) and f,r(y) are the marginal probabilities density function respectively,
then

er:rn= fJ-rr fx/u.,Itudy

= J]J]orxorv U)dxdy fyy{'l, Y\ = f*(r) f"$) as

X, Y are independent

= I- a* a, * f tt"<tt ot

= E(x) ECY)

Gieneralisation. IfXt, X2, ,..... \ are n independent random variables, then
E(XrX, ...... X") = E(XI) Eff ) ...... DCX,)

* t 
[* 

-,) = 
[ 

E(x, ), provided au Xr,s independent and E0!) exist for au i.



Property III. Irt X is a rondom varidble anl c is any constont, thzn

OE(ce6D=cE(e6))
(ii\E(c+g6D=c+E(e6))

where g(X) is a function of a random uarinblp X and all *peetatinns eist'
Proof. (i) Let f(r) ie the probability density function of the random variable X,

then

(;t) E(c + g(X)) = | (c + s(:)\ f (t) d'"

=f "faa'-l slw)f@)itr

= "f t<rla'*l- sG)fi*)dr =c + E(s(X)).

Particular Cases. If we take g(X) = X' then

1;y BlsX; = aE(X)
(ii)E(c+X)=a+E(X)
If we take g(X) = 1, then E(o) = o

Property IV. If X is a rond.om varioble and o and b are conetonts,

thzn EhX + 61 = aE(fl + b, providcd E(X) *ists
Proof. Let fl*) ie the probability density functions of the random variable X,

then

E(cr + b) = | (ex+b\ f(x)dt

= o I),;i",) a* * a J' f<rt * = oE(x) + b

psrticulor Case. If we take o = 1,6 = -X = - E(X), then

E (x- f ) = E(x)- X = E(X)-E(x) = o

Remark. If we tate g(X) = oX + b, tben

s(EG))=cE(X)+b
Also Eg($) = E(cX + b) = cE(X) + b

It implies Ekfi)) = g [E(X)I,
provided 4(X) is a liaear function. However, tlie result is not true if8(x) ia non-linear.

For exanple,
E(1r0 * UE(X)
E()Cz) * (Efi))n

E(log X) * log E(X)
E(x2) + (E(x))z

Property V. I/X' Xo ..... Xoore n random variables and a, a, """ an ore n

consta.nts, thzn,

E(arX, + arX"+...... + a^X) = otE(Xt) + arE(X) +...... + a^E(X)'
providcd all E(Xr) e*ist

Expecrolion

NOTES
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Prcbability and Proof, E (orX, + aF, + ,.,... + anX,r)DisrributionTluory 
= E (orxJ +E(a;2)+...,.. + E(a,rq) I Property I

= orE(Xr) + orD(Xr) + ...... + a"Ee) lproperty III
Property VI. f X > 0, then E(X) > 0
Pnoof. Let flr) is ttre probability densitSr function ofthe random variable. then

nrxt = J\ tut a" = J- o a, * J\ y<*t a,

= J' " r<o a">o IfX ) 0, then

flr)=0forallX<0+ E(X)>O
Property VII. Ze t X and Y are two random uariables such that X S y. then
E(X < E(Y), prouidzd all expectation exist
Proof.GivenX<Y + X-yso + y-X)0
=t E(Y-X)>0
+ E(Y) - E(X) > 0
+ E(y) > E(X)
+ E(X) < E(Y)
Pioperty VIII. lE(Dl < ElXl, provided E(X) exist€
Proof. For each X, X < lX I

+ E(X) < Elxl
Also -X< lxl
:+ E(-X) < ElXl
:e -ECX)<E|X|

lPropertyVl

...(1) lProperty VII

...(2)
From (1) and (2), IE(X)|sElXI
Theorear I. I/X ie a rand,om variable, then V(aX + b) = azy61r, where a and. b

are constants dnd V(X) is tlu voriance of X
Proof. Let Y=oX+ 6. Then

E(Y)=E(oX+&)=oE(X)+6
y_ E(y) = aX + 6 _ (aE(X) + 6) = otx_ E(X)l

Squaring and trting expectation of both sides,
EtY- Eff)|, = o2X - E(X)12

+ V(V) = 02 V(X) or V(aX + b) = 02 V(X)
Particular Casee. (i) If b = 0, then Var (aX) - a2V(X)

i.e., variance is not independent of change ofscale.
(ii) Ifc = 0, then V(6) = 0 i.e., variance ofa constant is zero
(it, IfO = 1, then V0( + b) = V(X) i.e., variance is independent ofchange of origin
Def. Covariance. Let X and y are two random variables, then covariance

between X and Y, denoted by Cov(X, Y), is defined by

Cov(X, Y) = E{x - Efi)} {y - Em}

= E [xy - xE(Y) - yE(x) + E(x) E(D]

= E(XY) - E(x) E(Y) - E(y) E(X) + E(X) E(y)



= ECJ(D- E(x) ECY)

' IfX and Y are indePendent, then

EO(Y) = E(X) ECY) and hence from (1),

Cov(X, Y) = E(X) ECD - EC$ Eff) = 0

Renark 1. Cov (oX, DY) = E ttdX - E(oX)l tbY - E(6Y)l

= Etc(x- Efi) 6(Y - Eff)l
= aDE t(x - E(X) (Y - E(D)l
: cb Cw(X, Y)

2. Cov (X + o, Y + 6) = Cov (X' Y)
g. Cov (oX + b, cY + d) = cc Cov (X, Y)

4. Cov (X + Y, Z) = Cov (X, Z) + Cov (Y' Z)

6. Cov (oX + bY, cX + d|I) = u Y ar (X) + 6d Vcr (Y) + (od + 6c) Cov (X, Y)

Theorem II. fX, , Xo ...... Xo ore n ratdom variablzs, thcn

Vor(arX, + az[2+ ,..... + a"X)

= arzva{X) + a22 Var(X) + ..."' + an2 Vor(X)

nra
* 2Z Z aiai Cov(Xi,Xi ),i < i

i-t j=t

Proof. Take U=arXr + a;'2+.....' + @"\
+ E(U) = E(dlxr + a$"+...... + a,\)

= orE(Xr + crEOQ)) + ...... + onB0t)
U - E(U) = or(X, - E(Xr)) + crQl - E0!)) + .....' + @," (x" - E(Xa))

Squaring and tql.ing expectation both 8ide8,

EIIJ - E(Ul2 = orzE[Xr - ECX')|2 + o,22 EW -E;(X2)f

+......+dL2 E t\-80()1'z+ r> > oi@j E [[xi-E(xr) Xi-E(Xr)l

+ Var (u) = ar2 var <xJ.4 v";Ul .""' * o"'v'" cx^l

i.1 i=l

Particular Casee. I.If ct = o, = '.....o,, = I'
Then, Var (X, + X, + .....1+ \)

= Var(X1) + Var (Xr) + ...... i Var (X,) * 2 t I Cov (X,, Xr), i < j

II.If \, &, ...... \ are pairwise independent, then Cov (\, X;) = 0 for all i rtj,
t,|en from (1)

Var (orX, + crX, + ...'.. + o"\).= or2Var (Xr) + cr2 Var (X2) + """ + o"2 Var (X")

Also from (2)

Var (X, + \ + ."... + \) = Var (Xr) + Var (Xr) + "'." + Var (X')

III. Ifar = L,az= 1ando,=cn=.""'oo=0,
then frorn (1)

Var (X + Y) = Var (X) + Var (Y) + 2 Cov (X' Y)

+2> > o;a;Cov(\,Xr),i<i ...(1)

,,,(2)

...(1) F-rpectdtion

NOTES
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Probobili\'and lf or=.L,ar=-1, and as=a,4=......@o=0,DistibutionTtuory 
then from (l)

VadX - y) 
= Var(X) + Va(y) - 2 Cov(& y)

.'. Var{X r Y) = Va(X) + Va(y) t Z Cov(X, y)
IfX and Y are independent, then Cov(X, y) 

= 0 and hence
Var(X*Y)=Va(X)+Va(Y)

ILLUSTRATIVE EXAMPLES

Example l. Let X be a random variable with the foltowing probabilitt
distributinn

r -3 6 9

p(r) 1t6 112 1t3

(i) Find E(X) and EeP)
(ii) Find E(zX + 1f

sol. Efi)= I rp(r) = (-3).]+0.**g.l = 1l6232
erx,) = I'2 p(')=e.**so. j.er. j = 99

E(2X+t)2=E(4X2+l+4X)

=48(X2)+t+4E(X)

= l.P* r+4.+ = 2oe22
Erample 2. A ro ndom variable hae thz following probability d,istribution.
P(X=0) =P(X=2) =p ctnd.

P(X = 1) = 1 -2p, For what vahtc of p, Var(X) is maximun. It ie giuen tha'

03p3:'2
Sol. I'he random variable takes the values 0, 1, 2 with respective probabilitiesp,L-b,p
"' E(X) =0 x P+ I x (1 -2P)+ 2xP =1

E(Xz) = 0 xp + I x (l -?) * 4 x p = 1 a 2p
.'. VadX) =EOP)-(Efi)), =r+2p-r=h

I
For 0 3p < i, V"rfX) ir maximum when p = l. Also.z '' 2' ----'

Max. Var(X) = r.* =,
Exanple l. I*t X be o ,oiko uariable with mean 1t and. uariance oz. Show

that E(x - b)2, as a function of b, is minimisd whcn b = p'or swn of squares of dzuiotions
is minimum when tahcn about mean.



Sol. Flx - D)2 = E[(X - p) + (p - 6)1,

= Elfi- pP + (p- bP + 2 fi-p) (tl-6)1

= E(X - pf + D0r - 6)2 + 2(p- b) E(X - tt)
_rO-pg91r+(p_Dp

= Var (X) + (p - bP > Var (X)

+ E(X - bP > Var (X)

lE(X-tt)= 0

lSince (p - bP > 0

,'. EO( - bP is mioinu,n wben p = b and its "ninimrrm vdue i8

Bg1 - plz = Var (X)

nrgnpfe {. f ! 6 wry peitive nal utmber, ellplw th'gt tlu fit &inn Aefind bl
p(x) = ea (1 - CF-l mn rcpteent a prcbabiJiry furctbn of o ranfum usbble X which
tahes tlv uahes 1, 2, 3, ....- . Find EQg and Var & of tlv distribtttion.

gol.Fort>O.d>L + ea<l + L-C>O
1Also e.=i>0forallt>0

e'

p(rl = ea (L - eaFt 2 0 for all t > O, r, = L, 2, 3, ......

AIso i o,", =i "-'tr-"-'Y-'r=1 rol

_ --, S /t -,-rtr-l
':'

"-r S --'
=_ L.a -wherec=1_e+

I

=e+(1+o * o'* ,,....1= L
l-d

= "-' ="-' = !l- 1+e-' e-
Hence p(r) = e-'t (l - e4F-r, t 2 o, r = l, 2,3, ....,. repr€s€Dta the probability

function of the random fariable X.

Also n111= I rlr) = | te-' (!-e-'rt-r
Fl t=l

= e-, > ro'-l s,5sr€ o = 1_e{
t'1

= ea (l + 2tr + fuz + tbE + ..,...)

=e<(l_a|.2
=ea(L-L+ea|,2=eaea=d

Ako EoP)=E r"1\')=Z i;, (L-eaYr
Ft t=l

=".1x,tot-r where c = I -c{t-l

Eqrccmtio,,

NOTES

SctlJnstructiortc,l Hateial 57



Ptobability arttl
Distrib ionTheot\

NOTES

= e+ (1 + k + 9a,2 + 16o3 + ...... -)
=€+(1 +o)(l -ofg
= e-r (1 + 1 _ e-r) (e-.')-3

= s_t () _ s-t) 2zt = et (2 _ d)
.'. Var (X) = E(X2) - (E(X))2 = et (Z - e-t) - e2.

=ea (2 - e-t -l) = eu(l +ea)

$ SclurctnetiondMaurial

by

2.4 CONDITIONAL EXPECTATION

Ttre conditional expectation of a discrete random variable X given y 
= y, is defined

E(XlY =v,) = | rP(X=r, lY=yr)' 'J' 
,=l

The conditional expectation of a continuous random variable X given y = .r, is
defined as

DCxrY=y) =k##
I v fk.vtd,v

SimilarlY E (Y lX=:)= r;' '- '
fx@)

Theorem III. Chebychev,a Inequality
If Xis a rand.om uari.oble with mcan p and. uariance d, then for a +ue number k,

p{(x-tD>ha}s+ or

P {6 -y)<kc.r}> t-J'k'
Proof. Case I. IfX is a continuoug random variable, then

a2 = ox2 = E {X - E (X)}2 = E (X - p),

= J- t" - rr)' f(x) dt, wherc flx) is p.d.f. of X.

= f* <' - ul" f<"> a' + l_[ <" - D2 f{r) d, + 
I-*h"

tt-La
> | (r - 1t)' f(rl + dx+ 1,., (x - tt)2 f(r) *J- )116

'We know that :

r3p-hc and r>p+lo c+ lr-pl >io
Substituting in (1), we get

:. c2>k2a2llr-L"fG)ar*f- 1<"lar]
L'_ r1t+'6 I

= ft2o2 [P (X< F-to) + P (X>p + &o)l

=&Co2.P(lX-pl >,to)

k - tr)2 f(t) dt

...(1)

...(2)

I Using (2)

I Using (2)



= P(lX-pl >kc)<rlhz,
Also since

' P {lX-ttl >io}+PtlX-pl <,to}=1,weget
Ptlx-[l <frc]=1-P{lX-ltl >to} >L-lLlk2l lUsing (3)

Hence the first case.

Case II. When X is a discrete random variable, then the proof follows directly
ae in case I on replacing integration by summation.

Particulsr Cases. Take fto = C, C > 0, then from (1) and (2),

*2 d2p{(X-r)>C) <+ and PtlX-p l<C}>1-+c'

or p{(X-E(x)>c} < 
v"-1x) andP{lx-E(r)<c} >1- vt"lx)

-'" --'- c2 c2

Theoren IV. Markof e Inequality
Izt E(X) be a ,nn-npgative function of a random uarioble )L then for euery h > 0,

we have

E(X)Pilxl >ft} <--
Proof. Let S denotes the set of all X andg(X) > &. i.e.,

S = {* : g(r) > &}, then

I artrl = p(Xe s)= p lg(x)>fr|,
Js

where F(r) is the distribution function ofX

.'. E(sm)=f s(r)dr{r)>J"e(*)dFG)

>kptc/.r)>hl

= P{s(')>&}=I!#!2

Take g(X) = lXl, then

Pttxt>*l<ry

lgk)>&onS

...(3) Erpecration

NOTFS

2"5 TOTEI]T GEilERATIilG FUIICTIO]I

The moment generating function (m.g.f) of a raadon variable X (about origin)
with probabili$ distribution function f(*), is defined by

ll ." f(.:, a", fc continuous randon variable
M*(t) = E(ex) = l' L e' f{x), for djscr€te rardom variablet;

Theorem LshowthatM-ftl =i LP:
^H,| FO'

Sct-lnt ruetiotul Marcrial Sg
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ll *r*,*.h"ry p,,=Eo?) =lI rro,

Proof. Mll)=E(eb)=E(1+tx+S.$l.. .,

= I + r E(x) + fr ,r*rr* $ ror, *......

= r+rLri *{rv; *......* \tt; +......

Thus, coefficient of - in M*(r) Sivee moments, hence M*(/) is know as moment
generating function.

Ttre moment generating function ofthe random variable about the point X = a is
defined as

M*(l) = (about X = o) = E [lG{)}

_f- 12 - t" 'l

= E ll+r(x - o)+;tx -c), +......+itx -"1. +..... 
IL z't rt I

= 1 + rpr * !.u, * ..... * ! u,* ......

where pr = E[(X - o)"], rth moment about the point X = a.
Tlreorem II. lW*(t) = Mxbt), c is dn! constant
Proof. M"x(r) = E(eax) = L.H.S.
Also Mx(t) = E(e.tx) = R.H.S.
Hence the theorem
Theoren [fr,. The momznt genzrating function of the surn of a number ol'

independent randorn variabLee is equal to thc prod.uct of their respective rnotnent
gererating functions, i.e,, tf Xft Xs ...... Xnare ind.ependent rand.om variables, then

M x, * x" r......, x^ft) = My, (t) M y"(t) .,.,,. M x^ft)
Proof. By definition.

Mx, 
'x, * -..- *x" (!) = E[et{x,*x,'"'-*x.11

= E (e'xr . 
"txr 

... 
"tx' 1

= E(erx') . E{erxt ) ...... E(erx. ) lxr, &, .....x" are independent
= My, (t), M1, (t),...... Mx. (r).

Tlreoren IV. E/fbc! of clwge f origin a nd wlc on monent gerarating funztian.
Proof. Let X be a random variable. Transform X to the new variable U by

changing both the origin and scale in X by defining

rr- X-o
u = --h , where a, /r are constants.

_i r',,,
- L- r!"



Then Mu{t)= E(du)= "fr'+l\/
/tx ,a\ d /,x\

=sl"n ."-t,l=e-;nle;lI J t/
_g /. \

=e i M;lij,*"*
Mx(r) iE the moment generating fuaction of X about the origin
Particular Cases : Takea = E(D = p, i = Var(X) = o,

- X-Efi) X-uthen U= V""fi) = 
" 

=Z,s y;

-rt / t\Then Mltt=e " ttt*l"J
Theoren. Uniquenees Theorem of Moment Generating Function
The moment generating function of a distribution, if it exists, uniquely

determines the distribution. This means, corresponding to a given probability
distribution, there is only one moment generating function, (provided it exists) and
corresponding to a given moment generating fuoction, there is only one probability
distribution. Hence

Mlt) = Mlt) + X and Y are identically distributed.

Cumulantg
Iffr(t) = log Mx(r), then rt(t) is known as cumulant generating firnction, provided

the right hand side can be expanded as a convergent series in powers oft.

Thus, h"(t) = hrt * *r{. * ...... * n, \ * ...... = log Mx(r)

= tosIr*r,ir*p r.**rt.*.*......*u, i. )
where l. = coefifrAent of i in i"(f), is called the rth cumulant. Hence

h1t + h" !-.+ ...... + O, i * ......

( .2 .3. ') r/ f f ),= [rit+ui 
.i.*r,'". s;*.....)-ilui,.u;.fi..ui. u.* .. ..1

tl t2 tt \3 t( J .3 \r
+ 

5 lrit 
+ tri . , + p6 . 

EJ 
*.... .. ) - ilui, . r; h. r; A.. ... .. 

)

lt "<r*a="-f,.+-+- ..
I

Equating the coefficients of like powers of t, we get
it=P"=6san
4 _tri _1.,,z,! 2,! T - u"=lL'z-lr't2=lz

Expccmtion

NOTES
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h tLi | zrtip2 . v'f
3t 3! 2 2l I

+ l, = p', - 3p'rp', + 2pr'3 = p,

Similarly, Ire = kt + 3hz2

2.6 CIIARACTERISTTG FUIIGTIOII

' The characteristic function ofa random variable, X, denoted bV $x(l), is defined
by

ll et* 1<d a4 for continuous r.u.X
ox(t)=E(€tx\-r'-' - | I e'" f t'r), for discrete r' u' X

If F* (r) is t}re distribution function ofa continuous random variable X, then

Oi{r)=fett"dr(r).

Propertiea of Chgracteristic Function
Statenent. for all real t.
U)01,0) = I

Proof.

QD l0//)l<No)

$tl= !'eb S6a'

.. 0(o) = l' f<i ax = r

Also l0(rl =

| ;eel= lcos rt + i sin ,, | = I

=+ lQ(t)l <1=Oo(r)
Since | 0 (t) | 5 1, characteristic function always exists.

I l-,'" ro,* 1, J)"'" lt<"t * = f r{i a.r = r

2"7 rOLf OGOROV IEOUALITY

If6(r) is coutinuous and conver function on an interval I and X is random variable
with valuea itr with probability I, then

EG(r)) > C(E(t)), provided Ek) exiata.

2.8 IIOLDER€ I]IEOUALITY

6i2 Sclf-lnstrucrional Marciol

Statement, I/X and Y arz two discrctz random rsoriabl.es, tlnn(" \ r" \/" \
lZ ",y,lrll ",'ll I ",' I\j=r ,/ u=l ,/\j=r l



Proof. Let G(O be a r€al valued function defiaed for L such that
c.0)=E(X+rrP ...( r)

Since (r+ty)2>0 + E(.r+ tyP>O + G(0>0Vt.
Now G(t) = E(r2 + t\2 + Ztry) 2 0

= E(rP + t2 E(y2) + Z E(q)
= E(y2).F + % E(ry) + E(r2),

which is quadratic int, san
G(t) = 61r * 

"t 
* C, where

A = E(Y'z), B = 2E(sJ), C=E(r2)
Since G(t) > 0, It means that graph of G(r) will either touch t-cvis at one point or

does not touch t-ari8.
,'. We should have D 3 0, where D is the discrimant of G(t)

I Since G(f) has two clistinct roots if D > 0

+ 82-4AC <0

= (28 (ftD2 - 4. E( y2).E(l) < 0

+ [E(ry)12 < E(r2) E92)

Take BO,1 = 
1; r;,
n 7-t

n<n=L'i. y?- n 7-r

1+
E(o)=|/-tiri

.'. (2) giveg

(t ^ \2 lr, o \/, o \

ItE ",",,J 
.li[','JliI 

"'J
which proves tJre reeult.

...(2)

Erpeaotion

NOTFS

z9 ttlrKowsrt€ ltEoUALlTY

Ifr and y are two random variablea (dissrete or continuous), Then
E(, +Y) = E(t) + E(t)

lf Case I when r and y are continuous random variable. bf f,k), f,Q) delrcttcl
tlre probability density function ofthe raodon variablea r aod y and tet fo&, f) be t.he
joint p.d.f. ofthese random variablee, tbem,

.- Ek)= f _*f,<oa,,E/rir= f -yf,etd.tAlBo

E(r+y)= fla*ifob,iaa,

Scr-rnsrruetionat Nat rial 6t
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= J7\ r,r', t -t + fl' t fo@, t\ddt
efe '1 "-r- 1

= !:ll1'<"'ttdYF * l:l)J'a'r>a'pt
=!'"f,to**frf,tttot
= E(r) + E(y)

Theorem. Stste aad Prove Inversion Theorem.
Let F(:) and O(t) be the dietribution function and the characteristic function

respectively, of randon variable X, then for r e (a - h, a + h),

F (c +i)-F(a -, = ,T-+[Y "-tu +(t)dt

DefrneJ= if_r*iu' u* roro.' ...6)

= 
! lr ̂ {"*! "* f' "* 1<o a,l at

l
where dF(t) = flr,) d.x, flr) being the probability density function ofX.

"' J=;Ji{J:iu eilk-'r<xtdtldt (21

Since the linits of integral over t are finite and the integral iu the R.H.S. is
absolutely convergent, i.e.,

Jl"l"t;u''"oo.-"' /t"' a"=fliElrr"la, (... td"t=r)

= J:l#'l r{ia'r<tntf 
-1*,)dx = | h t'

Changing the order ofintegration in (2)

"' r=*flfiTrt "'t'-'t fa'dt]d' lFubini'stheorem

= + [f{[TE' cos t<x - at at] ro a']

- ;fJ:GTg . ain t<x - at at\ r<,t a,)

Sio." "h-if cos, (r - o) is an even function of , an6 litJtt . .in g (r - a) is an odci

function of r, the second intcgral vanishes and we get

' = ; J:{JJ$ . 
"e 

t a - o atl ru> *]

= l- e{x,l)f<xtau., ...(3)



where dr,D=Zf"99jI.oat(r-oldt

= t f I rz "* r < x - ol. atu htl dt

= -tf |f"- tr- o + l) t -sin (r - c - h\ tl dt

[-t lt' o

Lrs(,,,r)=lt l;l
= js c -to -r,1, r) - js c-<c + rrl, tt,

= Ir - L' (aaY) "'(4)

Since S(h, T) is bounded, the rigbt hanrl side io (4) i8 bounded and conrequerntly

rin r=rqgf s(' ,Tlf{u,)tk

= J-;gget",ort'ra'
Now, consider tJre valuea of I, and I, in (4), fc diftrent rangea of: in the following

- ...(5)

= +f" 1..no 
--: * ur, 

. * - ! foZn.* 
k,:t - h) t 

. at

= j . s <"-" + rr, r)- j s<*-o -n, rl

We know that if

s(h, t) = ?f 
=Ildt, 

whe,re r, is real and r > o,

then

g(r, T) ia bounded, i.e.,

lg (*, D l< lftl, saY'VT'
Ftom (8),

table.

x>a+hr=c+ha-h<r<a+h

EqctuLol

M}TES

f'tlf- lnftx,.rto&4l Mot ri4 I
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|!xetr,r)=

Subetihrting these

O, r<a-h
l.
-, r=a-h
\ a-h<lca+h
I
-, xea,+h
Q r >c+i
in (6), we gpt

lin - fo-a - .a+L
.r = J- rl$etr,n f@ dx + l-&,sk, D f(,) &

. rr{i,t The momeot g€nerating fuDction of a raldom variable r(about origin)with p.d.f. flr) is given by

. fl * flr) &, for continuoug random variableIl-(r) = F/e&) - lL .-

ll eE f(i, for discrete raldom variable
Ir

=o*JlJf<"t**o

tr+h- ln-^f(') &' 'I,1c -i sx3a +i)
=P(Xsc+f,)-P(X<c_i)
o tr'(o + lr) - lyc - i)

Subetituting fron (8) ia 0), we get

flo +i)-F(a-i,= +**lis1fu. c-tu 4qt)dt,
Hence the theorem.

SUNTARY

GLOSSARV

r If /k) ig tie pmobability nast fritrctim (or probabitty deneity tunction) of arandom variable, then the orpected 
""fu",if, i" giuii, iy '

lZ t f<rl, for dis@te rardom variable
Ea)_ {;

lJ, f<O ar, for continuoug randoo variable
o lfe&) is any linear function, then B(g(r)) = g(E(r)). But this rcault is not trueifd&) ir nou-linear
o Ifr aad t are independent random variables, then cov (*, y) = Q. gu1 gh.

cmverae it not true.

*,f.1* 
"t"'tl/t'l*

...Q)

...(8)



. Charaotortrttc trtmotiot!. The characterietic function ofa random variable

r, is defined bY

fl "* fttl *, fu ootiauous rando rnriable

0, (!) = E(ctu) = li * fAt, for iliscetc randon variable

Ir

RElnEwotEsnoNs

hove the bllowingfomulr
(i) lt . gtl mean

(iii) [s = Fs

(ii) lr = Fr
(iu) l. = P. - Slrl

t rf z =UJhor show trnt ur(o. ;f r'r'(i).
& If X is a random variable with msan F aad varience d' then

p{(x - Efi)) > c} < $, *1"rt 
" 

i. ramo pditivo coBltanL

FURTHER FEADINGS

l. lntroductioa to Modqa Pnobobility ltcory: B'R' Bhat Wiley Eartan'

A IntFoduclioo to Fobaftilitt adl Uatb@adcal Statirdcr: V'K Robatg: wilcy East€rn'

!. Ixrcr,eta Distributiols: N.L Johum aod s'Kott" Johl Wil€y and Son!'

a Continuou! Univarate itgtributionr-t N'L' Johnron and s'Iftta'

F-tpc<I.tli.rtl

NOTETI
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LImr-II
CHAPTER

CONVERGENCE OF SEQTJENCE OF
RANDOM VARIABLES

OBJECTIVES
After going through this chapter, you should be able to:o know about convergence ofeequence of random variables in probability.. know about WLLN (weak law of large numbers)
o know Markov's theorem for WLLN
o know the relation between central limit theorem and WLLN.

STRUCTURE
3.1 Intmduction
3.2 Convergence in hobability
3.3 $pes of Convergence and Interrelations.
3.4 Weak Law of Large Numbers for Ind.ependent and Identically Distributed

Kandom Variablee
3.5 l(ologm.orov,s Strong Law of Large Numbers
3.6 State and hove Linderberg-Levy Form of Central Limit Theorem3.7 Lindeberg and Feller Conditions (Statement only)
3.8 Another Forms of Central Unit Theorem or Liapounov,s Form of CentralLirnit theoren.

. Sumary

. Glossary

. Review Questions
o Further -Readings

3.t I|TRODUGTIO]|

A sequence of randorn variables Xr, &, ..-, X" i" said to converge rn probability
to a coDstant a, iffor any e > 0,



,1t_ 
pt t \-al <e)=1 o",ft p(l \-a | >e)=0

and we write \ -I, o, 
"" 

r - -.

Convergenc. of Se q uencc
o! Randon Variables

NOTES

3.2 GONVERGENGE IN PROBABILITY

If there exists a random variable X such that Xo - X ------+ c, as n -+ @, we say

that the given sequence <4> of random variables converges in probability to the
random variables X.

3.3 TYPES OF GONVERGE]IGE AND INTERRELATIONS

Typea of Convergence. firere are two types of convergence, namely
(i) Convergence in probabilitY

(ii) Ordinary convergence

Interrelation: The concept of convergence in probability is basically di{ferent
from that of ordinary convergence of sequence of real numbers. But, the following
results also hold for the convergence in probability.

PrP
IfX,, ------t a, ! ------s 6, as z --r -, tben

n

P
(t) \ 1\ -------r o t 6, as z -t -

Yp(it) '-,| . 4,6*0.asn--r-.
Y-b

fleoren I. Chebysheds Theoren on Convergence ia Probability.
Statenent. I/X, X, ,,...., Xnis a sequence of random uariables and, if mean yn

and standard deuiation ao of Xneists for oll n satisfuing o^ 4 0 a,s n a *, then

4-p" -1 o,a.sn-s-.
Proof. By Chebyshev's inequality, ifX is a random variable with nean p and

variable o2,

Then for any positive number &,

P{lx-p l>c}<13{x)-c2
In our case, we have for e > 0,

Ptl r" -rr, | >e) < 9; +0, asn -+-

.. By defrnition of 
"oo.,""g"i." 

in probability,

X, - p, ---.r 0, as z -+ -, provided oo -+ 0, n -+ -
Hence the theorem.

Sclf-lnstructional Mateia! 69
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PrubabiW and lteoren II. YeeL lrw of larae nunberr (Chebydev'e Fotu)
Ditftiltt'idnvory StatonenL rfxo x, *, x,b a *qtnnce of ronfum vorbblzs atd ltp rs.'., Ito

be tteir rcspective means, soti$yitf ,4- k - O ,*n
Bo- Var (X, + X, + ... +X,/ < -, theo

for all n > nowllerc e and.l an orbihary snnll posilive numbra.
hoof. By Chebyeher/e inequalif, if X is a random variable with mean p and

variance d, then

P(lx-E{x) l<cl >r-!*!'
c'

In our case, r.eplace X 5, Xr + Xl + "' + X" 
,

n
We have, for e > 0,

"flfxr+xz 
+...+x"')_rf x, +x, +...+x,)l..Ir, _ -|",- [|( " J -\ " )l--l-' n2e2

*r'"* v-[&:&]t&)

= { v"r<xr*4+...+\l= }

or 
"{l 

(*" )-(pr+rrzt"'+rr")1.4 ='- #
Since e ie arbitrary, rve aaoume ?"= - 0 as n + -. Also choos€ small positive

nzEz

numbere e and 11 and no auch that ?'".o forn>zo
n'e'

,'. Itom above

Another form of YeaL Low ol Lergo Nunberr
lteorem III.I;rXn X, ..- X^b a *qwrw of nndom varbblcc with p, po ,..

l\ a8 ,r',,ans, thzn

x" : g^, prnuid.ed 3 - o, u n -+ 6.

Proof. Flom above theorcm, if



X" = 
Xr+Xzj"'+X",

Oo _ pr + pz + ...+ lro 
, then

n

r{lX"-P, l<€}>l- ?", =r
n"e"

... $+o,aen-+*

+ P(lX" -[. l<el = 1

.'. By definition, X" : F,, provided I - o, 63 2 -+ -, whete-n
B^=Var(Xr+\+.'.+\).

3.4WE,AK LAWOF IARGE NUMBERS FOR INDEPENDENT
AND IDENTIGALLY DISTRIBUTED RAiIIDOT VARIABLES

Tbeorem rV. f Xn X, ..., Xoare independcnt and identically distributed' ran'
dom variabl'es i.e., if

E(X,) = p and' Var(X) = & for all i = 1, 2, ..., n'

P
thzn Xn -----+ P oa n + 6.

Proof. Here B" = Var (Xr + \ + ... + \)
= Var (Xr) + VarQl) + ... + Var(X")

=62 162*,,.+a2=no2
| .' Xr, &, ..., \ are indePendent

... Lt P+= lt 4= ", 
d 

=oo-- n" ^-- n' na- n

... p{lx'*xr*"'*x"-pl.Jr1- 9o- v'oo
tl n 'l ) n2E2

or 
"{l 

x, +x, +...+x" _u1..} _, r, aan _)_-- tl n 'l 
)

3.5 KOLTOGOROI''S STRONG LAW OF LARGE NUTBERS

lf x, x2, ..., xn 
^te 

independent randorn variablee with means Fi = E kr) and

variances o2.

I€t &z = E(*r + r, + ... + to) and

+ PtlX.-Pl>el-r0asn-+-
P

= Xo + p,asn+-

C anvergence of Sequence
of Random thriables

NOTES
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P(lY" =+ li,n P{l s" - E(s,,)

ilD =.] - o

E(62) = S(a, + *" +,,, + xn) = E(rr) + E(rr) + ... + E(r^)

= Pr + P2 + "'+ lt" = tz", say'
then we say that tJre sequence <6n> obeys the strong law oflarge numbers iffor e > 0,

there exists n e N suchthat |6' --" 1..orrr *.
n

Markov's Theorem V. The weak law of large numberr holds iffor some 6 > 0,
E( | Xi lr.6) exist and are bounded V i = 1,2, ...

Markov's theorem gives only a neceasary condition for the weak law of large
nurnbers to hold good. It meane that, if for 6 > O, E | 4 | 

r*6 is unbounded, then weak
law oflarge numbers cannot hold for the sequence ofrandom variables X, Xr, ..., X,.

I0rintchine's Theorem VI. If Xl, Xr, ...,4 are independent and identically
distributed random variables, then the only condition necessary for the weak law of
large numbers to hold is that E(X,) , i = 1,2,..., z, should exist.

