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Sufficiency and Completeness

UNlT-I

SUFFICIENCY AND
COMPLETENESS

NOTES

OBJECTIVES

After going through this unit, you should be able to:
* describe sufficiency
* know more about completeness
* define Cramer-Rao Inequality
¢ explain MVU and Blackwellisation

STRUCTURE

1.1 Introduction
1.2 Sufficiency

1.3 Minimal Sufficiency

1.4 Completeness

1.5 Some Important Terms

1.6 Unbiasedness

1.7 Uniformly Minimum Variance Unbiased Estimator
1.8 MVU and Blackwellisation
1.9 Summary

1.10 Glossary

1.11 Review Questions

1.12 Further Readings

- 1.1 INTRODUCTION

Many fundamental principles of statistical inference originated from the path-breaking
contributions of Sir Ronald Aylmer Fisher in the 1920s. Those concepts are alive, well,
and indispensable. The deepest of all statistical concepts is sufficiency that originated by
Fisher and it blossomed further, again in the hands of Fisher in 1920.
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Section 1.2 introduces Neyman factorization of a likelihood function. In Section 1.3, a notion
of minimal sufficiency and the fundamental results of Lehmann and Scheffe are
discussed. These help in locating the best sufficient statistic, if it exists. Section 1.6
introduces the concept of completeness.

1.2 SUFFICIENCY

We begin with observable independent and identically distributed (iid) random variables
X4, -+ X, with a common probability mass function (pmf) or probability density function
(pdf) f(x), x € X. The sample size n is assumed known. Practically speaking, we observe
Xy, .. X, from a population whose distribution f(x) is indexed by a parameter (or parameter
vector) @ (or 8) which captures important features of the population. A practical aspect of
indexing f(x) with 8 (or 8) is that the population distribution would be completely
specified once we know 6 (or ).

We let a pmf or pdf bef{x; 8) or f(x; 8) where the parameter  (or 8) is fixed but unknown.
In the case of a single parameter, we write 6 € ©, the parameter space, © ¢ R. For
example, one may have X distributed as N(u, o%) with p unknown, —ee < 1 <o, but 5(>0)
is known. Then, f(x; 8) will be the same as a N(u, o°) pdf with 8 = i and the parameter
space © =R. But, if both j, o are unknown, then f(x; 8) will be the N(u, ¢?) pdf with the
parameter vector 8 = (i, %) and © = R x R™.

Our quest for gaining information about the unknown parameter 6 (or 8) may be
considered a core of statistical inference. The data X,,...,.X,, of course, have allinformation
about 8 even though we have not yet specified how to quantify “information”. A dataset
may be large or small, and data may be nice or cumbersome, but it is ultimately
incumbent upon an experimenter to summarize the data so that all interesting features
are captured by the summary. That is, ideally a summary should have the exact same
winformation” about 8 as do the original data. Such a summary would be as good as the
whole data and it will be called sufficient for 6.

Definition 1.1. An observable real (or vector) valued function T =T(Xy,...,X,) is called a statistic.

n
Some examples of statistics are X, 00— X0 EX,-, S%, and so on. As long as
i=1
numerical evaluation of T, having observed data X, = x;...X, = x,, does not involve any
unknown entities, T will be called a statistic. Supposing that X, ..., X, are iid N(u, 6%)

where i is unknown, but ¢ is known, T = X is a statistic, but its standardized form
J—E(Y - }1)/0 is not.

Definition 1.2. A statistic T is called sufficient for an unknown parameter @if and only if the
conditional distribution of the random sample X =(X,,... X,) given T=1t does not involve 6, for
allte TS A

In other words, given the value ¢ of a sufficient statistic T, conditionally there is no more
“information” or “juice” left in the original data regarding the unknown parameter 6.
Put another way, one may think of X trying to tell us a story about 6; but once a sufficient
summary T is available, the original story becomes redundant. Observe that X is
sufficient for 0 in this sense. But, we are aiming ata “shorter” summary statistic which
has the same information available in X.

Definition 1.3. A vector valued statistic T =(T,..., T;) with T; =T( X, .. X)i=1,.. . kis
called jointly sufficient for the unknown parameter 8(or 6) if and only if the conditional
distribution of X =(X,...,X,) given T = t does not involve @(or 6), forallt € T c %~



1.2.1 Neyman Factorization

A dataset consists of X;,...,X,, from a population with a common pmf or pdf f(x: 6) where
8 is an unknown parameter. The Neyman Factorization Theorem is widely used to find
sufficient statistics.

Definition 1.4. Having observed X; = x;, i =1, ..., n, a likelithood function is defined as
1
L®)= []f(x:0).0c0 (1.1)
i=1

In a discrete case, L(8) stands Py{X; = x; N...n X, = x,}. In a continuous case, L(8) stands
for the joint pdf at the observed data (xy,...,x,) when 6 obtains. One may note that once
{x;;i=1,...,n} is observed, there are no random entities in equation (1.1). A likelihood
function L(.) is simply a function of 8 only.
Itis not really essential that X be real valued or iid. In many examples, it will be so. But, if
Xhappens tobe vector valued or if it is not iid, then the corresponding joint pmf or pdf of
X;=x;i=1,...,n, would be the likelihood function, L(6). We will give examples shortly.
Sample size n is assumed known and fixed before
data collection begins.

One may note that 8 may be real or vector valued, however, we first pretend that 8 is real
valued. Fisher discovered the fundamental idea of factorization. Neyman discovered a
refined approach to factorize a likelihood function. Halmos and Savage, and Bahadur
developed more involved measure-theoretic treatments.
Theorem 1.1. (Neyman Factorization Theorem) A real valued statistic T = T(Xy,...,X,) is
sufficient for an unknown parameter @if and only if the following factorization holds:

L(&=glT(xy,...,x,); 6] h(xy,..,x,) forall x;,...,x, € X (1.2)
where functions g(.; 8 and h(.) are both non-negative, h(.) is free from 6,and g(T(.); §) involves
Xy, ... X, only through T(xy, ... x,).
Proof: For simplicity, we provide a proof only in adiscrete case. Let us write X = (X,,...,X,)
and x = (xy,...,X,). Let A and B respectively denote the events X = x and T(X) = T(x), and
observe that A ¢ B. :
Only if part: Suppose that T is sufficient for 8. Now, we write

L(6) = Po{X = x}

= Pg{X=xNT(X) =T(x)}, since AcB (1.3)
= Po{T(X) = T(x)} Py{X =x I T(X) = T(x)}

Denote g(T(x;,...,x,); 8) = Po{T(X) = T(x)} and h(x;,...,x,) = Pg{X = x | T(X) = T(x)}. Since
T is sufficient for 8, by Definition 1.2, the conditional probability Pg{X = x | T(X) = T(x)}
cannot involve 6. Thus, k(x,, ..., x,) so defined may involve only x,, ..., x,. So, the
factorization given in equation (1.2) holds.

If part: Suppose that the factorization holds. Let p(t; 8) be the pmf of T. Observe that

p(t;0) =P{T(X) =t} = Z { f(y,—;e)} = Z L(8) . Itis easy to see:
yT(y)=t [ i=1 yT(y)=t
PolX =x IT(X) =t} = 0if T(x) #¢ (1.4)
Forall xe X such that T(x) = and p(t; 8) # 0, we can express Py{X = x | T(X) =t} as:
L(8)/p(t; 8) = g(T(x); ) h(x)/p(t; 8)
=g(::0)h(x)/ Y, L(6)
yT(y) =t
=st:0)h@)/ Y, g(T(y):8)h(y)
yT(y)=t
because of factorization in equation (1.2). Since g(t; 8) # 0, one has:

Sufficiency and Completeness

NOTES

Self-Instructional Material 3



Statistical Inference

NOTES

4 Self-Instructional Material

PofX =x I T(X) =t} = g(t; 8) h(x)/ (g(t; 8)} { 2 h (y)}

yT(y)=t

=h(x)/{ ¥ h(y)} =q(x) (15)
yT(y)=t
with g(x) free from 6. Equations (1.4) and (1.5) complete the proof.

In Theorem 1.1, we do not demand that g(T(xy,..., x,,); 6)

is a pmf or pdf of T(Xy,...,X,). It is essential, however, that

h(xy,..., x,) must be free from 6.

It should be noted that the splitting of L(8) may not be unique. Also, there may be
different versions of sufficient statistics.
Remark 1.1 In Theorem 1.1, it was not essential that Xy,...,X,, or @be real valued. If X;,... X,
are iid p-dimensional observations with a common pmf or pdf f(x; 6), 8 € @ < ', the Neyman
Factorization Theorem will hold:

n
Denote the likelihood function, L(6) = H f(x;;8)-
i=1

A vector valued statistic T = (T,,...,T}) is jointly sufficient for

8=(8y,..,6) if and only if L(6) = g(T; 6) h(x;,...,x,) for all

X1, %, € X & W, with both g(.; 6), h(.) non-negative, g(.; 6)

depending upon x only through T, and h(.) is free from 6. (1.6)

Example 1.1. Suppose X, ..., X, are iid Bernoulli(p) with p unknown, 0 < p < 1. Here,
X={0,1},0 =p,and ©=(0, 1). Then,

2%
=1

L= [Ip@-p) " =p™ (1-p) & 17)
i=1

2 3x .
It matches with factorization in equation (1.2) where & {Z X;; P] =p= (1-p)' ,,z. “ and

i=1

n
h(x,,-..,x,) = 1forall xy,...,x, € {0,1}. So, the statistic T = ZX,- is sufficient for p. We could
i=1

n
instead express L(6) = g(xy,..., X,; p) h(xy,..., x,) with g(xy,..., X,; p) = H pi(1-p) "
i=1
and f(xy,...,x,) = 1. So, one could also claim that X = (X;,...,X,) was sufficient for p. But,
n
2 X; provides a significantly reduced summary compared with X, the whole data.
i=1
Example 1.2. Suppose X;, ..., X, are iid Poisson(A) with A unknown, 0 < A < . Here,
X=1{0,1,2,...},8 =2, and © = (0, ). Then,

n

2 -1
L) = H{e-x A% /x, !} =g ;in ’ (Hx,- !J (1.8)
i=1

i=1
n

. 2
It matches with factorization in equation (1.2) where g[Zx,-;l]:e‘"" A"' and
i=1

i=ml

-1
n n
Iy s Xy) = [l [« !] for all x,,.., X, € {0, 1,2, ...). So, the statistic T= 3 X; is
i=1



n

sufficient for L. Again, from equation (1.8) one notes that X is sufficient too, but 2 X; is
i=1

a significantly reduced summary.

Example 1.3. Suppose X, ..., X, are iid N(, 6°) with i, 6* both unknown, —ee < 1 < o,
0 < 6 < 0. Denote 8 = (1, 6%), X =R, and © = R x R*. Now,

L(®)= {c,j_zi}—"exp —%[ixﬁ -2u ix,- +n|.12]//0'2 (1.9)
=1 i=1

It matches with factorization in equation (1.2) where

n H n 1
g[Zx,-,fo‘;e] =oc"exp —%[fo --'4121} +nu2]/o'2
i=1 i=1 i=1 i=1
and h(xy e x,) = 2R}

n n
forall(x;,...x.)e K" So, T= [ZX,- ZX,Z] is a jointly sufficient statistic for (1, 0°).

i=1 i=1

If T is a (jointly) sufficient statistic for 6, then any statistic U
which is a one-to-one function of T is (jointly) sufficient for 6.

n
Example 1.4. (Example 1.3 Continued) We have x=n‘12xi , 8% = (n—l)_1
i=1

n n " n n
ZX? -l {ZX,-] . It is clear that the transformation from T = [EX,-, ZXEJ to
i=1 i=1

i=1 i=1

U = (X, S is one-to-one. So, we can claim that ( X, S%)is jointly sufficient for (1, 6°).

Let T be a sufficient statistic for 8. Consider a statistic T,
a function of T. Then, T" is not necessarily sufficient for 8.

An arbitrary function of a sufficient statistic T need not be sufficient for 8. Suppose that
X is distributed as N(8, 1) where — e < 8 < e is an unknown parameter. Obviously, X is
sufficient for 8. One may check that 7" = | X |, a function of X, is not sufficient for 0.

From joint sufficiency of a statistic T= (T, .., T,) for 8 = (8;,..., 8,),
one should not claim that T; is sufficient for 8, i =1, ..., p. Note that
T, 6 may not even have the same dimension! See Example 1.5.

Example 1.5. (Example 1.4 Continued) We know that (X, S?) is jointly sufficient for
(1, 6°).So, (S% X)is alsojointly sufficient for (1, 6%). Should one claim that S? is sufficient

forpor X is sufficient for 622 Of course, not.

Example 1.6. Suppose that X;,..., X, are iid Uniform(0, 6), and 8 (> 0) is unknown. Here, .

X=(0,08)and © =%R". Now,

1

L®)= [J{671(0<x <0)}.

i=1

= 07"1(0< x,,, <0)I(0 <X,y <X,y) (1.10)

Sufficiency and Completeness
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where x,.,, x,., are, respectively, the observed smallest and largest order statistics.
The last step in equation (1.10) matches with factorization in equation (1.2) where g(x,,.,; 6)
= 07" 1{0 < x,,, <0) and h(xy,....x,) = [(0 <X,y <X,,) forall xy,..., x, € (0,6),6>0. 80, X
is sufficient for 6. :

It is not crucial that X, ..., X, be iid to apply Neyman factorization.

Example 1.7. Let X,, X, be independent with
fulxy;8) = 0271, f,(x,;0) =207

as the respective pdfs where 8(> 0) is an unknown parameter and 0 < x;, X, < . The
likelihood function is the joint pdf:

, L(6) = f;(x,: 8) fu(x;; 8) = 20% ¢ (1 +2%) (1.11)
for 0 < x;, X, <. The step in equation (1.11) matches with factorization in equation (1.2)
so that T = X, + 2X, is a sufficient statistic for 6. =
The next result shows a simple way to find sufficient statistics when a pmf or a pdf
belongs to an exponential family. Its proof follows easily from equation (1.2).

Theorem 1.2 (Sufficiency in an Exponential Family) Let the random variables X;,....X,, be
iid with a common pmf or pdf

k
fix; )= a(6) g(x)exp {Zb’- (6)R; (x)}

j=1
1
belonging to a k-parameter cxponential family. Denote the statistic T;= Z Ri(X;),j =L...k
i=1
Then, T = (Ty,..T}) is jointly sufficient for 6.
Sufficient statistics derived earlier can also be found using Theorem 1.2. We leave these
as exercises.

How to verify that a statistic is not sufficient for 67
Discussions follow.

[£ T is not sufficient, then the conditional pmf or pdf of Xy,...,X, given T =t must involve
8, for some data xy,..., x, and {. We follow this route.

Example 1.8 (Example 1.1 Continued) Denote U =X; X; + X The question is whether U
is a sufficient statistic for p. Observe that

P(U=0)
=P{X; X,=0nX;=0}
=P{[X;=0nX;=0nX;=0]
UX;=0nX,=1nX3=0] (1.12)
UlX; = 1nX,=0nX;=0]}
= (1-p)*+2p(1-p)
which reduces to (1 - p)2 (1 +p).Since {X;=1N X,=0nX;=0}isa subset of (U =0}, we
have

P(X;=1nX,=0nX;=01U=0)
=PX;=1nX,=0nX;=0)/P(U=0)
, =p(-pF/I1-py A +p)=p/(1+Pp)
which invoives p. So, U is not sufficient for p.



1.3  MINIMAL SUFFICIENCY

We noted earlier that X must always be sufficient for 8. But, we aim at reducing the data
by means of summary statistics in lieu of considering X. We found that Neyman
factorization provided sufficient statistics which were substantially “reduced”
compared with X in a number of examples. As a principle, one should use the “shortest
sufficient” summary. Pertinent questions arise: How to define a “shortest sufficient”
summary and how to get hold of such a summary?

Lehmann and Scheffe developed a mathematical formulation of minimal sufficiency and
gave a technique to locate minimal sufficient statistics. Lehmann and Scheffe included

important follow-ups.
Definition 1.5. A statistic T is called minimal sufficient for unknown parameter 8if and only if
(i) T is sufficient for 6, and
(ii) Tis minimal or “shortest” in the sense that T is a function of any other sufficient statistic.
Let us think about this concept for a moment. We want to summarize X by reducing it to
some appropriate statistic such as X, a median (M), or a histogram, and so on. Suppose

that in a particular situation, a summary statistic T = (X, M) is minimal sufficient for 6.
Can we reduce this summary any further? Of course, we can. We may simply look at, for

= F =
example, T;= X orT,=MorT;= 3 (X +M).Can T, or T, or T3 individually be sufficient

for 6? The answer is no, none of these could be sufficient for 8. Because if, for example, T,
was sufficient for 6, then T= (X, M) would have to be a function of T;. But, T cannot be
a function of T; because we cannot uniquely specify T from the value of T, alone. A
minimal sufficient summary T cannot be reduced any further to another sufficient
summary statistic. In this case, a minimal sufficient statistic T is the best sufficient
statistic.

1.3.1 Lehmann-Scheffe Approach

The following theorem was proved by Lehmann and Scheffe. This is an essential tool to
locate minimal sufficient statistics. Its proof requires some understanding of a
correspondence between a statistic and a partition it induces on a sample space.
Consider X=(X,...,X,) withx = (xy,...,x,) € X". Astatistic T=T(X,,...,X,) is a mapping
from X" onto some space T. For f € T, let X; = {x:x € X" such that T(x) = t}. These are disjoint
subsets of X" and alsoA" = A, € T X,. In other words, (X:t € T} forms a partition of the space
A" induced by the statistic T.
n "

Theorem 1.3. (Minimal Sufficient Statistic) Consider h(x, y; 6) = H f [x,- ;0 H fxy ;6)] ;

i=1 i=1
the ratio of the likelihood functions from equation (1.1) at x and y, x, y € X". Suppose that there
is a statistic T =T(X;,..., X,) = (Ty,..., T}) such that the following holds:

With arbitrary data points x = (xy,...,X,), Y = (Y1,...Y,),
both from X", the expression h(x, y; 6) does not involve (1.13)
ifand only if T{x) = T{y),i=1,...k
Then, T is a minimal sufficient statistic for 6.

Proof: We first show that T is a sufficient statistic for 6 and then we verify that T is
minimal. For simplicity, let us assume that f(x; 8) is positive forall x € X"and 6.

Sufficiency and Completeness
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Sufficiency part: Start with {X:t € T} which is a partition of X" induced by T. In X,, fix an
element x,. If we look at an arbitrary element x € X", then this element x belongs to X, for
some unique f so that both x and x, belong to the same set X;. So, one has T(x) = T(x,).
Thus, by invoking the “if part” of the statement in equation (1.13), we can claim that h(x,
x;; ) is free from 6. Denote i(x) = h(x, x,; 8), xe X". Hence, we write:

T1£(x:0) = TT£(x::8) h(x) =(T(x); 8) h(x)
i=1 i=]

with x, = (x,,..., X,,,). Using Neyman factorization, the statistic T is sufficient for 6.

Minimal part: Suppose U = U(X) is another sufficient statistic for 8. Then, by Neyman
factorization, we write:

17 (x:8) = go(Utx); 8) ()
i=1

with some appropriate g,(.;8) and (). Here, hy(.) does not involve 8. Now, for any two
sample points x = (Xy,...,X,), ¥ = (11, ¥,) from X" such that U(x) = U(y), we obtain:
h(x,y; 0)

¥ l'jf(xfia) ljf(}/ir'e)

= {8o(U(x); 8) hy(x)}/ {8a(UW); 8) o)}

= ho(x)/ ho(y), since go(U(x); 8) = go(U(y); ©)
Thus, h(x, y; 8) is free from 8. Now, by invoking the “only if” part from equation (1.13), we
claim that T(x) = T(y). That s, T is a function of U. Now, the proof is complete.

Example 1.9 (Example 1.1 Continued) With x = (xy,...,x,) and y = (y,..., ,), both data
points from X, we have:

{I_-[f(xa:(*)}/{nf(y,-;e)} =(P(1—P)“1){§' 7 } (1.14)

= jixi‘jt%}
From equation (1.14), it is clear that (P (1 = P) - )L, i1 ] would become free from p if

n n n n
and only if Z Xye— z y; =0, thatis, if and only if 2 X; = Z y; . Hence, by the theorem

i=1 i=1 i=1 i=1

n
of Lehmann-Scheffe, T = ZX,- is minimal sufficient for p.

i=1
Theorem 1.4. A statistic which is a one-to-one function of a minimal sufficient statistic is
minimal sufficient.

The following theorem provides a useful tool for finding minimal sufficient statistics
within a rich class of statistical models, namely an exponential family.

Theorem 1.5. (Minimal Sufficiency in an Exponential Family) Let X,,..., X, be iid with
a common pmf or pdf

k
fix; @) = a(&) g(x) exp {Zbi (@)R; (x)} (1.15)

j=1



n
belonging to a k-parameter exponential family. Now, let us denote the statistic T;= ZR:" (X:),

i=1

j=1,....k. Then, T=(T,,.. -+T}) 1s (jointly) minimal sufficient for &.

1.4 COMPLETENESS

1. The statistic T is said to be complete if for any function ¢(t) such that E{o(H)} =0
for almost everywhere
= o(t)=0
2. The statistic T is said to be complete iff its family of distribution is complete.
3. The statistic T on the family of distribution {Fg, 0 € @} is called complete if for
any measurable function ¢(t) such that E{o(t)} =0 forall (V)0 e @ where
is the parametric space.
— ®(t) = 0 for almost everywhere

1.4.1 Bounded

The statistic T is said to be boundedly complete if for any function ¢(¢) such that | o(f) | <M,
for some M

and E{¢(t)} = O for almost everywhere
= o(t)=0
H
Example 1.10. If X ~ b(1, 6), obtain T = in is sufficient and complete statistic for 6.
i=1
Solution. For sufficient statistic:
We have X ~ b(1, )
n
= T= Y % ~B(n,6)
i=1
P(T=1)=p(t)= (/) 6'(1-0)"~! (1)

The joint p.m.f. of xy, x,,..., x,, is given by
P(x, X..., %,; 8) = 0% (1-90)"" ,2:,"'
= o1 -0y~ . (2)
Thus, the conditional p-m.f. of x;, x,,..., x, given T =t is given by
P(xy, x5,..,%,;0/T =)

P(xl,xz,...,x,,;ﬂ)

p(t)
R See (1) and (2
~ e [See (1) and (2)]
= nl is independent of §
(")
Hence, T is sufficient for 9. -
For complete statistic:
Since, T= Zx,- ~B(n,0)

P(T=1)=p(t)="c,0' (1-0)" "'

Sufficiency and Completeness
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Let 0(t) be a measurable function of §,i.e., -

E{o(t)}= Ef;q»(t)p(t)
=Yoo () (1-8)""
- (-7 Zot0 () %)

Since, E{o(t)}=0
=P o(t)=0

,, t

n sl 2D
=0
n % 6 :
= gﬁ(ﬂ( cg)?L' = 0, where [—1—_—9) =A
or Z a(t)A' =0, wherea(t) = ¢(‘)("c,) 3)
=0

= a(0)+a(l)r+a2)A*+...+an)h"=0
This is a polynomial in A, which is identically zero. This implies all the coefficients are
Zero.

ie., a(t)=0
or o) (7) =0 [See(3)]
=» ot)=0
Thus, T= 2 x; is complete statistic for 8
i=1

Hence, T is sufficient and complete statistic for 6.

n
Example 1.11. If X ~ P(6), show T = Zx,- is complete and sufficient statistic for 6.
i=1

Solution. For sufficient statistic:

We have
e—e X
PX=x)=p(x) = R =Rl 2.
The joint p.m.f. of Xy, X,,..., X, is given by
g (-lzx"
Plxs, Xapoos Zg ) B e
[T«
i=1
e—nB B!
— - -
[T
=1
L s
Since, X~P(0)= 2, =t~P(n,0)

i=1



We have

e (n0)

p(t)= n

The conditional p.m.f. of x;, x,,...,x, is given by le- =

P(xl,xz,..., x,,;B)
p(t)
e ™g t!

