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I.1 INTRODUCTION

Many fundamental principles of statistical inference originated from the path:breaking

:::T:r,T:.:"f ,:"A:T^rijl'5:1Fi"h."i"th"1e2c:rh;;:;;""ptsarearive,we4and indispensable. rhe deepest of au 1TIT q""ol ;;A;;ffiffi;ffi;
Fisher and it blossomed further, agarn in the hands of Fisher in 1920.
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NOTES

Section 1.2 introduces Neytwnfactoizttion of alilcelihootlfutrcfor. ln Section 1.3, a notion
of mininnl sufficiency and the fundamental results of khrnann and Scheffe are

discussed. These help in locating the besf suflicimt statistic, if it exists. Section 1.5

introduces the concegl of cofipleteness'

2 Selt'-lnstructioul Mateinl

1.2 SUFFICIENCY

We begin with ob sewable iwtependnt arul tulmtically distributed (itd) tarrdom variables

X, ..., \ with a c onnon probabitity mass function (pmf) ot probability density function
(pdf) flx), x e X. The sarnple size r is assumed kloaz. Practically speaking, we observe

Xt,...,Xrfrom 
^poryrrtion 

whos€ distribution/(r) is indexed'by a paramcter (or parameter

uector) I (or 0) which caPtures imPodant features of the PoPulation' A practical asPect of

indexing fl:) with 0 (or 0) is that the population distribution would be completely

specified once we lnow 0 (or 0).

We let a prrl or pdf befr; 0) or.tir; 0) where the parameter 0 (or 0) is fixed but unknown'

ln the cas€ of a single Paraneter, we write 0- e O, the Parameter sPace, O g S' For

example, one nray tt u" X di"ttiU.tt"a as NG, d) wittr p unlmown, - - < lt < -, but 6(> 0)

is known. Then, f(x; 0) will be the same as a N(|r, d) pdf witlh 0 = p and the Parameter

roi* e = l. s"i, if ioin p, d 
"tu 

ttol*own, ttt"nnt; e; will be the N(p, d) Pdf with the

parameter vector g = (U, d) and e = fr x S-.

bu, q.r"rt for gaining information about the unknown Parameter 0 (or 0) may be

"onsii"red " 
core of s6tistical inletsttce. The data X1, . . ',\, of course, have allinlorrution

about 0 even though we have not yet sPecified how to quantiry "infomration"' A dataset

may be large or Ima , and data may be nice or cumbersome, but it is ultimately

incurnbentuponanexPerinrentertosummarizethedatasothatallinterestingfeatures
are capturediy the summary. That is, ideally a summary should have the exact same

"information" about 0 as do the original data. Such a summary would be as good as the

whole data and it will be called suf cimt tor 0'

Definition 1,1. An obsrublerul braector)valuedt'unctionT =T(X1,. .X^) is ulld a statistic'

Some examples of statistics are X, Xr1X, - x,.), IX,' 52, and so on' As long as

numerical evaluation of T, having observed data X, = rr ' "X,, = rn' does not involve any

unknown entities, T will be callei a statistic' Supposing th"t xt, " ',X" "te 
iid N(p' d)

where u is unknown, but d is known, T = X is a statistic, but its standardized form

F(x -P)/o t""ot'

Definition 1.2. A s tatistic T is catled sufficimt Jor an unbtoum panmetet ?if and only iJ the

conditiowt itistibution of the ranilom saipte X =(Xr," 'Xr) gioenT = t does not inwlzse Qfor

allteTcfr.
In other words, Siuan the value t of a sufficient statistic T , conilitiotully there is no more

4r.1orrrr"tlor," oi "iuice" left in the original data regarding the unknown Patameter e'

P.rt uooth". wuy, o.r" may think of X trying to tell us a storyabout 0; but once a su{ficient

summary T is availabte, the original story becomes redundant' Observe that X is

sufficient for 0 in this sense But, we are aiming at a "shofter" sunmary statistic which

has the same information available in X'

Definition 1.3. A aector aahnd statistic T =(T1,'.,7) with T, =T,(Xt, ' ' ',X)' i = 1' ' "k,is.
calted iointly sufficimt for the unhtoun Paraffieter ebr A if y! only,if the conditional

distribution of i =61,...,X^) gioeflT =tdoesnot inoolae ebr A'for all t €T e fi '



1.2.1 Neyman Factorization

A dataset consists of X1, . . .,\ from a population with a common pmf or pdIfl.r: 0) where
0 is an unknown parameter. The N€yman Factorizttion Theorem is widely used to find
suff icient statistics,

Definition 1.4. Haoing obseruetl Xl= xi, i = 7, . . ., n, a lilelihootl funetion is defnd as

qel= ll/(:;;e),eee
In a discrete case, L(0) stands P6{X1 = xl n...^ 4 = r,}. In a continuous case, L(0) stands
for the loint pdf at the observed data (rr, . . ., xr) when 0 obtains, One may note that once
lxi; i =1, ..., nl is &served, there are no random mtities in equation (1.1). A likelihood
function L(.) is simply a function of 0 only.

It is not really essential that X be real valued or iid. In many examples, it will be so. Bu! if
X happens to be vector valued or iI it is not iid then the corrcsponding ioint pmf or pdf of
Xi = x,, i =1, ,..,n,elould be the likelihood function, L(0). We will give examples shortly.

Sample size z is assuned known and fixed before
data collection begins.

One may note that 0 may be real or vector va.lued, however, we first pretend *rat e is real
valued. Fisher discovered the fundamental idea of factorization. Neyman discovered a
refined approach to factorize a likelihood function. Halmos and Savage, and Bahadur
developed more involved measure-theoretic treahnents.

Theorem 1.1. (Ne)rnan Factorization Theorem) A real wlued statistic T = T(Xr,.. ,,X^) is
sufficient for an unknou)n Wrametur eif anit only if the fullowing factoizntion holits:

L(Q= glT(xr...,x,); 0l h(x',...,t,) for all xr,...,xne X (1.2)

where functions g(.; A and h(.) are both non-negatioe, h(.) is free fom e and g(T0; A inwlaes
\, ... x^ only through T(x1, . . ., x,)
Proof For simplicity, ive provide a proof only in adixretecase. Let us write X = (Xr,...,1i)
6dr=(r,,...,x,).LetAandBrespectivelydenotetheeventsX=randT(X)=T(r),and
observethatAgB.
Only if part: Sttppose that T is sufficient for e. Now, we write

L(0) = P.{X =:}
= Po{X = r^T(X) = T(r)},sinceA q B
= Pe{r(x) = T(r)} Ps{X =: I T(x) = T(r)}

Denote g(T(rt,...,r,); 0) = P8(T(X) = T (t)l and, h(xr,...,x,) = Pe[X = x lT(E = T(r)]. Since
T is sufficient for 0. by Definition 1.2, the conditional probability Pr[X = r I T(X) = T(t)]
cannot involve 0. Thus, h(.rr,..,:n) so defined may involve only x',..., rn. So, the
factorization given in equation (1.2) holds.

f parf: Suppose that the {actorization holds. Ict p(t; e) be the pmf of T. Observe that

{, I
p(t; 0) =P'tr(x) = rl = > I f|/0,0)l = > L(0). rtiseasytosee:

y,r{y)=r Ii=l ) vt\v)=r
P6{X =: I f()Q = 1} = 0 iI T(:) * t

Forallxe X such that T(r) = t andp(t;Q)+0,we can express P.{X =r lT(X) = tlas:
L(o) / p(t ; q = sg (x) ; o) h(x) / p(t ; 0)

= |Gq!@)/ I t(tl
rrlYl = t

= g(t;o)h(t)/ L s(r1v;,e;l1Y;
Yr {Y)=t

because of factorization in equation (l.2). Since g(f 0) + 0, one has:

(1.1)

(1.3)

(1.4)

Suficiency and Conpletencss

NOTE9
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h(xv.." x,) =

Plx=r lr(x)=r| = g(ro\h(x)/tg$;el 
{: ,rOl}

=t'c)/1 > n(v)l=qQ\
[vr(r)=t )

with q(x) free from 0. Equations (1.4) and (1.5) complete the proof.
In Theorem 1.1, we do nol demand that g(T(:1,. .., r,); 0)

is a pmI or pdf of T(Xt,...,Xn). It is essential, however, that
lr(r1, . . ,, r) must be free from 0.

It should be noted that the splitting of L(0) may not be unique. Also, there may be
different versions of sulficient statistics.

Remark 1.1 In T?leo rem 7.7, it was not essential thot Xtu...,Xnor Obe retl oalwil, y X1,. . ,Xtl
are iid p-dimensional ob*rwtiors with a common pmf or pdf flx; A, 0 e O g; fl, the Neyrnan

F actoriution Theorem will hold:

Dante ttu tiketihood Junction, L( A = fif Q,,e).

A oector oalued statistic T = (Tt,.. 
"T I is jointly suffcient for' e=(q,..,e)if and only if L(0)=g(T;0)h(xy..,,r")forall

x1,...,xn e X g 9? , with both gC fl, h(.) non-negatiae, g(.; 0
depending upon x only throughT, anilh(.) isfreeftom 0. (1.5)

Example 1.1. Suppose X1,.."1i, are iid Bemoulli(p) with p unknown, 0 < P < 1. Here,
X = {Q, 1}, $ = p, and O = (O 1). The&

(1.s)

"iouil = fip\ F - pr' -'' - r", -'' 1, - nl -2'' $.n

(n \ io +
It matches with factorization in equation (1.2) where Sl}tt, n 

l= 
n; (r - p)" - io 

""a
g

h(x1,..,xn!=lfor allx1,,,,,xoe {O 1}. So, the statistic T = >Xi is sufficient for p. We could
t=l

instead express L (g) = g(x.l,... xn; il h(xv ... x,) with g(x1,.., xn; pl = fin" (t - V)' 
- '

and h(4,..., x^) = L So, one could also clain that X = (Xr,. . Jti) was sufficient for P. But,
g
) X; provides a significantly reduced summary compared with X, the whole data.

Example 1.2. Suppose X1, .. ., \ are iid Poisson(},) with l" unknown, 0 < l, < -. Here,
X= 10,L,2, ...1, A = l/ and e = (0,6). Then,

L(i,) = Iite-r i,'' /xi r} = e (1 8)*,i,[g,,,)

It matches with factorization in equation (1.2) where ,[it,,r]="-"^tlt .,,a

for all x1,.."rn e 10,1,,2,...1. So, the sta6stic T = U Xi is
i=1

(" )-r

Iu'"J



* Sufrciency and Completeness

sufficient for 1". Again, from equation (1.8) one notes that X is sufficient too, but ZXi is
i=1

a significantly reduced sunrurary

Example 1.3. Suppose Xr,-. ..,X,, are iid N(p, d) with p, d both .rnlnown, - 6 < p < -,
0 < o < -. Denote0 = (p,cl), X = S, and @ = fr x 9*. Now,

qep {a,[G]-^ exp{ ;[i- -zt f.',.*,)l*l (1e)

Itmatches with factorization in equation (1.2) where

,[i",i*,'J =''* {-;[i 
x? - 4,ix,. *,) /,1

and h(xr, . .., x,) = {,t?;l} ^

(+-L)
for all(x1,...,x,,) e S".So,T= IEX' fXi I 

is alointly sufficient statistic for (p, d).
\i=1 i=l )

If T is a (jointly) sufficient statistic for 0, then any statistic U
whichis a one-to-one function of T is (lointly) sufficient for 0.

Exanple 1.4. (Example 1.3 Continued) We have f = n-tLX, , 5'! = (n - f)-1

l, (" \'l (, " '\

1I*l -r-tl)x, I f . rt is.r"ar that the transformation from r= lI*,,I*? | .
lr=1 \i=r ) | \'=1 i=r )

g = 1 X-, 52; is oze-to-one. So, we can clairn that ( X, 52; is lolntly sufficient for (p, d).
Let T be a sufficient statistic for e. Consider a statistic T',

a function of T. Then, T' is not necessarily sulficimt for 0.

An arbitrary function of a sufficient statistic Tneed not be sufficient for 0. Suppose that
X is distributed as N(0, 1) where - - < 0 < - is an unknown paraneter. Obviously, X is
sufficient for 0. One may check that ?- - | X | , a function of X, is zof sufficient for 0.

From joint sufficiency of a statistic T= (Tr,.. 
" 

T,) for 0 = (9u.."0,),
one should not claim that T, is sufficient for 0,, i = 1, ..., p. Note that

T, e may not even have the same dimension! See Example 1.5.

Example L.5. (Example 1.4 Continued) We know that (X, S,) is iointly sufficient for
(p, 63). So, (S':, X ; is atso lointty sufficient for G, d). Should one claim that 52 is sufficient

for p or X is sufficient for o2? Of coutse, not.

Exanple 1.6. Suppose that X1, . . ..\ are iid Uniform(O, 0), and 0 (> 0) is unknown. Here, ,

X = (0, 0) and o = $t. Now,

L(e)= fl{e{r(0.', .o)}.

= e-,,I(o<r," <o)r(o<r,,., <r"") (1.10)

S e lf- lnstru ctio nal Matet hl 5
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statidiqlwence whene .rftl, r,r., a.re, respectively' the observed smallest and largest order statistics.

fhe hst step in equatiurif .fOl -.t"tn"" *'itt factorization in equaticr (12) whereS(4uJ e)

= o-' t (o i:"' je) and ft(rr,' ' "x,) = I(0 < rn,, < r,,,) fot al! xv" ''xne (O 0t e. > 0' so' 4'"
is sufficient for 0.

It is not crucial that X!,...,Xn be iid to apply Neyman factorization'

ExanPle 1.7. t€t Xr, X2 be independent with

[(rq;0)= 6r-a' , |r(xr;o) =2oe-24'

as the respective pdfs where 0(> 0) is an unknown parameter and 0 < :1, rz < -' The

likelihood function is the joint pdf:

r(Q = fr(x1;o)f2,2;e1= 2g2 
"-o(r' 

+2rz) (1.11)

for 0 < :1, :2 < -. The step in equation (1.11) match€s with factoriza. Lron in equation (l'2)

so that T = Xr + 2Xz is a sufficient statistic for 0.

The next result shows a simple way to find sufficient statistics when a prrf or a pdf

belongs to an erpor entiat fafiity.lts Ptoof follows easily from equation (1'2)'

Theorem 1.2 (sufficiency in an lixponenti alFamilyl IA thc nndotnoatiables xy...,x"be

iid with a comnon Pmf or Ptlf

flx; a = a(e\ g (x),r 
{ir, 

trl *, t'fj

belonging to a k-paruffieter cxrynentiatfamily. De ote the statistic T,= |ry(xt;,; =t,"',t'

Then,T = Qv.I*) is jointly suffcient for 0.

Sufficient statistics derived earlier can also be found using Theorem l'2' We leave these

as exercis€s.

How to verig that a statistic is zol sufficient for 0?

Discussions follow'

If T is nof sufficisrt, then the conditional pmf or pdf of Xl, ' ",\ given T = t must involve

0, for sonre data rr,...,.tn and l. We follow this route'

Exanple 1.8 (Example 1.1 Continued) Detrote U = Xr Xz + Xs' The question is whether U

is a sufficient statistic lor p. Obsewe that

P(u = 0)

=P{XrX2=0^X3=0}=:','il=;:i;=;;i;=li 
*,2,

u[Xr=l^X2=0^X3=0ll
= (r-p)3 +2p$-p)2

which reduces to (I - p): (1 +p)'since[Xr=ln{r=g1rX3=0}isasubsetof{U=01'we
have

P(X1 = 1 nX2 = 0/r X, =0 I U = 0)

P(X, = 1 ntt = Q 6 X3 = 0)/P(U = 0)

P$-il2 /l$-Pl/ $ +P\l =P/(1+r)

$'hich invol ves P. So, U is not sufficient for P'



sufrciency on d Conpletefi es8

NOTES

I.3 MINIMAISUFFICIENCY

We noted earlier that X must always b€ sufficimt for 0. But, we aim al reducing the data
by means of surnmary statistics in lieu of considering X. We found that Neyman
factorization provided sufficient statistics which were substantially "reduced"
compared with X in a number of examples. As a principle, one should use the "shortest
sufficient" sumrnary. Pertinent questions arise: How to define a "shortest sufficient"
summary and how to get hold of such a summary?

Lehmann and Scheffe developed a mathematical formulafionof. minitnal suficiency and
gave a technique to locate minimal sufficimt statistics. Lehmann and Scheffe included
important follow-ups.

Definition 1.5. A statbticTis called minimal suficientfor nknounparancter 9if and only il
(i) T is suffcimt for 0, and
(ii) T is minimal or "shortxt" in the sense that T is afunction ofany other suficient statistic.

Let us think about this concept for a moment. We want to sumrnarize X by reducing it to

some appropriate statistic such as f;, a median (M), or a histogram, and so on. Suppose

that in a particufar situaHon, a summary statistic T = (X, M) is mininul sufficimt for O.

Can we reduce this summary any further? Of course, we can. We may simply look at, for

-1_example, T1= X orT2 =Ms1fr = i (X +M). Can fr orT2 orT3 individuallybesufficimt

for 0? The answer is no, none of these could be sufficient for 8. Because if, for example, T,
was sufficient for 0, then T = (X, M) would have to be a function o{ Tr. But, Tcannot be

a function of Tt because we cannot uniquely specify T from the value of T1 alone. A
minirnal sufficimt summary T cannot be reduced any further to another sufficient
suDrmary statistic. In this case, a minimal sufficient statistic T is the begt sufficient
statistic.

1.3.1 Lehmann-Scheffe Approach

The following theorem was proved by Lehmann and ftheffe. This is an essential tool to
locate minimal sufficient statistics. Its proof requires some understanding of a
correspondence between a statistic a d a Wrtition it induces on a sample space.

Consider X = (Xr,...,Xo) with.r - (rr,...,ro) e X". A statistic T=T(Xr,..,XJ is a mapping
from Xn onto some space T. For t e T,let X, = lr:r e K such that T(r) = t|. These are disjoint
subsets of )f and also l4 = \ e T X,. Ir other words, {X,:l e Tl iorms apartitbn of the space
?," induced by the statistic T.

rheorem13. MinimalSufficimtSta ristictCotsiderhk,V;O=fl/ r,;efiL (r,,,e)'1,
,--l \ i=l )

the ratio of the likelihoodfunctionsftom equation (7.'L) at x and y, 4 y e X". Suppox that therc
is a statistic T =T(Xp...,X) = (71,...,T1 such that the following holds:

With arbitrary datfl points x = (,xt,...,x,),y = Qt,...l),
bothfrom Y, the erpression h(x, y; O does not inaolae 0 (1.13)

if ond only if Tdx) =r{l,i=7,..-l
Then,T is a minimal suficient staristic for e.

Proof: We first show that T is a sulficient statistic for 0 and thm we verify that T is
minimal- For sinplicity, let us assume thatfl:; 0) is positive for all r e )C and 0.

Sdfhstru.lionrl MabrW 7
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Sulficimcy part: Start with {X,:t e T} which is a partition of X" induced by T. In Xr. fix an

elenent r,. If we look at an artitrary element x e )P, then this element .r belongs to \ for
some unique f so that both r and r, belong to the same set X,. So, one has T(r) = T(rr).
Thus, by invoking the "if part" of the statement in equation (1.13), we can claim that h(r,
r,; 0) is free from 0. Denote ft(r) = ft(r, rr; 0) x e )( . Hence, we write:

J-
lI/(',,e; = fI/(',,;e) l(x1 = g1r(x); 0) fi (r)
i=1 i=l

wilh \ = (xfl,..., x,n). Using Neyman factorization, the statistic T is sufficient for 0.

Minimal part: Srppose U = U(X) is another sufficient statistic for 0. Then, by Neyman
factorization, we write:

L
I U(',;e) =so(u(x);o)ft/'r)
a=l

with some appropriate 80(.;e) and ho(.). Here, h6(.) does not involve 0. Now, for any two
sample points r = (x1,...,x,),y = (yt'.. 

"y,) 
from X" such that U(r) = U(!t), we obtain:

h(x, Y; o)

n ln
=flre,;e) f flrtu,;e)r=l l i=r

= {8o(U(r); 0) h(r)l/{go(Ug); e) ft00)}

= ho@\ / ho?l, sincege(U(:); 0) - gs(U(y); e)

Thu+ ft(a y; 0) is free from 0. Now, by invoking the "only if" part from equation (1.13), we

claim that T(r) = T(y). That is, T is a function of U. Now, the Proof is comPlete.

Example 1.9 (Example 1.1 Continued) With r = (rr,..., xi) and y = 1gt'...'t; 
' 
both data

ooints from X, we have:

{nr,',',}/{n nv,,ot.. = Qp -,i'ii'' i,,} (1.14)

, .,1$, -f ,.f
From equation (1.14), it is clear that (f (t-f1-'1; ii- l would become free from p if

andontyif ir; - ili = o, tt ut ir, if and only if i x, = i y, ' Ho,"", uv the theorem
i=l r=1 i=l i=l

g
of Lehmann-Sche tfe,T = LXi is minimal sufficient forp.

i=l

Tlreorem 1.4. A statistic which is a one-to'one function of a mininal suftcient statistic is

minimal sufficient.

The following theorem provides a useful tool for finding minimal sufficient statistics

within a rich class of statistical nodels, nallely an exponential family .

Theorem 1.5. (Minimal Sufficiency in an Exponential Fanilyl ltt X1,.. .,X,be iU with

a common pmf or ptlf 
IIt 1 |

fk;a=a(ask)explla,talnrl'1[ (1'1s) 
it'=' I I



belonging to a k-parameter expsnmtiarfamily. Nou, ret us deflotethe statisticTi=Io, (", ) , 
sufuicncy andcotttpleteness

i=l
j =1,...,kTlEn,T = (Ttu...,7i is (jointty) minimal sufficimt for A

r.4 COMPTETENESS

1. The statistic T is said to be complete if for any frmction O(r) such that E{Q(f)} = 0for almost everywhere

Hence. T is sufficimt for 0.
For conplete etrtictic:

Since.

0(t) = 0

0(t) = 0 for almost everywhere

'r = \x,-s(n,e)

2. The statistic T is said to be complete iff its family q! distribution is complete.
3. The statistic T on-the family of disrribution 1f., ee @)1 is cafled complete if forany measurable tunction Q(r) such that E{O(r)[= 0 foial 1q 0 . @ il;@is the parametric space.

7.4.1 Bounded

The statisticTis said tobeboundedlycompleteif forany frmctionQO sucfrthat lQ(r) | < IVI,for some M
E{O(t)} = 0 for alnost everywhere

=t 0(r)= 0

Example 1.10.I/X -bQ, A,obtainT = fx, is sufirirnt ond complete statisticfor 0.

Solution. Forsufficient statistic:
WehaveX - b(1,0)

:+ r= ir, _n1aey

p(r =t)= p(t)= (l) d1r _ey,-'
The ioint p.m.f. of xr, x2,...,x,,is givenby

p(x1, x2,..., xn; 0)= eI'' 
11 - 9y- Eo

...(1)

= d(r-e)'-t
Thus, the condition al p.m.f. of xi, x2,..., rn given T = , is grven by "'(2)
P(xy xr,...,x,,;0/T = t)

_ P(xr, xr,..., x,;0)

e, 11 - e)'-'
=.:...:--

(i')e'(t - e;'-' lsee (1) and (2)l

= fr tnaerenaentore

p14

PCr = r) = p(r) = "c,d(r -e)'-,

Self+tstructiorol Material 9
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SuMktlWde

NOTES

toSli{.l@rttffi

Sirrce,

+

Ero(r)r= ts(t)P0)
,-0

= Lool(lF 0-e)r-'
t

= (r-o)' >o(') ("-)[t-6]
El(t)l=0

t(t)= o

+(1-o)'io(4t)[-6) ='

I,rt,)g",;^' = o,wlrere (*) tt

...(3)ic(r)r' = o,""tt"n"otrl= ,(40.,)
1.0

+ a(0) +c(1) X + a(2) 12+... +c(n) l'' = 0

Thisisapolynoarialin}r,whichisidenticallyzero.ThieimplireeallrhecoefEcienteale

Let 0(t) be a measuable furrtian of O i.e.,

t(l) = 0

o(e (;) = o

0(t)= o

+
T = ),xi is cosrPlete statistic for 0

i=1

Hence, T is sufficient and comPlee statittic for 0'

F.xemple 1.11.I/X - P(A,sIotttT =i', * *^pt*''ail'frcicltt dotisticfor e

sohrisr. Fc agffici€nt "*.drtit 

t=t

Wehave
o-s N

P(x=:)=dr) = 
- 
;i.' x =o'r'2"'

The ioint p.m,f. of ru x2,.--,rob gverlby

e-6 gLxt
P(4, x'v."'r'";O) = ---n-

ll4!

?a'o e
lT- rl l'"
i=1

4
since, x-P(e)+ /xt =t -P(n'ol

zero.
ie.,

G

Thus,

ls.{3)1



Wehave

N= " 
*!fv

The curditiural p ,m,t. of xt, h,.,.,r,tis given by La = t

P(4,ry--x;Q/T =r = !:, ) = fu#
e-nd t!

ii e-n(fi|'

=tlftI It,xrflr . '
i.1

which is indeFndent of 0.

H€nce,

r.4.2

where a1g= l(t)-ln'

r= !r, is sufficimr shtietic for e.