Necessary and sufEcient condition for the eequence <Xo> to satisfy weak
law of large numbera.

Theoren YII. A necessary and sufficbnt for the sequence <Xo> to satisfy thc
weak law of large nurnbers is giuen by

/v-')
E | ---:-4-" lt;v7 1--' 

u' os n r 6

whcre y,- s" - 
-Ets"l ,so=X,+Xr+...+xn.

lt vz \
Proof. Let El :-:- | -+ 0 as n + € and we show <4>, the sequence of ran-

\ l+ y", l
dom variables satisfres weak law of large numbers. For this, we define an event A,
givenbyA= {l Y" l>e)

Let oeA = lY^l>e = ly"l22e2>0
Forc20,b>0,weknowa2b = a+ab2b+ab ...(l)
.'. Taking o = \2 and b = e2 in (l), we define another event B as follows :

"=F##'+={#n=f;}
(D€A + oeB,AgB =r P(A)<P(B).

P(tY" t'r.r[#, -F'1)
Since

-+0asn--l-

l>e)-+0aan-+€

[By Markov's Inequality]



ltrus weak law of large numbers holde for the sequence f\l of random vari- conue4cnce of scQuencc

ables. of Randa n lhriablcs

Converse. If <X">, the sequence of random variables, satisfies weak law of
large numbers, we show

1w2 \ti;"j --r 0, as n + -' For this' assune rys are continuous and if f"(v) be

the probability density firnction of \, then

/ vz \ {2

'f *7j =J-fut""'o,

= J,n..#7'^' at * \,,',fit hot 4

='[ft)=tr,,="t. f,9) dy * \n,!' - f^(v) dv

f ^,2 42 ^'l
| '.' -l----- < I and .+ < Y" I

l_ t*y' I+Y- J

('.' OnA: ly l<el
['.. P(N) < 1]

Iv-'I
= Etffl sP(l v' | 2el+d-+o,aan -'@

Since [X,] satisfic weak law of large numbers, we havu 
^li11 

P I Y" | > el -+ 0,

Hence the theorem'

<P(A)+e2 lo, t^<oat

= P(A) + e2 . P(.f) < P(A) + e2

ILLUSTRATIVE EXAMPLES

Exanple l. Con sider a di'screte mndam variable with probabilitf density func-

tion fk), giuen by
, A | -..

f@ = ;. I-t@ + |. tottl + V. 
t t ttt

Euuluntc P( | X - 1t" | > 2 cJ. 1.Jlso cotnpare lour result with thot obtaincd' on by

using C hzby s hzu's iequolitY,
Sol.GivenprobabilitydistributionfortherandomvariableXisshowninthe

following table.

.'. Ecx)=-rxlto,.f,+r'*=o=u"

,,1121= 1' j *o " * - t' * =?= Ln

-l 0 I

pk 1
8

I
I

l
8

NOTES
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WiIAyd
DUriDlrltn'tlwty

N('IES

7a Y{tut tuU

::+

varG)= Eof)-@00P= i -r - i
I

". =;
Ptl x-g | >2aJ -P{lXl :lt=r_Ptl x | < u

=t-p(-1<X<l)=l_F6=0)
.621=.-E-c=7

Atao by Cbe\nHa tuFquality,

Pll x-F- l>zoj< var0rl r

... In both coq, the reerdt! arre aane.
nv-'-Fle !. Coned&r ttu &nihnion p(r) - F, x - I, 2, g, ... (Jcing Cfubyct,,u,eshrytlut

PllX - 2 | s 2l > ;, tut * auat probOitity t !.18
8ol" We fint find mear erd varienc€ orf the givm distribution.

FrD=i ".p<,r=i, lfHere

=t.*'2.$*s.S*,..
I

=! [r*2.]*s +...) -*(,_;I'

=|.+=z

Et,P)= i ,'.pt'l= i
r:l Fl

Usi4g ChfDtqefs inequality, we have

PtlX-EG) l<rol:r-*

= | * r". * * 
",. * . ... = *(r_r. j.s.$,..J

= j <r +rl(r-*frwherc r=j lseeremarlbetow

=i; (.J -f e=e

Varfr)=EA)-Gfr))r=6-rl=2 + c= rf2

l(l - rfz = l + 2,x,+ Bl + ...

,2.!
2'



.),
Take&o=2 + k= 2=f, = Jf'wehave

11Ptlx-2 | <21>L-;--;
Also the actual probability i8 given by

P{l X- 2 | s2l =ilz' 2 3X<2 + 2)

= R0 <X< a) = P(X = 0) + PCK = t, * PgC = 2)
+P(X=3)+P11=4)

^111r15=o+r+E*g*F=Ie.
Ronert: Consider S = I + 22 . a + 32' a2 + 12' az + 52' aa + ""
Multiplying (1) by -fu,kz,-ot successively, we have

S = I + 4c + 942 + l'6os + 254{ + """
- ttcs = - 3c - tr2o:2 -27as - A8,Ir - """

3o2S = fuz + 12as + 27aa +,.,,

...(1)

...(2)

...(3)

...(4)

...(5)
-a3S=

Adding (2), (3), (4) and (5) vertically' \f,e get

(L_fu+Ba2_a3)S= 1+@
(1 -o)PS=1+a + S=(1 +o)(1 - o)-3

t
Take o = i in above' we get

=9.a=rz.2

Erample 8..4 qy mn tric die ia th'?wn 6A0 dnus' Find the lower boun'd fur tlrc

probabitity of getting 80 to 120 ei'tes'

Sol. Lct X denotes the total number of sucse8ess, p be the probability of getting

1

a six, thenp = f. Also z = 6tX).

.'. E(X)=nP=600 ' 1= tOo
6

Var(X)=npq= 100 l<: = T I Using Binomial tlistribution

Using ChebYaheCs inequalitY,

1

Pllx-ECtO l<lol >r-;;

- as - ba - ,,....

t*e,. !*s. $ +ro.{ + =(t.;) ('+f

r{rx-rmr.ffi='-+

Convcrgqrce of ScE ence

ol Randorn Varioblet

NOTES
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R.H.S. of (l) is an alternating series with ao = f -+ 0, as i --; -. also o.., = , 
I 
,

(t \ ,
B, =varl I *, 

| = | v",rx,l= ) <u="
\ i=l ) t=r i=l

+ "B.3="9*-o
X1, \, ..., \ are independentl

- Hence Wcak [,aw oflarge nurnbers, holds for the sequence d(o> ofindependent
random variables.

Exarnple 6. Coz sidcr a sequence <Xr> of indzpendent and, indentically distrib_
utzd. rand.om uariables dcfined, a,s belnw.

Plxi= F Dha. H = 4i ; k = r, 2, J,..., i = 1, 2, J,...

Emminc wltcth.er weak law of large numbers can be applied to the seq.unce4r> of randotn oariables.
8oI. We shall apply Khintchine,s theorem

Here ECx,)= I eD)h-' .k.;f7t
ts=l

...( 1)

...( r)

>r-+
h'

:+ h=20

.'. Flom (l),

P(80<x< l2o)> r_ 500. 1_19.
6 400 24

Erample 4. Cozsider a seqrunte of rand.om variables dzfined. by
P(Xh = +. 2k) = 2-2h-1, p(xh 

= 0) = I _ yut.
Eramine whcther weak law of large numbrs can be appticd to thp sequence4r> of random variablcs.
Sol. Since X, assumes the values 2r, _ 2& and 0,

E(Xh) = 2k21a,+\ + (- 2\ . 212h+r) + 0 x G _ 2-2*)

= 21x+r, (2h _ /k) - O

E(X,,2) = Qh)z . 2- t:zh+r') + (- 2hP . Z- t2h+D + O2 x (l _ T'h')

= 22h . 212,+rt + 22 . 2j2h+u = 1 *] ='|22
Also Vadxr) = E(Xr2) - (E(xr), = l-0= 1

6 i 1-11r-t="--, 

-

n'Ei h



Since A+l>&
11

;----: <;
k+ | n

+ aur, < auY k

.'. (1) is convergent by using Leibnitz's teet'

.'. From (1),

Ecx,) = + |, t-l.- l-1*1...)' n'\ 2 g 4 5 )

= 6= log 2 = finitc
tt'

By Khintchine's theorem, weak law of large numbers can be aPplied to the

""qo"n." 
<X,> of independent and identically distributed random variables'

Exauple 6. If Xt Xs ..., Xo be a sequente of random variobles with equal

erpectations'and' 6nirc ulriition. Etnminc uthetler weah law of lnrge numbrs can be

applind to the sequence <X,>. It is given thot all thc couarionces c.ii are nagative'

Sol. Since Var{Xr) < -, consider

o,'*rI,jroul

o,'J , ir "l *r" .o.,ariances ou are negative

(-
=1Js-2 )L+=n-

.+f$
"'\fr

I's#.;*#[; ":J='
('.' a12; i = L,2, -.., n are finite)

Hence weak law of large numbers holds.

Statement of Central Limit Theorem

TheorernVIII.IfX'Xr,.'.,X"arenindependentrandomvariableswithmeans
lr' trz, ..., Fn and variances br'l o22, .,-., o o' "tpectively, 

then under certain good condi-

tir""1. t" Jl- s^ = Xr + & i "' i Xo is asymptotically normal with meane and stan-

dard deviation o where
p=pl+p2 + ,,. + tt'n; o2 = or2 + or2 + '., + oo2.

Note, The above theorem was stated by Laplace and its proofwas given by Liapounov's

under certain general conditions.

theorem IK. De Moivre'g Ceatrd Limit Theorcn
IfX t, Xz ..., X,be e sequcnce ofind.ependent and, idzntically d'istributed' random

variables such that

,. I l,with PtobabilitY P

^i = \o, uith probobility q,

Then the sutn S^= Xr*X,* "' + Xnis asymptotically normal uith mcon p and'

uanance d,

Convergcnce ol tlquc ncb
of Ramlon ltlilhbles

NOTES
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;tffi#|" Pnoof. Lot Mxr(t) denotee the moment generating function of the random vari-
able \, then

Mx,(t)=E(ed')= d) p +et.o.q=pd +q.

If Ms. (t) denotes the moment generating firaction of the eun S,, = Xr + Xz + ......
+ \, then

Ms. (t) = Mx, ,x,,._.*a, (f)

= Mx, (r),Mx, (r)..... Mx. (r)

= (Mx, (t)" lxr, &, ......4 are independent

= (c + NY 
and identicallv distributed

which is the Eoment generating function of the Binomial distribution with param_
P*j *9 p. frerefore, by uniqueneaa theorem of moment geoerating functions,4 - &tr,p)

;. E(S") = np = p, 8ay, V(S") = ,ry q = d, say,

Take 2= S" - E(S") 
= 

S" -P
JVa(S,) 6

If Mr(!) denotee the moment generatiDg function of Z, *ren

( -+ -sY
=[o" u* *o"u* 

)

=14'-#.#* 
I 
.o(,.#.#*. 

J]"

=1, -,.(ffi ffi)* {<c * d * un*,"t1

= "J* M'. 
[f], *n*"s^ - N(p, 62)

#l rl"
= el"Nle + re. l

"pt ( , \"
=e-G lc+p"w I\J( -+ +-j-)"
=lAe try + pe,l"n ,l"n 

I

\,,

-V /r\-" " *t".[;J



f t2 'l't

=lr*j-*o(o{,)ll-2o I
where O (n4) represents terme involving nu and its Ngher power of n in the
denominator. Taking n -t -, we get

Lt tL.)= r,. fr*4*o<o*tll".,_L 2n J

= uluLl" ="r''
"_- t 2")

which is the moment generating function of the standard normal variate. Therefme,

by uniquenese theorem of moment generating fuoctions, Z = U is asymptotically

normal with mean 0 and variance 1.

.'. So = X, + ! a ...... + X" is asymptotically normal with mean p and variance

&.

3.6 STATEATD PROVE LIIIDERBERELEVY FORT OF CEltI.
TRAL LITIT THEORET

l.heorem L If X' Xz ......, Xo ate n ind.epen&nt otd identiaally distibuted.
randotn uariablzs with nrean st and aarianrce d i.e., E(X) = 1t and.Var (X) = dVi = 1,

2, ..,-.. n, then tlu sutn 8, = X, + X, + --- + Xris aqrmptotbally rwrmal uith mean n1t

and varianre n d rcspectively. It is giuen thot E(XI) er;ists.

Proof. Given y't = EQt, - P) = g

p:r=E(X,_p)2=d
I.et M(l) denotes the moment generating function of each of the deviation Xr-+l,

then

M(t) = 1 + p'rt + y' rfi. * tr* -.. .

=t+d! +o@\
2

where O(13) contains terms in r3 and its higher order

S^ - np Xt + X2 +...... + Xo - nlrZ==r---:
'l'.c2

=;t#l

...(1)

Wn=*i,*(,)=M. (tl6't(&{,

Cutergcncc { Sequence
of Randoor Wrturtlcs

NOTES
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=,lr*"'-"'(#j lXr, &, ......, X" are independent

I Using ( 1)

Sn - ulr
--._r.!no

= [-[*))" = 
[r. f * or,*,,,]'

"Lt 
Mz(,) = p-lr.'{.o,"*",]" - 

^4-('.*)^ ="+

where the term O(n-u2) -+ 0, as n -+ -.

.'. By uniqueness theorem of moment generating function, Z =
asymptotically normal with mean np and variance no2.

3.7 LTNDEBERG Al{D FELLER COND|TTOI|S (STATEMEXT
oNLY)

If <Xr> be a sequence of independently and identically distributed randonr
variables with nean p = E(X.) and variances o2, (i = 1,2, ..., z) then the sum.r, +.t" +
... + r,, is asymptotically normal with mean np and variance no2 under the foliowing
conditions, which are due to "Lindeberg and Feller"

(i) The randon variables:1,:2, ..., ro are independent and identically distributed.
(ji) E(r,2) exists for all i = L,2, ..., n.

2.8 ANOTHER FORMS OF CENTRAL UNIT THEOREM OR
LIAPOUNOV'S FORM OF CENTRAL LIMIT THEOREM

, Theoren. XI. If Xl, X2, ......, Xn be a sequence of z independent and identically
distributed randorn variables with mean p and variance o2, then

"1,_ " l"=};t=a] = orai_o<or = fi J!" 
J,, a,

where g(.) is the distribution function of the standard normal variate and
S"=Xr+&+......+Xn

(1) can also be written as

I s -^'^ ]
Lt rla<3$p.<61 = o(b)- o(o).I Jvads") | -.

Applications of Central Limit Theoren
Theoren vTI. I/ X, X, .,,,.., Xo are n independcnt and. identically d,istributed

random uariablzs following Binamial distribution with paramcter r and p. Int
S, = X, + X, + ...... + X,r thzn

...(1)



= fp + fp + ..,... + fP

= nrp

Aleo Var(So) = Var(Xt + X" + ...... + \)
= Var(Xr) + Var(I{r) + ...... Va{)
= rw + rPq +.'.... n timea

= spq = nrp(L - p)

By Central Limit Theorem, we have

| 4.'e are indePendent

r,t plosls<al = o<ar-o(o)
^-e I JVadS,') j

or Lt Pf"<+<al=4ral-otot.^-_-L,tnrye_fl J

Tfreorern II. If Y^ie a Biwnial vqriate uith paratnPters n atrd p, t'Pn

rt Jo<@<f =qft)-qtut'o<p< 1..-_ L JnpQ_il I
Proof.Welooxttlratilr,&, ......4,fu a sequenceofindepandeotandiilentically

distributed random variables following Beroouli's distribution i'e', B(l,P), then

Xr+\+......+\-B(n,P)
But it ie given Y^ - B(n;P), therefore' take \ = So and hence

E(Y") = zp, Var(Y,) = zrc
By Central Limit lbeorcm'

It plos s' -qP') sul = o<al -o(ol. -" L ,/var(s.) J r

+ r, f,"r!#<al=0(6)-0(o)
".._ L ,low I

\ - B(r,n)
,., mean = rp variarce = rpq

o <P < 1+Lt

Theorem )qV. If t * is distributzd as Poisson distribution with poroneter n'

Lt I a.Y^ =n < al = ool - oro.t"-_L tn J

I
Also P(Yr<d - z 

trstl-+6.

["=

Convc rgence o! Seq ucnc e
oJ Randon Variables

NOTE.S
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PNfuUlty aad
Asrrlruti.m Thcon

NOTES

g2 Self-lns,a/jcriorut Moterial

h,oof. If \, )t, ......, \ are n independent and identically distribut€d random
variables following Poisson distributions with paraneter n, then

Xr+Xr+......+X,-p(n)
= S" - P(z). Take \ = S"
-'- \-Rn)
Now mean ofPoigson dishibution is n and also variance ofpoigeon distribution

is also n
i.e. E(Y") = n, Var(Y,) = n

.'. By Central Limit Theorem,

"*- "["=ffi .aJ = o<ar - or"r

$Lt
^r-

Takec=--,

LT

= 
"Lt_ 

p(y" < n)

Also {6) - {c) = 0(0) - 0(- -) =

F}om (1) and (2),

f
2

...( 1)

...e)

P(Y"<z)-+j*o--.

ILLUSTRATIVE EXATPLES

. E 
"TpJ: l.-I!t X, X, ......, X^arc indcpendent dnd, id.entia4cllly distributed

twrdonr uariablcs follawhg poiswn distribution with pammeter L rJse centror Limit
Tleorcm, find P( I2O < 8n 3 160) urhere S, = X, + X2 r... ... + X,, L = 2, n = Z 5.

. Sol. Given Xr, )q, ......, 4 are independent and identically distributed poisson
variates with parameter 1,, it implies

EOQ = r,, VartXr) = M = r, 2, ......, n

"' E(sJ=EO!+\+-.-.*4)
= E(Xr) + EOL) + ...... + E(X,)

=l+l+......+1,
=nL

Var(S") = Var(X, + \ + .-.... + \)
r - Va(Xr) + Var{\) + ...... + Va{)

=l+1,+..,...+1,=21

lX;'s are independent



S" - N(150, 150) = N(p, d) where p = 150' oP = 150

- x- 150"=ffi
t

Usiag Linderberg-lery theorem, for equation, S^ - N (n]u nL).But n =75,]"= 2

Take

-30
When x=t20,2= = f,: = -2.45

When x=r6o.z=16lufl =ft=o.ez

P(120<s," < 160)= PIfr!!9=r.#
=PG2.4532<0.82)
= Pe 2.45 32 s O) + P(0 < Z < 0.82)

= P(o <Z <2.4 \ + P(0 < Z < 0182)

= 0.4929 + O.2939 = 0.7868 (Using Normal Probability Tablee)

surllARY
.Ifasequenceofrandomvariablearr,tz,...,r,a.otvergesto*inprobabilitythen

the following are true.

PP
If X" -------t o, Y" -----+ b, as n -r -, then

P
G\ X, + Y^ -----+ a x b, as t --) -'

YPd
tiit ::-L -------+ Z.b*O,aan--+-.

Y"b

GLOSSARY

WIJN. If the sequence <X,> of randon variables has r^eds F' ttz, "', Fo' then

pR
X, .--..+ Eo, Provided i -+ 0 aa n -+ 6

where B, = lrl or (Xr + \ + .., + \)
CI.T. If d!> is a eequence of random variables with means pt' p,
variancee or", or", ..., oo2. Then the 

^sum 
S" = X, + X, + "' + \ is

variable with mean p and variance d, where

F = trr + trz + -.. + F,f ; c2 = cl + ot2 + ..' + coz

RET'IEW QUESTIONS

A random variable X hag a mean value of 5 and variance of 3'

(i) What ie tbe leastvalue of Prob | | X- 5 I < 3l?

(i!) What value of }, guarantees that Prob I I X - 5 | < 
'rl 

> 0'99 ?

(iii) what is the lea8t value of Prob ( | X - 5 | < 7'5) ?

lz-N(0, 1)

.'., F, and
a normal

l.

r20 - 150

Canvergence of kqrence
d Roadaa thiablcs

NOTES
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IfX denote tbe sum ofthe numbers obtained when two dice are throu'n, use Chebyshev's
inequality to obtain an upper bounds for P( | X - 7 | > 4). Compare this with the actual
probabitity.

An unbiased coin is tossed 100 times. Show that the probability that the number of
heads will be between 30 and 70 is greater than 0.98.
Within what limits will the number ofheads lie, with 95ol, probability, in 1.000 tosses of
a coin which is practically unbiased?
A symmetric die is thrown 720 times. Use Chebyshev's inequality to find the lower bouncl
for the probability ofgetting l0O to 140 sixe8.
Uee Cbebyshet's inequality t! det€rmino how many times a fair coin must be toesed in
order that the probability will be at lea't 0.96 that the ratio of the number of heads to
the number oftosses will be betweeq 0.48 and 0.58.
Ifx ie a r.u. such that E(x) = 3 and E(xz) = lB, use chebyshev's inequality to determine
a lower bound for P(- 2 < X < 8).
State and prove Chebyshev's inequality. Use it to prove that in 2,OOO throws with a coin
tre probability tbat the number ofheads lies between 900 and r,100 is at least 19/20.
A random variable X has the density function e-d for r ) 0. Show that Chebychev,s in_

equality gives, P( | X- I | > 2)< f and show that the actual probabilitX is e-.r. 
'

Let X have the p.d.f.

l1
flrr= lrJi' -J3 <r<Ja

I 0 ' elsewhere

Find tbe actual Drobabilitv p[l) (r \
f, 

( - t | > i oJ and compare it with the upper bound

obtained by Chebyshev's inequality.
IfX has the dietribution with p.d./. flr) = e-*, 0 3 r < -, use Chebyshev,s inequality to
obtain a lower 

-bound 
to probability ofthe inequality _ I < X s A, ani conrp.rc rr wiur rh(,

actual probability.
If X' X2, .-., 4, be r.u.'s. with means [r, Fz, ..., l.l, and standard deviauons o' c2, ..., o,,
respectively, and [Var{X, + X, + .. + \)]/n2 -+ 0 as n -; -, show that f, _ [,, 

"onuorgu"to zero in probability.
Hence show that ifm is the numb€r ofsuccesses in n independent trials, the probability
o-fsrrccess at ith trial beingp, then zrln converges in probabi[ry;i;, + p2+ ... + p,ln.
lXll, t = 1, 2, ... ie a sequence ofindependent random variables each taking the values ;

- l, 0, 1. Given that Pfir = 1) = + = 
p(Xr 

= - l), p(Xr 
= 0) = I - 3, examine if the larv of"h

large numbers holds for this sequence.
Eramine whether the weak law of large numbers holds good for the

independent random variabtes, where tf X, = *l = 3, t|/*" = - f I\ 4n) it ( ^ ,ln )
{\} is a sequence ofindependent random variables such that

p[x- =J] =, r' r \

\ " Jn ) '"'"|.*" r+i)=t-e"
Eramine whether the weak law of large numbers is applicable to the scqrrencc lX,,I.

10.

ll.

12.

t4.
sequence X, ol

I



16.

t7.

IfXis ar.u. and E0(2)<@, then prove thatPll X | >ol s I E(X2), forallo > 0'
at

Use Chebychev's inequality to show that for n > 36, the probability that in n throws ofa

fair die, the number of sixes lies betw*o j " - J" 
""a f " 

* tF is at least !1 '

Let {X,.} be a sequeuce of mutually in'dependent random variables such that ;

x,, = i 1 with probabilitv !: la an<l X" = t 2- " with probabilitv 2-r{ '

Exaurine whether the weak liaw oflarge nunbere can be applierl to the sequence l\)'

Examine whether the laws of large numbers holds for the Eequence {xr) ofindepenilent

random variablee defined by P(Xr = i h-'D) = +'

Stat€ and prove Weak Law of Large Numbers' Determine whether it holds for the

iotto*ittg ""q""n* 
of inilependent random variables :

P(x, = t 1) = f tr -r'l = e(x. = - tl'

A distribution with unklown mean p has variance equal t9. l'1, 
U1e central limit theo'

;;il;; i;g" u 
"t-pt" "lt;t'ta 

be tsken fronthe distribution in order that the

ot"i"uffnt *ffiu" it f"u"t o'gs titi ift" eample mean will be within 0'5 of the popula-

$il ililT." 
", " ""rtain 

brand of an electric bulb mav be t""::d:T3 
" ':illT.].::::l:;?ffi#ffi;;;i" ""J "i""a'"a 

<revjation'zlo-l:"::' ttll :n",0:::*lll:: 
***

""rit"ilmtiIt**m, 
that t}re averase life'time of 60 butb exceej.: 11991:::

;:lfiT;il:';t:ff"i?"i*iti.tf ii*i..'m htr-rte ror the "ecy:tr "i'lsifdint random
22.

23.
;.;;;";;il;"[iu.ioi a"n""a 

"s 
Pg' : 1) =if i:^IlI* ?^"t";11

;ill,, ""i, 
:H:*";;;"-;;il"p"'a"i't 'unilo* 

.'ariabies havins the uniform

densities :

lY(z - i-L),o < ti <2 - i-r
4(rr) = 1; '- 

' 
, a*]rtll trto.n t'hat tbe central limit theorem bolds'

f-t I, Ue tfre samje mean ofa ranilom sample ofsize n from Rectangular distribution

- t- I \
on [0. 1]. Let U,, = Jn IX"-;l
Show that F(u) = 

"lim 
P(U" < z) exists and determine it'

I-€t X,, X.,, ...... be a sequence ofindependent' identically distributed non-negatrve ran-

ilil'i.ii;il ;i il", ntroe x,i i" finite' z,' = cxr' x2 " x")v'' show that the posi-

tive constant c can be so choeen that tlte randour variable (c Zo){" has a non-degenerate

limit ilistribution function F(') and determine F( )'

iX,,i ," u 
".o.r.rr"" 

of i.i.d' random variables' If n is a perfect square' then \ is Cauchy

'' - I I 
, - - . " . -. Otherwise X,, has a distribution function

variote with denarrY, ;' ;7
F(i) with mean zero and finite variance 02' Discuss the asymptotic distribution of

rxr+xz*...+X,lJi.

l,et f Xrl, ft > I be a sequence of i'i'd' variates with fllcy = ! e- l' l' - * < r < *'

tron mean.

27.

Self- l nsn'uctional Marc al Es

Convergence of Seqttent,
of Random Uariabtes
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ilfr;l'""**"" o^ and 6,,such that tl x, | + | X, I r...... + | x,, | - a,vb^

2& Usingc.L.T.,showthat: ti- f"-"\q 4] =f = t- lne-'.r,-t ,."--[- fu et)-t-;:- JoGrTi-d,.
29. l*t lXn, n = 1, 2, ...1 be a sequence ofindependent Bernoulli variates such that :

_. POq=1)=p,=r-P(x,=0), n=r,2,......,e,=r_p,t
Show that if ! p^"-g 

^ 
= -, (n = 1, z, ......, -1, then the CLT boide for the sequence lX,,l.what happenE if>, p^.t^ < -.

80. Derive weak low of large numbers from Chebychev,s inequality.81. State and prove WLIN for i.i.d. random variables.
82. The neceasar5r corditio! for t'he WLLN to hold i8 tlat EO!), , = l, 2, ..., z, should exist.Writo the name of this theotem.

I FURTHER READtrttcS I-r - |
l. Discret€ Distributions: N.L. Johnson and S- Kotz, John Wiley and Sonr2. Continuous Univarate diatribution_l: N.L. Johnson and S. Kotz8. Continuous Univarate digtributions_2: N.L. Johnson and S. Kotz, John Wiley and Sons4. Inbroductio. to hobability theory with applications: W. Feller, Vol_l: Wiley astern.
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CHAPTER

DISCRETE DISTBIBUTIONS

OBJECTIVES

After going through this chapter, you should be able to:

. know the conilitions for the applicability of binomial distn:bution

r lmow the tecbniques of solving the pmblems by using binomial rlistribution

. know the mean, varriance' S'D' and central moments for binomial distribution

. m.g.f. of the binomial digtribution'

STRUCTURE

I. BINOMIAL DISTRIBUIION

4.1 Introduction
4.2 Conrlitions for Applicability of Binomial Distribution

4.3 Binomial Variable

4.4 Binornial Pmbability Function

4.5 Binomial FrequencyDistribution

4.6 Histogram of Binomial Distribution

4.7 Shape of Binomial Distribution

4.8 Limiting Case of Binomial Distribution

4.9 Mean of Binonial Distribution

4.10 Variance and S.D. of Binonial Distribution

4.11 Reproductivity property (IF Exists)

4. 12 Characteristic Function of Binonial Distribution

4-13 Recurrence Formula for Binomial Dishibution

4.14 CompoundBinomialDistribution
4.15 CompoundPoissonDistribution

II. POISSON DISIRIBUTION

4.16 Introduction
4.17 Conditions for Applicability of Poisson Distribution

4.18 Poisson Variable

DiscEE Dktribuiorts

NOTES
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4.19 Poisson Probability Function
4.20 PoissonFrequencyDistribution
4.27 Shape of Poisson Distribution
4.22 Special Usefulness of Poisson Distribution
4.23 Mean of Poisson Distribuuron
4.24 Variance and S.D. ofPoisson Distribution
4.25 Characteristic Function ofthe poisson Distribution
4.25 Recurrence Formula for poisson Distribution
4.26 Applications of Poisson Distribution

. Summary

. Glossary

. Review Question
r Further Readings

I. BINOMIAL DISTRIBUTION

4.I INTRODUCTION

The binomial distribution is a particular type of probability distribution. Thiswas discovered by efames Bernoulli (165.1_170bjin the year 1200. This distributionrnainly deals with attributes. An attribute is either present or absent with respect toelements ofa population. For example, ifa coin is tossea, we get either head. or tail.The workers of a factory may be classified as snAtea ana unshUea.

4.2 GONDITIONS FOR APPLICABILITY OF BINOMIAL
DISTRIBUTIOil

lhe following conditions are essentiar for the appricability of Binomial Distri-bution :

- - 
(r) The random experiment is performed for a frnite and fixed numberof trisls. If in an experiment, a coin is tossed repeatedly or a ball is drawn from anurn repeatedly, then each toss or draw is cated a triar. For example, ifa coin is tossed6 times' then this experiment has 6 trials. rr" tt,r-lu" oriials is an experiment isgenerally denoted by .n'.

(ii ) The trials are independent. By this we mean that the result of a particu_lar trial should not affect the result of any other tri"r. n'"" 
"*"-pr", if a coin is tossedor a die is thrown, then the trials would be independent. ii t"o- u pack ot.playingcards, some draws ofone card are made without replacing il" 

"urO", 
then the trialswould not be independent. But, ifthe card drawn is 

""pt.""'a 
i"ror" rrre next draw, thetrials would be independent.

(iii) Esstr 6;11 -ust result in either..s'ccesso or .failure,,. In other words,in every trial. there should be only- two possible o"t"o_"" ;.". success or failure. Forexample, if a coin is tossed, then either hiad or tq.il i" ol""*ui. Similarly, if an item isexamined, it is either dzfectiue or non_d,efective.



(iu) The probability of success in each trial is same. In other words, this

condition requires that the probability ofsuccess should not change in different trials.
For exarnple, if a sample of two iterns is drawn, then the probability of exactly one

being defective will be constant in different trials provided the items are replaced

before the next draw.

4.3 BINOMIAL VARIABLE
' 

A random variable which counts the number of successes in a random experi-

ment with trials satisfying above four conditions is called a binomial variable.

For example, if a coin is tossed 5 times and the event of getting head is sllccesa'

then the possibll values ofthe binomial variable are 0, 1, 2, 3, 4, 5. This is so, because,

the minimum number ofsuccesses is 0 and the maxirnum number ofsuccesses is 5'

4.4 BINOMIAL PROBABILITY FUNCTION

When a fair coin is tossed, we have only two possibilities : head and tail' Let us

call the occurrence of head as 'success'. Ttrerefore, the occurrence of tail would be a

'failure'. Let this coin be tossed 5 times' Suppoee we are interested in frnding the

p"oU"UiUty of gutting 4 heads and 1 tail i'e', of getting 4 successes' If S and F denote

io"."""' urrd 'iaitrrel in a trial respectively, then there are 5Co = 5 ways of having 4

succeasea.

These are : SSSSF, SSSFS, SSFSS' SFSSS, FSSSS'

The probability of getting 4 successes in each case is t;f t;) ' because the

trials are indePendent.
. . BY using addition theorem, the required probability of having 4

r.r4 lr\ 5 .,
successea is 5c. 

[+ 
.| 

{ f l , 
wfricfr is e+al to fi No* we shall generalise this method

'\zl \')
of fincling the prJ[aUiiities for aifferent values of a binotnial variable '

Let a rantlom experiment satisfying the conclitions of binonial distribution

l. perfo.mea. Let the number of trials in the experirnent be z' Let p denotes the

probability of success in any trial'
.'. Probability of failure, q =L-P'
Letrdenotesthebinomialvariablecorrespondingtothisexperiment.
.. The possible values ofr are 0, 1,2, """''n'
If there are r successes in n trials, then there woultl be n - r failures One of the

ways in which r successes may occur is
ss........-.....s FF..............F

rtimes n - rtimes

where S and F denote success and failure in the trials'

Now, P(SS ....... SFF ...... F) = P(S)P(S) """ P(S)P(F)P(F) ""' P(F)
('.' the trials are indePendent)

= p.p ....... P.q.q ....... q = P' q'-' '

Di sc rc t e Di s t ri h ut i otr t

NOTES
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=- - -We t<low tlrat'Cr is the number of combinations of z things taking r at a time.
Therefore, fhe numbe- oTways in which r successes can occur in n trials i; equal to the
number ofways of choosing r trials (for successes) out of total z trials i.c., it is ,,o,..
Therefore, there are "C, ways in which we get r auccessea and n_r failures andthe probabilrty ofoccurrence of€ach of these ways i a prqt - t. Hence the probability ofr successes in z trials in any order is

P(x = r) = p,qn-, + p'qa-r +...... "C, terms (By addition theorem)or P(x= r) = "C,b.q*',0 <r<D.
This is called the binomial probability frrnction. The corresponding bino_nial distribution is

r 0 I 2.....--...--,...-.....---...............--. t

-

n^ -2^n -2w2p q -- .............-........... ....... ...'C,,p',q"
P(x) " copoq" "ctpro" - r

The probabilities of 0 success, I success, 2 aucceases, ......, ,r successes are re_

ffi:i:::",-.i:. 
t:! 

?,"d:.r.d, 
....;..: !: :.r)th terms in binorniat expansion of 1q + py,.This is why, it is called binomial distribution.

