# ECONOMETRIC (DMSTT23) (MSC - STATISTICS) 



# ACHARYA NAGARJUNA UNIVERSITY 

CENTRE FOR DISTANCE EDUCATION
NAGARJUNA NAGAR,

## GUNTUR

ANDHRA PRADESH

## Lesson 1

## INTRODUCTION TO ECONOMETRICS

### 1.0 Objective:

After studying the lesson the student will have clear idea on the need of a separate discipline of Econometrics and on various steps of the methodology of Econometrics, as it is illustrated by the well-known Keynesian consumption function.

## Structure of the Lesson:

### 1.1 What is Econometrics?

1.2 Why a Separate Discipline?

### 1.3 The Aims and Methodology of Econometrics

1.4 Self Assessment Questions
1.5References

### 1.1 What is Econometrics?

Literally speaking, the word "Econometrics" means measurement in economics. Although measurement is an important part of econometrics, the scope of econometrics is much broader, as can be seen from the following:

The application of statistical and mathematical methods to the analysis of economic data, with a purpose of giving empirical content to economic theories and verifying them or refuting them.

In this respect econometrics is distinguished from mathematical economics, which consists of the application of mathematics only, and the theories derived need not be necessarily have an empirical testing.

### 1.2 Why a Separate Discipline?

Econometrics is an amalgam of economic theory, mathematical economics, economic statistics, and mathematical statistics. Yet the subject deserves to be studied in its own right for the following reasons.

Economic theory makes statement or hypotheses that are mostly qualitative in nature. For example, microeconomic theory states that, other things remaining the same, a reduction in the price of a commodity is expected to increase the quantity demanded of that commodity. Thus, economic theory postulates a negative or inverse relationship between the price and quantity demanded of a commodity. But the theory itself does not provide any numerical measure of the relationship between the two; that is, it does not tell by how much the quantity
will go up or down as a result of a certain change in the price of the commodity. It is the job of the econometrician to provide such numerical estimates. Stated differently, econometrics gives empirical content to most economic theory.

Mathematical economics is mainly concerned with to express economic theory in mathematical form (equations) without regard to measurability or empirical verification of the theory. Econometrics, on the other hand, is mainly interested in the empirical verification of economic theory. As we shall see, the econometrician often uses the mathematical equations proposed by the mathematical economist but puts these equations in such a form that they lend themselves to empirical testing. And this conversion of mathematical equations into econometric equations requires a great deal of ingenuity and practical skill.

Economic statistics is mainly concerned with collecting, processing, and presenting economic data in the form of charts and tables. These are the jobs of the economic statistician. It is he or she who is primarily responsible for collecting data on gross national product (GNP), employment, unemployment, prices, etc. The data thus collected constitute the raw data for econometric work. But the economic statistician does not go any further, not being concerned with using the collected data to test economic theories. Of course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade, the econometrician often needs special methods in view of the unique nature of most economic data, namely, that the data are not generated as the result of a controlled experiment. The econometrician, like the meteorologist, generally depends on data that cannot be controlled directly.

In econometrics the modeler is often faced with observational as opposed to experimental data. This has two important implications for empirical modeling in econometrics. First, the modeler is required to master very different skills than those needed for analyzing experimental data. Second, the separation of the data collector and the data analyst requires the modeler to familiarize himself/herself thoroughly with the nature and structure of data in question.

### 1.3 The Aims and Methodology of Econometrics

The aims of econometrics are:

1. Formulation of econometric models that is formulation of economic models in an empirically testable form. Usually, there are several ways of formulating the econometric model from an economic model because we have to choose the functional form, the specification of the stochastic structure of the variables, and so on. This part constitutes the specification aspect of the econometric work.
2. Estimation and testing of these models with observed data. This part constitutes the inference aspect of the econometric work.
3. Use of these models for prediction and policy purposes.

How do econometricians proceed in their analysis of an economic problem? That is, what is their methodology? Although there are several schools of thought on econometric methodology, we present here the traditional or classical methodology, which still dominates empirical research in economics and other social and behavioral sciences.

Broadly speaking, traditional econometric methodology proceeds along the following lines:

1. Statement of theory or hypothesis.
2. Specification of the mathematical model of the theory
3. Specification of the statistical, or econometric, model
4. Obtaining the data
5. Estimation of the parameters of the econometric model
6. Hypothesis testing
7. Forecasting or prediction
8. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian theory of consumption.

1. Statement of Theory or Hypothesis

Keynes stated:
The fundamental psychological law . . . is that men [women] are disposed, as a rule and on average, to increase their consumption as their income increases, but not as much as the increase in their income. In short, Keynes postulated that the marginal propensity to consume (MPC), the rate of change of consumption for a unit (say, a rupee) change in income, is greater than zero but less than 1.

## 2. Specification of the Mathematical Model of Consumption

Although Keynes postulated a positive relationship between consumption and income, he did not specify the precise form of the functional relationship between the two. For simplicity, a mathematical economist might suggest the following form of the Keynesian consumption function:

$$
\begin{equation*}
Y=\alpha+\beta X \quad 0<\beta<1 \tag{1.1}
\end{equation*}
$$

where $Y=$ consumption expenditure and $X=$ income, and where $\alpha$ and $\beta$, known as the parameters of the model, are, respectively, the intercept and slope coefficients. The slope coefficient $\beta$ measures the MPC. This equation, which states that consumption is linearly related to income, is an example of a mathematical model of the relationship between consumption and income that is called the consumption function in economics. A model is simply a set of mathematical equations. If the model has only one equation, as in the preceding example, it is called a single-equation model, whereas if it has more than one equation, it is known as a multiple-equation model. But, in this book, we have confined ourselves to only single-equation models. In Eq. (1.1) the variable appearing on the left side of the equality sign is called the dependent variable and the variable on the right side is called the independent or explanatory variable. Thus, in the Keynesian consumption function, Eq. (1.1), consumption (expenditure) is the dependent variable and income is the explanatory variable.

## 3. Specification of the Econometric Model of Consumption

The purely mathematical model of the consumption function given in Eq. (1.1) is of limited interest to the econometrician, for it assumes that there is an exact or deterministic relationship between consumption and income. But relationships between economic variables are generally inexact. Thus, if we were to obtain data on consumption expenditure and disposable (i.e., after tax) income of a sample of, say, 500 Indian families and plot these data on a graph paper with consumption expenditure on the vertical axis and disposable income on the horizontal axis, we would not expect all 500 observations to lie exactly on the straight line of Eq. (1.1) because, in addition to income, other variables affect consumption expenditure. For example, size of family, ages of the members in the family, family religion, etc., are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the econometrician would modify the deterministic consumption function Eq. (1.1) as follows:

$$
\begin{equation*}
Y=\alpha+\beta X+u, \quad 0<\beta<1 \tag{1.2}
\end{equation*}
$$

where $u$, known as the disturbance (error) term, is a random (stochastic) variable that has well-defined probabilistic properties. The disturbance term $u$ may well represent all those factors that affect consumption but are not taken into account explicitly.

Eq. (1.2) is an example of an econometric model. More technically, it is an example of a linear regression model, which is the major concern of this book. The econometric consumption function hypothesizes that the dependent variable $Y$ (consumption) is linearly related to the explanatory variable $X$ (income) but that the relationship between the two is not exact; it is subject to individual variation. The econometric model of the consumption function can be depicted as shown in the following figure.


Econometric model of the Keynesian consumption function.
Figure 1.1

## 4. Obtaining Data

To estimate the econometric model given in Eq. (1.2), that is, to obtain the numerical values of $\alpha$ and $\beta$, we need data. Let us look at the data given in Table I.1, which relate to the U.S. economy for the period 1981-1996. The $Y$ variable in this table is the aggregate (for the economy as a whole) personal consumption expenditure (PCE) and the $X$ variable is gross domestic product (GDP), a measure of aggregate income, both measured in billions of 1992 dollars. Therefore, the data are in "real" terms; that is, they are measured in constant (1992) prices.

TABLE 1.1: DATA ON Y (PERSONAL CONSUMPTION EXPENDITURE) AND X (GROSS DOMESTIC PRODUCT, 1982-1996), BOTH IN 1992 BILLIONS OF DOLLARS

| Year | $Y$ | $X$ | Year | $Y$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 3081.5 | 4620.3 | 1990 | 4132.2 | 6136.3 |
| 1983 | 3240.6 | 4803.7 | 1991 | 4105.8 | 6079.4 |
| 1984 | 3407.6 | 5140.1 | 1992 | 4219.8 | 6244.4 |
| 1985 | 3566.5 | 5323.5 | 1993 | 4343.6 | 6389.6 |
| 1986 | 3708.7 | 5487.7 | 1994 | 4486.0 | 6610.7 |
| 1987 | 3822.3 | 5649.5 | 1995 | 4595.3 | 6742.1 |
| 1988 | 3972.7 | 5865.2 | 1996 | 4714.1 | 6928.4 |
| 1989 | 4064.6 | 6062.0 |  |  |  |
|  |  |  |  |  |  |

Source: Economic Report of the President, 1998, Table B-2, p. 282.

## 5. Estimation of the Econometric Model

Now that we have the data, our next task is to estimate the parameters of the consumption function. The numerical estimates of the parameters give empirical content to the consumption function. The actual mechanics of estimating the parameters will be discussed in Lesson 2. Now, note that the statistical technique of regression analysis is the main tool used to obtain the estimates. Using this technique and the data given in Table1.1, we obtain the following estimates of $\alpha$ and $\beta$, namely, -184.08 and 0.7064 .

Thus, the estimated consumption function (i.e., regression line)

$$
\begin{equation*}
\hat{Y}=-184.08+0.7064 X \tag{1.3}
\end{equation*}
$$

is shown in the following figure.


Personal consumption expenditure $(Y)$ in relation to GDP $(X)$, 1982-1996, both in billions of 1992 dollars.

Figure 1.2
As the above figure shows, the regression line fits the data quite well in that the data points are very close to the regression line. From this figure we see that for the period 1982-1996 the slope coefficient (i.e., the MPC) was about 0.70 , suggesting that for the sample period an increase in real income of 1 dollar led, on average, to an increase of about 0.7 dollar in real consumption expenditure. We say on average because the relationship between consumption and income is inexact; as is clear from the above figure; not all the data points lie exactly on the regression line. In simple terms we can say that, according to our data, the average, or mean, consumption expenditure went up by about 0.7 dollar for a dollar's increase in real income.

## 6. Hypothesis Testing

Assuming that the fitted model is a reasonably good approximation of reality, we have to develop suitable criteria to find out whether the estimates obtained in, say, Eq. (1.3) are in accord with the expectations of the theory that is being tested. As noted earlier, Keynes expected the MPC to be positive but less than 1 . In our example we found the MPC to be about 0.70 . But before we accept this finding as confirmation of Keynesian consumption theory, we must enquire whether this estimate is sufficiently below unity to convince us that this is not a chance occurrence or peculiarity of the particular data we have used. In other words, is 0.70 statistically less than 1? If it is, it may support Keynes' theory.

Such confirmation or refutation of economic theories on the basis of sample evidence is based on a branch of statistical theory known as statistical inference (hypothesis testing). Throughout this book we shall see how this inference process is actually conducted.

## 7. Forecasting or Prediction

If the chosen model does not refute the hypothesis or theory under consideration, we may use it to predict the future value(s) of the dependent, or forecast variable $Y$ on the basis of known or expected future value(s) of the explanatory, or predictor variable $X$.

To illustrate, suppose we want to predict the mean consumption expenditure for 1997. The GDP value for 1997 was 7269.8 billion dollars. Putting this GDP figure on the right-hand side of Eq. (1.3), we obtain

$$
\begin{equation*}
\hat{Y}_{1997}=-184.0779+0.7064(7269.8)=4951.3167 \tag{1.4}
\end{equation*}
$$

or about 4951 billion dollars. Thus, given the value of the GDP, the mean, or average, forecast consumption expenditure is about 4951 billion dollars. The actual value of the consumption expenditure reported in 1997 was 4913.5 billion dollars. The estimated model Eq. (1.3) thus over-predicted the actual consumption expenditure by about 37.82 billion dollars. We could say the forecast-error is about 37.82 billion dollars, which is about 0.76 percent of the actual GDP value for 1997. When we fully discuss the linear regression model in subsequent chapters, we will try to find out if such an error is "small" or "large." But what is important for now is to note that such forecast errors are inevitable given the statistical nature of our analysis.

There is another use of the estimated model Eq. (1.3). Suppose the President decides to propose a reduction in the income tax. What will be the effect of such a policy on income and thereby on consumption expenditure and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment expenditure increases. What will be the effect on the economy? As macroeconomic theory shows, the change in income following, say, a dollar's worth of change in investment expenditure is given by the income multiplier $M$, which is defined as

$$
\begin{equation*}
M=1 /(1-M P C) \tag{1.5}
\end{equation*}
$$

If we use the MPC of 0.70 obtained in Eq. (1.3), this multiplier becomes about $M=3.33$. That is, an increase (decrease) of a dollar in investment will eventually lead to more than a threefold increase (decrease) in income; note that it takes time for the multiplier to work. The critical value in this computation is MPC, for the multiplier depends on it. And this estimate of the MPC can be obtained from regression models such as Eq. (1.3). Thus, a quantitative estimate of MPC provides valuable information for policy purposes. Knowing MPC, one can predict the future course of income, consumption expenditure, and employment following a change in the government's fiscal policies.

## 8. Use of the Model for Control or Policy Purposes

Suppose we have the estimated consumption function given in Eq. (1.3). Suppose further the government believes that consumer expenditure of about 4900 (billions of 1992 dollars) will keep the unemployment rate at its current level of about 4.2 percent (early 2000). What level of income will guarantee the target amount of
consumption expenditure? If the regression results given in Eq. (1.3) seem reasonable, simple arithmetic will show that

$$
\begin{equation*}
4900=-184.0779+0.7064 X \tag{1.6}
\end{equation*}
$$

which gives $X=7197$, approximately. That is, an income level of about 7197 (billion) dollars, given an MPC of about 0.70 , will produce an expenditure of about 4900 billion dollars. As these calculations suggest, an estimated model may be used for control, or policy, purposes. By appropriate fiscal and monetary policy mix, the government can manipulate the control variable $X$ to produce the desired level of the target variable $Y$.

### 1.4 Self Assessment Questions

1. What is Econometrics? Explain why a separate discipline of econometrics is need?
2. Explain the Role of Econometrics and what are the aims of Econometrics?
3. Discuss the scope, nature and limitations of Econometrics.

### 1.5 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 2

## SIMPLE REGRESSION ANALYSIS: ESTIMATION

### 2.0 Objective:

After studying the lesson the student will have clear idea regarding the objective of regression analysis, correlation vs regression, the estimation of the simple linear regression model and properties of the estimators.

## Structure of the Lesson:

### 2.1 Introduction

2.2 Regression versus Causation
2.3 Regression versus Correlation
2.4 Terminology and Notation
2.5 Simple Linear Regression Equation
2.6 The Significance of the Stochastic Disturbance Term
2.7 The Simple Linear Regression Model
2.8 Principle of Least Squares Estimation
2.9 Properties of Least Squares Estimators
2.10 The Coefficient of Determination $r^{2}$ :A Measure of "Goodness of Fit"
2.11 Self Assessment Questions

### 2.12 References

### 2.1 Introduction

Regression analysis is one of the most commonly used tools in econometric work. Regression analysis is concerned with describing and evaluating the relationship of a given variable (often called the explained or dependent variable) with one or more other variables (often called the explanatory or independent variables) with a view to estimate and/or predict the (population) mean or average value of the dependent variable in terms of the known or fixed (in repeated sampling) values of the independent variables.

If we are studying the dependence of a variable on only a single explanatory variable, such as that of consumption expenditure on real income, such a study is known as simple (twovariable) regression analysis. However, if we are studying the dependence of one variable on more than one explanatory variable, such as the study of the yield of a particular crop on rainfall, temperature, sunshine, and fertilizer, it is known as multiple regression analysis. In other words, in simple regression there is only one explanatory variable, whereas in multiple regression there are several explanatory variables.

## Some illustrations:

1. The well-known Keynesian consumption function, which is already explained in Lesson1.
2. A monopolist, who can fix

X=price or output (but not both), may want to find out the response of
$Y=d e m a n d$ for a product, to changes in price.
Such an experiment may enable the estimation of the price elasticity (i.e., price responsiveness) of the demand for the product and may help determine the most profitable price.
3. A labor economist may want to study the
$Y=$ rate of change of money wages
in relation to $X=$ the unemployment rate.
Such knowledge may be helpful in stating something about the inflationary process in an economy, for increases in money wages are likely to be reflected in increased prices.
4. The marketing director of a company may want to know how
$Y=$ demand for the company's product
is related to $\quad \mathrm{X}=$ advertising expenditure.
Such a study will be of considerable help in finding out the elasticity of demand with respect to advertising expenditure, that is, the percent change in demand in response to, say, a 1 percent change in the advertising budget. This knowledge may be helpful in determining the "optimum" advertising budget.
5. Finally, an agronomist may be interested in studying the dependence of
$\mathrm{Y}=$ crop yield, say, of wheat,
on $\quad X=$ rainfall.
Such a dependence analysis may enable the prediction or forecasting of the average crop yield, given information about the rainfall.

### 2.2 Regression versus Causation

Although regression analysis deals with the dependence of one variable on other variables, it does not necessarily imply causation. In the words of Kendall and Stuart, "A statistical relationship, however strong and however suggestive, can never establish causal connection and our ideas of causation must come from outside statistics, ultimately from some theory or other."

In the crop-yield example cited previously, there is no statistical reason to assume that crop yield does not depend on rainfall. The fact that we treat crop yield as dependent on rainfall (among other things) is due to non-statistical considerations. Common sense suggests that the relationship cannot be reversed, for we cannot control rainfall by varying crop yield.

In all the examples cited in Section 2.1, the point to note is that a statistical relationship in itself cannot logically imply causation. To ascribe causality, one must appeal to a priori or theoretical considerations. Thus, in the well-known Keynesian consumption function, discussed in Lesson1, one can invoke economic theory in saying that consumption expenditure depends on real income.

### 2.3 Regression versus Correlation

Closely related to but conceptually very much different from regression analysis is correlation analysis, where the primary objective is to measure the strength or degree of linear
association between two variables. The correlation coefficient measures this strength of (linear) association. For example, we may be interested in finding the correlation (coefficient) between smoking and lung cancer, between scores on statistics and mathematics examinations, between high school grades and college grades, and so on. In regression analysis, as already noted, we are not primarily interested in such a measure. Instead, we try to estimate or predict the average value of one variable on the basis of the fixed values of other variable. Thus, we may want to know whether we can predict the average score on a statistics examination by knowing a student's score on a mathematics examination.

Regression and correlation have some fundamental differences that are worth mentioning. In regression analysis there is an asymmetry in the way the dependent (explained) and independent (explanatory) variables are treated. The dependent variable is assumed to be statistical, random, or stochastic, that is, to have a probability distribution. The independent variable, on the other hand, is assumed to have fixed values (in repeated sampling), which was made explicit in the definition of regression. Thus, we assumed that the variable age was fixed at given levels and height measurements were obtained at these levels. In correlation analysis, on the other hand, we treat both the variables symmetrically; there is no distinction between the dependent and independent variables. After all, the correlation between scores on mathematics and statistics examinations is the same as that between scores on statistics and mathematics examinations. Moreover, both variables are assumed to be random. Most of the correlation theory is based on the assumption of randomness of variables, whereas in regression theory we have to assume that the dependent variable is stochastic but the independent variable, need not be stochastic always and in most of the occasions, may be non-stochastic or fixed variable.

### 2.4 Terminology and Notation

Before we proceed to a formal analysis of regression theory, let us spell out briefly on the matter of terminology and notation. In the literature, the terms dependent variable and independent variable are described variously. A representative list is:


Unless stated otherwise, the letter $Y$ will denote the dependent/explained variable and the $X$ 's $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ will denote the independent/explanatory variables, $X_{k}$ being the $k^{\text {th }}$ explanatory variable. The subscript $i$ or $t$ will denote the $i$ th or the $t^{\text {th }}$ observation or value. $X_{k i}$ (or $X_{k t}$ ) will denote the $i^{\text {th }}$ (or $t^{\text {th }}$ ) observation on variable $X_{k}$. As a matter of convention, the observation subscript $i$ will be used for cross sectional data (i.e., data collected at one point in time) and the subscript $t$ will be used for time series data (i.e., data collected over a period of time).

The term random is a synonym for the term stochastic. A random or stochastic variable is a variable that can take on any set of values, positive or negative, with a given probability.

### 2.5 Simple Linear Regression Equation

We may postulate the relationship between a dependent variable $Y$ and an independent variable $X$ as
$Y=f(X)$
which indicates that the variable $\mathbf{X}$ is influencing the other variable Y . Here the function $f(X)$ may be either a linear function or a non-linear function. Let us confine ourselves, in this lesson, to only a linear function. Hence, we may write the Eq. (2.1) as

$$
\begin{equation*}
Y=\alpha+\beta X \tag{2.2}
\end{equation*}
$$

where $\alpha$ and $\beta$ are the unknown parameters and are very often called as intercept and slope coefficients. Here, it may be noted that the above Eq. (2.2) is a deterministic or mathematical liner relationship, which is not suitable for measuring and testing the relationship between economic variables. Therefore, we have to convert the deterministic Eq. (2.2) into a stochastic equation by introducing a stochastic term into the equation. Thus, the linear relationship Eq. (2.2) may, now, be expressed as a stochastic linear relationship given by

$$
\begin{equation*}
Y=\alpha+\beta X+u \tag{2.3}
\end{equation*}
$$

where $u$ is a stochastic or random variable (often called as error term or disturbance term) with known p.d.f. In the above equation $\alpha+\beta X$ is the deterministic component of $Y$ and $u$ is the stochastic or random component. Eq. (2.3) is known as a simple linear regression equation. The unknown parameters $\alpha$ and $\beta$ are called as regression coefficients or regression parameters, which are to be estimated from the data on $Y$ and $X$.

### 2.6 The Significance of the Stochastic Disturbance term

The following are the various reasons for inclusion of the stochastic disturbance term $u$ in the simple linear model.

1. Unpredictable element of randomness in human behavior/responses: For instance, if $Y=$ consumption expenditure of a household and $\mathrm{X}=$ disposable income of the household, there is an unpredictable element of randomness in each household's consumption. The household does not behave like a machine. In one month the people in the household are on a spending spree. In another month they are tightfisted.
2. Effect of a large number of omitted variables. Again, in our example, $X$ is not the only variable influencing Y. The family size, tastes of the family, spending habits, and so on, affect the variable Y . The error $u$ is a catchall for the effects of all these variables, some of which may not even be quantifiable, and some of which may not even be identifiable. But it is quite possible that the joint influence of all or some of these variables may be so small and at best nonsystematic or random that as a practical matter and for cost considerations it does not pay to introduce them into the model explicitly.
3. Unavailability of data: Even if we know what some of the excluded variables are and therefore consider a multiple regression rather than a simple regression, we may not have quantitative information about these variables. It is a common experience in empirical analysis that the data, which we would like to have ideally, often are not available. For example, in principle we could introduce family wealth as an explanatory
variable in addition to the income variable to explain family consumption expenditure. But unfortunately, information on family wealth generally is not available. Therefore, we may be forced to omit the wealth variable from our model despite its great theoretical relevance in explaining consumption expenditure.
4. Measurement error in Y. In our example this refers to measurement error in the household consumption. That is, we cannot measure it accurately. The disturbance term $u$ may represent these errors of measurement.
5. Wrong functional form: Even if we have theoretically correct variables explaining a phenomenon and even if we can obtain data on these variables, very often we do not know the form of the functional relationship between the regressand and the regressors. Is consumption expenditure a linear (in variables) function of income or a nonlinear (in variables) function? In two-variable models the functional form of the relationship can often be judged from the scatter diagram. But in a multiple regression model, it is not easy to determine the appropriate functional form, for graphically we cannot visualize

For all these reasons, the stochastic disturbance $u$ assume an extremely critical role in regression analysis, which we will see as we progress.

### 2.7 The Simple Linear Regression Model

If we have $n$ observations on $Y$ and $X$, we can write Eq. (2.3) as

$$
\begin{equation*}
Y_{i}=\alpha+\beta X_{i}+u_{i} \quad \forall i \tag{2.4}
\end{equation*}
$$

Now, our objective is to get estimates of the unknown parameters $\alpha$ and $\beta$ of the above equation based on the given $n$ sets of observations on $Y$ and $X$. In order to do this we have to make some assumptions about the error terms $u_{i} \mathrm{~s}$, which are given below.

1. Zero mean. $E\left(u_{i}\right)=0 \quad \forall i$. Equivalently $E\left(Y_{i}\right)=\alpha+\beta X_{i} \quad \forall i$
2. Homoscedasticity or Common Variance. $\operatorname{var}\left(u_{i}\right)=E\left(u_{i}^{2}\right)=\sigma^{2} \quad \forall i$.
3. No autocorrelation between the disturbances. In other words, $u_{i}$ and $u_{j}(i \neq j)$ are uncorrelated. i.e. $\operatorname{cov}\left(u_{i}, u_{j}\right)=E\left(u_{i} u_{j}\right)-E\left(u_{i}\right) E\left(u_{j}\right)=E\left(u_{i} u_{j}\right)=0 \quad \forall i \neq j$.
4. $X$ values are fixed in repeated sampling. Values taken by the regressor $X$ are considered fixed in repeated samples. More technically, $X$ is assumed to be nonstochastic.
5. Zero covariance between $u_{i}$ and $X_{i}$, or $\operatorname{cov}\left(X_{i}, u_{i}\right)=0$. It will be automatically fulfilled if $X$ variable is non-random or non-stochastic
6. The number of observations $n$ must be greater than the number of parameters to be estimated. Alternatively, the number of observations $n$ must be greater than the number of explanatory variables.
7. The regression model is correctly specified. Alternatively, there is no specification bias or error in the model used in empirical analysis.
The set of $n$ equations given in Eq. (2.4) along with the above assumptions is called simple linear regression model.

### 2.8 Principle of Least Squares Estimation

Now, let us consider the simple linear regression model, which is explained in the above section, given by

$$
\begin{align*}
& Y_{i}=\alpha+\beta X_{i}+u_{i} \quad i=1,2, \ldots, n \\
& E\left(u_{i}\right)=0 \text { for all } i \\
& \operatorname{cov}\left(u_{i}, u_{j}\right)=E\left(u_{i} u_{j}\right)= \begin{cases}0 & \text { for } i \neq j ; i, j=1,2, \ldots, n \\
\sigma^{2} & \text { for } i=j ; i, j=1,2, \ldots, n\end{cases} \tag{2.5}
\end{align*}
$$

where $\alpha, \beta$, and $\sigma^{2}$ are unknown parameters.
Let us suppose that $\hat{\alpha}$ and $\hat{\beta}$ are some arbitrary estimates of the unknown parameters $\alpha$ and $\beta$ of the above model. Then the unknown regression model Eq. (2.5) may be replaced with an estimated regression model as

$$
\begin{equation*}
Y_{i}=\hat{\alpha}+\hat{\beta} X_{i}+e_{i} \quad i=1,2, \ldots, n \tag{2.6}
\end{equation*}
$$

where $e_{i}$ is the difference between observed $Y_{i}$ and estimated $\hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$ often called as 'residual'.
Now, the method of principle of least squares is that the $\hat{\alpha}$ and $\hat{\beta}$ should be chosen so as the residual sum of squares

$$
\begin{equation*}
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{Y}_{\mathrm{i}}-\hat{\alpha}-\hat{\beta} X_{i}\right)^{2} \tag{2.7}
\end{equation*}
$$

is least. In order to minimize $\sum_{i=1}^{n} e_{i}^{2}$, the partial derivatives of it with respect to $\hat{\alpha}$ and $\hat{\beta}$ are set to be equal to zero. So that

$$
\begin{align*}
& \frac{\partial}{\partial \hat{\alpha}}\left(\sum_{i=1}^{n} e_{i}^{2}\right)=-2 \sum_{i=1}^{n}\left(Y_{i}-\hat{\alpha}-\hat{\beta} X_{i}\right)=0 \\
& \frac{\partial}{\partial \hat{\beta}}\left(\sum_{i=1}^{n} e_{i}^{2}\right)=-2 \sum_{i=1}^{n} X_{i}\left(Y_{i}-\hat{\alpha}-\hat{\beta} X_{i}\right)=0 \tag{2.8}
\end{align*}
$$

Simplifying these equations, we get

$$
\begin{align*}
\sum_{i=1}^{n} Y_{i} & =n \hat{\alpha}+\hat{\beta} \sum_{i=1}^{n} X_{i} \\
\sum_{i=1}^{n} X_{i} Y_{i} & =\hat{\alpha} \sum_{i=1}^{n} X_{i}+\hat{\beta} \sum_{i=1}^{n} X_{i}^{2} \tag{2.9}
\end{align*}
$$

The pair of equations given above are popularly known as the normal equations of the straight line $Y=\hat{\alpha}+\hat{\beta} X$.
Dividing the first equation of Eq. (2.9) by n, we get

$$
\begin{equation*}
\bar{Y}=\hat{\alpha}+\hat{\beta} \bar{X}, \quad \text { where } \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \tag{2.10}
\end{equation*}
$$

If we replace $\hat{\alpha}$, using Eq. (2.10), in second equation of Eq. (2.9), we get

$$
\begin{align*}
\sum_{i=1}^{n} X_{i} Y_{i} & =(\bar{Y}-\hat{\beta} \bar{X}) \sum_{i=1}^{n} X_{i}+\hat{\beta} \sum_{i=1}^{n} X_{i}^{2} \\
& =n \bar{X} \bar{Y}+\hat{\beta}\left(\sum_{i=1}^{n} X_{i}^{2}-\mathrm{n} \bar{X}^{2}\right) \tag{2.11}
\end{align*}
$$

Rearranging Eq. (2.11), we get

$$
\begin{equation*}
\hat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}-\bar{X} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}}=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} \tag{2.12}
\end{equation*}
$$

From Eq. (2.10) we get

$$
\begin{equation*}
\hat{\alpha}=\bar{Y}-\hat{\beta} \bar{X} \tag{2.13}
\end{equation*}
$$

Eqs. (2.12) and (2.13) are known as the least squares estimators of the parameters $\alpha$ and $\beta$ respectively.

Remark 1: From first Eq. (2.8), we have

$$
\begin{align*}
& \sum_{i=1}^{n}\left(Y_{i}-\hat{\alpha}-\hat{\beta} X_{i}\right)=0 \\
\Rightarrow & \sum_{i=1}^{n} e_{i}=0 \text { i.e. The sum of the residuals is zero } \tag{2.14}
\end{align*}
$$

Remark 2: From Eq. (2.10), we may note that the estimated regression line passes through the point of means $(\bar{X}, \bar{Y})$.

### 2.9 Properties of Least Squares Estimators

From Eq. (2.12), we may write that

$$
\begin{aligned}
\hat{\beta}= & \frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}-\bar{X} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}} \\
= & \frac{\sum_{i=1}^{n} X_{i} Y_{i}-\mathrm{n} \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_{i}^{2}-\mathrm{n} \bar{X}^{2}}
\end{aligned}
$$

## $\begin{array}{lll}\text { Centre for Distance Education } & 2.8 \quad \text { Acharya Nagarjuna University }\end{array}$

$$
\begin{align*}
\hat{\beta} & =\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}, \quad \text { where } \mathrm{x}_{i}=X_{i}-\bar{X} \text { and } \mathrm{y}_{i}=Y_{i}-\bar{Y} \\
& =\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{\bar{Y} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \\
& =\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}, \quad\left(\because \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}-n \bar{X}=n \bar{X}-n \bar{X}=0\right) \\
& =\sum_{i=1}^{n} w_{i} Y_{i} \quad \text { where } w_{i}=\frac{x_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \tag{2.15}
\end{align*}
$$

and we may note that

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{n}} w_{i}=0, \quad \sum_{i=1}^{n} w_{i}^{2}=\frac{1}{\sum_{i=1}^{n} x_{i}^{2}}, \quad \sum_{\mathrm{i}=1}^{\mathrm{n}} w_{i} x_{i}=\sum_{\mathrm{i}=1}^{\mathrm{n}} w_{i} X_{i}=1 \tag{2.16}
\end{equation*}
$$

From Eq. (2.15) we may notice that $\hat{\beta}$ is a linear function of the actual observations $Y_{i}$, $\mathrm{i}=1,2, \ldots, \mathrm{n}$.
Substituting Eq. (2.15) in Eq. (2.13) and rearranging it we get

$$
\begin{equation*}
\hat{\alpha}=\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) Y_{i} \tag{2.17}
\end{equation*}
$$

Thus from Eqs. (2.15) and (2.17), the least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ are linear estimators.

Using Eq. (2.4) in Eq. (2.15) we ge
Substituting Eq. (2.4) in Eq. (2.15), we get

$$
\begin{equation*}
\hat{\beta}=\sum w_{i} Y_{i}=\sum w_{i}\left(\alpha+\beta X_{i}+u_{i}\right)=\beta+\sum_{i=1}^{n} w_{i} u_{i} \quad \text { (using Eq.(2.16)) } \tag{2.18}
\end{equation*}
$$

Taking expectation on both sides, we get

$$
\begin{equation*}
\mathrm{E}(\hat{\beta})=\beta+\sum_{i=1}^{n} w_{i} \mathrm{E}\left(u_{i}\right)=\beta \quad\left(\because \mathrm{E}\left(u_{i}\right)=0\right) \tag{2.19}
\end{equation*}
$$

Thus $\hat{\beta}$ is a linear unbiased estimator of $\beta$
Similarly, subtitling Eq. (2.4) in Eq. (2.17) we get

$$
\begin{align*}
\hat{\alpha} & =\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right)\left(\alpha+\beta X_{i}+u_{i}\right) \\
& =\alpha-\alpha \bar{X} \sum_{i=1}^{n} w_{i}+\beta \bar{X}-\beta \bar{X} \sum_{i=1}^{n} w_{i} X_{i}+\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) u_{i} \\
& =\alpha+\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) u_{i} \quad \text { (using Eq.(2.16)) } \tag{2.20}
\end{align*}
$$

Taking expectation on both sides, we get

$$
\begin{equation*}
\mathrm{E}(\hat{\alpha})=\alpha+\sum\left(\frac{1}{n}-\bar{X} w_{i}\right) \mathrm{E}\left(u_{i}\right)=\alpha \quad\left(\because \mathrm{E}\left(u_{i}\right)=0 \forall \mathrm{i}\right) \tag{2.21}
\end{equation*}
$$

Thus $\hat{\alpha}$ is linear unbiased estimator of $\alpha$

The variance of $\hat{\beta}$ is given by

$$
\begin{array}{rlr}
\operatorname{var}(\hat{\beta}) & =E\left[(\hat{\beta}-\beta)^{2}\right] & \\
& =E\left[\left(\sum_{i=1}^{n} w_{i} u_{i}\right)^{2}\right] \quad & \quad \text { (using Eq.(2.18)) } \\
& =E\left[\sum_{i=1}^{n} w_{i}^{2} u_{i}^{2}+\sum_{i \neq j=1}^{n} w_{i} w_{j} u_{i} u_{j}\right] \\
& =\sum_{i=1}^{n} w_{i}^{2} E\left(u_{i}^{2}\right) & \left(\because E\left(u_{i} u_{j}\right)=0\right) \\
& =\sigma^{2} \sum_{i=1}^{n} w_{i}^{2} & \left(\because E\left(u_{i}^{2}\right)=\sigma^{2}\right)
\end{array}
$$

Using Eq. (2.16), we get

$$
\begin{equation*}
\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \tag{2.22}
\end{equation*}
$$

We derive in a similar fashion the variance of $\hat{\alpha}$ as

$$
\begin{array}{rlr}
\operatorname{var}(\hat{\alpha}) & =E\left[(\hat{\alpha}-\alpha)^{2}\right] \\
& =\left[\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) u_{i}\right]^{2} & (\text { from Eq. (2.20)) }  \tag{2.20}\\
& =\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right)^{2} E\left(u_{i}^{2}\right) \quad\left(\because \mathrm{E}\left(u_{i} u_{j}\right)=0 \forall \mathrm{i} \neq \mathrm{j}\right) \\
& =\left(\frac{1}{n}+\bar{X}^{2} \sum_{i=1}^{n} w_{i}^{2}-\frac{2 \bar{X}}{n} \sum_{i=1}^{n} w_{i}\right) \sigma^{2} & \left(\because \mathrm{E}\left(u_{i}^{2}\right)=\sigma^{2}\right) \\
& =\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right) \sigma^{2} & \text { (using Eq. (2.16)) }
\end{array}
$$

and rearranging slightly, we get

$$
\begin{equation*}
\operatorname{var}(\hat{\alpha})=\frac{\sum_{i=1}^{n} x_{i}^{2}+n \bar{X}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}} \sigma^{2}=\frac{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}+n \bar{X}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}} \sigma^{2}=\frac{\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}} \sigma^{2} \tag{2.23}
\end{equation*}
$$

From Eq. (2.20) we have

$$
\begin{align*}
\hat{\alpha}-\alpha & =\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) u_{i} \\
& =\bar{u}-\bar{X} \sum_{i=1}^{n} w_{i} u_{i} \\
& =\bar{u}-\bar{X}(\hat{\beta}-\beta) \tag{2.18}
\end{align*}
$$

Now the covariance between $\hat{\alpha}$ and $\hat{\beta}$ is

$$
\begin{align*}
\operatorname{cov}(\hat{\alpha}, \hat{\beta}) & =\mathrm{E}\{(\hat{\alpha}-\alpha)(\hat{\beta}-\beta)\}=\mathrm{E}\{[\bar{u}-\overline{\mathrm{X}}(\hat{\beta}-\beta)](\hat{\beta}-\beta)\} \\
& =-\overline{\mathrm{X}} \mathrm{E}\left\{(\hat{\beta}-\beta)^{2}\right\}=-\overline{\mathrm{X}} \operatorname{var}(\hat{\beta}) \quad(\because \mathrm{E}\{(\hat{\beta}-\beta) \bar{u}\}=0) \\
& =-\frac{\overline{\mathrm{X}} \sigma_{u}^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \tag{2.24}
\end{align*}
$$

The least-squares estimator $\hat{\beta}$ is BLUE (Gauss-Markov theorem for simple linear regression model):

In the above, we have already shown that $\hat{\beta}$ is a linear unbiased estimator of $\beta$. Now, in order to show that $\hat{\beta}$ is BLUE, we have to yet show that $\hat{\beta}$ has minimum variance among the class of all unbiased estimators.

Now, let us consider an arbitrary linear estimator of $\beta$ given by

$$
\begin{equation*}
b=\sum_{i=1}^{n} c_{i} Y_{i} \tag{2.25}
\end{equation*}
$$

where the problem is to choose the weights $c_{i}$ s such that

$$
\mathrm{E}(b)=\beta
$$

and to make the $\operatorname{var}(b)$ as small as possible. Using Eq. (2.4) in Eq. (2.25), we get

$$
\begin{aligned}
b & =\sum_{i=1}^{n} c_{i}\left(\alpha+\beta X_{i}+u_{i}\right) \\
& =\alpha \sum_{i=1}^{n} c_{i}+\beta \sum_{i=1}^{n} c_{i} X_{i}+\sum_{i=1}^{n} c_{i} u_{i}
\end{aligned}
$$

Taking expectation on both sides, we get

$$
\begin{equation*}
E(b)=\alpha \sum_{i=1}^{n} c_{i}+\beta \sum_{i=1}^{n} c_{i} X_{i} \quad\left(\because E\left(u_{i}\right)=0\right) \tag{2.26}
\end{equation*}
$$

and $\quad E(b)=\beta \quad \Leftrightarrow \sum_{i=1}^{n} c_{i}=0$ and $\sum_{i=1}^{n} c_{i} X_{i}=1$
Under conditions given in Eq. (2.26), the above equation becomes

$$
\begin{align*}
b & =\beta+\sum_{i=1}^{n} c_{i} u_{i} \\
\text { and } \operatorname{var}(b) & =E\left[(b-\beta)^{2}\right] \\
& =E\left[\left(\sum_{i=1}^{n} c_{i} u_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} c_{i}^{2} E\left(u_{i}^{2}\right) \quad\left(\because E\left(u_{i} u_{j}\right)=0 \quad \forall i \neq j\right) \\
& =\sigma^{2} \sum_{i=1}^{n} c_{i}^{2} \tag{2.27}
\end{align*}
$$

The problem now is to minimize $\operatorname{var}(b)$ subject to the conditions given in Eq. (2.26).
But, from Eq. (2.22) the variance of OLS estimator $\hat{\beta}$ is $\operatorname{var}(\hat{\beta})=\sigma^{2} \sum_{i=1}^{n} w_{i}^{2}$ where $w_{i}=\frac{x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$
for comparing $\operatorname{var}(b)$ with $\operatorname{var}(\hat{\beta})$, we write

$$
\begin{align*}
& c_{i}=w_{i}+\left(c_{i}-w_{i}\right) \\
& \sum_{i=1}^{n} c_{i}^{2}=\sum_{i=1}^{n} w_{i}^{2}+\sum_{i=1}^{n}\left(c_{i}-w_{i}\right)^{2}+2 \sum_{i=1}^{n} w_{i}\left(c_{i}-w_{i}\right) \tag{2.29}
\end{align*}
$$

Consider

$$
\begin{array}{rlr}
\sum_{i=1}^{n} w_{i}\left(c_{i}-w_{i}\right)= & \sum_{i=1}^{n} w_{i} c_{i}-\sum_{i=1}^{n} w_{i}^{2} \\
& =\frac{\sum_{i=1}^{n} x_{i} c_{i}}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{1}{\sum_{i=1}^{n} x_{i}^{2}} & (\because \text { from Eq. }(2 . \\
& =\frac{\sum_{i=1}^{n} c_{i} X_{i}}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{\bar{X} \sum_{i=1}^{n} c_{i}}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{1}{\sum_{i=1}^{n} x_{i}^{2}} & \left(\because x_{i}=X_{i}-\bar{X}\right) \\
& =\frac{1}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \\
& =0 \tag{2.30}
\end{array} \quad \text { (using Eq. }(2 .)
$$

Substituting Eq. (2.30) in Eq. (2.29), we get

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i}^{2}=\sum_{i=1}^{n} w_{i}^{2}+\sum_{i=1}^{n}\left(c_{i}-w_{i}\right)^{2} \tag{2.31}
\end{equation*}
$$

Substituting Eq. (2.31) in Eq. (2.27) we get

$$
\begin{aligned}
\operatorname{var}(b) & =\sigma^{2}\left[\sum_{i=1}^{n} w_{i}^{2}+\sum_{i=1}^{n}\left(c_{i}-w_{i}\right)^{2}\right] \\
& =\operatorname{var}(\hat{\beta})+\sigma^{2} \sum_{i=1}^{n}\left(c_{i}-w_{i}\right)^{2}
\end{aligned}
$$

Since $\sum_{i=1}^{n}\left(c_{i}-w_{i}\right)^{2} \geq 0$, we have

$$
\begin{equation*}
\operatorname{var}(b) \geq \operatorname{var}(\hat{\beta}) \tag{2.32}
\end{equation*}
$$

Equality hold only when $c_{i}=w_{i}$ for all $i$, in which case obviously $b=\hat{\beta}$
Thus $\hat{\beta}$ is a linear unbiased estimator of $\beta$ with minimum variance among the class of all linear unbiased estimators. Therefore, by definition, $\hat{\beta}$ is BLUE of $\beta$.
Hence Gauss-Markov theorem is proved in case of simple linear regression model.
The least-squares estimator of $\sigma^{2}$ :
We have the simple linear model

$$
\begin{equation*}
Y_{i}=\alpha+\beta X_{i}+u_{i} \quad i=1,2, \ldots, n \tag{2.33}
\end{equation*}
$$

with the assumptions

1. $E\left(u_{i}\right)=0 \quad \forall i$.
2. $\operatorname{var}\left(u_{i}\right)=E\left(u_{i}^{2}\right)=\sigma^{2} \quad \forall i$.
3. $\operatorname{cov}\left(u_{i}, u_{j}\right)=E\left(u_{i} u_{j}\right)-E\left(u_{i}\right) E\left(u_{j}\right)=E\left(u_{i} u_{j}\right)=0 \quad \forall i \neq j$.

If we average the above equation over the n sample values we obtain

$$
\begin{equation*}
\bar{Y}=\alpha+\beta \bar{X}+\bar{u} \tag{2.34}
\end{equation*}
$$

Subtracting Eq. (2.34) from Eq. (2.33) we get

$$
y_{i}=\beta x_{i}+\left(u_{i}-\bar{u}\right)
$$

suppose $\hat{\beta}$ is least squares estimator of $\beta$ then we have $\hat{y}_{i}=\hat{\beta} x_{i}$. Hence the residual $e_{i}=\mathrm{y}_{i}-\hat{\mathrm{y}}_{i}=\beta x_{i}+\left(u_{i}-\bar{u}\right)-\hat{\beta} x_{i}=-(\hat{\beta}-\beta) x_{i}+\left(u_{i}-\bar{u}\right)$
Therefore

$$
\sum_{i=1}^{n} e_{i}^{2}=(\hat{\beta}-\beta)^{2} \sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)^{2}-2(\hat{\beta}-\beta) \sum_{i=1}^{n} x_{i}\left(u_{i}-\bar{u}\right)
$$

Taking expected values of each term on the right-hand side gives

$$
\begin{aligned}
& E\left[(\hat{\beta}-\beta)^{2} \sum_{i=1}^{n} x_{i}^{2}\right]=\operatorname{Var}(\hat{\beta}) \sum_{i=1}^{n} x_{i}^{2}=\sigma^{2} \\
& E\left[\sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)^{2}\right]=E\left[\sum_{i=1}^{n} u_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} u_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{n} E\left(u_{i}^{2}\right)-\frac{1}{n}\left(\sum_{i=1}^{n} E\left(u_{i}^{2}\right)\right) \quad\left(\because \mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}\right)=0\right) \\
& =\sum_{i=1}^{n} \operatorname{var}\left(u_{i}\right)-\frac{1}{n}\left(\sum_{i=1}^{n} \operatorname{var}\left(u_{i}\right)\right) \quad\left(\because \mathrm{E}\left(\mathrm{u}_{\mathrm{i}}\right)=0\right) \\
& =\mathrm{n} \sigma^{2}-\frac{1}{n}\left(n \sigma^{2}\right) \\
& =(\mathrm{n}-1) \sigma^{2} \\
& E\left[(\hat{\beta}-\beta) \sum_{i=1}^{n} x_{i}\left(u_{i}-\bar{u}\right)\right]=E\left[\frac{\sum x_{i} u_{i}}{\sum x_{i}^{2}} \sum x_{i}\left(u_{i}-\bar{u}\right)\right] \\
& =E\left[\frac{\sum x_{i} u_{i}}{\sum x_{i}^{2}}\left(\sum x_{i} u_{i}-\bar{u} \sum x_{i}\right)\right] \\
& =E\left[\frac{\left(\sum x_{i} u_{i}\right)^{2}}{\sum x_{i}^{2}}\right] \\
& \left(\because \sum x_{i}=0\right) \\
& =\frac{\sum x_{i}^{2} E\left(u_{i}^{2}\right)}{\sum x_{i}^{2}} \\
& \left(\because E\left(u_{i} u_{j}\right)=0\right) \\
& =\sigma^{2}
\end{aligned}
$$

Hence, $E\left[\sum_{i=1}^{n} e_{i}^{2}\right]=\sigma^{2}+(\mathrm{n}-1) \sigma^{2}-2 \sigma^{2}=(\mathrm{n}-2) \sigma^{2}$
Thus the least squares estimator

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} \quad \text { is an unbiased estimator of } \sigma^{2} \tag{2.35}
\end{equation*}
$$

### 2.10 The Coefficient of Determination $r^{2}$ :A Measure of "Goodness of Fit":

We now consider the goodness of fit of the fitted regression line to a set of data; that is, we shall find out how "well" the regression line fits the data. If all the sample observations $\left(Y_{i}, X_{i}\right), i=1,2, \ldots, n$, lie on the fitted regression line, then we say that the regression fit is "perfect" fit, but this is a very rare case. Generally, there will be some positive residuals and some negative residuals and let us hope that these residuals, around the fitted regression line, are as small as possible. The coefficient of determination $r^{2}$ (simple regression case) or $R^{2}$ (multiple regression case) is a summary measure that tells how well the regression line fits the data.

We have the residual,

$$
\begin{equation*}
e_{i}=\mathrm{Y}_{i}-\hat{Y}_{i}=\mathrm{Y}_{i}-\hat{\alpha}-\hat{\beta} X_{i} \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \tag{2.36}
\end{equation*}
$$

But we have the OLS estimator of $\alpha$

$$
\hat{\alpha}=\bar{Y}-\hat{\beta} \bar{X}
$$

which is substituted in Eq. (2.36) to get

$$
\begin{align*}
e_{i} & =\mathrm{Y}_{i}-\bar{Y}+\hat{\beta} \bar{X}-\hat{\beta} X_{i} \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \\
& =\mathrm{Y}_{i}-\bar{Y}-\hat{\beta}\left(X_{i}-\bar{X}\right) \\
& =\mathrm{y}_{i}-\hat{\beta} x_{i}, \quad \text { where } x_{i}=X_{i}-\bar{X} \& \mathrm{y}_{i}=\mathrm{Y}_{i}-\bar{Y} \tag{2.37}
\end{align*}
$$

squaring Eq. (2.37) on both sides and summing over the sample we get

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n} y_{i}^{2}-2 \hat{\beta} \sum_{i=1}^{n} x_{i} \mathrm{y}_{i}+\hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2}
$$

Thus, the residual sum of squares is quadratic function of $\hat{\beta}$.
But we know that

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

There fore

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n} y_{i}^{2}-2 \hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2}+\hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} y_{i}^{2}-\hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2}
$$

which may be rewritten as

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}^{2}=\hat{\beta}^{2} \sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(\hat{\beta} x_{i}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n} \hat{y}_{i}^{2}+\sum_{i=1}^{n} e_{i}^{2} \tag{2.38}
\end{equation*}
$$

which is a famous decomposition of sum of squares and is usually writes as
TSS=ESS+RSS
where

$$
\begin{aligned}
\text { TSS } & =\text { total sum of squared deviation in } Y \text { variable } \\
& =\sum_{i=1}^{n} y_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { ESS } & =\text { explained sum of squares from the regression of } Y \text { on } X \\
& =\sum_{i=1}^{n} \hat{y}_{i}^{2}
\end{aligned}
$$

$$
\text { RSS }=\underset{n}{l-1} \text { residual or unexplained sum of squares from the regression of } Y \text { on } X
$$

$$
=\sum_{i=1}^{n} e_{i}^{2}
$$

Now substituting $\hat{\beta}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$ in Eq. (2.38), we get

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}^{2}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}+\sum_{i=1}^{n} e_{i}^{2}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}} \sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n} e_{i}^{2} \tag{2.40}
\end{equation*}
$$

But, by definition the simple correlation coefficient ' $r$ ' is given by

$$
\begin{equation*}
r=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}}} \tag{2.41}
\end{equation*}
$$

Substituting Eq. (2.41) in Eq. (2.40), we get

$$
\sum_{i=1}^{n} y_{i}^{2}=r^{2} \sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n} e_{i}^{2} \Rightarrow 1=r^{2}+\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}
$$

$$
\begin{gathered}
r^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}=1-\frac{R S S}{T S S} \\
\text { (OR) } r^{2}=\frac{\sum_{i=1}^{n} \hat{y}_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}=\frac{E S S}{T S S} \quad(\text { using Eq. (2.39)) }
\end{gathered}
$$

In the above equation the square of correlation coefficient ${ }^{\prime} r^{2}$ 'is usually called as coefficient of determination.
Note: The coefficient of determination obviously lies between 0 and 1. i.e., $0<\mathrm{r}^{2}<1$.