X
H -1 #
fo )]

i=1

P(xy, X0 %,; /T =t= Y %,) =

t!
T SR AT e
Hx,xn’
i=1

which is independent of 6.

Hence, t= Zx,— is sufficient statistic for 6.

1.4.2 Complete Statistic
Let 0(t) be a measurable function of #

Eylo1= 3 6()P[T=¢]

ie.,
- e ™ (ne)'
= Toty )
t=0
-0 - ¢(t) nr et
= e 2 _-__fl
t=0
=Y a(r)e!
t=0
I
where a(t) = q’—(f)th’-T—
Since, Eg{d(8)}= 0
= " Za(t)et =0
t=0
. Y a(t)e' =0
£=0
This is a power series, which is uniformly zero, then all its coefficient will be zero,
iz, at)=0
4
n

= o(t) x =
= o()=0

Thus, T= Z x; is complete statistic for 8 hence, T is sufficient and complete statistic for 0.

Sufficiency and Completeness

NOTES
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Statistical Inference Example 1.12. If X ~ U(0, 6), show that T = X,,), n'" order statistic is complete and sufﬁcieni
statistic for 6.

Solution. Sufficient statistic:

Wehave F(x)=

- F(x)=
NOTES
Then the joint p.d.f. of X;, X,..., X, is given by f{xy, ..., X,i 0)= Bi“

Note that the p.d.f. of n™ order statistic isf,(x) = n[E@)]" ! fix)

G
nl=| x=—
6 0

M n-19<x<0
eﬂ

1l

The conditional distribution of x;, x,..., X, given
T = Xy is givenby

X Ix ,...,x
flxy, xz,-..,x,,;(-)/T-_-x(")) = _)f_(l_Z__ﬂ_)

fulx)
<-4 8"
s n /en xn— 1
is independent of 8. Hence, X is sufficient statistic for 6
Complete statistic:
Wehave £ = -;—nx“'l,OSxSB
Let ¢(t) be a measurable function of T i.e., 0
Eqglo()}=0
: "
= Jo@) f(Hyat =0,
0 :
[ n
n-1 el
= Iq>(t) ot dt =0
0
=
= r— ja (t)dt =0
0
where a(t)= o) "

(]
Jattyae =0
0

)
Let A= [a(t)t =0 differentiating it w.r.t. 8 both sides, we get
0
dA
— =a(®
o (6)

12 Self-Instructional Material



- a(®)=0V 8
at)=0=>¢(t) " 1=0
= ot)=0
Thus, T = X, is complete statistic for .
Hence, T is complete and sufficient for 0

u(x)

Note: A= I f(x)dx
0
dA du
- f(“);;

1.5 SOME IMPORTANT TERMS

1.5.1 Laplace Transformation
(a) Unilateral Laplace transformation

() 1 [h(x)e ™ ax =0,v 850
0
Then hix)=0

i) 1 jh(x)e"’"dx =0,V050

Then h(x)=0
(b) Bilaterial Laplace transformation

O 1 [ [h(x,y)e ™" e axdy =0,v(8, 6,0
~oa ()

Then h(x,y)=0

Example 1.13.If X ~ N(8, 1), show that T = X is complete and sufficient statistic for 6.
Solution. For sufficient statistics:
1 2
s W
X,0)= ——e¢ 2
A0

Thejoint p.d.f. of x,, x,,..., x,, is given by

, =0 < X< oo

1 n/2 —%i(x,» -0}2
r X2y Xy 0)=|— i
fixy, x,,...,x,;0) (21:) e

( 1 )J’!/Z —%i(x,--—f+f—8)2
s

2

12 *%[Z(z,——f}z+n[f-o)2J
(=) ¢

= g(t, B) h(xp xz.v s xu)

1 n/2 —E(f _9)2
he: £ 0) s | —— 2
where 8(t, 0) ( 21:) e
227
and k(xy, x5,...,x,) = e 1=

Sufficiency and Completeness

NOTES
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Statistical Inference Complete statistic:
x ~N(8,1)

P= 5E~N[B,l)
n
Thep.d.f.of T
TS Jn —m’Z(t—B)1
T=)= —
f( ) Jﬁe

NOTES Let ¢(t) be a measurable function of T,ie.,

Eolol= [ o) f(1)dt

) —n/2f 9

J—jq:(t

ﬁ _Ng? By o
2 2 '
—e j o(t)e 2 e"dt

47

Eqglo()}=0

.\/H g =L
= e 2 fle 2 "®dt =0
= Jf()

= J a(t)e™®dt =0

Ba
where a(t)= ¢(t)e 2
or I a(t)e™® dt =0
where 0 =-n8
= a(t) = 0, by unilateral Laplace transformation

2p
S o(t)e 2 =0
2

= o(f)=0as e 2 #0
Thus, T= X is complete statistic for 8.

1.5.2 Estimator and Estimate

An Estimator is a function of random variables but the estimate is a function of observed
values.

1.5.3 Parameter

The population unknown (such as pand o°) is called a parametere.g.,
(a) Normal Distribution: The p.d f.is

Sl i o -%r(!f-u)2 et =
o Mo
c>0
x~N(y, o)
(p.d.f. means continuous distribution)
In the above distribution i & © are parameter.

14 Self-Instructional Material



(b) Uniform or Rectangular Distribution : The p-d.f. x ~ U(a, b) or x ~ R(a, b) is

) fio)= 3

(i) fix)=1,0<x<1ie,x~U(0,1)

Asxsh

(iii) fix)= %,OSbe,x-uU(O,b)

1
In general A= 3 0<x<86,x~R(0,9)

() Two Parameter Negative exponential Distribution: The p.d.f. is

L(x-p)

@) fix)= %e? ,MSx<oo

It is aiso called exponential distribution (with parameter i and o) used in
life testing.
(i) Ifp=0thenp.df.is
e
flx)= ;e 0SS xS

or flx)= g-e‘“",xao

Name of this distribution is single parameter negative exponential or exponential
distribution with parameter o (or 0)

(d) Gamma Distribution: If x ~ G(a, p) the p.d.f. is
P
@) fix)= %x”"le*”,0<x<w,a,p>0
Parameters of this distribution are o and p-
! G S
i) fa=1thenflx)= =x""'e™™, x>0, p>0
(i) en f(x) I P

Itis also known as gamma variate distribution with parameter p.
If p=1thenf(x)=0e ™, x>0
is known as exponential distribution with parameter c.

(e) Weibull Distribution: (Extended form of exponential distribution)

(i) The p.d.f. is f(x) = abx®~1e~"
is called Weibull distribution with, x > 0 parameter 4 and b

(#) For b = 1, fix) = a & ™ i.e., Weibull distribution reduces to exponential
distribution with parameter a.

(f) Pareto Distribution: The p-d.f.is
fr)= oK®x0+) _ 8
K
Itis also called income distribution with parameters 6 and K.
(8) Power Distribution: The p-df.is
f0)=0a%2**L 0<x<q
Itis called power distribution with parameter ‘8’ and ‘a’.
Fora=1, Ro)=02**1 gg¥<q

is also known as power distribution with parameter 6.

B+1
(—IS-) ,K<€x<
X

Sufficiency and Completeness
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Discrete Cases
() Binomial Distribution: The p.m.f.
p@=(2)p " %, x=12...,mp+q=1

is known as binomial distribution with parameter 1, p and is denoted by x ~ B(n, p)
For n = 1 binomial distribution reduces to Bernoulli distribution with parameter

ie. p@)=p*q %x=0,1
(i) Poisson Distribution: The p.m.f.
-Aqx
plx)= -l =012

is called poisson distribution with parameter A
() Geometric Distribution: The p.m.f.
) =p7 =p(1-p)",x=0,1,2,..;p+9=1,0<p<1
is known as geometric distribution with parameter p.
(k) Negative Binomial Distribution: The p.m.f.

Erx=1)
p(x)= ( (r—l) J P qxrx=0,1,2,..-f

is known as negative binomial distribution with parameter r and p.
Forr=1, wehave

p(x)=pg"x=0,1,2,...
which is the p.m.f. of geometric distribution with parameter p.

1.5.4 Estimation of Parameter

Suppose we are given random sample from a population such that its probability
distribution (p.d.) has some known form (i.e., normal, exponential uniform, weibull,
gamma etc.,) with the parameters of this are not known.

For example: The height of the people of certain area is likely to follow normal
distribution, lifetime of certain items follow exponential distribution.

The problem then arises of estimating the parameters of the assumed distribution from
the given sample. The estimation problem can be divided into two types:

1. Interval estimation
2. Point estimation

Internal estimation: we obtain an interval in which the true value of the parameter may
lie with certain probability.

In point estimation we try to find the exact value of the parameter.

Point Estimation: In order to obtain a point estimate of a parameter we shall use a
statistic (estimator).

1.5.5 Statistic
Any function h(x;, X, ..., X,) that does not depend upon any unknown parameter is
n
called a statistic (or sample known are called statistic). Thus T = Z x; is a statistic but
i=1

X~ . &
X 71 s not a statistic unless p and & are known.
o

Suppose we want to study the average life of bulbs in a consignment of twenty thousand
manufactured by a certain firm. For this we take a sample xy, X,,..., X, of n bulbs and



measure their average. Suppose its distribution is given by f(x, 8) (exponential). On the
basis of the simple we have to estimate 8. Now as we know the possible estimates of 6 are

arithmetic mean, mode, median, geometric mean LX, M,, I\A/I, G"), variance etc., but
which one should be preferred? To solve this problem certain requirement are to be laid
down for a good estimate and those requirement are

1. Unbiasedness

2. Consistency

3. Efficiency

4. Sufficiency

1.6 UNBIASEDNESS

A statistic ‘T” (sample known) is said to be an unbiased estimate of parameter 6
(population unknown)

IfE(T)=6

If E(T) =0 £ c thencis called the biasin T

If E(T) = a0 + b then T is linearly biased such a bias can be corrected as follows
Suppose E(T)= ab + b then

E(T;b)=9

-b . 3 -
is an unbiased estimate of 6.

Hence,

Example 1.14. Show that the sample mean (f) is an unbiased estimate of population mean ptin
sampling from a normal population.

Solution. For a random sample x;, x;,..., X,

e 1 n
The sample mean X = ;in
i=1
s 1< ]
E(X) = Ei—»x;
" i=1 |

i §
;E[x1 +Xp ot X, |

Since, x;'s are identically independent random variables (i. . r. v)
o 1
E(X) s [E(xl) +E(x;) +...+E(x, )]
1
= ;[u+u+...+p]

= —.nl

Sufficiency and Completeness
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Hence X is unbiased estimate of K.

Note: If

ie.,

Then

o

We have proved

Since x;’s are identical independent random variables (i.i.r.v)

x ~N(, o)
E()_() =n
V(X)= o?

X ~ N (u, 6*/n)
E(R) =

2

v(X) = i’n_
E(i) =

=
£l
1}

-
p—
==
E =
=
SSRGS

=

"

= :—2[V(x1)+V(xz)+---+v("")]

V(')E) = ;15[02 +0? +...+02]

= T
nl

1
=lg.
n

1 n
=—2V X
i=1

1
= ;;5-\I[Jﬁ +‘X2‘+...+'xﬂ]

Example 1.15. Show that the sample mean is an unbiased estimate of the population mean in
sampling from exponential distribution.

Solution. The p.d.f. of a random variable x is

Wehave

Since, I

1

ol B

fix,0)= %e”"’“,xze

E(X)= j x f (x)dx
0

1 _x/a
= |x= d
I 9e X

0

]

1 T -x/0
y ‘!xe dx

1 putting o = % in gamma distribution

AN



Sufficiency and Completeness

far-tes ax = o°[P

=

For P=2

NOTES

]
- 4
=

]

les]

—
==
b
AT
[}
I
i

1

—

=

= l-nB
n

=0
Hence, sample mean is an unbiased estimate of population mean 6.

Example 1.16. If x,, x,,...,x, is a random sample from a normal population N (u, 1), show that

n
= '1—1 fo is an unbiased estimator of 1 + 1 (i.e., E(t) = 4 + 1).
i

Solution. We are given
EX)=pnVi=12..,n

V(X)=1
Since, vy = E(X?) - {E(X,)}’
= E(X2) = v(x,)+{E(X))
=1+p?
or E(xtz) =u’+1

Therefore, E(#)

i

I

|
—_—

=
(]

ik
=

= %n(p,z +1)

=p’+1

Hence, t is an unbiased estimator of u” + 1.

Self-Instructional Material 19
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Example 1.17. If x,, x,,...,X,, are random observations on a Bernoulli variable x taking the

ti—1
value ‘1’ is in probability @and the value 0 in the probability 1 — 6, show that fi-1) is an

n(n-1)
n
unbiased estimate of 6 wheret= Y x; .
i

Solution.Since, x; 0 1
pi 1 - 9 B
We have E(x)=0Vi=12,..,

E®)= Y xp(*)
E()= ) % p(x)
E(x,-z) =0

V)= E(x2) - {E(x)}’

=6-(0)
=0(1-90)

Now, E()= E{ﬁxf}=iE(xf)
= ie =nb

V)= E(¢?)-{E()}

{8

=V(x; + x5 +...+X,)

Since x;’'s are i.i.r.v, V()= V(x;) + V(x5) + ... + V(x3)
V(t)=6(1-0)+6(1-86)+...+6(1-8)
=n6(1-0)

E(%) = V() + (E(H))
= n6(1-8) + (n6)?
= 10 - n6* + n°0*

E{:E;__ll))}— {2 -4

I
=
—]
=
I
-
|

]
=
p—
= —t
|
[y
S
——
Tl
e
(%)
S—
|
g3}
—_—
o
—
[l

1 2 i axn
= - 0° —nb
n("ﬂl){ne no* +n }
ne*(n-1)
=0
n (n - 1)
Hence, Ht-1) is an biased estimate of 6°.
n@—ﬂ



Example 1.18. Show that the sample mean ()_() is an unbiased estimate of the parameter of

poisson distribution (i.e., E()_() = A) if x;’s are random variable.

Solution. x ~ P(x)
E(x)=0
or x ~ P(©)
1 n
E(x)= ; Zx,-

1l
| =
"'M“
1
_——
=)
e

1}
2| =
M
<D

1]

= =
=
[«=]
Il
@

For a poisson distribution

-8 nx
P(x) = "—x?—, =012 ...

E(x) = pr(x)

Another method
_0 — x-0
E(x)= ¢ z '
0
e »  26° 36
=e {9+9 +—§!—'+-¥+...
2 nt
=e?.0 1+e+e—+9—+...
2 - Ot
=¢%.9.¢
E(x)= 6.
1 n
ine ==Y x= 1
Now define T = Zi:x, sample mean

|

}

Sufficiency and Completeness
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E(T)= %ZE(x,-)

= lia:%-;:e:e

Hence sample mean is an unbiased estimation of 6.

x(x~1) . ; AT R
Example 1.19. Show that ) is an unbiased estimation of p” if
n(n-

P(X=x)=( )p“q" Y=l 2o

Solution. We know that E(x) =  xp(x)
x(x-1) 3 " x(x—l)‘ 5
E{n(n-l)}_xzﬂn(n—l Pik=4

-1)-(3)p*q" "

S’

X N—=X

)Pq

-x)!

n(n—l)("—2)! ‘e

—1)(x—2)!(n—x)!p 1
2(::2)):2:1:::1

1

]
‘ts"::

]

x(x-—l)
n(n-1)

Hence, is unbiased estimation of p°.

1.7 UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR

This section gives methodologies for finding a uniformly minimum variance unbiased
estimator (UMVUE) of a parametric function. The first approach relies upon the
celebrated Cramer-Rao Inequality (Theorem 1.6). C.R. Rao and H. Cramer independently
discovered, under mild regularity conditions, a lower bound for the variance of an
unbiased estimator 1(8). Then, we introduce another fundamental result (Theorem 1.7)
which jumped out of the Rao-Blackwell Theorem.

1.7.1 Cramer-Rao Inequality

Lehmann referred to this as “information inequality,” a name which was suggested by
Savage. Lehmann wrote. “The first version of the information inequality appears to
have been given by Frechet”. We will continue to refer to this inequality by its commonly
used name, the Cramer-Rao Inequality, for ease of cross-referencing and searching other
sources.

The variance bound, called the Cramer-Rao lower bound (CRLB), for unbiased estimators
of 7(8) is appreciated where one can (i) derive an explicit expression of CRLB, and



(ii) easily locate an unbiased estimator of 7(8) whose variance coincides with CRLB. In
these situations, one has then found the UMVUE for 1(6)!

Consider iid real valued observations X, ..., X,, with a common p.m.f. or p.d.f. f(x; 8) where
the unknown parameter 8 € © ¢ R and x € X ¢ R. Denote X = (X,..., X,). We pretend
working with a p.d.f. and hence expectations would be written as appropriate (multiple)
integrals. In a discrete case, one would simply replace the integrals by summations.

Standing Assumptions: The support X does not involve 6 and the first partial derivative of
f(x; 8) with respect to 8 and integrals with respect to x = (x,,...,x,,) are interchangeable.

Theorem 1.6. (Cramer-Rao Inequality) Suppose that T = T(X) is an unbiased estimator of a

real valued parametric function 7(6). Assume that % 7(6) , denoted by t(6), is finite for all &

€ O, is finite for all 8 € ©. Then, for all 8 € B, under the standing assumptions, we have:

{zOF

nEE[{%[log f(x,-,-e)]ﬂ

The expression on the right-hand side (rhs) of this inequality is the Cramer-Rao lower bound.
Proof: Without any loss of generality, assume that 0 < Vy(T) < . We have

w@= [ [T m) [1£(:9) [T (117)
X X t=1 i=1

which implies that 7'(8) is:

Vy(T)2 (1.16)

= J"'J-T(xl""’x'l) % .n f(xﬁe)}ndxi g

X X i=1 i=l
Observe that
l_[f(x,-;e) = exp{z’logf x,,B forxe X (1.19)
i=1
so that, we get:

%[Hf (x::e)J fxp{ziogf x;;8 }% {gl,log f (X.-;B)} (1.20)

{iaie[logf(x,-;e)]} i f(x,—;B)

i=1 i=1

n
d
Denote Y = E se—[log 1 (X,-;ﬂ)] and combine equation (1.18) with equation (1.20) to
i=1

rewrite

f(ﬂ):J'...IT(xl,..., {Eae[logf x,,e]}l_[ x,, de

= Eg{TY} (1.21)

Sufficiency and Completeness
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One obviously has I f(x:8)dx =1so that
X

0= die -)[f(x;e)dx =3[[% f(x;e)]dx =3[|:% logf(x;B)]f(x;e)dx (1.22)

Hence, we write

Ee[Y]= Eo {i‘;% [logf(X,v;G):l} =ZE9 {5‘% [log f(X,-;B)]} ={

i=
for all ® € ©, since X, ..., X, have identical distributions. Thus, equation (1.21) gives:
T(8) = Eg{TY} =Covy(T, Y)
which is rewritten as

{T(@)*= Covg(T,Y)< Vy(T) Ve (Y) (1.23)

by virtue of the Cauchy-Schwartz inequality variance inequality. Recall that.Y is a sum
of n iid random variables and thus, in view of equation (1.22), we obtain:

Vo(Y) = nV, {-aa—e [log (X, ;9)]} =nE, [{% [log f(% ;9)]}2] (1.24)

Now, the inequality from equation (1.16) follows by combining equations (1.23) and
(1.24).

Remark 1.2. One can see that CRLB will be attained by the variance of an unbiased estimator T

of 7(6) for all 8 € @if and only if the equality in equation (1.23) holds, that is ifand only if T and Y

are linearly related w.p.1. Hence, CRLB will be attained by the variance of T if and only if
T-a(6)=b(6) Ywp.l. forall 6 © (1.25)

with some fixed real valued function a(.) and b(.).

Remark 1.3. Combining CRLB and Iy (8), we can immediately restate the Cramer-Rao
Inequality as follows:
2
7 (0)}
Ve(T) 2 { 1.26
8( ) n le ( 9) ( )

We will interchangeably use the Cramer-Rao Inequality
given by equations (1.16) or (1.26).

1.7.2 Lehmann-Scheffe Theorems

In situations encountered in Examples (1.18) and (1.19), neither the Rao-Blackwell
Theorem nor the Cramer-Rao Inequality helps in deciding whether W is the UMVUE of
7(6). An alternative approach is needed.

Theorem 1.7. (Lehmann-Scheffe Theorem-I) Suppose that T is an unbiased estimator of a
real valued parametric function 7(6), 8 € ©c Ji*. Let U be a complete (jointly) sufficient statistic
for 8. Define g(u) =EJT] U = ul for u € U. Then, the statistic W =g(U) is a unique (w.p.1)
UMVUE of 7(6).

Proof: The difference between the Rao-Blackwell Theorem and this theorem is that now
U is also assumed complete! The Rao-Blackwell Theorem assures us that in order to
search for the best unbiased estimator of 7(8), we need to focus on unbiased estimators
which are functions of U alone. We already know that (i) W is a function of U, and (i) W




is an unbiased estimator of 7(8). Suppose that there is another unbiased estimator of w

of 1(8) where W' is also a function of U. Define i(U) = W - W’ and then we have:
Eglh(U)] = Eg[W -W'] = 1(8) —1(8) =0 for all6 € © (1.27)

Now, use Definition of completeness; of a statistic. Since U is a complete statistic, it

follows that h(U)=0w.p.1.So, W=W .

In our quest for finding the UMVUE of 1(8) , we may not always go through conditioning

with respect to a complete sufficient statistic U. In many problems, the following
alternate result may be directly applicable. Its proof can be easily constructed.

Theorem 1.8. (Lehmann-Scheffe Theorem - II) Suppose that U is a complete sufficient
statistic for 8 € @ < K*. Also, suppose that a statistic W =g(Ul) is an unbiased estimator of a real
valued parametric function 7(6). Then, W is a unique UMV UE of 7(6).

1.8 MVU AND BLACKWELLISATION

Cramer-Rao inequality provides us a technique of finding if the unbiased estimator is
also an MVU estimator or not. Here, since the regularity conditions are very strict, its
applications become quite restrictive. More-over MVB estimator is not the same as an
MVU estimator since the Cramer-Rao lower bound may not always be attained. More-
over, if the regularity conditions are violated, then the least attainable variance may be
less than the Cramer-Rao bound. In this section we shall discuss how to obtain MVU
estimator from any unbiased estimator through the use of sufficient statistic. This technique is
called Blackwellisation after D. Blackwell. The result is contained in the following
Theorem due to C.R. Rao and D. Blackwell.

Theorem 1.9. (Rao-Blackwell Theorem) Let X and Y be random variables such thatE(Y) =
pand Var(Y) = 67 >0

Let E(Y | X=x) = @(x). Then (i) E[¢(X)] = u, and (ii) Var[$(X)] s Var(Y).

Proof: Let fyy(x, y) be the joint p.d.f. of random variables X and Y, f;(.) and f,(.) the

marginal p.d.f.’s of X and Y respectively and h(y | x) be the conditional p.d.f. of Y for
given X = x such that h(y | x) = {f(x, y)/f(x)}.

P ¢ flay)
E(Y | X=x)= -J;y h(ylx)dy-._J;y —mdy
i
= m j yf(x, y) dy = (x), (say) {120
- _[ yf(x y)dy = 6(x)-f(x) ...(1.29)

From (1.28) we observe that the conditional distribution of Y given X = x does not
depend on the parameter u. Hence X is sufficient statistic for p. Also

E{¢p(X)} = E{E(Y | X)}=E(Y) =y, ---(1.30)
which establishes part(i) of the theorem.
Now, Var(Y) = E[Y - E(Y)I* = E[Y — uJ? = E[Y - $(X) + 6(X) — pJ?