4"5 BIIIOf,IIAL FREQUE]ICY DIATRIBUTIO]I

. If a random experiment, satisfying the requirements of binomial distribution,is repeatcd N times, then the expected fr"quen"y 
"fg"tti"g,tO S r S z) successes isgiven by

N. p(x 
= r) = N. "C, prq"_",O(r<n,

The frequcncies ofgetting 0 success, I success, Z succeaaes, ......, r, succegses arerespectively the lst, 2nd, grd, ......, (n + l)th terms in th" .*p"rr*ion ofN(q +pI,.

4.6 Ht$rocRAt oF B|NOM|AL OlSritaurroN
We know the method of_dr-awine histogram of a frequency distribution. The

lj"t:S:t-*fjl"to.eram of a binomia aiiriuution is-Jiarogous to thu procedureof drawinghistogram of a frequency distribution. I" "r";;;;:;;:;ff_ffiffi:we mark all the values ofthe random variable on th" trorlrontat axis and their respcc_tive probabilities on the verricar 
"xis. 

Rectangies ;i;;i;; width are construcred

Si,lri;"rl:* 
of the variabte at centre and heiglrs 

"q,rat 
to tfr"i, conesponding prob_

I woRr{JNG RTTLES FoR soLvrNG tRoi-
f. rrr"i. 

ependent andeach trial result in either ,succees, or .failure,.

II. Define the binomial variable and find the values ofn andp from the givendata. Also find g by using: g = I _p.
III. Put the valu es of n, p and g in the formula :

P(r successes) =^C,.p, q^_t, r = 0,1,2, ...... , n ...tl)rv. Express the event, whose probab ity is desired, in t€rms of values of thebinomial variable :. Use 0) to fina tfr" ."q"i""a p--U"ntiii,. 
''



ILLUSTRATIVE EXATPLES

Erample l. An u nbiaxd coin is tos*d 1O tittles. Find, by using bhnmiol distri-
butinn, the prcbability of getting at least 3 haads.

Sol. Let p be the probability of success, i.e., of getting head in tlre toss of the
coin.

lll.'. n=ro, p=i *d c=L-P=r-;=;
Let r be the binomial variable, "no. of aues*s".
By Binomid distrlbution' P(r = r) = "C, p' Q"n, o 3 r 3 n.

: Pk=r,='".(;l (;f " =,".(;) ='",#,0(rs1o
Now, P(at least 3 heads) = P(t>3)= 1- P(t < 3)

= 1 - [P(r = 0 or* = | ot r = 2)1

= I - [P(r = 0)+ P(r - 1) + P(r = 2)

= t - ['", #+'oc, 
';f 

*'* +r;
=L- # lroco + locr + roc2l

:t- rL 11+ro+45r =*T*f =#=#
Erauple 2. A co in is tas*d 7 tines. Wut is thz probability thot llead appears

on odd number of times.

Sol. Let p be the probability of success, i.e., of getting a head'

1_11:. n=7, P=5 and q=l-e=r-E=Z
Let r be the Binonial variable "no. of sucesses".

By Binomial dis{ribution, P(t = rl = "C,p' qn-, Q 3 r 3n'

... P".=rt=,c.(;) (r' 
.

rrrf / I \
=,",1;) ='c, lr28j ,o<r<7.

Required probability = P(head appearing an odd number of times)

- =Pk= 1or3 or5or?) = P(r = l) + P(r = 3)+ P(r = 5)+ P(: = 7)

r/r\ /r\ /rwl)
='", |#j .'c. l#J *'c, l#j *'c, 

lrze.r

=(7+35+21."(#) =#=;
Erample 3. Dro ut a histogann for tfu bhomial probability distributbn of tle

number of lwad's in 5 toeus of coin.

SloL let p be the probability of guccess, i.e., of getting a head'

11rn=5, P=i ana q=l-P=r-;=;

DitcreE Distributiont

NOTF,S
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Probabilitr an.l Let.r be the Bionomial variable "no. of8uccesses".
Distt ibution Theor 1- ... ,c= 0, l,2,,,...., b.

By Binornial distribution,
P(.r = r) = nCrpt q"-t, Q 3 r 3n.

... p(:=0)=5co(#)=#, p(r=D='c,($)=$

P(x=2)=", (#)= # , p(,=s)=sca (#)=#
P(r=4)=*.(*r)= ,i , p(r=5)=",(#)= #.'. fire required probability distribution is

p(r=r)='o (;l (;l " 
='". (;)' =*. (#), 03r(b

Example 4.In a hurdb race, a player has to cross 10 hurdks. The probabilitt,
that he will clear each hurd're is 5/6. what is the probability that he wiII hnoch doin,
fewer thon 2 hurdles ?

Sol. Letp be the probability ofsuccess, i.e., ofknocking down a hurdle.

;. n=10, p=1-i=+ and q=r-o=l-1=.16 6 ^ 6-6
Let r be the binomial variable "no . of successes".
By Binonial distribution, P(r = r) = "C, p, qn-r, 0 I r I n.

p(r 
= r) = .o (*l (uJ'.-,, o sr < ro.

Now, P(knocking down fewer than 2 hurdles)

= p(, < 2) = p(, = 0) + p(.r = r) =,0e (*l (uJ'" .,", (*l (*)'

0 I D I

P(x)
I
n

o

n
10

32
l0
32

5

n
I
u

The histogram of the Binomial probability Distribuiion is shown in the fizure :



= f,,,.[uJ"] 
. 

1,,.*,,(*)'] 
= (uJ'[*.+] =(uJ'(uJ 

otnn,ourb*tt#

E:anpte 6. The probabiliU of o man Naing a torget i8 714. Ee fircs 7 tittrr.s.
- Whot is thz probabiliry of his hitting tlw toryet dt bast twice ?

Sol. Let p be the probabifif of euccess, i'e., of hitting the target'

n=7, p=1 *u q=7-P=t-i=?
L€tr be the binomial variable "no. 4 clrcescfj'' '
By Btaomlel dlstributlon, P{t = r\ = "C. P' QH, 0 3 r 3 n.

.'. Rr =rt=,e(il t:l 
',oir3?'

Now, P(hitting at least twice) - P(r > 2)

= 1 -Rr < 2) = 1 - [P(r = 0) + P(r = 1)l

=' - f". (+l (:i. "'(il(il]
' 
- l'" "(:l.".i"(:)'] =' - (:l (:.i) = :#

Example 6. ?lze probability that a bulb producd by a futoty will fit* afur IU)
d.ays of use is 0 O5. Find tln prcfubility tloot ottt of 5 euch bulbs :

Gl turc ' (iil tnt nPrc tlun onc

Giil morc tlwn onc Gv) at bast ow'

will fu* afur IM daYs of ux.
Sol. Letp be the probability of success, ie., thb bulb beiug frsed after 100 daye'

.'. n=5, p=0.05=*=* and q=1-p=t-*=*
Let r be the binomial variable "rn. of areessez' '

By Binomial distributior' F(r = r) = "C' f dB,OSr <n'

.'. P& =r)=6c'(*) ffil 
",osrr5'

(i) p(none wn tuse) = P(' = 0) = 6co (*) HI = (;3)'

(ii) P(not more than one yill fuse) = Pk g 1) = P(.r = 0) + P(r = 1)

=".(*l (*) .,",(*l (*l

= (*l ['"'"#*u,.*"] = (#l(tJ

norbb

sclf-tnstrucrionat niittttfdi li
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Probabilit! anl
Distrihutionrheory (iii)p(morethsnonewilltuse)=p(r> r)= l-p(.rs t, = t- (#)-(;)

(Using part (ii))
(iu) P(at least one will fuee) = pG > t) = I _ p(.r < f ) = f _ p(l = 0)

_r 6^ f r'lofte)5 . frs)t-,- "o l?",, lto/ =,_laj .

- B-qrnple 7. A bag eontoirc 25 items of which 5 ore dzfectiue. A rand.om sample
of two is drawn ftoithDut replacemattl. What is tlg probatitty tnat G) of both being
eood (ii) of both being bad (iii\ at lzast oru bein{ good..

Sol. Letp = lbe probability ofgetting a success i.e., the probability ofhaving a
defective item.

Given, c=fi=l =o.z

q=l-p=1-0.2=0.8
Lct r be a random variable following the Binomial dirtribution. then

pCf.=r)=,,Ctqa_, f ,O Sr Sn
(i) Required prob*,"o 

= il3l",:1rffii*,
= I - P(all items are defective)

=l-P(t=2)
= | -2Cz @.8)o (O.2P

=l_0.04=0.96
(ii) Required probability = p(both items are bad)

=P(X=2)
=2c2@.af (0.2)z

= O.04
(iii) Required probability = p1g1 1.ast one item is good)

= I _ p(at rnost one item is bad)

=1_p(X<1)
=t_(p(X=0)+p(X=r))
=1_P(X=0)_P(x=1)
= 1 - cCo (0.8P (0 .2P -2Ct (0.8)r (0.2)r

= L-O.M-2 x 0.8 x 0.2

=r-0.64-0.32
= 1- 0.96 = 0.04.



PROPERTIES OF BINOMIAL DISTRIBUNON
Discrete Distrihuins

NOt'tis4.7 SHAPE OF BI}IOTIAL DISTRIBUTIOII

The shape of the binomial distribution
depends upon the probability of success (p) and the

number of trials in the experiment. tf p = q = f,,
then the distribution will be symmetrical for every
value of n. If p + q, then the distribution would be

asymmetrical, 1.e.. skewed- lhe magnitude ofskewness varies as thedifference between
p andq.

The probabilities in binomial distribution depends upon n 
^id 

p' Thege are
called the paranetere of the distribution.

4.8 LltlTlNG CASE OF BtttlOtlA|. DISTRIBUTION

As nurnber of trials (t ) in the binonial distribution increases, the number of
successes also increases. Ifneitherp nor g is very small, then as z approaches infinity,
the skewness in the distribution disappears and it becomeg continuous. Such a
continuous, bell shaped distribution is called nonnol d'istribution. Thus, the normal
distribution is limiting case of binomial distribution as z approaches infinity.

4.9 IUIEA}I OF BI]IOilIIAL DISTRIBUTION

No. ot Successes

Let.r be a binomial variable and P(.r = r'l = "C,p'e" - ',0 3r 3rn.

Here z is the number of trials and p, tJre probability of success in a trial.
Tlrre mean ofr is the average nurnber of successes.

.. Mean. V= Z,.Pk=r)= l'."g"r'r"-'
'-0

= 0 ."Cop$q" + l-"Crpre"-r + 2."CrP2g"-2 + ..'.. + n."CnP" .40

=o+n.pgo-L-ry p2qn-2 + -...... +n.I.Pn

="n {t-t *"-rr pq"-'* """"'* p"-tl

= np l"_rCo poqn_r + n_rq prq,t _z + ..... + "-t9o-l p"-r qol

= np(q + pY-r = np (lY - | = np.

.'. Mean (p) of x = np.

4.'lO VARIAI{CE AlilD S.D. OF BlNOllllAL DISTRIBUTION

Let r be a binomial variable and P(t = r) = "C.p'q" -', 0 < r < n.

Here z is the number of trials and p, the probability of success in a trial.
The variance and etandard ileviation ofr measures the dispersion of the bino

mial distribution and are given by
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Variance = Il .p("=r)-p? ana
,.0

4n
Now, I 12 .p1a = 7y = lr2 ."g,o,oo-,

= o.oCopoC + 12."C, pf -t +22."c"p24-z + 32.oC" p,qo - s +

=0+1. +*."T-D oY-z 32 .n(n -llln -2)
1.2 .?

s.D.=

+ n2 . "e, p"Qo

i on'

= rp4*4rir) *n-z *4n..---L).(!,- 2) p"qo-s *.... * oro-rl 
+nz 'r '! 't

= rw(o"t * t" { *n-z *b - !\\-2) p2e,-3 *.... * o":rl

*['9: t) 
ro'-' * y#2 tr"* *.... * t,, - u o'-,1]

= np l(q + pY-r + (n - l) p(qn-z a 111 - 2) pq'.3 + ...... + I,'-\l
= np 11 + (n - t)p(q + py2l = np lt + (n- _ t)p.U
= nP lL + np - pl = np + n2p2 - np2.

.'. Variance = l-r'.e6=r;- p2 =(np + nzp2 - np2) - n2p2 = np _ 1p2
'-0

= ,rp(1 -p) = npq.
Also, s.D.= mi;;;; = t6pq.
Iheorem L show ttnt tle fint four mornents about origin for ttu Bimmiatd,istribution are given as

tti = np, ttz = n(n - I) p2 + np

. Its = n(n - 1) (n - 2)f + 3n (n - 1) p2 + np

tti< = n(n - t) (n - z) (n - a) p4 + 6n (n - 1) (n - 2) ps + Zn (n _ t) p2 + np
From obove rcsulte, deri.re the first four central tnom4nts vb, I!r, Ir2, lts and, 1to.Nn find thz ualuzs of pr, F2 and. .1r, f2 rcape.ctively.

Proof' Let x denotes the random variabre which fotows binomiar distributionwith parameters z andp, ren

PG) = PCt( = t) = "C, e"of
.'. Ibe monenta about origin are as unterr

d, = E($ = i " "C, p,qo-' = npf "-ry,_ro,-, o,-'
t=0 t=l

= np(q + pP-r = np

!r2.r1r = rt -fr=0 o



"c.=" .*b,_, =@. n-zC-_o etc.- t r(r - l)
Hence the mean of the binonial distribution is np,

u', = n{X'9)l "2 "C" P'qn-'
rl)

= y. {x"- D*"1'1"-l?. o-zc,-z p'q'-'
,= t(t - t,

ln I
= n(n - l) p2 lI *'",-r pnze"-' l + np

[r=2 ]
= n(n - L) pz (q + pY-z + np = n (n - lbz + np

I Ueing Binomial theorem,
nn

Ul3= EO(3) = f rs grl=l (r(r-1)(*-2)+Br(r-l)+rl oC, p'q"-'
r=0 t=0

i

= n(n - !) (n - Z)pt I "-t c,-s p'-sq"-'
,3

+ 3n (n - L) p2f"tz C,-2 p'-zqn-' +np
r=2

= n h - L) (n -2)pe(g +p)"{ + 3n (n - L) p2(q + pY'2 + np

=n(n-l)(n-2h3+&r(n- L)p2 + np
Coneider / = I'e1':-D{c-2) (r-S)+ Br (r- 1)(r -2) + Cr (r- l) + Dr
Put.r = 1, in above, we get D = 1

Putr = 2, in above, we get 2C t 2D = tG + C=7
Put.r = 3, in above, w€ g€t 68 + 6C + 3D = 81

+ 68=81 -42-3=36 + B.6
Equate the coeffcient ofr:A, 1 = A
:. xa = r(t - 1) (r - 2) G - B) + 6* k - 1) k - 2) + 7* (x - L) + r

,. t\= nCx{l = I 11 "C, p'qn-'
r=O

= n(n - L) (n - 2) (n - 3) pa + 6n (n - l)(n - 2) ps + 7 n (n - !) p2 + np

I Using Binomial theorem

To derive centrdl Moments of Birnmbl Distribution:

14 = tz - lrra = n2p2 - np2 + np - n2pz = 1p 11 - p) = npq

1ts = (, - 3ll,ltr+ 24tra

= ln (n - l) (n - 2)po + 3n (n - l)pz + npl - }ln (n - l) p2

+ npl np + 2(npf
= np F Srrpz + ]np + 42 - 3p + 1 - Snpg)

= np lSnp (l - p) + Zpz - 3p + L - futel
= np(2p2 - 3p + L) = ttp (4e - b i ql = npq (l - b)
=npqlq+p-Wl=nps@-p)

Discttte Distriht i(,ttI
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Se llJ ns t ruc t iond. M at c tiz l

[r = rr: - 4{Fi + 6t{zt? - apf = npc lL + 3 (n - 2) pcl

lUsing pi p!, p!, p'..

Also Pl = I+ =? -o"p"q'(q- p)2 
-(q - 

p)2$=""o'ql L:;Pt' -@- P)2 -(L-2P,2lL, n'p-q- nN npq

y_nwlL+3(n -2) pql _t+3(n-2) pq9r= lt; =npqlL+r9(!t:2) 
pql 

-l+3(n-21 pq 
=g* 

l-64_ npq ra a vr -1, wt _ L+n\n-2, pq _+ _ t- t5pq

l; n'p'q' npq npq

r, = fr= q.,,! 
=L-2P ,r"=Fr-a=L-6w

.lnPq lnPq nN
Con For the Bioomial distribution, variance is le.s than mean.
Proof. Let X - B(n, p) i.e., X follows tlte Binomial distribution with parametera

n and P, '\eD, Iiom above theorem,
meaa = np, variaoce =npq<np=$ea . lo<g<1

Theorem IL Flnd tlw mean deuiation abut nean of tlrc Bircmial distribution,
Proof.I.etX - B (z,p) i.e., X follows the Binomial digbibution with parametera

n and p, then
p&) = pQ( = x) ="C,{o f

Let z denotes the mean deviation about the mean np. Then

1=l lr-nrldr)=\ lx-nrl"C, p' o"-' (r being an integer)
r=0 rd)
np

=! - (r - np) " C, p'qo-' + | {x - npl oC, p, qo-'

=22 Q-ND"C, P'q'-'

=zl G-nfl"C, p'q"-',
l

= zl [tn - <" - x) pl "C, p' c"-']
F

='t [,t-4" p' q^-'+1-;#- 
D;i 

p'.rc"-.]

=r* 
",-'-!,),raker, 

--;!! - n'nt-

= 2 (t,_t- t,) = 2tvt I r"= o

= 
'z 

(tr - D*- lrx ' 
p'go-."t = btPq *rct-r Pkr 9a'
I where p is greateet integer oontained in zp + l.



llonent Gelerathg Functiorr
Theorem IIJ, To ftnd the monant EerErating function of the Binomial

d.istribution.
h,oof. L€t X - B (z,P) ie., X follms the Binornial distributim witb parameters

n and p, then
p(r) = PCK = r) - "C,f" t

L€t Mlt) denotes the mment $nerating fuDction of the raudom variables lt
then

g
l{a(t) = E (e&) = Z "o "Q, q"-' P'-

rl0

Prob.b|f$y Gosrrttng Frmotto
L€t P(S) be the probability g66ating function of the Binonid distribution,

then,

=Z oc,('pt)' qn'' -(q +pcY.

nrr
p(s)= t RX=t)ar =) {"crpt"-ry"r

l=0 rH

=Z "cr (pdbq"-L =(ps + qf

.'. the p.g.f. is the nth power of (Ps + g).

Erample. Prorre 4*)= ti"-t G(t) dt' a > o wlvn e,$) i8 tla p.s.f' of x Fit'd

r-r{*J whzntr-Bbfl).

sol. cosid€lr f rt e<o * = tr t"-r vt\ at

(n \
= [*-'|.E not 

)at

=i ['<'tfr*'a]

=i fr,,.f-t=l'l- 

""L' 
lo-1+r+rll

-i rt"r. t =Ef-ll- ?"- a+t \*+s)

Also, If r - B(2, p), then G( A =f f c<tl

...(1)

Discnte' Disnihu t i tttr s
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o crp'qn-' oc, (peit)' e"-'= qq 1pniry,.

=t ,' "",r'0"-' = i "c,rra'qn-' =(q + pt)o
r=0 r=0

For a = 1, from (1), we have

Er-l-l
\*+1, = J'eatat=J't,+n"

...(2)

I Using (1)

= f(q*et"-llt -(q+ p)n*t -qn*l
| (z + 1)r lo (n+t)6

= 
1- g"*1
(n + I)p

. , Ststene_nt. IfX - B(n, pr)-and y - B(nr, p2) are two independent randonrvariablee then X + Y does notiatis$ the additiv6'orieproductive piop"rty. ln ntl.,",.words, the sum of two independent binomial variates ie'noi a binomial variate.
Proof. Given X is a Binomial variate with parameters n, and pr, therefore itsmoment generating function is

M*{t) = (9r + p1e')o'

Also, Y is a Binomial variate with parameters n, andp2, its mornent generating

4.lt REPRODUCT|V|TY pRopERTy (tF ExtsTs)

function is My(r) = (q2 + pre')b
Consider M*," (t = Mx(t) . Mlt)

= (qr + ppt )"r(q2 + p2et)",
Now (l) cannot be expressed in the form (q + pet)". Therefore, by uniquencess
Theorem of moment generating function, X + y is not a Binomial variate.
Cor. If we takepr =pz =p, then from (l), Mx+y(r) = (q + pet,1o,,,"
Therefore, by uniquencess theorem of moment generating function, X + y is abinomial variate with parameter z, + n, andp. Thus, ihe repioductive property holdswhenp, = pr.

, ,Glenerslisation. Ifrr, rr, .--, r_,, are independent binomial variates with paranr_eters(ni,p)(i=1,2,...,21,the-ntheiisum rri "r*... * i^i" rt.o a binomial variatewith parameters nr + n2 + ... + n h ano p.

4"I2 GHARACTERISTIG FUIIGTION OF BINOMIAL
DISTRIBUTION

Let 0,(l) denotes the characteristic funchon of the Binomial distribution. then

0'(r) = E(gti'1 = Z "t"P(")t=0

I X,Y are independent

...( r )

_s
-t2=I "'o
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4.13 RECURREI{GE FORTULA FOR BINOTIAL
DISTRIBUTTO}I

Letr be a binomial variable and P(r = r) =,qtqn-r,0 3 r 3 z.
For 0 S& < z, P(h) ="CtpL q"+

and P(& + r) = 
ncl *' pl+l gtr-(t + r).

. P(t+1) ncr+r pl+rgn-l-r
urvrcrng, we ger P(r, = ---;cF7-

n'! k'!(n-h)l p _n-h P- (A + 1) !(n - (fr + 1)) ! ' nl q- k+I'q'
p(k+ r)= ++ . g p(k) foro<k<n.K+I q

T?ris is the required recurrence formula.

ILLUSTRATIVE EXAMPLES

Example l. Find thz expectatinn of thc number of hcads in 75 tolses of a coin.
Sol. Here z = 15. Letp be the probability ofgetting a head in a trial, i.e., in a losa.

I... p=,.
Let * be the Binomial variabl e "no. of heads" .

.'. Expectation ofr = E(r) = mean=np = fSt I = Z.S.'2
Exanple 2. Obtain the binomial distributian whose mea,n is 10 and standard

deviation is 2Jf .

Sol. Let number of trials = n and probability of guccess 
= p.

.'. P(r successes) = 
nqf qn-t,0 3 r S z.

We have mean = zp = 10 and S.D. = J"W = ZJZ .

'rd=J8 ='=*=f
.'. n=l-o=l-l=1oc

:. np= lo + " f+)=lo + n=bo
\ D./

... p(r succeaees) = 
mc, f:)' fif'-' ,03r3 50.- \ o./ \ o,/

Example 3. A discrete rand,om uarinble t, hns mzan score equal to '6' and vari.
ance equal to'2'. Assutning that thz und.erlying distribution ofx is binomial, what is
the probability when 53x36.

Self- lnstructional Ma,eial l0l
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anal

8ol. We have nean - lrp - 6
vaia ce = npq = 2

(l) and (2) =r 6xq=laq=

...(r)

...(2)

2l
63

t2
33P=L-q=l

/e\(r) + "|.;J=t + n=e.

; Rr succ€aaes) = 
rCrf f*,O3r<n

.'. P(5<r<6)=P(r=Ssls=g)=p(s=5)+Pk=6)

="'(;l(*) .'".(;i(i)'
t. 

1116 r 82 + u x64r = 
9198.=F

E-otfe 4. (o) ?hz sum of mean and, uarinnte of a birnmial variance is 15 and
thz sum of trtcir sqwras is 177. Find tlu distributinn.

(b) Tlp sum and tlu prduct of tle mcan and variance of o binomial d.istribution
are 24 and 128 respecti.uely. Find tlw distribution.

(c\ If tl* pr&ability of o defective bulb is 0.1, fitrd tlrc nwdn and thc stand.ard
dzviation of &fectiue bulbs in a total of 900.

Sol. (o) Let the binomial distribution tp-P(x = r) = nC,p, qbt, O < r <n.
We have mean = np and variance = npg.

=,".(3) (|f-",0=,=,

...(r)

...(3)

LL?

GF
13+|ff +2@ +

Ju"*"n=f,'
t-o=t-Z =L.'33

= f, iorsl,*,"s"t,r. I
=LE + n =27.

:. np+npq-li

(1) + zp(1 +q)=15

n2p2lL+q?1

@=
25 +2fo2 =

and (:apY +bpqP =rLz
...(2)

(2) + n2p\t+q2)=!!7

Lt7=ns +

"'(4)

13
=26

23
g'26q72-L34.+6=o = g=

q= 1 is impossible.

Putting p =

p-
I
i,c

5n.6

('.rt) = *.



and

:. Pt6 = rt =nc.(*l (3)'", 0.".,
(b) Let the Binomial distribution b€ '

P(X=rl=eO,trf*,o3r3h
11o's 6e.r' = np and vatit961qg = npe

.'. Given, np + ,rpq - 2A

np 'npq = L28

Squaring (1) and dividiog it by (2), we have

'""+, ii,r =# * +F{=Z
= 2ll + qf =9q
+ 42 +2+ 44=q
:+ zqz -q +2=0
+ 24 -4q-q +2=O
+ 4@-2\-@-21-0
:t (q-2\(2q-l\=O

+ c=2,+

t-11
But q*2 .'. Wetakeg-; :' e=l-tZ=i
Also from (1), ttp(l + ql = 2.4

13+ n. i' ,=tt
+ n=32
Hence the required distribution i8

7111 711&Fr
rcx=rr=oc"Iff [;f ,o<'<ez.

(c) Given p = the probability ofa bulb beiog ilefective

- 0.1
q =L-P - 1-0'1 = 0.9,n = 900

Using Binonial dietibutioo'
mean = nP = 9(X) x 0.1 =90

varialc8 = npg

=90r0.9=81
Standard deviation = Jrrw=Jfr

=9.

Erample 5. IfX ia o bitvrltnial vari& wih ponmctzrt n atd p, tlun slnw tlnt

...(1)

...(2)

{il E{xtn-oP =f 6ocor(x ,"-xj=- Pq.
\n n J n

Sclf-lntrrdidat&or.fial 16
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Protuhility ond 8ol. Given X - B (2, p), therefore D(X) = np, Var(X) = zpqDitr butionTh.ory

Also E 0(ln)= I ntxt = *. "o = o

var (xln) = lv"'rxt = i. *o = T
(i) E (Xf n -p)2 = E ()Uz - E(JVn)P = vat Wd = #
Ugin Cov Ot Y) = E t(X - Efi)) ff - E(y))l, we have

(" cov(r, n:x) =,|(*-,(*)(#,(+)l
= Eifr-olf l-r-ef 

'-r'l)lL\n ./\ n \ n)))

= 
"[*-")(,-*-,.")]

= oifr-,)f,-l)l
L\z - /\- n))

=_"[*_,)'=_,(f _,[*)'
/v\

= - varf ^ l= -Pq.
\n'l n

Ersmple 6' (i) De termhc the Binomial dbtribution for which ttp mean is 4 and,variance is 3, Nso find, its modz,

fti) sftas glrog 1o, p = 0.s0, ttu Binomial d.istribution I*,s a marimum probabit_
l1t

ity at X = io if n i" 
"r"o 

ord. at X = | fn - U I h + r) if n is dd.

Sol. (i) Civen mean = zp = 4, variaDce npq = g

:+ q= s 
=9.'np 1'

Also p=r-q= r-9=1' 44
.'. np =4giveen=16
lbe required distribution is given by

, 19 r\16(q+Pf=l:a-l- \4 1)



To find mode, coasider (n + t) p = n .I = 4.25, which is not a! hteger. Hence
4

the mode is unique and given by integeral part of (n + l)p = 4.

I
(ii) flsre p = i and consider (n + 1) pr

Cace t. If n ia even, say, n = 2m, then (n +L)p =(Zn* 1); = m* j, ttot an

integer. firerefore, the mode ie unique and value of mode = integeral part of n + j

=^=;.
Cec€ IL Ifn ig odd, eaY, n = 2m + I

Consider (n + !) p = (bn +1 + f ) j = m + 1, which ie an integpr. Tlierefore, the

distribution ie bimodal and the values of mode are given by

m+L,m * o;1*Lo;1 or IL+ 1 n-l
2 2 ,-'2'

Erenple ?.IfX b a bblzrlmial dir/;nbutbn wilh porcnwbrt n and p, whot ie tlv
distributbn ofY =n-X

Sol. llle know that tbe noment genaating firnction of tJre binomial variate is

Mll)=E(ea)-(e +lllP

.'. Mlt)= E(gdcl=E (e-eD)

=EG4t.e-8t=i"cgtk4x)

=€',ul+)
=sd(q+pCy

= (d (q + pealy

=(qd+qy
By uniqueneee theoren of momeot generating firngtim, Y - B (lr , q) i'e" n -llis

also a Binornial distribution witb parameters n and g.

Eranple & If ifre hfu.pendcnt ruthm rlarrlalblcs X a,d Y atz bhomialty d-is'

,,
tribuud with n = 3, p = i and n = 5, p = ]. Find P 6 + Y z il.

sror"Given x- n(ai),v- n[ai)

:' x*v-u[a*a])"r x+v-r(e,]) | Adrlitivepropertv

Discntc Distribwiotrs
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Probabilin and
Distibutionrheory ... p (x + y = r) = 

sc, 
[3)* (;),

Hence P(x+Y>r':l_::l;::]

='-"",[3)'(*l ='-(3)'

Multinonlal Distribution: This distribution is the generalisation ol' the
binomial distribution. When there are mor€ than two mutually excluaive outcomes of
a trial, the obseryations lead to multinomial distribution. I,r"t Ef E,2,......, Eo are
ft mutually exclusive and exhaustive outcomee ofa trial with respective probabilities
Py P2' .'..'., Pp

Let the probability that

E, occurs r, times ;

E, occurs r, times ;

E, occurs r. tines ;

in z independent observations, is given by

P @y x2, .....- rr) = c pi' p* ...... p!

where I_ ri = n andcis the number of permutations of the events E' 8r,......, E1

To determine c, we have to find the nunber of permutations of rz objects of
whicb r, are ofone kind, r, of another kind, ......,.r0 ofthe &th kind, wbich is given by:

_ n!
rrlxrl......4 |

Hence p(r v x2, ......, r L) = nG; _ 4 | 
pi' p? ...... pi,, o 3 x, s n

,hk
'J! n Pi',1"i=n
!l '' ' '=' '=r

which is the required probability function of the rnultinomial distribution. It is so
called eince (8.30) is the general term in the multinomial expansion:

I
\pr+ p2+ ...... + pry, )_ pi = t

i=l



Since, total probability is 1, we have

I pr'r=t f=# -- pl p? ...p\:f =(Fr+pz+......+pLr=r?- ? Lrr'!rct......r1t "J -.

Theorem l1l. Find. the moment generating function of the multinonial
d.istibutian-

Proof. L€t X - Multinomial distribution and Mr(f) denotes the rn.g.f,, then,

The moment generating function is given by:

t,.t2,......,t)= ri"*{i,,*,}l
L l't=r ''Jl

=11;#..*,----t'r ";'"*[i ',",)]

r_\'I-Ll
nt

x1l. t2 t, ,.,... xl l
( pret, )' t 1prst" y+ ...... ror"t r r'rf

= lpf', * pret, + -.--..+ plett l'

X = (Xl Xz, ...... Xr).

Ditcrcte Digribu,iont

NOTES
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Compound dictribution. Let X is a random variable such that its distribution
depends on a single parameter 0, where 0, instead ofbeing regarded as a fixed constant
is also a random variable following a particular distribution. Then, we say, X follows a
compound distribution.

Tlreorem Y. Find thc mzan and varia ne of tltz compound Bitnmial distributinn.

Proof. l,et X' Xr, ......, \ are independent and indenticatly distributed Bernouli
variates with P Ol = 11 =p and P(X, = 0) = C = 1-p then,

X = Xr + Xz + ..... + \ - B b, p\ i.e., X ie a Binonial variate with parameters n
and p and hence its probability density function is

P$.= 7) = "6,.qn- pr, r = O,1,2, ......, n ...(1)

where P(X = r) ie the pmbability ofr eucceases in n independent trials with congtant
probability p' of succegs for each trial.

Now suppose that n, instead of being regarded as a fixed constant, is also a
random variable following Pcieson law with paraneter l. Then

...(2)p(n = kt = $, o = o, r, 2,......

Szlf- lnstnctional Maerbl lA
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Pntbabilin' and In such a case X is said to have compound binomial distribution. Thejoint prob-
Distrih tion Tlrcory ability function of X and n is given by:

--ltl
P(X= rn z = &) = P(n =&) P(X = r I n = k) = - Ei"'C.p' d",

lusing (l) and (2)

Since P(X = r I n =ft) is pmbability of r successee in & trials. Obviously, r < &

= k2r.
The marginal distribution ofX is given by :

P(X=r)=) P(X=rnn=[)
h=r

* *ah-, e-r(br - (l4)r{
_ a-r nr \r rc
- F /r ' , ---i1- - -----li- z- il---j'i. Rt rt 

- ln-r)l

_,-irrfr'|tr.s/ lj =h_rlrt-jl
-l ,^ .r -1r,. ,r

_ e - \^P)' 
"rc = !: \tP!_

rl rl
which is the probability function ofa Poisson variate with parameter lp.

Hence E(X) = lp and Var (X) = lp.

.t"{5 GOilPOUI|D PO!$$ON DtSTRtBUTtOIl

Theorem VI. Dis cuss compound Poisson distributinn or if X is a Poisson uoriate
with parameter )t" tlun show that the compound Poisson d.estribution of X is a ncgative
Binnmisl distibution with pararneters (q, p).

Proof. Given X is a Poiagon variable with parameter X, and hence its probability
density function is

PcX = r) = +,, = o, r, 2,......

