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(DMSTT 04)
M.Sc. First Year, Statistics, DEGREE EXAMINATION, MAY 2011.

Paper IV — DESIGN OF EXPERIMENTS
Time : Three hours Maximum : 100 marks

Answer any FIVE questions.
All questions carry equal marks.

1. (a) Define the terms Rank, inverse, determinant of a matrix.

(b) Explain the concepts of orthogonal matrix and characteristics roots and vectors of a
matrix with suitable examples.

2. (a) State and Prove the Cayley-Hamilton Theorem.

(b) State and Prove coehran’s theorem for quadratic form.
3. (a) Explain general linear model and give its assumptions.

(b) State and Prove Gauss – Markov Theorem.
4. (a) Explain the concepts of

(i) Estimability of linear parametric functions
(ii) BLUE.

(b) State and Prove Aitken’s Theorem.
5. (a) Describe the analysis of variance for a two-way classified data with multiple but equal

number of observations per cell.
(b) Explain and random effect model.

6. (a) Explain the necessity of Covariance technique work out Analysis of covariance one
way classification.

(b) Explain the analysis of covariance with two-way classification.
7. (a) Explain the basic principles of Design of Experiments.

(b) Explain the analysis of RBD with one missing plot Technique.
8. (a) Explain the analysis of LSD.

(b) What are Mutually orthogonal Latin squares?
9. (a) Describe the Intra block analysis of BIBD.

(b) Explain the analysis of 23 factorial Experiments.
10. Write short notes on  any TWO of the following :

(a) Transpose of a matrix
(b) Gauss-Markov setup
(c) Multiple comparisons
(d) CRD

         (e) 32 Factorial Experiments.
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M.Sc. DEGREE EXAMINATION, DECEMBER 2011.

First Year
Statistics

Paper IV –– DESIGN OF EXPERIMENTS
Time : Three hours          Maximum : 100 marks

Answer any FIVE questions.

All questions carry equal marks.
1. (a) Explain the role of Quadratic forms in design of experiments.

(b) State and prove Cochrans theorem.
2. (a) Explain the methodology of deriving Eigen valves and Eigen vector associated with a

matrix. What is the importance of it?

(b) Define trace of a matrix. Explain its relationship in finding the derivative of a matrix with

respect its elements.
3. (a) Explain the limitations ordinary least square estimators in linear models.

(b) Stating the assumptions clearly and bring out Gauss–Monkov set up of a linear model.
4. (a) State and prove Alken’s theorem.

(b) Explain the importance of G-inverve in estimating the parameters of a linear model.
5. (a) Explain the procedure of analysing a two way classified data.

(b) Discuss the uses of analysis and variance with two way classification.
6. (a) Derive the F-statistics for testing the equality K means in one way classified data.

(b) With the usual notation show that the degrees of freedom associated error in
                  two-way classified ANOVA Test is )1)(1( −− Kn .
7. (a) With the usual notations derive the least square estimates and expectations of sum of
                   squares of a Randomised Block design.

(b) Describe the uses of R.B.D.
8. (a) Explain the layout of a L.S.D. with an example.

(b) Compare and contrast the Latin Square design with R.B.D.
9. (a) What is a treatment contrast? When one two such contrast are orthogonal? Show that

in 23 experiment main effects and interaction effects are orthogonal.
(b) Explain the philosophy of Factorial experiments.

10.    (a)    State and prove Fisher’s inequality in .

(b) When is BDaB is called symmetric?
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Lesson – 1 

 

Fundamentals of Matrix Algebra 

 

1.0  Objectives : 
After going through this lesson, you should be able to: 

• Understand the need, concepts of Matrix Algebra, definitions and applications. 
• The concepts of determinant, rank and inverse of matrix. 
• The applications and examples of matrices. 
• Calculation of Inverses of matrices and their properties. 
• Applications of matrix algebra. 

 

Structure 

1.1     Introduction to Matrix Algebra. 
1.2     Fundamental concepts and definitions of Matrix Algebra. 
1.3    Determinants, Inverse and Rank of a matrix and their properties. 
1.4    Applications and Worked out examples. 

                    1.5   Summary 
                    1.6   Self Assessment Questions 

      1.7    Further Readings.  
 

1.1. Introduction to Matrix Algebra 
 

             In real life there are good number of  situations, where we have to consider 
many things, to take decision on a single concept.   For example, health of a person is 
depending on many quantities like body temperature, B.P.,(systolic and diastolic),  blood sugar, 
urine sugar,  pulse rate,  R.B.C,  W.B.C, cholesterol, triglycerides,   proteins, L.D.L, V.L.D.L and so 
on.  All these factors determine the health condition of the person.   Similarly, in agriculture the 
yield of a crop is mainly depends on the rainfall, soil temperature, seed quality, type of soil, 
type of water, type of cultivation, climatic conditions and so on.   Thus there is a need to deal 
many quantities simultaneously at a time and to analyze these factors.   A mathematical tool 
that helps to analyze such quantities is known as “Matrix  Algebra” or “Matrix Analysis”.    
Matrices are useful  in almost every branch of Science, Engineering, Medicine and Design of 
Experiments. 
 

 Thus there is a need to study some definitions, fundamental concepts, theorems, 
properties and applications of matrix algebra in the present unit, so that these results can be 



 
 

Design of Experiments                             1.2                             Fundamentals of Matrix Algebra  
 

applied in forth coming units.   In this lesson, we proceed to learn some definitions, 
fundamental concepts of matrix algebra. 

1.2 Fundamental concepts and definitions of Matrix Algebra 

 A matrix is defined as an arrangement of m.n numbers (real  or complex) arranged in 
the rectangular form in m‐rows and n‐columns enclosed by pair of brackets is known as a 
“Matrix” and is denoted by capital  letters A,B,C, M or X.   These numbers are called elements 
of the matrix and are denoted by lower case letters like a,b,c,m or x.   For example, a matrix A 
with m‐rows and n‐columns is written as: 

 

                     a11    a12   a13     . . .a1j . . .       a1n 

                     a21       a22   a23     . . . a2 j. . .       a2n 

                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Amn     =     . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                        ai1          ai2    ai3. . . .aij. . .ain 

                      .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                        am1        am2   am3              amjamn 

 

 In the above matrix, aij where,  i ranges from 1,2,.,.,m and j ranges from 1,2.,.,n 
represent m.n elements of the matrix . 

A compact form of the above matrix is represented as follows: 

Amn     =             or              or          i = 1,2,3,.,.,.,m and j = 1,2,3,.,.,n. 

 In the above notation, if m = 1, then the matrix is called “Row Matrix” and if n = 1, then 
the matrix is called “Column Matrix”. If m=n, then the matrix is called “Square Matrix” and if m 

 n, then the matrix is called “Rectangular Matrix”.   If all the elements are zeros then the 
matrix is called “Null Matrix” or “Zero Matrix”. 

 All the elements of the matrix where i = j are called “Diagonal” or “Principal Diagonal” 
or “Main Diagonal” elements.   All the elements where i   j are called “Non‐
diagonal”elements.  If the matrix is a square matrix, with one as diagonal elements and zeros 
as non‐diagonal elements, then the matrix is known as “Unit Matrix” or  “Identity Matrix”.   A 
square matrix in which all non‐diagonal elements are zeros is known as “Diagonal Matrix”. In a 
diagonal matrix if all the diagonal elements are equal is called “Scalar Matrix”. In a square 
matrix, if all the elements below the principal diagonal are zero is known as “Upper Triangular” 
matrix.   Similarly, in a square matrix,  if all the elements above the principal diagonal are zeros 
then the matrix is known as “Lower Triangular” matrix.   In a given matrix, if one or more rows 
or columns or both are deleted, then the resultant matrix is called as “Sub‐matrix”. 
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1.2.1. Operations on Matrices  

 Following are the basic operations of matrix algebra. 

1.Equality of matrices: Two matrices are said to be equal if they are of the same order and the 

corresponding elements must be equal.   That is if A = B and A = 4  and B = 6 32  , then  

 = 6, b = 3, c = ‐2 and d = 4. 

2. Addition or subtraction of matrices: The sum or difference of two matrices is defined only 
for the matrices of the same order.    To add two matrices, the corresponding elements are 
to be added.   Similarly, to subtract two matrices, the Corresponding elements are to be 

subtracted.   For example, to add two matrices A and B;Where  A = 1 24 3  and B = 6 35 2  

, 

A + B = 
1 6 2 34 5 3 2 = 7 59 1  .   Similarly, A –B  =

1 6 2 34 5 3 2  = 5 11 5 . 

Properties of Matrix Addition:If A,B,C and O are matrices of the same order, then:  

(a) A + B  = B + A that is Matrices of same order are commutative. 
(b) A + (B + C)  = (A + B) + C that is matrices of same order are associative. 
(c) K(A + B)  = KA + KB, where K is any constant. 
(d) If O is the null matrix then O + A = A + O = A hence O is called additive identitity. 
(e) If –A is the negative of the matrix A then (‐A) + A = A + (‐A) = O.   Hence –A is called 

additive inverse of A. 
3. Multiplication or Product of two matrices: The product of two matrices A and B is defined 

only if the columns of matrix A must be equal to the rows of matrix B.    That is if the matrix 
is of order mxn, then the matrix B must be of order nxk.   After multiplication the product 
matrix A.B will be of order mxk.   To get (i,j)th element in the product matrix A.B, elements 
of ith row of matrix A are to be multiplied with the elements of jth column of matrix B and 

their product sum is taken.   That is if A = 1 0 22 3 4  and B =  
2 13 01 1  , then the product A.B 

is of order 2x2 and is to be calculated as follows: 

A.B = 1.2 0.3 2.1 1.1 0.0 2.12.2 3.3 4.1 2.1 3.0 4.1  = 4 317 6 . 

Mathematically, matrix multiplication is defined as follows: 
Definition:  If A =  where i = 1,2,.,.,m, k = 1,2,.,.,.,n  and B =  where k = 1,2,.,.,n , j = 
1,2,.,.,p then the product matrix A.B is of order mxp and is defined as: 
A.B =  =∑ ∑  where   i = 1,2,.,.,m and , j = 1,2,.,.,p                              (1.2.1) 
 
Properties of Matrix Multiplication: 
(a) Matrix multiplication is not commutative in general, that is A.B B.A . 
(b) If the matrix multiplication if defined between A,B and C then matrix multiplication is 

associative.   That is (AB)C = A(BC). 
(c) Multiplication is distributive over addition in matrices.   That is (i) A(B+C) = AB + AC  
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(ii) (A + B)C = AC + BC, where all the above products are defined. 
(d) If A,B,C are three matrices such that AB = AC then in general B   C. 
(e) If A is an mxn  matrix and O is nxp null matrix then A.O = O.A = O. 
(f) If A is a square matrix and I is a unit matrix of the same order, then AI = IA = A. 
(g) Product of two non‐zero matrices may be a zero matrix. 

1.2.2. Types of Matrices 

(1) Transpose of a Matrix: Let A is a given matrix of size mxn.   If we inter change rows and 
columns of the given matrix, we obtain an nxm matrix and the resultant matrix is known 
as transpose of the given matrix A and is denoted by AT or AI.   Symbolically, if A =  

and AI =  then aij = bji .  For Example, A = 2 4 95 7 2  then AI = 
2 54 79 2  

Properties of Transpose of a matrix: 
(a) A matrix is transpose of its transpose.   That is A = (AI )I. 
(b) Transpose of sum of two matrices is the sum of their transpose.   That is  

(A+B)I = AI +BI . 
(c) Transpose of multiplication of a matrix with a constant K is equal to the 

multiplication of the constant number by the transpose of that matrix.   That is  
 (KA)I =K( AI ). 

(d) The transpose of the product of two matrices is the product of their transposes in 
reverse order.   That is (AB)I =  BI .AI . 

(2) Symmetric Matrix: Any matrix A is symmetric if A = AI . This implies that a symmetric 

matrix is always a square matrix.   For example A =
  1 3 7  3 4 2  7 2 6   =  AI .   Hence A is 

called symmetric. 
(3) Skew‐symmetric Matrix: Any matrix A is called skew‐symmetric if AI = ‐A. That is if  

 A =  then  = ‐  .   Further it implies that in a skew‐symmetric matrix all the 
diagonal elements must be equal to zero and must be a square matrix. 

(4) Orthogonal Matrix: Any matrix A is said to be orthogonal matrix if A .  AI = I.  For 

example, If A = √ 1 11 1 then A .  AI = 1 00 1  =I.  Hence A is an orthogonal matrix. 

Similarly, is  A= 
1 2 22 1 22 2 1      Then A. AI = I.   Hence A is orthogonal matrix. 

Remark: 

 Orthogonal matrices have special applications in “Design of Experiments”, will be discussed at 
appropriate place in the last Unit while discussing properties of Balanced Incomplete Block Designs 
(BIBD).    
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1.3  Determinants, Inverse and Rank of a matrix and their properties. 

Now we proceed to explain other important concepts of matrix analysis. 

1.3.1 Determinants: Determinant of a matrix is made by the same array of numbers of which 
the matrix is made.   However, unlike a matrix, the determinant is not just arrangement 
of numbers but also a numerical value calculated in a particular procedure.   Further, it 
is important to note that only square matrices have determinant value.   The 
determinants of non‐square matrices are not defined. 
 

A determinant having one row and one column is called a determinant of order 
1.   A determinant having two rows and two columns is called determinant or order 2 
and so on.   In general, a determinant having n rows and n columns is called a 
determinant of order n.   The determinant of a matrix A is denoted by | | or det. A or ∆ . 
If A has only one row and one column, that is if A =  then | | = K or det. A = K.   For a 

2x2 matrix A, where A = , | |or det. A is defined as   ‐ .  The multiplication rule is illustrated by arrows as 
follows: 
                     a            b 
 
         c         d                  a1    a2   a3 

 The determinant of order 3 is calculated as follows:Let A=   b1    b2   b3 then, | | 
                      c1    c2    c3 

 is defined as:  a1
2 32 3   ‐ a2

1 31 3   + a3
1 21 2   that is given as follows: 

  a1 (b2c3 –c2b3)  ‐ a2 (b1c3 –c1 b3)  +a3 (b1c2 – c1b2).                (1.3.1) 

 For example,| | where A = 6 54 8  = 6.8 – 4.5 =48 – 20 = 28. 

 Similarly is A=  
1 3 73 4 27 2 6      Then | |= 1[24 – (‐4)]  ‐3 [18 – (‐14)] + 7 [(‐6) – 28]  

= 28 – 96 –238 = ‐ 306. 

Definition of Singular and Non‐singular Matrices: Any square matrix is known as “Singular 
Matrix” if the | | = 0 and is known as “Non‐singular Matrix” if the | |  0. 

Properties of Determinants: 

(a) The value of the determinant remains un‐changed if its rows and columns are 

interchanged.   That is | | = |AI|. For example, |AI| = 6 45 8  = 48 – 20 = 28. 

(b) The value of the determinant changes its sign if we interchange any two rows (or any 

two columns). That is 4 86 5   = 20 ‐48 = ‐28. Similarly 4 68 5  = 20 – 48 = ‐28. 

(c) The value of the determinant is zero, if any two rows (or any two columns) are identical. 
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(d) The value of the determinant becomes C times (where C is a  constant) if any one row 
(or column) is multiplied by the constant C. 

(e) The value of the determinant is zero if any two of its rows (or columns) are proportional. 
(f) The value of the determinant remains un‐changed if any to row (or column) a constant 

multiple of row (column) is added or subtracted. 
(g) If each element of any row (or column) of a determinant is sum of two numbers, the  

determinant can be expressed as the sum of the two determinants. 
 

1.3.2 Minors and Co‐factors of the elements of a determinant: 
The “Minor” of the (i,j)th element of a determinant is defined  the determinant Mij 
obtained by removing ith row and jth column in which the element is existing.   Similarly, 
the  “Co‐factor” of the (i,j)th element of the determinant is defined as 1 i+jMij and is 
denoted by  Cij. 

 For example consider| | =  
1 3 73 4 27 2 6  then  M11 = 4 22 6  and C11 = (‐1)2 M11 .   

Similarly, M23 = 1 37 2   and C23 = (‐1)5 M23 and so on.  

The value of the determinant | |, given in the equation (1.3.1) can be expressed in terms of co‐
factors as: | |=a11C11 +a12  C12 +  a13 C13 .                           (1.3.2) 

1.3.3 Ad‐joint of a Matrix: The ad‐joint of the matrix A is defined as the transpose of the 
matrix formed by co‐factors of the corresponding elements of the determinant A.   Ad‐
joint of a matrix A is denoted by Adj. A. 

1.3.4 Inverse of a square matrix: If two matrices A and B are such that AB = BA = I, where I 
is a “Unit Matrix” or  “Identity Matrix” then the matrix B is defined as the inverse of the 
matrix A and is denoted by A‐1.   That is B = A‐1. The “Inverse” of a square matrix is also 

defined as A‐1 = | | (Adj. A) or (Adj. A ) / |A| .    (1.3.3) 

Properties: 

(a) If A is an invertible matrix, then A has unique inverse. 
(b) If A and B are invertible square matrices of the same order, then (AB)‐1 = B‐1A‐1 . 
(c) If A is an invertible matrix, then (AT)‐1 = (A‐1)T . 
(d) If A is a non‐singular matrix,then A is invertible matrix.   That is if | |  0 then A‐1 exists. 

1.3.5 Rank of a Matrix: A number ‘r’ is said to be the rank of a matrix A if it posses the 
following two properties: 
(i)There is at least at least one square sub‐matrix of A of order ‘r’ whose determinant is 
not equal to zero. 
 (ii) If the matrix contains any square matrix or order ‘(r+1)’ then the determinant of 
every such square matrix of A of order (r+1) should be equal to zero. 
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Definition of rank of a matrix: The rank of a matrix is the order of any highest order 
non‐vanishing minor of the matrix. We shall denote the rank of the matrix A by the 
symbol ρ(A). 
Properties of Rank of a matrix:  

(a) Since the rank of every non zero matrix r  1, we assign the rank of zero  or null matrix 
as zero. That is the rank of null matrix = 0. 

(b) The rank of a matrix is  r, if all (r+1)‐rowed minors of the matrix vanish. 
(c) The rank of a matrix is  r, if there is at least one r‐rowed minor of the matrix is not 

equal to zero. 
(d) The rank of the transpose of a matrix is the same as that of the original matrix.   That is  

ρ(A) = ρ(AI). 
(e) An n‐rowed square matrix of rank (n‐1), then Adj. A  0. 
(f) The rank of a matrix does not alter on affixing any number of rows or columns of zeros. 

1.3.6.Elementary Operations or Transformations of a matrix:  An “Elementary transformation 
or (E‐transformation)” is an operation of any one of the following types: 

(1) The interchange of any two rows (or Columns). Symbolically this transformation is denoted 
by Ri↔Rj (interchange if ith row and jth row.   Similarly, inter change of ith column and jth column 
is denoted by  Ci↔Cj. 

(2) The multiplication of the elements of any row (or column) by any non‐zero number. 
Symbolically this transformation is denoted by Ri→ KRj (or Ci→ KCj ), that is the multiplication 
of the elements of ith row (or column) by non‐zero number K.  

(3) The addition to the elements of any other row (or column) the corresponding elements of 
any other row (or column) multiplied by any number.   Symbolically, Ri→Ri+ KRj ( or Ci→Ci + 
KCj) implies that addition of K times jth row (or column) to the ith row (or column). 

Definition: A matrix obtained from a unit matrix by a single elementary transformation is called 
“Elementary matrix” or “E‐matrix” 

Result (1): Every elementary row (or column) transformation of a matrix can be obtained by 
pre‐multiplication (or post‐multiplication) with corresponding elementary matrix. 

Result (2):Elementary transformations do not alter the rank of the matrix. 

Result (3):The rank of the matrix remains un‐altered by a finite chain of elementary operations. 

 Basically there are two forms namely (1) Echelon form and (2) Normal form or Canonical 
form of a matrix.   They are defined as follows: 

Definition (1): A matrix A is said to be in Echelon form if: 

(a) Every row of A which has all its entries 0 occurs below every row which has a non zero 
entry. 

(b) First non‐zero entry in each non‐zero row is equal to 1. 
(c) The number of zeros before the first non‐zero element in a row is less than the number 

of such zeros in the next row. 
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For example the matrix A = 
0 1 4  5 0 0 1 30 0 0  0 is in Echelon form. 

Definition(2): Every mxn matrix with rank r can be reduced to the form        , which is known 

as “Normal or Canonical” form by a finite chain of E‐operations, where  is the r‐rowed unit 
matrix. 

Result (1): The rank of mxn matrix A is r if and only if (iff) it can be reduced to the normal form        , by finite chain of E‐operations. 

Result (2): If A be an mxn matrix with rank r, then there exist non‐singular matrices P and Q 

such that PAQ=         . 

Definition:  Equivalence of Matrices: If B be an mxn matrix obtained from an mxn matrix A by 
finite number of elementary transformations of A, then A is called equivalent to B and is 
denoted by A ~ B.  

Properties:  

(a) Reflexivity: Equivalence property is reflexive.   That is A ~A. 

(b) Symmetry: Equivalence is symmetric.    That is if A ~ B, then it implies that B~A . 

( c) Transitivity:  Equivalence is transitive.   That is if A ~ B,B~C, then, A ~C . 

1.4. Applications and Worked out examples. 

Matrix theory has lot of applications in many fields where there is a need to analyze many 
variables at a time.   For example in solving system of linear equations, Linear Programming 
Problems, Transportation Problems, Game theory, Design of experiments, Multivariate 
analysis, Discriminate Analysis, Factor Analysis,  Business Forecasting, Marketing, Medicine, 
meteorology, weather forecasting  and so on. To demonstrate, first we discuss matrix 
Analysis in solving system of linear equations in the following section. 

1.4.1 Solving a System of Linear Equations. 

A system of equations in two variables (or unknowns) is of the type: 
   a1 x +  b1 y  = c1 
   a2 x +  b2 y =  c2      (1.4.1) 
 
Similarly, a system of three unknowns (or variables) is of the form: 
   a1 x +  b1 y +  c1 z  = d1 

   a2 x +  b2 y  +  c2 z = d2 

   a3 x +  b3 y  +  c3 z = d3      (1.4.2) 
Homogeneous System: A system of linear equations is said to be homogeneous if the 
constant term in each equation is equal to zero.   That is c1 = c2 = 0 in equation (1.4.1) and     
d1 = d2 = d3 = 0 in equation (1.4.2). 
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Consistent and In‐consistent System of equations: A system is linear equations is said to be 
“consistent” if it poses at least one solution.   Otherwise, the system is known as 
“In‐consistent” system. 
 
 A consistent system of linear equations can be solved by using matrix theory by the 
following two methods.   Namely: 
 
(1) The method Matrix Inversion  and  
(2) The Method of Reduction using elementary row transformations. 

These methods with illustrated examples are explained in the following section. 
(1) The method Matrix Inversion:Let us consider a system of 2‐linear equations in 2‐

variables (unknowns) as follows: 
a1 x +  b1 y  = c1 

   a2 x +  b2 y =  c2      (1.4.3) 
In the matrix notation these equations can be written as: 1 12 2    =   12    or AX = B      (1.4.4)                                       

Where A =  1 12 2   , X =      and B = =   12 . 

Multiply both sides of equation (1.4.4) by A‐1 , then we have: 
  A‐1(A)X  =  A‐1 B .        (1.4.5) 
 By the property of A‐1we know that A‐1A  =I.   Hence we have,  
  IX  =  A‐1 B .         (1.4.6) 
Since, IX = X itself, we have: 
  X  =  A‐1 B.         (1.4.7) 
Thus by finding A‐1 and multiplying this inverse with B, the values of X can be obtained, 
which is solution to the given system of linear equations. This method of analysis can be 
extended to K‐ number of linear equations on similar lines. 
Example (1.4.1) :Solve the system of linear equations using matrix inversion method. 
    2x – y  + 2z = 6 
    x – 2y + 3z  =  6 
    3x – 3y  ‐   z  = ‐6 . 
Solution: Given system of linear equations can be expressed in matrix notation as follows: 

   =   or A X  = B.      (1.4.8)

  

Where, A =  ,   X =     and B =   .   The solution of the given system of 

linear equations is:   

 X = A‐1 B or           =   .  Hence we have to find A‐1 first to get the 

solution of the equations.  To find the inverse, we have to find |A| and Adj. (A) as follows: 
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|A| = =  2(2 + 9) + 1 (‐1 – 9) + 2 (‐3 +6) = 22‐10 + 6  =  18 . 

Similarly, Adj. (A) =    .   Hence, A‐1 = Adj. (A) \ |A| =  (1\18)   .  

Therefore,    = (1\18) =  (1/18)   =    .  Hence, the solution to 

the given system of equations is:  x = 1, y = 2 and z = 3. 

Important Remark:   This method of solution can be applied only when the coefficient matrix in 
(1.4.4) is a non‐singular matrix.   That is when |A| is not equal to zero. 

(2) The Method of Reduction using elementary row transformations. 

In order to find the solution of a given system of linear equations, using elementary row 

transformations, we use any one of the following elementary row transformations.   Namely: 
(1) interchange of two rows. 

(2) multiplication of a row by a non‐zero number and  

(3) addition of a product of the elements of any row by any constant to the  

corresponding elements of the other row. 

 In this method, we use another concept known as “Augmented Matrix” which is defined 
as follows: 

Definition: a matrix is said to be augmented matrix if it is enlarged by introducing one or more 
new columns. 

 Let us consider the following system of Linear equations. 

a1 x +  b1 y +  c1 z  = d1 

   a2 x +  b2 y  +  c2 z = d2  

   a3 x +  b3 y  +  c3 z = d3      (1.4.9)  

First of all we express (1.4.9) as the augmented matrix B as follows: 

B  =
            

                  (1.4.10) 

By elementary row transformations, this augmented matrix B will be reduced to the following 
form:             

 .   Then, the solution to the given system of linear equations is:  

x = α, y =  β  and  z = γ . Now we proceed to explain this method of reduction using elementary 
row transformations, with an example. 
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Example (1.4.2): Solve the following system of linear equations: 

   4x + 2y =  3 

   3x – 4y =  5 

 

Solution: First we have to form the augmented matrix as follows: 4 2 33 4 5 .  To make the first element in the first row  4 as 1 we subtract elements of 2nd row 

from the corresponding elements of  1st   row.   This operation is denoted by R1 – R2 .   Then we 
have : 1 6 23 4 5 .   To make first element in the 2nd row as zero, we multiply the elements of 1st 

row by 3 and subtract the corresponding elements from the elements of 2nd row.   This 
operation is denoted by R2 – 3R1.   Thus we have: 1 6 20 22 11 .   To make second element in 2nd row, that is ‐22 as 1, we multiply the entire 

elements of the row by – (1\22).    This operation is denoted by ‐(1\22)R2.  Then we have: 1 6 20 1 1\2  .   Finally, we have to make second element in the 1strow, that is 6 as zero.   For 

this, we multiply the elements of 2nd row by ‐6 and add these elements to the corresponding 
elements of 1st row.   This operation is denoted by R1+(‐6)R2   or R1 – 6R2 .  

Then we have: 
1 0 10 1 1\2 . 

 Hence the solution for the given system of linear equations is x = 1 and y = ‐1\2. 

 On similar lines, matrix analysis has lot of other applications in Operations Research, 
Linear Programming problems, Transportation Problems, Game theory, Design of experiments  

and so on.  

1.5. Summary 

 In this lesson the concept of matrix is introduced along with different type of matrices 
and their properties.   Various operations of matrices, namely addition, subtraction and 
multiplication of matrices along with their properties are discussed.   Determinants, Rank and 
inverse of the matrix are introduced and also discussed various properties and their 
applications.    Matrix analysis has lot of applications in various fields like solving system of 
equations, Linear Programming Problems, Transportation Problems, Game theory and so on 
Various Elementary operations applicable on matrix analysis along with various forms of 
matrices and reduction of “Normal form” or “Canonical form” are discussed along with their 
properties and applications.   Finally, “Equality of matrices” and application of matrix analysis in 
solving system of linear equations are discussed.   Application of matrix analysis in design of 
experiments will be discussed in Unit – V. 
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1.6. Self assessment questions 

1. Define a matrix and discuss various types of matrices along with their properties. 

2. Explain various operations of matrix analysis along with their properties. 

3. Find the determinants of the following matrices: 

A = 
1 3 24 1 23 5 2 B = 2 35 7    C =  

4 6 11 3 65 7 9    D =   
1 2 72 0 23 4 6  

 

{Answers: |A| = 28; |B| = ‐1  |C| =  ‐194  |D|= ‐180 }. 

4. Find Ad‐joints of the following matrices: 

A = 
1 2 30 5 02 4 3 ;B =   1 23 5 ;  C =  

0 1 21 2 33 1 1 ;D =  
1 3 24 0 65 7 3  

 

{Answers: Adj. (A) = 
15 6 150 3 010 0 5  ; Adj. (B) = 5 23 1 ; 

 Adj.(C) =  
1 1 18 6 25 3 1 ;  Adj. (D) =  

42 23 1818 7 228 22 12 } 

5. Find the rank of the following matrices: 

A = 2 4 3    3 5 1 24 , B =  
3 1 26 2 43 1 2 , C = 

1 2 32 3 40 2 2 ’ D =  
0 0 00 0 00 0 0 ’ I = 

1 0 00 1 00 0 1  

{Solution: ρ (A) = 2;  ρ (B) = 1 ; ρ (C) = 3; ρ (D) = 0; ρ (I) = 3 }. 
6. Find the inverse of the following matrices: 

A =  1 35 7  ;B =   
4 6 11 3 65 7 9  ;C =   

0 1 21 2 33 1 1 ; D =   
  0  00 0 1 . 

 

{Answers: A‐1= (‐1/8) 7 35 1  B‐1= (‐1/194)
– 15 61 3921 31 238 58 18 ; 

C‐1 = (‐1/2)
1 1 18 6 25 3 1 ; Since, |D|= Cos2α + Sin2 α = 1, D‐1 exists; where 

, 

 D‐1  =  
  0  00 0 1 .}    

7. Show that AA‐1 = A‐1A  = I by considering all the matrices given in the above question 5. 
8. Solve the following system of linear equations by using (1) matrix inversion method and (ii) : 

Reduction method using elementary row transformations. 
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(a) 2x –y +3z = 9       (b) 2x  ‐ 3y  + 3z = 1      (c) 2x – 3y +   z = 7 
x +y +  z = 6               2x + 2y + 3z =  2           2x +   y  ‐    z = 1 

x – y + z = 2               3x ‐  2y + 2z =  3                   4y  + 3z = ‐11 
{ Solutions: (a) x = 1; y = 2 and z = 3; (b) x = 7/5, y = 1/5, z = ‐2/5; (c) x = 1, y= ‐2, z = ‐1.} 

9. A company manufactures two types of lap‐tops which are assembled and finished in two 
workshops W1 and W2.   Each type of lap‐top takes 20 hours and 10 hours for assembly and 
5 hours and 3 hours for finishing in the respective workshops.  If total number of hours 
available  are 450 and 230 in workshops W1 and W2 respectively, calculate the number of 
lap‐tops of each type, in both workshops using (i) matrix inversion method  and (ii) 
Reduction method using elementary row transformations. 
{Solution: Let x represents number of lap‐tops of the first type and y represent number of 

lap‐tops of the second type.    Then we have 20 510 3  = 450230  . x = 20 , y = 10 . } 

10.  Let A = 
2 1 44 0 23 2 7 , find A‐1 using elementary row operations. 

{Solution:  A‐1 =  
2 1/2 111 1 64 1/2 2 } 

1.7. Further readings 

1. A.R. Vasishtha “Matrices” Krishna Prakashan Media (p) Ltd.; Thirty fourth Edn.,Meerut – 250 
001; 2003. 

2. A. RamachandraRao and P. BhimaShankaram “Linear Algebra” Tata McGraw‐Hill Publishing 
Company Limited; 1992. 

3. D.D. Joshi “Theory of Linear Estimation” Woley Eastern Ltd. New Delhi. 2005. 

4. Gupta and Kapoor “fundamentals of Applied Statistics” Sultan Chand & sons, New Delhi. 
2008. 
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Lesson – 2 

Vectors of Matrix Algebra 
2.0  Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts of Vector analysis of Matrix Algebra, definitions and 

applications. 
• The concepts of orthogonal matrix and Idempotent Matrix. 
• The characteristic equations and characteristics roots.  
• Calculation of Eigen Values and Eigen Vectors. 
• Cayley‐Hamilton theorem and its Applications. 

 

Structure 

2.1    Introduction to Vectors and vector Spaces 
2.2    Fundamental concepts and definitions of Matrix Polynomials 
2.3    Characteristic roots and characteristic Vectors of a matrix 
2.4    Cayley‐Hamilton theorem and its applications  

             2.5    Summary 
             2.6    Self Assessment Questions 
             2.7  Further Readings  

 

2.1. Introduction to Vectors and vector Spaces 
 

              In the previous lesson we have discussed some fundamental concepts of matrix   
analysis, where the elements of the matrix are real numbers. We can extend this analysis in 
many directions.   For example, one can extend this to complex numbers by considering the 
elements of a matrix as complex numbers.   Similarly one can view the elements in a row or 
column as a row or column Vector. Those concepts relating to these extensions are discussed in 
this lecture.   First we discuss some fundamental concepts of Vectors and vector space of the 
given matrix.  A vector is defined as follows: 
 
Definition: Any ordered n‐tipple of numbers is called an n‐vector. By an ordered n‐tipple we 
mean a set consisting ‘n’ numbers, in which the place of a number is fixed.   For example 
elements of matrix in a row or in a column, where 1st ,2nd and nth element’s places are fixed and 
are denoted by x1,x2,.,.,.,xn, where, these numbers are any real or complex numbers.  If A is a 
matrix of size mxn, then each row of A  contains ‘n’ elements and hence is an n‐vectorand is 
known as “Row Vector” of A.   Similarly, each column ofthe matrix A consists of ‘m’ elements 
hence, is a m‐vector and is known as a “Column Vector” of A. This ordered n‐tipple is called an 
n‐vector and is denoted by X = (x1,x2,.,.,.,xn ).   For example, (1,0,‐1,3,5,6) is a 6‐vector.    
Similarly, (x1,x2,x3) is a 3‐vector and (2, ‐8, 11, 3) is 4‐vector and so on. 
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2.1.1. Algebra of Vectors: Since, an n‐vector is nothing but a row matrix or a column matrix, 
one can develop an algebra of vectors in the same manner as the algebra of matrices or 
operations of matrices discussed in the previous lecture. 

(a) Equality of two Vectors: Two n‐vectors X and Y, where X = (x1,x2,.,.,xn) and Y = (y1,y2,.,.,.,yn) 
are said to be equal if and only if their corresponding components are equal.   For example if X 
= (4, ‐10 , 12) , Y = (4,‐10, 12) and Z = (12, ‐10, 4), then X = Y but X   Z. 

(b) Addition of two Vectors: If X = (x1,x2,.,.,xn) and Y = (y1,y2,.,.,.,yn) are two n‐vectors, then by 
definition X + Y = (x1+y1, x2+y2,.,.,.,xn+yn), which is a n‐vector whose elements are the sum of the 
corresponding elements X and Y.  

(c) Multiplication of a Vector by a Scalar: Let C is any number and X = (x1,x2,.,.,xn) a n‐vector, 
then by definition the product CX = (Cx1, Cx2,.,., Cxn). 

Properties of addition and scalar multiplication of Vectors: If X, Y, Z are any three n‐vectors 
and a,b are any two numbers, then the following properties are true for addition and scalar 
multiplication of vectors. 

(1) X + Y = Y + X. 
(2) (X + Y) + Z = X +( Y + Z). 
(3) a(X + Y) = aX + aY. 
(4) (a + b) X =  aX + bY. 
(5) a(bX) = (ab)X = bax 

 
(a) Linearly dependent and linearly independent set of Vectors: Let us consider a set ‘r’ n‐ 

vectors  X1, X2, .,.,.,Xr.  These set of vectors is said to be “Linearly Dependent Vectors” if there 
exists ‘r’ scalars C1, C2, .,.,.,Cr not all zeros, such that: 

X = C1X1 + C2 X2 +  .,.,., + CrXr  = 0,     (2.1.1) 

 where 0 denote a null vector or n‐vector whose elements are all zeros. 

In particular equation (2.1.1) holds good when C1 = C2 = .,.,.,= Cr = 0, then the set of  

vectors is said to be “Linearly Independent Vectors”.   The vector X expressed in theform  

X = C1X1 + C2 X2 +  .,.,., + CrXr is said to be a “Linear Combination”of the Set of Vectors X1 , X2 ,  
.,.,.,Xr.   Here C1,C2,.,.,.,Cr are any numbers.   The following two results of linear combinations 
are obvious. 

Result 1: If a set of vectors is linearly dependent, then at least one member of the set  

can be expressed as a linear combination of the remaining members. 

Result 2: If a set of vectors is linearly independent, then no member of the set can be  

expressed as a linear combination of the remaining members. 

(b) The n‐vector Space and sub‐space: The set of all n‐vectors of a field F is called the n 

vector space over F .   It is usually denoted by Vn (F) or simply by Vn .   Similarly, a non‐empty 
set, S of vectors of Vn is called a “vector sub‐space” of Vn if a + b belongs to S whenever a,b 
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belong to S and Ca belongs to  S whenever C belongs to S, where C is any scalar.   It is important 
to note that every sub‐space of Vn contains the zero vector, which is being the scalar product of 
any vector with the scalar zero. 

2.2. Fundamental concepts and definitions of Matrix Polynomials 

Now we proceed to explain some fundamental concepts of “Eigen values” and “Eigen 

Vectors” along with polynomials of matrices known as “Matrix Polynomials”.   First we define 
the concept of “Matrix Polynomial” as follows: 

Definition: An expression of the form: 

 F(λ) = A0 + A1λ+A2 λ2+.,.,.,+Am‐1 λm‐1+Amλ
m   (2.2.1) 

Where A0, A1, A2, .,., Am, are all square matrices of the same order is called as “Matrix 
Polynomial” of degree ‘m’ provided Am is not a null matrix.   The symbol λ is called 
“Indeterminate”.   If the order of each of the matrix coefficients A0, A1, A2, .,., Amis ‘n’, then we 
say that that the matrix polynomial is n‐rowed.  According to this definition of matrix 
polynomial, every square matrix can be expressed as a matrix polynomial with zero degree.  For 
example, let A is any square matrix then we can write A =λ0A. 

2.2.1. Equality of polynomials: Two matrix polynomials are equal if and only if the coefficients 
of the like powers of λ are the same. 

Theorem(2.2.1):Every square matrix, whose elements are ordinary polynomials in λ, can easily 
be expressed as a matrix polynomial in λ of degree ‘m’, where m is the highest power of λ 
occurring in any element of the matrix. 

2.3.Characteristic roots and characteristic Vectors of a matrix. 

 Let A =  be an n‐rowed square matrix.  Let X = 
12  be a column vector. 

Consider the vector equation:AX = λX,                                                                               (2.3.1) 

 where λ is a scalar, that is any number. 

 It is observed that the vector equation (2.3.1), has an obvious solution X = 0, that is a 
zero vector is an obvious solution for any value of λ.   But an interesting question is 
that:whether there exists a scalar λ and a non‐zero vector X satisfying vector equation (2.3.1)?   
To answer this question we proceed as follows: 

 Consider a unit matrix I of order n, and then the vector equation (2.3.1) can be written 
as:AX = λI X  or (A –λI) X  =  0       (2.3.2) 

 The above matrix equation represents the following system of ‘n’ homogeneous linear 
equation in ‘n’ unknowns. 

(a11 – λ) x1 + a12 x2 + .,.,.,+a1nxn = 0 

a21 x1 + (a22– λ) x2 + .,.,.,+a2nxn = 0 
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…………………………………………………… 

…………………………………………………... 

an1 x1 + an2 x2 + .,.,.,+(ann – λ) xn= 0.      (2.3.3) 

 

 The matrix (A –λI) in the vector equation (2.3.2) is called “Coefficient Matrix” and is 
given as follows:  λ  . , . , . ,λ  . , . , . ,  λ                                                                 (2.3.4) 

Result: The necessary and sufficient condition for the system of equations (A –λI) X  =  0 to 
possess a non‐zero solution (X  0 ) is that the coefficient matrix (A –λI) should be of the rank 
less than the number of unknowns ‘n’.    

 Above result will be true if and only if the coefficient matrix (A –λI) is singular.   That is 
if and only if the determinant of the coefficient matrix must be equal to zero.   That is  

|(A –λI) |= 0         (2.3.5) 

Thus the scalars λfor which|(A –λI) |= 0, the roots of the equationare of special 
importance in matrix algebra and are known as “Eigen Values” or Characteristic Roots” or 
“Characteristic Values” or “latent roots” or “proper values” of the matrix A.   Based on the 
above discussion, now we proceed to give definitions of Eigen values and Eigen vectors as 
follows:  

Definition (1):Let A =  be any n rowed square matrix and λ is an indeterminate.   The 
matrix (A – λI) is called the “Characteristic Matrix” of A, where I is the unit matrix of order n. 

Definition (2): The determinant |A – λI|=
 λ  . , . , . ,21 λ  . , . , . ,  λ  

 is an ordinary polynomial in λ of degree n, is called the “Characteristic Polynomial” of A. 

Definition (3): The equation |A – λI|= 0 is called “Characteristic Equation” of A and the roots 
of this equation are called “Characteristic roots” or “Characteristic values” or “Eigen values” or 
“Latent roots” or “proper values” of the matrixA . 

Definition (4): The set of all the Eigen values or characteristic roots of the matrix A is called the 
“Spectrum” of A. 

Definition (5):If λ is the characteristic root of an nxn matrix A, then then a non‐zero vector X 
such that AX = λX is called the “Characteristic vector” or “Eigen vector” or “Latent vector”of the 
matrix A corresponding to the characteristic root λ.    

 Now we proceed to discuss some results relating to characteristic roots and 
characteristic vectors of matrices. 
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Result (1): The number λ is the characteristic root of a matrix A, if and only if there exists a 
non‐zero  vector X such that AX = λX. 

Result (2):If X is a characteristic vector of a matrix A, corresponding to the characteristic value 
λ, then CX is also a characteristic vector of A corresponding to the same characteristic root λ, 
where C is any non‐zero scalar. 

Result (3):If X is a characteristic vector of a matrix A, then X cannot correspond to more than 
one characteristic value of A. 

Result (4): The characteristic vectors corresponding to distinct characteristic roots of a matrix 
are linearly independent. 

 Now we proceed to explain the process or procedure of finding Characteristic roots and 
characteristic vectors of a given matrix A. 

2.3.1. The procedure of finding Eigen values and Eigen vectors:  

 Let A =  be the given square matrix of order n.   The procedure of calculating 

characteristic roots and characteristic vectors is explained as follows: 

Step – 1: Write the characteristic equation of the given matrix.   That is |A – λI|= 0 is to be 
formed. 

Step – 2: Form the polynomial of degree n in λ. 

Step – 3: The equation formed in step 2 will have n roots.   These n roots denoted by 
λ1,λ2,.,.,λn are the characteristic roots or Eigen values of the given matrix A. 

Step – 4: If λ1is the Eigen value of the matrix A, then the corresponding Eigen vector of the 

matrix A will be the non zero vector X =  , satisfying the equation  AX = λ1X or(A ‐ λ1I)X=0. 

 Using the above procedure, now we proceed to work out some examples of finding 
characteristic roots and characteristic vectors of a given matrix.  

Example (2.3.1): Find the characteristic roots of the matrix A = 1 42 3 . 

Solution: The characteristic equation of the given matrix is: |A – λI|= 0.   Thus we have: 1  42 3    = 0  or (1 – λ)(3 – λ) – 8 = 0 or λ2 ‐ 4 λ – 5 = 0 or (λ – 5)(λ + 1) = 0. 

Hence, λ = 5 and λ = ‐1 are the roots of the equation and hence are called characteristic roots 
or Eigen values of the given matrix A. 

Example (2.3.2): Find the characteristic roots of the matrix A =  . 

Solution: The characteristic equation of the given matrix is: |A – λI|= 0.   Thus we have:  
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 = 0 or (1 – λ)(‐4 – λ) (7 – λ) = 0.   Hence λ = 1 ,‐4 and 7 are the 

characteristic roots of the matrix A. 

Example (2.3.3): Find the characteristic roots of the matrix A = . 

Solution: The characteristic equation of the given matrix is: |A – λI|= 0.   Thus we have:  

 =   =  ( 2 – 1) ‐1 ( ‐  + 2) + 2 ( ‐ 1 + 2 ) = 0. 

= 3 ‐ 6  + 4 = 0 or (  ‐ 2) ( 2 + 2  ‐ 2) = 0.   The roots of the equation are 2, ‐1 √3.   Hence, 
the characteristic roots of the matrix are 2, (‐1+ √3) and (‐1 ‐ √3). 

Example (2.3.4): Determine the Eigen values and Eigen vectors of the matrix A = 5 41 2 . 

Solution: The characteristic equation of the given matrix is: |A – λI|= 0.   Thus we have: 5  41 2    = 0  or (5 – λ)(2 – λ) – 4 = 0 or λ2 ‐ 7 λ +6 = 0 or (λ – 6)(λ ‐ 1) = 0. 

Hence, λ = 6 and λ = 1 are the roots of the equation and hence are called characteristic roots or 

Eigen values of the matrix A.   Now we proceed to calculate Eigen vectors X = 12  of the matrix 

A corresponding Eigen values 6 and 1.   The Eigen vector for the Eigen value 6 is given by: 

(A – 6 I) X = 0. That is 5 6 41 2 6 12   =  00   or      1 41 4 12   =  00  .    Applying 

elementary row operation R2 = R2 + R1 , that is adding 2nd row and 1st row to get second row, we 

have: 1 40 0 12   =  00 .   Since the rank of the coefficient matrix is 1.   Therefore, these 

equations have 2 ‐1 = 1 linearly independent solution. These equations reduce to a single 
equation namely, ‐x1 + 4x2 = 0. Thus we have x1 = 4, and x2 = 1.  Thus the Eigen vector of the 

matrix A, corresponding to λ = 6 is given by X1 = 41 .   Now we proceed to find the Eigen vector 

for λ = 1 is given by: (A – 1I) X = 0. 

 That is 5 1 41 2 1 12   =  00   or      4 41 1 12   =  00  . 

 Thus we have: 4 x1 + 4x2 = 0 and x1 + x2 = 0.    

Solving these equations we have x1 = 1 and  x2 = ‐1. Hence the second Eigen vector for λ = 1 

 X2 = 11 .    
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2.4. Cayley‐Hamilton theorem and its applications.  

 Now we proceed to prove an important theorem known as “Cayley‐Hamilton Theorem” 
which has lot of applications in matrix analysis particularly in obtaining the inverse a square 
matrix. 

2.4.1.Cayley‐Hamilton theorem: 

Statement: Every Square matrix satisfies its characteristic equation. 

Explanation: If A is a square matrix or order n, then the characteristic equation |A – λI|can be 
expressed as (‐1)n [λn + a1λ

n‐1 + a2λ
n‐2 +.,.,.,+ anλ

0].   Then the matrix equation:  

Xn + a1Xn‐1 + a2Xn‐2 +.,.,.,+ anI= 0 is satisfied by X = A. That isAn + a1An‐1 + a2An‐2 +.,.,.,+ anI = 0. 

Proof: We know that the elements of the matrix (A –λ I) are at most the first degree in λ, the 
elements of Adj. (A –λ I) are ordinary polynomials in λ of degree (n‐1) or less.   Therefore, 

Adj.  (A –λ I) can be written as a matrix polynomial in λ and is given as follows: 

Adj. (A –λ I) = B0 λn‐1 + B1λ
n‐2 + .,.,.,+Bn‐2 λ + Bn‐1.    (2.4.1)  

Where, B0,B1.,.,.,Bn‐1 are matrices of order nxn, whose elements are functions of aij’s. 

We know that A Adj. A = |A|I .   Hence using the equation (2.4.1) we have: 

(A –λ I)   Adj. (A –λ I)  = |A –λ I|I .    

Therefore we have: (A –λ I) ( B0 λn‐1 + B1 λn‐2 + .,.,.,+Bn‐2 λ + Bn‐1) 

 = (‐1)n [λn + a1λ
n‐1 + a2λ

n‐2 +.,.,.,+ an ]I.                                     (2.4.2) 

Now, comparing coefficients of like powers of λ on both sides of equation (2.4.2) we have: 

-IB0 = (‐1)nI, 

         AB0 ‐  IB1 = (‐1)n a1I 

   AB1 ‐  IB2 = (‐1)n a2I 

    . . . . . . 

    . . . . . . 

   ABn‐1  = (‐1)nanI.                  (2.4.3) 

Pre‐multiplying above set of equations given in (2.4.3) successively by An,An‐1,.,., I and adding, 
we obtain:  0 = (‐1)n [An + a1An‐1 + a2An‐2 +.,.,.,+ anI].  

Thus we have: An + a1An‐1 + a2An‐2 +.,.,.,+ anI= 0.   Hence the theorem. 

2.4.2. Applications of Cayley‐Hamilton Theorem: 

 The Cayley‐Hamilton theorem can be applied to find the determinant of a given 

square matrix and also its inverse.   These applications are discussed as the following two 
results. 

Result (1):If A be a non‐singular matrix, |A|  0, then |A| = (‐1)n an and hence an  0. 
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Result (2): Pre‐multiplying [An + a1An‐1 + a2An‐2 +.,.,.,+ anI= 0]by A‐1 we have: 

An‐1 + a1An‐2 + a2An‐3 +.,.,., + an‐1I+ an A‐1= 0.    (2.4.4) 

Hence we have A‐1 = ‐(1/an ) [An‐1 + a1An‐2 + a2An‐3 +.,.,., + an‐1I].  (2.4.5) 

Example (2.4.1): Find the characteristic equation of the matrix A = . 

Show that A satisfies the Cayley‐Hamilton theorem and hence find A‐1.  

Solution: : The characteristic equation of the given matrix is: |A – λI|= 0.   Thus we have:  

=  (2 – ){(2 – )2 – 1} + 1 { ‐1(2 – ) + 1} + 1 {1 – (2 – )} 

= (2 – ) (3 ‐ 4  + 2 ) + (  ‐ 1) + (  ‐ 1)  =  ‐ 3 + 6 2 ‐9  + 4. 

Thus the characteristic equation of the matrix A is given by 3 ‐ 6 2 + 9  ‐ 4I = 0. 

Now we have I =
1 0 00 1 00 0 1 ,  A =   

2 1 11 2 11 1 2 , A2 = AxA = 
6 5 55 6 55 5 6  

A3 = A2xA = 
22 21 2121 22 2121 21 22 . 

Now we can verify that  A3 ‐ 6 A2+ 9 A ‐ 4 I = 0.That is 22 21 2121 22 2121 21 22   ‐ 6 
6 5 55 6 55 5 6  + 9  

2 1 11 2 11 1 2  ‐ 4 
1 0 00 1 00 0 1  =

0 0 00 0 00 0 0 . 

Thus Cayley‐Hamilton theorem is satisfied.   Now we proceed to calculate A‐1 , where: 

 A‐1 = (1/4) [A2 – 6A + 9I].Now we have: 

A2 – 6A + 9I = 
6 5 55 6 55 5 6  - 6

2 1 11 2 11 1 2  + 9  
1 0 00 1 00 0 1  =  

3 1 11 3 11 1 3  

Therefore A‐1 = (1/4) 
3 1 11 3 11 1 3  or 

3/4 1/4 1/41/4 3/4 1/41/4 1/4 3/4 .   Further one can verify the result 

that:  AxA‐1 = I. 

 2.5 Summary 

  In this lesson first we have understood the concepts of “Row vector”, “Column vector” 
and the “matrix polynomial”.   Then, we have discussed the properties of polynomials like 
equality of polynomials, addition and scalar multiplication of polynomials and their properties.   
Then we have discussed the concepts like, “Characteristic Matrix”, Characteristic Equation” 
Eigen values” or“Latent roots”, or “Characteristic roots” and their vectors and discussed the 
procedure of obtaining them along with some worked out examples.   Finally, an important 
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theorem, due to “Cayley and Hamilton” ,known as “Cayley‐Hamilton Theorem” was proved and 
discussed their special applications in finding out the determinant and the inverse of a given 
square matrix.  

 2.6           Self Assessment Questions 

1. Define row vector, column vector and equality of two vectors, with suitable examples. 

2. Explain various operations of vectors and discuss their properties.   Also explain linearly  

    dependent and independent vectors. 

3. Define n‐vector space and its sub‐space and matrix polynomials with suitable examples. 

4. Define Eigen values and Eigen vectors and calculate the same for the matrix A, where  

A = . 

5. Find the characteristic equation of the matrix A =  and show that it is satisfied 

by  A.   Hence, obtain A‐1. 

6. State and prove “Cayley‐Hamilton” theorem along with their applications. 

7. Find Characteristic roots and characteristic vectors of the matrix A =  and show  

that A satisfies the Cayley‐Hamilton theorem.  Also find A‐1. 

8. Define the characteristic equation of a square matrix and show that the matrix A  

=  satisfies the characteristic equation. 

9. Verify whether the Cayley‐Hamilton theorem is true for A =  .   If it is true, 

     Find A‐1.Also verify whether AxA‐1 = I or not. 

10.Show that the matrix A =  satisfies Cayley‐Hamilton theorem. 
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 2.7     Further Readings  

 

1. A.R. Vasishtha “Matrices” Krishna Prakashan Media (p) Ltd.; Thirty fourth Edn.,Meerut – 250    

    001; 2003. 

2. A. RamachandraRao and P. BhimaShankaram “Linear Algebra” Tata McGraw‐Hill Publishing    

    Company Limited; 1992. 

3. D.D. Joshi “Theory of Linear Estimation” Woley Eastern Ltd. New Delhi. 2005. 

4. Gupta and Kapoor “fundamentals of Applied Statistics” Sultan Chand & sons, New Delhi.   

    2008. 
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Lesson – 3 

Orthogonal Vectors and Matrices  

 

1.0  Objectives : 
After going through this lesson, you should be able to: 

• Understand the concepts of inner product, orthogonality, definitions and their 
applications. 

• The concepts of orthogonal vectors, matrices, their properties and applications. 
• The definition and application of trace of matrices. 
• Differentiation using matrices and their properties. 
• Applications of above concepts in matrix algebra.  

Structure 

3.1.      Introduction to inner product and its properties 

3.2.      Fundamental concepts and definitionsof orthogonal vectors 

3.3. Fundamental concepts and definitions of Unitary and Orthogonal matrices 

3.4.      Definition and properties of trace of a matrix and their properties 

              3.5.      Summary 

              3.6.      Self Assessment Questions 

3.7.      Further Readings 

  

3.1.Introduction to inner product and its properties. 

 In the earlier lessons, we have discussed some fundamental definition of matrix algebra 
and introduced vectors, vector spaces, sub‐spaces and polynomials.  We have also introduced 
Eigen values and Eigen vectors, their properties and applications.   Now we proceed to discuss 
some advanced topics like inner product and orthogonal vectors and matrices, which have 
further applications in matrix analysis, where the elements of the matrix can be complex 
numbers.   Now we proceed to introduce the inner product of two vectors, in the following 
section. 

3.1.1. Inner Product of two vectors:  

Definition (1): Let X and Y are two complex column vectors of order nx1, where X =  and  

Y = .    The “inner product” of the vectors X and Y, denoted by (X,Y) and is defined as: 
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(X,Y) = 1y1 +  2y2 + 3y3 +.,.,.,+ nyn .       (3.1.1) 

  Here i’s denote the conjugate complex of the complex number i .   

For all practical purposes, generally we define a 1x1 matrix with its single element.   That  

is if  is a 1x1 matrix, then we shall simply regard it as a scalar .   With this definition, the 
inner product of the vectors X and Y may be conveniently defined as: (X,Y) = XΘY.   Here XΘ is a 
1xn matrix and Y is a nx1 matrix.   Hence, XΘY is a 1x1 matrix and it has been taken equal to its 
element.   Similarly, if X and Y are real n‐vector written as column vectors, then their inner 
product will be written as: 

(X,Y) =  XT Y= x1y1 + x2y2 + .,.,., +xnyn.      (3.1.2) 

If X and Y are complex n‐vectors, written as row vectors, then their inner product is  

defined as:(X,Y) = X YΘ =x1 1 +x1 1 x2 2 + .,.,.,., xn n .   (3.1.3) 

Remark: Usually in all the “inner products” discussions, X and Y are assumed as column vectors 
of size 1x n unless otherwise stated.    

3.1.1. Properties of inner product: Let X,Y and Z are any three complex n‐vectors and C is any 
complex number, then the following results are true. 

(1) (X,X)  0, and (X,X) = 0 if and only if X = 0. 

(2) (X,Y) = , . 

(3) (X,Y+Z) = (X,Y) + (X,Z). 

(4)(X+Y,Z) = (X,Z) + (Y,Z). 

(5)(X,CY) = C(X,Y) and (6) (CX,Y) =  (X,Y). 

3.2.       Fundamental concepts and definitions of Orthogonal Vectors 

 Now we proceed to define the orthogonal vectors and matrices along with their 
properties, related results and applications in this section. 

Definition 1: Orthogonal Vectors: Let X and Y be two complex n‐vectors, then X is said to be 
orthogonal to Y if:   

 (X,Y) = 0.   That is if  XΘY = 0.      (3.2.1) 

Where XΘ is the transpose conjugate of X. 

Result 1: The relation of orthogonality is symmetric, that is if X is orthogonal to Y then Y is 
orthogonal to X.   This is because of the fact that: if X is orthogonal to Y  => (X,Y) = 0. 

This implies that ,  = => (Y,X)  = 0  =>Y is orthogonal to X. 

Result 2: If X is orthogonal to Y, then every scalar multiple of X is orthogonal to every scalar 
multiple of Y.   That is if a,b are any two scalars, then (aX,bY) =  b0 = 0.   This is because of the 
fact that (X,Y) = 0.   Thus aX and bY are orthogonal vectors. 
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Result 3: The zero vector is the only vector which is orthogonal to itself.  We know that X is 
orthogonal to X itself.   That is (X,X) = 0 =>X = 0 . 

Result 4: Two real n‐vectors X = [x1,x2,.,.,xn ]T and Y = [y1,y2,.,.,yn ]T are orthogonal if and only 
if (X,Y) = 0.   That is true if and only if XTY = 0.   That is true if and only if x1y1  +x2y2 +,.,.,+xnyn=0.  

Definition 2: Orthogonal Set: A set S of complex n‐vectors X1, X2, .,.,.,Xk is said to be orthogonal 
Set if any two distinct vectors in S are orthogonal.   

Definition 3: Orthonormal Set: A set S of complex n‐vectors X1, X2, .,.,.,Xk is said to be 
orthonormal Set if: 

(i)Each vector in S is a unit vector and 

(ii)any two distinct vectors in S are orthogonal.   