= E[Y - 00OF + E[0(X) - u]* + 2E[(Y - 6(X)} {0(X) - p}] ...(1.31)
The product term gives

E[(Y - 600} 600 - )] = j T{(y— o(x)}{o(x) - u} £ (x, y)dxdy

Sufficiency and Completeness
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I
Ly
i

—
=

- o(x))}Ho(x) - u} £ (x) h(y| x)dxdy

_j {ox)- “}[ I {v-o)}n(y| x)dy} dx

j {y-o(x)} h(y| x)dy =0 [ E(Y | X=2)=6(x)]
E[Y = ¢(X)} {9(X) —u}] = 0 Substituting in (1.31), we get
Var(Y) = E{Y - o(X)}? + Var{o(X)} ...(1.32)
= Var Y 2 Var[o(X)] [ E(Y-0(X))=0]
- Var {¢(X)} < Var, ...(1.33)

which completes the proof of the theorem.

Remark 1.4. From (1.32), it is obvious that the sign of equality holds in (1.33) iff
ElY-9(X)P=0 = Y-g¢(X)=0,almostsurely

ie., iffPlx,y) :y—@(x) =0}=1 ...(1.34)

Remark 1.5. Here we have proved the theorem for continuous r.v.’s. The result can be similarly

proved for discrete case, replacing integration by summation.

Example 1.20. Let X;, X,,..., X,, be a random sample from N(6, 1). Obtain MVUE of 6.
Solution. It can be easily proved that the statistic:

T=X;+Xp+...+ X, = ZX,- , is complete sufficient statistic for ©.

i=1

Consider X, = — 2 X; =% =g(T), (say), Since Xu = 2(T), is unbiased estimator of 6, X
i=1

is MVUE of 6.

Example 1.21. Let X;, X,,...,X,, be a random sample from U[0, 6] population. Obtain MVUE
for 6.

Solution. We have seen that in sampling from U(0, 8) population, the statistic: T = X,

= max (X)) is sufficient for 8.
1<isn

Also E(T) = E[X(;l = [;1_1-:-_1)6 = E {—(E%JI} =0

Hence,
[(n+1)T/n] = [(n+1) X,/n]is an MVU estimator of 6.

1
=,0 6,6>0
Example 1.22. Given: f(x, 6) = {8 s z (1)

0, elsewhere

2
al x,0
o ot g‘g )} } and compare this with the variance of (n + 1)

Y,/n, where Y , is the largest item of a random sample of size n from this distribution. Comment
on the result.

compute the reciprocal of nE l:{



Sufficiency and Completeness

; 2
Solution. log f(x, 6) =-log 6 = a%logf=-%or nE[é% logf) =nE(eiz)=__

92

.2

n

2
Hence, reciprocal of n E[{-{% log f(x, 0)} :I w

For the rectangular population (1), the pdf of nth order statistic (the largest sample
observation), Y, is: g(y) = n- {F(y, 0)I" "' - Ay, 9),

f [1_x NOTES
where F(x,0)= P(X<x) = J'f(u) = 'IE -2
0 0
y n-11 ”
8(y)= "(3] §=Ey”'1;05y<9
( n | n@"
E(Y') = 22 i el g,
( n) ‘!y g(y) Y 9 '!y y e
i . e e
Taking r = 1and 2; E(Y,) = n+1’E(Y")'n+z )
N E[nrjl'y") = SIE(Y,) =0 [Using 3]

= (n+1)Y,/nisanunbiased estimator of 6.

Var[”T” Y,,) = (":1)2 Var(Y, ) =("T”)2{EY3 —(Eyn)z}
. [": 1)2 {:322 3 (nnj-ef)z } o {1(:;::)22) — 1} X n(v?i~ 2) <?:_2

2
= Var(%-\’,,) < 1/{11]3(—58—6- log fJ }.Hence(n+1) Y, /nisan MVUE.

Remark 1.6. This example illustrates that if the regularity conditions underlying Cramer-Rao
inequality are violated, then the least attainable variance may be less than the Cramer-Rao lower bound.

1.9 SUMMARY

* The deepest of all statistical concepts is sufficiency that originated from Fisher (1920),
and it blossomed further, again in the hands of Fisher (1922).

* Lehmann and Scheffe (1950) developed a mathematical formulation of minimal suffi-
ciency and gave a technique to locate minimal sufficient statistics.

e An Estimator is a function of random variables but the estimate is a function of
observed values.

* Cramer-Rao inequality provides us a technique of finding if the unbiased estimator is
also an MVU estimator or not.

1.10 GLOSSARY

¢ Statistic : An observable real (or vector) valued function T = T(Xy, ..o X)-
* Poisson distribution : A random variable X is said to follow poisson distribution if it
assumes non-negative values and its p.m.f. given by

P

P(X= =
(X=x) B
where A is the parameter. This distribution has only one parameter.

cx=0.52 ..
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s Probability : If a random experiment or a trial results in ‘n’ exhaustive, mutually
exclusive and equally likely outcomes (or cases), out of which ‘m" are favourable to
the occurrence of an event E, then probability ‘p’ of occurrence (or happening) of E,
usually denoted by P(E), is given by

= P(B)= Number of favourablecases _m
ks "~ Total number of exhaustive cases n

« Blackwellisation : Technique to obtain MVU estimator from any unbiased estimator
through the use of sufficient statistic.

1.11 REVIEW QUESTIONS

1. What do you understand by Point Estimation ? Define the following terms and give
one example for each :
(i) Consistent Statistic ; (i) Unbiased Statistic ;
(i) Sufficient Statistic ; and (iv) Efficiency.
2. What do you understand by Point Estimation ? When would you say that estimate of
a parameter is good ?

3. Define sufficient statistic. Let xy, X5, ...... , x, be a random sample from N (u, )
population. Find sufficient estimators for p and o”.

4. State and prove Facotorization Theorem.

5. Define Minimum Variance Unbiased Estimator. Prove that minimum variance unbi-
ased estimator is essentially unique.

6. How is Cramer-Rao inequality useful in obtaining MVUE ? Derive this inequality.
7. State and prove Cramer-Rao inequality.
8. State and prove Rao-Blackwell Theorem and explain its significance in point estimation.

9. Let Xy, Xy, ..o X, be a random sample from a population with p.d.f.
f(x,0)=0x""";0<x<1,08>0.

Show that t; = Hx‘. , is sufficient for 0.
i=1
B ety Xt , x, be a random sample from N (8, 1). Obtain MVUE for 6.
11. Let Xy, Xy, ......, X,, be a random sample from U (0, 8) population. Obtain MVUE for 6.

1.12 FURTHER READINGS

Goon, AM., Gupta, M.K. and Das Gupta. B. An outline of statistical theory. Volume II, the
world press, Calcutta, 1980.

Huntsberger, D.V. and Billingsley, P. Elements of Statistical Inference, Allyn and Bacon, London,
1977.

Rao, C.R., Linear Statistical Inference and its Applications, Wiley Eastern, New Delhi, 2nd ed. 1973.
Walker, HM. and Lev, ]., Statistical Inference, Henry Holt Company New York, 1953.

Gupta, 5.C. and Kapoor, V.K., fundamentals of Mathematical Statistics, Sultan Chand & Sons,
New Delhi.
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2.1

INTRODUCTION

One of the main objectives of statistics in to draw inferences about a population from the |
analysis of a sample drawn from the population. Two important problems in statistical
inference are estimation and testing of hypothesis.

The theory of estimation was founded by prof. R.A. Fisher in a series of fundamental
papers round about 1930.
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Consistency is one of the characteristic of estimators. It is a property concerning the
behaviour of an estimator for indefinitely large values of the sample size 1, i.e., 71 — oo.
Nothing is regarded of its behaviour for finite . In this chapter, we will discuss about
the resistant estimator, efficiency, minimum variance unbiased estimator (M.V.U.E).
Interval estimation, estimators in multivariate case and also the fundamental theorem
Cramer-Rao Inequality.

2.2 CONSISTANT ESTIMATOR

We know that every estimate is a function of observed value and sample size. For
therewith the increase in the sample the error in the estimate likely reduces. In view of this
facts a sequence [f,,} of estimators is said to be consistance if it approaches to the true
value of the parameter with probabily 1 as sample size increases.

Mathematically, we call a sequence of a estimator {t,) to be consistant for a estimating 6

if "Ii_iTLP{If"—9|>E}=O;VE >0

or
equivalently
lim P{|t, -8|se} =1;Ve>0

It is the definition of consistant estimator.

Example 2.1. Show that if random sample from a normal population of a sample mean is
consistant estimator for the population .

or

Given a random sample from normal population with mean y and variance o”. Show that the
sample mean is a consistant estimator of .

Solution. Let X,,...,.X, be a random sample drawn from a normal population with mean
pandS.D.oie., X~ N (0%

= X ~ N[}.l,—;;—)
= 2
or (X—u) ~ N[O,gn—}

Then according to the condition,
P{lt,-0]<e}

= P{|E—LIISS}
= P{]Z]sg}
= P{—ESZSE}
Since Z= x-p~N[0,T)
X ~N(y,0)

f)= —G‘(‘E el



i IS - e
S TE

= -t 22
feon e

€ 2
L LI
_.11032522 %

Define a new variate Y= ynZ
c

dY = i_'-l-dZ
c

o

dz-dyﬁ

il
pal ety
3 ,{21: j—@ee dy
Taking limit on both sides as 1 — co
F'L}
L vyl
mnP# —MSE}=1m17==j E%fdy
g 2n -eJ,E

e n—peo

2r J-w
Hence sample mean is a consistant estimator of .
Theorem 2.1. If a statistic t, is such that
E(t)=8
Vit,)—>0asn —eo
Then {t,} is a consistant estimator of 6.
Proof: From Chebyshev’s inequality, we have

2
t, -0
P[lt,,-e|>e]sE-{—"—2L
£

- Z[B{t-Bt) +5() o]

=—-\/1= “e'”zdy=l

= [ E{t-E )} + 26t - () (E(t) -0} +E{E(1) o' |
< Elz[v(lr,,) +0+E{E(t,) - 9}2]

Hence letting 1 — e and using the hypothesis of the theorem we find that
lim Pf|t, -6[2¢] <0

but the probability of any given can not be less than zero. Hence it must be zero which
shows that {t,} is consistant.
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Example 2.2. Prove that in sample from a normal with N (4, o) the sample mean is consistant

estimate of /L
Solution. If X~ N (0%
Then X ~N }1,7
= E (}—() =p
2
< o
ViX)=—
(X) =~
Thusasn — o
ie., lim E(X) = p

n—o0

lim v(>‘<) M e

n—yoo n—e H

Hence X is a consistant estimator of [L.

| Example 2.3. Show that sample variance is biased but consistant estimator of o if ¥ ~N

[N, %J . Hence or otherwise find an unbiased estimator of o”.

If x~2 or X~ 2
Efx)=mn E(x)=n-1
Vix)=2n Vix)=2(n-1)
Solution. We have
2 igdl g =2
s_nZux)
7
I x~ 2 then — ~X%_,
2
= E[P—S-i—)mu—l
[}
L
or E(s9)= To (21

= E(s?isnotequaltoc’.
This shows that s? is not unbiased estimate for ¢

:-—.—.—

n : < ;
= —i s? is an unbiased estimator of o°.
" .

In order to show that s? (sample variance) is a consistant estimator, we need V (s%) for

which E (s?)? is an unbiased
V() =E(s")-[EE))

E(s)=E(s?)*= j(sz )2 f (52 )ds2



where

2 -
!l.fz - xz
T -1
0.2

= )
0_2 = xn ;&
- 2
o 4 Hns & 1 3
E(S)_ ZTFJI ( ) j;T;Z_
Now define
4
x=£s— = s--cix = =2 ;2
Bt " P
2
S ix =d)
n
2
Es‘: J‘—-—x x_'“ll-"—n--o—d
Cp) = (%) - s o
L RS |
- XT e gy
,,—I
oo n+3
& B
e J"_ J' x dx (22)
. o’ P any
since fx)= J—;r e (Gamma function)

jf(x)dx=1 = J_I il Bduan
Jﬂhxp—le—axdx = ﬂ

of

ﬂ+3

’ f 3

By —2 . L. 2
HZZTT

[n+1J( 1) #i—
S _fe) 2 2
nZZT Jﬂ—l

From (2.2),
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2
4 n =1
E(sYh=o ( -

n
Now, V(%) = E(s)* - {E ()
_© (n—l)z
- n_”( 2 1)-— = ot
0.4
- n—z(n—l)[n+l-n+1]
V(Sz)= 2(”—1) 0.4
n

Now expected value of sample variance

i | 1
=2 [———2-}0“ =0asn—0
non

= Sample variance (s?) is a consistant estimator of o

2.3 EFFICIENCY

If T, and T, are two consistant estimator of @ then T, is said to be more efficient then T,
if variance of (T,) < Variance (T) V ni.e, V(T;) < V(T,).

2.4 MINIMUM VARIANCE UNBIASED ESTIMATOR (M.V.U.E.)

An estimator is said to minimum variance unbiased estimator if it is unbiased and more
efficient

ie., E(T)=0,V(T)<V(T)

where T’ is any other unbiased estimator of @ for all values of x.

If T, and T, are two estimators with variances o> & o” respectively then efficiency of T,
over T, is defined as

V(L)

V(%)

Theorem 2.2. Minimum variance unbiased estimator (M.V. U.E.) is unique.

i.e., if Tyand T,are two (M.V.U.E ) for a parameter Othen Ty =T).

Proof: Wearegiven E(Ty)=06= E(T,)

e=

and . V(T)=V(T)=0
Because T, and T,are M.V.U.E.

T,+T
Define T= —1—;-2—




EM= 2 {E(T)+E(T)}
1

= E[e+9] =8 {2.3)
= Tisan unbiased estimator of 6
V(T)= V[I%E)=%V(T1 +T,)

1
= Z[V (T,) +V (T,) +2 Cov. (T, T,)]
= %(02 +a2 + 2p02) . (24)
Cov.(T;, Ty)
where p= ——————= = Cov.(T;T))=p0y Oy,
o1, - O,
= sz
2 2
From (2.4) V(T) = 2% (1+p)= % (1+p)
Since T, and T, are M.V.U.E.
V(T)2 ¢’
2
% (1+p) 2 0?
l+p=22
p=1

since p > 1 we must havep =1.
= T,, T, must have a linear relation of the form
T, =a+DbT, wherea and b are constants.
Taking Expectation on both the sides, we get
E(T;)=a+ bE(Ty)

=a+bo «(2.5)
also V (T, = b*V (Ty)

o’=ho

=1 = b=%1
for b=+1a=0 = T,=T,
for b=-1,20=a

Remark 2.1. If we take b = -1, there will be a negative correlation between Ty and T, hence b= + 1.

Example 2.4. If T; and T, be two unbiased estimator of a parameter Gwith variance o2, o3 and
correlation p. Find best unbiased linear combination of the two estimators. Also find its variance.
Solution. Where E(T)=E(T,) =6

V(Ty)= oi,V(Ty)= o3

Cov. (Ty, Ty) = p4/0} 63 =p0,0,.
Let T be linear combination T, and T, given by
T= oT, + BT, .. (2.6)
where a and f are constants.
In order that T is an unbiased estimator of 8 we must have E (T) = 6.
Taking Expectation of both side in equation (2.6), we get
E(T) = oE(T)) +BE (T,
0=o06+p0
a+f=1 il 27)
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In order that T have minimum variance, we proceed as follows :
V(T) =V (aT, +pT,)
= V ((ITI) + V (BTz) + ZO:B COV. (T'.l' Tz)

= 0202 +B2 02 +20B 6,0, p .. (2.8)
d
—V(T) =
2 V(T)=0
20067 + 2Bpo,0, =0 «(29)
d
—V(T)=0
2803 + 20p0,0, =0 ..(2.10)
Subtracting equation (2.9) by (2.10), we get
= 2007 +2p6,0, (B - o) - 2B63 =0
0o} +po,0, (B — o) —Poj =0
or ao? +po,0,B - po,6,0—PBo3 =0
0(0% = P°1°'2) =B (0% - P°1°'2)
o X B
(G% =Py 0'1) (0'% gl 0'2)
2 s — 3 ﬁ = 3 (: s B o= 3 1 from (2.7)
(02 - PO, 01) (01 " Poloz) (0'1 +03 —2p0; 52) 01 +03 —2p0,0;
So that the value of a
o 1

(o§ -po, 01) (cf + 05 — 2p0, 0'2)

2
G, — P90,
(of +05 — 296102)

2
01 — P90,
(0%' +03 - 2poloz)

which is the least value of o and B, T given by (2.6) is the best combination which
unbiased of T, and T, and its variance is given by (2.8).

o’
Example 2.5. If T; is M.V.U.E. and T, is any other unbiased estimator with variance i where

e is efficiency. Then show that correlation coefficient between T, and T, is JE :

Solution. We are given that

0_2
V(Ty)= of =o” (say), V()= —

_Vv(n)_v(m)
ot e V(L) o'fe
2
V(T)= =-e=c’
and E(T)=E(T,)=0



Consider the best linear combination of T, and T,
Le. T=aT, + BT, (2:11)
Wehave
—Po,02
o2 + 62 — 2p0; 0,

o
T[1+e—2pﬁ]
1-p,[5 _l—pﬁ

nE 1+e—2pﬁ_ D
where D=1+e—2p\/?

e—pye
D
Substituting it first we get the best unbiased estimator

= l_p\/ETl+e_"p\/-e-Tz
(1 pJ_)Tl (e P\/_)Tz

The minimum variance

V(T):v[(l-p‘ﬁ)Tl *(e‘PJ?)Tz]

Similarly, f=

D

= L= V() +(e=pye) VI(T) +2(1-047) (e~ pyE) Cov(,T)
- G| -0 el Sr2(-r) oo

Sindd P= Cov.T) T,

V(T) V(Ty)
o e +ep ‘ZPBJ_ 2p

| +ep —Zp‘ﬁ+ J_(e PJ_ peﬁ+pe)
2

e S O O
2

=%[1 ple+e—p —2pﬁ+2p3J_]
2

- grllive-200e) -0 (1+e-200)]
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2

= %[D—Dpz]
V(T)= %[1-p2]
o? (l—pz)
= 1+e—2pﬁ
o’ (1-p’)
3 1+p2—p2+e—2pﬁ
o2 (l-p")
(l—pz)+(e+pz—2p,/?)
V(T) 1-p?
or = <1 il X2)
7 )l
Since T, isM.V.U.E,, V() £ &
Therefore V(T)= o’
1-p?
From (2.12) 5 =1
1-0°)+(p-e)
= 1-p*=(1-p) + [p-Je)

or (p—ﬁ2=

2.5 LIKELIHOOD

Thejoint p.d.f. of the sample values is known as its likelihood function. In other words,
if we take random sample of size n from a population following p.d.f.
f(x, 8), then
L= flxy, X2, Xy, ©)
is called the likelihood function.
If the observations are independent each having the same distribution f(x, 8) then

L= f[f(x,-,e).

2.6 CRAMER-RAO INEQUALITY (C.R. INEQUALITY)

Theorem 2.3. If t is unbiased estimator of some function of 6 say g(6) and the following
regularity condition are hold.

1. Likelihood function is differentiable twice w.r.t. 6.

2. Limit of integration do not depend upon 6.

3. Differentiation under the sign of integrals is possible, then




V)2 —[@T—z
. logL]
30

V2 [s@T

or 1)

where 1 (6) is the information on 6.
Proof : We know that

I ] £(52,0), (52, 0) - £ (53, €) iy -, =1

or HJL dx = 1, where L = f{x,, 0)....(x,, 8) and dx = dx,, .., dx,

Differentiating it w.r.t. 8, we get

IR _[-de_
o - fE (% Lo

or II( ]ogLdeL 0

E[dielog L]xl =0
Also [[-+[t-Lax = g
E(x)=_[xp(x)dx
E(T) =6
If(t)-t-dt -0
It-de:g(B)

Since t is unbiased estimator of g (6).
Differentiate it w.r.t. 8, we get

Jf-Ji{G =50
where g @)= 15(0)
or |- J’:—[ )de 40
or jj'---_[t(falogl_)m:g'(e)

E[fd%log L] =g'(9)

d d
N Cov. L —
ow [ ' 70 —log ] E[t 70 log L]

(2.13)

(2.14)
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-8 ax

Solution. We have f(x,8)= '
x!

logf(x,0)=-0+xlog 6-log x!
x—-9
0

a6

E [5% logf(x,e)]z =E[";9]2

—a—logf(x,6)=-1+%=

1 .

- —éEE(x—-B)Z in Poisson distribution {V (x) = m =8}
1 o _1

= -B—ZV(x)=e—z=a

Since mean and variance are same.

§ d 2__11
1(8)=nE [% log f (x, e)] -—

now g@=0
g©O=1
Now according to C.R. inequality
b0
)2 ——=—
Ve 1(6) n
But V(%) =V lZXL]=—1—ZV(x)
n ﬂ2
1 ng 0
= — f=—"=—
n’ 2 n®

Hence C.R. lower bound is attained.
— X isan efficient or minimum variance unbiased estimate.
Example 2.8. Ifx~ N (i, o)
Show that X is efficient forpor M.V.U.E. or X attain CRLBor M.V.U.E.
2
Solution. Wehave  f(x,1)= : e ¥
o, 2n
Taking log

logf(x,p)=logc— x2°_2

Differentiate it w.r.t. &

1o i3 —2(x-u)x(-1)
f(xril-l)f (x,p) i 202
ilogf(x, )= (xc:zu)
E[——logf(x,l-l)]z = E(xd_.;u) =g;=;15

.(2.18)



Hence CR inequality is

But V(%) = En—

Hence C.R.L.B. is attained

= X isefficient estimator or M.V.U.E.
Example 2.9.f(x) = & (1- 6)' ~* wherex =0, 1
Show that X is M.V.LLE.

Solution. logf(x)= xlog 8 + (1 -x) log (1-6)
Differentiating w.r.t. 6
d T 1—3
30 081t} = o-es
_(1-8)x-0(1-x)
% 8(1-0)
d x-0x-6+06x (x-8)
o o =
26 8/ (¥ e(1-0)  e(1-9)

Taking Expectation on both the side

G (x—ef"

0*(1-6)°

e T
82 (1-0) e

1
= —-——92(1_9)29(1—9)
1

68(1-9)

2
B [% - f(r)]

2 d 7 n
1(8)=nE [é-alogf(x,e)} =6(1—-B)

i3
1(9)"::/9(1—0)

V()2
s 20-9)
n
B e = 1 1
But V (¥) in Bernoulli distribution = V (;Zx):—n—z-zv (x)
1
=z 20(1-9)
1
n0(1-0)

_8(1-9)

Hence ¥ is efficient estimator.
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2.7 INTERVAL ESTIMATION

In interval estimation, we find an interval in which the value of the parameter may lie
with certain true probability.

For example, suppose we are measuring the height of persons of a certain locality. If we
says that the height of 90% people of that area lie in between 150 - 165 cm, we have
found interval (150, 165) with probability 0.9 to represent the height. The point estimation
procedure would have given some specific value say 160 cm to be the average height.
1. Random Interval
An interval in which end points are random variable is called random interval.
e.g., (x, 2x) is random interval, (1, 5) is not random internal.
2. Confidence Interval
An interval in which parameter lies is called confidence interval.
3. Confidence Co-efficient
It is the measure of assurance that the parameter lies in confidence interval e.g.,
P(T,<6<Ty)=1-a

(T,, T,) are confidence interval, 1 — o is confidence co-efficient (level).

2.7.1 Shortest Confidence Interval

We have
P[T,;<0<T)]=1~a
Suppose PO<T =0y
and P[ezT,]l= 0o,
s.t O +0=0
For given 0,20,0,20

Their may be infinite combination for o, + 0, =& and hence infinite (T;, T,). It is therefore
suggested that interval which has shortest confidence interval i.e., for which T, - T;
least, such a confidence interval is called shortest confidence interval.