### 2.11 SELF ASSESSMENT QUESTIONS

1. Derive OLS estimators in a two variable linear model.
2. Explain the significance of the disturbance (error) term in a two variable regression model.
3. Explain the justification for the inclusion of disturbance (error) term in a simple linear model.
4. Show that OLS estimators of intercept and slope in a two variable regression model are unbiased.
5. Prove Gauss-Markov theorem in case of simple linear regression model.
6. Show that OLS estimators of intercept and slope in a two variable regression model are BLUEs.
7. Show that the sum of residuals is zero in a simple linear model.
8. Derive the least squares estimator of a regression coefficient and its variance in a two variable linear model.
9. Derive the normal equations for simple linear model.
10. Derive the least square estimate of the variance of the disturbance term in the single linear model and show that it is unbiased.
11. Distinguish between regression and correlation.
12. Let $\hat{\boldsymbol{\beta}}_{x y}$ and $\hat{\boldsymbol{\beta}}_{y x}$ represents the slopes in the regression of $X$ and $Y$ and $Y$ on $X$ respectively. Show that $\boldsymbol{\beta}_{x y} \boldsymbol{\beta}_{y x}=r^{2}$ where $r^{2}=r(x, y)$.
13. Define coefficient of determination in simple linear model.
14. Derive the coefficient of determination in simple linear model.
15. Derive an unbiased estimator of the variance of the disturbance term in the single linear model.

## Econometrics <br> 2.17 Simple Regression Analysis : Estimation

### 2.12 REFERENCES

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Wiley \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

## Lesson 3

## SIMPLE REGRESSION ANALYSIS: TESTS OF SIGNIFICANCE AND PREDICTION

### 3.0 Objective:

The objective of this lesson is to derive the significance tests and confidence in travels for the slope $(\beta)$ and intercept $(\alpha)$ of the simple linear model. Further, in this lesson, point and interval predictions are derived for the predictor (dependent) variable.

## Structure of the Lesson:

### 3.1 Introduction

3.2 The Sampling Distributions of the OLS Estimators
3.3 Test of the Significance and Confidence Interval of $\beta$
3.4 Test of the Significance and Confidence Interval of $\alpha$
3.5 Prediction in the Least-Square Model
3.6 Self Assessment Questions

### 3.7 References

### 3.1 Introduction

The results established in Lesson 2 are based on the assumption that the $u_{i} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$. Thus $u_{i}$ is a random variable whose mean is zero and whose variance is $\sigma^{2}$. Further $u_{i} s$ are independently and identically distributed. But, the probability distribution function of $u_{i}$ is not specified.

Now to carry out the tests of significance about the parameters of the regression model, we need further assumption about the probability distribution of the u's. The standard assumption is that of normality, which may be justified by appeal to the Central Limit Theorem, since the u's represent the net effect of many separate but unmeasured influences.

Estimation of the regression model is half the battle and testing the fitted regression model is other half. In this lesson we discuss the testing of the regression model along with the prediction or forecasting.

### 3.2 The Sampling Distributions of the OLS Estimators:

Let us reconsider the two variable regression model (Eq. (2.4) in Lesson 2) along the additional assumption of the normality of the disturbance term u .

$$
\begin{equation*}
Y_{i}=\alpha+\beta X_{i}+u_{i} \quad i=1,2, \ldots, n \tag{3.1}
\end{equation*}
$$

where
i. $E\left(u_{i}\right)=0 \quad \forall i$
ii. $\operatorname{var}\left(u_{i}\right)=E\left(u_{i}^{2}\right)=\sigma^{2} \quad \forall i$.
iii. $\operatorname{cov}\left(u_{i}, u_{j}\right)=E\left(u_{i} u_{j}\right)=0 \quad \forall i \neq j$
iv. $u_{i}$ is normal (additional assumption)
the above assumptions may stated in compact form

$$
\begin{equation*}
u_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{n} \tag{3.2}
\end{equation*}
$$

From equation (2.18) (Lesson 2), the OLS estimator of $\beta$ is given by

$$
\begin{equation*}
\hat{\beta}=\beta+\sum_{i=1}^{n} w_{i} u_{i}, \quad \text { where } w_{i}=\frac{x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}, x_{i}=\mathrm{X}_{i}-\overline{\mathrm{X}} \tag{3.3}
\end{equation*}
$$

From the above equation, we may notice that the OLS estimator $\hat{\beta}$ is a linear combination of normal random disturbances $u_{i} s$. But, we know that every linear combination of a set of independent normal variates is also a normal variate. Thus from Eqs. (3.2) and (3.3), we may say that the sampling distribution of $\hat{\beta}$ is a normal variate whose mean and variance are given by

$$
E(\hat{\beta})=\beta+\sum_{i=1}^{n} w_{i} E\left(u_{i}\right)=\beta \quad\left(\because E\left(u_{i}\right)=0\right)
$$

and $\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$
(from Eq. (2.22))

Therefore sampling distribution of $\hat{\beta}$ is $N\left(\beta, \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right)$
Similarly, from equation (2.20) of lesson 2, the OLS estimator of $\alpha$

$$
\begin{equation*}
\hat{\alpha}=\alpha+\sum_{i=1}^{n}\left(\frac{1}{n}-\bar{X} w_{i}\right) u_{i} \tag{3.5}
\end{equation*}
$$

Since $\hat{\alpha}$ is a linear combination of independent normal random disturbances $u_{i}{ }^{\prime} s, \hat{\alpha}$ is also a normal variate and its mean is given by

$$
E(\hat{\alpha})=\alpha \quad\left(\because E\left(u_{i}\right)=0\right)
$$

From equation (2.23) of lesson 2 , variance of $\hat{\alpha}$ is given by

$$
\begin{equation*}
\operatorname{var}(\hat{\alpha})=\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}}\right) \sigma^{2} \tag{3.6}
\end{equation*}
$$

Therefore the sampling distribution of $\hat{\alpha}$ is

$$
\begin{equation*}
\hat{\alpha} \sim N\left(\alpha, \frac{\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}} \sigma^{2}\right) \tag{3.7}
\end{equation*}
$$

Note: The standard deviation of the sampling distribution of an estimator is often referred to a standard error of the estimator.

### 3.3 Test of the Significance and confidence interval of $\beta$ :

Since the sampling distribution of $\hat{\beta}$, from the above section, involves the unknown parameter $\sigma^{2}$, it is not operational as it stands. To derive the sampling distribution of $\hat{\beta}$, which does not depend on the unknown $\sigma^{2}$, we have to adopt the following two results.

$$
\begin{equation*}
\text { i. } \quad \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2} \tag{3.8}
\end{equation*}
$$

and ii. $\quad \sum_{i=1}^{n} e_{i}^{2}$ is independently distributed of $\hat{\beta}$.
From Eq. (3.4) of the above section, we may write

$$
\begin{equation*}
\frac{\hat{\beta}-\beta}{\sigma / \sqrt{\sum_{i=1}^{n} x_{i}^{2}}} \sim N(0,1) \tag{3.10}
\end{equation*}
$$

We know that the t-distribution is the ratio of a standard normal variate to the square root of an independent $\chi^{2}$ variate divided by its degrees of freedom (d.f.). Therefore, from Eqs.(3.9) \& (3.10) we may immediately write

$$
t=\frac{(\hat{\beta}-\beta) \sqrt{\sum_{i=1}^{n} x_{i}^{2}} / \sigma}{\sqrt{\sum_{i=1}^{n} e_{i}^{2}} / \sigma \sqrt{n-2}}=\frac{(\hat{\beta}-\beta) \sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{\sqrt{\sum_{i=1}^{n} e_{i}^{2}} / \sqrt{n-2}} \sim t \text { distribution with n-2 d.f. }
$$

But, an unbiased estimator of $\sigma^{2}$ is

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} \tag{3.11}
\end{equation*}
$$

Therefore the above equation will be

$$
\begin{equation*}
t=\frac{\hat{\beta}-\beta}{\hat{\sigma} / \sqrt{\sum_{i=1}^{n} x_{i}^{2}}}=\frac{\hat{\beta}-\beta}{\operatorname{SE}(\hat{\beta})} \sim t(n-2) \tag{3.12}
\end{equation*}
$$

where $\operatorname{SE}(\hat{\beta})=\hat{\sigma} / \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
is known as the standard error of $\hat{\beta}$, which is the square root of the estimated $\operatorname{var}(\hat{\beta})$. Thus the standard normal variate given in Eq. (3.10), when $\sigma$ is replaced by $\hat{\sigma}$, follows student-t distribution with $\mathrm{n}-2$ d.f.

If we set the null hypothesis about the $\beta$ as

$$
H_{0}: \beta=\beta_{0}
$$

against the alternative hypothesis

$$
H_{1}: \beta \neq \beta_{0}
$$

then Eq. (3.12) with $\beta=\beta_{0}$ may be used as the test statistic for testing the above $H_{0}$ and is given by

$$
\begin{equation*}
t=\frac{\hat{\beta}-\beta_{0}}{S E(\hat{\beta})} \sim t(n-2) \tag{3.14}
\end{equation*}
$$

Reject $H_{0}$ at $100 \varepsilon$ percent level of significance (I.o.s.) if $|t|>t_{\varepsilon / 2}(n-2)$, otherwise accept $H_{1}$. Here, $t_{\varepsilon / 2}(n-2)$ is a two-tailed percentile of $t$ distribution with $n-2$ d.f. at $\varepsilon$ l.o.s. and is defined as

$$
\operatorname{Pr}\left\{-t_{\varepsilon / 2}(n-2)<t<t_{\varepsilon / 2}(n-2)\right\}=\operatorname{Pr}\left\{|t|<t_{\varepsilon / 2}(n-2)\right\}=1-\varepsilon
$$

For instance, when $\varepsilon=5 \%$, we chose $t_{0.025}(n-2)$ such that

$$
\operatorname{Pr}\left\{-t_{0.025}(n-2)<t<t_{0.025}(n-2)\right\}=0.95
$$

The hypothesis most frequently tested is

$$
H_{0}: \beta=0 \text { vs } H_{1}: \beta \neq 0
$$

and the test statistic can be obtained by substituting $\beta_{0}=0$ in Eq. (3.14) and is given by

$$
\begin{equation*}
t=\frac{\hat{\beta}}{S E(\hat{\beta})} \sim t(n-2) \tag{3.15}
\end{equation*}
$$

Now, based on Eq. (3.15), we may draw the conclusion

\section*{| Econometrics | 3.5 | Simple Regression Analysis.... |
| :--- | :--- | :--- |}

If $|t|=\left|\frac{\hat{\beta}}{S E(\hat{\beta})}\right|>t_{\varepsilon / 2}(n-2)$ reject $H_{0}: \beta=0$
(or) equvalently accept $H_{1}: \beta \neq 0$ at $\varepsilon$ l.o.s.

Note:

1. If Eq. (3.16) is drawn as the conclusion, then we say that the regression coefficient $\beta$ is significant and in this case, the regression model Eq. (3.1) is said to be well fitted.
2. The two-tailed t value $t_{\varepsilon / 2}(n-2)$ can be obtained from student-t table at given $\varepsilon$ and $\mathrm{n}-2$ d.f.

The $100(1-\varepsilon) \%$ confidence interval of $\beta$ :
A $100(1-\varepsilon) \%$ confidence interval for $\beta$, based on Eq. (3.12), is given by

$$
\begin{equation*}
\left(\hat{\beta}-t_{\varepsilon / 2}(n-2) S E(\hat{\beta}), \quad \hat{\beta}+t_{\varepsilon / 2}(n-2) S E(\hat{\beta})\right) \tag{3.17}
\end{equation*}
$$

### 3.4 Test of the Significance and confidence interval of $\alpha$ :

From Eq. (3.7) of section Eq. (3.2), we may write

$$
\begin{equation*}
\frac{\hat{\alpha}-\alpha}{\sigma \sqrt{\sum_{i=1}^{n} X_{i}^{2} /\left(n \sum_{i=1}^{n} x_{i}^{2}\right)}} \sim N(0,1) \tag{3.18}
\end{equation*}
$$

We know that the t-distribution is the ratio of a standard normal variate to the square root of an independent $\chi^{2}$ variate divided by its d.f. Therefore, from Eqs. (3.9) and (3.18) we may write

$$
t=\frac{\hat{\alpha}-\alpha}{\sigma \sqrt{\sum_{i=1}^{n} X_{i}^{2} /\left(n \sum_{i=1}^{n} x_{i}^{2}\right)}} \frac{\sigma}{\sqrt{\sum_{i=1}^{n} e_{i}^{2} / n-2}} \sim t(n-2)
$$

The above equation may be rewritten as

$$
\begin{equation*}
t=\frac{\hat{\alpha}-\alpha}{\hat{\sigma} \sqrt{\sum_{i=1}^{n} X_{i}^{2} /\left(n \sum_{i=1}^{n} x_{i}^{2}\right)}} \sim t(n-2) \tag{3.19}
\end{equation*}
$$

where $\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$ is an unbiased estimator of $\sigma^{2}$
Thus the standard normal variate given by Eq. (3.18), in which $\sigma$ is replaced by $\hat{\sigma}$, follows student-t distribution with n-2 d.f.
The test statistic for testing $H_{0}: \alpha=\alpha_{0}$ vs $H_{1}: \alpha \neq \alpha_{0}$ may be obtained from the above Eq. (3.19) as

$$
\begin{equation*}
t=\frac{\hat{\alpha}-\alpha_{0}}{S E(\hat{\alpha})} \sim t(n-2) \tag{3.20}
\end{equation*}
$$

where $\operatorname{SE}(\hat{\alpha})=\hat{\sigma} \sqrt{\sum_{i=1}^{n} X_{i}^{2} /\left(n \sum_{i=1}^{n} x_{i}^{2}\right)}$
is the standard error of $\hat{\alpha}$
Reject $H_{0}$ at $100 \varepsilon$ percent level of significance (I.o.s.) if $|t|>t_{\varepsilon / 2}(n-2)$, otherwise accept $H_{1}$.
The hypothesis most frequently tested is

$$
H_{0}: \alpha=0 \text { vs } H_{1}: \alpha \neq 0
$$

and the test statistic can be obtained by substituting $\alpha_{0}=0$ in Eq. (3.20) and is given by

$$
\begin{equation*}
t=\frac{\hat{\alpha}}{S E(\hat{\alpha})} \sim t(n-2) \tag{3.22}
\end{equation*}
$$

$$
\begin{equation*}
\text { If }|t|=\left|\frac{\hat{\alpha}}{S E(\hat{\alpha})}\right|>\mathbf{t}_{\varepsilon / 2}(n-2) \text { Reject } H_{0}: \alpha=0 \tag{3.23}
\end{equation*}
$$

$$
\text { (or) equvalently Accept } H_{1}: \alpha \neq 0 \text { at } \varepsilon \text { l.o.s. }
$$

Note: If the conclusion Eq. (3.23) is drawn, then we say that the intercept (constant) $\alpha$ is significant.
The $100(1-\varepsilon) \%$ confidence interval of $\alpha$ :
A $100(1-\varepsilon) \%$ confidence interval for $\alpha$, based on Eq. (3.19), is given by

$$
\begin{equation*}
\left(\hat{\alpha}-t_{\varepsilon / 2}(n-2) S E(\hat{\alpha}), \hat{\alpha}+t_{\varepsilon / 2}(n-2) S E(\hat{\alpha})\right) \tag{3.24}
\end{equation*}
$$

### 3.5 Prediction in the Least-Square Model:

Since $\hat{\alpha}$ and $\hat{\beta}$ are the BLUEs of $\alpha$ and $\beta$ the optimum point (BLUE) prediction is given by the regression value corresponding to $X_{f}$, that is

$$
\begin{equation*}
\hat{Y}_{f}=\hat{\alpha}+\hat{\beta} X_{f} \tag{3.25}
\end{equation*}
$$

The true value of $Y$ in the prediction period is given by

$$
Y_{f}=\alpha+\beta X_{f}+u_{f}
$$

where $u_{f}$ indicates the value that would be drawn from the disturbance distribution in the prediction period. The prediction error may then be defined as

$$
\begin{align*}
e_{f} & =Y_{f}-\hat{Y}_{f} \\
& =\mathrm{u}_{f}-(\hat{\alpha}-\alpha)-(\hat{\beta}-\beta) X_{f} \tag{3.26}
\end{align*}
$$

since $E\left(u_{f}\right)=0$ and $\hat{\alpha}$ and $\hat{\beta}$ are unbiased estimators of $\alpha$ and $\beta$, we have

$$
\begin{equation*}
E\left(e_{f}\right)=0 \Rightarrow E\left(\hat{Y}_{f}\right)=E\left(Y_{f}\right)=\alpha+\beta X_{t} \quad\left(\because \mathrm{E}\left(\mathrm{u}_{\mathrm{t}}\right)=0\right) \tag{3.27}
\end{equation*}
$$

Thus the least-squares predictor $\hat{Y}_{f}$ given in Eq. (3.25) is an unbiased predictor of $E\left(Y_{f}\right)$. The variance of the prediction error is given by (using Eq. (3.27))

$$
\begin{aligned}
\operatorname{var}\left(e_{f}\right)= & E\left(e_{f}^{2}\right) \\
= & E\left(u_{f}^{2}\right)+E(\hat{\alpha}-\alpha)^{2}+X_{f}^{2} E(\hat{\beta}-\beta)^{2}-2 E\left[u_{f}(\hat{\alpha}-\alpha)\right] \\
& -2 X_{f} E\left[u_{f}(\hat{\beta}-\beta)\right]+2 X_{f} E[(\hat{\alpha}-\alpha)(\hat{\beta}-\beta)]
\end{aligned}
$$

But we known that both $(\hat{\alpha}-\alpha)$ and $(\hat{\beta}-\beta)$ are linear functions of $u_{1}, u_{2}, \ldots, u_{n}$ and by assumption $u_{f}$ is independent of $u_{1}, u_{2}, \ldots, u_{n}$. Therefore $u_{f}$ is uncorrelated with $(\hat{\alpha}-\alpha)$ and $(\hat{\beta}-\beta)$ and thus

$$
E\left[u_{f}(\hat{\alpha}-\alpha)\right]=0 \text { and } E\left[u_{f}(\hat{\beta}-\beta)\right]=0
$$

Therefore the above equation becomes

$$
\begin{equation*}
\operatorname{var}\left(e_{f}\right)=\operatorname{var}\left(u_{f}\right)+\operatorname{var}(\hat{\alpha})+X_{f}^{2} \operatorname{var}(\hat{\beta})+2 X_{f} \operatorname{cov}(\hat{\alpha}, \hat{\beta}) \tag{3.28}
\end{equation*}
$$

But $\operatorname{var}\left(u_{f}\right)=\sigma^{2}$ we have from equation (2.22), (2.23) and (2.24)

$$
\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}, \operatorname{var}(\hat{\alpha})=\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}}\right) \sigma^{2} \text { and } \operatorname{cov}(\hat{\alpha}, \hat{\beta})=-\frac{\bar{X} \sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

But, $\operatorname{var}(\hat{\alpha})$ may be rewritten as

$$
\operatorname{var}(\hat{\alpha})=\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right) \sigma^{2}
$$

Substituting $\operatorname{var}\left(u_{f}\right), \operatorname{var}(\hat{\alpha}), \operatorname{var}(\hat{\beta})$ and $\operatorname{cov}(\hat{\alpha}, \hat{\beta})$ in Eq. (3.28) we get

$$
\begin{equation*}
\operatorname{var}\left(e_{f}\right)=\sigma^{2}\left[1+\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}+\frac{X_{f}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}-\frac{2 X_{f} \bar{X}}{\sum_{i=1}^{n} x_{i}^{2}}\right]=\sigma^{2}\left[1+\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right] \tag{3.29}
\end{equation*}
$$

The variance of the prediction error is thus at its minimum value when $X_{f}=\bar{X}$ and increases nonlinearly as $X_{f}$ departs from $\bar{X}$. From Eq. (3.26) $e_{f}$ is seen to be a linear function of normal variables and so if is itself distributed normally. Thus


Replacing the unknown $\sigma$ by its estimate $\hat{\sigma}=\sqrt{\sum_{i=1}^{n} e^{2} /(n-2)}$ then gives

$$
\begin{equation*}
\frac{Y_{f}-\hat{Y}_{f}}{\hat{\sigma} \sqrt{\left[1+\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}} \sim t(n-2) \tag{3.30}
\end{equation*}
$$

Everything is Eq. (3.30) is known except $Y_{f}$ and so, in the usual way, we derive a $100(1-\varepsilon)$ percent confidence interval of $Y_{f}$ as

$$
\begin{equation*}
\left(\left(\hat{\alpha}+\hat{\beta} X_{f}\right)-t_{\epsilon / 2} \hat{\sigma} \sqrt{\left[1+\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]},\left(\hat{\alpha}+\hat{\beta} X_{f}\right)+t_{\epsilon / 2} \hat{\sigma} \sqrt{\left[1+\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}\right) \tag{3.31}
\end{equation*}
$$

where $t_{\varepsilon / 2}(n-2)$ indicates the $100 \varepsilon / 2$ percent point of the $t$ distribution with (n-2) degrees of freedom.
Sometimes interest centers on predicting the mean value of $Y_{f}$, that is

$$
E\left(Y_{f}\right)=\alpha+\beta X_{f}
$$

Rather than $Y_{f}$ itself, since there is, of course, no way of predicting the value of a single drawing from $p(u)$. The prediction error is now

$$
\begin{aligned}
e_{f} & =E\left(Y_{f}\right)-\hat{Y}_{f} \\
& =-(\hat{\alpha}-\alpha)-(\hat{\beta}-\beta) X_{f}
\end{aligned}
$$

which gives

$$
\operatorname{var}\left(e_{f}\right)=\sigma_{u}^{2}\left[\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]
$$

and so a $100(1-\varepsilon)$ percent confidence interval for $E\left(Y_{f}\right)$ is

$$
\begin{equation*}
\left(\hat{\alpha}+\hat{\beta} X_{f}-t_{\varepsilon / 2} \hat{\sigma} \sqrt{\left[\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}, \hat{\alpha}+\hat{\beta} X_{f}+t_{\varepsilon / 2} \hat{\sigma} \sqrt{\left[\frac{1}{n}+\frac{\left(X_{f}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}\right) \tag{3.32}
\end{equation*}
$$

Note:

1. For the choice of $\varepsilon=0.05$, the confidence intervals given in Eqs. (3.31) and (3.32) are respectively the $95 \%$ confidence intervals for $Y_{f}$ and $E\left(Y_{f}\right)$.
2. Similarly for choice of $\varepsilon=0.01$, the confidence intervals given in Eqs. (3.31) and (3.32) are respectively the $99 \%$ confidence intervals for $Y_{f}$ and $E\left(Y_{f}\right)$.

### 3.6 SELF ASSESSMENT QUESTIONS

1. Derive the test for the significance of regression coefficient is simple linear model.
2. Show that, under the assumption of normality of error term, the least squares estimators of the regression coefficients are normally distributed.
3. Derive the tests for the significance of OLS estimators in a two variable linear regression model.
4. Derive the sampling distribution of the OLS estimators in simple linear model.
5. Derive the confidence intervals for the coefficients of the simple linear model.
6. Obtain the confidence interval for the slope of the simple linear model, making the necessary assumptions.
7. Obtain the confidence interval for the intercept of the simple linear model, making the necessary assumptions.
8. Discuss the point prediction in the simple linear model.
9. Construct interval prediction for the regressand in the simple linear model.
10. Construct interval prediction for the mean of the regressand in the simple linear model.
11. Discuss the forecasting problem in the simple linear model.
12. Obtain the predictor for the mean of the regressand in the simple linear model.
13. Obtain the predictor for the regressand in the simple linear model.

### 3.7 REFERENCES

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{r d}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, ${ }^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 4

## OTHER FUNCTIONAL FORMS OF REGRESSION MODELS

### 4.0 Objective:

The objective of this lesson is to make the student familiar with some commonly used regression models, those may be nonlinear in the variables but are linear in the parameters. Some important functional forms of regression models discussed in this lesson are a) The loglinear model, b) semi log models, and c) reciprocal models.

## Structure of the Lesson:

### 4.1 Introduction

### 4.2 The log-linear model

### 4.3 The semi log models

### 4.4 The reciprocal models

### 4.5 Self Assessment Questions

### 4.6 References

### 4.1 Introduction

As already mentioned in the earlier lessons, this text book is concerned primarily with models that are linear in the parameters; they may or may not be linear in the variables. In the following sections, we consider some commonly used regression models that may be nonlinear in the variables but are linear in the parameters or that can be made so by suitable transformations of the variables. In particular, we discuss the following regression models:

1. The log-linear or constant elasticity model
2. Semilog regression models
3. Reciprocal regression models.

We discuss the special features of each model, when they are appropriate, and how they are estimated.

In the log-linear model both the regressand and the regressor(s) are expressed in the logarithmic form. The regression coefficient attached to the log of a regressor is interpreted as the elasticity of the regressand with respect to the regressor.

In the semilog model either the regressand or the regressor(s) are in the log form. In the semilog model where the regressand is logarithmic and the regressor $X$ is time, the estimated slope coefficient (multiplied by 100) measures the (instantaneous) rate of growth of the regressand. Such models are often used to measure the growth rate of many economic
phenomena. In the semilog model if the regressor is logarithmic, its coefficient measures the absolute rate of change in the regressand for a given percent change in the value of the regressor.

In the reciprocal models, either the regressand or the regressor is expressed in reciprocal, or inverse, form to capture nonlinear relationships between economic variables.

### 4.2 The Log-Linear Model:

Consider the following model, known as the exponential regression model:

$$
\begin{equation*}
Y_{i}=\beta_{0} X_{i}^{\beta} e^{u_{i}}, \quad i=1,2, \ldots, n \tag{4.1}
\end{equation*}
$$

which may be expressed alternatively as

$$
\begin{equation*}
\log Y_{i}=\log \beta_{0}+\beta \log X_{i}+u_{i}, \quad i=1,2, \ldots, n \tag{4.2}
\end{equation*}
$$

where $\log =$ natural $\log$ (i.e., log to the base $e$, and where $e=2.718$ ).
If we write Eq. (4.2) as
$\log Y_{i}=\alpha+\beta \log X_{i}+u_{i}, \quad i=1,2, \ldots, n$
where $\alpha=\log \beta_{0}$, and this model is linear in the parameters $\alpha$ and $\beta$ and linear in the logarithms of the variables $Y$ and $X$, and can be estimated by OLS regression. Because of this linearity, such models are called log-log, double-log, or log-linear models.

If the assumptions of the classical linear regression model are fulfilled, the parameters of Eq. (4.3) can be estimated by applying the OLS method to the following model

$$
\begin{equation*}
Y_{i}^{*}=\alpha+\beta X_{i}^{*}+u_{i}, \quad i=1,2, \ldots, n \tag{4.4}
\end{equation*}
$$

where $Y^{*}=\log Y_{i}$ and $X^{*}=\log X_{i}$. The OLS estimators $\hat{\alpha}$ and $\hat{\beta}$ will be the BLUEs of $\alpha$ and $\beta$ respectively and are given by

$$
\begin{gather*}
\hat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{*} Y_{i}^{*}-\bar{X}^{*} \bar{Y}^{*}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{* 2}-\bar{X}^{* 2}}  \tag{4.5}\\
\hat{\alpha}=\bar{Y}^{*}-\hat{\beta} \bar{X}^{*} \Rightarrow \hat{\beta}_{0}=e^{\hat{\alpha}} \tag{4.6}
\end{gather*}
$$

where $\bar{X}^{*}=\frac{1}{n} \sum_{i=1}^{n} \log X_{i}$

$$
\bar{Y}^{*}=\frac{1}{n} \sum_{i=1}^{n} \log Y_{i}
$$

One attractive feature of the log-log model, which has made it popular in applied work, is that the slope coefficient $\beta$ measures the elasticity of $Y$ with respect to $X$, that is, the percentage change in $Y$ for a given (small) percentage change in $X$. Thus, if $Y$ represents the quantity of a commodity demanded and $X$ its unit price, $\beta$ measures the price elasticity of demand, a parameter of considerable economic interest.

Two special features of the log-linear model may be noted: The model assumes that the elasticity coefficient between $Y$ and $X, \beta$, remains constant throughout, hence the alternative
name constant elasticity model. In other words, the change in $\log Y$ per unit change in $\log X$ (i.e., the elasticity, $\beta$ ) remains the same no matter at which $\log X$ we measure the elasticity. Another feature of the model is that although $\hat{\alpha}$ and $\hat{\beta}$ are unbiased estimates of $\alpha$ and $\beta, \beta_{0}$ (the parameter entering the original model) when estimated as $\hat{\beta}_{0}=\mathrm{e}^{\hat{\alpha}}$ is itself a biased estimator. In most practical problems, however, the intercept term is of secondary importance, and one need not worry about obtaining its unbiased estimate.

In the two-variable model, the simplest way to decide whether the loglinear model fits the data is to plot the scatter diagram of $\log Y$ against $\log X$, and see if the scatter points lie approximately on a straight line.

### 4.3 The Semi Log Models: Log-Lin and Lin-Log Models

## Log-Lin Model (to Measure the Growth Rate):

Economists, businesspeople, and governments are often interested in finding out the rate of growth of certain economic variables, such as population, GNP, money supply, employment, productivity, and trade deficit.

We may recall the following well-known compound interest formula from your introductory course in economics.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{t}}=\mathrm{Y}_{0}(1+\mathrm{r})^{\mathrm{t}} \quad t=1,2, \ldots, n \tag{4.7}
\end{equation*}
$$

Taking natural log on both side

$$
\begin{equation*}
\log Y_{t}=\log Y_{0}+t \log (1+r) \quad t=1,2, \ldots, n \tag{4.8}
\end{equation*}
$$

Now letting

$$
\begin{aligned}
& \alpha=\log Y_{0} \\
& \beta=\log (1+r)
\end{aligned}
$$

and adding the disturbance term to Eq. (4.8) we obtain

$$
\begin{equation*}
\log Y_{t}=\alpha+\beta t+u_{t} \quad t=1,2, \ldots, n \tag{4.9}
\end{equation*}
$$

This model is like any other linear regression model in that the parameters $\alpha$ and $\beta$ are linear. The only difference is that the regressand is the logarithm of $Y$ and the regressor is "time," which will take values of $1,2,3$, etc.

Models like Eq. (4.9) are called semilog models because only one variable (in this case the regressand) appears in the logarithmic form. For descriptive purposes a model in which the regressand is logarithmic will be called a log-lin model. In this model the slope coefficient measures the constant proportional or relative change in Y for a given absolute change in the value of the regressor (in this case the variable $t$ ), that is,

$$
\beta=\frac{\text { relative change in regressand }}{\text { absolute change in regressor }}
$$

The OLS Estimators of the parameters of $\alpha$ and $\beta$ of Eq. (4.9) are given by

$$
\begin{align*}
& \hat{\beta}=\frac{\frac{1}{n} \sum_{t=1}^{n} t \log Y_{t}-\overline{\log Y}\left(\frac{n+1}{2}\right)}{\frac{1}{n} \sum_{i=1}^{n} t^{2}-\left(\frac{n+1}{2}\right)^{2}} \quad t=1,2, \ldots, n  \tag{4.10}\\
& \hat{\alpha}=\overline{\log Y}-\hat{\beta}\left(\frac{n+1}{2}\right) \quad \text { Where } \overline{\log Y}=\frac{1}{n} \sum_{t=1}^{n} \log Y_{t} \tag{4.11}
\end{align*}
$$

It may be noted the above OLS Estimators $\hat{\alpha}$ and $\hat{\beta}$ are the BLUEs of $\alpha$ and $\beta$ respectively

## Lin-Log Model:

Unlike the growth model just discussed, in which we were interested in finding the percent growth in Y for an absolute change in $X$, suppose we now want to find the absolute change in Y for a percent change in $X$. A model that can accomplish this purpose can be written as:

$$
\begin{equation*}
Y_{i}=\alpha+\beta \log X_{i}+u_{i} \quad i=1,2, \ldots, n \tag{4.12}
\end{equation*}
$$

For descriptive purposes we call such a model a lin-log model.
The interpretation of the slope coefficient $\beta$ is

$$
\begin{aligned}
\beta & =\frac{\text { change in } \mathrm{Y}}{\text { change in } \log \mathrm{X}} \\
& =\frac{\text { change in } \mathrm{Y}}{\text { realative change in } \mathrm{X}}
\end{aligned}
$$

The second step follows from the fact that a change in the log of a number is a relative change. The OLS Estimators $\alpha$ and $\beta$ respectively given by

$$
\begin{align*}
& \hat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i} \log X_{i}-n \overline{\log X} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}-\overline{\log X^{2}}}  \tag{4.13}\\
& \hat{\alpha}=\overline{\mathrm{Y}}-\hat{\beta} \log X  \tag{4.14}\\
& \text { where } \overline{\log X}=\sum_{i=1}^{n} \log X_{i} \\
& \qquad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
\end{align*}
$$

It may be noted the above OLS Estimators $\hat{\alpha}$ and $\hat{\beta}$ are the BLUEs of $\alpha$ and $\beta$ respectively

### 4.4 The Reciprocal Models

Models of the following type are known as reciprocal models.

$$
\begin{equation*}
Y_{i}=\alpha+\beta\left(\frac{1}{X_{i}}\right)+u_{i} \quad i=1,2, \ldots, n \tag{4.15}
\end{equation*}
$$

Although this model is nonlinear in the variable $X$ because it enters inversely or reciprocally, the model is linear in $\alpha$ and $\beta$ and is therefore a linear regression model.

This model has these features: As $X$ increases indefinitely, the term $\beta(1 / X)$ approaches zero (note: $\beta$ is a constant) and Y approaches the limiting or asymptotic value $\alpha$. Therefore, models like (4.15) have built in them an asymptote or limit value that the dependent variable will take when the value of the $X$ variable increases indefinitely.

The OLS Estimators $\beta$ and $\alpha$ of the reciprocal (4.15) are respectively by

$$
\begin{align*}
& \hat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i} / X_{i}\right)-\bar{X}^{*} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} 1 / X_{i}^{2}-\bar{X}^{* 2}} \\
& \hat{\alpha}=\overline{\mathrm{Y}}-\hat{\beta} \bar{X}^{*} \text { where } \bar{X}^{*}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_{i}}, \text { and } \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \tag{4.16}
\end{align*}
$$

It may be noted the above OLS Estimators $\hat{\alpha}$ and $\hat{\beta}$ are the BLUEs of $\alpha$ and $\beta$ respectively

### 4.5 Self Assessment Questions

1. Explain the following models
(i) Log-linear,
(ii) Semilog and
(ii) Reciprocal
2. Derive the estimators in exponential regression model.
3. Estimate the elasticity in a log-linear (exponential regression) model.
4. Distinguish between linear and log-linear models.
5. Explain the estimation method of a log-linear model.
6. Explain the estimation method of an exponential model.
7. Derive the least squares estimators in linear-log model.
8. Derive the least squares estimators in log-linear model.
9. Derive the least squares estimators in reciprocal regression model.
10. Distinguish between log-linear and semi log-linear models.
11. Distinguish between linear and reciprocal models.

### 4.6 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 5

# APPLICATIONS OF SIMPLE LINEAR REGRESSION ANALYSIS 

### 5.0 Objective:

The objective of this lesson is to demonstrate the student the computations involved in simple linear regression analysis, which was explained through Lessons 2- 4 with some practical applications.

## Structure of the Lesson:

### 5.1 Introduction

### 5.2 Estimation of the consumption function for United States

### 5.3 Estimation of the expenditure on durable goods

### 5.4 Self Assessment Questions

### 5.5 References

### 5.1 Introduction

In Lesson 2, we have discussed the estimation of simple linear model where as in Lesson 3, we have discussed the testing the significance of the estimated regression model. In Lesson 4, we have discussed the estimation of some non-linear models, those can be transformed into simple linear model with some simple transformation of the variables of the model.

Now in this lesson, we demonstrate the simple linear regression analysis discussed in Lessons 2, 3 and 4 with some suitable applications. The computation pertaining to an example of simple linear model are presentation in Section 5.2 and those pertaining to an example of a non-linear model are presented in Section 5.3.

### 5.2 Estimation of the Consumption function for United States:

The following table gives the data on percapita disposable income (income after deducting income tax) ( $X$ ) and percapita consumption expenditure $(Y)$ both in constant dollars for the United States. Using this data estimate the consumption function for United States for the period 1970-1984 and using this estimated consumption function predict the percapita consumption for the year 1985 at a given percapita disposable income of 5,100 US dollars.

Table 5.1: Per capita personal consumption expenditure $(Y)$ and per capita disposable personal income $(X)$ (in 1972 dollars) for the United States, 1970-1984

| Year | $Y$ | $X$ |
| :---: | :---: | :---: |
| 1970 | 3277 | 3665 |
| 1971 | 3355 | 3752 |
| 1972 | 3511 | 3860 |
| 1973 | 3623 | 4080 |
| 1974 | 3566 | 4009 |
| 1975 | 3609 | 4051 |
| 1976 | 3774 | 4158 |
| 1977 | 3924 | 4280 |
| 1978 | 4057 | 4441 |
| 1979 | 4121 | 4512 |
| 1980 | 4093 | 4487 |
| 1981 | 4131 | 4561 |
| 1982 | 4146 | 4555 |
| 1983 | 4303 | 4670 |
| 1984 | 4490 | 4941 |

Source: Economic Report of the President, 1984, p. 261.

## Solution:

We will carry out below the regression analysis of per capita consumption expenditure $(Y)$ on per capita disposable income $(X)$.

| Year | $Y$ | $X$ | $Y^{2}$ | $X^{2}$ | $X Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 3277 | 3665 | 10738729 | 13432225 | 12010205 |
| 1971 | 3355 | 3752 | 11256025 | 14077504 | 12587960 |
| 1972 | 3511 | 3860 | 12327121 | 14899600 | 13552460 |
| 1973 | 3623 | 4080 | 13126129 | 16646400 | 14781840 |
| 1974 | 3566 | 4009 | 12716356 | 16072081 | 14296094 |
| 1975 | 3609 | 4051 | 13024881 | 16410601 | 14620059 |
| 1976 | 3774 | 4158 | 14243076 | 17288964 | 15692292 |
| 1977 | 3924 | 4280 | 15397776 | 18318400 | 16794720 |
| 1978 | 4057 | 4441 | 16459249 | 19722481 | 18017137 |
| 1979 | 4121 | 4512 | 16982641 | 20358144 | 18593952 |
| 1980 | 4093 | 4487 | 16752649 | 20133169 | 18365291 |
| 1981 | 4131 | 4561 | 17065161 | 20802721 | 18841491 |
| 1982 | 4146 | 4555 | 17189316 | 20748025 | 18885030 |
| 1983 | 4303 | 4670 | 18515809 | 21808900 | 20095010 |
| 1984 | 4490 | 4941 | 20160100 | 24413481 | 22185090 |
| Total | 57980 | 64022 | 225955018 | 275132696 | 249318631 |

## Computation of regression coefficients:

## From the above table we have

$$
\begin{array}{ll}
\mathrm{n}=15, & \sum X=64022 \\
\sum Y=57980 & \\
\sum Y^{2}=225955018 & \\
\sum X Y=249318631 & \\
\bar{X}=\frac{64022}{15}=4268.1333 & \\
Y=\frac{57980}{15}=3865.333
\end{array}
$$

Substituting the above values in Eq. (2.12) of Lesson 2 we get OLS Estimate of $\beta$

$$
\begin{aligned}
\hat{\beta} & =\frac{249318631 / 15-(4268.1333 * 3865.3333)}{275132696 / 15-4268.1333^{2}} \\
& =\frac{123484.0222}{125217.5822}=0.9862
\end{aligned}
$$

Similarly substituting $\hat{\beta}, \bar{X}$ and $\bar{Y}$ in Eq. (2.13) of Lesson 2 we get

$$
\hat{\alpha}=3865.333333-0.9862 * 4268.1333=-343.90
$$

Hence the estimated consumption function for United States of the period 1970-1984 is

$$
\hat{Y}=-343.90+0.9862 * X
$$

In the estimated regression $\hat{\beta}=0.9862$ is the estimate of the marginal propensity to consume, which means on the average 98.6 dollars will be the consumption expenditure for every 100 dollars of disposable income.
Computation of $\hat{\sigma}^{2}$ :
From Eq. (2.35) of Lesson 2 the unbiased estimator of $\hat{\sigma}^{2}$ is

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}, \quad \text { where } e_{i}=Y_{i}-\hat{Y}_{i}, \quad \hat{Y}_{i}=\hat{\alpha}+\hat{\beta} X_{i}
$$

## Computation of residuals $e_{i} s$ :

| Y | $\hat{Y}$ | $e=Y-\hat{Y}$ | $e^{2}$ |
| :---: | ---: | ---: | ---: |
| 3277 | 3270.52 | -6.48 | 41.99 |
| 3355 | 3356.32 | 1.32 | 1.74 |
| 3511 | 3462.83 | -48.17 | 2320.35 |
| 3623 | 3679.8 | 56.8 | 3226.24 |
| 3566 | 3609.78 | 43.78 | 1916.69 |
| 3609 | 3651.2 | 42.2 | 1780.84 |
| 3774 | 3756.72 | -17.28 | 298.6 |
| 3924 | 3877.04 | -46.96 | 2205.24 |
| 4057 | 4035.81 | -21.19 | 449.02 |
| 4121 | 4105.83 | -15.17 | 230.13 |
| 4093 | 4081.18 | -11.82 | 139.71 |
| 4131 | 4154.16 | 23.16 | 536.39 |


| Centre for Distance Education | 5.4 | Acharya Nagarjuna University |
| :--- | :--- | :--- |


| 4146 | 4148.24 | 2.24 | 5.02 |
| :--- | ---: | ---: | ---: |
| 4303 | 4261.65 | -41.35 | 1709.82 |
| 4490 | 4528.91 | 38.91 | 1513.99 |
| TOTALS | -0.01 | 16375.77 |  |

$$
\hat{\sigma}^{2}=\frac{16375.77}{13}=1259.675
$$

The Computation of Coefficient of Determination $r^{2}$ :
From Eq. (2.42) of Lesson 2 we have the coefficient of determination $r^{2}$

$$
r^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}-n \bar{Y}^{2}}=1-\frac{16375.77}{225955018-15(3865.3333)^{2}}=0.9911
$$

Alternative computation of $r^{2}$ :
Since $r$ is nothing but the correlation coefficient between $X$ and $Y$, by definition $r^{2}$ is

$$
\begin{aligned}
r^{2} & =\frac{[\operatorname{cov}(X, Y)]^{2}}{\operatorname{var}(X) \operatorname{var}(Y)}=\beta^{2} \frac{\operatorname{var}(X)}{\operatorname{var}(Y)} \\
& =\beta^{2} \frac{\sum_{i=1}^{n} X^{2} / n-\bar{X}^{2}}{\sum_{i=1}^{n} Y^{2} / n-\bar{Y}^{2}}=(0.9862)^{2} \frac{275132696 / 15-4268.1333^{2}}{225955018 / 15-3865.3333^{2}}=0.9911
\end{aligned}
$$

## Testing the significance of regression coefficient ( $\beta$ ) at 5 level of significance

Suppose we want to test the significance $\beta$ we set the null hypothesis

$$
H_{0}: \beta=0 \text { vs } H_{1}: \beta \neq 0
$$

The test statistic for testing the above hypothesis is given by (from equation (3.15) of Lesson 3)

$$
t=\frac{\hat{\beta}}{S E(\hat{\beta})}=\frac{0.9862}{S E(\hat{\beta})}
$$

where from Eq.(3.13),

$$
\begin{aligned}
& \begin{aligned}
S E(\hat{\beta}) & =\hat{\sigma} / \sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\hat{\sigma} / \sqrt{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}} \\
& =\frac{\sqrt{1259.675}}{\sqrt{275132696-\left(14 * 4268.13333^{2}\right)}} \\
& =0.281
\end{aligned} \\
& t=\frac{0.9862}{S E(\hat{\beta})}=\frac{0.9862}{0.281}=3.5096
\end{aligned}
$$

From student t-table, at $\varepsilon=5 \%$ level of significance

$$
t_{0.025}(13)=2.160
$$

Since $|t|=3.5096>t_{0.025}(13)=2.160$ from equation Eq. (3.16) of Lesson 3, we will reject $H_{0}: \beta=0$.

Thus we conclude the regression coefficient $\beta$ is significantly different from zero, which establishes the linear influence of $X$ on $Y$. Hence, the model is well fitted.

The $95 \%$ confidence interval of $\beta$ :
From Eq. (3.17) of Lesson 3, the $95 \%$ confidence interval of $\beta$ is

$$
\begin{array}{ll} 
& {\left[\hat{\beta}-t_{0.025}(13) S E(\hat{\beta}), \hat{\beta}+t_{0.025}(13) S E(\hat{\beta})\right]} \\
\text { i.e. } & {[0.9862-2.160 * 0.281,0.9862+2.160 * 0.281]} \\
\text { i.e. } & {[0.3792,1.5932]}
\end{array}
$$

## Testing the significance of intercept ( $\alpha$ ) at 5\% level of significance:

Suppose we want to test the significance of $\alpha$ we set the null hypothesis

$$
H_{0}: \alpha=0 \text { vs } H_{1}: \alpha \neq 0
$$

The test statistic for testing the above hypothesis is given by (from Eq. (3.22) of Lesson 3)

$$
t=\frac{\hat{\alpha}}{S E(\hat{\alpha})}=\frac{-343.90}{1245.7163}=-0.2761
$$

where

$$
\begin{aligned}
S E(\hat{\alpha}) & =\hat{\sigma} \sqrt{\sum_{i=1}^{n} X_{i}^{2} /\left(n \sum_{i=1}^{n} x_{i}^{2}\right)}=\hat{\sigma} \sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{n\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right)}} \\
& =1259.675^{*} \sqrt{\frac{275132696}{14 *\left[275132696-\left(14 * 4268.13333^{2}\right)\right]}}=1245.7163
\end{aligned}
$$

We have $\quad t_{0.025}(13)=2.160$
Since $|t|=0.2761<t_{0.025}(13)=2.160$
from equation Eq. (3.16) of Lesson 3 , we accept $H_{0}: \alpha=0$.
Thus we conclude the intercept or constant term $\alpha$ is not significant.
Note: The insignificance of the constant term $\alpha$, however, does not influence the above conclusion that the fitted model is a good one.

The point prediction of the consumption expenditure for the year 1985 at given per capita disposable income $X_{t}=5100$ US dollars can be obtained from Eq. (3.25) as

| Centre for Distance Education | 5.6 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

$$
\hat{Y}_{1985}=-343.90+0.9862 * X_{1985}=-343.9+0.9862 * 5100=4685.72
$$

95\% Interval prediction for $Y_{1985}$ from Eq. (3.31)

$$
\left(\hat{Y}_{1985}-t_{0.025} \hat{\sigma} \sqrt{\left[1+\frac{1}{n}+\frac{\left(X_{1985}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}, \hat{Y}_{1985}+t_{0.025} \hat{\sigma} \sqrt{\left[1+\frac{1}{n}+\frac{\left(X_{1985}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}\right)
$$

$$
\text { We have } \quad \frac{1}{n}+\frac{\left(X_{1985}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}=\frac{1}{15}+\frac{(5100-4268.1333)^{2}}{275132696-15 * 4268.1333^{2}}=0.4351
$$

Therefore, $95 \%$ Interval prediction for $Y_{1985}$ is

$$
\begin{aligned}
& (4685.72-2.160 * \sqrt{1259.675} * \sqrt{[1+0.4351]}, 4685.72-2.160 * \sqrt{1259.675} * \sqrt{[1+0.4351]}) \\
& =(4593.882,4777.558)
\end{aligned}
$$

Similarly, a 95\% confidence interval for $E\left(Y_{1985}\right)$ from Eq. (3.32) is

$$
\left.\left.\begin{array}{rl} 
& \left(\hat{Y}_{1985}-t_{0.025} \hat{\sigma}\right. \\
{\left[\frac{1}{n}+\frac{\left(X_{1985}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}
\end{array}, \hat{Y}_{1985}+t_{0.025} \hat{\sigma} \sqrt{\left[\frac{1}{n}+\frac{\left(X_{1985}-\bar{X}\right)^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right]}\right]\right)
$$

### 5.3 Estimation of the Expenditure on Durable Goods:

In the following table we have data quarterly data: about expenditure on durable goods (in billions of 1992 dollars) and total personal consumption expenditure (in billions of 1992 dollars) using this data, estimate the following exponential (log-linear) regression model.
$Y_{t}=\beta_{0} X_{t}^{\beta} e^{u_{t}}$ Where
where $Y=$ expenditure on durable goods, billions of 1992 dollars.
$X=$ total personal consumption expenditure, billions of 1992 dollars.
And test for its goodness of fit.
Table 5.2: EXPENDITURE ON DURABLE GOODS AND TOTAL PERSONAL CONSUMPTION EXPENDITURE (BILLIONS OF 1992 DOLLARS)

| Observation | $Y$ | $X$ | Observation | $Y$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1993-I | 504.0 | 4286.8 | $1996-\mathrm{I}$ | 611.0 | 4692.1 |
| 1993-II | 519.3 | 4322.8 | $1996-\mathrm{II}$ | 629.5 | 4746.6 |
| 1993-III | 529.9 | 4366.6 | $1996-$ III | 626.5 | 4768.3 |
| $1993-\mathrm{IV}$ | 542.1 | 4398.0 | $1996-\mathrm{IV}$ | 637.5 | 4802.6 |
| $1994-\mathrm{II}$ | 550.7 | 4439.4 | $1997-\mathrm{I}$ | 656.3 | 4853.4 |
| $1994-\mathrm{II}$ | 558.8 | 4472.2 | $1997-\mathrm{II}$ | 653.8 | 4872.7 |


| $1994-$ III | 561.7 | 4498.2 | 1997 -III | 679.6 | 4947.0 |
| :---: | ---: | :---: | :---: | :---: | :---: |
| 1994-IV | 576.6 | 4534.1 | $1997-\mathrm{IV}$ | 648.8 | 4981.0 |
| $1995-\mathrm{II}$ | 575.2 | 4555.3 | 1998 -I | 710.3 | 5055.1 |
| $1995-\mathrm{II}$ | 583.5 | 4593.6 | 1998 -II | 729.4 | 5130.2 |
| 1995 -III | 595.3 | 4623.4 | 1998 -III | 733.7 | 5181.8 |
| $1995-\mathrm{IV}$ | 602.4 | 4650.0 |  |  |  |

Source: Economic Report of the President, 1999, Table B-17, p. 347.