Let us suppose that, L, instead of being a fixed constant, is itself a continuous
random variable with generalised gamma density, grven by

I as-"tY-r
8(?')=] F.o., ' l>0'c>0'V>0

[0 , l<o
Now, consider Ore two dimensional random vector (X, l) in which one variable

is diecrete and the other is continuous. For a constant lr > 0 and ),, > 0, the joint
deneity ofX and I is given by :

P(X = rn Xr 3131,, +i)= P(lr<1,3 L, + /r.) P (X= r I l, < l< 1", + Ir)

Dividing both aides by /r and proceeding the limits as /r -r 0, we get

.. P(X=rnl' <1.<l' +i)
,t-+O h



= lim p(X = rl lr tl" 3 l, +/l)x lim P(l'r < l'< ll +,t)
rr-o ' i-jlr h

5;rr"" 5* P(lt s 15 trt12 
= l;o, G (l'1 +'r-) - G (11) 

= G,(xr) = g (Ir),n+ohi;oh'
where G(.) is the distribution function and g(.) is p.d.f, of 1,.

n-ro h ="-l-'l' '#,'r' "-"*'

- rntegrating u.r.t. tn ?r, over 0 to - and using Gamma integral, the marginal
probability function ofX is given by :

p (X = r) = -!- f 
"-,t*or^N'+u-t 

dL = oo F(r + u)
| (urr!J0 F(u)r!'(l+a)f+,

=l. a ')' u (u + 1) (u + 2) """ (u + t - t)
[1+@/ 0+o)rr!

=(-s-)'r-r,(-,)f t 
.)'-r-,) 

-u, -\r.( r+o/ l" J|.r-"J =[;Jo"Gq)';r=o'r'2'"""
where p = al(\ + a),q = l- p = ll(l + a).

Hence the marginal distribution ofX is negative binomial with pararaeters (u, p).
Hence the theorem.

N. POISSON DISIBIBUTION

Di sc re t e D is t ri b u t i ons

NOTES

/L{6 TilTRODUGTIOII

Ttre Poisson distribution is also a discrete probability distribution. This was
discovered by French mathernatician Simon Denie poisson (1?81-1g40) in the year
183?. This distribution deals with the evaluation of probabilities of rcre events such
as'number of car accidents on road", 'number of earthquakes in a yeay', "number of
misprints in a book" etc.

4.t7 GOltDtTlOltS FOR AppLtCABtLtTY OF polaaoil
DIS TRIBUTIOII

The Poisson distribution is derived as a limiting caae of the binornial distribution.
so, the conditione for the applicabilit5r ofthe Poisson distribution are same as those for the
applicability of Binomial distribution. Ilere the additional requirement i3 tbat ttre prob-
ability of'ruccess' ia quite near to zero.

Sclt-lnttrucrio'',al Mdt.riol lW
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ILIS POISSO]I VARIABLE

A random variable which counts the number of auccesses in a random experi-
ment with trialg satisfying above conditions is called a Poisson variable. If the prob-

ability of an article being defective is 1/500 and the event of getting a del'ective

article ie suacess and samples of 10 articles are checked for defective articles, then the
possible values of Poisson variable are 0, 1, 2, ......, 10.

4.{9 POISSOI{ PROBABILITY FU]IGT|o||

Let a random experiment satisffing the conditions for Poisson Distribution be

performed. Let the number oftrials in the experiment be n, which is indefrnitely large.
[.et p denotes t]re probability of success in any trial. We assume thatp is indefrnitely
small, i.e. , we are dealing with a rare event. Let r denotes the Poisson variable corre'
sponding to this random experiment.

.'. The possible values of: are 0, 1,2,......, n.

The Poisson distribution ie obtained as a limiting case of the corresponding
binomial distribution of the experiment under the conditions

(i) n, the number of trials is indefinitely large, i.e., n -r -.
(ii)p, the probability of success in a trial is indefinitely small, i.e., p -+ 0.

(iii) The product np of n and p is constant.

By Binomial distribution, P(r = r)= "C,p'q*',0(r3z,whereq = 1-p.

I'elnp=m. :. p= m
n

and q=I-p=l- nl

,. ri- fr-rlf u- fr-al-'4-'€\ nl n--'-\ nt

[.. ,,- [, - -]' = "-' 
j

L "--r nt :

\n-rn' I. ml--; lr-- |n \ nJ

fr--)'['--]-'\ n.i \ n./

P(*=r)= ,#n (*)['-;)"'

lim P(r = r) =

."-^ .r= t!

nd
;
rn"7
m'
rt

ftL'

r!

n(n - l)(n - 2) ...... (n - (r - 1))(n * r) !

r!(n-r)!
n n-l n-2 n -(r-l)
nnnn

(1 - 0X1 - 0) ...... (1 - 0)r-(1 - 0)-

h-1'lh-?l fl-4)f,-'"If,-r1')-"\ n,/\ n) \ n ,/\ n) \ n)

ri,' [r-11r- fr-3]...... ri," [r-L1l
u +-\ n)n)-\ n) ,+o\ n )

tn'
rl



.. When n is indefinitely large, we have P(x = r) = + ,ro 0, l,2, ---
This is called the Poiseon probability fuaction. fire corresponding Poieson

distribution is

o I I 3......

Pkt
e-^ mg

0!
e-^ml

l!
e-^m2

2!
e-^m3

3!
The constant rn is the product of z and p and is called the poraneter of the

Poisson distribution.

4.2O PO|aSOil FREQUEI{GY DIATRTBUTIOil

If a random experiment, satisrying the requirernents of Poisson distribution, is
repeated N times, then the expected frequency ofgetting r(0 i r ( z) successes is given
by

N. P(x = r) = N gP,r 
= o, r,2,....-

WORKING RT'IJS FOR SOLVING PROBLEMS

I. Make sure that the trials in the random experiment are independent and
thc success is a rare event and each trial result in either success or failure.

II. Define the Poisson variable and find the value of n and p from the given
data. Find rn = np. Sometimes, the value ofrz is directly given.

III. Put the value ofrn in the formula :

p(r successes) = +, r = 0, t, 2, ......,n. ...( r )

fV. Express the event, whose probability is desired in terms of values of the
Poisson variable r. Use (1) to fmd the required probability.

Remark l. The distribution to be used in solving a problem is geirerally given is the
problem. Ifit is not given, then the student should make use ofPoisson distribution only when
the event in the problem is of rare nature, i.e., the probability of happeling of event is quite
near to zero-

Renark 2. fire value ofe-n required in any particular pmblem is generally given with
the problem itself. Otherwise, the value of e-n can be found out by using the table given in this
chapter. In the examination hall, generally the table ofe-- is available for students. Ifat all tbe
value ofe-"'is neither given with tlle problem northe table ofe-- is supplied in the examination
hall. then the students are adyised to retain their 6nal result in terrns ofe-,,.

ILLUSTRATIVE EXAMPLES

Example l. Out of 100 bulbs sample, thz probability of a bulb to be defectiue is
O.O3. Using Poisson distribution, obtain tha Probability that in a sample of 1O0 bulbs,
ttotut is defective.

lGiuen e-3 = 0.049791

Sol. Let r be the Poisson variable,'no. of dcfectiue bulbs in o. sarnple of 7OO

bulbs" .

Di tc tc tt Di t t ri ht r r t t,t r t

NOTES
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Pmlpbilin'and
Distrihuio,t Th.ory By Poiaeon diatribution, P(r=r) ,r=0,1,2,......

Here n=100,p=0.03. :. m=np = 100 x 0.03 =3-
, ,{ (3)"." P(* = "l = 1i- , r = 0, l, 2' '.'...' 100.

." P(none is defective) = P(.r = 0) = "-11)o - 0'0a9J9 x 1 
= 0.04979.

n-ample 2. Tlpre arc 50 telcphonz lines in an er.hange. Thc probobilitf thet
ona onz of th2m will be bury is 0.1. What is thz probability that all the lines are busy ?

Sol. Letr be the Poiseon variable, "rc of bus! ltws in the ercharqe".

By Poieaon dldributlon, Pk=r)= + ,r=0,L,2,......

Here n =i0,p=O.1, :. m=np=50 x0.1 =5.
--5 r<v;. P(:=r)= * ,, =O,1,2,.....-,5O.

.'. P(atl lines are busy) = P(: = 50) = #
Erample 3. Eigit per cent of the bolts prodrrced in a certain factory turns out to

be dcfective. Find thz probability, ueing Poisson distributinn, that in a sarnple of25
bolts chosen at random, (i) exactly 3 (ii) more than 3, wiII be dzfective.

[Tahc e-2 = 0.135]
Sol. Let.r be tlre Poisson variable, "no . of dcfective bolts in o sanple of 25 bolts"-

By Poisson diatribution, P(r = ,l = 
u^:i' 

, r = O, t,2, ......

A"
Heren=25, p = fr==ru .'. m= np=25x; =2

--2 t ,ty.'. P(.r =rl=*,r=O,1,2,......,25.' rl
(i) P(exactly 3 defectives)

e-2 tzf ot35 x 8- -. =- = 0.18.

(ii) P(more than 3 defectives) = Pk > 3) = 1 - Pk < 3)

= l.-P(t=Q or :=1 or t=2 or :=3)
= 1 - [P(r = 0) + P(r = L) + P(r = 2) + P(* = 3)l

. | "'2\z)o e-z(Dr 
"-2(z)2 e-\zf f

L 0! 1! 2! 3! I

= r- "-21 
r* z+ !*9.l = r- o.rssf r + z + z + !\

L 261 \ 3/
19

= 1-O.135 r T = O.rg.

(Using 12 = 0.135)



Erample 4. A box contains 200 tickets eath beaing one of the numbers from 1

vo 2o0 20 ticket, are drawn succeesiuety with repracement from the box. Filnd, thz
probability that at nost 4 tichets bear numbert diuisible by 20.

Sol. Let c be the Poisson variable, .rc, of tfuhcts bearing number d,iuisible by
20" .

By Poisson distribution, P(r = r) = +, r = 0, t,2,......

The numbers from I to 200 and divisible by 20 are 20, 40,60,80, 100, 120, 140,
160, 180, 200.

Letp be the probability of getting a ticket with number divisible bv 20.
l0 I" P = 2oo=20.

A160 z = number of trials = 20.

.'. m=np=20' ]= r
20

_-l i rf e-r.' P(r=r)= I---ljt!-=;'r=o'l'2' " "'' 2o

.'. P(at moet 4 tickets bear nurrber divisible by 20) = p(, < 4)

= P(* = 0) + P(r = t) + p(x = 2) +p(r = 3) + p(r = 4)

=+*'+.*.*.{=1L.r*1*1* 1 l = 
65

o! rt 2t s! 4t .L- - 2' 6'%)= 24".

PROPER,TIES OF POISSON DISTR,IBUTION

Discreta Distihntions

NOTES

The shape ofthe Poisson distribution depends upon the parameter n, the aver-
age number ofsuccesses per unit. As value ofm increases, the graph ofpoisson distri-
bution would get closer to a symmetrical continuous curve.

4.2{ SHAPE OF POISSON DISTRIBUT|oil

4.22 9PEC1AL USEFULI|ESS OF pots$olr DtsTRtBuTtOl{
The Poisson distribution is specially used when there are events which do not

occur ab outcomes of a definite number of trials in an experiment, rather occur ran-
domly in nature- This distribution is used when the event under consideration is rare
and casual . In finding probabilitie I by poisson distributian , we reqtite only the rneas-
ure of average chance of occurrence (m) based on past experience or a small sample
drawn for the purpose.

Self- lnst ructional Materiol ll3
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I,et r be a poieson variable and p(, = n= "-:T' ,r =o,t,2,.....

The mean of r ia the average numbers of guccesses.

s- _. .= S,".{I:
". Mean, $ = Lr'Y\x = r) Ll r !

= 0. ,-;i'* ,."-iT' *r."-iT'*e. "-il'*......

(r ,an,e^, - ) _---- |.r*a*4*.......]=o+mp* lil 
*7i*_sr *....... 

)= 
ne_,,. l._1!_ r! 

, 
J

=me-m,e^=mcO=m.I=m,
.'. Mean (p) of x = m.

4.2' VARTANGE A]ID S.D. OF PO|aSOII DISTRIBUTION

l,et r be a poisson variable and p @, = i = t d-, r = o, L, 2, .....
fl

The variance and standard deviation ofr measures the dispersion ofthe Poisson

distribution and are given by

Variance = | rz.Ylx = r) - 1t2 and S.D. =
.=0

... I "2.p(r=r)=, ,r."-^?'la rl.:O r=O

= o, . {;T * r, ;i?' * 2z "-iT2 * s" {l?" * +r 
r-iTo * ......

(t *n gm2 4m3 )
=o+mea lii*T!-*-tl* a! ........,J

=,*"^1ft*!.**' *3 ) /- 2'n2 t*- ll
11 ,, Tr*Tr+"""'J+[r!+ 2'
t 'r*4*4*......I= ,r*- f^.^1 \t 2t )J

= me-^ le^ + menl = mz-n en (l + m) = meo (! + m)

=m(l+m)=m+tn2.



.', Variance = ) r2.P(r=r)-12=lm'mtl-m2 = fr,.
r=O

Algo, S-D..J.ffi'-6.
l.heorem VII. Slrou tlrat t E futt fow rrlonnnlr &o,tt tlv orbtn fv tlu Pcnsnn

d.istribution with parameter |e are given as

)Lt=l\Iti= l'2 + I', Fi = 13 + 3le + I
$r=La + 6Ls + 7l2 +L

From thz above rceult, deriue tfu firet four enbzl mome*s and hztrce find pt, pt
and yr, y, respectiuely.

Proof. Let X follows Poisson distribution with parameter l, then

e-Lrp(r) = :+ , r = 0, 1' 2, ......

The moments about the origin are ae under

rri = Eo' = i *',r=i " #="*{* #J
= r,* [r*r*S*$*......1=r-^ ."^

[ 2! 3! )

= X = Mean of the PoiesoD diEtribution

r'2 = E0C) = i "'o,",^,=i (r(" - D+"14
r!0 r=|)

= "-r 
i'<r-D l', *f , e-rf =^rr*li, r'-: l.rfr 'rt :i xt Lg (r-z)!J

=112e-+eL+1,=tr2+?"

pj=EO(3)=lx"lr,7,')
r=0

' ' e-rlt
= ! {"tr-Dtr-2)+3'('-l)+ A+

= i ,t"-1)(r-2)e 
rI 

+Bi. dr-r)"-^f, *l r"-tl'-3 r! -",^' rl fr xl

(- 
"r-g | (- ^r-r 

'l

= "-rts 
lI 3-f .,3"-r t2 lI ^ l+I[fi {r-orJ lfi {x-z)rl

= e-,1 13 €r+ ge-l 12er + I = X3 + gI2 + I

DitcE . Dist ribq,ions

NOTES
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Prfulrlifi aad
oisttirsiittwry Fi - 86.) - i ", .irt,flr.O

-t ac-ua -zr!.-8t+tu(r-Di-z)+'rG-r)* '" ^x'
r=0 'tEw- Ltw-zt+ tttt- lt+tl-

=-"'{i #i."'''{: *1.,"-'^'{; #}.*
- l. (e+ C) + 618 0-r C) + ?t3 (e-+ d) + t
=l{+6r!8+712+l

We now find the trrst four oootral mooeots a5 followe:

15= Yi- ltta = (L2 + l) - t2 = I
1ts - lrj - 3pjfu1 + 2pt'3 = (ta + gl2 + l) - 3X (1.2 + tr) + 21,8 = L

tt,- = Vi - a plr 1ti + 6lL.pr. 2 - gtLL, 1

= (14 + 618 + ?12 + t) -,ll (tt + 8lt + l,) + 6l.t (12 + t) - 3t{ = Bl"2 + I
Also coefficiots of skryness and kurtcis are given by :

" rLl t2 1 . l
Fr = If =tr=t anarr = 

'/Fr 
=;i

AIso fu=tf =r.* andrr=Fr-s=f .

ffmat Goc*l6Fuctlo
Let M,(t) rtenotea the m.g.f. of the poisson diltribution, then

=L * "-if =i e-rrry,)' 
= r^{r*rr*$ *......}

,-oxtftxt[2!J
= "-l "U 

_eX.'-D .

Pnot aly Gorrrnrg Fooctlo :

lbe p.g.f. ofPoirson dictribution can be obtained as followg.

: . -$ e-rtr"r_$ e-rnrlrPtS)-)Rr=l)ar,H -a ht a h!

= .-.i 99* = r-rrr. - er(, - D.

ahl

Frr,
\(t)= / e-P1x1



4"25 CHARACTERISTIC FUNGTIOil OF THE POISSON DIS.
TRIBUTION

Let 0,(t) denotes the characteristic function of the poisson distribution, tJren

0"(r) = E(ee) = i "io 
P<'t = t "'" #t=O l=0

=2r,4I = "-,[r*uu -%{. .l - e-\ et"h - ei,("' -,:,

Reproductive or Additlve property of independent Poiaeon variates

Theorem VIII. If Xr Xo ...,.., Xoare n independent poisson uariatzs with pd.-

rameters 1r, tr, ....,,, L,, thzn X r + Xr + ...... + Xnis elso a Poisson variote with pararnater
Lr+ ),, + ...... + L,.

Proof. Let M1 (l) denotes the moment generating function ofthe random vari-

able X,, then

Consider Mx, *x, *.....*x, (!) = Mx,(l) Mx, (l)...... Mx, (t)'

fSince Xt, \, ......, X^ are independent.]

_ elr(e'-D e).r(e'-1) .., er.(r'-1) = €(lt+12+...--+1. 
) (l -1)

which is the moment generating function ofa Poisson variate with parameter l'1 + 12

+ ...... + 1,,,. Hence, by uniquenesg theorem of moment generating functions i *, t"
i=1

also a Poisson variate with parameter 1,, + \ + ...... + 1",.

Cor. l. Converse of reproductive property of Poisson distribution is aleo true.

Statement. frr, tz ..., x^are ind.epend,ent rondom variablzs andf t, no" o
f=I

Poisson d.istribution, then each of the random variable xr r? ..., xo has a Poisson
d.istribution.

Proof. We Prove the result for I = 2 i.e.,lf x, and r, are independent random
variables such that r, - P(l,r) rr + x, - P(L, + \), then we show that r, - P(\)

AS .r, and.r, are independent,

M", *., = Mrr (t) + Mr, (t)

e(tr + 12){e'-1) 
= "1t,"'-D, 

Mr, (t)

I,net,r . er,let -D = elr("'-t). Mrr(,)

et,(e'-r) - Ma (t)

Self-lnstructiornlMaterial ll7
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Probabilitlt and which is the moment generating function ofa Poisson variate. Byuniquencess theorem
Distrihution Theory of moment generating function,

x, - P()e.
Con 2. Difference of two independent Poisgon variates is not a poisson vaiiate.

4.26 REGURRENGE FORTULA FOR POISSON
DIATRIBUTION

L€tr be a Poisson variable and P(r =, = 
t:f", r = e, L, 2, .....

For&ro, e<u=u1?u and p(a+l)= +#
Dividing,,ou sut M r 

= "l:k:;:t' ;#F=#
... P(k+t)= k+T P(k), k=0, r,2,......

This is the required recurrence fomula.

4.27 A?PLIGATIOilS OF POISSON DISTRIBUTION

This distribution is applied to problems concerning.

1. Ttre number of persons born blind per year in a country.
2. The number of deaths by horse kick in an army corps.

3. The number of fragments from a shell hitting a target.
4. Demand pattern for certain spare parts.

ILLUSTRATIVE EXAMPLES

Example l. A pair of dice is thrown 2O0 times. If getting a sum of g is consicl-
ered as success, using Poisson distribution, find thz m.ean and, variance of th.e number
of successes.

Sol. Letp be the probability of getting sum g in a throw ofpair ofdice. Out of
total 36 outrc'omes, the favourable outcomes are (9, 6), (4, b), (S, 4) and (6, S).

:. p=:1 =f .36 9'
Also, n = 200.

:. m=np=2o}rl=!=ZZ.ZZ | .' Mean = Variancevv
.'. Mean =m=22,22 and variance =m = 22.22.



Exemple 2. G) For a Poisson distributian, it is given thg' p1y = 1) = P6 = 2I DiscEE Dktibutions

ri"a t[r"tIiif ian of tlu distributbn. Hene fin'd P (X = 0) and P(X = 4)'

Gi\ A rand'om uariablc X follows d Poieson di'stribution with Paramzter 4' Find'

thz Probabitity that X ossun:./le tte ualucs lzss than 2'

Sol. (i) Let P(X=r)= "-^=T' ,r=o,t,2,.....

where rn is the average nu-b"" of roa"""se"'

We have P(X = 1) = P(X = 2)

e-^ tnl - e'^ tn2

tl 2t.

a; !!- a a=l
2

.'. Mean of the distribution, zr = 2'

Using ( 1), we have Pff = o) = 
{^-?'o 

= "-2

and P(X=a)= tP =e29\1 -?e-2'

(ii) Here nr = 4' By using Poisson distribution

we know

e-^ n'
P(X = r) = :--:i- ' 

r =O'L,2,....

Required Probability = P(X < 2) = P(X < 1)

=P(X=0)+P(X= L)=e-^+e-^.m I Uging (1)

= ea (1 + 4) = tua = 5 x 0.0183 = 0.09157.

Example A. A fuIephottc etclnntge receiues on an aueroge 4 calls per minute'

Find. thc proiabilitiz.ls onitg basis of Poisson d'istribution (m = 4)' of :

(i) 2 or less calls per ninute (ii\ upto 4 calls per minute

Gii) more than 4 colls Per m,nute.

Sol. Let r be the Poisson variable "nn' of calls per minute"'

e-^ m'
By Poisson dietribution, P(r =r)= 

-,7=O,t'2''-"'Here m = Average number of successes i'e', calls per minute = 4

... p<r=;= n!,r=o,L,2,......

(i) P(2 or less calls per minute) =P(:.'<2\= Pk=0)+P(r= 1)+P(r=2)

"u.40 "u.4t "4.42= 
1.i-1i *t =ea {1 + 4+ 8l = 0.01832 x 13 = 0.2382.

(ii) P(upto 4 calls per minute) = Pk < 4) = P(' = 0) + P(t = 1) + P(r = 2) + R* = 3)

+P(r=4)
e-4.4o ea.4r "4 

.42 . e-1 .43 e-4 ,44
=-- l! *-t-*-s!-*--4-

...( 1)

('.' zr * 0)

...(1)

NOTES
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= r. {r 
*+ * e*91*f9}= o.orsaz x 34.3s33 = 0.628e.

(iij) P(mor-e than 4 calls per minute) --p(r> 4)= t - p(r < 4) = 1- 0.6289 =0.3711.

Etample 4. A manufacturer of pins k @ws that on average 5% of his product is
dzfeetive. He sells pins in boxes of I(n, and. guomntees thnt nDt more than 4 pins wilt be
dcfectiue. whnt is thz probabitity thot d bot. wi mcet the gu.aranteed, quitity ? 1e-s =0.0067)

Sol. Let p = The probability that a pin is defective = E?o = O.OE
Aleo n=100

t=np=100x(0.05) =5
Using Poisson distribution, we have

p(X = r) = "-^ ,* ,, - O, 1,2, ...rl

The box will meet the guarantee if it contains at the moet 4 pins defective..'. Required probability = P(X < 4)

= P(X= 0) + p(X= l) + p(X= 2) + p(X = 3) + p(X = 4)

= s-L 1 s-r. 7t * 
"-t 

.
2l

+e-\. +e-^.

="u[r+s*E+18.',.98)\ 2 6 ztl
= er (6 + L2.5 + 2o.88 + 26.04)

= e{ (6s.gz) = 0.006? x 6b.BZ

= O.44.
Eranple 5.Red blood, cells deficbncy may be determined bXr examining a speci.nten of blood undzr o microscope. Suppose i cernin smau 6rcd vilunz 

"ontoln, 
i, inauerage 20 red' cells for normar persons. (Jsing poisson d.istribution, ,t tiii'tii"-p,."ir-

abili8t that a specimzn from a normal personl.tiu contain less than ls red. cells.
Sol. Letr be the Poisson variable, "no. of red. blad cells in the specirnen-.

By Poir:on distribution, p(: 
= r) = + ,r = O, L,2, .....-

Here rn = average number of R.B.C. in the specimen = 20

- n-2o(2oY:. P(x=r) = :_-j::,"= 0,t,2,......t-
.'. P(less than fb R.B.C. in the specimen)

=P(r< li) =P(r= 0)+ p(r= 1)+...... + p(r = 14)

= "-2o(2olo - "-2o(2o), _ , e-2o {2o)ta -_"n $ ,20,,
o! ?-.t......+ 

14 I =t* 3o h:
Eranple 6. Az e lzetrb bulb manufacturer finds that 4Vo oftln bulbs are dzfectiue.

What is the probabilitf that a random sampl.e of 5O bulbs des not haue a d.efectioe
bulb. ?

%

t3

6



Sol. l,et p = The probability that a bulb is defective

4
= 4% = T6 - o'04 (verY small)

Also n = 50
1,"=np=$QxO.O4=2

By Poisson dictaibution,

o-^1'p(X=r)= i,r=0,r,2,...

Required probabiliry = P1X = 0) = "-!!o , = ,^ = "-2 = 0.1353.

ffza ple 7. If X, ond X, are independent randam uariable such tl&t X | - P(I')
and X, + X, - P&, + 1'), tlen shaur that X, - P&).

Sol. Let Mr(f) denoteg the moment gencrating function ofthe random variable

X which follows Poisson distribution, then ltifk(t) = er(€'-r)

.'. M*, * *, (t) = Mx, (') Mx. (t)

= €{Ir+lr I.'-l) = err("'-r) Mx, (r)

J elrt?'-ll efr(.'-f) - e)'r(.r-1) Mxr(r)

lXr, )l' are independent

+ My, (l) = er,t"-lt

= X, - P(b) | By uoiqueness theorem of m.g.f.

Exanple 8. 7/rz Differcnce of two indcpend.ent Poisson uariates is not a Poisson
uarutte.

Sol. Let X, and \ are two Poisson variates with parameters X,, and \, then

Mxr_x, (t) = Mx,+(_xr)(t)

= Mx,(r). M_x,(- t)

= Mx,(r)Mx,o)

_ e\let -r, el2|a-, -t

_ elrtJ -D+ 
^et 

1-t,,

I Ms,, (t) = Mx, (Cr)

which cannot be put in tlre form e1(" -D . By uoiquenese theorem ofmoment generating
function, X, - \ cannot follow Poisson dighibution.

DitcEtc Dis,ihuti.lN

NOTES
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N(}TES

lll ktJnnrtiml tlourbl

etuitity ut( The Poisson distibutim, theo the hvo modes of the Poisson dietribution are
Distribuia Ttuoty givo byr = L f,- 1, Given, the two modes are the points r = l,2.lt implies l, = 2.

Ua'mg Poissm diatributioo, PCI( = r)

e-rt: 
"_z 

2,=-=;,r=o,r,2,......

... p111= D =b-z,p{x=2, = "-'=2" = a-,
2

Hence required probability

=F0(=r)+P(X=2)

= 2.-2 + 22:-t = 12-2 = 0.612-

n--pb e. SAou ilvf in a Prirlrn Mribdbn uith unit nan1 twn deuia-

tion abut rnan is 2 thas ttzt c,andafl, &ointbn.
2

SoL l.et X - Rl), theo using Poieson dietribution,

o-\tt
P (X = r) = ?," = o,r,2, ......

But givern mean = I = 1

.'. M.D. aboutmean 1=E lX- rl

=) lr-rlrcx=rt
r=|t

=i t"-rt{=,-,f l"-rl
ftrr3r!

ft6\
= e-rl l+ o+ j+ 2+......1

\ 2! 3! )

= *,fr*1,r_1).ft_:].I r _ t'1........l
L \ 2t) \2t 3!/ 13! 4t) I

=c-r6+l) usi's s =^+rf- (n+1)! (n+ l)!

=? ,t+l _ L

e (n+D! (t1+D!

2- I I
= -Y !. n! (n+l)!

t
= : sbndard deviation-

e



SUMMARY

The Binomial distribution was discovered by James Bernouli in 1700. The
following are the essential conditions for the applicability of the Binomial dis-
tribution.

" Ttre number of trials should be frnit€
* The tirals ehould be independent
* Each trial must result in either "success or failure".
* The probability of a euccess is constant in each trial.

Histogram for B.D. To draw the histogram of a B-D, frrst mark all the values
ofthe random variable on the *-axis and their respective probability on y-axis.
Construct the rectanglea of uniform width with values of the variableg at the
centre and heights equal to their corresponding probabilities.

The Poisson dietribution was discovered by a French mathematician, Simon
Denis Poisson, in 1837. It is a discrete probability distribution. This distribu-
tion is used when there are events which do not occur as outcomes occur ran-
domly in nature.

Mean and variance ofthe Poisson distribution are always equal.

If X' X2, ..., Xo are Poisson variates with Parameter lr, 1., ...,L,, respectively,

then ) X, is also a Poisson variate with parameter 1., + \ + ... + \.
f=l

. The Poisson distribution is the limiting case of the Binomial distribution.

GLOSSARY

Binomial Variable. A random variable which counte the nunber of auccesses

in a random experiment following Binomial distribution is called a Binomial
variable.

Compound dietribution. If a random variable X is such that its distribution
depends upon a single pararneter Q, then the distribution of '0'will be known as
compound distribution of Q.

Poisson Variate. A random variable which follows the Poisson distribution is
known as Poisson variate.

Poieson frequency distribution. Ifa random experiment, is repeated N times,
then the expected frequency of getting r{0 3 r 3 N) success is given by

N.e-rll
N.P.(X = r) = ---:T-,r = 0, I, 2, ...

where L is the pa""-"t"".

DiscEte Dist rilrutiotts

NOTES
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REVIEW QUESTIONS

l. An unbased coin is tossed 8 times. Find by using binomial distribution, the probability
of g€ttlrg at least 3 headE.

2. 5 dice are thrown simultaneously. Ifthe occurrence ofan even number in r single dic is
considered a succes8, find the probability ofgetting at moat 3 succeaaes.

8. A box contains 100 tickets each bearing one ofthe numbers from 1 to 100. If5 tickets are
drawn successively with replacement from tlte box, find the probability that all the tickets
bear number divisible by 10.

4. A policeman fire8 6 bullets on a dacoit. The probability that the dacoit will be killed by a
bullet is 0.6. W}at is the probability that the dacoit is still alive ?

6. Agsume that the pmbability that a bomb dropped from an aeroplane will stdke a certain
target is 0-2. IfG bombs are dropped, find tlte probability tfiat :

(i) exactly 2 wiU strike the target (ji) at least 2 will strike the target.

6. For a binomial distribution with p = ] and n = 10, find,rnean anrl variance.

7. The mean and S.D. of a binomial distribution are 20 aid 4 respectively, calculatc n, p
and q.

8. (i) Find the binomial distribution wlren the sum ofits mean and variance for five trials
is 4.8.

(ii) Ifthe sum ofthe mean and variance ofa binomial diccribution for.6 trials be -19 , finrt
the drstribution.

9. lt is kaown that 60% of mice inoculated with a scrum are prot€ct€d from a certain dis-
ease- If5 mice are inoculated, find the probability that:
(i) none contact the disease (ii) more than 3 contact the disease.

1O. Find the moment generating function ofthe standard binormal voriatctX - npil ffi
and obtain it,s limiting form as n -+ -. Also interpret tlle re6ult.

ll-. Neyma.n's Contagiaus (Compound) Distribution. I-€t X - P (1, t), where y itself
is an observation ofa variat€ Y - P(Ir). Find the unconditional distribution ofx
and show that it8 mean is less than its variance.

12. IfX has Poisson distribution: P(X=r)= * ,r=0,I,2,......
where the parameter L is a random n.irb;; of the continuous type with the
densit5r function:

flf,) = j1.e*l 1'-tt ; l,> 0, u >O,a> 0, derive the distribution of X.' |-(u)

Show that the characteristic function ofX is given by:
Oll) = E (edx) = q' (1 -pe"F', where p = \l(l + a), q = | - p.

13. A company knows on the basis of its past experieDce that 3% of its bulbs are dcfective.
Using Poisson's distribution, find the probability that in a sample of 1OO bulbs, no bulb
is defective.

[Given e{ = 0.04979]

14. Sir per cetrt ofthe bolts produced in a certain factory turn out to be defective- !'ind the
probability, using Poisson distribution, that in a sample of 10 bolts chosen at randonr (i)
eractly 2 (ii) more than 2, will be defective. lTake e- o.G 

= 0.5491



16. A'sume tbat tle probability that a bomb dmpped from an aemplane will strike a certain
target is V5. If6 bombs are dropped, find tbe probability that :

(d) exactly 2 will atrike the target
(ii) at least 2 will strike the target. [Use e-r.z = g.gg12;

16, In a certait factory tuming out razor blades, there is a emall chance VS00 for any blade
to be defective. The bladee are ir packets of lo. u8e poisson distribution to calculate ths
approximat€ number of packets containing :

(i) no defective (ii) one defective
(iii) two defective blades in a consignment of 10000 packeta, (p,T,U., M,B.A. Dec. 2000)

17. comment on the following stat€mert : The mean and varialce ofa poisson distribution
are equal only if the average occurrenoe ofthe poisson variance is 3 4",

18. The standard deviation ofa Poiseon distribution is g. Find the pmbability ofgetting B
successea.

19. A car-hire firm ha8 two cars, which it hires out day by day. The nunber ofdemands for
a car on each day is distributed a8 a poisEon dietribution lvith mean l.E. calculats the
proportion of days on which neither car ie used and the proportion of days on which
some demand is refused.
(e-1 5 

= 0.223\)
20. In a hospital, there are 20 tidney dialysis machinee and that the chance ofany one of

them to be out of service during a day is 0.02. Det€rmine the probab ity that eiactlv c
machiues will be out ofservice on the same day.

21. Writ€ a short note on poisson distribution.

FURTHER READINGS

l. Continuous Univarate diatributions-2: N.L. Johnson aad g,Kotz, John Wiley and Sons.
2. Introduction to Probability tbeory witb applicationa: l4/. Feller, Vol-t: Wiley aEt€rn.
S. Introduction to Modern Probability Tbeory: B.R. BhaL Wiley Eastern.
4. Introduction to probability and Mathematical StatisticE: V.K.Rohatgi: Wiley Eaetern.
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CHAPTER

CONTINUOUS DISTRIBIITIONS

OBJECTIVES

After goitrg through this chapter, you should be able to:

. know the basic properties ofthe normal distribution'

. know the area properB of the normal tlistribution.
o know that momente of odd order for the normal digtribution vanieh.

o know that mean mode and median of the noroal dietribution are equal,

. know that the probable ermr (P.E.) is approximately equal to I times the

. ffiTl"t""rTli';s distribution like log normal, 
"t"rra""a"l'ptace, 

two

.parametcr Laplace, weibul and logistic distribution.