Formulation

Let x;, Xy, ......., X, be arandom sample of size n from £ (x, 8), where form of f (x, 8) is known
[f (x, 8) is binominal, poisson ...] but 8 is unknown. We want to estimate 8 (parameter).
For this define two statistics

Ty = 0y (xy, ceeoeveee , x,) = lower confidence limit

Tom Ol 4 , x,) = upper confidence limit
and P[T;<0<T)]=1-0a
then (T, T,) is called 100 (1 - o)% confidence interval for 0. This (1 — o) is called
confidence co-efficient.
We note that it does not mean that the probability of 8 would lie (T;, T,) is (1 - a) for this
would employ that 8 is a random variable [which is not a case when 0 is fixed though
unknown and constant].
Therefore, either the specified interval contains or does not contains 0. If it contains, the
probability is 1 if it does not contain, the probability is 0. If 0 is not a random variable
(T,, T,) is random interval. If we take a large number of random sample we shall get a
corresponding large number of interval and it is interpreted to mean that on the average
100 (1 — 0)% of these intervals are accepted to include @.



Example 2.10. Find a confidence interval for u of a normal population for
(i) ois known
(i1) ois unknown.
Solution. In order to find confidence interval for p we take sample mean as it is minimum
variance unbiased estimator.

@) I x ~N(u, 6%
2
% ~N (”GTJ
Take Oy =0, = -gi so that we have to solve
.[A = Wz o
-=0,/2n 2
j» :fn 1) PR
B o.fZ‘n: 2
; X-p
Defin =—FF
3 Y=o/
- B AIR ﬁ
1 fagf -2 o
i T iy
21:-L- R ay 2
- P o
And 7= j%f.e ay = 2 (2.19)
Also we may write
+ 1 S o
e dif e
-0 ﬁne y 2
.(2.20)
£ 1 _; o
d e
an J.%‘lﬁne dy 2
From the table of standard normal distribution we have
from (2.19) and (2.20)
o L T 2 Za/2
o/n : 5 Jn
B-p

=Za/2, B = u+7°=2a/2
n

o

aP[u—Za/Z—J%—SESp+Za/2—G—]=a

Jn

- P[p—l.%—c-sfs p+1.96—°—] =0.05
Jn Jn

Consistant Estimator

NOTES

Self-Instructional Material 45



Statistical Inference

NOTES

46 Self-Instructional Material

But o D & T
n
o (8]
— us x+Za/2 T ~X2.21)
n
and TS p+Zo/2—
Jn
= g
= n2 x-Zo/2—= =42.22)
Jn

Now combining (2.21) and (2.22), we find

=

(f—Za/Z%SuSE+Zu/2 ﬁ}

or (f —Za/2 % % +Zo/2 %}
8

N

= (E +Zo/2 ) is the interval of 100 (1 - &)% confidence interval when ¢ is

known.

(#) When o is unknown, then

3
o
In that case we find A and B such that
P{A<T<Bl=1-a
B
t)-dt =1-a
IR

wheref (f) is the p.d.f. of student’s t-distribution with (n— 1) degree of freedom.
Noting that E [B - A] is minimum, when

B=-A
A and hence B can be obtained from the table of t distribution Table values are
available for n = 2, 3, .cccoeeens , 30 for large sample of distribution convert into

normal.
Once we have obtained A and B, the confidence interval

A o <B
. s/n
: As s = Bs
= e < X —and x-u<_—f_n

I

- As = b5
pn< X-——J——n—andu>x—7—;

§-2 u<f—ﬁ
Jn Jn

{i-ta/Z—Js—;<u<i+ta/2ﬁ}

when o is not known.




2.8 METHOD OF ESTIMATION

However we have not discussed as yet a procedure with which we can find a reasonable
estimator. Several such procedure exist. We shall discuss the following method for
finding the estimator.

1. Maximum likelihood

2. Minimum chi-square

3. Method of moments

4. Method of variance

2.8.1 Maximum Likelihood Method

The maximum likelihood method is to obtain that value of parameter (in terms of sample
value) which maximize the likelihood function of the sample values.

-
EE = 0 and check BL
26?

For this we solve
d6

B=8

dlog L
—— =0.
d0

Thus instead of g—l‘; =0, we generally solve

dlog L

) = 0 and check that

< (.

a? log L
2
6 0=6

Example 2.11. Find a Maximum Likelihood Estimate (M.L.E.) for 6from a sample obtained
from a poission distribution. Show that this estimator is efficient and M.V.LLE.

-0 ax
Solution. We have fix,8)= . S wherex=0,1,2, ...
n n e_e 0%
The likelihood function L= r!f (xi, 9) = 11 =
= I=
>
e—ne e|=1 \

Taking log on both sides,

logL=-n6+ Zx,- log®-logc

i=1

H

c= I Ix‘!

i=1

where

i=1
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nx+n x+1
Differentiating (2.24) again
i} in
= g Lry g, Wk
-y
5 aﬂ B-1 —ax
(iv) Wehave f(x)= F ARt
The likelihood function

nﬂ H —uZx,-
= - x?_l & =
: (m)"{g }

In order to estimate 0, we must know B otherwise we need to estimate o and
simultaneously. If B is known, then

log L = nP log a.—n log ([E) +(B— 1) zn‘,lﬂg X —-o ixi
i=1 i=1

—a—-lo L=0= @—ix- =0
do Blo= o &~ ez
np
n =o
b5
Js
W
nx
e
X
O
X
© ¥ f@=pet e
The likelihood
" ¥
L= Bll Hx?—l e i=1
i=1
logL= nlogﬁ+(ﬂ—1)21c>g ):,V—Zx,p
i=1 =t
d
—logL =0
B 8
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n n
= %+210g x; - zx,ﬂ log x;
i=1 i=1

It is not possible to solve this equation for 3, hence M.L.E. is not available.

Note : When the range of variable depends on parameter 6 (say), then general method of
differentiation fails and in this case arguments are required.

Example 2.13. Find the M.L.E of the following

1 NOTES
(i) fx)= 2,05x<6
(ii) fix, = *"? gsxs00
Solution.
0) f@)=3,05%50
1
L= B_”
logL=-nlog®

d n
—— =—=0
aelogL 0

6=0

Since 0£x<6, % will be maximum if x takes its maximum that is M.L.E. of = max (x;).

(i) fx,0)=e "% g<xrgo
-2 (x-8)
L=—e "
n
logL=- Y (x -6)
i=1
dlogL
8=0
20
‘Z(’-’a‘ -8)
We want to maximize ¢ ~' and this will be maximum if x — 8 is minimum
thatisif put@<x, < x, < .......... et o
then 0= x;isM.L.E.

2.8.1.1 Properties of M.L.E.

1. The M.L.E. is unique

2. It is consistent

3. Most efficient.

4. Tt is sufficient if any exists.

2.8.2 Method of Minimum Chi-square

For a qualitative sampling, we distribute the sample observations into certain categories.
Suppose there are K categories in which the population can be distributed and Let m,(8),
»T(8) be the probabilities that an observation will lie in I*,..., k™ category.
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The likelihood function for a random sample is given by
k

1
P o R )~

k*i=1

k
where 1 is the number of observation in i category and Zni =n Zn.- (8) =1. This
i=1 i=1

distribution is known as the multinomial distribution.
x> method is used only when we have a multinomial distribution whose all probabilities

K@) i 7 (8) depends on an unknown parameter 8 and the data is in the form of
frequency 1, ....... , 1 which minimise

S| [ —nm (E))]2
r 1 1
e g{{ nm; (8)
3
i nm; (9)
where, n; = observed frequency
nm; (6) = expected frequency

Since 7, (8), probability (an observed falling in i" cell), the number of observation out of
nis expected to fall in the i cell is E (x;) = n=; (8).

In actual practice, we solve the equation

ot 3y’
= 0and then 8 is minimum ¥ estimate of 8 if 367
=0

>0

ie., Z 2(9) 89 r( ) 0.

2.8.3 Modified minimum > method of estimation

We shall define ¢ as
k 2
n; —nm; (8
X.%nod:Z[{' l()}}

= 1n;

i=1

i n? n? (9

i=1

(® a

or 23 e = 2D 2 (@) =0

i=1
The solution of %24 estimator is

9
Let 8 be the solution of %Zo4-
2 ~

If aa? i~ >0then @ is the minimum modified x* estimator of 8.

9=6



Example 2.14. In a rectangular distribution R (0, 6) let there be two cells with respective

probabilities m; (6) = % and m, (6) = 1 —% and let ny and n, be observed frequency. Obtain

minimum y* estimator of 6.
Solution. We have n=mny+n,
: B oot i L
Since o = g{ 7. (6) %8 m; (8) =0
2 2
ny 0 1
el e 0

b Z@we O Zewe=® "0

2
& 2
—”(" "’1) . =0 sin !
= S cen—n1+n2

(6-a) ¢
a? (n—m)? —n? (8- a)’ 3
a(e—a)z 2

a*n® +a*ni - 2ann, - n} 6% —nia® + 2a0n? =

0
a*n? - n? 0 +2a0n? - 2a%nn; =0
or —anlz+2an128+a2n(n—2n1) =0

0

0% 1} —2an}0+a’n(ny - m) =

o5 2an} £ 4a* nf +4a® n?nl — 4a% nf
2n}

_an} tamn,
N
any tan,
L
(n £1y)
"

~ Qa n
= 0 = —n =ap, wherep= —
n1 n1

and also 6 = 2 (n, —n M P
n}(; 2) b
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2.8.4 Method of Moments

57 5 - x, beiid.rvfromf(x,8,, ..., 6,). Let m; and p, denote the /™ sample
moment and population moment respectively

1 H
and m;, = . E x{ .Clearly p; will be function of one or more parameters 6,, 0, ......, 6;.
i=1

The method of moments for estimating parameters consist of solving the equations and

and there by obtaining the solutions él, éz, ------ 8 , interms of my -+ my .

Remark 2.2. We can apply this technique only when the system of equation
m]’ = ﬂi (91 sesnne gk)

Explicitly yields 6,, 6, ......, 6,in terms of mj, ------ my . There may be situations when the above

system of equations do not admit explicit expression for 6 ...... 6 in terms of mj .-+ my, and
then the moments method fails.

2.8.4.1

1. The estimators are consistant.
2. The estimators are asymtotically normal but not efficient in general.
3. It is less efficient then the M.L.E. '

Example 2.15. x ~ N (6, &) find estimator of @and o by method of moments.

Properties

-

Solution. We have W= J' ©f (x; 0, oz)dx
o = = 2
S J- e el dx
0,27 V-
fo(x)dx =E(x)=6;If(x) =
= pi =6, p; =6*+0®
Hence, 0= pi
’ ’ "2
and o=p;-080 = p—(n)
l n
Since m, = ka{
i=1
' 1 C ~ ’
= ml=-—z‘x,=x=u1



]
F
I

=

Therefore, 0

and ]

>
»n
Il
3
(]
|
-
-
S—
~N
]
2|
—
=
|
=
S
L8]

Theorem 2.4. If a sufficient estimator exists, it is a function of the Maximum Likelihood
Estimator.
Proof:If t =t (x;, X», ......, X,,) is a sufficient estimator of 8, then Likelihood Function can be
writtenasL=g (¢, 0) h (x;, x5, X3, ......, X,, | t), where g (t, 8) is the density function of t and
8 and h (xy, Xy, ......, X, | t) is the density function of the sample, given ¢, and is
independent of 6.
. logL=logg(t,0)+logh(x;, xy .o, x, | 1)
dlogL 9

- log g (t,0)=y(t,0), (say), .....

Differentiating w.r. to 8, we get :
which is a function of t and 6 only.

M.LE. of is given by alggl“ =0 = wy(0)=0

=

1 (t) = Some function of sufficient statistic
= i=t (é) = Some function of M.L.E..

Hence the theorem.

2.9 CAN AND CAUN ESTIMATORS : MULTIPARAMETER CASE

Let T = (Ty, ....., T,;)" be a vector valued estimator which is consistent for a vector
parameter 6 = (@, .....,, 8,)". If there exists a sequence a,, > 0 and 2, — e such that the vector
valued r.v. a, (T - 6) has in the limit a non-singular proper m—dimensional normal

distribution then we say that T is CAN for 6. Thus if a, (T~8) —— N (0, A (8)) where
A (8) is a symmetric positive definite matrix then T is said to have asymptotic normal

R : L 4 .. A(O g
distribution with mean vector 6 and variance covariance matrix "_(i‘l . This is denoted
n

)
by T ~ AN™ [9, 1\#] - Asin case of m =1, usually the choice of 2, = ﬁ will suffice.

One consequence of the above definition is that each T, is CAN for 6, with AV (T;) = i ()
n

T m
and any linear combination T’ = Zl; T; is CAN for ZI; 0; with AV (T") = % IA(B)].
i=1 i=1

As univariate CLT for ii.d.r.v. with finite variance is helpful is constructing CAN
estimators for a real parameter 6, in a similar way multivariate CLT (MVCLT) foriid.r.v.
with finite p.d. variance-covariance matrix is useful to obtain CAN estimators for
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Statistical Inference 0=(0,..... 8,). Let Z=(Z,, ..... Z,) besuch that E (Z) = p and M, = A which we assume

tobep.d. Let [Z; ] beiid.r.v.s.distributedas Zandlet Z = (Zy,+s Zn )’ be the mean
W

'NOTES Jn(Z-p)— N™ (0, A) or Z- AN™ (p,% A). We now illustrate this technique
by way of a few examples.

Example 2.16, Let (Xy, .., X,)beiid. N 1, &%) ThenE(X) =, E (X7 ) =p?+ 0 LetZ=(2, Z)) |

T TR TR TH T
whereZ, =X;and Z, = X]Z.ThenAingeneralisgiven by ( ’2 '1 3’ 1’22] and
H3—UiHy My — K2

2 2

o] 2uoc
for the normal distribution A = [ H 2 3

5 4 . Therefore by MVCLT, we have
2uc 2" +40°p

for samples from N (i, 6°).

m) _ AN® b Yaf o 2u0?
% ¥ 2 pa2t 2 4 2,2
" pe+0°) n{2uc® 20" +40°p

where m] and mj are first two raw sample moments.
Example 2.17. Let the p.m.f. of (X, Y) be given by

b 4
fx,y,Mp)= [;)py(l—p)x"y e'*%—',0<p<l,0<k,
y=0,1,2,.... B 1 o e S

A
Ap
Y ~P(Ap)and E(XY)=E[XE(Y | X)|=E(XXp) =E (X2 p) = (A + A?) p. Therefore,

-Gk )

Example 2.18.Let Z = (Z,, ......, Z;) bea multinomial r.v. in k-cells with f (zy, ......, ) = PR,

A
ThenE(X)=A,E(Y)=Apand M, = [ lfv] . This follows from the fact that X ~ P (A),

k
PR, pt,z; =0orl, ZZ,- =1andO<p,-<1,2‘.p,-=1.ThenE(Z,-)=piandV(Z,-)=Aﬁ
i=1

=p;(1-p) and Cov (Z; Z)) = - p; p; Thus,
P1 (I—Pl) ~P1Pk
Mz= e
_pkpl 0 pk(l-pk)

However as £z;= 1, M, is singular and has rank (k-1). We therefore consider only (k—1)
of 2;'s SaY (21, weunees Z1) 50 that 2, = (1-2; eceeey = z;_q),and pp = (1 =Py — Py weove .= Pr-1)-
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Then by MVCLT as applied to Z = (21, ------ = A _1) the vector of (k - 1) relative cell
frequencies in (k - 1) cells will have the asymptotic normal distribution with mean
vector (py, ......, Px-1) and asymptotic variance covariance matrix % A whereA;=p;(1-p;)

andl,oj=—p,-pj,i=1,2,‘ ...... ,k‘-l;j=1,2, sl =,
Similar establishes invariance of the CAN property under continuous differentiable

transformation we can show that if T ~ AN®™) (6, A(8)/ aﬁ) and if y = (yy, ......, y,)  are

such that %‘g-’- are continuous fori=1,2, .....,.kandj = 1,2, ....., m then y (T) ~ AN®
i

(w (8), —G—A-ZEJ where
aﬂ
20, %,
=1 i i
N N
26, a0,

provided G A G'is positive definite. Uses Taylor series expansion of each component of
the vector y. Thus a,, (y (T) -y (8) =G a,, (T - 6) + a, Rwhere 2, R —> 0 and as a,
(T-8) —— N™ (0, 4), G, (T-6) — N® (0,G A G). Hence, we have theorem. Let

B
T~AN™ (8, A(6)/a2) and y = (yy, ....., ¥’ and G = [(E%QD such that GAG’is p.d.
C .

then y (T) ~ AN® (\p (6), GAG"/a? )

Example 2.19. In example 2.15, we showed that (], m3) is AN® (M5, 13), A/n. Note
that here (6, 6))' = (uf, 13 ) = (1, 0% + u3)' # (u, 07’

Now suppose we want to obtain CAN estimators of u and 62 Then we take V= |1 =H,

1 0 1 0
Sl [—Zu{ IJ_(—Z;J 1)
SZ

Therefore y; (m{,m}) = m{=X and v, (m{,m£)=m5—m12'=7=m2 the second

V2= 3 - pi? =2 Then

central moment of the sample and we have

[0} 5]
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By straightforward calculations we can show that

g0
GAG' =
AG L0 2¢* )’
If we use the general expression for A given in Example 2.15 namely,
Ao wrw® o m —uiui]
T A s

$ 5140 m
and G= . } then GAG’ = [ B 18 2J
-2 1 H3 Hsa—H2

where 1, i3, 1, are central moments of the p.d.f. [f(x, 8),0 € Q]. Note that if the p.df.is
symmetric about mean or even if just py = 0 we have GAG' = diag (l-lz: Ray= pi) and X and

s? <
= would be asymptotically normal with off diagonal elements zero or equivalently X ,and

2 . =g
=5 would be asymptotically independent. Further observe that [X, -S-—] is a solution of
n

the moment equations m; = jtand mj =’ + ¢’ and

(w1 +0?) _ ( 1 o] Sk

9 (u, 02) i-:1

2.10  SUMMARY

e The joint p.d.f. of the sample values is known as its likelihood function.

e In interval estimation, we find an interval in which the value of the parameter may
lie with certain true probability.

« Interval which has shortest confidence interval i.c., for which T, = T, least, such a
confidence interval is called shortest confidence interval.

o The maximum likelihood method is to obtain that value of parameter (in terms of
sample value) which maximize the likelihood function of the sample values.

e The estimators are asymtotically normal but not efficient in general.

e If a sufficient estimator exists, it is a function of the Maximum Likelihood Estimator.

2.11 GLOSSARY

e Efficiency : If T, and T, are two consistant estimator of  then T; is said to be morz
efficient then T, if variance of (T;) < (T,) Vn.

o Random Interval : An interval in which end points are random variable.

o Confidence Interval : An interval in which parameter lies is called confidence interval.

« Confidence co-efficient : It is the measure of assurance that the parameter lies in
confidence interval.

2.12 REVIEW QUESTIONS

1. Define consistant estimator. Show that the sample variance is a biased but consistant
estimator of o2, when a random sample is taken from a N (i, o) population.

2. Define CAN and CAUN estimators.




5

7.
8.

9.

Define efficiency. A random sample (x,, X, X3, X,, Xs) of size 5 is drawn from a normal

population with unknown mean . Consider the following estimators to estimate j :

X X+ X3+ X, +HXs
5

G s, 2x, + x; +Ax;

where A is such that f; is an unbiased estimator of p. Find A. Are f; and #, unbiased ?

State giving reasons, the estimator which is the best among #;, f, and 3.

Describe the method of maximum likelihood estimation and state its important prop-

erties.

Find the MLE of the variance for a normal populations if mean is known.

State and explain the principle of maximum likelihood for estimating of population

parameter.

Define likelihood function for a random sample drawn from a discrete population.

Write a note on interval estimation. Obtain 95% confidence interval for the mean of

a normal distribution when o is (i) known and (ii) unknown.

Describe the method of moments for estimating the parameters. What are the properties
of the estimates obtained by this method ?

X, +X,

(l) t] ’ (ii) t2 =

+Xy,

»

2.13 FURTHER READINGS

Goon, A M., Gupta, M.K. and Das Gupta. B. An outline of statistical theory. Volume II, the
world press, Calcutta, 1980.

Huntsberger, D.V. and Billingsley, P. Elements of Statistical Inference, Allyn and Bacon, London,

1977.

Rao, C.R, Linear Statistical Inference and its Applications, Wiley Eastern, New Delhi, 2nd ed. 1973.
Walker, H.M. and Lev, ]., Statistical Inference, Henry Holt Company New York, 1953.

Gupta, 5.C. and Kapoor, V.K., fundamentals of Mathematical Statistics, Sultan Chand & Sons,
New Delhi.

Consistant Estimator

NOTES

Self-Instructional Material 59



Statistical Inference

NOTES

6C Self-Instructional Material

UNlT-I I l

TESTING OF
HYPOTHESIS

OBJECTIVES

After going through this unit, you should be able to:

o define statistical hypothesis
e explain optimum test under different situations
e describe likelihood ratio test

STRUCTURE

3.1 Introduction
3.2 Statistical Hypothesis—Simple and Composite
3.3 Steps in Solving Testing of Hypothesis Problem
3.4 Optimum Test Under Different Situations
3.5 Neyman J. and Pearson, E.S. Lemma
3.6 Likelihood Ratio Test
3.7 Summary
3.8 Glossary
3.9 Review Questions
3.10 Further Readings

3.1 INTRODUCTION

The main problems in statistical inference can be broadly classified into two areas:
(i) The area of estimation of population parameter(s) and setting up of confidence
intervals for them, i.e., the area of point and interval estimation and
(i) Tests of statistical hypothesis.
The first topic has already been discussed in Unit I1. In this unit we shall discuss:
(a) The theory of testing of hypothesis initiated by J. Neyman and E.S. Pearson,
(b) Sequential analysis propounded by A. Wald.



In Neyman-Pearson theory, we use statistical methods to arrive at decisions in certain
situations where there is lack of certainty on the basis of a sample whose size is fixed in
advance while in Wald's sequential theory the sample size is not fixed but it regarded as
arandom variable. Before taking up a detailed discussion of the topics in (a) and (b), we
shall explain below certain concepts which are of fundamental importance.

3.2 STATISTICAL HYPOTHESIS—SIMPLE AND COMPOSITE

A statistical hypothesis is some statement or assertion about a population or equivalent about the
probability distribution characterising a population, which we want to verify on the basis of
information available from a sample. If the statistical hypothesis specifies the population
completely then it is termed as a simple statistical hypothesis otherwise it is called a
composite statistical hypothesis.

For example, if X,, X,,...,X, is a random sample of size 1 from a normal population with
mean U and variance %, then the hypothesis Hy: p =, 6% = o} isa simple hypothesis,
whereas each of the following hypotheses is a composite hypothesis:

() wn=p, (i) o* = o3,
(i) p < pg 0% = oF, () n >y, o® = o}
@) 1=y o< of, @) p =y, o®> of,

(vi)) p < py 0> o2,
A hypothesis which does not specify completely ‘v’ parameters of a population is termed
as a composite hypothesis with vdegrees of freedom.

3.2.1 Testof a Statistical Hypothesis

A test of a statistical hypothesis is a two-action decision problem after the experimental
sample values have been obtained, the two-actions being the acceptance or rejection of
the hypothesis under consideration.

3.2.2  Null Hypothesis

In hypothesis testing, a statistician or decision-maker should not be motivated by
prospects of profit or loss resulting from the acceptance or rejection of the hypothesis.
He should be completely impartial and should have no brief for any party or company
nor should be allow his personal views to influence the decision. Much, therefore, depends
upon how the hypothesis is framed. For example, let us consider the ‘light-bulbs’ problem.
Let us suppose that the bulbs manufactured under some standard manufacturing
process have an average life of yt hours and it is proposed to test a new procedure for
manufacturing light bulbs. Thus, we have two populations of bulbs, those manufactured
by standard process and those manufactured by the new process. In this problem the
following three hypotheses may be set up:

() New process is better than standard process.
(i) New process is inferior to standard process.
(iii) There is no difference between the two processes.