Definition 4:   Kronecker Delta: The symbol δij is said to be kronecker delta if 

   δij  = 0  when i  j and  

δij  = 1 when i = j . 

 In terms of kronecker delta, the unit matrix  can be written as: 

       =  δij  . 

 In terms of Kronecker delta an orthogonal set may be defined as follows: 

Definition 5: A set S of complex n‐vectors X1, X2, .,.,.,Xk is said to be orthonormal Set if: 

 (Xi ,Xj )  =  δij, i = 1,2,3.,.,.,k and j = 1,2,3,.,.,k. 

Definition 6: Orthogonal basis:If an orthogonal set S is a basis of Vn, then it is called an 
orthogonal basis of Vn. 

Definition 7: Orthonormal basis:If an orthonormal set S is a basis of Vn, then it is called an 
orthonormal basis of Vn. 

3.2.1. Properties of Orthogonal sets:  

(1) Every orthogonal set of non‐zero vectors is linearly independent. 

(2) Every orthonormal set of vectors is linearly independent. 

(3) If S = {X1, X2, .,.,.,Xk} is an orthogonal set of non‐zero complex n‐vectors and Y is any complex 
n‐vector, then: 

Z = Y ‐  
,, ,,  ,,  . , . , . , ,,   is orthogonal to each of the 

vectors X1, X2, .,.,.,Xk. 

 Further it is important to note that we can always construct an orthogonal basis of the 
vector space Vn from a given basis.   Orthogonal vectors have lot of applications in design of 
experiments particularly in the analysis of Balanced incomplete Block designs.  
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3.3. Fundamental concepts and definitions of Unitary and Orthogonal matrices 

Now we proceed to explain the concepts of  unitary matrices and orthogonal matrices  

which are frequently used in design of experiments. 

Definition 1: Unitary matrix:  A square matrix P with complex elements is said to be unitary 
matrix if PΘP  = I. Here PΘ is the transpose conjugate of P. 

Result: If P is a unitary matrix, then by definition PΘP  = I=> |PΘP|  =|I|=>|PΘ||P|= 1. 

 |P|  0 .   Hence, P is invertible.   Further, PΘP  = I=>PΘ =P‐1which in turn implies 

that P  PΘ = I.  Finally we conclude that if P is a unit matrix if and only if,  PΘP  = I=P  PΘ.   That 
is if PΘ = P‐1. 

Definition 2: Orthogonal Matrix:A square matrix P with real elements is said to be orthogonal if 
and only if  PT P =  I. 

Result: As in the case of unitary matrix, it can be easily seen that a real matrix P is orthogonal if 
and only if   PTP = I=PPT .   That is if and only if PT = P‐1 . 

3.3.1: Properties of Orthogonal and Unitary matrices: 

(1) A real matrix is unitary if and only if it is orthogonal. 

(2) If P is an Unitary matrix, then PT ,PΘ,  and P‐1are all unitary matrices.    

(3) If P and Q are unitary matrices then PQ is also unitary matrix. 

(4) If P is unitary, then |P| is of unit modulus. 

(5) Any two Eigen vectors corresponding to the distinct Eigen values of a unitary matrix are  

orthogonal. 

 Above properties holds good for orthogonal matrices also.   That is: 

(1) If P is orthogonal, PT and P‐1 are also orthogonal. 
(2) If P and Q are orthogonal matrices, then PQ is also orthogonal matrix. 
(3) If P is orthogonal, then |P| = 1. 

3.4.Definition and properties of trace of a matrix and their properties 

 Now we proceed to discuss another important of matrix algebra, namely trace of a 
matrix, which is defined as follows: 

Definition 1: Trace of a matrix: Let A be a square matrix of order n.  The sum of the elements of 
A lying along the principal diagonal is called the trace of A and is denoted by tr(A).    

Thus if A =  then tr(A) = ∑  = 11 +  22 + .,.,., + nn .                             (3.4.1) 

3.4.1.Properties of trace of a matrix:   Let A and B be two square matrices of order n and K be 
the scalar.   Then the following properties are true: 

(1) tr (KA)  = K tr (A). 
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(2) tr(A+B) = tr(A) + tr(B). 

(3) tr(AB)  = tr (BA). 

(4) tr (A) = tr(AT) 

3.5.      Summary 

 In this lesson some advanced topics of matrix when the elements of matrix are complex 
numbers are discussed. The concept of inner product is discussed first along with its properties.   
Then the concept of orthogonal vectors is discussed along with their properties.   Then the 
concepts of unitary and orthogonal matrices were discussed some relating results and 
properties are discussed. Finally trace of a matrix and its properties were discussed. The 
concepts of orthogonal set, orthonormal set, orthogonal basis and orthonormal basis are also 
defined.   Application of these concepts in design of experiments is discussed. 

 

3.6.      Self Assessment Questions 

1. Define inner product of two vectors and discuss its properties. 

2. Define orthogonal vectors and discuss their properties. 

3. Define (i) orthogonal set, (ii) orthonormal set and (iii) Kronecker delta. 

4. Define unitary matrix and discuss its properties. 

5. Define Orthogonal matrix and discuss its properties. 

6. If P is an unitary matrix, show that PΘ = P‐1. 

7. If P is an orthogonal matrix show that PT = P‐1. 

8. Define trace of a matrix A and discuss its properties. 

9.  Stating the conditions, show that tr(A) = tr(AT) 

10. Define orthogonal basis and orthonormal basis of vectors. 

3.7.      Further Readings. 

1. A.R. Vasishtha “Matrices” Krishna Prakashan Media (p) Ltd.; Thirty fourth Edn.,                                          

    Meerut – 250 001; 2003. 

2. A. RamachandraRao and P. BhimaShankaram “Linear Algebra” Tata McGraw‐Hill Publishing  

    Company Limited; 1992. 

3. D.D. Joshi “Theory of Linear Estimation” Woley Eastern Ltd. New Delhi. 2005. 

4. Gupta and Kapoor “fundamentals of Applied Statistics” Sultan Chand & sons, New Delhi.  

    2008. 
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Lesson – 4 

Differentiation and Quadratic forms of Matrices 
 

4.0   Objectives : 
After going through this lesson, you should be able to: 

• Understand the concepts of differentiation using matrices and their applications. 
• The concepts of quadratic forms, their properties and applications. 
• The concepts of linear transformations and congruence of matrices. 
• Orthogonal reduction of a real quadratic formand its properties. 
• Statement of Cochran’s theorem for quadratic forms and its Applications. 

Structure 

4.1.        Introduction to differentiation using matrices and Jacobian of transformation 

4.2.        Fundamental concepts of quadratic forms and their properties 

4.3.  Classification of quadratic forms 

4.4.       Statement of Cochran’s theorem and its applications 

              4.5.      Summary 

              4.6.      Self Assessment Questions 

4.7.      Further Readings  

 

4.1. Introduction to differentiation using matrices and Jacobian of       
         transformation. 
 There are numerous applications of matrix algebra in many fields particularly in 
Statistics where we deal many variables at a time.   In such situations, to determine the joint 
distribution of these variables, we need to differentiate functions involving many variables.   
Hence, there is a need to study the concept of differentiation using matrices.   In order to find 
the distribution of general functions of two random variables, we use the method of 
transformation of variables which is popularly known as “Jacobian transformation of variables”, 
which is explained in the following section. 

4.1.1. Jacobian of Transformation of variables: 

Let us consider functions of two variables (X1,X2), with the joint density function fx1,x2 (x1,x2).   
Let Y1 = g1 (X1,X2) and Y2 = g2 (X1,X2) two functions of (X1,X2).   Now we want to find FY1,Y2(y1,y2), 

Which is the joint distribution of (Y1,Y2), which is given as follows: 

FY1,Y2 (y1,y2) =  Pr (Y1   y1,Y2   y2 ) = fx1, x2 x1, x2 dx1 dx2 ,  (4.1.1)  

where,Ry1y2 = { (x1,x2): Y1   y1,Y2   y2 } . 
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Now, define:|J|  =  as the Jacobian of transformation.  

To find the joint probability density function of (Y1,Y2), solve the following simultaneous 
equations:   g1 (x1,x2)  = y1 ; g2 (x1,x2)  =  y2      (4.1.2) 

Which gives (x1,x2)   in terms of (y1,y2).   Let x1i  = g‐1
1i (y1,y2)   ,x2i = g‐1

2i(y1,y2)  , i=1,2,.,.,m  

be m set of solutions which are all real quantities.   Now calculate Jacobins as follows: 

 Ji =   .   Then the joint probability density function of (Y1,Y2) is given by: 

 

 fY1,Y2 (y1,y2)   =    ∑ fx1, x2 x1i, x2i  |Ji|.                                                         (4.1.3) 

Here, we assume that the first partial derivatives g‐1
1i ,g‐1

1i are continuous functionson the 
domain of (Y1,Y2) and |Ji|  0 on the domain of (Y1,Y2) i=1,2,.,.,.,m.   In any case, if for certain 
(y1,y2) ,the equations (4.1.2) have no real solution, then f(y1,y2) is considered as zero.   Similarly, 
if (x1i,x2i) = (x1,x2)    for all i=1,2,.,.,.,m, then   fY1,Y2 (y1,y2)  =  f(x1,x2) |J|.  (4.1.4) 

 In particular, if we require only the distribution of Y1 is required, Y2 = g2(X1, X2 ) is 
suitably chosen , and the joint distribution of (Y1,Y2) is obtained and distribution of Y1 is found 
out by integrating over Y2. 

 Above explained transformation of variables using Jacobian transformation is explained 
with the following example.  

Example (4.1.1):If X1 and X2 are independent standardnormal variables, then, show that  

( X1
2 + X2

2 ) is a chi‐square variable, with 2 degree of freedom. 

Solution: Consider the differential joint probability distribution function of X1 and X2 as follows: 

dP(x1,x2)  =  f(x1,x2)dx1 dx2 =  f1(x1)f2 (x2) dx1 dx2 .     (4.1.5) 

     =  exp { ‐ (x1
2 + x2

2)/2} dx1 dx2 .   ‐∞ x1, x2   ∞.   (4.1.6) 

Let us now transform to polar co‐ordinates by transforming the two variables by considering: 

 x1 = r cosΘ and x2 = r sin Θ.   Then the Jacobian of transformation |J| is given by: 

|J|  =   = 
cos   – sin cos   =  r .                  (4.1.7) 

Further, we know that r2 = x1
2 + x2

2 and tan Θ = x2 / x1 .   Further, as x1 and x2 varies from ‐∞ to ∞, Θ varies from 0 to 2Π. Now the joint probability distribution of r and Θ will become: 

dG (r,Θ) =    exp { ‐ r2 /2} r drdΘ .   0 ∞ and 0 Θ  2Π.   (4.1.8) 
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dG1(r) = ,   = r exp (‐r2 / 2) dr =  exp (‐r2 /2) r dr .                         (4.1.9) 

This implies that: dG1(r2) = ½ exp (‐r2/2) dr2 .      (4.1.10) 

 =   exp (‐r2 /2)1‐1d(r2/2)       (4.1.11) 

Thus, (r2/2)  = (X1
2 + X2

2 )/2 is Υ(1), that is Gamma variate with 1 degree of freedom.   Further, 

r2 = X1
2 + X2

2 is a chi‐square variate with 2 degrees of freedom. 

Now we proceed to explain some fundamental concepts of quadratic forms of matrix 

algebra in the following section. 

4.2.      Fundamental concepts of quadratic forms and their properties. 

Definition(1) : Quadratic forms: An expression of the form 

 ∑ ∑                   (4.2.1)      
 where, aij’s are elements of a field F, is called a quadratic form in the n variables, 

x1,x2,.,.,xn over a field F . 

Definition (2) :Real Quadratic forms : An expression of the form 

 ∑ ∑                   (4.2.2)      
 where, aij’s are all real numbers, is called a real quadratic form in the n variables, 

x1,x2,.,.,xn . For example, 4x2 + 8xy ‐ 6Y2 is a real quadratic form in two variables x and y. 

Similarly, 2x2 – 4y2  ‐ 6z2 +2yz ‐4zx +8xy is another real quadratic form in 3‐variables.   On similar 
lines, we can give examples of 4‐variable or more than 4‐variable quadratic forms. 

Definition (3) : Matrix of a quadratic form: If Φ = ∑ ∑     is a quadratic form in n‐
variables, x1,x2,.,.,xn , then there exists a a unique symmetric matrix B of order n such that Φ = 
XTBX where X =  [x1,x2,.,.,xn]T.   The symmetric matrix B is known as “the matrix of the quadratic 
form” ∑ ∑     . 

Definition (4): Rank of a quadratic form: Let XTAX be a quadratic form over a field F.   The rank 
of the matrix A is called the rank of the quadratic form XTAX. 

 Since every quadratic form can always be so written that matrix of its coefficients is a 
symmetric matrix.   Therefore, we shall be considering quadratic forms, which are so adjusted 
that the coefficient matrix is symmetric. 

Example (4.2.1):Write down the matrix of the following quadratic form in 3‐variables: 

x1
2 + 2 x2

2 ‐5x3
2 ‐ x1x2 +5x2x3 ‐3x1x3 .       (4.2.3) 

Solution: Let B be the matrix of the given quadratic form.   Then, we have: 

B = 
1 1/2 3/21/2 2 5/23/2 5/2 5  and X= .   Then XT= . 
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Now we can observe that XTBX will give the quadratic form given in equation (4.2.3). 

Example (4.2.2): Write down the quadratic form for the matrix A = 
1 2 32 0 53 5 5  . 

Solution: Let X= 
123 .   Then XT= .  

Then, XTAX = 1 2 3 1 2 32 0 53 5 5   =   x1
2 – 5x3

2 + 4 x1x2 + 6 x1x3 + 10x2x3 . 

4.2.1. Properties of quadratic forms: 

1. Every quadratic form over a field F in n‐variables x1,x2,.,.,xn can be expressed in the form XTBX 

Where, X = [x1,x2,.,.,xn]T is a column vector and B is a symmetric matrix of order n over the field 
F. 

2. Let A =   be a symmetric matrix over the field F. and let X = [x1,x2,.,.,xn]T be a column 
vector.   Then, XTAX determines a unique quadratic form ∑ ∑    in n‐variables 
x1,x2,.,.,xn over a field F . 

3. If A be any n‐rowed non‐zero symmetric matrix of rank ‘r’, over  field F, then, there exists an 
n‐rowed non‐singular matrix P over a field F  such that: 

 PTAP =   , where, A1is a non‐singular diagonal matrix of order ‘r’, over F and 

each 0 is a null matrix of suitable order. 

4. Every symmetric matrix of rank ‘r’ equivalent to a diagonal matrix, ‘r’, of whose diagonal 
elements only are non‐zero. 
 

4.3. Classification of quadratic forms.  

In the last section we have seen that there exists one‐to‐one correspondence between  

the set of all quadratic forms in n‐variables over a field F and the set of all n‐rowed symmetric 
matrix.   Before we proceed to discuss the classification of quadratic forms, now we define 
canonical form or normal form, Signature and Index of a real quadratic form as follows: 

Definition (1): Canonical form or Normal form of a real quadratic form:  If XTAX is a real 
quadratic form in n‐variables.  Then there exists a real non singular linear transformation X = PY 
which transforms XTAX to the form:  

YTPTAPY=  y1
2 +y2

2+.,.,yp
2‐yp+1

2‐.,.,yr
2       (4.3.1) 

Definition (2): Signature and Index of a real quadratic form: Let, y1
2 +y2

2+.,.,yp
2‐yp+1

2‐.,.,yr
2 be 

the normal form of the real quadratic form XTAX of rank ‘r’.   The number ‘p’ of the positive 
terms in a normal form of XTAX is called ‘Index’ of the quadratic form.   The excess of the 
number of positive terms in a normal form of a quadratic form XTAX, that is p‐(r‐p) = 2p – r is 
called the ‘Signature’ of the quadratic form and is usually denoted by the letter ‘s’. 
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Results: 

1. Two real quadratic forms in n‐variables are real equivalent if and only if they have the same 
rank and index (or signature). 

2. Reduction of a real quadratic form in the complex field: If A be any n‐rowed real symmetric 
matrix of rank r, then, there exists a non‐singular matrix P whose elements may be any complex 
numbers such that PTAP = diag[1,1,.,.,1,0,.,.,0], where 1 appears r times. 

3. Orthogonal reduction of a real quadratic form: if Φ = XTAX be a real quadratic form of rank r, 
in n‐variables, then there exists a real orthogonal transformation X = PY which transforms Φ to  

the form: λ1y1
2 +λ2y2

2.,.,.,+λryr
2 , where, λ1,λ2,.,.,λr are the r non‐zero Eigen values of A,  and    

n – r Eigen values of A, being equal to zero. 

3. Every real quadratic form XTAX in n‐variables is real equivalent to the form: 

y1
2 + y2

2  +.,., + yp
2 ‐ yp+1

2 ‐ .,., ‐ yr
2 .  

 Let Φ = XTAX is a real quadratic form in n‐variables x1,x2,.,.,xn.   There are basically three 
types of forms of these real quadratic forms.   Namely: (1) Definite, (2) Semi‐definite and (3) 
Indefinite forms.   Definite forms are further classified in to two categories, namely (i) Positive 
definite forms and (ii) Negative definite forms.  Similarly, Semi‐definite forms are also two 
types, namely, (i) Positive semi‐definite form and (ii) Negative semi‐definite form. These forms 
are defined as follows: 

Definition (3): Positive Definite form: If Φ 0 for all real real values of the variables, x1,x2,.,.,xn 

and Φ = 0 only if X = 0.   That is  x1=x2 = ,.,., = xn = 0. 

For example, x1
2 + x2

2 + x3
2 in three variables is a positive definite form. 

Definition (4) : Negative definite form : : If Φ 0 for all real real values of the variables, 
x1,x2,.,.,xn and Φ = 0 only if X = 0.   That is  x1=x2 = ,.,., = xn = 0. 

For example, ‐ x1
2 ‐ x2

2 ‐ x3
2 in three variables is a negative definite form. 

Definition (5) : Positive semi‐definite form: If Φ 0 for all real real values of the variables, 
x1,x2,.,.,xn and Φ = 0 for some non‐zero real vector X , that is Φ = 0 for some real values of the 
variables x1,x2,.,.,xn not all zero. 

For example, x1
2 + x2

2 + 2x3
2 – 2x1x3 – 2x2x3. Is positive semi definite form because it can be 

written in the form (x1 – x3)2 + (x2 – x3)2 which is  0 for all real values of x1 , x2 ,x3 but is zero for 
non zero values also.   For example, x1 = x2 =x3 = 1. 

Definition (6) : Negative semi‐definite form:If Φ 0 for all real values of the variables, 
x1,x2,.,.,xn and Φ = 0 for some  values of the variables x1,x2,.,.,xn not all zero. 

For example, the quadratic form –x1
2 – x2

2 – 0x3
2 in three variables x1,x2,x3 is negative semi‐

definite from. 

Definition (7) : Indefinite form: If Φ takes positive as well as negative values for real values of 
the variables x1,x2,.,.,xn then, we say that the form of Φ is indefinite form. 

For example, x1
2 – x2

2 + x3
2 in three variables x1,x2,x3 is indefinite form because it takes +1 if 
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x1 =1, x2 = 1 and  x3 = 1 and it takes ‐1 if x1 =0, x2 = 1 and  x3 = 0. 

 It is important to note that the above five forms of quadratic forms are mutually 
exclusive and are called as value classes of real quadratic forms.  Every real quadratic form 
must belong to one and only one value class. 

Result:A real quadratic form Φ = XTAX in n‐variables is: 

(1) Positive definite if and only if all the Eigen values of A are positive. 
(2) Negative‐definite if and only if all the Eigen values of A are negative. 
(3) Positive semi‐definite if and only if all the Eigen values of A are  0 and at least one 

Eigen value of A  is 0. 
(4) Negative semi‐definite if and only if all the Eigen values of A are  0  and at least 

one Eigen value of A is 0. 
(5) Indefinite if and only if A has positive as well as negative Eigen values. 

Definition (8): A real symmetric matrix A is said to be definite, semi‐definite or indefinite if the 
corresponding quadratic form XTAX is definite, semi‐definite or indefinite respectively. 

 On similar lines, we conclude that the symmetric matrix A, is positive definite if the 
corresponding form XTAX is positive definite and is negative definite it XTAX is negative definite. 

4.4.       Statement of Cochran’s theorem and its applications 

 Now we proceed to discuss an important and most widely used theorem in design of 
experiments due to Cochran (1934) along with its applications.  

Statement of Cochran’s Theorem:If qi = ∑ ∑   =1,2,.,.,m, and is of rank 
‘ri’ and ∑  = ∑ α

2 then, a necessary and sufficient condition that there exists an 
orthogonal transformation of {yα} to {zα} such that: 

   r1 +r2+.,.,.,+ri 

  qi =        ∑     zα
2 ,     is that r1+r2+.,.,+rm = N. 

   α = r1+r2+.,.,.,+ri‐1+1 

Applications of Cochran’s theorem:  Cochran’s theorem is useful in proving that certain 
“Vector quadratic forms” are distributed as sums of “Vector squares”.   This type of result has 
very important application in the “Analysis of Variance”(ANOVA) which is basically used in the 
analysis of design of experiments, and is discussed in the forthcoming units.   It is important to 
note that Cochran’s theorem ensures that the transformation is orthogonal that is, 

I = BTIB = BT B.   An alternative statement of Cochran’s theorem is that: 

Let the rank of the N‐order square matrix Ai be ri (i=1,2,.,.,q) and suppose, ∑  = I. 

A necessary and sufficient condition that there exists an orthogonal matrix B =  such that  
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Ai  =Bi
TBi is that ∑  = N.    More applications are discussed in detail in the forthcoming units, 

while discussing ANOVA and Design of experiments. 

4.5. Summary 

 In this lesson first we have discussed the differentiation using matrices particularly 
Jacobian of transformations in obtaining the joint distribution of function of two variables.   
Then, we have introduced the concept of quadratic forms their types along with properties 
of quadratic forms are discussed.   Classification of real quadratic forms are discussed the 
relation between quadratic forms and ranks, are discussed.   Finally, Statement of Cochran’s 
theorem and its applications are discussed. 

4.6.      Self Assessment Questions 

1. Explain the need of differentiation using matrices and also define the Jacobian of  

transformation. 

2. Define quadratic forms and discuss their classification. 

3. What is a real quadratic form? Also define the matrix of a quadratic form. 

4. Obtain the matrices corresponding to the following quadratic forms: 

 (i) x1
2 – 2x2

2 + 4x3
2 – 4x1x2 + 6x1x3 +4x2x3. 

 (ii) 2x1
2 + 3x2

2 + 4x3
2 +2x1x2 +10x1x3 – 4 x2x3. 

[ answers: (i)  
1 2 32 2 23 2 4 .   (ii) 

2 2 52 3 25 2 4  ] 

4. Write down the quadratic forms of the following matrices: 

A= 
2 1 51 3 25 2 4    B =  

1 0 00 5 00 0 7  

{[Answers: A =  2 x1
2 +3x2

2 + 4x3
2 +2x1x2 + 10x1x3 ‐ 4x2x3.  B= (i) x1

2 +5x2
2 ‐7x3

2] 

5. Define various forms of real quadratic forms. 
6. Discuss various properties of real quadratic forms. 
7. Define canonical form of quadratic forms.   Also define index and signature of quadratic 

forms. 
8. Define orthogonal reduction of a real quadratic form and discuss its properties. 
9. State Cochran’s theorem and discuss its applications. 
10. Define (i)   Canonical form of a Real quadratic form 

             (ii)  Signature and Index of a xd quadratic form 
             (iii) Positive definite & positive be semi – definite form 
             (iv) Negative definite & Negative semi definite form 
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 4.7.      Further Readings. 

1. A.R. Vasishtha “Matrices” Krishna Prakashan Media (p) Ltd.; Thirty fourth Edn.,Meerut – 250 
001; 2003. 

2. A. RamachandraRao and P. BhimaShankaram “Linear Algebra” Tata McGraw‐Hill Publishing 
Company Limited; 1992. 

3. D.D. Joshi “Theory of Linear Estimation” Woley Eastern Ltd. New Delhi. 2005. 

4. Gupta and Kapoor “fundamentals of Applied Statistics” Sultan Chand & sons, New Delhi. 
2008. 
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Lesson – 5. 

Fundamental Concepts of Linear Models 
 

5.0    Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts of linear models, definitions and applications. 
• The concepts of linear estimation and properties. 
• The concepts of best linear estimation. 
• Calculation of linear parametric function and its properties. 
• Applications of linear unbiased estimates.  

Structure 

5.1        Introduction to Linear Models 
5.2  Fundamental concepts and definitions of Linear Models 
5.3. Estimation of alinear parametric function and its properties 
5.4.      Best Linear Un‐biased estimates and properties 

              5.5      Summary 
              5.6.     Self Assessment Questions 

5.7.      Further Readings  
 

5.1. Introduction to Linear Models 
Linear models have lot of applications in many fields of real life.  For example, Linear 

Programming Problems (LPP) in Operations research, Analysis of Variance (ANOVA) in 
Agricultural Research, Linear regression Models in Regression Analysis or Time series and so on.   
First of all, a “Model” is a replica of some real life situation, which reacts like a real one but not 
real.   For example, to learn piloting, it is not possible to try directly in Airplane, but to be 
practiced on a similar system like an airplane and not a real one.   Such a system which is like a 
real airplane but not real, and should serve the purpose of practice the piloting by the beginner.   
Such a system which is used by the beginner is called a “Model”.   In particular, this is an “Iconic 
Model”.    Similarly, if we represent the real system using mathematical equation by using 
variables, then it is called the “Mathematical Model”.   For example regression models 
representing relation between rainfall and yield of a crop or relation between intake of food 
and calories of energy gained, number of hours of study by a student and the marks obtained 
by him in an examination, and so on.   There are many types of models and basic purpose of 
any model is the amicability of the model for further analysis.   It is very difficult to tackle the 
real life situation.   First we convert the situation to a model and for the model, one can get 
solutions.   The obtained solution of the model is to be applied to the real situation, so that the 
problem of the real situation can be solved.   Thus to obtain the solution to the problem of a 
real situation, we use the suitable model and obtain the solution to the model, which in turn 
can be applied in real situation so that the existing problem can be solved.   This is the 



 
 

Design of Experiments                             5.2     Fundamental Concepts of Linear Models               
 
procedure to be adopted in many research problems to solve many practical problems, in 
Agriculture, Medicine, Marketing, meteorology, predictions of the future behavior of a random 
variable.   
 On similar lines, to obtain the solutions for the problems relating to agriculture, we have 
to frame the suitable model, after forming the model, we can discuss about the method of 
obtaining solution to the model.   Thus first, we are discussing the linear model along with its 
fundamental concepts in the following section. 

5.2. Fundamental concepts and definitions of Linear Models 
First we define the “Linear Model”, its parameters, “Linear Parametric Function” and  

the method of estimation of parameters of the linear model.   We also discuss the properties of 
these estimates and related results in this section. 

Definition (1):  Linear Model or Gauss‐Markov Setup:Let Y1,Y2,.,.,Yn be n‐random variables or 
observations collected from a real situation.  Let β1, β2,.,., βm be ‘m’ unknown parameters. 

 Let Xij, i=1,2,.,.,n;j=1,2,.,.,m be mn known variables.   Let: 

E(y1) = X11 β1+X12 β2 ,.,., X1m βm. 

E(y2) = X21 β1+X22 β2 ,.,., X2m βm. 

……………………………………………… 

……………………………………………… 

……………………………………………… 

E(yn) =Xn1 β1+Xn2 β2 ,.,., Xnm βm.        (5.2.1) 

 Expectations of the random variables Y1,Y2.,.,Yn given in equations (5.2.1) are linear 
functions of the un‐known parameters β1, β2,.,., βm .  The set of equations given in (5.2.1) is 
called “Gauss‐Markov setup” or “Linear Model” and the assumptions of linear model as follows: 

Assumptions of Gauss‐Markov Setup: 

(1) V(Yi) = σ2, , for i=1,2,.,.,n.  Here we assume that the variance σ2, is an un‐known parameter. 
(2) Cov(YiYj) = 0,   i  j.   That is any pair of variables Yi ,Yj  i  jare un‐correlated or 

independent . 
(3) Random variables Yi are Normally distributed with mean 0 and variance σ2 for all values of i 

= 1,2,.,.,n.       That is Yi ‘s~ N(0,σ2). 

Alternatively, a linear model can also be written as: 

y1 = X11 β1+X12β2 ,.,., X1m βm + ε1. 

y2 = X21 β1+X22β2 ,.,., X2m βm  + ε2. 

……………………………………………… 

……………………………………………… 

……………………………………………… 

yn =Xn1 β1+Xn2 β2 ,.,., Xnm βm  + εn.        (5.2.2) 
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with the assumptions that: 

(1) E(εi) = 0,   i and εi ‘s ~ N(0,σ2). 
(2) V(Yi) = σ2, , for i=1,2,.,.,n. Or V(εi) = σ2, , for i=1,2,.,.,n. 
(3) Cov(YiYj) = 0,  i  j. Or Cov(εi εj) = 0,  i  j. 

Any set of linear equations with the above assumptions is known as “Gauss Markov Set‐
up”.    Above defined linear model in equations (5.2.2) can be expressed in matrix notation 
as follows: 
Definition(2):  Linear Model or Gauss Markov model in Matrix notations: 

 Let Y =  be a column vector of n observations, β =   be another column vector 

of m un‐known parameters and ε =   be another column vector of n errors.   

Let  X = 

     . , . , . , 1    . , . , . ,. , . , . , . , . , . , . , . , . , . , . , . , . ,. , . , . , . , . , . , . , . , . , . , . , . , . ,     . , . , . ,  = nxm = 1,2,.,., n and j = 1,2,.,.,m, is known as 

“Coefficient Matrix”. Then the set of linear equations given in (5.2.2) can be written in the 

matrix notation as :Y = Xβ + ε .E(ε ) = 0 (zero vector).   D( ε ) = D (Y) = 
σ   0  0  00 σ  0   00  0  0  σ  = σ           

Inxn σ2
1  0  0  0   00  1  0  0   00  0 … … . .1 σ2  is an nxn matrix known as “Dispersion Matrix”. 

Let σ2> 0 is known as Variance of Yi or εi. 
Above linear model or gauss Markov model or Gauss Markov Set‐up is denoted by the 
notation (Y,Xβ, σ2I). 

In general if I = Σ is any nxn is a positive‐definite matrix then the model is known as 
“General Linear Model”. The general linear model is denoted by (Y,Xβ, σ2Σ).   Thus Gauss 
Markov model is a particular case of General Linear model when Σ = I.    

Definition(3): Linear Parametric Function: 

 Consider a Gauss Markov Set‐up (Y,Xβ, σ2I).   That is E(Y) = Xβ with D(Y) = Iσ2with the 

parameters β =  ...  .   Any linear function of the parameters PTβ= p1β1 + p2β2 +.,.,.,+pmβmis 

called a ‘Linear Parametric Function” (l.p.f).   Here, P = [p1,p2,.,.,.,pm] is a row vector of real 
numbers.   

 Linear functions are two types namely: (1) Estimable linear parametric functions and (2) 
Non‐estimable linear parametric functions.   Now we proceed to discuss definitions, properties 
of these functions in the following section. 
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5.3.Estimation of a linear parametric function and its properties 

 Now, we proceed to define the “Linear Unbiased Estimate” as follows: 

Definition (1):Linear Unbiased Estimate: 

 A linear function of observations y1,y2.,.,.,yn say ∑    is said to be linear unbiased 
estimate of PTβ if E[∑ ] ∑  =PTβ.   

 In other words, if B = [b1,b2,.,.,bn]T and ∑  = BTY, BTY is said to be linear unbiased 
estimate of PTβ if E(BTY) = PTβ.   This means that a linear function of observations BTY is linear 
unbiased estimate of the linear parametric function PTβ if E(BTY) = PTβ. 

 A linear parametric function is said to be estimable, in the linear model (Y,Xβ,Iσ2) if 
there exists at least one linear unbiased estimate of PTβ. 

Theorem (5.3.1):A necessary and sufficient condition for a linear parametric function to be 

estimable in a linear model (Y,Xβ,Iσ2) is that rank [  ] = Rank (X). 

Proof: Consider a linear model E(Y) = Xβ with D(Y) = Iσ2. 

By definition of estimability of a l.p.f., PTβ is estimable, if there exists a B such that E(BTY) 
= PTβ.   This implies that BTE(Y) = PTβ.  That is  BTXβ = PTβ.   

 That is BTX = PT or XTB = P. 

That is PTβ is estimable, if and only if (iff) there exists a B such that XTB = P. 

Therefore, PTβ is estimable, implies that the simultaneous equations XTB = P is solvable 
in B. 

That is PTβ is estimable, iff rank [X:P]  = rank[x] or rank [  ] = Rank (X). 

         Hence the proof. 

Result(1): Let E(Y) = Xβ and D(Y) = Iσ2 .  The l.p.f. PTβ is estimable, iff PT is dependent on row 
vectors of X. 

Remark: It is important to note that if P is such that PT is not linearly dependent on row vectors 
of X than such PTβ cannot be estimable and hence is known as “Non‐estimable Linear 
Parametric Function”.  

Result (2):In any Gauss Markov set sup E(Y) = Xβ with D(Y) = Iσ2 and if rank of the coefficient 
matrix X is full that is rank (X) = m , m  n, the number of observations, then, every linear 
parametric function (l.p.f.) PTβ, for any PT is estimable. 

 From the above result we conclude that in particular, each one of the parameter in a 
Gauss Markov set sup E(Y) = Xβ with D(Y) = Iσ2 are estimable, that is β1 (1β1+0β2+.,.,0βm), β2 
(0β1+1β2+.,.,0βm), .,.,βm (0β1+0β2+.,.,1βm) are all individually estimable, if and only if (iff) the  

rank of X is full.   If the rank of X is not full, then every parameter cannot be estimable 
individually but, the sum of them may be estimable.   This is explained with the following 
examples. 
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Example (5.3.1): Consider a two parametric model with parameters ω1 and ω2such that: 

  Y1 = ω1 + ε1 

  Y2 = ω2 + ε2 

  Y3 = ω1 + ω2 + ε3 

  Y4 = ω1‐ ω2 + ε4. 

Represent the above model in the Gauss Markov Set up‐ and comment on the estimability of 
the linear parametric function p ω1 + p ω2. 

Solution: Let Y= , X = 

1  00  11  11 1  and β = ω1ω2   and ε  =  thus we have Y = Xβ +  ε . 

Since the rank of the coefficient matrix is 2, that is the rank is full, every liner parametric 
function p ω1 + pω2  is always individually estimable. 

Example (5.3.2): Consider a three parametric model with parameters ω1,ω2 and ω3 such that: 

  Y1 = ω1 + ω2 + ω3  +ε1 

  Y2 = ω1 ‐ω2  + ω3+ ε2 

  Y3 = ω1 + ε3 

   

Represent the above model in the Gauss Markov Set up‐ and comment on the estimability of 
the linear parametric function p ω1 + p ω2. 

Solution: Let Y= , X =  
1 1 11 1 11 0 0 and β = 

ωωω   and �  =  . 

Thus we have Y = Xβ +  ε . 

Since the rank of the coefficient matrix is 2, that is the rank is not full.   Therefore, the  

Parameters ω1,  ω2 and ω3 are not individually estimable.   Now we proceed to discuss another 
important result which states that there will be only one or infinitely many linear unbiased 
estimates. 

Result (3): The number of linear unbiased estimates (l.u.e.s)  of a linear parametricfunction 
(l.p.f) is either only one or infinitely many. 

Proof: Let there are two l.u.e.s , say BTY and CTY for an l.p.f. PTβ.   That is BTY= ∑  ,CT Y =   ∑ and PT β= ∑ β .   Further, by the definition of l.u.e.s we have: 

E[∑  ] = ∑ β  and E[∑  ] =  ∑ β . 

Now consider a linear combination gBTY+ (1‐g)CTY for 0<g<1.   Then we have: 

E[gBTY + (1‐g)CTY] = E[g∑ +(1‐g)∑ ] = g ∑ ] +(1‐g) E[∑ ] 
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= gPTβ + (1‐g)PTβ = PTβ =∑ β .   Therefore E[gBTY + (1‐g)CTY] = PTβ. 

Hence, gBT Y+ (1‐g)CTY is also another linearly unbiased estimate of PTβ.    Since, g can take 
infinitely many values in the interval (0,1), PTβ there exists infinite number of l.u.e.s for PTβ. 

Therefore, there will be only one or infinitely many l.u.e.s for a l.p.f. PTβ. 

          Hence the proof. 

5.4. Best Linear Un‐biased Estimates and properties 

From the result (3) discussed in section 5.3, there will be only one or infinitely many 
l.u.e.s for an l.p.f. PTβ.   If there is only one l.u.e. then, that itself is the “best linear un‐biased 
estimate“(BLUE) for that l.p.f. PTβ.   If there are many, among the class of all linear un‐biased 
estimators, of an estimable linear parametric function, that linear unbiased estimator which has 
minimum variance is known as “Best Linear Un‐biased Estimates” (BLUE).   Thus BLUEs are 
unbiased estimates as well as the variance of the estimates are smallest when compared to 
other estimates.   Thus BLUEs are most popularly used in linear estimation of a linear 
parametric function.   But, finding BLUEs form a large group of estimates can be done easily 
through a short‐cut method discussed in a theorem known as “Gauss Markov’s Theorem” 
which is proved in the next lesson. 

5.5   Summary. 
In this lesson, first a linear model is defined and discussed its assumptions and 

parameters.   Then representation of a linear model in matrix notation is discussed along with 
Gauss Markov set up or Gauss Markov Model.   Then the concept of linear parametric function 
and its estimation is discussed and proved the necessary and sufficient condition for 
estimability of a linear parametric function.   The concept of linear unbiased estimates (l.u.e.s) 
their properties and results relating to l.u.e. are discussed.   Finally, the concept of Best Linear 
Unbiased Estimates (BLUEs) their properties are discussed. 

 

5.6.      Self Assessment Questions 

 1.Define a linear model and discuss the assumptions and parameters of a linear          

                 model. 

 2. What is meant by a Gauss Markov Set up? Discuss its assumptions. 

 3. Explain the Gauss Markov model with an example. 

 4. Define the linear parametric function and Dispersion matrix. 

 5. Explain the method of representing the linear model in matrix notation. 

 6. Define the concept of estimability of a linear parametric function and state the  

                  conditions under which the parameters of a linear model are estimated individually . 

 7. State and prove the necessary and sufficient conditions for estimability of a linear  

                 parametric function. 
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 8. Show that the number of l.u.e.’s of a estimable l.p.f. is either one or infinitely many. 

 9. Define BLUEs and discuss their properties. 

 10. Explain the problems in determining BLUEs for a given linear model. 

 

5.7.           Further Readings  

1. P. RamachandraRao and P. Bhimasankaram (1996) “Linear Algebra”  Tata McGraw‐Hill  

Publishing Company Limited, New Delhi. 

2. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

Sons.,New Delhi. 

3. D.D. Joshi “Theory of Linear Estimation” Wiley Eastern Ltd. New Delhi. 2005. 

4. C. R. Rao (1965) “Linear Statistical inference and its applications” John Wiley, New Delhi. 
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Lesson – 6 

Gauss Markov set up and Gauss Markov Theorem 
 

6.0   Objectives : 

After going through this lesson, you should be able to: 
• Understand the problems and  method of obtaining BLUEs. 
• The concept and importance of Gauss Markov theorem. 
• The Statement and proof of Gauss Markov theorem. 
• Calculation of BLUEs and some examples of obtaining BLUEs. 
• Applications of Gauss Markov theorem.  

 

Structure 

6.1.       Importance of Gauss Markov set up 
6.2  Gauss Markov Theorem and its special cases 
6.3 Estimation of Variance of BLUEs 
6.4.      Estimation of σ2 in Gauss Markov set up 

              6.5      Summary 
              6.6.    Self Assessment Questions 

6.7.      Further Readings  
 

6.1. Importance of Gauss Markov Set up 

                 Gauss Markov Setup or Gauss Markov Model explained in the last lesson play  
predominant role in the Analysis Of Variance (ANOVA) and Design of experiments particularly in 
estimating various effects of different factors in many real life problems.   In all these problems, 
we usually want to study the effects of different factors on the main variable.   For example, in 
agricultural problems, yield of the crop is considered as the main variable and rainfall, manure, 
type of soil, seed quality, type of water, fertilizers used; are different factors influencing the 
main variable.   Similarly, in industry, there are various factors influencing the quality of the 
product which is the main variable.   The raw material used, design, production process, 
worker’s skills producing the product are the various factors influencing the main variable.   In 
these problems, we want to study significant effects of various factors on the main variable.   In 
all these problems, we assume that the Gauss Markov model is the best suitable model.    

Further, we want to estimate the Linear Parametric function, which is the function of 
various effects which have linear effects on the main variable ‘Y’.    These effects are to be 
estimated and these estimates must have basic properties like Un‐biasedness, efficient, 
sufficient and minimum variance.   Such estimates are called ‘Best’ estimates.   In the last 
lesson, we have introduced such estimates, known as “Best Linear Unbiased Estimates” 
(BLUEs).   In this lesson, we discuss the method of obtaining BLUEs for a Gauss Markov Model 
or Gauss Markov Setup or Standard Gauss Markov’s setup. 
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6.2. Gauss Markov Theorem and its special cases 

 We know that in a Gauss Markov setup, linear unbiased estimates of linear parametric 
function (l.p.f)  PTβ is either one or infinitely many in number.   If there is one, we consider that 
itself as Best Linear Unbiased estimate (BLUE) for the l.p.f. PTβ.   If, there are two, then we have 
proved in the lesson 5 that there will be infinitely many in number, and selecting the best one 
having minimum variance will become big problem, because, there are infinitely many in 
number.   Thus searching the Best Linear Unbiased from all the available ones will become 
practically impossible.   At this juncture, Gauss Markov theorem will help us it identify the BLUE 
if there are many.   This theorem provides a systematic procedure to obtain the BLUE for the 
given l.p.f. PTβ.   Now we proceed to state and prove the Gauss Markov theorem as follows: 

Statement:  In a Gauss Markov’s set up (Y,Xβ,Iσ2), the Best Linear Unbiased Estimate (BLUE) of 
an estimable linear parametric function (l.p.f)  PTβ is given by PTβ where β is a solution of the 
“Normal Equations”  XTXβ = XTY. 

Note: The solution of normal equationsXTXβ = XTY,  namely   =  [XT X]‐1XTY is any least square 
estimate of  β. Hence,   is the BLUE of β. 

Proof:Consider the Gauss Markov set up (Y,Xβ,Iσ2),that is E(Y) = Xβ with D(Y) = Iσ2 and PTβ is 
the estimable linear parametric function to be estimated using n‐ observations Y = [y1,y2.,.,.,yn].       

Consider B = 
...  then BTB =  ∑ )2  and  (BTB) =  2B.    (6.2.1) 

Let A = 
... , then ATB = ∑  )  and   (ATB)  = A.    (6.2.2) 

Let PTβ is the estimable l.p.f.   Let BTY  be any l.u.e. of PTβ.We have to prove that BLUE of PTβ is 
PT .That is we have to find a BTY such that BTY is the BLUE of PTβ. 

Using the definition of l.u.e. we have: 

E[BTY] = PTβ.  That is BTE[Y] = PTβ.      Since E(Y) = Xβ, we have: 

 BTX β = PTβ => BTX = PT or P = XTB.       (6.2.3)  

The set of equations (6.2.3) will have one or infinite number of solutions. 

If it has only one solution, that is B = BTY, which is the required BLUE for the l.p.f.PTβ.  

If it has infinite number of solutions, we have to identify the l.p.f. with minimum variance. 

Thus consider V(BTY) = V [∑  )] = ∑ )2 V(yi) = ∑ )2 σ2 = BTBσ2 . (6.2.4) 
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Therefore, the required B for the BLUE of PTβ can be obtained by minimizing BTB with respect 
to B subjected to the condition that XTB = P. 

 Using Lagrangian method of multipliers, for the expression given in equation (6.2.3) we 
have: 

 L = BTB – 2 ΛT (XTB – P)        (6.2.4) 

Where Λ is the Lagrangian multiplier. 

=  2B  ‐ 2 X Λ  = 0.   => B = X Λ       (6.2.5) 

Substituting (6.2.5) in equation (6.2.3) we have: 

XTX Λ = P.          (6.2.6) 

Solve the set of equations in (6.2.6) for Λ and substitute the same in equation (6.2.5), we get 
the required B to find the BLUE BTY.  

Therefore, the required BLUE of PTβ  = BTY  =  ΛTXTY.    (6.2.7) 

In equation (6.2.7) put XTY = Q. Then we have: ΛTQ is the required BLUE, where ΛTcame from 
equation (6.2.6). 

Consider the “Normal Equations” XTX = XTY. 

BLUE of PTβ  =ΛTQ  = ΛTXTY =ΛTXTX  =  [XT X Λ ]T   = PT  . [Using Equation (6.2.6)] (6.2.8) 

         Hence the theorem. 

6.2.1. Application of Gauss Markov’s Theorem in practice. 

Now we proceed to explain the method of finding BLUE using Gauss Markov Theorem in 
practice: 

Let Y = Xβ + ε is the given linear model such that E(Y) = 0 and D(ε) = Iσ2 . 

Main problem here is to find the BLUE for the l.p.f.  PTβ.To do this, first form the normal 
equations in matrix notations as follows: 

XTXβ = XT Y          (6.2.9) 

Using the normal equations given in (6.2.9), solve for β.  This solution obtained the required 
BLUE of β denoted by   .   Thus BLUE of PTβ = PT  .    It is important to note that this BLUE is 
nothing but the Least Square solution  obtained from the method of least squares. 

That is  PT   = PT .  

6.2.2. Some important Special cases of Gauss Markov’s Theorem. 

 From the discussions in Section (6.2.1), we observe that the method of obtaining BLUE 
for an estimable l.p.f., PTβ, there is need to solve the set of normal equations XTXβ = XT Y.   In 
this method, the coefficient matrix X play a vital role.  Thus the method of finding BLUE differs 
depending on the nature of the coefficient matrix X particularly, based on the Rank (X).   We 
know that the rank of any given matrix may be (i) full or (ii) less or not full.   That is the Rank(X) 
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is equal to the number of parameters, then we say that the matrix has full rank.  Otherwise, the 
matrix is known as less rank matrix.   Based on the nature of the coefficient matrix X, the 
methods of finding BLUE are of two types.   Namely (i) Method of finding BLUE in full rank case 
and (ii) Method of finding BLUE when the rank of X is not full.   These methods are explained as 
follows: 

(i) Method of finding BLUE when the rank of the coefficient matrix X is full: 
Consider the linear model Y = Xβ + ε.   In this model number of observations are ‘n’ 
and number of parameters of the model are ‘m’and usually n  mand hence, the 
size of the coefficient matrix X is of size nxm .   Suppose the rank of the coefficient 
matrix X denoted by ρ(X) = m (number of parameters), then we say that the 
coefficient matrix X has full rank.  That is in full rank case, the rank of the coefficient 
matrix X is exactly equal to the number of parameters of the model namely ‘m’.   In 
this case we have one important result which is stated as follows: 

Result (1): If the rank of the coefficient matrix X is full, every linear parametric function PTβ is 
estimable. 

Proof: Let the rank of X = ρ(X) = m (number of parameters).   Thus X has full rank. Using the 
result (2) in lesson 5.3, we know that given any l.p.f. PTβ and PTβ is estimable if and only if (iff) 

ρ(X) = ρ( ).   This is always true because the rank of the matrix X,  ρ(X) = m (full).  

 Thus in full rank case, we know that ρ(X) = ρ(XT X ).   Thus XTX is also full rank matrix.   
Further , XTX is a square matrix with full rank.   Hence XTX has unique inverse.   Now consider 
the normal equations XTXβ = XT Y =>   = [XTX]‐1 XTY.                 
(6.2.10) 

Put XTX = Smxm and XTY = Q  then we have   = S‐1Q = CQ, where C = S‐1.  (6.2.11) 

 Here the C is called the C‐matrix of the Linear Model and the solution  in this case is 
Unique. 

(ii) Method of determining BLUE when the rank of the matrix X is not full. 

When the rank of the coefficient matrix X, that is  ρ(X) = r < m.   To obtain the BLUE of an 
estimable l.p.f., PTβ, solve the normal equations: XTXβ = XT Y.   Let   be any one solution.   
Then, PT   is the required BLUE of the l.p.f.  PTβ. 

6.3. Estimation of Variance of BLUEs 
Variance of the estimates is the most important measure, which explains the efficiency  

of the estimate.   Best estimate means that estimate which has minimum variance and should 
be un‐biased.   Any l.p.f. is estimable, means it is a linear unbiased estimate but there may be 
many l.u.e.s to select one among those group of l.u.e.s, one must concentrate on its variance 
and select that estimate which has minimum variance as BLUE.   Hence, there is a need to study 
and measure the variance of the BLUE.   To do this, we proceed as follows: 

 Consider a Gauss Markov’s set up (Y,Xβ,Iσ2).    To obtain the BLUE of an l.p.f. PTβ, 
through the Gauss Markov Theorem (GMT), after solving normal equations, we have PT  as  
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the BLUE of PTβ.   That is PT   = ΛTQ  =ΛTXTY = ( ΛX )TY   (6.3.1) 

Thus V(  PT  )= V(ΛTQ)  = V( ΛTXTY) = V(( ΛX )TY) = ( ΛX )T ( ΛX ) V( Y )  

  =( ΛX )T ( ΛX )σ2  = ΛT XT X Λ σ2.      (6.3.2) 

 We know that XTX Λ = P.   Hence we have: V(PT  )=ΛT P σ2               (6.3.3) 

Here, σ2is theV(εi) or V(Yi) as discussed in lesson 5. 

6.3.1. Estimation of the Variance of BLUES in full rank case. 

Consider a Gauss Markov’s set up (Y,Xβ,Iσ2) and the rank of the coefficient matrix X is  

full.  Hence, every βi , i = 1,2,.,.,.,m are individually estimable.  Let the BLUE of βi is denoted by 

i,where I is obtained from normal equations XTXβ = XT Y.   That is  = (XTX)‐1XTY  =  CQ. 

Let D is the Dispersion or Variance co‐variance matrix of .   

That is D( ) = D(CQ) = D(CXTY) = D[(XCT)TY].     (6.3.4) 

We know that the matrix XTX is always symmetric and hence, C is also symmetric. 

Therefore D( ) = D[(CX)TY] = (XC)T XC D(Y) = (XC)T XC Iσ2  (because D (Y) = Iσ2) 

  = CT XT X C Iσ2 = ICIσ2= Cσ2(because C = (XTX)‐1).  (6.3.5) 

 

6.4. Estimation of σ2 in Gauss Markov set up 
We know from (6.3.5) that D( ) = C σ2.   Here, C is known and σ2 is un‐known.   Hence,  

there is a need to estimate σ2 to determine D( ) completely.   This is to be estimated from the 
sample data collected.   Let the coefficient matrix X of the linear model formed can be written 

as:  X= 
     . , . , . ,    22  23. , . , . ,  .   The ith column vector of X is represented by αi ,i=1,2,.,.,m. 

Let the rank of X = ρ(X) = r.   This implies that only r columns out of m columns are  

independent. Let D = [β1,β2,.,.,.,βn‐r]  be orthogonal vectors and orthogonal vector space, 
orthogonal to X.   This implies that: αi βj = 0 for all values of i,j or αi

Tβj = 0 for all I,j and αi βi = 1 
for all i.  The matrix D is called the “Deficiency Matrix” of the coefficient matrix X.   Now we 
proceed to discuss some important properties of this deficiency matrix D in the following 
section. 

6.4.1. Properties of Deficiency or D matrix. 
1. The product of XTD = [0] or DTX = [0], where [0] is known as “Zero Matrix”.    
2. The product DTD = I, where I is a “Unit Matrix”. 
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3. Let Y = 
...  is the vector of n‐observations.   Then the n‐component vector Y can be 

expressed in terms of α1,α2,.,.,.,αm and β1,β2,.,.,.,βn‐r as follows: 
 

 Y = XC + DL , where C = 
...   and L = ...                            (6.4.1) 

 
That is Y = ∑   +  ∑       (6.4.2) 
Pre‐multiplying the equation (6.4.1), by DT, we have: 

DTY =  DTXC +  DTDL  = [0] + IL = L. (using properties 1 and 2) (6.4.3) 

 Thus L is arandom vector with the following properties: 

 E(L) = E(DTY) = DTE(Y) = DT X β  = 0.      (6.4.4) 

 This is because XTD = [0]or  DTX = [0].  

Now we proceed to obtain the formula for estimating σ2, in the following section. 
6.4.2. Estimation of σ2. 

Consider the dispersion matrix D and we know thatDTY = L, where,L is a random vector 
such that E(li) = 0 for all values of i and V(li) = σ2 and Cov (li,lj) 0 for all values of i,j. 
Therefore, E(li

2)  = V (li)  + [E(li)]
2.  = σ2 + 0 = σ2.    (6.4.5) 

Thus we have: E{∑ i
2) } =  (n‐r) σ2  =>σ2 = E{ ∑ i

2) / n‐r}.  (6.4.6) 
Therefore, ∑ i

2) / (n‐r) is an un‐biased estimate of σ2. 

6.4.3. Estimation of σ2 in practice: 

Consider the Residual Sum of Squares (RSS) or Error Sum of squares (ESS) of the linear 
model, which is given as follows: 
RSS = (Y – Xβ)T(Y – Xβ) = (XC + DL – Xβ)T(XC + DL – Xβ) [using (6.4.1)] (6.4.7) 
       = [X (C – β ) + DL ]T[X (C – β ) + DL ] 
=(C –β)T XTX (C – β) + LTDTDL + 0.  [because XTD = 0]    (6.4.8) 
      = (C – β)T XTX (C – β) + ∑ i

2) . 
Therefore RSS=(Y – Xβ)T(Y – Xβ) = ∑ i

2) + (C – β)T XTX (C – β)  (6.4.9) 
Expression given in (6.4.9) is minimum when C = β.   Thus substituting C=β in(6.4.9) 
We have:  Min RSS = ∑ i

2)  = R0
2. 

But, we know that R0
2 = (Y – Xβ)T(Y – Xβ) = ∑ i

2)   (6.4.10) 
Let σ2 is the unbiased estimator of σ2 and is given by: σ2 = [(Y – X  )T (Y – X  )] / (n‐r) = R0

2 / (n‐r).   (6.4.11) 
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Remark: (1) In general, we cannot say σ2 is the Minimum variance Unbiased (MVUB) of σ2. 

                 (2) σ2 = R0
2 / (n‐r) = [(Y – X  )T (Y – X  )] / (n‐r) 

=[YTY – 2YTX  + T XTX  ] / (n‐r) = [YTY ‐ YTX ] / (n‐r) 

This is because XT X   = XTY. 

Thus σ2 = (YTY – QT  ) / (n‐r) = [ ∑ i
2)  ‐ ∑ β  ] / ( n – r)   (6.4.12) 

=[ Sum of squares of yi ‐ ∑ (RHS of the ith Normal equation)] / (n‐r). 

Here n = number of observations and r = rank of the coefficient matrix. 

Example (6.4.1): Consider a simple linear regression model yi = β1  + β2xi + εi ,i=1,2,.,.,n with 
the assumptions E(εi ) = 0 , V (εi ) = σ2 and Cov (εiεj) = 0.   Determine BLUES for β1 and β2 by 
using Gauss Markov theorem. 

Solution:In order to represent the given model in Gauss Markov’s setup, condiser 

X = 

1  11  2.  ..  ..  .1  
  and XTX = 1  1  1  .  .  .  .  11  2  3  .  .  .  

1  11  2.  ..  ..  .1  
  =  

∑∑ ∑ 2  .   Similarly, 

XTY = Q = 
∑∑  .   Let β =

β1β2  and the “Normal Equations” for the G.M. model is given by: 

XTXβ = XTY.   That is 
∑∑ ∑ 2 β1β2 = 

∑∑ .   Thus we have: 

                                                                                            ‐1 

=
β1  β2  =  

∑∑ ∑ 2 ∑ 2∑ ∑ ∑∑  

 

 = { 1 / n( ∑ 2 – n 2)} 
∑ 2 ∑∑ ∑∑  . 

Thus we have  β1=  [∑ ∑  ‐ ∑ ∑ ] / n( ∑ 2 – n 2)   (6.4.12) 

And β2 = ‐ [∑ ∑ +  n∑ ] / n( ∑ 2 – n 2) .   (6.4.13)  

Further, V ( ) = (XTX)‐1σ2=  [1 / n Sxx ] 
∑ ∑∑ σ2 .   (6.4.14) 

Where, Sxx = ( ∑ 2 – n 2).   

This implies that : V (β1 ) = [∑ 2 / n Sxx] σ
2 and   V (β2 )  =  σ2 / Sxx and  
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Cov (β1β2) = ‐ [∑  / n Sxx] σ
2 .   The unbiased estimate of σ2 is denoted by σ2 which is given 

by:  [Syy ‐ β2Sxy ] / (n‐r), where Syy = ∑ 2 – n 2 , Sxy = ∑  – n  , n = number of 
observations and r = rank of the coefficient matrix X. 

Example (6.4.2): Let the linear model be:  

y1 = β1  +β2 +ε1  

y2 = β1  ‐β2 + ε2 

y3 = β1  +ε3. Examine whether β1and β2 are individually estimable? If so obtain their BLUE’s 
along with their standard errors.   Also obtain the BLUE of ( β1 + β2) if possible. 

Solution: For the given problem Y = 
123 , X = 

1 11 11 0  and XT = 1 1 11 1 0 . 

Since the rank of the coefficient matrix X = 2, it is a full rank case and hence the parameters are 
individually estimable.  The given model is a non‐singular Gauss Markov setup. 

Determine S = XTX = 1 1 11 1 0 1 11 11 0 = 3 00 2  . Let C = S‐1 = (XTX)‐1= 
1/3 00 1/2 . 

Further, XTY = 
1 2 31 2  and β =

β1β2 .    

For the above G.M. model, normal equations are: XTX   = XTY .Thus we have: 

=
β1  β2  = (XTX)‐1 XTY = CQ= 

1/3 00 1/2 1 2 31 2 .   Thus we have: β1 =    (y1 + y2 + y3) / 3 and β2 = (y1 – y2 ) /2. 

Therefore, BLUE of β1is  β1 =(y1 + y2 + y3) / 3 and BLUE of β2 is β2 = (y1 – y2 ) /2. 

Further, the dispersion matrix of  = C σ2. = 
1/3 00 1/2 σ2. 

Therefore, V(β1) = σ2 / 3 , V(β2) =  σ2 /2 and Cov (β1β2) = 0.   The un‐biased estimate of σ2 is 
given by  σ2= [ ∑ i

2)  ‐ ∑ β  ] / ( n – r).  Here n =3 and r =2. 