€ooUle{e Statistic
Let f(l) be a measurabh ftmction of !

i.e., Br0(r)l= iotrl"tt=4
tr0

SirEe, &10(r)l= o

:r rnia(t)e'=o
r=0

+ ),a(r)d = 9
,=o

This is a power series, whidr is unifornly zeno, therr all ita eoeffcirnt wir be zeco,iz'' o(o=o
,t+ a(r)xa =Otl+ t(r)=o

=i,ot'lrk):

= "-'i 
Q(trnts'

t-a tl
t=0

= e-r!a(r)e,

Tlnrs,T= !q b ccglee datistic forolrene, Tb ortrcirntard ooryIeE etati*icic A

g$rioqnd@aw

NOTBS

s4'|r,,''t"tcti/fill rtfui.t fl



NOITS

x2 ic(-bg,t'U{,iomt rtt terial

srdiaiathfrcne Exemple 1.12IlX - U@, O, slroto th4tT =)(1nynr orilcr statistic is wttplde tt d 4.f1cbtt

statistic for 0'

Solution Sufficimtaietigtic

161= f,,0<rse

F(4=;

Th€n the joint p.d 't. olxt,4,.'.,xnbgivenbyffrt""r;0) = S
Note that the p.d.f. of 

'te 
order statbtic igl'Ir) = tt[F(r)l'-rJ(r)

= "(;l ',.+

= 4/-t o<t<e

The conditional distribution of rn 12, '. ', ro given

f = \"1b Fvenby 
.

flxr, x2, "',t,; e /T = *,^) = lW

UT

is independent of 0. Hecrce, X1n; is aufficient statistic lor 0

Conplete stdistc:

fre)= #t-r,o<tss

We have

:.

We have

wh€c

I.et 0(t) be a measurable functiur of T i'e', 0

&l(t)l=o
0

fo(r) f(l)dr = 0

0

'0
s fotrt4r"-tar =o' J'..9

0

0

Lla?lat =oei .,
a(4= t(0tn-'

0

la(a)a =o
0

0

I-et l= loltlat = 0 diff€r€ntiraftng it w'r't' 0 Mr sides' we get
,J

0

ttA
= = a(0)&



Thus,

,(0) = 0V0
c(t)=0e411;tr-t=O
S(t)= o

T = \oy is cocrplete statistic ior 0.
Hence, T ie complete and sulficimt for 0

!(t)

^= I f@dx
0

fr=rofr
1.5 SOMEIMPORTANTIESMS

1.5.1 LaplaceTrandormetfrrn
(a) Unilabal laplac€ transfomEtidl

o It lh(r)e-o4da =0,V0>0
0

Then tr(r)= O

l'.
@l n l h@)e-* d.t =ev0>0

rh; rr(r)=o
(&) Bilaterial Laplace trandfrtration

(i) ft I JhG,i e-ai e-qr dxdy =O v(gr,0d >0
-- 0

Then h(x,y)=g
Exanple 1.13.I/X - N(C l),shou that T =7. is cgrrplere 76rit st$ci* stetisticfor e
Soludqr" Fc arfficicnt s$iCiclr

r -lr.-ot2
flx,el= -/e 2r- '' ,--4a4-

{zn
Thejoint p.dJ. of xr, x2,.., x,ie g|vttby

flr1, x2,.. 
" 
x; ot = (11",-i}a 

- 
"r

- (t y'"i.,t'*'"'"r

= (*1",-tvlr 
-rf .4r-cf 

]

= g(t,qh(gyr2,...r)

whec s$,q=(+l'",-**r

and h(x,to.."x)- r-iiit"-'r

WE 
'ncy 

otdoo4.tcr16

NOTES

ryh',''dbrlttffil3



Sr,,d!yji4it!F'{/@ ComPletcsttbtie

NOTES

$ Selllnstructiotul tvbt*iel

t- N(0,1)

r= i-H(o1)
The p.d.f. of T

frr=tr= ftn;"rzk-er
Let Q(t) be a meazurable frnctiqr of T, i'e.,

E010(01= jrtlttlo,
---

{ | q111a-'t2('-ef at

-S ,-;"'i 11r1;ir ,-a,
,12fi :-

Since,
&{O(Dl=o

- -{ 
"-in I qlqr-ir ,"'at =o

'lzr :-

+ j oglr-"'" at =o

_!P
a(l) = Q(r)c 2

G J a(r;;dar =o

where 6'= -40
- Ct)* Obyrurilatemllqlretmefornetict

-LP+ 0(re 2 =o
-!c

+ l(f)=Oas e z *0
Thug, f= i ig coarPlete satirtic for 0'

1.5.2 BtirnatorardEtim.te
AnEetimatorbaftrrctfono{rodmvsiebleehrttcestimaEbafinr{lnoldrctad
vduec,

1.5.3 Parameter

The population unlmovn (such as p drd d) ie called a parametec c'g''

(a) Nornrl ltigtributim: The p'd'f is

ruwo=n=;fu;*F-rr , -o<F<-,
o>0

r-N(ltd)
(pd.f. ueans ccrfinuora disffirtid!

In lfu above dietr$uficr F &oat€ ParmEier'



(b) unifornr or Rectengular Dietribution : The p.d.f. x - u(a, b) or r - R(a, b) is suflcie*cyandc-ampreteness
1

(i) flx)= --:-,say36
0-a

(ii) flx) =7,O< x<l i.e., x -IJ(O,t)
1(iii) flx) = |, 0 < x <b, x - U(0, b)

Ingenerat ;1.ry= l,O<r<e,.r-R(0,e)0'
(c) Two Parameter Negative exponential Distribution: The p.d.f. is

r -lt,-"r(i) l\x) = - 2 o'" -'.u<x<-
('

I,.:.iY .** exponential distribution (with parameter p and o) used inure resnng.
(tt If F=0thenp.d.f.is

r-a
flx)= ' e o',OSx<-

o

or 11x's = !e-,/o,x>o-e
Name of this distribution is single parameter negative exponential or exponentialdistribution with parameter o (or 0)

(d) Gannma Distribution: It x - G(a, D the p.d.f. is
^.P

(i) f{xl = G x4-t e "',0.x<-,q,p>0lr'
Parameters of this distribution are c and p.

(r) If cr=1then/(xr= 
#xe-l 

e-' , x>0, p>0

It is also known as ganma variate distribution with parameterp,
II p = 1 then{r) = ae-d, x > 0
is known as exponential distribution with parameter c.

(e) Weibull Distribution: (Extended form of exponential distribution)
(r) The p.d.f. bflx) = a6tt-t r-nt

is called Weibull distribution with. r ) 0 parameter a and b(fi) For D = l, l1x) = a e o' i.e., Weibull distribution reduces to exponentialdistribution with parameter a.
(l) Pareto Dietribution; The p.d.f. is

l:)= gre'-(e+r) - 0 /K l'*t '. -= 
K (;l ,K<-r<€

It is also called income distribution with parameters 0 and K.
(g) Power Dietribution: The p.d.f. is

f(t) = o a-s xs *r,o 
< x<a

It is called power distribution with parameter ,0, and ,a,.

Fora=7, ,rlr) = 0:e*1,0<r<1
is also known as power distribution with parameter 0.

NOTES

Selflnstructional Material ts



Statistiulhfuene Dlecrete Casee

NOTES

(h) Binomial Diekibution: The p.m.f.

P@) = (i)P' s" 
-', r =r,2, "', n; P + q = 7

is known as binomial distribution with pararneter z, p and isdmoted by r - p(4, p)

For n = I binorrial distribution reduces to B€rnoulli distribution with Parameter t
i.e, p(x)=p'qr-",x=0,1

(r) Poieson Distribution: The p.m.f.

n@=' il' ,,=0,r,2...
is called poisson distribution with parameter I

(,J) Geometric Dictribution: The p.m.f.
p(x)- pf =p(l-pf ,x--0,r,2,...;p + q =r'0 <p<r

is lnown as geometric distribution with parameter P.

(k) Negative Binomial Dictribution: The p.m.f.

(r+x-7\ - -
r(x)= [ 1r_r) )P'l,x=o,r'2'.--,

is known as negative bhomial distribution with parameter r and p'

For r = l, we have
p(x)= pq' x =0,r,2, ...

which is the p.m'f. of geometric distribution with Parameter P'

1 .5.4 Estimation of Parametel

Supposewearegivenrandonsamplefromapopulationsuchthatitsprobability
disiribution (p.a.Jhas some known form (i.e., normal, exponential uniform, weibull'

gamma etc.,) with the parameters of this are not known'

For example The heiSht of the people of certain area is likely to follow normal

distribution, lifetime oI certain items follow exponential distribution'

The problem thm arises of estimating the parameters of the assumed distribution from

the givm sample. The estimation problem can be divided into two tyPe6:

1. Interval estimation

2. Point estimation

Internal estimation: we obtain an interval in whidr the true value of the parameter may

lie with certain probabilitY.

In point estimation we try to find the exact value of the parameter'

Point Ectimation: In order to obtain a Point estimate of a parameter we shall use a

statistic (estimatol)'

1.5.5 Statistic

Any function h(r 1, x2'..,xn) that does not depend upon any unlcrown parameter is

called a statistic (or sanple known are called statistic)' Thus T = i r' is u st"tistic but

t - F is not a statistic unless p and o are known'
o

Suppose we want to study the averate lile of bulbs in a cons-ignment of tr'vanty thousand

iariutacturea Uy u ."rt"io fit-. Foi this we take a sarnple tr, xo ' ' '' xn of n bulbs and

16 Setf-Instruclion^l Msttitl



measure their average. SuPPos€ its distribution is given byna 0) (exPonential)' On the Suffcimcy andCotttpbtztwss

basis of the simple we have to estimate e. Now as we lnow the possible estinates of 0 a.re

arithnetic mean, mode, median, geometric mean ( X, lvlo, lit, Go), variance etc., but

which one should be preferred? To solve this problem certain requirernent are to be laid
down for a good estimate and those requirem€rit are

1. Unbiasedness

2. Consistency
3. Efficiency
4. Sufficiency

NOTES

1.5 UNBIASEDNESS

A statistic 'T' (sample known) is said to be an tmbiased estimate of Parameter e
(population unknown)
IfE(I) = 0

If E(T) = 0 t c then c is called the bias in T
If E(T) = a0 + b then T is linearly biased such a bias can be corrected as follows
Suppose E(T)= a0 + b then

/T-t'\
El:----: l= 0

\al

H"n"", T - b 
ls an rrnbiased.stimate of 0.

a

,(')=,1;:,,]

- f n I
= f EII', In l-- 'l

E(X) = 1[Ek,) + E(r,) +... + r(r")]

= -lp+tl+...+p In'
1

= -.nvn

Exanple 1.14. Slo w tlut the sdmple nvan (t) is an unbiased estittute of populttion flun pin

sampling ftom a nonrul population.

Solution. For a random sample 4, x2,...,xn

Thesamole mean X = 1it,
'n=

= Islr, +r, +" +'r,ln-
Since, r,'s are identically independent random variables (i. i. r. o)

E(x) = p

S elf- Instra c tiona.l Mot erisl 17



NOTES

18 Sclf-lt''f,ttct*t',,,l tllMial

t*" 
{nbrP-te-xte& 

= lputtingc= } irrgu--"di"tsib.rti-,

tutu{g,li/lfu-c 
Ir€nc€ X is unbiaaed estimab of p.
Not.rlf : - N(gd)

n(I) = I13.'

Then

it.,

v(x)=d
X -N0r,d/n)

r(x) = rr

u(x)= "'n
Wehaveproved n(X) = I

v(x) ="[*:"J

=#'[i.J

= #uk,+r2+...+ro]

v(x)= +[d+d+...+d]
l.

= Tna_
lt

= io-'
Erenple 1.15. Slrozr tlut tlu *nryle nun is an unM estinute of the pputation nan it
*nplingfrom erryenfiel ilistibution

Solution. The p.d.f. of a rardmr variabh: is
I -,^

flr,0)= i e-'l", r) 0
o

We have nm- Tr f (r)ar
0

= l7l '-'rc4'JO
0

ti- |lxe-'totk ...(1)
,J

o



Fa

[{-r e-xre dr = ePft
0

P=2

lx.e-'/edx =8
0

l^
E(x)=:'e'

U

E(X)= e

e1x1= u(]l')=i>'o,

= 1$'
.nfi

= 1.re
n

=e
Flence, sample nrean is an unbias€d estfuute of populaticr nrean 0.

Exenplc 1.16. I/:r , x2.. t,is a mndom srrqle lrontt rrorrrul popttlttionN (p,7), dtou tlut

r*.r |LA is an unbia*l estimator of f +1ft.e.,E(0=f +D.

Solutiott We are given

E(\l=pv i=r,2,...,n
v(4)= r

sinc€, v(x,)= E(xi)-{E(xi)}'z

+ u(xf)= v(x,)+{E(x,)}'z

= 1+p2

or u(xf ) =p'z+t

rhercforc, qO= Elf ).xi Iln7')

= rir(x;)

= ]i{u'-4
= j"(r.'*r)
= p2+l

Hence, t is an unbiased eetimator of p2 + 1.

Stfuiarcyadconqbtctus

NOTES
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NOTES

m UI-Manl *Wi.l

Swbwlqaaw Exanplc 1.17. I/r t rt..rxn arc rfu okemstione on a Bernwlli oariabb x takirrg tlte

ooluc'f is inyohbility \and thc wlue 0 in thc Feabitiq 7 - e srtuzl ttlrt -ft-tl 
'nlan^

ttnbid l*ltlrrute of d*eret=l+.
i

Soludu"Sine, r; 0 I

'll-ge
We have E(r)=0V i=1,2,...

n(g= !rp(r)
\t7=\f P(x)

r(d)=e

v(&)= E(#)-tB('Jl'?

= 9_(o)2

=o(1_o) )
f.llgNor', n(t)= nJ)*;f =)n(1)
[, t i

= i. =,t
I

v(r)= E(,'z)-{E(4}'z

= vlL'' IVi ')
V(q + *2 + ... +:o)

Sturce ri's are i.i.r.o, v(t)= v(rJ + v(rJ+... + V(r3)
V(l)= 0(1 -0) + e(l-0)+'..+0(r -0)

= n(1-0)
E(,'z)=v(t)+lE(t)l'

= z0(1 - 0) + (20)2

--n}-n*+nT

*l r(, - t) I = ..__L..= s6, _,)-["("-t)J a(r -1) \ t

=fr1"1"1-'P11

= qfu{'t-''2+n2o'-rd}

_ "{(,_l) =*
nln -1)

H**, r{t - 1=l 
is an biased estimate of d'

r(fl - !,



Exanple 1,18. Shoo that the wtryte mnt (X) t cr tnbiosd altinate of the pmctet ot

pois*n ilistrihution t;.e., n(7) = A tf r'is an tantton oaiable.

Soludou x - P(t,
E(r) = I

r- I{e)

E(d= 1i.",nT
_ 1*r =;Lxi

*,,=,[*i',)

= *I'tol
= 1$enl

= lrO =e.n
For a poiseon distribution

nn= +,r=0,r,2....
r@= )rp(r)

t , '-te'La vl

= oi";t{,' =0.1 =0.'i lx-r)l
Anothgmetrod

E(9= "-oi+
=,-'{e*c*$.+...}

= "-'.t[t*.*$.$. ]
= to.o .eo

E(d= o'

r-i
Now define r= jlt, = sample mean

S$icucyadw6

NOTES
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Statistial lnfamee

NOTES

z2 SelfJfl stntc t ionq.l Mn t 6ia I

r-l
E(T)= l>E("r')

= 1)e=1 ne=en- n

Hence sample mean is an unbiased esti.mation of 0.

x[: - 1]
Example 1.19. Slrozu nut 

ffi 
is an unbiased estimation of f iJ

P(X=i= \!)r't"--, x = 0,1,2, ..., n.

Solution. We know that E(:) = Irp(r)

'{'{'-'l} = *'1'-ll rrx=a
Itu (n - 1)j a^n\n-7)

rJ.
= 

"1":r1.!'(' 
-1) li)P's'-'

= -l-- 24,-11--1!....-r" r"-'nln -1,1 f,l ' ' xtln - x)t'

1.7 UNIFORMTY MINIMUM VARIANCE UNBIASED ESTIMATOR

This section gives methodologies for finding a unifurmly minimum oaiance unbiased

estimator (UMVUE) of a parametric function. The first approach relies upon the
celebtat& Cramer-Rao Inequality (Ttwrem 1.5). C.R. Rao and H. Cramer independently
discovered, under mild regularity conditions, a lower bound for the variance of an
unbiased estimator t(0). Then, we inhoduce another fundamental result (Theorem 1.7)

which lumped out of the Rao-Blackwell Theorem.

1.7.1 Cramer-Raolnequality

Lehmann referred to this as "information inequality," a name which was suggested by
Savage. Lehmann wrote. "The first version of the information inequality aPPears to
have been given by Frechet". We will continue to refer to this inequality by its commonly
used name, the Cra mer-Rao lrcquality,for ease of cross-refurencing and searching other
sources.

The variance bound , calledthe Cramer-Rao louer bountl (CRLB), for unbiased estimators

of t(0) is appreciated where one can (l) derive an explicit expression of CRLB, and

= #a i<, -,t ro!-trlLlil,t?lrt,',.,

= n'\('i-tr)r'-2 qn-' =r

"' 
j'

=p- r

= P2-

xlr - l|Hence, l|--] is unbiased estirnation of f.nln -t)



(ii) easily Iocate an unbias€d estimator of t(0) whose variance coincides with CRLB. In
these cituations, one has then found the UMVUE for r(0)!

Corsider iid real valued observatiqrs X1,...,X,, with a cmtmon p.m.f. or p.d.f.fr;0) where
the unlmown parameter 0 € OcSandre XgS. Denote X = (X1,,..,X"). We ptetefld
working with a p.d.f. and hence o<pectations would be written as appropriate (multiple)
integrals. In a discrete case, one would simply replace the integrals by summations.

Standing Assutttptions: The support X does not involve 0 and the first partial derivative of
flr; 0) with respect to e and integrals with respect to r = (r1, . . ., :o) are interchangeable.

Theorem 1.5. (Cramer-Rao Inequality) Suppwe that T = T(X) is an unbiasd estitnntor of a

real oalueil paramctric function t( 6). Assume that !t@),dnotedby r'(A,isfinitefor alt 0
da

e O, is finite for all 0 e @. Then,for all e e @, under the standing assumptions, we lnoe:

Ve(T)> (1.r6)

The expression on the ight-hand siile (rhs) of this ineEality is the Cratner-Rao lotter bound.
Prooft Without any loss of t€nerality, assu.me that 0 < Vs(T) < -. We have

(1.18)

Obs€rve that

(1.1e)

(1.20)

$.ln

*l[ ['0" '"trt't'"qrl*]

= I 1,0,, 
,.,r1*nrr,,,r]n*,

fl'k"'; =''it'*rt'"'l|
so that we get:

*ui[to,,t] =''{i'*rt',,'r}

I" I' o' " -') 

{}* t*','"'tt} [rt'"'l g*
4{TYI

for:e X

*{i*tt',,'r}

= {}*o*r,',,,)l} IJrr,,,r

Denote Y = i$[f.rf 1*,,t)] and conrbine equation (t.tE) with equation (1.20) to

d(0)=

ffilrtr{*,,t))

<er = J... Jr1*,,...,'") fllk,,e; fla',

S ufr cienty ond Completercss

NOTES

(r.2r)
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Stqlistit4l hletene

NOTES

A Scrf-lnstft'rtiorut Mttqill

One obviously has 
) f(r;e)dx = l sothat

Hence, we write

[+r- I -L r.' )
E,tyt = E. j ># [r"g1(x,;e)][ = lu {$ [rsr(x,,e)J] = o

for all 0 e O, since Xr, ...,X" have identical distributions. Thus, equation (1.21) gives:

d(0) = Eo{TY} = Covo(r, Y)

which is rewritten as

ld(e)I'?= cov6 (r, Y)< ve (r) v0 (Y) (123)

by virtue of the Cauchy-Schwartz inequality variance tuEquality. Recall thaLY is a sum
of z iid random variables and thus, in view of equation (1.22), we obtain:

-r fr:- -r2l
ve(Y)= nVe{{[bg11x,;e)l[='rr.l]{ftog/(x';e)ll I tt.zr)- [d0" -.' ', - 

Ll.oo|. --' ") J

Now, the inequality from equation (1.15) follows by combining equations (1'23) and
(r.24',).

*emarkl2, One can see that CRLB will be attained W the oariance of an unbiased ntirnotor T

$ t@for oI ee eif arulonly if the eqwlity in quation (1.2i) Inkls, that is if and only if T mdT
are linearly relatel w.p.7. Hnce, CRLB will fu attained by the wriance of T if aul ottly if

T -a(0 = b(AY w.p.7.for all 0e @ (1.25)

with sone fxeil real aalued function a(.) and b( ) '

Remark 1.3. Combining CRLB anil 11, (0), are can immediotely t*tate lhc Cnmq-Rno

lnequality asfollows:

o = ft ! r k ;e) ax= 
{l* r t','l]* = {[* "r r t',' )]r F;e) a, e.n)

U@\T,V.(T)>*- nrx.lu)

We will intuchangably use the Cramer-Rno lnequality

gtun by equations (1.76) or (7.26)'

(1.26)

1.7,2 Lehmann-ScheffeTheorems

In situations encountered in Examples (1.18) and (1.19), neither the Rao-Blackwell

theorem nor the Cramer-Rao Inequality helps in deciding whether W is the UMVLE of

t(0). An altemative aPProadr is needed.

Theorem 1.7. (Lehmann-Scheffe Theorem'll Suppox thatT b an unbiased atimator of a

raloahdparanrcfiicfundion t(0),0 e o c *. ta uUe a antptete (iointly) sufuimt stttistic

for 0. Dfine gfu) =E/TIU=ulfor l e lI. Then, thc statbtic W =g(U) is a unique fu'p'7)

UMwEoldA.
prooG The diffelence between the Rao.Blackwell Theorern and this theorem is that irow

U is also assumed complete! The Rao'Blackwell Theorem assures us that in ord€r to

searctr for the best unbiased estimator of r(0), we need to focus on unbiased estirutors

which ale functioru of U alone. We already know Orat (t W is a function of U' and (i0 W



is an unbiased estimator of t(e). SuPPose that there is another unbias€d estimator of W'
of t(0) where W' is also a function of U. Define h(U) = W - W' and then we have:

relrr(I.I)l=E,tW-w-l=t(0)-t(0)=0forall0€ O (1.27)

Now, use Definition of completeness of a statistic. Since U is a comPlete statistic, it
follows that ft(U) = 0 w.p.l. So, W = W'.

In our quest for finding the UMVUE of t(9) , we may not always go through conditioning
with respect to a complete sufficimt statistic U. In many problems, the following
altemate result may be directly applicable. Its proof can be easily constructed.

Theorem 1.E. (Lehmenn-Scheffe Theorem - II) Suppose that U is a complete sufficient
statistic fur Ae eC#. AIso, suppose that a statisticW =g(ll) is an unbiasd estinator of a rcal
oalued parametric fttnction r( 0). Then, W is a unQue UMVUE of 4 A.

Suffciency and Conpleteness

NOTES
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1.8 MVU AND BIACKWETTISATION

Cramer-Rao inequality provides us a technique of finding i.f the unbiased estimator is
also an M\rU estimator or not. Here, since the regularity conditions are very strict, its
applications become quite rcstrictive. More'over MVB estinator is not the same as an
MVU estimator since the Cramer-Rao lower bound may not always be attained. More-
over, if the regularity conditions are violated, then the least attainable variance may be
less than the Cramer-Rao bound. In this section we shall discuss ftoz, to obtain MVU
estinttor Iton any unbiasetl estimator through the use of sufficimt statistic.Thts Echnique is
called Blackwellisation after D. Blackwell. The result is contained in the following
Theorem due to C.R Rao and D. Blackwell.

Theorem 1.9. (Rao,Blackwell Theorenl Let X and Y be random wriables such thatE(Y) =
pand Var(Y) = 6; > 0

kt E(v I X = x) = ilt). rhtn 0 EI06)l = p, arul (ii) Var[Q(X)] <Var(Y).

Ptooh Let fyy(x, y) be the ioint p.d.f. of random variables X and Y,/r(.) and/z(.) the
marginal p.d.f.'s of X and Y respectively and,h(y I r) be the conditional p.d.f. of Y for
givenX=rsuchthath(y I x) = f\x,y)/fr(x)1.

f
E(Y lX=x)= | u

= O(r), (say) ...(1.28)

...(r.29)= 0(r) .r(')

From (1.28) we observe that the conditional distribution of Y given X = r do€s not
depend on the parameter p. Hence X is sufficient statistc for p. Also

s{Q(x)} = E{E(Y I x)} = s(Y1 =,
which establishes part(r) of the theorem.

...(1.30)

Now, Var(Y) = EtY - E(Y)12 = Ety - pl2 = Ety - Q(x) + g(x) - pl2

- EIY - 0(x)1'? + EtQfi) - pl2 + 2EttY -O(x)l (0(X) - pll ...(13r)
The product temr gives

EtfY-QG)l to(x) -r,lr = J J {0 - o(a))} {0(t - t4 f 6. v) aray

h(vt ,l*=i-, ffir,
1r= '/r I v l\x'Y)dv

e I v t lx, vl dv
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= J J {tr- rr't}{ot't - r,} I t't n(vl,)a,av

i, . ,[;. I
= J {o('t-u}; ) lv-oF)lt lvllaupr

-L--t

But J tv-0(r)|h(vlx)ay =o t'.' E(Y lx=r)=g(:)l

; 
--EtY-Ofi)l 

{Ofi)-p}l= 0 Substitutint in (1.31), we get

Var(Y) = E{Y -Q(X)}'z+ Varl$(X)l ...(1.32)

+ Var Y > Var[Qfi)] t'.' E(Y-O(X)F>o]
.'. Var{$fi)}< VarY, ...(1.33)

which completes the proof of the theorem.