## Solution:

The exponential regression model

$$
Y_{t}=\beta_{0} X_{t}^{\beta} e^{u_{t}}, \quad \mathrm{t}=1,2, \ldots, n
$$

may alternatively be expressed as

$$
\log Y_{t}=\alpha+\beta \log X_{t}+u_{t}, \quad \mathrm{t}=1,2, \ldots, n
$$

where $\alpha=\log \beta_{0} \quad X^{*}=\log X_{t} \quad Y^{*}=\log Y_{t}$
The log values of the given data are computed below:

| Observation | $Y^{*}=\log Y_{t}$ | $X^{*}=\log X_{t}$ | Observation | $Y^{*}=\log Y_{t}$ | $X^{*}=\log X_{t}$ |
| :---: | ---: | ---: | :---: | ---: | ---: |
| 1993-I | 6.22258 | 8.36330 | $1996-\mathrm{I}$ | 6.41510 | 8.45364 |
| 1993-II | 6.25248 | 8.37166 | $1996-\mathrm{II}$ | 6.44493 | 8.46518 |
| 1993-III | 6.27269 | 8.38174 | $1996-\mathrm{III}$ | 6.44015 | 8.46975 |
| 1993-IV | 6.29545 | 8.38891 | $1996-\mathrm{IV}$ | 6.45755 | 8.47691 |
| 1994-I | 6.31119 | 8.39827 | $1997-\mathrm{I}$ | 6.48662 | 8.48743 |
| $1994-\mathrm{II}$ | 6.32579 | 8.40564 | $1997-\mathrm{II}$ | 6.48280 | 8.49140 |
| 1994-III | 6.33097 | 8.41143 | $1997-\mathrm{III}$ | 6.52150 | 8.50654 |
| 1994-IV | 6.35715 | 8.41938 | $1997-\mathrm{IV}$ | 6.47512 | 8.51339 |
| 1995-I | 6.35472 | 8.42405 | $1998-\mathrm{I}$ | 6.56569 | 8.52815 |
| $1995-\mathrm{II}$ | 6.36904 | 8.43242 | $1998-\mathrm{II}$ | 6.59222 | 8.54290 |
| $1995-\mathrm{II}$ | 6.38907 | 8.43889 | $1998-\mathrm{III}$ | 6.59810 | 8.55291 |
| 1995-IV | 6.40092 | 8.44462 |  |  |  |

From the given data we have $\mathrm{n}=23$

$$
\begin{array}{ll}
\bar{X}^{*}=8.4508 & \bar{Y}^{*}=6.4070 \\
\sum_{t=1}^{n} X_{t}^{* 2}=1642.6376 & \sum_{t=1}^{n} Y_{t}^{*^{2}}=944.4005 \\
\sum_{t=1}^{n} \bar{X}^{*} \bar{Y}^{*}=1245.4542
\end{array}
$$

Using Eqs. (4.5) and (4.6) we can compute

$$
\begin{aligned}
& \hat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{*} Y_{i}^{*}-\bar{X}^{*} \bar{Y}^{*}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{* 2}-\bar{X}^{* 2}}=1.9056 \\
& \hat{\alpha}=\bar{Y}^{*}-\hat{\beta} \bar{X}^{*}=-9.6971 \Rightarrow \hat{\beta}_{0}=e^{\hat{\alpha}}=e^{-9.6971}=0.00006
\end{aligned}
$$

Computation of $r^{2}$ :
$r^{2}=\beta^{2} \frac{\operatorname{var}\left(X^{*}\right)}{\operatorname{var}\left(Y^{*}\right)}=\beta^{2} \frac{\frac{1}{n} \sum_{i=1}^{n} X_{t}^{* 2}-\bar{X}^{* 2}}{\frac{1}{n} \sum_{i=1}^{n} Y_{t}^{* 2}-\bar{Y}^{* 2}}=0.985$

## Testing the significance of regression coefficient ( $\beta$ ):

We set the null hypothesis $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
The test statistic for testing the above hypothesis is given by (from equation (3.15) of Lesson 3)

$$
t=\frac{\hat{\beta}}{S E(\hat{\beta})}=\frac{1.9056}{S E(\hat{\beta})}
$$

where

$$
S E(\hat{\beta})=\hat{\sigma} / \sqrt{\sum_{i=1}^{n} x_{i}^{* 2}}=\hat{\sigma} / \sqrt{\sum_{i=1}^{n} X_{i}^{* 2}-n \bar{X}^{* 2}}=0.05137
$$

Therefore, the t-ratio is $t=\frac{1.9056}{S E(\hat{\beta})}=\frac{1.9056}{0.05137}=37.0956$
From student t-table, at $\varepsilon=1 \%$ level of significance t-critical value is

$$
t_{0.005}(21)=2.831
$$

Since $|t|=37.0956>t_{0.005}(21)=2.831$, from equation Eq. (3.16) of Lesson 3,
we will reject $H_{0}: \beta=0$.
Thus we conclude the regression coefficient $\beta$ is highly significant, which establishes the linear influence of $X$ on $Y$.
Hence, the model is well fitted and the estimated exponential regression model for Expenditure on Durable Goods is

$$
\hat{Y}_{t}=0.00006 X_{t}^{1.9056}
$$

### 5.4 Self Assessment Questions

1. Explain a simple linear model by means of an illustration.
2. Explain the justification for the inclusion of disturbance (error) term in a simple linear model by means of an example.
3. Give some illustrations of simple linear model.
4. Explain the estimation of consumption function.
5. Explain the estimation of demand function.
6. Explain the estimation of supply function.
7. The following data gives age and blood pressure (B.P.) for 12 persons. Obtain the regression of B.P. on age and test for the significance of slope. Further, estimate the blood pressure when the age is 45 years.

| Age in years <br> $(\mathrm{X})$ | Blood pressure <br> $(\mathrm{Y})$ | Age in years <br> $(\mathrm{X})$ | Blood pressure (Y) |
| :---: | :---: | :---: | :---: |
| 56 | 147 | 55 | 150 |
| 42 | 125 | 49 | 145 |
| 72 | 160 | 38 | 115 |
| 36 | 118 | 42 | 140 |
| 63 | 149 | 68 | 152 |
| 47 | 128 | 60 | 155 |

8. Fit a power curve (log-log model) of the form $Y=a X^{b}$ from the following data:

| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Y | 1.0 | 1.2 | 1.8 | 2.5 | 3.6 | 4.7 | 6.6 | 9.1 |

9. The expected remaining life of an electronic part is believed to be related to the age of the part. The ages of 10 of these parts that were in use on a certain data were recorded in operating hours. When each part burned out, the elapsed time was recorded. The results were as follows:

| Age of part (in hrs.) | 40 | 65 | 90 | 5 | 30 | 10 | 80 | 85 | 70 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Remaining life (in hrs.) | 30 | 20 | 10 | 80 | 40 | 65 | 15 | 15 | 20 | 50 |

Fit the exponential curve (log-lin model) of the form $\mathrm{Y}=\mathrm{ab}^{\mathrm{X}}$.

### 5.5 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

# MULTIPLE REGRESSION ANALYSIS: ESTIMATION 

### 6.0 Objective:

In this lesson, the student will be exposed to the multivariate analogue of the concepts used in simple regression analysis discussed in Lesson 2. After studying the lesson the student will have clear idea regarding the general linear regression model and its basic assumptions. Further, the student will learn how to estimate the unknown regression coefficients $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ and $\boldsymbol{\sigma}^{\mathbf{2}}$, variance of the disturbance u , in general linear regression model using the principle of least squares.

## Structure of the Lesson:

### 6.1 Introduction

### 6.2 General Linear Regression Model and Assumptions

### 6.3 Ordinary Least Squares Estimation of the Regression Coefficients

6.4 Estimation of $\boldsymbol{\sigma}^{\mathbf{2}}$

### 6.5 Self Assessment Questions

### 6.6 References

### 6.1 Introduction

The two-variable model studied extensively in the previous lessons is often inadequate in practice. In our consumption-income example, for instance, it was assumed implicitly that only income $X$ affects consumption $Y$. But, we know that besides income, a number of other variables are also likely to affect consumption expenditure. An obvious example of other variable is wealth of the consumer. As another example, the demand for a commodity is likely to depend not only on its own price but also on the prices of other competing or complementary goods, income of the consumer, social status, etc. Therefore, we need to extend our simple two-variable regression model to cover models involving more than two variables. A regression model that involves more than one exogenous (independent) variable is called a multiple regression model or general linear model. Thus, adding more variables leads us to the discussion of multiple regression models, that is, models in which the dependent variable, or regressand, $Y$ depends on two or more explanatory variables, or regressors.

Throughout, we are concerned with multiple linear regression models, that is, models linear in the parameters; they may or may not be linear in the variables. The description and assumptions of the general linear model are explained in Section 6.2. The ordinary least squares estimation of the model is described in Section 6.3. Finally, an unbiased estimator of $\sigma^{2}$ based on least squares residuals is derived in Section 6.4.

### 6.2 General Linear Regression Model and Assumptions

Let us assume that a linear relationship exists between a variable $Y$ (endogenous variable) and $(k-1)$ explanatory variables $X_{2}, X_{3}, \ldots, X_{k}$ and a disturbance term $u$. If we have a sample of ' $n$ ' observations on $Y$ and $X^{\prime} s$ we can write

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\beta_{1} \underset{\sim}{\mathbf{x}}+\beta_{2} \underset{\sim}{\mathbf{x}}, \ldots+\beta_{k} \underset{\sim}{\mathbf{x}_{\mathbf{k}}}+\underset{\sim}{\mathbf{u}} \tag{6.1}
\end{equation*}
$$

where

$$
\underset{\sim}{\mathbf{y}}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
: \\
Y_{n}
\end{array}\right], \underset{\sim}{\mathbf{x}}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
: \\
1
\end{array}\right], \underset{\sim}{\mathbf{x}}=\left[\begin{array}{c}
X_{21} \\
X_{22} \\
X_{23} \\
: \\
X_{2 n}
\end{array}\right], \ldots, \underset{\sim}{\mathbf{x}}=\left[\begin{array}{c}
X_{k 1} \\
X_{k 2} \\
X_{k 3} \\
: \\
X_{k n}
\end{array}\right] \text { and } \underset{\sim}{\mathbf{u}}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Here it may be noted that $\underset{\sim}{\mathbf{x}}$ is a column vector of units to allow for an intercept term. The $\beta^{\prime}$ 's are unknown population (model) parameters and are frequently called as regression coefficients. Even if we know their values, the linear combination $\left(\beta_{1} \mathbf{x}_{1}+\beta_{2}{\underset{\sim}{x}}_{2}+\ldots+\beta_{k}{\underset{\sim}{x}}^{x}\right)$ would not determine the $\underset{\sim}{y}$ vector exactly, for economic relations are stochastic, not exact. Thus $\underset{\sim}{\mathbf{u}}$ is a disturbance vector measuring the discrepancies between the linear combination and any actual sample realization of $Y$ values.

Eq. (6.1) may be expressed in matrix form as

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{6.2}
\end{equation*}
$$

$$
\text { where } \mathbf{X}=\left[\begin{array}{llll}
\mathbf{x}_{\sim}^{1} & \mathbf{x}_{2} & \cdots & {\underset{\sim}{\mathbf{x}}}_{\mathbf{k}}
\end{array}\right], \underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

The central problem is now to obtain the estimate of the unknown $\boldsymbol{\beta}$, the vector of regression coefficients. To make any progress with this we need to make some further assumptions about how the observations on $Y$ have been generated.

## Assumptions of the linear Model

1. $E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{0}$ i.e., $E(\underset{\sim}{\mathbf{y}})=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}$

This means that the values of disturbance term will take both positive and negative discrepancies from its expected value and on balance, they will average out at zero i.e, $E\left(u_{i}\right)=0 \quad \forall i=1,2, \ldots, n$
2. $E\left(\underset{\sim}{\mathbf{u}} \mathbf{u}^{\mathbf{u}}\right)=\sigma^{2} I$

Since $\mathrm{E}(\underset{\sim}{\mathbf{u}})=\underset{\sim}{0}, \mathrm{E}\left(\underset{\sim}{\mathbf{u}} \mathbf{\sim}^{\prime}\right)=\operatorname{var}(\underset{\sim}{\mathbf{u}})$ is the variance - covariance matrix of $\underset{\sim}{\mathbf{u}}$ and this assumption gives

| Econometrics | 6.3 | Multiple Regression Analysis : Estimation |
| :--- | :--- | :--- |

$$
\left[\begin{array}{cccc}
\operatorname{var}\left(\mathrm{u}_{1}\right) & \operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) & \ldots & \operatorname{cov}\left(\mathrm{u}_{1}, \mathrm{u}_{\mathrm{n}}\right) \\
\operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{u}_{1}\right) & \operatorname{var}\left(\mathrm{u}_{2}\right) & \ldots & \operatorname{cov}\left(\mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}}\right) \\
. & . & \ldots & . \\
\operatorname{cov}\left(\mathrm{u}_{\mathrm{n}}, \mathrm{u}_{1}\right) & \operatorname{cov}\left(\mathrm{u}_{\mathrm{n}}, \mathrm{u}_{2}\right) & \ldots & \operatorname{var}\left(\mathrm{u}_{\mathrm{n}}\right)
\end{array}\right]=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \ldots & 0 \\
0 & \sigma^{2} & \ldots & 0 \\
. & . & \ldots & \cdot \\
0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

This is a double assumption, namely
i. $\operatorname{var}\left(u_{i}\right)=\sigma^{2}$ for all $i=1,2, \ldots, n$ i.e. All disturbances have the same variance.
ii. $\operatorname{cov}\left(u_{i}, u_{j}\right)=0$ for all $i \neq j=1,2, \ldots, n$ i.e. All disturbances are pair wise uncorrelated.

The first property is referred to as homoscedasticity (or homogeneous variances) and its opposite as heteroscedasticity. If the sample observations related to travel expenditures of a cross section of households, the assumption of homoscedasticity would probably not be a reasonable one, since low income families will almost certainly have low average expenditures on travel and also a low variance of actual travel expenditure about the average, while high income families will tend to display both higher mean levels of expenditure and greater variance about the mean. The second part of this assumption - all disturbances being pair wise uncorrelated - is a very strong assumption indeed. Again, in the context of the travel example it means that the size and sign of the disturbance for any one family has no influence on the size and sign of the disturbance for any other family.
3. $\rho(\mathbf{X})=k$

This assumption states that the explanatory variables do not form a linearly dependent set. For example, if we had just two explanatory variables, $X_{2} \& X_{3}$ and if this assumption was not fulfilled, then there would exist an exact relationship

$$
\mathrm{X}_{3}=c_{1}+c_{2} \mathrm{X}_{2}
$$

which, is substituted in the regression equation

$$
\mathrm{Y}=\beta_{1}+\beta_{2} \mathrm{X}_{2}+\beta_{3} \mathrm{X}_{3}+u
$$

gives

$$
\begin{align*}
Y & =\beta_{1}+\beta_{2} \mathrm{X}_{2}+\beta_{3}\left(c_{1}+c_{2} \mathrm{X}_{2}\right)+u  \tag{6.6}\\
& =\left(\beta_{1}+c_{1} \beta_{3}\right)+\left(\beta_{2}+c_{2} \beta_{3}\right) \mathrm{X}_{2}+u
\end{align*}
$$

The constants $c_{1}$ and $c_{2}$ can be determined exactly, and we can estimate the intercept and slope of Eq. (6.6), but it is not possible to obtain the estimates of the three $\beta$ parameters.
4. $X$ is a non-stochastic matrix.

It means that if we take another sample of $n$ observations, the $\mathbf{X}$ matrix of explanatory variables remains unchanged, the only source of variation then being in the $\underset{\sim}{\mathbf{u}}$ vector and hence in the $\underset{\sim}{y}$ vector. However, the social sciences are notoriously difficult for being observational and non-experimental so that in general the X variables are not subject to experimental control by the social scientist. There are three main points to be made about this assumption.

First of all, in spite of the remarks above, there are cases where the X data can be controlled. In a cross-section survey, the sample design may call for the inclusion of certain numbers of families with specific characteristics, and sampling is continued until these specifications are met. Second, even if it is not in fact feasible to control the X data precisely, it is still useful to be able to make statistical inferences which are conditional on the X values actually present in the sample. In this light it is very much an assumption of convenience in that it simplifies dramatically the derivation of several basic statistical results. Third, once these simple results have been derived, it is possible to weaken the assumption to allow the X variables to be stochastic, but distributed independently of the disturbance term, and then see what modifications of the earlier results are required.

### 6.3 Ordinary Least Squares Estimation of the Regression

## Coefficients

The most frequently used estimating technique for the general linear regression model, namely,

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{6.7}
\end{equation*}
$$

is the principle of least squares method. If the unknown vector $\underset{\sim}{\boldsymbol{\beta}}$ in the above equation is replaced by an arbitrary estimator $\underset{\sim}{\hat{\boldsymbol{\beta}}}$, then we may define a vector of errors, or residuals

$$
\begin{equation*}
\underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}} \tag{6.8}
\end{equation*}
$$

The least-squares principle for choosing $\hat{\boldsymbol{\beta}}$ is to minimize the sum of the squared residuals, namely,

$$
\begin{aligned}
& \sum_{i=1}^{n} e_{i}^{2}={\underset{\sim}{\mathbf{e}}}^{\mathbf{e}} \boldsymbol{\sim}=(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \hat{\sim} \hat{\boldsymbol{\beta}}) \\
& ={\underset{\sim}{\mathbf{y}}}^{\prime} \underset{\sim}{\mathbf{y}}-{\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}-\underset{\sim}{\mathbf{y}} \mathbf{X} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+{\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}} \\
& ={\underset{\sim}{\mid}}^{\mathbf{y}} \underset{\sim}{\mathbf{y}}-\mathbf{2} \underset{\sim}{\boldsymbol{\beta}^{\prime}} \mathbf{X}^{\prime}{\underset{\sim}{\mathbf{y}}}_{\mathbf{y}}^{\mathbf{y}}+{\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}} \quad \text { (since the transpose a scalar is the same scalar) }
\end{aligned}
$$

In order to minimize $\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}}$, we have to differentiate it with respect to $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ which gives

$$
\begin{equation*}
\frac{\partial{\underset{\sim}{\mathbf{e}}}_{\underset{\sim}{\mathbf{e}}}^{\partial{\underset{\sim}{\boldsymbol{\beta}}}^{\prime}}=-2 \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}+2 \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}}{} \tag{6.9}
\end{equation*}
$$

Now the Ordinary least squares (OLS) estimator of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ of the unknown $\underset{\sim}{\boldsymbol{\beta}}$ can be obtained by setting Eq. (6.9) equal to zero vector and solving it for $\underset{\sim}{\hat{\boldsymbol{\beta}}}$. Thus setting Eq. (6.9) to zero vector, we get

$$
\begin{equation*}
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \underset{\sim}{\hat{\boldsymbol{\beta}}}=\mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \tag{6.10}
\end{equation*}
$$

Which is a non-homogeneous system of $k$ linear equations, those are to be solved for $k$ unknowns $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$ and are often referred to as the OLS normal equations. The assumption of the GLM, namely, $\rho(\mathbf{X})=k$ ensures that $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular and hence inverse of $\mathbf{X}^{\prime} \mathbf{X}$ exits. Hence, from Eq. (6.10), the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$, is given by

$$
\begin{equation*}
\underset{\sim}{\hat{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\sim}^{\prime} \underset{\sim}{x} \tag{6.11}
\end{equation*}
$$

and the vector of errors or residuals given by Eq.(6.8), where $\underset{\sim}{\boldsymbol{\beta}}$ is OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$, is called the vector of OLS residuals. Using Eq. (6.8) in Eq. (6.10) we get

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \underset{\sim}{\boldsymbol{\beta}}=\mathbf{X}^{\prime}(\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}+\underset{\sim}{\mathbf{e}})=\left(\mathbf{X}^{\prime} \mathbf{X}\right) \underset{\sim}{\hat{\boldsymbol{\beta}}}+\mathbf{X}^{\prime} \underset{\sim}{\mathbf{e}}
$$

which implies $\mathbf{X}^{\prime} \underset{\sim}{\mathbf{e}}=\left[\begin{array}{c}\underset{\sim}{\mathbf{x}_{\sim}^{\prime} \mathbf{e}} \\ \underset{\sim}{\mathbf{x}_{\sim}^{\prime}} \\ \underset{\sim}{\mathbf{e}} \\ \underset{\sim}{\mathbf{x}} \\ \vdots \\ \mathbf{x}_{\sim}^{\prime} \\ \mathbf{x} \\ \mathbf{e}\end{array}\right]_{(\mathrm{kX1})}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]_{(\mathrm{kx1})}={\underset{\sim}{(k x 1)}}^{\mathbf{0}_{(\mathrm{kx}}}$
This is a fundamental OLS result. The first element in this equation gives (since $\underset{\sim}{\mathbf{X}}$ is the vector of units).

$$
\begin{equation*}
\underset{\sim}{\mathbf{x}_{1}^{\prime}} \underset{\sim}{\mathbf{e}}=0 \Rightarrow \sum_{i=1}^{n} e_{i}=0 \Rightarrow \bar{e}=0 \tag{6.13}
\end{equation*}
$$

That is, the residuals from the OLS regression always have zero mean
provided that the regression equation contains a constant term. The remaining elements in Eq. (6.12) state that the residual has zero sample correlation with each X variable.

### 6.4 Estimation of $\sigma^{2}$ :

As the values of $u$ are not directly observable, it seems plausible to base an estimate of $\sigma^{2}$ on the residual sum of squares (RSS) $\underset{\sim}{\mathbf{e}}{ }_{\sim}^{\mathbf{e}}$.
We have from Eq. (6.8)

$$
\begin{align*}
\underset{\sim}{\mathbf{e}} & =\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}} \\
& =\underset{\sim}{\mathbf{y}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\underset{\sim}{\prime}}^{\mathbf{y}} \quad \text { where } \mathbf{M}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \\
& =\underset{\sim}{\mathbf{M}} \mathbf{\underset { \sim } { y }} \tag{6.14}
\end{align*}
$$

Here, $\mathbf{M}$ is an important matrix. It can be easily verified that it is symmetric and idempotent (i.e., $\mathbf{M}^{\prime}=\mathbf{M} \& \mathbf{M} \mathbf{M}^{\prime}=\mathbf{M}^{2}=\mathbf{M}$ ). It also follows

$$
\begin{equation*}
\mathbf{M X}=\mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=0 \tag{6.15}
\end{equation*}
$$

From Eqs. (6.7), (6.14) and (6.15)
$\underset{\sim}{\mathbf{e}}=\mathbf{M} \underset{\sim}{\mathbf{y}}=\mathbf{M}(\underset{\sim}{\mathbf{\beta}} \underset{\sim}{\boldsymbol{\sim}}+\underset{\sim}{\mathbf{u}})=\mathbf{M}$
and $\mathbf{e}^{\prime} \mathbf{e}=\mathbf{u}^{\mathbf{u}} \mathbf{M}^{\prime} \mathbf{M} \mathbf{\sim}$

$$
\begin{array}{ll}
={\underset{\sim}{\mathbf{u}}}^{\prime} \mathbf{M}^{2} \mathbf{u} & (\because \mathbf{M} \text { is symmetric }) \\
=\underset{\sim}{\mathbf{u}^{\prime} \mathbf{M}} \underset{\sim}{\mathbf{u}} & (\because \mathbf{M} \text { is idemponent }) \tag{6.17}
\end{array}
$$

Taking expectation on both sides, we get

$$
\begin{aligned}
& E\left({\underset{\sim}{e}}^{\mathbf{e}} \underset{\sim}{\mathbf{e}}\right)=E\left(\underset{\sim}{\mathbf{u}^{\prime} \mathbf{M}} \underset{\sim}{\mathbf{u}}\right) \\
& =E\left(\operatorname{tr}\left({\underset{\sim}{u}}_{\mathbf{u}}^{\mathbf{u}} \mathbf{M u}\right)\right) \quad\left(\because{\underset{\sim}{u}}_{\mathbf{u}}^{\mathbf{u}} \mathbf{M} \mathbf{\sim}\right. \\
& =E\left(\operatorname{tr}\left(\mathbf{M u ̛ ̃}_{\sim}^{\prime}\right)\right) \quad(\because \operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})) \\
& =\sigma^{2} \operatorname{tr}(\mathbf{M}) \quad\left(\because \mathrm{E}\left(\underset{\sim}{\mathbf{u}} \mathbf{u}^{\prime}\right)=\sigma^{2} \mathbf{I}_{\mathbf{n}}\right) \\
& =\sigma^{2} \operatorname{tr}\left[\mathbf{I}_{\mathbf{n}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right] \\
& =\sigma^{2}\left[\operatorname{tr}\left(\mathbf{I}_{\mathbf{n}}\right)-\operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\right] \quad(\because \operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})) \\
& =\sigma^{2}\left[n-\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\right)\right] \\
& =\sigma^{2}\left[n-\operatorname{tr}\left(\mathbf{I}_{k}\right)\right] \\
& =\sigma^{2}(n-k)
\end{aligned}
$$

Thus $E\left(\frac{\mathbf{e}^{\prime} \mathbf{e}}{n-k}\right)=\sigma^{2}$ and
hence $\frac{\mathbf{e}^{\prime} \mathbf{e}}{n-k}$ is an unbiased estimator of $\sigma^{2}$ which we denote as $\hat{\sigma}^{2}$
$\hat{\sigma}$ is often referred to as the standard error of the estimate and may be regarded as the standard deviation of the $Y$ values about the regression plane and is given by

$$
\begin{equation*}
\left.\hat{\sigma}=\sqrt{\mathrm{e}^{\prime} \mathrm{e} /(n-k}\right) \tag{6.19}
\end{equation*}
$$

### 6.5 SELF ASSESSMENT QUESTIONS

1. Explain a general linear model (GLM) along with its assumptions. Also give two applications of GLM.
2. Explain the justification for the inclusion of disturbance (error) term in a general linear model.
3. Explain a multiple regression model along with its assumptions.
4. Explain the significance of disturbance (error) term in a general linear model by means of an illustration.
5. Derive the normal equations for a three-variable regression model.
6. Derive the normal equations for multiple regression model.
7. In a general linear (multiple regression) model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$, derive the OLS estimator of $\beta$.

| Econometrics | 6.7 | Multiple Regression Analysis : Estimation |
| :--- | :--- | :--- |

8. In a general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$, derive the OLS estimator of $\sigma^{2}$ and show that it is unbiased.
9. In a general linear model, derive the OLS estimator of the variance of the disturbance (error) term and show that it is unbiased.
10. In a multiple regression model, derive an unbiased estimator of the variance of the disturbance (error) term.
11. Define a multiple linear regression model and mention the standard assumptions on the statistical disturbance term.
12. For a general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \sim\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$, show that the maximum likelihood estimator and OLS estimator of $\beta$ are the same.
13. Show that the sum (mean) of the residuals in a GLM is zero.
14. Show that the vector of residuals uncorrelated with the data matrix $\mathbf{X}$.
15. Prove that if a regression is fitted without a constant term, the sum (mean) of the residuals need not be zero.

### 6.6 REFERENCES

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 7

# MULTIPLE REGRESSION ANALYSIS: PROPERTIES OF OLS ESTIMATORS 

### 7.0 Objective:

After studying this lesson the student will understand that ordinary least squares estimator $\underset{\sim}{\boldsymbol{\beta}}$ of $\underset{\sim}{\boldsymbol{\beta}}$ in general linear model (multiple linear regression model) $\underset{\sim}{\mathbf{y}}=\mathbf{X} \boldsymbol{\sim} \boldsymbol{\sim}$ best linear unbiased estimator of $\underset{\sim}{\boldsymbol{\beta}}$, which is the famous Gauss-Markov theorem. He/she will be knowing the importance of coefficient of the determination of $R^{2}$ and adjusted coefficient of determination $\bar{R}^{2}$

## Structure of the Lesson:

### 7.1 Introduction

### 7.2 OLS Estimators are Linear Unbiased Estimators

### 7.3 OLS Estimators are BLUEs (Gauss-Markov theorem)

### 7.4 Coefficient of Determination $R^{2}$

### 7.5 Adjusted $R^{2}$ or $\bar{R}^{2}$ and its use

### 7.6 Self Assessment Questions

### 7.7 References

### 7.1 Introduction

This lesson is a continuation of Lesson 6, which is devoted for studying the properties of ordinary least squares estimator of $\underset{\sim}{\beta}$ in the GLM

$$
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}
$$

which is derived in Lesson 6 and is given by

$$
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}
$$

In Section 7.2, we will show that each component of $\underset{\sim}{\hat{\beta}}$ is a linear combination of $Y_{1}, Y_{2}, \ldots, Y_{n}$ and also we will show that $\underset{\sim}{\hat{\beta}}$ is linear unbiased estimator of $\underset{\sim}{\boldsymbol{\beta}}$. In Section 7.3, we will establish the famous Gauss-Markov theorem which states that $\underset{\sim}{\hat{\beta}}$ is best linear unbiased estimator of $\underset{\sim}{\boldsymbol{\beta}}$, which means that no other linear unbiased estimator of $\underset{\sim}{\boldsymbol{\beta}}$ has smaller variance than the OLS estimator $\underset{\sim}{\hat{\beta}}$.

In Section 7.4, we will derive the formulae for the coefficient of determination $R^{2}$, which measures the proportion of variation in the dependent variable $(Y)$ explained by linear combination of the explanatory variables $\left(\mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$ as compared with the total variation in $Y$.

In Section 7.5, we will discuss the adjusted $R^{2}$ or $\bar{R}^{2}$ which will be useful for knowing the explanatory power of an additional variable.

### 7.2 OLS Estimators are Linear Unbiased Estimators

We known that the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$ in the GLM $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}$ is

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \tag{7.1}
\end{equation*}
$$

Since $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}},(7.1)$ can be written as

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underline{\sim} \tag{7.2}
\end{equation*}
$$

Since $\mathbf{X}$ is non-stochastic matrix,

$$
\begin{equation*}
E(\underset{\sim}{\boldsymbol{\beta}})=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\boldsymbol{\beta}} \quad(\because E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}}) \tag{7.3}
\end{equation*}
$$

Thus the OLS estimator $\hat{\boldsymbol{\beta}}$ is a linear unbiased estimator of $\underset{\sim}{\boldsymbol{\beta}}$, More specifically, each element of $\underset{\sim}{\hat{\beta}}$ is a linear unbiased estimator of the corresponding element of $\underset{\sim}{\boldsymbol{\beta}}$

The linearity property refers to linearity in $\underset{\sim}{\mathbf{y}}$ (or $\underset{\sim}{\mathbf{u}}$ ) as is seen in Eqs. (7.1) or (7.2), for each element in $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is a linear combination of the elements of $\underset{\sim}{\mathbf{y}}$ (or $\underset{\sim}{\mathbf{u}}$ ), the weights being functions of the $\mathbf{X}$ data matrix which are non-stochastic.

## The variance-covariance matrix of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$

From Eqs. (7.2) and (7.3) we have

$$
\hat{\sim} \hat{\boldsymbol{\beta}}-E(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\sim_{\sim}^{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}
$$

Now by definition the variance-covariance matrix of $\underset{\sim}{\hat{\beta}}$ is

$$
\begin{align*}
\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}}) & =E\left[(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\right] \\
& =\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\underset{\sim}{\prime}}^{\mathbf{u ̛ \sim}^{\prime}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left[{\underset{\sim}{u}}^{\mathbf{u}}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad(\because \mathbf{X} \text { is nonstochastic }) \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{I}_{n} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad\left(\because E\left[{\underset{\sim}{u}}^{\prime}\right]=\sigma^{2} \mathbf{I}_{n}\right) \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tag{7.4}
\end{align*}
$$

The elements on the main diagonal of Eq. (7.4) give the sampling variances of the corresponding elements of $\underset{\sim}{\hat{\beta}}$, and the off-diagonal terms give the sampling co-variances between the two corresponding elements of $\hat{\beta}$.

### 7.3 OLS Estimators are BLUEs(Gauss-Markov theorem):

The following proof is somewhat round about, but it has the advantage of establishing a further important result at the same time.
Let $\underset{\sim}{\mathbf{c}}$ denote an arbitrary k-element column vector of known constants and define a scalar quantity $\mu$ as

$$
\begin{equation*}
\mu={\underset{\sim}{\mathrm{c}}}^{\prime} \underset{\sim}{\boldsymbol{\beta}} \tag{7.5}
\end{equation*}
$$

If we choose $\underset{\sim}{\boldsymbol{c}}=\left(\begin{array}{llll}0 & 1 & 0 & \ldots\end{array}\right)^{\prime}$, then $\mu=\beta_{2}$.
Thus we can use Eq. (7.5) to pick out any single element in $\underset{\sim}{\boldsymbol{\beta}}$. Or if we choose

$$
{\underset{\sim}{\mathbf{c}}}^{\prime}=\left[\begin{array}{llll}
1 & X_{2, n+1} & \cdots & X_{k, n+1}
\end{array}\right]
$$

Then $\mu=\beta_{1}+\beta_{2} X_{2, n+1}+\ldots+\beta_{k} X_{k, n+1}=E\left(Y_{n+1}\right), \quad$ for $\mathrm{E}\left(u_{n+1}\right)=0$,
which is expected value of the dependent variable $Y$ in period $(\mathrm{n}+1)$, conditional on the $X$ values in that period.

We wish to consider the class of linear unbiased estimators of $\mu$. Thus define a scalar m which will serve as a linear estimator of $\mu$, such that

$$
\begin{equation*}
m={\underset{\sim}{a}}^{\prime} \underset{\sim}{\mathbf{a}}=\underset{\sim}{\mathbf{a}^{\prime}} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{a}^{\prime}} \mathbf{\sim} \tag{7.6}
\end{equation*}
$$

where $\underset{\sim}{\mathbf{a}}$ is some n -element column vector. The definition ensures linearity. To ensure unbiased ness we have

$$
\begin{equation*}
E(m)=\mathbf{a}_{\sim}^{\prime} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+{\underset{\sim}{\mathbf{a}}}^{\prime} E(\underset{\sim}{\mathbf{u}})={\underset{\sim}{\mathbf{a}}}^{\prime} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}={\underset{\sim}{c}}^{\prime} \boldsymbol{\sim} \boldsymbol{\beta} \quad(\because E(\underset{\sim}{\mathbf{u}})=0) \tag{7.7}
\end{equation*}
$$

only if $\quad{\underset{\sim}{a}}^{\mathbf{a}} \mathbf{X}={\underset{\sim}{c}}^{\prime}$
The variance of $m$ is given by

$$
\begin{align*}
& \operatorname{var}(\mathrm{m})=E[m-E(m)]^{2}  \tag{7.8}\\
& \left.=E\left[{\underset{\sim}{\mathbf{a}}}_{\sim}^{\prime} \mathbf{u}\right]^{2} \quad \text { (from Eqs. (7.6) } \&(7.7)\right) \\
& =E\left(\underset{\sim}{\mathbf{a}^{\prime}}{\underset{\sim}{u}}_{\sim}^{\mathbf{u}} \mathbf{a}\right) \quad\left(\because{\underset{\sim}{\mathbf{a}}}^{\mathbf{a}} \mathbf{\sim}{ }_{\sim}^{\mathbf{u}} \text { is scalar }\right) \\
& ={\underset{\sim}{a}}^{\mathbf{a}}\left(\sigma^{2} \mathbf{I}_{\mathbf{n}}\right) \underset{\sim}{\mathbf{a}} \quad\left(\because \mathrm{E}\left(\underset{\sim}{u_{\sim}^{\prime}}{ }^{\prime}\right)=\sigma^{2} \mathbf{I}_{\mathbf{n}}\right) \\
& =\sigma^{2}{\underset{\sim}{a}}^{\mathbf{a}} \mathbf{\sim} \tag{7.9}
\end{align*}
$$

Now we should minimize (7.9) subject to the condition

$$
\mathbf{X}^{\prime} \underset{\sim}{\mathbf{a}}=\underset{\sim}{\mathbf{c}} \text { i.e } \mathbf{X}^{\prime} \underset{\sim}{\mathbf{a}}-\underset{\sim}{\mathbf{c}}=\underset{\sim}{\mathbf{0}} \quad \text { (from Eq. (7.8)) }
$$

This is equivalent to minimize the function

$$
\begin{equation*}
\phi=\underset{\sim}{\mathbf{a}^{\prime}} \mathbf{\sim}-2 \lambda^{\prime}\left(\mathbf{X}^{\prime} \underset{\sim}{\mathbf{a}}-\underset{\sim}{\mathbf{c}}\right) \tag{7.10}
\end{equation*}
$$

with respect to $\underset{\sim}{a}$ and $\underset{\sim}{\lambda}$ and thus we obtain

$$
\begin{align*}
& \frac{\partial \phi}{\partial \underset{\sim}{\mathbf{a}}}=0 \Rightarrow 2 \underset{\sim}{\mathbf{a}}-2 \mathbf{X} \underset{\sim}{\boldsymbol{\lambda}}=\underset{\sim}{0}  \tag{7.11}\\
& \frac{\partial \phi}{\partial \boldsymbol{\lambda}}=0 \Rightarrow 2\left(\mathbf{X}_{\sim}^{\prime} \underset{\sim}{\mathbf{a}}-\mathbf{c}\right)=\underset{\sim}{0} \tag{7.12}
\end{align*}
$$

Pre-multiplying Eq. (7.11) by $\mathbf{X}^{\prime}$, we get

$$
\begin{equation*}
\mathbf{X}^{\prime} \underset{\sim}{\mathbf{a}}-\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\sim}=\underset{\sim}{\mathbf{0}} \Rightarrow \underset{\sim}{\mathbf{c}}=\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\sim} \boldsymbol{\lambda} \Rightarrow \underset{\sim}{\boldsymbol{\lambda}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{c} \tag{7.12}
\end{equation*}
$$

Substituting back $\underset{\sim}{\lambda}$ in Eq. (7.11) we get $\underset{\sim}{\mathbf{a}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}}$
Hence, from Eq. (7.6) the linear estimator $m=\underset{\sim}{\mathbf{a}}{ }_{\sim}^{\mathbf{y}}$ of $\mu={\underset{\sim}{c}}^{\mathbf{\prime} \boldsymbol{\beta}}$ has minimum variance for the choice of

$$
\begin{equation*}
\underset{\sim}{\mathbf{a}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}} \tag{7.13}
\end{equation*}
$$

Therefore by definition

$$
\begin{aligned}
m={\underset{\sim}{\mathbf{a}}}^{\prime} \mathbf{\underset { \sim } { \mathbf { y } }} & ={\underset{\sim}{\mathbf{c}}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim} \\
& ={\underset{\sim}{\mathbf{\prime}}}_{\substack{\hat{\boldsymbol{\beta}}}} \quad\left(\because \text { the OLS estimator } \underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}\right)
\end{aligned}
$$

becomes the BLUE of $\mu={\underset{\sim}{\mathbf{c}}}^{\prime} \boldsymbol{\beta}$.

Thus $\underset{\sim}{\mathrm{c}^{\prime}} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ is the BLUE of ${\underset{\sim}{c}}_{\sim}^{\prime} \boldsymbol{\beta}$ and as a consequence $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is the BLUE of $\underset{\sim}{\boldsymbol{\beta}}$

If follows directly that

1. Each OLS coefficient is the best linear unbiased estimator of the corresponding regression coefficient.
2. The BLUE of any linear combination of the $\beta^{\prime} s$ is the same linear combination of the $\hat{\beta}$ 's.
3. The BLUE of $E\left(Y_{s}\right)$ is $\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 s}+\ldots+\hat{\beta}_{k} X_{k s}$.

## Note:

The above result is often called as Gauss-Markov theorem, which may be stated as follows:
In the general linear model $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}, E(\underset{\sim}{\mathbf{u}})=0$ and $\operatorname{var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \mathbf{I}_{\mathrm{n}}$, the ordinary least squares estimator $\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\sim}^{\prime} \underset{\sim}{\mathbf{y}}$ is the best linear unbiased estimator (BLUE) of $\underset{\sim}{\boldsymbol{\beta}}$ or more specifically for any arbitrary $\underset{\sim}{\mathbf{c}},{\underset{\sim}{c}}^{\mathbf{c}} \hat{\boldsymbol{\beta}}$ is the BLUE of $\underset{\sim}{\mathbf{c}},{\underset{\sim}{\mathbf{c}}}^{\mathbf{\prime}} \hat{\sim}$.

### 7.4 Coefficient of Determination $\boldsymbol{R}^{\mathbf{2}}$

We have the multiple linear regression model or GLM

$$
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}, \mathrm{E}(\underset{\sim}{\mathbf{u}})=\underset{\sim}{0} \text { and } \operatorname{var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \mathbf{I}_{n}
$$

and the OLS estimator of $\underset{\sim}{\beta}$ is

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \tag{7.15}
\end{equation*}
$$

Decomposing the $\underset{\sim}{\mathbf{y}}$ vector into the part explained by the regression and the unexplained part,

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\underset{\sim}{\hat{\mathbf{y}}}+\underset{\sim}{\mathbf{e}}=\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}+\underset{\sim}{\mathbf{e}} \tag{7.16}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& {\underset{\sim}{\mathbf{y}}}_{\sim}^{\prime} \underset{\sim}{\mathbf{x}}=(\underset{\sim}{\hat{\mathbf{y}}}+\underset{\sim}{\hat{\mathbf{e}}})^{\prime}(\underset{\sim}{\hat{\mathbf{y}}}+\underset{\sim}{\mathbf{e}}) \\
& =\hat{\mathbf{y}}^{\prime} \underset{\sim}{\mathbf{y}}+\underline{\mathbf{e}}^{\prime} \mathbf{e}+2 \hat{\mathbf{y}}^{\prime} \mathbf{e} \\
& ={\underset{\sim}{\hat{\beta}}}^{\hat{\beta}^{\prime}} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}+{\underset{\sim}{e}}^{\mathbf{e}} \mathbf{e}+2 \underset{\sim}{\boldsymbol{\beta}^{\prime}} \mathbf{X}^{\prime} \mathbf{e} \quad \text { ( from Eq.(7.16)) } \tag{7.17}
\end{align*}
$$

But we have

$$
\begin{align*}
& \mathbf{X}^{\prime} \mathbf{e}=\mathbf{X}^{\prime}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}) \\
& =\mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \quad \text { ( from Eq. (7.15) ) } \tag{7.18}
\end{align*}
$$

using Eq. (7.18), Eq. (7.17) becomes

However, $\underset{\sim}{\mathbf{y}^{\prime}} \underset{\sim}{\mathbf{y}}=\sum_{i=1}^{n} Y_{i}^{2}$ is the sum of squares of the actual $Y$ values. But normally our interest is analyzing the variation in $Y$, measured by the sum of the squared deviations from the sample mean, namely,

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}
$$

Thus, subtracting $n \bar{Y}^{2}$ from each side of the decomposition (7.19) gives a revised decomposition,

$$
\begin{align*}
\left({\underset{\sim}{\mathbf{y}}}^{\prime} \underset{\sim}{\mathbf{y}}-n \bar{Y}^{2}\right) & =\left({\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}-n \bar{Y}^{2}\right)+{\underset{\sim}{\mathbf{e}}}^{\prime} \mathbf{e} \\
T S S & =\underset{S S}{ } \tag{7.20}
\end{align*}
$$

where TSS indicates the total sum of squares in $Y$; and ESS and RSS are the explained and residual (unexplained) sum of squares respectively..

The coefficient of determination $\mathrm{R}^{2}$ is defined as the ratio of ESS to TSS and is

$$
R^{2}=\frac{E S S}{T S S}=\frac{\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime}{\underset{\sim}{\prime}-\mathrm{n}}^{\mathbf{y}} \overline{\mathrm{y}}^{2}}{\underset{\sim}{\mathbf{y}^{\prime} \mathbf{y}}-\mathrm{n} \overline{\mathrm{y}}^{2}}
$$

Thus $R^{2}$ measures the proportion of the total variation in $Y$ explained by the linear combination of the regressors and obviously lies between 0 and 1 (since $0 \leq E S S \leq T S S$ ). Most computer
programs routinely produce $R^{2}$, along with the estimated GLM. It may be noted from Eq. (7.21), the $R^{2}$ will never decrease with the addition of any variable to the set of regressors (both TSS and $\mathrm{n} \overline{\mathrm{y}}^{2}$ in ESS will always be the same for any given set of $Y$ values. The quantity ${\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}={\underset{\sim}{\boldsymbol{\beta}}}^{\hat{\boldsymbol{\beta}}} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ is a positive definite quadratic form and hence it will be always positive and will be increased when a new variable is added to the set of existing regressors). If the added variable is totally irrelevant the ESS simply remains constant.

Notes:

1. The positive square root of $R^{2}$ is defined as the multiple correlation coefficients.
2. Both $R$ and $R^{2}$ lies between 0 and 1. i.e., $0 \leq R^{2} \leq 1$ and $0 \leq R \leq 1$. If it is 1 , the fitted regression line explains. 100 percent of the variation in $Y$. On the other hand, if it is 0 , the model does not explain any of the variation in $Y$. Typically, however, $R^{2}$ lies between these extreme values.
3. The fit of the model is said to be "better" the closer $R^{2}$ is to 1 . Recall that in the twovariable case we defined the quantity $r$ as the coefficient of correlation and indicated that it measures the degree of (linear) association between two variables. The three-or-morevariable analogue of $r$ is the coefficient of multiple correlation, denoted by $R$, and it is a measure of the degree of association between $Y$ and all the explanatory variables jointly. Although $r$ can be positive or negative, $R$ is always taken to be positive. In practice, however, $R$ is of little importance. The more meaningful quantity is $R^{2}$.
4. The value of $R^{2}$ (or $R$ ) closer to 1 indicates a higher value of ESS, which results in the case of a strong linear relationship between the dependent variable $Y$ and the set of independent variables $X_{2}, X_{3}, \ldots, X_{k}$. On the other hand, when the linear relationship is very weak, we get a smaller value of ESS when closer to ' 0 '. Thus ${ }^{\text {R2 }}$ measures the goodness of fit of the models

### 7.5 Adjusted $\mathbf{R}^{2}$ or $\overline{\boldsymbol{R}}^{2}$ and its use

From Eqs. (7.20) and (7.21), $\mathrm{R}^{2}$ may also be written as

$$
\begin{equation*}
R^{2}=1-\frac{R S S}{T S S}=1-\frac{\mathbf{e}^{\prime} \mathbf{e}}{{\underset{\sim}{y}}^{\mathbf{y}^{\prime} \underset{\sim}{y}-\mathrm{ny}} \overline{\mathrm{y}}^{2}} \tag{7.22}
\end{equation*}
$$

An important property of $R^{2}$ is that it is a non-decreasing function of the number of explanatory variables or regressors present in the model; as the number of regressors increases, $R^{2}$ almost invariably increases and never decreases. Stated differently, an additional $X$ variable will not decrease $R^{2}$. From Eq.(7.22) we may note that adding any extra explanatory variable can never increase the RSS and thus can never decrease the $R^{2}$, since that expression of $R^{2}$ takes no account of the number of the number of explanatory variables in the model.

It is sometimes useful to compute an $R^{2}$, adjusted for degrees of freedom, especially when comparing the explanatory power of different numbers of explanatory variables. From Eq. (7.22) $R^{2}$ may be re-written as

$$
\begin{equation*}
R^{2}=1-\frac{{\underset{\sim}{e}}^{\mathbf{e}} \stackrel{\mathbf{e}}{\sim} / n}{\left(\underset{\sim}{\mathbf{y}^{\prime} \mathbf{y}} \underset{\sim}{x}-n \overline{\mathbf{y}}^{2}\right) / n} \tag{7.23}
\end{equation*}
$$

The adjusted $R^{2}$ is defined as

$$
\begin{equation*}
\bar{R}^{2}=1-\frac{\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}} /(n-k)}{\left(\underset{\sim}{\mathbf{y}} \underset{\sim}{\mathbf{y}}-n \bar{y}^{2}\right) /(n-1)} \tag{7.24}
\end{equation*}
$$

The rationale behind the adjustment is that $k$ parameters have been used in fitting the regression plane from which the residual sum of squares is measured, and one parameter, the sample mean, has been estimated in computing TSS. These provide unbiased estimators of $\sigma^{2}$ and variance of $Y$.
From Eqs. (7.22) and (7.24), $\bar{R}^{2}$ may be re-written as

$$
\begin{equation*}
\bar{R}^{2}=1-\frac{n-1}{n-k} \frac{{\underset{\sim}{\mathbf{e}}}^{\prime} \underset{\sim}{\mathbf{e}}}{\left(\underset{\sim}{\mathbf{y}} \underset{\sim}{\mathbf{y}}-n \overline{\mathrm{y}}^{2}\right)}=1-\frac{n-1}{n-k}\left(1-R^{2}\right) \tag{7.25}
\end{equation*}
$$

It is immediately apparent from the above equation that for $k>1$,

$$
\bar{R}^{2}<R^{2}, \quad \text { for } 1-\bar{R}^{2}=\frac{n-1}{n-k}\left(1-R^{2}\right)>1-R^{2} \quad\left(\because n-1>n-k \Rightarrow \frac{n-1}{n-k}>1\right)
$$

- which implies that as the number of $X$ variables increases, the adjusted $\mathrm{R}^{2}$ increases less than the unadjusted $R^{2}$.
- Further from Eq.(7.25), it is possible for the adjusted coefficient of determination $\bar{R}^{2}$ to decline if an additional variable produces too small a reduction in $1-R^{2}$ to compensate for the increase in $\frac{n-1}{n-k}$.
- Therefore, generally, $\bar{R}^{2}$ is also reported by most statistical packages along with the conventional $\mathrm{R}^{2}$.

Thus $\bar{R}^{2}$ will be useful to examine a whether an additional explanatory variable has more specifically, significant influence on the Response variable. When a new explanatory variable is added to the existing explanatory variables and if it produces an increase in $\bar{R}^{2}$ then we may say that the new variable has some significant influence on Response or dependent variable. Otherwise, the new variable has no significant influence and hence we may discard that new variable from the analysis.

Besides $R^{2}$ and adjusted $R^{2}$ as goodness of fit measures, other criteria are often used to judge the adequacy of a regression model. Two of these are Schwarz criterion and Akaike's Information criterion, which are given below and are used to select between competing models.
Schwarz criterion :

$$
S C=\log \frac{e^{\prime} e}{n}+\frac{k}{n} \log n
$$

Akaike information criterion: $\quad A I C=\log \frac{e^{\prime} e}{n}+\frac{2 k}{n}$

### 7.6 Self Assessment Questions

1. Show that OLS estimators are BLUEs in a general linear model.
2. State and prove Gauss-Markov theorem and also discuss the importance of this theorem in linear estimation.
3. Stating clearly the underlying assumptions, prove Gauss-Markov theorem.
4. Stating the assumptions clearly show that the OLS estimator of $\boldsymbol{\beta}$, in the general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, is best linear unbiased.
5. Under certain conditions show that the ordinary least squares estimators are best linear unbiased.
6. Prove that the OLS estimator of $\boldsymbol{\beta}$, in the general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, is unbiased linear estimator.
7. In a multiple regression model, show that the OLS estimator of the variance of the disturbance (error) term is unbiased.
8. Define the coefficient of determination $R^{2}$ and derive a formula for it.
9. Define the coefficient of multiple correlation $R$ and derive a formula for it.
10. Distinguish between $R^{2}$ and adjusted $R^{2}$ and explain the use of adjusted $R^{2}$.
11. Prove that the coefficient of determination $R^{2}$ is the square of simple correlation between $y$ and $\hat{\mathbf{y}}$, where $\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$.
12. Derive the variance-covariance matrix of the OLS estimator of $\boldsymbol{\beta}$, in the GLM $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$.

### 7.7 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

## Lesson 8

## MULTIPLE REGRESSION ANALYSIS: THE PROBLEM OF INFERENCE AND PREDECTION

### 8.0 Objective:

Testing the estimated GLM is an important aspect of the multiple regression analysis. In this lesson, the student will be exposed for checking the goodness of fit of the estimated GLM as well as the testing the significance and construction of confidence intervals for individual regression coefficients. Further, from this lesson the student will understand how to predict or forecast the dependent variable using the well fitted model. Using both point and interval prediction methods.

## Structure of the Lesson:

### 8.1 Introduction

8.2 Testing the Significance of the Individual Regression Coefficients
8.3 Testing the Significance of the Complete Regression
8.4 Set of linear Hypothesis
8.5 Test procedure for $R \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$
8.6 Prediction
8.7 Self Assessment Questions
8.8 References

### 8.1 Introduction

This lesson, a continuation of Lesson 3, extends the ideas of hypothesis testing and interval estimation developed there for simple linear model to GLM. Although in many ways the concepts developed in Lesson 3 can be applied straightforwardly to the multiple regression model, a few additional features are unique to such models, and it is these features that will receive more attention in this Lesson.

If our sole objective is point estimation of the parameters of the regression models, as we have seen in Lessons 6 and 7, the method of ordinary least squares (OLS) does not require any assumption about the probability distribution of the disturbances $u_{j} s$. But if our objective is estimation as well as inference, then we need to assume that the $u_{i}$ follow some probability distribution in addition to the standard assumptions of the GLM. As in case of simple regression models, for multiple regression models also, we assume that the $u_{i}$ follow the normal distribution with zero mean and constant variance $\sigma^{2}$. With the normality assumption of the disturbances $u_{i}$ 's, we are able to develop the procedures for hypothesis testing and interval estimation of the
$\beta$ parameters. In Section 8.2, we develop the test procedure for examining the significance of each $\beta$ parameter along with the construction of its confidence interval and in Section 8.3, we develop the test procedure for the significance of complete regression. Section 8.4 and 8.5 are devoted for developing the test procedure for a set of linear hypothesis $R \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$. In section 8.6, we have discussed the problem of prediction.

### 8.2 Testing the Significance of the Individual Regression Coefficients:

From Lesson 6, we have the multiple linear regression model (GLM)

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{8.1}
\end{equation*}
$$

with the assumption
i) $\mathrm{E}(\underset{\sim}{\mathbf{u}})=\underset{\sim}{0}$.
ii) $\operatorname{var}(\underset{\sim}{\mathbf{u}})=\mathrm{E}\left(\underset{\sim}{\mathbf{u}}{\underset{\sim}{u}}^{\prime}\right)=\sigma^{2} \mathbf{I}_{n}$.
iii) The data matrix $\mathbf{X}$ is nonstochastic and full rank matrix.