 = [y1
2 +y2

2 + y3
2–((y1+y2+y3)/3) (y1+y2+y3) – ((y1 – y2 ) /2) (y1 – y2 )] / 3‐2. 

Unbiased estimate of V(β1) = σ2 /3 and Unbiased estimate of V(β2) = σ2 /2. 

BLUE of (β1 +β2) = β1 + β2 =  [(y1 + y2 + y3) / 3] + [ (y1 – y2 ) /2] = (5y1 + 2y2 – y3 ) /6. 

And V (  β1 + β2 ) = V(β1) + V(β2) + Cov (β1β2) = σ2 /3 + σ2 /2 = 5 σ2 /6. 

Result (1): The normal equations are always consistent. 

Proof: Consider the normal equations XTX   = XTY.  
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 Normal equations will have at least one solution. For this the necessary and sufficient 
condition is that XTY must be dependent on the column vectors of XTX matrix. 

That is XTY is dependent on the columnvectors XT. 

This means that XTY is dependent on the columnvectors X. 

Therefore,  XTY is dependent on the columnvectors XTX. 

         Hence the proof. 

6.4.4. Alternative procedure to for obtaining BLUEs: 
Now we proceed to explain an alternative procedure to determine BLUEs for the  

parameters of the given linear model.   For this first we define the concept of “Zero Function”as 
follows: 

Definition: Zero Function or Linear functions with zero expectations. 

 Let Y = Xβ + ε be the linear model.   Let CTY be a linear function of observations 
y1,y2.,.,.,yn such that E(CTY) = 0, then CTY is called “Zero Function” or Linear functions with zero 
expectations. 

Remark: There will be n – r independent zero functions in a given linear model, where n= 
number of observations and r=rank of the coefficient matrix of the model. 

An alternative method for obtaining BLUE: 

 Let BTY be the un‐known BLUE of PTβ in a given linear model Y = Xβ + ε .   Let CTY be any 
zero function of the linear model.   Then the Cov(CTY,BTY) = CTBσ2 = BTCσ2. 

But B is the BLUE which satisfies that B = XΛ . 

Therefore, Cov(CTY,BTY) =ΛTXTCσ2 = 0.   This is because of the fact that XTC = 0. 

Hence, BLUE should be un‐correlated with every zero function of the linear model. 

6.5. Summary 
 
                In this lesson first Gauss Maarkov’s set up is explained and an important theorem  

known as Gauss Markov’s theorem is proved, which is useful to obtain Best Linear Un‐biased 
estimates (BLUE) of a linear parametric function of the Gauss Markov’s model.   Further we 
have discussed various special cases of G.M. theorem.   We have discussed the method of 
obtaining BLUE in full rank case and not full rank case.   Further we have discussed the method 
of obtaining variance of the BLUEs in full rank non full rank cases.   Then we have defined the 
Deficiency Matrix  D and discussed the properties of  D matrix.   .   Latter, we have discussed the 
method of estimation of σ2 from the sample data.   After explaining the method of obtaining 
BLUEs with two examples, “Zero Function” or Linear functions with zero expectations of a linear 
model is defined.   Finally an alternative method of obtaining BLUEs using zero functions is 
discussed. 
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6.6. Self Assessment Questions 
1. Explain the Gauss Markov set up along with its assumptions. 
2. Define BLUE and discuss its properties. 
3. State and prove the Gauss Markov theorem. 
4. Explain the use of Gauss Markov theorem with an example. 
5. What are Normal Equations? Explain their uses. 
6. Explain the method of obtaining BLUE in full rank case. 
7. Derive the expression for the variance of BLUE in full rank case. 
8. Explain the method of estimating σ2 in practice from the given data. 
9. Given the G.M. model 

y1=β1  + β2 +β3+ε1.  
y2=β1  +  β2 ‐ β3 + ε2. 
y3=β1 –  β2 + β3 + ε3. 
Y4 = ‐ β1+  β2 + β3 + ε4. 

10. Define zero function and explain the alternative procedure of obtaining BLUE. 
 

6.7. Further Readings.  
 

1. P. RamachandraRao and P. Bhimasankaram (1996) “Linear Algebra”  Tata McGraw‐Hill  

    Publishing Company Limited, New Delhi. 

2. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

   Sons.,New Delhi. 

3. D.D. Joshi “Theory of Linear Estimation” Wiley Eastern Ltd. New Delhi. 2005. 

4. C. R. Rao (1965) “Linear Statistical inference and its applications” John Wiley, New Delhi. 
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Lesson – 7. 

Generalization of G. M. set up and G.M. Theorem 
 

7.0   Objectives : 

After going through this lesson, you should be able to: 
• Understand the need for the generalization of G.M. Model. 
• The concept and generalization of Gauss Markov theorem. 
• The Statement and proof of Aitkin’s theorem. 
• Method of calculation of BLUEs in Generalized Linear Models. 
• Standardization of Gauss Markov set up and its applications.  

Structure 

7.1.      Need for the Generalization of Gauss Markov set up 

7.2. Generalization of Gauss Markov set up and Aitkin’s Theorem 

7.3.       Estimation of σ2 in General Gauss Markov set up 

              7.4.      Summary 

              7.5.      Self Assessment Questions 

7.6.      Further Readings  

 

7.1.          Need for the Generalization of Gauss Markov set up 

  In the previous lesson Linear model or Gauss Markov’s Model (G.M.M) is 
introduced which explains the relation between the main variable, depending on various 
factors.   These factors are independently acting on the main variable and hence, in the 
assumptions, we assume the dispersion matrix D(Y) or D(ε ) asIσ2, where I is the Unit matrix. 

This implies that V(yi) = σ2 covariance between any two pairs yi and yj is zero.   That is 
Cov(yiyj)=0.  That yi and yj are independent for all values of i  j = 1,2,.,.,.,n.   This implies that we 
are assuming that various factors are independently acting on the main variable and have no 
“Interaction Effects”.   Interaction Effects means, combined effects.   That is the effects one 
factor on the main variable in the presence of another factor.   Such combined effects are 
known as “Interaction effects” and in many real life problems; these Interaction effects play a 
vital role. 

For example, medicine dosage and age are having interaction effects.   Doctor cannot 
prescribe same medicine for all patients, ignoring the age of the patient.   He has to prescribe 
one dosage for children, one dosage for adults and one dosage for old people.   Similarly, in 
industry, experiences of the employee and the efficiency or quality of the work are depending 
on each other, in the production process.   Thus, there are many real life situations where, such 
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interaction effects are to be considered and propose models suitable to such situations.   
Ignoring such effects lead to increase the error in our estimates or predictions.   Hence there is 
a necessity to modify the model suitable to situations where interaction effects play a 
predominant role.   That is Cov(yiyj) > 0, which in turn means that the factors are not 
independent abut are dependent on each other and acts collectively on the main variable.   
Thus there is a need to modify or generalize the proposed linear model or G.M. Model.   Thus in 
this lesson we discuss the “Generalized Linear Model”(GLM) or “Generalized Gauss Markov’s 
Model”(GGMM). 

7.2. Generalization of Gauss Markov set up and Aitkin’s Theorem 

 In the last lesson, we have defined a linear model as Y = Xβ + ε with the assumptions 
that E(ε) = 0 and the dispersion or variance co‐variance matrix   D( ε ) = Iσ2 where I is the Unit 
matrix. In order to generalize the above model, we assume a general scalar matrix Σ,in the 
place of I.   That is Cov(yiyj) takes some scalar quantity which is greater than 0.   This implies 
that  yi, yj are not independent but they are dependent for all values of i  j = 1,2,.,.,m.In 
particular if Cov (yiyj) =0, the general linear model reduces to simple linear model, discussed 
earlier.   In other words, if we assume that interaction effects are absent, GGMM reduces to 
GMM.  Thus “General Linear Model” or “Aitkin’s Model”  is defined as follows: 

Definition (1):  A General linear model or Aitkin’s model. 

A General Gauss Markov’s Model or Aitkin’s Model is defined as Y = Xβ + ε with the 
assumptions that E(ε) = 0 and the dispersion or variance co‐variance matrix   D( ε ) = Σσ2 where 
Σ is the scalar matrix of size nxn and σ2 is un‐known. 

 Further, we know that Gauss Markov set up is denoted as (Y,Xβ,Iσ2), on similar lines, a 

General Gauss Markov set up is denoted as (Y,Xβ,Σ σ2) , where Σ= 

σ   σ    . , . , . , σ. , . , . , . , . , . , . , . , . , . , . , . , . ,. , . , . , . , . , . , . , . , . , . , . , . , . ,σ   σ    . , . , . , σ . 

Remark: In particular if Σ= I the General Gauss Markov set up ( Model) or Aitkin’s set up 
(Model)  will reduce to the Standard G.M. set up (Model). 

 Now we proceed to state and prove Aitkin’s Theorem which is the Generalization of 
Gauss Markov’s Theorem proved in the last lesson. 

Statement:  Consider the General Gauss Markov’s set up (Y,Xβ,Σ σ2).   That is Y = Xβ +ε with  

Here Σ is assumed as known and non‐singular matrix.   The BLUE of any l.p.f. PTβ is given by 
PT , where, is a solution of the “Modified Normal Equations”  

(XTΣ-1X)β  =  (XTΣ-1)Y       (7.2.1) 

Proof: It is given in the General Gauss Markov set up that: Y = Xβ + ε  is the general 
linear model, with the assumptions that E(ε ) = 0 and the dispersion or variance co‐variance 
matrix   D( ε ) = Σσ2 where Σis the scalar matrix of size nxn and σ2 is un‐known.   Since Σ is non‐
singular matrix,  there exists a triangle matrix T such that Σ = TTT.   This implies that: 
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(Σ)-1 = T-1 (T-1)T.       (7.2.2)  

 Consider the transformation Y to Z by transforming Z = T‐1Y.   

 With this transformation,  we show that Generalized G.M. set up will become the Standard 
G.M. set up (discussed earlier in lesson 6).   That is, we show that Z has the standard G.M. 
setup. This is done as follows: 

Consider Y = Xβ + ε  such that E(ε ) = 0 and  D( ε) = Σσ2.    (7.2.3) 

Pre‐multiplying both sides of the model given in (7.2.3) by T‐1 we have: 

T‐1Y = T‐1Xβ + T‐1 ε         (7.2.4) 

Put  T‐1Y = Z,  T‐1X = B and T‐1ε = e inequation (7.2.4).   Then we haave: 

 Z = Bβ + e         (7.2.5) 

Now we shall show that equation (7.2.5) is a Standard G.M.  set up as follows: 

Consider E(e) = E(T‐1ε) = T‐1E(ε) = 0 .   Similarly consider: 

D (e) = D(T‐1 ε) = (T‐1)T T‐1 D(ε) = (T‐1)TΣ T‐1σ2  =  (T‐1)T (TT T)  T‐1σ2 .  Because Σ=(TT T)  

 = Σ-1Σσ2 = Iσ2. 

Therefore Z = Bβ + e is a standard G.M. Set up.   Thus applying G.M. theorem on Z we obtain 
the BLUE for the l.p.f. PTβ in routine manner. 

 The BLUE of PTβ= PT  where,  is a solution of the normal equations: 

BTB   = BT Z        (7.2.6) 

Now transforming back from Z to Y equation (7.2.6) can be written as: 

 (T‐1X)T (T‐1X)   = (T‐1 X)T T‐1 Y.       (7.2.7) 

XT(T‐1)T T‐1 X  = XT (T‐1)T T‐1 Y  or  (XTΣ-1X) = XTΣ-1Y.    (7.2.8) 

Therefore, =  (XTΣ-1X)-1XTΣ-1Y .                   (7.2.9) 

Thus the required BLUE of PTβ isPT , where is obtained from the equation (7.2.9). 

        Hence the proof. 

7.3.  Estimation of σ2 in General Gauss Markov set up 

 Earlier we have estimated σ2 in the standard G.M.  set up , because the value of σ2 is the 
un‐known quantity.   This basically, represents the population variance.   In some cases the 
value of σ2 will be known from the past experience.   This will happen when we deal known or 
standard populations.   Majority times, we deal populations where the variance is not known 
and hence, is to be estimated from the sample data collected.   In the last lesson we have 
derived the formula and explained the method of estimating σ2.   Further this estimate an un‐
biased estimate.   On similar lines, now we proceed to derive the formula for σ2 in the general 
G.M. set up. 
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To obtain an Un‐biased estimate of σ2 is σ2 derived in the equation (6.4.12) for the variable Z in 
G.G.M. set up we have:   σ2 = [ZTZ  ‐ T (XTΣ-1) Y ] / n-r.        (7.3.1) 
 Converting back from Z to Y and using the results of Standard G.M. set up we have: 

 σ2 = [( T‐1 Y)T T‐1 Y  ‐  T (XTΣ-1) Y ] / n-r.       (7.3.2) 

After substituting the corresponding terms in the inverse transformation for Σ-1=T-1(T-1)T 
finally, we have the following expression for σ2 for the General Gauss Markov’s set up: σ2 = [YTΣ-1Y  ‐  T (XTΣ-1) Y ] / n-r.       (7.3.3)  

 The results obtained in the last lesson and the present one have lost of applications 
particularly in the Analysis Of Variance (ANOVA) and Design Of Experiments (DOE), the 
concepts which we are going to discuss in the forthcoming units.   Gauss Markov’s theorem is 
the base for both the topics, which will be re‐collected at appropriate places in those units. 

7.4.Summary 

  In this lesson, we have primarily discussed the need for generalizing the Gauss 
Markov’s set up and its applications.   The Standard G.M. set up introduced in the previous 
lesson is applicable only when the factors influencing the main variable are independent.   But 
this assumption may go wrong in many practical problems where, factors have interaction 
effects.   Interaction effects play a significant role on the main variable this type of studies are 
concentrated in the last unit.   For these discussions, we need to generalize the standard G.M. 
set up introduced in lesson 6.   After giving the introduction to generalization of G.M. set up, an 
important theorem namely Aitkin’s theorem or Generalization of Gauss Markov’s theorem is 
stated and proved.   A general method of obtaining BLUE for the l.p.f. PTβ is discussed after 
converting the General Gauss Markov’s set up into Standard Gauss Markov’s set up.   Finally, 
method of obtaining un‐biased estimate for the population variance σ2 is discussed and 
obtained the formula for the un‐biased estimate in the General Gauss Markov’s set up.   
Applications of the results obtained in this lesson are discussed at the end. 

  

7.5.   Self Assessment Questions. 

1. Explain the need for generalization of Linear models. 

2. Distinguish between Standard G.M. Model and Aitkin’s Model. 

3. State and prove Aitkin’s theorem. 

4. Explain how Aitkin’s model is a Generalization to Standard Gauss Markov Model. 

5. Explain when a generalized G.M. set up will become a particular case.  

6. Explain the need for estimating the population variance σ2. 

7. Derive the expression for the un‐biased estimate of the population variance σ2. 
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8. Explain the importance of BLUEs in Statistical Inference. 

9.Define Generalization of G.M. model along with its assumptions. 

10. Explain various applications of General G.M. model with suitable examples. 

 

7.6.  Further Readings.  

1. P. RamachandraRao and P. Bhimasankaram (1996) “Linear Algebra”  Tata McGraw‐Hill  

     Publishing Company Limited, New Delhi. 

2. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

    Sons.,New Delhi. 

3. D.D. Joshi “Theory of Linear Estimation” Wiley Eastern Ltd. New Delhi. 2005. 

4. C. R. Rao (1965) “Linear Statistical inference and its applications” John Wiley, New Delhi. 
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Lesson – 8. 

Analysis of Variance (ANOVA)‐One Way 
Classification 

 

8.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of Analysis of variance. 
• The concepts of ANOVA – one way classification. 
• Mathematical model of ANOVA – one way classification. 
• Assumption of ANOVA – one way classification. 
• Various other models of ANOVA. 
• Relation between student’s t‐test and ANOVA . 

Structure 

8.1      Introduction to ANOVA 
8.2     Fundamental concepts of ANOVA 

8.3.    ANOVA – one way classification 

8.4.    Mathematical model of ANOVA – one way classification  

8.5.    Other model of ANOVA  

             8.6.   Summary 

             8.7.   Self Assessment Questions 

             8.8.    Further Readings 

  

8.1.  Introduction to ANOVA. 
Analysis of Variance (ANOVA) is the most powerful and widely used as a statistical tool  

for “Tests of Significance”.   ANOVA is considered as the generalization of student’s t‐test.   
Student’s t‐ test is mainly used to test the significant difference between two sample means.   
There are many real life situations, where we have to test more than two means 
simultaneously at a time.   For example, we have to test the average effects of five fertilizers 
applied to four plots each of the plot has the same crop say paddy or wheat or Red Gram  or 
cotton. Thus we have to study the average effects of these five types fertilizers on the yield of a 
crop.   Hence, there is a need to compare five average effects these fertilizers simultaneously at 
a time.  If we have only two means, we can apply student’s t‐test, but if we have three or four 
or more means, we need a statistical procedure, to be developed to test all the means 
simultaneously at a time.   The statistical tool used to deal such situation is known as “Analysis 
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of Variance” (ANOVA).    Thus the basic purpose of Analysis of Variance is to test the 
homogeneity of several means (more than two means) at a time.  
 
8.2.    Fundamental concepts of ANOVA.   

The term “Analysis of Variance” (ANOVA) was introduced by Prof. R.A. Fisher in 1920’s 
to deal problems relating to agriculture and to analyze the agronomical data.  It is important to 
note that there will be “Natural Variation” in any data.  For example, if we sign 10 times, there 
will be difference between signatures. This is un‐avoidable.   Such natural variations are called 
“Ignorable Variations” or “Random Variations” or “Chance Variations”.   However careful we 
are, it is impossible to remove such variations.   Such random variations are small in size and 
causes for the variation are many in number.   On the other hand there will be some variations 
which are large in size and cannot be ignored.   For example if someone does your Signature, 
the difference will be large and called as “Forgery” which is to be controlled.  Such considerable 
or significant variations are called “Assignable causes of Variation”.   Such assignable causes of 
variations are to be controlled can be removed from the data.  Assignable causes of variation if 
significant and causes for the variation are very few in number.  Thus the variation due to 
assignable causes can be detected and measured whereas, variation due to chance causes 
beyond the control of human hand and cannot be detected separately.   According to Prof. R. A. 
Fisher, Analysis of variance (ANOVA) is defined as follows: 

Definition: Analysis of Variance (ANOVA) is the technique of “Separation of variance ascribable 
to one group of causes from the variance ascribable to another group”. 

 By using the technique of ANOVA, total variation in sample data collected is expressed 
as the sum of its non‐negative components, where, each of these components is a measure of 
the variation due to some specified independent factor or treatment or cause or some source 
of variation.    The ANOVA technique consists of estimating the amount of variation due to each 
of these independent factors or the treatments or causes separately and comparing these 
estimates due to assignable causes or factors with the estimates due to chance factors or 
causes.   Chance causes or factors effect is also known as “Experimental Error” or “Random 
Errors” or simply “Error”.   Basically ANOVA is used to for testing the homogeneity of several 
means.   But now a days, ANOVA is frequently used for testing the linearity of the fitted 
regression line or to test the significance of observed correlation ratio ‘p’ .   Now we proceed to 
discuss various assumptions underline the ANOVA technique. 

8.2.1. Assumptions and Classification of ANOVA. 

 In ANOVA we have to use F‐test.   To do this, we require some assumptions which are 
explained as follows: 

(1) The observations are independent. 
(2) Parent population from which observations are taken is normal and  
(3) Various treatment effects and environmental effects are additive in nature. 

Under the above three assumptions, we can use F‐test because of one important  

theorem known as “Cochran’s theorem” which is stated as follows: 
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Statement of Cochran’s Theorem:  Let X1,X2,.,.,Xn denote a random sample from normal 
population N(0,σ2).   Let the sum of squares of these values can be written in the form: 

  ∑ 2 = Q1 + Q2 + .,.,., +Qk , where Qi is a quadratic form in X1,X2,.,.,Xnwith rank (degrees of 
freedom) rj, j = 1,2,.,.,k.   The random variables Q1, Q2, .,.,., Qk are mutually independent and  

Qj/ σ2 is a chi‐square variate with rj degrees of freedom if and only if  ∑ j = n. 

 Above stated Cochran’s theorem play a vital role in the Analysis of Variance (ANOVA) 
and is considered as the most fundamental theorem of ANOVA.   Using the assumptions and 
the Cochran’s theorem, we can use F‐test in ANOVA.   ANOVA is of three types.   Namely: 

(1) ANOVA – one‐way classification. 
(2) ANOVA – two‐way classification. 
(3) ANOVA – three or multi‐ way classification. 

Now we proceed to discuss in detail about the ANOVA one‐way classification in the following 
sections. 

8.3.    ANOVA – one way classification 

 When all the experimental units are homogeneous, and k‐different treatments are 
applied on these homogeneous units, we can expect the variation is due to difference between 
the treatments and the units within each treatment are homogeneous and hence, the variation 
within the treatment is insignificant and ignorable.   That is the variation within the treatment 
units is due to random causes of variation and variation between units under different 
treatments is considered as assignable causes of variation, which is assigned due to the 
difference among the treatments.   This type of splitting the total variation in the collected data 
due to “random causes of variation” and “assignable causes of variation” (due to treatments) 
is called as ANOVA – one way classification. In other words, in ANOVA‐one way classification, 
experimental units are homogeneous and any significant difference among the treatment 
means is due to the difference among the treatments.   Hence this is called as one‐way 
classification.   The data under the ANOVA one way classification is given as follows: 

Structure of the Data under ANOVA‐one way classification:  

 Let suppose that N observations xij (i =1,2,3,.,.,k; j = 1,2,.,.,ni) of random variable X 
grouped on some basis (usually difference among treatments) into k‐classes of sizes n1,n2,.,.,.,nk 

respectively such that ∑ i = n as explained in the following table: 

 Treatments/rows                                            Data Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

. 

. 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1n1    

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2n2    

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3n3    

……………………………………………………………………….. 

………………………………………………………………………... 

1 

2 

3 

. 

. 

T1. 

T2. 

T3. 

. 

. 
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. 

Treatment – k: tk 

 

………………………………………………………………………….

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xknk     

. 

k 

. 

Tk. 

  G = Grand 
total 

 

 The total variation in the observations xij’s can be split into the following two 
components, namely: 

(1) The variation ‘between the classes’ or variation due to different treatments or variation 
due to different rows.   We expect Assignable causes of variation here, that is due to 
treatments.   Here we measure the average effects of various treatments under 
consideration.   This variation is known as “Assignable Causes of Variation”. 

(2) The variation within the classes or treatments that is the inherent variation of the 
random variable within the observations of a class or treatment.    This variation is 
usually known as “Random Causes of Variation”. 
The first type of variation, namely, assignable causes of variation can be detected and 

can be controlled, by removing causes causing the variation and hence controlled by human 
efforts.   Whereas, the second type of variation, namely random causes of variation is beyond 
the control of human hand.   This is an uncontrollable variation cannot be controlled by any 
human effort.   This is the natural variation present in any data.    For example, if we put our 
signature 10 or 20 times slight variation will automatically present in between signatures.   
However carefully we sign, naturally variation will be there and it is impossible to do two 
identical signatures.    In repetitive processes, such variations are inevitable and hence such 
random or natural variations are ignorable.   Thus, we conclude that these signatures, consists 
of in‐significant variation or ignorable variation and hence will be considered as same.   Now we 
proceed to explain the mathematical model of ANOVA one‐way classification along with its 
assumptions in the following section.  

8.4.    Mathematical model and assumptions of ANOVA – one way classification 

 The mathematical model used under ANOVA – one way classification is as follows: 

  Xij = μi + εij  = μ + (μi –μ) + εij = μ + αi + εij  (8.4.1)  

   i = 1,2,.,.,K and j = 1,2,.,.,.,ni 

Where: xij represents the observation of jth  experimental unit receiving ith treatment. 

 μ is the  general mean effect given by μ = ∑ i μi /N.  (8.4.2)  

 αi is the effect if ith treatment given by (μi –μ), for i=1,2,.,.,.,K. (8.4.3) 

 εij is the error effect due to chance or random causes. 
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Here, μ and αi I = 1,2,.,.,k are called the parameters of the model.   Thus ANOVA one way 
classification model has (K+1) un‐known parameters, which are to be estimated from the  

Sample data collected.    

Now consider ∑ i αi = ∑ i ( μi –  μ) =    ∑ iμi – μ ∑ i . 

 = N μ – μ N  =  0.     (8.4.4) 

8.4.1. Assumptions of ANOVA one way classification: 

           ANOVA one way classification model discussed in 8.4. has the following assumptions: 

(1) All the observations xij are independent. 
(2) Different treatment effects are additive in nature and  
(3) Errors εij’s are independently and identically distributed normally with mean 0 and 

variance  σ2 .   That is εij ~ N(0, σ2). 

Under the above assumption (3), the model given in equation (8.4.1) will become: 

 E(xij) =  μi = μ + αi i=1,2,.,.,K and j=1,2,.,.,ni. (8.4.5) 

Using the above model along with the above assumptions, we want to test the equality of 
the population means.    That is the homogeneity of different treatment mean effects.   
Hence, we have the following Null Hypothesis H0: 

H0 : μ1 = μ2 = .,.,.,= μk = μ  or V(μi) =0.     (8.4.6) 

Thus (8.4.6) implies that H0 : α1 = α2 = .,.,.,= αk = 0.   (8.4.7) 

and the  following Alternative Hypothesis H1 

H1: μ1  μ2  .,.,.,  μk . = V( μi) > 0 .     (8.4.8) 

 To test above hypothesis, we use ANOVA one way classification.   It is 
important to note that if k = 2, above explained problem reduces the student’s t‐test problem.   
Thus ANOVA is considered as a generalization to student’s t‐test in the sense that Student’s test 
is used to test the significance difference between two sample means where as ANOVA is used 
to test the difference among several means (variance among the sample means).   It is 
important to note that when we have only two comparable quantities, we use the term 
“Difference”.   For example, testing the difference between A and B or testing the difference 
between Treatment ‐1 and Treatment ‐2  or testing the significant difference between first 
sample mean and the second sample mean and so on.   If we have more than two, the term 
difference is not an appropriate term and in fact we have to use the term “Variance” or 
“Variation”.  For example, Variation among the class of students or Variation among different 
employees, or Variation among different sectors of people or Variation among several sample 
means and so on.  Thus in ANOVA we consider the Variation among several means and tested 
for its significance.   Hence ANOVA is also known as “Variance Ratio Test”.   This is because of 
the fact known that here we are testing H0: V(μi) =0 against the alternative hypothesis H1: V(μi) 
> 0.   In student’s t‐test we consider the hypothesis as: H0 :  There is no significant difference 
between two sample means. or H0: μ1 = μ2 and the alternative hypothesis H1:  μ1  μ2.   This 
implies that Student’s t‐ test is a “Two tailed test” procedure.    Since the variance cannot take 
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negative values, that is  V(μi) < 0 is not possible, the test procedure is a “One tail test” 
procedure.   In particular, this is a Right tail test procedure.   Thus we conclude that ANOVA is a 
Right tail test procedure.       Now we proceed to explain Various other models which can be 
considered in ANOVA in the following section. 

8.5.    Other model of ANOVA 

 We usually find it useful to describe the observations xij from an 
experiment with a model.   One method of writing this model is  

xij  = μi  +  εij ; i=1,2,.,.,K and j = 1,2,.,.,n      (8.5.1) 

where, xij is the jth observation receiving ith treatment ; μi is the mean of the ith treatment and    
Eij is the random error component with the following assumptions. 

(1) ε(εij) = 0  (2) V(εij) = σ2 and (3) Cov (εi εj ) = 0.     (8.5.2) 

These errors are usually known as experimental errors which include measurement errors, 
variability arising from uncontrollable factors, differences between experimental units, (such as 
test material or body conditions or resistance power and so on) to which the treatments are 
applied.   This error is also known as white noise in the process, such as variability over time, 
effect of environmental variables, climatic conditions and so on.    With the assumptions given 
in (8.5.2) we have E(xij) = μi.   the model given in (8.5.1)  is known as “Means Model”. This 
model can also be written alternatively as follows: 

 μi = μ + τi , i=1.2..,.,K        (8.5.3) 

Substituting (8.5.3) in (8.5.1) we have: 

xij   =  μ + τi + εij ; i=1,2,.,.,K and j = 1,2,.,.,n.      (8.5.4) 

In the above model, μ is a parameter common to all treatments called “Overall Mean” and τi is 
a parameter unique to the ith “treatment effect”. Model given in equation (8.5.4) is usually 
known as “Effects Model”.  These models are called one way or single factor ANOVA models 
because, only one factor (treatments) effect is investigated in these models.   These models are 
to be applied on uniform experimental units and treatments are to be applied randomly on 
these uniform units.   Such type of models are ANOVA one factor (one way classification) 
models.   

 The mathematical model given in equation (8.5.4) explains two different situations with 
respect to the treatment effects, namely,(1) Fixed effect models and (2)Random effect models.     

 If the K treatments are specifically chosen by the experimenter to test the hypothesis 
about the treatment means, and the conclusions will be applied to the factor levels considered 
in the analysis and   cannot be extended to similar treatments that were not explicitly 
considered.  We can also estimate the model parameters like μ, τi  and  σ2 .   Such models are 
called “Fixed effects models”.   On the other hand, if these K treatments are selected randomly, 
from a larger population treatments.   In such situations, we will be in a position to extend 
conclusions to all treatments in that population of treatments.   This is because of the fact the 
selected treatments are random sample from the population treatments.   In such experiments, 
the treatments τi’s are random variables and knowledge about a particular treatment 
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investigated is relatively useless.   Such models are known as “Random effects models” or 
“components of variance models”.   In these situations, the experimenter is frequently 
interested in a factor that has large number of possible levels.   If the experimenter randomly 
selects ‘a’ of these levels, from the population factor levels, we call such experiments as 
random effects model.   Here we assume that the levels of the factor actually used in the 
experiment were chosen randomly and inferences are made about the entire population of 
factor levels.  We further assume that these factor levels are either of finite size or large 
enough to be considered as infinite.   Usually populations of factor levels of smaller sizes are 
not considered here.   

 One can extend above models to two or three factors models.   In two factors A, B 
models, we can consider Factor A as fixed effects and factor B as random effects.   Such models 
are called “Mixed Effects Models” .    Discussion and analysis of such models are out of scope 
of the syllabus of this book. Now we proceed to discuss ANOVA one way classification model 
in the following lesson. 

8.6.   Summary. 

 In this lesson, we have introduced the concept of Analysis of variance (ANOVA), its 
assumptions, and some fundamental concepts of ANOVA.  The classification of ANOVA was 
discussed and stated an important theorem applicable in the analysis of ANOVA, namely 
Cochran’s theorem.   The structure of data under ANOVA one way classification the 
corresponding model involved in ANOVA one way classification its assumptions the 
corresponding hypotheses to be tested are discussed.   Further, how ANOVA is considered as 
generalization to student’s t‐test is also discussed.    It is important to note that the ANOVA 
procedure is a one tail test procedure.  In particular, ANOVA is a Right tail test procedure.   
These points are discussed with examples at the end of the lesson. 

 

8.7.   Self Assessment Questions 

1. Define ANOVA along with its assumptions. 
2. Explain different types of variation present in the data with suitable examples. 
3. Distinguish between Assignable causes of variation and random causes of 

variation with suitable examples. 
4. Explain the structure of the data under ANOVA one way classification. 
5. Explain the mathematical model of ANOVA one way classification. 
6. Explain various parameters of the model of ANOVA one way classification.  
7. Explain various hypotheses considered under ANOVA one way classification. 
8. Explain various assumptions of ANOVA one way classification model. 
9. Explain how ANOVA is a generalization to Student’s t‐test. 
10. Show that ANOVA is a Right tail test procedure. 
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8.8.    Further Readings. 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

     Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 9. 

Statistical Analysis of ANOVA‐One Way 
Classification 

 

9.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the statistical analysis of Analysis of variance – one way classification. 
• Method of derivation and expectations of various sums of squares. 
• ANOVA table of ANOVA – one way classification. 
• Short cut procedure for the analysis of ANOVA – one way classification. 
• Further Statistical Analysis – CD test. 

Structure 

9.1 Statistical Analysis of  ANOVA one way classification 

              9.2       Fundamental concepts of ANOVA one way classification 

9.3.       ANOVA – Table of one way classification 

9.4.       Further Statistical Analysis of ANOVA – one way classification 

             9.5.       Summary 

             9.6.       Self Assessment Questions 

             9.7.       Further Readings 

9.1.    Statistical Analysis of ANOVA – one way classification 

          Now we proceed to explain the Statistical analysis of ANOVA model in traduced in Section 
8.4 of the previous lesson.   In order to test the hypotheses H0: V(μi) =0 against the alternative 
hypothesis H1: V(μi) > 0, for the model considered in (8.4.1) and to estimate the parameters of 
the model, we consider the following Statistical analysis: 

Let the mean of ith class = i = ∑ ij / ni .  i=1,2,.,.,k.   (9.1.1) 

and the overall mean  .. =  ∑  ∑ ij ] / N =  ∑      / k .          (9.1.2) 

 The (k + 1) parameters of the given in (8.4.1), namely μ, α1, α2,.,., αk are to b e 
estimated by using the principle of least squares, which minimizes the residual or error sum of 
squares as follows: 

E =   ∑  ∑ ij
2 ] =  ∑  ∑ ij – μ ‐ αi ]

2}   (9.1.3) 

E/ μ = ‐2 ∑  ∑ ij – μ ‐ αi ]  = 0 .     (9.1.4) 

E/ μ       =  ‐2  ∑ ij – μ ‐ αi ] = 0. i=1,2,.,.,k.    (9.1.5) 
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Simplifying (9.1.4), we have: ∑  ∑ ij – n μ ‐ ∑    = 0. (9.1.6) 

Thus we have:  =  [∑  ∑ ij ]/N = ..             (9.1.7) 

This is because ∑  = 0 using (9.1.4).  

Similarly, simplifying (9.1.5), we have: ∑ ij – ni  ‐ ni  = 0. i=1,2,.,.,k. (9.1.8) 

Solving the above set of equations we have: 

  i =  (1/ni) ∑ ij  ‐    =    i. ‐      =    i. ‐ ..   i=1,2,.,.,k.        (9.1.9) 

The set of equations given in (9.1.6) and (9.1.8) are called “Normal Equations”. 

Now, substituting (9.1.7) and (9.1.9) in the model given in (8.4.1), we have: 

     xij = ..   + ( i. ‐ .. ) + (xij ‐   .. ) .       (9.1.10) 

We have to introduce the error component εij, on RHS of (9.1.10) so that LHS = RHS. 

The error term is the deviation within the class which is due to randomization.   Transposing .. 

to the LHS of (8.5.10) and squaring both sides and summing over i and j, we have:  ∑  ∑ ij ‐ .. ]2 =  ∑  ∑ ij ‐ i.) +( i.  ‐  ..) ]2 

=∑  ∑ ij ‐ i.)]
2 + ∑  .  . .  2+2[∑  .  . . ∑ ij ‐ i.)}]. (9.1.11) 

We know that the ∑ ij ‐ i.) = 0, because, the sum of the deviations of the observations 
from their mean is always zero.   Therefore the third term on the RHS if (9.1.11) will become 
zero and hence (9.1.11) will become: ∑  ∑ ij ‐ .. ]2 = ∑  ∑ ij ‐ i.)]

2 + ∑  .  . .  2  . (9.1.12) 

Now, let the terms in (9.1.12) will be denoted as follows: 

ST
2 = ∑  ∑ ij ‐ .. ]2 is known as Total Sum of Squares (TSS) 

SE
2 = ∑  ∑ ij ‐ i.)]

2 is known as Error Sum of Squares (ESS) or Residual Sum of 
Squares (RSS) which represents the natural variation and  

St
2 = ∑  .  . .  2  is known as Sum of squares due to treatments (SST).   Thus (9.1.12) 

can be written as: Total SS = ESS + SST or ST
2 = SE

2 + St
2.   (9.1.13) 

          Now we proceed to explain some important concepts and finding of expectations of 
various sums of squares from the sample data collected in the following section.     

9.2    Fundamental concepts of ANOVA one way classification 

          In ANOVA we use two important concepts, namely (1) Degrees of freedom and (2) Mean 
Sum of squares.   Before explaining the method of finding expectations of various sum of 
squares, we explain these concepts first. 
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9.2.1. Degrees freedom of Various Sums of Squares: 

           The total Sum of Squares (TSS) is computed as ST
2 = ∑  ∑ ij ‐ .. ]2 , which 

contains N quantities.   Hence, has (N‐1) degrees of freedom (dof).   This one degree of freedom 
is lost because of the linear constraint, namely   ∑  ∑ ij ‐ .. ]2  = 0 . 

           Similarly, the degrees of freedom (dof) of the treatment Sum of Squares which is given by 

SST = St
2 = ∑  .  . .  2 will have k terms and has (k‐1) degrees of freedom (dof), 

because,  ∑  .  . .  = 0. 

       Further, the error Sum of Square (ESS) is given by:  

SE
2 = ∑  ∑ ij ‐ i. ]

2  will  have (N‐k) degrees of freedom (dof).   This is because ESS is 
based on N quantities which are subjected to k linear constraints ∑ ij ‐ i. ] =0 for i=1,2,.,.,k.   
Further, we see that the degrees freedoms for various SS are additive because: 

 N – 1 = (N – k) + (K – 1).      

9.2.2. Mean Sum of Squares (MSS):    

Definition: The sum of Squares divided by its degrees of freedom gives the corresponding 
variance or the Mean Sum of Squares (MSS).  

Thus we have:  St / (k ‐ 1) = SST/(k‐1) = [St
2] is the MSS due to treatments.   

Similarly, SE
2 / (N‐k) = ESS/(N – k) = [SE

2] is the MSS due to Error or Residues. 

9.2.3. Expectations of Various SS:   In order to develop the test procedure to test the Null 
Hypothesis H0:  μ1 = μ2 = .,.,.,= μk = μ or V(μi) =0. This is equivalent as H0: α1 = α2 = .,.,.,= αk = 0, 
we require expectations of various SS due to each of the independent factors.  Now we 
proceed to calculate expectations of various SS as follows. 

Consider the linear model of ANOVA explained in Section 8.4. 

Xij = μi + εij  = μ + (μi –μ) + εij = μ + αi + εij     (9.2.1)  

   i = 1,2,.,.,K and j = 1,2,.,.,.,ni 

Summing (9.2.1) over j and dividing by ni we have: 

[∑  ] / ni  = (1/ni ) [ni μ + ni αi + ∑ ].   This implies that: i. = μ + αi + i. (9.2.2) 

Now summing (9.2.1.) over i and j and dividing by N = ∑ , we have: 

 (1/N) ∑  ∑ ij = (1/N) [N μ + ∑    + ∑  ∑ ].    

That is  ..  = μ  + ..         (9.2.3) 

Expectation of Treatment Sum of Square (SST): 

E(SST) = E(St
2) = E [∑  .  . .  2].        (9.2.4) 

 Substituting (9.2.2) and (9.2.3) in (9.2.4) we have: 

E(SST) = E ∑       –    . .  2] = E ∑     . .  2].   
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=  E ∑   2 +   .. )2 + 2  i  .. )] 
= ∑    2 + ni  .. )2] + 2 ∑  E  .. )]   (9.2.5) 

= ∑  2 + E  ∑  ni  .. )2]      (9.2.6) 

 ( The second term on the rhs of (9.2.5) will become zero because E i  .. ) = 0, as ij ‘s are 
independently and identically distributed Normal variables with mean 0 variance σe 2.) 

Now equation (9.2.6) can be written as: ∑  2 + E [ ∑  ni )2 –  .. )2  ]  

= ∑  2 +  ∑  ni E ( 2) –   .. )2      (9.2.7) 

Since, ij ‘s are independently and identically distributed Normal variables with mean 0 variance 
σe 2 .   Further we know that:  j. ) =0 and  .. ) = 0, we have: 

Var ( j. ) = E ( .2) –   .. )2  =   .. )2 => E ( .2) = Var ( j. ) = σe 2 / ni .  (9.2.8) 

                This is because of the fact that the variance of the mean of a random sample of size n 
from a population with variance σ 2  is  σ 2 /n . 

                Similarly, we have  ..2 ) = Var ( .. ) = σe 2 / N.    (9.2.9) 

Substituting (9.2.8) and (9.2.9) in (9.2.7) we have: 

E(SST) = ∑  2 +  ∑  ni( σe 2 / ni) – N σe 2 / N =  ∑  2 +  ∑   σe 2  ‐ σe 2  

= ∑  2 +  K σe 2  ‐ σe 2 =  ∑  2 + (K‐1) σe 2 . 

Thus we have:  E[SST/(K‐1)] =  σe 2  + (1/K‐1) ∑  2           (9.2.10) 

                    Hence, Under the H0: α1 = α2 = .,.,.,= αk = 0 Mean Sum of Squares (MSS) due to 
treatments provides an unbiased estimate of σe 2.  

                         Now we proceed to derive the Expectation of error sum of squares (ESS) as follows: 

Consider E(ESS)= E(SE
2) = ∑  ∑ ij ‐ xi. ]

2  

= E [∑  ∑   {μ + αi + εij )  ‐        .  }2 ].  [Using (9.2.1)and (9.2.2)] 

=E ∑  ∑  (εij  ‐ . )2 = E[∑  ∑  (εij  ‐ . )2)]. 

= E[∑  ∑  εij
2

  ‐ ni . 2)] = E[∑ ∑  εij
2

  ‐ ∑  ni . 2)] 

= [∑ ∑  εij
2

  ‐ ∑  ni E( . 2 =  ∑ ∑  σe 2 ‐ ∑  ni (σe 2 / ni ) 

= N σe 2 ‐   ∑   σe 2  = N σe 2 ‐ K σe 2 = (N – K) σe 2 => E[ (ESS / (N – K)] =  σe 2.      (9.2.11) 

       This means that the error mean sum of squares always gives an unbiased estimate of  σe 2 . 

Thus under the null hypothesis H0: α1 = α2 = .,.,.,= αk = 0, we have: 

E[(SST/(K‐1)] = E[ESS / (N‐K)]  =  σe 2 .  or E(St
2) = E(SE

2) .   Otherwise,  E(St
2) > E(SE

2).  (9.2.12) 

Hence, to test the null hypothesis H0, we use the variance ratio test namely, F test and the test 
statistic F = St

2 / SE
2 .   If H0 is true F = 1 otherwise, F > 1. 
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9.2.4. Application of Cochran’s Theorem: 

           In order to find out if an observed value of F is significant or not we have to obtain the 
sampling distribution of the test statistic F = St

2 / SE
2 .   Under H0 and using the Cochran’s 

theorem, St
2 / σe 2 and SE

2 / σe 2 are independently distributed Chi‐square variables with (K‐1) 
and (N‐K) degrees of freedom respectively.   Hence, the statistic: 

F =   [ (St
2 / σe 2 ) / (K‐1)]   [(SE

2 / σe 2 ) / (N ‐ K)]  =  St
2 / SE

2   (9.2.13) 

Follows Snedecor’s F or Central F distribution with (K‐1,N‐K) degrees of freedom.   Thus if an 
observed value of F obtained from (9.2.13) is less than the table value of F for (K‐1,N‐K) degrees 
of freedom at specified (α %) level of significance, then, H0 is accepted otherwise, we reject H0. 
Usually we consider α = 5% or 1% level of significance. 

                 Now, we proceed to explain the Analysis of Variance (ANOVA) table for one way 
classification, which explains the above explained Statistical analysis in an elegant form.   This is   
discussed in the following section. 

9.3.    ANOVA – Table of one way classification. 

           Analysis of variance (ANOVA) table of one way classification explains the Statistical 
analysis of the model discussed in section 9.2 in a nut shell, which is given as follows: 

Table (9.3.1): ANOVA table for one‐way classified data. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(Columns) 

K – 1 St
2 = SST V1 = St

2/K – 1 F = V1 / V2 

Error N – K SE
2 = ESS V2 = SE

2 / N – K  

Total N – 1 ST
2 = TSS   

 

Remark: 1.  In the above table (9.3.1) one can observe that SST+ESS = TSS.    Similarly the 
corresponding degrees of freedom (dof) are also additive.   That is (K – 1) + (N – K) = N – 1.   But 
it is important to note that the corresponding mean sum of squares do not add up to Total 
MSS.   That is variances V1 and V2 are not equal to is not equal to TSS / (N – 1). 

 2. Even though the technique is popularly known as Analysis of Variance (ANOVA), it is 
actually the analysis of  the Sun of squares (SS). 

9.3.1: Simplified Procedure for ANOVA: 

 The procedure of ANOVA explained above is a very lengthy procedure and require more 
calculations.   In practice, we adopt a short‐cut procedure in analyzing many practical problems.   
The arithmetic calculations for obtaining various sum of squares (SS) are reduced to great 
extent if we follow the following simplified procedure.   The simplified procedure is explained 
as follows: 
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Suppose that N observations xij (i =1,2,3,.,.,k; j = 1,2,.,.,ni) of random variable X grouped on 
some basis (usually difference among treatments) into k‐classes of sizes n1,n2,.,.,.,nk respectively 
such that ∑ j = n as explained in the following table (9.3.1).   First, calculate various 

treatment totals Ti
’s i = 1,2,.,.,K and  grand total G = ∑ I and i = Ti. / ni i=1,2.,.,K. 

Table (9.3.1) Anova one way classified data. 

 Treatments/rows                                            Data Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

. 

. 

. 

Treatment – k: tk 

 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1n1    

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2n2    

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3n3    

……………………………………………………………………….. 

………………………………………………………………………... 

………………………………………………………………………….

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xknk     

1 

2 

3 

. 

. 

. 

k 

T1. 

T2. 

T3. 

. 

. 

. 

Tk. 

   G = Grand 
total 

Step – 1: Calculate the Correction factor (CF) =  G2 / N.  

Step – 2: Calculate Treatment Sum of Squares (SST) = ∑ i)
2 / ni  ‐ CF = A. 

Step – 3: Calculate Total Sum of squares (TSS) = ∑  ∑ ij)
2 – CF = B. 

Step – 4: Construct ANOVA table as follows: 

 Table (9.3.2). ANOVA table for one way classification.  

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(Columns) 

K – 1 St
2 = SST= A V1 = St

2/K – 1 F = V1 / V2 

Error N – K SE
2 = ESS=B – A V2 = SE

2 / N – K  

Total N – 1 ST
2 = TSS = B   

 

In the above ANOVA table (9.3.2), F‐ statistic follows F‐distribution with (K – 1, N – K) 
degrees of freedom.   Note down the table value at α% level of significance (los) at (K‐1,N‐K) 
degrees of freedom (dof) from the F‐table given in appendix.   Usually, we take α = 0.05 that is 
5% los or 0.01 that is 1% los.   This table of F is denoted by Ftab(α)  and the calculated value of F 
given in the 5th column of the table (9.3.1) as Fcal.    If Fcal  Ftab , we accept the Null‐hypothesis 
and conclude that V(μi) =0.   That is there is no significant variation present between the treat 
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means under consideration.   Otherwise, that is   Fcal > Ftab we reject the null hypothesis or we 
accept the alternative hypothesis and conclude that V(μi) > 0.    That is there exists significant 
evidence that the treatment means significantly differs from each other. V(μi) =0. 

Remark: 1. If we reject the null‐hypothesis at 5% (0.05) level of significance, we represent the 
situation by (*) and If we reject the null‐hypothesis at 1% (0.01) level of significance, we 
represent the situation by (**).   Similarly if we accept the null hypothesis at 5% (0.05) level of 
significance, the situation is represented by no star ( ). 

 2. The p‐value of the test statistic: The test statistic F is calculated is computed from the 
sample data collected and hence is a function of sample observations.   Different samples will 
provide different test statistics.   We are interested to know the chance of rejecting when it is 
really true.   That is, if  really H0 is true, what is the probability that it is rejected?   This 
probability is known as “p‐value” and this probability should be as small as possible.   Thus p‐
value represent Pr(Fcal > Fcrit).   In many computer outputs associated with the problem of 
testing will give this p‐value.   In order to calculate this p‐value, we have to use the sampling 
distribution of the test statistic.   That is for F‐statistic, we have to use F‐distribution.   Similarly, 
for t‐statistic, we have to use student’s t‐distribution and Z‐statistic, we have to use Z‐
distribution or Standard Normal distribution and so on.   Hence, calculation of p‐value manually 
is very difficult.   But computers packages can calculate this p‐value and is provided.    This p‐
value represents the probability of wrongly rejecting the null‐hypothesis.  

  If p < 0.05, we say that the test result is significant at 5% (0.05) level of significance, 
we reject the null‐hypothesis H0.   Otherwise, if p > 0.05, we accept the null‐hypothesis H0. 

  

 3. We know that calculation of variance is independent of change of origin and scale.   
Hence the change of origin and scale reduces calculations of ANOVA to a very greater extent. 

 If we accept the null‐hypothesis, implies that all the treatments under consideration are 
equally effective and one can use any one of the treatment, because, each one can give similar 
mean effect.   But, if we reject the null‐hypothesis, and conclude that the treatments under 
consideration are not equal, then next question arises is that “Which treatment is the Best 
one?” Or “which treatment is least preferable one?” and so on.     

Thus the analysis is not complete, unless otherwise we answer the above type of 
questions.   To do this we required to do “Further Statistical Analysis” which is explained in the 
following section 9.4. 

9.4.    Further Statistical Analysis of ANOVA – one way classification 

 If the null‐hypothesis H0 is rejected, simply stopping at that stage is not the end of the 
ANOVA analysis.   We must be in a position to say which treatment is more efficient or which 
treatment most preferable, which treatment is least preferable and so on.   That is we want to 
sub‐group the treatments such that treatments under the same group have no significant 
difference where as treatments under different sub‐groups have significant difference.   For 
example five treatments T1 ,T2 ,T3 ,T4 ,and T5 are sub‐grouped as (T1 , T4), (T2 , T3 , T5) implies 
that there is no significant difference between (T1 and T4), ( T2 and T3) ,( T2 and T5) and (T3 and 
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T5) because they are under the same group.   Similarly, there exists significant difference 
between (T1 and T2), (T1 and T3) (T1 and T5) (T4 and T2),( T3 and T4) or (T5 and T4) because they 
are in different sub‐groups.  If there is no significant difference between any pair or treatments, 
they form one single sub‐group in which all the treatments in the same sub‐group.   In that 
situation we accept the null‐hypothesis H0 .  

   To do this type of exercise, we have to apply “Further Statistical Analysis”.    There are 
four types of test procedures applicable in further statistical analysis.   Namely: 

(1) Critical Difference (CD) Test. 
(2) Least Significant Difference (LSD) Test . 
(3) Duncan’s Multiple Range (DMR) Test and  
(4) Scheff’s Test. 

Among the above mentioned tests, DMR or Scheff’s tests are based on DMR tables or Sheff’s 
tables respectively.   These tables are specially prepared using order statistics and using their 
distributions.   These tables are not available as popularly as Student’s t‐ tables. Hence we 
discuss CD test or LSD test which uses the most popular student t‐tables, which are available in 
any fundamental book on statistics. 

 9.4.1. Critical Difference (CD)  or Least Significant Difference LSD Test. 

 The test procedure is explained as follows: 

First, calculate all treatment means from the collected data.   That is Calculate 

 i = Ti. / ni i=1,2.,.,K. 

If H0 is rejected, we conclude that there is significant difference between the 
treatment means under consideration.   Then we are further interested to find out which 
pair(s)  of treatments different significantly or which is the most useful treatment or which is 
the least preferable treatment and so on.   To do this, usually we have to apply student’s t‐
test.   Instead of calculating Student’s t‐values for each pair of treatments, we calculate the 
“Least Significant Difference” at the given α% level of significance.   This least significant 
difference is known as the “Critical Difference” denoted by CDα at α% los and is defined as 
follows: 

CDα = S.E. of the difference between two means X tα% for error dof.           (9.4.1) 

The Critical Difference  between two sample means  ( i  ‐  j ) is given by: 

CDα% ( i  ‐  j ) = tα% for error dof X SE (1/ni + 1/nj )
1/2 .    (9.4.2) 

Where,  SE  = is the square root of error Sum of square to be taken from the corresponding 
ANOVA table.        

 This is because of the fact that Var ( i  ‐  j ) = σe
2 / ni   ‐  σe

2 / ni   = σe
2 (1 / ni   ‐ 1/nj ). 

That is S.E. ( i  ‐  j ) = σe (1 / ni   ‐ 1/nj )
1/2, where, σe is the √ E

2 where SE
2 is the error sun of 

square calculated in ANOVA table. 

Remark:   In particular all the treatments have equal replications, that is ni = nj = n then the 
formula given in (9.4.2) will become:  CDα% ( i  ‐  j ) = tα% for error dof X SE (2/n )1/2 .(9.4.3). 
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2. t 2.1 values can be adtainel form any reference book of ons fundamental book on ststiscal 
methods. 

Example (9.4.1):   The following data represents life time (in hrs) measured on four samples 
of electric bulbs manufactured from four different machines.    Test whether these machines 
differ significantly with respect to the average life times of electric bulbs.   Also comment 
whether there is any need to replace or repair any machine. 

Machine ‐1: 1580 1640 1640 1700 1750. 

Machine‐2: 1600 1610 1650 1680 1700 1720 1800. 

Machine‐3: 1460 1550 1600 1620 1640 1660 1740 1820. 

Machine‐4: 1510 1520 1530 1570 1600 1680. 

Solution: Since the variation in the data can be attributed to difference among the machines 
and random errors, one has to apply ANOVA one way classification.  Tee procedure is explained  

as follows: 

Step – 1: Frame the null‐hypothesis H0 : There is no significant variation between the average 
means of different samples of electric bulbs produced from different machines. 

Step – 2: Since the data items are large in sized, using the remark – 3 of  Section 9.3.1, we can 
reduce calculations by considering origin as 1640 and Scale as dividing by 10, we have the 
following table with the above change of origin and the scale. 
Machines.  Transformed (Reduced) data.  Totals (Ti.)    Squires (∑ ij)

2) 

Machine ‐1: ‐6 0 0 6  11 ‐    ‐  ‐   11  193 

Machine ‐2:  ‐4 ‐3 1 4 6 8    16   28   398 

Machine‐3: ‐18 ‐9 ‐4 ‐2 0 2   10  18       ‐3  853 

Machine‐4: ‐13 ‐12 ‐11 ‐7 ‐4 4    ‐       ‐        ‐43  515 
  

      Grand Totals  ‐7 = G           1,959 = RSS 

Step – 3: Calculate row (machine) totals and squares and their  total as shown above. 

Step – 4: Calculate CF = G2 / N = (‐7)2 / 26 = 49/26 = 1.884615. 

Step – 5: Calculate Various Sum of Squares (SS) as follows: 

Total SS = TSS = RSS – CF = 1959 – 1.884615 = 1,957.115385 = B. 

Machine (Treatment) SS = ∑ i)
2 / ni  ‐ CF =  [(11)2 /5  +(28)2 / 7  + (‐3)2 / 8 + (‐43)2 / 6}] – CF. 

=   445.49167 – 1‐884615 = 443.60706 = A. 

Step – 6: Calculate entries of ANOVA – one way table as follows: 
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Table (9.4.3). ANOVA table for one way classification for the example (9.4.1).  

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  (F – 
cal) 

Treatments 
(Columns) 

K – 1 = 4 – 1 = 
3 

St
2 = SST= 

A=443.60706 
V1 = St

2/K – 1 
=443.60706/3 
=147.86903 

F = V1 / V2 = 
147.86903/68.79583

= 2.1493 

Error N – K = 26‐
4=22 

SE
2 = ESS=B – A = 

1,957.115385‐
443.60706= 
1513.50833 

V2 = SE
2 / N – K 

=1513.50833/22 
=68.79583 

 

Total N – 1=26 – 
1=25 

ST
2 = TSS = 

B=1,957.115385 
  

 

Step – 7: Conclusions: From the ANOVA table (9.4.3), Fcal =  2.1493 and from F table (see 
annexure) Ftab at (3,22)degrees of freedom at 5% los Ftab= 3.491 and at 1% los Ftab = 4.82.   
Since, Fcal is less than Ftab  at 5% los, we can also represent this as p > 0.05,   we accept the null‐
hypothesis H0 and conclude that the average life times  of electric bulbs produced from 
different machines does not show any statistical significance.   This means that, all machines 
are equal in the production of electrical bulbs with respect to the average lifetimes. 

 Since, we accept the null‐hypothesis H0, there is no need of further statistical analysis.   
Since all machines are equal in the production of electrical bulbs with respect to average life 
times, there is no need for changing or repair of any machine.    

 Now we proceed to explain ANOVA – one way  along with Further Statistical Analysis 
in the following example. 

Example (9.4.2):   Following data represents the tensile strength of synthetic fiber measured in 
lb2/m2 with various cotton percentages.   Analyze the data whether the cotton percentage has 
any significant effect on the tensile strength of the fiber.   Also determine which cotton 
percentage is best suitable for obtaining best tensile strength of the synthetic fiber. 

Cotton Percentages  1 2 3 4 5 

Treatment ‐1‐20% 7 7 15 11 9 

Treatment ‐ 2‐25% 12 17 12 18 18 

Treatment‐3‐30% 14 18 18 19 19 

Treatment‐4‐35% 19 25 22 19 23 

Treatment‐5‐40% 7 10 11 15 11  
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Solution: Step – 1: Frame the null‐hypothesis H0: There is no significant variation between the 
average tensile strengths with different cotton percentages.   Or V(μi) =0.  

Or H0 = μ1 = μ2 =μ3 =μ4 =μ5. 

Step – 2:  Calculate totals and squares as follows: 

G = 376 K = 5 and N = 25, T1 = 49,T2= 77, T3=88,T4=108, T5= 54 and CF = G2/N = (376)2 / 25 = 
5,655.04 

TSS = (7)2+(7)2+.,.,.,(11)2 – CF = 636.96 = B. 

SST = (1/5)[( 49)2 +(77)2 +.,.,+(54)2] – CF = 475.76 = A.  

Stgep – 3: Calculate various entries of ANOVA – one way table as follows: 

Table (9.4.4). ANOVA table for one way classification.  

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(Columns) 

K – 1=4 St
2 = SST= 

A=475.76 
V1 = St

2/K – 1 
=118.94 

F = V1 / V2 = 
14.7568238 

Error N – K=20 SE
2 = ESS=B – A= 

636.96‐475.76 
=161.20 

V2 = SE
2 / N – K

= 8.06 

 

Total N – 1=24 ST
2 = TSS = 

B=636.96 
 

 

 Step – 4: Conclusions: Fcal = 14.7568238 and Ftab for (4,20) dos at 5% los is 2.8661 and at 1% los 
is 4.431.   Since, Fcal > Ftab at 1% los or p < 0.01, we reject the null‐hypothesis H0 at 1% los.    We 
conclude that there exists statistically significant variance among various cotton percentage 
levels with respect to average tensile strengths of synthetic fiber.   Hence, we require to apply 
further statistical analysis, which is explained as follows: 

Step – 5: Further Statistical Analysis‐ LSD or CD test: 

1. Calculate sample means as follows: 

1 = 49/5 = 9.8; 2 = 77/5= 15.4; 3 =  88/5= 17.6; 4 = 108/5= 21.6 and 5 = 54/5= 10.8. 