STRUCTURE

5.1 Introduction
5.2 NonnalDietribution
5.3 Normal Variate
5,4 Normal Curve and its hoperties
5.5 Baeic Properties of Normal Distribution
5.6 Area koperty of Normal Distribution
5.7 Monente of Normal Dietribution
5.8 Variance of Normal DisEibution
5.9 ReproductiveProperty

5.10 Probability Integral or Error Function

5.11 Applications of Normal DisFibution
5.12 Staadard fonm ofNormal Distribution
5.13 Log-Normal Randon Variable

5.14 Ing-NormalDishibution
5.15 Laplace Double Erpmential Disbibution m Standard Laplace Distribution
5.16 Weibul Variable
5.17 $reibulDietribution



5.18 Standard Weibul Distribution
5.19 LogisticDistribution

o Summary
. Glossary
. Review Questions
. Further Readingg

NORIVIAL DISTRIBUTIONS

Cortittuow Dist, ih utiotrs

NOTFS

5.I INTRODUGTTOI{

The normal distribution is a limiting case of the Binomial distribution under
the following conditions :

(1) When n, the number of trials is very large and

(2) p, the probability of a success, is close to l.z
Ronark : (i) The normal distribution was 6rst discovered by De Moivre, in 1733, a

Frencb mathematician.
(ii) The normal distribution is a continuous distribution.

5.2 lloRtAL DISTRIBUTIOII

The general equation of the normal tlistribution is given by

, _l(,_r,1,

^'=;h" 
2\ o '' 

' - - ( r ( @ I - - < P < -' o > o ;

where J2n = 2.5066, e = 2.7183

The parameters p and o are respectively mean and standard deviation of the
distribution.

5.3 I{ORTAL VARIATE

A random variable X is called a normal variate if it follows a nornal distribu-
tion. If the raodom variable X follows a normal distribution with nean p and S.D. o,
then we write X - N (p, o2).

5.4 ilORTAL GURVE AIID lTS PROPERTIES

The graph of the normal distribution is called the nomal curve.
Propertiee
(a) lhe graph of the normal distribution is bell-shaped and synnetrical about

theliner=u.

Self-hs,ructional Matcrial 127
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(i.e., If we fold the normal curve about the
line, = p, the two halves coincide).

(6) The normal curve is unimodal.
(c) The line.r = u divides the area un-

der the normal curves above r-axis into two
equal parts (Fig.).

(d) The area under the normal curve
between any two given ordinates r = ,t and
r = 12, represents the probability of values
falling into the given interval.

(e) The total area under the normal curve above the f-axis is 1

5.5 BASIG PROPERTIEA OF NORMAL DISTRIBUTION

The probability density function (p.d.fl ofthe norrnal variate X is given by

1/r-u\2

f Gl=-]:e 2\ 6 J, -@<x<@,-@ap<-,6>0' 6.121t

Then the curve y = /(r), known as normal probability curve and satisfies the
following properties.

(a) The normal distribution is symmetrical about the line , = lr
(&) It is unimodal
(c) For a normal distribution, mean = median = node
(d) The area bounded by the curve r = f k), and ,-axis is I unit, i.e. ,

I fk) dt = l. Alsof (r) >0

)2.,
(e) The points ofinflexion of the normal curve (can be obtained by putting :-{ = Q

Lr-
)3^,

and verifying that at these points, l.i*0)aregivenbyr=p16.d.r'
i.e., these points are equidistant from the mean on either side.

5.6 AREA PROPERTY OF NORIUIAL DISTRIBUTION

(1) The area under the normal crrrve between the ordinates .r = u - o and x = p + (t,

i8 68.26%.
(2) Ttre area under the normal curve between the ordinates a =;r - 2o and

a. = 11 + %t ia 95.44%.
(3) fire area under the normal curvea between the ordinates J = !t - 3<r and

r=t+3ais99.73%.



lteor.en I. .For a narmdtflbtributbn, tlu mean drivjation about mzao * 1o,
o

Pnoof. We know that mean deviation about the mean p is given by

_of-- J'; J--
_222dz

E l"-'l-
{;"1(-Dl.

,2rut!-=t > zdz =dt

M.D. =J- l' - F. I f tr) d,

r-"
=lfzol.*e2adzr' a 42ra

l" l"

=#!;'"';t *

=f ,S*'i a

={oSu,o, =

=ffo<o*o

Rrt t -ts =z + dt=adz(t

lo>0

-r'
lz le 2 is an even funstion

= rE" =o,e.ec=!c'

ScllJnstructional Mateiat 129
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Consider Tr,',, = fi-tt-t lo" .f k)d,

=l-t*-rth'r + ,-;(+l d'

-tl

= f- (zo)tu*r.-* e-i adz
.t- - 6 Jzr

put" = 1:! = a" -- !- at
60

zl

= db+r r__.b+r e-i d.z

z2

= 0, gince z2o ' r e- 7 is atr odd fuDction.

ia, dl odd ordor uootr $out t:be mean veafuh.

P,13' *2 = ds =c dz
o

_*l,e)

...( t )

Furthcr, ;r,.=l-tr-Pl&.161a"

= f-tr-rr.r& -+."-i(+l &,

-# !:-u' ;i *
= # f-"^,lt + .)* rntegrating by perts,

=#f [*'I t*]1"-*J--rz"- u "^'' ;* *)

=(zn-r)d ."'!-! f "u-u."-4 *.12fr J'-
Heoce vu=(%t-Dc2.lrz"-t



Changing n to n - 1 in (1), we get

lt:, -z= (bt - 3') az Pz,-a
Using (2) in (1) , we get

ttu = Qn - l) (2n - 3) d. pz, _n

...(2)

= (2n - t) (2n - B) ...... g.f . czn 14,_zo

= (2n - L) (2n - 3) ...... 3.1 . oa. | tro = 1

Con, innous D i s t ri but i M r

NOTES

5.8 VARIAIIGE OF NORilIAL DISTRIBUTION

Ifwe put z = 1,2, in above, we get

Variance P, =c2,1\= 3.1 .d=3oa
,, 2

.'. 0, = I+ = 0 | Ae odd order moments about the mean vanish" r1z-

^ Pc 3oa
P2= -i = --t- = d'

I'2
Theorem II. .&'or thz nannal distribution, shaw that tle value of mode is giuen

by x = p, whcre p is thc mean,

Proof. Let flr) be the probability density function of the normal distribution,
then

,' _rrrtf
flt)=i:e zt o '/ , - - < r < 6, - 6 < F < -, o > 0, ...(l)

Now, the mode is tJ:e solution of f '(r) = 0, and /" (r) < 0
Taking logarithm of (1), we get

' -lf'-rtl'
loe r(r) = loe--++loee 2\ " /

- C.l2n

= -t'scJ21, -*(?)'
11.- tt\2

= ^-;l?l whereA= tosc.m

Differentiating w.r.t. r, we get

f'(x) (r-u) r r,_;:_= = _ | _ l. _ = _--;- (r _ lr,f\x) \ 6,/o 6'
I

= f 'k1= --v(J-1tl f(x) ...(Z)

Again difrerentiating,
I

f ,@ 
= _ A t@ _ u1 1,rr, * n*r,

SelfJnstructional Material l3l
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- -1|-('-p:..f(r)+/(*il="'17 
r

ftr)f. k-p)''l=-7-l'-71
For mode, fron (2) /'(r) r 0 give8

:11(r-p)f(r) =o + r-tr=o

- r=lr
Also I/-k),-,, = - 4. I^rI,-o tt - ol

...(3)

.. (2\

r-u dTz=- - d2=-o6
ffisns=p,z=0.
Whenr-+-@,2-t-@

.Hence the mode ie given by r = p.

Theoren III. Slrour that fur the nprmal d,istribution, median is equal to the
meon of the d.istribution.

Proof. Let M denotes the median and flr) ia the probability deneity function,
then

#J:" *t*l *.#f;i(#l *=t

f t<"ta'=!

r J""-i(:. )'ar= r
o.t2n r-- 2

!*I r""-i(*' )'*=1
2 6,lNn Jr 2

coneider + r "-;(+)'d,orl2n J-

=#*f-"-iu *
t 1"1=W''lz= z

... from (2)

-*r"'(+)"*=0,
which is possible oly when p = M ie., for the normal diatribution mean = median



Cor. Sbow that for the nomal distributim, mean, median anil mode cqrsider. Contintous Dktibniont

Hence, tJre normal disbibution iB symmelrical.
Pnoof. Use above two theorens, we gpt the fequit€d.result.

Itlomeat Geleratlng Functlon
Theoren fV. Flnd, tlrc ,r|on ent gervratbry fuwtbn of tlp wrmal dishibution,
Proof. Let flr) denotes tlrc probability <leosity firsc+ioo oftbe nornal digtribution

and if M* (r) denotes the momeot geoeratiag functio of the raodon variable X following
normal distribution. Oren

' -1(sf
flxl=1-e " o ',--ataq --<P<-,o>0

.. M/f)= k"r<a*=-+^ Ji""*,-,"-r\2t%'ztd'.

= # Jl"* o* + @)t exp F 22 t2, dz,

= "'#J-"* {-la'-z'*t}a" tPutz = 
r:r

= "n rf;,f",n[-]rr,-rl' -o't"t]a"

= e''+"a'tz 
" # f*{- i <. - afl a"

= "vt*'d 
tz 

" fi 1 .n e 
"' 

nl a"

="*'#*#.r1" "*(-*)r"

="**# hrfor="*,#
dt2

"' Mx (,) = "**-T '

Cor. Find the momeut generating fuaction of the staldard ncmal variate.
Proof. Let X - N (p, d) be a normal vaiate with parameters ;r and o.

\t ..
TakeZ=:3.gtg1

o

-!1 -nl i/.\
Ir,Iz(r) = Mx+(t)=e o MaGl =e o M*l .:l

o o \o)

'dt
= lNz=-

6

NOTES
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="-f "*frt*4.d^ l="-f "+.'; ="+Lo a'z)
lteoren V. Lef X, X, .,.,,., Xoare n indzpendznt twrmal variotzs with mcan

llt lLz ..., ltn_ond, u-arianres af,, of:......, ar2 rcspectiuely, thcn shau that arX, + erX,
+ -.... + onXo re also o rwrmol wriate with ao a \ * a*z + ...... + y^ and,- viriaiei
ar2orz + ar2cr2 + ....,, + aozoo2 respectively.

hoof. L€t X - N (p, 02) be a normal variate, then we know

Mxc) = erp [*.#') '"u-- \ z)
Mx, = exp llti t + (t26i2t2)l

The moment generating firnction of their linear combination

aL, d2, ..., an are constants, is given by:

MLqx,<o=fl M",x,cr

= Ma, (c/) . Mq (azt) ......Mx"(oot')

Ftonr (1), we have M1.(c;r) - etlat + t'orzd t2

MI **,(') =letor,t""?"ltz , "tz+t 
rt"€&tz x ......x er.%. 

+t'o:a:t2)

[Using (2)

= "-l[; o,r,,J, *,' 
[,I, "t'tJ,r],

which is the moment generating function of a normal variate with mean f o,p, *a
i=l

variance 2 "?"? 
.

Hence by uniqueness tJreorem of moment generating function.,

n l^ n 'l

I ",X, - 
rV | | ",p,, | ",'z 

of It-u.i=l Lr=r i=t .l

...(r)

a;X,, wherc

('.' Xp are independent)

['.' M"lr) = Mx(cr)l

...e)

...(3)

Cor I.IfX, - N (pt, or2) and X2 - N (p22, or2) be two nornial variates with means
Fr and F2 and variances or2 and or2 respectively, then

(i) X, + )! - N (p, + 1.rr, or2 + or2)
(tt) \ -X, - N (p, -p, or2 + cr2).
Pnoof. Take o, = L,oz= 1, o, = 0, c. = 0 ...... ca = 0 in above theorem, we get

(Using equation (3))



Xr+&-N(p,+p,cr2+or2)
Again, take a, = L, a, = - L, a" = 0, an = 0, ..'..., a o = 0 in (3), we get

X, - X, - N (pr - Fz, cr2 + cr2).

Continuous Dist ri bnt i ons
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5.9 REPRODUGTIVE PROPERTY

Cor II. If X' X2, ......, \ are n independent normal variates with means p1' ltz'

......, F" and variances o12, c,22, ... .., o.2, then X, + X, + ..:... + X" is also a normal

variate with wean F1 + p, + ...... + p, and variancea ot2 + c,22 + ,,,,,, + or2 respectively-

This is called additive Property or reproductive proPerty of the normal
distribution.

Proof. Take 01 = a2 = a, = 1 in (3) of above theorem, we get the required

result.
Theorem VI. I/ X, X, ..'..., Xoare n identically and indzpendzntly distributed'

normal uariqtzs with mean 1t and. uariance d, thcn thcir 
^eon 

7 is olso a normol

variate with rnean 1t and ,orion"" {,
n

Proof. Take a, -02 =""=:in (3) of above theorem, we get

X, +x,+......+x-,.(u*p*......+p 02+o2 +."...+o2)
t-----;-Tln,

*-"[-,+)

5.IO PROBABILITY I]ITEGRAL OR ERROR FUNGTION

The integral P(z) =

function. We prove this.
"-T 

d", is known as probability integral or error

We know that the probability ofr lying between r, and *, is given by the area

under the normal curve from.r, tn xri.e.,

Pt.r. (r s.r^) = -Lf' "-# d'
6^!zfiJ'l

Prrl 
a1 

=z * d't=cd,

when x=rpz ="* ="r,"ur,

when r =x2,2 = 2r! = "r, 
t^v,

.'. (l) gives

-]- rJzn Jo

...(1)

Self-lnstructional Material l!5



Probabilitt,and
Distributiort Theo4'

NOTES

.2I .r- -a
POr, sr s.r") = -)-l' s z 6t

rl2tc Jzr

I r. -t 1 ",. -,2=l*J; " "d,-f,*l;'"-id"
=pze) _pJz)

| ,, -'2:. P(a= fr,Jo" " o",

which is called probability generating function.

Probable Error (1,)

It is defined ae the deviation on either side ofthe aritJrmetic mean, the probabil-
ity of occurrence of which is equal to 0.5
i.e., It is the value of ?r, satisfying,

t.t - u)rI .u + lL - --:-;-_-F I e 'o' ds,=o.6
6.1 218 ,tr - L

r,I+ --* lo, e
o,l2n J-2

-a 
.o dz

= #,li "+dz=0.25

"-T i" an even function

,, .\ -22+ -#1" " 
2 rh=0.5

{ztc Jo

Using the table, I =O.eZ + ),=0.62o= 3o-o 
3,

Hence the Probable error ?! = i o.

put ::4. 
= z + ds=adzo

When

5.ll APPLIGAT|OilA OF ]|ORMAL DtSTRtBUTtOttl

This distribution is applied to problerns concerning :

(1) Calculation ofhit probability ofa shot.
(2) Statistical inference in most branches of science.
(3) Calculation of errors made by chance in experimental measurenenrs.

136 Self- lnsnlrcional Materidl

5.12 STA]IDARD FORM OF NORMAL DIATRIBUTION

Ifr is a normal random variable with mean p and standard deviation o, then
the random variable defined by



z = ::-v- 
'o

is said to be a standard normal variate with mean 0 and standard deviation 1, Le.,
z - N(0, 1).

The probability density function for tJ:e standard normal variate is given by

r"l=4"-T,-6<z <e.
.12n

The integral 
J" f<"1 a", cannot be evaluated analytically. The values of this

Qi) P(z>- 1.28)
(iv) P 1-1.rt t". O,

(ui)P(lzl>10.5)

integral for various positive values ofz have been given in t}te table.

ILLUSTRATIVE EXAMPLES

Exanple l. Let z be a standard normal uariate, then find
(i)P(0<z<1.42)

Qii\ P(lzl < 0.5)
(u\ P(0.81 <z 31.94)

z=Oandz=L.42
= 0.4222

( In the table given in the end, move down
the column rrarked z until we get the entry 1.42
and then rnove right to column marked 2. The
required entry is 0.4222.)

Gi) P (z > - 1.28) = /\r'sg g14er tfte stand-
ard norrnal curve to the right ofz = - 1.28

= (Area between z = - 1.28 and z = 0)
+ (Area to the right ofz = 0)

= P (- L.L28 < z < 0) + P (z ) 0)

=P(03231.28)+P(z>0)
(Due to symmetry.)

= 0.3997 + 0.5 | Fmm normal table
P(z>0)=0.5

= 0.89997.

Gii\ P( | zl < 0.5) = F(0.5 3z sQ.5)

= Area between z = - 0.5 andz = 0.S

= 2 (Area between z - 0 and z = 0.5)

=2P(o<z<O.5)
= 2(0.1915) = 0.38{10.

I Fmm normal table
(iu) P(- 0.73 sz < 0)

=P(0<2s0.73)
= 0.2673.

I By aynmetry

(uii) PG 0.75 <z <0).
Sol. (i) We know that
P(0 3 z < 1.42) = Area under the standard normal curve between the ordinates

z= -0.5 z=O z=0,5

I From normal table

Continuous Distribut trts
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I See normal table

(u) P (0.81 <z < 1.94)

= Area under the Dormal variat€
between z = 0.81 and z = 1.94

= (Area between z=0and z=I.94)-
(Area between z = 0 and z = 0.81)

= P(0 3z < 1.94) - P(0 <z < 0.81)

= 0.4738 - 0.2910

= 0.1828.

(ui) R lzl > 0.5) = P(z 2 0.5 orz S 0.5)

I lol>b + o2b oro<-6
=Pk>0.5)+P(r<-0.5)
= (Area to the right ofz = 0.5)

z=0 2=0.81 z=1.94

I From nornral table

I Frorn normal table

I Due to symmetry

z=-1.64

+ (Area to the right ofz = 0)

+ (Area to the left ofz = - 0.5)

= 2(Area to the right ofz = 0.5)

=2 [(Area to the right ofz = 0)-(Area between z = 0 andz = 0.5)]

= 2[0.5 - P(0 <z < 0.5)

= 2(0.5 - 0.1915) = 2 (0.3085)

= 0.6170.

(uii) P(- .75 3 z < 0) = P(0 <z s0.75)=0.2734.
Erample 2. ?fre inanme of a grcup of 1O,OOO persons was found to be rwrmally

distributzd with mean = Rs. 750 p.m. ard stand.ard dzuiation = R.s. 50. Slrcu that ol
this group about 95Vo had income exceeding Rs. 668 and only 1Vo had income exceeding
Rs. 8i12. What was the lowect inama among the richpst ?

Sol. Let.r denote the income then, given,
r is a normal variate with mean p = 750 and S.D.
o = 50. Let z be the standard normal variate.
then

r-tl x-750
-o50

A6n - 750(i)Whenr=668, ,=ff
-8;=- =_1.6450

P(r>668)=P(z>-1.64)
= Area to the right of z = - 1.64

= (Area betweenz = - 1.64 andz = 0)

= P(- 1.64 <z < 0) + F(z > 0)

= R0 <z < 1.64) + P(z > 0)

= 0.,[495+ 0.5 = 0.9495



(ii)Whenr=8i12,

Hence required % ofpersons having income great€r than Rs. 668

= 94.95% = 95%

z_832-750 _ t.64
50

.'. P(r > 832) = P(z > 1.64)

= Area to the right of z = L.64

= (Area to the right of z = 0) - (Area between z = 0 an d, z = 1.64)

= P(a > 0) - P(0 < z 31.64)

= 0.5 - 0.4495 = 0.0505

Hence required % ofpersons having income
greater than Rs. 832 = 5.

Lastly, to frnd the lowest income among the
richest 100, we need to frnd the value ofr such that
P(r>r)=0.01

when.r = r, " = 1:!=' 
;:o = zr, 8ax

Now P(: 2 r) = 0.01

:a P(z > zr) = O.Ol

+ 0.5 - P(0 < z 3 zr) = 0.01

+ P(O<z3zr) = 0.5-0.01 =0.49
+ zr = 2,33 I See normal table

r -750
= bO = 2.33=r= 750 + 50 (2.33) = 866.5

Hence the lowest income among the richest 100 = Rs. 866.50,
Example 3. Thz weehly wages of 1,0O0 workmen are nonnally d,istributed with

a mean of Rs. 70 and o standard. d,euiation of&s. 5, Estimate the number of worhers
whose weekly wages wiU be between Rs. 69 and 72.

Sol. Let X be a random variable following normal distribution.
Givenp=70,o=5

Let Z = 
X - P be the etandard norrnal variate

o

when X = ur,2=9:J9 ---s.2

whenx= 72,7=12Jo =s.a

.'. P(69 <X <72)=P(-0.2<Z<0.4\
= P(- 0.2 <Z<O)+P(O<Z<O.4)

= P(0 < Z < 0.2) + P(O <Z < 0.4)

= 0.0793 + .]..551= 0.2347 |

z=O z=1.64

I Due to s5rmrnetry

Using normal table

Cont i ntous D ist tibu t i tttrs
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...12,

Hence, nurnber of workere getting wages between Rs. 69 and ?2

= @.23a7) x 1000 = 234.7

=234.
Exanple 4. A sample of 100 dly battery cells tested to find the length of life

produced the following results

i = 12 hours, o =3 hours.
Assurning tllz data to be rnrmally d,istributed,, what percentage of battery call.s

are erpected. to haue
(i) more than 15 hours Gi) kss than 6 hours

Gi between 10 and, 14 hours ?

Sol. Here .r denoted the length of life of dry battery cells.

-- x-x x- Lz
Also o3
(i)Whenr =L5,2=l
.'. P(* > 15) = P(z > 1)

=P(0<e<-)-P(0<z<1)
= 0.5 _ 0.3413 = 0.1587

= 15.87%.
(jj)Whenr=6,2=-2
.'. P(rcb)=P(z <-2)

=P(z>2)
=P(0<z<-)-P(0<z<2)
= 4.5 - 0.4772 = 0.0228

= 2.28%.

(iii) Whenr = 10.z=-

z=-2 z=O z=2

! = -ou,
,

when *=14, z=1=o.67
J

P(10 <r <14) = P( - 0.67 < z < O.67)

=2P (O <z < 0.67) = 2 x 0.2487

= 0.4974 = 49.74ok.

Example 6. Given that thz probability of cotntnitting an error of magnitttcl.e x
h -#.2is y = -7e '- ' , show that the probablc enor is 0.47691h.-Jfr

Sol. Using norrnal distribution, we know

Also given probability of corrmitting an ermr is

- Vt- t' l'y=fkt=-4-"-l ' I

y = $"-u" "'llc

...( 1)

z=O z=1

z=4,67 z=O z=0,67



From (l) and (2),

r 
"-;(+)'=h"-^","o,l2tr ',ltc - 

__!=: 
= _

o.t2tc Jn

u=ft = a=h
,'. Required probable error

2 2 | Jr,0.4?6e=5"=5'Ei= sh = ,' '

Exarrpfe 6. Assume that 4 percent of the popul.ation ouer 65 yeors old, has
Alzheimer's disease. suppose a rondom. sample of 8500 people over 65 is taken. Find
the probability that fewer than 15O of them haue the d.isease,

Sol. Here n = 3500, p =4%=0.04
q=L-p = 1-0.04=0.96

4Here p= mean=np =3500.

Standard deviation

=c=J6i =

= JmZ? = rr.6
Let.r denote the nurnber ofpeople with Alzheimefs disease, *ren we required to

find P(r < 150)

Whenr= L a.z=lJ 150-140 l0 l0oo =-116--=lld=m=o'ao
.'. P(r < 150) = P(z < 0.86)

= Area under standard norrnal variate to the left ofz = 0.g6

= (Area to the lelt of z = 0) + (Area between z = 0 and z = 0.86)
=0.b+P(0<z<0.86)
= 0.5 + 0.B0bt = 0.8051.

. Exarnple 7. Thz mean yicld. for I acre plot is 662 kilos with S.D. of 32 hilas.
Asauning normal distributian, haw mnny I o.tc pl",t' in a batch of l00O plats would.
lou expect to haue yield, (i) ouer 700 kilos (ii) below 650 hilos (iii) what ia the toir//e t
yicld of best lOO plots?

Sol. Given : mean p = 662. Standard deviation a = 32.I*t x be the normal
variate.AlsoN=100.

(i)Whenr= loQ.z=!:lt 7oo-ffi2 38 19
a_=__E_ =3r=16 =1.18?5

.'. Required probability = g.p 1" t 7991

= 1000 . P(z > 1.187b)

= 1000 (Area to the right ofz = l.l8?5)

2.0 0.86
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= 1000 l(Area to the right of z = 0) - (Area between z = 0 and z = 1.1875)!

= 1000 [(P(z > 0) - P(0 <z < 1.r8?5)l

= 1000 (0.5 - 0.38101 = 1000 . (.1190) = 119

650-662 -12 -3(di)Whenr =650,2= 92 =E = lF =-o.szs

Required probability

= N.P(r < 650)

= 1000.P (z < - 0.375)

= 1000 (Area to the right ofz = 0.375)

= 1000 (P (z > 0) - P(0 < z < 0.375)l

= 1000 (0.5 - 0.1443)

= 1000 x (0.3557) = 355.7

(iii) We now frnd the lowest yield ofbeet
100 plots, we nd to frnd the value of r such
that

P(r>r)=0.01
x-tL r -662\[']renz = r, z= 
" 

= n =zr,8aY

Now Pk > r) = 0.01 + P(z 2 zt) = 0.01

+ 0.5-P(0<z szr)= 0.01

+ P(O 3z 3zt\ = 0.5 - 0'01 = 0.49

= zt = 2.33

r - 662
= -E- = t'oo

- r=662+ 32 (2.33) =662+74.56=736.
Eranple 8. The income di*tribution of worhers in a certoin factory was foutt4

to be nonnal with mean df Rs. 500 and stand.ard deviotion of Rs. 50. There uere 228
persons getting aboue Rs. ANI How many persons were tlpre in all ?

Sol. L€t X denote the income of the workera. Given p = 500' o = 50

br Z = U- be a standard normal
o

variate.

9:!99-"WhenX=600, Z=-*-=z
The probability ofthe persons getting

above Rs. 600

= P(X > 600) = P(Z > 2)

=0.5-P{o <Z <2)

= 0.5 -0.4772
=O.0228

I Using normal table

z=0

I See tablc

Now, there are 228 persons getting salary above Rs. 6fl)' Therefore total number t

tt9
ofpersone=ffi=10,0fi).

z = L1875



Example g. The mean inside diameter ofa sample of 500 washers produced by
a maclrine is 5.02 mm. and the standard deviation is d.0i rnm. The purpise for whij
these washers are intended afiows a tnaximum torerance in the dianteter of 4.g6 to
5.08 mm, otherwise the washers are considered defectiue, Determine the percentage of
defective washers prod,uced by the machine, assuming the dnmeters are norrnalllt
distributed.

Sol. Given sample nean;r = 5.02 mm
Standard deviation o = 0.0b mm

z = + be a standard normal variate.

when X = 4.96,2= n''u=;u'o'=-r.,
0.05

when X = i.o8,Z = 
u'ot=;u'o' 

=,.,' 0.05

Probability of non-defective washers

=P(4.96<X<5.08)
=P(-1.2<Z<1.2)
= P(- f.2 < Z < O) + P(O < Z < 1.2)

=P(O <Z < 1.2)+ P(0 <Z<1.2) lDuetosymmetry
=ZP(O<Z<L.21
= 2(0.3849) = O.7699 

= 0.77
. . Percentage of non-defective wash eB = ZTqj
.'. Required percentage of defective waghers

=LOO-77 =28.
Exanrple lO. For a certain normal d,istribzttion, thz first ,nonznt abou,t 10 is 40and' the fourth moment about s0 is 4g. Find thz arithmztic mean and stand,ard d,euia-tion of the d,istibution.
Sol. Ifp', denotes the first rnoment about the point X = A. then

A.M.=pi+A=mean
But given p'r (about the point X = l0) = 40

Let

I Using normal table)

mean=40+10=5O
Also ;,r'. (about X = f0) = 48
+ Ft= 48
Also for a normal distribution, we know

Fl=3oa + 4g = 30. = d=16 _ c=2-
Exemple r!. If x andy are indcpendcnt normar uariates uith mear* 6, z andvariance 9.16 respectively. Find thz value of A. such that

P (2X + y <?r) = p (4X_ Ay > 4N.

Con ! in oh$ Diri t i lrft t i ut I
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Pmhobilir'an<l Sol. Given X-N(6,9)

Y-N(7, 16)

:. 2X+Y - N(2 x6+7,4 x 9 + 16) =N(19' 52)

4X-3Y - N (4 x 6 + (-3) x 7, (16 x 9 + 9 x 16)

= N (3,288)

Now P (D( + Y < l.) = P (U < ?'') where

=r[,.H)wherez-N(0,r)

Also P [(4X-3Y)>a]"] = P (V > ar)

I See theorem

U=2X+Y-N(19,52)

>4u

r-le r4)'-3)-------=-l ---'--F- |J52 \12,t2 l

,r-19 -(41-3) P(Z < a\ =P @> bl
+ a=-b

^ tttJ2+sJL}
L=-'-'------

N2 + 44L3

- u-19
LaKe r!= _f,d_

WhenU= ^,r=#

=rlrr#)whereZ-N(o,r)
Where V = 4X - 3Y - N (3, 288.

rakez='Ij
a/288

whenv=4r, r=#r=#

Now it is given that
P [(2X + Y) < I)l = P (4X- 3Y)

"(,=ff)=r1".#)

- ffi- rzJ,

+ $J2++J15lx=rttJz+s./rg

l4 &,r-l,Ittrrctior/4ll Morciat

5.'3 LOG.NORTIAL RANDOM VARIABLE

IfX is a normal variable with mean p and variance o2, then Y = ex is called a

log-noroal random variable where X = log Y is a normal random variable'



Theorerr VII. Find the rth moment about origin i.e., 1t',. for the log-normal dis- contim@&r Dirtilhnti.lll\
tribution.

Proof. By defrnition, if log X is a log-normal variable, then
p,.=B0g)=B(s,{)

= Mv(r)

= *n(rr"*1"'o')
lLogX=Y =: X=eY

lm.s,f otY - N (p, c2)

NOTES

5.I4 LOG.NORIUIAL DISTRIBUTION

A random variable X (X > 0) ig said to have a log-normal distribution iflog. X is
normally distributed.

Theorem WII. To find the probability density function of the log-normal
distribution.

Proof. Take log" X - N (U, o2). Forr > 0, we have
F"(r) = P (X<r) = P(log. X < log"r) = p (y < log"r)

I log X is monotonic increasing function.)

Denne 
^-,={F 

:"*lrg}=ot],,'0

_ar'Ihen !'x(.r) = | fxfu) du, where /*(z)

is the probability density function ofX.

5.'5 LAPLACE DOUBLE EXPONENTIAL DISTRIBUTION OR
STANDARD LAPLACE DISTRIBUTION

A continuous random variabre X is said to follow standard Laplace distribution
ifits probability density function is given by

I _,-,l\x)=-e'-',--<l<-

I flog x
= ifr J: expl-gt-1t)2 t2o2tdr I y-Nrp,or)l

I r' ^ o.du
= ;6 ), exP {- log u - P)z / 2azl z:,

Forr S 0. F*(.r) = P (X Sr) = 0, becauseX is a

Y=logu
.1+ dy = -duF

Wheny = log:r,, u =x.
Wheny --r- -, tt,=e-*=0

positive random variable.
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p,.r,habi!it\ qnd Theorem DL To find, the chordctefistic function of the standord LopLace

Dituibutionnwot\ distributian.
Proof. Let gx(r) denot€s the characteristic function of the standard Laplncc

dietribution then, bY defrnition

o*trl = Ji*11rl a*=|J- 
-"'" "-t't 

a"

= *[J:*",,' "-r'r 
dr + t J- sin r" e-r'rd']

= l.z l- costx.e-t't ar,
Sin tr. e-l'l is an odd functiott

.'. J- sin rr . e-l"l a.r-=o

r' ' coe tx dz =t-t2 l-e-'costxdr
"' 9x(l) = Jn 

e-' 
ro

(On integration bY Parts )

=1-12gx(t)
I

- (D.(l) = --.---.l+ t'
fireorem X. Fin d the mean and variance of the stand'ard Laplace distribrtti'on

and, also obtain the following.
lra = 0, }rr = 36,0r = 0' 9s = 9

Proof. By using the above tlreorem, the characteristic function o{'the starrdar.d

Laplace distribution is given bY

ax(t)=#=(1 +t2)-r

= L - t2 + t4 - tG + 
'8 

-...... -

= r*z.!it\" " Q 4

n- +.* !. ------.- + ...... @

Here kr=h"=0;hr=2,kn=41=24
.'. mean = [r = 0, variance = ur= fr, = 2

Pr=&g= O, Va= ha + 3h22 - 24 + 12=36

p,=r+=0,p,=5=+=e'Pi'$i+

T\vo Parameter Laplace Distribution
A continuous randon variable X is said to have Laplace distribution with two

parameters L and p if its probability density function is given by

1 _tr_ul
f{x,v,al=}e tr , --'"<-, }'>0

IfX is a continuous random variable following Laplace distribution with trvo

parameters l' and p, then we write X - Lap (l', ;t).



Theorem XI. To find' the probability density function ofthe standard Laplacp Continuous Distnbnriotts
d,istribution by using two param.eters Laplace distribution.

Proof. Let X - Lap (?r, p) and

z=xlP =.e 1=p+i,z
L

The probability density function ofZ ie given by

cQ)= f(rr.l# = L."-t"t .7

=!"+t,--<Z<-2

which is the p.d./ of standard Laplace distribution i.e., IfX - Lap (?r., p), then

z= xi-P-Lap(I,o)
2.6

Theorem XII. To find thz characteristic function of the Laplace distribution
with two param.eters.

Proof. Let X - Lap (?t, p) and rq(f) is the characteristic function of X, then

g"0) = E(edx) = E leitrr+tz)I, where Z = If - Lap tf, O)

= eittt . E (ei.^t.z\ = 
"ittt 

. grlrt)

e"tu

l+ft'
['. 2 is standard Laplace variate with A(r) = ;i.f

Theorem )UII. Find,lt' ,,1t'rand,ltrfor the two parameters Laplace distribution.
Proof. Let X - Lap (?r., p), then rth moment about origin is given by

u" =E(x) =*I-:, *o[l#)r,

= ; ilt'ck (zL)hr"-i] exn t- tzt) az

=;f, [""- tlv"u 
I* "u 

exe-l4)dz]

= *> f""- *p*t {[o,0"-u a" * ll"k "-r"' d,]l
" t=o L t'- '" ))

= i J- rr* - u, exp (- lzl) dz,
r.