Now, let us make an additional assumption namely
iv) Suppose that the elements of $\underset{\sim}{\mathbf{u}}$ are normal so that $\underset{\sim}{\mathbf{u}}$ is a multivariate normal vector.
The above all four assumptions may now be restated in compact form as

$$
\begin{equation*}
\underset{\sim}{\mathbf{u}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{I}_{n}\right) \tag{8.2}
\end{equation*}
$$

From Eq. (7.1) of Lesson 7, the ordinary least squares (OLS) estimator of $\underset{\sim}{\boldsymbol{\beta}}$ is given by

$$
\begin{equation*}
\underset{\sim}{\hat{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \tag{8.3}
\end{equation*}
$$

From Eqs. (8.1) and (8.3), we have

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim} \tag{8.4}
\end{equation*}
$$

From Eqs. (7.3) and (7.4) of Lesson 7, we have

$$
\begin{equation*}
E(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\underset{\sim}{\boldsymbol{\beta}} \text { and } \quad \operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\sigma^{2} \mathbf{X}^{\prime} \mathbf{X} \tag{8.5}
\end{equation*}
$$

From Eq. (8.4) we may notice that each element of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is a linear combination of the elements of $\underset{\sim}{\mathbf{u}}$, which is the multivariate normal vector. But, we know that every linear combination of a set of normal variates is also a normal variate and hence, ${\underset{\sim}{\hat{\beta}}}_{\hat{\boldsymbol{\beta}}}$ is also a multivariate normal variate and from Eq. (8.5) it immediately follows that

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}} \sim N\left(\underset{\sim}{\boldsymbol{\beta}}, \sigma^{2} \mathbf{X}^{\prime} \mathbf{X}\right) \tag{8.6}
\end{equation*}
$$

Result 1: The sampling distribution of the residual sum of squares ${\underset{\sim}{e}}^{\mathbf{e}} \underset{\sim}{\mathbf{e}}$, where $\underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ can be shown as

$$
\begin{equation*}
\frac{\mathbf{e}^{\prime} \mathbf{e}}{\sigma^{2}} \sim \chi_{n-k}^{2} \tag{8.7}
\end{equation*}
$$

Proof: We have from Eqs. (6.16) and (6.17) of Lesson 6, $\underset{\sim}{\mathbf{e}}=\mathbf{M} \underset{\sim}{\mathbf{u}}$ and ${\underset{\sim}{e}}_{\mathbf{e}}^{\mathbf{e}} \underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{u}^{\prime} \mathbf{M}} \underset{\sim}{\mathbf{u}}$
where $\mathbf{M}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is an idempotent matrix and it's trace is given by

$$
\begin{aligned}
\operatorname{tr}(\mathbf{M}) & =\operatorname{tr}\left(\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)=\operatorname{tr}\left(\mathbf{I}_{n}\right)-\operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{I}_{n}\right)-\operatorname{tr}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\right)=\operatorname{tr}\left(\mathbf{I}_{n}\right)-\operatorname{tr}\left(\mathbf{I}_{k}\right) \\
& =\mathrm{n}-\mathrm{k}
\end{aligned}
$$

But for every idempotent matrix its rank is nothing but its trace and therefore

$$
\begin{equation*}
\rho(\mathbf{M})=n-k \tag{8.8}
\end{equation*}
$$

Since $\mathbf{M}$ is an idempotent matrix of rank n-k, there exist an orthogonal matrix (Eigen vector matrix) $\mathbf{P}$ such that

$$
\begin{equation*}
\mathbf{P}^{\prime} \mathbf{M P}=\mathbf{E}_{n-k} \tag{8.9}
\end{equation*}
$$

where $\mathbf{E}_{n-k}$ is the Eigen root diagonal matrix, which is diagonal with ( $n-k$ ) units and $k$ zeros on its main diagonal. This is due to the fact any idempotent matrix will have 1's or 0's as eigen roots.
The orthogonal matrix $\mathbf{P}$ may be used to define a transformation from $\underset{\sim}{\mathbf{u}}$ to $\underset{\sim}{\mathbf{v}}$, namely

$$
\underset{\sim}{\mathbf{u}}=\mathbf{P}_{\underset{\sim}{\mathbf{v}}} \text { or } \underset{\sim}{\mathbf{v}}=\mathbf{P}^{\prime} \underset{\sim}{\mathbf{u}}\left(\text { since } \mathbf{P} \text { is orthogonal matrix, } \mathbf{P}^{-1}=\mathbf{P}^{\prime}\right)
$$

Using this transformation in Eq. (8.7) we get

$$
\begin{aligned}
& \mathbf{e}_{\sim}^{\prime} \mathbf{e}={\underset{\sim}{\mathbf{v}}}^{\prime} \mathbf{P}^{\prime} \mathbf{M P} \underset{\sim}{\mathbf{v}} \\
& =\underset{\sim}{\mathbf{v}} \mathbf{E}_{\mathbf{n - k}} \mathbf{\sim} \quad \quad \text { (from Eq.(8.9)) } \\
& =v_{1}^{2}+v_{2}^{2}+\ldots+v_{n-k}^{2} \quad\binom{\because \text { the first } n-k \text { diagonal elements of } \mathbf{E}_{\mathrm{n}-\mathrm{k}}}{\text { are 1's and remaing } k \text { diagonal elements of } \mathbf{E}_{\mathrm{n}-\mathrm{k}} \text { are 0's }}
\end{aligned}
$$

But the mean vector and variance-covariance matrix of $\underset{\sim}{\mathbf{v}}$ are

$$
E(\underset{\sim}{\mathbf{v}})=\mathbf{P}^{\prime} E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}}
$$

and $\quad E\left(\underset{\sim}{\mathbf{v}}{\underset{\sim}{v}}^{\prime}\right)=\mathbf{P}^{\prime} E(\underset{\sim}{\mathbf{u}} \underset{\sim}{\mathbf{u}}) \mathbf{P}=\sigma^{2} \mathbf{P}^{\prime} \mathbf{I}_{n} \mathbf{P}=\sigma^{2} \mathbf{P}^{\prime} \mathbf{P}=\sigma^{2} \mathbf{I}_{n} \quad\left(\because \mathbf{P}^{\prime} \mathbf{P}=\mathbf{I}_{n}\right)$
Therefore, $\quad \underset{\sim}{\mathbf{v}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{I}_{n}\right)$
Thus the elements of $\underset{\sim}{\mathbf{v}}$ are $v_{i}^{\text {iid }} \sim N\left(0, \sigma^{2}\right)$ and therefore

$$
\begin{equation*}
\frac{\underset{\sim}{\mathbf{e}^{\prime} \mathbf{e}}}{\sigma^{2}}=\frac{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n-k}^{2}}{\sigma^{2}} \sim \chi_{n-k}^{2} \quad\left(\because\left(\frac{v_{i}}{\sigma}\right)^{2} \text { is a chi-square variate }\right) \tag{8.10}
\end{equation*}
$$

Hence the result.
Result 2: The OLS residual vector $\underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ is distributed independently of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$. The OLS estimator
Proof: The covariance matrix between $\underset{\sim}{\mathbf{e}}$ and $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is

\section*{| Centre for Distance Education | 8.4 | Acharya Nagarjuna University |
| :--- | :--- | :--- | :--- |}

$$
\begin{aligned}
& E\left[(\underset{\sim}{\mathbf{e}}-E(\underset{\sim}{\mathbf{e}}))(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\right]=E\left[\underset{\sim}{\mathbf{e}}(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\right] \quad(\because E(\underset{\sim}{\mathbf{e}})=E[\mathbf{M} \underset{\sim}{\mathbf{u}}]=\mathbf{M} E[\underset{\sim}{\mathbf{u}}]=\underset{\sim}{\mathbf{0}}) \\
& =E\left[\mathbf{M u ̛ ̃}_{\sim}^{\mathbf{u}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
& =\left[\left(\mathbf{I}_{\mathbf{n}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \sigma^{2} \mathbf{I}_{\mathbf{n}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]\left(\because E\left(\underset{\sim}{\mathbf{u}}{\underset{\sim}{\prime}}^{\prime}\right)=\sigma^{2} \mathbf{I}_{\mathbf{n}}\right) \\
& =\sigma^{2}\left[\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
& =\mathbf{0}_{n \backslash k}
\end{aligned}
$$

From Eqs. (8.6) and (8.7), we may notice that each $\underset{\sim}{\hat{\beta}}$ and $\underset{\sim}{\mathbf{e}}$ are multivariate normal vectors and further from the above we have just seen they are uncorrelated. Therefore $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ and $\underset{\sim}{\mathbf{e}}$ are independently distributed and hence ${\underset{\sim}{\mathbf{e}}}^{\prime} \mathbf{e}$ is distributed independently of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$.
From (8.6) we have $\hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma^{2} a_{i i}\right)$ where $a_{i i}$ is $i^{\text {th }}$ diagonal element of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and hence

$$
\frac{\hat{\beta}_{i}-\beta_{i}}{\sigma \sqrt{a_{i i}}} \sim N(0,1)
$$

From Eq. (8.10), we have $\frac{\frac{\mathbf{e}^{\prime} \mathrm{e}}{\sigma^{2}} \sim \chi^{2} \text { with ( } n-k \text { ) d.f. and independently distributed with } \hat{\beta}_{i}, ~(1)}{}$
Thus by definition of student $t$-distribution,

$$
\begin{align*}
t & =\frac{\hat{\beta}_{i}-\beta_{i}}{\sigma \sqrt{a_{i i}}} / \sqrt{\frac{\mathbf{e}^{\prime} \mathbf{e}}{\sigma^{2}(n-k)}} \\
& =\frac{\hat{\beta}_{i}-\beta_{i}}{\sqrt{\mathbf{e}^{\prime} \mathbf{e} /(n-k)} \sqrt{a_{i i}}} \\
& =\frac{\hat{\beta}_{i}-\beta_{i}}{\hat{\sigma} \sqrt{a_{i i}}} \quad\left(\because \hat{\sigma}^{2}=\frac{\mathbf{e}^{\prime} \mathbf{e}}{(n-k)}\right) \\
& =\frac{\hat{\beta}_{i}-\beta_{i}}{S E\left(\hat{\beta}_{i}\right)} \sim t_{n-k}, \quad \text { where } S E\left(\hat{\beta}_{i}\right)=\hat{\sigma} \sqrt{a_{i i}} \tag{8.11}
\end{align*}
$$

Under $H_{o}: \beta_{i}=0$

$$
\begin{equation*}
t=\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)} \sim t_{n-k}, \quad \text { where } S E\left(\hat{\beta}_{i}\right)=\hat{\sigma} \sqrt{a_{i i}} \tag{8.12}
\end{equation*}
$$

Thus we may use the above $t$ as a test statistic for $H_{o}: \beta_{i}=0$.
Now, based on Eq. (8.12), we may form the decision rule

## Decision Rule:

If $|t|=\left|\frac{\hat{\beta}_{i}}{\operatorname{SE}\left(\hat{\beta}_{i}\right)}\right|>t_{\varepsilon / 2}(n-k)$ reject $H_{0}: \beta_{i}=0$
(or) equvalently accept $H_{1}: \beta_{i} \neq 0$ at $\varepsilon$ l.o.s.
Here, $t_{\varepsilon / 2}(n-2)$ is a two-tailed percentile of t distribution with n -k d.f. at $\varepsilon$ l.o.s. and is defined as

$$
\operatorname{Pr}\left\{-t_{\varepsilon / 2}(n-k)<t<t_{\varepsilon / 2}(n-k)\right\}=\operatorname{Pr}\left\{|t|<t_{\varepsilon / 2}(n-k)\right\}=1-\varepsilon
$$

For instance, when $\varepsilon=5 \%$, we chose $t_{0.025}(n-k)$ such that

$$
\operatorname{Pr}\left\{-t_{0.025}(n-k)<t<t_{0.025}(n-k)\right\}=0.95
$$

The $100(1-\varepsilon) \%$ confidence interval of $\beta_{i}$ :
From Eq.(8.11) we can construct $(1-\varepsilon) \%$ confidence interval for $\beta_{i}$ as follows:
We have by definition, the $(1-\varepsilon) \%$ confidence interval for a student ' $t$ ' variate with $n-k$ d.f. is

$$
\begin{aligned}
& \operatorname{Pr}\left\{-t_{\varepsilon / 2}(n-k)<t<t_{\varepsilon / 2}(n-k)\right\}=1-\varepsilon \\
\Rightarrow & \operatorname{Pr}\left\{-t_{\varepsilon / 2}(n-k)<\frac{\hat{\beta}_{i}-\beta_{i}}{S E\left(\hat{\beta}_{i}\right)}<t_{\varepsilon / 2}(n-k)\right\}=1-\varepsilon \quad \text { (from Eq. (8.11)) } \\
\Rightarrow & \left.\operatorname{Pr}\left\{-t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)<\hat{\beta}_{i}-\beta_{i}<t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)\right\}=1-\varepsilon \quad \text { (Since } \operatorname{SE}\left(\hat{\beta}_{i}\right)>0\right) \\
\Rightarrow & \operatorname{Pr}\left\{t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)>\beta_{i}-\hat{\beta}_{i}>-t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)\right\}=1-\varepsilon \quad \text { (multiplying with minus) } \\
\Rightarrow & \operatorname{Pr}\left\{\hat{\beta}_{i}+t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)>\beta_{i}>\hat{\beta}_{i}-t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)\right\}=1-\varepsilon \\
\Rightarrow & \operatorname{Pr}\left\{\hat{\beta}_{i}-t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)<\beta_{i}<\hat{\beta}_{i}+t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)\right\}=1-\varepsilon
\end{aligned}
$$

which implies

$$
\left(\hat{\beta}_{i}-t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right), \quad \hat{\beta}_{i}+t_{\varepsilon / 2}(n-k) S E\left(\hat{\beta}_{i}\right)\right)
$$

is $100(1-\varepsilon)$ percent confidence interval of $\beta_{i}$

### 8.3 Testing the Significance of the Complete Regression:

Here the null hypothesis is

$$
\begin{align*}
& H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{k}=0 \text { i.e., } \underset{\sim}{\boldsymbol{\beta}}=0 \\
& \text { where } \underset{\sim}{\boldsymbol{\beta}}=\left(\begin{array}{llll}
\beta_{2} & \beta_{3} & \cdots & \beta_{k}
\end{array}\right)^{\prime} \tag{8.15}
\end{align*}
$$

We may develop a test procedure as follows:
Let us consider the model in deviation form i.e.,

$$
\begin{equation*}
y_{i}=\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\cdots+\beta_{k} x_{k i}+\left(u_{i}-\bar{u}\right) \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{n} \tag{8.16}
\end{equation*}
$$

The model in matrix notation as

$$
{\underset{\sim}{\mathbf{y}}}_{*}=\mathbf{X}_{*} \underset{\sim}{\boldsymbol{\beta}}+(\underset{\sim}{\mathbf{u}}-\underset{\sim}{\mathbf{u}})=\mathbf{X}_{*} \underset{\sim}{\boldsymbol{\beta}}+\underbrace{\mathbf{u}}_{\sim} \text {, where }{\underset{\sim}{u}}_{\mathbf{u}^{\prime}}=\underset{\sim}{\mathbf{u}}-\underset{\sim}{\overline{\mathbf{u}}}
$$

where

$$
\begin{aligned}
& \underset{\sim}{\boldsymbol{\beta}}=\left(\begin{array}{c}
\beta_{2} \\
\beta_{3} \\
\vdots \\
\beta_{k}
\end{array}\right), \underset{\sim}{\mathbf{y}}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
Y_{1}-\bar{Y} \\
Y_{2}-\bar{Y} \\
\vdots \\
Y_{n}-\bar{Y}
\end{array}\right) \\
& \mathbf{X}_{*}=\left(\begin{array}{cccc}
x_{21} & x_{31} & \cdots & x_{k 1} \\
x_{22} & x_{32} & \cdots & x_{k 2} \\
\vdots & \vdots & & \vdots \\
x_{2 n} & x_{3 n} & \cdots & x_{k n}
\end{array}\right)=\left(\begin{array}{cccc}
X_{21}-\bar{X}_{2} & X_{31}-\bar{X}_{3} & \cdots & X_{k 1}-\bar{X}_{k} \\
X_{22}-\bar{X}_{2} & X_{32}-\bar{X}_{3} & \cdots & X_{k 2}-\bar{X}_{k} \\
\vdots & \vdots & \vdots \\
X_{2 n}-\bar{X}_{2} & X_{3 n}-\bar{X}_{3} & \cdots & X_{k n}-\bar{X}_{k}
\end{array}\right)
\end{aligned}
$$

Here thus y' $s$ and $x$ ' $s$ are in deviation form.
We have

$$
\begin{align*}
\underset{\sim}{\hat{\boldsymbol{\beta}}} & =\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right) \mathbf{X}_{*}^{\prime}{\underset{\sim}{\mathbf{y}}}_{*} \\
& =\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right) \mathbf{X}_{*}^{\prime} \mathbf{u}_{*} \tag{8.17}
\end{align*}
$$

and $\underset{\sim}{\hat{\boldsymbol{\beta}}} \sim N\left(\underset{\sim}{\boldsymbol{\beta}}, \sigma^{2}\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right)^{-1}\right)$
Since each component of $\underset{\sim}{\hat{\beta}}$ is a linear combination of $u^{\prime} s$ of ${\underset{\sim}{\mathbf{u}}}_{*}$, where ${\underset{\sim}{\mathbf{u}}}_{*} \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)$.
From Eq. (8.17) we may write $\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2}\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right)^{-1}\right)$
But we have a result that if a normal vector $\underset{\sim}{\mathbf{Z}} \sim N(0, \Sigma)$ then ${\underset{\sim}{\mathbf{z}}}^{\prime} \Sigma^{-1} \underset{\sim}{\mathbf{Z}} \sim \chi_{p}^{2}$ where $p=\rho(\Sigma)$
Therefore

$$
\frac{1}{\sigma^{2}}(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right)(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}) \sim \chi_{k-1}^{2}
$$

( $\mathbf{X}_{*}$ is full rank matrix and hence $p=\rho\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right)=$ order of $\left.\mathbf{X}_{*}=\mathrm{k}-1\right)$
Already we have a result

$$
\frac{\mathbf{e}^{\prime} \mathbf{e}}{\sigma^{2}} \sim \chi_{n-k}^{2}
$$

and is independently distributed with $\underset{\sim}{\boldsymbol{\beta}}$.
Therefore by definition of $F$-distribution, we have the ratio of two chi-square varieties divided by the respective d.f. is a $F$ variate and hence

$$
\mathrm{F}=\frac{(\hat{\boldsymbol{\beta}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}_{\sim}^{\prime} \mathbf{X}_{z}\right)(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}}) /(k-1)}{\mathrm{e}^{\prime} \mathbf{e} /(n-k)} \sim \mathrm{F}_{\mathrm{k}, \mathrm{l}, \mathrm{nk}}
$$

under $\mathrm{H}_{0}: \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{0}}$,

$$
\begin{aligned}
& \mathrm{F}=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}_{*}^{\prime} \mathbf{X}_{*}\right)^{\prime} \hat{\boldsymbol{\beta}} /(k-1)}{{\underset{\sim}{\mathbf{e}}}^{\prime} \mathbf{e} /(n-k)} \sim \mathrm{F}_{\mathrm{k}-1, n-\mathrm{k}}
\end{aligned}
$$

But by definition we have the coefficient of determination

We also have

Substituting Eqs. (8.19) and (8.20) in Eq. (8.18) we get

$$
\begin{equation*}
\mathrm{F}=\frac{R^{2} \underset{\sim}{\mathbf{y}_{*}^{\prime}} \underset{\sim}{\mathbf{y}} \mathbf{y}_{*} /(k-1)}{\left(1-R^{2}\right) \underset{\sim}{\mathbf{y}_{*}^{\prime}}{\underset{\sim}{x}}_{*} /(n-k)}=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)} \sim \mathrm{F}_{\mathrm{k}-1, \mathrm{n}-\mathrm{k}} \tag{8.21}
\end{equation*}
$$

## Decision Rule:

Testing the overall significance of a regression in terms of $R^{2}$ - Alternative but equivalent test to the test (8.18).
Given the $k$-variable regression model:

$$
Y_{i}=\beta_{i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+u_{i}
$$

To test the hypothesis
$H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$ vs $H_{1}$ : Not all slope coefficients are simultaneously zero
compute $\quad \mathrm{F}=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)}$
If $F>F_{\varepsilon}(k-1, n-k)$, reject $H_{0}$; otherwise you may accept $H_{0}$ where $F_{\varepsilon}(k-1, n-k)$ is the critical $F$ value at the $\varepsilon$ level of significance and $(k-1)$ numerator df and ( $n-k$ ) denominator d.f.

### 8.4 Set of linear Hypothesis

Consider a set of $q$ linear hypotheses about the elements of $\underset{\sim}{\boldsymbol{\beta}}$,

$$
\begin{equation*}
\mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}} \tag{8.22}
\end{equation*}
$$

where $\mathbf{R}$ is a known matrix of order $q \mathrm{X} k$ and $\underset{\sim}{\mathbf{r}}$ is a known $q$-element vector. We also assume $\mathbf{R}$ to have rank $q$ that is there is no linear dependency between the hypotheses. It is extremely important to understand the range of various hypotheses represented by Eq. (8.22). We illustrate them with some examples

1. Testing the Significance of Individual regression coefficient:

Suppose we wish to test $\mathrm{H}_{0}: \beta_{i}=0$ vs $\mathrm{H}_{0}: \beta_{i} \neq 0$. Then we have to choose $\mathbf{R}=\left[\begin{array}{lllllll}0 & \cdots & 0 & 1 & 0 & \cdots & 0\end{array}\right]$ and $\underset{\sim}{\mathbf{r}}=0$ in Eq.(8.22). Here $\mathbf{R}$ contains only a single row $(q=1)$ with a unit in the $i^{\text {th }}$ position and 0 's everywhere else, and $\underset{\sim}{\mathbf{r}}$ is the scalar zero.
2. Testing the equality of two regression coefficients:

Suppose we wish to test the hypothesis $H_{0}: \beta_{2}-\beta_{3}=0$ i.e., $\beta_{2}=\beta_{3}$. Then choose $\mathbf{R}=\left[\begin{array}{lllll}0 & 1 & -1 & \cdots & 0\end{array}\right]$ and $\underset{\sim}{\mathbf{r}}=1$
3. Testing a linear restriction on the coefficients:

We may represent the hypothesis $H_{0}: \beta_{3}+\beta_{4}=1$ as $\mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$
where $\mathbf{R}=\left[\begin{array}{lllll}0 & 1 & -1 & \cdots & 0\end{array}\right] \underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}\beta_{2} \\ \beta_{3} \\ \cdots \\ \beta_{k}\end{array}\right], \underset{\sim}{\mathbf{r}}=1$
4. Testing the significance of overall or complete regression Equation:

If we choose $\mathbf{R}=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1\end{array}\right]_{(k-1) X k} \quad$ and $\underset{\sim}{\mathbf{r}}=\left[\begin{array}{c}0 \\ 0 \\ \cdots \\ 0\end{array}\right]_{(k-1) X k}$
Then Eq. (8.22) is equivalent to the joint hypothesis

$$
H_{0}:\left[\begin{array}{c}
\beta_{2} \\
\beta_{3} \\
\ldots \\
\beta_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\ldots \\
0
\end{array}\right] \text { or } H_{0}: \beta_{2}=\beta_{3}=\ldots=\beta_{k}=0
$$

that is, the set of explanatory variables $X_{2}, X_{3}, \cdots, X_{k}$ has no linear influence in the determination of $Y$. This is very important hypothesis. The test of this hypothesis is often referred to as a test of the overall relation.
5. $\quad \mathbf{R}=\left[0 \mathbf{I}_{s}\right]$ and $\underset{\sim}{\mathbf{r}}=\underset{\sim}{\mathbf{0}}$

Here $\underset{\sim}{\mathbf{0}}$ is a null matrix of order $\mathrm{sX}(\mathrm{k}-\mathrm{s})$ and $\underset{\sim}{\mathbf{r}}$ is an s-element column vector. This set up the hypothesis that the last $s$ elements in $\underset{\sim}{\boldsymbol{\beta}}$ are jointly zero, i.e.,

$$
\beta_{k-s+1}=\beta_{k-s+2}=\cdots=\beta_{k}=0
$$

For example, in an equation explaining the rate of inflation the explanatory variables might be grouped into two subsets, those measuring expectations of inflation and those measuring pressure of demand. The significance of either subset might be tested by using this for formulation with the numbering of the variables so arranged that those in the subset to be tested come at the end.
It is thus clear that a procedure for testing the general hypothesis $\mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$ will be extremely useful and powerful, since various specifications for $\mathbf{R}$ and $\underset{\sim}{\mathbf{r}}$ will cover a range of different hypothesis.

### 8.5 Test procedure for $\mathbf{R}_{\sim}^{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$

We have $\underset{\sim}{\hat{\boldsymbol{\beta}}} \sim N\left(\underset{\sim}{\boldsymbol{\beta}}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
Since $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ has multivariate normal distribution $\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ has multivariate normal distribution with

$$
\begin{equation*}
E(\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}})=\mathbf{R} \underset{\sim}{\boldsymbol{\beta}} \text { and } \operatorname{var}(\underset{\sim}{\mathbf{R}} \underset{\sim}{\hat{\boldsymbol{\beta}}})=\sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \tag{8.23}
\end{equation*}
$$

i.e.,

$$
\begin{aligned}
& \mathbf{R} \hat{\sim} \hat{\boldsymbol{\beta}} \sim N\left(\underset{\sim}{\mathbf{R} \boldsymbol{\beta}}, \sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right) \\
& \mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\mathbf{r}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right) \quad(\because \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}})
\end{aligned}
$$

But we have a result if, $\underset{\sim}{\mathbf{Z}} \sim N(\underset{\sim}{\mathbf{0}}, \boldsymbol{\Sigma})$, then ${\underset{\sim}{z}}^{\mathbf{z}} \Sigma^{-1} \underset{\sim}{\mathbf{z}} \sim \chi_{p}^{2}$ where $p$ is $\rho(\Sigma)$
Therefore

$$
\begin{equation*}
\frac{1}{\sigma^{2}}(\mathbf{R} \underset{\sim}{\mathbf{\beta}}-\underset{\sim}{\mathbf{r}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\mathbf{r}}) \sim \chi_{q}^{2} \tag{8.24}
\end{equation*}
$$

where $q=\rho\left(\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right)$
=number of (independent)linear hypothesis
We have already $\frac{\mathbf{e}^{\prime} \mathbf{e}}{\sigma^{2}} \sim \chi_{n-k}^{2}$
and is independently distributed with $\underset{\sim}{\hat{\boldsymbol{\beta}}}$. Therefore from Eqs. (8.24) and (8.25) by the definition of $F$ distribution, we have

$$
\begin{equation*}
F=\frac{(\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\mathbf{r}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\mathbf{r}}) / q}{\underset{\sim}{\mathbf{e}^{\prime} \mathbf{e} /(n-k)}} \sim F_{q, n-k} \tag{8.26}
\end{equation*}
$$

which can be used as a test statistic for $H_{0}: \mathbf{R} \boldsymbol{\sim} \boldsymbol{\sim}=\underset{\sim}{\mathbf{r}}$. If the value of $F$ exceeds the critical $F$ value with $q, n-k$ d.f. at given I.o.s, we reject $H_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$, otherwise we accept $H_{0}$

### 8.6.Prediction

Suppose that we have fitted a regression equation, and we now consider some specific vector of regressor values,

$$
{\underset{\sim}{\mathbf{c}^{\prime}}}^{\prime}=\left[\begin{array}{llll}
1 & X_{2 f} & \cdots & X_{k f}
\end{array}\right]
$$

The $X^{\prime}$ 's may be hypothetical if an investigator is exploring possible effects of different scenarios, or they may be newly observed values. In either case we wish to predict the value of $Y$ conditional on $\underset{\sim}{\mathbf{c}}$. Any such prediction is based on the assumption that the fitted model still holds in the prediction period. When a new value $Y_{f}$ is also observed it is possible to test this stability assumption. An appealing point prediction is obtained by inserting the given $X$ values into the regression equation, giving

$$
\begin{equation*}
\hat{Y}_{f}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 f}+\cdots+\hat{\beta}_{k} X_{k f}={\underset{\sim}{c}}^{\mathbf{c}} \hat{\beta} \tag{8.27}
\end{equation*}
$$

In the discussion of the Gauss-Markov theorem it was shown that $\mathbf{c}^{\prime} \underset{\sim}{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{c}^{\prime} \underset{\sim}{\boldsymbol{\beta}}$. In the present context $\mathbf{c}^{\prime} \underset{\sim}{\boldsymbol{\beta}}=E\left(Y_{f}\right)$. Thus $\hat{Y}_{f}$ is an optimal predictor of $E\left(Y_{f}\right)$. Moreover, it was shown in Eq. (8.23) that $\operatorname{var}(\underset{\sim}{\mathbf{R}} \underset{\sim}{\hat{\boldsymbol{\beta}}})=\sigma^{2} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}$. Replacing $\mathbf{R}$ by ${\underset{\sim}{c}}^{\prime}$ gives

$$
\operatorname{var}\left(\underset{\sim}{\mathbf{c}^{\prime}} \underset{\sim}{\hat{\boldsymbol{\beta}}}\right)={\underset{\sim}{\mathbf{c}^{\prime}}}^{\operatorname{var}}(\underset{\sim}{\hat{\boldsymbol{\beta}}}) \underset{\sim}{\mathbf{c}}
$$

If we assume normality for the disturbance term, it follows that

$$
\frac{{\underset{\sim}{c}}^{\prime}{\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\hat{\mathbf{c}}}{\underset{\sim}{\mathbf{c}}}^{\prime} \underset{\sim}{\boldsymbol{\beta}}}{\sqrt{\operatorname{var}\left(\underset{\sim}{\left.\mathbf{c}^{\prime} \hat{\boldsymbol{\beta}}\right)}\right.}} \sim N(0,1)
$$

when the unknown $\sigma^{2}$ in $\operatorname{var}(\underset{\sim}{\boldsymbol{\beta}})$ is replaced by $\hat{\sigma}^{2}$, the usual shift to the $t$-distribution occurs, giving

$$
\begin{equation*}
t=\frac{\hat{Y}_{f}-E\left(Y_{f}\right)}{\hat{\sigma} \sqrt{\mathbf{c}_{\sim}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}}}} \sim t(n-k) \tag{8.28}
\end{equation*}
$$

from which a 95 percent confidence interval for $E\left(Y_{f}\right)$ is

$$
\begin{equation*}
\hat{Y}_{f} \pm t_{0.025}(n-k) \hat{\sigma} \sqrt{\mathbf{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{c}} \tag{8.29}
\end{equation*}
$$

We have $\hat{Y}_{f}=\mathbf{c}^{\prime} \underset{\sim}{\boldsymbol{\beta}}$ as before, and now $Y_{f}=\underset{\sim}{\mathbf{c}^{\prime}} \underset{\sim}{\boldsymbol{\beta}}+u_{f}$. The prediction error is thus

$$
e_{f}=Y_{f}-\hat{Y}_{f}=u_{f}-{\underset{\sim}{c}}^{\prime}(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})
$$

The process of squaring both sides and taking expectations gives the variance of the prediction error as

$$
\begin{aligned}
\operatorname{var}\left(e_{f}\right) & =\sigma^{2}+\underset{\sim}{\mathbf{c}^{\prime}} \operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}}) \underset{\sim}{\mathbf{c}} \\
& =\sigma^{2}\left(1+\underset{\sim}{\mathbf{c}^{\prime}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}}\right)
\end{aligned}
$$

From which we derive a $t$ statistic

$$
\begin{equation*}
t=\frac{\hat{Y}_{f}-Y_{f}}{\hat{\sigma} \sqrt{1+\underset{\sim}{\mathbf{c}^{\prime}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}}}} \sim t(n-k) \tag{8.30}
\end{equation*}
$$

Thus a 95\% confidence interval for $Y_{f}$ is $\left(\hat{Y}_{f} \mp t_{0.025}(n-k) \hat{\sigma} \sqrt{1+{\underset{\sim}{\mathbf{c}^{\prime}}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \underset{\sim}{\mathbf{c}}}\right)$
Thus in brief

1. $\hat{Y}_{f}={\underset{\sim}{c}}_{\sim}^{\prime} \hat{\boldsymbol{\beta}}$ is point predictor for $E\left(Y_{f}\right)$
2. $\left(\hat{Y}_{f}-t_{0.025} \sqrt{\mathbf{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}} \stackrel{\mathbf{c}}{\sim}, \hat{Y}_{f}+t_{0.025} \sqrt{\mathbf{c}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}} \underset{\sim}{\mathbf{c}}\right)$ is interval predictor for $E\left(Y_{f}\right)$, where
$t_{0.025}$ is a two-tail interval value of $t$ distribution with $n-k$ d.f. at $5 \%$ I.o.s
3. $\left(\hat{Y}_{f}-t_{0.025} \sqrt{1+{\underset{\sim}{c}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}} \underset{\sim}{\mathbf{c}}, \hat{Y}_{f}+t_{0.025} \sqrt{1+{\underset{\sim}{\mathbf{c}}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}} \underset{\sim}{\mathbf{c}}\right)$ is interval predictor for $Y_{f}$, where $t_{0.025}$ is a two-tail interval value of $t$ distribution with $n-k$ d.f. at $5 \%$ l.o.s

### 8.7 Self Assessment Questions

1. Derive the test procedure for the significance of a regression coefficient in the multiple regression (general linear) model
2. Derive the test for the significance of a general linear model completely.
3. Derive the test for testing the equality of two regression coefficients.
4. Derive the test for testing the significance of a subset of regression coefficients.
5. Under the assumption of normality of disturbances, the OLS estimator of $\boldsymbol{\beta}$, in GLM $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, is distributed as a multivariate normal.
6. Define multiple correlation coefficient $R$ and explain the test for significance of $R$.
7. Define the coefficient of determination $R^{2}$ and derive the test for significance of $R^{2}$.
8. Derive the test procedure for testing the significance of an individual regression coefficient in a general linear model.
9. Derive the test procedure for the meaningfulness of a general linear model.
10. Derive the test for the significance of a complete general linear model.
11. Construct confidence interval for the parameters of the general linear model.
12. For the general linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$, explain the test for testing $H_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{r}$ again the alternative $H_{0}: \mathbf{R} \boldsymbol{\beta} \neq \mathbf{r}$ when $\mathbf{R}$ is a known matrix of order $m X k$ and of rank $m$ and $\mathbf{r} r$ is a known $\mathrm{mX1}$ vector.
13. For the general linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$, Derive the test procedure for testing null hypothesis $H_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{0}$, where $\mathbf{R}$ is a matrix of linear restrictions on the parameters of $\boldsymbol{\beta}$.
14. Discuss the problem of prediction in GLM.
15. Construct the point predictor of the regressand in GLM.
16. Construct the interval predictor of the regressand in GLM.
17. Construct the point predictor of the mean of the regressand in GLM.
18. Construct the interval predictor of the mean of the regressand in GLM.
19. Prove that the estimator of the variance of the disturbance term is distributed as a Chisquare distribution.
20. Prove that the OLS residual vector $\mathbf{e}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ is distributed independently of $\hat{\boldsymbol{\beta}}$, the OLS estimator of $\boldsymbol{\beta}$.

| Centre for Distance Education | 8.12 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

### 8.8 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{r d}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 9

## MULTIPLE REGRESSION ANALSIS: APPLICATIONS

### 9.0 Objective:

The objective of this lesson is to demonstrate the application of the multiple regression analysis technique which we have discussed in lessons 6-8 some practical illustrations.

## Structure of the Lesson:

### 9.1 Introduction

9.2 Estimation of GLM - An application to the child mortality in relation to per capita GNP and female literacy rate
9.3 Estimation of log-linear model: an application to the Cobb - Douglas production function
9.4 Estimation of polynomial regression model: an application to the total cost function

### 9.5 Self Assessment Questions

### 9.6 References

### 9.1 Introduction

In this lesson, we consider some practical illustration, where our multiple regression analysis, discussed in lesions 6-8, can be applicable. In section 9.2, consider child mortality data for demonstration of multiple regression analysis. In section 9.3, we estimate the famous Cobb-Douglas production function using multiple regression analysis technique lastly in section 9.4, we estimate the total cost function using polynomial regression model by applying multiple regression analysis technique.

### 9.2 Estimation of GLM - An Application to Child Mortality in Relation to per capita GNP and Female Literacy Rate

In the following table, we have given the cross-sectional data for 64 countries on child mortality (CM), Female literacy rate in percent (FLR) and per capita GNP in 1980.

Table 9.1: FERTILITY AND OTHER DATA FOR 64 COUNTRIES

| Observation | CM | FLR | PGNP | Observation | CM | FLR | PGNP |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 128 | 37 | 1870 | 33 | 142 | 50 | 8640 |
| 2 | 204 | 22 | 130 | 34 | 104 | 62 | 350 |


| Centre for Distance Education | 9.2 | Acharya Nagarjuna University |
| :--- | :--- | :--- |


| 3 | 202 | 16 | 310 | 35 | 287 | 31 | 230 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 197 | 65 | 570 | 36 | 41 | 66 | 1620 |
| 5 | 96 | 76 | 2050 | 37 | 312 | 11 | 190 |
| 6 | 209 | 26 | 200 | 38 | 77 | 88 | 2090 |
| 7 | 170 | 45 | 670 | 39 | 142 | 22 | 900 |
| 8 | 240 | 29 | 300 | 40 | 262 | 22 | 230 |
| 9 | 241 | 11 | 120 | 41 | 215 | 12 | 140 |
| 10 | 55 | 55 | 290 | 42 | 246 | 9 | 330 |
| 11 | 75 | 87 | 1180 | 43 | 191 | 31 | 1010 |
| 12 | 129 | 55 | 900 | 44 | 182 | 19 | 300 |
| 13 | 24 | 93 | 1730 | 45 | 37 | 88 | 1730 |
| 14 | 165 | 31 | 1150 | 46 | 103 | 35 | 780 |
| 15 | 94 | 77 | 1160 | 47 | 67 | 85 | 1300 |
| 16 | 96 | 80 | 1270 | 48 | 143 | 78 | 930 |
| 17 | 148 | 30 | 580 | 49 | 83 | 85 | 690 |
| 18 | 98 | 69 | 660 | 50 | 223 | 33 | 200 |
| 19 | 161 | 43 | 420 | 51 | 240 | 19 | 450 |
| 20 | 118 | 47 | 1080 | 52 | 312 | 21 | 280 |
| 21 | 269 | 17 | 290 | 53 | 12 | 79 | 4430 |
| 22 | 189 | 35 | 270 | 54 | 52 | 83 | 270 |
| 23 | 126 | 58 | 560 | 55 | 79 | 43 | 1340 |
| 24 | 12 | 81 | 4240 | 56 | 61 | 88 | 670 |
| 25 | 167 | 29 | 240 | 57 | 168 | 28 | 410 |
| 26 | 135 | 65 | 430 | 58 | 28 | 95 | 4370 |
| 27 | 107 | 87 | 3020 | 59 | 121 | 41 | 1310 |
| 28 | 72 | 63 | 1420 | 60 | 115 | 62 | 1470 |
| 29 | 128 | 49 | 420 | 61 | 186 | 45 | 300 |
| 30 | 27 | 63 | 19830 | 62 | 47 | 85 | 3630 |
| 31 | 152 | 84 | 420 | 63 | 178 | 45 | 220 |
| 32 | 224 | 23 | 530 | 64 | 142 | 67 | 560 |

Note: $\mathrm{CM}=$ Child mortality, the number of deaths of children under age 5 in a year per 1000 live births.
FLR = Female literacy rate, percent.
PGNP = per capita GNP in 1980.
Source: Chandan Mukherjee, Howard White, and Marc Whyte, Econometrics and Data Analysis for Developing Countries, Routledge, London, 1998, p. 456.

Using the above child mortality data estimate the regression equation of the child mortality (CM) on the female literacy rate (FLR) and per capita GNP (PGNP) and carry out the multiple regression analysis completely.

## Solution:

From the given data we have
Sample size $\mathrm{n}=64$ and number of variables $\mathrm{k}=3$

$$
\begin{aligned}
& \sum Y=9056 \quad \sum X_{2}=3276 \quad \sum X_{3}=89680 \\
& \sum Y^{2}=1645102 \quad \sum X_{2}^{2}=210304 \quad \sum X_{3}^{2}=593717400 \\
& \sum X_{2} Y=361686 \quad \sum X_{3} Y=7370550 \quad \sum X_{2} X_{3}=5789760 \\
& \bar{Y}=\frac{9056}{64}=141.50 \\
& X^{\prime} X=\left[\begin{array}{ccc}
n & \sum X_{2} & \sum X_{3} \\
& \sum X_{2}^{2} & \sum X_{2} X_{3} \\
& & \sum X_{3}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
64 & 3276 & 89680 \\
& 210304 & 5789760 \\
& & 593717400
\end{array}\right] \\
& \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}=\left[\begin{array}{c}
\sum Y \\
\sum X_{2} Y \\
\sum X_{3} Y
\end{array}\right]=\left[\begin{array}{c}
9056 \\
361686 \\
7370550
\end{array}\right] \\
& \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccc}
0.077114818 & -0.001203744 & 0.000000090 \\
-0.001203744 & 0.000025290 & -0.000000065 \\
0.000000090 & -0.000000065 & 0.000000002
\end{array}\right]
\end{aligned}
$$

## Estimation of Regression Model:

From Eq. (6.11), the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$ is

$$
\begin{aligned}
\underset{\sim}{\hat{\boldsymbol{\beta}}} & =\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3}
\end{array}\right]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \\
& =\left[\begin{array}{rrr}
0.077114818 & -0.001203744 & 0.000000090 \\
-0.001203744 & 0.000025290 & -0.000000065 \\
0.000000090 & -0.000000065 & 0.000000002
\end{array}\right]\left[\begin{array}{c}
9056 \\
361686 \\
7370550
\end{array}\right]=\left[\begin{array}{c}
263.642 \\
-2.2316 \\
-0.005647
\end{array}\right]
\end{aligned}
$$

Thus the estimated regression model is

$$
\begin{aligned}
\hat{Y} & =\hat{\beta}_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \\
\text { i.e., } \widehat{\mathrm{CM}} & =263.642-2.2316 \mathrm{FLR}-0.005647 \mathrm{PGNP}
\end{aligned}
$$

## Estimation of $\sigma^{2}$ :

From Eq. (6.18) an unbiased of $\sigma^{2}$ is

$$
\hat{\sigma}^{2}=\frac{\mathrm{e}^{\prime} \mathrm{e}}{n-k}=\frac{R S S}{n-k}=\frac{T S S-E S S}{n-k}
$$

| Centre for Distance Education | 9.4 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

TSS $=$ Total Sum of Squares

$$
\begin{aligned}
&={\underset{\sim}{\mathbf{y}} \mathbf{\prime} \mathbf{\prime} \underset{\sim}{\mathbf{y}}-n \bar{Y}^{2}}=\sum^{2} Y^{2}-n \bar{Y}^{2} \\
&=1645102-64 * 141.50^{2} \\
&=363678 \\
& \mathrm{ESS}=\text { Explained Sum of Squares } \\
&={\underset{\sim}{\hat{\boldsymbol{\beta}}}}^{\prime} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}-n \bar{Y}^{2} \\
&=\left[\begin{array}{lll}
263.642 & -2.2316 & -0.005647
\end{array}\right]\left[\begin{array}{c}
9056 \\
361686 \\
7370550
\end{array}\right]-64 * 141.50^{2} \\
&=257362.3731 \\
& \therefore \hat{\sigma}^{2}=\frac{T S S-E S S}{n-k} \\
&=\frac{363678-257362.3731}{64-3} \\
&=1742.8791 \\
& \text { Coefficient determination } R^{2} \text { and adjusted } R^{2}:
\end{aligned}
$$

From Eq. (7.21) $R^{2}=\frac{E S S}{T S S}=\frac{257362.3731}{363678}=0.708$
Adjustged $R^{2}=\bar{R}^{2}=1-\left[\frac{n-1}{n-k}\right]\left(1-R^{2}\right)$

$$
=1-\left[\frac{64-1}{64-3}\right](1-0.708)
$$

$$
=0.6981
$$

Testing the Significance of $R^{2}$ or Estimated model:
From Eq. (8.21) we have test statistic for

$$
\begin{aligned}
& H_{0}: \beta_{2}=\beta_{3}=0 \quad(\mathrm{OR}) \quad H_{0}: R^{2}=0 \text { is } \\
& F=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)}=\frac{0.708 /(3-1)}{(1-0.708) /(64-3)}=73.8325
\end{aligned}
$$

Here $F \sim F_{3-1,64-3}=F_{2,61}$
From $F$ - table, $F$ - critical values are:

$$
\begin{aligned}
& F_{2,61} \simeq F_{2,60}=3.15(\text { at } 5 \% \text { l.o.s }) \\
& F_{2,61} \simeq F_{2,60}=4.98(\text { at } 1 \% \text { I.o.s })
\end{aligned}
$$

Since, the calculated $F$-Value (73.8325) is greater than both $5 \%$ and $1 \%$ critical $F$-values (3.15, 4.98). We reject $H_{0}$.
Hence we may conclude the estimated regression model is well fitted or the coefficient of determination $R^{2}$ is highly significant i.e, $R^{2} \neq 0$ at both $1 \%$ and $5 \%$ l.o.s.

## Testing the significance Individual Regression Coefficients:

From Eq. (8.11) the $t$-test for $H_{0}: \beta_{i}=0$ is

$$
t=\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)} \sim t_{n-k}
$$

we have for $\mathrm{i}=1,2,3$.

$$
t_{i}=\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)}=\frac{\hat{\beta}_{i}}{\hat{\sigma} \sqrt{a_{i i}}} \text {, where } a_{i i}(i=1,2,3) t^{\text {th }} \text { diagonal elements of }\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Thus substitute

$$
\begin{aligned}
& a_{11}=0.077114818 \\
& a_{22}=0.000025290 \\
& a_{33}=0.000000002 \\
& \hat{\sigma}=41.7478
\end{aligned}
$$

in the above formula we get the $t$-ratios

$$
\begin{aligned}
& t_{1}=22.7411 \\
& t_{2}=-10.6294 \\
& t_{3}=-3.0246
\end{aligned}
$$

From student $t$ table at $\alpha=5 \%$ I.o.s. $t_{n-k}(0.025)=t_{64-3}(0.025)=2.00$
95\% C.I. of $\beta_{i}$ is

$$
\left(\beta_{i}-\left|t_{n-k}(0.025)\right| S E\left(\hat{\beta}_{i}\right), \beta_{i}+\left|t_{n-k}(0.025)\right| S E\left(\hat{\beta}_{i}\right)\right)
$$

$95 \%$ C.I. of $\beta_{1}$ is

$$
\begin{aligned}
& \left(\beta_{1}-\left|t_{61}(0.025)\right| S E\left(\hat{\beta}_{1}\right), \beta_{1}+\left|t_{61}(0.025)\right| S E\left(\hat{\beta}_{1}\right)\right) \\
& (263.642-|2.00| * 11.5932,263.642+|2.00| * 11.5932) \\
& (240.4556,286.8284)
\end{aligned}
$$

Similarly 95\% confidence interval of $\beta_{2}:(-2.6515,-1.8117)$
and $95 \%$ confidence interval of $\beta_{3}:(-0.0094,-0.002)$
The above results may be presented in the follows table
The estimated Model

| Variable | coefficients | standard error | $t$-statistic | 95\% C.I. |
| :--- | ---: | ---: | ---: | :---: |
| Constant | 263.642000 | 11.5932 | $22.7411^{* *}$ | $(240.4556,286.8284)$ |
| FLR | -2.231600 | 0.2100 | $-10.6294^{* *}$ | $(-2.6515,-1.8117)$ |
| PGNP | -0.005647 | 0.0019 | $-3.0246^{* *}$ | $(-0.0094,-0.002)$ |
|  |  |  |  |  |
| $=0.708$ |  |  |  |  |

ANOVA Table for Multiple Regression Analysis:

| Source of Variation | Sum of Squares | Degrees of <br> freedom | Mean Sum of <br> Squares | $F$-value |
| :---: | :---: | :---: | :---: | :---: |
| Due to regression | ESS =257362.3731 | $\mathrm{k}-1=2$ | 128681.2 | $73.8326^{* *}$ |
| Due to residuals | RSS =106315.6269 | $\mathrm{n}-\mathrm{k}=61$ | 1742.9 |  |
| Total | TSS=363678.0000 | $\mathrm{n}-1=63$ |  |  |
| critical $F$-value: $F_{2,61} \cong 3.15$ (at 5\% l.o.s) |  |  |  |  |
| $F_{2,61} \cong 4.98$ (at $1 \%$ l.o.s) |  |  |  |  |

Where ** indicates the calculated t -values and calculated F -values are highly significant. It means that for the estimated model all regression coefficients are individually highly significant as well as the coefficient of determination $R^{2}$ is also highly significant. i.e., The overall fitting of the model is also significant. Thus, the estimated model is well fitted.

### 9.3 Estimation of Log-Linear Model: An Application to the CobbDouglas Production Function

We demonstrate transformations in this section by taking up the multivariable extension of the two variable log-linear model discussed in Lesson 4. The specific example we discuss is the celebrated Cobb-Douglas production function of production theory.

The Cobb-Douglas production function, in its stochastic form, may be expressed as

$$
\begin{equation*}
Y_{i}=\beta_{1} X_{2 i}^{\beta_{2}} X_{3 i}^{\beta_{3}} e^{u i} \tag{9.1}
\end{equation*}
$$

where $Y=$ output, $\quad X_{2}=$ labor input, $\quad X_{3}=$ capital input $u=$ stochastic disturbance term, $\quad e=$ base of natural logarithm
From Eq. (9.1) it is clear that the relationship between output and the two inputs is nonlinear. However, if we log-transform this model, we obtain:

$$
\begin{equation*}
\log Y_{i}=\log \beta_{1}+\beta_{2} \log X_{2 i}+\beta_{3} \log X_{3 i}+u_{i} \tag{9.2}
\end{equation*}
$$

$$
=\beta_{0}+\beta_{2} \log X_{2 i}+\beta_{3} \log X_{3 i}+u_{i}, \quad \text { where } \beta_{0}=\log \beta_{1}
$$

Thus written, the model is linear in the parameters $\beta_{0}, \beta_{2}$, and $\beta_{3}$ and is therefore a linear regression model. Notice, though, it is nonlinear in the variables $Y$ and $X$ but linear in the logs of these variables. In short, (9.2) is a log-log, double-log, or log-linear model, the multiple regression counterpart of the two-variable log-linear model (4.3).

The properties of the Cobb-Douglas production function are quite well known:

1. $\beta_{2}$ is the (partial) elasticity of output with respect to the labor input, that is, it measures the percentage change in output for, say, a 1 percent change in the labor input, holding the capital input constant.
2. Likewise, $\beta_{3}$ is the (partial) elasticity of output with respect to the capital input, holding the labor input constant.
3. The sum $\left(\beta_{2}+\beta_{3}\right)$ gives information about the returns to scale, that is, the response of output to a proportionate change in the inputs. If this sum is 1 , then there are constant returns to scale, that is, doubling the inputs will double the output, tripling the inputs will triple the output, and so on. If the sum is less than 1, there are decreasing returns to scale-doubling the inputs will less than double the output. Finally, if the sum is greater than 1, there are increasing returns to scale-doubling the inputs will more than double the output.

We may before proceeding further, note that whenever you have a log-linear regression model involving any number of variables the coefficient of each of the $X$ variables measures the (partial) elasticity of the dependent variable $Y$ with respect to that variable. Thus, if you have a $k$-variable log-linear model:
$\log Y_{i}=\log \beta_{1}+\beta_{2} \log X_{2 i}+\beta_{3} \log X_{3 i}+\ldots+\beta_{k} \log X_{k i}+u_{i}$
each of the (partial) regression coefficients, $\beta_{2}$ through $\beta_{k}$, is the (partial) elasticity of $Y$ with respect to variables $X_{2}$ through $X_{k}$.
To illustrate the Cobb-Douglas production function, we consider the data shown in Table 9.2; these data are for the agricultural sector of Taiwan for 1958-1972.