2. Calculate Least Significant Difference or Critical Difference CD at σ% los which is given as 
follows: 

Here SE = √(8.06) = 2.839 and t for 20 dos at 5% los is 2.09 and at 1% los is 2.85. 

CDα% ( i  ‐  j ) = tα% for error dof X SE (2/n )1/2 . 

CD5% = 2.09X2.839(2/5)1/2 = 2.09X2.839X0.6324 = 3.7523.  
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Remark: For t values student can refer any fundamental book on statistical methods 

CD1% = 2.85X2.839(2/5)1/2 = 2.85X2.839X0.6324 = 5.1168. 

 

Comparisons: 

Treatments (ti) or  value       5%  Inference  1% Inference 

Cotton percentages  

|( 1  ‐  2 )|=|9.8 – 15.4| 5.6  Significant  Significant. 

|( 2  ‐  3 )|=|15.4 – 17.6| 2.2  No significant  No significant. 

|( 1  ‐  3 )|=|9.8 – 17.6| 7.8  Significant  Significant. 

|( 1  ‐  5 )|=|9.8 – 10.8| 1.0  No significant  No significant. 

|( 4  ‐  5 )|=|21.6 – 10.8|      10.8    Significant  Significant. 

|( 3  ‐  5 )|=|17.6 – 10.8| 6.8  Significant  Significant. 

|( 3  ‐  4 )|=|17.6 – 21.6| 4.0  Significant  No significant. 

 

Like above we calculate the difference between treatment means and compare with 
respective CD values to determine significant effects.   According to the above analysis 
Treatment – 4 is beast which maximizes the tensile strength of the synthetic fiber.   As per 
the effects we can arrange the treatments as: T‐ 4,T‐3,T‐2,T‐5,T‐1.  Treat – 1 is least 
preferable and Treatment – 4 is best preferable. 

Remark:  Further Statistical Analysis is to be applied when we reject the null‐hypothesis in 
ANOVA. 

9.5.   Summary 

 In this lesson we have learnt ANOVA one way classification, and discussed its analysis, 
assumptions and properties.    Introduction to notations used in ANOVA when we accept or 
reject the null‐hypothesis at 5% and 1% los along with the p‐value are introduced.   In computer 
packages or applications p‐values are popularly used.    Further Statistical Analysis used when 
the null‐hypothesis H0 is rejected is discussed and the ANOVA – one way classification with un‐
equal and equal sample sizes are discussed with examples.   Application of LSD or CD teat 
procedure is also explained with an example. 

9.6.   Self Assessment Questions 

1. Explain various assumptions of ANOVA – one way classification. 
2. Explain the method of estimating various sum of Squares. 
3. Write down ANOVA table for one way classified data. 
4. Explain the importance and meaning of p‐value and its applications. 
5. Explain Further Statistical Analysis and its application. 
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6. The following data represent the marks obtained in a GK test from four different universities.  
Analyse with a suitable analysis and apply Further Statistical Analysis if necessary. 
University‐1: 60 62 63 61 60 64 65 63 
University‐2: 59 61 60 62 63 
University‐3: 61 60  65 64 62 63 
University‐4 : 63 65 61 64 63 64 66. 
 

7. The following data represent the yield of a crop on three varieties measured in tones per acre. 
Variety – 1: 10 13 12 15 14 13 13  
Variety – 2: 12 12 11 10 12 10 
Variety – 3:      16 18 19 17 18. 
        

8. An experiment is conducted to measure moisture content of samples of a powder, each man 
carries a sample of six segments.    The assessments are as follows: 
     Observer              Consignments  

    1 2 3 4 5 6 

 A   2 11 11 14 12 10 

 B   9 10 9 10 11 11 

 C   11 10 10 12 11 10 

 D   12 11 9 10 11 11. 

9. Three varieties of coal were analyzed by four chemists in different laboratories.    Ash  
content in the varieties was found as follows.   Test whether the varieties different  
significantly, with respect to ash content. 
 
Varieties Ash content. 
V‐1  3 6 5 4 
V‐2  8 5 5 7 
V‐3  7 6 4 4. 
 

10. Explain ANOVA one way classification procedure applied in practice with an example. 

9.7.    Further Readings. 

1.  C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2.  Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

Sons.,New Delhi. 

4. Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 10. 

Analysis of Variance (ANOVA)‐Two Way 
Classification 

 

10.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need of Analysis of variance – Two way classification. 
• The concepts of ANOVA – Two way classification. 
• Mathematical model of ANOVA – two way classification. 
• Assumption of ANOVA – two way classification. 
• Analysis of ANOVA two way classification with equal and un‐equal number of 

observations per cell. 
• Further models and topics of  ANOVA . 

Structure 

10.1  Introduction to ANOVA – two way classification 

10.2     Mathematical model of ANOVA –two way classification 

10.3  Statistical Analysis of ANOVA – two way classification 

10.4.  Models of ANOVA two way with multiple observations per cell 

10.5   Further aspects of ANOVA 

             10.6  Summary 

             10.7   Self Assessment Questions 

             10.8   Further Readings 

 

10.1. Introduction to ANOVA – two way classification 

                  In the last lesson we have discussed ANOVA‐one way classification where, we assume 
that all the units considered for the experiment are uniform in all aspects except the difference 
in the treatments applied.    Thus experimental results contains effects of two factors , namely 
(i)  Treatment Effects and (ii) Random Effects.   This may be possible in laboratory experiments 
but in many field experiments in agriculture, it is very difficult to get uniform plots.    We may 
select uniform size plots, but they may differ with respect to fertility rate or type of soil or 
temperature of the soil and so on.   Thus there is a need to consider the effects of third factor.    
Hence, there is a need to consider ANOVA – two way classification where we assume that all 
the experimental units are not homogeneous.    Based on the heterogeneity character, we 
divide total units into ‘Blocks’ such that units within the block are assumes as homogeneous.  
For example patients are divided into various blocks as Children, Adults and Old age people.  
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Similarly, Male patients and female patients are considered as different blocks or patients 
suffering similar ailments can be considered as different blocks and so on.  Similarly, in 
Agricultural experiments plots with similar fertility rates are considered as ‘blocks’.   Thus 
heterogeneity may be present between blocks and homogeneity must be present within the 
block.    For example, fertility rates changes in horizontal direction, we have to consider blocks 
in vertical direction such that plots within the block are having similar fertility rate as shown 
below:      Fertility rates  

High Medium Low 

Plot‐1 Plot‐2 Plot‐3 

Plot‐4 Plot‐5 Plot‐6

Plot‐7 Plot‐8 Plot‐9

Plot‐10 Plot‐11 Plot‐12 

Block‐I                    Block – II    Block – III 

             

             Similarly if the fertility rate changes vertically, blocks are to be considered as vertically 
as shown below. 

High Plot‐1 Plot‐4 Plot‐7  Plot‐10 Block –I 

Medium Plot‐2 Plot‐5 Plot‐8 Plot‐11 Block – II

Low Plot‐3 Plot‐6 Plot‐9 Plot‐12 Block – III

   

         Thus, units within the block are homogeneous and units in different blocks are not 
homogeneous.   After dividing the heterogeneous experimental units into homogeneous 
blocks, treatments are to be applied randomly to the units within each block independently.    

10.2. Mathematical model of ANOVA –two way classification‐ with one 
observation per cell. 
Let us consider the experiments where there are two factors which may affect the  

experimental results xij, i=1,2,.,.,K and j=1,2,.,.,n.  Here, xij represents the yield of the plot in jth 
block receiving the ith treatment or yield of milk of the cow receiving jth ration in ith treatment 
and so on.    The data under ANOVA two way classified data is arranged as follows: 

Treatments/rows                                             Blocks 

B1              B2             B3 ………Bj ………….           Bn 

Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1n       

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2n       

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3n       

1. 

2. 

3. 

T1. 

T2. 

T3. 
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. 

Treatment – i: ti 

. 

Treatment – k: tk 

 

……………………………………………………………………….. 

…………………………………………xij……………………………...

…………………………………………………………………………. 

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xkn       

. 

i. 

 

. 

k. 

. 

Ti. 

 

. 

Tk. 

Means 

Totals 

.1                 .2           .3                                      .n 

T.1              T.2            T.3                                       T.n       

 G = Grand 
total 

 

       The mathematical model of ANOVA two way classified data is similar to the model of 
ANOVA one way where we consider block effects in addition to treatment effects as follows: 

Xij = μij + εij  = = μ + αi + βj+  Υij + εij       (10.2.1) 

Where, ∑ I = 0 = ∑ j  and  ∑ ij  =  ∑ ij = 0 for all i,j. 

Here, Υij represent interaction effects between Factor A and Factor B. 

Similarly αi represent ith treatment effect i=1,2,.,.,.,K and βj represent jth block effect j=1,2,.,.,n. 

As there is only one observation per cell and the observation corresponding to the jth block 
receiving ith treatment, it is not possible to estimate the interaction effect between factors A 
and B.  It is important to note that we cannot estimate anything from single observation in 
Statistics.    At least two observations must be there to get the estimate.   More number of 
observations or replications are preferable, because more replications will reduce the 
experimental error.   This is because of the fact that experimental error and the number of 
observations is inversely proportional.      That is experimental error reduces as number 
observations increases.   This type of estimations of interaction effects between the factors A 
and B can be done in ANOVA – two way model with multiple observations per cell.   Thus in 
this model we consider Υij = 0.   Thus the model given in (10.2.1) reduces to the following: 

 x ij = μij +εij  = = μ + αi + βj  + εij .   (10.2.2) 

     Now we proceed to discuss the Statistical Analysis of ANOVA – two way classified model with 
single observation per cell in the following section. 

10.3. Statistical Analysis of ANOVA – two way model with one observation per 
cell 
First we frame the null‐hypotheses for ANOVA two way model as follows. 

10.3.1. Null‐hypotheses: We have to frame two null‐hypotheses, one for treatment mean  

effects and another for the block means effects framed as follows. 

For Treatments: 

H01: There is no significant variation between average treatment effects or 

H01:  μ1. = μ2. = μ3. =… μK. = μ   or :  α1. = α2. = α3. =… αK. = 0.    (10.3.1) 



 
 

Design of Experiments                          10.4                Statistical Analysis (ANOVA) Two way…   
 

 For Blocks: 

H02: There is no significant variation between average block effects or 

H02:  μ.1 = μ.2 = μ.3 =… μ.n = μ or β1 = β2 =β3 ……..=βn = 0.    (10.3.2) 

 

10.3.2. Calculation and estimation of various parameters and  sum of squars. 

Let us denote i. = Mean yield of ith treatment = ∑ ij / n; i = 1,2,.,.,K.              (10.3.1) 

Similarly, .j = Mean yield of jth Block =   ∑ ij / K; j = 1,2,.,.,.n.   (10.3.2) 

And .. = Over all mean = [∑  ∑ ij ] / nK = G / nK = { ∑   [ ∑ ij / n]}/K 

 = [∑ .]/K = { ∑   [ ∑ ij / K] }/n = [∑ . ]/ n . (10.3.3) 

Now we proceed to obtain the estimates of the parameters μ, αi, i=1,2,.,., K and βj , j =1,2,.,.,n 
of the model explained in section 10.3.1 by the method of least squares as follows: 

Consider E = ∑  ∑ ij
2 = ∑  ∑ ij – μ ‐ αi ‐ βj ]

2 .   (10.3.4) 

The ‘normal equations’ for estimating the parameters μ, αi, i=1,2,.,., K and βj , j =1,2,.,.,n are: 

E / μ = 0 = ‐2 ∑  ∑ ij – μ ‐ αi ‐ βj ]       (10.3.5) 

E / αi = 0 = ‐2 ∑ ij – μ ‐ αi ‐ βj ] i=1,2,.,.,K.     (10.3.6) 

E / βj  = 0 = ‐2 ∑ ij – μ ‐ αi ‐ βj ] j=1,2,.,.,n.     (10.3.7) 

Under the null hypotheses we know that ∑  αi = ∑ βj = 0.                                 (10.3.8)   = (1 / nk ) ∑  ∑ ij = ..                                                                                       (10.3.9)  i =  (1/n)[ ∑ ij]  ‐    = i. ‐  .. i=1,2,.,.,K.     (10.3.10) 

j =  (1/k)[ ∑ ij]  ‐    = .j ‐  .. j=1,2,.,.,n.     (10.3.11) 

Substituting above estimates in the model (10.2.2) we have: 

 xij = .. + ( i. ‐  ..) + ( .j ‐  ..) + (xij – i. ‐ .j + ..)    (10.3.12) 

The error term is so chosen such that RHS is identically equal to LHS in equation (10.3.12). 

Take the term .. to the LHS of (10.3.12) summing over i = 1,2,.,.,K and j = 1,2,.,.,n and squaring 
on both sides we have: ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij ‐ i. ‐ .j + ..) + ( i. ‐  ..) + ( .j ‐  ..)]

2  

= ∑  ∑ ij ‐ i. ‐ .j ‐ ..)2 +  ∑  ∑   ( i. ‐  ..)
2 +  ∑  ∑  ( .j ‐  ..)

2 

 + 2 ∑  ∑ ( i. ‐  ..)  ij ‐ i. ‐ .j + ..) 

 + 2 ∑  ∑ ( .j ‐  ..)  ij ‐ i. ‐ .j + ..) 

 + 2 ∑  ∑ ( i. ‐  ..) ( .j ‐  ..)    (10.3.13) 
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Now ∑  ∑ ( i. ‐  ..)  ij ‐ i. ‐ .j ‐ ..) = ∑  ( i. ‐  ..) ∑  ij ‐ i. ‐ .j ‐ ..)] 

= ∑  ( i. ‐  ..)  ∑  ij ‐ i.) –   ∑  ( .j ‐ ..) }]   = 0   (10.3.14) 

Since the algebraic sum of deviations of observations about their mean is always zero.   
Similarly, all product terms in (10.3.13) will become zero and hence we have: ∑  ∑ ij ‐ ..)2 = n ∑   ( i. ‐  ..)

2  +    K ∑  ( .j ‐  ..)
2  

 + ∑  ∑ ij ‐ i. ‐ .j + ..)2     (10.3.15) 

Above equation can also be written as : ST
2 = St

2 + Sb
2 + SE

2     (10.3.16) 

Where ST
2 = ∑  ∑ ij ‐ ..)2 = Total Sum of Squares (TSS)   (10.3.17) 

St
2 = n ∑   ( i. ‐  ..)

2 =  Sum of Squares due to treatments(SST)   (10.3.18) 

Sb
2 = K ∑  ( .j ‐  ..)

2 = Sum of Squares due to blocks (SSB)   (10.3.19) 

And SE
2 = ∑  ∑ ij ‐ i. ‐ .j + ..)2 = Error Sum of Squares (ESS)  

 or Residual sum of Squares (RSS)    (10.3.20) 

We can also estimate various sum of squares as done in ANOVA one way classification.   The 
difference is that here, we have to consider Block sum of squares additionally in ANOVA two 
way procedures.  

10.3.3 Degrees of freedom of various sums of squares and ANOVA table. 

     Since the total sum of squares ST
2 is calculated from N=nK quantities which are subjected to 

one linear constraint, ∑  ∑ ij ‐ ..) = 0,  we have N – 1 degrees of freedom for TSS. 

Similarly, treatment sum of squares St
2 has (K‐1) degrees of freedom, block sum of squares has 

(n‐1) degrees of freedom and Error sum of squares has (n‐1)(K‐1) degrees of freedom. 

Thus we have N – 1 = (K‐1) + (n – 1) + (n‐1)(K‐1).     (10.3.21) 

After calculating Various sum of squares, we proceed to form the ANOVA table for two way 
classification .   It can be observed that the conditions of Cochran’s theorem are satisfied. 

 Table (10.3.22) ANOVA table of two factor model.  

Source of Variation 
(SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F 
– cal) 

Treatments (Rows) K – 1 St
2 = SST= A V1 = St

2/K – 1 F1 = V1 / V3 

Blocks (columns) n – 1 Sb
2= SSB = B V2 = Sb

2 / n – 1 F2 = V2 / V3 

Error (n‐1)(K‐1) SE
2 = ESS=C=D –(B +A) V3 = SE

2 / (n‐1)(K‐1)  

Total nK – 1 or N ‐1 ST
2 = TSS = D   
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Conclusions: 

 (1) For treatments H01: Note Ftab at α% los at [(K‐1),(n‐1)(K‐1)] from F – tables given in 
appendix. 

      If F1 calculated value is less than or equal to Ftab for treatments, we accept H01 and conclude 
that there is no significant variation among various treatment means under consideration.   
Otherwise, we reject the null hypothesis H01. 

(2)For Blocks H02:  Note Ftab at α% los at [(n‐1),(n‐1)(K‐1)] from F – tables given in appendix. 

      If F2 calculated value is less than or equal to Ftab for blocks, we accept H02 and conclude that 
there is no significant variation among various block means under consideration.   Otherwise,  

we reject the null hypothesis H02. 

Note: (1) Here also we can apply ‘Further Statistical Analysis’ when any hypothesis is rejected.    
(2) We can also represent the conclusions using p‐values. 

(3)Above mentioned analysis is independent of change of origin and change of scale. 

 Now we proceed to explain various steps involved in practical problems, which reduces lengthy 
calculations.  

10.3.4: Procedure to be adopted in working out practical problems. 

Let N = nK and Ti. represent the  ith row (treatment) total;  T.j represent jth block (column) total 
and G represents Grand total as explained in section (10.2).   

 First frame the null‐hypotheses as follows: 

 H01:  μ1. = μ2. = μ3. =… μK. = μ   or :  α 1 = α 2 = α 3 =…….. α K = 0. Or there is no significant 
variation between the treatment means or V ( .) = 0. 

H02:  μ.1 = μ.2 = μ.3 =… μ.n = μ or β1 = β2 =β3 ……..=βn = 0. Or there is no significant variation 
between various block means or V ( . ) = 0. 

Step – 1: Calculate the Correction factor (CF) =  G2 / N.  

Step – 2: Calculate Treatment Sum of Squares (SST) = ∑ i.)
2 / n  ‐ CF = A. 

Step – 3 : calculate Block Sum of Squares (SSB) = ∑ .j)2 / K  ‐ CF = B. 

Step – 4: Calculate Total Sum of squares (TSS) = ∑  ∑ ij)
2 – CF = D. 

Step – 5: Calculate Error Sum of Square (ESS) = C =  D – (A+B) 

Step – 6: Construct ANOVA table for two factor model as follows: 
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Table (10.3.23) ANOVA table of two factor model.  

Source of Variation 
(SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F 
– cal) 

Treatments (Rows) K – 1 St
2 = SST= A V1 = St

2/K – 1 F1 = V1 / V3 

Blocks (columns) n – 1 Sb
2= SSB = B V2 = Sb

2 / n – 1 F2 = V2 / V3 

Error (n‐1)(K‐1) SE
2 = ESS=C=D –(B +A) V3 = SE

2 / (n‐1)(K‐1)  

Total nK – 1 or N ‐1 ST
2 = TSS = D   

 

 Conclusions: For treatments: 

(1) If F1  Ftab at [(K‐1),((n‐1)(K‐1)]dof at α% los we accept H01 otherwise we reject H01.  
          For blocks: 

(2) If F2  Ftab at [(n‐1),((n‐1)(K‐1)]dof at α% los we accept H02 otherwise we reject H02.  

Example (10.3.1): The following data represent the yield of paddy of five varieties in different 
experimental plots of size 10ftX10ft measured in Kgs.   Analyze the data and determine 
whether there exists any variation in mean yields of different varieties or mean block yields? 

     Blocks  

 B1 B2     B3    B4    B5    B6    B7    B8    B9    B10       

Variety – 1 97    65    62    99    60    80     76   92    90    89  

Variety – 2 95    60    48    87    48    75   71    93    80    93           

Variety – 3 99    70    90    99    65    85   75    70    85    92  

Variety – 4 98    65    70    95    67    82    73   94    86    90  

Variety – 5 96    65    80    95    70     88    70   51   84     91  

 

Solution: First frame null‐hypotheses: 

H01 :   There is no significant variation between mean yields of different varieties. 

H02 :   There is no significant variation between mean yields of different blocks. 

     Now calculate various totals, that is row totals, column totals and grand total G, the 
correction factor and various sum of squares as follows: 

    Blocks  

 B1 B2     B3    B4    B5    B6    B7    B8    B9    B10      Totals 

Variety – 1 97    65    62    99    60    80     76   92    90    89 810 
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Variety – 2 95    60    48    87    48    75   71   93    80    93          750 

Variety – 3 99    70    90    99    65    85    75   70    85    92 830 

Variety – 4 98    65    70    95    67    82    73   94    86    90 820 

Variety – 5 96    65    80    95    70     88    70   51   84     91 790 

Totals 485  325  350  475 310   410  365 400 425  455 4,000=G  

 

Here K=5,n=10 and N = 50 and Correction Factor = CF = G2 / N = (4,000)2/50 = 3,20,000 

Treatment SS = SST = (810)2/10 +(750)2/10 + (830)2/10 + (820)2/10 + (790)2/10 – CF. 

= 400 = A. 

Block SS= SSB= (485)2/5 + .,.,.,+(455)2/5 – CF = 6,810 = B. 

Total SS = TSS = (97)2 +.,.,.,(91)2 – CF = 3,29,948 – 3,20,000 = 9,948 = D. 

Error SS = ESS = C=D – (A+B) = 9,948 – (400+6,810) = 2,738.  

Then the ANOVA for two factors model is as follows: 

Table (10.3.24) ANOVA table of two factors model.  

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF)

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance Ratio 
F  (F – cal) 

Treatments 
(Rows) 

 Or Varieties 

K – 1=5‐1= 4 St
2 = SST= A=400 V1 = St

2/K – 1 

=400/4 =100 

F1 = V1 / V3 

=100/76.06= 

1.31 

Blocks (columns) n – 1 =10‐1= 9 Sb
2= SSB = B=6,810 V2 = Sb

2 / n – 1 
=6,810/9=756.67 

F2 = V2 / V3 

=756.67/76.06 

=9.95** 

Error (n‐1)(K‐1) 

=9x4=36 

SE
2 = ESS=C=D –(B +A)  

=2,738 

V3 = SE
2 / (n‐1)(K‐1) 

2,738/36=76.06 

 

Total nK – 1 or 

 N ‐1=50‐1=49 

ST
2 = TSS = D=9,948  

Conclusions: (1) For varieties: For F1, table value of  Ftab at [4,36] dof at 5% los is 2.63.   Since F1 
calculated value is less than Ftab at 5% los, we accept the null hypothesis H01 at 0.05  los and 
conclude that there is no statistical or significant variation between the varieties with respect 
to the average yield of paddy crop under consideration.   Here we represent this situation in p‐
notation as  P > 0.05. 

(2)For Blocks: For F2, table value of Ftab at [9,36] dof at 5% los is 2.15 and 1% los is 2.98.   Since 
F2 calculated value is more than Ftab we reject the null hypothesis H02 at 0.01% los and conclude 
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that there is statistical or significant variation between the blocks with respect to the average 
yield of paddy crop under consideration.   In this case we represent as P < 0.01.  

        Since H01 is accepted for treatments, Further Statistical analysis is not necessary for the 
treatments.    Even though the null hypothesis H02 is rejected, blocking is not of that much 
important, and hence, we are not interested to apply further statistical analysis for blocks.   If 
this is also important to determine, the we have to apply the analysis for blocks by calculating 
block means and the respective CD at 0.05 or 0.01 los.     Now we proceed to explain ANOVA 
two way with multiple observations per cell in the following section. 

10.4.  Models of ANOVA two way with multiple observations per cell 

 In the ANOVA two factor model discussed contains only one 
observation per cell and hence, it is not possible to estimate interaction effects of factors A and 
B, namely Υij discussed in the model (10.2.1).   To estimate these interaction effects, we have to 
consider multiple observations per cell.   Here also we have two cases namely: 

Case (1): ANOVA two way classified data with multiple but equal number of observations ( say r 
replications) in all the cells. 

Case (2): ANOVA two way classified data with multiple but un‐equal number of observations 
(say ri,i=1,2,.,.,.,N observations) in ith cell. 

Case (1) is a particular case of Case (2) when r1=r2=.,.,.,rN = r, that is when r replicates in each 
cell.    The analysis of un‐equal number of replicates is similar to that of equal replicates except 
the difference that in summing of observations we have to consider ri replicates in the ith cell 
instead of r replicates.   In this section we outline the analysis of the ANOVA two way classified  

data with equal number of observations per cell.   The model corresponding to this is explained  

in section 10.2 and equation (10.2.1) explains the model with interaction effects of factors A 
and B.  The data collected under this set up is given as follows: 

Treatments/rows                                             Blocks 

B1              B2             B3 ………Bj ………….           Bn 

Total 

Treatment – 1: t1 

 

 

 

 

 

 

Treatment – 2: t2 

 

x111             x121              x131  .  .  .  .  .  .  .  .         x1n1

x112             x122            x132 . . . . . . . . . . . .         x1n2 

………………………………………………………………………… 

X11r                 x12r              x13r                                   x1nr 

 

x211            x221              x231  .  .  .  .  .  .  .  .  .       x2n1 

x212            x222            x232 . . . . . . . . . . . . . .     x2n2 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

X21r            x22r             x23r  . . . . . . . . . . . . .      x2nr 

 

T1.. 

 

 

 

 

T2.. 
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Treatment – 3: t3 

 

 

Treatment – i: ti 

 

 

 

 

 

 

 

Treatment – k: tk 

 

                

x311             x321              x331  .  .  .  .  .  .  .  .  .      x3n1   

x312             x322            x332 . . . . . . . . . . . . .       x3n2 

……………………………………………………………………….. 

x31r              x32r            x33r ………………………      x3nr 

……………………………………………………………………….. 

…………………………………………xij……………………………...

…………………………………………………………………………. 

 

 

 

xk11             xk21              xk31  .  .  .  .  .  .  .  .  .     xkn1 

xk12             xk22            xk32   . . . . . . . . . . .  .    xkn2 

………………………………………………………………………. 

Xknr             xk2r             xk3r   . . . . . . . . . . . . .   xknr   

 

 

 

T3.. 

 

 

Ti.. 

 

 

 

 

 

 

 

Tk.. 

Totals T.1.              T.2.            T.3.                                 T.n.          G = Grand total=T… 
 

          In the above table G is the total of all the (Knr) observations. K = number of treatments, 
n=number of blocks and r=number of replicates.    From the above table, first totals all 
replicates in each cell is to be obtained to get the following table of replicate totals.    

The analysis of ANOVA two classified data with multiple but equal number of observations per 
cell is briefly explained as follows: 

10.4.1. Brief analysis ANOVA two way classified data with ‘r’ number of observations per cell. 

First obtain the table of cell total of each cell from the data by adding all replicate 
observations in each cell. 

Table (10.4.1) Table of totals of all replicates in each cell 

Treatments/rows                                             Blocks

B1              B2             B3 ………Bj ………….           Bn 

Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

T11.             T12.              T13.  .  .  .  .  .  .  .  .  .        T1n.       

T21.             T22.              T23.  .  .  .  .  .  .  .  .  .        T2n.       

T31.             T32.              T33.  .  .  .  .  .  .  .  .  .        T3n.       

T1.. 

T2.. 

T3.. 
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. 

Treatment – i: ti 

. 

Treatment – k: tk 

 

……………………………………………………………………….. 

…………………………………………Tij.……………………………...

…………………………………………………………………………. 

Tk1.             Tk2.              Tk3.  .  .  .  .  .  .  .  .  .           Tkn.      

. 

Ti.. 

 

. 

Tk.. 

Totals T.1.              T.2.            T.3.                                   T.n.         G = Grand total=T… 

 

Step – 1: Frame the null hypotheses as follows: 

H01: There is no significant effect of Factor A or treatments. 

H02: There is no significant effect of Factor B or blocks. 

H03: There is no interaction effects between Factor A and Factor B. 

Step – 2: Calculate CF = G2/Knr = T2
…/Knr  

Step – 3: Calculate Treatment Sum of Squares (SST) = ∑ i..)
2 / nr  ‐ CF = A. 

Step – 4 : Calculate Block Sum of Squares (SSB) = ∑ .j.)2 / Kr  ‐ CF = B. 

Step – 5 : Calculate Interaction sum of squares (SSI) = ∑ ∑ ij
2 – CF = C 

Step – 6: Calculate Total Sum of squares (TSS) = ∑  ∑ ∑  ijl)
2 – CF = D. 

Step – 7: Calculate Error Sum of Square (ESS) = E = D – (A + B + C) 

Step – 8: Construct ANOVA table for two factor model as follows: 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F 
– cal) 

Treatments (Rows) K – 1 St
2 = SST= A V1 = St

2/K – 1 F1 = V1 / V4 

Blocks (columns) n – 1 Sb
2= SSB = B V2 = Sb

2 / n – 1 F2 = V2 / V4 

Interaction  (K‐1) (n‐1) Stb
2=SSI = C V3= Stb

2/(K‐1)(n‐1) F3=V3 / V4 

Error Kn(r‐1) SE
2 = ESS=E=D –(A+B+C) V4 = SE

2 / (n‐1)(K‐1)  

Total Knr – 1  ST
2 = TSS = D  

Conclusions: 

(1)  For treatments or Factor A: 
If F1  Ftab at [(K‐1),Kn(r‐1)]dof at α% los we accept H01 otherwise we reject H01.  

(2) For blocks or Factor B: 
If F2  Ftab at [(n‐1),Kn(r‐1)]dof at α% los we accept H02 otherwise we reject H02.  

(3) For interactions between Factor A and Factor B. 
If F3  Ftab at [(n‐1),(k‐D); Kn (r‐1)]dof at α% los we accept H03 otherwise we reject H03.  
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Example (10.4.1): The following data represent the effective Battery life measured in hours, 
manufactured with different material tested at different temperatures.   In each category four 
randomly selected samples of size 4 are tested.  Test the effects of material, temperature and 
also test whether there exists any interaction effects between material and temperature are 
present or not?  The data obtained from the Battery experiment is given as follows: 

Table (10.4.2) Life times of Batteries measured in hours. 

  Temperatures (0F ) 

 20   80   120 

                     A 130,155,74,180   34,40,80,75  20,70,82,58 

Material  

Type             B 150,188,159,126 136,122,106,115 25,70,58,45 

 

                      C 138,110,168,160 174,120,150,139 96,104,82,60 

 

Solution: First frame the null‐hypotheses and then calculate the table of totals of each cell, 
column and row totals and Grand total G as follows: 

H01: There is no significant effect of Factor A or treatments or material types. 

H02: There is no significant effect of Factor B or blocks or temperatures. 

H03: There are no interaction effects between Factor A and Factor B. 

Table (10.4.3) Table of totals. 

  Temperatures (0F ) 

 20   80   120 Totals 

                     A 539   229   230 998 

Material  

Type             B 623   479   198 1300 

 

                      C 576   583   342 1501 

Totals 1738   1291   770 G = 3799 

 

Here, K=3, n =3 and r = 4. Then calculate CF and various SS. 

CF = G2/Knr =(3799)2/36 = 77,646.97. 

SST =  [(998)2 + (1300)2+(1501)2] / 12 – CF = 10,683.72 = A 

SSB = [(1738)2 + (1291)2+(770)2] / 12 – CF =  39,118.72 = B 
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 SSI = [(539)2 + (229)2 +.,.,.,.,+(342)2] / 4 – CF = 10,683.72 = C 

TSS = [(130)2 + (155)2 +.,.,., + (60)2 ] – CF = 77,646.97 = D. 

SSE = D – (A+B+C) = 18,230.75. 

Table (10.4.4) ANOVA table of two way classified data with multiple but equal number of  

 observations per cell. 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F 
– cal) 

Treatments (Rows) K – 1=2 St
2 = SST= A=10,683.72 V1 = St

2/K – 1 

=5,341.86 

F1 = V1 / V4

7.91** 

Blocks (columns) n – 1=2 Sb
2= SSB = B=39,118.72 V2 = Sb

2 / n – 1 

=19,559.36 

F2 = V2 / V4

28.97** 

Interaction  (K‐1) (n‐1)=4 Stb
2=SSI = C=10,683.72 V3= Stb

2/(K‐1)(n‐1) 

=2,403.44 

F3=V3 / V4 

3.56* 

Error Kn(r‐1)=27 SE
2 = ESS=E=D –(A+B+C)

=18,230.75 

V4 = SE
2 / kn (r‐1) 

=675.21 

 

Total Knr – 1 =35 ST
2 = TSS =D=77,646.97   

Conclusions: 

(1) For Materials or Factor A: For F1, table value of  Ftab at [2,27] dof at 1% los is 5.49.   Since F1 
calculated value is greater than Ftab at 1% los, we reject the null hypothesis H01 at 0.01 % los 
and conclude that there is statistical or significant variation between the materials with respect 
to the average lifetimes of Batteries under consideration.   Here we represent this situation in 
p‐notation as  P < 0.01. 

(2)For Blocks or Temperatures or Factor B: For F2, table value of Ftab at [2,27] dof at  1% los is 
5.49.   Since F2 calculated value is more than Ftab we reject the null hypothesis H02 at 0.01% los 
and conclude that there is statistical or significant variation between the blocks temperatures 
with respect to the average lifetimes of Batteries under consideration.   In this case we 
represent as P < 0.01.  

(3)For Interactions between factors A and B Materials and Temperatures: For F3, table value 
of Ftab at [4,27] dof at 5% los is 2.73 and 1% los is 4.11.   Since F3 calculated value is more than 
Ftab at 5% los and less than Ftab at 1% los hence we reject the null hypothesis H02 at 0.05 los and 
conclude that there is statistical or significant interaction effects between the Factors A and B 
or Materials and Temperatures with respect to the average lifetimes of Batteries under 
consideration.   In this case we represent as P < 0.05.  

               Here also we can apply further statistical analysis in all the above three cases because 
we gave rejected all the three hypotheses by calculating CD test. 
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                On similar lines we can analyze the two way model with multiple but un‐equal number 
of observations.   While calculating the Interaction sum of squares, we have to divide the cell 
total squares with the corresponding number of observation of that cell.   Except this change, 
all other calculations runs on similar lines of ANOVA two way classified data, with equal number 
of observations per cell. 

10.5   Further aspects of ANOVA 

 We can extend the ANOV two way classified data to three way and higher way on 
similar lines explained in this lesson.   That is we can extend the analysis for three Factors A,B 
and C and their interactions.    Interaction effects are many types and the detailed discussion of 
interaction effectors are discussed in the last unit while discussing “Factorial Experiments”.   In 
factorial experiments, we discuss Main effects of different factors, various interaction effects 
like, Interaction effects of two factors and interaction effects of three factors and so on are 
discussed in detail in the last Unit. 

10.6  Summary 

 In this lesson we have discussed ANOVA two way classification data, which is the 
extension of ANOVA one way classification.    When all the experimental units are uniform, we 
can apply one way or one factor analysis.    When the experimental units are heterogeneous, 
we have to divide the experimental units into blocks such that units within the Block are 
homogeneous.   Then we have to consider the Block or Factor B in addition to Factor A or 
treatments.    This analysis where we estimate the effects of Two Factors is known as ANOVA 
two factor analysis.   First we have discussed ANOVA two factor analyses with single 
observation per cell.   Then the analysis extended to the ANOVA two factors with multiple 
observations per cell.    Here also we have two cases in multiple observations per cell.   Each 
Cell contains multiple but equal number of observations per cell and the second case is that 
multiple but unequal number of observations per cell.   Analysis all the above models are 
discussed in this lesson along with Further Statistical Analysis and further aspects like three 
factor analysis is discussed which is the extension of the analysis of two factor ANOVA. 

 

10.7.    Self Assessment Questions 

1. Explain the need of ANOVA two factor analysis, with suitable examples. 

2. Explain the method of estimation of various sum of squares of ANOVA two way classified  

    data with one observation per cell. 

3. Write down the ANOVA table for ANOVA two factor model with one observation per cell. 

4. Write down the ANOVA table of ANOVA two factor model with multiple but equal number  

    of observations per cell. 

5. Write down the ANOVA table of ANOVA two factor model with multiple but un‐equal   

    number of observations per cell. 
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6. Following data represent the marks of students in 10th class in three different schools in a 
five different towns.  Test whether any significant variation between  Schools or significant 
variation in different towns.    If necessary apply CD test and draw your conclusions. 

       Towns 

   T1  T2  T3  T4  T5 

  A 999  997  996  995  998 

Schools B 997  994  995  994  995 

  C 996  995  996  997  996  

 

7.  The following data represent the yield of milk measured in lts. in three varieties of cows fed 
on four different rations. 

      Rations 

   R1  R2  R3  R4 

  V1 19  20  20  21 

Varieties V2 12  24  21  22 

  V3 15  26  22  20 

 Apply suitable analysis and draw your conclusions. 

8. A machine engineer is studying thrust force developed by a drill press.   He suspects that the 
drilling speed and the feed rate of the material are most important factors.   He selects four 
feed rates and uses high (200) and low (100) drill speed chosen to represent operating 
conditions.   The results are tabulate as follows: 

     Feed rates 

Drill Speed  0.015  0.045  0.060  0.080 

High (200)  2.86,2.83 2.80,2.85 2.87,2.86 2.88,2.94 

Low (100)  2.78,2.70 2.49,2.45 2.72,2.60 2.86,2.75 

Test whether any significant effects speed rates and feed rates.   Also test whether there exists 
any interaction effects between feed rates and the speed of the drilling machines. 

 

8. The factors that influence the breaking strength of a synthetic fibber are being studied.   
Four production machines in three different shifts of workers are considered and data is 
collected as follows: 

Machines 

Shifts  M1  M2   M3  M4 

I batch  109,110 112,115  106,109 110,109 
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II batch 114,116 115,118  117,120 115,119 

III batch 110,116 118,121  110,111 110,109 

Examine whether shifts and machines have any interaction effects along the effects of 
machines and effects of shifts. 

9. An experiment is conducted to examine the influence of three operating temperatures and 
three types of face plate glass in the light output of oscilloscope tube.   Test results are 
tabulated as follows: 

Glass Type 

Temperature (0F)   A   B   C 

100    546,575,599  570,568,580  579,530,550 

120    1000,1035,1070 1090,1087,1085 1066,1053,1045 

140    1386,1380,1392 1318,1328,1310 867,995,876. 

 

   Test whether glass type and temperature has any interaction effects.   Similarly test whether 
temperature difference and glass type has any significant effects individually.             

10.8   Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 11. 

Analysis of Covariance (ANCOVA)‐ One factor Model 
 

11.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need of Analysis of Co‐variance (ANCOVA). 
• The concepts of ANCOVA – one way classification. 
• Mathematical model of ANCOVA – one way classification. 
• Analysis of ANCOVA – one way classification. 

 

Structure 

11.1. Introduction to ANCOVA 
11.2.  Mathematical model of ANCOVA –one way classification 
11.3. Statistical Analysis of ANCOVA – one way classification 
11.4. Example of ANCOVA – one factor model 
11.5.    Summary 
11.6.    Self Assessment Questions 
11.7.    Further Readings 
 
11.1. Introduction to ANCOVA 

 In the last lesson, we have introduced ANOVA two factors models which is to be applied 
when the experimental units are heterogeneous.   The variation present in the experimental 
units may decrees the efficiency of the estimates.   To avoid this, variation present in the 
experimental units are attributed as variation between blocks if we divide the heterogeneous 
units into blocks such that units within the block are homogeneous and any heterogeneity is 
classified as variation between blocks.    Thus using this technique, we can reduce the 
experimental error or nuisance factor.  Experimental errors are also known as Mean square 
errors or Random errors.    Our objective is to reduce these errors so that the estimates will 
become more efficient.   ANCOVA is one such tool which reduces further these Random errors. 

 Analysis of Co‐variance (ANCOVA) is another technique that is occasionally useful to 
reduce the experimental and hence, improves the precession of the estimates of various 
factors average effects and their interactions.   Suppose that in an experiment with the main 
response variable y there is another variable x which is linearly related with the main variable y.   
Further, it is important to note that the variable x cannot be controlled by the experimenter, 
but can be observe along with the main variable y.    Such variable x is known as  Concomitant 
or co‐variate or independent variable on which the main variable y is depending.    Using the 
information on y and x we can reduce further the experimental in using ANCOVA.  Thus 
Analysis of co‐ variance (ANCOVA) is a statistical technique where, we combine the Analysis 
of variance (ANOVA) with the Regression Analysis. Thus, ANCOVA technique involves adjusting 



 
 

Design of Experiments                          11.2                 Analysis of Covariance (ANCOVA)…   
 

 

the observed response or main variable for the effect of concomitant variable.   If such 
adjustment is not performed, the concomitant variable will inflate the error mean square or 
experimental error and make true differences in the response due to treatments will become 
difficult to detect or to estimate.   Now we proceed to introduce the mathematical model of 
ANCOVA in the following section. 

11.2. Mathematical model of ANCOVA –one way classification 

Let yij represent jth observation on the response variable belonging to the ith treatment  

and xij is the observation made on the concomitant variate corresponding to yij .   Let .. is the 
mean of the xij values and μ is the overall mean of the main response variable Y.   Let τi is the 
effect of ith treatment  and β is the linear regression coefficient between the main response 
variable Y and the concomitant variable X.   Let εij is the random error component.   Then 
ANCOVA one factor model is given by: 

 yij =  μ + τi + β (xij ‐ .. ) +  εij, i=1,2,.,.,K and j = 1,2,.,.,n  (11.2.1) 

Assumptions:  The ANCOVA one factor model has the following assumptions: 

1. The regression coefficient or the slop β  0. 
2. The relation between X and Y is linear. 
3. The errors εij independently and identically normally distributed with mean 0 

and variance σ2 . 
4. The regression coefficients for each treatment are identical that the treatment 

effects  sum to zero.   That is ∑ i = 0. 
5. The concomitant variable X is not affected by the treatments. 

It is important to note that the model given in (11.2.1) contains both ANOVA model of 
ANOVA one factor analysis and the linear model employed in the regression analysis.   That 
is, we have treatment effects { τi } as in single factor ANOVA and a regression coefficient β as in 
linear regression line representing the ‘slope’ or the regression coefficient of Y on X.   The 
concomitant variable X can be expressed as (xij ‐ .. ) instead of xij, so that the parameter μ is 
preserved as the overall mean of the main variable Y. 

11.3. Statistical analysis of ANCOVA one way classification 

The data for the ANCOVA for one factor model will be represented as follows: 

Trearments.   Data    Totals 

Treatment – 1:  (y11,x11)  (y12,x12)  (y13,x13)  ,.,.,.,.,., (y1n,x1n)    (y1.,x1.) 

Treatment – 2:  (y21,x21)  (y22,x22)  (y23,x23)  ,.,.,.,.,., (y2n,x2n)    (y2.,x2.) 

Treatment – i:   (yi1,xi1)    (yi2,xi2)    (yi3,xi3)  ,.,.,.,.,.,   (yin,xin)    (yi.,xi.) 

Treatment – n:  (yK1,xK1)  (yK2,xK2)  (yK3,xK3)  ,.,.,.,.,., (yKn,xKn)    (yK.,xK.)  

     Grand Total      (y..,x..)   
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Now, we proceed to introduce various other notations used in the ANCOVA one factor analysis. 

Syy = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – y2.. / Kn.    (11.3.1) 

Sxx = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – x2.. / Kn.    (11.3.2) 

Sxy = ∑  ∑ ij ‐ ..) (y ij ‐ ..) = ∑  ∑ ijyij – (x..)(y..)/Kn.                  (11.3.3) 

Tyy = n ∑ .   ‐ ..)2 = (1/n) ∑ 2
i. – y2.. / Kn.     (11.3.4) 

Txx = n ∑ . ‐ ..)2 = (1/n)∑ 2
i. – x2.. / Kn.     (11.3.5) 

Txy = n ∑ . ‐ ..) ( . ‐ ..) = (1/n) ∑ i. yi. – (x..)(y..)/Kn.   (11.3.6) 

Eyy = ∑  ∑ ij ‐ i.)
2 =  Syy ‐  Tyy .      (11.3.7) 

Exx = ∑  ∑ ij ‐ i.)
2 = Sxx – Txx .      (11.3.8) 

Exy = n ∑ ij ‐ i.) (yij ‐ i.) =  Sxy ‐ Txy .      (11.3.9) 

It is important to note that in general, S = T + E, where the symbols S,T and E are used to 
denote sum of squares and cross products for total, treatments and error, respectively.   
Further, the sum of squares of x and y must always be non‐negative but, the sums of cross 
products (xy) may be negative. 

 Now we proceed to estimate the parameters μ, τ and β of the model 
given in (11.2.1) using method of least squares as done in earlier lessons to estimate 
parameters of those models.    If we proceed on those lines we have: 

 = .. ,  I = i. ‐ .. ‐  ( i.‐  ..) and  = Exy / Exx     (11.3.10) 

Further, the error sum of squares in this model is given by: 

SSE = Eyy – (Exy)
2 / Exx , with K(n‐1) – 1 degrees of freedom.     (11.3.11) 

In addition to the testing of null‐hypothesis H0: There is no significant difference in the 
treatment effects, we frequently find it useful in interpreting the data to present the adjusted 
treatment means.   These adjusted means computed as follows: 

Adjusted i. = i. ‐  ( i.‐  ..), i=1,2,.,.,K.    

This adjusted treatment mean is the least square estimator of μ +τi i=1,2,.,.,K in the model given  
in (11.2.1).   Various calculations of calculating adjusted regression are explained in the 
following ANCOVA table. 

Table (11.3.1) ANCOVA table for two factor model.      

SOV 

(1) 

DOF 

(2) 

SS and products            

X               XY               Y     (3)

Regression 
Coefficient  (4)  

SS due to Reg. 
coeff. (5) 

Treatments 

Error 

Total 

K – 1 

K(n‐1) 

Kn – 1 

Txx            Txy              Tyy

Exx            Exy              Eyy 

Sxx                 Sxy              S yy 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

=Exy/Exx 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐

(Exy) 

‐‐‐‐‐‐‐‐‐‐‐‐ 
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Adjusted 
treatments 

 

 

 

K(n‐1)+(K‐1) 

 

 

 

Exx+Txx   Exy+Txy         Eyy+Tyy 

 

 

 

=( Exy+Txy )/ 

(Exx+Txx )  

 

 

( Exy+Txy ) 

 

 

Table (11.3.1) ANCOVA table for two factor model (cont.) 

Adjusted regression table. 

SOV              Adjusted SS 

(6) 

Adjusted DOF 

(7) 

Adjusted MSS 

(8) 

F‐calculated 

(9) 

Treatments 

Error 

Total 

T’yy=C’yy – E’yy 

E’yy= Eyy ‐ Exy  

‐‐‐‐‐‐‐‐‐‐‐ 

K – 1 

K(n‐1)‐1 

‐‐‐‐‐‐ 

V1=T’yy / K‐1 

V2=E’yy / [(K‐1)(n‐1)‐1] 

 

 

F1 = V1/V2 

 

Adjusted 
treatments 

 

(Eyy+Tyy) ‐ 
(Eyy+Tyy)=C’yy 

 

 

K(n‐1)+ 

(K‐1)‐1. 

 

 

‐‐‐‐‐‐‐ 

 

 

 

 

The required Fcal = V2 / V1 =[SSE / K(n‐1)‐1] / [(SS’E ‐ SSE)/K‐1]  (11.3.12) 

Note FTab at α% los for [(K – 1),(K(n‐1)‐1)] dof.    If FCal  FTab We accept the H0 and conclude that 
there is no significant variation among treatment effects.  

Further, we can also test the significance of regression coefficient β, by considering H0 : β =0 
and Fcal = [(Exy)2/Exx]/ V1 .  

This calculated value of F is tested against FTab at α% los for   [1,(K(n‐1)‐1)]dof.  If FCal > FTab we 
reject the null‐hypothesis and conclude that the observed regression coefficient β is significant. 

Now we proceed to explain the ANCOVA one factor analysis with an example. 

11.4. ANCOVA – one factor Model Example 

   Now we proceed to explain the method of analysis discussed above with an example as 
follows: 

Example (11.4.1):   The following data represent the breaking strength of yarn Y measured in 
pounds manufactured from 3 different machines. Let the concomitant variable X is the 
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diameter of the yarn measured 10‐3 inches.   Apply the ANCOVA analysis to remove the effect 
of thickness X on the strength Y when testing for difference in strength between machines. 

   Machines 

 M‐1   M‐2   M‐3 

 x       y  x       y  x        y  

 40 22  42 25  32 15   

 44 28  49 32  37 23 

 45 30  39 24  34 21 

 39 22  41 25  42 26 

 48 28  36 20  35 21 

 

Solution: In this example, k = 3,n = 5 and if we plot the scatter diagram between X and Y shows 
that there is strong linear relationship and hence, ANCOVA analysis is suggested to test the 
significant variation between machines with respect to the strength Y and the diameter X of the 
yarn.    The procedure of ANCOVA is explained in the following discussion. 

Step‐1: Frame the null‐hypotheses as follows: 

H0: There is no significant variation in effects of machines with respect to the breaking  

 strengths of the yarn or H0:  τi = 0. 

 

H0: The observed regression coefficient is insignificant.   That is H0 : β = 0. 

Step‐2: Calculate various totals, squares and products as follows.  

 

Table (11.4.1): Table of total. 

    Machines 

 M‐1   M‐2   M‐3 

 y       x  y       x  y        x  

 40 22  42 25  32 15   

 44 28  49 32  37 23 

 45 30  39 24  34 21 

 39 22  41 25  42 26 

 48 28  36 20  35 21 

Totals: 216 130  207 126  180 106 (603=Gy, 362=Gx) 



 
 

Design of Experiments                          11.6                 Analysis of Covariance (ANCOVA)…   
 

 

Now we proceed to square each observation and the totals of squares useful in calculating total 
sum of squares: 

Table (11.4.2): Table of squares and totals. 

 

Machines 

 M‐1   M‐2   M‐3 

 y            x  y       x  y        x  

 1600    484  1764 625  1024 225   

 1936    784  2401 1024  1369 529 

 2025    900  1521  576  1156 441 

 1521    484  1681 625  1764 676 

 2304    784  1296 400  1225 441 

Totals: 9386  3436  8663 3250  6538 2312 (24587, 8998) 

Table (11.4.3): Table of products of X and Y. 

Machines 

 M‐1   M‐2   M‐3 

 y x   y x   yx  

 880   1050   480    

 1232   1568   851  

 1350   936   714 

 858   1025   1092  

 1344   720    735  

Totals: 5664   5299   3872  14835 

 

Step‐3: calculate various SS as follows: 

Syy = (40)2+.,.,.,(35)2 – (603)2/15= 24587‐24240.6 = 346.40;  

Sxx = (22)2+.,.,.,(21)2 – (362)2/15 = 8998 – 8736.2667 = 261.73; 

Sxy = (40)(22)+.,.,.,(35)(21) – (603)(362)/15 =  14835 – 14552.4 = 282.60; 

Tyy = (1/5)[(216)2+(207)2+(180)2] – (603)2/15 = 140.40; 

Txx = (1/5)[(130)2+(126)2+(106)2] ‐ (362)2/15 = 66.13; 

Txy = (1/5)[(130)(216)+(126)(207)+(106)(180)] ‐  [(362)(603)] / 15 = 96.00; 
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Eyy = Syy – Tyy = 346.40 – 140.40 = 206.00; 

Exx = Sxx – Tyy = 261.73 – 66.13 = 195.60 and Exy = Sxy – Txy = 282.60 – 96.00 = 186.60. 

 

Now we proceed to construct the ANCOVA table for one factor model as follows: 

Table (11.3.1) ANCOVA table for two factor model.      

SOV 

(1) 

DOF 

(2) 

SS and products            

X               XY               Y  
(3) 

Regression 
Coefficient  (4)  

SS due to Reg. 
coeff. (5) 

Treatments 

 

 

Error 

 

 

Total 

K – 1=3‐1=2 

 

 

K(n‐1)=12 

 

 

Kn – 1=14 

Txx            Txy              Tyy 

66.13     96.00      140.40

Exx            Exy              Eyy 

195.60  186.60    206.00

Sxx                 Sxy              S yy 

261.73 282.60     346.40 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

=Exy/Exx 

186.6/195.6=0.954 

 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐ 

 

(Exy)=178.02 

 

‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Adjusted 
treatments 

 

 

 

K(n‐1)+(K‐1) 

12+2=14 

 

 

Exx+Txx   Exy+Txy       Eyy+Tyy

261.73   282.60   346.40

 

 

=( Exy+Txy )/ 

(Exx+Txx ) 
=282.6/261.73=1.08 

 

 

( Exy+Txy ) 

=305.208 

 

Table (11.3.1) ANCOVA table for two factor model (cont.) 

Adjusted regression table. 

SOV              Adjusted SS 

(6) 

Adjusted DOF

(7) 

Adjusted MSS

(8) 

F‐calculated

(9) 

Treatments 

 

Error 

 

Total 

T’yy=C’yy – E’yy 

=41.192‐27.98 

=13.212 

E’yy= Eyy ‐ Exy  

206.00 ‐ 
178.02=27.98 

K – 1 =2 

 

 

K(n‐1)‐1=11 

 

 

V1=T’yy / K‐1 

=13.212/2=6.606 

 

V2=E’yy / [(K‐1)(n‐1)‐1] 

=27.98/11=2.544 

 

F1 = V1/V2 

=6.606/2.544

=2.596698. 
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‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐ 

Adjusted 
treatments 

 

(Eyy+Tyy) ‐ 
(Eyy+Tyy)=C’yy 

=346.40‐
305.208=41.192 

 

K(n‐1)+ 

(K‐1)‐1. 

14‐1=13 

 

‐‐‐‐‐‐‐ 

 

 

 

 

Therefore, Fcal = V2 / V1 =[SSE / K(n‐1)‐1] / [(SS’E ‐ SSE)/K‐1] = 6.606/2.544 = 2.597. 

FTab at 5% los for (2,11) dof we have 3.98.   Since, Fcal < FTab, we accept the null‐hypothesis and 
conclude that there is no significant variation in the production of yarn on the three different 
machines with respect to the strength of the yarn.   In P notation, we can represent the 
situation as P > 0.05. 

Similarly ,  = Exy / Exx = 186.60 / 195.60 = 0.954 and  to test the significance of the  regression 
coefficient, that is  H0 : β = 0 calculate  

Fcal = [(186.60)2 / 195.60] / 2.54 = 70.08. 

FTab at 1% los for (1,11) dof is 9.65.   Since, Fcal > FTab at 1% los, we Reject H0 and conclude that 
there is strong linear relation between the diameter of the yarn X and the Strength of the 
yarn Y. In P notation we can represent the situation as P < 0.01. 

 Now we proceed to explain in the following lesson ANCOVA two 
factors model, which can be extended on similar lines as discussed ANCOVA one factor model.   

11.4. Summary 
                In this lesson we have discussed the meaning of Analysis of covariance (ANCOVA) 
which is the combination of ANOVA one way classification analysis along with the linear 
regression analysis.   After explaining the mathematical of ANCOVA model, and its assumptions 
were discussed.   Further,  we have discussed the statistical analysis of the model.    The 
analysis is explained with an example. 

11.6.    Self Assessment Questions. 

1. Explain the need of combining ANOVA and Regression Analysis with an example. 

2. Define Analysis of Co‐variance technique along with its assumptions. 

3. Explain ANCOVA one factor model along with its assumptions. 

4. Explain the Statistical analysis of ANCOVA one way classification. 

5.A soft drink distributor studying the effectiveness of delivery methods.   Three different types 
of hand trucks have been developed and an experiment is performed  in the companies 
laboratory.   The variable of interest is the delivery time Y measured in minutes.   The 
concomitant variable is the delivery items weight X measured in kgs.   Each hand truck is used 
for four times and the delivery times along with item weights are recorded as follows: 
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    Hand truck type 

  Type‐A  Type –B  Type‐C. 

  x y x y  x y 

  40 41 38 40  25 26  

  40 44 20 18  42 46 

  24 27 50 53  32 35 

  35 33 26 22  26 25 

Analyze the data and draw your conclusions. 

6. Compute the adjusted treatment means and the standard error for the adjusted treatment 
means using the following table. 

 

SOV Dof SS OD x Product of XY  SS of Y 

Treatment 

Error 

Total 

3 

12 

15 

1500 

6000 

7500 

1000 

1200 

2200 

650 

550 

1200 

 

11.7.    Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

   Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 12. 

Analysis of  Covariance (ANCOVA)‐Two Factor Model 
 

12.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need of Analysis of Co‐variance (ANCOVA) – two way classification. 
• Mathematical model of ANCOVA – two way classification. 
• Analysis of ANCOVA two way classifications with equal number of observations per 

cell. 
• Example of Analysis of covariance (ANCOVA) two way classifications. 

 

Structure 

12.1 Introduction to ANCOVA 
12.2.  Mathematical model of ANCOVA –one way classification 

12.3.     Statistical Analysis of ANCOVA – one way classification 

12.4.     Example of ANCOVA two‐way classification 

12.5.    Summary 

12.6.    Self Assessment Questions 

12.7.    Further Readings 

 

12.1. Introduction to ANCOVA two‐way classification 
In the ANCOVA one way classification we have assumed that the units on which we have  

conducted, the experiment are uniform or homogeneous as for as possible.   In fact, this is not 
a valid assumption particularly when sample are large in size. Naturally sample units are 
Heterogeneous which may affect the experimental results.  Hence, there is a need to divide 
them into blocks such that units within the block are homogeneous and heterogeneity 
suspected is identified as variation between the blocks.   In such situations, we have to apply 
ANOVA two way classification analyses.   Similarly, if we can identify a concomitant variable X 
to the main response variable X, we can apply regression analysis along with ANOVA two way 
analysis.   Such combined analysis is known as Analysis of Covariance (ANCOVA) two way 
analysis and the model consider in such situation is known as ANCOVA two factor model.  
 
12.2. Mathematical model of ANCOVA – two factor Model 

             In this model, we have to consider block effects along with the treatments effect and 
the regression coefficient β.   The ANCOVA two factors model is given as follows: 
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yij =  μ + τi +αj + β (xij ‐ .. ) +  εij i=1,2,.,.,K and j = 1,2,.,.,n.   (12.2.1) 

where:  yij = Observation on the response or main variable of experimental unit receiving ith  

 treatment  in jth block. 

             μ =General mean effect of the main variable Y. 

           τi = Effect of  ith treatment, i =1.2.,.,.,K 

          αj = Effect of jth block, j = 1,2,.,.,n. 

          xij = Observation on the concomitant variable of the unit receiving ith treatment in  jth   

 block. 

          β = the regression coefficient between the main variable X and concomitant variable Y. 