Remark 1.4. From (7.32), it is obl)ious that the sign of equality holds in (7.33) iff
EtY-Q6)f =0 + Y - QG) = 0, almost surely

i.e., iffPtx,y):y-(k)=01=1 ...(1.34)

Remark 1.5. Here ?re haae proaed the theorem for conthtuous r.o.'s. The result can be sinilarly
prooedfor discrete cax, rcplacing ttegration W sumrnation.

Example 1.20. Irf Xy X2,...,X, be a random sample from N( A D, Obtain MVUE of A,

Solution.It can beeasily proved that the statistic:

T=Xr+Xz+...+X,= I Xr , is complete sufficient statistic for 0.

- 13 T -Consider X" = 1 LXr = a 
=gg1,1say),9ince t" =g(I), is unbiased estimatorof O Xn

n-l n -

isMWEof 0.

Example 1.21. Lzl X1,X2,...,Xnbea rcndom sample from UI0, 0l population. Obtain MVUE

for 0.

Solution. We have seen that in sampling from U(O 0) Populatiory the statistic T = X(o)

= max (X) is sufficient for 0.
l<i<x

Arso E(r)=Erx."i=[#)o * '{qEi='
Hence,

l(n + l)T / nl= [(n + l) X1n/r] is an MVU estirnator of 0.

[1,0.*. e, o, o
Exrmrple 1.2iL Gioen: flx, A = le'" - ...(1)

10, elsauherc

computethereciproca,,"rl{A4#Al')"*r"*,"roistoiththeoarbnce{(n+7)

Y,/n,whereY ois the lsrgest itern of a ranilom umplc of size n from this tlistribution. Comrnent

on theresult,



sorution-rogla0)=-ros0==r $t*,r=-f -"r($t*lf =,r(#)=# 
s$rtuncvodcaryan*

Hence, reciprocar 
"f 

, rl{* b8 /k, E}'] = *
For the rectangular population (l),,the pdf of rth order statistic (the largest sample
observation), Yn is:g0) = n . {F(y,0)l'-' .fly,g),

wh€r€ F(ao)=P(X<:)= i tAlo,=i!=O'""' to e

*,=,(#l'* =fr u'-'\ ;o<v <e

"("t) 
=ir, s6lat=fri,v,.,u oy=#

raking r = 1 and 2; s(YJ = #, r( 
"il = #

""*, 
r(f 

",)= #rt""t=,
+ (n + l)Y,/ n E an unbiased estimator of e,

"-(# r) = (#l *n"l =(Ti{'* -(EY"F}

-fr+1')'?fne2 n'?e, l-.,{(1+r)'z_r}= ,e' ..e'= f;J l".z- *y1=u la;t-'f-i@+4';
/-L1 r f t1 Vl+ var | -i v" I s tt ]oll {tog 1 | } . Hmcelz + 11 v"/ll is an MVIIE.\ / | \dt, --,/|

R,ematk1..6.This enmple illustruta that if the regulaity conditions undnlying Crener-Rao
inquli$ ttz oioldd, tlsn rlc le atuhnble wiotanay b ls tlwt tlg Crane\Rtu tnBr funil

...(2)

...(3)

lUsing 3l

1.9 SUMMARY

o The deepest of all stati6tical ary is sufuincy that originated from Fisher (l%0),
and it blo6somed further, again in the hands of Fisher (1t22).

o f.ehmann and Scheffu (1950) developed a nathematical fomrulation of minimal suff-
ciency and gave a teclmique to locate minimal sufficient statistica.

. An Estinator b a function of random v.tieble3 but the estimate is a function of
ob8erved values.

. Cramer-Rao inequality provides us a teclnique of finding if the ubiased estinator is
also an MVU Btimator or not.

1.10 GT.OSSARY

. Stalistic : An ob*rvable real (or vecnor) valued funciion T = T(X1, ..., X).
o Poirmn dirtribulioo : A random variable X iB said to foUw poissdl disfribution if it

assuures non-negative values and its p-rn.f. given by

, rl'
P(X =r) = - t" ,x=0,1,2,...

tg
where I is OE Fta!|eter. This dfutributim has only cr pararl€E

NOTFS

Sdf-IrctruAioul tvlatoid n



NOTES

s4.tistidlllnfercncc r Probebilig : If a random exPerimeltt or a trial results in'n' exhaustive' mutually

exclusive and equally likely outcomes (or cases), out of which 'm' are favourable to

the occurr€nce oi an event E, then Probability'P' of occurrence (or happening) of E'

usuallY dmoted bY P(E), is given bY

, = 
",r1 

= =IPEgry+t|9ry- = 
4

' Total number of exhaustive cases z

o Blickwellieation : Technique to obtain MVU estimator froar any unbias€d estimator

through the use of sufficient statistic.

a Setf-Ins,ructiontl MaErbl

1.11 REVTEWQUESTIONS

1. what do you understand by Point Estimation ? Define the following t'em$ and give

one example for each :

0) Consistent Statistic ; (it Unbias€d Stadstic ;

(iO Sufficient Statistic; and (tu) Efficimcy.

2. What do you understand by Point Estimation ? When would you say that estinate of

a parameter is good ?

3. Define sufficient statistic' L,€t xr, xz. ...-, ro be 
-a 

random sample from N (F, d)
population. Find sufficient estimators for p and o'.

4. State and prove Facotorization Theorem.

5. Define Minimum Variance Unbiased Estimator. Prove that minimum variance lmbi.

ased estimator is essentially unique.

5, How is Cramer-Rao inequality useful in obtainhg MVUE ? Derive this inequality'

7. State and prove Cramer-Rao inequality.

& state and prove RaeBlackwell Theorcm and explain its siSnificance in Point estimatiolt

9. I€t rr, x? ---, x,be a randorn sample from a population with p'd'f'

'f(r'0)= 
0rs-r ;0 <r < 1'0 > 0'

-!-
Show that q = | l:, , is sufficient for 0.

i=l

10. l€t rr, x2t --t xn be a random sample from N (e, 1)' Obtain MVUE for 0'

lL I,;a 4, rz, ---, xnbe a random sample from U (Q o) population' obtain Mvt'E for 0'
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CONSISTANT
ESTIMATOR

C,lr16brant F.sri.r,1lotat

NOTES

oBTECTIVES

AIter going through this unit, you should be able to:
o explain consistant estimator
o define efficimcy
o describe interval estimation
o give brief account on likelihood

STRUCTURE

2.1 lrtroduction
2.2 Cq$istant Estimator
^^ -;,..z.r ttncrencv
Z.+ tr,tnimui Variance Unbiased Estimator (M.V.U.E.)
2.5 Likelihood
2.5 Cramer-Rao Inequality (C.R Inequality)
2.7 Interval Estimation
2.8 lvlethod of Estimatiqr
2.9 CAN and CAUN Estimators : Multipararneter Case

2.10 Sumsrary
2.11 Glossary
2.12 Review Questions
2.13 Further Readings

2.1 INTRODUCTION

one oftlre-main objectives of statistics in to draw infemces about a popuration from thearulysis of a sample drawn from the populatim two nfirtant proUleurs in statisticalinfurence ar,e estination and testing 6f hypothesis.
The theory of estimation was founded by prof. RA. Fisher in a series of fundammtal
papers round about 1980.

Sey-Instnrctiotul tr/4lterbl 29



NOTES

Slotisricallflfercnec Consislency is one of the characteristic of eEtimators. It i9 a ProPerty conceming the

behaviour of an estimator for indefinitely large values of the sample size n, i.e., n + -.
Nothing is regarded of its behaviour for finite n. In this chapter, we will discuss about

the resistant estimator, efficienry, minimum variance unbiased estimator M.V.U.E).
Interval estimation, estimators in multivariate case and also the fundamental theorem

Cramer-Rao Inequality.

n idl-htsttucrt{,ta,t Mtwifu,

2.2 CONSISTANTESTIMATOR

We know that every estimate is a function of observed value and samPle size. For

therewith the increase in the sample the error in the estimnte likely reduces,ln view of this
facts a sequence {to} of estimators is said to be consistance if it approaches to the true

value of the parameter with probabily I as sample size increases.

Mathematically, we call a sequence of a estimator ltrl to be consistant for a estimating 0

if lim p{lr" -el>.} = 0;v€ >0

(x
equivalmtly

lim P{l r- -ol<e} = 1;Ve >o

It is the definition ofconsistant estimator.

Example 2.1. Show rhat if nndoffi safipte from a normal population of a santPle ffiean is

consisrant esrimator lor the populntion y.

or

Giaen a random sample from normal population with mean 1t dnd aariance d' Stlfio tltat tllle

mmple mean is a consistant estimator of Lr.

Solution. kt X1, . . .,X, be a random sample drawn from a normal population with mean

p and S.D. o i.e., X - N (tt d)

-N

-N
Then according to the condition,

=;i:ji='l
= Pflzl=4

- P{-e<zsel
/ r\

since z= X-P-rulo,Tl
\ n)

x- N(ltd)

76= =l='-;bl('$c,l2n

x- ( o')*[u';J

X

t^-ul

I o-lItl,- |

\ n/

[',4]I nt



il71= 4,*r*f
t(7-4=#,n,

= Il'f,,,,-to'u "
Mneanewvad.le 

"= +
m= E-6t

"=^rfr
,,to,= -.f,r.rra*.fr,oo

- #!:;"e-**v j;av

= hfi.u'n *
Taking lfurit on bo&r eides as n + -

"ri". 
r{r, -else I = nfr !*+rr# r,

=+f;tf4y=1
.l zE r--

Hence sampl€ mean ie a consietant estimator of p
Thcolto 2L I/a statiltb Lb 6udt ttut

E()= e
V(t)+0ren+-

Tlan ltrl b a corcbtaint athnator S A.

Prooft frmr Chdrysheys inequality, we have

Pilr,-ot >et< s Iqd
1e.

= i[r{," - e(r,)+n(r.)-ef

= i [r{, - r t,,l}' + zr{r" - e(r,)} {r(r,) - e} + r{r(,,) -o}']

= j[v1r"1 +o* u{rp"1-e}']
Hence letthg tr -+." and using tlre hypothesic of the theorem we find Orat

"ti1r[r" 
-el>e] <o

but the probability of any given can not be kos tlun zero. Henae it must be zero which
shows that |til is conEistrnt.

furtEdi,rab

I\ETES

Hl-h stractidiul tt .taial 3f



NOTES

sffirraae Elr-lglc22?mvet ntinglttpbftrllnanontutrilthN(ttd)ttuc'c,ttptcna,nb@/,tsist,mlt
at'/'ntcol P
Solution If *-I.J9,t,.,

Then X - r.r lrr,9 |\'nl
r (r) =rr

v(r)=sl
Thugasz-+- 

n

i.e.. um E(l) = p

[n v{X) =oas [m 1-ro
t-a- \ , n--r- It

Hence i is a consistant Btimator of p.

Ex.mple 2.3. Sho w that *tttple oerimtce is bia*d but consistant f,ltimator of d lt 
' 

- N
(:\
I N,? l. n*o * otherui* find an wrbiad etinator of d.
\ N/

lf t- X2 (n x' i-t
E0')=n E (x) = n-7
Vk)=2n Vk)=2(n-7)

Soludon" Wehave

".= 
lt1,_;),

r x- xltr*,f-*,-
/ t\+ s l4l=,_r\o'l

6 E(s)= 
u -1oz .'. (2.1)

,,
+ E (s2) is not equal to d.
this ehowe that f is not unbiased estimate for d

ns2
- ---t

o-
/\

El n f l= 'e(J)\z-r ) n-r ' '

= n 'n-l oz -ozn-l n

=- -L s2 is an unbiased eetimator of d.n-l
In order to show that I (sample variance) i8 a cdEistant estimator, we need V (f) for
which E (s2F is an unbiaeed

vd)= E(s{)-lEG')F

f2 S.tf-IrBtructiornl Mttedcl

E(s)=51512= lfl'4e]l*'



whece

Now define

Fronr 0 Z),

te,= ,_tq(#)--'r* p

$ - *,-,
ra=2("ie')' - '*

r[#)-*,
,.= f Lk, -x)'

>(*' -i)' ns.__F_ = p__xi_t

s(,1= Fbf-[S)+;#3*,

"=4-",=*,-t=$*
l* =o6Y

'G1= Fbl;$"6v+;',' # **
=#ef ii*"-t'4'

=#6-f '\r-t'-t'7'

flo= #{'',-*
Itt l* =t - #f xP-te-o, dr =r

I-x.-te-",d, = #.

e<s1= - oi.= -E*z+t+ (rl'*

...(2.2)

(Garuna functicr)

Cor|f,bt,'nt Estin'r/loT

NOTES

S ctf- Instru ction4l Mht eriat gg



Stoli'tid,lWrcrrs

NOTES Non,

= $r, ll* -,)
= 4t* -'t

,,r1= on f 
n';t)

\n'./
vd)= E(s1,-lu(f)}'?

= 4h,- 1- (, -.r)' on
nt. n'

= $(,-r)[,*r-n*rJ
,6=?$!o'

Nonr expected value of eample variance

n1d;= 4o'=(.t-il"'=02 asn -+-
n \ n)

v6=4!o'
=t fl-1)"'=oasn-+o\n n')

+ Saurple variance (f) is a corisistant estimator of d'

2.t EFHCIENCY

If T1 and T2 are two consistant estimator of 0 then T1 is said to be more efficient then T2

it variance of Cfr) < Variance (f) V n i'e', VCfl) < VCfr'

z rc rrr r r.||r-,ru M vARlANc E U N B I AsE Dlqllll9r !l^'v' v' E:l

An esfrmator is said to minimum variance unbiased estimator iI it is unbiased and more

efficient
ic., E(r) = 0,v G) <v(r')
where T' is any other unbiased estimator of 0 for all values of x'

If Tr and T, are two estimators with variances d & d respectively then efficiency of T2

ovet T1 is defined as

"= 
ulll.
v (rr) '

Theorcm zz Milr imum zmfiance unbiased atinator (M'V 'U'E) is unique'

i.e., ifT landT 2arc two (M.V 'U'E') for apara'netet 0then Tl =T2'

Proof : We are given E(TJ= 0=E(T2)^

and VCIr)=VGr=cf
Because T1 and T2 are M'V'U'E'

- Tr +Tz

'=-T-

Y Ser-Instru.,io'/,al ltute ll

Define



B(I)= i{E(E)+E(r,[

= ][e*e]=e
+ T ig an unbiaseil e8tilrator of e

v<rl= v[q*r,-)=iutu.ot
l-

= j [v (r,) * v (rr; + z co'. (q, rr)]

= l(c *c *+d)

e= qgu + cov.Cr,rr=Poror,

...(23)

...(2.4)

...(2.6'

...(2Jt

I

wls€

=pd
n-2 -2F@r(2.4) v(r)= ?(r*p)=!(r*e)

Since T1 and T2 are M.V.U.E.
v(T)>d

-a
!(t*o)>d

l+p>2
p> r

since p > I wemuathave p = 1.

+ T1, T2 must have a linear relatiqr of the fomr
Tz = a + &Tr wlrere r and D are cqrstants

Taking Expectatior cr both tlre sides, we ga
EGJ = a+ DE(Tr)

o=a+&O ...(ZS)
also VCI2)= tsVGJ

d=8d
t=t + t=xt

for b=+l,a=O + Tr=T,
fur b=-1,20=a
R.rn,:r*2 .L lf ur tolre b = - 7, tlcre toill ln a nqftiu mdatiot Mtmt T 7 otd Tr,Iute b = + I.
F,xrlngle2.4.lfTradTrb tun unbiadatinuW qaryMrcter ewilhoafune d,4 *a
correWin p. Firul ht unbiad lfuar comhinatiot 6 tlre kw estin atofs. AIoM itswiow.
Solutturn Whe(€ E(TJ= ECIr)=0

, v(r')= o?'vCrt= oi

Cov. Ctr,T, = 9,[o'rQ = poror.
kt T be linear cmrbinaticr T, and T, given by

T=crTr+FTz
where c and p are constants.
ln order dut T is an unbiased estimator of 0 we must lrave E (T) = 0.
Taking Expectation of both side in equation (2.6), we get

E(r)= oEGt+pE(rt
e= o+00

d+ P= 1

c,''d'&,rrrE,,ii/ fr

NOTES

Set -Ir|r't'1i,ctt nt Metul ts
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NOTE

15 Self-Iistmdimal Materinl

In o[detr drat T have Erinimusr vari.nce, we ptod ae follows :

vCD= v(dTr+Frt
= V (aTr) + V (pTt + 2cpCov. Gl, Tt
= a24+F24+2cpo1c2p

)
+v(r) =otld

2o.al + $p1o, =O

*v(r) =o4p

z$al+ZoPra"=O
Subtracting equatim (29) by (210), we get

= ?-w1 + 2eo$z(p - a) - 2pd = o

col +po1o2(P-c)-pd =o

or cof +po1o2p-po1o2cr-fu! =6

" 
("? -0"'or)= F(oi -rc'"r)

cr'=P
("i -p"r",) (oi -p"t"')

aF
Gt:e"fJ= G;;l

So that the value of a

F':;;J= ("i *"i - zooior)

oi - pczor
*= 

--------------ilai+fi-?prarl
. oi - poror
p= 7:-:----' (cf +oi -2paro2)

whictr is tlre least value of c and p, T giv€n by (26) is the best cotbination whictt

unbiased of Tt and T2 and it8 variance is given by (28).

E:tengle2.5.I/T1a M.V.lt.E.anilT2ismy otlur w&iadatbatorwithoaione T rA"*
c

fi,+fi-zpato,

...(28)

...(ze)

...(210)

from@4

e is Scieaq. Thcn *m tlut cotrelation 6riat Hwn \ ed T 2 iE li .

Solution- We are given that

vGJ= o?=d foy),v(rJ= *
. v(rr) v(rl)and e = q;=Eii

vqrJ= 4..=o':
and ECrJ= ECt2)=e

a+p
al +fi -zpa1a2



Ccrgider tre beat lineat conrbinatiqr of T1 and T2

iz., T= cTr+0Tz
Wehave

ci-wpze=ffi-ffi
'o2o

e le_---;-
d *91-zpo-o" ,1;

*l'-o't'l
li*"-+Jz7
r-p/e _t-p"6o= r+c-ift= D

n'herc O=t+e-4Ji
.-^ t.

Simibrly, e= :f:
Substitutiry it first we get the beet unbiaeed estimator

- 1-e1l7- ."-p$*, = __5_ r1 . __E:_ 12

_ (l-err4rr +(e-pr|7)r,
D

The minimun variance

= # ltt - rf f v1r, ) + (, - *p)" v(r, ) + z (r - q[) (' - p.D 
"*.(t, 

r, )]

= #lO -'.rf o" * k - pF)' { * zF - pl4k-'r4'f]

shc€. p=.---@
Jv(rr)v(rr)

= S [t. 
*, - zop * ] *'p" :2o"$ - fr k - o.l, - *,1, . o."l]

= $lr*"0' -4,!i +c+p2 -zpF *+J; -+" -8"*+'Ff
= F[t-ou*"- e'z-a.ft +a']rFe11

...(211)

= $[(r*. -20.0- c' g*, - a6;1

Sdf-htstrurflrrrcl ttttbiel ?7

C-onsifurt F-gtinttut

NOTBS
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= $Jo-"0'J
uor= *[t-p']

o' (r - p')
V(T)= -----L--+l+e-zp.le

o' (r - p')
= r;p==V+e-47,

(r-p'z)+(e+p'z-zp,t7l

or vf) = 1-P' -=,6. (t_p')*(..F_p).
Since T1isM.V.U.E.,
Therefore

From (2.12)

(r

vG)*d
v(D=d

...(2.t2)

7-p'
(r-c,)*(r-f)' =1

r-pz= (1-p2)+ (o-rF)'

h-G)'=o
h-.'F) =o

p= J,

2.s UKEUHOOD

The joint p.d.f. of the sample values is known as its likelihood finction In other words,
if we take random sample of size n from a population following p.d.f.

fla e), then
L= flr'4...,x", O\

is called the likelihood function.
If the observations are independent each having the sane distributionflr, 0) then

r= fl/(rr,e).

3E Scf-Instructional Material

2.5 CRAMER-RAO TNEQUAUTY (C.R. TNEQUAUTY)

Theorem 2.3. lf t is unbiaseil esthnator of some funetion of e say g(O arul the following
regulaitV conditbn are hoW.

1. Lil<elihood function is dffirentiable twice w.r.t. A

2, Limit of integration do not deperul upon 0.

3. Differentiation under the sign of integrals is possible, then



,rr#h
or ,Orrb=l{

r(e)
dse I (6 is tlr ir{frt rctiort on e.

Pruof : We lnow lftat

ll "' I r 6,e1, r (a, 01... ! (x,, ol rx,... &o = |

Diffantiating itnr.t 0, we get

ll...lftta'=o
(r ll "li(#)'* ='

(r I"{*""J*' ='
?. 1

n[fiu{,.r =o

AI$ lJ...lt.ta' =gpt

She t is unbiased eetfuutor of g (0).
Difttnthbitwr.t 0,wetEt

!! !'(ft)*=rc'
t$r= !,.s1ri)

ll "' lt * = 1, wlrlr- L = flxr, 01... fll.* g a4 e - tk v -, itzo

n61= [xpg)at
"' E(I)=o

lltl'r'at =e

It.u' =gel

...(2.13)

! !'i(*)'*=t*,
II l,(ie,*)Le=s<et

'[,*"r']=r,
*,(,i,n)= "t**4filo-w

...@r1)

$MdWa

&,t&',,,,FJ'ittlr''r

NOTEI
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NOTES

a Sell-h*aidltabt

Solutim.Wehave f <r,e> 
ff

l%f (x.,gl = -6 + x log 0 - log x !

) , x x-O
iloc/(t,0)=-l+:= 6

rr f .fr-efEl#tsi(',e)l ='iT-l

# t (r - 
a)' inPoisocrdistribution {v (r) = n = e}

1--,, e 1

since mean and variance "* ;: 
" tt' = t = u

r(o)=,E [*Iqc' t",rll =i
now g(o)= 0

d(e)= r'
Now aording b C-R- tequtitY

10
v(t)> iiFi=;

t,rr vt;r =v[]!x,]=#>oo,

= ale=4=9
nrt n' n

Hmce C.R lowerbound is attained'

+ I is an efficiecrt or minimum vadlmce unbiased eotim'e'

Snmplezs.If x-N(P,C)

Shett tlnt 7 is freient lor lLrr bLV 'l!'E' or 7 attahr CRLB or ltLV 'U'E'

1 - tlr -sf
Solution We have f (x,lt)= --Le 'c' ''

cJZF

Taking log

tq]1a1r7=tog,c-$

Diffe'stiaeitw.r't P

fut'v'a=-2(r;+x(-i
f,wtt''ut=eP

"[fi'*rr,,-rJ 
=*#=*'=*



tlence CR inequality is

a
ae--oJ \-, e(l_o

faUng Expectatim qr both the side

;tor/(r) =

Fl€lE t is €f6chnt gtiDator.

v(r)> -+=dn.:- n
6'

d2v(r) =:-
I{ence C.RLB. is attained
+ t is efficient estimator or Iv!.V.U.E.
Eranple 2,9. f (r) = d Q - A1 -' where r. - 0, 7

SIro.D that 7 is M.V.U.E-_,.
Solutiqr" logl1r; = :169 6 a 0 -r) log (t -0)
Difrercnt'lating w.r.t. 0

: r 1-r
frtog/(:) =;-r*

_ (r-e)r_e(r_r)
e(r-e)

'[$*rt'rf ="#-6
| _-.=e1;f v(')

="1-!z't'-'t
I

e(l- o)

v(r)= e(r-o)

But v (I) in Bernoutlidisrrjbutior = 
" (*>I) = #f

= fl'tt-tt
= iu'ntt-r)

= 
e(r-e)

rrrr=""[$r"s ri,q]'=

v(4> 6=;tr,hq

WbttFeitwtu

NOTES

WWned*tffitt
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2.7 INTERVALESTIMATION

In interval estimation, we find an interval in which the value of the Parameter may lie

with certain true probability.