The first two statements appear to be biased since they reflect a preferential attitude to
one or the other of the two processes. Hence the best course is to adopt the hypothesis of no
difference, as stated in (iii). This suggests that the statistician should take up the neutral or
null attitude regarding the outcome of the test. His attitude should be on the null or zero line
in which the experimental data has the due importance and complete say in the matter.
This neutral or non-committal attitude of the statistician or decision-maker before the sample
observations are taken is the keynote of the null hypothesis.
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Thus in the above example of light bulbs if y, is the mean life (in hours) of the bulbs
manufactured by the new process then the null hypothesis which is usually denoted by
H,, can be stated as follows: Hy : = ;.

As another example let us suppose that two different concerns manufacture drugs for
inducing sleep, drug A manufactured by first concern and drug B manufactured by
second concern. Each company claims that its drug is superior to that of the other and it
is desired to test which is a superior drug A or B? To formulate the statistical hypothesis
let X be a random variable which denotes the additional hours of sleep gained by an
individual when drug A is given and let the random variable Y denote the additional
hours of sleep gained when drug B is used. Let us suppose that X and Y follow the
probability distributions with means iy and |1y respectively. Here our null hypothesis
would be that there is no difference between the effects of two drugs. Symbolically, Hy : pty = Hy-

3.2.3 Alternative Hypothesis

Itis desirable to state what is called an alternative hypothesis in respect of every statistical
hypothesis being tested because the acceptance or rejection of null hypothesis is
meaningful only when it is being tested against a rival hypothesis which should rather
be explicitly mentioned. Alternative hypothesis is usually denoted by H,. For example, in
the example of light bulbs, alternative hypothesis could be H; 1t > Hgor i <Ho OF TESTRS
In the example of drugs, the alternative hypothesis could be H; : jix >y OT fix <y OF Py # Hy-

In both the cases, the first two of the alternative hypothesis give rise to what are called
‘one tailed’ tests and the third alternative hypothesis results in ‘two tailed’ tests.

3.2.3.1 Important Remarks

1. In the formulation of a testing problem and devising a ‘test of hypothesis’ the
roles of Hy and H, are not at all symmetric. In order to decide which one of the
two hypothesis should be taken as null hypothesis Hy and which one as
alternative hypothesis H,, the intrinsic difference between the roles and the
implifications of these two terms should be clearly understood.

2. If a particular problems cannot be stated as a test between two simple hypothesis,
i.¢., simple null hypothesis against a simple alternative hypothesis, then the next
best alternative is to formulate the problem as the test of a simple null hypoth-
esis against a composite alternative hypothesis. In other words, one should try
to structure the problem so that null hypothesis is simple rather than composite.

3. Keeping in mind the potential looses due to wrong decisions (which may or may
not be measured in terms of money), the decision maker is somewhat conserva-
tive in holding the null hypothesis as true unless there is a strong evidence from
the experimental sample observations that it is false. To him, the consequences of
wrongly rejecting a null hypothesis seem to be more severe than those of wrongly
accepting it. In most of the cases, the statistical hypothesis is in the form of a
claim that a particular product or product process is superior to some existing
standard. The null hypothesis Hy in this case is that there is no difference
between the new product or productions process and the existing standard. In
other words, null hypothesis nullifies this claim. The rejection of the null hy-
pothesis wrongly which amounts to the acceptance of claim wrongly involves
huge amount of pocket expenses towards a substantive overhaul of the existing
set-up. The resulting loss is comparatively regarded as more serious than the
opportunity loss in wrongly accepting Hy which amounts to wrongly rejecting
the claim, i.c., in sticking to the less efficient existing standard. In the light-bulbs
problem discussed earlier, suppose the research division of the concern, on the
basis of the limited experimentation, claims that its brand is more effective than
that manufactured by standard process. If in fact, the brand fails to be more




effective the loss incurred by the concern due to an immediate obsolescence of the
product, decline of the concern’s image, etc., will be quite serious. On the other
hand, the failure to bring out a superior brand in the market is an opportunity
loss and is not a consideration to be as serious as the other loss.

3.2.4 Critical Region

Let x;, x,,..., x, be the sample observations denoted by O. All the values of O will be
aggregate of a sample and they constitute a space, called the sample space, which is
denoted by S.

Since the sample values x;, x,..., x, can be taken as a point in n-dimensional space, we
specify some region of the n-dimensional space and see whether this point lies within
this regions or outside this region. We divide the whole sample space S into two disjoint
parts Wand S—-W or W or W’. The null hypothesis H, is rejected if the observed sample
point falls in W and if it falls in W’ we reject H; and accept H,. The region of rejection of H,,
when Hy is true is that region of the outcome set where Hy is rejected if the sample point falls in
that region and is called critical region. Evidently, the size of the critical region is o, the
probability of committing type 1 error (discussed below).

Suppose if the test is based on a sample of size 2, then the outcome set or the sample
space is the first quadrant in a two-dimensional space and a test criterion will enable us
to separate our outcome set into two complementary subsets, W and W . If the sample
point falls in the subset W, H, is rejected, otherwise H,, is accepted. This is shown in the
adjoining diagram:

3.2.5 Two Types of Errors

The decision to accept or reject the null hypothesis H, is made on the basis of the
information supplied by the observed sample observations. The conclusion drawn on
the basis of a particular sample may not always be true in respect of the population. The
four possible situations that arise in any test procedure are given in the following table.

Decision From Sample
Reject Hy Accept Hp
True H; True Winng Correct
State (Type 1 Error)
H, False Wrong
&
(H; True) sxicass (Type II Error)

From the above table it is obvious that in any testing problem we are liable to commit two
types of errors.

Errors of Type I and Type I1. The error of rejecting H, (accepting H;) when H, is true is
called Type 1 error and the error of accepting H, when H, is false (H; is true) is called
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Type II error. The probabilities of type I and type II errors are denoted by o and B
respectively. Thus
o.= Probability of type I error
= Probability of rejecting Hy when Hj is true.
B = Probability of type Il error
= Probability of accepting Hy when Hj is false.
Symbolically:

P(xe W | Hy) = o, where x = (x, x,...,%,;) = ILodx = ...(31)
w

where L, is the likelihood function of the sample observations under H, and J dx

represents the n-fold integral J' I & J.dxl dx, ...dx, .

Again Pxe W | H)=p = lLl dx =B .32
W
where L, is the likelihood function of the sample observations under H,. Since
w W
we get fLiax = 1- [Ldx=1-p ...(320)
w w
= Pxe WIH;)=1-p ...(32b)

3.2.6 Level of Significance

0, the probability of type 1 error, is known as the level of significance of the test. It is also
called the size of the critical region.

3.2.7 Power of the Test

1-P, defined in (3.22) and (3.2b) is called the power function of the test hypothesis H, against
the alternative hypothesis H,. The value of the power function at a parameter point is called-
the power of the test at that point. :

Remark 3.1. In quality control terminology, & and f are termed as producer’s risk and
consumer’s risk, respectively.

Remark 3.2. An ideal test would be the one which properly keeps under control both the types of
errors. But since the commission of an error of either type is a random variable, equivalently an
ideal test should minimize the probability of both the types of errors, viz., @ and f. But
unfortunately, for a fixed sample size n, aand fare so related (like producer’s and consumer’s
risk in sampling inspection plans), that the reduction in one results in an increase in the other.
Consequently, the simultaneous minimizing of both the errors is not possible. Since type I error
is deemed to be more serious than the type I error the usual practice is to control aat a predetermined
low level and subject to this constraint on the probabilities of type I error, choose a test which
minimizes for maximizes the power function 1 - f. Generally, we choose a= 0.05 or 0.01.

3.3 STEPS IN SOLVING TESTING OF HYPOTHESIS PROBLEM

The major steps involved in the solution of a ‘testing of hypothesis’ problem may be
outlined as follows:



1. Explicit knowledge of the nature of the population distribution and the parameter(s)
of interest, i.e., the parameter(s) about which the hypotheses are set up.

2. Setting up of null hypothesis H, and the alternative hypothesis H, in terms of
the range of the parameter values each one embodies.

3. The choice of a suitable statistic ¢ = ¢ (x1, x3,..., x,,) called the test statistic, which
will best reflect upon the probability of H, and H,.

4. Partitioning the set of possible values of the test statistic ¢ into two disjoint sets

W (called the rejection region or critical region) and W (called the acceptance region)
and framing the following test:
(i) Reject H, (i.e., accept H,) if the value of f falls in W.

(1) Accept H, if the value of t falls W .
5. After framing the above test, obtain experimental sample observations, compute
the appropriate test statistic and take action accordingly.

3.4 OPTIMUM TEST UNDER DIFFERENT SITUATIONS

In any testing problems the first two steps, viz., the form of the population distribution,
the parameter(s) of interest and the framing of H, and H, should be obvious from the
description of the problem. The most crucial step is the choice of the best test, i.e., the best
static ' and the critical region W where by best test we mean one which in addition to
controlling acat any desired low level has the minimum type Il error Bor maximum power1 -3,
compared to Bof all other tests having this e This leads to the followin g definition.

3.4.1 Most Powerful Test (MP Test)

Let us consider the problem of testing a simple hypothesis : H,:6=89,

against a simple alternative hypothesis: H, : § = 6,

Definition 3.1. The critical region W is the most powerful (MP) critical region of size at(and the
corresponding test a most powerful test of level o) for testing H, : 0= 6, against H,:0=6,if

P(xe W | Hy) = jLO dx = ..(33)
w

and P(xe WIH,)=P(xe W, 1 H,) (3.3
for every other critical region W, satisfying (3.3).

3.4.2  Uniformly Most Powerful Test (UMP Test)

Let us now take up the case of testing a simple null hypothesis against a composite
alternative hypothesis, eg.,of testing H,: 0 = 6,

against the alternative H, : 9 # 6

In such a case, for a predetermined o, the best test for Hy is called the uniformly most
powerful test of level o

Definition 3.2. The region Wis called uniformly most powerful (UMP) critical region of size o
[and the corresponding test as uniformly most powerful (UMP) test of level af for testing Hy: @
= Gyagainst Hy : 8= @ i.e., H;: 0= 6, =§,if

P(xe W Hp) = Il.odx=a ...(34)
w

and Pxe WIH)2P(xe W; | Hy) for all 8=g, --.(34a)
whatever the region W, satisfying (3.4).

Testing of Hypothesis

NOTES

Self-Instructional Material 65



s

b

Statistical Inference

NOTES

66 Self-Instructional Material

3.5 NEYMAN J. AND PEARSON, E.S. LEMMA

This Lemma provides the most powerful test of simple hypothesis against a simple
alternative hypothesis. The theorem, known as Neyman-Pearson Lemma, will be proved
for density function f(x, 8) of a single continuous variate and a single parameter.
However, by regarding x and 8 as vectors, the proof can be easily generalized for any
number of random variables x;, X,,..., %, and any number of parameters 8;, 8,,....,8;. The
variables x,, X,, ..., X, occurring in this theorem understood to represent a random
sample of size n from the population where density function is f(x, 8). The lemma is
concerned with a simple hypothesis Hy: 8, and a simple alternative H, : 6 = 0;.

Theorem 3.1. (Neyman-Pearson Lemma) Let k > 0, be a constant and W be a critical region

of S such that
f(x6)
W= {xeS. f(x,ﬂo) >k}
= W= {xes:%ﬂc} =/BD)
and W= {xes:hdc} < ANT)
L, :

where Lyand L, are the likelihood functions of the sample observation x = (X1, X,...,X,) under
H,and Hy respectively. Then W is the most powerful critical region of the test hypothesis Hy:
8= 8y against the alternative Hy : 6= 6;.

Proof: We are given
P(xe W | Hy) = _[Lodx —a ...(36)
w

The power of the region is
P(xe W | Hy)= le dx =1-P, (say)- ..(364)
w
In order to establish the lemma, we have to prove that there exists no other critical

region, of size less than or equal to o, which is more powerful than W. Let W, be another
critical region of size o, < o and power 1 - B, so that we have

Pixe W, | Hp)= ILO dx =0, ..37)
W
and P(xe W, | H)= [Lydx =1-B, ...(37a)
w;
Now we have to prove that 1-p=1-B,
Let W=AuCand W;=BUC
S
w W,
N\ i

(C may be empty, i.e., Wand W, may be disjoint).




If o; <o, we have
IL“ dx < ILde
w, w
- [ Loax< [ roax
BuC AuC
= ILodx < jLudx
B A
= ILndx_z jLodx ...(38)
A B
Since AcW,
= [Lidx > k[Lodx2k [Lodx ...(38a)
A A B
Also [3.5(a)] implies
L"— S kVxeW
Lo
= [Lidx < k [Lodx
W W

This result also holds for any subset of W, say W N W, = B. Hence

IhdxskILodeIqux [From (3.84)]
B B A
Adding le dx toboth sides, we get
5

Juars [Lar = 1-p21-p,
W, w

Hence the Lemma.

Remark 3.3. Let W defined in (3.5) of the above theorem be the most powerful critical
region of size afor testing H, : 6= 6, against H, : 6= 8, and let it be independent of 6, € 6, =
6 6y, where 6, is the parameter space under Hy. Then we say that C.R. W is the UMP CR of
size afor testing : Hy: 0= 6, against H; : 6 € O,.

3.5.1 Unbiased Test and Unbiased Critical Region

Let us consider the testing of H, : 6 = 8, against H, : 8 = 0, : The critical region W and
consequently the test based on it is said to be unbiased if the power of the test exceed the size of the
critical region, i.e., if

Power of the test 2 Size of the C.R. .+:(39)
= 1-Bz2a
= P, (W) 2 By (W)
= Plx:xe W I H;]2P[x:xe W | H] ...(39a)
In other words, the critical region W is said to be unbiased if
Py (W) 2 By (W), V0(%6,)c© ...(39b)

Theorem 3.2. Every most powerful (MP) or uniformly most powerful (UMP) critical region
(CR) is necessarily unbiased.
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(a) If W be an MPCR of size « for testing Hy : 8 = @, against H; : 8 = 6, then it is
necessarily unbiased.

(b) Similarly if W be UMPCR of size & for testing H, : 6 = 6, against H, : 8 € ©,, then
it is also unbiased.
Proof: (a) Since W is the MPCR of size o for testing H, : 8 = 8, against H, : 6 = 8,, by
Neyman-Pearson Lemma, we have; for V k>0,
={x:L(x,0;))2kL (x,0)) ={x:L; 2kLg}

and W’'={x:L(x,0;) <kL(x,0p)}={x:L; <kLg},
where k is determined so that the size of the testis ot i.e.,
P, (W) =P[xe W | Hy] = J'L(, dx =a ...(3.10)
w
To prove that W is unbiased, we have to show that:
Power of W2a ie, P (W)2a A1)
We have: By (W) = [Lydx2k [Lodx =kt

[+ OnW,L,2kL;and Using (3.10)]
ie., Py, (W) 2ka, Vk>0 «(3:12)
Also

1-P, (W) =1-P(xe W | H) =P (xe W' | Hy)= ledx

< k.fLodx =kP(x:xe W | H) [ OnW’,L,<kLg]

= k[;v— P(x:xe W | Hy)l=k(1-a) [Using (3.10)]
ie. 1-P (W) < k(1-a),Vk>0 ...(3.13)
Case (i) k21, if k < 1then from (iii), we get

Py (W) 2kaza

= W isunbiased CR.
Case (i) 0 <k < 1.1f 0 <k < 1, then from (iv), we get:

1-P (W) <1-a = P, (W)za = Wisunbiased C.R.
Hence MP critical region is unbiased. g

(b) If W is UMPCR of size a then also the above proof holds if for 8, we write 9 :
such that 6 € ©,. So we have
P,W)>a,V0e ® = WisunbiasedCR.

3.5.2 Optimum Regions and Sufficient Statistics

Let x,, X,,..., X, be a random sample of size n from a population with p.m.f. or p.d.f. f(x,0),
where the parameter 6 may be a vector. Let T be a sufficient statistic for 8. Then by
Factorization Theorem,

L(x,0) = ﬂf(x,.,t.a):ga (t(x))-h(x) ...(3.14)
i=1

where gq(t(x)) is the marginal distribution of the statistic T = £(x).
By Neyman-Pearson Lemma, the MPCR for testing Hy : 0 =8, against H, : 0 =6, is givenby:
= {x:L(x, 8,) =k L(x, 8y)}, Vk>0 ...(3.15)



From (3.14) and (4.15), we get
W= {x : 8o, (H(x))- h(x) 2k- go (t(x)): h(x)}, Yk>0

= {x : 8o, (H(x))2 k- 8o, (t(x))}, Vk>0
Hence if T = t(x) is sufficient statistic for 8 then the MPCR for the test may be defined in terms
of the marginal distribution of T = t(x), rather than the joint distribution of x;, x,,..., x,,.
Example 3.1. Given the frequency function:

1
—0sx=<0
fix.0)=186

0, elsewhere

and that you are testing the null hypothesis Hy: 6=1 against H; : 8= 2, by means of a single
observed value of x. What would be the sizes of the type 1 and type 11 errors, if you choose the
interval (i) 0.5 <x, (ii) 1 <x <1.5 as the critical regions? Also obtain the power function of the
test.

Solution. Here we want to test Hy: 0 =1, againstH;:0=2
(i) Here W={x:05<x}={x:x20.5)

and W = {x:x<0.5})
a=Plxe W Ho}=P(x20.516=1)=P{0.5<x<6 | 0=1)

1 1
=Pl05<x<110=1)= [[f(x,0)],_ dr=[1dr=05
05 0.5
Similarly, B=Plxe W | H))=P(x<0.5 | 9=2)

05

05
= j[f(x, 0)],_,dx= j%dx=0.25
0 0

Thus the sizes of type I and type Il errors are respectively o = 0.5 and B=025
and power function of the test = 1 — B = 0.75 J

(i) W={x:1<x<1.5)}

15
a=Plre Wi6=1)= [[f(x,0)]  dx=o0,
1

since under Hy:0=1,f(x,0)=0,for1<x<1.5.
B=Plxe W 10=2)=1-Pxe W | 0=2)

=1- j[f(x,e)]e=2dx=l—l§

Power Function =1-B=1-0.75=0.25

Example 3.2. If x 21 is the critical region for testing H, : 6= 2 against the alternative = 1,0n
the basis of the single observation from the population.

fix 8= Bexp(— 6x), 0 <x < oo,
obtain the values of type I and type Il errors.

15
=0.75
1

Solution. Here W={x:x>1})and W =[x:x<1}andH0:9=2,H1:9=1
(1=SizeonypeIerror=P[xe W I Hyl=P[x>1 | 6=2]
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Using Neyman-Pearson Lemma, B.C.R. for K> 0, is given by

P exp{-— B i(xi il )}
>k

i=1

Bo exP{—ﬂo i(xi =¥ )} .—

i=1

b [g—;}" exp{—ﬂl i(x,— -71)+Bo i(xi - 70)} >k

i=1 i=1

= (g:—} exp[-B, n(x —v,) +Bo n(f—yo)] >k
b ied nlog(B1/Bo) —n% (B, —Bo) +nByy1 — 1BoYo 2 logk
(since log x is an increasing function of x).
s %(B, —Bo) < {Y:ﬁl*?oﬁn—%logk*' log(-gl}
' 0
s<— 1 Lip —yopo-Liogk+log|BL |l provided,>p
e 1P oong ogﬂo P 1> Pe

Example 3.3. Examine whether a best critical region exists for testing them hypothesis Hy: 6= 6,
against the alternative hypothesis H, : 8> @, for the parameter 8of the distribution:

1+86
x, 6)= Gy oo
A (x+6)
i Fi n
Solution. [1f(x0)=@+eT] S
i=1 i<t (x; +90)

By Neyman-Pearson Lemma, the B.C.R. fork>0,is givenby

n

(1+91)"1£[ : zk(1+eu)"n—l—

i=1 (% +91)2 izt (% +90)2

= nlog(1+8,) —Zzlog(x,- +0,) > logk+ nlog(l+60)—2210g(x,- +8,)
i=1 i=1

- x; +0 1+86
2 l I 0 > 0
= 21 og(xi +91] > logk+nlog[1+el]

\ x; +6
Thus the test criterion is 2 log (—;—_‘_?0'] , which cannot be put in the form of a function
i=1 1 1

of the sample observations, not depending on the hypothesis. Hence no. B.CR.exists in
this case.

3.6 LIKELIHOOD RATIO TEST

Neyman-Pearson Lemma based on the magnitude of the ratio of two probability density
functions provides best test for testing simple hypothesis against simple alternative
hypothesis. The best test in any given situation depends on the nature of the population




distribution and the form of the alternative hypothesis being considered. In this section
we shall discuss a general method of test construction called the Likelihood Ratio (L.R.).
Test introduced by Neyman and Pearson for testing a hypothesis, simple or composite,
against a simple or composite alternative hypothesis. This test is related to the
maximum likelihood estimates.

Before defining the test, we give below some notations and terminology.

Parameter Space. Let us consider a random variable X with p.d.f. f(x, 8). In most
common applications, though not always, the functional form of the population
distribution is assumed to be known except for the value of some unknown parameter(s)
8 which may take any value on a set ©. This is expressed by writing the p.d.f. in the form
f(x,8), 0 € ©. The set ©, which is the set of all possible values of 0 is called the parameter
space. Such a situation gives rise not to one probability distribution but a family of
probability distributions which we write as {f(x, 8) =8 € ©}. For example, if X ~ N(u, 0'2),
then the parameter space is:
O = {(1t, 0%): —co <t < 00,0 < G < o0}
In particular, for 6” = 1, the family of probability distributions is given by
{N(u,1); p e O}, where © = {1 : —co <1 < o0}
In the following discussion we shall consider a general family of distributions:
{f(x:0,,0,...6):0,€ ©,i=1,2,... Kk
The null hypothesis H, will state that the parameters belong to some subspace ©, of the
parameter space ©.

Let xy, x,,...,x, be a random sample of size n > 1 from a population with p.d.f. f(x, 8,, 6,
--+8;), where ©, the parameter space is the totality of all points that (8,, 8,,...,8,) can
assume. We want to test the null hypothesis:

Hy: (6, 6,..,6) € 6,
against all alternative hypothesis of the type:

H,;:(6,,0,...6)e ©-0,
The likelihood function of the sample observations is given by

=Tl 0.0 00) ...(3.16)
i=1

According to the principle of maximum likelihood, the likelihood equation for
estimating any parameter 6, is given by
dL :

=— =0,(=12 ..k o - %
2, (@ ) (3.17)
Using (3.17), we can obtain the maximum likelihood estimates for the parameters (6, 6,,
--»8,) as they are allowed to vary over the parameter space © and the subspace 6.
Substituting these estimates in (3.16), we obtain the maximum values of the likelihood
function for variation of the parameter in © and 6, respectively. Then the criterion for
the likelihood ratio test is defined as the quotient of these two maxima and is given by

A Sup L(x, 0
A'= Mx]l x21'--1xn) & L(e-(,) = eee" ( ) "'(3'18)
B s e

where L (éo) and L (é) are the maxima of the likelihood function (3.16) with respect to
the parameters in the regions ©, and © respectively.
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The quantity A is a function of the sample observations only and does lnot involve
parameters. Thus A being a function of the random variables, is also a random variable.
Obvious A > 0. Further

©cO® = L(Oy)s<LO) = A=<l

Hence, we get 0<A<1 ...(3.19)
The critical region for testing Hy (against H,) is an interval
O<A<dy ...(3.20)

where A, is some number (< 1) determined by the distribution of A and the desired
probability of type I error, i.e., Ay is given by the equation:

P(A<Ay | Hp) = ..(3.21)
For example, if g(.) is the p.d.f. of A then A, is determined from the equation:

Ag

| s(n[Ho)dn = o .(321a)

0
A test that has critical region defined in (3.20) and (3.21) is a likelihood ratio test for
testing H.
Remark 3.4. Equations (3.20) and (3.21) define the critical region for testing the hypothesis H,
by the likelihood ratio test. Suppose that the distribution of Ais not known but the distribution of
some function of A is known, then this knowledge can be utilized as given in the following
theorem.
Theorem 3.3. If Ais the likelihood ratio for testing a simple hypothesis Ho andif U= ¢(A)isa
monotonic increasing (decreasing) function of A then the test based on U is equivalent to the
likelihood ratio test. The critical region for the test based on U is:

0(0) < U <0(h), | [9(2) <U <9(0)] -(3.22)

Proof: The critical region for the likelihood ratio test is given by 0 < A < Ay, where A is
determined by

Tg(?q Ho)d\ =@ ...(3.23)
0
Let U = ¢(A) be a monotonically increasing function of A. Then (3.23) gives

A o(Ao)
o= | g(MHo)ah="[ h(u|Ho)du
0 ¢(0)
where h(u | Hp) is the p.d.f of U when Hy is true. Here the critical region 0 <A < Ag

transforms to ¢(0) < U < ¢(Ag). Howeverif U= ¢(A) is a monotonic decreasing function of
A, then the inequalities are reversed and we get the critical region as ¢(Ag) < U < ¢(0).