TABLE 9.2: REAL GROSS PRODUCT, LABOR DAYS, AND REAL CAPITAL INPUT IN THE AGRICULTURAL SECTOR OF TAIWAN, 1958-1972

| Year | Real gross product | Labor days | Real capital input |
| :---: | ---: | ---: | ---: |
|  | (millions of NT \$) <br>  <br> $Y$ | (millions of days) <br> $X_{2}$ | (millions of NT \$) <br> $X_{3}$ |
|  | 16607.70 | 275.5 | 17803.70 |
| 1959 | 17511.30 | 274.4 | 18096.80 |
| 1960 | 20171.20 | 269.7 | 18271.80 |
| 1961 | 20932.90 | 267.0 | 19167.30 |
| 1962 | 20406.00 | 267.8 | 19647.60 |
| 1963 | 20831.60 | 275.0 | 20803.50 |
| 1964 | 24806.30 | 283.0 | 22076.60 |
| 1965 | 26465.80 | 300.7 | 23445.20 |
| 1966 | 27403.00 | 307.5 | 24939.00 |
| 1967 | 28628.70 | 303.7 | 26713.70 |
| 1968 | 29904.50 | 304.7 | 29957.80 |
| 1969 | 27508.20 | 298.6 | 31585.90 |
| 1970 | 29035.50 | 295.5 | 33474.50 |
| 1971 | 29281.50 | 299.0 | 34821.80 |
| 1972 | 31535.80 | 288.1 | 41794.30 |

Source: Thomas Pei-Fan Chen, "Economic Growth and Structural Change in Taiwan-19521972, A Production Function Approach," unpublished Ph.D. thesis, Dept. of Economics, Graduate Center, City University of New York, June 1976, Table II. *New Taiwan dollars.
Assuming that the model (9.2) satisfies the assumptions of the classical linear regression model, we obtained the following regression by the OLS method.

| Centre for Distance Education | 9.8 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

The estimated Model
Variable

| coefficients | standard <br> error | $t$-statistic |  |
| :---: | :---: | :---: | :---: |
| Constant | -3.3380 | 2.4500 | -1.36 |
| $\log X_{2}$ | 1.4988 | 0.5398 | $2.78^{*}$ |
| $\log X_{3}$ | 0.4899 | 0.1020 | $4.80^{* *}$ |$R^{2}=0.889 \quad \bar{R}^{2}=0.871 \quad$ critical $t$-values: $t_{12}(0.025)=2.179$ (5\% I.o.s)

ANOVA Table for Multiple Regression Analysis:

| Source of <br> Variation | Sum of <br> Squares | Degrees of <br> freedom | Mean Sum of <br> Squares | $F$-value |
| :--- | :---: | :---: | :---: | :---: |
| Due to | 0.53804 | 2 | 0.26902 | $48.07^{* *}$ |
| regression | 0.06716 | 12 | 0.00560 |  |
| Due to residuals | 0.60520 | 14 |  |  |
| Total |  |  |  |  |

critical $F$-value: $F_{2,12} \cong 3.88$ (at $5 \%$ I.o.s)

$$
F_{2,12} \cong 6.93 \text { (at } 1 \% \text { l.o.s) }
$$

From the above results, we may notice that the overall log-linear or Cobb-Douglas model is well fitted though the constant term is not statistically significant. Here it may be noted the output elasticity of Labour is just significant where as the output elasticity of Capital is highly significant.

From the above analysis we see that in the Taiwanese agricultural sector for the period 19581972 the output elasticities of labor and capital were 1.4988 and 0.4899 , respectively. In other words, over the period of study, holding the capital input constant, a 1 percent increase in the labor input led on the average to about a 1.5 percent increase in the output. Similarly, holding the labor input constant, a 1 percent increase in the capital input led on the average to about a 0.5 percent increase in the output. Adding the two output elasticities, we obtain 1.9887, which gives the value of the returns to scale parameter. As is evident, over the period of the study, the Taiwanese agricultural sector was characterized by increasing returns to scale.

From a purely statistical viewpoint, the estimated regression line fits the data quite well. The $R^{2}$ value of 0.8890 means that about 89 percent of the variation in the ( log of) output is explained by the (logs of) labor and capital.

Note: Here the details of the computation of the results are not presented, as they are similar of those presented in the previous application presented in section 9.2.

### 9.4 Estimation of Polynomial Regression Model An Application to the Total Cost Function

We now consider a class of multiple regression models, the polynomial regression models, that have found extensive use in econometric research relating to cost and production
functions. In introducing these models, we further extend the range of models to which the classical linear regression model can easily be applied.

The parabola is represented by the following equation:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}
$$

which is called a quadratic function, or more generally, a second-degree polynomial in the variable $X$ —the highest power of $X$ represents the degree of the polynomial (if $X^{3}$ were added to the preceding function, it would be a third-degree polynomial, and so on).
The stochastic version of the above equation may be written as

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+u_{i} \tag{9.4}
\end{equation*}
$$

which is called a second-degree polynomial regression.
The general $k^{\text {th }}$ degree polynomial regression may be written as

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\ldots+\beta_{k} X_{i}^{k}+u_{i} \tag{9.5}
\end{equation*}
$$

Notice that in these types of polynomial regressions there is only one explanatory variable on the right-hand side but it appears with various powers, thus making them multiple regression models. Incidentally, note that if $X_{i}$ is assumed to be fixed or nonstochastic, the powered terms of $X_{i}$ also become fixed or nonstochastic.

In short, polynomial regression models can also be estimated by the traditional OLS method.
As an example of the polynomial regression, consider the data on output and total cost of production of a commodity in the short run given in Table 9.3. Using this data we fit the following cubic or third-degree polynomial regression equation:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+u_{i} \tag{9.6}
\end{equation*}
$$

where $Y=$ total cost and $X=$ output.
TABLE 9.3: TOTAL COST (Y) AND OUTPUT ( $X$ )

| Output | Total cost, <br> $\$$ |
| :---: | :---: |
| 1 | 193 |
| 2 | 226 |
| 3 | 240 |
| 4 | 244 |
| 5 | 257 |
| 6 | 260 |
| 7 | 274 |
| 8 | 297 |
| 9 | 350 |
| 10 | 420 |

Source: Basic Econometrics-4 ${ }^{\text {th }}$ Edition, Author: Damodar N.Gujarati p. 227
When the third-degree polynomial regression was fitted to the data of Table 7.4, we obtained the following results:

The estimated regression equation

$$
\begin{aligned}
& \qquad \hat{Y}_{i}=141.7667+63.4776 X_{i}-12.9615 X_{i}^{2}+0.9396 X_{i}^{3} \\
& \text { i.e., Estimated Total cost }=141.7667+63.4776 \text { output-12.9615 output }{ }^{2}+0.9396 \text { output }^{3}
\end{aligned}
$$

The estimated Model

| Variable |
| :--- |
| coefficients |
| Constant |
| $X$ |

ANOVA Table for Multiple Regression Analysis:

| Source of <br> Variation | Sum of <br> Squares | Degrees of <br> freedom | Mean Sum of <br> Squares | $F$-value |
| :---: | :---: | :---: | :---: | :---: |
| Due to regression <br> Due to residuals | 38918 <br> 65 | 3 <br> 6 | 12973 <br> 11 | $1202.22^{\star *}$ |
| Total | 38983 | 9 |  |  |
| critical $F$-value: $F_{3,6} \cong 4.76$ (at $5 \%$ l.o.s) |  |  |  |  |
| $F_{3,6} \cong 9.78$ (at 1\% l.o.s) |  |  |  |  |

From the above results we may observe that the individual regression coefficients as well as the coefficients determination $R^{2}$ are highly significant. Hence, we may conclude that the cubic model is the best fit for the estimation total cost. Since $\boldsymbol{R}^{2}=0.998$, almost $99 \%$ of variation in the total cost is explained by the number of output units.

### 9.5 Self Assessment Questions

1. Explain how you estimate the Cobb-Douglas model given by

$$
Y_{i}=\beta_{1} X_{2 i}^{\beta_{2}} X_{3 i}^{\beta_{3}} e^{u i}
$$

2. Explain the multiple regression analysis by means of an illustration.
3. Distinguish between traditional regression model and Cobb-Douglas model by means of illustrations.

### 9.6 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 10

## TESTS FOR THE CHOICE BETWEEN LINEAR AND LOG-LINEAR MODELS

### 10.0 Objective:

After studying this lesson, the student will learn how to choose a true model between the given linear and log-linear models using different tests, since a demonstration problem is also given.

## Structure of the Lesson:

### 10.1 Introduction

### 10.2 MWD (MacKinnon, White, and Davidson) Test

### 10.3 The BM (Bera and McAleer) test

### 10.4 Self Assessment Questions

### 10.5 References

### 10.1 Introduction

Sometimes equations are estimated in log form to take care of the heteroscedasticity problem (which we will discuss in Lesson 16). In many cases the choice of the functional form is dictated by other considerations like convenience in interpretation and some economic reasoning. For instance, if we are estimating a production function, the linear form

$$
\begin{equation*}
X=\alpha+\beta_{1} L+\beta_{2} K \tag{10.1}
\end{equation*}
$$

where $X$ is the output, $L$ the labor, and $K$ the capital, implies perfect substitutability among the inputs of production. On the other hand, the logarithmic form
$\log X=\alpha+\beta_{1} \log L+\beta_{2} \log K$
implies a Cobb-Douglas production function with unit elasticity of substitution. Both these formulations are special cases of the CES (constant elasticity of substitution) production function.

For the estimation of demand functions the log form is often preferred because it is easy to interpret the coefficients as elasticities. For instance,

$$
\begin{equation*}
\log Q=\alpha+\beta_{1} \log P+\beta_{2} \log Y \tag{10.3}
\end{equation*}
$$

where $Q$ is the quantity demanded, $P$ the price, and $Y$ the income, implies that $\beta_{1}$ is the price elasticity and $\beta_{2}$ is the income elasticity. A linear demand function implies that these elasticities depend on the particular point along the demand curve that we are at. In this case we have to consider some methods of choosing statistically between the two functional forms.

When comparing the linear with the log-linear forms, we cannot compare the $R^{2}$ 's because $R^{2}$ is the ratio of explained variance to the total variance and the variances of $y$ and
$\log y$ are different. Comparing $R^{2}$ 's in this case is like comparing two individuals A and B , where A eats $65 \%$ of a carrot cake and $B$ eats $70 \%$ of a strawberry cake. The comparison does not make sense because there are two different cakes.

The question of estimation in linear model versus log-linear model has received considerable attention during recent years. Several statistical tests have been suggested for testing the linear versus log-linear. In this lesson we have discussed only two of these tests, which are easy to apply.

### 10.2 MWD (MacKinnon, White, and Davidson) Test

The choice between a linear regression model (the regressand is a linear function of the regressors) or a log-linear regression model (the log of the regressand is a function of the logs of the regressors) is a perennial question in empirical analysis. We can use a test proposed by MacKinnon, White, and Davidson, which for brevity we call the MWD test to choose between the two models.

To illustrate this test, assume the following
$H_{0}$ : Linear Model: $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\ldots+\beta_{k} X_{k i}+u_{i} \quad i=1,2, \ldots, n$
$H_{1}$ : Log-Linear Model: $\log Y_{i}=\alpha_{1}+\alpha_{2} \log X_{2 i}+\alpha_{3} \log X_{3 i}+\ldots+\alpha_{k} \log X_{k i}+v_{i}$
where, as usual, $H_{0}$ and $H_{1}$ denote the null and alternative hypotheses.
The MWD test involves the following steps:
Step I: Estimate the linear model (10.4) using OLS method and compute the estimate of $Y$ values given by

$$
\begin{equation*}
\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 i}+\hat{\beta}_{3} X_{3 i}+\ldots+\hat{\beta}_{k} X_{k i}, \quad i=1,2, \ldots, n \tag{10.6}
\end{equation*}
$$

Step: II: Estimate the log-linear model (10.5) by applying OLS method and obtain the estimates of $\log Y$ values given by

$$
\begin{equation*}
\widehat{\log Y_{i}}=\hat{\alpha}_{1}+\hat{\alpha}_{2} \log X_{2 i}+\hat{\alpha}_{3} \log X_{3 i}+\ldots+\hat{\alpha}_{k} \log X_{k i}, \quad i=1,2, \ldots, n \tag{10.7}
\end{equation*}
$$

Step III: Using the $\hat{Y}_{i}$ values (computed at step I) and $\widehat{\log Y_{t}}$ values (computed at step II), compute an artificial variable namely

$$
\begin{equation*}
Z_{i}=\log \hat{Y}_{i}-\widehat{\log Y_{i}}, \quad i=1,2, \ldots, n \tag{10.8}
\end{equation*}
$$

Now regress $Y$ on $X_{2}, X_{3}, \ldots, X_{k}$ and $Z$ variables. Reject $H_{0}$ if the coefficient of $Z$ is statistically significant by the usual $t$ test, otherwise accept $H_{0}$.
Step IV: Compute another artificial variable (as in Step III) namely

$$
\begin{equation*}
W_{i}=\hat{Y}_{i}-\exp \left(\widehat{\log Y_{i}}\right), \quad i=1,2, \ldots, n \tag{10.9}
\end{equation*}
$$

Now regress $\log Y$ on $\log X_{2}, \log X_{3}, \ldots, \log X_{k}$ and $W$ variables. Reject $H_{1}$ if the coefficient of $W$ is statistically significant by the usual $t$ test, otherwise accept $H_{1}$.

The logic of MWD test is quite simple. If the linear model is in fact the correct model, the constructed variable $Z$ should not be statistically significant in Step III, for in that case the log
values of the estimated $Y$ values from the linear model and those estimated from the log-linear model should not be different. The same comment applies to the alternative hypothesis $H_{1}$.

## An application (The demand for roses):

Table 10.1 gives quarterly data on these variables:
$Y=$ quantity of roses sold, dozens
$X_{2}=$ average wholesale price of roses, \$/dozen
$X_{3}=$ average wholesale price of carnations, \$/dozen
1971-III to 1975-II in the Detroit Metropolitan area you are asked to consider the following demand functions:

$$
Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t}
$$

$\log Y_{t}=\alpha_{1}+\alpha_{2} \log X_{2 t}+\alpha_{3} \log X_{3 t}+v_{t}$
Table 10.1: Quarterly data on the Sales of Roses

| Year and <br> quarter | $Y$ | $X_{2}$ | $X_{3}$ | Year and <br> quarter | $Y$ | $X_{2}$ | $X_{3}$ |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971- III | 11,484 | 2.26 | 3.49 | $1973-$ III | 8,038 | 2.60 | 3.13 |
| - IV | 9,348 | 2.54 | 2.85 | - IV | 7,476 | 2.89 | 3.20 |
| $1972-$ I | 8,429 | 3.07 | 4.06 | $1974-$ I | 5,911 | 3.77 | 3.65 |
| - II | 10,079 | 2.91 | 3.64 | - II | 7,950 | 3.64 | 3.60 |
| - III | 9,240 | 2.73 | 3.21 | - III | 6,134 | 2.82 | 2.94 |
| - IV | 8,862 | 2.77 | 3.66 | - IV | 5,868 | 2.96 | 3.12 |
| $1973-$ I | 6,216 | 3.59 | 3.76 | $1975-$ I | 3,160 | 4.24 | 3.58 |
| - II | 8,253 | 3.23 | 3.49 | - II | 5,872 | 3.69 | 3.53 |

Source: Basic Econometrics-4 ${ }^{\text {th }}$ Edition, Author: Damodar N. Gujarati p. 236

## Solution:

Here
$H_{0}$ : the true model is linear i.e., $Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t}$ versus
$H_{1}$ : the true model is log-linear i.e., $\log Y_{t}=\alpha_{1}+\alpha_{2} \log X_{2 t}+\alpha_{3} \log X_{3 t}+v_{t}$
Now, as per the above MWD test the computations are presented below

## Step 1:

The estimated linear model:

$$
\begin{aligned}
\hat{Y}_{t} & =9734-3782.2 X_{2 t}+2815 X_{3 t} \\
t & =(3.37)(-6.61) \quad(2.97)
\end{aligned}
$$

$$
F=21.84 \quad R^{2}=0.77
$$

From student- $t$ table, at 5\% l.o.s. the two-tailed critical value of $t$ with 13 d.f. $=2.179$.
Since calculated $t$-values of all the regression coefficients are greater than the critical t value, we may conclude that all coefficients are statistically significant. Since $F$-value is large, the coefficient of determination $R^{2}$ is also significant and thus the above linear model is well fitted to the given data.

Using the above estimated linear model we tabulate $\hat{Y}_{t}$ values.

| $t$ | $Y_{t}$ | $X_{2 t}$ | $X_{3 t}$ | $\hat{Y}_{t}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 11484 | 2.26 | 3.49 | 11011.6 |
| 2 | 9348 | 2.54 | 2.85 | 8150.8 |
| 3 | 8429 | 3.07 | 4.06 | 9552.8 |
| 4 | 10079 | 2.91 | 3.64 | 8975.5 |
| 5 | 9240 | 2.73 | 3.21 | 8445.7 |
| 6 | 8862 | 2.77 | 3.66 | 9561.3 |
| 7 | 6216 | 3.59 | 3.76 | 6741.4 |
| 8 | 8253 | 3.23 | 3.49 | 7342.9 |
| 9 | 8038 | 2.60 | 3.13 | 8712.2 |
| 10 | 7476 | 2.89 | 3.20 | 7812.4 |
| 11 | 5911 | 3.77 | 3.65 | 5751.0 |
| 12 | 7950 | 3.64 | 3.60 | 6101.9 |
| 13 | 6134 | 2.82 | 2.94 | 7345.2 |
| 14 | 5868 | 2.96 | 3.12 | 7322.4 |
| 15 | 3160 | 4.24 | 3.58 | 3776.2 |
| 16 | 5872 | 3.69 | 3.53 | 5715.7 |

## Step 2:

The estimated log-linear model:

$$
\begin{gathered}
\widehat{\log Y_{t}}=9.228-1.7612 \log X_{2 t}+1.3403 \log X_{3 t} \\
t=(16.23)(-5.90) \quad(2.54) \\
F=17.50 \quad R^{2}=0.73
\end{gathered}
$$

Since calculated $t$-values of all regression coefficients are greater than critical $t$ value (2.179), we may conclude that all coefficients are statistically significant at $5 \%$ l.o.s. Since $F$-value is large, $R^{2}$ is also significant thus the above log-linear model is well fitted to the given data.
Using the above log-linear model we tabulate below $\widehat{\log Y} Y_{t}$ values.

| $t$ | $\log Y_{t}$ | $\log X_{2 t}$ | $\log X_{3 t}$ | $\widehat{\log Y_{t}}$ |
| :---: | :---: | :--- | :--- | :--- |
| 1 | 9.34871 | 0.81536 | 1.24990 | 9.46701 |
| 2 | 9.14292 | 0.93216 | 1.04732 | 8.98987 |
| 3 | 9.03943 | 1.12168 | 1.40118 | 9.13031 |
| 4 | 9.21821 | 1.06815 | 1.29198 | 9.07824 |
| 5 | 9.13130 | 1.00430 | 1.16627 | 9.02223 |
| 6 | 9.08953 | 1.01885 | 1.29746 | 9.17241 |
| 7 | 8.73488 | 1.27815 | 1.32442 | 8.75190 |


| 8 | 9.01833 | 1.17248 | 1.24990 | 8.83813 |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 8.99194 | 0.95551 | 1.14103 | 9.07433 |
| 10 | 8.91945 | 1.06126 | 1.16315 | 8.91775 |
| 11 | 8.68457 | 1.32708 | 1.29473 | 8.62596 |
| 12 | 8.98093 | 1.29198 | 1.28093 | 8.66927 |
| 13 | 8.72160 | 1.03674 | 1.07841 | 8.84738 |
| 14 | 8.67727 | 1.08519 | 1.13783 | 8.84168 |
| 15 | 8.05833 | 1.44456 | 1.27536 | 8.39311 |
| 16 | 8.67795 | 1.30563 | 1.26130 | 8.61893 |

## Step 3:

Using $\log \hat{Y}$, the last column of the table, obtained at Step 1 and $\widehat{\log Y}$, the last column of the table, obtained at Step 2 we compute an artificial variable
$Z_{t}=\log \hat{Y}_{t}-\widehat{\log Y_{t}}$ and tabulated below.

| $t$ | $Y_{t}$ | $X_{2 t}$ | $X_{3 t}$ | $Z_{t}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 11484 | 2.26 | 3.49 | -0.16030 |
| 2 | 9348 | 2.54 | 2.85 | 0.01601 |
| 3 | 8429 | 3.07 | 4.06 | 0.03428 |
| 4 | 10079 | 2.91 | 3.64 | 0.02401 |
| 5 | 9240 | 2.73 | 3.21 | 0.01919 |
| 6 | 8862 | 2.77 | 3.66 | -0.00690 |
| 7 | 6216 | 3.59 | 3.76 | 0.06413 |
| 8 | 8253 | 3.23 | 3.49 | 0.06336 |
| 9 | 8038 | 2.60 | 3.13 | -0.00190 |
| 10 | 7476 | 2.89 | 3.20 | 0.04572 |
| 11 | 5911 | 3.77 | 3.65 | 0.03117 |
| 12 | 7950 | 3.64 | 3.60 | 0.04708 |
| 13 | 6134 | 2.82 | 2.94 | 0.05442 |
| 14 | 5868 | 2.96 | 3.12 | 0.05702 |
| 15 | 3160 | 4.24 | 3.58 | -0.15660 |
| 16 | 5872 | 3.69 | 3.53 | 0.03204 |

Now using the above table we regress the variable $Y$ on $X_{2}, X_{3}$ and $Z$ and the regression results are as follows

$$
\begin{aligned}
\hat{Y}_{t} & =9728-3783.1 X_{2 t}+2817.7 X_{3 t}+85.0 Z_{t} \\
t & =(3.22)(-6.33) \quad(2.84) \quad(0.02)
\end{aligned}
$$

$$
F=13.4 \quad R^{2}=0.77
$$

Since the t -value (0.02) is less than the critical $t$-value (2.179), the coefficient of $Z(85)$ is not significant. Therefore as per MWD Test, we accept $H_{0}$. In other words, we conclude that the true model is linear

## Step 4:

Using $\hat{Y}$, the last column of the table constructed at Step 1 and $\exp (\widehat{\log Y})$, the last column of the table constructed at Step 2, we compute another artificial variable, $W_{t}=\hat{Y}_{t}-\exp \left(\widehat{\log Y_{t}}\right)$ and tabulated below.

| $t$ | $\log Y_{t}$ | $\log X_{2 t}$ | $\log X_{3 t}$ | $W_{t}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 9.34871 | 0.81536 | 1.24990 | -1914.60 |
| 2 | 9.14292 | 0.93216 | 1.04732 | 129.43 |
| 3 | 9.03943 | 1.12168 | 1.40118 | 321.87 |
| 4 | 9.21821 | 1.06815 | 1.29198 | 212.95 |
| 5 | 9.1313 | 1.00430 | 1.16627 | 160.49 |
| 6 | 9.08953 | 1.01885 | 1.29746 | -66.50 |
| 7 | 8.73488 | 1.27815 | 1.32442 | 418.77 |
| 8 | 9.01833 | 1.17248 | 1.24990 | 450.82 |
| 9 | 8.99194 | 0.95551 | 1.14103 | -16.15 |
| 10 | 8.91945 | 1.06126 | 1.16315 | 349.13 |
| 11 | 8.68457 | 1.32708 | 1.29473 | 176.47 |
| 12 | 8.98093 | 1.29198 | 1.28093 | 280.63 |
| 13 | 8.72160 | 1.03674 | 1.07841 | 389.07 |
| 14 | 8.67727 | 1.08519 | 1.13783 | 405.84 |
| 15 | 8.05833 | 1.44456 | 1.27536 | -640.29 |
| 16 | 8.67795 | 1.30563 | 1.26130 | 180.23 |

Now using the above table we regress the variable $\log Y$ on $\log X_{2}, \log X_{3}$ and $W$ and the regression results are as follows

$$
\begin{aligned}
\widehat{\log Y_{t}} & =9.1489-1.9705 \log X_{2 t}+1.5896 \log X_{3 t}+0.0001 \mathrm{~W}_{\mathrm{t}} \\
t & =(17.08) \quad(-6.42)
\end{aligned}
$$

$$
F=14.17 \quad R^{2}=0.78
$$

Since the $t$-value (1.66) is less than the critical $t$-value (2.179), the coefficient of $W$ is not significant. Therefore as per MWD Test, we accept $H_{1}$. In other words, we conclude that the true model is log- linear.

In this particular example by applying MWD Test we get conclusion of both linear model and non-linear model are true models. In between these, we choose linear model, since when compared with calculate $t$-value of W in log-linear model is larger than the calculate $t$-value of $\underline{Z}$ in linear model. Thus ultimately we choose linear model as the true model. But, in general the MWD Test will conclude either linear model or non-linear model as the true model.

### 10.3 The BM ( Bera and McAleer )Test

This is the test suggested by Bera and McAleer which for brevity we call the BM test to choose between the two models i) A linear regression model or ii) A log-linear regression model.

## The BM test involves the following steps:

The null and alternative hypotheses $H_{0}$, and $H_{1}$ are same as in the MWD test.

## Step I and Step II are same as in MWD test.

Step III: Using the $\hat{Y}_{i}$ values computed at Step I, run the following artificial regression

$$
\begin{equation*}
Z_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\ldots+\beta_{k} X_{k i}+\varepsilon_{1 i}, \quad i=1,2, \ldots, n \tag{10.10}
\end{equation*}
$$

where $Z_{i}=\log \hat{Y}_{i}, \quad i=1,2, \ldots, n$
and obtain the residuals $\hat{\varepsilon}_{1 i}, \quad i=1,2, \ldots, n$, from the regression equation (10.10).
Now, the test for $H_{0}$ is based on $\theta_{1}$ in the artificial regression

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\ldots+\beta_{k} X_{k i}+\theta_{1} \hat{\varepsilon}_{1 i}+\omega_{1 i} \quad i=1,2, \ldots, n \tag{10.11}
\end{equation*}
$$

We use the usual $t$-test to test this hypotheses. If $\theta_{1}=0$ is accepted, we accept $H_{0}$ that is we choose the linear model

Step IV: Using the $\widehat{\log Y}$, values computed at Step II, run the following artificial regression

$$
\begin{equation*}
W_{i}=\alpha_{1}+\alpha_{2} \log X_{2 i}+\alpha_{3} \log X_{3 i}+\ldots+\alpha_{k} \log X_{k i}+\varepsilon_{2 i}, \quad i=1,2, \ldots, n \tag{10.12}
\end{equation*}
$$

where $\mathrm{W}_{i}=\exp \left(\widehat{\log Y}{ }_{i}\right), \quad i=1,2, \ldots, n$
and obtain the residuals $\hat{\varepsilon}_{2 i}, \quad i=1,2, \ldots, n$, from the regression equation (10.12).
Now, the test for $H_{1}$ is based on $\theta_{2}$ in the artificial regression

$$
\begin{equation*}
\log Y_{i}=\alpha_{1}+\alpha_{2} \log X_{2 i}+\alpha_{3} \log X_{3 i}+\ldots+\alpha_{k} \log X_{k i}+\theta_{2} \hat{\varepsilon}_{2 i}+\omega_{2 i} \quad i=1,2, \ldots, n \tag{10.13}
\end{equation*}
$$

If $\theta_{2}=0$ is accepted, we accept $H_{1}$ that is we choose the log-linear model.
Remark : A problem arises if both these hypotheses are rejected or both are accepted.
Notes:

1. The student is advised to apply the above BM test to the application given in MWD test.
2. The above two tests can also be applied for the choice between linear model and semilog linear model (obtained from linear model by replacing $Y$ variable with $\log Y$ variable).

### 10.4 Self Assessment Questions

1. Explain the MWD test for choosing between linear and log-linear models for the given data.
2. Explain the BM test for choosing between linear and log-linear models for the given data.
3. Explain the MWD test for choosing between linear and semi-log linear models for the given data.

| Centre for Distance Education | 10.8 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

4. Explain the BM test for choosing between linear and semi-log linear models for the given data.
5. Discuss the merits and demerits of the MWD test.
6. Discuss the merits and demerits of the BM test.
7. Distinguish between MWD test and BM test.

### 10.5 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 11

## ESTIMATION SUBJECT TO LINEAR RESTRICTIONS

### 11.0 Objective:

In this lesson, the student will learn how to obtain the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$ in the GLM

$$
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}
$$

subject a set of linear restrictions on $\boldsymbol{\beta}$ namely

$$
\mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}
$$

which is often called as restricted least squares estimator. Further, he/she will also learn an important application of restricted least squares estimator.

## Structure of the Lesson:

### 11.1 Introduction

### 11.2 Restricted least squares estimation

11.3 An alternative Expression of the test statistic for $\mathrm{H}_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$

### 11.4 Self Assessment Questions

### 11.5 References

### 11.1 Introduction

Economic theory often suggests that the coefficients of a relation should obey a linear restriction; for example, constant returns to scale imply that the exponents in a Cobb-Douglas production function should sum to unity, and the absence of the money illusion on the part of consumers implies that the sum of the money income and price elasticities in a demand function should be zero. These restrictions may be dealt with in two ways. One is to fit the function free of any restrictions and then test whether the estimated coefficients come sufficiently close to satisfying the restriction. The appropriate theory for the test has already been developed in the previous lessons.

An alternative way of dealing with the problem is to incorporate the restriction in the fitting process so that the estimated coefficients satisfy the restriction exactly. In some cases this is most simply done by working out directly the special form of the estimating equations for the problem in hand.

For instance, consider the Cobb-Douglas production function:

$$
Y_{i}=\beta_{1} X_{2 i}^{\beta_{2}} X_{3 i}^{\beta_{3}} e^{u_{i}}
$$

where $Y=$ output, $X_{2}=$ labor input, and $X_{3}=$ capital input. Written in log form, the equation becomes
$\log Y_{i}=\beta_{0}+\beta_{2} \log X_{2 i}+\beta_{3} \log X_{3 i}+u$
where $\beta_{0}=\log \beta_{1}$.

Now if there are constant returns to scale (equi-proportional change in output for an equiproportional change in the inputs), economic theory would suggest that

$$
\beta_{2}+\beta_{3}=1
$$

which is an example of a linear restriction. There are two approaches to deal this problem.

1. The first approach is to fit the function free of any restrictions and then test whether the estimated coefficients come sufficiently close to satisfying the restrictions. Thus estimate the above log-linear model by applying OLS and test for

$$
H_{0}: \beta_{2}+\beta_{3}=1 \text { i.e., } H_{0}: \underset{\sim}{\mathbf{c}^{\prime}} \underset{\sim}{\boldsymbol{\beta}}=1
$$

where $c=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{\prime} \quad \underset{\sim}{\boldsymbol{\beta}}=\left(\begin{array}{lll}\beta_{0} & \beta_{2} & \beta_{3}\end{array}\right)^{\prime}$
by applying the usual $t$-test namely

$$
t=\frac{{\underset{\sim}{\mathbf{c}^{\prime}}}_{\substack{\boldsymbol{\beta}}}-1}{\hat{\sigma} \sqrt{{\underset{\sim}{\mathbf{c}}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \underset{\sim}{\mathbf{c}}}} \sim t_{n-k}
$$

2. An alternative approach is to incorporate the restrictions in the fitting process so that the estimated coefficients satisfy the restrictions exactly. Thus in the above example, we incorporate the restriction $\beta_{2}+\beta_{3}=1$ in the above log-linear model and then estimate the resultant model. This estimator is called the restricted least squares estimator.

### 11.2 Restricted Least Squares Estimation

In Lesson 8, we have described the test procedure for the hypothesis that the elements of the population vector $\underset{\sim}{\boldsymbol{\beta}}$ obey the set of $q(\leq k)$ linear restrictions in the relation

$$
H_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}
$$

If $H_{0}$ is not rejected, one may wish to re-estimate the model, incorporating the restrictions in the estimation process. One important reason for such re-estimation is that it will improve the efficiency of the estimates. This produces an estimator $\underset{\sim}{\mathbf{b}}$ which then satisfies

$$
\begin{equation*}
\mathbf{R} \underset{\sim}{\mathbf{b}}=\underset{\sim}{\mathbf{r}} \tag{11.1}
\end{equation*}
$$

First we describe the estimator $\underset{\sim}{\mathbf{b}}$ and next we look at an important application of this new estimator.
The assumed model, as before, is

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \text { with } \mathrm{E}(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}} \text { and } \mathrm{E}\left(\underset{\sim}{\mathbf{u}}{\underset{\sim}{u}}^{\prime}\right)=\sigma^{2} \mathbf{I}_{\mathbf{n}} \tag{11.2}
\end{equation*}
$$

Now we should chose an estimator $\underset{\sim}{\mathbf{b}}$ of $\underset{\sim}{\boldsymbol{\beta}}$, which minimizes

$$
(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})^{\prime}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})
$$

subject to the restrictions $\mathbf{R} \underset{\sim}{\mathbf{b}}=\underset{\sim}{\mathbf{r}}$. For this purpose, we define

$$
\begin{equation*}
\varphi=(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})^{\prime}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})-2{\underset{\sim}{2}}^{\prime}(\mathbf{R} \underset{\sim}{\mathbf{b}}-\underset{\sim}{\mathbf{r}}) \tag{11.3}
\end{equation*}
$$

where $\underset{\sim}{\lambda}$ denotes a column vector of $q$ Lagrange multipliers. Taking the partial derivatives of $\varphi$ gives

$$
\frac{\partial \phi}{\partial \underline{\mathbf{b}}}=-2 \mathbf{X}_{\sim}^{\prime} \underset{\sim}{\mathbf{y}}+2 \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\mathbf{b}}-2 \mathbf{R}^{\prime} \underset{\sim}{\lambda}
$$

and $\quad \frac{\partial \phi}{\partial \boldsymbol{\lambda}}=-2(\mathbf{R} \underset{\sim}{\mathbf{b}}-\underset{\sim}{\mathbf{r}})$
Setting these partial derivatives to zero gives the equations to be solved for $\underset{\sim}{\mathbf{b}}$ and $\underset{\sim}{\boldsymbol{\lambda}}$, namely

$$
\begin{equation*}
\mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\mathbf{b}}-\mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}-\mathbf{R}^{\prime} \underset{\sim}{\boldsymbol{\lambda}}=0 \tag{11.4}
\end{equation*}
$$

and $\mathbf{R b}-\underset{\sim}{\mathbf{r}}=\underset{\sim}{\mathbf{0}}$
Pre-multiplying Eq. (11.4) by $\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ gives

$$
\mathbf{R} \underset{\sim}{\mathbf{b}}-\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \underset{\sim}{\lambda}=0 \quad\left(\because \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \text { is the OLS estimator of } \underset{\sim}{\boldsymbol{\beta}}\right)
$$

where $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is unrestricted least squares estimator and the above may be written as

$$
\underset{\sim}{\lambda}=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\underset{\sim}{\mathbf{r}}-\mathbf{R} \underset{\sim}{\hat{\beta}}) \quad(\because \mathbf{R} \underset{\sim}{\mathbf{b}}=\underset{\sim}{\mathbf{r}})
$$

Substituting this in Eq. (11.4) and simplifying then we get

$$
\begin{equation*}
\underset{\sim}{\mathbf{b}}=\underset{\sim}{\hat{\boldsymbol{\beta}}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\underset{\sim}{\mathbf{r}}-\mathbf{R} \underset{\sim}{\hat{\beta}}) \tag{11.6}
\end{equation*}
$$

Formula (11.6) defines the restricted least-squares estimator satisfying the set of $q$ restrictions embodied in $\mathbf{R b}=\underset{\sim}{\mathbf{r}}$.
To prove that $\underset{\sim}{\mathbf{b}}$ is unbiased estimator of $\underset{\sim}{\beta}$ :
We have $\hat{\boldsymbol{\beta}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}{ }_{\sim}^{\mathbf{u}}$ and using this in Eq. (11.6) we get

$$
\underset{\sim}{\mathbf{b}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}\left(\underset{\sim}{\mathbf{r}}-\mathbf{R} \boldsymbol{R} \boldsymbol{\beta}-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim}\right)
$$

Since $\mathbf{R} \boldsymbol{\sim} \boldsymbol{\sim}=\underset{\sim}{\mathbf{r}}$, we may write $\underset{\sim}{\mathbf{b}}$ as

$$
\begin{equation*}
\underset{\sim}{\mathbf{b}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}} \tag{11.7}
\end{equation*}
$$

Taking expectation on both sides we get

$$
E(\underset{\sim}{\mathbf{b}})=\underset{\sim}{\boldsymbol{\beta}} \quad(\because E(\underset{\sim}{\mathbf{u}})=0)
$$

## To derive $\operatorname{var}(\underset{\sim}{b})$ :

Eq. (11.7) becomes

$$
\begin{aligned}
& \underset{\sim}{\mathbf{b}}-\underset{\sim}{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}} \\
& =\mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\sim}^{\prime}{\underset{\sim}{u}}^{\text {un }} \quad \text { where } \mathbf{A}=\mathbf{I}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}
\end{aligned}
$$

By definition

$$
\begin{aligned}
& \operatorname{var}(\underset{\sim}{\mathbf{b}})=E\left[(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\boldsymbol{\beta}})(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}\right] \\
& =\mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\underset{\sim}{\mathbf{u}}{ }_{\sim}^{\prime}\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{A}^{\prime} \\
& \operatorname{var}(\underset{\sim}{\mathbf{b}})=\sigma^{2} \mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{A}^{\prime} \quad\left(\because E\left(\underset{\sim}{\mathbf{u u}_{\sim}^{\prime}}\right)=\sigma^{2} \mathbf{I}_{\mathbf{n}}\right) \\
& =\sigma^{2} \mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad \text { (Explanation of simplification is given below) } \\
& \left(\mathrm{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathrm{~A}^{\prime}=\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]\left[\mathbf{I}-\mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]\right. \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& -\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& +\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& \left.=\mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad(\because \text { last two terms will be cancelled })\right)
\end{aligned}
$$

### 11.3 An alternative Expression of the test statistic for $H_{0}: R \underset{\sim}{\boldsymbol{\beta}}=\mathbf{r}$

Corresponding to the restricted least squares estimator $\underset{\sim}{\mathbf{b}}$, we may define the residual vector

$$
\begin{equation*}
\mathbf{e}_{*}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \mathbf{b} \tag{11.8}
\end{equation*}
$$

which may be written as

$$
{\underset{\sim}{e}}_{*}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}-\mathbf{X}(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}})=\underset{\sim}{\mathbf{e}}-\mathbf{X}(\underset{\sim}{\mathbf{b}}-\underset{\boldsymbol{\beta}}{\hat{\boldsymbol{\beta}}})
$$

where $\underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\hat{\boldsymbol{\beta}}}$ is the vector of OLS residuals vector. Now

$$
\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}={\underset{\sim}{e}}^{\mathbf{e}} \mathbf{e}^{\mathbf{e}}+(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}})
$$

The cross product term vanishing since $\mathbf{X}^{\prime} \mathbf{e}=0$. Thus

$$
\begin{equation*}
{\underset{\sim}{e}}^{\prime} \mathbf{e}_{*}-{\underset{\sim}{e}}^{\mathbf{e}} \underset{\sim}{\mathbf{e}}=(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}}) \tag{11.9}
\end{equation*}
$$

Using Eq. (11.6) in Eq. (11.9) we get

$$
\begin{align*}
{\underset{\sim}{\mathbf{e}}}_{*}^{\prime} \mathbf{e}_{\sim}-\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}}= & (\underset{\sim}{\mathbf{r}}-\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \\
& \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\underset{\sim}{\mathbf{r}}-\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}})  \tag{11.10}\\
= & (\underset{\sim}{\mathbf{r}}-\mathbf{R} \underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\underset{\sim}{\mathbf{r}}-\mathbf{R} \hat{\sim} \underset{\sim}{\hat{\beta}})
\end{align*}
$$

But from Eq. (8.26) for testing the null hypothesis $H_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$, we have the test statistic, namely

$$
\begin{equation*}
F=\frac{(\underset{\sim}{\mathbf{r}}-\mathbf{R} \hat{\sim} \hat{\boldsymbol{\beta}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\underset{\sim}{\mathbf{r}}-\mathbf{R} \hat{\sim} \hat{\boldsymbol{\beta}}) / q}{{\underset{\sim}{\mathbf{e}}}_{\sim}^{\mathbf{e}} /(n-k)} \sim F_{q, n-k} \tag{11.11}
\end{equation*}
$$

Using Eq. (11.10), then Eq. (11.11) becomes

$$
\begin{equation*}
F=\frac{\left(R S S_{R R}-R S S_{U R}\right) / q}{R S S_{U R} /(n-k)}=\frac{\left(\mathbf{e}_{\sim}^{\prime} \mathbf{e}_{\sim}^{\prime}-\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}}\right) / q}{{\underset{\sim}{\mathbf{e}}}_{\sim}^{\mathbf{e}} /(n-k)} \sim F_{q, n-k} \tag{11.12}
\end{equation*}
$$

where $R S S_{R R}=$ Residual sum of squares from Restricted Regression Model $=\mathbf{e}_{\sim}^{\prime} \mathbf{e}_{\sim}^{\prime}$.
$R S S_{U R}=$ Residual sum of squares from Unrestricted Regression Model= $\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}}$
Or equivalently from (11.9), it can be seen

$$
\begin{equation*}
F=\frac{(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\underset{\sim}{\mathbf{b}}-\underset{\sim}{\hat{\boldsymbol{\beta}}}) / q}{{\underset{\sim}{\mathbf{e}}}^{\prime} \mathbf{e} /(n-k)} \sim F_{q, n-k} \tag{11.13}
\end{equation*}
$$

Thus we may use any one of the formulae Eqs. (11.11), (11.12) or (11.13) as test statistic for $H_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$. But in between these formulae, formula Eq. (11.12) is simpler, which we will use in the later applications.

Note: In the above we have,
Unrestricted Regression Model: $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}$
Restricted Regression Model: $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}$ with the set of linear restrictions $\mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$

### 11.4 Self Assessment Questions

1. Explain the OLS estimation of the GLM $\underset{\sim}{Y}=X \underset{\sim}{\beta}+\underset{\sim}{u}, \underset{\sim}{u} \sim\left(\underset{\sim}{0}, \sigma_{u}^{2} I_{n}\right)$ subject to the linear restrictions $R \underset{\sim}{\beta}=\underset{\sim}{r}$.
2. For the GLM $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$, explain the test for testing $H_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{r}$ again the alternative $H_{0}: \mathbf{R} \boldsymbol{\beta} \neq \mathbf{r}$ when $\mathbf{R}$ is a known matrix of order mXk and of rank $m$ and $\mathbf{r}$ is a known $\mathrm{mX1}$ vector.
3. Derive the restricted least squares estimator of $\underset{\sim}{\beta}$ in the $G L M \underset{\sim}{Y}=X \underset{\sim}{\gamma}+\underset{\sim}{\sim} \underset{\sim}{u}$, $\underset{\sim}{u} \sim\left(\underset{\sim}{0}, \sigma_{u}^{2} I_{n}\right)$ subject to $R \underset{\sim}{\underset{\sim}{\sim}}=\underset{\sim}{r}$.
4. Show that the restricted least squares estimator is unbiased.
5. Derive the variance of the restricted least squares estimator.
6. In the GLM $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$, derive the test statistic for $\mathrm{H}_{0}: \mathbf{R} \underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\mathbf{r}}$ in terms of the residual sum of squares of restricted and unrestricted regression models.

### 11.5 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

Lesson 12

## TEST OF STRUCTUAL CHANGE IN REGRESSION MODELS

### 12.0 Objective:

After studying this lesson, the student will understand clearly the concept of structural change or parameter stability and some tests for testing the structural change between two regression equations. Chow test for equality of two regressions is also demonstrated with an example.

## Structure of the Lesson:

### 12.1 Introduction

### 12.2 Test for structural change between two regression equations

### 12.3 Testing the structural change in intercept

12.4 Testing the structural change in slope

### 12.5 Tests of structural change with $\boldsymbol{k}$ variables

12.6 Chow test for the equality of two regression equations with $k$ variables
12.7 The chow test (test of structural change with $\left(n_{1}<k\right)$
12.8 Tests of Structural change ( $k$ variables, $p$ periods)
12.9 Self Assessment Questions
12.10 References

### 12.1 Introduction

When we use a regression model involving time series data, it may happen that there is a structural change in the relationship between the regressand $Y$ and the regressors. By structural change, we mean that the values of the parameters of the model do not remain the same through the entire time period. Sometime the structural change may be due to external forces (e.g., the oil embargoes imposed by the OPEC oil cartel in 1973 and 1979 or the Gulf War of 1990-1991), or due to policy changes (such as the switch from a fixed exchange-rate system to a flexible exchange-rate system around 1973) or action taken by Congress (e.g., the tax changes initiated by President Reagan in his two terms in office or changes in the minimum wage rate) or to a variety of other causes.

When we estimate a multiple regression equation and use it for predictions at future points of time we assume that the parameters are constant over the entire time period of
estimation and prediction. To test this hypothesis of parameter constancy (or stability) some tests have been proposed.

### 12.2 Test for Structural Change between Two Regression Equations:

Suppose we have data on two variables

## $Y=$ consumption expenditure <br> and $\quad X=$ disposable income

The data cover two distinct sub periods, $n_{1}$ observations relating to war time years and $n_{2}$ observations relating to peace time years. Suppose we wish to investigate whether there is any change, or shift in the consumption function between the wartime and peace time periods. Such a change is referred to as a structural change or structural break. Let us denote the consumption functions by

$$
\begin{array}{ll}
Y=\alpha_{1}+\beta_{1} X+u_{1} & \text { wartime function } \\
Y=\alpha_{2}+\beta_{2} X+u_{2} & \text { peace time function } \tag{12.2}
\end{array}
$$

This is the unrestricted form of the model, allowing intercepts and slopes to be different in the two periods. This model would be set up in the matrix form as follows.

$$
\left[\begin{array}{c}
Y_{1}  \tag{12.3}\\
Y_{2} \\
\vdots \\
Y_{n_{1}} \\
Y_{n_{1}+1} \\
Y_{n_{1}+2} \\
\vdots \\
Y_{n_{1}+n_{2}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & X_{1} & 0 & 0 \\
1 & X_{2} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{n_{1}} & 0 & 0 \\
0 & 0 & 1 & X_{n_{1}+1} \\
0 & 0 & 1 & X_{n_{1}+2} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & X_{n_{1}+n_{2}}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\alpha_{2} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n_{1}} \\
u_{n_{1}+1} \\
u_{n_{1}+2} \\
\vdots \\
u_{n_{1}+n_{2}}
\end{array}\right]
$$

where the war time observations have been listed first and the peace time observations last. More compactly, Eq. (12.3) can be written as

$$
\underset{\sim}{\mathbf{y}}=\left[\begin{array}{l}
\mathbf{y}_{1}  \tag{12.4}\\
\mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{1}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1} \\
\alpha_{2} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{c}
\underset{\sim}{\mathbf{u}_{1}} \\
{\underset{\sim}{u}}_{2}
\end{array}\right]=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}
$$

where the data matrix $\mathbf{X}$ is block-diagonal. As discussed above this is the unrestricted model. Applying OLS to equation Eq. (12.4) gives

$$
\begin{align*}
\underset{\sim}{\hat{\boldsymbol{\beta}}} & =\left[\begin{array}{l}
\hat{\alpha}_{1} \\
\hat{\beta}_{1} \\
\hat{\alpha}_{2} \\
\hat{\beta}_{2}
\end{array}\right]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\underset{\sim}{\prime}}^{\mathbf{y}}  \tag{12.5}\\
& =\left[\begin{array}{cc}
\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \left(\mathbf{X}_{2}^{\prime} \mathbf{X}_{2}\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{1}^{\prime}{\underset{\sim}{\mathbf{y}}}_{1} \\
\mathbf{X}_{2}^{\prime} \underset{\sim}{\mathbf{y}}
\end{array}\right]=\left[\begin{array}{l}
\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime}{\underset{\sim}{\mathbf{y}}}_{1} \\
\left(\mathbf{X}_{2}^{\prime} \mathbf{X}_{2}\right)^{-1} \mathbf{X}_{2}^{\prime}{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]
\end{align*}
$$

These estimates are seen to be identical with those obtained by applying OLS separately to Eqs. (12.1) and (12.2). Using Eq. (12.5), one can obtain the vector $\underset{\sim}{\text { e }}$ of $n_{1}+n_{2}$ residuals, and $\underset{\sim}{\mathbf{e}}{ }_{\sim}^{\prime} \underset{\sim}{e}$ gives the unrestricted residual sum of squares. Also the unrestricted residual sum of squares, ${\underset{\sim}{e}}^{\mathbf{e}} \underset{\sim}{\mathbf{e}}$ for model Eq. (12.4) may be obtained as the sum of residual sum of squares obtained for models Eqs. (12.1) and (12.2).

Now let us set up the null hypothesis of no structural change between wartime function and peace time function. i.e., $H_{0}: \alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$
Now the model becomes

$$
Y_{i}=\alpha+\beta X_{i}+u_{i} \quad \mathrm{i}=1,2, \ldots, \mathrm{n}
$$

where $\alpha=\alpha_{1}=\alpha_{2}, \beta=\beta_{1}=\beta_{2}$ and $n=n_{1}+n_{2}$.
The model is called as restricted model and it may also be written as

$$
\left[\begin{array}{l}
{\underset{\sim}{\mathbf{y}}}_{1}  \tag{12.6}\\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}_{\mathbf{1}} \\
\mathbf{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

The contrast with the unrestricted model in Eq. (12.4) is that $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ matrices are now stacked vertically, so that only two parameters are required to describe the relation.
Now we can test the given $H_{0}$ by using the following test statistic, (From Eq. (11.12) of Lesson 11 ), in which $q=2$ (number of restrictions) and $k=4$ (number of parameters in unrestricted model)

$$
\begin{equation*}
F=\frac{({\underset{\sim}{\mathbf{e}}}_{\prime}^{\prime}{\underset{\sim}{*}}_{*}-\underbrace{\mathbf{e}^{\prime}}_{\sim}{ }_{\sim}^{\mathbf{e}}) / 2}{\underset{\sim}{\mathbf{e}^{\prime} \mathbf{e}} /(n-4)}=\frac{\left(R S S_{R R}-R S S_{U R}\right) / 2}{R S S_{U R} /(n-4)} \sim F_{2, n-4} \tag{12.7}
\end{equation*}
$$

where $\underset{\sim}{\mathbf{e}^{\prime}} \underset{\sim}{\mathbf{e}}\left(R S S_{U R}\right)$ is residual sum of squares obtained from unrestricted model (12.4) and ${\underset{\sim}{*}}_{*}^{\prime} \mathbf{e}_{\sim}\left(R S S_{R R}\right)$ is residual sum of squares obtained from restricted model (12.6).

If the calculated $F$-value from Eq. (12.7) is greater than the critical $F_{2, n-4}$ at a given l.o.s $\alpha$, we reject $H_{0}: \alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$. In otherworld's, we conclude there is a structural change between wartime and peace time consumption functions. Otherwise we accept $H_{0}$ of no structural change.

### 12.3 Testing the structural change in intercept

For testing the structural change in the intercept i.e., $H_{0}: \alpha_{1}=\alpha_{2}=\alpha$, the restricted and unrestricted models may then be set up as follows:
unrestrited Model

$$
\left[\begin{array}{l}
{\underset{y}{1}}_{1}^{\mathbf{y}_{\sim}}
\end{array}\right]=\left[\begin{array}{lll}
{\underset{\sim}{\mathbf{i}}}_{1} & \underset{\sim}{\mathbf{0}} & \underset{\sim}{\mathbf{X}}  \tag{12.8}\\
\mathbf{0} & {\underset{\sim}{\mathbf{i}}}_{2} & \underset{\sim}{\mathbf{X}}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\beta
\end{array}\right]+\underset{\sim}{\mathbf{u}} \quad\left[\begin{array}{c}
\mathbf{y}_{1} \\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{i}_{1} \mathbf{x}_{1} \\
\mathbf{i}_{2} \mathbf{X}_{2}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

Restricted Model

Now OLS may then be applied directly to each model in Eq. (12.8) and $H_{0}$ may be tested using the following test statistic $(q=1, k=3)$.

$$
\begin{equation*}
F=\underset{\underbrace{\mathbf{e}^{\prime}}_{\sim} \mathbf{e}_{\sim}^{*}-{\underset{\sim}{\mathbf{e}}}^{\prime} \mathbf{e}_{\tilde{\prime}}^{\mathbf{e}^{\prime} /(n-3)}}{\mathbf{e}^{(n-3)}}=\frac{R S S_{R R}-R S S_{U R}}{R S S_{U R} /(n-3)} \sim F_{1, n-3} \tag{12.9}
\end{equation*}
$$

All the above notations are as in the usual way.
If the calculated $F$-value from Eq. (12.7) is greater than the critical $F_{2, n-4}$ at a given I.o.s $\alpha$ , we reject $H_{0}: \alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$. In otherworld's, we conclude there is a structural change between wartime and peace time consumption functions. Otherwise we accept $H_{0}$ of no structural change.