For example, suppose we are measuring the height of persons of a certain locality' If we

says ttrat tne neight of 90% people of that area lie in betwe€n 150 - L65 cm, we have

forrnd interval (15o, 165) with probability 0.9 to reprcsent the height The point estination

procedure would have given some specific value say 160 cm to be the average height'

1. Random Intewal
An interval in which end points are random variable is called random interval'

e.g., (x, 2x) is random interval, (1, 5) is not random intemal'

2. Confidence Interval
An hterval in which Parameter lies is called confidence interval'

3. ConfidenceCo-efficient
It is the measure of assulance that the Parameter lies in conlidence interval e.3.,

P(T1 <0<Tt)= 1-s
(T1, T2) are confidence interval, 1 - <r is confidence co-efficient (level)'

2.7.7 Shortest Confidence Interval

We have

P[T1<0<T2]=1-s
P [0 <Tt] = at

P[e>T2]= a2

cl+Cb=(I
(r1>0,d2>0

Suppose

and

s.t

For given

Their may be inlinite combination for cr, + ob = a and hence inJinite CII' T'' It is tl**qe

"..gg"sti 
thut interval which has shortest conJidence interval i'e" for which T2 - T1

leii such a confidence interval is called shortest confidence interval'

Fonnulation

Letx1, x2, .---, xnbe a randon sample of size nftomf (x,Q), where fomr ofl(r' 0) is lnown

f <t, tll is Ulno*rral, poisson .'.1 but 0 is unknown' We want to estinate 0 (pararneter)'

For this define two statistics

T t= Qr (\' """"'' xn) = Iower confidence limit

T:.= o'(x'' -'-"' x) = uPPer confidmce limit

and P[T1<0<T2]=1-61

then (T1, T) is called 100 (1 - a)"/. confidence interval for 0' This (1 - a) i8 caled

conlidence co-eff icient'

We note that it doe€ not nean that the probability of 0 would lie (t1' T2) is (1 - a) fot Ads

would employ that 0 is a random varlbb lwhich b not a case wherr 0 is frxed though

unknown and constantl'

Therefore, either tlre specified interval contains or do€s not contains 0' If it cqrtains' the

probability is 1 iI it does not contain, the probability is O' If 0 is not a random variable

[r1, rr; i" ianaoot interval. If we take a laige number of random sanple we shall get a

Lffiot aing large number of interval and it is interpreted to mean that on the av€rage

lffi (1 - a)"/. of thee intervals are acc€Pted to include 0'



Briuplt 2.10. Find e @rfiddrc4 inBruuot tt6. i&rrr0l
(i) ois lowotr
(ii) ois ttttlowon

Sohtim.hodd€trbftidqtfidclcinEvelfupwe
variance unbiaged eetimstd.

(0rf r-N(Ed)

" 
-"[r,*)

q=q=feotratwe

tsilbminiman

...ere)

...@D)

!l-S'-oo-'r az =t

!i$'o"-'t'at = t
Dfue v= t, Eal,ln

dv=1fu0,

- JY#"-+."i,
- o,l={+

=ftff'a o'

#h"r*=i
AIso wemay write

A-p
dfr =-^rz o -
B-t
dTi7'alz a +

* 
{r - z^r z fr s i s t, + zal 2 inf = a,

=| "[u-r*f; .rs,,.r.eof] =o.os

Cfit&twEM

N('I3S.

ryMntdldtlffis
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r Sdl-I;WinulltOcrUt

But

and

tt-z-o./zfrsv

tLsi+zo./2fn

t s v+zol2fr

*>t-zalzfn

...Q2rl

...(Lzl

Now combining (221) and (222), we find
.\
Iz-zc.tz*.psl+zdlz+lI Jto ^tn )

* (r-ron|3+zt/z+)* ['- --' Jn 
' .1" )

/.\
- lztZon4l it tt. itttouUof 100 (1-tr)% confidene inte$al wh€lro i8

\ ,./t1 /
known

(i4 Wh€n 6 is unknown, thetl
r-u

T= '-Ti= - t"-r

In that case we find A and B sudr th't
PIAcT<Bl=1-cr

firt,l'* =t-"
where/(t) is the p.d'f. of etud€nt'g tdistribution witr (n- 1) deg€e of freedot

Notins O|at E [B -o, n * *oT= 
_ o

A and hence B can be obtained from the table of t distributicl Table valuea are

availablefotn=2,3,.'......'.,30forlargegamPbofdisrributid|conv€ditrto
nomral
Once we have obtained A and B, the confiderrce inErrral

e,.#.s
6l .l rt

# .r-r-u o-"'fr

r. X-fr"r.arr,"-,f,

,-# <P.r-#

l-r'tr6.o<r+tcnf,)
wh€n a is not lcrorvtL
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2.8 METHODOFESTTMATION

However we have not discussed as yet a procedure with which we can find a reasonable

:---------------stimator' 
several such procedure exist. we shall discuss the following method for

finding the estimator.

1. Maximum likelihood
2. Minimurn chi-square
3, Method of moments
4. Method of variance

2.8.7 Maximum Likelihood Method
The maximum likelihood method is toobtain that value of parameter (in tenns of sample
value) which maximize the likelihood function of the sample values.

For this we solve *=o""a"rr".t$l <0ao du-r"

'3f'=0.
AL

ae
= 0, we generally solve

0logL
= o and check tha, a':=toF t- i <0.a0' [=u

or

Thus instead of

Example 2.11. Fmd a Mnximum r,-;kelihood Bitinnte (M.L.E) for Lfom a sample obtainerl
ftom a poission distibution. Shont that this estimator is gicimi i"a ti.V .U.e.

Solution Wehave tt,rl= t-il',*herex=o,t,2,...

rheliketihoodtunction r-= f[/(r,,0=[jf

Taking log on both sideg

logl, = -n0 + f 4log0-logc

where . = I+ll', !
i=l

=o+-n+ 
]*-r =t

ae

abg L
a0

Self-Instructiolsl Marerial 4?



staffihfuaw (t_o)n_o Er, =o

n -n0-0 It, =O

(" \
n=el!r'+nl

(r 6 = +==!,t7.+n i+l
Differentiating (2.2a) again

F
- n=* L4- 

=o.
(1 - o)'

,!
(io) Wehave f(r)= *l-lc-"'

lp
Ihe lilelihood functiqr

,= *{n+-'},-"8*It!P' [i=r )

In order to egtimate cL we must lmow p othewise weneed to estimale d and
simultaneoudy. If P is lnown, then

logr. = nploso-n roe (lF) +(F -4 Itu *, -o L',
i=l i=l

) z8*ilosL =O+ -:-- ),ri =Otu - a ;i'
nB-;- =os

Lxi

nB.--:. = iflz

B
= =(l
T

"B(l==

(p) tr f 1l4= Pf-r e-'l
The likelihood

NOTES

" -i+
r= flfl"l-', ''

nt
rogr = n los P +(P -0>bc'' ->'P

i=l t=l

+logL =0op

n s'lf-htf'n/r'ioltr,l kletabl



o
(ii)

Solution

(r)

= ;.It:r',-!xf togr;

It is not possible to solve this equation for p, hence M.L.E. is not available.

Note : Whm the range of variable depends on parameter 0 (say), then general method of
differentiation fails and in this case arguments are required.

Example 2.13, Fdtt d the M.L.E of the following

7ro= |,0<x<e
flx, A= e k-4,0<x s-

;1:y= f ,o<r<e

L=+
o

logL=-nlog0

$r"sr, = f,=o
0=0

Sinoe0Sx< 0, : will be ruximum if r takes its maximum that is M.LE. of 0 = max (4).
e

(it /1a 9; = s-('-o) g33s-
*.-ztl/-0)

L= e '='

logL=-I(',-e)

d los L
-i =0=0da

-ir''-tl
We want to maximize e '=' and this will be maximum if r-0isminimum
that is iI put 0 3 xr 3 x2 < ..-..-.., < xn
then 0 = rt is M.L.E-

2.8.1.1 Properties of M.L.E.

1. The M.L.E. is unique
2. It is consistent

3. Most efficient.
4. It is sufficient if any exists.

2.A.2 Method of Minimum Chi-square

For a qualitative sampling, we distribute the sa'ple observations into certain categories.
Suppose there are K categories in which the population can tre distributed and Lei (e),
..,r*(0) be the probabilities that an observation will lie in ft,..,, k6 category.

Consbtanl Estinulor

NOTES

S ev-hstructbul Mnterial Sl
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ff 42fu | totfto, e is ttre minimun modified 12 estinator of 0'
du- le=6

The likelihood function for a random sample is giveet by

.t
r6ry = ----Ij- ff n't (e) = ln. !...... n. I a -I r t=l

''4
where n; is the number of observation in i* category and 

_), 
z1

distribution is known as the multinomial distribution.

12 method is used only wherr we have a multinomial distribution whose all probabilities

r, (0) ...-..... 4 (0) depends on an unknown paraneter 0 and the data is in the forsr of
frequency n1 ......., rr1 which mininise

".- $f[,, -nn, (e)Il- fi'L nn;(o) I

-* a' -,- funxl@) 
'

nr = observed qumcy
aq (0) = gxp€cted frequencY

since n; (0), probability (an observed faling in s ce[), the number of observation out of

n is exp€cted to fall in the f cell is E (rr) = rt; (0).

In acfual practice, we solve the equation

I = o 
"rra 

t*t 6 is minimumlz etimate tf etf #l >0
ae - "*'---' do' lt=o

"-?)i.e., )#iE;',rrl =0.

2.8.3 Modified minimum 12 method of estimation

We shall define 12 as

€. rr'ni lOl
= > _-.- -n

*,tu = i{10$"'or=o
The solution of l;od estimator is

$*- =o

Let 6 be the solution of 1|.6.

=",2 r; (0) = 1. Ttris

where,



Exrnplc 2-1f- Ia a rrr,tlrl,gulor i/ristributio'rt R (0, A let thctu h am ells uit" @iu
yeabilitia 4@ = $ o"a aO = b$ and la Uout n2be ob*todfeqwncy. Obtain

minimum f athwtm of A

Solution Wehave

Shc€

(r ft*"01.#L$a(e) =o

=fr**t.#*('-;)='
['- eJ

+(-#).##='
=-+.&=,

"("-,q-'4=o gincen=zr*nz
(e-o)' a '

a2(n-n")2 -n?(e-a)z _^- "(o:A-- 
="

i n2 + a2 nl -?mn1- nl* -nl a2 +uenl =o
a2n2 -nlo2 + Zalttl -2a2 nn, =g

(r -ftfr+zafie+in(n-2n) =s

e2 nl - zarle + a2n(tL, - rrr| = o

,_z*txrfFWt
2ri

ani +an n

n= ntl nz

'*'o 
= *t6$T (e)=o

ah tan,
\

= o@'x"')

6 = L" =ap,e11ssp= !\ rrr

auo6 = a1* -,hl="h-?)ttr'- \ qiand

Sclf-brstndirrrsl futt*abl 3t

C4'lte,' F.dinet

NOTBS
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Statbtiallnletme 2.8.4 Method of Moments

L.et \, x2, .........., x,, be i.i.d.r.v from/(r, 0r, ......, 0r. L€t mi and. 1ti denote the rft sanple
moment and population moment respectively

yi = lx, 
ye,e,,......er)dx

1-a
and mi = , )xi . Cteurty pf will be function of one or more parameters 01,02,......, e.'nn

The method of moments for estimating parameters consist of solving the equations and

rnf = pi (01 ......01)

and there by obtaining the solutions 6,, er,......6. in terms of rzi .'.... m! .

Rematk2,2. We can aryly this tecltnique only when the system of equation

mi = pi(4"...'et)

mi = ai@r""" ek)

:::
mi = pi(q'.'."ek)

Erplicitly yields 0r, 0.? ......, ekin renns of mi,...... n:2 .There nuy be situations when the abooe

system of equations do not admit explicit expression for 0t ,,..,. 4yin terus of n1 .'- " ni and

then the nnments method fails.

2.8.4.1 Properties

1. The estimators are consistant.

2. The estimators are asymtotically normal but not efficient in general.

3. It is less efficient then the M.L.E.

Example 2.15.: - N (0, d) fnd estinator of qarut d by method ol momnts.

Solution.Wehave !r; = J--x'J(x;e,a'?)at

= -+- f- ,, ,-#l'-el' o*
o't2r t--

lxf e)ax =E(r)=g;Jf t,l=t

= pi =9, Pi =02 +&

Hence. 0= Pi

and &=p)-s2 = pi -(pi)'?

since ^i =:f !'i

+ ^i = !f,, =z =Yi



Therefore,

and 1I(', -r)'.n-''
Theorem 2.4. lf a suffcient estimator exists, it is a function ol the Maximwn Likelihood
ktinator.
Proofr.lf t = t (xv xz, ......, xn) is a sufficient estimator of 0, then Likelihood Function can be
written as L =8 (t 0)h(xux2,\,....-r, I l), where g (t, 0) is the density function of tand
0 and k (r1, r21 ...,.,, t11 | l) is the density function of the sample, given f, and is
independent of 0.

... logl,= logg (t,0) + logh (xr, xr,.......x, I t)

Differentiating w.r. to 0, we get : # = #beS(r,e)=V(r,e),t*y1,......
which is a function of I and 0 onlv.

*=li,?=t;' ni'l '-

6 = ni=i

62 = ni-@i'=

0 = q (t) = Some funclion of sufficimt statistic

t = g (0) = Some tunction of M.L.E..

M.L.E.of0issivenby *3! =0 + v(t,e)=0

Hence the theorem.

Corsistont Estitnatar

NOTES

2.9 CAN AND CAUN ESTIMATORS : MULT|PARAMETER CASE

I€t T = (Tl, ...,..,T.f be a vector valued estimator which is consistent for a vector
parameb 0 = (01, ...,.., 0r)'. If there exists a sequence ao > 0 and d,, -+ € such that the vector
valued r.v. ao (T - 0) has in the li.it a non-singurar proper nr--dimensional norrral
distribution then we say that T is CAN for 0. Thus if ao (T-0) -l- f.l') (0,.,r (e)) -t o"
A (0) is a symmetric positive definite matrix then T is said to have asymptotic normal

distribution with mean vector 0 and variance covariance matrix 49 . ff,t, i" a*""a
a;

byT-6lr) ft,+].*"**of n = t, usually the choice ofao = ,/z wilt suffice.\ 4)

Orc ccrsequcre of te above deftritior is dtat eadr T, is CAN fo, q *,in eV gf,; = 
la (0)

n

and any linear combination f = )1,1 isCAN for L4e, *i*reV(r)= lf rr(e)f .
i=l r'=t n ''

As univariate cLT for ii.d.r.v- with finite variance is helpful is constructing cAN
estfuutors for a real parameter 0, in a similarway multivariate cLT (MvcLT) for ii.d.r.v.
with finite p.d. variancecovariance matrix is useful to obtain cAN estimators for

Sef-Inshudbnnl M etu! Ss
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0 = (q ...... 0,,)'. t€tz=(2v..'..1)'be such that E (Z) = p and lvl: = A which we asaume

to be p.d. lrt [z, ] be i.i.d.r.v.s. distributed as Z and ht Z = (2, ,' '- '' ,2.)' be the mean

{
vector of the sample i.e., Z, = jf.z^,r =7,2,......, m. Then MVCLT asserts that

nri (Z - p) -J--+ I.l{'} (0, l) or Z - A\il') (p,1 
^). 

we now illustrate thiE technique

by way of a few examples.

Exanple 215. Let (X1,....., )q) beiid N (lr d1. rrvr E 1x,1= p, e (xf ) =pz+d.ra z=G,zl

where Z, = x' 614 4 = xi . rhm A in gmeral is given bt 
[r::;[, T,jf ) 

-'

for the normal dist"iu,rtion a = f 
ot. 

,'uo', ,1. *ur"fore by MVCLT, we have

[2tro' 2a' +46'V')

for samples from N (P, d).

f i)-onrralf ^u .'l.rf 
d^ .tu"'. .ll

l.ri.J - ^" 
I lr' * o'J' , [aro' zaa + tazp2 ))

where rri and rni are first two raw samPle moments'

Example 217. t€t the p.m.f. of (X, Y) be givm by

(')" 
0. 

'l'-t '-'\ 'o.-P.-t'o.-L'f t',v'L'il= lvt rl
Y = 0'l'2' """'x;x =o't'2"""

rhen E (x) = I' E ("1 = 
^o 

-o t, = [ | ]ll. *o 
"u'-' 

from the fact that X - P (tr)'
\^P tP)

Y - P (fp) and E (XY) = E IXE (Y lx)l=E(XXp)=E (X2 p) = (7'+L2l p'Therefore'

ft'l_onerfl.^) r|,I rP)].

lvj 
- ^' Llrpj' " [rp Lp ))'

Example 2.18.I,et Z= (21, -*.,Lk:f ba multinomial r'v' in k-cells wittr f (2, """''+l= fr '
k

p?, " " " p'!, zt = 0 or r, !,2; = 1 and 0 < Pi < 1' EP; = r' Then E (!) = pi andY (z) = I'ii
i=7

= p, (1 - p) and Cov (\Z) = -PiPlThtts,
.\

[r'(t-r') -Prtu 
|l4=l I

[ -o*r, P'(t-P*\)

Horrrever as Ez, = l, Irrf" is singular and has nnk (k- 1). We thelefore consider only (t- t)

i 
"isuy Pr, ......, r.-i1 ,o that t* = 17 -21'-', - z*-rl, and p1= (l -pt-p, ---'- fu')'



Then by MVCLT as applied to Z = (21,......,2k-r)' th" u".to, of (k- t) relative cell

frequencies in (k- l) cells will have the asymptotic normal distribution with mean

vcr':bt (p1,......,p2-1)'and asymptoticvariance covariance mahix 1 A whetetnl=p1e-p)
n

and.In= -pipri =1,2, ......,k-r;i =1,2, ......,k-1.
similar establishes invariance of the cAN property under continuous differentiable

transformation we can show that if T - AI{@ (e, A (0)/a"2) and if ry = (yr, ._.-, \r/ are

)lrr.
such that * are continuous fori=1,2,......,kand j = 1,2, ,,.,,.,m tltenv (T) - AMt)da,

( ^, ^,\lv(e),:$- | *5"'"
\ 4;)

fgtt Evr

I ae, Eo,G=l:: ::

l9yt. Dvr

I Eo, ao.
provided G A G ii positive definite. uses Taylor series expansion of each component of
the vector V. Thus a'' (\r (T) - V (0) = C an (T - 0) + a, R r,yhere., R --Z--r 0andasa,,

Cr- o) --g-r 
^l') 

(0, A), c a, (T - 0) -l-r N@ (0, c a c). n*... we have theorem. lrt
r - AN') (o a (e)/a") ana ,y = (y,, ......, y), and 

" 
= (*) such that GAG,is p.d.

then ry (r) - aptt) (v (e), clc/ai).

Example 2.19.In example 2.15, we showed uat (mi, m)' b efrp (pi, pi f , A/rr. Note

Arat her€ (el, er)' = $ri, pil = nt, & * p\, * (p, dr,.

Now suppoce we want to obtain CAN estimators of p and d. Then we take y, = p! =p,
yz= tlz - pi2 =d.rh311

Therefore U(ni,n4'1 = ,,4=x a d y2(rn',ni)=W-d'=l=rr, thesecond

srtral moment of the sample and we have

[,i,,)-^",[(;)T]

Consi'tqnt E*it utu

NOTES
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and

By straightforward calculations we can show that

(c2 o l
c^c,= 

[ o za, ).
If we use the gmeral expression for A given in Example 2,15 namely,

6=(v|-vl' rr3-rriuil
\rri - piui P'4 -P'z' )

"= [-]-, l) ***.= [u' u.tu;J
where p2, [t, p4 are central moments of tfre p.d.f. [f (r, 0), 0 e O]' Note that if the p'd'f is

symmetric about mean or even if iustp3= 0wehaveGAG'=aiug (p,'Fo - !4) and X and

L would be as),rnptotically normal with off diagonal elements zero or equivalently X , and

n

-z 
t ^t'

i- would be asymptotically independent Further obse*" tttut 
I L I I is a solution of

n \ ni

themomentequations mi = pand m; =f + d and+{:g = (ti l)=-'

g S*/il-Irtsttttcliorrcl titloinl

2.10 SUMMARY

. The ioint p.d.f. of the sample values is known as its likelihood function'

. ln interval estimatiory we find an interval in which the value of the Patameier may

lie with certain true Probability'
. Interval which has shortest confidence intewal i'e'' for which T2: Tr least' such a

confidence interval is called shortest confidence interval'

o The maximum likelihood method is to obtain that value of parameter (in terms of

o^pi" t"f*l which maxinize the likelihood function of the sample values'

. The estimators are asymtotically normal but not efficient in general'

r If a sufficient estimator exists, it is a function of the Maximum Likeuhood Estimator'

2.11 GTOSSARY

r Efficiency : If T1 and T2 ar€ two consistant estimator of 0 then T1 is said to be morg

efficient then T2 if variance of (Ir) < Cft vt''

o Random Interval ! An interal in which end Points are random variable'

. Confidence Inrcrval ; An interval in which panrneter lies is called confidenoe interval"

o C-onfidence cc'efficienl : It is the measure of atisutance that the paraneter lies in

confid€lrcE interval

2.12 REVIEWQUESTIONS

1, Define consistant €stimator' Show that the sanple vati-T-: u biased but cusittant

estimaior of d' when " 
ottao sample is taken ftom a N 0r, d) populatioru

2. Define CAN and CAUN estimators'



3, D€fine efficiency. A random sanple (xr, r'y r, xn t) of size 5 is driwn ftorn a nomal
population with unknovm run p, Consider dE fiollowing estimatoE to estimaE p :

lil r,_ xt+xz+xt+xt+xs, @ 6= Il!J211,
5--

,-^ , - 2xr+ xz+\\
?,'

where l, is such 
-rhat 

13 is an unbiased estinator of F. Find L Arc 4 and t2 unbiased ?

State giving reasons, the esttulator which is the best among 4, t2 arld tt
4 Describe the method of maximun likelihood estimation and state its imPortant ProP-

erties.

5. Firld the MLE of the varianae for a nornrd populations iI mean is known
5. Stab and explain the prirriple of maximu$ likelihood for e€timating of population

Parameter-
7. Define likelihood function for a random sample drawn from a discrete population

& Write a note on interval estimation. Obtain 95% confidence intervd for the mean of
a normal distribution when o is (i) known and (O unknowu

9. Desqibe the method of mom€nts for estimating th€ paramebs. What are the propertbs
of th€ estimates ottained by this method ?

Con6isle/t, Fsimlor

NOTES
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TESTING OF
HYPOTHESIS

oB,ECTTvES

After going through this unit, you should be able to:

o define statistical hyPothesis

. explain oPtimum test under different situations

. describe likelihood ratio test

STRUCTURE

3.1 Introduction
3.2 Statistical Hypothesis-Simple and Cor;posite

3.3 Steps in Solving Testing of Hypothesis Problem

3.4 Optimum Test Under Different Situations

3.5 Neyman J. and Pearson, E.S' L€mma

3.6 Likelihood Ratio Test

3.7 Sunmary
3.8 Glossary

3.9 Review Questions

3.10 Further Readings

3.1 INTRODUCTION

The main problems in statistical inference can be broadly classified into two areas:

(l) The area of estimation of population paraneter(s) and setting up of confiderrce

intervals for them, i.e., the a-rea of point anit intenal estiflmtion arrd

(tt Tests of stafrstical hypothesis.

The first to,pic has already been discussed in Unit tr' In this unit we shall discuss:

The theory of testing of hypothesis initiated by J' Neyman and ES' Pearson'

Sequential analysis propounded by A' Wafd'
(a)

(b)

5a Self-Irctnclional ltbterinl



In Neyman-Pearson theory, we use statistical methods to arrive at decisions in certain
situations where there is lack of certainty on the basis of a sample whose size is fixed in
advance while in wald's sequential theory the sample size is not fixed but it regarded as
a.r1do1 var_rable- Before taking up a detailed discussion of the topics in (a) and (&), we
shall explain below certain concepts which are of ftrndamental i;portance.

3.2 STATISTICAT HYPOTHESIS_SIMPI.E AND COMPOSITE

A statistical hypothesis is some statenmt or assertion about a popt .ation or equhnlent about the
probability distribtttion characterising a popt ration, which ue want lo oerify on the basis of
inform-ation aaailable from a sample. lf the statistical hypothesis specifies the population
conpletely then it is temed as a simple statistical'iypothesis ottrerwise it is called a
comp osi t e st at is t ic al hyp ot h esi s.

For example, if Xr, X2, . -,\ is a random sa.mple of size n from a normal population with
mean p and variance d, then the hypoth"si, Hn , p = p" o2 = oi is u sinrptu trypothesis,
whereas each of the following hypoth"r", i, u 

"o-po"it" frypo'tfr""ir,
(t) tt = tro,

(iii);r<po,O=ot,
(?) p = Fo, &. o3,

("r, [<Fo,dt o3.

(iD d = a3,
(iu)p>po,d=6f
(zi)p=p'dro3,

A hypothesis which does not specify completely ,v, parameters of a population is termedas a composite hwothesis uith vdegrees offreedont.

3.2.1 Test of a Statistical Hypothesis
A test of a statistical hypothesis is a two-action decision problem alter the experimentalsample values have been obtained, the two-acuons bein'g i" 

"""ip,""* o" *iection ofthe hypothesis under consideration.

3.2.2 Null Hypothesis

In hypothesis testing, a statistician or decision-maker shourd not be motivated byprospects of profit or loss resulting from the acceptanc" o, ,eyJon of *re hypothesis.He should_ be completely impartiaiand 
"h."td 

h""";;;;;;j;;;
nor shoutd be allo* t i" i.oJ"ur "i.*s to inJtuence thel *";;Ii:H;:;:ffi,
upon hozo the hypothesis is franred. Fot"*"_pt", l"t * ;;;i;;;-;;;ligtrt_bulbs, problem.Let us suppose that the btrlbs manufactured .rnde, som" ,,_Oara manufacfuringprocess have an average life of g hours and it is proposeJ ,o ,""iu ,,"_ pro"edure formanufacturing light burbs. Thus, we hu"" *o poj,rr"',i-oiiiJu", *r*" -.r,,ri""t rr.aby standard process and those n
following three hyp.*"r* -", ffSTlred 

by the new process' In this problem the

(l) New process is. better than standard process.
(tt) New process is inferior to standard process.