2. If we are testing a simple null hypothesis Hy then there is a unique distribution
determined for A. But if Hy is composite, then the distribution of A may or may
not be unique. In such a case the distribution of A may possibly be different for
different parameter points in ©, and then Ao is to be chosen such that

?g(?\.l Hy)d\ < .-(3.24)
0

for all values of the parameters in ;.

However, if we are dealing with large samples, a fairly satisfactory situation to this
testing of hypothesis problem exists as stated (without proof) in the following theorem.




Theorem 3.4. Let x,, x,,...,x, be a random sample from a population with pdf. fix; 6, 6,..., 6}5)
where the parameter space Ois k-dimensional. Suppose we want to test the composite hypothesis

Hy:6,= 6/,0,=6,,...,6,=6;r<k
where 6],8;,...,8/ are specified numbers. When H, is true, — 2 log, A is asymptotically
distributed as chi-square with r degrees of freedom, i.e., under Hy,
—-2log A~ Xy r if nis large. %.43.25)
Since 0<A <1, -2 log, A is an increasing function of A and approaches infinity when

A — 0, the critical region for - 2 log A being the right hand tail of the chi-square
distribution. Thus at the level of significance ‘a’, the test may be given as follows:

Reject Hy if -2 log, . > Xy (@)

where X, (@) is the upper o-point of the chi-square distribution with r.d.f. given by:

2 2
P[x > Xy (G)J =0
otherwise H; may be accepted.

3.6.1 Properties of Likelihood Ratio Test

Likelihood Ratio (L.R.) test principle is an intuitive one. If we are testing a simple
hypothesis H; against a simple alternative hypothesis H, then the LR principle leads to
the same test as given by the Neyman-Pearson lemma, This suggests that LR test has
some desirable properties, specially large sample properties.

In LR test, the probability of type L error is controlled by suitably choosing the cut off
point A, LR test is generally UMP if an UMP test at all exists. We state below, the two
asymptotic properties of LR tests.

1. Under certain conditions, - 2 log, A has an asymptotic chi-square distribution.
2. Under certain assumptions, LR test is consistent.

3.7. SUMMARY

* If the statistical hypothesis specifies the population completely then it is termed as a
simple statistical hypothesis otherwise it is called a composite statistical hypothesis.

* A test of a statistical hypothesis is a two-action decision problem after the experimental
sample values have been obtained, the two-actions being the acceptance or rejection
of the hypothesis under consideration.

* This neutral or non-committal attitude of the statistician or decision-maker before the sample
observations are taken is the keynote of the null hypothesis.

* The value of the power function at a parameter point is called the power of the test at
that point.

* This Lemma provides the most powerful test of simple hypothesis against a simple
alternative hypothesis. The theorem, known as Neyman-Pearson Lemma, will be proved
for density function flx, 8) of a single continuous variate and a single parameter.

® Every most powerful (MP) or uniformly most powerful (UMP) critical region (CR) is neces-
sarily unbiased.

* Neyman-Pearson Lemma based on the magnitude of the ratio of two probability
density functions provides best test for testi g simple hypothesis against simple alter-
native hypothesis.
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3.8 GLOSSARY

Statistical Hypothesis : A statistical hypothesis is some statement or assertion about
a population or equivalent about the probability distribution characterising a population,
which we want to verify on the basis of information available from a sample.
Test Statistic : The choice of a suitable statistic t = f (x, Xp,--+ X), which will best reflect
upon the probability of Hy and H;.

« Best Test : One which in addition to controlling o at any desired low level has the

minimum type II error p or maximum power 1-B, compared to B of all other tests
having this o.

3.9 REVIEW QUESTIONS

1. Define randomised and non-randomised tests.

2. What are simple and composite statistical hypothesis ?

3. Explain the following terms :
(i) Critical function ; (i) Most powerful test ; (iii) Uniformly most powerful test ; and (iv)
Level of significance.

4. State and prove Neyman-Pearson Lemma.

5. Define Likelihood Ratio Test. Under what circumstance would you recommend this
test ?

6. Define uniformly most powerful (UMP) tests. What is uniformly most powerful critical
region (UMPCR)?

7 b B I A M , x, be a random sample from
f(x,0)= %e—* -x20,0>0
ObminUMPsizedtestfortestingHo:B=eaagainstl-[l:9>90.

8. Define interval estimation. What is the relationship between testing and interval
estimation ?
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DISTRIBUTION-FREE TESTS

UNIT-IV

NON-PARAMETRIC OR

After going through this unit, you should be able to:

OBJECTIVES

explain assumptions of non-parametric test
describe one-sample non-parametric tests
demonstrate Friedman's test

STRUCTURE
4.1 Introduction
4.2 Assumptions of Non-Parametric Tests
4.3 Advantages and Disadvantages of Non-Parametric Tests
4.4 One-Sample Non-Parametric Tests
4.5 Two-Sample Non-Parametric Tests
4.6 The Kruskal-Wallis Test for Differences in More Than Two Populations
4.7 Friedman'’s Test
4.8 Summary
4.9 Glossary
4.10 Review Questions
4.11 Further Readings
4.1 INTRODUCTION

The statistical methods of inference which were discussed in the preceding chapters
make certain assumptions about the populations from which the samples are drawn.
For example, the assumptions may be that the populations are normally distributed,
have the same variance etc. Population values, as we have seen, are known as parameters;
the statistical tests which make assumptions about the parameters are called “parametric
tests.” In other words, a “parametric statistical test” is a test whose model specifies certain
conditions about the parameters of the population from which the sample are drawn.
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In many biological investigations the research worker may not know that nature of the
distribution or other required values of the population. On many occasions the number
of observation made for the study may not be sufficient to the test the assumptions
regarding the population. Also in many instances, when the observation is represented
by a numerical figure, the scale of the measurement may not be really numerical. Some
biological measurements are necessarily crude early stages of investigation. Grades of
severity of an illness and ranks given to anaesthetic agents for their effectiveness are
examples of data which, though expressed numerically, do not possess the characteristics
necessary for arithmetical processess. The parametric tests may not be suitable in such
situations.

A “non-parametric (N.P.) or distribution-free test” is a test that does not depend on the
particular form of the basic frequency function from which the samplés are drawn. The
other words, non-parametric test does not make any assumption regarding the form of
the population. This chapter contains only some popular non-parametric tests.

4.2 ASSUMPTIONS OF NON-PARAMETRIC TESTS

The certain assumptions associated with non-parametric tests are:
(i) Sample observations are independent.
(i) The variable under study is continuous.
(iii) p.d.f. is continuous.
(iv) Lower order moments exists.

Obviously, these assumptions are fewer and much weaker than those associated with
parametric tests.

4.3 ADVANTAGES AND DISADVANTAGES OF NON-PARAMETRIC
TESTS

Advantages of non-parametric tests

(/) Non-parametric tests are readily comprehensible, very simple and easy to apply
and do not require complicated sample theory.

(i) No assumption is made about the form of the frequency function of the parent
population from which the sampling is done.

(iif) Probability statements obtained from most non-parametric tests are exact prob-
abilities.

(iv) 1f samples are of sizes as small as 6, there is no alternative to using a non-parametric
test unless the nature of the population distribution is precisely known.

(v) Non-parametric tests are available to deal with the data which are given in
ranks or whose seemingly numerical scores have the strength of ranks. For
instance, no parametric test can be applied if the scores are given in grades such
as A*, AT, B, A, B etc.

Disadvantages of non-parametric tests

(i) Non-parametric tests can be used only if the measurements are nominal or
ordinal. In other words, if all the assumptions of a statistical model are satisfied
by the data and if the measurements are of required strength, then the non-
parametric tests are wasteful of data.

(i) There is no non-parametric tests for testing interactions in the analysis of
variance.
(iif) Tables of critical values may not be easily available.




4.4 ONE-SAMPLE NON-PARAMETRIC TESTS

A random sample of size n is drawn from a population and the sample values are
arranged in order of magnitude and ranked accordingly, if need be. Different tests
evolved in one sample case for the test of hypothesis are discussed here. These tests lead
us to decide whether the sample has come from a particular population. Also, we test
whether the median of the population is equal to a known value or not. Such tests are
classified as tests for goodness of fit like the chi-square test.

4.4.1 Kolmogorov-Smirnov (K-S) Test

The K-S test will be applicable when the variable has a continuous distribution. A
random sample X, X,,...,X,, of size n is drawn from an unknown population having the
cumulative distribution function (c.d.f.) F(x). Let the ordered valued be X1y Xy -+ X,
The K-S test is based on the Glivenko-Cantelli theorem which states that the step
function S, (x), with jumps occurring at the values of the ordered statistics X1y X@y- -+ Xn)
for the sample, approaches the true distribution for all x. Making use of this theorem, the
comparison of the empirical distribution function S,(x) of the sample for any value x is
made with the population c.d.f. under Hy(The empirical (sample) distribution function
of an ordered random sample xy, x5y,..., Xy of size n, denoted S, (x) for all real x, is the
proportion of sample values which do not exceed x. S,(x) is a set function which
increases by 1/n at the jump points which are the values of the ordered sample.

Symbolically, S, (x) is defined as:

0 lf xSX(l)
S,(x)= 1K/n if X(K)Sx<xk+1 forkK=1.2 - %<1
1 if X2 X,

S,(x) is also known as the statistical image of the population distribution function Fy(x).
This comparison is made by defining the distance between the two cumulative distribution
functions which is taken as the supremum (supremum (sup) means least upper bound.
Similarly, infimum (inf) means greatest lower bound) of the absolute deviations ie., Sup
I'5,(x)=Fy(x) | over all x. The hypothesis for the test of goodness of fit is, H : F(x) = Fy(x)
V,H; : F(x) # F(x), where F, is a completely specified continuous distribution.

To test Hy, the actual numerical difference | S,(x) - Fy(x) | is used in K-S test. Since this
difference depends on x, the K-S statistic is taken to be the supremum of such differences, i.e.,

D,= Sup IS,,(x)-Fu(x)L

over all x

where D, is known as the K-S statistic. Under Hy, the statistic D, has a distribution
which is independent of the c.d.f. F(x) that defines Hy. The statistic D, is distribution-
free. To decide about Hy, the test criterion is, reject Hyif D, (max | S,(x)-Fy(x) |), exceeds
the tabulated value for given # and prefixed significance level a. Otherwise, H, is
accepted. The critical values of D,, for prefixed o are given in Appendix A.

Example 4.1. On tossing five coins 192 times, the frequencies of 0 to 5 heads are:

No. of heads 0 1 2 3 4 5
Frequency 6 26 73 66 14 7

Use Kolmogorov-Smirnov statistic to test the hypothesis that the coin is unbiased.

Solution. The null hypothesis under K-S test is,
‘_Iﬂ : F(x) = Fﬂ(x) Vs H] :F(x) B Fﬂ(x).
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The hypothetical frequencies are calculated with the help of the binomial function, 2C,
p*q" *.Heren=5,p=05

Thus, the frequencies forx=0,1,2,3, 4,5 are

0 5-0 1 4
1\(1 1)(1
L 7O, [5] (5) x192=6, f, = 5cl(5) (5) x192 =30,

and similarly, f, = 60, f; = 60, f = 30, f5 = 6. Actual and theoretical frequencies, the
sample or empirical c.d.f. theoretical c.d.f. and the differences are tabulated as follows:

No. of heads 0 1 2 3 4 5
Actual frequencies 6 26 73 66 14 7
Empirical c.d.. B 32 105 171 185 192
192 192 192 192 192 192
Theoretical frequencies 6 30 60 60 30 6
6 36 9% 156 186 192
Theoretical c.d.f. - = = < == ==
o o 192 192 192 192 192 192
4 9 15 1
Diff . D, — — — —

evence:.D) ? 192 192 192 192 :

15

Max.D, = — =0.078.
gl i T

Suppose the prefixed level of significance, o = 0.1. The critical value of D, from

122
1}192
value 0.088, H, is accepted. This means that the sample c.d.f. is similar to the
hypothetical distribution function.

Appendix A is

= 0.088. Since the value of statistic D, does not exceed the critical

4.4.2 Run Test

In biostatistical theory, it has normally been assumed that a sample drawn from a
population is random. Whether the assumption of randomness is true or not needs
verification. The run test is one device to test randomness. Before discussing the test, itis
essential to discuss the runs.

4.4.2.1 Run (Definition)

A run is defined as a sequence of like symbols which are followed and preceded by other
kinds of symbols or no symbol at cither side. For clarity, a vertical line is drawn in
between two consecutive sequences of symbols to mark the runs. A sequence of symbols
exhibiting a pattern of symbols is usually indicative of lack of randomness. For instance,
looking at a queue of persons waiting for the bus at abus-stop, we observe the following
sequence of males (M) and females (F).

MIPIMIFIMIFIMIFlMIFiMIFlMIF
This sequence shows a definite pattern, i.e., the males and females are standing alternately.
This sequence clearly showsa lack of randomness. Again a sequence of type,
MMMMMMM | FFFFFFF
Shows clustering of males and females which is again indicative of lack of randomness.

From this, it may be deduced that an excessive number of runs or too few runs fora given
set of symbols provide the basis for non randomness.

It is not always that we have sequences of symbols. Any data at hand can be converted
into runs. Take the deviation of each observation of the set from the median (any other



constant) and denote the positive and zero difference by 2 and negative difference by b.
In this way we get a sequence of symbols 2 and b. For example, the marks of 15 students
are 55,52, 43,49, 36, 61, 44, 47,67, 78, 63 , 57,41, 28, 50. On taking the deviations from 50,
the following sequence is obtained.

aa |l bbblalbblaaaalbbla

The above sequence has seven runs. Positive and negative signs may also be taken in
place of 2 and b taking zero as positive quantity, to mark the runs.

4.4.2.2 Test for Randomness

The null hypothesis: The symbols 2 and b occur in random order in the sequence against
the alternative, H, : symbols a and b do not occur in random order, can be tested by the
run test. Let the sample of size n contains n; symbols of one type, say a, and n, symbols
of the other type, say b. Thus, n =1, + n,. Also suppose the number of runs of symbol a are
ry and that of symbol b are r,, suppose r; + r, = r. In order to perform a test of hypothesis
based on the random variable R, we need to know the probability distribution of R
under Hy. The probability distribution function of R is given by

nl—]_\ nz_l ?‘l1+”2
fr(r)= z(r/z—lj(r/z—l_)/ ( iy J

For r even, the number of runs of both types must be the same, i.e., r; =1, = /2.

when ris even.

Again

nl—l nz_l nl—l nz_l
r—1 r-3 i r—3 r—1 hy +1,
& 2 2 2

frlr)=

where ris odd.
For r odd, r; = r, + 1. In this situation, the sum is taken over two pairs of values, r,
r-1 r+l

= [TJ andr, = (TJ and vice versa.

To decide about Hy, the critical number of runs are obtained from tables given in
Appendix A. These Tables provide the lower and upper critical values of the number of
runs at level 0.05 respectively. If the number of runs in the sample lies between these
critical values, the hypothesis H, is accepted, otherwise rejected. Rejecting H, means
that the data are not in random order.

Example 4.2. The marks of 15 students are 55, 52,43, 49, 36, 61,44, 47, 67, 78, 63, 57, 41,28, 50.
Test whether the observations occurs in random order at 5% level of significance.

Solution. Null hypothesis, H, : the observations occur in random order, against H, : the
observations do not occur in random order.

On taking the deviation from 50, the following sequence is obtained:
aalbbblalbblaaaa |bbla
Here m=8m=7,n=15
rn=4,r=3,r=7

Fora=0.05,n, =8, n, =7, the lower critical value = 4 from the Appendix A.
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For a.=0.05, ny = 8, n, =7, the upper critical value = 13 from the Appendix A. The number
of runs in the sample is 7 which lies between 4 and 13. It means that the observations
occur in random order with 5% Level of significance.

4.5 TWO-SAMPLE NON-PARAMETRIC TESTS

In this section, we will discuss the some important two-sample non-parametric tests,
viz. Kolmogorov-Smirnov test, Mann-Whitney-Wilcoxon U-test, Wald-Wolfwitz run
test, Median test and Sign test.

4.5.1 Kolmogorov-Smirnov Two-Sample Test

It is an extension of the one-sample K-S test as applied to a two-sample problem. In the
one-sample test, the empirical distribution was compared with the population c.d.f.. But
in the two-sample K-S test, the two empirical distributions of two samples are compared
and a decision is taken on the basis of the distance between these empirical distributions.

Let two random samples of sizes 11; and 1, be drawn from two continuous F, and F,
respectively. Also, it is assumed that the two samples are independent. The observations
are taken at least on ordinal scale. If these assumptions hold good, K-S two-sample test
can be performed in the following manner. Let the empirical distribution functions be

givenby S, (x) and S, (x).
The hypothesis,
H, : Fi(x) = Fy(x) for all x
Vg H, : Fy(x) # Fy(x) for some x
can be tested by the K-S statistic

Dn,, iy = mfx ] Snl (x) = Sn2 (x)1

In a real problem, obtain the cumulative step functions of two samples and find the

maximum difference. Compare this value with the critical value of D, ,, given in
Appendix A. This gives the acceptance limits of D,, ,, , forny, n, <15 at two significance

levels o = 0.05 and o = 0.01. Reject H, if calculated D,, , exceeds the tabulated value,

otherwise accept Hy,.

For large values of n,, n, > 15, acceptance limits of D, , are calculated by the

approximate formulae given below the table for various levels of significance a.. The
decision about H, is taken in the same way as for small samples.

If there is any prior information whether
F,(x) > Fy(x)
or F,(x) < Fy(x),
the one-tailed K-S test will be applied. Now we calculate either

D;, ,, = max|S, (x)-S,, (v)|
x

Sn, (x) "‘sn, (x)l

as the case may be and perform the test in the usual way.

or Diwm = i

Example 4.3. A sample of 26 male patients and another of 25 female patients suffering from
respiratory tuberculosis (TB) are randomly selected. The frequency distributions according to
age of males and females are given in next page:



Age group
0-5| 5-15 | 15-25 | 25-35 | 3545 | 45-55 | 5565 | above 65
Males suffering from TB Jae o 3 % b, 4 6 7
Females suffering fromTB | 1 | 2 4 3 6 4 2 3

Test whether the age distribution of males and females in respect of susceptibility to respiratory
tuberculosis is the same by Kolmogorov Smirnov test.

Solution. The c.d.f and the differences

wixl=5.4x) | are shown simultaneously.

Males c.d.f. Females c.d.f Difference
Age suffering S suffering S s, ( S
group from TB { ﬂ-(")} from TB { "z(x)} | m (%)= "z(")|
1
0-5 1 1/26 1 1/25 25 % 26
28
5-15 1 2/26 2 3/25 25 % 26
57
15-25 3 5/26 4 7/25 35 % 26
85
25-35 2 7/26 3 10/25 25 %26
191
35-45 2 9/26 6 16/25 25 % 26
195
45-55 4 13/26 4 20/25 25 %26
97
55-65 6 19/26 Z 2205 25%26
above 65 Z 26/26 3 25/25 0

The hypothesis, that the age distribution of males and females in respect of susceptibility
to respiratory tuberculosis is the same, can be tested by K-S statistic.

w (0)=S,, (2)|

D, = m;‘nx

From the above table,
195
D —
Hel2 29 x 26

The acceptance limit for n, = 26, n, = 25 at the level of significance o = 0.05 with the help
of formula given in Appendix A is

- 136 ﬂ1+n2 26+25_0381
26 x 25

Since the calculated difference D,,“,,2 does not exceed the acceptance limit, H, is

=0.300

accepted. It means that the male and female populations have the same proportion of
respiratory TB in different age groups.

4.5.2 Mann-Whitney-Wilcoxon U-Test

The usual two-sample situation is one in which the experimenter wishes to compare the
effects of two treatments. In case of small samples, we have used t-test under the
assumption that the population distribution was normal. The normality assumption
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may be doubtful or it may be difficult to verify the normality. In these situations we can
use Mann-Whitney U-Test. It is non-parametric analogue to the usual t-test.

The non-parametric test used for two independent samples case was originally proposed
by Wilcoxon and studied by Mann and Whitney.

Letx;(i=1,2,...,n;) and y; (j=1,2,..., n,) be independent ordered samples of size n, and 1,
from the populations with p.d.f.f,(.) and f,(.) respectively. We want to test the hypothesis
Hy: fi(.) =£o(), Vs Hy : 1) = £o()-

Mann-Whitney test is based on the pattern of the x’s and y’s in the combined ordered
sample. Let T denote the sum of ranks of the y’s in the ordered sample. The test statistic
U is then defined in terms of T as follows:

my (m, +1)

2z
If T is significantly large or small then H, : f;(.) =f,(.) is rejected. The problem is to find the
distribution of T under H,. Unfortunately, it is very troublesome to obtain the
distribution of T under H;. However Mann and Whitney have obtained the distribution
T for small n; and n,, have found the moments of T in general and shown that T is
asymptotically normal. It has been established that under H,, U is asymptotically
normally distributed as N(i, %), where

U=nmn, + =T

nn
=B = —1—2
n=E(U) 5
0'2=Var(U)= n1112(111+n2 +1)

12
Hence

Fu N0,
(o]

asymptotically and normal test can be used. The approximation if fairly good if both
n, and n, are greater than 8.

Example 4.4. The following are the scores of certain randomly selected students at mid term
(MT) and final examinations.

MT scores X 55 57 72 90 57 74
Final scores Y 80 76 63 58 56 % 75

Test the hypothesis that the distribution of scores at two occasions is the same by Mann-Whitney
U-test.

Solution. The null hypothesis H, that the distribution of scores at two occasions is the
same against H,, i.e.,

Hy:fi(.) = fo() Vs Hy: fi() #fo()

The combined scores in a sequence in increasing order of magnitude are,

37 55 56 57 57 58 @372 74 .75 /6 380,90
Yoo W X X RN Xt R Y e 1Y
RankofY: 1 3 o 7 10781 12

T=sumofrank’sof Y=1+3+6+7+10+11+12=50.

The U-Statistic is

nin, +1
U= mn, +—i(;—)—T
HEIE ”1=6,n2=7,andT'—"50,



U=6x7+7—)2<§—50=20

From Table given in Appendix A for 11, =7, n, = 6 and U = 20, the probability is 0.473.
Suppose that the test has been performed at 5% level of significance o = 0.05. The
tabulated probability is greater than 0.05, hence we infer that the distribution of scores
at two occasions is the same.