### 12.4 Testing the structural change in slope

For testing the structural change in the slope $H_{0}: \beta_{1}=\beta_{2}=\beta$, the restricted and unrestricted models may then be set up as follows:

Restricted Model

$$
\left[\begin{array}{l}
\mathbf{y}_{1}  \tag{12.10}\\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
{\underset{\sim}{1}}_{1} & \underset{\sim}{\mathbf{0}} & \mathbf{x}_{1} \\
\mathbf{0} & {\underset{\sim}{\mathbf{i}}}_{2} & \underset{\sim}{\mathbf{X}}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\beta
\end{array}\right]+\underset{\sim}{\mathbf{u}} \quad\left[\begin{array}{c}
{\underset{\sim}{\mathbf{y}}}_{1} \\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{i}_{1} & {\underset{\sim}{\mathbf{X}}}_{1} & \underset{\sim}{\mathbf{0}} & \underset{\sim}{\mathbf{0}} \\
\mathbf{0} & \underset{\sim}{\mathbf{0}} & {\underset{\sim}{\mathbf{i}}}_{2} & \underset{\sim}{\mathbf{X}}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

where $\mathbf{i}_{1}$ denoted a column vector of $n_{1}$ units, $\mathbf{i}_{2}$ is column vector of $n_{2}$ units, ${\underset{\sim}{\mathbf{X}}}_{1}$ is a column vector of $n_{1}$ observations on wartime income, and $\underset{\sim}{\mathbf{X}}$ a column vector $n_{2}$ observations on peace time income OLS may then be applied directly to each model in Eq. (12.10) and $H_{0}$ may be tested using the following formula $(q=1, k=4)$.
where ${\underset{\sim}{e}}_{*}^{\prime} \mathbf{e}_{*}\left(R S S_{R R}\right)$ and ${\underset{\sim}{e}}_{\underset{\sim}{\prime}}^{\mathbf{e}}\left(R S S_{U R}\right)$ are respectively the residuals sum of squares obtained from restricted and unrestricted models.

If the calculated $F$-value from Eq. (12.7) is greater than the critical $F_{2, n-4}$ at a given I.o.s $\alpha$, we reject $H_{0}: \alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$. In other words, we conclude there is a structural change between wartime and peace time consumption functions. Otherwise we accept $H_{0}$ of no structural change.

Note: In the above test it may be noted that the unrestricted model in testing $H_{0}: \alpha_{1}=\alpha_{2}$, is the restricted model in testing $H_{0}: \beta_{1}=\beta_{2}$.

### 12.5 Tests of structural change with $\boldsymbol{k}$ variables

Let us write the usual general linear model

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{12.12}
\end{equation*}
$$

Suppose we have war time data, and peace time data on $Y, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{k}}$ variables.
The general linear model for wartime data becomes

$$
\begin{equation*}
{\underset{\sim}{\mid}}_{1}^{\mathbf{y}_{1}}=\mathbf{X}_{1}{\underset{\sim}{\boldsymbol{\beta}}}_{1}+{\underset{\sim}{u}}_{\mathbf{u}_{1}} \tag{12.13}
\end{equation*}
$$

and for peace time data Eq. (12.12) may be written as

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}_{2}}=\mathbf{X}_{2} \underset{\sim}{\boldsymbol{\beta}} \boldsymbol{\beta}_{2}+\underset{\sim}{\mathbf{u}_{2}} \tag{12.14}
\end{equation*}
$$

where $\underset{\sim}{\mathbf{y}_{1}}$ and $\underset{\sim}{\mathbf{y}}$ 2 wartime and peace time $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ are respective data matrices of $n_{1} x k$ and $n_{2} x k$ orders on explanatory variables in wartime and peace time. ${\underset{\sim}{u}}_{1}$ and $\underset{\sim}{\mathbf{u}}$ are the respective disturbance vectors and ${\underset{\sim}{\boldsymbol{\beta}}}_{1},{\underset{\sim}{\boldsymbol{\beta}}}_{2}$ are the respective vectors of unknown parameters in both the models.
The models (12.13) and (12.14) can be combined as

$$
\left[\begin{array}{l}
{\underset{\sim}{\mathbf{y}}}_{1}  \tag{12.15}\\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}_{1} & 0 \\
0 & \mathbf{X}_{2}
\end{array}\right]\left[\begin{array}{c}
\underset{\sim}{\boldsymbol{\beta}} \\
\boldsymbol{\beta}_{2}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]
$$

The model (12.15) is called the unrestricted model.
Let us partition $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ by the first column of units and the remaining $k-1$ columns of observations on the explanatory variables as follows:

$$
\mathbf{X}_{\mathbf{1}}=\left[\begin{array}{ll}
\mathbf{i}_{1} & \mathbf{X}_{1}^{*}
\end{array}\right] \text { and } \mathbf{X}_{2}=\left[\begin{array}{ll}
\mathbf{i}_{2} & \mathbf{X}_{1}^{*}
\end{array}\right]
$$

Now we consider the following 3 types of models:

## Model-I (common regression for both periods):

$$
\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{i}_{1} & \mathbf{X}_{1}^{*} \\
{\dot{\underset{\sim}{w}}}_{2} & \mathbf{X}_{2}^{*}
\end{array}\right] \underset{\sim}{\boldsymbol{\beta}}+\left[\begin{array}{l}
{\underset{\mathbf{u}}{1}}^{{\underset{\sim}{u}}_{2}}
\end{array}\right]
$$

Model-II (differential intercepts and common vector of regression slopes):

$$
\left[\begin{array}{c}
{\underset{\sim}{1}}_{1} \\
{\underset{\sim}{\mathbf{y}}}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
{\underset{\sim}{i}}_{1} & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{1}^{*} \\
\boldsymbol{0} & {\underset{\sim}{i}}_{2} & \mathbf{X}_{1}^{*}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
{\underset{\sim}{\boldsymbol{\beta}}}^{*}
\end{array}\right]+\left[\begin{array}{l}
{\underset{\sim}{u}}_{1} \\
{\underset{\sim}{u}}_{2}
\end{array}\right]
$$

Model-III (Differential intercepts and differential slopes):

$$
\left[\begin{array}{l}
{\underset{\underset{y}{1}}{1}}^{\mathbf{y}_{2}}
\end{array}\right]=\left[\begin{array}{cccc}
{\underset{\sim}{\mathbf{i}}}_{1} & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{1}^{*} & \underset{\sim}{\mathbf{0}}  \tag{12.16}\\
\mathbf{0} & \underset{\sim}{\mathbf{i}} & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{1}^{*}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\alpha}_{1} \\
\alpha_{2} \\
{\underset{\sim}{\boldsymbol{\beta}}}_{1}^{*} \\
{\underset{\sim}{\boldsymbol{\beta}}}_{2}^{*}
\end{array}\right]+\left[\begin{array}{l}
{\underset{\sim}{u}}_{1} \\
{\underset{\sim}{\mathbf{u}}}_{2}
\end{array}\right]
$$

where we have partitioned the $k$-elements $\underset{\sim}{\boldsymbol{\beta}}$ vector as

$$
\underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\alpha  \tag{12.17}\\
\beta_{2} \\
\beta_{3} \\
\vdots \\
\beta_{k}
\end{array}\right]=\binom{\alpha}{\boldsymbol{\beta}^{*}}
$$

Application of OLS to each model will yield a residual sum of squares (RSS) with an associated number of degrees of freedom as indicated by

| Model I: | RSS $_{1}$ | $n-k$ |
| :--- | :--- | :--- |
| Model II: | RSS $_{2}$ | $n-k-1$ |
| Model III: | RSS $_{3}$ | $n-2 k$ |

where $n=n_{1}+n_{2}$ indicates the total number of observations in the combined samples. The test statistics for various hypothesis are then as follows:
$H_{0}: \alpha_{1}=\alpha_{2} \quad$ Test of differential intercepts

$$
\begin{equation*}
F=\frac{\mathrm{RSS}_{1}-\mathrm{RSS}_{2}}{\mathrm{RSS}_{2} /(n-k-1)} \sim F_{(1, n-k-1)} \tag{12.18}
\end{equation*}
$$

$H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}^{*}={\underset{\sim}{\boldsymbol{\beta}}}_{2}^{*}$ Test of differential slope vectors

$$
\begin{equation*}
F=\frac{\left(\mathrm{RSS}_{2}-\mathrm{RSS}_{3}\right) /(\mathrm{k}-1)}{\mathrm{RSS}_{3} /(n-2 k)} \sim F_{(k, n-2 k)} \tag{12.19}
\end{equation*}
$$

$H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}={\underset{\sim}{\boldsymbol{\beta}}}_{2} \quad$ Test of differential regressions (intercepts and slopes)

$$
\begin{equation*}
F=\frac{\left(\mathrm{RSS}_{1}-\mathrm{RSS}_{3}\right) / \mathrm{k}}{\mathrm{RSS}_{3} /(n-2 k)} \sim F_{(k, n-2 k)} \tag{12.20}
\end{equation*}
$$

The degrees of freedom in the numerator are simply obtained as the difference in the degrees of freedom of the two residual sums of squares in the numerator. This is equal to the number of restrictions involved when going from the unrestricted to the restricted model.

In the above tests, if the computed $F$-value does not exceed the critical $F$-value taken from the $F$-table at a given l.o.s, then we accept $H_{0}$. Otherwise, reject $H_{0}$.

Note: In the similar manner, one can test the structural change in a subset of coefficients (i.e, the stability of a subset of coefficients). The principle of the test is the same as in all the test of structural change.

### 12.6 Chow Test for the equality of Two regression Equations :

Suppose we have data on the variables $Y$ (dependent variable) and $k-1$ explanatory variables $X_{2}, X_{3}, \ldots, X_{k}$ for two sub periods namely sub period-I and sub period-II. Further let

Let us suppose there are $n_{1}$ sets of observations in sub period-I and $n_{2}$ sets of observations in sub period-II.

Now the GLM for sub period-I may be written as

$$
\begin{equation*}
\underset{\tilde{n}_{1} \mathbf{x}}{\mathbf{y}_{1}}=\underset{n_{1} \mathbf{x} k}{\mathbf{X}_{1}} \underset{\tilde{k} \mathbf{x} 1}{\boldsymbol{\beta}}+\underset{n_{1} \mathbf{x} 1}{\mathbf{u}_{1}} \tag{12.21}
\end{equation*}
$$

Similarly the GLM for sub periods-II may be written as

$$
\begin{equation*}
\underset{\tilde{n}_{2} \mathbf{x} 1}{\mathbf{y}_{2}}=\underset{n_{2} \mathbf{x} k}{\mathbf{X}_{2}} \underset{\tilde{k} \mathbf{x} 1}{\boldsymbol{\beta}}+\underset{\tilde{n}_{2} \mathbf{x} 1}{\mathbf{u}_{2}} \tag{12.22}
\end{equation*}
$$

where $\underset{\sim}{\mathbf{y}_{1}}$ and $\underset{\sim}{\mathbf{y}}$ 2 are respectively vectors of $n_{1}$ and $n_{2}$ observations on endogenous variable in wartime and peace time $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ are respective data matrices of $n_{1} x k$ and $n_{2} x k$ orders on explanatory variables in wartime and peace time. ${\underset{\sim}{\sim}}_{1}^{\mathbf{u}}$ and $\underset{\sim}{\mathbf{u}}{ }_{2}$ are the respective disturbance vectors and $\boldsymbol{\beta}_{1},{\underset{\sim}{\boldsymbol{\beta}}}_{2}$ are the respective vectors of unknown parameters in both the models.
Now our objective is to test the null hypothesis

$$
\begin{equation*}
H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}={\underset{\sim}{\boldsymbol{\beta}}}_{2} \tag{12.23}
\end{equation*}
$$

i.e., there is no structural change in the regressions of two sub periods Or
$H_{0}$ : Both the regression equations are equal.
For this purpose, Chow-test is as follows:
This test assumes that
$>\underset{\sim}{\mathbf{u}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{I}_{n_{1}}\right)$ and $\underset{\sim}{\mathbf{u}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{I}_{n_{2}}\right)$. That is, the error terms in the two sub period regressions are normally distributed with same (homoscedastic) variance $\sigma^{2}$.
$>$ The two error terms $u_{1 t}$ and $u_{1 t}$ are independently distributed.
Now, the mechanics of Chow-test are as follows:

1. Estimate the regression Eq. (12.21) of sub period-I, and compute ${\underset{\sim}{1}}_{1}=\underset{\sim}{\mathbf{y}_{1}}-\mathbf{X}_{1}{\underset{\sim}{\boldsymbol{\beta}}}_{1}$ and hence, obtain the residual sum of squares ${\underset{\sim}{1}}_{\mathbf{e}}^{\mathbf{e}_{1}}$ denoted by $\mathbf{R S S}_{1}$ with d.f. $n_{1}-k$.
2. Similarly estimate the regression Eq. (12.22) of sub period-II, and compute ${\underset{\sim}{e}}_{2}={\underset{\sim}{\mathbf{y}}}_{2}-\mathbf{X}_{2}{\underset{\sim}{\boldsymbol{\beta}}}_{2}$ and hence, obtain the residual sum of squares ${\underset{\sim}{\mathbf{e}}}_{2}^{\prime}{\underset{\sim}{e}}_{2}$ denoted by $R S S_{2}$ with d.f. $n_{2}-k$.
3. Since the samples of period-I and period-II are independent, we can add $\mathbf{R S S}_{1}$ and $\mathbf{R S S}_{\mathbf{2}}$ to obtain what may be called the unrestricted residual sum of squares $\left(\mathbf{R S S}_{\mathbf{U R}}\right)$ given by
with $\left(n_{1}+n_{2}-2 k\right)$ d.f.
4. Under $H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}=\underset{\sim}{\boldsymbol{\beta}}=\underset{\sim}{\boldsymbol{\beta}}$ (say), the pooled regression of Eqs. (12.21) and (12.22) becomes

$$
\begin{equation*}
\underset{n \times 1}{\mathbf{y}}=\underset{n x k}{\mathbf{X}} \underset{\underset{k \times 1}{\boldsymbol{\beta}}}{\underset{n}{ }}+\underset{\sim}{\mathbf{n} \times 1} \tag{12.25}
\end{equation*}
$$

where $n=n_{1}+n_{2}, \quad \underset{\sim}{\mathbf{y}}=\binom{{\underset{\sim}{\mathbf{y}}}_{1}}{{\underset{\sim}{y}}_{2}}, \mathbf{X}=\binom{\mathbf{X}_{1}}{\mathbf{X}_{2}}, \underset{\sim}{\mathbf{u}}=\binom{\mathbf{u}_{1}}{{\underset{\sim}{\mathbf{u}}}_{2}}$
Now, the regression model (12.25) is called as restricted regression model and by applying OLS to it yields restricted residual sum of squares denoted by $\mathbf{R S S}_{R R}$, given by

$$
\begin{equation*}
\mathbf{R S S}_{\mathbf{R R}}=\underbrace{\mathbf{e}^{\prime} \mathbf{e}}_{\sim}, \quad \text { where } \underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underbrace{\hat{\beta}}_{\sim} \quad \text { with }(\mathrm{n}-\mathrm{k}) \text { d.f. } \tag{12.26}
\end{equation*}
$$

5. Now, the idea behind the Chow test is that if in fact there is no structural change (that regression Eqs. (12.21) and (12.22) are essentially the same) then $\mathbf{R S S}_{\mathbf{R R}}$ and $\mathbf{R S S}_{\mathbf{U R}}$ should not be statistically different. Therefore if we form the $F$-ratio

$$
F=\frac{\left(\mathbf{R S S}_{\mathbf{R R}}-\mathbf{R S S}_{\mathbf{U R}}\right) / k}{\mathbf{R S S}_{\mathbf{U R}} /(n-2 k)} \sim F_{k, n-2 k}
$$

then Chow has shown that under $H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}={\underset{\sim}{\boldsymbol{\beta}}}_{2}, F$ ratio given above follows $F$ distribution with ( $k, n-2 k$ ) d.f.
6. If the above computed $F$ value does not exceed the critical $F$ value taken from the $F$ table at a given level of significance, then we accept

$$
H_{0}: \text { No structural change between two regressions }
$$

which means the two regressions are essentially the same, otherwise we reject $H_{0}$, that is the two regressions are different.
Note: In the above test, we may use the following alternative formula for computing the residual sum of squares, RSS= Total sum of squares-Explained sum of squares = TSS-ESS

There are some limitations about the Chow test that must be kept in mind:

1. The assumptions underlying the test must be fulfilled. For example, one should find out if the error variances in the regressions (12.21) and (12.22) are the same.
2. The Chow test will tell us only if the two regressions (12.21) and (12.22) are different, without telling us whether the difference is on account of the intercepts, or the slopes, or both. But in Lesson 13, on dummy variables, we will see how we can answer this question.

## An application of Chow test:

The following table gives data on disposable personal income $(\mathrm{Y})$ and personal savings( X ) in billions of dollars for the United States for the sub period-I (1970-1981) and sub period-II (1982-1995). Using this data, test for the equality of the two regression equations of sub period-I (1970-1981) and sub period-II (1982-1995) using Chow test.

Table 12.1: SAVINGS AND PERSONAL DISPOSABLE INCOME (BILLIONS OF DOLLARS), UNITED STATES, 1970-1995

| Sub Period I |  |  | Sub Period II |  |  |
| :---: | ---: | ---: | :---: | :---: | :---: |
| Observation | Savings <br> $(Y)$ | Income <br> $(X)$ | Observation | Savings <br> $(Y)$ | Income <br> $(X)$ |
| 1970 | 61.0 | 727.1 | 1982 | 205.5 | 2347.3 |
| 1971 | 68.6 | 790.2 | 1983 | 167.0 | 2522.4 |
| 1972 | 63.6 | 855.3 | 1984 | 235.7 | 2810.0 |
| 1973 | 89.6 | 965.0 | 1985 | 206.2 | 3002.0 |


| Econometrics | 12.9 | Test of Structural Change in ... |
| :--- | :---: | :---: |


| 1974 | 97.6 | 1054.2 | 1986 | 196.5 | 3187.6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1975 | 104.4 | 1159.2 | 1987 | 168.4 | 3363.1 |
| 1976 | 96.4 | 1273.0 | 1988 | 189.1 | 3640.8 |
| 1977 | 92.5 | 1401.4 | 1989 | 187.8 | 3894.5 |
| 1978 | 112.6 | 1580.1 | 1990 | 208.7 | 4166.8 |
| 1979 | 130.1 | 1769.5 | 1991 | 246.4 | 4343.7 |
| 1980 | 161.8 | 1973.3 | 1992 | 272.6 | 4613.7 |
| 1981 | 199.1 | 2200.2 | 1993 | 214.4 | 4790.2 |
|  |  | 1994 | 189.4 | 5021.7 |  |
|  |  | 1995 | 249.3 | 5320.8 |  |

Source: Economic Report of the President, 1997, Table B-28, p. 332.

## Solution:

Let us suppose the following three regressions:
for sub period-I: $Y_{t}=\alpha_{1}+\beta_{1} X_{t}+u_{1 t}$
for sub period-II: $Y_{t}=\alpha_{2}+\beta_{2} X_{t}+u_{2 t}$
for total period: $\quad Y_{t}=\alpha+\beta X_{t}+u_{t}$
Now our object is to test the null hypothesis
$H_{0}: \alpha_{1}=\alpha_{2}=\alpha$ and $\beta_{1}=\beta_{2}=\beta$ i.e. there is No Structural Change between the equations
i.e., The two regression equations (12.29) and (12.30) are same.
against the alternative hypothesis
$H_{1}$ : there is a Structural Change between the equations
i.e., The two regression equations (12.29) and (12.30) are not the same.

From Eq. (2.42) of Lesson 2, we have the relation

$$
r^{2}=1-\frac{R S S}{T S S} \quad \text { which implies } \quad R S S=\left(1-r^{2}\right) T S S
$$

In the following application of Chow test, we use this formula for computation of residual sum of squares (RSS) in each of the regressions (12.29) to (12.31). The advantage of this formula is it does not require the estimation of the parameters (and hence the residuals).

The various steps of Chow test are as follows:

1. Estimation of RSS $_{1}$ based on regression Eq. (12.29) based on the sample of sub period-l: we have

$$
\begin{array}{cc}
n_{1}=12 & k=2 \\
\sum X=15748.5 & \sum Y=1277.3 \\
\bar{X}=106.4417 & \bar{Y}=1312.3750 \\
\sum X^{2}=154199.23 & \sum Y^{2}=23218025.97
\end{array}
$$

$$
\sum X Y=1881149.97
$$

Coefficient of determination (square of correlation coefficient) is

$$
r_{1}^{2}=\frac{\left(\frac{1}{n_{1}} \sum X Y-\bar{X} \bar{Y}\right)^{2}}{\left(\frac{1}{n_{1}} \sum X^{2}-\bar{X}^{2}\right)\left(\frac{1}{n_{1}} \sum Y^{2}-\bar{Y}^{2}\right)}=0.9021
$$

Total sum of squares is given by

$$
T S S_{1}=\sum Y^{2}-n \bar{Y}^{2}=18241.2892
$$

Therefore, $\quad R S S_{1}=\left(1-r_{1}^{2}\right) T S S_{1}=1785.0321$
2. Estimation of $\mathbf{R S S}_{2}$ based on regression Eq. (12.30) based on the sample of sub period-II:
we have

$$
\begin{array}{cc}
n_{2}=14 & k=2 \\
\sum X=53024.6 & \sum Y=2937 \\
\bar{X}=3787.4714 & \bar{Y}=209.7857 \\
\sum X^{2}=212664792.5 & \sum Y^{2}=628760.26 \\
\sum X Y=11299709.93 \\
r_{2}^{2}= & 0.2072 \\
T S S_{2}=12619.6171 \\
R S S_{2} & =\left(1-r_{2}^{2}\right) T S S_{2}=10005.2207
\end{array}
$$

3. Estimation of $\mathbf{R S S}_{R R}$ based on the regression Eq. (12.31) using the pooled sample of the samples of sub period-I and sub period-II:
we have

$$
\left.\begin{array}{rlrl}
n & =26 & k & =2 \\
\sum X & =68773.10 & \sum Y & =4214.30 \\
\bar{X} & =2645.1192 & \bar{Y} & =162.0885 \\
\sum X^{2} & =235882818.47 & \sum Y^{2} & =782959.49 \\
\sum X Y=13180859.9
\end{array}\right] \begin{aligned}
r^{2} & =0.7672 \\
T S S & =99870.0865 \\
\text { Therefore, } \mathbf{R S S}_{R R} & =\left(1-r^{2}\right) T S S=23248.2982
\end{aligned}
$$

From Eq. (12.24) RSS $_{\text {UR }}=11790.2528$
Substituting $\mathbf{R S S}_{R R}$ and RSS $_{\text {UR }}$ in Eq. (12.27) we get

$$
F=10.69
$$

At $1 \%$ of I.o.s. the critical $F$ value at $(2,22)$ d.f. is 7.72
Since the above calculated $F$ value is greater than the critical $F$ value at $1 \%$ I.o.s. we reject $H_{0}$ 。

Hence, we may conclude that there is a high significant difference between the two regression equations of sub period-I and sub period-II. In other words, we conclude that there is a structural change between the two regression equations.

Remark: A drawback of the above Chow test is that we could not tell whether the structural difference in the two regressions was because of differences in the intercept terms or the slope coefficients or both.

### 12.7 Test of Structural Change when $n_{1}<k$

A special problem arises if one of the sub periods has fewer observations than the number of parameters to be estimated in the model. Suppose, we may have a sample of $n_{1}(>\mathrm{k})$ observations on the variables $\mathrm{Y}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{k}}$. An additional sample of $n_{2}(<\mathrm{k})$ observations on these variables become available and the question is whether they may be considered to come from the same population or the regression for the two samples have no structural change. The appropriate test is as follows.

1. To the first $n_{1}$ observations fit the OLS regression

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}_{1}}=\mathbf{X}_{1} \mathbf{b}_{1}+\mathbf{e}_{\sim} \tag{12.32}
\end{equation*}
$$

where $\mathbf{X}_{1}$ is data matrix of $n_{1}$ observations on the set of $\mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{k}}$ variables and compute the residual sum of squares ${\underset{\sim}{e}}_{\mathbf{e}}^{\mathbf{e}} \mathbf{N}_{1}$.
2. Pool the $n_{1}+n_{2}$ sample observations to give $\underset{\sim}{\mathbf{y}}$ and $\mathbf{X}$ and fit the least-squares regression

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{b}+\underset{\sim}{\mathbf{e}} \tag{12.33}
\end{equation*}
$$

and again compute the residual sum of squares ${\underset{\sim}{e}}^{\prime} \mathbf{e}$.
3. The test of the null hypothesis that the $n_{2}$ additional observations obey the same relation as the first sample is given by

$$
\begin{equation*}
F=\frac{\left(\mathbf{e}^{\prime} \mathbf{e}-\mathbf{e}_{1}^{\mathbf{e}} \mathbf{e}_{1}^{\prime} \mathbf{e}_{1}\right) / n_{2}}{\mathbf{e}_{1}^{\prime} \mathbf{e}_{1} /\left(n_{1}-k\right)} \tag{12.34}
\end{equation*}
$$

which is distributed as $F$ with $\left(n_{2}, n_{1}-\mathrm{k}\right)$ degrees of freedom.
4. Compute the $F$ statistic defined in Eq. (12.34) and reject the hypothesis of a common structure if $F$ exceeds a preselected critical value of $F_{\left(n_{2}, n_{1}-k\right)}$.

### 12.8 Tests of Structural change ( $k$ variables, $\boldsymbol{p}$ periods)

Now let us consider the tests of structural change for the relationships of $k$ explanatory variables between $p$ periods. The tests need not be applied only across periods. We might examine the stability of a relation across countries, industries, social groups, or whatever.
The usual hierarchy of three models may be set up as follows:

$$
\text { i. }\left[\begin{array}{c}
\mathbf{y}_{1}  \tag{12.35}\\
\mathbf{y}_{2} \\
\vdots \\
\mathbf{y}_{\sim}
\end{array}\right]=\left[\begin{array}{cc}
\underset{\mathbf{x}_{1}}{ } & \mathbf{X}_{1}^{*} \\
{\underset{\sim}{2}}_{2} & \mathbf{X}_{2}^{*} \\
\vdots & \vdots \\
{\underset{\sim}{i}}_{p} & \mathbf{X}_{p}^{*}
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\boldsymbol{\beta}^{*}
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

Common intercept, common slope vector in all p classes.

$$
\text { ii. }\left[\begin{array}{c}
{\underset{\sim}{\mathbf{y}}}_{1}  \tag{12.36}\\
{\underset{\sim}{\mathbf{y}}}_{2} \\
\vdots \\
\underset{\sim}{\mathbf{y}_{p}}
\end{array}\right]=\left[\begin{array}{ccccc}
\underset{\sim}{\mathbf{i}} & \underset{\sim}{\mathbf{0}} & \cdots & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{1}^{*} \\
\underset{\sim}{\mathbf{0}} & {\underset{\sim}{\mathbf{i}}}_{2} & \cdots & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{2}^{*} \\
\vdots & \vdots & & \vdots & \vdots \\
\mathbf{0} & \underline{\mathbf{0}} & \cdots & {\underset{\sim}{i}}_{p} & \mathbf{X}_{p}^{*}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{p} \\
\boldsymbol{\beta}^{*}
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

Differential intercepts, common slope vector

$$
\text { iii. }\left[\begin{array}{c}
{\underset{\sim}{\mathbf{y}}}_{1}  \tag{12.37}\\
{\underset{\sim}{\mathbf{y}}}_{2} \\
\vdots \\
{\underset{\sim}{\mathbf{y}}}_{p}
\end{array}\right]=\left[\begin{array}{cccccccc}
\mathbf{i}_{1} & \underset{\sim}{\mathbf{0}} & \cdots & \underset{\sim}{\mathbf{0}} & \mathbf{X}_{1}^{*} & 0 & \cdots & 0 \\
\underset{\sim}{\mathbf{0}} & {\underset{\sim}{\mathbf{i}}}_{2} & \cdots & \underset{\sim}{\mathbf{0}} & 0 & \mathbf{X}_{2}^{*} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\mathbf{0} & \underset{\sim}{\mathbf{0}} & \cdots & \mathbf{i}_{p} & 0 & 0 & \cdots & \mathbf{X}_{p}^{*}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\alpha}_{1} \\
\alpha_{2} \\
\vdots \\
\boldsymbol{\alpha}_{p} \\
{\underset{\sim}{\boldsymbol{\beta}}}_{1}^{*} \\
{\underset{\sim}{\boldsymbol{\beta}}}_{2}^{*} \\
\vdots \\
{\underset{\sim}{\boldsymbol{\beta}}}_{p}^{*}
\end{array}\right]+\underset{\sim}{\mathbf{u}}
$$

Differential intercepts, differential slope vectors. Here $\mathbf{i}_{i}$ is the column vector of $n_{i}$ units $(i=1,2, \ldots, p)$ and $\mathbf{X}_{i}^{*}$ is the $n_{i} \mathrm{x}(\mathrm{k}-1)$ matrix of observations on the explanatory variables in class $i(i=1,2, \ldots, p)$.
Application of OLS to each model will yield a residual sum of squares (RSS) with an associated number of d.f. as indicated by

Model I:
Model I
Model III:
RSS $_{1}$
$\mathrm{RSS}_{2}$
$\mathrm{RSS}_{3}$
n-k
$n-k-p+1$
n-pk
where $n=n_{1}+n_{2}+\ldots+n_{p}$ indicates the total number of observations in the combined samples. The test statistics for various hypotheses are as follows:

## Test of differential intercepts:

$$
\begin{align*}
& H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{p} \\
& F=\frac{\left(\operatorname{RSS}_{1}-\operatorname{RSS}_{2}\right) /(p-1)}{\operatorname{RSS}_{2} /(n-k-p+1)} \sim F_{(p-1, n-k-p+1)} \tag{12.38}
\end{align*}
$$

## Test of differential slope vectors:

$$
H_{0}:{\underset{\sim}{\boldsymbol{\beta}}}_{1}^{*}={\underset{\sim}{\boldsymbol{\beta}}}_{2}^{*}=\ldots={\underset{\sim}{\boldsymbol{\beta}}}_{p}^{*}
$$

$$
\begin{equation*}
F=\frac{\left(\mathrm{RSS}_{2}-\mathrm{RSS}_{3}\right) /[(\mathrm{k}-1)(p-1)]}{\mathrm{RSS}_{3} /(n-p k)} \tag{12.39}
\end{equation*}
$$

Test of differential regressions (intercepts and slopes):

$$
\begin{align*}
& H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{p} \text { and }{\underset{\sim}{\boldsymbol{\beta}}}_{1}^{*}={\underset{\sim}{\boldsymbol{\beta}}}_{2}^{*}=\ldots={\underset{\sim}{\boldsymbol{\beta}}}_{p}^{*} \\
& F=\frac{\left(\operatorname{RSS}_{1}-\mathrm{RSS}_{3}\right) /[(p-1) k]}{\operatorname{RSS}_{3} /(n-p k)} \tag{12.40}
\end{align*}
$$

The degrees of freedom in the numerator are simply obtained as the difference in the degrees of freedom of the two residual sums of squares in the numerator. This is equal to the number of restrictions involved in going from the unrestricted to the restricted model;
In the above tests, if the computed $F$-value does not exceed the critical $F$-value taken from the $F$-table at a given I.o.s, then we accept $H_{0}$. Otherwise, reject $H_{0}$.

Note: In the similar manner, one can test the structural change in a subset of coefficients (i.e, the stability of a subset of coefficients). The principle of the test is the same as in all the test of structural change.

### 12.9 Self Assessment Questions

1. Explain Chow-test for comparison of two regression equations.
2. Describe a test for testing the equality of two regression equations.
3. Describe a test for testing the equality of slopes in two regression equations.
4. Describe a test for testing the equality of intercepts in two regression equations.
5. Describe a method of testing the equality of two regression equations.

### 12.10 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## DUMMY VARIABLES

### 13.0 Objective:

After studying this lesson, the student will understand clearly what does it mean by a dummy variable, how the dummy variables can be used for comparing two or more regression equations, and what is its advantage when compared with Chow test for equality of two regressions.

## Structure of the Lesson:

### 13.1 Introduction (the nature of dummy variables)

### 13.2 Regression on one quantitative variable and one dummy variable with two classes or categories

### 13.3 Regression on one quantitative variable and one qualitative variable with more than two classes

### 13.4 Regression on one quantitative variable and two qualitative

 Variables (two dummy variables)13.5 A generalization (two or more sets of dummy variables)

### 13.6 The use of dummy variables for testing the equality of two regressions-an alternative to the Chow test

### 13.7 The use of dummy variables in seasonal analysis

### 13.8 Self Assessment Questions

### 13.9 References

### 13.1 Introduction (The Nature of Dummy Variables)

In regression analysis it frequently happens that the dependent variable is influenced, not only by variables which can be readily quantified on some well known defined scale (e.g. income, output, prices, costs, height, and temperature) but also by variables which are essentially qualitative in nature (e.g. sex, race, color, religion, nationality, wars, earthquakes, strikes, political upheavals, and changes in government economic policy). For example, holding all other factors constant, female college teachers are found to found to earn less than their male counter parts, and non-whites are found to earn less than whites. This may result from sex or race discrimination, but whatever the reason, qualitative variables such as sex and race do influence the dependent variable and clearly should be included among the explanatory variables.

Since such qualitative variables usually indicate the presence or absence of a "quality" or an attribute, such as male or female, black or white, or Catholic or non-Catholic, one method of "quantifying" such attributes is by constructing artificial variables which take on values 1 or 0 , 0 indicating the absence of an attribute, and 1 indicating the presence of that attribute variable which assume such 0 and 1 values are called dummy variables. Alternative names are indicator variables, binary variables, categorical variables, qualitative variables, and dichotomous variables.

Thus dummy variables are specially constructed variables which may be used to represent various factors such as

1. Temporal effects (wars, earthquakes, strikes, etc.)
2. Spatial effects (regional differences, nationality, etc.)
3. Qualitative variables (sex, race, color, etc.)
4. Broad grouping of quantitative variables (grouping of age, income etc.)

Under the heading of temporal effects we sometimes postulate that a behavioral relation shifts between one period and another; for example the consumption function might be expected to show a down ward shift in wartime compared with its peace time position, or a wage-determination equation might shift with a change of political regime or many relations may be expected to show seasonal shifts, if we are dealing with quarterly or monthly data. Spatially we sometimes expect shift in economic functions between one region of a country and another as a consequence of regional differences in economic structure and prospects. Then qualitative variables such as sex, marital status, social or occupational class will often play an important role in determining economic behavior and must be incorporated in the estimation process. Finally, we may sometimes have fully ordinal variables such as income and age but a broad grouping may be sufficient for the purpose in hand. All of these cases may be handled by the specification of appropriate dummy variables.

Dummy variables are a data-classifying device in that they divide a sample into various subgroups based on qualities or attributes (gender, marital status, race, religion, etc.) and implicitly allow one to run individual regressions for each subgroup. If there are differences in the response of the regressand to the variation in the qualitative variables in the various subgroups, they will be reflected in the differences in the intercepts or slope coefficients, or both, of the various subgroup regressions.

Dummy variables can be incorporated in regression models just as easily as quantitative variables. As a matter of fact, a regression model may contain regressors that are exclusively dummy, or qualitative, in nature. Such models are called ANOVA models.

Although a versatile tool, the dummy variable technique needs to be handled carefully. First, if the regression contains a constant term, the number of dummy variables must be one less than the number of classifications of each qualitative variable. Second, the coefficient attached to the dummy variables must always be interpreted in relation to the base, or reference, groupthat is, the group that receives the value of zero. The base chosen will depend on the purpose of research at hand. Finally, if a model has several qualitative variables with several classes, introduction of dummy variables can consume a large number of degrees of freedom. Therefore, one should always weigh the number of dummy variables to be introduced against the total number of observations available for analysis.

Among its various applications, this lesson considered but a few. These included (1) comparing two (or more) regressions, and (2) deseasonalizing time series data.

### 13.2 Regression on one quantitative variable and one dummy variable with two classes or categories

Suppose we have data on two variables
$Y=$ Consumption expenditure
and $\quad X=$ Disposable income
The data cover two distinct sub periods, $n_{1}$ observations relating to wartime years and $n_{2}$ observations relating to peace time years. Suppose we wish to investigate whether there is any change, or shift, in the consumption function between the wartime and peace time periods. Such a change is referred to as a structural change or structural break. Let us denote the consumption functions by

$$
\begin{array}{ll}
Y=\alpha_{1}+\beta X+u & \text { wartime function } \\
Y=\alpha_{2}+\beta X+u & \text { peace time function } \tag{13.1}
\end{array}
$$

Here we assumed the slope coefficient $\beta$ is common in both periods. Now, to see whether there is any structural change or not (that is to test $H_{0}: \alpha_{1}=\alpha_{2}$ ), we have two alternative procedures.

1. Write restricted (with $\alpha_{1}=\alpha_{2}$ ) and unrestricted (with $\alpha_{1} \neq \alpha_{2}$ ) models and obtain the residual sum of squares (RSS) in both the models and use the following formula

$$
F=\frac{\text { restricted RSS }- \text { unrestricted RSS }}{\text { unrestricted RSS/( } n-2)} \sim F_{1, n-2}
$$

2. By incorporating a dummy variable(s), appropriately, in the model.

The first procedure, we have already discussed elaborately in Lesson 12. Now, we discuss the second procedure in this lesson.
Now in order to test the null hypothesis

$$
H_{0}: \alpha_{1}=\alpha_{2}
$$

we can combine the two consumption functions given in Eq. (13.1) by incorporating a dummy variable namely $D$ and now, the regression equation of $Y$ (consumption expenditure) on quantitative variable $X$ (disposable income) and a dummy variable $D$ which has two categories may be written as

$$
Y=\alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right) D+\beta X+u
$$

$D=1$ if observation belong to peace time year
$=0$ if observation belong to war time year
After pooling the data of two periods, the model of the above regression equation becomes
$Y_{t}=\alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right) D_{t}+\beta X_{t}+u_{t} \quad t=1,2, \ldots, n\left(n=n_{1}+n_{2}\right)$
where

$$
\begin{aligned}
Y_{t} & =\text { consumption expenditure in year ' } t \text { ' } \\
X_{t} & =\text { disposable income in year ' } t \text { ' } \\
u_{t} & =\text { disturbance term in year ' } t \text { ' } \\
D_{t} & =1 \text { if } \mathrm{t} \text { is peace time year } \\
& =0 \text { if } \mathrm{t} \text { is wartime year }
\end{aligned}
$$

What is the meaning of the above model. Assuming, as usual, that $E\left(u_{t}\right)=0$, we see that
Mean consumption function in wartime: $E\left(Y_{t} / X_{t}, D_{t}=0\right)=\alpha_{1}+\beta X_{t}$ Mean consumption function in peace time: $E\left(Y_{t} / X_{t}, D_{t}=1\right)=\alpha_{2}+\beta X_{t}$

Thus, the model (13.2) postulates that the wartime consumption function and peacetime consumption function have the same slope $(\beta)$ but different intercepts ( $\alpha_{1}$ and $\alpha_{2}$ ). In other words, it is assumed that the level of consumption expenditure in peace time and wartime are different, but the marginal propensity to consume (or rate of consumption expenditure) is same in both periods. If $\beta$ is not common to both periods nothing to be gained by using dummy variables; One merely fits separate regressions to wartime data and peace time data.

The model (13.2) may be written in matrix form as

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\gamma}+\underset{\sim}{\mathbf{u}} \tag{13.4}
\end{equation*}
$$

where

$$
\underset{\sim}{\mathbf{y}}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n_{1}} \\
y_{n_{1}+1} \\
\vdots \\
y_{n_{1}+n_{2}}
\end{array}\right), \mathbf{X}=\left(\begin{array}{ccc}
1 & 0 & X_{1} \\
1 & 0 & X_{1} \\
\vdots & \vdots & \vdots \\
1 & 0 & X_{n_{1}} \\
1 & 1 & X_{n_{1}+1} \\
\vdots & \vdots & \vdots \\
1 & 1 & X_{n_{1}+n_{2}}
\end{array}\right), \underset{\sim}{\gamma}=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2}-\alpha_{1} \\
\beta
\end{array}\right), \underset{\sim}{\mathbf{u}}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n_{1}} \\
u_{n_{1}+1} \\
\vdots \\
u_{n_{1}+n_{2}}
\end{array}\right)
$$

From the model (13.2), it is clear that, $\alpha_{1}$ gives the common intercept for both periods and $\alpha_{2}-\alpha_{1}$ gives the additional intercept for peace time. Now testing the significance of $D$ in equation (13.2) is, in effect, testing the hypothesis

$$
\begin{equation*}
H_{0}: \alpha_{2}-\alpha_{1}=0 \text { i.e., } \alpha_{2}=\alpha_{1} \tag{13.5}
\end{equation*}
$$

which is testing whether the peace time and the war time intercepts are significantly different or not. Thus, using a dummy variable in the equation, we can test the structural change in wartime and peace time consumption function. Alternatively $H_{0}$ may be interpreted as there is no significant difference between the levels of the consumption expenditure pertaining to wartime period and peace time periods, In other words, there is no effect of war on the level of the consumption expenditure if we accept $H_{0}$.

The statistical significance of the estimated $\widehat{\alpha_{2}-\alpha_{1}}$ may be tested based on the traditional $\mathbf{t}$-test by running the regression model (13.4) for the given data. If t-test shows that $\alpha_{2}-\alpha_{1}$ is statistically significant, we reject $H_{0}$ : the levels of mean consumption expenditure are same for both periods. Thus we conclude that the intercepts of the two equations are different.

## Remarks:

1. To distinguish the two categories of the qualitative variable, we have introduced only one dummy variable. Hence, one dummy variable suffices to distinguish two
categories. The general rule is this: If a qualitative variable has $\boldsymbol{m}$ categories, introduce only $\boldsymbol{m} \boldsymbol{- 1}$ dummy variables.
2. The group, category or classification that is assigned the value ' 0 ' is often referred to as the base, control, comparison or omitted category. It is the base in the sense that comparisons are made with that category.

### 13.3 Regression on one quantitative variable and one qualitative variable with more than two classes

Suppose that based on the cross-sectional data we want to regress the annual expenditure on health care by an individual on the income and education of the individual. Since the variable education is qualitative in nature, suppose we consider three mutually exclusive levels of education:

1. Less than high school
2. High school
3. College

Now, unlike the previous case, we have more than two categories of the qualitative variable 'education'. Therefore, following the rule that the number of dummies be less one than the number of categories of the variable, we should introduce only two dummies to take care of the 3 levels of 'education'. Assuming that the 3 educational groups have a common slope but different intercepts in the regression of 'annual expenditure on health care' on 'annual income', we can use the following model:

$$
\begin{equation*}
Y_{i}=\alpha_{0}+\left(\alpha_{1}-\alpha_{0}\right) D_{1 i}+\left(\alpha_{2}-\alpha_{0}\right) D_{2 i}+\beta X_{i}+u_{i}, \quad i=1,2, \ldots, n \tag{13.6}
\end{equation*}
$$

```
where i=sample unit
    n=n
    Y= annual expenditure on health care
    X =annual income
    D}=1\mathrm{ if high school education
        =0 otherwise
    D}=1\mathrm{ if college education
        =0 otherwise
```

Note that in the preceding assignment of the dummy variables we are arbitrarily treating the "less than high school education" category as base category.
Therefore, the intercept $\alpha_{0}$ will reflect the intercept for this category. The differential intercepts $\alpha_{1}-\alpha_{0}$ and $\alpha_{2}-\alpha_{0}$ tell by how much the intercepts of the other two categories differ from the intercept of the base category.

From model (13.6), it is clear that

1. The intercept of the group of individuals 'less than high school education' is $\alpha_{0}$
2. The intercept of the group of individuals of 'high school education' is $\alpha_{1}$
3. The intercept of the group of individuals of 'college education' is $\alpha_{2}$

Alter running the regression (13.6), one can easily find out whether the differential intercepts $\alpha_{1}-\alpha_{0}$ and $\alpha_{2}-\alpha_{0}$ are individually statistically significant, that is, different from the base group. We may also test $H_{0}: \alpha_{1}-\alpha_{0}=0$ and $\alpha_{2}-\alpha_{0}=0$ simultaneously using ANOVA technique.

If $\alpha_{1}-\alpha_{0}$ is not statistically significant, then $\alpha_{0}$ is the common intercept for both the categories of individuals of 'less than high school education' as well as 'high school' education'. If $\alpha_{1}-\alpha_{0}$ is statistically significant, then $\alpha_{1}$ is the intercept of the category of individuals 'high school education'.

### 13.4 Regression on one Quantitative variable and two Qualitative Variables (two dummy variables)

The technique of dummy variable can be easily extended to handle more than one qualitative variable. Suppose we have data on two variables namely
$Y=$ annual salary of a college teacher
$X=$ years of teaching experience
The data covers both male and female teachers as well as color (black, red or white) of the teacher.

Now we can write the regression model with one quantitative variable and two qualitative variables (sex \& color) as

$$
\begin{equation*}
Y_{i}=\alpha_{0}+\alpha_{1} S_{i}+\gamma_{1} C_{1 i}+\gamma_{2} C_{2 i}+\beta X_{i}+u_{i} \tag{13.7}
\end{equation*}
$$

where $i=i^{\text {th }}$ sample unit
$Y=$ annual salary
$X$ =year of teaching experience
$S=\left\{\begin{array}{l}1 \quad \text { if male } \\ 0 \text { otherwise }\end{array}\right.$
$C_{1}=\left\{\begin{array}{l}1 \quad \text { if red } \\ 0 \text { otherwise }\end{array}\right.$
$C_{2}= \begin{cases}1 & \text { if white } \\ 0 & \text { otherwise }\end{cases}$
Notice that the first qualitative variable sex has two categories and hence needs one dummy variable(s) where as the second qualitative variable color has three categories and hence needs two dummy variables, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$. Note also that the omitted or base category now is "black female teacher", Once again, the model (13.7) assumes common slope for all categories and differ only in the intercept coefficients. OLS estimation of the model (13.7) enable us to test a variety of hypothesis. Thus if $\alpha_{1}$ is statistically significant, it will mean that sex has an impact on the teacher's salary. Similarly if $\gamma_{1}\left(\gamma_{2}\right)$ is statistically significant it means that the mean salary of the red (white) teacher is significantly different from that of a black teacher.

Category
Black female teacher
Black male teacher
Red female teacher
Red male teacher
White female teacher
While male teacher
intercept
$\alpha_{0}$
$\alpha_{0}+\alpha_{1}$
$\alpha_{0}+\gamma_{1}$
$\alpha_{0}+\alpha_{1}+\gamma_{1}$
$\alpha_{0}+\gamma_{2}$
$\alpha_{0}+\alpha_{1}+\gamma$

### 13.5 A generalization (two or more sets of dummy variables)

Following the preceding discussion, we can extend our model to include more than one quantitative variable and more than two qualitative variables. The only precaution to be taken is that the number of dummies for each qualitative variable should be one less than the number of categories of that variable. An example is given in the following.

Suppose that we have cross-sectional budget data for a number of quarters and we postulate that the consumption (q) of some commodity is given by
$q=f(s e a s o n a l$ Dummies, Social Class factors other Economic variables)
If there are 4 seasons and 3 social classes then one way to set up this relation is

$$
\begin{equation*}
q=\alpha_{0}+\alpha_{1} Q_{1}+\alpha_{2} Q_{2}+\alpha_{3} Q_{3}+\beta_{1} S_{1}+\beta_{2} S_{2}+\gamma_{2} X_{2}+\ldots+\gamma_{k} X_{k}+u \tag{13.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{i}=\left\{\begin{array}{lc}
1 & \text { if observation relates to Quarter ' } i \text { ', } i=1,2,3 \\
0 & \text { otherwise }
\end{array}\right. \\
& S_{j}=\left\{\begin{array}{lc}
1 & \text { if observation relates to Social class ' } j \text { ', } j=1,2 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

and $X_{2}, X_{3}, \ldots, X_{k}$ are the set of $k-1$ economic variables such as income and relative prices. Here the base or omitted category is IV-Quarter and Social class III

## Category

IV Quarter \& Social class
IV Quarter \& Social class
IV Quarter \& Social class
I Quarter \& Social class
I Quarter \& Social class
I Quarter \& Social class
II Quarter \& Social class
II Quarter \& Social class
II Quarter \& Social class
III Quarter \& Social class
III Quarter \& Social class
III Quarter \& Social class

Intercept
III: $\quad \alpha_{0}$
I: $\alpha_{0}+\beta_{1}$
II: $\alpha_{0}+\beta_{1}$
III: $\quad \alpha_{0}+\alpha_{1}$
I: $\alpha_{0}+\alpha_{1}+\beta_{1}$
II: $\alpha_{0}+\alpha_{1}+\beta_{2}$
III: $\quad \alpha_{0}+\alpha_{2}$
I: $\alpha_{0}+\alpha_{2}+\beta_{1}$
II: $\alpha_{0}+\alpha_{2}+\beta_{2}$
III: $\quad \alpha_{0}+\alpha_{3}$
I: $\alpha_{0}+\alpha_{3}+\beta_{1}$
II: $\alpha_{0}+\alpha_{3}+\beta_{2}$

Another common application of this type occurs in the estimation of production function. Suppose we have data on output (Y) and inputs (X) for $m$ firms over $n$ years and we wish to estimate a production function. In doing so we might allow specifically for "year effects" and "firm effects" by fitting

$$
\begin{array}{r}
Y_{i j}=\mu+\alpha_{1} T_{1}+\alpha_{2} T_{2}+\ldots+\alpha_{n-1} T_{n-1}+\beta_{1} F_{1}+\beta_{2} F_{2}+\ldots+\beta_{m-1} F_{m-1}+\gamma_{2} X_{2 i j}+\gamma_{3} X_{3 i j}+\ldots+\gamma_{k} X_{k i j}+u_{i j} \\
i=1,2, \ldots, m \text { and } j=1,2, \ldots, n \tag{13.9}
\end{array}
$$

where $F_{i}=\left\{\begin{array}{l}1 \text { if observation belongs to } \mathrm{i}^{\text {th }} \text { firm }(\mathrm{i}=1,2, \ldots, \mathrm{~m}-1) \\ 0 \quad \text { otherwise }\end{array}\right.$

$$
T_{j}=\left\{\begin{array}{lr}
1 \text { if observation belongs to } \mathrm{j}^{\text {th }} & \text { firm }(\mathrm{j}=1,2, \ldots, \mathrm{n}-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

### 13.6 The Use of Dummy Variables for Testing the Equality of Two Regressions- An Alternative to the Chow Test

In the last lesson, we have discussed the Chow test to examine the structural stability of a regression model. The example we discussed there related to the relationship between savings and income in the United States over the period 1970-1995. We divided the sample period into two, 1970-1981 and 1982-1995, and showed on the basis of the Chow test that there was a difference in the regression of savings on income between the two periods. However, we could not tell whether the difference in the two regressions was because of differences in the intercept terms or the slope coefficients or both. Very often this knowledge itself is very useful.

For explaining the use of dummy variables for testing the equality of two regressions, let us reproduce Eqs. (12.29) and (12.30) here.
for sub period-I (1970-1981): $Y_{t}=\alpha_{1}+\beta_{1} X_{t}+u_{1 t}$
for sub period-II (1982-1995): $Y_{t}=\alpha_{2}+\beta_{2} X_{t}+u_{2 t}$
We see that there are four possibilities, which are given below.

1. Both the intercept and the slope coefficients are the same in the two regressions. This is the case of coincident regressions $\left(\alpha_{1}=\alpha_{2}\right.$ and $\left.\beta_{1}=\beta_{2}\right)$.
2. Only the intercepts in the two regressions are different but the slopes are the same. This is the case of parallel regressions $\left(\alpha_{1} \neq \alpha_{2}\right.$ and $\left.\beta_{1}=\beta_{2}\right)$.
3. The intercepts in the two regressions are the same, but the slopes are different. This is the situation of concurrent regressions ( $\alpha_{1}=\alpha_{2}$ and $\beta_{1} \neq \beta_{2}$ ).
4. Both the intercepts and slopes in the two regressions are different. This is the case of dissimilar regressions $\left(\alpha_{1} \neq \alpha_{2}\right.$ and $\left.\beta_{1} \neq \beta_{2}\right)$.