=;t ['", *u-- 
{(- seJ'"-" zt a".ll"'" 

"r a"}]

= i}f "rtip*a 
F (& + t) {(- l)a + l}l

NOTES
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Probahility anl
Di,rtrihution nvo^, = t,,=*t ['Cn lott-'[!{1+(- l)t l]' 27-o'

.'. Mean=F'r=lr, It'2= 1t2 +2L2 and variance = p"= St'r-yr'2 = 2)"2.

5.16 WEIBUL VARIABLE

A random variable X is said to be a Weibul variable with three parameters

r/Y-rr\c
C > 0, cr> 0 and g, if Y= l::l I has the exponential distribution withp.d.f,

\(I.i
P"(r) =e-r' Y>0

5.I7 WEIBUL DISTRIBUTION

A continuous random variable X is said to follow Weibul distribution with three
parameters C, c and F if its probability density function is given by

.,,(1)

or
by

6.18 STA]IDARD WEIBUL DTSTRIBUTION

Ifcr = 1, [ = 0 in eq. (1) we get, the p.d.f. of standard Weibul distribution,

/(r, C) = Crc-r e-'.,, > 0, C > 0.

Theorem I(fV. ?o find the mcan and uariance of standard Weibrtl distributiort.

/Y-,,\C
Proof. The standard Weibul variate is given by Y = l-;=J *nutu 

" = 1, !r = 0

Y = Xc where Y has the exponential distribution withp.d./givcn

Pr,(y)=e-r'Y>0
The rth moment p'. is given by

P'"=80(')=E(Yr/cY'

= E (r./c) = Jie_, 
yilc at

='[;.']

Putr= 1, P'r=mean=Ern= F(*+1)

Variance (X) = E fi'?) - (E (X)'z

r(n)=J-e .r"-t ch

l4t Self-lnsuttttitt al M.tterial
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C on t inuous D i t n'i b u t ion t
5.{9 LOGISTIC DtSTRlBUTlOll

A continuous random variable x is said to follow logistic distribution with
paramet€ra cr and p, if its distribution function is of the form

|- -'-" l-t
F*t:l = lr+e-T | , O'o

LI
= 1L*r."r.lf';".l.l, u' o.2L z\ P /J

Theorem x\r. Fi nd. ttu pr(Dabiliy density function of logistia distributians with

pommetzrsaand.P$>Ol.
Proof. Thpdigtribution function F(r) oflogistic distribution ie given by

,,r, = f r*. - [ r'"-o)ll-'
r ,*,1_l p JII

.'. The pmbability density function flr) ofthe logistic dietribution is given by

r,t = ftrn"t\= * l'. "* i- (T)}]'

= tf, - [ ('-")ll-'^--[-fr-]l ...(1)= pl^*"-et-l p JIJ 
*of l p Jl

c' - e-' l- e-2'
Considertanhr =A#=T;F

... r+tanhr =t-#=#

= j tr * ,t rr, t) = (1 + e-&)-r

Also r+e-k=l;fu

o-u = 2 _1= l-tanlr
- l+tanhr 1+ tanh t

". From (1)

,[ , l-'f'-**?'lnx)=el;"",'7j lffiff]
SclfJnstructionalMatetial 149
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L(
4pI

r*t"or'-ol'f 
l-t""h?l

zn 't lr.t-r'lffJ

=fr[r-t "r,,ffJ=i*,-a-
Theorem XI|I. ?o fid. tlle probobility dcnsity futttian of tfu etand.ard. lqistic

varia,te.

hoof. L€t V = 
X= o 

where X is a logietic variable.
F

._ kt grlyl L the probabitity densrty function of fire stendard logistic variate f,
then

s't, = 1s1 l#l= * "1 
g-'f2, - € qy 1 -

=i*or*,--<y<€
lteorern xltlr. Find ttu nzan and aariana ofttu etandard, rogistie uariabre x

with pardnetere d, and p. N* find fi ond p,
hoof. We fuat find the moment generating fuaction of the atandard logistic

variate Y where

y= Xlo 
and X i8 a logistic variate

F

L€t My(r) denotes Ote moment generating function ofy, then

lUsing (1)

I Ueing (2)

Putz=(tagt)-r *

Ir{r(r) = E(ed) = l' f eve) dy

= f et"-r11*"-')-z d, = Srr"-(l*')" at

= f eqer <!+ et\-2 dt

r+e=1
z

e=1-1= r-z

e d, = 
z (- L):'.(t- z) 

a" =- " 
- )* " * = :) a.

y=-, z=o
y=--,2=L

When



= ffl-)''f '* 
t-')-''l**)

Jr\ z .l \ z ) \z' )

= f'f 
1-'l' .+.4-Jo\ z )'z-2'"2

= l'"u <t- "f dz =p(t-t,l + r), t -r > o
Jo

r(1- t a(l+ t) I(1-Oc(l+r)
=T(1-r+1+r) =-fu-
= F(1-r) a(1 +t)
= 'lt 

cosec td, t < I ...(3)

But t cosec, = + = ----:--alnt t- t- t'r- 
3! 

+ 5!- 7!+......
'1 =T---

l. (r' to.xB )ft
L \r' 5! 7t ))

,,(t4 14.xB \.(t' xr.x6 )'*= r+|.B!- s!+ ?!"""J+lo -A+ ,.""") *"""

12 .tL r)
= l+f +r{l;-fij.

-t-l
= r+i+;5*a +......

.'. From (3)

t -+t2MJr) = r+%+a(,c). +......6 360

Hence meao of Y = coefrsient of t in (4) = 0

Fz = E(F) = coefficient 
" *=+

P, = E(ll3) = coeffi"i"rrt of $ = O

Fr = E(Ya) = coemoent of f; =f n'

.'. for standard logistic distribution,

...(4)

Continuotrs D i tl ri bn i.nt s
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SUMMARY

. The graph of the normal distribution is known as normal curvc. It is boll_
shaped and symmetrical about the line r = !r.

. The normal distribution is a continuous destribution.

. The normal curve ie unimodal. This means that the normal curve has a unioue
mode.

o The total area under the normal curve above ,-axis 4 units.
o For a normal distribution, mean = median = mode.
r For standard Laplace distribution,

tre = 0, Fr = 36, Pr = 0, Fz = 9.
o For standard logistic distribution, mean is zero.

GLOSSARY

mean = 0, varian.. U, = *

Arso u,=ii=0, e"=b=#"#=E=^.,

o Standard Normal Variate. Let X be a normal variable with mean u ancl
Y -,,variance o2, then Z = " 

=n 
is known as standard norrnal variable with meano

0 and variance only.
. Error Function. The error function is defined by the following integral

t & -zj
P(Z)= -=l e 2 dz.

'J2r' Jo

It is also known as probability integral.
. LoSnormal Vsriate. Let X be norrnal variable X with mean p and variabk:

c2. Then C is called a log normal variate.
. Weibul Variate. A random variable X is said to be a Weibul variate with

three parameters C > 0, c > 0 and p. rfv = fX- 
pl" 

has the exponential
distribution with p.d.f. P,.(y) = e-r,y > 0. 

\ a '/

REVTEW OUESTTONS

1. The mean height of 500 male students in a certain college is 181 crn trncl trrc sta.crirrd
deviation is 15 cm. Aasuming tbe heights are normally distributed, find how rnany st._
dents have heights between l2O and lbs cm ?

2. Students ofa class were given a mechanical aptitude test. This marks wcre lbund to be
normally distributed with mean 60 and standard deviation b. what per cent ofstudcDL,r
scorcd



(i) more than 60 marke ?

(iii) between 45 and 66 marks ?

(ii) less than 56 marks ?

3. In an examination taken by 500 candidates, the average and the standard deviation of
marks obtained (nor:mally distributed) are 40% and l0%. Find approximately
(i) how many will pa88, if50% is fixed as a minimum ?

(ii ) what should be the minimum if350 candidates are to pass ?

(iii) how many have scored marks above 60% ?

4. In a certain examination, the percentage ofpasses and distinction were 46 and 9 respec-

tively. Estimat€ the average marks obtained by the candidate, the minimum pass and

rlistinction marks, being 40 and ?5 respectively. (Assume the distribution ofmarks to be

normal).
5. Suppose the waist measut€menta X of800 girls are normally distributed with mean 66

cnr and standard deviation 5 cm. Find the number of girla with waist
(i) between 65 cm and ?0 cm.

(ii) greater than or equal to ?2 cm.

6. Write short notc on normal distribution.
?. Distinguish between Binomial and normal distribution.

8. DiEtinguish between Poiseon and normal distribution.

9. Show that, for a normal distribution, the mean deviation about mean is I times the
c

standard deviation.

lO. For a normal digtribution, pr = 0, Fz = 3'

11. Show that, the moment generator8 function for the standard normal variate Z is given

t
bY J'z(o = e2 .

12. Write live applications of normal distribution.

13. For the standerd l,aplace distribution ehow that pr = 0, p2 = 0.

14. For the standard logistic distribution, F, = 0, pt= 4.2.

FURTHER READING

l. lntrcduction ta Probability theory with applications: W.Feller, Vol-l: Wiley astern

2. continuous Univarat€ distribution-2: N.L. Johneon and S.Kotz, John Wiley and Sons

3. Introduction to Modern Probability Theory: B.R. Bhat: Wiley Eastern.
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CHAPTER

SAUIPLING DISTR,IBTITIqNS

OBJECTIVES

After going through this chapter, you should be able to:
o know about sampling distributions like X2, I and F.
o know about central and non-central distributions like X2, I and F.
. conditions for applying X2, r and F test.
. order statistics of single and two or nore order.

STRUCTURE

6.1 Introduction
6.2 Chi-square Probability Curve
6.3 Central f-distribution or Students,/ Distribution
6.4 Central F-distribution or Snedecor's F-distribution
6.5 Non-central Distribution
6.6 Order Statistics

o Summarf,l
. Glossary
r Review Questions
o Further Readings

l9l Scf-Ianrrctioolltatcrial

6.{ iltTRODUGTtOtI

In this chapter, we will discuss central distributions oftJre central statistics 12,
t and F ae well as non-€entral disbibutions of the non-cenhal statigtics X2, t alLd iF

respectively.
Central chi-equare digtribution. The square of a standard nonnal variate is

known ag chi-square variate with l degree offreedom (d.f.), i.e.,lfX- N(p, o2), then
we know that the standard normal variate is given by

z = ^ =I' - N(0, 1) and its square
o



itX-u\'.,' = \; ) ie known as chi-square variate with 1 d.f.

Generally, if Xt, )q, &, ......, \ are z independent normal variatee with mean

F1, lr2, ......, B, and variances o12, o22, ......, oo2, then

.-,2
x2=t \^i -1" 

, is a chi-square variate with n degree of freedom (d.f.)

Theorem 1, Using the mcthod of mamcnt generating futtction, derive the chi-
square distribution.

Proof. Let Xr, &, ......, \ are n independent normal variates, i.e., \ - N(tt;,
q2), i = 1, 2, ......, n.

Then. by definition,

,z= f fx,-p,.)' = i rrwhereu,= X,-1., _N(0, 1)^ fil\ oj ) fr '------' 
6;

Given X,'s are independent, it follows zr's are also independent. Ttrerefore,

Mr,(t)= Mr,,,(t)=i M,,,(t) = tM,,i(r)1",

Now M,,,(t) = S[gyp(1",211= f- exp (tu,2) flr,) dai

= J- exp(ru;2) -**--o,i-,.l2l2c.2ld,,i

= h!: exp (tu,z) exp (- ui2t2) dui,

I r f 11-2r\ "l -=6J--"*Pt-\ , 1";1o"'

rJ;=Cffi=.o-ZtYw
lz)

.'. Mr,(t) = (L-2tYe,

which is the moment generating funstion of a Gamma variate with

1
-n-2

Hence, by uniqueness theorem of moment generating functions,

* = 1 e*l', *' *.'ariate with paramete.rs | *,a ),.

-o

I l'u** e-J;
l'- a

lUsing (1)

naraneters j and
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Prohbilirf qnd Therefore, we can write
Distribuion Tluoty

dnx2) = f 
rl' e-;r qzli-t 4rz- \2J

1 -!rt ^ !-1- -T-e 2^ (x,2r2 'd7z,g37,za-

'o"li)
Renrrt If a random variable X haa a 12 distribution witb n degree of freedom, we

write X - 1tz) and its pmbability denrity function (p.d.O ie given aa

r -! !-r
/{*) =;ic 2a2 -, Qsr<-

,urlt)
fheorem tr. IfX ie a chi-quare uariaE with n &gv of freedam, then

4x-"f1")2 \2)

Proof. Take V = | :q Uren the probability density funcdion dy ie given by2

e("t = fo,, l#l= e6 e-r . (wr'n' . z

I- -----e-r !t.t2t-t ;0 <y. _

1 /1 \... Y=;*_I;")
Hence the theorem.

Monmt Generoting FtDction
fheoFeu IIL trlnd tl.e ,rttr,rrulnt Eerwating fundion 6t t2 chi-quare distributinn .

Proof.Iet X is a dri-square variate n'ith z degree of freedom. If M*(t) dcrrotos
the moment generrating function of X, then

LetX-X2,",,then

I{r(t)=E(e,,()- 8"" f<tl* =#16 !'", ."-'rz lorD-r 6

=7#["*[-(#),].'*'a"
I |-lnl2)

I Gamrna Integral
zotz l(nl2) I/.l- zDtzl"t2

=0_Uya, lal<L
is tbe requirod moneot geoerating function ofthe 12-variate with n degree offreedom.



Con Iti = n(n + 2) (n + 1) ...... (n +b -2)
h.oof. From above theorem,

M*ttt = tr-zf c

=r*t (%P + ......

n
Mlr)= tr-z)-Z

,or.;(;.1
2!

rl

... F,, = Coetrrcieot of { in the erpanrion of Mr(r)

=" i(t_le*,) .. (;.._,)
= n(n + 2) (n + 4) ...... (n + 2r - 21.

Hence proved

Theorem IV. Flzd thc cunthnt generdhg fiirutian of X'distribution.
- Proof. L€t X is a chi+quare variate with n degree offreedon, and It (r) de.noteg

the cumulant generating frrnction of X2, then, we dow

... n*{r) = rogMx( t1 = - f,ios(L-lzr=;V.ry.+.+. I

.'. q = Coefrcient of r ia K(r) =2, 6, - Cosfficient of {.^XtO-^,
rs = ffiei€ot of $ " 

*,a - *, 
"nd 

rr = Coerficient dfi , r<O = *o

In general, g = Coefficient of 4 in Kr) = n Z*\r - r) t

Putting r = l, 2, 3, 4 in (l), we get
Mea[ = q =n, Variance = q = x, = Zrr

p3 = rs = &!' ]r.= ra + 8r.22 = 1/Btr + L2t:'J

,.2F,=4=9 end F,=4=€*slrl-n-Fz.n

- llheorem V. for larye valuc ofn" wtsz nbtlte @rug@af aAnrttutantcnds to mrmal distributioz.

...(1)

tu plhg Ddtt'iburio/rt

NOTF,s
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Pftrb<tbilitv and Proof. Let X is a chi-square variate with n degree of freedom, then we know

Mx(r)=(1-20-t, l2t l<r
Y -rrLet Z =::___:, then

6
Ttre moment generating function ofZ, the standard 1z-variate, is given as

-!l / r \
Mz(r)=Mx-r (O=e " Mxl: 

I

.,-(- zt\-"''
= e-r"/a (I - 2ttd-,n - e-ntt't2n It-6J

I P=n,a'=2tt'

.'. Kz(t\=tosMz(t't=-t.,F -* r"eft-UFI' 12 2 \ Y"J

t; nl E t2 z t3 (z\t'' I=-"lt * t L' {;*t ;.Tl;J . l
f;Et2-^t2

= -, l+ * , ,l; . !- + otn-n) = !- + o(n-Y2),

where O(z-v2) denotes the terms containin g nu2 and higher powers of z in the

denominator.

.2
.'. lim Kz(t) = :- = Mr(f ) = nr't2 s3 n --+ *,

2

which is the moment generating function of a standard normal variate Hence' b.y

uniqueness theorem of moment generating function Z is asymptotically normal' ln
other words, stanclard 12 variate tends to standard normal variate as n -+ -' Thus, 12,

distribution tends to normal distribution for large degree of freedom'

Characteristic Function
Tlreorem VI. Fi nd the characteristic futtction of thz f-distribution.
Proof, Let X is a chi-square variate and $*(l) denotes the ch'aracteristic func-

tion of 12, then

O-(t) = E{exp(i, X)} = I exp(itr)/(r)dr
,ro

= ?+^ [*' {- (=zt) 4,',;-' 
d' = o - zit>-"n

is the required characteristic function of 12.

Theoren VII. Pro ue that ifX is a chi-square variate with n degree of freedom'

thzn
ft) mod.e of X2 is n - 2
Gi) For n 2 1, az'distribution is positively shewed



Proof. (i) We know that if X is a chi-square variate with n degree of freedom , sampling Dinribnritns
then,

r -! !-r
flr)=-;=e212-,03r<-

'u'lt)
Now mode of 12 ie the solution off,(*) = 0 and/,(r) < 0.
Taking logarithm orf (1), we have

I /-\ -: 1-rlogfl*) = - log 2arl;J + loc €-t + tog12-'

Differentiating w,r.t r, ws g€t'

f'(x) ^ I (n
7@) 

="-i-lt-, :=-?
$ y1"1=o-2r-'flr).

For mode, / (r) = 0 gves

"-*-'n*r=o = n-2-r=o
+ t=n-2

Arso f(d= !d,V@= *(*r*,J
=*ror,e$LL.rut

=' (r@D,=*_2=o* ffi w),_r=-!tg)ry*- <o

;. mode of 12-distribution is z - 2.
(ii) Karl Peargon's coefficient of ehewaess is given by :

Skewness = Mean - Mode _n-(n-z) _ fis,D. - -G- =,1;
Since Pearson,s coefficient 

-of 
gkewness i8 great€r than zero for n Z l, the

lzdstribution is positively ekewed

* ..-_T-:"*- VIIL ncprductitn prcptllt or Aditiw propert! of indepndznt
r-uan4tes-

. . A Xr, XZ--... 4o an n btdcpn&N 1,t-vcrrirltes with nr, no ...... n, degrce of
Ei*; #,X;: 

x, + .....xh is atso a 
"6i-gquore 

variate wiih ri, * 
"" 

I .-..J. i- i)
Proof. Here X, is a chi-aquate variate and if Mx, (r) is the moment generating

. function of \, then we have Mx,(r) = 
(l-Zt)-n,, ;i= \2,......,h.

...(1)

lflr)*0

NOTES
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Prcbobiliq,and h

Ditribution Theory The moment generating function of the sum ) X, is given by:
i=I

Myy (r) = M1, (!) Mx, (t) ...... M1. (t) ['.' \'s are independentl

(l - 2t\- ",t 
2 $ - Zt)-",t 2,., (l - 2t)-". t 2 - 0 - 2D-t n,+ n + " + n k t t 2

which is the moment of generating function of c 12-variate with (n, + z, + ..... + zu) d 'f'
Hence by uniqueness theorern of moment generating functions,

(X, + \ + ...... + Xr) is also a chi-square variate with (nr + n2 + ...'.. + zr) degree

of freedom.

Cor. Conuerse of the aboue theorem is also true. We proue it for n = 2. i'e"

If X and Y are indapendent non-negdtive uariatas such that X + Y follows chi-

square'distribution with i, + n, d'egree of ftzedom and if onc of them soy X i's o 72-

ulriot" with n, degree of friedoi then the othcr, uiz., Y is a 12 -uoriate with n, dcgree of

freedom,
Proof. Since X and Y are independent variates, M**" (t) = Mx(r) My(t)

+ (l - 2t)-1ot+tt2't2 = 0- 2t)-\t2 ' M'lt)

l.' X+Y - Xzto,*n"tl andX-X-12r.,r)

My(t) = (L-2t)-ht2,

which is the moment generating function of 12-variate with n, degree of freedom' Hence

by uniqueness theoren of rnoment generating ftmction Y - T2tn t i'e',Y is a chi-square

variate with z, degree of freedom. Hence the theorem.

6.2 GHI.SOUARE PROBABILITY GURVE

l.heorem XK. Def ne chi-square probability curve ond nwntiDn its Propertiz*'

Proof. The graph of the chi-square distribution is known as chi-square
probability curve. IfX is a chi-square variate, with degree offreedom n, then we know

r -l !-r
flxl= -;ie 2 t2 ,Osx<*

zarl\l
\Z J

Taking logarithn botJr sides,

log/Ir) = -r"s 2;'l;) + bg a-i + ros xLz- 
|

= - Lbsz_,",. (;) _ i. (?_,J,","
Difrerentiating w.r.t. r, we get

(l-r)
f'(x't _o_ 1+\2 /
f(r) 2 x



...(r)

Case I. When z ( 2. Since r > 0 and flr) being probability density function is
always non-negative, we get from (1),

f'(x) < 0 if (n - 2) < 0,
for all values ofr. Thus the 12-probability curve for r and 2 degrees of freedon is
monotonically decreasing.

Case II. When z > 2, then 
_

l>0,ifr<(n-2)
f@\=1=O,ifx=n-2

l.0,if*>tn-2)
This implies that for n > 2,fl*) is monotonically increasing for 0 <x <(n_2)

and monotonically decreasing for (n -2) aa q -, while at r, = n_ 2, it attains the
maximum value.

f,@cn-:i-r flx)

h rt2 r h h=I *i*yEi-2>o,=ti=r r.i i ?i' 
= 

u,=,

hll
where I O, = t Er = N(say), is the total liequency.

,=l r=1

vrn-.9u6re Foucun|ry curve x
For n ) I, as .r increases, flr) decreases rapidly and finally tends to zero as.r _+

-. T'hus for z > 1, the 262-probability curve is positively skewed towards higher values
of.r. Moreover, r-axis is an asymptote to the curve. The shape ofthe curve lor z = l, 2,
3, ....... 6 is given in the figure. For n = 2, the curve will meety = flr) gx is at x = 0, ii,.e.,
at flc) = 0.5. For z = 1, it will be an inverted J-shaped curve.

Another form of Chi-square Distribution
If O, and E,(i = I, 2, ..., &), be a set ofobserved and expected frequencies, then

-! [16 -s' ',2'l k h

x'=>. lY+Llwhere ) o, =f n,;L r;i J A' 
=follows chi-square distribution with (h - t) d.f.

Another convenient form of this formula is as follows :

,, = )i (o,' 
*ni--zo'n, 

J 
= r [#.", -,o,J

O2

E -N,

Samplirry D i.rt ri but iotts
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Applications of I! Test

12 test is one ofthe simplest and the most general test known. It is applicablc to
a very large number of problems in practice which can be summed up under the lbllowing
heads :

(l) as a test of goodness of fit.
(ii) as a test of independence of attributes.

(iii) as a test ofhomogeneif ofindependent estimates ofthe population variance.
(iu) as a test ofthe hypothetical value of the population variance 02.
(u) as a list of the homogeneity of independent estimates of the population

correlation coefficient.

Conditione for Applying 1r Test
Following are the conditions which should be satisfied before 12 test can be

applied.
(a) N, the total number of frequencies should be large. It is difficult to say

what constitutes largeness, but as an arbitrary figure, we may say tJrat N should be
at least 60. however. few the cells.

(b) No theoretical cell-frequency should be small. Here again, it is difftcult to
say what constitutes smallness, but 5 should be regarded as the very rninimum and l0
is better. If small theoretical frequencies occur (i.e., < l0), the diffrculty is oveLcomc

by grouping two or more clasges together before calculating (O - E). It ie important
to remember that the number of degrees of freedom is determined with the
nunber of classes after regrouping.

(c) The constraints on the cell frequencies, if any, should be linear.
Note. If any one of the theoreticsl frequency is less than 5, then we apply a corrected

given by F Yates, which is usually known as Yatee correction for continuity', rve add 0.5 to the

cell frequency which is less than 5 and adjust the remaining cell frequency suitable so that the

marginal total is not changed.

The 1' Distribution
For large sample sizes, the sampling distribution of12 can be closely approxi-

mated by a continuous curve known as the chi'square distribution. Thc probability
function of x2 distribution is given by

l\X)2 = c(Xz'l\t2-rt e-\"t2

where e = 2.7L828, v = number ofthe degrees offreedom ;c = a constant depending

only on v.

Symbolically, the degrees of freedom are denoted by t|e symbol v or by d.ll and

are obtained by the rule v = n - ,t, where i refers to the number of independent con-

straints.
In general, when we fit a Binomial distribution, the number of degrees of free-

dom is one less than the number of classes. When we fit a Poisson distribution, the

degrees of freedom are 2 less than the number of classes, because we use the total
frequency and the arithmetic rnean to get the parameter ofthe Poisson distribution.
When we fit a Normal curve, the number of degrees of freedom are 3 less than the

number ofclasses, but in this fitting, we use the total frequency, mean the standard
deviation.



We may summarise the above explanation as follows :

Ifthe data is given in series of"nn numbers. Then
In the case of Binomial distribution d.f. = n - I
In the case of Poisson distribution d.f. = rl - 2
In the case of Normal distribution d.f. = n - 3.

12 Test as a Test of Goodneae of Fit
12 test enables u8 to ascertain how well the theoretical distributions such as

Binomial, Poisson or Normal etc., fit empirical distributions, i.e., distributions obtained
from sample data. Ifthe calculated value of12 is less than the table value at a
specified level (generally 5%) of siglificance, ttre fit is considered to be good i.e.,
the divergence between actual and expected frequencies is attributed to fluctuations
of simple sampling. Ifthe calculated value of12 is greater than the table value, the fit
is considered to be poor.

ILLUSTRATIVE EXAMPLES

Example l. ?he following table giues thz number of aciidents that tahe place in
an ind.ustry during various days of the u)eek. Test if accid.ents are uniformly d,istrib-
uted ouer the ueek.

week.

Under this Ho, the expected frequencies ofthe accidents on each ofthese days

84
=-==14o

... x2= 
:(oi:E,)2 - 30 

= 2.1428.

Conclusion. Table value of a2 atS level for (6 - I = 5 d.f.) is 11.09. (see 12-
table)

Since.the calculated value of12 is less than the tabulated value, Ho is accepted
i.e., the accidents are uniforrnly distributed over the week.

Exarnple 2. Reco rd,s taken of thc number of male and female births in 800 farnilbs
havirq four child.ren are as follous :

No. of male births o I 2 4

No. of femole births 4 3 2 o

No. of families 32 178 290 236 94

Da! Mon Tue lt/ed Thu Fri Sot

No- of occidents 14 18 12 t1 14

Sol. Null hypothesis Ho. The accidents are uniformly distributed over the

Observed. freqtnncy O, t4 l8 t2 1l lit l4

Expected, frequeruy E, l4 l4 14 t4 I4

(oi- E iy 0 l6 4 9 1 0

Sampling Distribnions
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Prcbahiliry and Test whethzr thz d,ata are consistent with the hypothesis that the Binotnial la.p
Dis'ribution Theory InHs and thc chonce of mah birth is equal to that of femole birth, na.mely p = c = tl2.

Sol. Null Eypothesis Ho : The data are conEistent with the hypothesis of equal
probability for male and female births. i.e., p = q = ll2.

We use Binomial distribution to calculate theoretical frequency given by :

N(r)=NxP(X=r)
where N is the total frequency, N(r) is the number of families with r male children
and

P(X=r)="9'P''0"-"
where p and g are probability of nale and female birth, n is t,Le number of children.

.'. N(0) = No. of families with 0 male children = 800 ".". (;)'
I

=800xtxtZ-=b0
/1\1 /r\3 tr\2 l'ttz

N(1) = 800 ''", lr] l;J = ro ; N(2) = 800, '", [rJ [;J =300

N(s) = Boo, .", (+)'(*)' = 200 ; N(4) = 800 x acn (*l (*l = *

^ E(O, - E.)2*r=--i:.,.'- =54.433.

Conclusion. Table value of12 at 5% level ofsignifrcance for 5 - I = 4 d.f. is 9.49
(see 1r-table). Since the calculated value of12 is greater than the tabulated value, H0
is rejected. i.e., the data are not consistent with the hypothesis that the Binomial law
holds and that the chance ofa male birth is not equal to that ofa female birth.

Note. Since the fitting is Binomial, the degrees of freedom v = n - 1 i.e., v = 5 - I = 4.

Example 3. Fil a Poisson d,istribution to the following :

t: 0 1 2 3 4

f: 46 38 22 I I
Sol. Null Eypothesis IIo r Poisson fit is a good lit to the data.

Here mean of ttre given distribution = Tf' =llf = o.sz
4 116

To fit a Poisson distribution, we require rn

Here n=7 = O-97

Obser'ued. fivqucrcy O , s2 1?8 290 236 94

Expected, frequency E, ou 200 300 200 50

(oi-E12 324 484 100 t296 1936

6.48 2.42 0.3s3 6.48 s4.72



By Poisson distribution, the frequency of r success is

N(r) = N , ,^ . +,N is the total frequency

i.e., N(0) = 116 x e4's7 = 116 x 0.37 = 43.97 t

N(2)=116 | e4.s7 xry =116 x 0.12 = 19.22

N(3) = 116 x €-0.e? x $s = u.u88

N(4) = 116 x e-o'e? x $ = t.a,

x 0 I 2 3 4

oi 46 38 22 9

E, 43.97 4t.76 19.12 6.68 1.62

0.093 0.338 0.263 0.805 0"23

: r'= r q;$ 
=,.rm

Conclusion. Ttre calculated value of 12 is 1.?29. Aleo the tabulated value ofXz
at5%levelofsignificanceforv=5-2=3d.f.is7.815(see12-table).Sincethecalcu-
lated value of 12 at 5% level of sigrrificance is less than the tabulated value. Hence Ho
is accepted i.e., Poisson distribution is a best fit to the given data.

Exanple 4. Fif o Binomial distributinn to tlv follouing frequzncy distribution.

Sol. Null Ilypotheeie Ho : Binomial distribution is a good frt to the given data.
We first find mean of the given distribution.

fi ftt
0

I
2

6

13

25

nz

58

32

16

4

0

25

104

174

128

80

24

N= I4
= 200

\r*'
= 535

In*,
Here mean = Ti
+ ,o=ffi=z.azs

2.675+ p=-:- =0.38 ln=7
:. q=L-p=4.62

o 1 2 4 6

13 25 52 ttt 32 16 4

SotryIin9 Distib tiotls
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When r = 0,

When r = l,

When r = 2,

When r = 3,

When r = 4,

P(X = 0)
P(X = 1)

P(X = 2)

P(X = 3)

P(X = 4)

When r=5, P(X=5)

When r=6, P(X=6)

= 200 x 7Co (0.62)7 = 7.043

= 200 x 7Cr (0.38) (0.62)o

= 2O0 x7 x 0.38 x 0.0568 = 30.2176

= 200 x 7cz (0.38)2 (0.62)5

= 200 x 2l x 0.7444 x 0.0916 = 55.55

= 200 x 7C: (0.38)3(0.62)4

= 200 x 35 x 0.054 x 0.1477 = 55.83

= 200 x ?Ca (0.38)4(0.62)3

= 200 x 35 x 0.020 x 0.23 = 33.32

= 2oo x 7cs (0.38)6 (0.62)2

= 20O x 2l x 0.0079 x 0.3844 = 12.75

= 200 x 7Ce x (0.38)6(0.62)r

= 2O0 x7 x 0.0030 xO.62=2.64

Ei oi (ot-E/ (oi - E)2
Ei

7.043

30.21

oo.ao

DO-6dt

35.32

12.75

2.64

25

52

58

32

16

4

35.48

27.L44

12.60

4.70

t.74
10.56

1.84

t7 8.7 3

2434
2.85

0.39

0.09

8.74
1.24

Total = 200

(adjust the observed frequencies such that their total sum = 200)

,, = I9#1 =207.72

Conclusion: The tabulated value ofy2 at 5 Vo levelof significance for ? - 1=6
d.f 12.592 (See-chi-square table). Since the calculated value of12 is tJ:re tabulated value
of X2 at 5% level of significance.

Therefore Ho is rejected i.e., Ttre Binomial law does not hold good according to
the given data.

1t Test as a Test of Independence
With the h{p of12 test, we can find whether or not two attributes are associat€d.

We take the null liypothesis that there is no association betwecn the attributes under
study, i.e., we assume that the two attributes are independent. If the calculated
value of 12 is less than the table value at a specified level (generally 5ol.,) of
signifrcance, the hypothesis holds good, i.e., the attributes are independent and do
not bear any association. On the other hand, if the calculated value of 12 is greater
than the table value at a specified level of significance, we say that the results ofthe
experiment do not support the hypothesis. Thus a very useful application ofl2 test is
to investigate the relationship between trials or attributes which can be classifred into
two or more categories.

Ttre sample data set out into twGway table, called contingency table.



Let us consider two attributcs A and B divided into r classes Ar, A,, A3, ......, 4 Satnpling Disrriburiotu

and B divided into s classes B' 82, Bs, ......, 8,. If (4), (By' represents the number of
persons possessing the attributes A,, Br respectively, (i = 1, 2, ,...'.' r,j = l' 2, ."., s)

and (A, B,) represent the number of peisons possessing attributes A, and Br. Also we

have I a, = I B; = N, where N is the total frequency. The contingency table for
I= |

r x s is given below :

Ho ; Both the attributes are independent. i.e., A and B are independent under
the null hypothesis, we calculate the expected frequency as follows :

P(Ar) = Probability that a person possesses the attribute
rA IA,=ff i=r.2.......,r

P(B,) = Probability that a person possesses the attribute
(8,)

s., = Iti
P(4Bt) = Probability that a peraon possesses both attributes A, arra n, = 9p

If (AiB,)' is the expected number of persons possessing both the attributes A,
and B,

tA;Br)o = NP(4Bj) = NP(AXBj)

^,(Ai)(8,) 
(A,XB,)

= N 
"= 

Oi=--;;z- (... A and B are independent)

Hence ,,=i I l1l4*;*4ltl
r =1 i=r L "-'-r'u )

which is distributcd as a 12 variate with (r - 1)(s - l) degrees of freedom.