          εij = Random effects or experimental error the ith treatment unit belonging to jth block. 

       The analysis of ANCOVA two factors runs on the similar lines of ANCOVA one factor model 
except the difference that calculations for blocks are to done additionally. 

12.3: Statistical Analysis of ANCOVA two factor model. 

      First we proceed to frame the null hypotheses ANCOVA table for two factor model as 
follows: 

H01: There are no significant effects of factor A or treatment effects or H01:  τi = 0. 

H02: There are no significant effects of Factor B or Block effects or H02: αj = 0. 

        The data under this ANCOVA two factors model will be of the following form: 

Trearments.  Blocks.     Totals. 

                                  B‐1        B‐2        B‐3 . . . . . . . . .    B‐n 

Treatment – 1:  (y11,x11)  (y12,x12)  (y13,x13)  ,.,.,.,.,., (y1n,x1n)    (y1.,x1.) 

Treatment – 2:  (y21,x21)  (y22,x22)  (y23,x23)  ,.,.,.,.,., (y2n,x2n)    (y2.,x2.) 

Treatment – i:   (yi1,xi1)    (yi2,xi2)    (yi3,xi3)  ,.,.,.,.,.,   (yin,xin)    (yi. , xi.) 

Treatment – n:  (yK1,xK1)  (yK2,xK2)  (yK3,xK3)  ,.,.,.,.,., (yKn,xKn)    (yK.,xK.)  

 Totals                  (y.1,x.1)  (y.2,x.2)  (y.3,x.3)  ,.,.,.,.,.,     (y.n,x.n)                 (y..,x..) =(Gyy,Gxx) 

Now Calculate various sum of squares and cross products as follows:   

Syy = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – y2.. / Kn.    (12.3.1) 

Sxx = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – x2.. / Kn.    (12.3.2) 

Sxy = ∑  ∑ ij ‐ ..) (y ij ‐ ..) = ∑  ∑ ijyij – (x..)(y..)/Kn.                  (12.3.3) 

Tyy = n ∑ .   ‐ ..)2 = (1/n) ∑ 2
i. – y2.. / Kn.     (12.3.4) 
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Txx = n ∑ . ‐ ..)2 = (1/n)∑ 2
i. – x2.. / Kn.     (12.3.5) 

Txy = n ∑ . ‐ ..) ( . ‐ ..) = (1/n) ∑ i. yi. – (x..)(y..)/Kn.   (12.3.6) 

Byy = K ∑ .j ‐ ..)2 = (1/K) ∑ 2
.j – y2.. / Kn.      (12.3.7) 

Bxx = K ∑ .j  ‐ ..)2 = (1/K)∑ 2
.j – x2.. / Kn.     (12.3.8) 

Bxy = K ∑ .j  ‐ ..) ( . ‐ ..) = (1/K) ∑ .j y.j – (x..)(y..)/Kn.   (13.3.9) 

Eyy = ∑  ∑ ij ‐ i.)
2 =  Syy ‐  Tyy ‐ Byy .      (12.3.10) 

Exx = ∑  ∑ ij ‐ i.)
2 = Sxx – Txx ‐ Bxx .      (12.3.11) 

Exy = n ∑ ij ‐ i.) (y ij ‐ i.) =  Sxy ‐ Txy ‐ Bxy.     (12.3.12) 

After calculating all the above Sum of squares and product terms of the variable X and Y  

Now we proceed to write the ANCOVA table for two factors model as follows: 

Since the AVCOVA two factor model is very lengthy it is divided into two parts as follows: 

 

Table (12.3.1) ANCOVA table for two factor model.      

SOV 

(1) 

DOF 

(2) 

SS and products            

X               XY               Y     (3)

Regression 
Coefficient  (4)  

SS due to Reg. 
coeff. (5) 

Treatments 

Blocks 

Error 

Total 

K – 1 

n‐1 

(K‐1)(n‐1) 

Kn – 1 

Txx            Txy              Tyy 

Bxx            Bxy             Byy 

Exx            Exy              Eyy 

Sxx                 Sxy              S yy 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

=Exy/Exx 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐ 

(Exy) 

‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Adjusted 
treatments 

 

Adjusted 
block effects 

 

(K‐1)(n‐1)+(K‐1) 

 

 

(K‐1)(n‐1)+(n‐1) 

Exx+Txx   Exy+Txy         Eyy+Tyy 

 

 

Exx+Bxx   Exy+Bxy       Eyy+Byy  

=( Exy+Txy )/ 

(Exx+Txx )  

 

=( Exy+Bxy )/ 

      (Exx+Bxx )   

( Exy+Txy ) 

 

 

( Exy+Bxy) 

 

Table (12.3.1) ANCOVA table for two factor model (cont.) 

Adjusted regression table. 

SOV              Adjusted SS 

(6) 

Adjusted DOF 

(7) 

Adjusted MSS 

(8) 

F‐calculated 

(9) 
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Treatments 

Blocks 

Error 

Total 

T’yy=C’yy – E’yy 

B’yy=D’yy – E’yy 

E’yy= Eyy ‐ Exy  

K – 1 

n ‐1 

(K‐1)(n‐1)‐1 

‐‐‐‐‐‐ 

V1=T’yy / K‐1 

V2=B’yy / n‐1 

V3=E’yy / [(K‐1)(n‐1)‐1] 

 

 

F1 = V1/V3 

F2 = V2/V3 

Adjusted 
treatments 

 

Adjusted block 
effects 

 

(Eyy+Tyy) ‐ 
(Eyy+Tyy)=C’yy 

 

(Eyy+Byy) ‐ 
(Eyy+Byy)=D’yy 

(K‐1)(n‐1)+ 

(K‐1)‐1. 

 

(K‐1)(n‐1)+ 

(n‐1)‐1 

‐‐‐‐‐‐‐ 

 

 

‐‐‐‐‐‐‐‐ 

 

 

Conclusions:  If F1 calculated value is less than or equal to F1 table value at α% los for [(K‐1),  

(K‐1)(n‐1)‐1] dof, we accept the null hypothesis H01 and conclude that the treatment effects or 
factor A effects are insignificant.   Otherwise we reject the null hypothesis H01. 

Similarly, if F2 calculated value is less than or equal to F2 table value at α% los for [(n‐1),  

(K‐1)(n‐1)‐1] dof, we accept the null hypothesis H02 and conclude that the block effects or factor 
B effects are insignificant.   Otherwise we reject the null hypothesis H02. 

12.4.Example of ANCOVA two factor model. 

Above explained ANCOVA two factors model is explained with the following example. 

Example (12.4.1):   The following data represent the yield of a crop Y measured in tones  on 
three varieties of seeds in four different types of fields with different fertility rates.   Rainfall 
measured in mm is the concomitant variable X.   Analyze the data with a suitable ANCOVA  
model to test the effects of varieties of seeds and block effects. 

 Yiels of the crop (in tones) 

 B1  B2  B3  B4 

 y x y x y x y x 

Variety ‐ V1: 40 27 95 48 22  23 45  35 

Variety – V2 22 24 67 38 35 28 25 15 

Variety – V3 38 29 38 24 23 19 30 20. 

 

Solution: In the given problem K=3, n=4, Factor –A is varieties , Factor – B blocks, Y = main 
variable yield and X= concomitant variable rainfall.   Then, frame the null‐hypotheses as 
follows: 
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H01: There is no significant variation among Seed varieties. 

H02: There is no significant variation among blocks with respect to fertility rates. 

  Then calculate various totals, like row, columns and grand totals of Y and X as follows: 

  Yiels of the crop (in tones) 

 B1  B2  B3  B4  Totals 

 y x y x y x y x y x 

Variety ‐ V1: 40 27 95 48 22  23 45  35 202 133 

Variety – V2: 22 24 67 38 35 28 25 15 149 105 

Variety – V3: 38 29 38 24 23 19 30 20 129 92 

Totals: 100 80 200 110 80 70 100 70     480=Gy   330=Gy 

Now we proceed to calculate various Sum of squares and products of Y and X as follows: 

The following table will help us to calculate total sum of squares. 

 Table of squares and their sums. 

 B1  B2  B3  B4  Totals 

 y   x y x y x y x 

Variety ‐ V1: 1600   729 9025 2304 484  529 2025  1225 13134  4787 

Variety – V2 484   576 4489 1444 1225 784 625   225 6823 3029 

Variety – V3 1444  841 1444 576 529 361    900   400 4317 2178 

Totals 3528  2146 14958 4324 2238 1674 3550 1850 24274 9994. 

The following table will help us to calculate products of X and Y and their totals. 

 Table of products of X and Y and their totals. 

 B1  B2  B3  B4  

 yx  yx  yx  yx Total 

Variety ‐ V1: 1080  4560  506   1575  7721 

Variety – V2 528  2546  980  375 4429 

Variety – V3 1102  912  437  600 3051 

Totals 2710  8018  1923  2550 15201  
  

Syy = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – y2.. / Kn = (40)2+(95)2+.,.,.,(30)2 ‐ (480)2/12  

=24274 – (480)2/12 = 24274 – 19200 = 5074.     (12.4.1) 

Sxx = ∑  ∑ ij ‐ ..)2 = ∑  ∑ ij
2 – x2.. / Kn.  
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=9994 – (330)2/12 = 9994 – 9075 = 919.      (12.4.2) 

Sxy = ∑  ∑ ij ‐ ..) (y ij ‐ ..) = ∑  ∑ ijyij – (x..)(y..)/Kn.        

        =15201 – (480)(330)/12 = 15201 – 13200 = 2001.     (12.4.3) 

Tyy = n ∑ .   ‐ ..)2 = (1/n) ∑ 2
i. – y2.. / Kn.      

= (1/4)(202)2 + (149)2 + (129)2] – (480)2/12 = 1/4[40804 + 22201 + 16641] – 19200 

=19911.5 – 19200 = 711.5.        (12.4.4) 

Txx = n ∑ . ‐ ..)2 = (1/n)∑ 2
i. – x2.. / Kn.  

(1/4)[(133)2 + (105)2 + (92)2] – (330)2/12 =  1/4[17689 + 11025 +8464] – 9075 

= 9294.5 – 9075 = 219.5.        (12.4.5) 

Txy = n ∑ . ‐ ..) ( . ‐ ..) = (1/n) ∑ i. yi. – (x..)(y..)/Kn.   

(1/4)[(202)(133) + (149)(105) + (129)(92)] – (480)(330)/12 

=(1/4)(26866 + 15645 + 11868] – 13200 = 13549.25 – 13200 = 349.25.  (12.4.6) 

Byy = K ∑ .j ‐ ..)2 = (1/K) ∑ 2
.j – y2.. / Kn. 

=(1/3)[ (100)2 +(200)2 + (80)2 + (100)2] – (480)2/12  

= 1/3[10000 + 40000 + 6400 + 10000] – 19200 

=22133.333 – 19200 = 2933.333.        (12.4.7) 

Bxx = K ∑ .j  ‐ ..)2 = (1/K)∑ 2
.j – x2.. / Kn.  

(1/3)[ (80)2 + (110)2 + (70)2 + (70)2] ‐  (330)2/12 = 1/3[6400 + 12100 + 4900 + 4900] – 9075 

=9433.333 – 9075 = 358.333.         (12.4.8) 

Bxy = K ∑ .j  ‐ ..) ( . ‐ ..) = (1/K) ∑ .j y.j – (x..)(y..)/Kn. 

(1/3)[ (100(80) + (200)(110) + (80)(70) + (100)(70) – (480)(330)/12 

=1/3[8000 + 22000 + 5600 + 7000] – 13200 = 14200 – 13200 = 1000.  (12.4.9) 

Eyy = ∑  ∑ ij ‐ i.)
2 =  Syy ‐  Tyy ‐ Byy = 5074 ‐ 711.5 ‐ 2933.333 = 1429.167. (12.4.10) 

Exx = ∑  ∑ ij ‐ i.)
2 = Sxx – Txx ‐ Bxx = 919 ‐  219.5 ‐ 358.333 = 341.167. (12.4.11) 

Exy = n ∑ ij ‐ i.) (y ij ‐ i.) =  Sxy ‐ Txy – Bxy = 2001 – 349.25 – 1000 = 651.75. (12.4.12) 

Now we proceed to form the ANCOVA table for two factors model as follows: 
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Table (12.4.2) ANCOVA table for two factor model. 

   

SOV 

(1) 

DOF 

(2) 

SS and products            

X               XY               Y  
(3) 

Regression 
Coefficient  (4)  

SS due to Reg. 
coeff. (5) 

Treatments 

 

Blocks 

 

Error 

Total 

K – 1=3‐1=2 

 

n‐1=4‐1=3 

 

(K‐1)(n‐1)=6 

 

Kn – 1=11 

Txx            Txy              Tyy 

219.5      349.25     711.5 

Bxx            Bxy             Byy 

358.333  1000  2933.333 

Exx            Exy              Eyy 

341.167  651.75 1429.167

Sxx                 Sxy              S yy 

919         2001          5074 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

=Exy/Exx 

=651.75/ 
341.167 =1.91  

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐ 

 

 

‐‐‐‐‐‐‐‐‐‐‐ 

(Exy) 

=1245.074 

 

‐‐‐‐‐‐‐‐‐‐‐‐ 

 

Adjusted 
treatments 

 

 

 

Adjusted 
block effects 

 

(K‐1)(n‐1)+(K‐1) 

6+2=8 

 

 

 

(K‐1)(n‐1)+(n‐1) 

6+3=9 

Exx+Txx   Exy+Txy         Eyy+Tyy 

560.667 1001     2140.667 

 

 

 

Exx+Bxx   Exy+Bxy       Eyy+Byy 

699.5    1651.75   4362.5 

=( Exy+Txy )/ 

(Exx+Txx ) 

=1001/ 
560.667=1.785 

 

=( Exy+Bxy )/ 

      (Exx+Bxx )  

=1651.75/699.5= 

2.361 

( Exy+Txy ) 

=1787.159 

 

 

 

 

( Exy+Bxy) 

3900.326 

 

Table (12.4.1) ANCOVA table for two factor model (cont.) 

Adjusted regression table. 

SOV              Adjusted SS 

(6) 

Adjusted DOF

(7) 

Adjusted MSS 

(8) 

F‐calculated 

(9) 

Treatments 

 

 

T’yy=C’yy – E’yy 

=353.508 ‐ 
184.093=169.415 

K – 1=2 

 

 

V1=T’yy / K‐1 

=169.415/2=84.7075 

 

F1 = V1/V3 

=84.7075/36.819

=2.3 
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Blocks 

 

 

Error 

 

 

Total 

B’yy=D’yy – E’yy 

462.174 ‐
184.093=278.081 

E’yy= Eyy ‐ Exy  

=1429.167 ‐ 
1245.074=184.093

 

‐‐‐‐‐‐‐‐‐‐‐‐‐ 

n ‐1=3 

 

 

(K‐1)(n‐1)‐
1=5 

 

 

 

‐‐‐‐‐‐ 

V2=B’yy / n‐1 

=278.081/3 = 92.694 

 

V3=E’yy / [(K‐1)(n‐1)‐1] 

=184.093/5=36.819 

 

F2 = V2/V3 

= 92.694/36.819 

=2.51 

Adjusted 
treatments 

 

 

Adjusted 
block effects 

 

(Eyy+Tyy) ‐ 
(Eyy+Tyy)=C’yy 

=2140.667‐
1787.159=353.508

 

(Eyy+Byy) ‐ 
(Eyy+Byy)=D’yy 

=4362.5 ‐ 
3900.326 = 
462.174 

(K‐1)(n‐1)+ 

(K‐1)‐1.= 7 

 

(K‐1)(n‐1)+ 

(n‐1)‐1= 8 

‐‐‐‐‐‐‐ 

 

 

‐‐‐‐‐‐‐‐ 

 

 Conclusions: 1. For treatments: Calculated value of F1 = 2.3 and the corresponding table value 
of F at 5% los for (2,5) dof is 5.79.   Since, F1 is less than F table value, we accept H01 at 0.05 los 
and conclude that all the treatments (varieties) are equally effective on the yield of the crop. 

2. for blocks: Calculated value of F2 = 2.51 and the table value of F at 5% los for (3,5) dof is 5.41.   
Since, F2 calculated value is less than F2 table value, we accept the Null hypothesis H02 and 
conclude that all the blocks are equal with respect to the yield of the crop. 

     Since, we have accepted both null hypotheses, there is no need of further Statistical Analysis 
in this case.  

     We can also consider ANCOVA two‐factor model with multiple observations per cell but the 
calculations will be large in number and hence, we required computer assistance for those 
calculations. 

12.5.Summary 

In this lesson we learnt the ANCOVA two factor model.  To apply this analysis we have 
to divide the experimental units into blocks such that experimental error can further be reduced 
by adjusting the variation between blocks.   It is important to note that units within must be 
homogeneous and any type of heterogeneity is attributed as the difference between units in 
different blocks.   We have introduced the mathematical model of ANCOVA two factor model 
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and discussed its Statistical analysis.   The method of analysis and estimation of various 
treatment effects, Adjusted treatment effects in two factors model is discussed with an 
example.    

 

12.6.   Self Assessment Questions 

1. Explain the need of  ANCOVA two factor model. 

2.Explain the method of estimating the adjusted treatment means in ANCOVA two factor 
model. 

3. Write the ANCOVA table for two factor model. 

4. Explain various Sum of squares required in ANCOVA two factor model. 

5.An Engineer is studying the effect of cutting speed on the rate of metal removal in a three 
machine operations.  The amount of metal removed Y measured in grams and the hardness of 
the material X are recorded on four different machines and the data is recorded as follows  
given in the following table.   Use appropriate analysis to determine whether there is any effect 
of cutting speeds and machine types on y. 

    Cutting Speed (rpm) 
     1000   1200   1400 

y x  y x  y x 

Machine – 1: 88 136  85 133  80 130 

Machine – 2: 77 125  74 125  92 141 

Machine – 3: 68 120  112 165  118 175 

Machine – 4:   90 140  94 140  82 132 

   Also test whether there is any difference among the four machines. 
 

12.7.    Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York. 
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Lesson – 13. 

DESIGN OF EXPERIMENTS 
13.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of Design of Experiments. 
• Basic principles of Experimental Designs. 
• Efficiency of a design and uniformity trials. 
• Determination of minimum number of replications. 
• Determination of the size of the experimental units and its effect on the error. 
• Types of Experimental Designs. 

Structure 

13.1  Introduction to Design of Experiments 
13.2 Basic Principles of Experimental Designs 
13.3 Efficiency of a design and Uniformity trials 
13.4 Determination of minimum number of replications 
13.5 Various types of Design of experiments 
13.6  Summary 
13.7. Self Assessment Questions 
13.8. Further Readings 
  

13.1.  Introduction to Design of Experiments 

 Analysis of variance introduced in the unit – 3 is to be applied only when the 
assumptions discussed there must be true.   Otherwise we cannot apply the analysis for that 
data.   Thus, we need some rules and principles to conduct experiments, so that the statistical 
analysis discussed earlier is applicable. Such experiments are called as “Statistical Experiments” 
or “Random Experiments”.   Usually in any experiment, variation in the experimental results is 
inevitable.  This variability is only because of “Random Causes”, then it will be very small and 
can be neglected.   Such ignorable variation, which arises because of nuisance factors, is 
negligible.    Further it is important to note that these nuisance factors are unknown and 
uncontrolled and is impossible to make the experiment free from such variations or errors.   

 Since the random variation is very small we ignore such variation and consider the 
observations are approximately equal or we consider that there is no significant variation in the 
experimental results or the observations have statistically insignificant variation.   Such 
ignorable variations are called “Random Errors” or “Experimental Errors”, which arises because 
of Random Factors or Nuisance Factors.    If such random causes are alone present in the 
experiment, then we can estimate such effects statistically because random errors follow 
Statistical laws.   Keeping these points in view we have to plan the experiment such that the 
results obtained from such experiment has Statistical Validity.   This means that, we can test 
the required hypothesis on the experimental results, using Analysis of Variance techniques 



 
 

Design of Experiments                                 13.2                                      Design of Experiments   
 

 

discussed in unit – 3.   Thus the plan of conducting the experiments, such that the experimental 
results have Statistical Validity is the subject matter of “Design of Experiments”. 

 Basic objectives of Design of Experiments are: 

(1) Planning of experiments which have Statistical Validity. 
(2) Obtaining experimental results with which we can test the Statistical hypothesis under 

study and  
(3) Making the Statistical Analysis applicable for the data obtained. 

Experience has shown that proper care or consideration of the statistical analysis before  

the experiment is conducted.   Thus it is necessary that the experimenter has to plan more 
carefully plan and well‐designed experiment in advance such that we can draw statistically valid 
inferences from the results of the experiment.   However, the certainty    of the conclusion so 
drawn, regarding the acceptance or rejection of the null hypothesis, is given only in terms of 
probability.   Thus, the design of Experiment is defined as follows: 

Definition (13.1.1): The logical construction of the experiment in which the degree of 
uncertainty with which the inference is drawn may be well defined. 

Experiments are basically two types, namely (i) Absolute and (ii) Comparative  

Experiments.   Absolute experiments consists in determining the absolute values of some 
characteristics like (a) Average  Intelligent Quotient (I.Q) of a group of people (b)Finding the 
association or correlation coefficient t between two attributes or variables and (c) Effectiveness 
of medicine and the dosage and so on.   On the other hand, Comparative experiments are 
designed to compare the effects of two or more treatments or objects on some population 
characteristic like yield of a crop.   For example, we can study or compare two or more 
fertilizers or manures on the yield of crops.   We can study different varieties of a crop or 
different cultivation methods or different irrigation methods different diets or different 
dosages of a medicine for a disease and so on.   We can also study the effectiveness of training 
of employees and the industrial output or quality of the product and so on.     

Frequently, we use the following terms in Design of Experiments, which require some  

 Clarification as follows: 

13.1.1.Experimental unit: In agricultural experiments, the smallest division of the experimental 
material to which we can apply the treatments and on which we make observations on the 
variable under study is termed as “Experimental Unit”.   In other experiments like animal 
husbandry, a horse, a dog or a pig or a lactating animal or a fish will become experimental unit 
on which treatments are applied.   In medical research, a patient suffering from a disease, 
organs affected in a patient will become the experimental unit.   In business problems, a 
customer or a share of a company or a T.V or Computer of brand sold and so on. 

  13.1.2. Treatment: Various factors or objects of comparison in  comparative experiments are 
known as “Treatments”. For example in agricultural experiments, different varieties seeds or 
different methods of cultivation or different irrigation methods, different fertilizers, different 
climatic conditions or different fertility rates can be considered as treatments.    In industry, 
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items produced in different machines or from different raw material or items produced from 
different batches/workers, different designs, can be considered as treatments.   Similarly, in 
medical research, different treatments or medicine or dosages can be considered as 
treatments.   In animal husbandry different rations, different treatments or different fodders 
can be considered as treatments. 

13.1.3. Yield: The measurement of the variable under study on different experimental units is 
known as “yield”.   For example crop in a unit of land or milk produced from a cow or 
temperature or blood sugar or B.P of a patient or number of items produced from a machine 
per day or price of a commodity and so on. 

13.1.4: Block: In agricultural experiments, most of the time, we divide the whole 
heterogeneous experimental unit (field) will be divided into relatively homogeneous sub‐
groups such that units within the sub‐group are homogeneous.   Such homogeneous sub‐group 
of units is known as “block”.   For example, patients suffering from a disease can be grouped 
into male and female patients.    Similarly, they can be classified as Children, Adults and old 
patients and so on can be considered as blocks. Units produced from the same machine can be 
one blocks.    Animals having same age group can be considered as a block.    Customers 
belonging to a city or share holders of the same company can be considered as a block.   
Animals of the same breed in the same age can be considered as a block. 

13.2. Basic Principles of Experimental Designs 

 According to “Father of Statistics”, Prof. Ronal A. Fisher, the following are the three 
basic principles of experimental designs.    

(1) Replication, 
(2) Randomization and  
(3) Local Conttrol. 

13.2.1: Replication: Replication means, the repetition of treatments under investigation on 
different experimental units.    An experimenter resorts to replication in order to average out 
the influence of the random factors or chance factors or experimental errors on different 
experimental units.  Thus replication of treatments will provide more reliable estimate of the 
treatments effect, than with the single observation.   Replication has the following advantages: 

(a) Basically replication reduces the experimental error and hence, it enables the experimenter 
to obtain more precise estimates for the treatment effects.   This can be justified as follows.   
We know from statistical theory that the Standard Error (SE) of the sample mean of a sample of 
size n is σ/√n, where σ is the standard deviation (per unit) of the population.   Applying this 
result for ‘r’ replicates for a treatment, S.E of its mean is σ/√r, where σ2 is the variance of the 
individual plot is estimated from the “Error Variance”.   This implies that as replicates ‘r’ 
increases, the S.E of the estimate reduces.  This implies that the precession of the experiment 
is inversely proportional to the square root of the replications. Thus replications play an 
important role of increasing the efficiency of the experiment.   Thus replication increases the 
efficiency of the estimate of treatment effect. 
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(b) Another important role of replication is to provide an estimate of the experimental error, 
without which we cannot test the significance difference between two treatment effects. 

(c) it is desirable to have much uniformity or homogeneity as for as possible, within each 
replication but it is not important to have a great deal of uniformity between replications. 

(d) A general rule to determine number of replications that the error degrees of freedom must 
be at least 12.   Usually one should not use less than 4 replications. 

13.2.2. Randomization: Application of treatments to the experimental units must be 
determined purely on random basis.   In order to have statistical validity of experimental 
results, treatments are to be applied purely on random basis.   That is allocation of treatments 
to experimental units so that each treatment gets an equal chance of showing its worth.   This 
can be done only when the treatments are applied purely on random manner to the 
experimental material.   Thus randomization makes the estimated treatment effects as un‐
biased estimates. The basic objectives of randomization are: 

(a) To get the validity of the statistical tests of significance.   For example, t‐ test for testing the 
significance difference between two treatment mean effects and F – test for testing the 
homogeneity of several means as discussed in ANOVA.   Randomization provides logical basis to 
apply probability theory, statistical distributions and makes it possible to draw rigorous 
inductive inferences on the treatment effects.   Randomizing treatments over the experimental 
units is an essential safeguard against the deviation of experimental results by un‐anticipated 
factors like climatic conditions, instrumental or equipment errors, fertility of the soil, 
temperature conditions and so on.   Thus randomness makes the estimates obtained from 
experimental results as unbiased estimates. 

(b) The purpose of randomization is to assure that the sources of variation, not controlled in 
the experiment, operate randomly so that the average effect on any group of units is zero.   In 
other words, randomization eliminates the bias present in any form in conducting the 
experiment and makes the estimates of the treatment effects as un‐biased.   It equalizes even 
factors of variation over which the experimenter has no control. 

(3) Local control:  If the experimental material, say agriculture field in agricultural experiments 
or different machines in industry or patients belonging to different age groups are 
heterogeneous, and different treatments are applied to different experimental units at random 
over entire experimental material, the heterogeneity present in the experimental material 
enters in the experimental results and thus increases the experimental error considerably.   It is 
desirable to decrease the experimental error as smaller as possible.  This can be done by 
dividing heterogeneous experimental units into sub‐groups such that units within the sub‐
group are homogeneous as for as possible.   Such homogeneous sub‐groups are known as 
‘Blocks’.    The process of reducing the experimental error by dividing heterogeneous units into 
homogeneous sub‐groups is known as ‘Local Control’.   Thus local control enables the 
experimenter to reduce the experimental error as small as possible. 

 Above explained three principles are known as ”Basic Principles of Experimental 
Designs” which are essential principles.   Without these, we cannot apply statistical theory and 
we will not be in a position to apply statistical tests, like t‐test or F‐test, for testing the 
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statistical significance. Basically, designs of experiments are introduced by Prof. R.A. Fisher, to 
solve problems which arise in Agriculture.   Recently, they are used in many other fields like 
medical, industrial production, market research, meteorology, biological studies, management  
and so on.   

  Now we proceed to explain some related concepts of experimental designs in the following 
section. 

13.3. Efficiency of a design, Uniformity trials and size of the experimental units 
Now we proceed to explain some basic concepts of experimental designs in the  

following sub‐sections. 

13.3.1. Efficiency of a Design: 

Let D1 and D2  be two designs, with error variances per unit σ2
1 and  σ2

2 and replications 
r1 and r2 respectively.   Then, the variance of the difference between two treatment means is 
given by 2σ2

1 / r1  and  2σ2
2 / r2 for designs  D1 and D2 respectively.   

  The efficiency of design D1 with respect to the design D2 is denoted by E and is given by 
E= (r1/ 2σ2

1)/(r2 / 2σ2
2).   In other words, the Efficiency of design D1 with respect to the design 

D2 is defined as “the ratio of precisions of D1 and D2”. 

 If E = 1, then both designs D1 and D2 are said to be equally efficient. 

 If E > 1, then design D1 is more efficient than D2 and  

 If E < 1, design D2 is more efficient than D1. 

It is important to note that more efficient or sensitive design has greater ability to  

detect the differences of treatment effects than less efficient or sensitive design.    Further, it is 
important to note that the efficiency of a design can be increased: 

(1) By controlling the experimental error per unit, that is σ2 of that design.   This can be 
done by selecting experimental units as homogeneous as possible.   If they are 
heterogeneous, by applying Local Control, divide the units into blocks such that units 
within the block are homogeneous. 

(2) By increasing number of replications.    As number of replications are more, 
experimental error variance per unit will decrease and hence the precession of the 
estimates will be increased. 

Now we proceed to explain the concept of “Uniformity Trials” which have special use in 
determining the efficiency of two designs.  

13.3.2. Uniformity Trials: 

 It is important to note that various designs of experiments are primarily introduced to 
solve agricultural problems.   In agricultural problems, fertility rate of the experimental 
units may not be uniform.   Even plots in the same field may not have same soil fertility 
rates.   In a big field, fertility rates of the soil are distributed erratically over the entire field.      
Uniformity trials enable us to have an idea over the distribution of fertility rates variation 
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over the entire field.   Thus, uniformity trials, we define as “a trial in which the 
experimental material or the field is divided into small units or plots and the same 
treatment or fertilizer is applied on each of the units and their yields are recorded.”    
From these yields, we can draw “Fertility Contour Map” which gives us graphical picture of 
the fertility rate variation of the soil and enables to form a good idea about the nature of 
the variation of the soil fertility variation.   The fertility contour map is obtained by joining 
the points by joining the points with equality by straight lines. 

 It is already mentioned earlier that usually we expect that the entire field will vary with 
respect to the fertility rate of the soil.   Hence, the field is to be divided into blocks such that 
units within the block are having homogeneous fertility rates.   Thus blocks have relatively 
homogeneous plots, which is necessary to have control over the experimental error.   Thus 
uniformity trials will help us to divide the entire heterogeneous field into homogeneous 
blocks and the size of the plots to be used.   Further, we can observe that fertility maps that 
adjacent plots are more or less alike in fertility than those plots which are away from each 
other.  Hence, blocks can be formed easily, by combining adjacent plots.  Thus fertility maps 
helps in adopting ‘Local Control’.   

13.3.3. Size of the plot:  Determination of size of the plot is very important particularly, in 
agricultural experiments.   Further, determination of the size of the plot depends on various 
factors like, total experimental area available, number of treatments to be tested, the type 
of the crop, soil fertility rate, climatic conditions and so on.    If the total size of the 
experimental area remains fixed, then an increase in the size of the plot will result in 
decreasing the number plots and this will result in increasing the size of the block.   Thus we 
obtain lesser number blocks.   It is also important to note that deciding about the number of 
plots, we should keep in mind that increase in the number of plots will increase the ‘Non‐
experimental area”.    This area is also known as guard‐area, which means that the strips of 
land which are left out between consecutive plots and blocks, that is to distinguish different 
plots or boundaries of each plot or each block.   Prof. Fairfield Smith, obtained an empirical 
relationship between plot size and plot variance, by conducting various uniformity trial 
experiments.   The relation between plot variance and plot size is known as “Fairfield 
Smith’s Variance Law” and is given by: Vx = V1 / xb or log Vx = log V1 – b log x, where Vx is 
the variance of the yield per unit area from plots of size x units and V1 is the variance among  

the plots of size unity and b is the regression coefficient adjacent units with respect to some 
soil characteristic like temperature of the soil or fertility rate and so on. 

 We know that the limiting values of the regression coefficient b are 0 and 1.    That is 
0 1.   If b=1 we mean that experimental unit composed of a random selection of x 
units.   That is the units making the plots of size x and experimental units are un‐correlated, 
or independent.   Thus we have: Vx = V1 / x.   This implies that the precision of the 
experiment will increase along with the size of the plot.  In agricultural experiments, the 
adjacent areas in a big plot are usually correlated.   Hence, we obtain the b value less than 
units.    That is b < 1.   If the regression coefficient b = 0,  implies that the x‐units are 
perfectly correlated and in this case, we have Vx = V1.   This implies that the increase in plot 
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size does not affect the variance among the experimental results.   Thus precision of the 
estimate is independent of the size of the plot.   

 Now we proceed to explain the minimum number of experimental units required in the 
following section. 

13.4. Determination of minimum number of replications 
It is very important to determine number of replications required under each treatment.    

This is because of the fact that number of replications is mainly concerned with experimental 
expenditure, experiment time and experimental error.   Further, the adequate number of 
replications for various treatments in an experiment depends upon the knowledge of variability 
of the experimental material.   On the other hand, the knowledge on the soil fertility rate is not 
known, in advance, unless otherwise we conduct the uniformity trials explained above.   The 
following is the general rule one can follow in any experiment if the knowledge on the  

variability is not known. 

General Thumb rules: 

 (1) Number of replications must be such that the error degrees of freedom must be at 
least 12.   This is because of the fact that,  the value of F‐statistic do not decrease rapidly 
beyond for the denominator degrees of freedom is equal to 12.    

 (2) Minimum number of replications should not be less than 4. 

 Above explained rules to determine the minimum number of replications required in an 
experiment,  can be explained with an example as follows: 

Example (13.4.1): Determine the minimum number of replications required , so that an 
observed difference of 8% of the mean will be taken as significant at 5% level of significance 
and the Coefficient of variation of the plot values being 14%.   Similarly, determine the 
minimum number of replications to get significance at 1% los in the above situation. 

Solution: Let r be the minimum number of replications required.   Let μ be the common mean 
with σ2 as the process variance for the situation considered.   Then, it is given that: 

Coefficient of Variation = CV = 14% = 100x(σ / μ ).   Then σ = 14μ /100 = 0.14μ. 

 Further the difference between two sample means ( 1 ‐  2 ) = 8% of μ = 0.08μ. 

Then the t‐statistic is given by: tcal =  | 1 ‐  2 |/ σ (√2/r) = 0.08μ / 0.14μ (√2/r) = (8/14)( (√2/r). 

To get significance tcal at 5% los, minimum we have to get (for large degrees of freedom) is 1.96 
and at 1% los the minimum value is 2.58.   Thus we have: 

Case (1): at 5%los: 

We must get the calculated value of  |t| > 1.96.   This implies that  (8/14)( (√2/r) > 1.96.   Thus 
we have:  r >  2[1.96 x (14/8)]2  =  2(1.96 x 1.75)2 = 23.5298 or 24.   

 Thus minimum number replicates r is 24 to get significance at 5% los. 

Case (2): at 1%los: 
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We must get the calculated value of  |t| > 2.58.   This implies that:  (8/14)( (√2/r) > 2.58.   Thus 
we have:  r >  2[2.58 x (14/8)]2  =  2(2.58 x 1.75)2 = 40.77045 or  41.   Thus minimum number 
replicates r is 41 to get significance at 1% los. Thus we require minimum 24 replications to get 
significance at 5% los and 41 replications to get significance at 1% los. 

 Now we proceed to explain various types of Experimental Designs, we are going to 
discuss in the forthcoming lessons. 

13.5. Various types of Design of experiments 

 Now we proceed to discuss various types of designs available in the literature using the 
three basic principles discussed in section (13.2).    They are: 

(A) General Designs. 
(1) Completely Randomized Designs (CRD) – Similar to ANOVA one factor model. 
(2) Randomized Block Design (RBD) – Similar to ANOVA – two factor model. 
(3) Latin Square Design (LSD) – Similar to three factor model. 
(4) Graeco‐Latin Square Design (GLSD) – similar to four factor model. 

(B) Factorial Designs. 
(1) 2k Factorial designs 
(2) 3k factorial designs. 

(C) Balanced  Designs.  
(D) Balanced Incomplete Block Designs (BIBD) and so on. 

 
There are many other designs like resolvable designs, rotatable designs, D‐optimal  

and G‐optimal designs, orthogonal designs and so on.   These designs are not in the purview of 
this syllabus and hence are not discussed in this lesson series.   Only above listed designs are 
explained in the forthcoming lessons. 

13.6. Summary 

              In this lesson we have discussed the need and meaning of experimental designs.    
Basically, Design of experiments are introduced by Prof. R.A. Fisher to solve the problems 
arising in Agriculture.   Now a days, they are popularly used many other fields like industry, 
business management, meteorology, medical research, biological studies and so on.   We have 
discussed various categories of experiments namely absolute and comparative experiments.   
Latter, we have discussed some fundamental concepts relating to design of experiments and 
the three basic principles of experimental designs proposed by Prof. R.A. Fisher, who is 
popularly known as “Father of Statistics”. 
 

      Then we have introduced the concepts of determining efficiency of different designs,  
Uniformity trials, and thumb rules to determination of minimum number of replications in an 
experiment and determination of size of the plot or experimental unit and the relation between 
plot size and the precision of the estimate.  Further we have introduced the concept of 
“Fertility Contour Map” and discussed its applications in determining various blocks.   Finally, 
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the lesson is closed by explaining various types of experimental designs, which we are going to 
discuss in the forth coming lessons. 
 

13.7. Self Assessment Questions. 
 

1. Explain various objectives of Experimental Designs. 
2. Define experimental designs and discuss their applications. 
3. Explain the method of estimating the efficiency of a design. 
4. Explain the method of determine the most efficient design among the given 

designs. 
5. Explain Basic principles of experimental designs. 
6. Explain the importance of randomization in obtaining estimates of treatment 

effects. 
7. Explain the importance of replications in controlling the experimental error. 
8. What is Local Control? Explain its need with suitable examples. 
9. What are Uniformity trials? Explain their role in design of experiments. 
10. Explain principles involved in determining minimum number replications in an 

experiment. 
11. Determine the minimum number of replications required, so that an observed 

difference of 10% of the mean will be taken as significant at 5% level of 
significance and the Coefficient of variation of the plot values being 12%.   
Similarly, determine the minimum number of replications to get significance at 
1% los in the above situation. 

12. Determine the minimum number of replications required , so that an observed 
difference of 5% of the mean will be taken as significant at 5% level of 
significance and the Coefficient of variation of the plot values being 14%.   
Similarly, determine the minimum number of replications to get significance at 
1% los in the above situation. 

13. Determine the minimum number of replications required , so that an observed 
difference of 15% of the mean will be taken as significant at 5% level of 
significance and the Coefficient of variation of the plot values being 10%.   
Similarly, determine the minimum number of replications to get significance at 
1% los in the above situation. 

14. Explain various types of experimental designs. 
15. What is meant by experimental error? Explain the method of controlling it. 
16. What are Fertility Contour Maps?  Explain the role in design of experiments. 
17. Discuss the role of plot size with the precession of the estimate. 
18. Explain Prof. Fairfield Smith’s formula and discuss its applications. 
19. Explain the effect of plot size on the number of replications. 
20. Explain the concept of non‐experimental area and it’s effect.  
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13.8. Further Readings. 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

     Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York. 



 
 

Acharya Nagarjuna University                     14.1                       Centre for Distance Education 
 

 

Lesson – 14. 

Completely Randomized Design (CRD) 
14.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the design of Completely Randomized Design (CRD). 
•  Assumptions, applications advantages and dis‐advantages of CRD . 
• Layout of CRD and its Statistical Analysis. 
• CRD with equal number of replications and its analysis. 
• CRD with unequal number of replications and its analysis. 

Structure 

14.1.  Introduction to Completely Randomized Design (CRD) 
14.2. Important concepts of CRD 
14.3. Layout of CRD 
14.4. Statistical Analysis of CRD – with unequal number of replications 
14.5.    Statistical Analysis of CRD – with equal number of replications 
14.6  Summary 
14.7. Self Assessment Questions 
14.8. Further Readings 

 

14.1.  Introduction to Completely Randomized Design (CRD) 

 The completely Randomized Design (CRD) is the most fundamental and simplest design 
suitable for laboratory experiments.    Hence this design is most popularly used by many 
scientists in many fields of research.   This design is based on principles of Randomization and 
replication.   This design is to be applied when all the experimental units are alike or uniform.   
Hence, we need not apply Local Control principle separately in this design.   In this design, 
treatments are allocated at random to the experimental units over the entire experimental 
material.   Number of replications under each treatment may be same or may not be same.   
Hence, CRD if of two types: 

(1) Completely Randomized Design – with equal number of replications and  
(2) Completely Randomized Design – with un‐equal number of replications. 

 
14.2. Important concepts of CRD 

Completely Randomized Design (CRD) is most prominently used design in analyzing  

many real life  problems, because of its simplicity and easiness in the analysis. CRD has the 
following advantages and disadvantages: 
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Advantages: 

1. CRD is the design which uses maximum of the experimental units, because all 
the experimental material can be used without leaving any part of the plot. 

2. The design is very flexible:  Any number of treatments can be used and different 
treatments with different replications, without complicating the analysis. 

3. Statistical analysis of CRD is very simple when compared to other designs like 
RBD, LSD or GLSD.   If any observation is missing or lost due to natural calamities, 
we can carry out the analysis without estimating the missing value. 

4. CRD provides maximum number of degrees of freedom for the error variance.   
Hence, CRD is more suitable design for smaller number treatments.   Providing 
maximum number of degrees of freedom will increase the sensitivity or the 
precision of the design. 

5. There is no restriction on the number of treatments or replication.    We have 
freedom to choose number of treatments or replications depending up on the 
availability of experimental units. 

Because of the above advantages, this design is most popularly used in many fields of 

research, where we want to test the effects of more than two treatments simultaneously.   CRD 
is particularly useful for laboratory experiments and life testing experiments. 

Disadvantages: 

(1) In certain situations, CRD suffers from the disadvantage of being inherently less 
informative, when compared to other sophisticated designs. 

(2) CRD is to be used only when the experimental material is uniform.    Usually in 
agricultural experiments we may not get homogeneous experimental plots.    Without 
our knowledge, some heterogeneity enters and makes the results less sensitive. 

(3) Presence of heterogeneity in the experimental material makes the design less efficient.  
Because of the above disadvantages, CRD is seldom used in agricultural experiments.  

CRD is popularly used in scientific enquiries where laboratory experiments play a major role. 

Applications: 

 (1) CRD is most popularly used in laboratory techniques and methodological studies. 
This design is most suited in Physics, Chemistry or Cookery, in Chemical and biological 
experiments, in green house studies, where, either the experimental material is relatively more 
homogeneous or the inherent variability between the experimental units is very small or 
ignorable. 

(2) CRD is also has applications in life testing experiments in industry, where significant   

 fraction of units is likely to be destroyed or to fail to respond or the test procedure is 
destructive in nature. 

14.3. Layout of CRD: 
Layout of the design means, the step by procedure of allocating treatments to the  

experimental units such that the experimental results are amicable for statistical treatment. 
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Let the number of experimental units are N, which are uniform in all respects and k treatments 
are to be applied on these N units randomly as follows: 

Step – 1: Select r1 units randomly from N units and select one treatment randomly from K 
treatments.   Apply this randomly selected treatment to the r1 randomly selected units. 

Step – 2: Similarly, select randomly r2 units from the remaining (N‐ ) units and select randomly 
another treatment from the remaining (K‐1) treatments.   Apply the selected treatment to 
these r2 units selected randomly. 

Step – 3: Repeat this procedure of selecting units and treatments randomly, until atlast all the 
treatments are completed. 

Thus we obtain r1 replications under treatment‐1, r2  replications under treatment ‐2,.,., and rk 
replications under treatment‐K.   Such that r1+r2+.,.,.,+rk = N.  

Above layout is called CRD with unequal number of replications under each treatment.   In 
particular if    r1=r2=.,.,.,= rk = r and Kr = N, then the layout is called CRD with equal number of 
replicates (r replicates) under each treatment (with K treatments).   Thus the Statistical 
Analysis of CRD is also of two types suitable to the above situations.   Namely: 

(1) Statistical Analysis of CRD with unequal number of replications and  
(2)  Statistical Analysis of CRD with equal number of replications. 

 
14.4. Statistical Analysis of CRD – with unequal number of replications 

The statistical analysis of CRD – with unequal number of replications runs on the similar  

lines of ANOVA one way classification with unequal number of observations under each factor 
discussed in the lesson 9.   Hence, we discuss only the brief outline of the analysis (shortcut 
method) for a ready reference. 

 The mathematical model suitable for CRD is given by: 

Xij = μi + εij  = μ + (μi –μ) + εij = μ + αi + εij    (14.4.1)  

   i = 1,2,.,.,K and j = 1,2,.,.,.,ri 

Where: xij represents the observation of jth  experimental unit receiving ith treatment. 

 μ is the  general mean effect given by μ = ∑ i μi /N.  (14.4.2)  

 αi is the effect if ith treatment given by (μi –μ), for i=1,2,.,.,.,K. (14.4.3) 

 εij is the error effect due to chance or random causes. 

Here, we want to test the equality of the treatment means.    That is the homogeneity of  

different treatment mean effects.   Hence, we have the following Null Hypothesis H0: 

H0 : μ1 = μ2 = .,.,.,= μk = μ  or V(μi) =0.     (14.4.4) 

Thus (14.3.4) implies that H0 : α1 = α2 = .,.,.,= αk = 0.    (14.4.5) 

and the  following Alternative Hypothesis H1 
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H1: μ1  μ2  .,.,.,  μk . = V( μi) > 0 .     (14.4.6) 

Is framed in CRD. 

The experimental data collected under the CRD scheme is given as follows: 

Suppose that there are  N observations xij (i =1,2,3,.,.,k; j = 1,2,.,.,ri) of random variable X 
grouped on some basis (usually difference among treatments) into k‐classes of sizes r1,r2,.,.,.,rk 

respectively such that ∑ i = N as explained in the following table: 

 

 Treatments/rows                                            Data Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

. 

. 

. 

Treatment – k: tk 

 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1r1     

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2r2     

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3n3    

……………………………………………………………………….. 

………………………………………………………………………... 

………………………………………………………………………….

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xkrk     

1

2 

3 

. 

. 

. 

k 

T1. 

T2. 

T3. 

. 

.  

. 

Tk. 

   G = Grand 
total 

Where, i = Ti. / ri i = 1,2,.,.,K. 

Step – 1:  Calculate Treatment total Ti. and the Grand total G = ∑ . = T.. 

Step – 2: Calculate the Correction Factor= CF= G2/N, where N = ∑  . 

Step – 3: Calculate the treatment Sum of square = SST= ∑ .2 /ri – CF = A 

Step – 4: Calculate Total sum of square =TSS= ∑ ∑ j)2 – CF = B. 

Step – 5: Construct the following ANOVA table for CRD. 

Table (14.4.1): ANOVA table for CRD with unequal number of replications. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(Columns) 

K – 1 St
2 = SST=A V1 = St

2/K – 1 F = V1 / V2 

Error N – K SE
2 = ESS=B‐A V2 = SE

2 / N – K  

Total N – 1 ST
2 = TSS=B  
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Step – 6: Conclusions: 

(1) If Fcal is less than or equal to  Ftab at α% los, for [(K‐1),(N‐K)] dof, we accept the null 
hypothesis H0 : α1 = α2 = .,.,.,= αk = 0 and conclude that there is no significant effect 
of treatment means.   In this case we need not apply Further Statistical Analysis 
because all the treatments are equally effective. 

(2) If Fcal is greater than Ftab at α% los, for [(K‐1),(N‐K)] dof, we reject the null hypothesis  

H0 : α1 = α2 = .,.,.,= αk = 0 and conclude that there is significant difference in the effect of 
treatment means.   In this case we required, applying Further Statistical Analysis explained in 
section (9.4), to sub‐group the treatment effects or to determine which treatment has 
maximum effect?  Or which treatment has minimum effect? And so on.      

Example (14.3.1): The effective life of insulating fluids at an accelerated load of 35 kv is being 
studied.   Four types of fluids A,B,C and D are randomly applied on 20 units produced from the 
same machine and the data represents life of the unit measured in minutes and are recorded as 
follows: 

Unit No: 12 18 06 01 05 13  10 19 04 20 

Treatment: C A A B D C B A D A 

Life in minutes:176 189 153 ‐‐‐ 174 169 216 236 185 193 

 

Unit No:             02        17 07 15 09 14 03 11 08 16 

Treatment:  B A C A D D B C C D 

Life in minutes:223 246 182 ‐‐‐ 223 203 232 182 ‐‐‐ 218. 

Analyze the data with suitable design and draw your conclusions.   If necessary, apply further 
Statistical analysis. 

Solution:  The given data is to be arranged treatment wise as follows: 

Treatment  life in minutes at 35 kv Load.   Totals. 

A  189 153 236 193 246 ‐‐‐ 1017 

B  ‐‐‐ 216 223 232     671 

C  176 169 182 182 ‐‐‐‐    709 

D  174 185 223 203 218  1003 

        3400=G 

For the given problem N = 17, r1=5,r2=3,r3=4 and r4 = 5 and K = 4. 

 

 

 



 
 

Design of Experiments                                 14.6                              Completely Randomized….   
 

 

Treatment    Table of Squares of each observation. Totals. 

A  35721 23409 55696 37249 60516 ‐‐‐  212591 

B  ‐‐‐ 46656 49729 53824    150209 

C  30976 28561 33124 33124 ‐‐‐‐   125785 

D  30276 34225 49729 41209 47524   202963 

    Sum of Squares.  691548. 

Step – 1: CF = G2 / N = (3400)2/17 = 680000. 

Step – 2: Treatment SS= SST = (1017)2/5 + (671)2/3 + (709)2/4 +(1003)2/5 – 680000 

                  =206857.800+150080.3333+125670.25+201201.8 – 680000 = 683810.183 – 680000 

      = 3810.183 = A. 

Step – 3: Total SS =TSS = 691548 – 680000 = 11548 = B. 

 Step – 4: Construction ANOVA table. 

Table (14.4.2): ANOVA table for CRD with unequal number of replications. 

Source of 
Variation (SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  (F –
cal) 

Treatments 
(Columns) 

K – 1=4‐1=3 St
2 = SST= 

A=3810.183 

V1 = St
2/K – 1 

=3810.183/3 

=1270.061 

F = V1 / V2 

1270.061/595.2166923

=2.133779204 

Error N – K=17‐
4=13 

SE
2 = ESS=B‐A 

11548‐3810.183 

= 7737.817 

V2 = SE
2 / N – K 

=7737.817/13 

=595.2166923 

 

Total N – 1=17‐
1=16 

ST
2 = 

TSS=B=11548 

Step‐5: Conclusions: 

Ftab at 5% los for (3,13) is given by  3.41(See F‐table in Appendix).  Since Fcal < Ftab we accept the 
null hypothesis H0 at 5% los.   Hence we conclude that there is no significant difference 
between the treatment means or all the four types of fluids are equally effective with respect 
to the life of insulating fluids at an accelerated load of 35 kv.   Since we have accepted the null‐
hypothesis, there is no need to apply further statistical analysis. 

Remark: (1) It is interesting to note that in the analysis of CRD, it is very easy to deal the 
problem of missing values.   If one or more values are missing we can still run the CRD analysis 
with the available observations.   While calculating SST we have to divide with the number of 
observations available under the treatment ‘i’, namely ri ,i=1,2,.,.,K.    this type of easiness will 
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not be there in other designs like RBD or LSD or GLISD.   The missing values are to be estimated 
first and then carryout the analysis by reducing the degrees of freedom by number of missing 
values estimated.   The procedure explained in the next lesson dealing with RBD. 

(2) We can also reduce the data into smaller numbers by changing the origin.   That is we can 
subtract a constant number K = 100 or 150 or 200 from each observation and run the analysis. 
Whatever may be the value of k Fcal will be same and conclusions will not change. 

14.5.    Statistical Analysis of CRD – with equal number of replications 

 The statistical analysis of CRD with equal number of replications runs on similar lines of 
analysis of CRD with unequal number of replications discussed in the last section.   Only 
difference is that in the present case r1 = r2 =.,.,=rk = r. and N=rK.   The data under this design is 
as follows: 

Where, i = Ti. / r ;      i = 1,2,.,.,K. 

Step – 1:  Calculate Treatment total Ti. and the Grand total G = ∑ . = T.. 

Step – 2: Calculate the Correction Factor= CF= G2/N, where N =rK . 

Step – 3: Calculate the treatment Sum of square = SST= ∑ .2 /r – CF = A 

Step – 4: Calculate Total sum of square =TSS= ∑ ∑ j)2 – CF = B. 

Step – 5: Construct the following ANOVA table for CRD. 

Table (14.5.1): ANOVA table for CRD with equal number of replications. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(Columns) 

K – 1 St
2 = SST=A V1 = St

2/K – 1 F = V1 / V2 

Treatments/rows                                             Data Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

. 

. 

. 

Treatment – k: tk 

 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1r      

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2r      

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3r      

……………………………………………………………………….. 

………………………………………………………………………... 

………………………………………………………………………….

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xkr       

1 

2 

3 

. 

. 

. 

k 

T1. 

T2. 

T3. 

. 

.  

. 

Tk. 

   G = Grand 
total 
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Error  K(r‐1) SE
2 = ESS=B‐A V2 = SE

2 / K(r‐1)  

Total Kr – 1 ST
2 = TSS=B   

 

Step – 6: Conclusions: 

(1) If Fcal is less than or equal to  Ftab at α% los, for [(K‐1),(K(r‐1))] dof, we accept the null 
hypothesis H0 : α1 = α2 = .,.,.,= αk = 0 and conclude that there is no significant effect 
of treatment means.   In this case we need not apply Further Statistical Analysis 
because all the treatments are equally effective. 
 

(2) If Fcal is greater than Ftab at α% los, for [(K‐1),(N‐K)] dof, we reject the null hypothesis  

H0 : α1 = α2 = .,.,.,= αk = 0 and conclude that there is significant difference in the effect of 
treatment means.   In this case we required, applying Further Statistical Analysis explained in 
section (9.4), to sub‐group the treatment effects or to determine which treatment has 
maximum effect?  Or which treatment has minimum effect? And so on.  Now, we proceed to 
explain the procedure of CRD with equal number of replicates with the following example. 

Example (14.5.1):  To test the effect of five varieties of seeds V1,V2,V3,V4 and V5 CRD is 
conducted and the yield is measured in kgs.   The data is recorded as follows: 

V1 ; 360 V4 ; 340 V5 ; 398 V4 ; 360 V3 ; 350 

V2 ; 372 V2 ; 455 V3 ; 417 V1 ; 460 V5 ; 388 

V3 ; 400 V1 ; 453 V5 ; 485 V1 ; 431 V4 ; 358 

V2 ; 383 V3 ; 375 V4 ; 375 V2 ; 368 V1 ; 480 

V5 ; 450 V1 ; 358 V3 ; 378 V4 ; 395 V2 ; 328 

V4 ; 370 V5 ; 440 V2 ; 375 V5 ; 420 V3 ; 375 

Analyze the data suitably and draw your conclusions.  

 Solution: 

Step – 1: To simply the calculations we subtract K = 300 and arrange the data Treatment / 
variety wise as follows: 

    Yield of the crop (in kgs)   Totals. 

Variety – 1(V1): 60 160 153 131  180    58  742 

 Variety – 2(V2):            72 155   83   68   28   75  481 

Variety – 3(V3): 50 117 100   75   78   75  495 

Variety – 4(V4): 40   60   58   75   95   70  398 

Variety – 5(V5): 98   88 185   150   140 120  781 

                         2897 = G 
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 Squires of the Yield      Totals. 

Variety – 1(V1):           3600 25600 23409 17161  32400   3364  105534 

 Variety – 2(V2):          5184 24025   6889   4624   784  5625    47131 

Variety – 3(V3):           2500 13689 10000   5625   6084  5625    43523 

Variety – 4(V4):           1600   3600   3364   5625   9025  4900    28114 

Variety – 5(V5):           9604   7744 34225   22500  19600 14400    108073 

       Sum of squares             332375 

Step – 2: now frame the null hypothesis as follows: 

 H0: there is no significant variation between seed varieties. 

 

Step ‐3: CF = (2897)2/30 = 279753.63333 

Step – 4: Now calculate various sum of squares as follows: 

SST = [(742)2+(481)2+(495)2+(398)2+(781)2]/6 – 279753.63333 

= [550564+231361+245025+158404+609961]/6 – 279753.63333=299219.1667 – 279753.63333 

=19465.53337=A. 

 

TSS = 332375 – 279753.63333 = 52621.36667 = B. 

Step‐5:  Now construct ANOVA table for CRD with equal number of replicates as follows: 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(rows) 

K – 1=4 St
2 = SST=A 

=19465.53337 

V1 = St
2/K – 1 

=4866.38335 

F = V1 / V2 

=3.6693 

Error  K(r‐1)=25 SE
2 = ESS=B‐A 

=33155.8333 

V2 = SE
2 / K(r‐1) 

=1326.2333 

 

Total Kr – 1=29 ST
2 = TSS=B 

=52621.36667 

  

Conclusion: 

 Since Fcal  is greater than the Ftab at 5% los for (4,25) dof, that is 2.76, we reject the null 
hypothesis and conclude that the seeds variety have significant variation among them.   Since 
we have rejected the null hypothesis, we have to apply further statistical analysis to sub‐group 
these seed varieties.  This problem is left as an exercise for the reader to determine which 
variety yields most? Or which variety yields less?   Which variety of seeds have similar effect 
and so on.   The procedure is explained in section 9.4.  
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 Now we proceed to explain another important design when the experimental material 
is not homogeneous.  Then we have to use Randomized Block Design (RBD), which is explained 
in the following lesson. 

14.6  Summary 

 In this lesson, Completely Randomized Design (CRD) is introduced along with its 
advantages, disadvantages and applications.   It is important to note that CRD is to be applied 
only when we have homogeneous experimental material.   Otherwise we obtain meaningless 
results and we obtain experimental error more than the treatments effect.   Statistical analysis 
CRD is of two types,   Namely (1) CRD with unequal number of replications and (2) CRD with 
equal number of replications.   Both methods are explained with suitable example. 