The Chow test procedure discussed in the last lesson, as noted earlier, tells us only if two (or more) regressions are different without telling us what is the source of the difference (which of (2) to (4)). But, this problem can be solved by using dummy variables appropriately. In other words, the source of difference, if any, can be pinned down by considering the following pooled regression.

$$
\begin{equation*}
Y_{t}=\alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right) D_{t}+\beta_{1} X_{t}+\left(\beta_{2}-\beta_{1}\right)\left(D_{t} X_{t}\right)+u_{t} \tag{13.12}
\end{equation*}
$$

where
$Y=$ savings
$X=$ income
$t=$ time
$D=1$ for observations in sub period-II (1982-1995)
$=0$, otherwise (i.e., for observations in sub period-I (1970-1981))
Now, estimating the above pooled regression equation (13.12) is equivalent to estimating the two individual regression equations (13.10) and (13.11). Further, by testing the significance of the coefficients of the variables $D_{t}$ and $D_{t} X_{t}$, we can decide which one of the above three possibilities ((2) to (4)) is the source of difference between the two regression equations (13.10) and (13.11).

## An application on the use of dummy variables:

For demonstration of the above procedure let us reconsider the example, which is used for the demonstration of the Chow test for the equality of the two regression equations in Section 12.6 of Lesson 12. Let us pool all the observations ( 26 in all) of Table 12.1 and present the data in the flowing table along with the dummy variables $D_{t}$ and $D_{t} X_{t}$.

| $t=$ Year-1969 | Saving <br> $\left(Y_{t}\right)$ | Income <br> $\left(X_{t}\right)$ | $D_{t}$ | $D_{t} X_{t}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 61.0 | 727.1 | 0 | 0 |
| 2 | 68.6 | 790.2 | 0 | 0 |
| 3 | 63.6 | 855.3 | 0 | 0 |
| 4 | 89.6 | 965.0 | 0 | 0 |
| 5 | 97.6 | 1054.2 | 0 | 0 |
| 6 | 104.4 | 1159.2 | 0 | 0 |
| 7 | 96.4 | 1273.0 | 0 | 0 |
| 8 | 92.5 | 1401.4 | 0 | 0 |
| 9 | 112.6 | 1580.1 | 0 | 0 |
| 10 | 130.1 | 1769.5 | 0 | 0 |
| 11 | 161.8 | 1973.3 | 0 | 0 |
| 12 | 199.1 | 2200.2 | 0 | 0 |
| 13 | 205.5 | 2347.3 | 1 | 2347.3 |
| 14 | 167.0 | 2522.4 | 1 | 2522.4 |
| 15 | 235.7 | 2810.0 | 1 | 2810.0 |
| 16 | 206.2 | 3002.0 | 1 | 3002.0 |
| 17 | 196.5 | 3187.6 | 1 | 3187.6 |
| 18 | 168.4 | 3363.1 | 1 | 3363.1 |
| 19 | 189.1 | 3640.8 | 1 | 3640.8 |
| 20 | 187.8 | 3894.5 | 1 | 3894.5 |
| 21 | 208.7 | 4166.8 | 1 | 4166.8 |
| 22 | 246.4 | 4343.7 | 1 | 4343.7 |

Centre for Distance Education $13.10 \quad$ Acharya Nagarjuna University

| 23 | 272.6 | 4613.7 | 1 | 4613.7 |
| :--- | :--- | :--- | :--- | :--- |
| 24 | 214.4 | 4790.2 | 1 | 4790.2 |
| 25 | 189.4 | 5021.7 | 1 | 5021.7 |
| 26 | 249.3 | 5320.8 | 1 | 5320.8 |

We estimate the multiple regression equation (13.12) with the above data using Minitab statistical package and presented the output below:

| Predictor | Coef | StDev | t |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | 1.02 | 20.16 | 0.05 | 0.9 |  |
| D | 152.48 | 33.08 | 4.61 | 0.0 |  |
| x | 0.08033 | 0.01450 | 5.54 | 0.0 |  |
| DX | -0.06547 | 0.01598 | -4.10 | 0.0 |  |
| $S=23.15$ | R-Sq | $=88.2 \%$ | R-Sq (adj) | $=86.6 \%$ |  |
| The estima $Y_{t}=1 .$ | $\begin{aligned} & \text { ed pooled } \\ & 2+152.48 D_{t} \end{aligned}$ | $\begin{aligned} & \text { regression } \\ & 0.08033 X_{t}-0 . \end{aligned}$ | quation: $06547\left(D_{t} X_{t}\right)$ |  |  |
| Analysis of | Variance |  |  |  |  |
| Source | DF | SS | MS | - | P |
| Regression | 3 | 88080 | 29360 | 54.78 | 0.000 |
| Error | 22 | 11790 | 536 |  |  |
| Total | 25 | 99870 |  |  |  |

From t-tables, we have two-tailed critical $t$-value with 22 (26-4) d.f. at $1 \%$ l.o.s. is 2.819 .
From the above estimated regression equation, we may notice that the $t$-values (4.61 and 4.1) of the regression coefficients of the dummy variables $D$ and $D X$ are in magnitude greater than the critical $t$-value (2.819), and hence we may conclude that the regression coefficients of both $D$ and $D X$ are statistically highly significant.

Thus the regression coefficients $\left(\alpha_{2}-\alpha_{1}\right)$ and $\left(\beta_{2}-\beta_{1}\right)$ of regression equations (13.12) are significantly different from zero.

Therefore, $\alpha_{1} \neq \alpha_{2}$ and $\beta_{1} \neq \beta_{2}$. i.e., the intercepts and slopes in the two regression equations (13.10) and (13.11) are different.

Thus we conclude the two regression equations (13.10) and (13.11) are dissimilar, which is due to the $4^{\text {th }}$ possible of the difference (listed in the beginning of the section).

Thus, by introducing dummy variables $D$ and $D X$ in the regression equation (13.12), we are able to identify the source of the structural change between two regression equations (13.10) and (13.11).

In other words, using dummy variables in a regression equation in an appropriate manner, we are not only testing the structural change between two regression equations,
but also we are identifying the source of the structural change out of four possibilities (mentioned in the beginning of this section).

Here, it may be noted using Chow test, one can test whether there is a structural change or not between two given regression equations, but it cannot identify the source of structural change. Hence, using dummy variables in regression analysis is better alternative method instead of applying Chow test.

Note: one can easily extend the use of dummy variables for the case of more than two regression equations (or equivalently for more than two categories or classifications) as given below.

For instance, with quarterly data we may specify

$$
\begin{align*}
Y_{i}=\alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right) D_{2} & +\left(\alpha_{3}-\alpha_{1}\right) D_{3}+\left(\alpha_{4}-\alpha_{1}\right) D_{4} \\
& +\beta_{1} X+\left(\beta_{2}-\beta_{1}\right) D_{2} X+\left(\beta_{3}-\beta_{1}\right) D_{3} X+\left(\beta_{4}-\beta_{1}\right) D_{4} X+u \tag{13.13}
\end{align*}
$$

where

$$
D_{i}= \begin{cases}1 \text { if an observation in Quarter } \mathrm{i}(\mathrm{i}=2,3,4) \\ 0 & \text { otherwise }\end{cases}
$$

Eq. (13.15) allows intercepts and regression slopes to vary across all four class.
Testing the significance of individual regression coefficients of dummy variables $D_{2}, D_{3}$, $D_{4}, D_{2} X, D_{3} X$ and $D_{4} X$ in the above regression model (13.13) is equivalent to testing the homogeneity of intercepts and homogeneity of slopes between the regression equation of four classes. Thus, just by testing the significance of the individual regression coefficients of dummy variables in a single regression equation, we are able to compare 4 regression equations in various aspects.

### 13.7 The Use of Dummy Variables in Seasonal Analysis

Many economic time series based on monthly or quarterly data exhibit seasonal patterns (regular oscillatory movements). Examples are sales of department stores at Christmas and other major holiday times, demand for money (or cash balances) by households at holiday times, demand for ice cream and soft drinks during summer, prices of crops right after harvesting season, demand for air travel, etc. Often it is desirable to remove the seasonal factor, or component, from a time series so that one can concentrate on the other components, such as the trend. The process of removing the seasonal component from a time series is known as deseasonalization or seasonal adjustment, and the time series thus obtained is called the deseasonalized or seasonally adjusted time series. Important economic time series, such as the unemployment rate, the consumer price index (CPI), the producer's price index (PPI), and the index of industrial production, are usually published in seasonally adjusted form. There are several methods of deseasonalizing a time series, but we will consider only one of these methods, namely, the method of dummy variables.

## Deseasonalization of time series data:

Suppose we have $4 n$ quarterly observations on a variable $Y$, such as unemployment, imports or food prices. Such variables are likely to display a pronounced seasonal movement, and for purposes of economic intelligence and policy it is important to produce a
"deseasonalized" series, from which one can better assess whether unemployment, say, is really increasing or decreasing. There are several methods of deseasonalizing series in practice, but here we are only concerned with applications of dummy variables.
Let $Y_{i j}$ denoted the observation on $Y$ in the $j^{\text {th }}$ quarter of $\mathrm{i}^{\text {th }}$ year $(\mathrm{j}=1,2,3,4 ; \mathrm{i}=1,2, \ldots, \mathrm{n})$. This series contain seasonal components apart from trend and/or cyclical components. Deseasonalizing the series means to eliminate the seasonal component from the series. This can be achieved using dummy variables in the regression analysis frame work as follows:

Suppose $D_{1}, D_{2}, D_{3}$ and $D_{4}$ are four dummy variables to represent the four seasonal (quarters) effects respectively defined as

$$
D_{j t}=\left\{\begin{array}{cc}
1 \text { if } \mathrm{t} \text { occur in quarter } \mathrm{j}, \mathrm{j}=1,2,3,4  \tag{13.14}\\
0 & \text { otherwise }
\end{array}\right.
$$

Similarly to represent the trend and/or cyclical effects in the series, we have to incorporate the following polynomial in time ' $t$ ' of sufficiently higher order ' $p$ '.

$$
\begin{equation*}
\alpha_{1} t+\alpha_{2} t^{2}+\ldots+\alpha_{p} t^{p} \tag{13.15}
\end{equation*}
$$

With the above explanation we may write the value of $Y$ in the time period ' $t$ ' as

$$
\begin{equation*}
Y_{t}=\alpha_{1} t+\alpha_{2} t^{2}+\ldots+\alpha_{p} t^{p}+\beta_{1} D_{1 t}+\beta_{2} D_{2 t}+\beta_{3} D_{3 t}+\beta_{4} D_{4 t}+u_{t} \tag{13.16}
\end{equation*}
$$

where $u$ is random effect
For $4 n$ quarterly observations on the variables $Y$, we can write the model in compact form from Eq. (13.16) as follows:

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{P} \underset{\sim}{\boldsymbol{\alpha}}+\mathbf{D} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{13.17}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underset{\sim}{\mathbf{y}}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{4 n}
\end{array}\right]_{4 n \times 1}, \underset{P}{ }=\left[\begin{array}{cccc}
1 & 1^{2} & \cdots & 1^{p} \\
2 & 2^{2} & \cdots & 2^{p} \\
3 & 3^{2} & \cdots & 3^{p} \\
4 & 4^{2} & \cdots & 4^{p} \\
\vdots & \vdots & & \vdots \\
4 n & (4 n)^{2} & \cdots & (4 n)^{p}
\end{array}\right]_{4 n \times p}, \underset{\sim}{\boldsymbol{\alpha}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{p}
\end{array}\right]_{p \times 1}, \\
& \mathbf{D}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1
\end{array}\right]_{4 n \times 4}, \underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right], \text { and } \underset{\sim}{\mathbf{u}}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{4 n}
\end{array}\right]_{4 n \times 1}
\end{aligned}
$$

Now, the deseasonalized series would be now be defined as

$$
\begin{align*}
& \underset{\sim}{\mathbf{y}} d s  \tag{13.18}\\
& \text { where } \underset{\sim}{\mathbf{y}}-\underset{\sim}{\mathbf{b}}=\left(\mathbf{D}^{\prime} \mathbf{N D}\right)^{-1} \mathbf{D}^{\prime} \mathbf{N} \underset{\sim}{\mathbf{y}}, \quad \mathbf{N}=\mathbf{I}-\mathbf{P}\left(\mathbf{P}^{\prime} \mathbf{P}\right)^{-1} \mathbf{P}^{\prime} \tag{13.19}
\end{align*}
$$

Substituting Eq. (13.19) in Eq. (13.18) we get

| Econometrics | 13.13 | Dummy Variables |
| :--- | :--- | :--- |

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}_{d s}}=\mathbf{T} \underset{\sim}{\mathbf{y}} \text {, where } \mathbf{T}=\mathbf{I}-\mathbf{D}\left(\mathbf{D}^{\prime} \mathbf{N} \mathbf{D}\right)^{-1} \mathbf{D}^{\prime} \mathbf{N} \tag{13.20}
\end{equation*}
$$

Thus the deseasonalized series of $\underset{\sim}{\mathbf{y}}$ can be expressed as a linear transformation of $\underset{\sim}{\mathbf{y}}$. Here, it may be noted $\mathbf{T}$ is idempotent matrix, but not symmetric.

### 13.8 Self Assessment Questions

1. Explain dummy variable regression models and explain how this is a better approach than Chow-test for comparison of two regression equations.
2. What are dummy variables? Bring out its applicability while testing the equality of two regression equations each with one exogenous variable.
3. Discuss the use of dummy variables with a suitable example.
4. Define Dummy variables-explain how you would use them to examine the presence or absence of structural changes in the frame work of linear models.
5. Explain the use of dummy variables in seasonal adjustment of time series data.

### 13.9 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Wiley \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 14

## MULTICOLLINEARITY

### 14.0 Objective:

After studying this lesson, the student will have some clarity on the concept, nature and consequences of multicollinearity. From this lesson, the student will know how to detect multicollinearity using some tests and what the remedial measures are for multicollinearity problem.

## Structure of the Lesson:

### 14.1 Introduction

### 14.2 The nature of multicollinearity

### 14.3 Consequences of multicollinearity

### 14.4 Detection of multicollinearity

### 14.5 Remedial measures

### 14.6 Self Assessment Questions

### 14.7 References

### 14.1 Introduction

Very often the data we use in multiple regression analysis cannot give decisive answers to the question we pose. This is because the standard errors are very high or equivalently the $t$ ratios are very low. The confidence intervals for the parameters of interest are thus very wide. This sort of situation occurs when the explanatory variables display little variation and/or high intercorrelations. The situation where the explanatory variables are highly intercorrelated is referred to as multicollinearity. When the explanatory variables are highly intercorrelated, it becomes difficult to disentangle the separate effects of each of the explanatory variables on the explained variable. The practical questions we need to ask are how high these intercorrelations have to be to cause problems in our inference about the individual parameters and what we can do about this problem.

The term "multicollinearity" was first introduced in 1934 by Ragnar Frisch in his book on confluence analysis and referred to a situation where the variables dealt with are subject to two or more relations. In his analysis, there was no dichotomy of explained and explanatory variables. It was assumed that all variables were subject to error and given the sample variances and covariances, the problem was to estimate the different linear relationships among the true variables. We will, however, be discussing the multicollinearity problem as it is
commonly discussed in multiple regression analysis, namely, the problem of high intercorrelations among the explanatory variables.

### 14.2 The Nature of Multicollinearity

Originally multicollinearity meant the existence of a "perfect," or exact, linear relationship among some or all explanatory variables of a regression model. For the $k$-variable regression involving explanatory variable $X_{1}, X_{2}, \ldots, X_{k}$ (where $X_{1}=1$ for all observations to allow for the intercept term), an exact linear relationship is said to exist if the following condition is satisfied:

$$
\begin{equation*}
\lambda_{1} X_{1}+\lambda_{2} X_{2}+\ldots+\lambda_{k} X_{k}=0 \tag{14.1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are constants such that not all of them are zero simultaneously.
Today, however, the term multicollinearity is used in a broader sense to include the case of perfect multicollinearity, as shown by Eq. (14.1), as well as the case where the $X$ variables are intercorrelated but not perfectly so, as follows:

$$
\begin{equation*}
\lambda_{1} X_{1}+\lambda_{2} X_{2}+\ldots+\lambda_{k} X_{k}+v_{i}=0 \tag{14.2}
\end{equation*}
$$

where $v_{i}$ is a stochastic error term.
To see the difference between perfect and less than perfect multicollinearity, assume, for example, that $\lambda_{2} \neq 0$. Then, Eq. (14.1) can be written as

$$
\begin{equation*}
X_{2 i}=-\frac{\lambda_{1}}{\lambda_{2}} X_{1 i}-\frac{\lambda_{3}}{\lambda_{2}} X_{3 i}-\ldots-\frac{\lambda_{k}}{\lambda_{2}} X_{k i} \tag{14.3}
\end{equation*}
$$

which shows how $X_{2}$ is exactly linearly related to other variables or how it can be derived from a linear combination of other $X$ variables. In this situation, the coefficient of correlation between the variable $X_{2}$ and the linear combination on the right side of Eq. (14.3) is bound to be unity. Similarly, if $\lambda_{2} \neq 0$ Eq. (14.2) can be written as

$$
\begin{equation*}
X_{2 i}=-\frac{\lambda_{1}}{\lambda_{2}} X_{1 i}-\frac{\lambda_{3}}{\lambda_{2}} X_{3 i}-\ldots-\frac{\lambda_{k}}{\lambda_{2}} X_{k i}-\frac{\lambda_{k}}{\lambda_{2}} v_{i} \tag{14.4}
\end{equation*}
$$

which shows that $X_{2}$ is not an exact linear combination of other $X^{\prime} s$ because it is also determined by the stochastic error term $v_{i}$.

The preceding algebraic approach to multicollinearity can be portrayed following by the figure. In this figure the circles $Y, X_{2}$ and $X_{3}$ represent, respectively, the variations in $Y$ (the dependent variable) and $X_{2}$ and $X_{3}$ (the explanatory variables). The degree of collinearity can be measured by the extent of the overlap (shaded area) of the $X_{2}$ and $X_{3}$ circles. There is no overlap between $X_{2}$ and $X_{3}$, and hence no collinearity. There is a "low" to "high" degree of collinearity-the greater the overlap between $X_{2}$ and $X_{3}$ (i.e., the larger the shaded area), the higher the degree of collinearity. In the extreme, if $X_{2}$ and $X_{3}$ were to overlap completely (or if $X_{2}$ were completely inside $X_{3}$, or vice versa), collinearity would be perfect.


Figure 14.1
Why does the classical linear regression model assume that there is no multicollinearity among the $X^{\prime} s$ ? The reasoning is this: If multicollinearity is perfect in the sense of Eq. (14.1), the regression coefficients of the $X$ variables are indeterminate and their standard errors are infinite. If multicollinearity is less than perfect, as in Eq. (14.2), the regression coefficients, although determinate, possess large standard errors (in relation to the coefficients themselves), which means the coefficients cannot be estimated with great precision or accuracy. The explanation of these statements is given in the following sections.

There are several sources of multicollinearity. As Montgomery and Peck note, multicollinearity may be due to the following factors:

1. The data collection method employed, for example, sampling over a limited range of the values taken by the regressors in the population.
2. Constraints on the model or in the population being sampled. For example, in the regression of electricity consumption $(Y)$ on income $\left(X_{2}\right)$ and house size $\left(X_{3}\right)$ there is a physical constraint in the population in that families with higher incomes generally have larger homes than families with lower incomes.
3. Model specification, for example, adding polynomial terms to a regression model, especially when the range of the $X$ variable is small.
4. An over defined model. This happens when the model has more explanatory variables than the number of observations. This could happen in medical research where there may be a small number of patients about whom information is collected on a large number of variables.

An additional reason for multicollinearity, especially in time series data, may be that the regressors included in the model share a common trend, that is, they all increase or decrease

| Centre for Distance Education | 14.4 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

over time. Thus, in the regression of consumption expenditure on income, wealth, and population, the regressors income, wealth, and population may all be growing over time at more or less the same rate, leading to collinearity among these variables.

### 14.3 Consequences of Multicollinearity

Recall that if the assumptions of the classical model are satisfied, the OLS estimators of the regression estimators are BLUEs. It can be shown as explained below that even if multicollinearity is very high, as in the case of near multicollinearity, the OLS estimators still retain the property of BLUEs.

First, it is true that even in the case of near multicollinearity the OLS estimators are unbiased. But unbiasedness is a multisampling or repeated sampling property. What it means is that, keeping the values of the $X$ variables fixed, if one obtains repeated samples and computes the OLS estimators for each of these samples, the average of the sample values will converge to the true population values of the estimators as the number of samples increases. But this says nothing about the properties of estimators in any given sample.

Second, it is also true that collinearity does not destroy the property of minimum variance: In the class of all linear unbiased estimators, the OLS estimators have minimum variance; that is, they are efficient. But this does not mean that the variance of an OLS estimator will necessarily be small.

Third, multicollinearity is essentially a sample phenomenon in the sense that even if the $X$ variables are not linearly related in the population, they may be so related in the particular sample at hand: When we postulate the theoretical (population) regression function, we believe that all the $X$ variables included in the model have a separate or independent influence on the dependent variable $Y$. But it may happen that in any given sample some or all of the $X$ variables are so highly collinear that we cannot isolate their individual influence on $Y$. So although the theory says that all the $X^{\prime} s$ are important, our sample may not be "rich" enough to accommodate all $X$ variables in the analysis.

As an illustration, consider the consumption-income example we know that, besides income, the wealth of the consumer is also an important determinant of consumption expenditure. Thus, we may write

$$
\text { Consumption }_{\mathrm{i}}=\beta_{1}+\beta_{2} \text { Income }_{\mathrm{i}}+\beta_{3} \text { Wealth }_{\mathrm{i}}+u_{i}
$$

Now it may happen that when we obtain data on income and wealth, the two variables may be highly, if not perfectly, correlated: Wealthier people generally tend to have higher incomes. Thus, although in theory income and wealth are independent variables to explain the behavior of consumption expenditure, in practice (i.e., in the sample) it may be difficult to disentangle the separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on consumption expenditure we need a sufficient number of sample observations of wealthy individuals with low income, and high-income individuals with low wealth. Although this may be possible in cross-
sectional studies (by increasing the sample size), it is very difficult to achieve in aggregate time series work.

For all these reasons, the fact that the OLS estimators are BLUEs despite multicollinearity is of little consolation in practice. We must see what happens or is likely to happen in any given sample as explained below.

The presence of multicollinearity has a number of potentially serious effects on the OLS estimators of the regression coefficients. In cases of near or high multicollinearity, one is likely to encounter the following consequences:

1. Even though, the OLS estimators are BLUEs, they have large variances and covariances, making precise estimation difficult as demonstrated below.

Suppose there are only two explanatory (independent) variables and let us suppose the variables $y, x_{2}$ and $x_{3}$ are in deviation form then the model is

$$
\begin{equation*}
y_{i}=\beta_{2} x_{2 i}+\beta_{2} x_{3 i}+u_{i} \quad i=1,2, \ldots, n \tag{14.5}
\end{equation*}
$$

with $E\left(u_{i}\right)=0$

$$
\begin{aligned}
& E\left(u_{i} u_{j}\right)=0 \\
& \operatorname{var}\left(u_{i}\right)=\sigma^{2}
\end{aligned}
$$

This model in compact form is

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{14.6}
\end{equation*}
$$

where

$$
\underset{\sim}{\mathbf{y}}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cc}
x_{21} & x_{21} \\
x_{22} & x_{32} \\
\vdots & \vdots \\
x_{2 n} & x_{3 n}
\end{array}\right], \underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{2} \\
\beta_{3}
\end{array}\right], \mathbf{\sim}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

We have the variance-covariance matrix of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$, the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$, is

$$
\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}, \quad \text { where } \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cc}
\sum x_{2}^{2} & \sum x_{2} x_{3}  \tag{14.7}\\
\sum x_{2} x_{3} & \sum x_{3}^{2}
\end{array}\right]
$$

That is $\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\frac{\sigma^{2}}{\left(\sum x_{2}^{2}\right)\left(\sum x_{3}^{2}\right)-\left(\sum x_{2} x_{3}\right)^{2}}\left[\begin{array}{cc}\sum x_{3}^{2} & -\sum x_{2} x_{3} \\ -\sum x_{2} x_{3} & \sum x_{2}^{2}\end{array}\right]$
Now, from Eq. (14.8), we have

$$
\begin{align*}
\operatorname{var}\left(\hat{\beta}_{2}\right) & =\sigma^{2} \frac{\sum x_{3}^{2}}{\left(\sum x_{2}^{2}\right)\left(\sum x_{3}^{2}\right)-\left(\sum x_{2} x_{3}\right)^{2}} \\
& =\frac{\sigma^{2}}{\left(\sum x_{2}^{2}\right)\left(1-\frac{\left(\sum x_{2} x_{3}\right)^{2}}{\left(\sum x_{2}^{2}\right)\left(\sum x_{3}^{2}\right)}\right)} \\
& =\frac{\sigma^{2}}{\left(\sum x_{2}^{2}\right)\left(1-r_{23}^{2}\right)} \tag{14.9}
\end{align*}
$$

where $r_{23}=\frac{\sum x_{2} x_{3}}{\sqrt{\sum x_{2}^{2}} \sqrt{\sum x_{3}^{2}}}$ is the simple correlation between $x_{2}$ and $x_{3}$.
Similarly, $\operatorname{var}\left(\hat{\beta}_{3}\right)=\frac{\sigma^{2}}{\left(\sum x_{3}^{2}\right)\left(1-r_{23}^{2}\right)}$

$$
\begin{equation*}
\operatorname{cov}\left(\hat{\beta}_{2}, \hat{\beta}_{3}\right)=-\frac{\sigma^{2} r_{23}^{2}}{\left(\sum x_{2} x_{3}\right)\left(1-r_{23}^{2}\right)} \tag{14.10}
\end{equation*}
$$

If there is strong multicollinearity between $x_{2}$ and $x_{3}$, then the correlation $r_{23}$ will be large and approaches to unity. As a consequence from equations (14.9), (14.10) and (14.11), we see that

$$
r_{12}^{2} \rightarrow 1 \Rightarrow \operatorname{var}\left(\hat{\beta}_{2}\right) \rightarrow \infty, \operatorname{var}\left(\hat{\beta}_{3}\right) \rightarrow \infty, \text { and } \operatorname{cov}\left(\hat{\beta}_{2}, \hat{\beta}_{3}\right) \rightarrow \pm \infty
$$

Therefore, strong multicollinearity between $x_{2}$ and $x_{3}$ results in large variances and covariance of the OLS estimator $\hat{\beta}_{2}$ and $\hat{\beta}_{3}$.
When there are $\mathrm{k}-1$ (more than two) explanatory variables, multicollinearity produces similar effect. In this case

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\sum x_{j}^{2}\left(1-R_{j}^{2}\right)}, \quad \mathrm{j}=2,3, \ldots, \mathrm{k} \tag{14.12}
\end{equation*}
$$

where $R_{j}^{2}$ is the coefficient of determination from the regression of $X_{j}$ on the reaming k -2 explanatory variables.
From Eq. (14.12), we may observe that

$$
R_{j}^{2} \rightarrow 1 \Rightarrow \operatorname{var}\left(\hat{\beta}_{j}\right) \rightarrow \infty
$$

Thus multicollinearity among the explanatory variables produce larger variances and covariances of the OLS estimators.
2. Wider Confidence Intervals: Because of consequence 1, the confidence intervals of the regression coefficients tend to be much wider.
3. "Insignificant" $\boldsymbol{t}$ Ratios: Recall that to test the null hypothesis $H_{0}: \beta_{i}=0$, we use the $t$ ratio $\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)}$, and compare the estimated $t$ value with the critical $t$ value from the student $t$-table. But, as we have seen, in case of high collinearity, the estimated standard errors $\operatorname{SE}\left(\hat{\beta}_{i}\right)$ increase dramatically, thereby making the $t$ values smaller. Therefore, in such cases, one will increasingly accept the null hypothesis $H_{0}: \beta_{i}=0$ that the relevant true population value is zero. Hence, the probability of accepting a false hypothesis (i.e., type II error) increases. Thus, the $t$ ratio of one or more regression coefficients tend to the statistically insignificant.
4. A High $\boldsymbol{R}^{2}$ but Few Significant $\boldsymbol{t}$ Ratios: Although the $t$ ratio of one or more coefficients is statistically insignificant $R^{2}$, the overall measure of goodness of fit, can be very high.
Consider the $k$-variable linear regression model:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+u_{i} \tag{14.13}
\end{equation*}
$$

In cases of high collinearity, it is possible to find, as we have just noted, that one or more of the partial slope coefficients are individually statistically insignificant on the basis of the $t$ test. Yet the $R^{2}$ in such situations may be so high, say, in excess of 0.9 , that on the basis of the $F$ test one can convincingly reject the hypothesis that $\beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$. Indeed, this is one of the signals of multicollinearity-insignificant $t$ values but a high overall $R^{2}$ (and a significant $F$ value).
5. The OLS estimators and their standard errors can be sensitive to small changes in the data.

### 14.4 Detection of Multicollinearity

Having studied the nature and consequences of multicollinearity, the natural question is: How does one know that collinearity is present in any given situation, especially in models involving more than two explanatory variables? Here it is useful to bear in mind the following limits.

1. Multicollinearity is a question of degree and not of kind. The meaningful distinction is not between the presence and the absence of multicollinearity, but between its various degrees.
2. Since multicollinearity refers to the condition of the explanatory variables that are assumed to be non-stochastic, it is a feature of the sample and not of the population.

Therefore, we do not "test for multicollinearity" but can, if we wish, measure its degree in any particular sample.

Since multicollinearity is essentially a sample phenomenon, arising out of the largely nonexperimental data collected in most social sciences, we do not have one unique method of detecting it or measuring its strength. What we have are some rules of thumb, some informal and some formal, but rules of thumb all the same. We now consider some of these rules.

1. High $R^{2}$ but few significant $\boldsymbol{t}$ ratios: As noted, this is the "classic" symptom of multicollinearity. If $R^{2}$ is high, say, in excess of 0.8 , the $F$ test in most cases will reject the hypothesis that the partial slope coefficients are simultaneously equal to zero, but the individual $t$ tests will show that none or very few of the partial slope coefficients are statistically different from zero.
2. High pair-wise correlations among regressors: Another suggested rule of thumb is that if the pair-wise or zero-order correlation coefficient between two regressors is high, say, in excess of 0.8 , then multicollinearity is a serious problem. The problem with this criterion is that, although high zero-order correlations may suggest collinearity, it is not necessary that they be high to have collinearity in any specific case. To put the matter somewhat technically, high zero-order correlations are a sufficient but not a necessary condition for the existence of multicollinearity because it can exist even though the zero-order or simple correlations are comparatively low (say, less than 0.50 ).
Therefore, in models involving more than two explanatory variables, the simple or zero-order correlation will not provide reliable guidance to the presence of multicollinearity. Of course, if there are only two explanatory variables, the zero-order correlations will suffice.
3. Variance Inflation factor (VIF):

In the multiple regression model

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \text { with } E(\underset{\sim}{\mathbf{u}})=0, \operatorname{var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \mathbf{I}_{\mathbf{n}} \tag{14.14}
\end{equation*}
$$

we have $\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}$ is the OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$.
Now, the variance of the $\mathrm{i}^{\text {th }}$ component of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is

$$
\begin{align*}
\operatorname{var}\left(\hat{\beta}_{i}\right) & =\sigma^{2} a_{i i}, \quad \text { where } a_{i i} \text { is the } \mathrm{i}^{\text {th }} \text { diagonal element of }\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\frac{\sigma^{2}}{\sum x_{i}^{2}} \frac{1}{\left(1-R_{i}^{2}\right)} \tag{14.15}
\end{align*}
$$

where $\sum x_{i}^{2}=\sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}^{2}\right)$
$R_{i}^{2}=$ coefficient of determination of $\mathrm{X}_{\mathrm{i}}$ on the remaining k-2
explnatory variables
But, Eq. (14.15) can be written as

$$
\begin{align*}
& \operatorname{var}\left(\hat{\beta}_{i}\right)=\frac{\sigma^{2}}{\sum x_{i}^{2}} V I F_{i}  \tag{14.16}\\
& \text { where } V I F_{i}=\frac{1}{\left(1-R_{i}^{2}\right)} \tag{14.17}
\end{align*}
$$

| Econometrics | 14.9 | Multicollinearity |
| :--- | ---: | :--- |

But, we know that $0 \leq R_{i}^{2} \leq 1$. Therefore, from Eq. (14.17), we may note that if $R_{i}^{2}$ increases toward unity, $V I F_{i}$ also increases and in the limit it can be infinity (that is $R_{i}^{2} \rightarrow 1 \Rightarrow V I F_{i} \rightarrow \infty$ ).

Some authors therefore use the VIF as an indicator of multicollinearity. The larger the value of $V I F_{i}$, the more "troublesome" or collinear the variable $X_{i}$. As a rule of thumb, if the VIF of a variable exceeds 10 , which will happen if $R_{i}^{2}$ exceeds 0.90 , that variable is said be highly collinear.

Note: VIF as a measure of collinearity is not free of criticism. As Eq. (14.16) shows, $\operatorname{var}\left(\hat{\beta}_{i}\right)$ depends on three factors: $\sigma^{2}, \sum X_{i}^{2}$, and $V I F_{i}$. A high VIF can be counterbalanced by a low $\sigma^{2}$ or a high $\sum X_{i}^{2}$. To put it differently, a high VIF is neither necessary nor sufficient to get high variances and high standard errors. Therefore, high multicollinearity, as measured by a high VIF, may not necessarily cause high standard errors. In all this discussion, the terms high and low are used in a relative sense.

## 4. Eigen values and condition index:

Since $\mathbf{X}^{\prime} \mathbf{X}$ is a symmetric positive definite matrix, we know that all the eigen values of $\mathbf{X}^{\prime} \mathbf{X}$ are real and positive. Let us denote the eigen values by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Further, let us denote $\lambda_{\max }$ and $\lambda_{\text {min }}$ as the maximum and minimum of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Belsley, Kulh, and Welsch suggest a statistic, based on $\lambda_{\max }$ and $\lambda_{\min }$, called the condition index number of the $\mathbf{X}$ matrix, defined by

$$
\begin{equation*}
C I(\mathbf{X})=\frac{\sqrt{\text { Maximum eigenvalue }}}{\sqrt{\text { Minimum eigenvalue }}}=\frac{\sqrt{\lambda_{\max }}}{\sqrt{\lambda_{\min }}} \tag{14.18}
\end{equation*}
$$

Various applications with experimental and actual data sets suggest that condition index $C I(\mathbf{X})$ in the range of 20 to 30 are probably indicative of serious collinearity problems. Thus, as a rule of thumb if the condition index is between 10 and $\mathbf{3 0}$, there is moderate to strong multicollinearity and if it exceeds 30 there is severe multicollinearity. Some authors believe that the condition index is the best available multicollinearity diagnostic.

### 14.5 Remedial Measures

## Rule-of-Thumb Procedures

One can try the following rules of thumb to address the problem of multicollinearity, the success depending on the severity of the collinearity problem.

## 1. A priori information.

Suppose we consider the model

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \tag{14.19}
\end{equation*}
$$

| Centre for Distance Education | 14.10 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

where $Y$ = consumption, $X_{2}=$ income, and $X_{3}=$ wealth. As noted before, income and wealth variables tend to be highly collinear. But suppose a priori we believe that $\beta_{3}=0.10 \beta_{2}$; that is, the rate of change of consumption with respect to wealth is one-tenth the corresponding rate with respect to income. We can then run the following regression:

$$
\begin{align*}
Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+0.10 \beta_{3} X_{3 i}+u_{i} \\
& =\beta_{1}+\beta_{2} X_{2 i}+u_{i} \tag{14.20}
\end{align*}
$$

where $\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{2 \mathrm{i}}+0.1 \mathrm{X}_{3 \mathrm{i}}$. Once we obtain $\hat{\beta}_{2}$, we can estimate $\hat{\beta}_{3}$ from the postulated relationship between $\beta_{2}$ and $\beta_{3}$.
How does one obtain a priori information? It could come from previous empirical work in which the collinearity problem happens to be less serious or from the relevant theory underlying the field of study.

## 2. Combining cross-sectional and time series data.

A variant of the extraneous or a priori information technique is the combination of crosssectional and time-series data, known as pooling the data. Suppose we want to study the demand for automobiles in the United States and assume we have time series data on the number of cars sold, average price of the car, and consumer income. Suppose also that

$$
\begin{equation*}
\log Y_{t}=\beta_{1}+\beta_{2} \log P_{t}+\beta_{3} \log I_{t}+u_{t} \tag{14.21}
\end{equation*}
$$

where $\mathrm{Y}=$ number of cars sold, $\mathrm{P}=$ average price, $I=\mathrm{income}$, and $\mathrm{t}=$ time. Our objective is to estimate the price elasticity $\beta_{2}$ and income elasticity $\beta_{3}$.

In time series data the price and income variables generally tend to be highly collinear. Therefore, if we run the preceding regression, we shall be faced with the usual multicollinearity problem. A way out of this has been suggested by Tobin. He says that if we have crosssectional data (for example, data generated by consumer panels, or budget studies conducted by various private and governmental agencies), we can obtain a fairly reliable estimate of the income elasticity $\beta_{3}$ because in such data, which are at a point in time, the prices do not vary much. Let the cross-sectionally estimated income elasticity be $\hat{\beta}_{3}$. Using this estimate, we may write the preceding time series regression as

$$
\begin{equation*}
Y_{t}^{*}=\beta_{1}+\beta_{2} \log P_{t}+u_{t} \tag{14.22}
\end{equation*}
$$

where $Y_{t}^{*}=\ln Y_{t}-\hat{\beta}_{3} \ln I_{t}$, that is, $Y^{*}$ represents that value of $Y$ after removing from it the effect of income. We can now obtain an estimate of the price elasticity $\beta_{2}$ from the preceding regression.

Although it is an appealing technique, pooling the time series and cross-sectional data in the manner just suggested may create problems of interpretation, because we are assuming implicitly that the cross-sectionally estimated income elasticity is the same thing as that which would be obtained from a pure time series analysis. Nonetheless, the technique has been used in many applications and is worthy of consideration in situations where the cross-sectional estimates do not vary substantially from one cross section to another.

## 3. Dropping a variable(s) and specification bias.

When faced with severe multicollinearity, one of the "simplest" things to do is to drop one of the collinear variables. But in dropping a variable from the model we may be committing a specification bias or specification error. Specification bias arises from incorrect specification of the model used in the analysis. Hence the remedy may be worse than the disease in some situations because, whereas multicollinearity may prevent precise estimation of the parameters of the model, omitting a variable may seriously mislead us as to the true values of the parameters. Recall that OLS estimators are BLUE despite nearcollinearity.

## 4. Transformation of variables.

Suppose we have time series data on consumption expenditure, income, and wealth. One reason for high multicollinearity between income and wealth in such data is that over time both the variables tend to move in the same direction. One way of minimizing this dependence is to proceed as follows.
If the relation

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t} \tag{14.23}
\end{equation*}
$$

holds at time $t$, it must also hold at time $t-1$ because the origin of time is arbitrary anyway. Therefore, we have

$$
\begin{equation*}
Y_{t-1}=\beta_{1}+\beta_{2} X_{2, t-1}+\beta_{3} X_{3, t-1}+u_{t-1} \tag{14.24}
\end{equation*}
$$

If we subtract Eq. (14.24) from Eq. (14.23), we obtain

$$
\begin{equation*}
Y_{t}-Y_{t-1}=\beta_{2}\left(X_{2 t}-X_{2, t-1}\right)+\beta_{3}\left(X_{3 t}-X_{3, t-1}\right)+v_{t}, \text { where } v_{t}=u_{t}-u_{t-1} \tag{14.25}
\end{equation*}
$$

Eq. (14.25) is known as the first difference form because we run the regression, not on the original variables, but on the differences of successive values of the variables.
The first difference regression model often reduces the severity of multicollinearity because, although the levels of $X_{2}$ and $X_{3}$ may be highly correlated, there is no a priori reason to believe that their differences will also be highly correlated.

Another commonly used transformation in practice is the ratio transformation. Consider the model:

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{t} \tag{14.26}
\end{equation*}
$$

where $Y$ is consumption expenditure in real dollars, $X_{2}$ is GDP, and $X_{3}$ is total population.
Since GDP and population grow over time, they are likely to be correlated. One "solution" to this problem is to express the model on a per capita basis, that is, by dividing Eq. (14.23) by $X_{3}$, to obtain:

$$
\begin{equation*}
\frac{Y_{t}}{X_{3 t}}=\beta_{1}\left(\frac{1}{X_{3 t}}\right)+\beta_{2}\left(\frac{X_{2 t}}{X_{3 t}}\right)+\beta_{3}+\left(\frac{u_{t}}{X_{3 t}}\right) \tag{14.27}
\end{equation*}
$$

Such a transformation may reduce multicollinearity in the original variables.
But the first-difference or ratio transformations are not without problems. For instance, the error term $v_{t}$ in Eq. (14.25) may not satisfy one of the assumptions of the classical linear regression model, namely, that the disturbances are serially uncorrelated. Therefore, the remedy may be worse than the disease.

Hence, one should be careful in using the first difference or ratio method of transforming the data to resolve the problem of multicollinearity.

## 5. Additional or new data.

Since multicollinearity is a sample feature, it is possible that in another sample involving the same variables collinearity may not be so serious as in the first sample. Sometimes simply increasing the size of the sample (if possible) may reduce the collinearity problem.

For example, in the three-variable model from Eq. (14.9), we can see that as the sample size increases, $\sum x_{2}^{2}$ will generally increase. Therefore, for any given $r_{23}$, the variance of $\hat{\beta}_{2}$ will decrease, thus decreasing the standard error, which will enable us to estimate $\beta_{2}$ more precisely. Obtaining additional or "better" data is not always that easy.

## 6. Ridge Regression

One of the solutions often suggested for the multicollinearity problem is to use what is known as ridge regression first introduced by Hoerl and Kennard. Simply stated, the idea is if $\mathbf{X}^{\prime} \mathbf{X}$ is close to singularity, then add a constant $\lambda$ to the variances of the explanatory variables or equivalently to the diagonal elements of $\mathbf{X}^{\prime} \mathbf{X}$, before solving the normal equations. The simple ridge estimator is

$$
\begin{equation*}
{\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}=\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}} \tag{14.28}
\end{equation*}
$$

There are several interpretations of ridge estimator. One is to obtain the least squares estimator of $\underset{\sim}{\boldsymbol{\beta}}$ subject to the condition $\Sigma \beta_{i}^{2}=\underset{\sim}{\boldsymbol{\beta}} \boldsymbol{\sim}=c$. Therefore to yield the ridge estimator of $\boldsymbol{\beta}$, we minimize the quantity

$$
(\mathbf{y}-\mathbf{X} \underset{\sim}{\boldsymbol{\beta}})^{\prime}(\underset{\mathbf{y}}{\mathbf{y}} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}})+\lambda\left(\underset{\sim}{\boldsymbol{\beta}}{\underset{\sim}{\prime}}_{\boldsymbol{\beta}}^{\boldsymbol{\beta}}-c\right) \quad \text { ( where } \lambda \text { is the Lagrangian multiplier) }
$$

Differentiating it with respect to $\underset{\sim}{\boldsymbol{\beta}}$, we get

$$
-2 \mathbf{X}^{\prime} \mathbf{y}+2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\sim} \boldsymbol{\sim}+2 \lambda \underset{\sim}{\boldsymbol{\beta}}=0 \text { or }\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right) \underset{\sim}{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}
$$

Solving this equation for $\underset{\sim}{\boldsymbol{\beta}}$ gives the ridge estimator ${\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}$ given in Eq. (14.28).
Since, we have

$$
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \text { with } E(\underset{\sim}{\mathbf{u}})=0, \operatorname{var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \mathbf{I}_{\mathbf{n}}
$$

It follows directly from Eq. (14.28) that

$$
\begin{aligned}
{\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R} & =\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim}
\end{aligned}
$$

and the mean vector and variance-covariance matrix of ${\underset{\sim}{\boldsymbol{\beta}}}_{R}$ are given by

$$
E\left(\hat{\sim}_{\sim}^{\boldsymbol{\beta}^{2}}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \underset{\sim}{\boldsymbol{\beta}}
$$

$$
\begin{aligned}
\operatorname{var}\left({\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}\right) & \left.=E\left\{\left[{\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}-E(\underset{\sim}{\hat{\boldsymbol{\beta}}})_{R}\right)\right]\left[{\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}-E\left(\underset{\sim}{\hat{\boldsymbol{\beta}}}{ }_{\sim}\right)\right]^{\prime}\right\} \\
& \left.=E\left\{\left[\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\sim}\right]\left[\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right]^{\prime}\right]\right\} \\
& =E\left\{\left[\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right]\left[{\underset{\sim}{\mathbf{u}}}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\right]\right\} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}
\end{aligned}
$$

The ridge estimator ${\underset{\sim}{\hat{\boldsymbol{\beta}}}}_{R}$ is thus biased, but it may be shown that the variances of the elements of $\underset{\sim}{\underset{\sim}{\hat{\boldsymbol{\beta}}}}{ }_{R}$ are less than those of the OLS estimator. This raises the possibility that a ridge estimator may have a smaller mean-square error (MSE) than the OLS estimator. Hoerl and Kennard show that there always exists a constant $\lambda>0$ such that

$$
\sum_{i=1}^{k} \operatorname{MSE}\left(\tilde{\beta}_{i}\right)<\sum_{i=1}^{k} \operatorname{MSE}\left(\hat{\beta}_{i}\right)
$$

where $\tilde{\beta}_{i}$ are the estimators of $\beta_{i}$ from the ridge regression and $\hat{\beta}_{i}$ are the least squares estimators and $k$ is the number of regressors. The main difficulty centre on the selection of a numerical value for the arbitrary scalar $\lambda$. Unfortunately, $\lambda$ is a function of the regression parameters $\beta_{i}$ and error variance $\sigma^{2}$, which are unknown. Hoerl and Kennard suggest trying different values of $\lambda$ and picking the value of $\lambda$ so that "the system will stabilize" or the "coefficients do not have unreasonable values." Thus subjective arguments are used. Some others have suggested obtaining initial estimates of $\beta_{i}$ and $\sigma^{2}$ and then using the estimated $\lambda$. This procedure can be iterated and we get the iterated ridge estimator.

The ridge technique essentially consists of an arbitrary numerical adjustment to the sample data, and one does not really know how to interpret the resultant estimators.

One other problem about ridge regression is the fact that $t$ is not invariant to units of measurement of the explanatory variables and to linear transformations of variables. If we have two explanatory variables $X_{1}$ and $X_{2}$; and we measure $X_{1}$ in tens and $X_{2}$ in thousands, it does not make sense to add the same value of $\lambda$ to the variances of both. This problem can be avoided by normalizing deviated variable by dividing it by its standard deviation. Even if $X_{1}$ and $X_{2}$ are measured in the same units, in some cases there are different linear transformation of $X_{1}$ and $X_{2}$ that are equally sensible.

## 7. Principal Components Regression

In the multiple regression equation

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}+u \tag{14.29}
\end{equation*}
$$

if the explanatory variables $X_{1}, X_{2}, \ldots, X_{k}$ are highly collinear that is in the case of multicollinearity problem as a remedial measure we can use principal component regression analysis as explained below.

In case of multicollinearity problem it is advantageous to disregard some of the variables in order to reduce the problem. An alternative way to reduce the dimensionality is to use principal components. In the general principal component analysis the principal components with largest variances are used in order to explain as much of the total variation of the data on $X_{1}, X_{2}, \ldots, X_{k}$ where as in the context of multiple regression, it is sensible to take those principal components having the largest correlations with the dependent variable because the purpose in a regression is to explain the dependent variable. Thus, here we have to include the principal components in the regression analysis, according to the magnitude of their correlations with the dependent variable. In other words, the principal component with highest correlation with $Y$ should be included first, the principal component with next highest correlation with $Y$ should be included next and so on.

If the principal components have a natural intuitive meaning (i.e., a good interpretation). It is better to leave regression equation expressed in terms of the principal components. Otherwise, it is more convenient to transform back to the original variables.
The regression equation (14.29) in deviation form is

$$
\begin{equation*}
y=\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+(u-\bar{u}) \tag{14.30}
\end{equation*}
$$

Eq. (14.30) can be written as

$$
\begin{equation*}
y={\underset{\sim}{x}}^{\prime} \boldsymbol{\sim}+\varepsilon \quad \text { where } \varepsilon=u-\bar{u} \tag{14.31}
\end{equation*}
$$

$$
\underset{\sim}{\mathbf{x}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right], \underset{\sim}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

Let us denote the variance-covariance matrix of the variables $x_{1}, x_{2}, \ldots, x_{k}$ by $\mathbf{V}_{k x k}$. Since $\mathbf{V}$ is positive definite matrix all eigen roots of $\mathbf{V}$ are positive, and we denote them as $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Now, let us denote the eigen vectors of $\mathbf{V}$ corresponding to these eigen roots as ${\underset{\sim}{\mathbf{w}}}_{1}, \quad{\underset{\sim}{\mathbf{w}}}_{2}, \cdots, \quad{\underset{\sim}{\mathbf{w}}}_{k}$ and if we denote

$$
\boldsymbol{\Omega}=\left(\begin{array}{llll}
\mathbf{w}_{1} & {\underset{\sim}{\mathbf{w}}}_{2} & \cdots & {\underset{\sim}{w}}_{k}
\end{array}\right)_{k k k}
$$

then we have the relation

$$
\begin{equation*}
\boldsymbol{\Omega}^{\prime} \mathbf{V} \boldsymbol{\Omega}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right), \quad \text { where } \boldsymbol{\Omega} \text { is orthogonal matrix } \tag{14.32}
\end{equation*}
$$

Now suppose $z_{1}, z_{2}, \ldots, z_{k}$ are the principal components (obtained from the original variables $x_{1}, x_{2}, \ldots, x_{k}$, which are in deviation form), then by the definition of principal components we may write

$$
z_{i}=w_{i 1} x_{1}+w_{i 2} x_{2}+\ldots+w_{i k} x_{k}={\underset{i}{*}}_{\mathbf{w}}^{\prime} \mathbf{x}, \quad \mathrm{i}=1,2, \ldots, \mathrm{k}
$$

The above $z_{1}, z_{2}, \ldots, z_{k}$ principal components can be written in a vector form as

$$
\mathbf{z}=\left[\begin{array}{c}
z_{1}  \tag{14.33}\\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right]=\left[\begin{array}{c}
\underset{\sim}{\mathbf{w}_{1}^{\prime}} \mathbf{\sim} \\
\underset{\sim}{\mathbf{w}_{2}^{\prime}} \\
\vdots \\
\vdots \\
{\underset{\sim}{\mathbf{x}}}_{k}^{\prime} \mathbf{x}
\end{array}\right]=\boldsymbol{\Omega}_{\sim}^{\prime} \mathbf{x}
$$

Since $\boldsymbol{\Omega}$ is an orthogonal matrix, we have $\boldsymbol{\Omega}^{\prime} \boldsymbol{\Omega}=\mathbf{I}_{k}$.
Now, Eq. (14.33) may be rewritten as

$$
\begin{equation*}
\underset{\sim}{\mathbf{x}}=\left(\boldsymbol{\Omega}^{\prime}\right)^{-1} \mathbf{z}=\left(\boldsymbol{\Omega}^{-1}\right)^{-1} \underset{\sim}{\mathbf{z}}=\boldsymbol{\Omega} \mathbf{z} \quad\left(\because \boldsymbol{\Omega}^{\prime}=\boldsymbol{\Omega}^{-1}\right) \tag{14.34}
\end{equation*}
$$

Using Eq. (14.34) in Eq. (14.31) we get

$$
\begin{align*}
y & =\underset{\sim}{\boldsymbol{z}} \boldsymbol{\Omega} \underset{\sim}{\boldsymbol{\beta}} \underset{\sim}{\boldsymbol{\beta}} \\
& =\underset{\sim}{\mathbf{z}^{\prime} \boldsymbol{\alpha}+\varepsilon} \tag{14.35}
\end{align*}
$$

$$
\text { where } \underset{\sim}{\boldsymbol{\alpha}}=\left[\begin{array}{c}
\alpha_{1}  \tag{14.36}\\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right]_{k \times 1}=\boldsymbol{\Omega}^{\prime} \boldsymbol{\sim}
$$

Eq. (14.35) can be written as

$$
\begin{equation*}
y=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{3}+\ldots+\alpha_{k} z_{k}+\varepsilon \tag{14.37}
\end{equation*}
$$

Now, the regression equation (14.37) is with the new set of k explanatory variables $z_{1}, z_{2}, \ldots, z_{k}$ (principal components), those can be obtained using Eq. (14.33) from the original $k$ explanatory variables $x_{1}, x_{2}, \cdots, x_{k}$, which are in deviation form.