B

Total

Br (ArBr) (A2Br) GsBr) ......(Apr) Br

B2 (At82) (A2Br) (&Br) ......(A.Br) B2

B. (ArB3) (A2Bs) (\Bs) ......(483) B3

B" (ArB") (A28.) (A"8") ......(A/8,) (8")

Total (41) (q) (Ar) ......(A,) N

NOTES
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(r)

Note 1. For a 2 x 2 contingency table where the frequencie s arc a/! 
tz can be calculated- cld "

from independent frequencies aa x2 = .@ +-b.,: c t-d)(ad-- bd2
' (a + b)(c+ d)(b + d)(q + c')'

Note 2. Ifthe contingency table ie not 2 x 2, then the formula for calculating X2 as given
in note l, cannot be used. Hence, we have another formula for calculating the expected fre-

o,r"o.r 14g.y^ = 94U.
N

i.e., expected frequency in each cell is =
Product of column total and row total

whole total

dth 
^,1 _A.

Note 3. If:-f; is the 2 x 2 contingency table with two attributes, Q = ff is caltc.l

the coefiicient of association.

Ifthe attributee are independent then 9 = 9.

Note 4. Yate's Correction lna2:< 2 table, ifthe frequencies ofa cell is snrall, we nrake
Yat€'s correction to rnake 12 continuous.

I
Decrease by f those cell frequencies which are greater than expected frequencies, and

increase bv j trros" ]li"h."u t""" than expectation. This will not alrect the marginal columns.

This correction is known as Yate's corection to conti[uitv.

ufa"-'a-]Nl'
Afber Yate's correction 12 = C; ,<bT;1k#6 when cd - 6c < 0

nfoa-0"-lN.)2
x" = G;hTdx:dxk a when acl-bc >0.

Exarnple 5. What are the expected, frequencies of 2 x 2 contingenqr tables giuen.
belou :

(ii)(r)

Sol. Observed frequencies

a b a+b

c d c+d

a+c b+d a+b+c+d=N

Expected frequencies

a b

d

2 t0

o 6

(o+cX@+6)

a+b+c+cl

(o+cXc+d)
d+b+c+d

(6+dXo+b)
a+b+c+d

lh + d\(< +d)
a+b+c+d



- Sanpling Distribntiorts
Expected frequencies

fti\

Observed frequencies

2 10 t2

6 t2

8 l6 24

8x12T=" 16x12
24 =o

8x 12

24
16x12--ii- =x

-)

Example 6. Fron the following table regarding the colour of eyes of fathers and.
sons test if the colour of son's eye is associated with that of the father.

Eye colour of son

Eye colour of father

Light Not light

LAht 471 <l

Not light 148 230

Sol, NuIl hypothesis Ho. The colour of son's eye is not associated with that of
father. i.e., they are independent.

Degree offreedom u = (r- 1) (s - f) = (2 - f) (2 - 1) = f
Under Ho, we calculate the expected frequency in each cell ag

Product of column total and row total
lflhole total

Expected frequencieg are :

LiCht Not lighl Total

Light
619 x 522

- 

= 359.02
28eU#22 

=rct.az 522

Not light
611#78 

= zse.se
28e#U378 

= rzr.aa 3?8

Total 619 289 900

. $ ro,-E,)2
x'= 4 Ei

(47 | - 359.02)2 +(51- 167.62)2 + 
(148- 259.98)2 + 

(230-121.38)2

359.02 167.62 259.98 121.38

= 261.498.

Also 12o.ou = lsSulated value of 12 at 5% level for L d.f. is 3.841.

Conclusion. Since the calculated value of 12 > tabulated value of 12, Ho is
rejected. Ttrey are dependent i.e., the colour of son's eye is associated with that ofthe
father.

NOTES
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= 12.008

Probahilifi and Erample 7. A cigarette compan! intctested, in the effect of sex on thc type ofDistrihuti',o Thcon' cigarettzs siked and ias collcctei ti lollowing daa frotn a random sarnpte of 1so
persaru3.

Cigarette size Number of people smohed Totdl

mtle female

Small
Med,ium

Ring size

25

40

30

30

10 40
Totsl 95 cc 150

Test whether thc type of cigarctte smohed and, ser, are inilependent at leuel of
significoncea=5%:

Sol. Let Ho: The type of cigarette smoked and gex are independent
.'. Degree of freedom = (; - 1) (e - 1) = (2 - 1) (3 - 1) = 2
Ttre given data can be shown in the form of3 x 2 contingency table.

Observed Frequencies

Male Female Total

Small
Medium
King aize

25

40

30

30

15

l0

oo

i)t
40

Total 95 55 150

E:pected Frequencies

95x55-iso = sl ss
ooxcc

-_ 

_ on ra
IDU

95x55- rso = 3a'as
ooxcD

- 

= 20.16

{ff=zss 55x40

- 

= td AA
150

, we have the followine table :Calculate following table

oi 25 30 40 l5 30 l0

Ei 34.83 20.t6 34.83 20.l6 25.3 14.66

(o, - E)2
E

2.774 4.80 0.76 t.32 0.873 1.481

- 3 to,-e,l'
X' = h --f, = 2.774 + 4.80 + 0.76 + r.32 + 0.8?3 + 1.48



Also 12o.ou = a5g tabulated value of12 at 5% level ofsignificance for 2 d.f' = 5.991

Conclusion. The calculated value of12 is greater than the tabulated value of
y2 at 54,level of sigrrficance. Hence Ho is rejected. i.e., the tSrpe of cigarette smoked

and sex depends on each other.

Exarrple 8. Fronr tlu following data, use f-test and conclude whether inocula-
tion is effectiue in preventing tuberculosis-

Attached Not-sttachad Total

Inoculated,

Not-in<rculated

31

185

469
1315

500

1500

Totql 216 1784 2000

Sol. Null Hypotheais Ho. The inoculation is not effective in presenting
tuberculosis

Degree of freedom = (r- 1) (s - 1) = (2 - 1) (2 - 1) = f
The given data can be shown in the form of2 x 2 contingency table.

Observed Frequenciea

Attached. Not-oltachcd Total

Inoculated,

Not-in&uLatad

31

185

469

13l5
500

r500

Total 2t6 t7u 2000

Expected Fre4uencieg

216 x 600
--2666- = c+

1789_5oo 
= 446

"';i#oo = '.,
ttT#luoo 

= rttt

To calculate 12, we have the following table :

oi 3l 185 469 1315

[. 54 r62 446 r338

(o, - Ei)z 529 529 529 529

(o, - E, )2

E,
9.79 3.26 1.186 0.395

3 ro, -E,)z.. 12 = ) --r-=-!-- =9.79+3.26+ 1.186 + 0.395 = 14.631--.ui r=l

SelfJnstructional Material 17l
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...(r)

Also 120.0, = Ths 6abulated value of y2 at 6%level of significance for I d,f. = g.841.

Conclusion, Ttre calculat€d value of12 is greater than the tabulated value of
72 atS level of significance for 1d.f. ... Ho is rejected i.e., the inoculation is effec-
tive in preventing tuberculosis.

6.3 CENTRAL T.DISTRIBUTION OR STUDENT'S 3t'
DTSTRIBUTION

If Xt, X2, ......,4 b" a random sarnple of size n from a normal population with
mean p and variance o2. Then, we defrne the student,s.l,by

t-ut=-:-*-(n-1d.f.)
sl,,ln

where t =:t :,, the sample mpann--

|,|
sr= _:_.- ) (.r, _;)2,

'|-l -
an unbaised estimate of the population variance o2

Foru=1,

ll
T;7 =;

'(;,*) 
='(;)

Also, the probability density functlon is given by

iit,= : il ;;i. ' ;ti,--.r.-'l'q;';) f,*4)'
\ u.,

^r=#
which is the probability density function of the standard Cauchy distribution.

'(;).(;)
Frl*!'l\2 2)

/ /r\\2
f'l;Ji d;\2= ru =__I_=n

Hence for u = 1, student's '/ distribution tcnds to standard cauchy distribution.
theorem I(. Deriue studcnt's t-distribution.
Proof. By definition, the student s t is defined as

t= z-!
sl.,ln

I'f,P'--<r<-



Squaring (1), and usingc2= -i= 32, where 52 is the sample variance, we have

,, _ E - tt)2 n _ (t-p)2 (n- l)

P (i - n\2
= _ =_-+_n-l S'

c2lo
nS2

o2
Since r,(l = L,2, ......,n) is a random sample from the normal population wifir

mean ;.r and variance o2, ; - N1p, o2 | n1 - llg - Wto, r,
Ol4 n

Hence 

=+4, 
being the square of a standard normal variate is a chi-square6- In

variate with l d.f.

-c2Also ""- is a 12-variate with (n - l) d.f.
6-

Further since t and 52 are independently distributed, Jf being the ratio of

two independent 12-variates with l and (n-:-) d.f. respectively, is a p" [f. n-f'1

variate and ite distribution is grven by: \2'2 )

dF(r) =;i!J :#rr* d(t2to),o<t2 <*
"\z'z) 

1t*:1
11 dt;--a1a-
,,. "t \-. v )

the factor 2 disappearing since the integral from - - to - must be unity. This is the
required probability density function of Student'e t_distribution with u = 1rr _ 1y 4.L

- Rernarl. ff Xr, \, ......, Xn be a random aample fron a normal population with mean
F and variance c2. then

(t)X-N(p,o2ln)

(rr).s* = i f+EI ie a 12-variatewith (z - 1) d.f.6- 
=( 

a )

Confidence Ilmits or Fiducial Ltmits for p
- ?1 to"C d"notes the tabulat€d value oft for u = (n - t) degree offreedom, at S%
level of sign ificance, then

P(lr l>to.ou)=0.05 =r p(ll l3ro.ou)=0.95,

lwhereu=(n-1)

Sonpling Di st ti hu t it'tt s
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P,otubility ad The 95% confidence limits for p and given by :

ItIsto.od, ", l#lsro.oo 
+ r-tr.*'f;<us'*rooufi

Hence,95% confidence limits for p are : ; t fo.ou ' (S/fi)

Similarly, gg% confidence limits for p are : - t to.'r . (SyiE )

where !0.0, is the tabulated value of t for u = (n - 1) d.f. at l% level of signifi-
cancg.

Theorem )fl. For student's't' d,istribution, proue thc followinE'
G) 1t'r,,, bbout origin) - 0, r = O, 1, 2, .,'..,, i.e., aII the moments of odd or<ler

dbout the ori.gin urrni.sh,

Qr - D Qr - 3) ......3 .1 - n
t',r,,..= I;:m::fA n',Z"
Hence fird tlle values of . ltc,lto 9r Pg

Proof. (i) By definition, the probability density function for studenf,s '/ is given

aa

^rl==*---' 
t rr,,--.r.-r"q;,;)(,.+J"

Since flt) is symmetrical about the line t = 0, all tbe oomente of odd otder about
origin must vanish. Hence 1r'*, (about origin) = 0, r = 0, 1,2, ....,,

In particular, pr'(about origin) = 0 = mean
.'. Central moments coincide with moments about origin d.e.,

Fa'*r = 0 (r = 0' 1' 2' """)
The moments of even order are given by :

p2" = p', (about ori stn', = [- f' f Q) dt = 2f *" f Q) dt- J_- J0

=r.-= +-f-- 'c2'

4;,:1'o^ (rV"-''*o'
\ *;J

the integral (1) is abeolutely convergent ifzl- <n.

Put r+ *=t - P=nlt;Y) + 2tdt=-\dy
When t = 0, t = 1 and when f = -, y = 0. lbere'fote, (1) grves

-=T6,gf'ffi;*

...( r )

= 

ffi 
ll <t2ttz'-tn !Kr+''2t-z d!



=qfut;l"r+l

= 

EA 1',i-' 
-' t -,t'', * = tA 

n(2, -,,, * !),,, z,

/ t\
rltzt2t - rl Il '* i I

= \ -/ nr
r(u2\t{J/-t2) ...(2)

I
- 

ylt^+nt2l-z d!

= ("-i)("-3) 3itii.[;_-") ."
rtut2)t@t2) -Lt!*t2) -2t...1[l l-,lnr"rzl _"1

L\2) I
_ (2r - 1) (2r - 3) ...3.1 ,," tr _-

h - 2)(n - 41...(n-2r)'- ' 2''
Put r = l, 2, 3, 4 in (3), we get

Lnvr=n. $!fi = -----=,@>2)

and lr" = o, , ,?'L = 3o' 
. (n , 4l

(n -21@- 4) (n-2)(n-4)"" - -'

Hence 0,=4=o and F"=l*=efll) :tu>4).' Fz" Irz. \"_+)''

Remark Asz -,€,pr =oand Fz= rim Bfl-) =r ri- lt -gt").] 
=e.- "-- \n_a ) a-- lr_(4/n)J

Moment Generating Function
Theorem In. Motnent generating funttion of t-d,istribua,on.

Proof. From above theorem, we have

.. (2r - 1) (2r - 3)......3.1 - n
'' (n-2)@-4\......4.n-2rt ' 2

n
If ; > r 1 2r < n, it implies all the noments of order 2r < n exis! but tbe

moments of order 2r 2 n do not exist. Hence the moment generating function of
l-distribution does not exist.

...(3)

...(4)

...(5)

ILLUSTRATIVE EXATPLES

Example l. If thc randatn variablce X , and X, arc independcnt and fo ow chi-
square distribution with n dcgree of freedom show that Ji 6, - Xr)tZ,$S is
distributed a8 Stud,ent's't' with n dzgrce of freednm indcpendzntly of X, + X,

S.lf-lntttcrional Mo,erial l7S
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Prcbability and Sol. Since X, and ](, are independOnt chi-8quar€ variatss each with n degree of
Dis,rib.t iatT'Pory fteedon their joint-proballUty aosity trn*ion is given by :

p(ry x) = prtt) x p2(r.z)

,$-t t !"-r 
1o 3r, < -,0 3r, < -

f?*,1 !o' and u=rr+rr

' 1 -rr+4
=--.2 2

2" lr.,t2)1.

Put u=

lte Jacobian of traagformation is J = Yl'l = u

d(u'v) ,J;(r*t)'''| ")lte joint probabilif deosity function of u and u becomes
gfu,ul=p{t,r)|JI

L 
"-ot2 'n'1= --r-------...., ;-oqu <-,0<u <6

zz_r t(nlz) t(nl2\ .ln 
1 .. ur ),o.ru,' l'-;J

By Lcg€ltat€ds duplication formula

where

r(n) = 2rrr{n/Z) r(#)ln * n,ay = $S, *," g"t
/-1rt=-l]

22.-rw zrr\nn,6 = 'z"-+P* . (;) O
'*'tl'tj

-lz-r(n).t-n 
" 

(*,;)

slu. v) = (#, nn 
n,,"' 

I 

I 

rag; *d
'(i)=t

[4vqe,-oq44-
.'.(r)

< - ...e)

...(3)



(1) + U= 6 (Xr-qlefi$ andV =Xr +\ areindependently
distributed.

(2\ + u =16' (xr-tqYzfirx-; - r,t, and

(3) + V=X, +X,-y( 1 l
\"=i'" )

Example 2. Slro w that for t-distribution with n dzgree offreedom mzon dzuiation
nbout mzan is giuen by :

J; I l(n - 1) | 2l t,tf, r@t 2)

sol. M.D. <atout nead = J_]

_2rtdtJ;=44rGl-"=m dy
y)("(.t +l; +1\12 ,

f
n

='fr- f L*,,*=* 
"(+, 1=r#.,{ali,,,olr'i) (1+Y1 z" tl;';J \-

Theonen xTI. For large d,egee of fredom (n), shaw that t-dietributian tends to
standord rnrmal distributinn.

Proof. The probability density function for t-distribution ie given as

flt) =

Considere lim fl(z + D/21

r(U2)r(nl2)
.. 1

= llm -F

=-7TT' 
-------;;r' - 6 < ! < et"ti.i) f'.f]"l. trJ

1;7rl\{nE---l
\2'2 )

1 1 /z)E I
=-.---- t-t =-.,ln ,,hc \2) .l%c

Invzr= fi and )in +# = nk,p(m,n\= H#
l.

",,en,'= 
j* 6"|TT ;* ['.*)'l-u']* ('-*J 

t

\2'2) L r

1=-:J^t*'-"'')'--<I<-
which is the probability density function of the standard normal variate. Hence, we
can say that, for large value of z, the degree of freedom, t-distribution tends to
standard normal distribution.

Sontp I in g Distibut ion s
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' 1;;i,--<t<*
t ,2\-T
I t+ - 1

\ n,,

= "f 
r.*l-", wherec = *pf*,+)\ nJ ]n \2z)
f ,,\-+

- fl-t)=cl r+" | =^r)
\ n.,

Ttrerefore, the probability curve is symmetrical about the line t = 0, when , is
large,fl!) becomes gmall and tends to zero when I -+ -. Hence t-axis is an asympt,)t€ to
the curve. We know

n
Itz = -:1,n>2,

g"=3h-?),n>+
n-4

For n > 2, 1t" > L i.e., the variance of t-distribution i8 greater than that of
standard normal dietribution and for n > 4, F2 > 3 and thus t-distribution is more flat
on the top than ttre normal curve.

Probability Cunre for f-diatribution
The pmbability density function of t-distribution with n degree of freedom is

given as

Probability Curve of ,-distribution

i.e., the tails of the t-distribution have a greater probability (area) than the tails of
standard normal distribution. Moreover for large z (d.f.), ,-distribution tends to stan-
dard normal distribution.

Applicationa of l.distribution
Ttre student s t-distribution can be used.

(i) To teet if the sample mean (t) differ€ significantly frout the population mean p.

(ii) To test the signifrcance of the difference between two sample means.

Properties of t-distribution
The following are the properties of/-distribution :

1. It is unimodal distribution.
2. The probability distribution curve is symmetricai about the line I = 0.

^r)=+.-u"\t'r)

-l t:0 +1 +2 +3 +4 @



3. It is bell-shaped curve just like a
Normal curve with ita tail a little higher above
the abscisea than the Normal curve (see fig.)

4. The lirniting form of f-distribution,
when its degree offreedom u -+ -, is given by

!,,
y = yos2' , which is a Nornal curve.

This means that r is normally distributed for large sanples.
Critical value of I
The critical value or significant value of t at level of significance d, degrees of

freedom 1 for two tailed tett iB gven by
>l,(c)l=c
Srr(c)l = 1-o

The significant value oft at level ofsigrrificance c for a single tailed test can be
got from those of two tailed test by refering to the valuee at 2c.

Test I : l-test of Significance of the Meen of a Randonr Sample
To teet whether the mean ofa sample drawn from a Normal population deviates

significantly from a stated value when variance of the population is unknown.

Ho : There is no significant difference between the eample mean i and the
population mean p i.e., we use the statistic

Ptl ,
Ptl ,

where X is rnean of the sample.

U = +i {4 - xP witrr degrees of freedom (n - l).f,- ,=t

At given level ofsignificance cr and degrees offreedom (n - 1), we refer to f-table
to (two tailed or one tailed).

If calculated value lt lisEuchthat li | < 1,, the null hypothesis is accepted.

i.e.,lf It |>t", It ie rcject€d.

Fiducial Limits of Population Mean
If ,a is the tabulated value oft at level of signifrcance c at (n - l) degrees of

X-p
sl4n

. X-p
sHn

freedom. firen < to for acceptance of IIo.

=+ i -tost.li <p<v +tsstJ; i.e.,

95% confidence limits (level of sig-nificance 5%) are 7 ! to.ou st ,ti .

9996 confrdence limits (level of significance 1%) utu f t to o, "/Ji .

Note. Instead of calculating s, we calculate S for the sample.

since "r= 
1 $ fi,-XP .'. s'=1S fi,-xP.

"-r?, n ?-,

f(r, - t)"' = nS2. 
"2 

= -:- 5zl
L n-l I

Sanplhtg Distlibntiort

NOTES
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Theorem XIIL To d,erive Sned,ecor's F-d,istribution.

Proof. Let X and Y are two indepeudent chi-square variates with ur and u2

degree of freedom respectively. Then their joint probability density function is given
by

f -,r=b:;r,r,"e,tp-.,tz\x",'\tz'-'|,$1-,rrrexvt-trz)vt"t2)-tl

I
= -:r:::::-iE---- exp (- (x + y)t2l x *tuttD-t !lu't2)-r ,0 3 (r, y) < *

2,'L-"r " " lfu J 2,t lfu z 12)

Consider the following transformation of variables :

-I-F=:+ andr =y,sothat0<F<-,0<r <- .'. r=5 Fuandy=11ytvz u2

The Jacobian J of transformation ie given by :

s=dk,v) =lt" "l=*atr,,r =16" ,l=f
Hence, the joint probability density function of the transfortned variables is :

g(F, u) =
"*p {-tf1*,, rl}' fgr"r')t""' 

I 
ut,"tzt-r 1 J 

1[ 2\ vz )l \uz )

"'p {- i fr*ftpl} ' ,'.,**u',-' Ftu.,2)-t .

L 2\ uz ))

2br*qtt2 r@Lt2) l(u2 I 2)

(\lv2)'t2
2t 

ot + v,t t' i b I I z, f (u 
2 t D

Integrating (1) w.r.t. z over the range 0 to -, we get

(\l u2)tottzt Ftuttz'- | .. tl//ur + v)l2l
F;rrT, rurlnlbn

L;l uz ))

; g,(F)=ffidry*'o3Fco

which ie the required probability density function of F-distribution with (u, ur) d.t

0<u<-,0SF<- ...(1)

P<-,or={3II(dtvn+n)



l.heoro XfV. Slrour ttut, for F4iatribution,

Hene find (i) 1tr', tts', lt;,ltl'
(ii) t, jts, tts tr1
Pnoof. The probability denaity function of Fdistribution with (u' ur) degree of

freedom is given by

fgt)? o, .

s<n=++.; "o;,osF<-
\t'2) ['.],",} '

.'. p"'(about oriein) = E(F) = li"""tnl ar

_ (vrlu)ortz_ y*

{?,?J^ ('.'f ")*ut
To waluate the integral, put : 5 F -y, so that dF = 9e dy

v2 U1

" 
= (rJ' 

{FH 
F('.+'+ - ")?"'

r.t -)*o'ott
tr: = l\tvrlu'tz. J-l"',1.

Jrr rr) Jo 11+ y;(,'',r)/2-\2' 2 )

lt" )'
_ (rtl r !nr'"t-t ,..

Jrr ,r') J0 (l + y){"!/2)+r+1tu't2t-rl 'J-\2' 2 )

= (r)' {*1 "('*?'?-')''"'z'

Put r - l, 2, 3, 4 in (1), we get

. u, fll+(url2)l f(rrrl2)- I _ ur
th - ;' t@{2)t(v2t2) v2-f,,u2>2

Thue the mean of F-di€tributim i8 independeot of ur. 
lo(n) - (n - t) dn - 1)

At8o *'=fglt -rtvJz)+ark+t}-21\url r@!2lt(v212)

F(r,r/2)- r

[r)*

Sunpl@ Dittributions

NOTES
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=[f)'d##h=ffff]*v ,'.,
1tr=1t'-1tr'z=#W^ #

2vr' (u, + vt - 2)

v {v2 - 2\" (u2 - 4)

Sirnilarly, on putting r = 3 and 4 in p"', we get p"' and pa' respectively, frorn
which the central moments p, and p, can be obtained.

Theorem XV. S/z ou th.at for F-distribution with (u ,, v) degree of freedom, mode
erists if fu , > 2. Alsp modc of F-distribution is always less thon unity.

Proof. The Probability density function of F-distribution is givcn as

f r' )t
trlw

Iur )2t;1
g(F) = --z-- .

nl 1r Yal
"\2' z )

9r-r

I r+:!F | -\ uz .)

0SF<-

pi-'

Taking logarithm, we

log (s(F)) = log + log
lr-12
ll+:rFl\ uz)

= ".(+ _,) .*, _ r?,*[,.#, 
")

where "=t"r[*l;t -^ru(+,+)
\uz )

Differentiating (1) partially w.r.t. F, we get

u7

#='.(+-i +-"# ;fo
v2

For mode, putg'(F) = 0+ [(+-i + ,,*;fuJ"*=o
:, ,,4 _fffrfr,=o

e iy'.ile#h$-rd =,
+ vrv" + u r2'F - 2vr- 2urF - urzF - ururF = 0
+ v rV" - 2v, = (2u, + v rvr) F

...( r )



^ u"fu, -2)or , =;ran
Also at P=Cgt-2,a"1f1 <o

u{u2 + z)

Hence mode of F-distribution is given by

g = 
uz(\ - 2)

u1fu2 + 2\

Further, since F > 0, we must have u, > 2

Also -o6" = 
,z-.ur-241

u2+2 tt1

Poiuts of Infletion
Theorem XVI. S how that thz pointe of inflerion of F distribution erist for v,> 4

and are equidistant from modz.

,,x
proof. We have 3!-F = T _ Fre, m'),

U2

where I = u r/2 an d m = v y'Z.We now find the points of inflexion of Beta distribution of
second kind with parameters l and m.lfX - pr(l,m), its Probability density function is :

I tl-lf,o=d^ niV;;osr<-
Points of inflexion are the solution of/"(r) = 0 and f"(r) + 0

From (2), log flr) = - log p(J, m) + (J - 1) log r - (J + nl) log (1 +:)
Differentiating twice ur.r. to t, we get

f'G) l-L I+m
f(x\ x L+r

...(1)

...(2)

...(3)

^* 
ptw@= (") .#

/J-1\ l+m
l-l+...........-...:
\ "" ) (l+ x)'

I using (3)

+m) * l+n!" x(l+rn+l)=or) (l + r)'
+tn)+x\l+rnXI+m+1)=0

...\4)

which is a quadratic in t. It can be easily verified that at these values ofr, f'(r) * 0, if
I>2.

The roots of(4) give the points of inflexion of pr(I, m) distribution' The sum of

the points of inflexion is equal to the sum of roots of(4) and is given by :

_ | co.r. or 
" 

i" tll I = -l aI - D(t -D: aI .- Llll + nL)
- lc""tr;f;t t" (4)l L0 - D(, - D - aI - D(I + m) + (I + n)Q + n + !)

Scff-lnstrucrionalMoreiol lE7
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NOTES
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Probabilifi and Conclusion. If the calculated value of F exceeds Fo.ou for ((n, - 1), (n, - 1)
Disrribution Thco'1^ degrees offreedom, we conclude that the ratio is sig:rifrcant at 5% level. i.e., we conclude

that the sample could have come from two Normal population with same variance.

The assumptions on which F-test is based are :

1. The populations for each sample must be normally distributed.
2. The samples must be random and independent.

3. The ratio ofor2 to or2 should be equal to l or greater than l. Ihat is why we
take the larger variance in the Numerator of the ratio.

Method to Apply f.test

*.2 11. - ?12
We defined F = +, where s,2 = -."' 1' ; i = l,Z, ..., ns2"' ' nt- 7

. Zty;-j)2
s," = --ll-T-, i = r,2, ..., m

Here sr2, s22 are called the unbiased estimates ofthe population variances.
Ifthe calculated value ofF exceeds the tabulated value (which depends on the

degree offreedom v, = (n, - l) and vz = (nz - l), then the null hypothesis Hois rejected,
If the calculated value ofF is less than the tabulated value, then the null hypothesis
Ho is accepted.

ILLUSTRATIVE EXAMPLES

Erample l.In two ind,ependent somples of sizes 8 and 10, the sum of sqttares of
deviations of thc satnple ualues from the respective sanple means were g4,4 and 102.6.
Test uthether the d,ffirence of variances of the populations is significant or not.

SoI. Null hypotheeie IIo :g12 = cr2 = oJ j.e., there is no significant difference
between population variance.

UnderHo: F = {- rfur, u, d.f)," so2

where v, = nl - l, nr = S"-pt" t size = 8 i v z = nz-l, rr2 = Sample II size = l0
t(Xl - x-r)2 =84.4;Z(Xz -7.)2 = to2.a

"rz 
= 

:6-r. 
:ttl' ='n;n =t *r,

,z _ztxz -4)2 =to2.6 = rt+' n"-l 9 --

"=# ",,u",2 ... "= 
t?'# 

=1.0f?6.

Conclusion. The tabulated value ofF at 5% level ofsigrrificance for (?, 9) d.f is
3.29.

Here



A 17 27 18 25 27 29 1S 17

B 16 16 20 27 26 25 21

Fo.or=3.29and lF | = f .0576 > 3.29 = Fo.ou = Hois accepted. j.e., There Sanptitg Distrittutiottt
ie no eignificant difference between the variance of the ?opulatione.

Exanrple 2. ?uo rand,om, samphs are drawn from 2 Nonnal populationa are da
follaws :

Test uhethzr thc samples are d,rawn ftom the same Normal popuhtion,
Sol. To test iftwo independent samples have been drawn from the same popu-

lation, we have to test (i) equality of the means by applying t-test and (ij) equality of
population variance by applying F-test.

Since t-test assumes that the sample variances are equal, we shall first apply
F-t€st.

Null hypotheeie Eo : or2 = a22, i.e., the population variance do not differ
signifrcantly.

Alternative hypoth€sls. H, : or2 * or2.

^2
Test etatistic ' P= "lr,(ifsr2>s22)

Computations for er; and arr

it - 2L.625; nl = 8; t(Xl -X )2 = 253.87

X" =te.lvinz=7 il(Xz-fr)2 = 182.859

",r=- l -253.87 =s6.267 i' nr-l 7

" t(x" - x-")2 182.859s - = --------=------, =- =Lru+/' n--l 6

"- "r1 

-gs.zsz 

-,.rrr.
soz 30.47

xl x,- xt 6r-*r)2 x2 xt- xz (xz - 72)2

- 4.625 21.39 16 - 2.714 7.365

2'.1 o. , drD 28.89 l6 -2.7L4 7.366

18 - 3.626 13.14 20 t.zffi 1.653

25 3.375 11.39 8.286 68.65?

28.89 26 7.286 53.085

29 7.735 54.39 25 6.286 39.513

13 - 8.625 7 4.59 2l 2-286 5.226

17 - 4.625 2r.39

NOTES
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7z =2A, nz=6i Ecl',z -T.)2 =ZA

Conclusion. The table value ofF for v, = 7 and v2 = 6 degrees offreedom at 57o

level is 4.21. (See F-table) The calculated value ofF ie less than the tabulated value
of F, .'. Ho is accepted. Hence we conclude that the variability in two populations is

aame.

t-test
Null hypothesis. Ho : p, = 1t", i.e., the population means are equal.

Alternative hypothesis. H, : p, * p,

s2 - XXI - X-r)2 + E(X2 - 12 )2 -nt+nr-2
253.87 + 182.859

8+7 -2 = 33.594 .'. s = 5.796

r = xi- xi 
= 

21tr1 1$ = 0.9?04 - t(n, + n"- 2) d.r.

" 
/a*f s.zso-/!+1
llnr n2 18 7

Conclusion. flre tabulated value of t at 5% level of significance for 13 d.f. is
2.16. (See t-table) the calculated value of ! is less than the tabulated value. H,, is
accepted, i.e., there is no significant difference between the popu]Btion mean ; Le., p, =
1rr. .'. We conclude that the two samples have been drawn liom the sane normal
population.

E:arnple 8. ?ruo indcpendznt sarnple of sizes Z and 6 have the follauing ualues :

Examble whzther tlw satnphs have been drawn from Normat poputations hauing
th.e somc variance.

Sol. Null Eypotheais IIo: The variance are equal, i.e.,6f = cz2 i.e.,the sanrples
have been drawn from Normat populations with eame variance.

Alternative Eypothesie H, : 6 12 + 6"2
Computationr for ar2 end sr,

fr =3f, zr=?; E(Xt-X-r)2 =28

Samplc A 28 30 32 33 29 u
Sample B 29 30 30 24 27 28

x, xr- xt 6t-xl2 x2 xt- xz ff.2-72f
2a

30

32

33

31

N
31

-3
-l

I
2

o

-2
3

9

I
I
4

o
4
9

29

30

30

24

27

2E

I
2

2

-4
-l

0

I
1

1
l6
I
0

28 26



"rr= 
E(X-t:{-r)2=f 

=a.euu , "rr=!=r:EA=?=u"

Under Ho, the test etatistic F = 1=+ = r.rl58. ('.. sr2 > sr2)st' 4.666

Conclusion. (See F-table) fire tabulated value of F at v, = g - I and v2 = Z - 1
d,.f. fot 1ort' level of significance ig 4.39. Since the tabulated value ofF is less ihatr the
calculated "alue, Ho is accepted, i.e., there is no signiticant difference between
the variance, i.e., the samples have been dranm from the Normal population with
game variance.

Exarnple 4. Thc two rand,orn sampbs reveol thz following data :

Test whethcr the samples comc ftom the samz normal population.

Sol. A Normal population has two parameters namely mean ;r and variance o2.

To test whether tJ:e two independent sarnples have been drawn from the same Normal
population, we have to test

(i) the equality ofmeans (li) the equality of variance.

Since t-test assumes that the sample variance are equal, we frrst apply F-t€st.

Null hypothesis. Ho : or2 = c.22 i.e., the population variance do not differ
significantly.

Alternative hypothesia. H. : or2 + or2

Under Ho, the test statistic is given by F = {, tsr2 > sr2)
a2'

Given : nr = 16, nz= 25; Sr2 = 40, $r2 = 42

" 'rsr2
... F= sr==ttr-l -L6x40 x 24 

= o.g75z.
sz" nzSz' 15 25 x 42

n, -l
=r F = 0.9752

Conclusion. The calculated value ofF is 0.9752. The tabulated value ofF at
(16 - 1, 25 - r d.f.) at 5% level of significance is 2.11 (see F-table)' Since the
calculated value is less than that of the tabulated value, Ho is accepted ; i.e., the
population variance are equal

f,-test

Null hypothesie. Ho : p, = 1t'", i-e., the population means are equal.