 

14.7. Self Assessment Questions 

1. Explain the conditions under which CRD can be applied. 

2. Discuss various advantages and disadvantages of CRD. 

3. Briefly explain the analysis of CRD with unequal number of replications. 

4. Briefly explain the analysis of CRD with equal number of replications. 

5. Explain the layout of the CRD. 

6. Explain various applications of CRD. 

7. Explain the easiness in dealing missing values in CRD. 

 

8. To test the effect of small portion of coal in the sand used for manufacturing concrete, 
several batches were mixed under particularly identical conditions except the variation of the 
percentage of coal.   From each batch, several bricks were made tested for their breaking 
strength.   The results are recorded as follows: 

0.00:   1690 1580 1745 1685  

0.05:   1550 1445 1645 1545 

0.10:  1625 1450 1510 ‐‐‐‐‐‐ 

0.50:  1725 1550 ‐‐‐‐‐‐ 1530 

1.00:   1530 1545 1665 1520 

Analyze the above data with suitable design and draw your conclusions. 

(Ans: Fcal = 1.637; Accept the null hypothesis). 

 

9. A set of topical feeds A,B,C and D tried on 20 chicks and the increased is recorded in Grams. 

    The data is recorded as follows: 
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Chick No:             02        17 07 15 09 14 03 11 08 16 

Treatment:     B     A  C A D D B C C D 

Weight in gr.:     61    55 42 49 169 137 112 97 81 169 

Chick No: 12 18 06 01 05 13  10 19 04 20 

Treatment: C A A B D C B A D B 

Weight in gr:    95 42 21 30 154 92 89 52 85 63. 

Analyze the data with a suitable design and draw your conclusions.  

10. Write down the ANOVA table CRD with equal and unequal number of replicates. 

 

14.8. Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 15 

Randomized Block Design (RBD) 
15.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the design of Randomized Block Design (RBD). 
•  Assumptions, applications advantages and dis‐advantages of RBD . 
• Layout of RBD. 
•  Statistical Analysis of RBD. 
• Comparing the efficiency of RBD with CRD. 
• Missing plot technique. 

Structure 

15.1. Introduction to Randomized Block Design (RBD) 

15.2.  Important concepts of RBD 

15.3. Layout of RBD 

15.4. Statistical Analysis of RBD – with one observation per cell 

15.5.  Important Concepts of RBD 

15.6. Summary 

15.7. Self Assessment Questions 

15.8. Further Readings 

 

15.1. Introduction to Randomized Block Design (RBD) 

In the previous lesson, we discussed CRD, where Local control is not applied, because  
we have assumed that the experimental material is uniform or homogeneous. In agricultural 
related problems, this situation may not occur because plots or field differs significantly with 
each other with respect to many factors like climatic conditions or irrigation type or fertility 
rate or soil temperature and so on.   Hence, there is a need to apply “Local Control” and make 
the heterogeneous fields into homogeneous blocks.   Thus we have to apply all the three basic 
principles of experimental designs, namely Randomization, Replication and Local control.   Such 
a design is known as Randomized Block Design (RBD).    
 
 In field experimentation if the whole of the experimental area is not homogeneous, and 
the fertility gradient is only in one direction, then a simple method of controlling the variability  
of the experimental material consists in stratifying or grouping the whole area into relatively 
homogeneous strata  or sub‐plots or blocks or replicates (usually they are called), perpendicular 
to the direction of the fertility gradient.   Now all treatments are to be applied randomly to the 
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units in each block.  Such a design is known as Randomized Block Design (RBD), because 
randomization is applied within each block independently.    
 
15.2. Important concepts of RBD 

Now we proceed to compare two designs, namely  CRD and RBD before discussing  

various advantages and disadvantages of RBD. 

15.2.1. Critical Comparison between CRD and RBD. 

S.No. Completely Randomized Design (CRD) Randomized Block Design (RBD) 

1  Local Control is not applied specifically 
because Experimental material is 
uniform. 

Since experimental material or site is 
heterogeneous, we have to sub‐group the 
entire site into relatively homogeneous 
Strata or blocks or replications. 

2 Treatments are applied randomly 
applied throughout the experimental 
material. 

Treatments are applied randomly within 
the block or replication. Hence 
Randomization is restricted to block here. 

3 Variation among different replications 
is mixed with experimental error.  
Hence, Experimental error is more in 
CRD when compared with RBD.  

The variation between the replications is 
separated out from experimental error and 
hence error is smaller in RBD when 
compared to CRD. 

4 Error degree of freedom is maximum 
when compared to RBD or LSD. 

Error degree of freedom is smaller when 
compared to CRD and larger when 
compared to LSD. 

5. This design is more suited laboratory 
experiments in scientific enquires, in 
industry, biological studies, medicine 
meteorology and animal husbandry. 

The design is more suitable for field 
experiments in agricultural problems or 
where the experimental material is 
heterogeneous. 

 

 Now we proceed to discuss various advantages and disadvantages of Randomized Block 
Design (RBD) in the following section. 

15.2.2. Advantages and disadvantages of RBD. 

Advantages: Chief advantages of Randomized Block Design (RBD) may be outlined as follows: 

1. Accuracy: The design has been shown to be more efficient or accurate than CRD 
for most types of experimental work.   The elimination of between blocks sum of 
squares, from the error or residual sum of squares and hence, in general 
experimental error in RBD will decrease, when compared to CRD. 

2. Flexibility:  In RBD no restrictions are placed on the number of treatments or 
number of replications (blocks).   Usually minimum two replicates are required  
to carry out the test of significance. (Factorial Design is an exceptional case 
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here).   We can also add or delete any treatment or block if we wish, without 
complicating the analysis. 

3. Ease of Analysis: The analysis is easy when compared to LSD and little lengthy 
when compared to CRD.   We have freedom to choose any number of 
treatments and any number of blocks or replications, without complicating the 
analysis. 

4. RBD is more suitable for solving many agronomical problems, when the fertility 
gradient is varying in one direction. 

5. RBD is more efficient design than CRD and Less efficient than Latin Square 
Design (LSD). 

Disadvantages: 

The design RBD is not a suitable design, when we want to test large number of treatments or 
for cases in which considerable variation is present within the blocks or replicates. 

15.3. Layout of RBD 
Let us consider K treatments T1,T2,.,.,.,TK treatments and the experimental material is  

divided into b blocks each of size K, thus we have K.b experimental  units, such that units within 
each block are homogeneous as far as possible.   Any variation present in the experimental 
material is attributed to the variation between blocks.   Now K treatments are to be applied for 
k units in a block at random in one block.   Similarly apply  again these k treatments randomly 
independent of the previous block order of application of treatments.   This implies that 
randomization is to be applied independently in each block.   This is explained with the 
following example: 

Example (15.3.1): Let us consider five treatments A,B,C,D and E which are to be applied in six 
blocks.   Thus we have 30 experimental units with five blocks such that five uniform plots are 
there in each block.   Then an example of a Layout of RBD is given as follows: 

Block – 1 C A D E B 

Block – 2 D B C A E 

Block – 3 A B D C E 

Block – 4 E D C B A 

Block – 5 D C B A E 

Block – 6 B E A D C 

 

 For randomization, we may use Tippet’s random number of tables or calculator or 
computer to generate random digits, such that 1=A,2=B,3=C,4=D and 5=E or in any order liked 
by the experimenter.   After determining the layout, same treatments are to be applied to the 
respective units in each block as given in the Layout and experimental results are to be 
recorded for the analysis of RBD. 

 Now we proceed to explain the statistical analysis of RBD in the following section. 
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15.4. Statistical Analysis of RBD – with one observation per cell 

Consider the layout of the RBD explained in the last section with one observation is  
made on each of the experimental units, then, the statistical analysis is analogous to  ANOVA 
two factor model data with observation per cell discussed in  section 10.3.   Hence, we briefly 
outline the step wise analysis as follows: Let xij  observation or data collected from the unit 
receiving ith treatment in jth block. 
 
x ij =  μ + αi + βj  + εij .  i=1,2,.,.,K and j=1,2,.,.,b.     (15.4.1) 

where μ = General mean effect. 

αi = ith treatment mean effect. 

 βj = jth block effect.  

 εij = Error influencing the yield of (i,j)th unit. 

The errors εij’s are assumed to be independent and identically distributed with mean 0 and 
variance σ2.  

15.4.1. Null‐hypotheses: We have to frame two null‐hypotheses, one for treatment mean  

effects and another for the block means effects framed as follows: 

For Treatments: 

H01: There is no significant variation between average treatment effects or 

H01:  μ1. = μ2. = μ3. = μK. = μ   or :  α1. = α2. = α3. =… αK. = 0.    (15.4.2) 

 

 For Blocks: 

H02: There is no significant variation between average block effects or 

H02:  μ.1 = μ.2 = μ.3 =… μ.b = μ or β1 = β2 =β3 ……..=βb = 0.    (15.4.3) 

 

To test the above hypotheses, we use the statistical analysis, which is explained in the 
following steps: 

15.4.2. The statistical analysis of RBD with one observation per experimental unit, runs on 
similar lines of analysis of ANOVA two factor model with equal number of replications.    

Treatments/rows                                             Blocks 

B1              B2             B3 ………Bj ………….           Bb 

Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1b       

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2b       

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3b       

1. 

2. 

3. 

T1. 

T2. 

T3. 
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. 

Treatment – i: ti 

. 

Treatment – k: tk 

 

……………………………………………………………………….. 

…………………………………………xij……………………………...

…………………………………………………………………………. 

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xkb       

. 

i. 

 

. 

k. 

. 

Ti. 

 

. 

Tk. 

Means 

Totals 

.1                 .2           .3                                      .b 

T.1              T.2            T.3                                       T.b       

 G = Grand 
total 

 

Where, i = Ti. / r ;      i = 1,2,.,.,K and .3 =   T.j / K ;      j = 1,2,.,.,b.     

The short cut step wise procedure adopted in many practical problems in analyzing RBD 
with one observation per experimental unit is explained as follows:                                

Step – 1:  Calculate Treatment total Ti. and the Grand total G = ∑ . = T..=G 

Step – 2: Calculate the Correction Factor= CF= G2/N, where N =bK . 

Step – 3: Calculate the treatment Sum of squares = SST= ∑ .2 /b – CF = A. 

Step – 4: Calculate the Block Sum of Squares = BSS = ∑ .j
2 / K – CF = B. 

Step – 5: Calculate Total sum of square =TSS=∑  ∑ j)2 – CF = C. 

Step – 6: Construct the following ANOVA table for RBD with one observation per cell. 

 

Table (15.4.1): ANOVA table of RBD with one observation per cell. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio 
F  (F – cal) 

Treatments 
(rows) 

Blocks (columns) 

K – 1 

 

b – 1 

St
2 = SST=A 

 

Sb
2=BSS=B 

V1 = St
2/K – 1 

 

V2 = Sb
2/b‐1 

FT = V1 / V3 

 

FB = V2 / V3 

Error  (K‐1)(b‐1) SE
2 = ESS=C‐B‐A V3 = SE

2 / (K‐1)(b‐1)  

Total Kb – 1 ST
2 = TSS=C  

 

Step – 7: Conclusions: 

A – For treatments: 

(1) If the calculated value FT is less than or equal to  Ftab at α% los,for [(K‐1),(K‐1)(b ‐1)] 
dof, we accept the null hypothesis for treatments H01 : α1 = α2 = .,.,.,= αk = 0 and 
conclude that there is no significant effect of treatment means.   In this case we 
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need not apply Further Statistical Analysis because all the treatments are equally 
effective. 

(2) If the calculated value FT is greater than Ftab at α% los, for [(K‐1),(K‐1)(b‐1)] dof, we 
reject the null hypothesis  for treatments H01 : α1 = α2 = .,.,.,= αk = 0 and conclude 
that there is significant difference in the effect of treatment means.   In this case we 
required, applying Further Statistical Analysis explained in section (9.4), to sub‐
group the treatment effects or to determine which treatment has maximum effect?  
Or which treatment has minimum effect? And so on.   

B‐ For blocks: 

(1) If the calculated value FB is less than or equal to  Ftab at α% los,for [(b‐1),(K‐1)(b ‐1)] 
dof, we accept the null hypothesis for treatments H02 : β1 = β2 =β3 ……..=βb = 0 and 
conclude that there is no significant effect of block means.    
In this case we need not apply Further Statistical Analysis because all the blocks are 
uniform with respect to the yield.   This means that blocking effect is negligible. 

(2) If the calculated value FB is greater than Ftab at α% los, for [(b‐1),(K‐1)(b‐1)] dof, we 
reject the null hypothesis  for treatments H0 : β1 = β2 =β3 ……..=βb = 0 and conclude 
that there is significant difference in the effect of treatment means.   In this case we 
required, applying Further Statistical Analysis explained in section (9.4), to sub‐
group the blocks or to determine which block has maximum fertility rate? Which 
block has minimum fertility rate? Which blocks have similar fertility rates? And so 
on. 

Now we proceed to explain the above analysis with an example. 

Example (15.4.1): To test the effect of five varieties of seeds V1,V2,V3,V4 and V5 CRD is 
conducted and the yield is measured in kgs.   The data is recorded as follows:  
  

V1 ; 360 V4 ; 340 V5 ; 398 V2 ; 360 V3 ; 350 Block – 1.

V4 ; 372 V2 ; 455 V3 ; 417 V1 ; 460 V5 ; 388 Block ‐  2.

V3 ; 400 V1 ; 453 V5 ; 485 V2 ; 431 V4 ; 358 Block – 3. 

V2 ; 383 V3 ; 375 V4 ; 375 V5 ; 368 V1 ; 480 Block – 4. 

V5 ; 450 V1 ; 358 V3 ; 378 V4 ; 395 V2 ; 328 Block – 5. 

V4 ; 370 V5 ; 440 V2 ; 375 V1 ; 420 V3 ; 375 Block – 6. 

Analyze the though RBD and draw your conclusions. 

 Solution: Step – 1: To simply the calculations we subtract K = 300 and arrange the data 
Treatment / variety wise as follows: 

    Yield of the crop (in kgs)   Totals. 

   B‐1 B‐2 B‐3 B‐4 B‐5  B‐6 

Variety – 1(V1): 60 160 153 180    58    120  731 
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 Variety – 2(V2):            60 155  131   83   28   75  532 

Variety – 3(V3): 50 117 100   75   78   75  495 

Variety – 4(V4): 40   72   58   75   95   70  410 

Variety – 5(V5): 98   88 185   68   150 140  729 

Totals:              308 592 627  481 409  480             2897= G 

  

Squires of the Yield      Totals. 

Variety – 1(V1):           3600 25600  23409  32400  3364  14400  102773 

 Variety – 2(V2):          3600 24025  17161   6889    784  5625    58084 

Variety – 3(V3):           2500 13689 10000   5625   6084  5625    43523 

Variety – 4(V4):           1600   5184   3364   5625   9025  4900    29698 

Variety – 5(V5)            9604   7744 34225   4624  22500 19600    98297 

Sum of squares          20904    76242   88159   55163  41757  50150               332375 

Step – 2: Now frame the null hypothesis as follows: 

 H0: There is no significant variation between seed varieties.  

 

Step ‐3: CF = (2897)2/30 = 279753.63333 

Step – 4: Now calculate various sum of squares as follows: 

SST = [(731)2+(532)2+(495)2+(410)2+(729)2]/6 – 279753.63333 

= [534361+283024+245025+168100+531441]/6 – 279753.63333 = 293658.5 ‐279753.6333 

=13904.8667=A. 

BSS = [(308)2 +(592)2 +(627)2 + ( 481)2 + (409)2 + (480)2] /5 – 279753.63333. 

=[94864+350464+393129+231361+167281+230400]/5 279753.63333  

=293499.8 – 279753.63333 = 13746.1667=B 

TSS = 417216 – 257613.33333 = 159602.6667=C 

Step‐5:  Now construct ANOVA table for CRD with equal number of replicates as follows: 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments 
(rows) 

 

K – 1=4 

 

 

St
2 = SST=A

=13904.8667 

 

V1 = St
2/K – 1

=3476.216675 

 

FT = V1 / V3

=0.52689 
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Blocks (columns) b – 1=6‐1=5 SB
2=BSS = B 

=13746.1667 

V2 = SB
2/b‐1 

=2749.23334 

FB = V2 / V3  

=0. 4167 

 

Error  (K‐1)(b‐1)=20 SE
2 = ESS=C‐A‐B

=131951.6333 

V3 = SE
2 / K(r‐1)

=6597.581665 

 

Total Kb – 1=29 ST
2 = TSS=C 

=159602.6667 

  

Conclusion: 

 Since Fcal < 1, in bothe the cases, this is because if the fact that experimental error or V2 
is more than V1 ; V2 and hence, the experiment failed to measure the effects of treatments as 
well as blocks.   Based on the data we cannot estimate treatment effects, or block effects, 
because F calculated values are less than unity.   It is important to note that F calculated value 
must be greater than 1 always.   Then only we can test the null hypothesis.   Otherwise, we 
have to discord the experiment and suggest performing fresh experiment.   

15.5.  Important Concepts of RBD 

 Now we proceed to discuss some important concepts like (1) Comparing Efficiency of 
RBD with CRD (2) Missing plot Technique and (3) Further Statistical analysis applicable in RBD in 
the following sections:  

15.5.1. Comparing the efficiency of RBD with CRD. 

Now we proceed to compare the efficiency of RBD with CRD.   In order to  do this  

Treatment effects are same irrespective of the design.   In other words treatments effects will 
not be affected by the type of design we are using.    Hence, treatment effects are to be 
removed from the ANOVA table, which means that we assume that uniform treatment is 
applied for all the experimental units.   We have to assume that uniform trials are conducted 
which represents we have to consider only block variances and error variances in RBD and only 
Error variance in CRD.   This is done as follows.   First consider the ANOVA table of RBD as 
follows: 

Table (15.5.1): ANOVA table of RBD with one observation per cell. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

E(MSS) 

Treatments 
(rows) 

Blocks (columns) 

K – 1 

 

b – 1 

St
2 = SST=A 

 

Sb
2=BSS=B 

V1 = St
2/K – 1 

 

V2 = Sb
2/b‐1 

 V3 + b V1 

 

 V3  + K V2 

Error  (K‐1)(b‐1) SE
2 = ESS=C‐B‐A V3 = SE

2 / (K‐1)(b‐1) V3 

Total Kb – 1 ST
2 = TSS=C   
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Now consider the ANOVA table for the same experiment without blocks, which means that for 
the same experiment conducted in CRD (without block effects).   Then we have the following 
ANOVA table: 

Table (15.5.2): ANOVA table of RBD without block effect. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

E(MSS) 

Treatments 
(rows) 

 

K – 1 

 

 

St
2 = SST=A 

 

 

V1’ (say) 

 

 

V2
’
 + b V1

Error  K(b‐1) SE
2 = ESS=C‐B‐A V2

’ (say) V2
’(say) 

Total Kb – 1 ST
2 = TSS=C   

 

 Since the same experiment is performed with CRD instead of RBD, The total remains the 
same in each case and also the treatment effects.   From the above tables (15.5.1) and (15.5.2) 
we have: 

(K – 1) (V3 + b V1) + (b‐1)  (V3  + K V2) + (K‐1)(b‐1) V3 = (K‐1)( V2
’
 + b V1)+ K(b‐1)V2

’ . (15.5.1) 

 {(K‐1)+(b‐1)+(K‐1)(b‐1)} V3 + K(b‐1)V3 = [(K‐1)+K(b‐1)] V2
’    (15.5.2) 

 (Kb‐1)V3 + K(b‐1) V3 = (Kb‐1)V2
’ .      (15.5.3) 

The efficiency of RBD relative to CRD is given by the ratio of relative amounts of  

information or the precessions of both designs.   Hence using the equation (15.5.3), the 
efficiency of RBD relative to CRD denoted by E is given by: 

E = V2
’ / V3 = 1+ [K(b‐1)/(kb‐1)]V3 /V2

’ .      (15.5.4) 

But for an RBD E(V3) = σε2  and E(V2) = V3  + K V2 = σε2 +K σb2. 

Therefore E[(V2 – V3 )/K] = σb2 .       (15.5.5) 

Hence an unbiased estimate of σb2 is given by [(V2 – V3 )/K]. 

Using the unbiased estimates for V3 = σε2 and V2 = σb2  we have from equation (15.5.4): 

E =1 + [K(b‐1)/(kb‐1)] [(V2 – V3 )/K]. (1/V3) = {[(Kb‐1) – (b‐1)]V2 +(b‐1)V3}/ [(kb‐1)V3} 

 E =  [b(k‐1)V3 + (b‐1) V2] / (Kb‐1)V3 .      (15.5.6) 

Example (15.5.1):  From the following ANOVA table of RBD, calculate the efficiency of RBD with 
CRD. 

Table (15.5.3): ANOVA table of RBD with one observation per cell. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Treatments K – 1=5 St
2 = SST=A V1 = St

2/K – 1
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(rows) 

Blocks (columns) 

 

b – 1=3 

=901.19 

Sb
2=BSS=B 

=219.43 

=180.24 

V2 = Sb
2/b‐1 

=73.14 

Error  (K‐1)(b‐1)=15 SE
2 = ESS=C‐B‐A

=229.63 

V3 = SE
2 / (K‐1)(b‐1) 

=15.31 

Total Kb – 1=23 ST
2 = TSS=C 

=1350.25 

 

 

Solution:  The relative efficiency of RBD with CRD using the formula (15.5.6) we have:   

E =  [b(k‐1)V3 + (b‐1) V2] / (Kb‐1)V3 = [4(5) 15.31 + 3 (73.14)]/23(15.31)=[306.2+219.42]/352.13 

=525.62/352.13 =1.492687.  We can express E in terms of percentage.   Hence we have E = 
149.26% .     Hence the gain in efficiency is about  49% by conducting RBD than CRD. 

Now we proceed to explain the concept of missing observation problem in the following 
section. 

15.5.2. Estimation of missing observation in RBD. 

Usually if one or more observations are missed due to some natural calamities like  

Floods or earthquakes or fire accidents, we cannot analyze the data in RBD, unless those 
missing values are to be estimated from the data available.   But CRD can be carried out 
estimating the missing values just by removing the missing replicates, CRD with unequal  

number of replications can be carried out. This is the basic advantage of CRD when compared 
to RBD or LSD.   If we want to carry out the RBD analysis, all the observations must be available. 

If one or more observations are missing, they are to be estimated from the available data and 
substitute this estimated values in the data and then carryout RBD analysis by reducing the 
number of missing observations from total degrees of freedom and hence consequently from 
error degrees of freedom.   Thus, the number of observations we have estimated is to be 
subtracted from total and error dof.   The procedure of estimating single observation is 
explained first and then we discuss the procedure with multiple missing observations. 

 Let yij = Yis the observation missed in jth block receiving ith treatment.     Then the data 
under RBD is of the following form: 

Treatments/rows                                            Blocks 

B1              B2             B3 ………Bj ………….           Bb 

Means Total 

Treatment – 1: t1 

Treatment – 2: t2 

Treatment – 3: t3 

x11             x12              x13  .  .  .  .  .  .  .  .  .           x1b       

x21             x22              x23  .  .  .  .  .  .  .  .  .           x2b        

x31             x32              x33  .  .  .  .  .  .  .  .  .           x3b        

1. 

2. 

3. 

T1. 

T2. 

T3. 
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. 

Treatment – i: ti 

. 

Treatment – k: tk 

 

……………………………………………………………………….. 

…………………………………………yij=Y……………………………...

…………………………………………………………………………. 

xk1             xk2              xk3  .  .  .  .  .  .  .  .  .           xkb        

. 

i. 

 

. 

k. 

. 

Ti.
’+ Y 

 

. 

Tk. 

Means 

Totals 

.1                 .2           .3                                      .b 

T.1              T.2            T.3         T.’
j + Y                  T.b           

 G’ + Y  

Where: Ti.
’ = Sum of the known observations under ith treatment, 

Similarly T.’
j = Sum of the known observations in jth block,  

G’ = Grand total of all known observations and Y is the unknown missing plot value. 

Then CF = (G’ + Y)2 / Kb. 

Thus we have, TSS= ∑  ∑ j)2 – CF = Y2 + terms not involving Y – CF, 

On similar lines we can write other sum of squares as follows: 

SST = (1/K) [(Ti.
’+ Y)2 + terms not involving Y] – CF. 

And BSS = (1/b) [(T.’
j + Y)2 + terms not involving Y] – CF.   Then error sum of squares ESS is given 

by: 

ESS = E = Residual SS= TSS – SST – BSS . 

= Y2 ‐  (Ti.
’+ Y)2 / K  +  (T.’

j + Y)2 /b + (G’ + Y)2 / Kb+ constant terms not involving Y .  (15. 5.7)     

Differentiating (15.5.7) w.r.t. Y and equating it to zero and evaluating for y we have: 

E/ Y = 0 = 2Y – (2/K) (Ti.
’+ Y) – (2/b) (T.’

j + Y) + (2/Kb) (G’ + Y)  

= Y[ 1 – 1/K – 1/b + 1/Kb] =  Ti.
’ / K +  T.’

j / b – G’ / Kb  

 Y = [b T.’
j + K  Ti.

’  ‐  G’ ] / (b‐1)(K‐1).      (15.5.8) 

Thus, we can estimate the missing observation from the known values using (15.5.8). 

We can extend this analysis for several missing values.   But several missing values is not there 
in the syllabus hence, we confine only to single missing value in these lecture series. 

15.5.3. Statistical Analysis of RBD with missing values: 
After estimating the missing value using the (15.5.8), ANOVA of RBD is performed in the  

usual way, after substituting the estimated value in the place of missing observation.   For each 
missing observation, 1 dof is to be subtracted from the total degrees of freedom and 
consequently from error dof.   The adjusted treatment SS is to be obtained by subtracting the 
so called adjustment factor a.f. which is given as follows: 

a.f. = (T’.j + KT’
i. – G’ )2 /[K(K‐1)(b‐1)2]      (15.5.9). 
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Example (15.5.2): In the following table data represents the yields of 6 varieties in a 4 replicate 
RBD experiment with one missing value.   Estimate the missing value and carryout the Analysis. 

    Treatments 

Blocks.   V1  V2  V3 V4 V5 V6 

Block – 1  B1 185 157 162 141 130 136 

Block – 2  B2 117 ‐‐‐‐ 129 144 169 125 

Block – 3  B3 154 166 155 203 184 215 

Block – 4  B4 165 186 127 157 165 180 

 

Solution: First calculate the totals with the available data as follows: 

Treatments 

Blocks.   V1  V2  V3 V4 V5 V6    Block Totals 

Block – 1  B1 185 157 162 141 130 136 911 

Block – 2  B2 117 ‐‐‐‐ 129 144 169 125 684=T’.j 

Block – 3  B3 154 166 155 203 184 215     1078 

Block – 4  B4 165 186 127 157 165 180  980 

Treatment totals: 621 509=Ti. 573 645 648 657 3653=G’ 

Let the missing value if denoted by Y.  The estimated value of Y using (15.5.8) we have”: 

Estimated value of Y =  [b T.’
j + K  Ti.

’  ‐  G’ ] / (b‐1)(K‐1) = [4(648) + 6(509) – 3653] / 15  

= [2592 + 3054 – 3653]/15 = 1993/15 = 132.86667  133.   Include this estimated value in the 
table and carryout the totals as usual as follows: 

Treatments 

Blocks.   V1  V2  V3 V4 V5 V6    Block Totals 

Block – 1  B1 185 157 162 141 130 136 911 

Block – 2  B2 117 133 129 144 169 125 817 

Block – 3  B3 154 166 155 203 184 215     1078 

Block – 4  B4 165 186 127 157 165 180  980 

Treatment totals: 621 642 573 645 648 657 3786=G 

Null Hypothesis: For treatments: H01: There is no significant variation between varieties. 

      For blocks: H02: There is no significant variation between blocks. 
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Now calculate each observation squires as follows: 

     Squires 

Blocks.   V1  V2  V3 V4 V5 V6           Totals 

Block – 1  B1 34225 24649 26244 19881 16900  18496    140395 

Block – 2  B2 13689 17689 16641 20736 28561  15625    112941 

Block – 3  B3 23716 27556 24025 41209 33856  46225     196587 

Block – 4  B4 27225 34596 16129 24649 27225  32400     162224 

Totals:   98855 104490 83039 106475 106542 112746  612147 

Step – 1: CF = G2/N = (3786)2/24 = 597241.5 

Step – 2: SST = [(621)2+(642)2+(573)2+(645)2+(648)2+(657)2]/4 – 597241.5 

  = [385641+412164+328329+416025+419904+431649]/4 – 597241.5 

  = 598428 – 597241.5 = 1186.5 = A. 

 BSS = [(911)2 + (817)2 +(1078)2 + (980)2 ] / 6 – 597241.5 
=[829921+667489+1162084+960400]/6 – 597241.5 = 603315.6 – 597241.5=6074.1 = B 

TSS = 612147 – 597241.5 = 14905.5. 

Step – 3: Now calculate the adjustment factor a.f. using (15.5.9). 

a.f. = (T’.j + KT’
i. – G’ )2 /[K(K‐1)(b‐1)2] =[684 + 6 (509) – 3653]2/(6x5x9) = (7225)/270=26.75926 

Therefore, adjusted value of treatment SS = 1186.5 ‐ a.f. = 1186.5 – 26.75926 = 1159.74074=A’ 

Step – 4:  Construct ANOVA table of RBD with one observation missing. 

Table (15.5.4): ANOVA table of RBD with one missing observation. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

F – Cal 

Treatments 
(columns) 

Blocks (rows) 

K – 1=5 

 

b – 1=3 

St
2 = Adj.SST=A’

=1159.74074 

Sb
2=BSS=B 

=6074.1 

V1 = St
2/K – 1

=231.948 

V2 = Sb
2/b‐1 

=2024.7 

F1 = 231.948 
/547.97567=0.42 

 

F2=2024.7/547.97567

=3.6949 

Error  (K‐1)(b‐1)‐
1=14 

SE
2 = ESS=C‐B‐A’ 

=7671.66 

V3 = SE
2 / (K‐1)(b‐

1) 

=547.97567 

 

Total Kb – 1‐1=22 ST
2 = TSS=C

=14905.5 
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Step – 5: For treatments/varieties: Since, the calculated value of F is less than 1 we cannot take 
any decision on varieties.  

For blocks: Ftab at 5% los for (3,14) dof is 3.34, and F2 is greater than the table value we reject 
the H02 and conclude that blocks differs significantly with each other. 

15.5.4. Further Statistical Analysis used in RBD. 
As in CRD, when we reject any null hypothesis, either for treatments or blocks, we  

have to apply further statistical analysis which is explained as follows: 

 As in CRD the Standard Error(S.E) of any treatment mean is given by: 

V( i ) =S2
E / b => S.E. ( i ) = SE / √b  i=1,2,.,.,.,K.     (15.5.10) 

Similarly the S.E. of difference between any two treatment means is obtained as (2SE
2 / b)1/2. 

 If the treatments shows significant effect, we might be interested to test for the 
significant difference between any two treatment means say i  and j  i j.   Under the null 
hypothesis H0 : there is no significant difference between two treatments i  and j  i j.    

Then the test statistic t = | i  ‐ j | /  (2SE
2 / b)1/2          i j.      (15.5.11) 

Follow, Student’s t distribution with error dof.   That is (b‐1)(K‐1) dof.   Let t0.05 at (b‐1)(K‐1) dof. 

Then the Critical Difference (C.D)= [t0.05(b‐1)(K‐1)] (2SE
2 / b)1/2.   (15.5.12) 

We can also calculate the CD at 1% los by taking t0.01 at (b‐1)(K‐1) dof. 

Compare each pair of treatment means difference with respective C.D. and conclusions can be 
drawn as usual.   That is if | i  ‐ j | > C.D. at α% los, we there is significant difference between 
two treatments  i  and  j  for i j.     Group all those treatments with no significance difference 
in one group and treatments with significance difference in different groups as explained in 
CRD. 

Remark: If replications under two different treatments are not same, let ri are number of  

replications under treatment ti  and rj replications under treatment tj then the S.E. of the 
difference between two treatment means is given by SE (1/ri +1/rj)

1/2 as discussed in CRD with 
unequal number of replications under each treatment. 

15.6. Summary 
In this lesson we have introduced Randomized Block design (RBD) which is to be used 

when the experimental material is heterogeneous.   For example, in agricultural experiments, 
experimental plots may differ w.r.t. fertility rate or climatic conditions or with respect to any 
other characteristic.   In such situations we have to apply the Local Control principle by dividing 
heterogeneous units into homogeneous Blocks, such that units within the block are 
homogeneous.    After dividing the experimental material into blocks, treatments are to be 
applied at random in each block separately and obtain the experimental data or yields.   Such 
design is called RBD.   After introducing the design, advantages, disadvantages, its statistical 
analysis is discussed.    We have also discussed some important problems like comparing the 



 
 

Acharya Nagarjuna University                     15.15                       Centre for Distance Education 
 

 

relative efficiency of RBD with CRD, missing plot technique and further statistical analysis 
applicable in RBD is discussed. 

 
15.7. Self Assessment Questions 

1. Explain the need of RBD and explain the Layout of the design. 
2. Explain various advantages and disadvantages of RBD. 
3. Briefly explain the Statistical Analysis of RBD. 
4. Compare the relative efficiency of RBD with CRD. 
5. Explain the method of estimating single missing observation in RBD. 
6. Explain further statistical analysis to be applied in RBD. 
7. Following data represents number of computer chips produced in 5 different machines 

in three shifts.    These whether there is any significant effect of machines and shifts of 
workers. 

 Machines 

    M1 M2 M3 M4 M5 

 Shift – 1:  555 549 542 521 552 

 Shift – 2:  561 612 530 589 563 

 Shift – 3:   669 637 669 685 654 

 
Also apply further statistical analysis if necessary.   Also calculate the Efficiency of RBD 
with CRD. 

8. Consider the following experiment, where we have 4 blocks such that 6 plots in each 
block.    Treatments A,B,C,D, E and F are applied randomly in block as follows: 
 
A‐247 C‐277 B‐206 D‐162 E‐162 F‐249

C‐227 B‐288 A‐273 D‐150 F‐225 E‐170 

F‐263 A‐385 D‐196 C‐368 B‐395 E‐154 

E‐177 D‐141 B‐310 F‐226 A‐285 C‐349 

 
Analyze the data with a suitable design and draw your conclusions.   If necessary 
calculate further statistical analysis. 

9. Estimate the missing value in the following table and carryout the suitable analysis. 
V1 V2 V3  V4 V5 V6 

B1 16.2 14.1 18.5 13.6 13.0 15.7 
B2 15.5 20.3 15.4 21.5 18.4 16.6 
B3 11.7 12.9 ‐‐‐‐ 14.4 16.9 12.5 
B4 16.5 18.6 12.7 15.7 16.5 18.0  
 

10. Explain the need of developing the theory of estimating the missing observation. 
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Lesson – 16. 

Latin Square Design (LSD) 
16.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the Latin Square Design (LSD). 
•  Assumptions, applications advantages and dis‐advantages of LSD . 
• Layout of LSD. 
•  Statistical Analysis of LSD. 
• Comparing the efficiency of LSD with RBD with CRD. 
• Missing plot technique in LSD. 

Structure 

16.1. Introduction to Latin Square Design (LSD) 

16.2.  Layout, Advantages and disadvantages of LSD 

16.3.  Mathematical model and assumptions of LSD 

16.4. Statistical Analysis of LSD – with one observation per cell 

16.5.     Important Concepts of LSD 

16.6. Summary 

16.7. Self Assessment Questions 

16.8. Further Readings 

 

16.1. Introduction to Latin Square Design (LSD) 
       In the last lesson, we have discussed the Randomized Block Design, where the entire  

Experimental material is divided into homogeneous blocks and treatments are applied at 
random within each block independently.    Here we have assumed that the plots or units 
within the block are homogeneous.   In some situations, this assumption may not be true, 
particularly, when we want to test many treatments, say K > 10 or 12.    It is very difficult to get 
so many homogeneous experimental units / plots.   Hence, there is a necessity to further divide 
plots in each block.    Thus we have two types of blocks namely, Horizontal Blocks (Rows) and 
Vertical blocks (Columns).   Thus in Latin Square Design we apply the local control twice, once 
for rows and once for columns.   Thus in LSD, we eliminate the variation in experimental units is 
controlled in two perpendicular directions.    This type of situation will occur in Agricultural 
Experiments, it may happen that experimental area (field) exhibits fertility in strips say High 
fertility, medium fertility and Low fertility strips.   These strips may be Horizontal or Vertical.   In 
each Strip, plots are again vary with respect to some other character like type of cultivation or 
type of irrigation or water type like well water, bore water or rain water and so on.   In such 
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situations, we have to control the variation in two directions one Vertical and one Horizontal 
direction.    The design used in such situation is known as Latin Square Design (LSD). 
 
16.2. Layout, Advantages and disadvantages of LSD. 

Now we proceed to discuss some important concepts related to Latin Square Design  

(LSD) in this section.   First we concentrate on the Layout of the design as follows: 

16.2.1: Layout of the design: In this design, the number of treatments must be equal to 

Number of replications, so that we obtain a square of experimental units.   That is if we have K 
treatments, then we must have K replications under each treatment and hence, we must have 
KxK=K2 experimental units / plots which are arranged in the form a square having K‐rows and k‐
columns.   Then , these K treatments are to be arranged in such a manner that, each treatment 
should occur once and only once in each row and in each column.   This property of 
occurrence of each treatment once in each row and once in each column is known as “Latin 
Property”.   For example, consider the following design with treatments K = 5; say A,B,C,D and 
E.   The following is one layout of the design LSD. 

  Table (16.2.1) Example of Latin Square Design. 

A B C D E 

B C D E A 

C D E A B 

D E A B C 

E A B C D 

Important Note: It is important to note that in the above example, each treatment occurs once 
and only once in each row and in each column.   Simple rule to construct such design is that 
“Circular Rule”.   That is assume that the treatments are in the form of a Circle.   Then start with 
first letter A,B,C,D and E.   The next row starts with the second letter B,C,D,E and A.     Continue 
this procedure until last row.   The resultant design is called Latin Square Design.    We can also 
construct similar design with integers 1,2,3,4 and 5. 

    1 2 3 4 5 

    2 3 4 5 1 

   3 4 5 1 2 

   4 5 1 2 3 

   5 1 2 3 4    

 Thus we obtain a square design with Latin Property, that is occurrence of each 
treatment of symbol once and only once in each row and in each column.  Fisher and Yates 
have tabulated different Latin Square Designs up to size K = 12.    Such designs have the 
following important properties: 



 
 

Acharya Nagarjuna University                     16.3                       Centre for Distance Education 
 

 

16.2.2. Properties of Latin Square Design (LSD): 

1 .Interchanging of any rows does not affect the Latin property.    If we interchange any two 
rows, still occurrence of each treatment once in each row and in each column will not be 
affected.   For example, inter change first with fourth row in the above design, then we 
obtain the following design: 

4 5 1 2 3 

   2 3 4 5 1 

  3 4 5 1 2 

1 2 3 4 5 

  5 1 2 3 4  

   

In the resultant design also the Latin Property holds good.    The resultant design is also a  

Latin Square Design. 

1. Interchange of any two columns does not affect the Latin Property.   That we 
can interchange 3rd column with 5th column, the resultant design is also a Latin 
Square Design. 

2. Similarly interchange of any symbols for treatments will not affect the Latin 
property.   For example Instead of A or 1 substitute D or 4 and in the place of D 
or 4; substitute A or 1 in the above designs, still  we obtain a Latin Design. 

Thus the Latin Property, in the above designs play a vital role which ensures that 
interaction effects between the treatments are absent.    Thus we can estimate the 
treatment effects independently. 
Selecting a Random LSD:   First select an LSD as explained above of the given size K. 
Step – 1 : Randomly inter change rows. 
Step – 2: Randomly inter change columns in the design obtained in the Step – 1. 
Step – 3: Randomly inter change symbols for treatments in the design obtained in Step 
– 2. 

The design obtained after Step – 3 is the random LSD selected for implementation.   That is 
apply the treatments to the experimental units in the same order, as given in the random 
design selected after the Step – 3.   

16.2.3. Advantages of LSD: 
1. Since, local control is applied twice in LSD, or grouping is done twice in LSD, once for 

rows and once for columns, we have smaller experimental error or residual sum of 
squares in LSD than CRD or RBD. 

2. It can be observed that LSD is an incomplete 3‐way layout.   Its basic advantage when 
compared to 3‐way classification is that we require only m2 experimental in LSD than m3 
experimental units required for 3‐way classification.   Thus if K=4, for 3‐way 
classification, we require 4x4x4=64 experimental where as for LSD 4x4 = 16 
experimental units.   Thus 64 – 16 = 48 experimental units in LSD than in three way 
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classification.   Similarly, if K=5, we are saving 100 experimental units in LSD than 3‐way 
classification. 

3. The Statistical analysis is relatively simple when compared to Greco‐Latin Square design  
(GLSD) and slightly completed when compared to CRD or RBD. 

4. Missing plot or mixed up plot problems can easily be dealt in LDS as in RBD. 
5. More than one factor can be investigated In LSD than other designs like CRD or RBD. 
6. Error mean square or experimental is smallest when compared to CRD or RBD.   

Similarly, this design has smallest degrees of freedom when compared to CRD or RBD.  

16.2.4: Disadvantages of LSD: 

1. LSD basically assumes that there are no interaction effects between the factors  

considered, for the experiment.   This assumption may not be true in general, in many 
practical problems. 

2. Number of treatments are fixed in LSD.   We have to consider as many treatment as  

many number of rows and columns K.   We have no freedom to add or remove any rows  

or columns or treatments as we can do in CRD or RBD. 

3.The problem of several missing values, and its analysis is complicated and quite 
complex.  We can easily eliminate the corresponding column or row in CRD or RBD 
without disturbing other treatment effects.   This facility or easiness  in the analysis is 
not possible in LSD. 

4. The lay out of RBD or CRD is easier than LSD.   Randomization is restricted only to 
plots.   In CRD randomization is applied though out the experimental units and in RBD 
randomization is restricted to each block.   Where is randomization in LSD is restricted 
to each plot, because, each treatment must occur once and only once in each row and 
in each column, because of Latin property. 
 

16.3. Mathematical model and Assumptions of LSD 
Let yijk represent the yield or response of the plot or unit in ith row, belonging to jth  

column receiving kth treatment. i,j,k =1,2,.,.,m.    The randomly selected scheme of LSD is 
applied and the data is obtained in the mxm matrix form as randomly selected LSD.    

Then the mathematical of the observation yijk is given as follows: 

yijk =  μ +αi +βj +τk  + εijk ; i,j,k = 1,2,.,.,.,m.       (16.3.1) 

where: μ = General mean effect, 

αi = ith row mean effect, 

βj = jth column mean effect, 

τk  = kth treatment mean effect and  

εijk = Random effects on (I,j,k) plot. 
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16.3.1. Assumptions of LSD: 

1. The triplet (I,j,k) assumes only m2 values of the possible m3 values of the randomly 
selected Latin Square design. 

2. In LSD we assume that there is no interaction effect between different factors under  
consideration.  

3. That is we assume that factors considered are independent of each other. 
4. Random errors εijk’s are independent and identically distributed. 
5. Random errors εijk are distributed Normal with mean zero variance σ2ε. 
6. It is assumed that m treatments are arranged in m2 plots arranged in m rows and m 

columns. 
 

16.4. Statistical Analysis of LSD – with one observation per cell. 
 

First frame various null hypotheses for LSD as follows: 

A – For Treatments: H01 : τ1 = τ2 = .,.,.,= τm = 0 or All the treatments are equally effective. 

B – For Rows: H02 : α1 = α2 = .,.,.,= αm = 0 or all the rows are equally effective. 

C – For Columns: H03 : β1 = β2 =β3 ……..=βm = 0 or all the columns are equally effective. 

The short cut step wise procedure adopted in many practical problems in analyzing LSD 
with one observation per experimental unit is explained as follows:   

First construct the table of treatment effects treatment wise and get their totals Ti , Row 
totals Ri and Column totals Cj  from the given data.                              

Step – 1:  Calculate the Grand total G = ∑  =  ∑  = ∑ . 

Step – 2: Calculate the Correction Factor= CF= G2/N, where N =m2 . 

Step – 3: Calculate the treatment Sum of squares = SST= ∑ 2 /m – CF = A. 

Step – 4: Calculate the Rows Sum of Squares = RSS = ∑ 2 / m – CF = B. 

Step – 5: Calculate the Columns Sum of Squares = CSS = ∑ 2 / m – CF = C. 

Step – 6: Calculate Total sum of square =TSS=∑  ∑ j)2 – CF = D. 

Step – 7: Construct the following ANOVA table for LSD with one observation per cell. 

Table (16.4.1): ANOVA table of LSD with one observation per cell. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments  

Rows 

Columns 

m – 1 

m‐1 

m– 1 

St
2 = SST=A

Sr
2 = RSS=B 

Sc
2=CSS=C 

V1 = St
2/m– 1

V2 = Sr
2/m‐1 

V3 = Sc2/m‐1 

FT = V1 / V4

FR = V2/ V4 

FC = V3 / V4 
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Error  (m‐1)(m‐2) SE
2 = ESS 

=D‐ C‐B‐A =E 

V4 = SE
2 /(m‐1)(m‐2)  

Total N – 1 ST
2 = TSS=D   

 

Step – 8: Conclusions: 

A – For treatments: 

(1)If the calculated value FT is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐2)] dof, we 
accept the null hypothesis for treatments H01 : τ1 = τ2 = .,.,.,= τm = 0 and conclude that there is 
no significant effect of treatment means.   In this case we need not apply Further Statistical 
Analysis because all the treatments are equally effective. 

(2)If the calculated value FT is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐2)] dof, we reject 
the null hypothesis  for treatments H01 : τ1 = τ2 = .,.,.,= τm = 0 and conclude that there is 
significant difference in the effect of treatment means.   In this case we required, applying 
Further Statistical Analysis explained in section (9.4), to sub‐group the treatment effects or to 
determine which treatment has maximum effect?  Or which treatment has minimum effect? 
And so on.   

B‐ For Rows: 

(1)If the calculated value FR is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐2)] dof, we 
accept the null hypothesis for rows H02 : α1 = α2 = .,.,.,= αm = 0 and conclude that there is no 
significant effect of row means.   In this case we need not apply Further Statistical Analysis 
because all the rows are uniform with respect to the yield.   This means that rows effect is 
negligible. 

(2)If the calculated value FR is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐2)] dof, we reject 
the null hypothesis  for rows H02 : α1 = α2 = .,.,.,= αm = 0 and conclude that there is significant 
difference in the effect of row means.   In this case we required, applying Further Statistical 
Analysis explained in section (9.4), to sub‐group the rows or to determine which row has 
maximum fertility rate? Which row has minimum fertility rate? Which rows have similar fertility 
rates? And so on. 

C. For Columns: 

(1)If the calculated value FC is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐2)] dof, we 
accept the null hypothesis for columns H03 : β1 = β2 =β3 ……..=βm = 0 and conclude that there is 
no significant effect of column means.   In this case we need not apply Further Statistical 
Analysis because all the rows are uniform with respect to the yield.   This means that columns 
effect is negligible. 

(2)If the calculated value FC is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐2)] dof, we reject 
the null hypothesis  for columns H03 : β1 = β2 =β3 ……..=βm = 0 and conclude that there is 
significant difference in the effect of column means.   In this case we required, applying Further 
Statistical Analysis explained in section (9.4), to sub‐group the rows or to determine which 
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column has maximum fertility rate? Which column has minimum fertility rate? Which columns 
have similar fertility rates? And so on. 

 The above explained procedure is explained with an example as follows: 

Example (16.4.1): The following data represent LSD with 4 treatments.   Analyze the data and if  

necessary apply further statistical analysis, where ever it is required.   Data is measured in Kgs. 

C : 16.4 A : 10.2 D : 21.2 B : 19.1 

D : 29.1 B : 18.9  C : 29.4 A : 5.7 

B : 24.9 C :  41.7 A : 9.5 D : 28.9 

A :   5.4 D : 38.8 B : 24.0 C : 37.0 

Solution: In the given problem m =4 and N = 16. Then frame the null hypothesis as follows: 

A – For Treatments: H01 : τ1 = τ2 = .,.,.,= τm = 0 or All the treatments are equally effective. 

B – For Rows: H02 : α1 = α2 = .,.,.,= αm = 0 or all the rows are equally effective. 

C – For Columns: H03 : β1 = β2 =β3 ……..= βm = 0 or all the columns are equally effective. 

Now calculate treatment totals, row totals , column totals and Grand total as follows. 

                   Column – 1        Column ‐ 2      Column ‐ 3     Column – 4  Row totals(Ri) 

Row – 1 C : 16.4 A : 10.2 D : 21.2 B : 19.1 66.9 

Row – 2 D : 29.1 B : 18.9  C : 29.4 A : 5.7 83.1  

Row – 3 B : 24.9 C :  41.7 A : 9.5 D : 28.9 105.0

Row – 4 A :   5.4 D : 38.8 B : 24.0 C : 37.0 105.2

Column Totals(Cj) 75.8 109.6 84.1 90.7 360.2=G 

 

Now Calculate treatment totals as follows: 

     Treatment totals (Tk) 

A: 5.4 10.2 9.5 5.7    30.8 

B: 24.9 18.9 24.0 19.1   86.9 

C: 16.4 41.7 29.4 37.0 124.5 

D:  29.1 38.8 21.2 28.9 118.0 

             G=360.2. 

Now calculate various sum of squares as follows: 

Step – 1: CF = G2/N = (360.2)2/16 = 8109.0025 

Step – 2: SST = (1/4)[(30.8)2 + (86.9)2 + (124.5)2 + (118.0)2 ] – CF = 37924.50/4 – 8109.0025 
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 = 1372.1225=A 

Step – 3: RSS = (1/4)[(66.9)2+(83.1)2+(105.0)2+(105.2)2] – CF = 33473.26/4 – 8109.0025 

 = 259.3125 = B. 

Step – 4: CSS = (1/4)[(75.8)2+(109.6)2+(84.1)2+(90.7)2] – CF = 33057.10/4 – 8109.0025 

 = 155.2725 = C. 

Step – 5: TSS = [(16.4)2 +.,.,.,.,+(37.0)2] – CF = 10052.08 – 8109.0025 = 1943.0775 = D. 

Step – 6: Construct the ANOVA table for LSD as follows:  

 Table (16.4.2): ANOVA table of LSD. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments  

 

Rows 

 

Columns 

m – 1=3 

 

m‐1=3 

 

m– 1=3 

St
2 = SST=A

=1372.1225 

Sr
2 = RSS=B 

=259.3125 

Sc
2=CSS=C 

=155.2725 

V1 = St
2/m– 1

=457.3742 

V2 = Sr
2/m‐1 

=86.4375 

V3 = Sc2/m‐1 

=51.7575 

FT = V1 / V4

=17.5496 

FR = V2/ V4 

=3.31664 

FC = V3 / V4 

=1.98596 

Error  (m‐1)(m‐2)=6 SE
2 = ESS 

=D‐ C‐B‐A =E 

=156.3700 

V4 = SE
2 /(m‐1)(m‐2) 

=26.0617 

 

Total N – 1=15 ST
2 = TSS=D 

=1943.0775 

  

Step – 7: Conclusions: 

A: For treatments: Since calculated value of FT is greater than Ftab at 5% los at (3,6) dof is 4.76 
and hence we reject H01 at 5% los and conclude that the treatments A,B,C and D differs 
significantly from each other.   Hence, we have to apply further Statistical analysis to sub‐group 
the treatments. 

B:   For rows: Since calculated value of  FR is less than Ftab at 5% los at (3,6) dof, that is 4.76, we 
accept the null hypothesis H02.   Hence, we conclude that there is no significant variation in the 
rows considered.   Since we have accepted the null hypothesis for rows, we need not apply  

further statistical analysis for rows. 

C: For columns: Since calculated value of  FC is less than Ftab at 5% los at (3,6) dof, that is 4.76, 
we accept the null hypothesis H03.   Hence, we conclude that there is no significant variation in 



 
 

Acharya Nagarjuna University                     16.9                       Centre for Distance Education 
 

 

the columns considered.   Since we have accepted the null hypothesis for columns, we need not 
apply further statistical analysis for columns. 

 

Further Statistical Analysis for treatments: 

 Since, we have rejected for treatments, there is a need to apply further statistical 
analysis to sub‐group the treatments, which is done as follows: 

S.E. of difference between any two treatment means = SE √(2/m) = 2 26.0616 /4 = 3.609. 

Now treatment means are calculated as follows: 

For treatment – A: 30.8/4 = 7.70 = A  

For treatment – B: 86.9/4 =  21.725 = B 

For treatment – C: 124.5/4 = 31.125 = C 

For treatment – D: 118.0/4 = 29.5 = D 

Grouping is done using the following difference table: 

Difference between treatments Value   Significant or not. 

1. | A – B| = | 7.70 – 21.725| =  14.025>3.609  Significant difference. 
2. | A – C| = |  7.70 – 31.125|  = 23.425 > 3.609 Significant difference.  
3. | A – D| = |7.70 – 29.5 | =   21.8 > 3.609  Significant difference. 
4. | B – C| = |21.725 – 31.125| = 9.4  >  3.609  Significant difference. 
5. | B – D|= |21.725 – 29.5| = 7.775 > 3.609  Significant difference. 
6. | C – D|= | 31.125 ‐ 29.5| = 1.625 < 3.609  No significant difference. 

 

Treatment – C has maximum yield and treatment – A is having least yield. Treatments C and D  

forms one group.   Treatments A and B forms different groups.   Thus we have to form three  

groups for treatments, namely Group – 1:  Treatment – A. Group – 2: Treatment – B and 
Group – 3: Treatments C and D. 

16.5.     Important Concepts of LSD 

 Now we proceed to discuss some important concepts of LSD like (1) Estimating missing 
value(s) and (2) Comparing the efficiency of LSD with RBD and CRD. 

16.5.1:  Estimation of missing value in LSD: 

 Let the value yijk = Y is missing value in ith row, jth column under kth treatment, missed 
due to some natural calamity or un‐avoidable circumstances like floods or fire accidents.   
Unless otherwise, we estimate the missing value, we cannot carry out the analysis of LSD.   The 
method of estimation of missing value in LSD of size m is explained as follows: 

Let R = Total of all observations in the row the missing value Y belongs. 



 
 

Design of Experiments                                 16.10                                Latin Square Design(LSD)   
 

 

Similarly, C = Total of all observations in the column in which the missing value Y belongs. 

T =  Total of all known observations under the treatment in which missing value Y belongs. 

G’ = Grand total of all known observations.   Then we have various sum of squares as follows: 

TSS = Y2 + Constant terms w.r.t. Y – (G’ + Y)2/m2. 

RSS = (R+Y)2/m + Constant terms w.r.t Y ‐ (G’ + Y)2/m2. 

CSS = (C+Y)2/m + Constant terms w.r.t Y ‐ (G’ + Y)2/m2. 

SST = (T+Y)2/m + Constant terms w.r.t Y ‐ (G’ + Y)2/m2. 

Then Experimental error = E = TSS – RSS –CSS – SST.   Thus we have: 

E = Y2  ‐ (1/m) [(R+Y)2 + (C+Y)2 + (T+Y)2] + 2(G’ + Y)2/m2.    (16.5.1) 

Differentiating E in equation (16.5.1) w.r.t. Y and equating to zero we have: 

E/ Y =0= 2Y – 2/m[R+C+T + 3Y] – 4(G’ + Y)/m2 => (m2‐3m +2) Y = m(R+C+T) – 2G’  

 => Y = [m(R+C+T) – 2G’]/ (m‐1)(m‐2).      (16.5.2) 

By using equation (16.5.2) we can estimate the value of Y denoted by .  

Statistical Analysis of LSD with one missing Value:  After substituting the estimated value  , in 
the place of Y we can carry out the analysis of LSD as usual except the difference that total 
degrees of freedom is to be reduced by 1 because we have estimated one missing value.   The 
Adjustment Factor (AF) for treatment sum of squares is that: 

AF = [(m‐1)T+R+C – G’]2 / [(m‐1) (m‐2)]2.      (16.5.3) 

The Adjustment Factor is to be subtracted from treatment sum of squares (SST) to get Adjusted 
treatment sum of squares. 

 When further statistical analysis is required, we know that the S.E. of difference 
between two treatments is SE√  (2/m), if no observation is missing.   If the treatment involves 
missing observation then S.E. of such treatment difference is given by: 

SE {(2/m) + [1/ (m‐1)(m‐2)]}1/2         (16.5.4) 

Same procedure may be followed when we miss more than two, say ‘M’ missing values 
by differentiating E, m times we obtain M simultaneous equations.   Solving these M 
simultaneous equations, we can estimate M missing values.   After substituting these M 
estimated values in the data, analysis of LSD can be carried out as usual except the difference 
that total degrees of freedom is to be reduced by number of missing values estimated, namely 
M.   That is degrees of freedom for total will become (m2‐M‐1).   Here M represent number of 
missing values. 

Example (16.5.1): Estimate the missing value in the following LSD. 

B: 405 A : 525 E : 463 D : 441 C : 481 

A : 552 C : 431 D : 425 E : 572 B : 451 
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E : 471 B : 492 A : 472 C : 381 D : 410 

D : 430 E : 469 C : 432 B : ‐‐‐‐‐ A : 460 

C : 325 D : 445 B : 429 A : 513 E : 493 

Solution: Let the missing value is denoted by Y.   Now calculate the totals of known 
observations of each row, column and treatment as follows: 

B: 405 A : 525 E : 463 D : 441 C : 481 2315 

A : 552 C : 431 D : 425 E : 572 B : 451 2431 

E : 471 B : 492 A : 472 C : 381 D : 410 2226 

D : 430 E : 469 C : 432 B : Y A : 460 1791+Y 

C : 325 D : 445 B : 429 A : 513 E : 493 2205 

2183 2362 2221 1907 +Y 2295 10968+Y 

Treatment Totals: 

A:  552 525 472 513 460  2522 

B: 405 492 429 Y 451 1777+Y 

C: 325 431 432 381 481 2050 

D: 430 445 425 441 410 2151 

E: 471 469 463 572 493 2468 

From the above calculations we have R = 1791; C= 1907; T = 1777 m = 5; M = 1 and G’ = 10968.   

Using the formula (16.5.2), we have: 

Y = [m(R+C+T) – 2G’]/ (m‐1)(m‐2) = [5(1791+1907+1777) – 2(10968)]/4(3) 

 = (27375 – 21936)/12 = 5439/12 = 453.25.  

The estimated missing value  is 453.25.   Substitute this estimated value in the place of Y and 
carryout the analysis of LSD by reducing 1 dof from the total degrees of freedom.   Thus we 
have total degrees of freedom is 23 and error degrees of freedom will become 11. 
Now we proceed to explain the procedure to calculate the efficiency of LSD with RBD and CRD 
as follows. 
16.5. Efficiency of LSD 

In section 15.5.1, we have discussed the method of comparing two designs using  
Uniformity Trials and compared the efficiency of RBD with CRD.   On similar lines, we discuss  
the method of comparing LSD with RBD and CRD.   When we want to compare LSD with RBD, 
we have two cases (i) When rows are considered as blocks and (ii) When columns are 
considered as blocks.   Now we discuss above two cases as follows: 
Case – 1: Relative efficiency of LSD over RBD when rows as considered as blocks: 

 Proceeding on similar lines in section (15.5.1), we finally get the formula for obtaining 
relative efficiency of LSD with RBD when columns are considered as blocks is: 
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RE = [V3
 + (m – 1) V4] / m(V4)       (16.5.1) 

Where, V3 and V4 are the values obtained in the ANOVA table of LSD given in table  (16.4.1).   
Example (16.5.1): Applying the formula (16.5.1) for the example (16.4.1), we have: 

SE = [51.7575 + 3(26.0616)]/4(26.0616) = 1.2465. 