(rO There is no difference between the two processes.
The first two statements appear ro be biased sinc€ they reflect a pref€rential attitude to
:Tj:T rdy:f the two processes. nence 0reUest co,J'ii {iopr r* nypnot E *auJermce, as stated in (iifl. This suggests that the starrsfr'cra n sioui totc up tn" neutral olnull attihtde regmding the outcome ollhe tesr. mr 

"ttrt"i" J""ra'illr, tt . r,rlt o" o.o tir,"in which the experimental data hasthe-a.." i_porturr. uoffift t" suy in n _.tt"..This neutrar or non-committar attitudc 
"y 

tn" ttttittii" iaiiiil!^"rc, before the wnpreobymations are taken is tle keynote oI the nuU nypotn"si".

Testing of Hypothesis
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Thus in the above examPle of light bulbs if po is the mean life (in hours) of the bulbs

nanufactured by the new procesi then the null hypothesis which is usually denoted by

H0, can be stated as follows: FIo : p = 1to.

As another example let us suPPos€ that two differ€nt concerns manufacture drugs for

i"a*ittg 
"fop, 

drug A nanJactured by first concem and drug B manu{actured by

second concem. Each company cl,aims thit its drug is superior to that of the other and it

is destued to test which is a suPerior drug A or B? To formulate the statistical hypothesis

t* iu" 
" -oao- variabh ;hich denotes the additional hours of sleep gained by an

individual when drug A is grven and let the random variable Y denote the additional

;;;;ild g"inei wrrei drug r is used' t€t us suppose that X and Y follow the

orobab iw aisiiuutions with mJans px and pv respectively' Here our null hypothtsis
t 

""U-iritirwr" 
* rc difference betanzn the 6ects of tun itrugs' Symbolically' Flo : p" = pt'

3.2.3 Alternative HYPothesis

It is desiftble to state what is caued an altetnltioehypothests m resry:t o1:v,ery -:9lg
;'#il#.i;-c;;;;;;;;d'"."""'P'""'.'1,:ry::1.:i^1*.:#,$:,"-i
;ll"T.i.iH ffi;"*.n"il i, *i"g i.'t"a'gui*t "'r'1 t'1'n'113t.:j"*::*:*:
;Jiilfi il,ffi ;ffi 

- 

it,-'ii* nvp"ti*T i" y""ttJ, li:"'t lt l::TllTTlYll
;.';'i;;i";;ttsh,Jubs,attematlvehvPothesisc4l.rtiT,"l't ] tt1'.lujlhij]l1lL
r" Or"'*"|pr" 

"r"a-g", 
tre altemative hypotEsis couldbe Ht : p. > pt or ltx < [rY or trx+ pY'

ln both the cases, the fust two of the altemative hypothesis give rise to what are called
-'.n-roil"d' *r" *rdthe thad altemative hypothesis resultsin'tuo tailzl ttr;sts'

3.2.3.1 lmPortantRemarl<s

1. In the formulation of a testing problem and devising a'test of hypothesis' the

roles of H6 and H, u'" 
"ot 

ut JU"y^^ttric' ln order io 'leride which one of the

two hvpothesis should be taken as null hypothesis Hs and which one as

:il#tff;;;oi' nr, ttl-i,.tti*i" differ'ence between the roles and the

i-pfifi."tio* of tttese two terms should be clearly understood'

2. II a particuhr problems carurot be stated as a test Hween twosimpte hypothesis'

i.e., sinple null hypotf,"si" ugiio"i u srT?le altT.nati. 
]e.hypothesis' 

then the next

il;;;;; ; io fo'ot"tit" tt't problem as the test of a simPle null hyPoth-

H;;"d;p*it" urt"*utiut'hypothesis' [n other words' one should tryl

to structure the problem so that null hypothesis is simple rather than comPosite'

a. ieeping in mind the potential looses due to wrong decisions (which may or may

not be measured in terms ot money)' the decision maker is somewhat cons€rva-

tive in holding the ,,.,I r'ypotillt'J" true unless there is.t."""18 "11-t-T:LA-il;;;;1"-.t',",.i:Tffi 
i'"#ffi,X:,j,i:;l;tT;Y;f""#T:;:;i

?::#::,;?:#r^X"i'JiXY;;;;;,,.,i",i-r rrvpoth'sis is in the io'm or a

:i:#;lt;;;;;oi- p'"autt - product procesi-is suPerior to some existins

standard. The null nypotn"J 
-rfo 

in this'case is that there is no difference

between the new p.oat'"t ot!-'oa1'"tio* process and the existing standard' In

other words, ""U 
ftypotft*i""t'ififi"s this claim' The-r?e:tion of the null hy-

pothesis wrongly *tti"rt uti*tt Jthe accePtance.of cl'aim wrongly involves

huge amomt of Pocfet e^ptises-to"uards a sribstantive overhaul of the existing

;:;;iil;;;i,i"s l*''t"To,P""tt"'rv :FIdd as o'ore serious than the

opportunity tor, ur *'ottg'v lit"'Gg ft *hi$ *:Tf^| ""o"gly 
r"iecting

the claim, iz., ut st'cx-g to th" t"''' efdcient e*isting standard' In Ole tight-bulbs

problem discussed "*li"t' 
;;;;;; reseatdr aiision of the concem' on the

basis of ihe limitea "tp"'i*"tltltit"' 
claims that its brand is more effective than

that manufacturea uy 't""JJ ftocess' II in fact' the brand fails to be more



effective the loss incurred by the concem due to an immediate obsole*ence ol the
product, decline of the concem's image, etc., will be quite serious. On the other
hand, the failure to bring out a superior brand in the market is an opportunity
loss and is not a consideration to be as serious as the other loss.

3.2.4 Critical Region

Let xr, xr, ..., xnbe the sample observations denoted by O. All the values of O will be
aggregate of a sample and they constitute a space, called the nmple space, whidr is
denoted by S.

Since the sample v alues xp xr..., x,t can be taken as a point in n -dimensional space, we
specify some region of the ndimensional space and see whether this point lies within
this regions or outside this region. We divide the whole sample space S into two disioint
parts W and S - W or W or W'. The null hypothesis FI6 is reiected iI the obserued sample
point falls in W and if it falls in W' we reiect H, and acc eptH{.The rcgion of rcjectian of Ho
when H,is true is tlut region of the outcone set where H'is l4ected il the satnple point falls in
that region and is callerl citical region. Evidently, the size of the critical region is cr, the
probability of committing type 1 error (discussed below).

Suppose iI the test is based on a sample of size 2, thm the outcome set or the sample
space is the ffust quadrant in a two-dinensional space and a test criterion will enable us
to sqrarate our outcome set into two complementary subsets, W and W . If the sample
point falls in the subset W, Ho is rejected, otherwise Ho is accepted. This is shown in the
adjoining diagram:

h

I

3.2.5 Two Types of Errors

The decision to accept or rEect the null hypothesis FIs is made on the basis of the
information supplied by the obsewed sampre observations. The conclusion drawn on
the basis of a particular sarnple may not always be true in respect of the population. The
four possible situatior* that aris€ in any test procedure are given in thelollowing table.

Decision Froar Sample

True
State

Reiect Ho Accept flo

FIlr True Wrong
Clype 1 Error) Corr€ct

Hn False

(Hr True) Correct Wrong
(Type II Error)

From the above table it is obvious that in any testing problem we are liable to commit two
tlzpes of errors.

Enors of Type I and Type ll.The enor of rejecting Hn (accepting H') when H6 is tme is
called Type 1 error and the error of accepting H6 when H6 is false (H., is true) is called

Trs,ing of Hpthrs,is

NOTES
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TW II eftoL The probabilities of type I and type II errors are denoted by o and p
respectively. Thus

c = Probabilig of type I error

= Probabilig of reiecting FIo when llo is true.

F = Probabilig of type II error

= Probability of accepting Ho when Hs is false.

Symbolically:

P(re W I Hd=a,wherer= (4,xv...,x,) + l4at =o ...(3.1)
i,

a
where Ia is the likelihood function of the sample observations under H6 and I dr

tf f
repr€sents the n-fold integral l l ... l d* tlx't ... t|x. .

Again P(re W lH,)=p + lurax =p ...(3.2)
ft

where L1 is the likelihood function of the sample observations under Hr. Since
a?
I L' dx + | Lltk =7,
ww

we get It'* =

=) P(xe W I Ht)=

1- JLd' = 1-p

1-p

...Q2a)

...82b\

3.2.6 Level of Significance

o the probability of type 1 error, is known as the level of significance of the test. It is also

called the size of the critical region.

3.2.7 PoweroftheTest

f - p, defined in (3.2a) and (3.2b) is called trc pozuer function of the test hypothesis Hoas*inst

thc alternariae Wthesrs Hr. The value of the power fun ction at aParameter Point is called

the power ol the test at that point.

Remark 3.1. ln qwlity contrcl terrninolory, a and p are terfied ss ptoducer's risk arul

consum e r's r isk, r esp e c t io ely,

R;enark32. An ictul test would be the one which propuly l<eeps undet conttol bth the Wes oI
eftors. But since the commission of an error of either type k a tandom oariable, equioalently an

ideal test shoukl minimize the probabiliry of both the types of enors, uiz., a and B But

unfortunately, fur afixed sample size n, a awl B are so related (lil<e producer's and consumer's

risk in sampling inspection plans), tlmt the reduction in one rcsults in an incruse in the other

Consequently, the simultaneous mhrimizing ofboth the errors is not pwsible. Since tyry I eftor

is demed tobe nore serious tllan the W II ertor the usrml ptactice is to cnnbol aat a predetermined

low leael and subject to this constraint on the probabilities of tW I error, cltoose a test which

minimizes p or maximizes tlrc power function 7 - p. Genetally, we choose a = 0.05 or 0,07,

3.3 STEPS IN SOLVING TESTING OF HYPOTHESIS PROBTEM

The maior steps involved in the solution of a 'testing of hypothesis' problem may be

outlined as follows:



Explicit lnowledge of the nature of the population disbibution and the paramete(s)
of interest, 1.e., the parameter(s) about which the hypotheses are set up.

ftting up of null hypothesis Ho u"d $" altemative hypothesis H, in terms oftlre range of the parameter values each one embodies. '
The choice of a suitable statistic J = t (x1, x2,...xn) called the,es, srarr.sfrc, whichwi.ll best reflect upon the probability oi H, ;j'H;-- -- **
Partitioning the set of possible values of the test statistic , into two disioint sets
W (called the reyec tion repion or citicat region) and W (called the cccep tance rcgion)and framing the follow-ing test:
(t Reiect FI6 (i.e., accept Hr) if the value of , falls in W.
(ii) Accept FIo if the value of ! fals W.

5. After framing the above test, obtain experimental sample observations, computethe appropriate test statistic and take action accordingly.

3.4 OPTIMUM TEST UNDER DIFFERENT;ITil;M
In any testing problems the first two steps, aL., the form of the population distribution.
::?;1tr:..,f)^:iTr:-,_""t 

and the framins .? r{, ;H;,h"Idb. obvious from thedescription of the problem. rhe,no"t "il"i;;; il;;1,#;il";""r;;:: :iil#:*"9".11 *d the critical region 
ry where by b;r;;;;;;i*.rno in ad.d.ition tocontrolting aat any desired tmt teoet has tn" nii^"m typ, i ;;;';;; r*.*r_ pmnr 1 _ p,compared to p of a other tests haaing th,s a t ;" t"uasil u"" roiiJ*-g o"rroroo.,.

3,4.1 Most powerful Test (Mp Test)
Let us consider the problem of testing a simple hypothesis : H. : e = 0^
against a simple a.ltemative hypothesis: H1 : g = 0,
Definition 3.1. Tlz citical region W is,the,mu.t pow*ful (Mp) $itical region of siz a(and thecorrespond.ing test a most Wuetul test of tr*t il1o, i*,tirrg'il, i!'q, against u, , e= e, if

p(re W I no1= f Loa: =c
iv

ld 
p(re W tHr)>p(re Wl tHJ

for every other critical region W1 satisfying (3.3).

3.4.2 Uniformly Most powerful Test (UMp Test)
[€t us now take up the case of testin_g a simple nuLl hypothesis agarnst a compositealtemative hypothesis, eg., of testing fro : 0 = 6; 

-'* ", vvu'|c''>

against tlrc altemative H1 : 0 rc 0n

tr;:fri;:;:;r. Predetemrined a, the best test ror FI6 is caued the andlo rmty most

i;ffn?#,:#:X :##::y:l most powetul (trMp ) citicat region or size a
= Q against H1 : e * loi.r., H, , 

'e 

=T:#st 
poweful (uMP) test of leaet alforLshrg Hs: 0

p(reWrHil= 
Iradx=d

and pk e ttt I url >{A . wl lH)fors e*q
uhatmer the region W, satisfying (3.4).

...(3.3)

...(3.3a)

...(3.4)

...(3.4a)

Testing of Hwthesis
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3.5 NEYMAN I.AND PEARSON, E.S. TEMMA

This Lerrma provides the rrost powerful test of simpl'e hypotheis against a simPle

alternative hyPotresis. The tlporem, krown as Neyman-Pearson Lenrnra, willbe proved

for density functionJ(a 0) of a single continuous variate and a single Parameter'
However,iy regarding r and 0 as vectors, the proof can be easily generalized for any

nunber of random natiubl(s tr, xr-..,:rn and any number of paraneters 01 ,W" ',ObThe
variables x1t /21'.r tn occurring in this theorecr undefftood to rePrcsent a random

sanprc of size z fro- ttt" pop.tf"tiot where dmsity ftmction isfla 0)' The lecma is

concemed with a simple hypothesis tI6 : 0q and a simple alternative H1 : 0 = 0t'

Theoren3.1.(Neynen.Peargon|.qma|lAk>0,beaconstantanilwbeactitiedrcgion
of S suchthat

afld

*=l'.',ffi,r\
*= {'.t,*'4
* = {'.t,*.4

uhere Ia anrl L1 arc the likerihd functions of the sanple oherution x -- (xt' xz" ' "r) under

ioonahr rr"poUoely. Then W is the nost pountfu' c:riticol region of the terlt lrypothab Hs:

0= $against the atterr^tioe Hl: 0= A*

Prooft We ate givm

P(xeWlH6)= JQar=cr
tl

The power of the region is

P(re W I :ts'.1)= lLldx =r-O(saY)'

In order to establish the tremma, we have to prove that there exjsts no other critical

,eion, of sire f"ss than or equal to a, which is more powerful &ran W' LetWl be anoher

critical region of size c1 < cr and power 1 - p, so that we have

P(reW1 lHo)= J,Lodr =al

and P(re W1 | HJ= J L dx =r-Ft

Now wehave to Prove that I - P > 1 - Pt

Irt W=AuCandWl=BuC

...(35)

...(35s)

...(3.5)

...(35a)

...p.n

...(t7a)

I eo Setf-I'(,ttlrctbnol Ma'eriql

lr
&F

(C may be empty, ic.,W andWTmay be disioint)'



If c1 5 c' we have

SinceAcW,

[ua, < lua,wrw

I \a's [ 4a'
B(JC AvC

[ua' < [ua,
BA

!ua', [ua' ...(3.s)
AB

aaa
- llra", klLodr>klLotk

AAB
Also t3.5(a)l irplies

Ie s tvr.W
Lo -'

+ lr.,a, = 
*tLoax

ww
this r€sutt also holds for any subeet of W, say W n W, = B. Ftrmce

t- . -?. - t
)I"ar 3 klr.ndts lLtda
BEA

Adding 
JI4 

dr to both sides, we tet
c

...(384)

tFrocr (38c)l

...(3.e)

...(3sa)

...(leb)

It"a"= !r"* - 1-F>r-Fr
qw

Ilence tlrc t emma

R€rnark 3,3,'Ir, W defin"n in G.5) of the sbooe t tcorefi be the mut pou;erful critictl
region Ssize afvtatingHo:0= Qogainst H1: O= Q, and IA fibe intlepenitent $ e e e=
e- qrurrse eois thc pruneta spe unda Hs, Tlen an xy thtt C.R. W is the lIMp CR of
siz afor tating : Ho: 0= Qn against H1: 0 e Q.

3.5.1 Unbiased Test and Unbiased Critical4egion
Iet us consider tlre testing of llo : 0 = 0o against Hr : O = \ : The citieal region W and
corrsqueflW the Wbod on it is sid to be uibia*il lf thepuer oltltc t6't ezc@il tlte sizt of the
dtical region, i.e., if

Power of the test> Size of the C.R
+ l-F>o
:+ Pq (w) > Pq" (w)
+ P[r:re W lHrl>P[r:re W lFI6]
In other words, the critical region W is said to be unbiased if

P, (w) > Pq (w),ve('.00)ee

Theorm 32 Eary nost potoerful (MP) m uniformly mat puetful (UMp) criticat rcgion
(CR) is rcssrilu unbiasd.

TeingqHwotl6k

NOTES
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(a) lf W be an MPCR of sizt aJor testing Hs: e- q against H7: 0= Q, then it is
necessarily unbiaseil.

(b) Sinilarly if W be UMPCR of size dfor testing Ho 1 0 = Qo against H1 : 0 e Q, then
it is also unbiased,

Prooft (a) Since W is the MPCR of size cr for testing Ho : 0 = eo against H, : 0 = 0r, by
Neyman-Pearson Lemma, we have; for V k > O

W= {r : L (r, e') > kL (a 0o)} = {x : L, >k\}
and 1,f'= {1: L (:, 0) < k L (a 06)} = {:: L1 < k Ia},
where k is determined so that the size of the test is d i.e.,

Pq,(w) =P[:e w I Fb]= l4a' =o
'n'

To prove that W is unbiased, we have to show that:

Power of W2a i.e., Pr, (W) >o
aawehave: Po, (W) = JLtdx>k !h& -- ks.
ww

['.' OnW,Ll>kIoandUsing(3.10)]

P., (W) >kcr,Vk>0 ...(3.r2)

...(3.10)

...(3.11)

AIso

1-Po, (W) = 1-P(re w I Hr)=P(r€ w' I Hr)= J 
Lldr

I<klLodx =kP(r:re W'lH0) ['.' OnW',Ll<kLd ,
&,

= k[1-P (r: r e w lH.)l=k(r-a) [Using (3.10)]

...(3.13)i.e., 1-Po, (w) < k(l-o),vk>0
Case (i) k > 1, ifk < lthen from (ili), we get

Pr, (W) > kc> a

+ W is unbiased CR.

Case (ir) 0 < k < l. If 0 < k < 1, thm from (itt), w e get:.

1-Po, (W) <1-c + P.,(W)>cr + W is unbiased C.R

Hence MP critical region is unbiased. ,'

(b) If W is UMPCR of size a then also the above proof holds if for 0t we write g,

such that 0 e O'. So we have
Pr(W)>a,V0e@t + W is unbiased CR.

3.5.2 Optimum Regions and Sufficient Statistics

LAx1, xy...,xnbe arandom sarrple of size n from a populaticr with p-ruf. or p.d.f'/(r, 0),

where the parameter 0 may be a vector' I€t T be a sulficient statistic for 0. Thm by

Factorization Theorem,

L(r,o)= f[/('i,e)=g'(t(r))',,(r) '..(3.14)
i=l

where g(l(r)) is the marginal distribution of the statistic T = t(r).

By Neyman-Pearson ksrma, the MPCR for testing FIo: 0 = 0o agairut H1 : 0 = Q is givmby:

1,{= l1:L(ae1)>kL(r,06)},Vk>0 ...(3.r5)



From (3.14) and (4.15), we get

w= {x:s., (r(x)) r(r)>r.sq((x)).t(r)}, vr>o

= {,,s., (r(r)) > r.gq (r(ry)}, vr>o
H€ne if r = t(r) is sufficientstatistic for e then the MpCRfor the test nraybe defined in t€ra,s
of the marginal distribution of T = l(r), rather than the joint d.istribution of \1xy..1xn.
Exanple 3.1. Gizen the fequency function:

t1

7,,a= ]i'o<*<e
l0 , elsewhere

and that-you are tes.ting the null hypothesis Hs,: 0= 7 agzinst Hr: 0= 2,by ttteans of a singk
obseroed oalue of x. What woukl be the sizts of the type 1 arut type Il enois, if yo, it oouit 

"inteftral (i) 0,5 sx, (ii) r sx sl's as the critical regiitts? Also oiiain thz power function ol the
t6t.

Solution. Here we want to test Ho : O = l, against Hr : 0 = 2
W = {r: Q.g <r} = {r: x ) 0.5}

fr = {r: r < 0.5}
c= P{re W I Ho} =P(x>0.5 | O= 1} =p{0.5<r<0 | 0= 1}

tl
= P{0.53r3 1 | e= U = J [/(r,0)]=, a,= 

J r.a,= o.s
0.5 0.5

Similarly, F=pt:e W lH,1=p1r3g.S te=21
UJ

- -:r

J lf F,e) \-, a, = | 
^! 

ax = o.n
o 'o'

Thus the sizes of type I and type II enors are rcspectively c = 0.5 and F = 0.25and power function of the tesi = f _F = 0.25 
r '--ll

(O W= {:: 13.151.5}

a=p{:e w re=U='i1f1,,"11_,* =0,
1

since under ffo:0 = f,1r9r_Oforl-:S1.5.

F=plxe W te=zl =r_p{re w t0=2}
1.5

r- Jfrk.e)l,=, a,=rl|1,' =o.zs

.'. Power Function = 1-p= I -0.75 = O.2S
Example 3.2 I/:2 7 is the oitical regianfor testing Ho: 0= 2 against the alternntioe 0= 7, onthe basis of the single obseroationftom the popuhtion.

flx' 0 = eexPG eil,0 <x < *,
obtain the oalues of type ! and type II errors.

Solution" Here W= {r: r> lland W = {r: r < llandFlo:0=2,H' :0 = Ia= Size of Type I error = plr e W lFIol =ptaz1ig=21

(t Here

and

Testing ol Hwthesis
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tuncrons Pr.,vr".'5 r* Jt""tii" a"i'*ta" on the nature of the PoPulation
hypo&reis. The best test in any g

-F L(', -r')

+ [#l*i-r;(",-1,)*poi(',-r.{ =*

Using Neyman-Pearson Lemma, B.C.R for K > 0, is givm by

[hl *r t- u, n(; - 1,) + po n(; - 1o)] > t

nlog($r/po) - fi(Fr - Fo) + rFrrr - ttpoTo > logk

(since log r is an increasing frmction of r)'

r(Fr -Fo) = {r,n 
-ro,-}"c*.t'8[*]

i 
= t'n {r,F, 

-tooo-1rost+*[*)]providedpl>ps

F.yanpleSS.Excmine uthettcr abat aitical rcgion existsfor ta\g-tle nh@habHo: e= A0

;rt ;r';;-;;;r* nvpottn"* u r t e> eo 1it the paramao 0 of the itistibution:

11r, sl= !!-.,1<,' -' V+e)-

IIrt*,')= ('.q'IGh
By Neycran-Pearson lpmma, ttre B'C'R for k > Q is given by

(t.t,f [(,,*f > t(r*eo)'li--!-=

Solutorr.

= 'i*[*[)'"r*."*[ffi)
Thusthetestcriterio - 

:*[H*)' 
whicrrcarmotbeputinthe fornof atunction

of the sampte observations, not depending on the hypothesis' Hence no' B'C'R exists in

this case.

+ ,rog(r * er)- zilog(r; +Q) > logk+ nbs(l+ eo) - zl,tog(r' +et)
i=1

3.6 TIKETIHOODRAIIOTEST

Neyman-Pearson Lesrma based on the magnitud€ of th€ ratio of two probability density

tunctions provides uest test tor Lting "ilp",ovo:lTfg::s];Tt*ffifl;



distribution and the fromr of the altemative hypothesis being consider€d. In this secti,on

we shall discuss a general method of test construction call&the Iikelihmd Rntto (L.R).
Test introduced by Neyman and Pearson for testing a hypothesis, simple or comFsite,
against a sinple or composite altemative hypothesis- This test is related to the
maximum likelihood estinntes.

Beforc defining the test, we give below some notations and terminology.

Panmeter Space. Let us consider a random variable X with p.d.f.fl:,0). In most
corlmon applications, though not always, the functional form of the population
distribution is assumed to be lnown except for the value of some unlmovun paramete(s)
0 which may take any value on a set O. This is expressed by writing the p.d.f. in the form
flx, Q, A e O. The set 6, which is the set of all poesible values of 0 is callrd tlre ptnmeter
space. Such a situation gives rise not to one probability distribution but a family of
probability distributions which we write as fi:, 0) = 0 e O|. For example, if X - N(lr, dt
then the parar:reter space is:

O= l(F, d): -- < F <-,0 < o < -|
In particular, for d = 1, the family of probability distributions is given by

{N(p,1); p € O}, where I = {p: -- <p < -}
In the {ollowing discussion we shall consider a general family of distributions:

ffix : gy Ov...,O) : Q, e 8, i = 1,2,.... kl
The null hypotheis FIo will state that the parameters belong to some subspace 06 of the
parameter space 9.