Alternative hypothesie. H, : p, * P,

Given : rz, = 16, nz= 25, Xr = 440, X, = 469

Somple no. Size Mean Varianee

I
II

.lo

25

,u0

460

40

42

S(,npIitII I)i!ibt it'ns

NOTES
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Under Ho, t =

nl+n2-2
x, -x,T_

"r/"' 
*t

o n,8,2 + nos'2
sr- = ----:j.-:

L6x 4O +25x 42

L6+25-2

-(n1+n2-2)d.f.=

= 43.333 .'. s = 6.582

= _ 9.490

+ lt | =9.490.
Conclugion. The calculated value of I t I is 9.490. The tabulated value of, at

39 d.f. for 5% level of sigrrificance is 1.96 (see l-table). Since the calculated value is
greater than the tabulated value, Ho ia rejectcd. i.e,, there is significant difference
between meang i.e., 1tr* 5.

Since there is sip.ificant difference between meang and no sigrrificant difrerence
between variance, we conclude that the samples do not come from the same Normal
population.

6.5 ilON.GENTRAL DIETRIBUTIONS

In previous eection, we derived central distributione of the central statistics 7X2,

I and F. In this section, we shall derive the non-central distributions ofthe non -central
statistice 12, I and F.

Non-central chi-square. The non-central chi-square (12) statistice is defined as

" tt'x,=Z _
,=r 6i2

*h-"* {u &, ....:, Xo are n independent normal variat€s with means p' tl2, ......, tl,,
and variances or2,o,12, ..,,,,, cn2.

fireoren XVI. De rive non-central y2 distribution of chi-squ,are va.riate.
' 

^ / t\
Froof. Take t, = t l!+ | and transform the variables r,,3 to the variables

-,=,, \o 
" 

)
y,.'2 by assuming

n. = [!rr t, -r]rz xz - - tr"
for 'or ' cz 6z on

=$ fr,, 1)/lE ri
3 f ".'o'I \?- ",''

li = Cir. ! * co. ! + .... . + C.." '- or "- 6z

= | c,' . !.i =r,3,......,nj=l oi

where the coefficients C,, aatisfl the following.

x"l I
c)l

xn

o,



I 
"?.r 

= L, i.e., (C,- (Cn, Ciz, --,C;o) are uoitary

Z cn cji = 0 = t cnc;,i'*i [i.e. C, and cr.', are

It is easy to verify that the variates lis are inderpeodent nomal variates with

,E(r,,=2*'eYffi=,ffi

Eo/= I ", 
t[r=)= I "rf =o,i=2,s,......,n

'.' The vectors Cr' are mutually orthogonal to the unit vec'tor

u*"r= i c'o.fiv*',=l 
"U=t

llrus the variable J, ie N(y, 1) and v, ie N(0' l\'i = 2,3, """, n'

Now f =Z #=2r," =rl *hvi'=x,'+v22,aav

where 12 has the digtribution 
r

L "-tt".v'vz 
cos i ty11). (11c)-t d112

J2n+ fr.*f- j,','-"',]i \P.<x,\-" ax,"

It't r/l#
Arso vary,=,1 S + *,',1 ,>,#=,

* t "*[-*.,'] 4 ".'t-'ir];!,;j,*t-;,,,,

and the distribution of Xrt ie

- I .*f-lrll 1r,'\!* dx,"

,#"f"-t) L 2-' )
' '\ 2 )

BenarL 1. Forjoint distribution of1r'aril lr', let us make the traDsformations

h= X (8 O,Lz= Xsin O, 0 < X < -, 0 < e < t/2

Sanpling Distibutknt

NOTDS
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Prcbability and We 6nd that the pmbability density function offz (= l!2 + I22) ig

Bemart 2, The p-d./. ofnon-central 12 is th€ weighted sverage of central 1zp.df.'s with

(2tt. + n) df ., the weights being the Poisson probabilities (vrnf *n (- 1 *z) fnt 
n=0,t,......,n.

3. If y = 0 and ,t = 0, then the distribution of non-central 12 is the central
X2-dietribution with z"d.;r.

Moment Generating Fulctlon
Theorem XVII. Frnd the moment generating function of the non-central f

distributian.
Proof. Assume Xr, &, ...,.., \ are n independent normal variates with mean

F1, lr2, ......, p,, and variances unity, then thep.d.f. of X,'s is given by

f*'t = .* "-]t'- 
-n"

',12n

... l\,Ir2(r) = E1""" | = i; l:"82 e-tv2,t,-t'tz d'

= # J:*,1-(;- r,' - u,. ju,il a,

= #[*'p(;-,){(" -+J' . t-- #ll *
= fi .*(SJ I ",., l- 

(-u-)(. - r-,)'l *
= h.*(j*J r*, 11,,; ffi , *nu"

"=("--+)x Jrai =o-zr-iexDf1d-) r--|.- r-lr)' 'p-2,)'t'i'
Theoren }(t/IJl. State Reproductiue property or a.dd,ittue property of non-cen-

tral c hi- sq uares v ariate s.

Statement. If Y-1, Y, ......, Yo are A independent non_central 12_variates withrly n2,......, no degree of freedom, and non-central parameter V' y2,......,y,

where *,, = i 4, rn"r'- frof
!r+ y2+ ...... + yhis algo a non-central 12-variate with (nr + n, + ...... + zo) degree

of freedom and non-central p*u^"tu. 1=f V,
i=l



Ttreorem l(Itr Fin d tln curnulonte of non-central 72-d,ietributinn.

ProoL ft, = rttr cumulant - coefr. of { in log Mrz(r) i.e.

for-r -'l
KrrG) = (n + 2Y) t + (n + 4V) P + ...... + | 

1. r, * 2* Z*r I t' + ......
Lr I

:. h,=""er.ot$inKar(t)=rrf!+zylz-1rr . \r ')
h,=7-r (r - l) !(n + 2yr)

and hn =I-2(r-2) ![n+{(r-1)l

'' dv'-^t T +2rrr

+ h"=@+z,O+&-).dv

Nol.contrel Student'r fdtrtrlhrtton
'Ibeoren xx IfX b di' t?ibut.d as N(p, d) andy is an indeptdent T?.variatc

with n.d.f., tllen
Xlo

'=TtG
has a rnn-enhwl t-distributbn with nd.f. ottd with t14,n{,lnl,f;o,l4i, pafameter ylc'

Proof' Sioce X and Y are indepoilent' tleir joint p'd'f ie

--+- "-f,' ''f,^-'' '-;=+r
alfrze (,
1 1 +q#-";-'s ,.cl'1.g'lN= --+.--:-e /

^- oJ-zn' ,i,(y\- fi \o/ \ jrl-'\z)

= *. , t , . ."-* ."-i, .!i-' ."-l; , i [5)' {.,*h",u"="to
J2r ,|-t tn\ i=o

- '\2)
Now make tJre transformation ( t, z) + (t, u) such that

t = !*and r = .ff + Y = u2 andZ = tu! Ji
afY

Jacobian J ortransrormation i".r = *4 = | + ild{.t,ut | ./n ./n I

Ilence the joint pmbability dengity function of ! and a is

2u2

{n

F{rm' = "-!o E i(*l' "* l-+['.+)](#)' ""-''"'

Sampli,rg Dis t ti but irzw

NOIT,S
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l% &lJJntnuctiwltt<tcril

,9'(;),(;) " 
* .2 ;.ffi, "* l-u1[,.*)]ri,".i

Integrating this w.r.t, u between the tiuits 0 and -, we get the p.d./. of non-
central I with n.df es

I 
"*p l- u', 

'l 
- i r fr'lj * {-#)r*r| L *'l.H nt;J '"4#"r

I dt'--<t<-

\ r/
Non.ceDtrel Fdlrtrlbutlou

- - Ifl^r2te a non-cenhat X2 with degree offreedom n, and non-centre parameter 12
and let Xrz, independent ofX12, is a central 12 with n, degrce of freedom, t-hen the raiio

ffi i" t"o*" as non-central F statistics with degree of fteed om (nr, nr) and non-

central pararneter 12.
Theorem Xrr. ,brive tlu tnn-entral distribution of 72.
Proof. Now the joint p.d.f. of1r2 and 1r2 is

*o[-irr,,*r,',1, i <r't"-v 
" r?,,'i ,'.i<*ri-'

" j_4 r, 
2;Gt+^at+j.[l*"r).1/tE)

Making the transformation (1r2, 1r2) --, (F, u), such that 
\ 2 ) \ 2 )

p=xrltlt _ r,r=A F,tz"lnz nz --
and u=7"2 + and y,r2 =a
the jointp.df ofF and u can be obtained.

Intearating with respec.t to u between 0 and _ we find the p.d.;r. of F as
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6.6 ORDER STATISTIGS

Def. Let Xr, \, ......, \ are n independent and identically distributed random

variables and F(r j belhe co*-on .umulative distribution function. We arrange rys in

ascending order of magnitude as

\r, S X,r, ( ...... < X,n,, then \", is known asrtJ: o-rder statistic where r can take

ttru.'ato"s f ,2', b, ......, n. As there is equality sigrr, then \.,'s are necessarily dependent'

Nototions. We write X,r, = min(Xt, \, .....'' X")

= The smallest of Xl, X2, ...... X^

\or = Max (Xl Xz' """' x')
= The largest of Xr, &, ......, X"

4"r = rth smallest of Xt, \' """' \
Cunulative Distribution Function

Theorem )oCI. Find tlu cumulntiue d'istribution function of o single ord'er

stotistic.
Proof. Let F.G) (r = 1, 2, """, z) clenotes the cumulative dietribution function of

the rth ortler statisiic 4,, ; therefore, the cumulative distribution function ofthe largest

order statistic \o, is given bY

F,(r) = r[X,", < *l = rMax {Xt' xr, """' \) < rl

= PlXi ( r, i = 1,2, """' nl

=PlXl<,nX2<rn ""',\3rl lX"s are independent

= P(X1 < t) P(X2 s t) """, P(\ < r)

= F(:) . F(r) '....', F(r) = (F(r))"

Hence, the c.rl.f. (comulative tlistribution function) of {,r = (F(r))" where F(*) is

the c.d.f. of Xt, X2, ......, \'
We now find the c.d.f' of the smallest order statistic X'',' Here

Fr(r) = P(\1) < r) = 1 - P(\r)>*)
= 1 - Plmin (X' Xr, ......, \) > rl

= I - P[X, > r' i = 1,2"""'' n]

= 1 - PlXr >r n\ >rn """' X' > tl
= 1- P(Xl >x\ 'P6">r) "" ' 

P(\ >r)

= 1- ff P(xi >r)
i-1

=1- ff tl -P(xi<r)

= r-(1-F(r))"
| '.' Xr, Xr, ......, Xo independent and identically distributcd randorn variables'

Theorem lKI(lIll. Finil the cumulatiue d'istribution function of the rth ord'er

statistic X ,,,
Proof. Let F,.(rl denotes the c'd'f' ofthe rth order statistic X" 

" 
then

F"(r)=P1X,.,3*l
= P(atleast r of the 4s < rl

Self-lnstuctional Materiol 199
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x,,r+&t v y+6y

= i elexactty .l out of X1, X2, ......, X,, are s r!

= L "\ Fv(r)(l - F(r))nr

using Binomial Probability law

J=r
Remark We can al.so write

I .Ftx, _!,w' =

Probability density function
lrreoren lQ(rV. Find the probabitity den'ity fanction ofa singre or&r statistic.

. . 3-"f: ts!Xr, )q, ......, 4 are independent and identically distributed randomvariables and ifflr) be the probability density function, then
flr) = F'k) where F(r) is the cumulative distribution function of X,,s.

I,et f"k) denotes the p.d./. ofrth order statistic. then

cr-\ d ,^, ', d Ir,\r) = E.r',\t)t = dr.p(.,;:..D 1..-'{_t 0_t)^_, dt

Take s(r)= I {-1 <t-A*, at

Differentiating (2) w.r.t. t, we get
g'(t)=t'-rQ_il"*

Integrating v/.r.t. l, under the limits 0 to F(*).

Using (1) and (4), we have

...( I )

...Q)

...(3)

d
dx

Jt'''r-t tr - o-' dt = !F"'c,e) d.t = | e(r) 1;{') i= g(F(:ll - dol

.f'"'r"-' ,t - ,"-. at = { E<ran- g(or = $ "rral
I g(0) is constant

=e(F(rD . ! r<o = t@oc)) . flx) ...(4)

I Using (3)fpl = pt.j.- 1 . (F(';y-r ar - 
",";1"-, 

.flr)
Joint Probability density function of two order gtatistics

. Theorem E(V. ?o find, the joint probabitity d.ensity f.tnction of ttuo ord.erstotietics.

*n"r"P:t: 
"1rj:,rf;y) 

denotes the joint probability density tunction of X,,., and \*,

f*k,y1= rr-^ P(r s X,', sr+6rnv<X,", sy+6vl
fflB 6,s, 

--

...( 1)

The event E = {r <X,,., (r + & nr < X,,, <r + 6y} can be represented as folows :

t+- r- I--lrF-s-r- I --11 lk- r, _ s ______N



X, <r for r - I of the {s,r. 4 3t * 6* for one X,

r + 6 r < Xr s y for (s - r - 1) of {s, y < X, s} + 6y for one X;,

and \ >l + 6r for (n -s) of the {s
By using multinomial probability law, we get

P(E) = Pk <4"r <r + 6r ny < \", <l + 6tl

nl
Pt''-r . P2 pi-'-l .Pn p{-" ...(2)

(r - 1) ! 1!(s - r - 1) ! 1! (n-s)

where pl = P(4 3r) = F(r),pz = P(: <\ <r + 6r) = F(r + 6r)-F(r)
p' = P(t + 6 r. 4 =r) = F(Y) - F(r + 6*)
p, = P(y < \ <y + 6Y) = F(Y + 6Y) - F0)
ps = p(X,>y + 6y) = 1 - P(Xi <v + 6y) = I - F(v + 6y)

Using (2) in (1), we have

.. P(E)
f,"k,y\ = #T, 6"s"

5y+0

nl
(r-1)!(a-r-1)!(z-s)!

lF(r+6r)-F(r)l
6r)x lim

&.+0

x gn\ tF(r) - F(r + &r'-'-r' mfry*ig2l]' #$ [1- F(y * sv)]*'

nl
- (r- 1)!(s-r- 1)!(z-s)l

\r) . /(r).tF(y) - F,",,'-'-tt'91.1r- F(r)l'-"

Theorem )o(vl. To fitd t!r2 ioint probobil y &ns y fttnctinn of h'ordzr st&tiati.s.

Proof. Let faro--r, (rr,4, """,r*) denotes the joint probability density func-

tion of the ft-order statistics X1',1, X,'r,, """, X(r) 
' 
where L < rr< 12< """' < ro 3 n and

l3ftSn.then

t- t! ,,f,\,",--,.,, k1' 12' """' x1) -- (4 - D !(r2 - 1- 1) !...... (4 - 4-1 - 1) !(n - 4) !

r prr-r 1ar) x f(r1) x [F(rz) - F(rr)l"-"-L x f(rz')

x [F(ra) - tr'(r2)|"-"-L x f(rs) x ...... x f(tr) [1- F(tr)l"-"

ILLUSTRATIVE EXAII PLES

Erample l. Izt Xt, X, ---..., X^b a ronfum *rnple from a popuWion with

arrtior-us dirrsiry. Show'thalY, = mii {X, X, .-..", XS is eqnential with pa'a'nutar

n\ if and only if each X, is esponcntinl with parancter L
Sol. Let /{l) denotes tJre probability density fimction of the random sanple Xr'

&, ......, X" and if each \ is exponentially distributed with parameter L
" We'"ho* Yr = Mitri\, x2, ......, \) ia exponentially distributed with parameter

nl- Norr

Sunpling Distribuions

NOTES
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f-"-** d,=g

fli)=7"e-t';r>0, 1"> O

F(:) = P(X <r) = l"fol a" =X lr e-tu du = 1- 
"-x'

Distribution function G(.) of y, = min (Xr, &, ......, \) is given by :

Gy, (r) = P(Y, <y)= r-t1 - F(y)I" I Theorem

= 1- [1 - (f - e-rY)lo = 1-e-,rrr.
which is the dietribution function of exponential distribution with parameter nl..

Hence Yr = Min (Xr, &, ......,4) has exponential distribution with parameter nl,.
Converge. Let Y, = Min (X1, &, ..., X,) is exponentially distributed with

paraaneter nl,. We show each \ is exponentially distributed with parameter nl.
Since Y, = Min (Xr, &, ......, X,) - exp(nl), we have

P(Yr<y) =L-e-nlv + P(Yr )y) =e-"rv,
=+ Pfmin (Xl X2, ......, Xr) 3 y] = s-nt'v,

- P[(Xr >y) 
^ 

(X2 >y) 
^......(X^ 

>y)1" = e-"rr

+ Jl P(Xi > y) = e-o& .+ [p(\ >y)]" = s-"ry [... X,,s arei.i.d.]
,'. P(X;2y)=e-tt + P(X,3y)=l-e-tt

which ie distribution function of exp 0") distribution. Hence \'s are i.i.d. exp (X,).
Exanple 2. Sftow that for a rand,om sample of size 2 from N(0, o2) population,

EtXu,) = - 61Jn.
Sol. For z = Z,the p.d.f. f{x) of X,,, is given by

rt*\- I ,'/1(*) = 

- 

{f - F(r)} i{r) = 2 {1 _ F(.r) . flr) ; _ _ < r < _ €,

where flr'1 = !"-'2rza2' 
o.,12ft

r EK,J = Il:.rrr,,t*=z f Jt-p(it.rfk)ar
Also logfl*) =- tos (JfrcS - :::.
Differentiating a.r. ,o 

", 
*" *"r'o'

i3 =-* - I'f"oa"=-cz I f'<'>ax=-o2f(,) ...(s)
Integrating (l) by parts and using (3), we get

EK,J = z . [rr-rr"r] {- o,1rr)t]- - z f:- o, fr,\ t- f("\ *
= -zd f Jfun, a"=-|f_" f ,c a,

rJ; 6=-;'wd=-G

I X - N(0, o2)

...( r)

...e)



Exanple 3, Show that in odd satnples of eiae n frorn U[0, 1] populdtion, the Sanqlirtg Disrrihrrkntt

m,ean and, uariance of tIrc d.istribution of median are I I 2 and 1 I [4(n + 2)] respectivel! .

Sol. We have fl.*) = 1 ;0 S* < I

"ftu)dr=l't.au=-tftrl = p(X sr) = Jo. Jo

Let n = 2m + 1 (odd), where m is a poeitive integer ) 1. Then median observation
is X,-.r,. Taking r = (m + 1) the p.d.f. of median \-r,is given by :

f^,,tx\=F;a'xn(1-r)n

. Err!. lr , ,^ 11_ *1n de _Q\n + 2, n + l)
" "t'\n+rP - Blrn+\m+ll Jo- 0(m+ l"m+ l)

- F(n+2)f(rn+1) T(2m + 2\ m+L 1

t(2tn+3) xm;TTi;JT= 2**2= i
.l ^ElxL-l)J = Jor' f^.r,r, * = pr**r\rn+Lt lo

g(m+g,m+11 m+2
= A^+t^+tl - 2(2m+ 3''

- v*t\-",J = Etxe,,Dl - IE{\ 
^*,,D2 

= e - i =*#", = #
SUMMARY

r The m.g.f. of tbe chi-equare distribution is MxQ) = 0 - ztfl, | 2t | < L'

. X? test of independence is used to examine whether the attributes are inde-

pendent or not

o The 957a confidence limits for the mean !r for t-test are given by t I 1s.65 (S/jz)

. The points of inflexion of F(u' ur) distribution exist for u. > 4 and are

equidistant frorn the mode.

. For large value of n, (n is the degree of freedom). X2 distribution tends to

normal distribution.
. For n 2 l, X2distribution is +ve skewed.

o The probability curve for the f-distribution is symmetrical about the line I = 0'

GLOSSARY

. chi-gquare Variate. Ttre square of a standard normal variate is known as

chi-square variate.
o F-Vsriate. lfX anrl Y are two independent chi-square variates with u, and

u, degree of freedom, then, the F-variate is defined by

, _ X/ur
'- Ylv,

NOTES
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. Non-Centrsl t-dietribution. IfX - N(F, o2), Y is independent chi:square

variate with n.d.f.. then ! = 4S-"""-""- JTr.li
has a non-central distribution with n.d.f.

REVIEW OUESTIONS

Economic conditions Intelligence

M Barl
Bich 85 to
Poor 165 175

Dicd anthnx Suruived
Inoculated rith vaeine 2 10

Not inoculat€d 6 6

l. The salee in a supermarket during a week are given below. Test the hypothesie that the
Eales do not depend on the day ofthe weeh, uEing a sigrificant level of 0.06.
Days : Mon Tueg Wed Thurs Fri Sat
Salea (in 1000 R ; 65 64 60 E6 7t 84

2. A survey of800 families with 4 children each revealed the following distribution :

No. ofboys : 0 | 2 g 4

No. ofgirls : 4 A 2 r O

No.offamilics: 82 l?8 ZSO 286 64

Is this re8ult con'ist€nt with tJ'e hypothesis that the mare and femare births are eouallv
probable ?

3. Fit a Poigson distribution to tbe following data and tast the goodness of fit :

t.. 0 I 2 g 4
f: 109 6E 22 s I

4- The number of scoot r accidents per month in a certain towo waa aa followa :
t2 a 20 2 t4 10 15 6 94

Uee chi-square teat to det€rmine ifthese frequenciee are in agr€ement with the belief
that accident conditions were the same during lO-month period.

6. 5O0 student€ at achool were graded according to their intelligences and economic condi.
tions oftheir hones. Examine whether there is any associati;n berween economic condi-
tion and intelligence, firom the following data :

& In al experiment on the immunisation of goats &om anthrox, the following resulLs
were obtained. Derive 5rour inferences on the efliciency of the vaccine.



7. A survey among women was conducbd to study the fsmily life. T$e observation were aB

follows :

Family Life

Happv Not happy

Educated

Non Educated

70

60

30

40

Test whether there is any association between family life and education.

8. A sample of300 students ofunder-graduate and 300 etudents ofpost-graduate claeses of
a university were asked to give their opinion towards the autonomouE colleges l90 of
the under-graduate and 210 of the post graduate 8tudents favoured the autonomous
Etatus. Present the above fact in tlte form ofa frequeucy tabl€ and test that opinious of
under-graduate and poet-graduate students on autonomous statuE of colleges are
independent.

9. The following values give the lengths of 12 samples of egyptian cotton taken from
a consignm€nt : 48 ,46,49,46,52,45,49,47 ,47 ,46,45,50. Test ifthe rnean length ofthe
consignment can be taken as 46.

A sample of 18 items has a mean 24 unit8 and standard deviatioa 3 units. Test the
hypothesis that it is a random sample from a Normal population with mean 2? units.

A randorn sample of 10 boys had the LQ's 70, 120, 110, 101, 88, 83, 95, 98, 107 and 100.

Do these data support the assumption ofa population mean I.Q of 160 ?

The mean life of 10 electric motors was found to be 1450 hrs with S.D. of 423 hrs. A
second sample of l? motors chosen from a different batch showed a mean life of 1280 hrs
with a S.D. of398 hrg. Is there a significant difrerence between meane of the two samples ?

A group of l0 boys fed on diet A anil another group of 8 boys fed on a dilTerent diet B
recorded the following increase in weight (kgs).

tt24
810 1

9
I

Does it show the superiority ofdiet A over the diet B ?

14, To compsre the prices ofa certain product in two cities, 10 shops when relat€d at ran-
dom in each town. The price was noted below :

10.

11.

12.

1S.

Diet A :

Diat B i

568
236

3

2

l0

City 1 :. 61 63 56 63 56 63 59 66

City 2 : 55 54 47 59 51 61 57 54

Test whether the average prices can be said to be the same in two cities.

The average number of articles produced by two machines per day are 200 and 250 with
standard deviation 20 and 25 respectively on the basi8 ofrecords of25 days production'

Can you regard both the machines equalb efficient at 5% level ofsignificance ?

The change in sleeping hours of 7 patients aft€r taking a medicine are as follows :

0.7, 0.1, - 0.3, 1.2, 1.0, 0.3 and - 0.4 hrs.

Do these data give evidence that the medicine produces additional hours ofsleep ?

lHint. I,l=1.4391
The daily wages in Rupees of akilled workers in two citieE ale aa follows :

The standard deyiation cstculated from two random samples of sizes 9 and 13 are 2.1
and 1.8 respectively. Can the samples be recrated ag drawn &on oormal populations
with the Esme standard deviation ?

44 6l
u58

16.

16.

t?,

Size of aamplz of worhers S.D. of wagec in thz sample

City A 16 25

City B 13 82

San4 ing Distriltutittrrs

NOTDS

S.V- Inttructional M ate fi a I
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8 MJ-laarrtid Nouid

n,

kt \, )L .....,, \ be n indepearleat vsriat€s, 4 havilg a geometric distribution with
paraneterp' ie., PO! - rr) - gr4-1, pi i I I = L - Ort, - f , 2, ?,,. -...

Show tbat \r, io distributed geometrically with paraneter (l - q, q, .,.... q,,t
Fm a randon eanple of sizs n fr.om a continuoue population whoee p.d.f p(r) is s.vm_
mstrical atr = B show tbatf,(p +:) . f*.t(F -,), wbere f,(.) it tbe p.d..f. or X,,r.

Sbow that the c.df ofthe mid-point (or urid-range) M - | p(,,, + \u,1, in random eample

ofeize n &om a coatinuous Xtopulation with c.df F(r) ig :

F(n) = 
p(M s m) r o f' lr,(zr, -rl - R ,!,ln-r . fts, d,J--

FURTHER READING

t.
\
s,
L

In'h.oduction to prolability atd Matbematical Ststiltics: V.I{" Rohatgi: Wiley Eartern.
Dirclete Distribudons: N,L. Jobrsou ard S.Ifttz, John Wll€y alrd Sons
Contlnuoue Univarate di8tributions-l: N.L.Joha:on and S,I{otz
Continuour Univarate distributins-Z: N.L.Johnson and S.Kotz, John rtriley



APPENDIX

STATISTICAL TABLES

Table I: Area under the Nomal curve from O to t = rD @)

z 0.m 0.01 092 0.6 0.04 0.05 0.06 0gl 0.0E 0.09

0.0

0.1

02

03

0.4

05

0.6

0.7

OJ

0.9

t.0

l.l
l2
l3
1.4

IJ
1.6

t1

tt
t9

z0

LI

22

2i
L4

L5

z6

z8

29

3.0

3.1

0.0m

0.0398

o.fin
0. 79

0.1554

0.1915

o8
02580

02t81

03159

03413

0.3dr3

03E49

0.&32

o.4tc2

0.4332

0.49
0.4554

0.&r
0,4713

0.4Tn

0.4821

0.4E6t

0.4898

0.491E

0.4938

0.4953

0.4965

o.4n4

0.4981

0.4941

0.499n

0.m40

0.0438

0.m2

0.12t7

0.1591

0.1950

0,,91

012
02910

03186

03438

o3r6s

03869

0.4049

0.4?0i1

04345

10.M3

lo.o*
I

I 
o464e

10.47te

lo'*
ln*
lo*
lo*
I 

o.4e2o

I 
o4e40

| 
0.4es5

| 
0.4e66

lo,4cls

| 
0.4e82

I 
o4ee/

I 0.4991

0.m80

0.or7E

0.(B71

0.1255

0.rc8

0.r9t5

03.24

02642

0,39
03212

03461

OJ6E5

03E68

0.M
0.4m.

0.4357

0.4474

0.4573

0.4656

0.4n6

0.4783

0.,430

0.4{166

0.4896

0.4c2

0.ry41

0.4956

0.4967

0.4976

0.49E'

0.4987
I

I 0.491

0.0120

0.05t7

0.0910

0.l29l

0.t@
0r0t9

013.57

0.2673

0367

03238

03la5

03ru
03907

0.40E2

0.4M

0.4310

0.4&

I 
o.4sE2

lo.w
I o.*o
I

| 
0478E

lo'*
| 

0.487r

I 
o.4e0l

l0.4t 
2s

I 
o4e3

| 
0.4e57

| 
0.4%8

l0.4en

I 
o4eE3

| 
0.4eEE

| 0.4er

0.01@

0.05t

0.0c4E

0.1331

0.17m

0fis4
02389

0nM
OM
032&

0350E

0374

03925

0.M
0.4251

0.4382

0.4%

04591

0.4671

0.473E

0.4793

0.4838

0.,1875

0.4904

0.ry21

0.4945

0.4959

0.8@

o.49n

0.49E4

0.49B8

0.49n

0.019

0.0596

0.09E7

0.1368

0.1736

02m8

o242.

021v

o3oa

032E9

03531

03749

03944

0.4 5

0.4265

0.4394

0.4505

lo.ntt
I

I 
0.46n

| 
0.474/

| 
0.47e8

lo*
| 

0.4s78

| 0.4e06

lo*
| 

0.4e46

| 
0.4e60

I 0.4e0

I 
o4ez8

| 
03e84

I 
0.4e8e

| 0.492

0.9239

0.0636

o.t026

0.14{b

0.lrn
02r?3

o24v

0n&
0J051

03315

03554

03Tn

03x2

0.4131

0.4279

0.4M

0.4515

0.466

0.46E6

0.4750

0.4E6

0.4846

0.,1881

0.4909

0.4cJl

0.4948

0.4961

0.4v71

o.4v79

0.4985

0.49E9

0.4992

0.wt9

0.0675

0.1064

0.1,143

0.1E(ts

02157

024p6

0nv
03tra

033,10

0.35T1

03790

039E0

0.4147

0.442

0.,l4lE

0.4525

0.4616

lo'*
I o.47

lo*
I

lo*
| 

0.4884

I 
04erl

10.s32
I o.+sas
I

lo*
lo'*
I 

o4e7e

| 
0.4e8s

I 
oie6e

| 0.492

0.6re 
I

0.ff/14 
|

0.il03 
I

0.1410 
|

0.1E44 
|

02re0 
|

02518 
|or*l

03106 
|

0336s 
I

035e 
1

03810

03987

0.4162

0.4306

0.44
0.4535

0.68
0.w
o.4761

o.,lEl2

o.,ntl

0.4887

0.4913

0.4934

0.4951

04963

0.ry8

0.4980

0.86
0.490

0.49'3

"*- 
|

-","I
0.ll4l 

I
0.r5r7 

|
0.r87e 

I0l
0e549 |

I

02452 |

I

03133 
|

0338e 
J0x2l

03830

0.,1015

0.41n

0.43t9

0.441

04545

0.,K13

0.4t06

0.4767

0.4E17

0.{5?

0.4890

0,4916

0.49X

0A9s2

0.4w
0.4.f,|t4

0.4981

0.49E6

0.4990

0.49B3

Awcrulir

NOTES

Setf-Inslrucrioqal Matefial 207



Prohbility and
Diatribution fh.any

NOIES

26 Self-In.hLct',or'd,l Uo&,'i,al

Table II : Valu€s of t
u a = 0.10 a - 0.05 c = 0.O25 a = 0.01 cr - 0.(x)5

I

2

4

5

6

7

8

9

t0

tl

12

t3

t4

t5

t6

l7

It
t9

n
2l

22

)a

24

J<

26

27

28

29

3rrn

l3E6

1.638

1533

I/;6
t.ffi
1.415

t39l

1383

1372

r363

1356

r350

r345

t34l

r337

1333

1330

t3?,

r325

BA
t32l

r319

r3l8

r3t6

l3t5

!3t4

l3t3

l3ll

6314

zgm

2353

zlt2
20t5

t.943

!.E95

la60

ra33

1.8t2

l1%

t1&2

Lnl
t:t6l

t:t53

r:t6

l:t&

t:ty
l7D

I

fi21

ltlT
t:7t4

t.?l l
1.708

1.706

l.7B

t.7)l

tg

l2x6

43)3

3.1&.

z7t6

2571

247

zrc
2W
2262

2U
zml

2.tD

zt@

zt4s

zt3l

ztm

zll0
zl0t

2MJ

2M
2080

2ffi4

zM9

2M
zw
za56

zw
zw
zw

31.&l

6.965

4.gl

3JO

3365

3.143

2g
2A96

2&l

2764

2118

25EI

26fi

2.64

2ffi.

25t3

2.%7

2s52

2539

ua
2518

2508

25@

2.492

2485

2.479

L47J

L6l
246'2

63557

9lrE

5A4l

4ffi
4fi2

3fr1

3.8
3355

325o

3.t@

3.I(b

3055

3Al2

zgn

2947

znl
2ffi
287E

2&l

2845

2-'81

2E19

Lqq7

ZM
zwl
z7t9

zTtl

2:163

T'ft



Tgble III r Valuee ol f witJr level of allpificance c
and degrcee of lreedon v

>9. 0.9 095 (Lfl) 030 on 0.10 oo5 001

I
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t
9

t0

ll
l2

13

14

l5

t6

t7

l8

l9

n
2l

2.

6
x
n
8
a
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0.020

0.115

030
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o8l
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t55

z@

2.5
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4.t t
46
58
581

641

7f,2

7.8

8X
8.90

9.9
1020

t0.E6

n.52
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lz88

t356

14

14.95

0s4
0.t03

035

0.?t

l.l4
l&
zl7
273

332

3.94

45E

58
5r9
657

1

7X
E67

9i9
lal2
loEs

59

2A
13.09

l3a5

14.61

t53t
16!5

1693

t7.71

l&49

ofi
139
.r 2',

3X
435

535

c35

7g
E34

93
1034

ll34
l2A
l3.g
t43
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t634

l7.g
t&34

t9.g
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2lg
2.9
2334

4.34

2534

xg
nv
ag
D.v

tgl
z4l
356

4J8

66
7A
83t
9s2

1016

I l.?t
t2.q)

t4.01

t5.t2

16,2.

1132

l&a
l95t
mfi
2to
2n
affi
2Lv
x02.

n.rc
&r7
?925

n32
3139

3246

3353

154

32.
4il
59
7E
t56
9S

lt.G
t224

t3.4
t46l
t5.81

t6$
t&t5

l93l
m46

2162

276
a.n
z5M

hl1
n.n
?a.43

?55
30.68

3t.E0

3Z9l

34.03

35.14

x25

L7l
4fi
66
7:18

924

1q64

rL@,

1336

14.68

r59,
na
l&55

l93l
21.6

2.31

a.g
24n
25sD

nfr

^4r?9.62

30.81

32,Ol

3320

34.6E

3556

3f.74
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39.(B

4X
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599

7&,
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I ltr'
12.9

t4g,
l55l
r6n
r83l

r9.68

21.@

2,X
21ft
25.@

xg
n.9
8Al
30.t4
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n6l
3392
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na
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3&6E

,{).11
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8n
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Ir34
BA
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