4.5.3 Wald-Wolfowitz Run Test

This test is used for testing of two populations. To avoid any confusion between one-
sample run test and this test procedure, we will consider two random samples m and n
respectively, instead of sizes n, and n,. Let the two independent samples X;, X,, ..., X,,
and Yy, Y5, ..., Y, combine into a single sequence of ordered statistics. Assuming that
the sample have come from continuous probability distribution, a unique sequence of
ordered statistics is always possible as, theoretically, no ties should occur. In the
combined sequence some identification mark must be put with observations of one type
so as to identify whether an observation belongs to X-sample or Y-sample. The definition
of runs remains the same as in the one-sample case. Let the combined sequence of order
statistics withm =5 and n =4 be

XXX 1T X111,

In this case, there are 3 runs of X’s and 3 runs of Y’s. In all we have 6 runs. From this it
may be concluded that the two populations are identical as the total number of runs r is
quite large. If the populations are different, we expect that r will be small as the two
samples are not well mixed. Here we test,

Hy:f1() = £() Vs Hy :f1() #£()
We define arandom variable U, the total number of runs in pooled ordered arrangement
of m X’s and 11 Y’s. As already mentioned, too few runs tend to reject H, in favour of H,
as this indicates that either most of the X’s are greater than or less than the Y’s. The
Wald-Wolfowitz run test of nominal o has a critical region given by
; =Y,
where 7, is chose to be the largest integer such that P(U < r,) < & under H,,.

Since X and Y constitute a completely random sequence under H, as the letters a and b
do in the case of single random samples, the probability distribution of U is exactly the
same as given in RUN TEST (section 4.4.2). In this case, m = n, and n = n,. The only
difference in the Wald-Wolfowitz Run Test from the one-sample run test is that only the
one-sided test is being used here. Tables of critical values of r at level of significance o.
are prepared by Swed and Eisenhart.

For large 1, n > 10, a normal approximation may be made assuming that m /(m + n) and
n/(m + n) remain constant as 71 + 11 — oo,

The mean and variance of U are given as,

E(U) = Zn.m +4
m+n
Var (U) = 2mn (2mn —-n- m)

(m + n)2 (m+n- 1)
and we can use the normal test

U-E(U)

\ Var(U)

The decision about Hy is taken in the usual way.

Z= ~N(0, 1), asymptotically.

Non-Parametric or
Distribution-Free Tests

NOTES

Self-Instructional Material 83

i



Statistical Inference

NOTES

84 Self-Instructional Material

Example 4.5. The following are the rates of flow of a certain gas through two soil samples
collected from two different places.

Sample X 23 27 19 24 22 30
Sample Y 21 29 34 32 26 28 36 26

Test the hypothesis that the two populations of soil types are the same with respect to the rates of
flow through the soils by Wald-Wolfowitz run test.

Solution. The null hypothesis that the populations of soil types are the same with
respect to the rates of flow through the soils, i.e., symbolically,

Hy:f1(.) = fo() Vs Hy: () #£o()
The sequence of combined samples with the clearly marked runs is,
19121122,23,24 126,26 | 27 | 28,29 | 30 | 32,34, 36 |
In this case m = 6, n = 8 and the number of runs r = 8.
The probability for r = 8 (even) is given by

)
3)\3
6
Supposing the predecided level of significance o = 0.1. Since the probability f(r) is greater

than 0.1, we accept H, which means that the two soils have identical distributions in
respect of rates of flow of a certain gas.

fir=

4.5.4 Median Test

This test is attributed to Westenberg and Mood. Median test is a statistical procedure for
testing if two independent ordered samples differ in their central tendencies. In other
words, it gives information if two independent samples are likely to have been drawn
from the populations with the same median.

Asin ‘Run Test’ let x;, xp,.., X, and ¥y, ¥5,---, Y, be the independent ordered samples
from the populations with p.d.f.’s f,(.) and f,(.) respectively. The measurements must be
at least ordinal. Let 2y, 2y, ..., Z, +,, be the combined ordered sample. Let n1, be the

number of xs and m, the number of y’s exceeding the median value M(say), of the
combined sample.

Then under the null hypothesis that the samples come from the same population or from
different populations with the same median, i.e., Hy : fy(.) = f,(.), the joint distribution of
n1, and m, is the hypergeometric distribution with probability function

() (o2)
p(nty, my) = —(Enll—;%nfj

my + My

1f m, <n, /2, then the critical region corresponding to the size of type 1 error a, is given by
m, < mj is computed from the equation

2 p(my, my) = o

ny =1

The distribution of m; under H, is also hypergeometric with
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== ,if N is odd
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This distribution is most of the times quite inconvenient to use. However for large
samples, we may regard m, to be asymptotically normal and use normal test, viz.,

my —E(m)

Z=
Var (m,)

~N(0, 1) asymptotically.

Remark 4.1. The observations m and m, can be classified into the following 2 x 2 contingency
table.

Sample [ Sample I1 Total
No. of observations > M 1 1Mz m + m
No. of observations < M My — 1y 1y — Mz My + Mz — My — Mz
Total 1 Hz m+mn=N

If frequencies are small, we can compute the exact probabilities from p(m;, m,) rather than
approximate them. However, if frequencies are large, we may use x*-Test with 1 d.f. (fora 2 x2
contingency table) for testing Hy. The approximation is fairly good if both n; and n, exceed 10.

Remark 4.2. Median test is sensitive to the differences in location between f,(x) and f,(y) but not
to differences in their shapes. Thus if f;(x) and f,(y) have the same median, we would expect H,
: fi(.) =f,(.) to be accepted ordinarily even though their shapes are quite different.

Remark 4.3. Generally, the median test makes the correct decision with a little more assurance
than does the sign test (section, 4.5.5) but not as decisively as the t-test.

Example 4.6. The data of 10 plots each, under two treatments are as given below:

(Tregi. )X | 46| 46 | 32 [ 42| 391 48 |'49°] 30 |"51 | 34
(Treal: 2)Y | 44 | 40 |'59 | 472 | 55 | 50 |"47 "7 |43 7| 55

Test the hypothesis of equality of median response under two treatments by median test.

Solution. The hypothesis,
Hy: fi(x) = foy) Vs Hy : f1(x) 2 foy)

Arranging the data in ascending order, we have

30, 32, 34, 39, 40, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 55, 55, 59, 71
In the above ordered statistics, the observations belonging to treatment 2 are marked just
to differentiate them from observations under treatment 1. The median of the combined

data is 46.5. Here we have 10 observations on the left of the median, and 10 observations
on the right of the median, i.e., m; + m, = 10. Alson, =10,n,=10,n=20,m;=7,m,=3.
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The probability is

10)(10
i 1 120x 120

[20] T19x17x4x13x11
10

p(m,, my) = =0.078.

Take the prefixed level of significance a = 0.05. Since p(m,, m,) is greater than 0.05, Hy is
accepted. This means that the treatments are equally effective with regard to their
median effects.

4.5.5 SignTest

Consider a situation where it is desired to compare two things or materials under
various set of conditions. An experiment is thus conducted the following circumstances.

(i) When there are pairs of observations on two things being compared.
(i) For any given pair, each of the two observations is made under similar extra-
neous conditions.
(iii) Different pairs were observed under different conditions.
Condition (iif) implies that the differences d; = x; - y;, i=1,2, ...,n have different variance
and thus the student’s {-test (paired) invalid, which would have otherwise been used
unless there was obvious non-normality. So, in such a case we use the ‘Sign Test’,
named so since it is based on the signs (plus or minus) of the deviations d; = x; - y;. No
assumptions are made regarding the parent population. The only assumptions are:
() Measurements are such that the deviations d; = x; - y;, can be expressed in terms
of positive or negative signs.
(ii) Variables have continuous distribution.
(iii) d;'s are independent.
The paired differences or matched-sample approach is a good experimental design for
identifying differences in two populations.

Let (x;,¥,),i=1,2,...,n be n paired sample observations drawn from the two populations
with p.d.f.’s f;(x) and f,(y). We want to test the null hypothesis Hy : fi(x) = f,(). To test Hy
considerd; = x;,—y; (i=1,2,...,n). When Hy is true, x; and y; constitute a random sample
of size 2 from the same population. Since the probability that the first of the two sample
observations exceeds the second is same as the probability that the second exceeds the
first and since hypothetically the probability of a tie is zero, Hy may be restated as:

Hy:P[X-Y>0]= % and P[X—Y<0}=%

Let us define

Ui: {1, ifx"—y,'>0

0, ifx;-y;<0

The U; is a Bernoulli variate withp =P (x;-y;> 0) = % .

n
2.4 dyuis 5
Since U,'s are independent, U = EU,- , the total number of positive deviations, is a
i=1

Binomial variate with parameters 1 and p. Let the number of positive deviations be K.



& n] r n=r 1
P(U<K)= Z r/p gy p=q=5underH0

r=0

-G 3()-ren

If p’ <0.05, we reject H, at 5% level of significance and if p’ > 0.05, we conclude that the
data do not provide any evidence against the null hypothesis, which may, therefore, be
accepted. _

For large samples, (n > 30), we may regard U to be asymptotically normal with, (under Hy)

E(U)=np= % and Var(U)=npg= %

__U-EW) _Y-3
\ Var(U) Jn/4

is asymptotically N(0, 1) and we may use normal test.

4.6 THE KRUSKAL-WALLIS TEST FOR DIFFERENCES IN MORE THAN
TWO POPULATIONS

When more than 2 samples are considered, the Kruskal-Wallis test can be applied to test
whether they all belong to the same population. This test is one-way analysis of variance
by ranks, and is useful for deciding whether K-independent samples are from different
populations. This test is the most efficient of the non-parametric tests for K independent
samples.

If there are K samples, and varying number 7, is studied in each sample, let n = total

. K
studied = Z ni.
i=1

Let all the values from all the K samples be combined and ranked in a single series. The
smallest value is replaced by rank 1, the next to smallest by rank 2, and the largest by
rank n, where n is equal to the total number of independent observations in the K
samples. When this has been done, the sum of the ranks in each sample (column) is
found. The Kruskal-Wallis test determines whether these sums of ranks are so disparate
that they are not likely to have come from samples which were all drawn from the same
population. It can be shown that if the K samples actually are from the same population
or from identical populations, the H (the statistic used in the Kruskal-Wallis test and
defined by the formula given below) is distributed as chi-square with d.f. = K -1,
provided that the sizes of the various K samples are not too small. That is

K 2
_ 12 Ri _
H= n(nﬂ);m 3(n+1)

is distributed approximately as chi-square with (K - 1) d.£., for sample sizes sufficiently
large (at least 5 in each group). For smaller sample sizes, special tables are available.
When ties occur between two or more values, each value is given the mean of the ranks
for which it is tied. Since the value of H is some what influenced by ties, one may wish
to correct for ties in computing H. To correct for the effect of ties, H is computed by the
formula by the formula given and then divided by

Non-Parametric or
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T
g
n®—n

where T = t> —t (when t is the number of tied observations in a tied group of values).

The effect of correcting for ties is to increase the value of H and thus to make the result
more significant than it would have been if uncorrected. Therefore, if one is able to reject
the null hypothesis without making the correction, one will be able to reject it at an even
more stringent level of significance if the correction is used.

Example 4.7. In a study of cerebrovascular disease, patients from 3 socio-economic backgrounds
were thoroughly investigated. One characteristic measured was the diastolic blood pressure
(mmj/Hg). Is there any reason to believe that the 3 groups differ with respect to this characteristic?

Group A Group B Group C
100 92 81
103 97 102
89 88 86
78 84 83
105 90 99

95

Solution. Null hypothesis, H, : There is no difference among the diastotic blood

pressures of the 3 groups.

There are 16 values. Pooling all these values, arranging them from lowest to highest, ranking
them and putting them back into the 3 groups, we find the following ranks in each group:

A B &
13 9 2
15 11 14
7 6 5
4 3
16 8 12
10
Ry =52 R,=48 Rs =36

12 [(52° (48]  (36)°|_
=16(16+1)[ i } 3(16+3)
=522-510=12.

H is distributed as a x* with 2 d..f. and for the above value of H, P is > 0.5, i.e., the
differences observed can occur by chance alone more than 50% of the time. Therefore,
the null hypothesis is accepted.

4.7 FRIEDMAN’S TEST

This is a non-parametric test for K-related samples of equal size, say n, parallel to two
way analysis of variance. Here we have K-related samples of size n arranged in n blocks
and K columns in a two-way table as given in next page:



Non-Parametric or
Samples (Treatments) Pl L

Blocks 1 R K Block Totals

1 Rn R]z ............... R]K K(K+1)/2

2 R21 Rzz ............... RZK K(K e 1)/2

3 Rm R;\z ............... Rm( K(K + 1)/2

................... NOTES

n R Rop .ot iazrade Rk KK + 1)/2
Column totals Ry e i Rk E@

where R;; is the rank of the observation belonging to sample j inblocki forj=1,2,..., K

andi=1,2, ..., n This is the same situation in which there are K treatments and each
treatment is replicated n times. Here it should be carefully noted that the observations in
a block receive ranks from 1 to K. The smallest observation receives rank 1 at its place
and the largest observation receives rank K at its place. Intermediary observations
_ _ K(K+1)
receive ranks accordingly. Hence, the block totals are constant and equal to T
the sum of K integers.

The null hypothesis Hy to be tested is that all the K samples have come from identical
populations. In case of experimental design, the null hypothesis H, is that there is no
difference between K treatments. The alternative hypothesis H, is that at least two
samples (treatments) differ from each other.

Under Hy, the test statistic is,
E
2
Z R i = 3n (K + 1)
j=1

12
Fax ——
nK(K +1)

The statistic F is distributed as chi-square with (K-1) d.f. Atlevel o, reject Hyif F2 32 1
otherwise H,, is accepted.

Example 4.8. The iron determinations (ppm) in five pea-leaf samples, each under three
treatments, are as given below:

Samples no. (Blocks) -
1 74 3
1 591 682 72
2 818 591 863
3 682 636 773
4 499 625 969
5 648 863 818

Test the hypothesis that the iron content in leaves under three treatments is the same by
Friedman's test.

Solution. H; : The iron content in leaves under three treatments is the same, Vs H,:at
least two of them have different effect. The ranks of the observations in each block are
given in next page:

Self-Instructional Material 89



Statistical Inference

Samples no. (Blocks) p Treat;nents 3 Block totals
1 T 2 3 6
2 2 1 3 6
3 2 1 3 6
4 1 2 3 6
5 3 3 2 6
NOTES Column totals 7 9 14 30
The Friedman's test statistic is
k
12 2
F= ———— » R: -3n(K+1
K (K +1) Z-l B o
. (7*+9*+14%)-3x5%x(3+1)=65.2-60.0=5.2
5x3(3+1) ;  Iarte

For o = 0.05, the table value of Xg.os,z =5.99.

Since the calculated valued of F is less than the table valued 5.99, the null hypothesis is
accepted. This means that there is no difference in the iron content of pea leaves due to
the treatments.

4.8 SUMMARY

e A “non-parametric (N.P.) or distribution-free test” is a test that does not depend on
the particular form of the basic frequency function from which the samples are drawn.

 Non-parametric tests are readily comprehensible, very simple and easy to apply and
do not require complicated sample theory.

o Non-parametric tests are available to deal with the data which are given in ranks or
whose seemingly numerical scores have the strength of ranks.

e Generally, the median test makes the correct decision with a little more assurance than
does the sign test.

o When more than 2 samples are considered, the Kruskal-Wallis test can be applied to
test whether they all belong to the same population. This test is one-way analysis of
variance by ranks, and is useful for deciding whether K-independent samples are from
different populations.

4.9 GLOSSARY

e Parametric Statistical Test : It is a test whose model specifies certain conditions about
the parameters of the population from which the sample are drawn.

e Run: It is defined as a sequence of like symbols which are followed and preceded by
other kinds of symbols or no symbol at either side.

o Median Test : It is a statistical procedure for testing if two independent ordered
samples differ in their central tendencies.

o Friedman’s Test : This is a non-parametric test for K-related samples of equal size, say n,
parallel to two way analysis of variance.

4.10 REVIEW QUESTIONS

1. Explain the term ‘distribution- free methods’.

2. Explain the main difference between the parametric and the non-parametric ap-
proaches to the theory of statistical inference.
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Write a short essay on the uses of non-parametric tests.

Which nonparametric tests are substitutes for the analysis of variance? Describe their

methodology.

A die was rolled 132 times and the following results were obtained:
No. of spots 1 2 3 4 5 6
Frequency 12 24 38 32 16 10

Use Kolmogorov-Smirnov statistic to test hypothesis that the die is unbiased.

. Two quality control laboratories independently collected samples of 25 articles form

a number of sales depots and tested them. The number of defective per sales depot
were as follows :

Lab A 9 3 1 3 0 i 2 11
Lab B 12 6 6 4 8 5 -

Test the hypothesis that the two laboratories have samples from the same lot by
(/) Median test (i) Mann-Whitney U-test (iii)) Wald-Wolfowitz runs test.

. On tossing a coin 15 times, the following sequences of heads (H) and tails (T) was

obtained:
TTHHHTHTHHHTTHH
Test whether the coin is unbiased by the Run test.

The grain yield of paddy (t/ha) with four different levels of nitrogen from a completely
randomised design experiment are given below. Test whether there is any significant
difference between the effects of different nitrogen levels by Kruskal-Wallis test.

Treatment 1 yield Treatment 2 yield Treatment 3 yield Treatment 4 yield
5.1 44 6.0 3.2
54 49 5.8 3.6
53 48 53 31
4.7 6.1
School children taking coaching in three private schools secured the following scores
out 100.
No. of children e
1 2 3
1 33 32 b
2 38 15 68
3 39 87 27
4 48 32 88
5 58 22 46
6 70 63 52
7 61 56 76
8 41 57
9 45 44
10 49

Test the hypothesis that the students studying the three private schools have identical
distribution of marks by applying the (i) Median test (ii) Kruskal Wallis test, at
significance level, a = 0.1.

The quantity of serum albumin (gms) per 100 ml in lepers under three different drugs
and the control groups was as follows:

Non-Parametric or
Distribution-Free Tests
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Group No. Control - Drugl Drug II Drug Il
1 430 3.65 3.05 3.90
2 4.00 3.60 4.10 3.10
3 4.10 2.70 4.20 3.20
4 3.80 3.15 3.70 420
5 3.30 3.75 3.60 13.00
6 4.50 2.95 4.80 3.40

Apply Friedman'’s test to confirm whether the content of serum albumin in different
groups of persons is the same.

4.11 FURTHER READINGS
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SEQUENTIAL ANALYSIS

OBJECTIVES

After going through this unit, you should be able to:
* explain sequential probability ratio test
¢ describe operating characteristic function of SPRT
* give brief account on average sample number

STRUCTURE

5.1 Introduction

5.2 Sequential Probability Ratio Test (SPRT)

5.3 Operating Characteristic (O.C.) Function of SPRT

5.4 Average Sample Number (A.S.N.)

5.5 Application to Binomial, Poisson and Normal Distribution
5.6 Summary

5.7 Glossary

5.8 Review Questions

5.9 Further Readings

5.1 INTRODUCTION

We have seen that in Neyman-Pearson theory of testing of hypothesis, , the sample size
is regarded as a fixed constant and keeping a fixed, we minimize p. But in the sequential
analysis theory propounded by A. Wald n, the sample size is not fixed but is regarded as
a random variable whereas both a and B are fixed constants.

5.2 SEQUENTIAL PROBABILITY RATIO TEST (SPRT)

The best known procedure in sequential testing is the Sequential Probability Ratio Test
(SPRT) developed by A. Wald discussed below:

Suppose we want to test the hypothesis H,: 6 = 8 against the alternative H, : 8 = 6, for
a distribution with p.d.f. f(x, 6). For any positive integer m, the likelihood function of a
sample xy, xy,..., x,, from the population with p.d.f. (p-m.£)f(x, 0) is given by:

Sequential Analysis
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m
Eau= Hf(x,-,el) when H; is true, and by L, = Hf(x,-,eo) when Hyis true, and the

i=1 i=l

likelihood ratio A,, is given by:

> e flx;
e = F =1,2,... w421
7 Hf(x“ 3 (m ) ..(51)

The SPRT for testing H, against H, is defined as follows:

At each stage of the experiment (at the mth trial for any integral value m), the likelihood
ratio A, (m=1,2, ...) is computed.

(i) If A, = A, we terminate the process with the rejection of Hy

(i) If A,, < B, we terminate the process with the acceptance of Hy, and o5 kD)
(iii) 1f B < A, < A, we continue sampling by taking an additional
observation.
Here A and B (B < A) are the constants which are determined by the relation
1-B p
= s ...(53
e (53)

where a.and P are the probabilities of type I error and type Il error respectively.

From computational point of view, it is much convenient to deal with log A,, rather
than},,

5.2.1 Deviation of Test Statistics for Sample Vs Sample Hypothesis
LetF (x,0) be the p.d.f./p.mf.ofar.v. X. letHy: 0 =8 vs H,:0=6,.
Thus F (x, 8p) and F (x, 6,) are the distribution of X under Hyand H,; respectively. For any
positive integral value in the probability that sample xy, ......, Xp, 1S obtained as

le = F (xl, 91) F (xz, 91) ...... ’ F (xm, 91) undel‘ Hl-

Pom = F (x1, 89) F (x5, 8g) «ccecc. F (X 6,) under Hy.
Since the sample hypothesis is tested vs a sample alternative. Using the likelihood ratio
test, we have

A= P1m/ Pom
As a basis for deciding between Hy and H;. For fixed sample size,
H,is accepted if A, <k
H, is rejected if A, > k.

A sequential that can be constructed by extending the fixed sample size method to
include a region of continuing sampling.

In the fixed sample size test, one could accept Hy if A,, is small and accept H, if A, is
large. Thus in sequential test being two numbers A and B are chosen and divided
successive observations are taken form=1,2, ......,as long as B<A,<A.