Let 4, tv. -.,xnbe a random sanple of size r > I frocr a population with p. d,.f .f\r, Or, e2
. . , er), wher€ e, the parameter space is the totality of all points that (0, , Ov . . . O) can
assume. We want to test the null hypothesis:

FI6 : (0r,02,...,01) e gs

against all altemative hypothesis of the type:
H1 : (0r, 02,.. -, 01) e O - 06

The likelihood firnction of the sarnple observations is givm by

L= nf Ft;Q,'02,...,g1) ...(3.16)

According to the principle of maximum likelihood, the likelihood equation for
estimating any parameter 0, is given by

L =0,(i=t,r,...,r,)

Using (3.17), we can obtain the maximum likelihood estimates for the parameters (e, 02,
..,0,,) as they are allowed to vary over the parameter space O and the subspace €n.
Substituting these estimates in (3.16), we obtain the maximr.rm values of the Ukelihood
function for variation of the parameter in o and oo respectively. Therr the criterion for
the likelihood ratio test is defined as the quotient of these two maxima and is grven by

L/e"l sup Llx,o)
)t= )lxr, x2,..-x") = \;"J = Tq- t(u) srP L(x, e)

...Qxn

...(3.18)

t"h"* L{O.) and L(O) are the maxima of the tikelihood tunction (3.16) witr rcsp€ct to
the parameters in the regions e0 and O respectively.

T6ting of Hllfldth6is
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The quantity I is a function of the sample observations only and does not involve
parameters. Thus I being a function of the random variables, is also a random variable.
Obviousl>0.Further

Hence, we get
O6cO+L(O6)<L(O)=1,<1
0<l<1 ...(3.1e)

The critical region for testing H6 (against Hl) is an interval
0< ?t<h '..(3'20)

where \ is some number (< 1) determined by the distribution of l, and the desired

probability of type I error, f.e., \ is given by the equation:

P(r.<\ | H6) = cr

For example, if g(.) is the p.d'f, of tr, then tra is determined from the equahon:

I"
f n{rl s^lal =aJe\ | -/
0

...(3.2r)

...(321a)

...(3.24)

A test that has critical region defined in (3.20) and (3.21) is a likclih@d ratio test tor

testing Ho

Remark3.4.Eqaatbns(3'20)and(3'2DitefnetheoiticAlresio'lfottestwthewhcsisHo
by the likzlilwi ntb test. Suppoe that the distibution of lis not htottn but the ilistrfuution of

Jne function.of l is knwn, thn this lotoutedge cat be utilizzil as gioen in the follnuing

th@Mrr.

Theoren 3.3. I/1 is the lilrclihnit ntio for testing a simple hypothesis Hsand if U = O0) is-a

tonotonic h;ensirrg (deoeasing) function of l then the test baseil on lI is equioalent to ,he

lilcetihait ntio test. The critiul tegion for the test based on U is:

0(0) < u < o(h), I tQ(h) <u <0(0)l ...Q.nl

Proof: The critical region for the likelihood ratio test is given by 0 < l' < l's where \ is

determined bY

...(3.23)

Let U = O(1,) be a monotonically increasing function of l' Then (3'23) gives

h
Js(rlHo)ai' ="

b 0h).
a= Js(i'lHo)dr= I n\ulno)au

0 r(0)

where h(u I FI6) is the p.d.f of U when H6 is true' Here the critical region 0 < tr" < \-
iu*fo"^t to Oibl < U < q\1. Howevq if U = 0(l'; is a monotonic decreasing function of

tr, thm the inequalities are reversed and we get the critical region as Q(la) < u < 0(0)'

2. If we are testing a simple null hypothesis FI6 then there..rs 
1 

unieug distribution

letermined foti. f.rt iI ffo it 
"o^posite, 

then the distribution of tr may or may

ioiuu *riq".. In such a cise the distribution of l' may possibly be different for

different piru*"t", PoinB in 9s and thm 
^o 

is to be choaen zudt that

&

Js(r.lHo)ar <"
0

for all values of the Parameters in go'

However, if we are dealing with large samples' a fairly satisfactory situation to this

,**g "ilyp"tf,*" 
prob6m exists as stated (without Proof) in the following theorcn'



Theorem 3;L lzl :, , xr.. -,xnfu a randotn mmple from a poputttion uith p.d.f. flx; et, q..- ek)
whcre the wmmeter spce €is k4imensional. suppo* ue zmnt to test the cotttpositehypothesik

Ho: q= ei,02 = ei,...,4 = 0i ; r < k

whete ei,ei,...,Q are spcifteil numbers. When Hois true, -2logo lis asymptoticalty
tlistributed as chi-square zaith r degrees offreeilom, i.e., untler Hn,

- 2 log ,. - Ipy , tf n is larye. ...(3.25)

Since 0 3 l, < 1, - 2 lo6 L is an increasing function of l, and approaches infinity when
l, -+ 0, the critical region for - 2 log l, being the right han; tail of the chi_square
distribution. Thus at the level of significance ,a,, the Gt may be given as follows:

Reject Ho if - 2 log" I > 1,,,, (o)

where t1,;' (c) is the upper c-point of the chi-square distribution with r.d.f. given by:

othen /ise Ho may b€ accepted.

3.6.1 Propertiesof Likelihood RatioTest

|if.TSY:: lt:|) l*, l*olle is an intuitive one. rf we are tesring a sinrptenypome$s fb against a si.mple altenatirr'e hypothesis H, thm the f,n princifh badi tothe same test as given by the Neyman-pearson lemma.'fhis suggests that fR test has
some desirable properties, specially large sample properties.
h ll l"tlh" pirUability of type I enor is controlled by suitably choosing the cut offpoint lo LR test is generany uMp if an uMp test at all exists. wi state telow, the twoasymptohc properties of LR tests.

1. Under certain conditions, _ 2log" L has an asymptotic chi_square distribution.
2. Under certain assumptions, LR test is consistent.

Ylx'>x1,y(")]= 
"

3.7, SUMMARY

. I{ th: s?tisti:al hypothesis specifies the population completely therr it is term€d as asimple statistical hwthe;b otherwise tt ts cailea u *.piit, 
",titii*t t yptn""ir.. A test of astatistical hypothesis is a two-action decision problem after the experimentalsample values have been obtained,. the two-acrions bdA il;;;;p,""ce or reiecrionof the hypothesis under consideratron.

. This rcutral or trofl-committal dttitude of thc statisticimr or decision_tud before trc sempleobsemotions sre taktr k the kewote oi the nult tryWthesis.
r The value of the power function at a parameter poi^l is called the poarr of the test atthat point.
o This lemma provides the most powerft. test of simple hypothesis against a simpleallernative hypothesis. The theorem, known as Neyman_pearin l,emma, will be provedfor density function /(a 0) of a single cor.finuo.o *""r" *J 

" .ir,ge parameter.
' Eoery nosr. pouerful (Mp) or uniforitly n6t wat (uMp) criticat region (cR) b neccs_sily unbissed.

o Neyman-Pearson Lerrma based on the matnitude of the ratio of two probabilityd.q.ig functions provid€s best t€st for t*d; ;;r.;yp";;;""|urst simple alter-native hypothesis-

Testing of Hwthtsis
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3.8 GTOSSARY

Statbticd Hypotheeis I A statistical hyPothesis is some statement or assertion about

a population Lr equival€rit about the Probability distribution draracterising a PoPulation'

*i iat *" want ; verify on the basis of information available from a samPle'

Tert Srrdstic ; The clroice of a suitable statistic I = I (rr, rz",rJ, whidr will best reflect

upon the probabilitY of Ho and Hr.

Be3f Test : One whictr in addition to conEolling a at any desired low level has the

minfurum type II ermr p or maximum power l-p' compared to p of all o'ttEr testg

having this a.

3.9 REVIEWQUESTIONS

L
2-

3.

4.

5.

De6ne randomised and non-randomised tests'

What aie simple and comPooib statistical hypothesis ?

Exptain the following terms :

(i) Critical ftrnction ; (ii) Moet Powerful test; (rlr) Uniformly mct Pow€rfr'l test; and (b)

Level of eignificance.

Stab and prove Neyman-Pealson Lelrnra'

De6neUkelihoodRati.oTesLUnderwhatcircumstanoewouldyoureconureld0tig
test ?

6 Define uniforarly mo6t Powerful (UMP) tests' What is uniformly lnodt Powdful cdtlcal

(ryion (UMPCR)?

7. W 4, rv ...-u tn be a nndon sample from

1

P,el= i;t;t>o,o>o
Obtain LJMP 6ize a test for testing t{e : 0 = 0s against Hl : 0 > eo'

& Define interval estimation. what is the EtationshiP betr'Yeen tBting and interval

estimation ?
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DisMbutiorFruTats

UNrr-lV
NON-PARAMETRIC OR

D ISTRI B UTION.FREE TESTS

oBf EcTtvEs

After going throuth this unit, you should be able to;
. explain assumptions of non_parametric test
o describe one-sample non-parametric tests. demonstrate Friedman's test

STRUCTURE

Introduction
Assumptions of Non-parametric Tests
Advantages and Disadvantages of Non-parametric Tests
One-Sanple Non-parametric Tests
Two-Sample Non-parametric Tests
The Kruskal-Wallis Test for Differences in More Than Two populations
Friedman's Test
Summary

Glossary
Review Questions
Further Readings

4.1 INTRODUCTION

The statistical methods of inference whictr were discussed in the preceding chapters
;;f;11;. n::9. th* h1 n"-n"r"g"* f,;;;;ilsamprcs are drawn-

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

NOTES

't

For example, the assumotion oray G tirrt dr. ;;.,i;;;;;oH.iilffffffihave tresasrevariance&. poprrlationva^res,*;"L;;;-;r"asparanete*;
the statistical tests whictr nure assumpuons auout tr. puraitare ca||pd ,,paranretric
tests" In otlrer words, a .parametric 

statis6""l nur', i" "';;;;_"d"1spcifes etalnconditions about the paranreters of the p"p"r"o" r-_ *ij}-trl sampte are drawn
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In many biological investigations the research worker may not know that nature of the

distribution or other required values of the population. On many occasions the nurrber

of observation made for the study may not be sufficient to the test the assumptions

regarding the population. Also in many instances, when the observation is repreented

Uy"u 
"urierical 

fig"re, the scale of the measurement may not be really ntrmerical Some-

biological measurements are necessarily crude early stages of investigation' Grades of

severity of an illness and ranks given to anaesthetic agents for their effectiveness are

exampies of data which, though expressed numerically, do not possess the characteristics

neces'sary for arithmetical processess. The Parametric tests may not be suitable in such

situations.

A "non-parametric (N.P.) or distribution-free test" is a test that does not dePend on the

particular form of the basic frequmry function from which the sample are drawn' The-

'other *ords, non-Parametric test does not make any assumption regarding the form of

the population. This chapter contains only some popular non-Parametric tests'

4.2 ASSUMPTIONSOF NON.PARAMETRICTESTS

The certain assumptions associated with non-Parametric tests are:

(i) Sample observations are indepmdmt'

(ii) The variable under study is continuous'

(lii) p.d.{. is continuous'

(ir)) Lower order moments exists'

Obviously, these assumptions are fewer and much weaker than those associated with

Darametric tests.

4"3 ADVAI''TACES AND OiSNOVINTIGES OF NON-PAR'AMETRIC

TESTS

(ia)

(")

Advantages of non-Paramctric tcats

( Non-pafametric tests are readily comPrehensible. very simPle and easy to aPPly

and io not require complicated sample theory'

(i No assumption is made about the form of the frequency function of the parent

population from which the sampling is done'

(iii) Probabilig statements obtained io* 'o't "ott-Pammetric 
tests are exact prob-

abilities.
I{ samples are of sizes as srnall as 6, there is no altemative to using lnon-param
;ffiilt;;"-; J the population distribution is precisely known'

Nor,-puru-"t i" tests are ava ;ble to deal with the data which are given in

;;?;;; ,*iittgly "tt*Jtut 
scores have the strength of ranks' For

instance, no Parameo," t"" tt" b" upplied if the scores are given in grades such

as A*, A-, B, A, B* etc'

Disadvantages of non'Parametric tests

(r) Non-pararnetric tests can be used only if the measurements are nocrinal or

ordinal- ln other wo'a', U all tft" uttt'tptio"s of 
" "tutistical 

model are satisfied

by the data and i{ the rr"u"tt'"[luttt" are of required strength' then the non-

pararnetric tests are wasteful of data'

(i4 There is no non-Pararnetric tests for testing interactions in the analysis of

variance.

(iii) Tables of critical values may not be easily available'
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A random sample of size n is drawn from a population and the sample values are
arranged in order of magnitude and ranked accordingly, if need be. Different tests
evolved in one sample case for the test of hypothesis are discussed here. These tests lead
us to decide whether the sample has come from a particular population. Also, we test
whether the median of the population is equal to a lnown value or not. Such tests are
classified as tests for goodness of fit like the chi-square test.

4.4.1 Kolmogorov-Smirnov(K-S)Test

The K-S test will be applicable when the variable has a conthuous distribution. A
random sample X,,X",. . .,Xr, of siz,e n is drawn from an unlmown population having the
cumulative distribution function (c.d.f.) F(r)- t€t the ordered valued be:11 , tor,,.,xp4.
The K-s test is based on the Glivenko-cantelli theore. which states iti"t'tir" stif
frrnction S,(r), with lumps occurring at the values of the ordered statistics 11 ry xgy. . .x6s
for the sample, approaches the true distribution for aI r. Making use of this ilieo;ern, fli;
comparison of the empirical distribution ftrnction S,(r) of the sample for any value x is
made with the population c.d.f. under Ho(The empirical (sample) distribution function
of an ordered random sample r6y 11 4,.,.x1n1of size n, denoted Slr) for all real r, is the
proportion of sample values which do not exce€d -r. S,(:) is a set firnction which
increases by 1/n at the jump points which are the values of the ordered sample.
Symbolically, S"(r) is defined as:

t<Xo)
s,(r) = X1p;(rcrx*r torK=1,2, .,,,n - |

tf x> x@

4.4 ONE-SAMPTENON-PARAMETRICTESTS

q, = ,*s,,j/. ls.o) - FoG) 
|

Use Kohttogoroo-SminnT) statistic to test the lrypothesis that the coin is unbiaseil.
Solution. The null hypothesis under K-S test is,

FIn : F(:) = Fn(r) Vq H, : F(r) * Fr(:).

$,(r) is also known as the statistical image of the population distribution function Fo(r).
This comparison is made by defining the distance tretween the two cumurative distribution
functions which is taken as the supremum (supremum (sup) means least upper bound.
Similarly, inlimum (in$ means greatest lower bormd) of the absolute deviaions i.a., Sup

-l-S.,Jr) lro(rl t over all r. The hypothesis for the test of goodness of fit is, H6 ; F(r) = fo(4
Vs Hl : F(t) + Fp(J), where Fo is a completely specified continuous distribution.
To test Flan the actual numerical difference I S,,(.r) _ F6(:) | is used in K-S test. Since this
difference depends or r, the K-s statistic is taken to be the suprerrum ofsuch ditrer€nc€s, t e.,

,f
Io
|K/n
[1

where Q, is known as the K-S statistic. Under FI, the statistic D, has a distribution
which is independenr of the c.d.f. F(x) that defines H6. The statistic D, is distdbution_
free. To decide about Fh the test critedon is, reiect Ho if 

'e, 
(max I S,(r) _ Fo(:) | ), o<ceeds

the tabulated value for given n and prefixed significance levei'a. Otierwise, Ho is
accepted. The critical values of D, for prefixed c are given in Appmdix A
Example 4.1. On ! ossing fioe coins 192 ti rcs, tl? Irequencies of 0 to S heads are:

Self-Itstractional Mateial ?7
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/, ='.,[;l[ll 
o 

xrs,=6, r,= 'c,(;i(il x,e, =30,

and similarly, /2 = 60, h = fi' h = gO' t's = 6' Actual and theoretical frequencies' the

sampl" o. 
"-p'iiical 

c.iJ. theoreticd c'a'f' uttd Ur" aiff"rences are tabulated as follows:

792

tn
6

t92
1g2

14

185

792

30

l6b

1V2

6
17r
1g2

6
lJo
1g2

105

ln
60

96

tn

26

tgz
30

36

ln

Actual ft€quencies

Empirical c.d.f-

Thmretical frequencies

Thmretical c.d.f

The hypothetical frequmcies are calculated with the help of the binomiat f'mction"C'

f Qn-'.Heren =$,P = g'5

Thus, the frequencie s lor x = 0, L,2,3,4,5 are

Max' Dn = * = O'Ott'
192

Suppose the prefixed level of signilicance' c = 0'1' The critical value of Dn from

Appendix A is # = O'OaS' Si"t"e the value of statistic D' does not exceed the critical
t10,

value 0.088, H6 is accepted' This means that the samPle c'd'f is

hypothetical distribution f unction'

4.4.2 Run Test

similar

In biostatistical theory, it has normally been assumed that a sample drawn from a

;;;;fi.; ir r""dom. Whether the assumption of randomness.is true or not needs

verification. The run test is one device to test iandormess' Before discussing the test' it is

essential to discuss the runs'

4.4.2., Run(Definition)

A nrn is defined as a sequence of like symbols which are followed and precededby other

kinds of symbols o, ,,o ,y*uor ui 
"itft"r 

side' For clarity' a vertical line is drawn in

between two consecutive sequences of symbols to mark the runs' A sequmce of symbols

IJiUt tg 
" 
p"n"- of symbols is usually indicativeof lack of randomness' For instance'

lookinq at a queue of persors waiting for the bus at abus-stop' we observe the following

sequen-ce of males (M) and fumales (F)'

MIFIMIFIMIFIMIFIMIFIMIFIMIF
This sequmce shows a definite Pattem' iz'' Are male and femabs are standing altemately'

ii t" "i".""" "r"arly 
shows a-lack of randomness' Again a sequence of type

MMMMMMM IFFFFFFF

Shows clustering of males and females which is again indicative of la& of randomness'

i--ir,t, rityu" deduced that an excessive number of rtms or too ftw runs for a giv€n

set of symbols provide the basis for non randomness'

It is not always that we have s€quenc€s of symbols' Any data at hand can be converted

;;"'; ii; ,t"" aeviation of eaJobservation of the set frocr tlre aredian (any other



constant) and d€note the positive and zero diJference by a and negative dilference by b.
In this way we get a sequence of symbols a and b. Iror example, the marks of 15 students
arc 55,52,43,49,36,61, M,47,67,78,63,57,47,28,50. On taking the deviations ftom 50,
the following sequence is obtained.

aa I bbb I a I bb I aaaa I bb I a
The above sequmce has seven runs. Positive and negative signs may also be taken in
place of a and b taking zero as positive quantity, to mark the runs.

4.4.2.2 Test for Randomness

The null hypothesis: The symbols a and b occur in random order in the sequence against
the altemative, Hr : symbols a and b do not occur in random order, can be tested by the
run test. I€t the sample of size n contains r, symbols of one type, say a, and n2 symbols
of the other type, say b.Thvs, n = n, + n . Also suppose the number of rurs of sJrmbola are
rt and that of symbol & are rr, suppose ,'1 + 12 = r. In order to perform a test of hypothesis
based on the random variable R, we need to know the probability distribution of R
under Ho. The probability distribution function of R is given by

fs(r) =

wnen r rs even.

For r even, the number of runs of both types mustbe the same,i.e.,\= 12= r/2.
Again

,fn(r) =

where r is odd.

For r odd, \= rztT.In this situation, the sum is taken over two pairs of values, 1
/'-1) /r+1)=( ,l-"tt=l2 J 

and vrce versa.

To decide about Flou the critical number of runs are obtained from tables given in
Appendix A. These Tables provide the lower and upper critical values of the number of
runs at level 0.05 respectively. If the number of runs in the sample lies between these
critical values, the hypothesis H6 is accepted, otherwise rejected. Rejecting H0 means
that the data are not in random order.

Exanple 4.2-The nurks of 15 students are 55, 52, 43,49,36,61, 44, 47, 67,7 8, 63, 57, 41,28, 50.

Test whether the obseroations occurs in random order at 5To lmel of significance.

Solution. Null hypothesis, lln : the observations occur in random order, against H, : the
observations do not occur in random order,

On taking the deviation from 50, the following sequence is obtained:

aa I bbb I a I bb I a aaa I bb I a
Here n, = 9,11r= /, n = lg

rt= 4' 12= 3, | =7
For cr = 0.05, nr = 8, nz=7, the lowet critical value = 4 from the Appendix A.

.( n,-r )f,r-t .| 
f(nr+nr\'1,/z-t)l,rz-r)ll ", )

{t"lt+l l+l[E)l/",,
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For a = 0.05, nr = 8,n2=T, t]l.eupper critical value = 13 from the Appetrdix A. The number
of runs in the sample is 7 which lies between 4 and 13. It means that the observations
occur in random order with 5% Level of significance.

4.5 TWO-SAMPIE NON-PARAMETRICTESTS

In this section, we will discuss the some imPortant two-sample non-parametric tests,

oiz. Kolmogorov-Smimov test, Mann-Whitney-Wilcoxon U-test, Wald-Wolfwitz run
test, Median test and Sign test.

4.5.1 Kolmogorov-SmirnovTwo-SampleTest

It is an extmsion of the one-sample K-S test as applied to a two-sample problem' In the
one-sample test, the empirical distribution was compated with the popul,ation c.d.f.. But
in the two-sample K-S test, the two empirical distributions of two samples are compared
and a decision is taken on the basis of the distance between these empirical distributions.

L€t two random samples of sizes n1 and nr be drawn from two continuous F1 and F2

respectively. Also, it is assumed that the two samples are independent. The observations

are taken at least on ordinal scale. If these assu.rrptions hold good, K-S two-samPle test

can be performed in the following manner. Let the empirical distribution functions be

given by S,, (r) and S,, (r) .

The hypothesis,

HP : F (x) = F2(x) for all r
Vr Ht : F (r) * F (x) for some r

can be tested by the K-S statistic

D,,.n, = -,u" lS,, 1x)-S"(:)

In a real problem, obtain the cumulative steP functions of two samples and find the

maximum difference. ComPare this value with the critical value of D,,,, n, given in

Appendix A. This gives the acceptance limits of Dn,,rr, for n1,n2315 at two siSnificance

levels c = 0.05 and a = 0.01. Reiect Ho if calculated Dn,, n, exceeds the tabulated value,

otherwise accept Ho.

For large values of n1, n2 > 15, accePtance limits of D n,,n, ate calculated by the

approximate formulae given below the table for various levels of significance cL The

decision about Hs is taken in the same way as for small samples.

If there is any prior information whether

F (r) > Flx)
or F (x) < F2(x),

the one-tailed K-S test will be aPPlied. Now we calculate either

Di,.,,, = max lS,, (*) - s,, (r) 
|

or D;,.,, = "lf* lS,, (r) - S,, (:) 
|

as the case may be and perform the test in the usual way'

Exanple 43. A sa mpte of 26 nale patients and another of 25 fenale patimts sufreing from
respiratory tubercttluis ffB) ate randomly selected. The ftequency tlistributions acconling to

age of males and fenwles are gioen in next page:



Age group

tr, 5-15 15-25 2S-35 3545 45-55 J,HJ above 65

Males suffeting ftom TB 1 1 3 2 2 6 7

Fernales suffeing frun TB 1 2 6 2 J

Test uhether thc age distribution of nales and females in respect f susceptibility to rcspiratory
tuberculosis is the same by Kolmogoroa Smimoa test.

Solution. The c.d..f and the differenc"r 
I 
S", 1r1 - S,, (r)l are shown simultaneously.

Age

SFOUP

Males
euffering
from TB

c,d.f.

{t" t'l}
Females
suffering
from TB

c.d.f

{t* t'l}
Difference

ls, (.r) - s, (") 
|

0-5 1 1, /26 1 1/2s
25 

"26
5-15 1 2/ 2

28

25 x26

LJ-L2 cl zo
a/

i'5r26

E-35 3 10/
85

25 xZ6

3H5 2 9/26 6 75/25
191,

25"26

4F55 4 73 /26 4 'rn t)q 195

25 
"26

5H'J 6 19 /',26 2 ,) ltq 97

25 
"26

above 55 7 26 /26 3 )4/'rq 0

The hypothesis, that the age distribution of males and females in respect of susceptibility
to r€spfuatory tuberculosis is the sane, can be tested by K-S statistic.

D,,.,, = ma,, 
I 
S,, (.t) - s, (r)l

From the above table,

o,,,, = rift =oaoo

The accePtance limit fot \ = 26, n2= 25 at the level of significance c = 0.05 with the help
of formula given in Appendix A is

i-------:-_

= yg6 !', + ', = t.tc, 126 
* 25

\ n, r, \ 26x25

Since the calculated difference Dn,,r, does not exceed the acceptance limit, H0 is

accepted. It means that the male and female populations have the sarrre proportion of
resptatory TB in dilferent age groups.

4.5.2 Mann-Whitney-Wilcoxon U-Test

The usual two-sample situation is one in which the experimenter wishes to compare the
effects of two treatments. In case of small samples, we have used f-test under the
assumption that the popllation distribution was normal. The normality assumption
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Here n1= 6,n2=7,a dT =fi,

may be doubtful or it may be difficult to verify the nomrality. ln thes€ situatisls we can
use Mann-Whitrey U-Test. It is non-parametric analogue to the usual t-test.

The non-parametric test used for two independent samples case was originally proposed
by Wilcoxon and studied by Mann and Whitney.

l-eI xi(i =1,2, ..., nt) andyi$ =1,2, ,..,n) be independett ordered samples of slznnl and n2

from the populations with p.d.f./t(.) and/2(.) respectively. We want to test the hypothesis
I{o:i(.) =r(t vs Hr:f{.)*fz0.
Mann-Whitney test is based on the pattern of the r's and y's in the combined ordered
sample. Let T dmote the sum of ranks of the y's in the ordered sample. The test statistic
U is then defined in terms of T as follows:

+1
U= \n2+ ": '-T

2

If T is significantly large or small then Ho :t(.) =t(.) is reiected. The probhm is to find the
distribution of T under H6. Unfortunately, it is very troublesome to obtain the
disrribution of T under FI6. However Mann and Whitney have obtained the distribution
T for small nt and n2, have found the moments of T in general and shown that T is
asymptotically normal. It has- been established that under H6, U is asymptotically
normally distributed as N(tt, o'), where

rr= EM) = 
nrn2

2

d = var(U) = 
n'n'(n'-+ nz +l)

t2
Hence

z= u-s _N(o,r),
o

asymptotically and normal test can be used. The approximation if fairly good if both
n1 and n2 are greater than 8.