 Expressed SE in terms of percentage we have app. 125%.   That is the efficiency of LSD is 
125 and the efficiency of RBD is 100%.   Thus a gain of 25% of the reduction of error is attained 
by conducting LSD instead of RBD with rows as blocks. 

Case – 2: Relative efficiency of LSD over RBD when columns are considered as blocks: 

Proceeding on similar lines in section (15.5.1), we finally get the formula for obtaining relative 
efficiency of LSD with RBD when columns are considered as blocks is: 

RE = [V2
 + (m – 1) V4] / m(V4)       (16.5.2) 

Where, V2 and V4 are the values obtained in the ANOVA table of LSD given in table  (16.4.1).   
Example (16.5.2): Applying the formula (16.5.2) for the example (16.4.1), we have: 

SE = [86.4375+ 3(26.0616)]/4(26.0616) = 1.5792. 

 Expressed SE in terms of percentage we have app. 158%.   That is the efficiency of LSD is 
158 and the efficiency of RBD is 100%.   Thus a gain of 58% of the reduction of error is attained  

by considering LSD than RBD with columns as blocks. 

Now we proceed to discuss the relative efficiency of LSD with CRD in the following sub‐section: 

16.5.1: Relative efficiency of LSD over CRD: 

Proceeding on similar lines in section (15.5.1), we finally get the formula for obtaining relative 
efficiency of LSD with CRD  is: 

RE = [V2
 + V3 +  (m – 1) V4] / m(V4)      (16.5.3) 

Where, V2, V3 and V4 are the values obtained in the ANOVA table of LSD given in table  (16.4.1).   
Example (16.5.3): Applying the formula (16.5.3) for the example (16.4.1), we have: 

SE = [86.4375+51.7575 + 3(26.0616)]/4(26.0616) = 1.6605. 

 Expressed SE in terms of percentage we have app. 166%.   That is the efficiency of LSD is 
166 and the efficiency of CRD is 100%.   Thus a gain of 66% of the reduction of error is attained 
by considering LSD instead of CRD. 

16.6. Summary 
In this lesson, we have introduced the Latin Square design (LSD), where we apply the 

principle of local control twice, once for rows and once for columns.   In this design, each 
treatment occurs once and only once in each row and in each column.   This is an important 
property in LSD which is known as “Latin Property”.   With this property,  we ensure that 
interaction effects will be absent and we can estimate the treatment effects independently.   
Properties of LSD, assumptions, and the analysis of LSD is discussed.   We have also discussed 
the procedure and the analysis of missing plots technique and compared the relative efficiency 
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of LSD with RBD and CRD.  It is interesting to note that in LSD mean square error is reduced 
when compared to RBD or CRD.  We have also discussed that a gain of 66% can be obtained in 
LSD when compared to CRD.   

 
16.7. Self Assessment Questions 

1. Define the Latin property and discuss its properties. 
2. Define the method of construction of LSD with an example. 
3. Discuss various assumptions and applications of LSD. 
4. Discuss the mathematical model of LSD along with its assumptions. 
5. Explain the statistical analysis of LSD. 
6. Explain the method of estimation of missing observation and its analysis. 
7. Explain the method of comparing relative efficiency of LSD with RBD and CRD. 
8. Write down the ANOVA table of LSD with 2 missing observations. 
9. Analyze the following data suitably to test the effect of 5 varieties of seeds of a crop.    

The yield of the crop is measured in tons. 
 
E : 3.14 A : 3.08 D : 3.23 B : 3.09 C: 3.03 

B : 3.12 E : 3.03 C : 3.25 A : 3.07 D: 3.02 

A : 3.16 D : 3.06 E : 3.10 C : 3.04 B : 2.94 

C : 3.10 B : 3.12 A : 3.20 D : 3.06 E : 3.00 

D : 3.09  C : 3.10 B : 3.24 E : 3.00 A : 3.05 

  Also calculate the efficiency of this design w.r.t. RBD and CRD. 

10. Estimate the missing value in the following data. 
C : ‐‐‐‐‐‐ B : 12 A : 20 D : 16 E : 10 

E : 08 C :  18 B : 12 A : 15 D : 12 

D : 09 A : 07 C : 16 E : 14 B : 24 

B : 16 E : 13 D : 11 C:  22 A : 17 

A : 23 D : 14 E :  18 B :  09 C : 22 

 

16.8. Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

     Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 17. 

Graeco‐Latin Square Design (GLSD) 
17.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the concept of orthogonal Latin Squares. 
• Definition of Graeco‐Latin Square Design (GLSD) 
•  Assumptions, applications advantages and dis‐advantages of GLSD . 
• Layout of GLSD. 
•  Statistical Analysis of GLSD. 
• Mutually Orthogonal Latin Square Designs. 

 

Structure 

17.1.  Introduction to Orthogonal Latin Square Designs 

17.2.  Introduction of Graeco‐Latin Square Design (GLSD) 

17.3.  Mathematical model and assumptions of GLSD 

17.4. Statistical Analysis of GLSD 

17.5.     Mutually Orthogonal Latin Square Designs 

17.6. Summary 

17.7. Self Assessment Questions 

17.8. Further Readings 

17.1.  Introduction to Orthogonal Latin Square Designs 

 In the last lesson, we have discussed Latin Square Designs (LSD).   Now we proceed to 
discuss some advanced properties of LSD.   That is the concept of “Orthogonality” and its 
applications in the construction of LSD’s.   The concept of Orthogonality is related to the effect 
of treatment‐A in the presence of another treatment‐B.   If treatments A and B are independent 
effects, we can estimate their effects easily, because they are independent.   Otherwise, we 
have to consider combined effect or interaction effect between both the treatments A and B. 

Such type of interaction effects are studied through “Factorial Designs” which are discussed in 
the next unit.   At present we assume that the treatments have independent effects. These 
effects are known as “Main Effects”.  These effects can be estimated independently, if the 
treatments are orthogonal to each other.   The concept of Orthogonality is defined as follows: 

17.1.1: Definition of Orthogonality: 

 Two sets of numbers {ai} and {bi} i=1,2,.,.,n are said to be orthogonal is if the sum of 
their products is zero.   That ∑  = 0.   For example, consider ai ‐2,1,1 and bi =0,‐1,1.   
Since ∑  = ‐2x0 + 1x‐1 + 1x1 = 0.   Hence {ai} and {bi} are orthogonal to each other. 
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 Generally the concept of Orthogonality is useful for “Preplanned Comparisons”.   That is 
the treatments are specified prior to running of the experiment and obtaining the experimental 
results or data.   This is because of the fact that the experimenter wants to estimate the effects 
of treatments independently, without depending on other effects.   Orthogonality ensures the 
independent estimation of treatment’s effects. Hence, we can estimate interaction effects or 
main effects of the treatment effects independently from the experimental data. 

 On similar lines, we can extend the property of Orthogonality for two experimental 
designs as follows:  

Orthogonal LSDs:  Consider two Latin Square Designs, namely, LSD‐1 and LSD‐2 of same size say 
KxK.  Two LSD are said to be orthogonal to each other if “ we super impose LSD‐1 on LSD‐2, 
each treatment combination must appear once and only once in the super imposed design”.    

For example consider the following two LSDs of size K = 4. 

LSD – 1 :  2 1 4  3  and  LSD – 2: D C B A  

     1 2 3 4     A B C D 

     3  4 1 2     B A D C 

     4 3 2 1     C D A B 

If we super impose LSD – 1 over LSD – 2 we have the following design: 

LSD – 1 X LSD – 2 =  2D 1C 4B 3A 

   1A 2B 3C 4D 

   3B 4A 1D 2C 

   4C 3D 2A 1B 

In the resultant design, each treat pair occur once and only once in the entire design. For 
example, 2B occurred once and only once in the entire design.  Then, we say that both LSDs are 
orthogonal to each other. With this, we can estimate two sets of treatment effects represented 
by numbers and alphabets can be estimated independently from the experimental data. 

Now we proceed to explain Graeco Latin Square Design (GLSD) in the following section. 

17.2.  Introduction of Graeco‐Latin Square Design (GLSD). 

 Now we proceed to introduce some concepts of Graeco Latin square Design (GLISD).  

Definition of GLSD: In GLSD, we use two letters namely Latin letters A,B,C,D.,. and Greek 
letters α,β,Υ,δ,.,., to represent two sets of treatments and the layout of the design done such 
the selected design has orthogonal property.    The resultant design is called Graeco Latin 
square Design (GLSD). 

For example the GLSD of size 4 is given by: 

Example of GLSD:  β D α C δB Υ A 

   α A βB Υ C δD 
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   Υ B δ A α D β C 

   δ C ΥD β A α B.  

Above design allows investigation of four factors, namely Rows, Columns, Latin letters and 
Greek letters and requires only 4x4=16 experimental units.   Such type of designs we can 
construct for all values of k > 2 except for k = 6.   

Advantages of GLSD: 

 (1) We can apply local control three times and hence we can reduce the experimental error 
much smaller than LSD. 

(2) We can test double the number of treatments that is 2K treatments in GLISD when 
compared to LSD. 

(3) We require same number of experimental units in GLISD  that is KxK experimental units as 
we require in LSD.   Thus we can reduce the number of experimental units required to conduct  

the experiment for testing 2K treatments. 

(4) GLISD reduces experimental units when compared to four way analysis.   We use only 4x4 = 
16 experimental units in GLISD than 4x4x4x4 = 256 units required for four way analysis.  

(5) Experimental error or Error Variance is least in GLISD when compared to all the previously 
introduced designs, namely LSD, RBD and CRD. 

 Now we proceed to explain the mathematical model of GLISD in the following section. 

17.3.  Mathematical model and assumptions of GLSD. 

Let yijkl represent the yield or response of the plot or unit in ith row, belonging to jth  

column receiving kth Latin  letter treatment and lth Greek letter treatment. i,j,k,l =1,2,.,.,m.    The 
randomly selected scheme of GLSD is applied and the data is obtained in the mxm matrix form 
as randomly selected LSD.    

Then the mathematical of the observation yijk is given as follows: 

yijkl =  μ +αi +βj +τk + Υl  + εijkl ; i,j,k,l = 1,2,.,.,.,m.       (17.3.1) 

where: μ = General mean effect, 

αi = ith row mean effect, 

βj = jth column mean effect, 

τk  = kth Latin letter treatment mean effect 

Υl  = lth Greek letter treatment mean effect and  

εijkl = Random effects on (I,j,k,l) plot. 

17.3.1. Assumptions of GLSD: 

1. The sequence (I,j,k,l) assumes only m2 values of the possible m4 values of the randomly 
selected Graeco‐Latin Square design. 
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2. In GLSD we assume that there is no interaction effect between different factors under  
consideration.  

3. That is we assume that factors considered are independent of each other. 
4. Random errors εijkl’s are independent and identically distributed. 
5. Random errors εijkl are distributed Normal with mean zero variance σ2ε. 
6. It is assumed that 2m treatments are arranged in m2 plots arranged in m rows and m 

columns. 
17.4. Statistical Analysis of GLSD 

 First frame various null hypotheses for GLSD as follows: 

A – For Latin letter Treatments: H01 : τ1 = τ2 = .,.,.,= τm = 0 or All the  Latin letter treatments are 
equally effective. 

B – For Greek letter Treatments: H02 : Υ1 = Υ2 = .,.,=Υm 0 or All the Greek letter treatments are 
equally effective. 

C – For Rows: H03 : α1 = α2 = .,.,.,= αm = 0 or all the rows are equally effective. 

D – For Columns: H04 : β1 = β2 =β3 ……..=βm = 0 or all the columns are equally effective. 

The short cut step wise procedure adopted in many practical problems in analyzing LSD 
with one observation per experimental unit is explained as follows:   

First construct the table of treatment effects treatment wise both Latin letters and  

Greek letters  and get their totals LTi , GTl, Row totals Ri and Column totals Cj  from the given 
data.                              

Step – 1:  Calculate the Grand total G = ∑  =  ∑  = ∑ . 

Step – 2: Calculate the Correction Factor= CF= G2/N, where N =m2 . 

Step – 3: Calculate the Latin letter treatment Sum of squares = SSLT= ∑ 2 /m – CF = A. 

Step – 4: Calculate the Greek letter treatments sum of Squares = SSGT= ∑ 2 /m – CF = B. 

Step – 5: Calculate the Rows Sum of Squares = RSS = ∑ 2 / m – CF = C. 

Step – 6: Calculate the Columns Sum of Squares = CSS = ∑ 2 / m – CF = D. 

Step – 7: Calculate Total sum of square =TSS=∑  ∑ j)2 – CF = E. 

Step – 9: Construct the following ANOVA table for GLSD with one observation per cell. 

Table (17.4.1): ANOVA table of GLSD. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments(Latin) 

Treatments(Greek)  

m –1 

m‐1 

S Lt
2 = SSLT=A 

S Gt
2 = SSLT=B 

V1 = SLt
2/m– 1 

V2 = SGt
2/m‐1 

F LT = V1 / V5 

FGT = V2 / V5 
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Rows 

Columns 

m‐1 

m–1 

Sr
2 = RSS=C 

Sc
2=CSS=D 

V3 = Sr
2/m‐1 

V4 = Sc2/m‐1 

FR = V3/ V5 

FC = V4 / V5 

Error  (m‐1)(m‐3) SE
2 = ESS 

=E‐D‐ C‐B‐A =F 

V5 = SE
2 /(m‐1)(m‐3)  

Total N – 1 ST
2 = TSS=E   

 

Step – 9: Conclusions: 

A – For Latin letter treatments: 

(1)If the calculated value F LT is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐3)] dof, 
we accept the null hypothesis for treatments H01 : τ1 = τ2 = .,.,.,= τm = 0 and conclude that there 
is no significant effect of Latin letter treatment means.   In this case we need not apply Further  

Statistical Analysis because all the Latin letter treatments are equally effective. 

(2)If the calculated value F LT is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐3)] dof, we reject 
the null hypothesis  for Latin letter treatments H01 : τ1 = τ2 = .,.,.,= τm = 0 and conclude that 
there is significant difference in the effect of Latin letter treatment means.   In this case we 
required, applying Further Statistical Analysis explained in section (9.4), to sub‐group the Latin 
letter treatment effects or to determine which Latin letter treatment has maximum effect?  Or 
which Latin letter treatment has minimum effect? And so on.   

B – For Greek letter treatments: 

(1)If the calculated value F GT is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐3)] dof, 
we accept the null hypothesis for Greek letter treatments H02 : Υ1 = Υ2 = .,.,.,= Υm = 0 and 
conclude that there is no significant effect of Greek letter treatment means.   In this case we 
need not apply Further Statistical Analysis because all the Greek letter treatments are equally 
effective. 

(2)If the calculated value F GT is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐3)] dof, we reject 
the null hypothesis  for Greek letter treatments H02 : Υ1 = Υ2 = .,.,.,= Υm = 0 and conclude that 
there is significant difference in the effect of Greek letter treatment means.   In this case we 
required, applying Further Statistical Analysis explained in section (9.4), to sub‐group the Greek 
letter treatment effects or to determine which Greek letter treatment has maximum effect?  Or 
which Greek letter treatment has minimum effect? And so on.   

C‐ For Rows: 

(1)If the calculated value FR is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐2)] dof, we  

accept the null hypothesis for rows H03 : α1 = α2 = .,.,.,= αm = 0 and conclude that there is no  

significant effect of row means.   In this case we need not apply Further Statistical Analysis 
because all the rows are uniform with respect to the yield.   This means that rows effect is 
negligible. 



 
 

Design of Experiments                                 17.6            Graeco  - Latin Square Design(GLSD)   
 

 

(2)If the calculated value FR is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐2)] dof, we reject 
the null hypothesis  for rows H03 : α1 = α2 = .,.,.,= αm = 0 and conclude that there is significant 
difference in the effect of row means.   In this case we required, applying Further Statistical 
Analysis explained in section (9.4), to sub‐group the rows or to determine which row has 
maximum fertility rate? Which row has minimum fertility rate? Which rows have similar fertility 
rates? And so on. 

D. For Columns: 

(1)If the calculated value FC is less than or equal to  Ftab at α% los,for [(m‐1),(m‐1)(m ‐2)] dof, we 
accept the null hypothesis for columns H04 : β1 = β2 =β3 ……..=βm = 0 and conclude that there is 
no significant effect of column means.   In this case we need not apply Further Statistical 
Analysis because all the colums are uniform with respect to the yield.   This means that columns 
effect is negligible. 

(2)If the calculated value FC is greater than Ftab at α% los, for [(m‐1),(m‐1)(m‐2)] dof, we reject 
the null hypothesis  for columns H04 : β1 = β2 =β3 ……..=βm = 0 and conclude that there is 
significant difference in the effect of column means.   In this case we required, applying Further 
Statistical Analysis explained in section (9.4), to sub‐group the rows or to determine which 
column has maximum fertility rate? Which column has minimum fertility rate? Which columns  

have similar fertility rates? And so on. 

 Now we proceed to explain the analysis of GLSD with an example. 

Example (17.4.1): The following data represents yield of a crop measured in tons from plots of 
same size arranged in 5 rows and 5 columns.    Latin letter treatments  A,B,C,D and E Represent 
Varieties of seeds and Greek letter treatments α,β,Υ,δ and � represents five fertilizers used in 
the experiment.   Analyze the data and draw your conclusions. 

C Υ : 11 D ε: 31  E β:19 Aδ: 20 B α:14 

E ε:21 A β:23  Bδ:13 C α:22 D Υ:24 

Dδ:19 E α:24 A Υ: 19  B ε:16 C β:15 

A α:17 B Υ:13 C ε:12 D β:17 Eδ :17  

B β:10 Cδ :17 D α :23 E Υ:20 A ε:29 

Solution: Step‐1:  Frame null hypotheses as follows: 

A – For Latin letter Treatments: H01 : τ1 = τ2 = .,.,.,= τm = 0 or All the  Latin letter treatments 
varieties of seeds are equally effective w.r.t mean yields. 

B – For Greek letter Treatments: H02 : Υ1 = Υ2 = .,.,=Υm 0 or All the Greek letter treatments or 
Fertilizers are equally effective w.r.t mean yields. 

C – For Rows: H03 : α1 = α2 = .,.,.,= αm = 0 or all the rows are equally effective w.r.t mean 
yields. 

D – For Columns: H04 : β1 = β2 =β3 ……..=βm = 0 or all the columns are equally effective w.r.t 
mean yields. 
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Step – 2: Calculate various totals as follows: 

C Υ : 11 D ε: 31  E β:19 Aδ: 20 B α:14 R1=95 

E ε:21 A β:23  Bδ:13 C α:22 D Υ:24 R2=103 

Dδ:19 E α:24 A Υ: 19  B ε:16 C β:15 R3=93 

A α:17 B Υ:13 C ε:12 D β:17 Eδ :17  R4=76 

B β:10 Cδ :17 D α :23 E Υ:20 A ε:29 R5=99 

C1=78 C2=108 C3=86 C4=95 C5=99 G=466

Latin letter treatments:     Greek letter treatments: 

A:20+23+19+17+29=108.    α:14+22+24+17+23=100.  
  

B:14+13+16+13+10=66.    β:19+23+15+17+10=84. 

C:11+22+15+12+17=77.    Υ:11+24+19+13+20=87 

D:31+24+19+17+23=114.    δ:20+13+19+17+17=86 

E:19+21+24+17+20=101.    ε:31+21+16+12+29=109 

Now we proceed to calculate various squares as follows:  

C Υ : 121 D ε: 961  E β:361 Aδ: 400 B α:196 2039 

E ε:441 A β:529  Bδ:169 C α:484 D Υ:576 2199 

Dδ:361 E α:576 A Υ: 361 B ε:256 C β:225 1779 

A α:289 B Υ:169 C ε:144 D β:289 Eδ :289 1180 

B β:100 Cδ :289 D α :539 E Υ:400 A ε:841 2169 

1312 2524 1574 1829 2127 9366 

 

Step – 3: Now calculate CF and various SS as follows: 

CF = (466)2/25 = 8686.24. 

SLT
2 SSLT=[(108)2 + (66)2+(77)2+(114)2+ (101)2]/5 – 8686.24  

= [11664+4356+5929+12996+10201]/5 – 8686.24 =9029.2‐8686.24=342.96=A 

SGT
2 = SSGT = [(100)2 +(84)2 +(87)2 +(86)2 +(109)2]/5 – 8686.24 

= [10000+7056+7569+7396+11881]/5 – 8686.24 = 8780.4 – 8686.24= 94.16 = B. 

SR
2 =RSS = [(95)2+(103)2+(93)2+(76)2+(99)2]/5 – 8686.24 =  

= [9025+10609+8649+5776+9801]/5 ‐8686.24=8772 – 8686.24 = 85.76 =C. 

SC
2=CSS = [ (78)2+(108)2+(86)2+(95)2+(99)2]/5 – 8686.24  
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=[6084+11664+7396+9025+9801]/5 8686.24=8794 – 8686.24 = 107.76 = D.  

ST
2=TSS= 9366 – 8686.24 = 679.76 = E. 

Step – 4: Now we proceed to construct the ANOVA table of GLSD as follows: 

Table (17.4.2): ANOVA table of GLSD. 

Source of 
Variation (SOV) 

Degrees of 
freedom (DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments(Latin) 

 

Treatments(Greek)  

 

Rows 

 

Columns 

 

m –1=4 

 

m‐1=4 

 

m‐1=4 

 

m–1=4 

S Lt
2 = SSLT=A 

=342.96 

S Gt
2 = SSLT=B 

=94.16 

Sr
2 = RSS=C 

=85.76 

Sc
2=CSS=D 

=107.76 

V1 = SLt
2/m– 1 

=85.74 

V2 = SGt
2/m‐1 

=23.54 

V3 = Sr
2/m‐1 

=21.44 

V4 = Sc2/m‐1 

=26.94 

F LT = V1 / V5 

=13.96417** 

FGT = V2 / V5 

=3.83388 

FR = V3/ V5 

=3.49186 

FC = V4 / V5 

=4.38762* 

Error (m‐1)(m‐3)=8 SE
2 = ESS

=E‐D‐ C‐B‐A =F 

=49.12 

V5 = SE
2 /(m‐1)(m‐3) 

=6.14 

 

Total N – 1=24 ST
2 = TSS=E 

=679.76 

  

FTab at 5% los is 3.84 and at 1% los is 7.01 for (4,8) dof. 

Step – 5: Conclusions: 

A: For Latin letter treatments or seed Varieties: FLT > FTab at 1% los, we reject the null hypothesis 
H01 and conclude that there exists significant variation in Varieties of seeds of the crop.   To sub 
goup the these varieties, we have to apply further statistical analysis. 

B: For Greek letter treatments or Fertilizers:  Since FGT < FTab (it is approximately equal to table 
value) hence we accept H02 at 5% los.   Even if the calculated value of F is exactly equal to the 
table value of F, we have to accept the null hypothesis, for safer side.  Hence, we conclude that 
all the Greek letter treatments or fertilizers are equally effective.   Further statistical analysis for 
fertilizers or Greek letter treatments is not necessary because all the fertilizers are equally 
effective.  

C: For Rows: Since FR < FTab, here also we accept the null hypothesis H03 at 5% los and hence we 
conclude that units or plots in each row are homogeneous.   There is no need for further 
statistical analysis. 
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D: For columns: Since FC > FTab at 5% los, we reject the null hypothesis H04 at 5% los and 
conclude that units or plots in columns are not homogeneous.   Still there exists some 
heterogeneity among columns.   Here further statistical analysis is required to further sub‐
group plots within each column. 

17.5: Mutually orthogonal Latin Squares 

 In the last section, we have introduced the concept of orthogonal Latin Square designs 
and this concept can be extended to n number of Latin Squares.  Let L1,L2.,.,.,Ln are n Latin 
squares.   This set of Latin Squares are said to be “Mutually Orthogonal Latin Squares” if all  

pairs of Latin Squares must be orthogonal.   That is if we super impose any Latin Square  Li over 
Lj the resultant Latin square must be orthogonal.   This property must be true for all values of 
i j, I,j=1,2,.,.,.,n.    This implies that every pair of treatments must occur once and only once in 
the resultant Latin square.    

Remark:   If n is a prime number and power any prime number, then we obtain (n‐1) pairs of 
Mutually Orthogonal Latin Squares.   Such type of Latin Squares, have very important to play in 
Advance designs, like factorial Designs, or Balanced Incomplete Block Designs (BIBD), Partially 
Balanced Incomplete Block Designs (PBIBD) and so on.    Such advanced designs are discussed in 
the next unit. 

17.5. Summary 

In this lesson we have introduced special type of  LSD namely “Orthogonal Latin 
Square Designs”.   Such type of designs are known as Graeco‐Latin Square Designs(GLSD), 
where we can control the Total variation through four factors. 

GLSD is the most efficient design when compared to LSD or RBD or CRD, because the 
Error mean square is smaller in GLSD than other designs.   After discussing the Mathematical 
model, and its assumptions, we have explained the Statistical analysis of the design.   The 
analysis is explained with an example.    Finally we have  introduced the concept of Mutually 
orthogonal Latin Squares and discussed  the applications of such designs. 

17.6. Self Assessment Questions. 
1. Explain the Special Characters of GLSD. 
2. Explain the Mathematical model and assumptions of GLSD. 
3. Briefly explain various steps involved in the Statistical analysis of GLSD. 
4. Construct the ANOVA table of GLSD of size 5x5. 
5. Explain the orthogonal property and discuss its applications. 
6. Define mutually orthogonal Latin Squares and their applications. 
7. Analyze the following data suitably to test the effect of 5 varieties of seeds 

represented by Latin letters and five varieties of fertilizers denoted by Greek letters 
for a crop.    The yield of the crop is measured in tons and the experiment is 
conducted in 25 plots divided as five blocks vertically and five blocks horizontally. 
Treatments are applied such that each pair of treatments occurs once and only once 
in the entire experimental area. 
 



 
 

Design of Experiments                                 17.10            Graeco  - Latin Square Design(GLSD)   
 

 

 
Aα : 3.14 BΥ : 3.08 C ε: 3.23 Dβ : 3.09 Eδ: 3.03 

Bβ : 3.12 Cδ : 3.03 Dα : 3.25 EΥ : 3.07 A ε: 3.02 

CΥ : 3.16 D ε: 3.06 Eβ : 3.10 Aδ : 3.04 Bα : 2.94 

Dδ : 3.10 Eα : 3.12 AΥ : 3.20 B ε : 3.06 Cβ : 3.00 

E ε: 3.09  Aβ : 3.10 Bδ : 3.24 Cα : 3.00 DΥ : 3.05 

   

 Analyze the following data using GLSD analysis. 

 
CΥ: 14 D ε : 20 Eβ : 16 Aδ : 10 B α : 12 

E ε: 08 Aβ : 12 Bδ : 15 Cα : 12 DΥ :  18 

Aα: 09 BΥ : 16 C ε : 14 Dβ : 24 Eδ : 07 

Bβ : 16 Cδ: 11 Dα:  22 EΥ : 17 A ε : 13 

Dδ : 23 Eα :  18 AΥ :  09 B ε : 22 Cβ : 14  

 
8. Critically compare GLSD with LSD with an example. 
9. Explain the layout  of GLSD with an example. 

 

17.8. Further Readings. 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand &  

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley  

   & Sons,INC New York.  
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Lesson – 18. 

FACTORIAL EXPERIMENTS 
18.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of Factorial Experiments. 
• Basic concepts of Factorial experiments. 
• Main Effects and Interaction effects and their calculations. 
• Yates method of computing factorial effects totals. 
• Types of Factorial Designs. 

 

Structure 

18.1 Introduction to Factorial Experiments 
18.2 Basic Concepts of 2nFactorial Experiments 
18.3 Main effects and Interaction effects 
18.4 Yates method of computing Factorial effects totals 
18.5 Various types of Factorial Experiments 
18.6 Summary 
18.7 Self Assessment Questions 
18.8. Further Readings 
  

18.1:  Introduction to Factorial Experiments 

 In the previous lesson, we have discussed single factor, double and triple factor design 
of experiments namely completely randomized Design (CRD), Randomized Block Design and 
Latin Square designs (LSD) respectively, which are usually known as “Simple Designs”, because, 
treatments considered in these designs are “single set of treatments” like, Varieties of crops, 
or manures or different methods of irrigation or different methods of cultivation and so on. 

 In this lesson, we can concentrate on advanced designs known as “Complex Designs” or 
“Complex Experiments”, where the treatments are combination of different factors at different 
levels and their effects are studies for its significance.   That is the variation in the effect of one 
factor as a result, to different levels of other factors. For example, consider two fertilizers, 
namely Potash (K) and Nitrogen (N).   Here, treatments are combination of these two factors at 
different levels.   Let p and q are the levels of these factors Potash and Nitrogen respectively.   
In order to study effectiveness of these factors, we have to conduct two different simple 
experiments, one for Potash and the other for Nitrogen.   Like this, if factors are more, 
conducting several experiments different for each factor and studying their effects, is very 
lengthy, time consuming and are costly.  Further, through such experiments, we can only study 
individual effects of factors and is difficult to study combined effects or interaction effects or 
factorial effects like (PotashxNitrogen) (KxN). The only alternative to study or to investigate the 
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variations in several factors simultaneously is by conducting above experiment as a pxq 
“Factorial Experiment”, where p and q are the levels of various factors under consideration. 

 Factorial Experiments are of two types, namely, (1) Levels of different factors are equal 
and (2) Levels of different factors are unequal.   We confine ourselves to only first type of 
factors in these lessons.  Second type of designs is studied in advanced design of experiments. 

Factorial Experiments of the first type are usually denoted by sn , where s represents number of 
levels and n represents number of factors.   For example: 22 –Factorial experiments means we 
have two factors each at two levels.    Similarly 2n – factorial experiments means we have n‐
factors each having 2 levels.  32 – Factorial experiments means we have 2‐factors each at 3‐
levels, and 33 – factorial experiments means we have 3‐factors each at 3‐levels, so on.   
Treatments for the experiment are various combinations of different factors at different levels.   
Thus in Factorial experiments, we specially consider the treatments as combinations of 
different factors at different levels.   This is the basic difference between the design of 
experiments discussed in the previous unit and the present unit.   This distinction is to  

understood clearly by the reader. 

 Now we proceed to explain some basic concepts and definitions of Factorial 
Experiments in the following section. 

18.2. Basic Concepts of 2n Factorial Experiment 

 Let us first consider the simple factorial series of designs namely 2n–series, where, we 
consider n‐factors each having 2‐levels say 0 and 1.   Usually levels of factor means, two 
quantitative levels or concentrations.   For example, 0‐level represent 10% concentration and 1‐ 
level represents 15% concentration of the manure of the chemical.  Sometimes, 0‐level 
represent absence of the factor and 1‐ represent the presence of the factor.    Sometimes, 0‐
level represent ‘control group’ as 1‐ level represent the ‘experimental group’.   In some 
experiments, 0‐level represent one spices of a plant and 1‐level represent another spices of a    
plant. In animal husbandry, 0‐level represent one breed of lactation animal and 1‐level 
another breed of lactation animal and so on.    

 First we introduce the notations for the simplest design 22 and latter extend these 
notations for other designs easily on similar lines. 

18.2.1: Notations of 22 – factorial design: 

 Here, we consider 2‐factors, say A and B each at two levels say 0 and 1.   Let a and b 
represent the level of the factor A and B respectively.   Then we have 22 = 4 treatment 
combinations as follows: 

Treatment – 1: a0b0 or ‘1’ : Represents both factors A and B at first level that is 0th level. 

Treatment – 2: a1b0 or ‘a’ : Represents Factor A at second level and Factor B at first level. 

Treatment – 3: a0b1 or ‘b’ : Represents Factor A at first level and factor B at second level. 

Treatment – 4: a1b1 or ‘ab’:  Represents Both the factors at second level that is at 1st level. 
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 Thus we have 4 treatment combinations and these treatment combinations can be 
tested using CRD with ri‐replicates under ith treatment or RBD‐with b‐blocks  or LSD of size 4x4. 

18.2.2:   Notations for 2n – factorial experiments: 

On similar lines, we can extend treatmentcombinations for n factors A,B,C.,..,.,N each 
with two levels say 0 and 1.   Then we have 2n factorial effects, represented as follows: 

1,a,b,ab,c,ac,bc,abc,d,ad,bd,abd,cd,acd,bcd,abcd,e,ae,be,abe,ce,ace,bce,abce,de,ade,bde,abde,
cde,acde,abcd,.,.,.,.,(2n)‐ terms.   Thus we have 2n‐ treatments. 

Important note:  while writing various treatment combinations of factors, we have followed 
one rule.   That “every factor is to be introduced one after the other and after introducing, we 
have to completely write all previously written combination in the same order.   After 
completing all previously introduced combinations, we have to introduce another factor”.   This 
order of writing all treatment combinations are called “Standard symmetric Order”and in 
various combinations, absence of any letter represent the corresponding factor at 1st level that 
is level ‘0’ and presence of any letter represent the corresponding factor at 2nd level that is level 
‘1’.   After determining various treatments, we can conduct the experiment in CRD with ri 
replicates or RBD with r blocks or LSD of size nxn. 

 Now we proceed to explain main effects and interaction effects in the following section. 

18.3. Main effects and Interaction effects 
Suppose that 22 = 4 treatments areconducted in CRD with r‐replicates.  Let [1],[a],[b]  

and [ab] denote the total yields of r‐ replicates receiving the treatments 1,a,b,ab respectively.    

Let (1),(a),(b) and (ab) are the respective mean yields of the treatments 1,a,b,ab respectively.    

Thus we have: (1) = [1]/r;(a)=[a]/r;(b)=[b]/r and (ab)=[ab]/r.  Let A represent the Main Effect 
of the Factor‐A , B represent the Main Effect of the Factor‐ B and AB represent the interaction 
effect of Factor‐ A and Factor‐B and these effects are defined as follows: 

18.3.1: Main effects and Interaction Effects of different factors: 

Definition: Main effect of Factor – A:  Consider the 22 factorial Experiment with two factors 
each with two levels.   The main effect of Factor – A can be represented by the difference 
between mean yields obtained at each level at each level of other factor –B.   We have to 
consider two effects, namely: 

Effect of Factor – A at the first level b0 of Factor – B = (a1b0) – (a0 b0) or (a) – (1) . (18.3.1) 

Similarly, Effect of Factor – A at the second level b1 of  Factor – B 

 = (a1b1) – (a0 b1) or (ab) – (b)  `      (18.3.2) 

Now main effect of Factor is defined as the mean effect of above two effects.   Namely; 

Main Effect of Factor – A =A  = (1/2)[{(a1b0) – (a0 b0)} + {(a1b1) – (a0 b1)}] 

          = (1/2)[ (ab) – (b) + (a) –(1)] = (1/2)[(a‐1)(b+1)]  (18.3.3) 

Similarly, Main effect of Factor – B =B = (1/2)[{(a0b1) – (a0 b0)} + {(a1b1) – (a1 b0)}] 
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          = (1/2)[ (ab) – (a) + (b) –(1)] = (1/2)[(a+1)(b‐1)]  (18.3.4.) 

Interaction Effects Factors A and B: The interaction effect of two factors is defined as the 
failure of the levels of a factor, say Factor‐A to remain the same order and magnitude of 
performance though out all levels of the second factor say, Factor – B.   If the two factors are 
independent of each other, we should expect the true effect of one factor must be same at 
either levels of other factor.   In other words, the effects defined in (18.3.1) and (18.3.2) were 
really the estimates of the same thing and hence will be equal.   If the two expressions are not  

equal, implies that two factors are not independent and hence, the difference between two 
terms is called interaction effect of two Factors A and B.    Thus the difference between (18.3.1) 
and (18.3.2) measures the interaction effect of two factors A and B.  Thus, we define the 
interaction of effect of Two Factors A and B denoted by AB is defined as follows: 

Interaction of Factor – A and Factor – B = AB = (1/2)[{(a1b1) – (a0 b1)} – {(a1b0) – (a0 b0)}] 

= (1/2)[ (ab) – (a) – (b) + (1) ]  = (1/2)[(a‐1)(b‐1)]     (18.3.5) 

It is important to note that the interaction effect of BA = (1/2)[{(a1b1) – (a0 b1)} – {(a1b0) – (a0 
b0)}] = (1/2)[(ab) – (b) –(a) + (1)] = (1/2)[(b‐1)(a‐1)] which is equal to the interaction effect of the 
factors A and B. That is AB = BA. 

Remark: We can club all the above Main Effects and interaction effects of two factors in a 
single algebraic formula as:[(a 1)(b 1)] and we have to consider – sign if the factor is present 
in the effect and + sign if the factor is absent in the effect.   That is for main effect of factor‐ A 
the algebraic expression is [(a‐1)(b+1)] , for the main effect of Factor‐B the expression is 
[(a+1)(b‐1)] and for interaction effect of factors A and B the algebraic expression if [(a‐1)(b‐1)]. 

 On similar lines, we can extend expressions for three factors or n‐factors each at two 
levels 0 and 1 are as follows: 

For Three factors A,B and C each with two levels various main effects and interaction effects 
are defined as: (1/22)[(a 1)(b 1)(c 1)] .     (18.3.6) 

That is: 

Main Effect of A= A =(1/22) [(a‐1)(b+1)(c+1)]      (18.3.7) 

Main Effect of B= B = (1/22)  [(a+1)(b‐1)(c+1)]     (18.3.8) 

Main Effect of C=  C = (1/22)  [(a+1)(b+1)(c‐1)]     (18.3.9) 

Interaction Effect of AB = AB = (1/22)  [(a‐1)(b‐1)(c+1)]    (18.3.10) 

Interaction Effect of AC= AC = (1/22)  [(a‐1)(b+1)(c‐1)]    (18.3.11) 

Interaction Effect of BC= BC = (1/22)  [(a+1)(b‐1)(c‐1)]    (18.3.12) 

Interaction Effect of ABC= ABC = (1/22)  [(a‐1)(b‐1)(c‐1)]    (18.3.13) 

Interaction effects AB=BA; AC=CA;BC=CA.   Similarly interaction effects ABC=ACB=BAC 
=BCA =CAB=CBA. Further, above interaction effects AB,AC and BC are called “first order 
interactions” and the interaction effect ABC=ACB=BAC =BCA =CAB=CBA are called “Second 
order interactions”. 
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 On similar lines we can extent various main effects and Interaction effects of n 
factors,A,B,.,.,N  (n‐factors) are clubbed in a single formula as : 

(1 / 2n‐1)[ (a 1)(b 1)(c 1) .,.,.,(N 1) n terms]     (18.3.14) 

 On similar lines, we can extent these definitions, for 32, 33 and so on.   These effects will 
be discussed in  lesson‐20, where we discuss 3n factorial experiments.   With the above defined 
factorial effects we can discuss 2n – factorial experiments. 

 Now we give the definitions of “Contrast” and “orthogonal contracts” as follows: 

Definition: Contrast: A linear combination ∑ iti for K treatment means ti ,i=1,2,.,.,K, is called 
a “Contrast” or a “Comparison” of treatment means if ∑ i = 0.   In other words, Contrast is a 
liner combination of treatment means such sum of coefficients is zero. 

 It is interesting to note that all the main effects and interaction effects are contrasts. 

Definition: Orthogonal Contrasts: Two contrasts of K‐treatment means ti, i=1,2,.,..,K say; ∑ iti,  such that ∑ i = 0 and ∑ iti such that ∑ i = 0; are said to be orthogonal to 
each other if ∑ idi = 0.   In other words, two contrasts are orthogonal to each other if the 
sum of the product of the coefficients of the corresponding treatments is zero. 

 Further it can be observed that main effect of factor –A given in (18.3.3) and Main effect 
of factor – B given in (18.3.4) are orthogonal contracts because sum of the products of the 
coefficients in each effect is: (1/2)(1/2) + (‐1/2)(1/2) + (1/2)(‐1/2) + (‐1/2)(‐1/2) = 0.   On similar 
lines the main effects A, B, and interaction effects AB are orthogonal to each other.   Hence, all 
the tree factorials A,B and AB are “mutually orthogonal”. 

 Now we proceed to discuss an important procedure useful for calculating various 
factorial effects totals from the given experimental data in the following section. 

18.4. Yates method or algorithm of computing Factorial effects totals 

Now we proceed to explain a useful method of calculating various factorial effects  

totals, which simplifies our calculations in analyzing 2n – Factorial Experiments.   Prof. F. Yates 
developed a special computational rule which enables us to calculate various factorial effects 
without using the algebraic formula method discussed in the last section.   This method is 
popularly known as “Yates method of computing various factorial effects” or simply “Yates 
algorithm” which consists of the following steps: 

Step – 1: In the first column, write all the treatment combinations in a standard Symmetric 
Order (as explained in section(18.2.2)).   It is an essential part of the procedure that the 
treatment combinations must be written in the ‘Standard Symmetric Order’ in the first column. 

For example the Standard Symmetric order for three factors is: 1,a,b,ab,c,ac,bc,abc. 

Step – 2: In the second column, write down the corresponding total yields of treatments from 
all the replicates in the same order as written in the first column.  

Step – 3: The entries in the third column can be split into two halves.   The first half is obtained 
by writing down in order, the pair wise sums of the values in column – 2 and the second half is 
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obtained by writing in the same order the pair wise differences of the values in column – 2.   It 
is to be remembered that while calculating the differences, the first member in the pair is to be 
subtracted from the second member of that pair. 

Step – 4: Complete the 4th column by applying the procedure explained in Step – 3.   Similarly 
obtain the 5th column from 4th column by applying the procedure explained in Step – 3. 

 This procedure is explained at appropriate places with an example in the coming 
lessons. 

18.5. Various types of Factorial Experiments. 

Factorial Experiments with equal number of level under each treatment are classified 

in to the following categories.   Namely: 

(1) Factorial Experiments of 2n – Series. 
(2) Factorial Experiments of 3n – Series. 
(3) Balanced Incomplete Designs. 
(4) Partially Balanced Incomplete Block Designs. 
(5) Orthogonal Designs. 
(6) Robust designs. 
(7) Response Surface designs. 
(8) Split‐Plot designs. 
(9) Optimal Designs. 
(10) V‐Optimal designs and so on. 

Among the above designs, we have:  22,23,32,33 Factorial Designs and Balanced 
Incomplete Block design only in the present syllabus.   Hence, these designs along with their 
analysis are discussed in the remaining three lessons. 

There are other factorial designs, where we consider treatments with un‐equal 
number of levels.   These designs are out of the scope of this book. 

18.6 Summary 

 In this lesson we have introduced the concept of Factorial Experiments, its applications 
and different types of factorial Experiments.   After defining some fundamental concepts like 
Factorial Effects, Main Effects, Interaction effects, we have defined contrast and orthogonal 
contrasts and mutually orthogonal contrasts.   Then we have explained the Yates method of 
algorithm useful to calculate various treatment totals.  Finally we have discussed various 
Factorial experiments of n‐factors with equal number levels. 

18.7 Self Assessment Questions. 

1. Explain factorial experiments and their applications. 

2. Define main Effects and Interaction effects with suitable examples. 

3. Explain the application of algebraic expression useful in calculating various Factorial 

                  Effects. 
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 4. Explain various steps involved in the Yates method of algorithm and discuss its uses. 

 5. Define (1) contrast (2) orthogonal Contrasts and (3) Mutually orthogonal contrasts. 

18.8. Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley 

    &Sons,INC New York. 
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Lesson – 19. 

2n ‐FACTORIAL EXPERIMENTS 

19.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of 2n ‐ Factorial Experiments. 
• Basic concepts of 22 ‐ Factorial experiments. 
• Statistical analysis of  22 – Factorial experiments. 
• 23 Factorial Experiments. 
• Statistical analysis of 23 ‐ Factorial Experiments. 

 

Structure 

19.1 Introduction to 2n Factorial Experiments 
19.2 The  22  Factorial Experiment 

19.3 Statistical analysis of 22 – Factorial Experiments 

19.4 The 23 – Factorial Experiment 

19.5 Statistical analysis of 23 – Factorial Experiments 

19.6 Summary 

19.7 Self Assessment Questions 

19.8 Further Readings 

  

19.1:  Introduction to 2n ‐ Factorial Experiments 

 In the previous lesson, we have discussed some fundamental concepts of Factorial 
Designs.   In this lesson, we consider 2n‐series of Factorial experiments.   2n‐factorial designs are 
widely used in experiments involving n‐factors each with 2‐levels.  These experiments are 
useful to study the joint effect of n‐factors each at two levels on a response like yield of a crop 
or quality of a product or breaking strength of a brick and so on.   The two levels in these 
experiments may be considered as produced from two machines, or two operators or ‘high’ 
and ‘low’ levels of factors or ‘absence’ and ‘presence’ of a factor and so on.   Each complete 
replicate of such design requires 2x2x2x.,.,n‐times = 2n‐ experimental units.   If we replicate 
these 2n‐treatment combinations in r‐replicates, we must have rx2n experimental units.   In 
these design, we have ‐main effects, ‐ two factor interactions,.,.,.,  ‐ nfactor  

interactions.     Thus in total we have + +.,.,+  = 2n ‐ 1 factorial effects in 2n‐Factorial 
Experiments. Such a design is called 2n – Factorial Design.   2n‐factorial designs are particularly 
useful in the early stages of experimental work, when there are likely to be many factors to be 
investigated.  
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This design provides the smallest number of experimental units with n‐factors because 
each factor is only at two levels.   Thus these designs are widely used in ‘Factor Screening 
Experiments’.   In this lesson we consider and study the details of such design with n = 2 and 3. 

Other designs are out of the scope of the syllabus. 

19.2. The  22‐ Factorial Experiment 
In this design we consider two factors A and B each with two levels.   Thus we have  

22=4 factorial combinations, namely: 

(a0,b0) or  1; (a1,b0) or a; (a0,b1) or b and (a1,b1) or ab.    After considering these factorial 
combinations as four treatments, we can conduct the experiment in CRD with r‐replicates or 
RBD with b‐blocks or LSD of size 4x4 layouts.    Thus we have rx22= 4r observations and 22 – 1 = 
3 factorial effects namely Main Effect of Factor – A denoted by A;  Main effect of Factor – B 
denoted by B; and two factor Interaction effect or first order interaction effect between factors 
– A and B denoted by AB. It is important to note that interaction effect AB = interaction effect 
BA. 

19.2.1: Yates method of Algorithm for a 22 – factorial experiment. 

 Here we have four treatment combinations written the Standard symmetric order is 
1,a,b and ab.   Let the total yield from all the replicates in the selected design is denoted by 
[1],[a],[b] and [ab] respectively.   The Yate’s method of algorithm explained in the last lesson is 
applied here for 22‐factorial experiment as follows:    
Table (19.2.1) Yates method of algorithm for 22‐factorial experiment. 

Treatment 
Combinations 

Total yield from 
all replicates 

Column ‐3 Column – 4 Treatment totals

1 [1] [a] + [1] [1]+[a]+[b]+[ab] Grand total=G 

a [a] [ab] + [b] [ab] –[b] +[a]‐[1] [A] 

b [b] [a] – [1] [ab]+[b]– [a] –[1] [B] 

ab or ba [ab] [ab] – [b] [ab]‐[b]‐[a]‐[1] [AB] or[BA]

 

Now we proceed to explain the Statistical analysis if 22‐factorial experiments in the following 
section. 

19.3. Statistical analysis of 22‐factorial experiments 

It is already mentioned that factorial experiments are conducted either in CRD or RBD or  
LSD and hence, the statistical analysis discussed in the previous unit can be applied for the 
corresponding design applied, except the difference that Treatment SS is further splits in to 
three orthogonal contrasts, namely, Main effect – A, Main effect – B  and Interaction effect ‐ AB 
each with one degree of freedom. Usually these effects are computed in practice by using the 
entries of Yates method of algorithm in the last column, namely, [A], [B] and [AB].   Various SS 
of these factorial effects are calculated as follows: 
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SS due to main effect – A = [A]2/4r,      (19.3.1) 

SS due to main effect – B = [B]2/4r and      (19.3.2) 

SS due to main effect – AB = [AB]2/4r,     (19.3.3) 

each with 1 dof.  The null hypotheses to be tested 22 Factorial experment conducted in RBD 
are: 

H0T: there is no significant variation between various treatments. 

H0A:  There is no Significant Main effect of Factor – A. 

H0B: There is no significant main effect of the factor – B. 

H0AB: There is no significant interaction effect between the factors A and B. 

H0Blocks: There is no significant variation between block means. 

 Thus the ANOVA table of 22‐factorial experiment conducted in RBD with b‐ blocks or replicates 
is given by: 

Table (19.3.1): ANOVA table of 22 Factorial Experiment conducted in RBD. 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments (rows): 

Main effect‐A 

Main effect‐B 

Interaction effect AxB 

Blocks (columns) 

22‐1 

1 

1 

1 

b – 1 

ST
2=A+B+AB

SA
2 = [A]2/4b=A 

SB
2 = [B]2/4b=B 

SAB
2= [AB]2/4b=AB 

Sb
2=BSS=C 

V1=ST
2/22‐1

V2 = SA
2 

V3 = SB
2 

V4 = SAB
2 

V5 = Sb
2/b‐1 

FT=V1/V6 

FA = V2 / V6 

FB = V3/V6 

FAB= V4/V6 

FBlocks = V5 / V6 

Error  (22‐1)(b‐1) SE
2 = ESS=D‐A‐B‐AB V6 = SE

2 / (22‐1)(b‐1)  

Total 22b – 1 ST
2 = TSS=D   

 

Conclusions: (1): For treatments:    

If FA<Ftab at α% los for [1,3(b‐1)] dof, we accept the null hypothesis H0A. 

Otherwise, we reject the null hypothesis H0A.   if necessary, we can apply further statistical 
analysis. Similarly, we can accept or reject the null hypotheses for Main effect – B and 
Interaction Effect AB. 

(2) For blocks: 

 If FBlocks<Ftab at α% los for [(b‐1),3((b‐1)] dof, we accept the null hypothesis H0Blocks .   
Otherwise we reject the null hypothesis H0Blocks .    If necessary we can apply further statistical 
analysis for sub‐grouping blocks. 



 
 

Design of Experiments                                 19.4                                  2n -Factorial Experiments   
 

 

Example (19.3.1): An experiment was planned to study the effect of sulphate of potash and 
super phosphate on the yield of potatoes.   All the combinations of two levels of super 
phosphate [ 0 cent (p0) and 5 cent (p1) /acre ] and two levels of sulphate of potash [ 0 cent (k0) 
and 5 cent (k1)/acre] were studied in an RBD with four blocks.   The data is measured in lbs 
representing the yield of potatoes per plot and is given as follows: 

Blocks: 

A:  (1): 23  k:25  p:22  kp:38 

B:  p:40  (1):26  k:36  kp:38   

C:  (1):29  k:20  kp:30  p:20 

D:  kp:34  k:31  p:24  (1):28 

Analyze the data suitably and draw your conclusions. 

Solution: Frame the null hypotheses as follows: 

H01; there is no significant variation between various treatments. 

H02: There is no main effect of sulphate of potash (k) on the yield of potatoes. 

H03: There is no main effect of super phosphate (p) on the yield of potatoes. 

H04: There is no interaction effect of the two factors kp on the yield of potatoes. 

H05: There is no significant variation in block mean yield of potatoes. 

Now calculate various totals as follows: 

Blocks.   (1) k p kp       Totals             Yield Squares              Totals 

A:   23 25 22 38 108        529   625   484    1444  3082 

B:   26 36 40 38 140       676   1296 1600 1444   5016 

C:   29 20 20 30 99       841   400    400    900    2541 

D:   28 31 24 34 117       784   961    576   1156   3477 

Treatment totals: 106 112 106 140 464 = G          14116 

CF: G2/16 = (464)2/16 = 13456. 

BSS = (1/4)[(108)2+(140)2+(99)2+(117)2] – CF = (1/4)[11664+19600+9801+13689] – 13456 

= 13688.5 – 13456 = 232.5 = C. 

TSS = 14116 – 13456 =  660 = D. 

Now we proceed to calculate various factorial effects totals by using Yates method as follows: 

Table (19.3.2) Yates method of algorithm for 22‐factorial experiment. 

Treatment 
Combinations 

Total yield from 
all replicates 

Column ‐3 Column – 4 Treatment 
totals 
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1 [1]=106 [a] + [1]=218 [1]+[a]+[b]+[ab]=464 Grand total=G 

a [a]=112 [ab] + [b]=246 [ab] –[b] +[a]‐[1]=40 [A] 

b [b]=106 [a] – [1]=6 [ab]+[b]– [a] –[1]=28 [B] 

ab or ba [ab]=140 [ab] – [b]=34 [ab]‐[b]‐[a]‐[1]=28 [AB] or[BA]

Main effect of factor k = (40)2/16 = 100 = A 

Main effect of Factor p = (28)2/16 = 49 = B 

Interaction effect kp = (28)2/16 = 49 = AB 

Now we proceed to construct the ANOVA table for 22 factorial experiment conducted in RBD as 
follows:Table (19.3.3): ANOVA table of 22 Factorial Experiment conducted in RBD. 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares 
(SS) 

Mean Sum of 
Squares (MSS) 

Variance 
Ratio F  (F – 
cal) 

Treatments (rows): 

 

Main effect‐A 

Main effect‐B 

Interaction effect AxB 

Blocks (columns) 

3 

 

1 

1 

1 

b – 1=3 

SA
2+SB

2+SAB
2 = 

ST
2=198 

SA
2 = 100=A 

SB
2 = 49=B 

SAB
2= 49=AB 

Sb
2=BSS=C=232.5 

V1= ST
2/3=198/3=66 

 

V2 = SA
2=100 

V3 = SB
2=49 

V4 = SAB
2=49 

V5 = Sb
2/b‐1=77.5 

FT = 2.59

 

FA = 3.9215 

FB = 1.9215 

FAB= 1.9215 

FBlocks = 3.039 

Error  (22‐1)(b‐1) 

=9 

SE
2 = ESS=D‐A‐B‐AB

=229.5 

V6 = SE
2 / (22‐1)(b‐1) 

=25.5 

 

Total 22b – 1=15 ST
2 = TSS=D=660   

Conclusions: Ftab at 5% los for (1,9) dof is 5.12  and for (3,9) dof is 3.86.   Since all the calculated 
values are less than the table values we accept all the null hypotheses framed and conclude 
that there is no significant treatment effects, no significant main effects of factors k,p and no 
interaction effects kp and there are no block effects.   There is no need for further statistical 
analysis either for treatments or blocks. 

Note: It is interesting to note that  SA
2+SB

2+SAB
2 = ST

2 in the above ANOVA table.   This implies 
that Sum of Squares of Main effect of Factor‐ A; Main effect of  Factor – B and Interaction effect 
AB will add up to Treatment sum of squares.   That is 100+49+49 = 198. 

19.4. The 23 – Factorial Experiment. 

In this design, we have tree factors say A,B and C each with two levels.   Here we have 23 

= 8 factorial effects, namely (1) a,b,ab,c,ac,bc and abc.  Main effects and Interaction effects in 
23‐ factorial experiments are defined as follows: 
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19.4.1: The Main effect of the factor – A in 23‐factorial experiment is defined as the average of 
the following four simple effects, namely: 

Simple effect of A is defined as the result of increasing the factor – A from  the levels of a0 to a1 
at other levels of the factors B and C.   This is explained as follows: 

Level of Factor B Level of Factor C Simple effects of Factor A. 

 b0   c0  (a1b0c0) ‐ (a0b0c0)= (a) – (1) 

 b1   c0  (a1b1c0) ‐ (a0b1c0)= (ab) – (b) 

 b0   c1  (a1b0c1) ‐ (a0b0c1)=(ac) – (c) 

 b1   c1  (a1b1c1) ‐ (a0b1c1)= (abc) – (bc) 

The main effect of factor – A is denoted by A and is defined the average of above simple effects 
of Factor – A.   That is:  

Main Effect of factor A = A = (1/23‐1) [(abc) – (bc)+ (ac)‐ (c)+(ab)‐(b)+(a)‐(1)] 

= (1/4)[{(abc)+(ac)+(ab)+(a)} – {(bc)+(c)+(b)+(1)}] = (1/4)[(a‐1)(b+1)(c+1)]   

This is given in the algebraic expression (18.3.7).   On similar lines, we can define other factorial 
effects like Main effect of factor‐ B, Main Effect of factor – C first order interaction effects and 
second order interaction effects given from equations (18.3.8) to (18.3.13) in the lesson ‐ 18. 

Now we proceed to explain the Yates method of algorithm for 23‐factorial Experiment in the 
following section. 

19.4.2: Yates method of algorithm for 23‐factorial experiment: 

The Yates method of algorithm for 23‐factorial experiment is similar to 22 – factorial 
experiment, which is  as follows: 

Table (19.4.1) Yates method of algorithm for 23‐factorial experiment. 

Treatment 
Combinations 

Total yield from 
all replicates 

Column ‐3 Column ‐ 4 Treatment 
totals 

1 [1] [a] + [1]=U1 U1+U2 Grand total=G 

A [a] [ab] + [b]=U2 U3+U4 [A] 

B [b] [ac]+[c]=U3 U5+U6 [B] 

ab or ba [ab] [abc]+[bc]=U4 U7+U8 [AB] or[BA] 

C [c] [a] ‐ [1]=U5 U2 – U1 [C] 

Ac [ac] [ab] – [b]=U6 U4 – U3 [AC] 

Bc [bc] [ac] – [c]=U7 U6 – U5 [BC] 

Abc [abc] [abc] – [bc]=U8 U8 – U7 [ABC] 

Various interaction effects SS are calculated as follows: 
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SS of main effect of factor A = [A]2/23r      (19.4.1) 

SS of main effect of factor B = [B]2/23r      (19.4.2) 

SS of main effect of factor C = [C]2/23r      (19.4.3) 

SS of first order interaction  effect of factor AB = [AB]2/23r    (19.4.4) 

SS of first order interaction effect of factor AC = [AC]2/23r    (19.4.5) 

SS of first order interaction effect of factor BC = [BC]2/23r    (19.4.6) 

SS of second order interaction effect of factor ABC = [ABC]2/23r   (19.4.7) 

Now we proceed to explain the Statistical analysis of 23 – factorial experiment in the 
following section.  

19.5. Statistical analysis of 23 – factorial experiment 
Here also we can conduct the 23‐factorial experiment with the above 8 treatments in  

CRD or RBD or LSD of size 8x8.  The statistical analysis is as usual for the corresponding design 
except the difference that the treatment SS is split into seven orthogonal components each 
with 1 dof.  Let us assume that the 8 treatment combinations are applied in RBD with b‐blocks. 