If A,, 2 A, the process is terminated with the rejection of Hy. If A, < B, the process

terminated with the acceptance of Hy. For practical purpose ‘log Pim + is more easy to

Pom
handling then that if ‘py,, /o, thatis



where z; = log

The SPRT reduce to

m
() AcceptHyif ¥,z <logB

i=1

m

() Reject Hyif Y.z >log A

i=1

m
() Continue if log B < Zz,— <log A.

i=1

5.2.2 - Determination of A and B
Let o.and P be the strength of the test, & = size of the type (I) error and B = size of the type
(II) error.

a=p {Reject H, / Hy}

o= Zp{xele/Ho}

m=1

A= Pim/ Pom 2 A
or Pom = Pim / A

e Z Iplm

ms= lR.,,,

or

o<

Z P{xeR,,/H;}

Sn

R
IA

p{Reject Hy/H, }

=
A
S

(1-8)

In
ey
Al

A
1-a=1-P{Reject Hy/H,)
= P{Accept Hy/H,)

= ) P{xe Ro,,/Hy}

m=1

.(5.4)

Sequential Analysis

NOTES

Self-Instructional Material 95



Statistical Inference

NOTES oo 1-a=z ';_ ijlm dxlf"""fdxm

1 oo
or 1-a2 Emglp{xeROm/Hl}

or l1-a2 %plAcceptHO/Hl}

1
1-0z —
o BB

5 1 ;
=5 B2 s )

In actual practice

A=1—EandB=—-—B—.
o 1-a

5.2.3 Ilustrative Examples Based on the Application to Probability
Distribution
Example 5.1. If X ~ N (6, 0%), o is known, solve SPRT for testing
Hy: 8= Gyuvs €= 6
(1) 8,> Gyand (II) 6, < 6]

Solution. We have
F(I,e)— J—:!__ F#(x 9)2
Now, z;=lo i(; gl)
’ o
. ——:I(x 9,) (x 90)
o 21: c 2::
{ -y (-0 (- 90}}
ki [e - x 2 407 -20,x - x2-01+zeox}]
g Sy ot -ei-2(0,- eu)x}]

0? - 03
=( ; )x_ 1%
o 20
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Now, taking Z both sides,

m .0 m 62—62
Sae OB (i

Casel.lf91>90 = 91—00>0

m
Reject Hy if sz 2log A, we have

i=1

0, -8 ) 67 - 65
( ’02 OJin-m( Eczn)zlogA

i=1

(8, -8o) < m(ef—eé)
x; 2log A+
P ; & 292
m 2
& o S loEA+m(el+eu
i=1 91 —90 2
= X; 2 a+mc
i=]
mn
Now accept H if ZZ,- <logB
i=1
We have from (5.6)
2
0, - 902 (9 w. POt
60 -6}
or x; <lo B+m
231 . 202
m
Zx < o og B 6, +6,
i=1 91 '—BD 2
m
Zx,- <b+mc
i=1
m
IflogBs ).z <logA
i=1
We have b+mc< Zx,- <a+mc

i=1
CaselIL. If9, <6, = 0,-98,<0

m
Now, reject Hy if zz,- Zlog A, we have from (5.6),
i=1

e,,z (

J>IogA

)

.(5.8)

-(59)

.(5.10)
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i 2
in P logA+m[61—90)210gA

i=i 91 = eu 2
m
=» Zx,- <a+mc .(5:11)
=1
m
Now accept Hy if Zx,- <logB
i=1
: m
Y xi zb+me ..(5.12)
i=]l

From (5.11) and (5.12), we have
m

a+mcs le <b+mc.
i=1
Example 5.2. If X ~ B(1, 6). Develop SPRT for testing H, - 0= @yagainst Hy - 0= 6, (6, > 6.
Solution. We have,
F(x,0)=0°(1-0)""*
F (x, 6])

Now, z;=log 5 (x 90)

- 203 (15:)

8, (1-6,)

m
Taking Z both sides, we get

i=1

m " . 9, (1_90)] [l_el)
z = Y xlog| ————=5 [+m1o (513
If91>90,then
1 "91 < ]. < 00

6, (1-9))
1-90
0< (1_31}

() Reject Hy, if ZZ,- >log A, we have
i=1

From (5.13),

m
Bl 1"9[} 1"91
’ =t = oW an)
zlx,log[eo 1—91} m og(l_eﬂ 2log A




i
Zx,- 2 log A/ log

(gl_,l—eo]l_ lzllEg[:Fg;])

i=1 00 1_9] _%_.1_90
6, 1-6,
H
or Zx,- 2a-mc ...(5.14)
=1
m
(I) Accept Hy, if Zz,- <logB.
L=l
m
= D% <b-me .(5.15)

i=1
'Zn:z,- <log A

i=1

From (5.14) and (5.15), we get

Continue, if log B <

m
= b-mc< z.t,- <a-mc.

i=1
Example 5.3. If X ~ P (6). Develop SPRT for testing H,: 8= 6yvs H, : 8= 6, [(I) 6, > Gyand
(I1) 6, < g

Solution. We have,
-0 qx
TS L
F(x,0,)
N ’ i = ]
ow, z; = log F (x, 90)
-0, ex
= log f_e 1/|£
> 65/
e %
= og -90 BI
X
= log e @-o) O
)
= xlog (ﬁ)—(el -6y)
)
Now, taking Z both sides
i=1
m m 9
Zz,- = in log _1 -m (Bl = 90) ...(5.16)
i=1 i=1 8o
Casel.If0,> 6,
= —e-l— - 5 |
0y
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. Taking log, we get %

We have, from (5.16)

m

in log (gl]- m (8, —8;) > log A
0

i=1

L i : log: m (6, —6y)
=1 =L =L
log (90 ] log (90 J
or Zx,- Za+mc +(517)

If Accept Hy, then Ezi <logB
i=1

= zm:x,- <b+mc ..(5.18)
i=1
"
Continue if log B < zz,- <log A
i=1
From (5.17) and (5.18),
= b+mc< ixi <a+ mc.

i=1

CaseIL.If8, <8,

=5 — <1

m

Reject Hy, if 3% >log A

i=1

m
= Y. xi <a+me ..(5.19)
i=1

il

Accept Hy if Zz" <logB

i=1

= Zx,- 2b+mc «.(5.20)
i=1




If logB < Zzi <log A
i=1

From (5.19) and (5.20), we get

m
a+mc< Zx,- <b+mec.

i=1

5.3 OPERATING CHARACTERISTIC (O.C.) FUNCTION OF SPRT

The O.C. function L(0) is defined as
L(6) = Probability of accepting Hy : 6 = 8 when 8 is the true value of the parameter.
and since the power function
P(6) = Probability of rejecting H, where 8 is the true value, we get
L(8)=1-P(8) ...(5.21)
The O.C. function of a SPRT for testing H, : © = 8; against the alternative H, : 6 = 8,, in
sampling from a population with density function f(x, 8) is given by

A"® _q
L(B) = AI"(B) 7 Bh(a) s .(5-22)
where for each value of 6, the value of h(8) #0 is to be determined so that
1(8)
£(x,0, )]
E| ——= =1 =45:23)
[f (x.8)

where the constant A and B have already been defined in (5.3). It has been proved that
under very simple conditions on the nature of the function f(x, 8), there exists a unique
value of 11(0) # 0 such that (5.23) is satisfied.

5.3.1 Derivation of O.C. Function

Elx;;
Theorem 5.1. Statement If z = log M and P (1 z | >0), then
F(x;,6,)
1-A"
L= Bh ) Ah

where h is the root of M (t) = 1
Proof : From the fundamental identity, we have
E[e™ M(®)"]= 1
Since I1is the rootof M () = 1
then M (h) = 1, thereforeatt=h
E[e®]=1

k
Note thatE (B)= 3 P (A)E (B/A;)
i=1
E(e™)=P(Sn2log A)E [¢¥/s, 2log A]

+P(Sn<logB)E (¢>'/S, <log B) + P (log B<S, <log A)
+E (%" /1og B<S, <log A)

Sequential Analysis
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Now, we have
P(logB<S,<logA)—0asn—e

(because SPRT terminate with probability 1)

Also, consider the boundry cases

Reject H,if S, =log A

Accept H,if S, =log B

Then,
E[¢%"]=P(S,=log A) E[¢5"/S,=1og Al
+P (S, =logB)E (¢5"/S, =1logB)
=P (S, =log A) E ('] + P (S, =log B) - E [¢"*8"]
1 = P (Reject Hy/8) A" + P (Accept Hy/6) B"
1=(1-L(8)] A"+ L (8)B"
1=A"-A"L(8)+B"L(9)
1=A"-L(9)[A"-B"]
= L()=1-A"/B"- A"
where gd=h andB= iz
o 1o

5.4 AVERAGE SAMPLE NUMBER (A.S.N.)

The sample size n in sequential testing is a random variable which can be determined in
terms of the true density function f(x, 8). The A.S.N. function for the S.P.R.T. for testing
H,: 0 = 6, against H, : 0 = 8, is given by

_L(8)log B+ [1- L(6)]log A

=) /.(5.24)

E(n)

wiheie 7 los[-ﬁ"f—*);],m 8 g 5:25)

5.4.1 Derivation of A.S.N. Function
Theorem 5.2. Let X ~ F (x, 6 and we want to test Hy: 6= §yvs Hy: €= 6. Let 2g, ..., Zy be iid

F(x, @ g . 8
random variables defined as Z = log F_ﬁTI)) and n is the number of observation required for
&
reaching a terminal decision, then expected value
[1-L(6)]log A+L(6)log B

E(2)

Eg(ﬂ) =

Proof:Since S, = Zz,- , we have
i=1
E(S,)=P(S,2log A)E(S,/S,2log A)
+P (S, <logB)Eg(S,/S,<logE)

+P(logB<S,<log A)E[S,/logB<S, <log Al
If the SPRT terminates at the ™ step, then either S, 2log A, i.e., Reject Hy
or S, < logB, i.e., Accept Hy.
In these two cases, we take approximation
Reject Hyif S, =log A
Accept H,ifS, =log B



Therefore,
E(S,)=P(S,=log A)log A +P(S,<logB)logB
= P (Reject Hy/0) log A + P (Accept H,/90) log B
From Abrahum lemmma
Eg(n)E(z)={1-L(0)} log A+L(8)logB
_ {1-L(8)}log A+L(6)log B
= Eq(n)= E(2)

5.5 APPLICATION TO BINOMIAL, POISSON AND NORMAL
DISTRIBUTION

Example 5.4. Find OC and ASN functions for H,: 0= §,vs H, : 8= 6,.
() X~N(8, o7, o is known
() X~N(6,0°), o is known
Hy:o0=oyvsH;: 0= o

() X~P(6)
(IV) X~B(1,6)
Solution.
() For O.C. function, we have
1 -L(x-0f
F(x,0)= %
(x,0) om
Now,
1 -(x-9)
F(x,BI) 2 0‘,/21:
F(x,0,) 1 e—;:f{x—eo)’
o,/ 2n
e"%("el)z/"z
p e‘;‘ii(x'eu)z
_ o[-0 -(-e)’]
_ [0 -)-2x(6, o))
Since, M.(#)= E(*)=E[{&)]
F(x,0,) F(x,0,)
where z=lo et P
®F(x.0) ~ F(xe) °
Therefore,
I
M, ()= E [MJ
F(x,8y)
We have M) =1ast=h
h
Therefore, M(h)=1=E M
F(x, 6y)

1= fu{gg g;;}h F (x,0)dx
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ferm or = J-“H 8_#[(9§_03)—21(91—%)] x 1 —;;!-[1—8)2
i 0_\[2=1te dx

-2%(91 -Bo)x—E%f(x—e)z

or 1 e dx

= b= kel -a]] p-
& ch_n:e J-_o,

N

NOTES
—-,_;}:[{x—(mhe, —1‘!%)}]2 —[(o+he, - h8,)’ +92] .

=C J_:f x
,#(ef-af,)‘e;:af[(euza.-nao)z_ez] .. J"” e-;:,[x—(ama,-haa)]’ =

1=
or (4 GJTTE £

x—(0+ 10, — hB;)
=y,

Put
c
= dx=ocdy
1 o
Therefore, 1=C, j ety dy
0':; 2w J-e

= C2 =1

e——z{;[h{lﬁ —83)~(0+/16, ~h8y) +¢° | o
Since,

=1 =—x=8
= 02 — 02 — 6% — h] — 260, +260, +2h8,8, =0

— (67 +6% —26,6,)-20(6, — ) +(e?-63) =0

or —h(8; —8,) —20 (8, —8o)+(8; —6y) (8 +8o) =0

or ~h(0;-85)—20+(8,+8p) =0,256, -6, #0
or h(el—eo) = (91+90)—29
h: 91+90—29
e'1—90

Now, given different values to 6, we get corresponding h. Hence a graph
between 0 and L (8) gives a O.C. function.
In particular Hy:0=6,=1
H,:0=6,=2
a=005=P

Now, A= ——=19
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I 0 Al B L(0) Sequential Analysis

-1 | 20|19 ]| 19 | o005
-2 | 25 | 1/361 | 361 | 0.0028
-3 | 30 |1/6859| 6859 | 0.00025
+1 | 10 | 19 | 119 | 095
+2 | 05 | 361 | 1/361 | 0997
+3 | o | 6289 | 1/6859 | 0.998 s

1.0
0.75
0.50
0.25

06 3 15 2025 30,35

For AS.N.
E(n)=[1-L(8)]log A + L (8) log B/Eg(z)
5 Flx0) 1 112
Now z= log F(x, 90) e [(91 —30)—21'(91 —90)]
1
Byiz) = F[(B‘Z -6})-26(6,-0,)], as E@=6
Now 6=1,6,=1,0,=2

a=0.05=p
Thus, giving different values to /1, we get 6 and calculate to A" B"and L (6) and
then O.C. function.
Now, A.S.N., we have expected value of n under 6
Eg(n)=[1-L(0)]log A + L (8) log B/Eq(2)

_ . F(x,0)
where z=log v (x, %)
B 9_1 ¥ -(6-8)
. (%J :
- xiog ) -(@1-0,)
9
= Ep(z) = Blog[g—l]—(el—ﬂu),asli(x)=9.
0
X ~N (8, 6?), 6 is known
I'lo:G=GBVSHl:°'=U]
o Lisa
F(x,0%) = Gme
F(x,of) e 8-3:'7’(‘—9')2

Now, X Og4/ 2T

F(rof) on2m  -ggt-ar
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= Eo-g ;:?{I—en) x8+203 (-t—o.)

G
s
= ﬂe: l ﬂé 1
Ty
_[o ;*"‘“"’"[sl 3]
NOTES o5
F(x,cf) ;
Now, M(h)=1=E -
F(x,co)
After simplification, we get
Eg(z)=-0.5
(M) X~P(8)
-8 nx
F(x0)= &9 'H,:0=8,vsH,:0=6,
F(x,8,) _ e of i
F(x,8,) lxxe ™6
. [.9_1} %8
05 o
F(x,0,)]
Now M()=1=E [Fg 91”
Y
Ul
= F(x,Bl)]
- F(x,0)
;[F(x,ﬂﬂ) (
o0 hx <Qia
OlJ ~n(e,-6,) € O
1: A e T
54 E:,[eo lx
m-sg-o 2[00 ) o]
_—h(8,-8,)-0 0,
(3 i ;}{(90] 9:\ lx
h(o,-0,)-8 X M o, \
e 1 =85)-0 L S e B
=2 ZBE ,where m (en] 0
% e-h(ﬂl—ﬂo)-e‘em
1= e-ﬁ(ﬂ,-—ﬁo)—ﬁ _e(-:ﬂ'o
& ea(%)’—h(e,-au)—e
h
i eo[(%.}) -1]-:.{9,-9‘,]
Since g=1 = x=0
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Now, we get

e[[%;—]fl-l}-h(el—eo) =0
= 0= ———5.
(&)

| F(x.0f)
I
IO U e o R W
1-1—“ka) e tchz_ne

h
o ¥ 10 g% jpw Tty
1=|—| - —x% P
(01] ¢ o~ Jfon L.
3 1
where T T
_+_.-__.—_
o & o
h
o, 1
- § §faef-all, 1
v EL a8 i Al §
7'

For different choice of h, we get 6 and hence L (¢) and then O.C. function.

L(o) | O.C.function

For A.S.N., we have expected value
[1-L(c)]log A +L(c)logB

o E, (2
F(x,o?
where z=log g z;;
+ Y0
Clog|O O (1 1
“"g[ol 2 (of'os]]
] O s 2
= E,,(z)=1og-6-1-—- =E5 asE(x-0)2=0%
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(Iv) X~B(1,8).
Hy:0=06;,vsH;:0=6,

We have
F(x,0)=6(1-0)'"*
and
F(r,0,) 6f(1-9) "
F(x8) 6f(1-6) "
Bl
8, ) (1-6
h
Now, M()=1=E F(x,6)
F(x,8)
1 hx h(l-:r}
= Y 1-6 21 _o)*
SN e

1-9 I 0, h (1—-91) h
= 0=1—-|—— —_ | =d—r .
1-0 8, (1-6)
Thus, given different value to /1, we get 8 and hence L (8) and then O.C. function.

[1-L (6)]log A +L (8)log B

For A.S.N.,we have Ey (1) = B, @)
0
F(x,
where, Z=log (x 0,)
F(x,6,)
=log (ﬂ.)x (1 . ]Hr
8, ) \1-6

xlog(gl]ﬁ-(l—x)log[i g‘}
0 -9

0 log [%‘-J-k(l—ﬁ) log G:g] ) as E(x)=6.

0 2

I

Eq (2)

Example 5.5. Give the S.P.R.T. for testing Hy: 8= 6, against Hy : 0= 6, (> 6) in sampling from

a normal density:
1 1(x-0Y
fix, 8= = 2ﬁexp[ 5( = )],— x<

where ois known. Also obtain its O.C. function and A.S.N. function.

Solution. %i_:fg—:)) = exp [— -;? ((x,' = 91)2 ~(x -8 )2 )]



1 Sequential Analysis
[—F{ 8 - 6, )(2x; - 6, -el)}] (5.26)
f(xi,0,) o ( 8, +0 ]
: 5.27
i A & bl ] )
“_ _6,-8, m(6, +9,)
NOTES
Hence the S.P.R.T. for H, : 8 = 8, against H1 0 =6, is given by (5.2)

() Reject H,if

R

- o2 1= m(8, +0
= in = 8 Iog( aBJ"' (02 1)5 (6, >6p)

i=1 1"90

(i) Accept H,if

910-29[, {in % m(002+ 9]):, % 103(1 Ba)

m 2
c m(6, +06

-« 2
(iif) Continue taking additional observations as long as

Iog[l_’_sa) < 910_29" [Zx,-—*——m(eo;el)}dog( B)

o’ B m(8, +6,) 1_ﬁJ
=3 6 6, log(l_aJ Zx< 6.0 log(

o

mg;_ﬂ) 6, >0,

O.C. Function. First of all we shall determine } = h(8) #0 from (5.23) i.e., from
= i
F (x' 61)
—_ x,0)dx =
_{[f(xreo) f( )

oion Zn:[ [ ( )J-[exp{—'z?l—( -6 % (2x+90+61)”hdx=1,

[on using (5.26)]

c\/ﬁ-’- [ { 2x((s, ~6) +6) + 6 +( Gz)h}]dx 5

If we take

A= (8;-0p)h +0 ..(528)
A% = (07 - 65) hi+6?

then L.H.S. becomes: —J_= j {——-— x l) ]d .
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which being the total area under normal probability curve with mean A and variance &
is always unity, as desired. Thus i = h(6) is the solution of (5.28) and is given by
(03 —03) i+ = (8, -6g)h +0F = (03 —6F)h =(8,-80)" )" +26(8,~8)
Since i = (8) # 0 and 8, # 8, on dividing throughout by (8, - 8p) h, we get
0, -8
Substituting for 1i(8) in (5.22), we get the required expression for the O.C. function.
A.S.N. function. Wehave

Z= logls (1.8,) _9{fhy (x " ;’el ) , [From (5.27)]

f(x,eg)_. 0’2
6, -6, 0, -0
E@2)= —1?_6—22(21-:@)—90 -0,)= ‘202" (20 -6, - 8,)

Substituting in (5.24), we get the required A.S.N. function.
Example 5.6. Let X have the distribution
fix,=6"(1-60' %x=0,1,0<6<1
For testing H : 0= G,against H, : 6= 6,, construct S.P.R.T.and obtain its A.S.N.and O.C. Function.

Solution. We have

L(II'IZr---rxnl1H1)

xm= L(xlf xz,...,xnllHﬂ)

= 912 (1-0,)"" Bl (ﬁozx‘ (1-8)" Z)
|

i e_1i=1.\'ll 1-8, m-g:q
T 1-6,
1-91
log A, = fo log(91/90)+(m—-Zx,-)log[l_e )
0
- 8,(1-6p) (1-91}
-_-'z:;x,-log[eo(l_el) + mlog 126,

Hence SPRT for testing H, : 8 = 8y against H,:0 =0, is given by (5.2)

(i) AcceptH,if log A, < log [I?—a-) =b, (say)

m  p-mlogl(1-8;)/(1-8)]
e.,if X s =g, (say)
i z::l log [e, (1-85)/80 (1~ al)] ’
(if) Reject Hy (Accept H,) if log A, 2 log (1 ;B ) =a, (say)

) X 2 a—mlog|(1-6,)/ (1-90)] =1 (s2Y)-
- log [ 81 (1-8,)/8 (1-9,)]

ie,, if



(1) Continue sampling if
b<logh,<a = a,<Ix;<r,
0.C. Function. O.C. function is given by:

L(6) = [A"® _1]/[AM® _B"®)] [using (5.22)] ...(5.29)
where for each value of 8, 1(8) # 0 is to be determined such that
i1(8)
f(x, 91)] :
El =—+| =1 [using (5.23)]
|:f(x, 6)
1 hi(8)
[ 5 (x, 91):|
A ——— x,0) =1
o Z:o[f (x,8p) fiet)
Lffanery o 9o /+(6)
= <L _1] 8(1-0)"F =1
3|2 ()] -
h(8) 11(8)
0 el e
e [1_90) (1 9)*‘(90] 0 =1 .+(5.30)

The solution of this equation for k = () is very tedious. From practical point of view,
instead of solving (5.30) for k we regard h as a parameter and solve it for 6; thus giving

o2
1 -[(1 -0,)/(1- 90)]”(9’
"~ (0/00)" ~[(1-8,)/(1-0,)]

ey = O(h), (say). ...(5.31)

Using (5.29), we have:
[(1 - B)/a]h 3
[(1-B)/a] -[B/(1-a)

Various points on the O.C. curve are obtained by assigning arbitrary values to ‘i’ and
computing the corresponding values of 8 and L(6) from (5.31) and (5.32) respectively.

A.S.N. Function

]h =L(8, h), (say). ...(5.32)

o 1-a

f(x’el)}.A_ I_B

Z= log[f(x,eo) el B= i

E@2)= ) log ){((i:g;”-f(x,ﬁ)

1 E x 1-x
91] (1—9‘1] ¥ T—=x
e W B 9 (1-90
x=0 [90 1_60 ( )

1-6 (3]
= (1-0)1 1 . =
(1-9) og(1 90JH&) log[a )

I
M
=)

]

0
- Blog| 21(1=8) 1-6,
= Blog [BO (1_91):|+10g [_1—_90) .(533)
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AS.N.is givenby
L(6)log B+[1-L(0)] -log A
E(Z)

Substituting the values of E(Z) and L(0) from (5.33) and (5.32) in (5.34) we get the A.S.N.
function.

E(n)=

..(5.34)

Remark 5.1. If h assumes negative values i.e., if instead of h we take — h where h > 0, then

= AN I
T BT e [I # JB":{ A'“I]-B"

A" _B" |B_A"
= L(6,~h)=B".L(6.h) ...(5.35)

e e [1-8)/(1-8)] -1 [g,_

I
J [From (5.31)]

[(1-6)/1-6)] -(6:/6,) \&
h
¥ 9(”)'[2‘;) .(5.36)

Formulae (5.35) and (5.36) are very convenient to use for obtaining the points on O.C. curve for
arbitrary negative values of h.

5.6 SUMMARY

o The best known procedure in sequential testing is the Sequential Probability Ratio Test
(SPRT) developed by A. Wald.

 The sample size n in sequential testing is a random variable which can be determined
in terms of the true density function f(x, 8).

¢ The O.C. function L(8) is defined as the probability of accepting H, : 8 = 6, when 6
is the true value of the parameter.

5.7 GLOSSARY

Null Hypothesis : Null hypothesis is a hypothesis which is the to tested for the positive rejection
under the assumption that it is true.

Normal distribution : A random variable X is said to follow normal distribution with parameter
mean (1) and Variance (¢°) if its p.d.f. is given by
1{x-p
1 e‘i[—;“
o.f2A

2
] —o0<x<oo,—w<p<ecand 6>0.

fix;p,0%) =

Poisson distribution has only one parameter.

Binomial distribution. It is a discrete probability distribution which has only two parameters.
The p.m.f. of binomial distribution is

P(X=x)="C.pq" L 2=0,1,2, .. .n

5.8 REVIEW QUESTIONS

1. Define sequential analysis. Explain how the sequential test procedure differs from the
Neyman-Pearson test procedure.



2. Describe sequential probability ratio test (SPRT). Drive inequalities involving A, B, Sequential Analysis
a and B where symbols have their usual meanings.
3. Define SPRT and explain its properties.
4. Define the OC function and ASN function in sequential analysis.
5. Let x have the distribution
f(x,8)=0"(1-6)""%;x=0,1;0<0<1
For testing H; : 6 = 8, against H, : 8 = 8,, construct SPRT and obtain its ASN and OC

functions. : NOTES
6. Set up SPRT for testing the variance of a normal distribution with known mean.
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