Example 4.4. The following are the scores of certain nndomly xlected students at flid tenn
(MT) antl final emminations.

MT smres X 55 72 90 57 74

Final scores Y 80 76 63 58 56 J/ 75

Test the hypothesis that the ilistihutian of scores at hno occasions is tlu same by Mann'Whitney
U-test.

Solution. The null hlpothesis FIo that the distribution of scores at two occasions is the

same against Ht, r.c.,

Ho :i(.) = r(.) vs H r : ft(.) * fz(.)

The combined scores in a s€quence in inceasing order of magnitude are,

RankofY: 1 JO/

37 55 57 57 fi6372747576WX)
YXYXXYYXXYYYX

10 11 12

T= snm of rank's olY =7 +3+6+7 + 10+ 11 +12=50.

The U-Statistic is

tJ = ntne *nzl'|+l) -,



s = 617 *ZZ3 - 5s =2s

From Table given in Appendix A for nz= 7, nt = 5 and U = 20, the probabillty is 0.473.
Suppose that the test has been performed at 5% level of signilicance a = 0.05. The
tabulated probability is greater than 0.05, hence we infer that the distribution of scores

at two occasions is the same.

4.5.3 Wald-Wolfowitz Run Test

This test is used for testing of two populations. To avoid any confusion between one-
sample nrn test and this test procedure, we will consider two random samples m and n
respectively, instead of sizes n, and nr. Let the two independent samplesXy X2 , ,.X-
and Yt, Y2, ....,Y,, combine into a single sequence of ordered statistics. Assuming that
the sample have come from continuous probability distribution, a unique sequence of
ordered statistics is always possible as. theoretically, no ties should occur. ln the
combined sequence some identification mark must be put with observations of one type
so as to identify whether an observation belongs to X+ample or Y+ample. The definition
of runs remains the same as in the onesamole case. kt the combined seouence of order
statistics with m = 5 and r = 4 be

XX IY IX IYY IXX IY.
In this case, there are 3 runs of X's and 3 runs of Y's. In all we have 6 runs. From this it
may be concluded that the two populations are identical as the total number of runs r is
quite large. If the populations are different, we expect that r will be small as the two
samples are not well mixed. Here we test,

Ho :/,(.) = lr(.) v, H t : ft(.) +fz}
We define a random variable U, the total number of nurs in pooled ordered arrangement
of rr X's and r Y's. As already mentioned, too few runs tend to reject Ho in favour of H,
as this indicates that either most of the X's are greater than or less than the y,s. The
Wald-Wolfowitz run test of nominal dhas a critical region given by

US ro

where ro is chose to be the largest integer such that P(U S r/ 3 o under FIe.

Since X and Y constitute a completely random sequence under H6 as the letters a and b
do in the case of single random samples, the probability distribution of U is exactly the
same as given in RUN TEST (section 4.4.2). In this case, m = nra d n = nl. The only
difference in the Wald-Wolfowitz Run Test from the one,sample run test is that only the
one-sided test is being used here. Tables ofcritical values of r at level of significance c[
are prepared by Swed and Eisenhart.

For large m, n > 10, a normal approximation maybe made assuming that m/ (m + n) and
n/(nt + n) remain constant as nl + n -) €.

The mean and variance of U are given as,

EU)= Srnn +1'
m+11

Zmn(2mn-n-m\
VarlUl= 

--(m+n)'(m+n-r)
and we can use the normal test

z= U_E
Yar

N(0, 1), asymptotically.

The decision about H0 is taken in the usual way.

S eU- btstructional Materiol 83

Non-Paramchic or
Distrihibn-Free Tests

NOTES



Statktir,,l lfference

NOfiS

E4 Self-lnstructional Mate nl

Sanwle X 23 27 19 22 30

Sanple Y 2L 29 u 32 26 28 36 26

Exatrlple 4.5. The following are thc rates of flou of a ceiain gas through two soil xmples
collccted ftofi two differmt places,

Test the hrythesis that the tun populatians of soil types are the same with resryct to the rates of

flmn thrcugh the soils by Wahl-Wolftuitz run telt.

Solution. The null hypothesis that the populations of soil types are the same with
respect to the rates of flow through the soils, i.e., symbolically,

Ho :n(.) =r(.) vs H r ft(.\ +fz(.)
The sequence of combined sanples with the clearly marked runs is,

19 | 2r | 22, 23, 24 | 26, 26 | 27 | 28, 29 | 30 | 32, 34, 36 |

In thiscase m = 6, n = 8 and thenumber of runs /= 8.

The probability for r = 8 (even) is given by

' 
r:) 11)

1a= 'f,fi1=o'233'

16,/
Supposing the predecided level of significance d = 0.1. Since the probabilityflr) is greater
than 0.1, we accept Hn which means that the two soils have identical distributions in
respect of rates of flow of a certain gas.

4.5.4 Median Test

This test is attributed to Westenberg and Mood. Median test is a statistical Procedure for
testing if two independent ordered samples differ in their central @ndencies. In other
words. it gives information if two independent samPles are likely to have been drawn
from the populations with the same median.

Asin'RunTest'letxr,xv..., x,tt andyr,yr,..-, y, be the independent ordered samples

from the populations with p.d.f.'s/r(.) and/r(.) respectively. The measurements must be

at least ordinal. I*t \,z.2,.-, zrr*n, bQ the combined ordered sample. Let m1 be the

number oi r's and n2 the number of y's exceeding the median value M(say). of the

combined sample.

Then under the null hypothesis that the samples come from the same population or from
different populations with the same median, i.e., H6 :fi(.) =/r('), tfre ioint distribution of
nrr and rr2 is the hypergeometric distribution with probability function

(,')f,, )
lm, ll m" )

p(mr,m2)= 

T,,+EI
\fil+ m2 )

If rr, < nr/2, then the critical rcgion corresponding to the size of type l error c, is given by

rrr < ml is computed from the equation

n:
sr,
)-, Plml' n2) = a

,'tl =l

The distribution of m r under llo is also hypergeometric with



E(mt) = , if N = trr + t12 is even
tll
2

= f f,irNi'"aa
and

- N(0, 1) asymptotically.

classifed into the fullowing 2 x2 contingmcy

var(mr)= ffi , trNi""r'"t,

n, n.{N+1)
= 

-;ir--,ifNisodd.
This distribufion is most of the times quite inconvenient to use. However for large
samples, we may regard ml to be as)drptotically normal and use normal test, 2r2.,

-Ez=
Yar (m,

Remark 4.1, Thc obsenntiorc m7 and m2 an be

table.

Sample I Samplc ll Total

No. of obseruations > M m1 m2 mr+m2

No. of &*'do;tiorrs < M nt-th n2- fi2 nt+n2-rflt-m2
Total nl n2 nt+n2=N

If frequencies are sfiall, we can compute the exact probabilities from p(m1, m2) rather than

aryrox;rnate then. Houteuer, if frequencies are large, we may use i-Test with 7 d.f. (for a 2 x2
contingmcy table) fur testing Ho. The approitutbn is fai y gnd iJ both n, antl n 2excced 70.

Rema*4.?- Median test b sensitioe to thc tlifrermces in location behumt fr( andf2Q) but not
to differences in their shapes. Thus if fr(x) anrl f2Q) haz;e the same med.ian, we would expect Ho
: f1( ) = f2o to be accepted ordinarily atet though their shapes are quite differmt.

RemarjK 43. Gmenlly, the median test makes the conect decision with a little more assuraflce
than does the sign test (section, 4.5.5) but not as decisiaely as the t-teet.

Examgle 4.6, The data of 70 plots ench, under two trcatmmts are as gioat below:

(Trut.1) X 46 45 JZ 39 48 49 30 u
(Ttar.2) Y tl4 ,10 59 47 JJ 50 77 43

'J

Test the hryothesis of equality of median rcsponse utder hoo treatments W ,nedian test.

Solution. The hypothesis,

Iln:f1@) = f2Q)Vsl{r:fr(x) *fr(g)
Arranging the data in ascending order, we have

30, 32, 34, 39, 40, 42, 43, 9, 45, 46, 47, 47, 48, 49, 50, 51.,s5, 55, 59, 7r

ln the above ordered statistics, the observations belonghg to treahnent 2 are marked iust
to differentiate therir from observations under treahnent 1. The median of the combined
data is 46.5. Here we have 10 observations on the left of the median, and 10 observations
on the right of the median, i.e,, m1+ mz = 10. Also rr = 10,n2=10,n =20,mt=7,m2=3.
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The probability is

p1mr,m2l =
120 x720

= 0.078.
19x17x4x13x11

Take the prefixed level of significance o = 0.05. Since p(mr, m2) is greater than 0.05, H0 is
accepted. This means that the treatments are equally effective with regard to their
median effects.

4.5.5 Sign Test

Consider a situation where it is desired to compare two things or materials under
various set of conditions. An experiment is thus conducted the following cirormstances.

Q) When there are pairs of observations on two things being compared.

(ir) For any given pair, each of the two observations is made under similar extra'
neous conditions.

(iii) Different pairs were observed under different conditions.

Condition (rrr) implies that the differences di= xi-yi, i =7,2, ..., n have different variance

and thus the studmt's t-test (paired) invalid, which would have otherwise bem used

unless there was obvious non-normality. So, in such a case we use the 'Sign Tesf,
named so since it is based on the signs (plus or minus) of the deviations d = tr - 9i. No
assumptions are made regarding the Parent PoPulation' The only assumptions are:

(r) Measurements are such that the deviations d, = r, - y;, can be expressed in terms
of positive or negative signs.

(ir) Variables have continuous distribution.
(iii) tlis are independent.

The paired differences or matched-sample approach is a good experimental desigr for
identifying differences in two poPulations.

]Iet (4, fi, i =1,2, ..., r be z paired sample observations drawn from the two populations

with p.d.f.'s/r(r) and/2(y). We want to test the null hyPothesis Ifg :i(r) =t0). To test H0

consider d; = x, * y i, (i =7,2" .,,, n).When FIo is truq ri and yi constitute a random samPle

of size 2 from the same population. Since the probability that the first of the two samPle

observations exceeds the second is same as the probability that the second exceeds the

first and since hypothetically the probability of a tie is zero, FIo may be restated as:

rro.) r1o)
l7J[3J

rro)
u0l

H6:P[X-Y>01 = ] ana rlx-vcol= ]
Iet us define

-- (1, if x1-yi>o
u'= to, irxi-y1<o

The U; is a Bemoulli variate with p = P (:; - y, > 0) =

Since U;'s are independent, U = lU, , th" totul r,umber of positive deviations, il a

Binomial variate with parameters n and P. Let the number of Positive deviations be K.

I
2



Then

If y' 3 0.05, we relect H6 at 5"/o level of significance and if p' > 0.05, we conclude that the
data do not provide any evidence against the null hypothesis, which may, therefore, be

accepted. -
For large samples, (n ! 30), we may regard U tobe asymptoticaly nomEl with, (under FI6)

P(u<K)= 20n u',1r=a =]""a*u,)

= (i)'i(:)=, t'*r

E;J\= np= 1 and Var(U)=r n
' 2 Ps= 4

,, |l
u-E(u) u-,
,tvar(U) ln/a

is asymptotically N(0, 1) and we may use normal test.

4.5 THE KRUSKAT-WALLIS TEST FOR DIFFERENCES IN MORE THAN
TWOPOPUI-ATIONS

\ y'hen more than 2 samples are considered, the Kruskal-Wallis test can be applied to test
whether they all belong to the same population. This test is one vYay analysis of variance
by ranks, and is usefirl for deciding whether K-indepmdent samples are from dilferent
populations. This test is the most efficient of the non-parametric tests for K indep€ndent
samples.

If there are K samples, and varying number n, is studied in each sample, let n = total
K

,1,.,4ig4 = )ri.

[,et all the values from all the K samples be combined and ranked in a single series. The
smallest value is replaced by rank 1, the next to smallest by rank 2, and the largest by
rank 

't, 
where n is equal to the total number of independent observations in the K

samples. When this has been done, ihe sum of the ranks in each sanple (column) is
found. The Kruskal-Wallis test detemfnes whether these sums of ranks are so disparate
that they are not likely to have come from samples which were all drawn from the same
population. It can be shown that if the K sa:nples actually are from the same population
or from identical populations, the H (the statistic used in the Kruskal-Wallis test and
defined by the formula given below) is distributed as chi+quare with d.f. = K - l,
provided that the sizes of the various K samples are not too small- That is

"= #iti*-3(n+r)
is distributed approxinately as chi-square with (K - 1) d-f., for sample sizes sufficiently
large (at least 5 in each group). For smaller sample sizes, special tables are available-
Wlren ties occur between two or more values, each value is given the mean of the ranks
for which it is tied. Since the value of H is some what influenced by tie, one may wish
to corr€ct for ties in computing H. To correct for the effect of ties, H is computed by the
formula by the fonnula given and thm divided by

Noti-Parametic or
D i stt ibut ion-F rca T ests
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where T = 13- I (whm I is the number of tied observations in a tied group of values).

The effect of correcting for ties is to increase the value of H and thus to make the result
more significant Oran it would have been if uncorrected. Therefore, if one is able to reject

the null hypothesis without making the correctiorL one will be able to reiect it at an even

more stringent level of significance if the correction is used.

Example 4.7. In a stutly of cercbwaxular disease,Wtimtsfron3 socio-ea nombba*gounds
werc thoroughly iw estigated. One characteristic measured was the diastolic bhod prasure
(mm/Hi. ls thcre any retsot tn belie.E that the 3 groups diffn with resPect to this choracteristic?

Solution. Null hypothesis, Ho : There is no difference among the diastoHc blood

pressures of the 3 grouPs.

Tlgeare 16valr.e, Pooling all ttrsevalues, arranging trecr ftour hM/esttohigh6t, nnldnS

therr and putting orecr back into the 3 groups, we ftrd the following nnks in each group:

A B c

13

15

1

76

9

11

6

4

8

10

2

14

J

3

12

Rr=52 Rz=48 & =36

"= #itif -3(n+1)

= qfo [g * 
({)' 

* IsLl - 3p5 *r;

= 52.2 -57'O =7'2'

H is distributed as a 12 with 2 d..f. and for the above vatue of H, P is > 0.5' ic., th€

liff"r*a", ob**ed can occur by chance alone more than 5(p/o of the time. Therefore,

the null hypothesis is accePted.

4.7 FRTEDMAN'SIESI

This is a non-parametric test for K-related sam;les of equ al-itze' say n'patallel to {o
wiy anatysis of variance. Here we have K-reladd samples of size n arranged in n blocks

and K columns in a two-way table as givan in next page:

Group A Group B Group C

700

103

89

78

705

92

97

88

u
90

95

87

IU
86

83

99



Block'

Sanples (Treatmeflts)

1 2............... K Blot* Totals

1

2

3

:

n

Rrr Rru...,...,..,...,Rrx

&' &2...............&x
Rrr I(":...............R.x

&r R,2...............&,x

K(K + 7)/2

KK + 1)/2

K(K + r)/2

i

K(K + 1)/2

Coluffi totals R1 R2...............Rx

where $ is the rank of the observation belonging to sample I in block i for j =1,2, ...,K
and i =1,2" ...,n.Ihis is the same situation in which therc are K treatments and each
treatm€nt is replicad n times. Herc it should be carefully noted that the observations in
a block recrive ranks from 1 to K. The smallest observation receives rank I at its pl,ace

and the largest obs€rvation receives rank K at its place. tntermediary observations

K(K+1)
2'

the sum of K integers.

The null hypothesis tlj to be tested is that all the K samples have come from iderrtical
populations. In cas€ of experimental design, the null hypothesis Ho is that there is no
difference between K treatments. The alternative hypothesis Hl is that at least two
samples (treatments) differ from each other.

Under H" the test statistic is,

F= ,12 ,$n?-sz(x+rl
nKlK + 1) a '

The statistic F is diseibuted as chi-square with (K - 1) d.f. At level c, reject H6 if F > I?-r_ 
"otherwise Ho is accepted.

Example 4.8. The iron cltterninations @pm) in fiae pea-leaf samples, each uniler three
treat nmts, are as gizan belmt':

receive ranks accordingly. Hmce, the block totals are constant and equal to

Satwks tro. (Blacks)
Tr6t rcnts

2

1,

5

591

878

682

499

6/UJ

682

597

636

6U
863

863

773

9C,9

878

Test the hwthesis thot the iron contcnt in leaoes under thr@ tleatments is the sne ht
Friednan's test.

Solution. Llo : The iron content in Ieaves under three treatments is the salne, Vs H, : at
least two of thern have diffe.rmt effect. The ranks of the observations in each block are
given in next page:
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Samples no. (Bb*s) Treatncnts
Blor* tottls

1

1

2

5

1

1

1

2

I

2

2

6

6

6

6

6

Column totals 9 14 30

The Friedman's test statistic !s

'= 
"#ttiR7-3r(K+4

= t#=tl (72 + * + 142) - 3 x5 x (3 + 1 ) = 5s.2 - 60.0 = 5.2.

For cr = 0.05, the table value of rtsj = 5'99.

Since the calculated valued of F is less than the table valued 5.99, the null hypothesis is

accepted. This means that there is no difference in the iron cont€nt of Pea leaves due to
the treatnents.

4.8 SUMMARY

A "non-parametric (N.P.) or distribution-free test" i5 a test that does not dePend on

the particular form of the basic frequmcy ftrnction from which the samPles are drawn'

Non-parametric tests are readily comPrehensible, very simPle and easy to aPPly and

do not require complicated sanple theory.

Non parametric tests are available to deal with the data which are give-n in ranks or
whose seemingly numerical scores have the strength of ranks'

Generally, the median test makes th€ correct decision with a little more assurance than

does the sign test.

When more than 2 samPles are considered, the Kruskal-Wallis test can be aPPlied t9

test whether they all belong to the same PoPuLation. This test is oneway analysis of

variance by ranks, and is useful for deciding whether K-independent samples are ftom

different populations.

4.9 GLOSSARY

Parametdc Stttistical Test : It is a test whose model sPecifies certain conditions about

the parameters of the PoPulation from which the sample are drawn'

Rurr: lt is defined as a sequence of like syrnbols which are followed and preceded by

other kinds of symbols or no symbol at either side.

r Median Tegt : it is a statistical procedure for testing if two indePendent ordered

samples differ in their central tendencies.
o Friinan'o Test : This is a nor-pannretric test for K-related samPl€s of equal size' say tt'

parallel to two way analysis of variance.

4.1O REVIEWQUESTIONS

1. Explain the term 'distribution- free methods'.

2. ExpLain the main difference between the parametric and the non-Parametric aP

proaches to the theory of statistical infer€nce'



3. Write a short esmy on the uses of non-Parametric tests' Non-Psramctrb or

4. Which nonpatametric tests are substitutes for the analysis of variance? Describe their Diffitttio't-FreT6ls

methodology.

5. A die was rolled 132 times and the following r€sults w€re obtained:

No. of spa's I 2 4 5 6

Frquenq t2 24 38 32 l6 t0

Use Kolmogorov-Smimov statistic to te6t hyPothesis that the die is unbiased'

6, Two quality control laboratories indePendently collecd samPles of 25 articles form

" 
,,..-b"r of sales d?ots and tested them- The number of defective per sales depot

were as follows :

Lob A 9 I 0 7 2 11

Lab B 72 6 6 1 E 5

Test the hypothesis that the two laboratories have samples from the same lot by

(i) Median test (tl) Mann-Whihey U-test (iii) Wald-Wolfowitz runs t€st.

7. On tossing a min 15 tirnes, the following sequencts of lpads (H) and tails CI) was

obtained:

TTHHHTHTHHHTTHH
Test whether the coin G unbiased by the Run test'

& The grain yield of paddy (r/tu) with four difturent levels of nitrogm from a completely

randomised design experiment are Siven below, Test whether there is any significant

difference betwem the effects of different nitroS€n lwels by Kruskal-Wallis test

Trntnmt 7 view Tr6t ent 2 uiew Trettment 3 uicld Tretflcnt 4l@tl
5.1

5.4

J.J

4.4

4.9

4.8

6.0

5.8

5.3

6.7

3.6

3.1

9. fthool children taking coaching in thr€e private schools secured tFe following rores
out 100.

Test the hypothesis that the students studying the thr€e private schools have identical
diskibution of marks by applying the (r) Median test (ti) Kruskal Wallis test, at
significance level, c = 0.1.

10. The quantity of serum albumin (gms) per lm ml in lepels under three different drugs
and the conhol groups was as follows:

No. of children
Sch,tr.b

7 3

I

J

4

J

6

E

9

10

33

38

9
I
58

70

61

4l
45

49

32

.tJ

87

32

n
63

t$
<.,

M

)t
68

27

88

6
52

76
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Cttao t'lo' C.lllt|zll Drug I Dmzll hucln
1

2
3

4

5
6

4g
{q)
rL10

3ff)
33'
{.gt

3.65

3fi
LM
3.15

3.8
2.95

3IE
{10
4.m
3.m
3.()
4.ff'

aq,
3.10

.34
4.4
3fl)
3.0

Ap,ply Pdedmen's te3t to o($rm whetler the cs ent of setrmr albtrmh in difiecnt
groupa of perscu b the 6ane.

4.11 FURTHER REA,DINGS
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Fraser, D.AS., Nonparam€tric Mdtto& in Statstics, John wil€y, New Yo*" 1957-

Witcoxorv F- "Prdability Tablea foi trdividual CotrrFrisor|e by Ran&ing It elho&''
BioEEtsica, 1, ffi, 19!S'
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After going through this trnit, you should be able to:
o explain sequential probability ratio test
o describe operating characteristic function of SpRT
o give brief accormt on average sample number

STRUCTURE

5.1 Introduction
5.2 Sequential Probabfity ltatio Test (SpR'f)
5.3 Operating Characteristic (O.C.) Function of SpRT
5.4 Average Sample Nunber (A,SN.)
5.5 Application to Binomial, Poisson and Nonnal Distribution
5.6 Surnnary
5.7 Glossary
5.8 Review Questions
5.9 Further Readings

5.I INTRODUCTION

I" h": t* Et inJrleyman-Pearsdr treory of esting of hypothesis, a ttre sample size
is regarded as a fixed constant and keeping c fixed, we-mini'ize p. But in tt* sequmtial
analys-rs theory,p,ropgunded by A. WzId n, the sampte size is not fixed but is q:.;d€d as
a random variable whereas both c and p are fixed constants.

s.2 SEQUENT|AT pROBABtrtry RATTOTEST(SPRT)

pEsl lnown procedure in sequential tes tngis tlte Sequoilinl profubitity Ratio Ta;t
(SPRT) dweloped by A. Wald discussed below:-
S",ylT y" *Tl to test th€ hypothesis llo : 0 = 96 against the altemative H, : 0 = 01 for
a distributio. with p.d.f.l:, 0). For any positive integer n, the likelihood functior of a
sao.lple 4, r.y..,x^from the population wittr p.d.f. (p-uuf,)fla e) is givm by:

Mllnshuctional lvlctcridl
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rr, = fi 1 Q,, er)when H1 is true, and by L- = flf (t,, t ) when tlo is tme' and the

i=l

likelihood ratio l,' is givm bY:

^ L^- frl(*"t')-itlG,&)

'= tr= tv F'^\= 8fr6''^ = t'2' "') "'(s't\

The SPRT for testing Ho against H1 is defined as followe:

At each stage of the exPeriment (at the t ,th trial for any integal value n)' the likelihood

nlio A"., (m = 1,2,...) is comPuted.

(i) If tr, > A, we terminate the process with the reiection of tI6

ti' f f'' < B, we terminate the process with the acceptance of Hs' and

(iit If B < tr' < A, we continue sampling by taking an additional

obs€rvation.

...(s2)

...(s3)

Here A and B (B < A) are the constants whidr are determined by the relation

6= l-F,s=, F
d. l-c,

where o and p are the probabilities of tyPe I error and tyPe tr error respectively'

From comPutational point of view, it is much convenimt to deal with log It rather

tlran 1,,,,

5.2.1 Deviation of Test Statistics for Sample Vs Sample Hypothesis

LetF (r,0) be ttre P.d.f./p.m.f. of a r'v' X' let FI6:0 = 06ve H1: 0 = 0t'

Thus F (a fu) and F (a 0J are the distribution of X under tI6 and H1 respectively' For any

f*iC"" i"t[gt"f 
"aiue 

ir tne probauility that samPle r1, '--, t,, is obtained as

h' = F (x1' gl) F (t2' 0) """' F (x- 0t) rmder Ht'
po^ = F (x1,go)F ('r0) """' F (:- 0s) tmd€r Ho

Since the sample hypothesis is tested vs a samPle altemative' Using the likelihood ratio

test, we have
L,= Pr'/Po'

As a basis for deciding between tls and H1' For fixed sample size'

tI6 is accepted if I' < k

Ho is reiected if L > t.