Then the null hypotheses to be framed are: 

H0T: There is no significant variation between the treatments. 

H0A: There is no main effect of the Factor A. 

H0B: There is no main effect of the Factor B. 

H0C: There is no main effect of the Factor C. 

H0AB: There is no interaction effect between the Factor A and B. 

H0AC: There is no interaction effect between the Factor A and C. 

H0BC: There is no Interaction effect between the Factor B and C. 

H0ABC: There is no Interaction effect between the Factor A,B and C. 

H0Blocks:There is no variation between blocks. 

Then the ANOVA table of 23‐ factorial experiment is given as follows: 

Table (19.5.1): ANOVA table of 23 Factorial Experiment conducted in RBD. 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments (rows): 

Main effect‐A 

Main effect‐B 

23‐1 

1 

1 

St
2=* 

SA
2 = [A]2/8b=A 

SB
2 = [B]2/8b=B 

V1=St
2/22‐1 

V2 = SA
2 

V3 = SB
2 

FT=V1/V10 

FA = V2 / V10 

FB = V3/V10 
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Main effect‐C 

Interaction effect AxB 

Interaction effect AxC 

Interaction effect BxC 

Interaction effectAxBxC 

Blocks (columns) 

1 

1 

1 

1 

1 

b – 1 

SC
2=[C]2/8b = C 

SAB
2= [AB]2/8b=AB 

SAC
2=[AC]2/8b=AC 

SBC
2=[BC]2/8b=BC 

SABC=[ABC]2/8b=ABC

Sb
2=BSS 

V4 = Sc
2

V5 = SAB
2 

V6= SAC
2 

V7=SBC
2 

V8=SABC
2 

V9 = Sb
2/b‐1 

FC=V4/V10 

FAB= V5/V10 

FAC=V6/V10 

FBC=V7/V10 

FABC=V8/V10 

FBlocks = V9 / V10 

Error  (23‐1)(b‐1) SE
2 = ESS= ** V10=SE

2 / (22‐1)(b‐1)  

Total 23b – 1 ST
2 = TSS  

In the above table, * = A+B+C+AB+AC+BC+ABC, and 

 ** = By subtraction = TSS – BSS – SST= ST
2 – Sb

2 – St
2. 

Conclusions:  Compare various F‐calculated values for various treatment effects at α% los for 
[(23‐1),(23‐)(b‐1)] dof.   Main effects are to be compared with table value of F for [1,(23‐1)] dof 
and blocks calculated value of F is to be compared for [(b‐1)(23‐1)(b‐1)] dof at α% los and 
conclusions can be drawn accordingly depending on the calculated and table values of F.   If 
necessary, we can apply further Statistical analysis where ever it is required. 

Example (19.5.1):The following table gives the layout and the results of a 23‐factorial design 
laid out in four replicates.    The objective of the experiment is to determine the effect of 
different kinds of fertilizers Nitrogen N, Potash K and phosphate P on tomato crop yield. 

Block ‐ 1 p:323       1:87 kp:423 np:324 k:279 npk:471 n:128 nk:334 

Block ‐ 2 nk:306 np:324    kp:407 n:89 npk:449 p:324 1:106 k:272 

Block ‐ 3 1:101 k:265 n:106 np:373 p:312 kp:391 nk:291 npk:450

Block ‐ 4 kp:435 npk:437 1:131 k:302 np:361 nk:272 p:324 n:103

Analyze the data and draw your conclusions. 

Solution: Frame the null hypotheses as follows: 

H0t: There is no significant variation between the treatments N,P and K. 

H0N: There is no main effect of the Factor N. 

H0P: There is no main effect of the Factor P. 

H0K: There is no main effect of the Factor K. 

H0NP: There is no interaction effect between the Factor N and P. 

H0NK: There is no interaction effect between the Factor N and K. 

H0PK: There is no Interaction effect between the Factor P and K. 

H0NPK: There is no Interaction effect between the Factor N,Pand K. 

H0Blocks:There is no variation between blocks. 



 
 

Acharya Nagarjuna University                     19.9                       Centre for Distance Education 
 

 

Now calculate various totals as follows:                                 Totals 

Block ‐ 1 p:323      1:87 kp:423 np:324 k:279 npk:471 n:128 nk:334 2369 

Block ‐ 2 nk:306 np:338 kp:407 n:89 npk:449 p:324 1:106 k:272 2291 

Block ‐ 3 1:101 k:265 n:106 np:373 p:312 kp:391 nk:291 npk:450 2289 

Block ‐ 4 kp:435 npk:447 1:131 k:302 np:361 nk:272 p:324 n:103 2375 

Treatment totals: 

[1]=87+106+101+131=425;[n]=128+89+106+103=426;[p]=323+324+312+324=1283; 

[k]= 279+272+265+302=1118;  [np]=324+338+373+361= 1396;[nk]=334+306+291+272=1203; 

[kp]= 423+407+391+435=1656;[npk]=471+449+450+447= 1817; G = 9324. 

Here N=23.b=8x32.   Now we proceed to apply Yates method of algorithm for calculating 
various factorialcombinations totals as follows:  

Table(19.5.2): Yates algorithm for 23 factorial experiment. 

Treatment 
Combinations 

Total yield (1) (2) (3) Effects 
total 

S.S. 

1 425 851 3172 9324 G G2/32=2716780.5 

N 426 2321 6152 360 [N] [N]2/32=4050 

K 1118 2679 86 2264 [K] [K]2/32=160178 

Nk 1203 3473 274 132 [NK] [NK]2/32=544.5 

P 1283 1 1470 2980 [P] [P]2/32=277512.5

Np 1396 85 794 188 [NP] [NP]2/32=1104.5 

Kp 1656 113 84 ‐676 [KP] [KP]2/32=14280.5 

Npk 1817 161 48 ‐36 [NPK] [NPK]2/32=40.5 

Now calculate other SS as follows: 

CF= G2/N = [9324]2/32 = 2716780.5 

Block SS= (1/8)[(2369)2+ (2291)2+(2289)2+(2375)2 ] – 2716780.5  

= (1/8)[5612161 +5248681 +5239521+ 5640625] – 2716780.5 = 2717623.5 – 2716780.5 = 843. 

Treatment SS= (1/8)[(425)2+(426)2+(1118)2+(1203)2+(1283)2+(1396)2+(1656)2+(1817)2] – CF 

=(1/4)[180625+181476+1249924+1447209+1646089+1948816+2742336+3301489] – CF 

=12697964/4 – 2716780.5 =  3174491 – 2716780.5 = 457710.5. 
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Table of Squares of each observation is to be calculated as follows: 

Block ‐ 1 104329 7569 178929 104976 77841 221841 16384 111556 823425

Block ‐ 2 93636 114244 165649 7921 201601 104976 11236 73984 773247

Block ‐ 3 10201 70225 11236 139129 97344 152881 84681 202500 768197

Block ‐ 4 189225 199809 17161 91204 130321 73984 104976 10609 817289

Sum of squares of each observation = 3182158. 

Total SS = 3182158 – 2716780.5 = 465377.5. 

Now we proceed to construct ANOVA table of 23 factorial experiment conducted in RBD with 4 
replicates is as follows: 

 

Table (19.5.3): ANOVA table of 23 Factorial Experiment conducted in RBD. 

Source of Variation 
(SOV) 

Degrees of 
freedom 
(DOF) 

Sum of Squares (SS) Mean Sum of 
Squares (MSS) 

Variance Ratio F  
(F – cal) 

Treatments (rows): 

 

Main effect‐N 

 

Main effect‐P 

 

Main effect‐K 

 

Interaction effect NxP 

 

Interaction effect NxK 

 

Interaction effect KxP 

 

Interaction effect 
NxPxK 

 

Blocks (columns) 

23‐1=7 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

 

1 

 

b – 1=3 

St
2=#=457710.5 

 

SN
2 = [N]2/32 =4050 

 

SP
2=[P]2/32=277512.5

SK
2=[K]2/32 = 160178 

SNP
2= [NP]2/32 

=1104.5 

SNK
2=[NK]2/32 

=544.5 

SKP
2=[KP]2/32 

=14280.5 

 

SNPK=[NPK]2/32 

=40.5 

Sb
2=BSS=843 

V1=St
2/22‐1 

=65387.21429 

 

V2 = SN
2= 4050 

 

V3 = SP
2=277512.5 

 

V4 = SK
2=160178 

 

V5 = SNP
2 = 1104.5 

 

V6= SNK
2=544.5 

 

V7=SKP
2=14280.5 

 

V8=SNPK
2=40.5 

 

V9 = Sb
2/b‐1=281 

Ft=V1/V10

=201.2209** 

FN = V2 / V10 

12.46336** 

FP = V3/V10 

=854.0097** 

FK=V4/V10 

=492.6199** 

FNP= V5/V10 

=3.3989 

FNK=V6/V10 

=1.6756 

FKP=V7/V10 

=43.9464** 

FNPK=V8/V10 

 Not possible 

FBlocks = V9 / V10 

Not possible 
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Error  (23‐1)(b‐1)

=21 

SE
2 = ESS= ##=6824 V10=SE

2 / (22‐1)(b‐1) 

=324.952381 

 

Total 23b – 1=31 ST
2 = TSS=465377.5  

 

 

#= 4050+277512.5+160178+1104.5+544.5+14280.5+40.5 = 457710.5 and 

##= TSS – St
2‐ Sb

2= 465377.5 – 457710.5 – 843 = 6824.  

Conclusions: F‐table values:  

(1) Ftab at 5% los for (7,21) dof is 2.58 and at 1%los for (7,21) dof is 3.64, 

(2) Ftab at 5% los for (3,21) dof is 3.07 and at 1% los for (3,21) dof is 4.87 and  

(3) Ftab at 5% los for (1,21) dof is 4.32 and at 1% los for (1,21) dof is 8.02. 

For treatments: Since Ft is larger than Ftab at 1% los for (7,21) dof we reject the null hypothesis 
H0t and conclude that there exists significant variation between various treatment 
combinations of factors Nitrogen ‐N,  Phosphate ‐ P and Potash‐ K.   Hence there is a need for 
further Statistical analysis for sub‐grouping various treatment effects. 

 On similar lines, we conclude that there exists significant effects of main effect of 
factors Nitrogen – N; Phosphate ‐ P and  Potash‐ K on the tomato yield.   Similarly there is 
significant interaction effect of factors Phosphate – P and Potash – K that Interaction effect KxP.   
All other treatment combinations have insignificant effect. 

For blocks and second order interaction effect NPK are not possible to calculate because 
numerator for F is smaller than the denominator.   It is important to note that calculated value 
of F must always be greater than 1.   That is numerator for F must be greater than the 
denominator.    Hence, we cannot take any decision for Blocks and second interaction effect of 
factors N,P and K. 

Remark: Above significance of the first interaction between factors KxP can be interpreted as 
the factors Phosphate – K and the Potash – P operates full joint effect rather than individual 
factors.   Whereas, the factors Nitrogen – N and Potash – K is that , these factors do not act 
independently of one another, the presence of both enhances their individual effects. 

Further Statistical analysis for treatments: 

 The significance of various factorial effects, namely, Main effects and interaction effects 
can be tested directly, from the factorial totals as follows: 

From the ANOVA table (19.5.3) we can observe that S.E. of any factorial total = √b23SE
2 = √4x8x324.952381 = √10398.47619 = 101.97292.   

‐ Hence the Critical Difference (CD) at 5% and 1% los are respectively given by:  

CD at 5% =t5% for 21 dof x√b23SE
2 = 2.08x101.97292 = 212.10367 and 

CD at 1% =t1% for 21 dof x√b23SE
2 = 2.83x101.97292 = 288.58336. 
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 Comparing above calculated values, with that of Modulus values  of various factorial 
effects totals given in column 4 of table (19.5.2), we can observe that: 

All main effects namely, Nitrogen – N Phosphate – k and Potash – P and the interaction effect 
between K and P are significant at 1% los.   Other factorial effects are insignificant. 

 Before closing this lesson on2n – factorial designs, it is important to note that these 
designs are specifically useful to represent where the effects are curvy nature.   Regression 
lines are used to explain linear relations.   If the relations are curvy nature, 2n factorial 
experiments prove their worth and explain in an excellent way such curvy linear effects.   These 
experiments allow one to keep the size and complexity of the design low and simultaneously 
obtain some protection against curvy nature.   Now we proceed to explain 3n – factorial 
experiments in the next lesson. 

19.6 Summary 

 In this lesson, we have discussed 2n factorial Experiments in particular when n = 2 and 
n=3 designs.   Some fundamental concepts, various main effects and Interaction effects of 22 
and 23 factorial designs are discussed.   Finally, statistical analysis of these designs, along with 
examples are discussed.     

 

19.7 Self Assessment Questions 

1. Explain various factorial effects studied in 22 factorial designs. 

2. Explain the Yates method of calculating various factorial totals in 22 factorial design. 

3. Explain the Statistical analysis of 22 factorial experiments. 

4. Analyze the following data obtained from 22 factorial experiment conducted in RBD with  

four blocks.  The data obtained is measured in kgs / plot and the treatment  

combinations are applied randomly as given in the following table. 

Block – 1 AB:138 A:125 B:130 1:168 

Block – 2 B: 150 1: 175 AB: 133 A:114 

Block – 3 A: 112 B:141 AB:117 1:179 

Block – 4 1: 178 AB:110 A: 133 B:125 

Also obtain the CD values for 5% and 1% los. 

5. Explain various factorial effects of 2n factorial experiment.   Also explain the Standard 
symmetric order of these factorial effects. 

6. Explain various factorial effects of 23 factorial experiment. 

7. Explain the Yates method of algorithm for 23 factorial experiment. 

8. Write down the ANOVA table of 23 experiment conducted in LSD. 
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9. Explain the Statistical analysis of 23 factorial experiments. 

10. In an N,P and K trial, with two levels, of each fertilizer, and 5 replicates, various treatment 
totals are given as follows: 

1= 194;n=208;p=197;k=198;np=214;nk=223;kp=211 and nkp=224.  

Further, error mean square is known to be 19.86.   Write down ANOVA table for the above 
experiment and draw your conclusions.   Also apply further statistical analysis if necessary. 

 

19.8 Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley 

 &Sons,INC New York. 
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Lesson – 20 

3n ‐ FACTORIAL EXPERIMENTS 
20.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of 3n ‐ Factorial Experiments. 
• Basic concepts of 32 ‐ Factorial experiments. 
• Statistical analysis of  32 – Factorial experiments. 
• 33 Factorial Experiments. 
• Statistical analysis of 33 ‐ Factorial Experiments. 

 

Structure 

20.1 Introduction to 3n Factorial Experiments 
20.2 The  32  Factorial Experiment 
20.3 Statistical analysis of 32 – Factorial Experiments 
20.4 The 33 – Factorial Experiment 
20.5 ANOVA table of 33 – Factorial Experiments 
20.6 Summary 
20.7 Self Assessment Questions 
20.8 Further Readings 

 

20.1:  Introduction to 3n ‐ Factorial Experiments 

 In the last lesson we have discussed 2n factorial experiments, which are used in many 
fields like Agriculture, pharmacy and chemical industry.   There are some extensions and 
variations of these designs, which are occasionally used when the factors have three levels.   
Such designs are popularly known as 3n factorial experiments.   In these experiments, we 
consider a factorial arrangement of n – factors each at three levels.   These three levels may be 
considered as Low ‐ 0, medium ‐ 1 and high ‐2.   Thus if we have two factors A and B then 
various factorial levels are 00,01,02,10,,11,12,20,21 and 22.   In this notation first letter 
represent the level of first factor A and the second letter represent the level of second factor B. 

Thus we have 32 = 9 treatment combinations.   Similarly in 33 factorial experiment we 
have 27 factorial treatment combinations.   We can also consider factors which are quantitative 
in nature.   Then we can consider ‐1,0 and +1 levels respectively represent low, medium and 
high levels of different factors.   Now we proceed to explain 32 factorial design in the following 
section. 

20.2: The 32 – Factorial Designs 

 In this design, we consider two factors say A and B each at 3 levels say 0 – low, 1‐ 
medium and 2‐ high concentrations of factors A and B.   For this design, we have  32 = 9 factorial 
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combinations of treatments Namely: A0B0,A0B1, A0B2,A1B0A1B1,A1B2,A2B0,A2B1 and A2B2 
respectively denoted as 00,01,02,10,11,12,20,21 and 22.   This design can be conducted in CRD 
with the above nine treatment combinations with r‐replicates, or RBD in 9 treatments and b‐ 
blocks or LSD of size 9x9.  Here we consider three factorial effects, namely Main effect of Factor 
A; main effect of the factor B and interaction effect of factors AxB.   The eight degrees of 
freedom for treatments splits into three orthogonal components as 2 dof for Main effect of 
factor ‐ A; 2 dof for main effect of factor ‐ B and 4 dof for interaction effect of factors AxB. 

Main effects and interaction effects are explained in the following section. 

20.3. Statistical Analysis of 32 Factorial Experiments 

 The Statistical analysis of 32 factorial experiment conducted in CRD with R replicates is 
explained as follows: 

Null‐hypotheses: 

H01: There is no significant variation between all the replicate means. 

H02: The main effect of the factor N is not significant. 

H03: the main effect of the factor – P is not significant. 

H04: The interaction effect of INP is not significant. 

H05: the Interaction effect of JNP is not significant. 

  Here, we have 32r = N experimental plots required to conduct 32 factorial 
experiment.   Then various treatment combinations of these two factors each at three levels 
are 32 = 9 and are denoted as follows: 

     Factor P 

    0 1 2 Totals 

   0 (00) (01) (02)  n0 

 Factor N 1 (10) (11) (12)  n1 

   2 (20) (21) (22)  n2 

  Totals:    p0   p1 p1  G = Grand Total. 

In the above notation, (  ) represent totals of the respective treatments effects from all 
the replicates, ni’s are  factor N (row) totals and pj’s are factor – P (column) totals and G is the 
grand total respectively. After calculating the above totals from the given data, main 
effects and interaction effects are calculated as follows: 

Correction Factor = CF = G2 / 32 r        (20.3.1) 

SS due to Main effect of factor N = [n0
2 + n1

2 + n2
2] / 3r – CF. =  S2   (20.3.2) 

SS due to Main effect of factor P = [p0
2 + p1

2 + p2
2] / 3r – CF. =  S3   (20.3.3) 

Interaction effects between factors N and P splits into two components namely I‐interactions 
denoted by INP and J‐interactions which are denoted by JNP, which are defined as follows: 
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INP = [I0
2 + I1

2 + I2
2] / 3r – CF. =  S4       (20.3.4) 

JNP = [J0
2 + J1

2 + J2
2] / 3r – CF. =  S5       (20.3.5) 

Where I0 = (00)+(11)+(22)        (20.3.6) 

I1 = (10) + (21) + (02)         (20.3.7) 

I2 = (20) + (01) + (12)         (20.3.8) 

J0 = (00) + (12) + (21)         (20.3.9) 

J1 = (01) + (10) + (22)         (20.3.10) 

J2 = (20) + (11) + (02)         (20.3.11) 

SS due to interaction between the two factors N and P = [INP + JNP]   (20.3.12) 

 It is important to note that these I and J interactions have no physical meaning or 
difficult to interpreting the meaning of these effects.   For the convenience of the analysis these 
interaction effects are introduced. 

SS due to replicates = R1
2 + R2

2 +.,.,.,Rr
2 / 3r – CF = S1    (20.3.13) 

R1,R2, .,.,.,Rr are replicate totals.  

Calculate total sum of Squares = ∑ ∑ ]2 – CF.    (20.3.14) 

Now we proceed to form the ANOVA table for 32 factorial experiment as follows: 

Table (20.3.1) ANOVA table of 32 factorial experiment conducted in CRD with r replicates. 

Source Of Variation (SOV) DOF SS MSS Fcal 

Replicates 

Main Effect of Factor N 

Main effect of factor P 

Interaction effect INP 

Interaction effect of JNP 

Error 

r – 1 

2 

2 

2 

2 

* 

S1 

S2 

S3 

S4 

S5 

** 

V1 = S1/r‐1 

V2 = S2 / 2 

V3 = S3 / 2 

V4 = S4 / 2 

V5 = S5 / 2 

V6 = **/* 

F1 = V1 / V6 

F2 = V2 / V6 

F3 = V3 / V6 

F4 = V4 / V6 

F5 = V5 / V6 

Total 32r‐1 TSS  

In the above table * = 32r – 1 – [r‐1+2+2+2+2]= 32r – r – 8 = 8(r‐1).   

 Similarly **= TSS‐[S1+S2+S3+S4+S5]. 

Conclusions:   F1 is distributed as F [(r‐1),*] degrees of freedom and F2 to F5 are distributed as F 
[2,*] degrees of freedom.   If Fcal  F table value we accept the corresponding Null‐hypothesis.  

Otherwise, we reject the same. 

Now we proceed to explain the procedure with an example as follows: 
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Example (20.3.1): Consider an agricultural experiment involving two factors Nitrogen‐N and 
Phosphorous‐P each at three levels namely 1,1 and 2 to test the effect of these factors at  

different levels for increasing the yield of wheat crop conducted by CRD with 3 replicates.   
Analyze the data and draw your conclusions. 

Replicate – 1: (00) (20) (10) (01) (21) (11) (12) (22) (02)  

  85 85 73 95 85 89 74 71 83 

 

Replicate – 2: (21) (22) (00) (10) (20) (12) (01) (02) (11) 

  82 79 74 78 91 86 92 85 77 

 

Replicate – 3: (10) (20) (00) (11) (01) (02) (22) (12) (21) 

  71 82 79 91 93 79 74 82 77. 

 

Solution: Frame the null hypotheses as follows: 

H01: There is no significant variation between the replicate means of wheat yield. 

H02: There is no significant main effect of factor N. 

H03: There is no significant main effect of factor P. 

H04: There is no significant I interaction between factors N and P. 

H05: There is no significant J interaction effect between factors N and P. 

Now we proceed to calculate various factorial effect totals in the following table. 

    Factor P 

   0  1  2 Totals 

  0   (00):238          (01):280         (02):247 765=n0  

Factor N 1   (10):222               (11):257           (12):242 721=n1 

  2   (20):258               (21):244           (22):224 726=n2 

Totals:                         p0=718             p1=781              p2=713 2212=G=Grand total. 

Correction Factor: CF= G2/32r = (2212)2/27 = 181220.1481. 

SS due to N= [n0
2+n1

2+n2
2]/3r – CF = [(765)2+(721)2+(726)2]/9 –181220.1481 

= [585225 + 519841 + 527076]/9 – 181220.1481 = 181349.1111 ‐ 181220.1481 
=128.963011=S2. 

SS due to P = [p0
2+p1

2+p2
2]/3r – CF = [(718)2+(781)2+(713)2]/9 – 181220.1481 

=[515524+609961+508369]/9 – 181220.1481 = 181539.3333 – 181220.1481 = 319.185233=S3. 
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I0 = (00)+(11)+(22)=238+257+224=719      (20.3.15) 

I1 = (10) + (21) + (02)=222+244+247=713      (20.3.16) 

I2 = (20) + (01) + (12)=258+280+242=780      (20.3.17) 

J0 = (00) + (12) + (21)=238+242+244=724      (20.3.18) 

J1 = (01) + (10) + (22)=280+222+224=726      (20.3.19) 

J2 = (20) + (11) + (02)=258+257+247=762      (20.3.20) 

SS due to interaction effect INP= [I0
2+I1

2+I2
2]/3r – CF =[(719)2+(713)2+(780)2]/9 – 181220.1481 

=[516961+508369+608400]/9 – 181220.1481 = 181525.5556 – 181220.1481=305.407456 =S4. 

SS due to interaction effect JNP= [J0
2+J1

2+J2
2]/3r – CF =[(724)2+(726)2+(762)2]/9 – 181220.1481 

=[524176+527076+580644]/9 – 181220.1481 = 181321.7778 – 181220.1481=101.629678=S5. 

Replicate – 1: (00) (20) (10) (01) (21) (11) (12) (22) (02)  Totals 

  85 85 73 95 85 89 74 71 83 740=R1 

 

Replicate – 2: (21) (22) (00) (10) (20) (12) (01) (02) (11) 

  82 79 74 78 91 86 92 85 77 744=R2 

 

Replicate – 3: (10) (20) (00) (11) (01) (02) (22) (12) (21) 

  71 82 79 91 93 79 74 82 77. 728=R3 

 

Replicate SS = [R1
2 +R2

2 +R3
2]/3r – CF = [(740)2+(744)2+(728)2]/9 – 181220.1481 

= [547600 + 553536 + 529984]/9 – 181220.1481 = 181235.5556 – 181220.1481 = 15.407456=S1 

Replicate – 1: (00) (20) (10) (01) (21) (11) (12) (22) (02)  SquaresTotals 

  7225 7225 5329 9025 7225 7921 5476 5041 6889 61356 

 

Replicate – 2: (21) (22) (00) (10) (20) (12) (01) (02) (11) 

  6724 6241 5476 6084 8281 7396 8464 7225 5929 61820 

 

Replicate – 3: (10) (20) (00) (11) (01) (02) (22) (12) (21) 

  5041 6724 6241 8281 8649 6241 5476 6724 5929. 59306 

Total SS =(85)2+(85)2+.,.,.,.,+(77)2 – 181220.1481=182482‐181220.1481=1261.8519=TSS. 
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Now we proceed to form ANOVA table of 32 factorial design as follows: 

Source Of Variation (SOV) DOF SS MSS Fcal 

Replicates 

Main Effect of Factor N 

Main effect of factor P 

Interaction effect INP 

Interaction effect of JNP 

Error 

r – 1=2 

2 

2 

2 

2 

*=16 

S1=15.4075 

S2=128.9630 

S3=319.1852 

S4=305.4025 

S5=101.6297 

**=391.2590 

V1 = S1/r‐1=7.7038 

V2 = S2/2=64.4851 

V3 = S3/2=159.5926 

V4 = S4/2=152.7013 

V5 = S5 /2=50.8149 

V6 = **/*=24.4537 

F1 = V1/V6=‐‐‐ 

F2 = V2 / V6=2.637 

F3 = V3 / V6=6.526** 

F4 = V4 / V6=6.244** 

F5 = V5 / V6=2.078 

Total 32r‐1=26 TSS=1261.8519   

Conclusions:  FTabfor (2,16) dof at 5% los is 3.63 and at 1% los is 6.23. 

Since, F1 calculated value is less than 1 it is not possible to infer about replicate means. 

We reject H03 and H04 at 1% los.    We accept H02 and H05 at 5% los.   Hence, we conclude that 
there is significant effect of the factor P, that is Phosphorous and interaction effect of INP on the 
increase of the yield of wheat crop. 

20.4. The 33 – Factorial Experiment 
 
On similar lines of 32 factorial experiments, we can extend the analysis for three factors 

each at three levels, namely 33 factorial experiments.    In this design, we have three factors 
each at three levels and hence, we have 33= 27 treatment combinations.   Let the three factors 
be represented by Factor A, Factor‐B and Factor‐C and the corresponding levels are denoted by 
0,1 and 2.   Then we have the following 27 treatment combinations as follows: 

(0,0,0)    (0,0,1)   (0,0,2)   (0,1,0)   (0,1,1)   (0,1,2)   (0,2,0)   (0,2,1)   (0,2,2) 

(1,0,0)    (1,0,1)   (1,0,2)   (1,1,0)   (1,1,1)   (1,1,2)   (1,2,0)   (1,2,1)   (1,2,2) 

(2,0,0)    (2,0,1)   (2,0,2)   (2,1,0)   (2,1,1)   (2,1,2)   (2,2,0)   (2,2,1)   (2,2,2) 

Main effects, Interaction effects and the analysis of 33 factorial experiments are  

discussed in the following section.  It is important to note that interpretation of interaction 
effects in 33 factorial designs requires lot of care and concentration.   

20.5. Statistical analysis of 33 – Factorial Experiments. 
In 33 factorial experiments we have three factors each at three levels and hence we have 

27 factorial combinations.  If all these combinations are considered and conducted in CRD with 
r replicates, we require ‘27r’ experimental units.   Thus we have 27r‐1 degrees of freedom for 
total SS.   Further, each main effect has 2 degrees of freedom; each two factor interactions 
have 4 degrees of freedom and three factors interaction has 8 degrees of freedom.   Further, 
error degrees of freedom will become 27(r‐1). 
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The sum of squares (SS) may be calculated using the standard methods of Statistical Analysis 
applied to analyze factorial experiments explained in previous lessons.  Further, if the factors 
are quantitative, the main effects may be further partitioned into linear and quadratic 
components, each with a single degree of freedom.   Similarly, two factor interactions may be 
decomposed into linear x liner, linear x quadratic, quadratic x linear, and quadratic x quadratic 
effects each with one degree of freedom.   It is also possible to partition the two factor 
interactions into I, J components as we have done in 32 factorial design.   For example, two 
factor interactions are denoted by AB,AB2, AC,AC2,BC and BC2. Then, each of these two factor 
interaction effects has two degrees of freedom.  

 Similarly, three factor interaction effects are too difficult for interpretation.   But for the 
purpose of analysis we partition them into four orthogonal components each with 2 degrees of 
freedom.   Namely, W(ABC);X(ABC);Y(ABC) and Z(ABC) interaction effects.   These are usually 
known as W,X,Y and Z components of the interaction.   They are also referred as AB2C2,AB2C, 

ABC2 and ABC components of three factor interaction ABC respectively.   These two notations 
are interchangeable as follows: 

W(ABC) = AB2C2 ; X(ABC) = AB2C; Y(ABC) = ABC2 and Z(ABC) = ABC.  (20.4.1) 

 It is important to note that in the above notations, no first letter can have exponent 
other than 1.   Like I, J components, in 32 factorial experiments, the letters W,X,Y and Z 
components have no practical meaning or interpretation.   They are introduced for the 
convenience of the analysis of 33 factorial experiments.   These interaction effects are useful in 
the construction of more complicated designs, which are out of the scope of this book. 

 Now we proceed to explain the ANOVA table of 33 factorial experiment with an 
example. 

Example (3.4.1): Write down the ANOVA table of 33 factorial design conducted in CRD with r‐ 
replicates. 

Solution: The ANOVA table of 33 factorial Experiment, conducted in CRD with r‐ replicates is 
given as follows: 

Source Of Variation (SOV) DOF SS MSS Fcal 

Replicates 

Main Effect of Factor A 

Main effect of factor B 

Main effect of factor C 

Interaction effect of AB 

Interaction effect of AC 

Interaction effect of BC 

Interaction effect of ABC 

r – 1 

2 

2 

2 

4 

4 

4 

8 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

V1 = S1/r‐1 

V2 = S2 / 2 

V3 = S3 / 2 

V4 = S4 / 2 

V5 = S5 / 4 

V6 = S6 / 4 

V7 = S7 / 4 

V8  = S8 / 8 

F1 = V1 / V9 

F2 = V2 / V9 

F3 = V3 / V9 

F4 = V4 / V9 

F5 = V5 / V9 

F6 = V6 / V9 

F7 = V7 / V9 

F8 = V8 / V9 
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Error 33(r‐1) ** V9 = **/33(r‐1)  

Total 33r‐1 TSS   

In the above table  ** = TSS – (S1+S2+S3 +S4 +S5 +S6 +S7+S8 )and SS are to be calculated as usual. 

Thus we have to frame eight null hypotheses and can be compared respectively 
calculated values of F with the respective degrees of freedom at α% los.   Conclusions can be 
drawn accordingly.   On similar lines we can extend the analysis for 3K factorial experiments. 

Statistical analysis of these designs are complicated and above the scope of this book. 

20.6. Summary 
     In this lesson, we have discussed experiments involving different factors say k factors  

each at three Levels.   That is 3k series of factorial experiments.   First we have discussed the 32 
factorial experiments and discussed the method of calculation of Main effects and interaction 
effects of two factors each at three levels.   Statistical analysis of 32 factorial experiments is 
discussed and explained the procedure with an example.   Further,  33 factorial experiments, 
that is three factors each at three levels are discussed.    In 33 factorial experiments we have 27 
various treatment combinations and discussed main effects and Interaction effects. Since, 
calculations are lengthy, only ANOVA table of 33 factorial experiment is discussed. 

 
20.7. Self Assessment Questions 

1. Explain the need of 3k factorial experiments with suitable examples. 
2. Explain the main effects and interaction effects of 32 factorial experiments. 
3. Explain the statistical analysis of 32 factorial experiment. 
4. Explain main and interaction effects of 33 factorial experiments. 
5. Write down the ANOV A table of 33 factorial experiments. 

 
20.8. Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley 

   &Sons,INC New York.  
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Lesson – 21 

Balanced Incomplete Block Design (BIBD) 
21.0. Objectives : 

After going through this lesson, you should be able to: 
• Understand the need, concepts and definition of incomplete block designs. 
• Basic concepts of Balanced Incomplete Block Design (BIBD). 
• Statistical analysis of  BIBD. 
• Efficiency of BIBD over Randomized designs. 
• Further Statistical analysis applicable in BIBD. 

 

Structure 

21.1 Introduction to Incomplete Block Designs 
21.2 The Balanced Incomplete Block Design (BIBD) 
21.3 Parameters and properties of BIBD 
21.4 Types of BIBD and its properties 
21.5 Intra Block Analysis of BIBD 
21.6 Summary 
21.7 Self Assessment Questions 
21.8 Further Readings 

  

21.1:  Introduction to Incomplete Block Designs 

 In the previous designs, we have considered each block size equal to the number of 
treatments.   Thus we can apply all the treatment combinations completely in each block.   
Hence, these designs are known as “Complete Designs”.   For example, in 22‐ factorial design 
we have blocks of size 4 each.   Similarly, in 23 factorial design we require blocks of size 8 each 
and 33  factorial design we require to have blocks of size 9 and in 33 factorial design, block sizes 
must be 27.   Thus, as the factors – n or levels‐s are increasing, we required to have large 
number of treatments and hence, same number of experimental units in each block, in 
“complete block designs (CBD)”.   That is in complete block designs; each block will receive all 
the treatments completely once.   Thus each block will become one complete replicate of all 
treatments. 

 Basic problem in such complete block designs is that, when experimental units 
increases, the heterogeneity between units in each block will enter automatically and hence, 
“Experimental Error” will increase automatically, which is not a desirable situation.   To bring 
Homogeneity between the units in each block, we have to reduce the size of the block or 
further divide the block into sub‐blocks such that units within each sub‐block are 
homogeneous.   But in such sub‐blocks we cannot apply all the treatments say ‘v’,  which are 
larger in size than the block sizes say ‘k’, that is v > k.   then, we have to plan such that these 
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treatments are to be applied in such a way that treatment effects can be estimated with same 
accuracy without increasing the “Experimental Error”.   Such experiments are called 
“Incomplete Block Designs” whose definition is given as follows: 

Definition: Incomplete Block Design (IBD): 

 An Incomplete Block Design (IBD) is one, where v‐treatments are arranged in b‐blocks 
each of size k such that v > k and each of the treatments is replicated r‐times.   Further, each 
pair of treatments, must occur once and only oncein the same block.  

The quantities v,b,k andr are called parameters of IBD. 

Remark: In the above design, if v=k, then Incomplete Block Design (IBD) will become Complete 
Block Design (CBD). 

 Incomplete Block designs are two types as follows: 

(1) Balanced Incomplete Block Designs (BIBD) and 
(2) Partially Balanced Incomplete Designs (PBIBD). 

Now we proceed to explain “Balanced Incomplete Block Designs” only, in this lesson 

because, Partially Balanced Incomplete Block Designs are out of the scope of the syllabus. 

21.2: The Balanced Incomplete Block Design (BIBD) 

The Balanced Incomplete Block Designs are introduced by Prof. F. Yates in a paper “ A  

new method of arranging variety trials involving large number of varieties” in the Journal 
Agriculture Science Vol. 26, pp 424 – 455 in the year 1936.  These designs are designed specially 
for experiments in ‘Plant Breeding’ and ‘Agriculture’ experiments to compare all treatment 
comparisons, among pairs of treatments is made with equal precession. 

Definition of BIBD: 

 An arrangement of v treatments in b blocks of k plots each such that k < v is known as 
Balanced Incomplete Block Design (BIBD) if: 

(1) Each treatment occurs once and only once in r blocks and 
(2) Each pair of treatments occurs together in λ blocks. 

The following example of BIBD will explain above conditions clearly: 

(21.2.1)Example of BIBD:      

Block – 1 Block ‐ 2 Block – 3  Block – 4 Block – 5 Block‐6 

Treatment ‐1 Treatment ‐ 1 Treatment ‐ 1 Treatment ‐ 2 Treatment ‐ 2 Treatment ‐ 3 

Treatment ‐ 2 Treatment ‐ 3 Treatment ‐ 4 Treatment ‐ 3 Treatment ‐ 4 Treatment ‐ 4 

 

 In the above example we have four treatments, namely, 1,2,3 and 4.   To test these four 
treatments in RBD, we require blocks each of size 4.   But planning in the above example we can 
conduct the experiment with blocks of size 2 each.   Thus we can reduce the total number of 
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experimental units required for RBD, that is 24 Units.   Bit in BIBD we require only 12 
experimental units.   In the above example we have v=4;b=6;k=2 and λ = 1.  Thus we have k<v. 

21.3:  Parameters and properties of BIBD 
The integers v,r,b,k and λ are called Parameters of BIBD, where: 

v=number of treatments or factorial combinations, 

b=number of blocks, 

k=number of plots in each block or block size, 

r=number of replicates and  

 λ=number of blocks in which any pair of treatments occurs together or number of times  

any two treatments occur together in a block. 

These parameter of BIBD satisfies the following conditions which are known as 
“Parametric relations of BIBD” and serves as necessary conditions for the existence of a BIBD. 

(1) vr=bk (2) λ(v‐1) = r(k‐1) and (3) b  v (Fisher’s Inequality).   (21.3.1) 

Theorem (21.3.1): vr=bk. 

Proof: Since there are v treatments and each is replicated r number of times.    

Hence total number of experimental units required for the design is vr. 

Similarly, we have b blocks each of size k.  

Hence, total number of experimental plots required for the design = bk. 

Total number of experimental units must be equal to total number of experimental plots. 

Hence, vr must be equal to bk or vr=bk. Hence the proof. 

To prove the relation (2) in (21.3.1), we require some basic concepts in matrix theory which are 
explained as follows: 

21.3.1: Incidence Matrix: A matrix associated with any design D is the “Incidence Matrix” 
denoted by N =  i=1,2,.,.,v; and j=1,2,.,.,b, where nij denotes the number of times ith 
treatment occurred in jth block.  

Thus for a BIBD, an incidence matrix N is given by: 

N = 

      . , . , . , . , . , . ,     . , . , . , ., . ,   :::      . , . , . , . , . , . ,                            (21.3.2) 

Where, nij = 1, if ith treatment occurs in jth block.  

       = 0, otherwise. 
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(21.2.2): Example of an Incidence Matrix: 

Thus the incidence for the BIBD given in example (21.2.1) is given as follows: 

N4x6 =

1   1   1   0   0   01   0   0   1   1   0 0   1   0   1   0   1  0   0   1   0   1   1         (21.3.3)

  

(21.3.2) Properties of Incidence Matrix: 

1. ∑  = ∑ 2 = r ; i = 1,2,.,.,.,v.      (21.3.4) 

2.∑  = ∑ 2 = k ; j = 1,2,.,.,.,b and       (21.3.5) 

3. ∑    = λ for i l=1,2,.,.,v.                                    (21.3.6) 

This is because of the fact that nijnlj = 1 if and only if ith treatment and lth treatment occur 
together in the jth block.   Otherwise the product nijnlj = 0.   Thus they occur together in λ 
blocks.   Using the above properties of incidence matrix we can show that: 

[NNT]vxv = 

   λλ  … …    λλ      λ  … …    λ:: λλλ   … .    
  , where NT is the transpose of the matrix N.  (21.3.7) 

Now we proceed to prove properties of BIBD λ(v‐1) = r(k‐1) and Fisher’s inequality as follows: 

Theorem (21.3.2): Ina BIBD λ(v‐1) = r(k‐1) is always true. 

Proof: Let Emxn denote an mxn matrix consisting of all the elements equal to 1.   We know from 
(21.3.7) that:  

[NNT]vxv   = 

   λλ  … …    λλ      λ  … …    λ:: λλλ   … .    
  .       (21.3.8) 

Multiply both sides of (21.3.8) with column matrix consisting of 1’s. That is with  Evx1 = 

11..1 . 
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Then we have: 

[NNT]vxv Evx1  = 

   λλ  … …    λλ      λ  … …    λ:: λλλ   … .    
  . 

11..1  = [r+λ(v‐1)]

11..1   = [r+λ(v‐1)] Evx1.  (21.3.9) 

Consider NNTEvx1 = N(NTEvx1)= N 

11   21   . , . , . , . , . , . , 112   22   . , . , . , ., . ,   2:::1    2    . , . , . , . , . , . ,
11.1.  = N

∑ 1∑ 2..∑  

= N .. = k 

11   12   . , . , . , . , . , . , 121   22   . , . , . , ., . ,   2:::1   2   . , . , . , . , . , . ,
11.1.  = k 

∑ 1∑ 2..∑  = k ..  = krEvx1 . (21.3.10) 

From equations (21.3.9) to (21.3.10) we have: 

[r+λ(v‐1)] Evx1 = krEvx1  =>[r+λ(v‐1)] = kr  =>λ (v‐1) = r(k‐1). Hence the theorem.  (21.3.11). 

Theorem (21.3.3):   Fisher’s Inequality:   b  v. 

Proof:  We know that:  

[NNT]vxv   = 

   λλ  … …    λλ      λ  … …    λ:: λλλ   … .    
  => |NNT| = 

   λλ  … …    λλ      λ  … …    λ:: λλλ   … .    
 

Adding 2nd, 3rd,.,., vth columns, to the first column and taking [r+(v‐1)λ]

1   λ  λ  … …    λ1      λ  … …    λ:: 1 λ  λ   … .    
 

Further, subtracting first row from 2nd,3rd .,.,.,vth rows we have: 

 [r+(v‐1)λ]

1   λ λ  … …    λ0   λ 0  … …    0:: 0   0   0   ….    λ
  = [r+(v‐1)λ](r‐λ)v‐1.   (21.3.12) 
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We know that λ(v‐1) = r (k‐1).        (21.3.13) 

 Hence substituting in equation (21.3.12) we have: 

[r + k(r‐1)] (r‐λ)v‐1 = kr(r‐λ)v‐1 .       (21.3.14) 

Thus we have proved that |NNT|  0, and if r = λ then from equation (21.3.13) we have: 

(v‐1) = (k‐1) => v = k.   Thus if r=λ, the design will become RBD with K treatments and b – blocks. 

Since NNT is a non‐singular matrix we have Rank of (NNT) = v.   This is because the order of the 
matrix NNT is v.   We know that Rank of the matrix (NNT) = Rank of the matrix (N). 

Since the matrix N is of size vxb and hence, the rank of the matrix is at most b. 

This implies that v = rank of the matrix N  b  => v  b or b  v. Hence the theorem. 

Using the above proved we can prove the following consequentresults. 

Result ‐ 1: r   k. 

Proof: we know that vr = bk => r = (b/v)k.   We know that b  vand hence we have: 

r k because (b/v) > 1. 

Result – 2:b v + r ‐b  v k. 

Proof: We know that number of treatments in BIBD is greater than the block size k.   This 
implies that (v – k)  0.   Similarly we know that (r – k)  0 => (v‐k)(r – k)  0. 

 (v/k  ‐ 1)(r – k) 0  => (v/k)(r‐k) – (r‐k)  0 => (vr/k) – v  (r‐k).  (21.3.15) 

Since vr = bk we have from (21.3.15) b – v  (r – k) =>b  v+r‐k.   (21.3.16) 

21.4. Types of BIBD and its properties 
Balanced Incomplete Block Designs (BIBD) are classified into two categories, namely:  

(1) Symmetric BIBD,  
(2) Resolvable BIBD and  
(3) Affine resolvable BIBD. 

21.4.1: Symmetric BIBD and their properties:  

Definition: A BIBD is said to be symmetric BIBD if b=v and r=k. 

Necessary conditions for the existence of symmetrical BIBD are: 

1. Necessary condition for a symmetrical BIBD with v as even is that (r – λ) must be 
perfect square. 

2. If N is the incidence matrix of the symmetrical BIBD, then: 
(a) Every row sum is equal to r. 
(b) Every column sum is equal to k. 
(c) The inner product of any two rows of N is equal to λ. 
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Example of a symmetrical BIBD:  

(21.4.1)Example of a symmetrical BIBD:      

Block – 1 Block – 2 Block – 3  Block – 4 Block – 5 Block‐6 

Treatment ‐1 Treatment –1 Treatment ‐ 1 Treatment ‐ 2 Treatment –2 Treatment ‐ 3 

Treatment ‐ 2 Treatment –3 Treatment ‐ 4 Treatment ‐ 3 Treatment –4 Treatment ‐ 4 

 

Properties of symmetric BIBD: 

1.In symmetric BIBD the incidence matrix is a Square Matrix. 

2.In a symmetric BIBD the number of treatments common between any two blocks is λ. 

3. If N is the incidence matrix of a symmetric BIBD, then: 

(NNT)‐1 =  Adj (NNT)       (21.4.1) 

4.If N is the incidence matrix of a symmetric BIBD, then: 

(NNT )(NT N) = (r ‐λ) NTN + k2λEvxv.      (21.4.2) 

(21.4.2): Resolvable BIBD Design: 

Definition: A BIBD with parameters v,r,b,k and λ is said to be resolvable BIBD if the blocks can 
be divided into r groups or sets of b/r blocks each, b/r being an integer, such that b/r blocks 
forming any of these sets give a complete replication of all v treatments. 

Example (21.4.2): Example for a resolvable BIBD: 

 Consider v=4,b=6,r=3,k=2 and λ = 1.   Then the following layout of the treatments makes 
the BIBD a Resolvable BIBD. 

Block – 1 

Block – 2 

Treatment – 1 

Treatment  ‐ 3 

Treatment – 2 

Treatment – 4 

First Set 

Block – 3 

Block – 4 

Treatment – 1 

Treatment ‐  2  

Treatment – 3 

Treatment – 4  

Second Set 

Block – 5 

Block – 6 

Treatment – 1  

Treatment – 2  

Treatment – 4  

Treatment ‐ 3 

Third Set 

Here, b=6 are divided into r=3 sets each of (b/r)=n; that is  6/3 =2, which is an integer and 
blocks are integer multiple of r.   That is 3x2 = 6.   Further, each set contains each of the 
treatments occurring once and only once.   Further, each pair of treatments also occurs once 
and only once, that is λ = 1. 

Properties of a Resolvable BIBD: 
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1. In a resolvable BIBD parameters v,b,r,k and λ satisfies b v+r‐1. 
2. In a resolvable BIBD number of blocks b = rn where n is an integer. 

 

21.4.3: Affine Resolvable BIBD: 

Definition: A resolvable BIBD is said to be Affine Resolvable BIBD if b = r+v‐1 and any two blocks 
from different sets have k2/v treatments common, where k2/v is an integer. 

Example (21.4.3):  Affine resolvable BIBD: 

Consider the resolvable design with v=4,b=6,r=3,k=2 and λ = 1.   Then, the layout is: 

Block – 1 

Block – 2 

Treatment – 1 

Treatment  ‐ 3 

Treatment – 2 

Treatment – 4 

First Set 

Block – 3 

Block – 4 

Treatment – 1 

Treatment ‐  2  

Treatment – 3 

Treatment – 4  

Second Set 

Block – 5 

Block – 6 

Treatment – 1 

Treatment – 2  

Treatment – 4 

Treatment ‐ 3 

Third Set 

 

We can observe that in the above design the condition b=v+r‐1 is satisfied and also k2/v = 1 is 
an integer.   Further any two blocks from different sets have only one treatment and λ = 1. 

 Now we proceed to discuss the statistical analysis of BIBD, which is popularly known as 
“Intra Block Analysis of BIBD” in the following section. 

21.5. Statistical analysis of BIBD (Intra Block analysis of BIBD): 
        This method of Statistical analysis of BIBD was developed by Prof. F. Yates using the 

method of “Standard Least square” technique and is popularly known as :”Intra Block Analysis”.   
In this method, we obtain the estimates of various treatment effects, without recovery of “Inter 
Block” effects.   Recovery of Inter Block information is not possible, because, blocks are of 
smaller size than treatments and hence, we cannot get the data with all the treatment 
combinations replicated in each block.   The method is explained as follows: 
 
21.5.1: Intra Block Analysis: 

 Let ‘a’ units of the experimental material with ‘b’ blocks in which ‘v’ treatments (v<b) 
are applied such that each treatment is replicated ‘r’ times such that r < b satisfying the 
conditions of BIBD.   Let N =  be the incidence matrix of the BIBD. Then, 

nij = 1 if ith treatment occurs in the jth block and  

     = 0, otherwise. 

By using the properties of incidence matrix given in (21.3.4), (21.3.50 and 21.3.6) we have: 

1. ∑  = ∑ 2 = r ; i = 1,2,.,.,.,v.      (21.5.1) 
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2.∑  = ∑ 2 = k ; j = 1,2,.,.,.,b and       (21.5.2) 

3. ∑    = λ for i l=1,2,.,.,v.                                                                              (21.5.3) 

Let Yij be the yield or observation recorded on the experimental unit receiving ith treatment 
belonging to the jth block where the pairs (i,j) runs through the set D for which nij = 1.   The 
mathematical of BIBD is given by: 

Yij = μ + ti + bj + εij, for (i,j) belonging to D; for all values of i=1,2,.,.,v ;j=1,2,.,.,b,(21.5.4) 

Where μ is the general mean effect, ti (i=1,2,.,.,v) is the effect of the ith treatment, bj (j=1,2,…b) 

Is the jth block effect and εij are the vxr intra block errors which are assumed to be normally 
distributed with mean zero and common variance σ2.   That is errors εij are independently and 
identically distributed (iid) N(0,σε

2).   The intra block analysis assumes that the treatment 
effects and block effects are fixed but unknown. 

 According to the principle of least squares, the normal equations for estimating 
(v+b+1) parameters of the model given in (21.5.4), namely: ti (i=1,2,.,.,v);  bj (j=1,2,…b) and μ 
are obtained on minimizing the error sum of squares denoted by E and is given by: 
 
E = ∑ ,, ij

2 = ∑ ,,  ‐ ‐ τi‐ bi)
2 for (i,j) εD.                           (21.5.5) 

Differentiating E with respect to μ , τi and bjwe obtain the following normal equations. 

/ = ‐2 ∑ ,,  ‐   ‐ τi‐ bi) = 0; for (i,j) ε D .     (21.5.6)    

/ = ‐2 ∑ ,,  ‐   ‐ τi‐ bi) = 0;  for jεDi.                  (21.5.7)  

/   = ‐2 ∑ ,,  ‐   ‐ τi‐ bi) = 0;  for iεDj.     (21.5.8) 

 In the above equations, , τiand bi are least square estimates of the parameters of 
μ,ti and bj respectively.  Similarly Di is the set of r values for which (i,j) ε D for a given I and Dj is 
the set of k values for  which (i,j) ε D for given j. 

 In order to have unique solution for the normal equations obtained in equations 
(21.5.6),(21.5.7) and (21.5.8) we must add the following two conditions, Namely: ∑  = 0  and ∑  = 0 .        (21.5.9) 

Solving the above set of equations from (21.5.6) to (21.5.9) we have: 

 = ∑ ,,   =   ..         (21.5.10) 

From equation (21.5.7), we have: ∑   ‐r  ‐rτi‐ ∑   = 0 for jεDi => Ti = ry.. + r τi‐ ∑   = 0 for jεDi   (21.5.11) 

Where, Ti = ∑ ; jεDi is the total yield of the ith treatment. 

 Further, we know that Di is the set of r values for which (i, j)εD for a given i.   that is 
nij = 1 and I has a fixed value.   Thus we have: 
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Ti = r ..+ r τi + ∑           (21.5.12) 

 From equation (21.5.12) we can observe that the estimate of the treatment effect is 
no longer of the form of observed treatment mean minus the grand mean, since, the block 
effects do not enter the same way into all the observed treatment means.   For example, a 
treatment may be favored by occurring only in the blocks with high block effects. 

 Similarly, from the equation (21.5.8), we have: 

Bj = K ..   + K  + ∑          (21.5.13) 

Where, Bj = ∑ ; iεDj is the total yield of jth block. 

Thus the quantity (Bj /K) ‐ ..  =  + (1/K)∑       (21.5.14) 

The expression given in (21.5.14) is called as the estimate of jth block effect ignoring treatments. 

Substituting the value of βj from (21.5.14) in equation (21.5.13), we have: 

Ti = r ..  + r τi+ (1/K) ∑    ‐ K ..   ‐ ∑   )]    (21.5.15) 

=>Ti – (1/K) ∑    = r ..  + r τi ‐ ..∑    ‐ (1/K) ∑ ∑    

= r τi – (1/K) ∑ ∑   .      (21.5.16) 

LetQi = Ti ‐ ∑  /        (21.5.17) 

The quantity Qi is called the ith ‘adjusted treatment total’ or the ‘adjusted total yield for the ith 
treatment’.   The adjustment consists in subtracting from the treatment total Ti, the sum of the 
jth block average Bj/K, (which is the average yield per plot for the jth  block) for those blocks in 
which ith treatment occurs. 

Using equations (21.5.16) and (21.5.17), we have: 

Qi = r τi – (1/K) ∑ ∑    

= ‐(τ1/K)∑     ‐(τ2/K)∑    ‐.,.,(τi/K)∑  . , . ,‐(τv/K)∑    
Using the equation (21.5.3), we have: 

Qi = ‐(λ/K) (τ1 + τ2+ τ3 .,.,+ τv )+(r – r/K + λ/K) τi     (21.5.18) 

Since ∑ τi = 0 we have: 

Qi = (r – r/K + λ/K) τi  ={ [r(K‐1) + λ]/K}τi = {[λ(v‐1) +λ]/K}τi = (λv/K)τi  (21.5.19) 

This is because of the fact that λ(v‐1) = r(k‐1). 

From (21.5.19) we have: τi = Qi (K/λv); i=1,2,3,.,.,v.     (21.5.20) 

If we put (λv)/kr = E, then we have  τi = Qi / rE.     (21.5.21) 

Further, using λ(v‐1) = r(k‐1), we have: 

 E = (λ/r)(v/K) = [v(k‐1)]/[k(v‐1)] = [vK – v]/[vK – K] < 1; (since v > K).  (21.5.22) 

We know that the residual sum of squares for the model given in (21.5.4), we have: 
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∑ ,,   ‐  ‐  τi– βj) 
2 =  ∑ ,, )2 ‐ n .. ‐  ∑ iτi ‐ ∑ j βj .  (21.5.23) 

We know that n=vr=bk and hence, SS due to , τi and βj are given by: 

S(μ,b,τ) = n .. + ∑ iτi +∑ j βj 

=  ∑ ,,    + ∑ iτi +∑ j βj 

=  ∑ ∑     + ∑ iτi +∑ j βj  (I,j) εD 

= ∑  + ∑  βj + ∑ iτi 

=∑  + ∑ iτi       (21.5.24) 

Substituting for , from equation  (21.5.13), we have: 

S(μ,b,τ) = ∑  (1/K) (Bj ‐ ∑ ijτi)Bj ]+ ∑ iτi 

= ∑ 2 / K + ∑   (Ti ‐ ∑  Bj/K) .     (21.5.25) 

= ∑ 2 / K + ∑ Qi = n  .. +[ ∑ 2 / K ‐ n  ..] + ∑ Qi (21.5.26) 

We know that the quantity ∑ Qiis the Sum of Squares due to treatments after adjusting for 
block effects.   Hence, Sum of Squares of treatments adjusted is given by: 

SS due to treatments(adjusted) = ∑ Qi = ∑ Qi)
2/rE = S2.   (21.5.27) 

The quantity ∑ 2 / K ‐ n  .. = ∑ 2 / K – (1/n)[∑ ,, ]2 

= ∑ 2 / K – CF = S1.        (21.5.28) 

The expression given in 9 (21.5.28) is the sum of squares due to blocks ignoring treatments.   
This represents the unadjusted block sum of squares. 

Now we proceed to construct the ANOVA table for Intra Block Analysis of BIBD as follows: 

Source of variation(SOV) DOF SS MSS F calculated 

Between Blocks (un‐
adjusted) 

Between the treatments 

(adjusted) 

 

Intra Block Error 

b‐1 

 

v‐1 

 

 

bk‐b‐v+1 

S1=∑ 2 / K – CF 

 

S2 =∑ Qi)
2/rE 

 

 

S3 = TSS – S1 – S2 

V1 =S1/b‐1 

 

V2 = S2 /v‐1 

 

 

V3=S3/bk‐b‐v+1 

F1 = V1/V3 

 

F2 = V2/V3 

Total bk ‐ 1 TSS = ∑ ,, 2 ‐ CF   

Conclusions:The null hypothesis to be tested here is H0: There is no significant variation 
between treatment means or t1=t2=…..=tV .   If F2 calculated value if less than F table value at 
α% los for (v‐1,bk‐b‐v+1) dof, we accept the null hypothesis at α% los.   Otherwise, we reject 
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the null hypothesis.If necessary we can apply further statistical analysis, for which the reader 
can refer books suggested below. 

21.6. Summary 
              In this lesson, we have discussed concepts related to Balanced Incomplete Block  

Designs (BIBD).  Definitions, parameters and relation between various parameters of BIBD are 
discussed and properties we proved. Finally the concept of Intra block analysis which is the 
analysis to be applied for BIBD is discussed. 
 
 Finally it is important to remember that there are many advanced topics not covered in 
this book, because they are out of the scope of the syllabus.   If any reader wants to know 
about them, they can refer books suggested in further readings. 

21.7. Self Assessment Questions 
1. Define BIBD and parameters. 
2. State various relations between parameters of BIBD prove any two of them. 
3. Show that vr = bk. 
4. State and prove Fisher’s Inequality. 
5. Define symmetric BIBD and give an example for the same. 
6. Define an Incidence matrix and give an example for the same. 
7. Show that λ(v‐1) = r(K‐1). 
8. Define affine resolvable BIBD and give an example of the same. 
9. With usual notations, for a resolvable BIBD show that b  v+r‐1. 
10. Explain the Intra block analysis of BIBD. 

 
21.8. Further Readings 

1. C.R. Rao (1952) “Advanced Statistical Methods in Biometric research” john Wiley. 

2. Fisher R.A. (1947) “The Design of experiments” Oliver and Boyd. 

3. S.C. Gupta and V.K. Kapoor (2006) “Fundamentals of Applied Statistics” Sultan Chand & 

    Sons.,New Delhi. 

4.Douglas C. Motogomery (2000) “Design and Analysis of Experiments”5th edition. John wiley 

   &Sons,INC New York.  
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