A sequmtial that can be constructed by extending the fixed sample size method to

include a region of continuing sampling'

In the fixed sample size test, one could accept FIe if I' is small and accept H1 if ft t
;; Th"t in sequmtial test being t*o tt'i-b"o '! and B3re chosm and divided

"rrJ"es"i.r" 
obea*"ti-," are taken for rn = 1 ,2, """, aslong asB < l"' < A'

ItL^> A,the process ie termtuEted with the reiection of H6' If ft < B' the Process

terminated with the accePtance of Ho' For practical purpoce 1og Ezr- ' i' *ot" "*t tPo-

handling thm tha I { 'Ph/ Po'i' rttr.t is



w*=i*i8#=i"
wherc ',=*i{#}
The SPRT rcduce to

,'
0) Acoep4 Ho if 2/ q <latB

i=1

(tr) Reiectfio if Zzi >logA
l=l

@) Curtinue if logn. ia . rog A.
iel

5.2.2 - Determinatioo of A and B

Letclrnd pbethestrlengtrof dret6t, a=sizeof dretypeOermrand F=eizeof dretype
(tr)ermr.

,(r

a=plRdectq/rlol

o= !,r{reRr,/Ho}
,l =l

*r
a= L I Pnd4..-..tttn

lr=lBtr

x-= pt-lpu>A
pss p1n / A

"s |i,J'.-*; _rRr-

",< f ir{'.n,,2x,}
1.

c< Ap Ineiect X"rnr|

1c<;0-F)

1-a = r -P lRFidlrolltl
= P{AcePtHo/rU

= 2r{re\,/ft}

...(s.4)

*avntintlnty*

NOTBS
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= 
"I-1.-o* 

*r ,itx2,""",ilo,'

u= ffsn
For,t> Pn/F

r-"t I il* dq'"""'d'-

t-"t I ir{'eRs,,/Hr}

r-o> f f f,lccen*rolHrl

r-"r {o

e=r-9 andB= -P-(I l-(l

5.2.3 lllustrative Exampks Based on the Applicatlon to Prcbability
Disffibution

Exenple 5.L I/X- N @dLd iEhtown'nloe SPRTfor tding
Hs:0= $u 0= Q
nq> qatul$Dq<il

sa,il= _1-F=e-it('-of

-='*;{:*}

,,=rrl#,'*v-* f t e-*t-cr)

a= r.s {;*t'-tr-c-'f }
,, = bc!- *V'q-'o!'-l -ot.'?c'l]

= r"s l;*{'t 
-e-'o' -c)'}]

=(+)'-5f

...(s5)

or

:.

In actual practice

Solution We have

Non,



Now, taking E both eidee,

l"=ryi",-"[H) (sd)

C.scL If q >00 + 0t-06>0
d

R.iect lfoif 2J4 ) logA, we have
i-l

/0. -o^\g /e? -e?)l=tlL4 -"'l-;f | >l%A
\ e tl-l ,l

g#:- >bsA++s)
.<r .r2l,n a /[ra \d Lrt > +:-E: +zl:a-:o;
i-r q-eo \ 2 )
msr+ L\ >a+nc

i-t
It

Now accept Hs if 2rz, 5 t% B

'tl
Wehave from (5.6)

+;--'$=usn
(r a-uaf.o3losB+ -q-fio-i=-2d

l" = 
tffi*'qf

t

lxi sb+nn
t-l

tt
Ill%83 Lzr <logA

i't

Wehave b*r*<!t, so**,
l=1

CeaeILIfq<0s + 0r -0050
I

Now, rciect ftif )4 >logA, we have fron (i6),
i_l

q=^t,,_^f$:9.'1,r"go
o' ij_r, \ 2d )

...F.n

...(s.8)

...(s.e)

...(s.r0)

Sq.entuAttdy'e
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Now accept FIs if

€ o2 loq A lt0'-0n\)ri < a-==+tttl :- | >logA
Et q-uo \ 4 t

ir, ro*^"

L\ <WB
i-l

.g
Lxi >b+tttc

Fronr (5.1f) and (5.12), we have

g
a+me3 ).q 3b+mc'

i-l

Eranrple 5eIlX - 8fl, A.DeutoP SPKI futai;iaglh' e= A1qlrinstH1'0= Q(Q> Q'
Solution We have,

F(r,0)= d(1 -0)r-'

Norv, ",=*#fii

=*[.*+iiti+)
='*[#+]1.*fit

T.ri"S i both sides,we get

!" =to'",ffi].''*[i=fr)
Ifer > eo then 

1-or<1-oo.. '"c[*ffi,n
'.[+)

(I) ReiectHo iI izr >loig A, we have
i-l

Ftur(5'13),

i"*(fr i+).'*ffi)"'^

...(s.11)

...(s.12)

oi (r - e, f' 
-')

='"cG(fijc;l



llsrq L\ > d-rnc
i-1

l.-i

@ Accept Fleif )rq <log B.
i i.l

F:+ L\ sb-nc
t=l

nlsr
Cmtinue, if log B < L4 <bg/l

i=l

Frwr (5.14) and (5.15), we get

!trFr:+ b-rncs L\ se-r',c.
t.l

Enmple 53. I/X - P (O. DcoeIop SPRTlor tetingHs: 0= QsosHT: 0= ertD er> eoond
QDq<eo|
Solutiort Wehave,

Now,

ree)= "-id

,,= 
",,k&ti

=",8m
=b8#

=lql,-0 c)[sl

= ''*(fr)-p,-',r

...(s.14)

...(5.1s)

Now, taking L both Eides
t=l

€ g /e-\
).2, = /x, t"gl* l-'(g -C)r=r i=i \uo,/

CacLIfO,>0o

+ .hr1
0o

Sq1ualiliol Atutytb

NOTES

...(s.16)
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srtetuttl.fnw Takinglog;wbget \
t*J9l'o

r\30 ,/

nd"in"irfe >r"gA I ,' 
"

We have, from (5.15)

i'*[*)-'(e,-eo) >tosA

S - LttA .,t(ot -eo)+ 3'' = *(*).;l*l
ritFr(r Lxi za+mc
i'1

fr

If AcceptH" then L4 SloBB
i.!

t!F!

+ L4 sb+rnc
i.1

cqrtinueif 'bgn. i+ .bse
,.1

Frwr(5.14and(5.18),

+
+ b +rnc < Lxi <a+nE'

...(5.r7'

.-(s.lE)

...(s.le)

...(5.D)

Casc IL If q < 0o

+ 9.1
0o

/o \
tog l* l. o

\o0,,

neiec*roif i+ >roge
t=1

,i

+ \xi <a+me
i=1

Acqt t{o iI Zzi < log B
i-l

I

+ Lxi >b+ttr
i.l



logB < ),2; <log A

From (5.19) and (5 .20),we get

a + mc < /xi <b +mc.

5.3 OPERATING CHARACTERISTIC (O,C.) FUNCTION OF SPRT

The O.C. function L(0) is defined as

L(0) = f:1e6"6i1iry of accepting FIs : 0 = 0o when 0 is the true value of the parameter.
and since the power function

P(0) = pr65u611i9 of rejecting 116 where 0 is the true value, we get
L(0)= l-P(e) ...(s.21)

The O.C. function of a SPRT for testing Ho:0 = 0o against the altemative H' :0 = 0r,in
sampling from a population with density function/(:, 0) is given by

rtel=;ffi ...(s.22)

then M (ft) = 1, therefore at t = h
E [esJ1 = 1

where for each value of 0, the value of ,r(e) * 0 is to be determined so that

f rl. q t 1(o)
El 4:i'fl -1 ...(s.23)
l/(:' eo)J

where the constant A and B have already been defined in (5.3). It has been proved that
under very simple conditions on the nature of the function.flx, 0), there exists a unique
value of h(0) * 0 such that (5.23) is satisfied.

5.3.1 Derivation of O.C. Function

Theorenr 5.1. Statement I/ 
" 

= 
^t #A and p ( | z | > 0), then

L(a= 1,-A",,

B, _A,

where h is the rcot of M (t) = 1

Proof: From the fundamental identity, we have

E[dr{M(r)}"1= 1

Since ft is the root of M (t) = 1

Note that E (B) = lr' 1a)r 1n7n,;

E (dr; = p 19, > 1or A) E [dr/s, > los A]
+ p ($r < ros B) E (, n,, 

= 
:rr7r,: I,l,rrrrf :,,tr li

Self- lns''uc t io tla,l Mste fi al lg!

Sep/a.ntiol Arulysis

NOTES
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Now, we have
P (logB < S, < logA) -'+ 0 as n -+ -

(because SPRT terminate with probability 1)

AIso, consider the boundry cases

Reject H6 if S, = log A
Accept Ho if So = log B

Theii,

where

E tes4 = P (s, = log A) E Id.t/S" = log Al
+ P (S, = log s; s 1 fJ /5,=tog31

= P (S,, = log A) E (/ re e1 a p 
15, = log B) .E t/t"t Bl

1= P (Reiect Hol0) C + P (Accept H6l0) Bi

1=(1-L(0)lAt+L(0)Bft
t=Ar-A'L(e)+BiL(o)
1= At-L(o) [At-B"l

L(g)= 7 - Ah /Bt' - At'

A- 1-Pur'dB= P

a l-c

1ttz Setf-Ittstructior,al itlateriol

5.4 AVEMGE SAMPTE NUMBER (A.S.N.)

Thesamplesizeninsequentialtestingisarandomvariablewhich.canbedeter'ninedin
terrrs of'the tnre dmsity function/r, 0), The A.s.N. function for the S.P.R.T. for testin8

FI6 : 0 = 06 against Ht : 0 = 01 is given bY

E(a) = i..(s.241

...(5.8)

5.4.1 Derivation of A.S'N. Function

Theorem 52.IJt X - F (x, O a*lwe zoant to test Ho: e= 00tx H1: 0= Q' Iet z1' """'znln iiil

nndom oariables defitted as z = bS +4 arrd tr is tlte ntrntber of obseroation requited fur'FV'eo)

rcachifl| a temrinat decisiotr, thar expecterl aalue

E,ft)=V-!W{:!@ls!E(z)

.A
Proof : Since S,, = /zi , wehave

i=l
E (S') = P (s,, > logA) E (s,/s,, >Iog A)

+ P (S, < log B) E6 (S" /S' < log B)

+ P (log B < So < log A) E [S'llog B < So < log A]

If the SPRT terminates at the as step, then either S, ) log A' i'e" Reject tI6

or S"< logB, i'e', AccePt tlo'

In these two cases, we take aPProximation

Reject H6 if Sn = log A
Accept Ho if S,, = log B

,=*[##)."=T,u=*

L(o) los B + [r - L(o)] los A



ftecfue, S4[/a/t'i,lArrolFb

E (s) = P (Sr = 1o8 A) log A + P (S" <log B) log B

= P (Reid Hol0) log A + P (Accept l{o/0) l% B
FrurAbraluurloua

Ee(z) E(z)= lr -L (0)l log A + L (0) l% B

&(z)=
r-L(0)[bgn+L(e)bsB

E(')
NOTEI

5.5 APPLTCATTON TO E|NOM|AL, POTSSON AND NORMAT
DISTRIBUTION

Ereorple 5.{. Fizd AC aul ASN ltractiorls for H6 : e= gos H, : e= Q.
0 x-N@d),olbkrorrrl
(n x-N@d),oisbtw,

Hs: o= qosHl: o= q
0n x-P(6
(N) x-8fl,4
Sohdo.

(I) ForO.C. functiolwe have

Flx'o= -*:^ e-*k-of

Ncnr',

F(',q)= ;ia'*o-"
r(r,0g) _L"-*t'-tf

o,lzs

"-lF-e'f 
tc

=;=E:r'-

= e-*l'-cF-k-cFl

= "-*[(4 
-'6)-t't"' -tt1

She, M-(tr=E(Czl=E1l.tl1
p(r,e.') F(r,e')wrs€ ,=t*ffij = ffi=d

TlElefqe,

fttrg)]r4(,)=E[FE,eoil

Wehave M(t)= 161=1,

nreretur, M(r')= t =t |-:9-g]l' - 
LFk'e")j

, = f i""rlo*+|' r(,,e)a,r_- [t . . _",,

sf//f-l/'5l'l,/crtur/l fv',d.}iu 8
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lg W-lnehs,ion4,*'trr.'i,,,

c 1= J- e-*fi4-'6)-'tc-$)1,;fu,-*('-et'*

r = -l- r- *le-€6) 
J-_e#(c 

-e')' - fi l' -of o,

I\rt

+

Therefore,

Sinc€,

(r r = c, [- -;*lr 
+d -z*-zc(t -t)] *

= c, J- ;;!t{' 
-(s+'o' - rootf -[0 rie' -r't1' + d] 

ot

6 1= r-#(4-4i. .ftfte*rq-neof-d]* #f-tn 
-letrre-rrsf *

r-(e+mt-reo)_--;-=v.
itx = a ily

1= ;fu|--n'n o'

9=r
,- #[r(4 -61-{t'to -rt;*d] - r.

d=l + t=O

+ 4-4-n4-n4-2oQ+2e06+ZrooQ =o

(r - r(ef +efr -zqq)-ze(q -e,)+(4 -q) =0

c -r(e, -eo)2 -zs(er-eo)+(e' -00)(Q +eo) =o

or - I (e, -eo) - ze + (e, +eo) =g,65gr-Q*o
(r lr(q-06)=(q+0s)-20

,=q##
e=

+0o)-lt(q -0s
2

Now, giverr differenlvah.s to-e, rr" g"t corresPonding t' Herrce a graph

betrrreerr e and L (0) gives a O.C. functidt.
Inparticufar f{o:0=eo=1

Ht:0=0t=!
cr= 0.(F = F

1-BNos', A=:-r =19

n= .F =tltg1-a

h=q!s2-zg
or-oo



0.05

0.m28

0.0m25

0.95

0.997

0.998

For A.S.N.

E (n) = [t - L (0)] togA + L (0) log B/Es (z)

Nor,r' ,= 
"c#ti=-#ttq-efr)-z:(e,-eo)]

ro(")= - #[g -te)-te(e, -eo)]. as E(r)=0

Now 6= I,go=l,q=2
c= 0.05 = F

Thus, giving different values to ft, we get 0 and catculate to Ai, Bt and L (0) and
thm O.C. function.
Now, A.SN., we have expected value of z under 0

Es (z) = [t - L (0)] tog A + L (e) bg B/Eg (z)

where ,="s#*i

=rs[9f " 
r''-"r

= ,r.gf$l-1e, -eo1
\ o0 ,,,

+ r"er= e4[e')-{r,-ro),*ro,=r.

1l; x - N (e, d), e is known
FI6: o = osvsHr:o=o,

F@'i.1= -1"-l(+r' o,t2r'

Norv, IJ4l= - 
-;5t'-e'Y

r(aofr) ",ft-"=;*i' 
xo6'!fi'

-l
-2
-J
+l
+2
+3

1.0

0.75

0.50

0.8

2.0

2.5

3.0

1.0

0.5

0

rl79
7l%r
1/6859

t9
361

628/9

t9
x7

6859

u19
uxr
r/6859

0.5 1 1 .5 2-O 2.5 3-0 3.5

Squcntbl Arulysis
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16 s,'fa'!,flcrbntlrrlilr'tt

= 
oo r-f0-tf 1r*{('-tf
O1

= ",.*[S-o:fJ(l1

- [".)"-rk-"r[+-*]
| ' ^.+Nov, M(,')=l=E ll!''1ll
L 

F tr,"6)l
After eimplificatior, we get

lEo=:dsl
lE(/)-=?

GI) x-P(0)

r1r,el= e 

ie',no: 
o=oovsHr :o= or

r(r,or) _ "-",9i ,t,F(r,0s) lr xc-"" 96 -

=* -3i=(*l*--

Norv M(h)=r=n[t(''tt)I= " LFi;dl
: Ir/- o \f=*|.ffi] 't''')

(r ,= if+f "-'t"'-c)';?'i'o\oo / l,

r=;,(e,-r)-e !tt*l,ll
r=",(e,-eo)-e,if ,*"* "=[fri .

1 = e-t(q -q)-o . d!

1=;.G-tF..r($I'

1= 

"{$f-'G-tF"
r = ,.[tf 

-']-'s -n1

Shce C=l + x=O.



Now, we tet

'[*i ']-'*-eo)=o

wfs€

^ fr(e, -oo)'=lml
L\0. / I

'" r-[;{:$}},p 'v*
, = f [go1' [,'o-+'[t-*)l*, -{:,-*o-'Fr--\or,, 1 I 6lzr

' 
= [*l #;-;rt'-'r[*'*-t1a'

' 
- [fl *,6 1- "--*{'-')' a'

"'= r--F;
;t.A-;a

'=(*l*75;
lfd '"? 

"3
For diffocnt droice of lL we tet o atd hence L (o) md then O.C. furcdo*u

L(o)

For A.S.N,, we have expecbd vdue

u,nr= [t 
-t-(")]tog-] "L(") 

l% s

Fk'i)wlae "="tffi
=af9-{';dt'+-+)l-[o, 2 ["i 4)]

- oo,='*ff-*t+ *)aeEe-ef=d.

s'4,5'/tuAillFb

N()tE

$illlllelrl{lrlidui



SMhhw

M)T8S

uc Sdl-n'[1lrctbtld \t''''i',l

(nD x-B(1,0).
l{6:0= 0svsH1 :0=01

We have
F(r'0)=t'11-s1t-r

and

F(r,€r) - oi(1-qf-'
FGpJ = 06(l-qf-

=(*l(i+)'.'

Norv, M(,,)=1=Etffiil

= tt*f (-*f"-''"u-'t-'

'=[+in-q.(fr1'
+ ,=,_[i+]/t*l {t+rg)f
Thus, given different value !o ft, we get e and hence L (0) and ttrcn O'C' ftmctim'

For A.s.N., we have *,", = IS)H#@

wherc, z=r"s'fi*i

=*[t*lt+*) '1

='*[*).0-4*F*)

".rr= 
r'*[fr).(r-o)bs[i:+) as e tr)=e'

Eromple55. Gioe ilc S.P.R.T.for tatingHs:0= $agaia*H1: e= e{> Q in wqlinglntt
awnnl dcnsirY

n., a = :tE *p[j (#l], _ _".-

aihere ois ,yi'oam. Alf&uin iE O.C. funetio" ond A'S'N ' f$cIio't'

#*i = *[-#(', -e,f -(', -e'f )]



= *o[- #tt* -e1X2,, -00 -e,[l ...o.r.r

.' = * #:*+= + (.* - qs) .. r,.,,::' '*u=i*=t*F', ry]
Hence the S.P.RT. forflo:0 = 06 againet Hr :0 = el b given by (S.2)

(t Reiect Ho if

%+j>',-*9o1.*(T)

;'' = *$'*(T).t0f9); (0r>00)

(rt Accept Ho if

i#[>. ry].*C)
=) i" = *+*[t)-.efQ; ('1>os)and

(rr) Continue taking additional observatiom as long as

*[*) . +[>", -afa].*(-u)
- qt*[*).ry . :,,.uS;*(?)

o.c.FutrcrionFirstolallweelullderersriner=^r.orJO-rr'rrt@*tt'

i-lt**u|,o'e)* =r

* r7ri*[+(+l] ["-i-#e -eo)x(-z:+e +a{}* =,

I T r r.^ 
tmudns*%)l

= ;1i; J "'nL-#{" -z.r((e, -q)r+e)+d +(4 -4)r}]a, =r
If we ta&e

r= (er_odft+o i ...(s28)

I tr,= (ei_efr)l+e,J

then LH.S. becoures, -l- 7", I t ''l

&4lol&itdpit

NOTES

Sclf-Inst'vlctionat Matcrint lDt
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i.e.,it I', =;ffi)r*l.)##=/m'(sav)'

which being the total area under normal probability curvewith^mean ?r and variance a
i" 

"f*"yr 
tty, 

"s 
desired. Thu6 ,t = h(ej is the solution of (5'28) and is given by

(ef -efr)l+e = l(0r-00)h +0)2 = (ei -et)t' =(er-e0)2"2+20(01-00)h

Since lr = tr(O) + 0 and 01 * 06, on dividing throughout by (01- 06) h' we get

(0r+00)= (er-eo),'+20 + 
"(0)='!t%3'q

Substituting for lr(0) in (5.22), we get the required expreseion for the O'C' fimction

A.S,llfalction. We have

, = 
"" m='+ t' - 

qg)' t"o''tu''nt

E(a = 9;F(2EG) - e, - e')= # (20 - oo - q)

Substituting in (5.24), we get the required A'S'N' function'

ExamPle 5.5' kt X haae tlu tlistibution' 
l(x, A = 0'0-A1-';x=0'7;0<0<7

For tstingHo: 0= Sagaitst H1: 0= Q'cotrstruct S'P'F-T' and&tainits A'SN' mdO'C'Futrdion'

Solution. We have

t-(xr, x,, ..., r,,lHt)i'=;ir,r,-;iHJ
(rl

= le,I'' 1r - e,;'-i'' | -(#'' {t - to)"-l'' 
)ll

rI

1r,1|, 1r_e,.\,_,4,
- 

\eo J \l-eo /

log ?,,, = !r; log(e,leo) * (t - Lt,)"t [i*)
g Ie,G-eo)].-,^^(t-e']

= ),, 
r"s 

L0;iT61+'n 
ros 

li:eo ,l

Hence SPRT for testing H0 : e = e0 against H1 : 0 = 01 is given by (5'2)

(i) AcceP*Lif r'gU< t'e[d;J =b'(sav)

s a-rlnbsf(r-e')/(r-o')]--
i.e.,t ),x, < .=---.i}j--.'ff = u^'(saYl'

, =, log Lor(1- oo)/oo (1-or)l

/1-R\
(ir) Refect Hs (AccePt Hr) iI log I", > log [:J: ) = a' (say)



(iii) Continue sampling if
b < log),'r<a I a^<r-l1<rn

O.C. Function. O.C. function is given by:

L(0)= lAfr(o) - 1]/tAr(0)-8,'(0)l lusing (5.22)l ...(529)

where for each value of O h(0) + 0 is to be determined such that

[using (s.23)]

...(s.30)

'[**t]] ='

:+ i.[mf'r'"'e)=1

- i-lt#l [i=+l']'''''(r-e)'-' = r

:+ (i-+)"' n-'l.[fr]"' ' ='
The solution of this equation for ft = lr(e) is very tedious. From practical point of view,
instead of solving (5.30) for h we regard h as a parameter and solve it for 0; thus giving

| , .r/a\ . r./o\ |

,lfq)''"' -1, 
t-e, l"'' I = r-lt-t, )"''l\oo/ (1-oo/ | - |.t-eoJ

Using (5.29), we have:

f(r-g)rol'-r
L(0)= ;;-+-:;J _T. =L(0,rr),(say). ...(s.32)

f(t -p)/c,J -LP/(l -a)J'
Various points on the O.C. curve are obtained by assigning arbitrary values to ,ft, and
computing the corresponding values of 0 and L(0) from (5.31) and (5.32) respectively.

A.S.N. Function

'=^'lm]'^=+''=*
'r= >*if(,-qi]rr,,'r

= P,*f[*l [i:*)'-'] "n 
- r'-'

= ('-E'"c[i:#].' *[#J

=..'l#+i].*(A) (s33)

SeErcntial Aralysis

NOTES
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NOTES
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Sef.tnst'1/,ctionnl Material

...(s.34)

Substituting the values of E(4 and L(0) from (5.33) and (5.32) in (5.34) we get ttre A.S.N.
function.

Remark5.l.flrassumesnegatiuewluesi,e.,ifinsteadofhwetale-hwherch>0,then

L(e._h)=^_,-n_n:=_7#+)"^=(##)r,

L(o.-h)= g .L(e,b ...6.35)

^-r, 
=

l(1 - eilp - oil [ - @1/ esl' \uo )
and

= 'a)(a)"
...6.36)

Formulae (5.35) and (5.36) are oery conoenimt to use for obtaining the points on O,C, cume for
arbitrary negative oalues of h.

5.6 SUMMARY

. The best known procedure in sequential testing is the Segleztiol k&ability Rttio Tcr.t

(SPRT) developed by A' Wald.

. The sarnple size n in sequential testing is a randorn variable which can be determined

in terms of the true density function /(r, 0).

. The O.C. function L(0) is defined as the Probability of accepthg Fl6:0 = 0s whm 0

is the true value of the parameter.

s.7 GtossARY

Null Hypothesia : Null hypothesis is a hypothesis which is the to tested for the Pogitive reiection

under the assumption that it is true.

Normat distribution : A random variable X is said to follow normal distribution with parameter

mean (p) and Variance (d) if its P.d.f. is given by

r -1lr-r'lt
Xx;p,d)=:*;e zt o 

' - @ < r < €' - € ( F < - and o > 0'
aJ z^

Poisson distribution has only one Paramet€r.

Binornial distribution. It is a discrete probability distribution which has only two Parameters'

The p.m.f. of binomial distribution is

P(X= x) = "C,f q'-', x =0,1,2, "'' n

s.8 REVTEWQUESTIONS

1. Define sequential analysis.-Explain how the sequential test Procedure differs from the

Neyman-Pearson test Procedure.



Z Describe sequential probabiuty ratio test (SPRT). Drive inequalitieE involving A, 4 Sqll!,ntialAwtytis
c and p where symbols have their ueual m€anhgs.

3, Define SPRT and explain its propedies.

4 Define the OC function and ASN function h sequmtial analysis.
5, l€t r have the distribution

/(r,0) = t' 11 - 6y-r; x = O 1 ;0 < 0 < I
For testing Ho : 0 = 0o against Hr : 0 = 0r, construct SPRT and obtain its ASN and OC
functions.

6 Set up SPRT 6or testing the variance of a normal distribution with known mean.
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