The difference between the regression Eq. (14.30) and the regression Eq. (14.37) is in the former regression equation the explanatory variables $x_{1}, x_{2}, \cdots, x_{k}$ are highly collinear where as in the later regression equation, the explanatory variables $z_{1}, z_{2}, \ldots, z_{k}$ are uncorrelated.

The estimates of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ may be obtained by applying OLS method to regression Eq. (14.37) in the usual way. Then, the OLS estimates of the original parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ may be obtained from the following equation which is based on Eq. (14.36)

$$
\begin{equation*}
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\boldsymbol{\Omega} \underset{\sim}{\hat{\alpha}} \tag{14.38}
\end{equation*}
$$

The variance-covariance matrix $\mathbf{V}$ can be computed based on the sample observations made on the variables $x_{1}, x_{2}, \ldots, x_{k}$. Using this matrix $\mathbf{V}$, one can compute the orthogonal matrix $\boldsymbol{\Omega}$, as the matrix of the eigen vectors of $\mathbf{V}$ corresponding to the computed eigen roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$.

## Notes:

1. In the equation (14.37), the OLS estimators $\hat{\alpha}_{i}$ 's are unaltered if some of the principal components $z_{j}$ 's are deleted from the equation.
2. One can think of choosing only those principal components that have highest correlation with $y$ and discard the rest, but the same sort of procedure can be used with the
original set of variables $x_{1}, x_{2}, \cdots, x_{k}$ by first choosing the variable with the highest correlation with $y$, then the one with the highest partial correlation, and so on. This is what "step wise regression program" do.
3. The linear combinations $z$ 's often do not have economic meaning. This is one of the most important drawbacks of the above method.
4. Changing the units of measurement of the $x$ 's will change the principal components. This problem can be avoided if all variables are standardized to have unit variance

### 14.6 Self Assessment Questions

1. Explain the problem of multicollinearity and explain the estimation procedure of the model in the presence of multicollinearity
2. Explain the problem of multicollinearity and their consequences.
3. What are the sources of multicollinearity.
4. Explain the problem of multicollinearity with a suitable example. Also discuss the implications and tools for handling this problem.
5. Describe a test procedure for detection of multicollinearity and suggest some remedial measures.
6. Describe variance inflation factor as a test for detection of multicollinearity.
7. Describe condition index based on eigen values as a test for detection of multicollinearity.
8. Explain the Ridge regression method in detail and give the reasons for the popularity of this method.
9. Explain the Ridge regression method in detail and also explain its importance.
10. Explain the principle component regression method in detail as a remedial measure.

### 14.7 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

## Lesson 15

## GENERALIZED LEAST SQUARES ESTIMATOR

### 15.0 Objective:


#### Abstract

In the lessons studied so far, we consider the regression models with spherical disturbances, which means the disturbances are uncorrelated and having common variance. Now, in this lesson our objective is to study the regression model with nonspherical disturbances, which are serially (auto) correlated or (and) having heterogonous variances.


## Structure of the Lesson:

### 15.1 Introduction

15.2 The sources of nonspherical disturbances
15.3 Properties of OLS estimators under nonspherical disturbances
15.4 The generalized least squares estimator
15.5 Derivation of an unbiased estimator of $\sigma^{2}$
15.6 To show that GLS estimator is also ML estimator
15.7 Self Assessment Questions

### 15.8 References

### 15.1 Introduction

The assumptions usually made concerning the linear regression model $\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}$ are

$$
\begin{gather*}
E(\underset{\sim}{\mathbf{u}})=\underbrace{\mathbf{0}}_{\sim}  \tag{15.1}\\
\text { and } \operatorname{Var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \mathbf{I} \tag{15.2}
\end{gather*}
$$

Eq. (15.2) is described as the assumption of spherical disturbances. It involves the double assumption that the disturbances (error terms) are homoscedastic as well as non-autocorrelated (serially uncorrelated). Sometimes this assumption may not be fulfilled; and in place of the assumption (15.2) we have to make the following assumption

$$
\begin{equation*}
\operatorname{Var}(\mathbf{\sim})=\sigma^{2} \mathbf{\Omega} \tag{15.3}
\end{equation*}
$$

The assumption (15.3) is described as nonspherical disturbances, since it allows the heteroscedastic disturbances and autocorrelated disturbances.

In the following sections, we will discuss the following

1. The sources of nonspherical disturbances.
2. To study the properties of OLS estimators in the presence of nonspherical disturbances.
3. To develop appropriate estimation procedure for the general linear model fulfilling the assumption (15.3).

### 15.2 The Sources of Nonspherical Disturbances

If the sample observations relate to households or firms in a cross-section study, the assumption of a common disturbance variance at all observation points is often implausible. For example, if $Y$ refers to family expenditure and $X$ to family income, the variance about the Engle curve is likely to increase with the size of $X$. Similarly if $Y$ denotes profits and $X$ is some measure of firm size, the same property is to be expected. The specification of the disturbance variance-covariance matrix of disturbances would then be

$$
\operatorname{Var}(\mathbf{u})=\boldsymbol{\Omega}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & & \cdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

which is the standard case of nonspherical disturbances and it still assumes that the disturbances are pair wise uncorrelated.

Another possibility of nonspherical disturbances in cross-section studies will arise when we are dealing with grouped data. Suppose the model is

$$
Y_{t}=\alpha+\beta X_{t}+u_{t} \quad \mathrm{t}=1,2, \ldots, \mathrm{n}
$$

where the $u_{t}$ 's are homoscedastic with zero covariances. However, suppose we only have access to data which have been averaged within $m$ groups, where the $\mathrm{i}^{\text {th }}$ group contains $n_{i}$ observations. The form of the appropriate model to the data is now

$$
\bar{Y}_{i}=\alpha+\beta \bar{X}_{i}+\bar{u}_{i} \quad i=1, \ldots, m
$$

and clearly

$$
\operatorname{var}\left(\bar{u}_{i}\right)=\frac{\sigma^{2}}{n_{i}} \quad \text { where } \sigma^{2}=\operatorname{var}\left(u_{i}\right) \quad i=1, \ldots, m
$$

Thus

$$
\operatorname{Var}(\mathbf{u})=\sigma^{2} \boldsymbol{\Omega}=\sigma^{2}\left[\begin{array}{cccc}
\frac{1}{n_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{n_{2}} & \cdots & 0 \\
\cdots & \cdots & & \cdots \\
0 & 0 & \cdots & \frac{1}{n_{m}}
\end{array}\right]
$$

Another possibility of nonspherical disturbances will arise when we are dealing with regression models using time series data, which occur relatively often in economics, business,
and some fields of engineering. The assumption of uncorrelated and independent disturbances in time series data is often not appropriate. Usually, the disturbances in time series data exhibit serial correlation, that is $\operatorname{cov}\left(u_{i}, u_{i+j}\right) \neq 0$, when $\mathrm{j} \neq 0$. Such disturbances are said to be autocorrelated, which is a special case of nonspherical disturbances. There are several sources of autocorrelation. Perhaps the primary cause of autocorrelation in regression problems involving time series data is failure to include one or more important regressors in the model.

### 15.3 Properties of OLS Estimators under Nonspherical Disturbances

Our assumed model is

$$
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}}
$$

where $\mathbf{X}$ is taken as a nonstochastic matrix with full column rank,

$$
E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}} \text { and } \operatorname{Var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \boldsymbol{\Omega} \quad(\text { or } \mathbf{V})
$$

The OLS estimator of $\boldsymbol{\beta}$ may be expressed as usual as

$$
\underset{\sim}{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}}
$$

Thus $E(\underset{\sim}{\boldsymbol{\beta}})=\underset{\sim}{\boldsymbol{\beta}}$ so that OLS estimator $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is still unbiased. The variance-covariance matrix of $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is given by

$$
\begin{align*}
\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}}) & =E(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime}=\mathrm{E}\left\{( \mathbf { X } ^ { \prime } \mathbf { X } ) ^ { - 1 } \mathbf { X } ^ { \prime } \underset { \sim } { \mathbf { u } \mathbf { u } ^ { \prime } } \mathbf { X } \left(\mathbf{\mathbf { X } ^ { \prime } \mathbf { X } ) ^ { - 1 } \}}\right.\right. \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tag{15.4}
\end{align*}
$$

Thus the conventional formula $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ no longer measures the variances of the OLS estimator, and any application of it is potentially misleading. More importantly, even if one could use Eq. (15.4) to estimate the sampling variances the substitution of these numbers in the conventional $t$ formulas and confidence interval formulas is strictly invalid since the assumptions used in deriving those inference procedures no longer apply. For the same reason the optimal minimum variance property of OLS no longer holds.
Thus, even though the OLS estimator $\underset{\sim}{\hat{\beta}}$ is unbiased estimator of $\underset{\sim}{\beta}$, it is not the BLUE of
$\underset{\sim}{\beta}$. Hence, there is a need to the development of a more appropriate estimator.

### 15.4 The Generalized Least Squares (Aitken) Estimator

Our assumed model is

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{15.5}
\end{equation*}
$$

where $\mathbf{X}$ is taken as a nonstochastic matrix with full column rank,

$$
E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}}, \text { and } \operatorname{Var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \boldsymbol{\Omega} \quad(\text { or } \mathbf{V})
$$

Since, the nonspherical variance-covariance matrix $\boldsymbol{\Omega}$ (or $\mathbf{V}$ ) is symmetric positive definite matrix, there exists a nonsingular matrix $\mathbf{T}$ such that

$$
\begin{equation*}
\mathbf{T} \mathbf{\Omega T}^{\prime}=\mathbf{I} \tag{15.6}
\end{equation*}
$$

Now pre-multiply Eq. (15.5) with this non-singular matrix $\mathbf{T}$ to obtain

$$
\begin{equation*}
{\underset{\sim}{\mathbf{y}}}^{*}=\mathbf{X}^{*} \underset{\sim}{\boldsymbol{\beta}}+{\underset{\sim}{\mathbf{u}}}^{*} \tag{15.7}
\end{equation*}
$$

where ${\underset{\sim}{\mathbf{y}}}^{*}=\mathbf{T} \underset{\sim}{\mathbf{y}}, \mathbf{X}^{*}=\mathbf{T X}$, and ${\underset{\sim}{\mathbf{u}}}^{*}=\mathbf{T u}$
with i) $E\left(\underset{\sim}{\mathbf{u}^{*}}\right)=\underset{\sim}{\mathbf{0}}$,
ii) $E\left(\underset{\sim}{\mathbf{u}_{\sim}^{*}}{\underset{\sim}{u}}^{* \prime}\right)=E\left(\underset{\sim}{\mathbf{T}} \underset{\sim}{u} \mathbf{u}^{\prime} \mathbf{T}^{\prime}\right)=\sigma^{2} \mathbf{T} \boldsymbol{\Omega} \mathbf{T}^{\prime}=\sigma^{2} \mathbf{I} \quad$ (from Eq. (15.6))

Thus the model as given in Eq. (15.5) with nonspherical disturbance variance-covariance matrix is transformed into the traditional general linear model with spherical disturbance variancecovariance matrix (as given in Eq. (15.2)). As a consequence, we can apply OLS method to the model (15.7) to obtain OLS estimator of $\boldsymbol{\beta}$ and is given by

$$
\begin{equation*}
\underset{\sim}{\mathbf{b}}=\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{* \prime}{\underset{\sim}{\mid}}^{*}=\left(\mathbf{X}^{\prime} \mathbf{T}^{\prime} \mathbf{T} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{T}^{\prime} \mathbf{T} \underset{\sim}{\mathbf{y}} \tag{15.10}
\end{equation*}
$$

and $\operatorname{var}(\underset{\sim}{\mathbf{b}})=\sigma^{2}\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{T}^{\prime} \mathbf{T} \mathbf{X}\right)^{-1}$
Since $\mathbf{T}$ is nonsingular matrix from Eq. (15.6)

$$
\begin{equation*}
\left(\mathbf{T}^{\prime}\right)^{-1} \boldsymbol{\Omega}^{-1} \mathbf{T}^{-1}=\mathbf{I} \Rightarrow \mathbf{T}^{\prime} \mathbf{T}=\mathbf{\Omega}^{-1} \tag{15.12}
\end{equation*}
$$

Using Eq. (15.12) in Eqs. (15.10) and (15.11) we get

$$
\begin{align*}
\underset{\sim}{\mathbf{b}} & =\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \underset{\sim}{\mathbf{y}}  \tag{15.13}\\
\text { and } \quad \operatorname{var}(\underset{\sim}{\mathbf{b}}) & =\sigma^{2}\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \tag{15.14}
\end{align*}
$$

The estimator $\underset{\sim}{\mathbf{b}}$ given in Eq. (15.13) is called the generalized least squares (GLS) estimator or Aitken's estimator and the variance-covariance matrix of $\underset{\sim}{\mathbf{b}}$ is given in Eq. (15.14). Since the model (15.7) satisfies the assumptions given in Eq. (15.9) which required for an application of OLS, it immediately follows that $\underset{\sim}{\mathbf{b}}$ is the BLUE of $\underset{\sim}{\boldsymbol{\beta}}$ in the model (15.5).
It may be noted that the above formulae are only operational if the elements of $\boldsymbol{\Omega}$ are known. Note: If we take $\operatorname{Var}(\underset{\sim}{\mathbf{u}})=\mathbf{V}$ in the model (15.5) then

$$
\underset{\sim}{\mathbf{b}}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \underset{\sim}{\mathbf{y}} \text { and } \operatorname{var}(\underset{\sim}{\mathbf{b}})=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} .
$$

This procedure of transforming the original variables in such a way that the transformed variables satisfy the assumptions of the classical linear regression model and then applying OLS to them is known as the method of generalized least squares (GLS). In short, GLS is OLS on the transformed variables that satisfy the standard least-squares assumptions. The estimator thus obtained is known as GLS estimator or Aitken Estimator, and this estimator is BLUE.

### 15.5 Derivation of an unbiased estimator of $\sigma^{2}$

Applying OLS to the transformed model (15.7), we get an unbiased estimator of $\sigma^{2}$ given by

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\mathbf{e}^{* / 1} \tilde{e}^{*}}{(n-k)} \tag{15.15}
\end{equation*}
$$

where

Then

$$
\begin{align*}
& \hat{\sigma}^{2}=\frac{(\underset{\sim}{\mathbf{y}}-\underset{\sim}{\mathbf{X}})^{\prime} \mathbf{T}^{\prime} \mathbf{T}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\underset{\sim}{b}})}{(n-k)} \\
& =\frac{(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})^{\prime} \mathbf{\Omega}^{-1}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})}{(n-k)} \quad \text { (using Eq. (15.12)) } \\
& =\frac{\mathbf{e}^{\prime} \boldsymbol{\Omega}^{-1} \underbrace{\mathbf{e}}_{\tilde{e}}}{(n-k)} \text {, where } \underset{\sim}{\mathbf{e}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}}} \\
& =\frac{\underset{\sim}{\mathbf{y}^{\prime} \mathbf{\Omega}^{-1}} \underset{\sim}{\mathbf{y}}-\underset{\sim}{\mathbf{b}} \mathbf{b}^{\prime} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \underset{\sim}{\mathbf{y}}+\underset{\sim}{\mathbf{b}^{\prime}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X} \underset{\sim}{\mathbf{b}}}{(n-k)} \\
& =\frac{\underset{\sim}{\mathbf{y}^{\prime} \mathbf{\Omega}^{-1}} \underset{\sim}{\mathbf{y}}-{\underset{\sim}{b}}^{\mathbf{b}} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}}}{(n-k)} \text { (since from Eq.(15.13) } \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X} \underset{\sim}{\mathbf{b}}=\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}} \text { ) } \tag{15.16}
\end{align*}
$$

is an unbiased estimator of $\sigma^{2}$

### 15.6 To show that GLS (Aitken) estimator is also ML estimator

Let us consider the model

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{15.17}
\end{equation*}
$$

with

1. $\mathbf{X}$ is a nonstochastic and full rank matrix
2. $E(\underset{\sim}{\mathbf{u}})=\mathbf{\sim}$
3. $\operatorname{Var}(\underset{\sim}{\mathbf{u}})=\sigma^{2} \boldsymbol{\Omega}$
4. $\underset{\sim}{\mathbf{u}}$ is normally distributed

Since $\underset{\sim}{\mathbf{u}} \sim N\left(\underset{\sim}{\mathbf{0}}, \sigma^{2} \mathbf{\Omega}\right)$, the likelihood function is

$$
p(\underset{\sim}{\mathbf{u}})=\frac{1}{(2 \pi)^{n / 2}\left|\sigma^{2} \boldsymbol{\Omega}\right|^{1 / 2}} e^{-\frac{1}{2 \sigma^{2} \mathbf{u}^{\prime} \Omega^{-1} \underline{u}}}
$$

The likelihood in terms $\underset{\sim}{y}$ is
where Jacobian transformation $J(\underset{\sim}{\mathbf{y}})=\bmod \left|\frac{\partial u}{\partial \underset{\sim}{\mathbf{y}}}\right|=\bmod \left|\mathbf{I}_{\mathbf{n}}\right|=1$
Now, the log likelihood is

$$
\begin{equation*}
\log L=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2} \log |\boldsymbol{\Omega}|-\frac{1}{2 \sigma^{2}}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\boldsymbol{\beta}})^{\prime} \boldsymbol{\Omega}^{-1}(\underset{\sim}{\mathbf{y}}-\underset{\sim}{\mathbf{X}} \underset{\sim}{)}) \tag{15.18}
\end{equation*}
$$

Maximizing $\log L$ with respect to $\underset{\sim}{\boldsymbol{\beta}}$ implies minimizing the weighted sum of squares

$$
\begin{equation*}
(\underset{\sim}{\mathbf{y}}-\mathbf{X} \boldsymbol{\sim})^{\prime} \boldsymbol{\Omega}^{-1}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\boldsymbol{\beta}})={\underset{\sim}{\mathbf{y}} \boldsymbol{\Omega}^{\prime-1} \underset{\sim}{\mathbf{y}}-\underset{\sim}{2} \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \underset{\sim}{\mathbf{y}}+\underset{\sim}{\boldsymbol{\beta}^{\prime}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X} \boldsymbol{\sim} \boldsymbol{\beta}}_{\boldsymbol{\beta}} \tag{15.19}
\end{equation*}
$$

with respect to $\underset{\sim}{\boldsymbol{\beta}}$. This is equivalent to differentiate Eq. (15.19) with respect to $\underset{\sim}{\boldsymbol{\beta}}$ and setting equal to zero and is

$$
\begin{align*}
& \frac{\partial\left({\underset{\sim}{\mathbf{y}}}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}}-\mathbf{2}{\underset{\sim}{\boldsymbol{\beta}}}^{\prime} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}}+\underset{\sim}{\boldsymbol{\beta}} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X} \boldsymbol{\beta}\right.}{\partial \boldsymbol{\beta}}=0 \\
\Rightarrow & -2 \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}}+2 \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X} \underset{\sim}{\mathbf{\beta}}=0 \\
\Rightarrow & \underset{\sim}{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}} \\
\Rightarrow & {\underset{\sim}{\boldsymbol{\beta}}}^{*}=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \underset{\sim}{\mathbf{y}} \tag{15.20}
\end{align*}
$$

Thus ${\underset{\sim}{\boldsymbol{\beta}}}^{*}$ the MLE of $\underset{\sim}{\boldsymbol{\beta}}$ is same as $\underset{\sim}{\mathbf{b}}$, the GLS estimator $\underset{\sim}{\boldsymbol{\beta}}$.
On the assumption of normality for the disturbance term all the inference procedures carry through for this model. Thus the test of

$$
H_{0}: \mathbf{R} \boldsymbol{\beta}=r
$$

is based on

$$
\begin{equation*}
F=\frac{(r-\mathbf{R} \underset{\sim}{\mathbf{b}})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \Omega \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(r-\mathbf{R} \underset{\sim}{\mathbf{b}})^{\prime} / q}{\hat{\sigma}^{2}} \tag{15.21}
\end{equation*}
$$

where $\hat{\sigma}^{2}$ is as given in Eq. (15.16), having the $F(q, n-k)$ distribution under the null hypothesis, where $\underset{\sim}{\mathbf{b}}$ is the GLS estimator defined in Eq. (15.13).

The above formulae are only operational if the elements of $\Omega$ are known. In some exceptional cases this may be so, but in most practical cases it is not. We must therefore proceed to the development of operational procedures for such cases, but there is, in fact, no single procedure which is generally applicable. One must look for the procedure which is best suited to the features of each specific problem in turn.

### 15.7 Self Assessment Questions

1. Explain GLS method of estimation for GLM model.
2. Explain the generalized least squares (GLS) estimates and discuss the method of obtaining them. Also list out their properties.
3. Derive Aitken estimators of a general linear model.
4. Show that GLS estimator is BLUE.
5. Show that Aitken estimator is BLUE.
6. State and prove Aitken theorem for a generalized linear model $\underset{\mathbf{n X 1}}{\mathbf{y}}=\underset{\mathbf{n X k}}{\mathbf{X}} \underset{\mathbf{k X 1}}{\boldsymbol{\beta}}+\underset{\mathbf{n X 1}}{\mathbf{u}}$ with $E(\mathbf{u})=0$ and $E\left(\mathbf{u} \mathbf{u}^{\prime}\right)=\sigma^{2} \boldsymbol{\Omega}$.

### 15.8 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{r d}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

## Lesson 16

## HETEROSCEDASTICITY: NATURE AND CONSEQUENCES

### 16.0 Objective:

One of the assumptions made in traditional multiple linear regression model regarding the disturbances is that they have common variance (homoscedasticity). This lesson relaxes this assumption, which means the disturbances are having heterogeneous variances and such disturbances are called heteroscedastic disturbances. The objective of this lesson is to discuss the nature, sources and consequences of heteroscedastic disturbances.

## Structure of the Lesson:

### 16.1 Introduction

### 16.2 The nature or sources of heteroscedasticity

### 16.3 OLS estimation in the presence of heteroscedasticity

### 16.4 Consequences of using OLS in presence of heteroscedasticity

### 16.5 Self Assessment Questions

### 16.6 References

### 16.1. Introduction

An important assumption of the traditional multiple linear regression model is that the variance of each disturbance term $u_{i}$, conditional on the chosen values of the explanatory variables, is some constant number equal to $\sigma_{u}^{2}$. This is the assumption of homoscedasticity, or equal (homo) spread (scedasticity), that is, equal variance. Symbolically,

$$
\operatorname{Var}\left(u_{i}\right)=\sigma_{u}^{2} \quad i=1,2, \ldots, n
$$

If we relax the assumption of homoscedasticity that is if the disturbance terms $u_{i} s$ do not have the equal variance, then we say that disturbances are heteroscedastic disturbances and in this case the disturbance terms $u_{i} s$ have unequal or heterogeneous variances. The multiple linear regression model with heteroscedastic disturbances is described as heteroscedasticity, which may be written symbolically,

$$
\begin{equation*}
\operatorname{Var}\left(u_{i}\right)=\sigma_{i}^{2} \quad i=1,2, \ldots, n \tag{16.1}
\end{equation*}
$$

Notice the subscript of $\sigma^{2}$, which reminds us that the conditional variances of $u_{i}$ ( or equivalently conditional variances of $Y_{i}$ ) are no longer constant. The nature, sources and consequences of heteroscedasticity are studied in the following sections of this lesson.

### 16.2. The Nature or Sources of Heteroscedasticity

To make the difference between homoscedasticity and heteroscedasticity clear, assume that in the two-variable model

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}, Y \text { represents savings and } X \text { represents income. }
$$



Figure 16.1
Figure 16.2
The above figures 16.1 and 16.2 show that as income increases, savings on the average also increase. But in Figure 11.1 the variance of savings remains the same at all levels of income, whereas in Figure 16.2 it increases with income. It seems that in Figure 16.2 the higher income families on the average save more than the lower-income families, but there is also more variability in their savings.

There are several reasons why the variances of $u_{i}$ may be variable, some of which are as follows.

1. Following the error-learning models, as people learn, their errors of behavior become smaller over time. In this case, $\sigma_{i}^{2}$ is expected to decrease. As an example, consider Figure 16.3, which relates the number of typing errors made in a given time period on a test to the hours put in typing practice. As Figure 16.3 shows, as the number of hours of typing practice increases, the average number of typing errors as well as their variances decreases.

| Econometrics | 16.3 | Heteroscedasticity:.. |
| :--- | :---: | :---: |



Illustration of heteroscedasticity.
Figure 16.3
2. As incomes grow, people have more discretionary income and hence more scope for choice about the disposition of their income. Hence, $\sigma_{i}^{2}$ is likely to increase with income.
Thus in the regression of savings on income one is likely to find $\sigma_{i}^{2}$ increasing with income (as in Figure 16.2) because people have more choices about their savings behavior. Similarly, companies with larger profits are generally expected to show greater variability in their dividend policies than companies with lower profits. Also, growth oriented companies are likely to show more variability in their dividend payout ratio than established companies.
3. As data collecting techniques improve, $\sigma_{i}^{2}$ is likely to decrease. Thus, banks that have sophisticated data processing equipment are likely to commit fewer errors in the monthly or quarterly statements of their customers than banks without such facilities.
4. Heteroscedasticity can also arise as a result of the presence of outliers. An outlying observation, or outlier, is an observation that is much different (either very small or very large) in relation to the observations in the sample. More precisely, an outlier is an observation from a different population to that generating the remaining sample observations. The inclusion or exclusion of such an observation, especially if the sample size is small, can substantially alter the results of regression analysis.
5. Another source of heteroscedasticity arises when there are specification errors in the regression model. Very often, heteroscedasticity may be due to the fact that some important variables are omitted from the model. Thus, in the demand function for a commodity, if we do not include the prices of commodities complementary to or competing with the commodity in question (the omitted variable bias), the residuals obtained from the regression may give the distinct impression that the error variance
may not be constant. But if the omitted variables are included in the model, that impression may disappear.
6. Another source of heteroscedasticity is skewness in the distribution of one or more regressors included in the model. Examples are economic variables such as income, wealth, and education. It is well known that the distribution of income and wealth in most societies is uneven, with the bulk of the income and wealth being owned by a few at the top.
7. Other sources of heteroscedasticity: (1) incorrect data transformation (e.g., ratio or first difference transformations) and (2) incorrect functional form (e.g., linear versus loglinear models).

Note that the problem of heteroscedasticity is likely to be more common in crosssectional than in time series data. In cross-sectional data, one usually deals with members of a population at a given point in time, such as individual consumers or their families, firms, industries, or geographical subdivisions such as state, country, city, etc. Moreover, these members may be of different sizes, such as small, medium, or large firms or low, medium, or high income. In time series data, on the other hand, the variables tend to be of similar orders of magnitude because one generally collects the data for the same entity over a period of time. Examples are GNP, consumption expenditure, savings, or employment in India.

### 16.3. OLS Estimation in the Presence of Heteroscedasticity

In case of heteroscedasticity the assumed model is

$$
\begin{gather*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}},  \tag{16.2}\\
\text { with } E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}} \text { and } \operatorname{Var}(\underset{\sim}{\mathbf{u}})=E\left(\underset{\sim}{\mathbf{u}} \mathbf{u}^{\prime}\right)=\mathbf{V}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & & \cdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
\end{gather*}
$$

where $\mathbf{X}$ is taken as a nonstochastic matrix with full column rank,
The OLS estimator of $\boldsymbol{\beta}$ may be expressed as usual as

$$
\underset{\sim}{\underset{\boldsymbol{\beta}}{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{y}}=\underset{\sim}{\boldsymbol{\beta}}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}}
$$

Thus $E(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\underset{\sim}{\boldsymbol{\beta}}$ so that OLS is still unbiased.
The variance-covariance matrix of $\underset{\sim}{\hat{\beta}}$ is given by

$$
\begin{align*}
\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}}) & =E(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})(\underset{\sim}{\hat{\boldsymbol{\beta}}}-\underset{\sim}{\boldsymbol{\beta}})^{\prime} \\
& =\mathrm{E}\left\{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underset{\sim}{\mathbf{u}} \mathbf{u}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right\} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \tag{16.3}
\end{align*}
$$

Thus in the case of heteroscedasticity, the conventional formula

$$
\operatorname{var}(\underset{\sim}{\hat{\boldsymbol{\beta}}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

no longer measures the sampling variances of the OLS estimator, and any application of it is potentially misleading. More importantly, even if one could use Eq. (16.3) to estimate the sampling variances the substitution of these numbers in the conventional $t$ formulas and confidence interval formulas is strictly invalid since the assumptions used in deriving those inference procedures no longer apply. For the same reason the optimal minimum variance property of OLS no longer holds.

Thus in the presence of heteroscedastic disturbances, even though the OLS estimator $\underset{\sim}{\hat{\boldsymbol{\beta}}}$ is unbiased estimator of $\underset{\sim}{\beta}$, it is not the BLUE of $\underset{\sim}{\beta}$. Hence, there is a need to the development of a more appropriate estimator.

### 16.4. Consequences of using OLS in Presence of Heteroscedasticity

The OLS estimators are derived under the assumption of homoscedasticity and hence in the presence of the problem of heteroscedasticity the OLS estimators are not valid due to the following reasons:

1. The OLS estimators are still unbiased and consistent (in case of large sample), but they are not BLUEs that is they are not possessing minimum variance. In other words, though the OLS estimators are unbiased and consistent, they are not efficient (variances are large) in small as well as large samples.
2. In view of (1), the standard errors of the OLS estimates become large and as a consequence the tests of significance are less powerful. Even if we use the formula (16.3) for obtaining the estimators of the variances of $\hat{\beta}_{i}^{\prime} \mathrm{s}$, the standard errors of $\hat{\beta}_{i}^{\prime}$ 's will become large and as a consequence, the tests based on them will be misleading. Therefore, the wrong decisions may be taken regarding the inclusion of the variables in the analysis.
3. When there is the problem of heteroscedasticity and if we mistakenly apply OLS formulae (derived under the assumption of homoscedasticity) for the estimate of the common variance of the disturbances $u_{i}$, viz. $\hat{\sigma}^{2}=\frac{{\underset{\sim}{e}}^{\prime} \underset{\sim}{e}}{(n-k)}$ then $\hat{\sigma}^{2}$ is a biased estimator of $\sigma^{2}$ (when the disturbances are homoscedastic $\hat{\sigma}^{2}$ is unbiased of $\sigma^{2}$ ). The OLS
estimators of the variances of the estimators $\hat{\beta}_{i}^{\prime} \mathrm{s}$ viz., $\operatorname{var}\left(\hat{\beta}_{i}\right)=\hat{\sigma}^{2} a^{i i}$ (where $a^{i i}$ is the
 Hence, $t$ and $F$ tests based on it will be misleading. And as a consequence, the usual $t$ and $F$ test (based on $\hat{\sigma}^{2}$ ) are very much likely to exaggerate the statistical significance of the conventionally estimated parameters.

Thus if we erroneously disregard heteroscedasticity and use the conventional OLS estimators of the variances of the regression coefficients, the $t$ and $F$ tests of significance based on it will be highly misleading because in situations of heteroscedasticity the usual estimator of $\sigma^{2}$, viz.,

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{{\underset{\mathrm{e}}{ }}_{\mathbf{e} \mathbf{e}}^{(n-k)}}{(n-1} \tag{16.4}
\end{equation*}
$$

is no longer unbiased.
Thus in case of heteroscedasticity problem instead of using BLUEs of the regression coefficients (those can be obtained using generalized least squares (GLS) method to the regression equation) if we use OLS estimators mainly we get the above problems:

### 16.5 Self Assessment Questions

1. Explain the problem of heteroscedasticity. What are its sources and consequences?
2. Detail the problem of heteroscedasticity and describe a test procedure for detection of this problem.
3. Explain heteroscedasticity with suitable examples.
4. What is meant by Heteroscedasticity? What are the consequences of using OLS in it's presence?

### 16.6 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

## Lesson 17

## HETEROSCEDASTICITY: DETECTION AND REMEDIES

### 17.0 Objective:

This lesson is continuation of Lesson 16 and after studying this lesson, the student will understand a number of detection methods of heteroscedasticity and some remedies of heteroscedasticity.

## Structure of the Lesson:

### 17.1 Introduction

### 17.2 Detection of heteroscedasticity

### 17.3 Remedies of heteroscedasticity

### 17.4 Self Assessment Questions

### 17.5 References

### 17.1. Introduction

As with multicollinearity, the important practical question is: How does one know that heteroscedasticity is present in a specific situation? Again, as in the case of multicollinearity, there are no hard-and-fast rules for detecting heteroscedasticity, only a few rules of thumb. But this situation is inevitable because $\sigma_{i}^{2}$ can be known only if we have the entire $Y$ population corresponding to the chosen $X^{\prime}$ 's. But such data are an exception rather than the rule in most economic investigations. In this respect the econometrician differs from scientists in fields such as agriculture and biology, where researchers have a good deal of control over their subjects. More often than not, in economic studies there is only one sample $Y$ value corresponding to a particular value of $X$. And there is no way one can know $\sigma_{i}^{2}$ from just one $Y$ observation. Therefore, in most cases involving econometric investigations, heteroscedasticity may be a matter of intuition, educated guesswork, prior empirical experience, or sheer speculation.

With the preceding caveat in mind, let us examine some of the informal and formal methods of detecting heteroscedasticity. As the following discussion will reveal, most of these methods are based on the examination of the OLS residuals $e_{i}$ since they are the ones we observe, and not the disturbances $u_{i}$. One hopes that they are good estimates of $u_{i}$, a hope that may be fulfilled if the sample size is fairly large.

As we have seen, heteroscedasticity does not destroy the unbiasedness and consistency properties of the OLS estimators, but they are no longer efficient, not even asymptotically (i.e., large sample size). This lack of efficiency makes the usual hypothesistesting procedure of dubious value. Therefore, remedial measures may be called for. There are two approaches to remediation: when $\sigma_{i}^{2}$ is known and when $\sigma_{i}^{2}$ is not known.

### 17.2. Detection of Heteroscedasticity

For detection of heteroscedasticity, we have several methods which are given below.

1. Park test
2. Glejser's test
3. Spearman's rank correlation test
4. Gold field-Quandt Test
5. Breusch-Pagan-Godfrey Test
6. White's General Heteroscedasticity Test
7. A test for homogeneity of variances
8. Bartlet's test for homogeneity of variances

Let us discuss these methods one by one

### 17.2.1. Park test

Park suggested that $\sigma_{i}^{2}$ is some function of the explanatory variable $X_{i}$. The functional form he suggested was

$$
\begin{equation*}
\sigma_{i}^{2}=\sigma^{2} X_{i}^{\beta} e^{v_{i}} \Rightarrow \log \sigma_{i}^{2}=\log \sigma^{2}+\beta \log X_{i}+v_{i} \tag{17.1}
\end{equation*}
$$

where $v_{i}$ is the stochastic disturbance term. Since $\sigma_{i}^{2}$ is generally not known, Park suggests using $e_{i}^{2}$ as a proxy and running the following regression:

$$
\begin{align*}
\log e_{i}^{2} & =\log \sigma^{2}+\beta \log X_{i}+v_{i}  \tag{17.2}\\
& =\alpha+\beta \log X_{i}+v_{i} \quad \text { where } \alpha=\log \sigma^{2}
\end{align*}
$$

If $\beta$ turns out to be statistically significant, it would suggest that heteroscedasticity is present in the data. If it turns out to be insignificant, we may accept the assumption of homoscedasticity. The Park test is thus a two stage procedure. In the first stage we run the OLS regression disregarding the heteroscedasticity question. We obtain $e_{i}^{2}$ from this regression, and then in the second stage we run the regression (17.2).

Although empirically appealing, the Park test has some problems. Goldfeld and Quandt have argued that the error term $v_{i}$ entering into (17.2) may not satisfy the OLS assumptions and may itself be heteroscedastic. Nonetheless, as a strictly exploratory method, one may use the Park test.

### 17.2.2 Glejser Test:

The Glejser test is similar in spirit to the Park test. After obtaining the residuals $e_{i}$ from the OLS regression, Glejser suggests regressing the absolute values of $e_{i}$ on the $X$ variable that is thought to be closely associated with $\sigma_{i}^{2}$. In his experiments, Glejser used the following functional forms:

$$
\left\lvert\, \begin{align*}
& \left|e_{i}\right|=\beta_{1}+\beta_{2} X_{i}+v_{i}  \tag{17.3}\\
& \left|e_{i}\right|=\beta_{1}+\beta_{2} \sqrt{X_{i}}+v_{i} \\
& \left|e_{i}\right|=\beta_{1}+\beta_{2} \frac{1}{X_{i}}+v_{i} \\
& \left|e_{i}\right|=\beta_{1}+\beta_{2} \frac{1}{\sqrt{X_{i}}}+v_{i} \\
& \left|e_{i}\right|=\sqrt{\beta_{1}+\beta_{2} X_{i}}+v_{i} \\
& \left|e_{i}\right|=\sqrt{\beta_{1}+\beta_{2} X_{i}^{2}}+v_{i}
\end{align*}\right.
$$

where $v_{i}$ is the error term.
Again as an empirical or practical matter, one may use the Glejser approach. But Goldfeld and Quandt point out that the error term $v_{i}$ has some problems in that its expected value is nonzero, it is serially correlated, and ironically it is heteroscedastic. An additional difficulty with the Glejser method is that models such as

$$
\begin{equation*}
\left|e_{i}\right|=\sqrt{\beta_{1}+\beta_{2} X_{i}}+v_{i} \text { and }\left|e_{i}\right|=\sqrt{\beta_{1}+\beta_{2} X_{i}^{2}}+v_{i} \tag{17.4}
\end{equation*}
$$

are nonlinear in the parameters and therefore cannot be estimated with the usual OLS procedure.

Glejser has found that for large samples the first four of the preceding models give generally satisfactory results in detecting heteroscedasticity. As a practical matter, therefore, the Glejser technique may be used for large samples and may be used in the small samples strictly as a qualitative device to learn something about heteroscedasticity.

### 17.2.3. Spearman's Rank Correlation Test:

We define the Spearman's rank correlation coefficient as

$$
\begin{equation*}
r_{s}=1-6 \sum_{i=1}^{n} d_{i}^{2} /[n(n-1)] \tag{17.5}
\end{equation*}
$$

where $d_{i}=$ difference in the ranks assigned to two different characteristics of the $i^{\text {th }}$ individual or phenomenon and $n=$ number of individuals or phenomena ranked. The preceding rank correlation coefficient can be used to detect heteroscedasticity as follows:

Assume $\left|Y_{i}\right|=\beta_{0}+\beta_{1} X_{i}+u_{i}$
Step 1. Fit the regression to the data on $Y$ and $X$ and obtain the residuals $e_{i}$.
Step 2. Ignoring the sign of $e_{i}$, that is, taking their absolute value $\left|e_{i}\right|$, rank both $\left|e_{i}\right|$ and $X_{i}$ (or $\hat{Y}_{i}$ ) according to an ascending or descending order and compute the Spearman's rank correlation coefficient $r_{s}$ given in Eq. (17.5).
Step 3. Assuming that the population rank correlation coefficient $\rho_{\mathrm{s}}$ is zero and $n>8$, the significance of the sample $r_{s}$ can be tested by the $t$ test as follows:

$$
\begin{equation*}
t=\frac{r_{s} \sqrt{n-2}}{\sqrt{1-r_{s}^{2}}} \tag{17.6}
\end{equation*}
$$

If the computed $t$ value exceeds the critical $\boldsymbol{t}$ value at the chosen level of significance with d.f. $=n-2$, we may accept the hypothesis of heteroscedasticity; otherwise we may reject it. If the regression model involves more than one $X$ variable, $r_{s}$ can be computed between $\left|e_{i}\right|$ and each of the $X$ variables separately and can be tested for statistical significance by the $t$ test given in Eq. (17.6).

### 17.2.4. Goldfeld-Quandt Test:

This popular method is applicable if one assumes that the heteroscedastic variance $\sigma_{i}^{2}$ is positively related to one of the explanatory variables in the regression model. For simplicity, consider the usual two-variable model:

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i} \tag{17.7}
\end{equation*}
$$

Suppose $\sigma_{i}^{2}$ is positively related to $X_{i}$ as

$$
\begin{equation*}
\sigma_{i}^{2}=\sigma^{2} X_{i}^{2} \tag{17.8}
\end{equation*}
$$

where $\sigma^{2}$ is a constant.. Assumption (17.8) postulates that $\sigma_{i}^{2}$ is proportional to the square of the $X$ variable. Such an assumption has been found quite useful in the study of family budgets.

If Eq. (17.8) is appropriate, it would mean $\sigma_{i}^{2}$ would be larger, the larger the values of $X_{i}$. If that turns out to be the case, heteroscedasticity is most likely to be present in the model. To test this explicitly, Goldfeld and Quandt suggest the following steps:

Step 1. Order or rank the observations according to the values of $X_{i}$, beginning with the lowest $X$ value.

Step 2. Omit $c$ central observations, where $c$ is specified a priori, and divide the remaining ( $\mathrm{n}-\mathrm{c}$ ) observations into two groups each of $(\mathrm{n}-\mathrm{c}) / 2$ observations.

Step 3. Fit separate OLS regressions to the first ( $\mathrm{n}-\mathrm{c}$ )/2 observations and the last ( $\mathrm{n}-\mathrm{c}$ ) $/ 2$ observations, and obtain the respective residual sums of squares $\mathrm{RSS}_{1}$ and $\mathrm{RSS}_{2}, \mathrm{RSS}_{1}$ representing the RSS from the regression corresponding to the smaller $X_{i}$ values (the small variance group) and $\mathrm{RSS}_{2}$ that from the larger $X_{i}$ values (the large variance group). These RSS each have

$$
\begin{equation*}
\frac{(n-c)}{2}-k \text { or }\left(\frac{n-c-2 k}{2}\right) \text { d.f. } \tag{17.9}
\end{equation*}
$$

where $k$ is the number of parameters to be estimated, including the intercept. For the twovariable case $k$ is of course 2.

Step 4. Compute the ratio

$$
\begin{equation*}
F=\frac{\mathrm{RSS}_{2} / \mathrm{df}}{\mathrm{RSS}_{1} / \mathrm{df}} \tag{17.10}
\end{equation*}
$$

If $u_{i}$ are assumed to be normally distributed (which we usually do), and if the assumption of homoscedasticity is valid, then it can be shown that the computed $F$ follows the $F$-distribution with numerator and denominator d.f. each of $(n-c-2 k) / 2$.

If in an application the computed $F$ is greater than the critical F at the chosen level of significance, we can reject the hypothesis of homoscedasticity, that is, we can say that heteroscedasticity is very likely.

The ability of the Goldfeld-Quandt test to do this successfully depends on how $c$ is chosen. The power will be low if $c$ is too large, so that $R S S_{1}$ and $R S S_{2}$ have very few degrees of freedom. However, if $c$ is too small, the power will also be low, since any contrast between $R S S_{1}$ and $R S S_{2}$ is reduced. A rough guide is to set $c$ at approximately $n / 3$. For the twovariable model the Monte Carlo experiments done by Goldfeld and Quandt suggest that $c$ is about 8 if the sample size is about 30 , and it is about 16 if the sample size is about 60 .

Before moving on, it may be noted that in case there is more than one $X$ variable in the model, the ranking of observations, the first step in the test, can be done according to any one of them. Thus in the model: $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\beta_{4} X_{4 i}+u_{i}$, we can rank or order the data according to any one of these $X$ 's. If a priori we are not sure which $X$ variable is appropriate, we can conduct the test on each of the $X$ variables, or via a Park test, in turn, on each $X$.

### 17.2.5. Breusch-Pagan-Godfrey (BPG) Test:

The success of the Goldfeld-Quandt test depends not only on the value of $c$ (the number of central observations to be omitted) but also on identifying the correct $X$ variable with which to order the observations. This limitation of this test can be avoided if we consider the Breusch-Pagan-Godfrey (BPG) test.

To illustrate this test, consider the $k$-variable linear regression model

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+u_{i}, \quad i=1,2, \ldots, n \tag{17.11}
\end{equation*}
$$

Assume that the error variance $\sigma_{i}^{2}$ is described as

$$
\begin{equation*}
\sigma_{i}^{2}=f\left(\alpha_{1}+\alpha_{2} Z_{2 i}+\cdots+\alpha_{m} Z_{m i}\right), i=1,2, \ldots, n \tag{17.12}
\end{equation*}
$$

that is, $\sigma_{i}^{2}$ is some function of the nonstochastic variables $Z^{\prime} \mathrm{s}$; some or all of the $X^{\prime}$ 's can serve as $Z$ 's. Specifically, assume that

$$
\begin{equation*}
\sigma_{i}^{2}=\alpha_{1}+\alpha_{2} Z_{2 i}+\cdots+\alpha_{m} Z_{m i}, \quad i=1,2, \ldots, n \tag{17.13}
\end{equation*}
$$

that is, $\sigma_{i}^{2}$ is a linear function of the $Z^{\prime}$ 's. If $\alpha_{2}=\alpha_{3}=\cdots=\alpha_{m}=0, \sigma_{i}^{2}=\alpha_{1}$, which is a constant. Therefore, to test whether $\sigma_{i}^{2}$ is homoscedastic, one can test the hypothesis that $H_{0}: \alpha_{2}=\alpha_{3}=\cdots=\alpha_{m}=0$.

This is the basic idea behind the BPG test. The actual test procedure is as follows.
Step 1. Estimate (17.11) by OLS and obtain the residuals $e_{1}, e_{2}, \ldots, e_{n}$.
Step 2. Obtain the maximum likelihood (ML) estimator of $\sigma^{2}$ given by $\tilde{\sigma}^{2}=\sum e_{i}^{2} / n$.

$$
\text { [Note: The OLS estimator is } \left.\sum e_{i}^{2} /(n-k) .\right]
$$

Step 3. Construct an auxiliary variable $p_{i}$ defined as

$$
\begin{equation*}
p_{i}=e_{i}^{2} / \tilde{\sigma}^{2} \tag{17.14}
\end{equation*}
$$

which is simply each residual squared divided by $\tilde{\sigma}^{2}$.
Step 4. Regress $p_{i}$ thus constructed on the $Z$ 's as

$$
p_{i}=\alpha_{1}+\alpha_{2} Z_{2 i}+\cdots+\alpha_{m} Z_{m i}+v_{i}, \mathrm{i}=1,2, \cdots, \mathrm{n}
$$

where $v_{i}$ is the residual term of this regression. Compute

$$
\begin{equation*}
\hat{p}_{i}=\hat{\alpha}_{1}+\hat{\alpha}_{2} Z_{2 i}+\cdots+\hat{\alpha}_{m} Z_{m i} \quad \mathrm{i}=1,2, \cdots, \mathrm{n} \tag{17.15}
\end{equation*}
$$

Step 5. Obtain the ESS (explained sum of squares $=\sum \hat{p}_{i}^{2}-n \bar{p}^{2}$ from Eq. (17.15) and define

$$
\begin{equation*}
\Theta=E S S / 2 \tag{17.16}
\end{equation*}
$$

Assuming $u_{i}$ are normally distributed, one can show that if there is homoscedasticity and if the sample size $n$ increases indefinitely, then

$$
\begin{equation*}
\Theta \sim \chi_{m-1}^{a s y} \tag{17.17}
\end{equation*}
$$

that is, $\Theta$ follows the chi-square distribution with $(m-1)$ degrees of freedom. (Note: asy means asymptotically)

Therefore, if in an application the computed $\Theta$ (obtained in Eq. (17.16)) exceeds the critical $\chi^{2}$ value at the chosen level of significance with $m-1$ d.f., one can reject the hypothesis of homoscedasticity; otherwise one does not reject it.

### 17.2.6. White's General Heteroscedasticity Test:

Unlike the Goldfeld-Quandt test, which requires reordering the observations with respect to the $X$ variable that supposedly caused heteroscedasticity, or the BPG test, which is sensitive to the normality assumption, the general test of heteroscedasticity proposed by White does not rely on the normality assumption and is easy to implement. As an illustration of the basic idea, consider the following three-variable regression model (the generalization to the $k$-variable model is straightforward):

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i} \tag{17.18}
\end{equation*}
$$

The White test procedure as follows:
Step 1. Based on the given the data, we estimate the model (17.18) and obtain the residuals, $e_{i}$.

Step 2. We then run the following (auxiliary) regression:

$$
\begin{equation*}
e_{i}=\alpha_{1}+\alpha_{2} X_{2 i}+\alpha_{3} X_{3 i}+\alpha_{4} X_{2 i}^{2}+\alpha_{5} X_{3 i}^{2}+\alpha_{6} X_{2 i} X_{3 i}+v_{i} \tag{17.19}
\end{equation*}
$$

That is, the squared residuals from the original regression are regressed on the original $X$ variables or regressors, their squared values, and the cross product(s) of the regressors. Higher powers of regressors can also be introduced. Note that there is a constant term in this equation even though the original regression may or may not contain it. Obtain the $R^{2}$ from this (auxiliary) regression.

Step 3. Under the null hypothesis that there is no heteroscedasticity, it can be shown that sample size ( $n$ ) times the $R^{2}$ obtained from the auxiliary regression asymptotically follows the chi-square distribution with d.f. equal to the number of regressors (excluding the constant term) in the auxiliary regression. That is,

$$
\begin{equation*}
n R_{\text {asy }}^{2} \chi_{\mathrm{df}}^{2} \tag{17.20}
\end{equation*}
$$

where d.f. is as defined previously. In our example, the d.f. is 5 since there are 5 regressors in the auxiliary regression.

Step 4. If the chi-square value obtained in Eq. (17.20) exceeds the critical chi-square value at the chosen level of significance, the conclusion is that there is heteroscedasticity. If it does not exceed the critical chi-square value, there is no heteroscedasticity, which is to say that in the auxiliary regression Eq. (17.19), $\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=\alpha_{6}=0$.

A comment with regard to the White test is, if a model has several regressors, then introducing all the regressors, their squared (or higher powered) terms, and their cross products can quickly consume degrees of freedom. Therefore, one must use caution in using the test.

### 17.2.7. A test for homogeneity of variances:

If we have plentiful cross-section data we may apply this standard test for homogeneous variances to the $Y$ data. If we split the data on endogenous variable $Y$ in to $m$ classes according to the size of $Y$ and compute

## Centre for Distance Education $\quad 17.8 \quad$ Acharya Nagarjuna University

$$
\begin{equation*}
\lambda=\prod_{i=1}^{m} \frac{\left(s_{i} / n_{i}\right)^{n_{i} / 2}}{\left(\sum_{i=1}^{n} s_{i} / \sum_{i=1}^{n} n_{i}\right)^{\sum_{i=1}^{n} n_{i} / 2}} \tag{17.23}
\end{equation*}
$$

where $n_{i}=$ number of observations in $\mathrm{i}^{\text {th }}$ class

$$
\begin{equation*}
s_{i}=\sum_{j=1}^{n}\left(Y_{i j}-\bar{Y}_{i}\right)^{2} \tag{17.24}
\end{equation*}
$$

Now under $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\ldots=\sigma_{m}^{2}=\sigma^{2}$

$$
\begin{align*}
& \mu=-2 \log _{e} \lambda \sim \chi_{m-1}^{2}  \tag{17.25}\\
& \text { and } \mu=-2 \log _{e} \lambda=\left(\sum_{i=1}^{n} n_{i}\right) \log _{e}\left(\sum_{i=1}^{n} s_{i} / \sum_{i=1}^{n} n_{i}\right)-\sum_{i=1}^{m}\left(n_{i} \log _{e}\left(s_{i} / n_{i}\right)\right)
\end{align*}
$$

Then under the assumption of homogeneous variances, if calculated $\mu$ is greater than the table $\chi^{2}$ value at given level of significance with $m-1$ d.f. then we may conclude that there is a problem of heteroscedasticity.

### 17.2.8. Bartlet's test for homogeneity of variances:

It is a slightly modified and powerful of the above test and is given below:

$$
\begin{aligned}
& A=f \log _{e}\left(\sum_{i=1}^{m} s_{i} / \sum_{i=1}^{m} f_{i}\right)-\sum_{i=1}^{m}\left(f_{i} \log _{e}\left(s_{i} / f_{i}\right)\right) \\
& B=1+\frac{1}{3(m-1)}\left(\sum_{i=1}^{m} \frac{1}{f_{i}}-\frac{1}{f}\right)
\end{aligned}
$$

where $f_{i}=n_{i}-1, \mathrm{i}=1,2, \ldots, \mathrm{~m} \quad \mathrm{f}=\sum_{i=1}^{m} f_{i}$
Under $H_{0}$ : homoscedasticity variances

$$
\begin{equation*}
\frac{A}{B} \sim \chi_{m-1}^{2}(\text { approximately }) \tag{17.26}
\end{equation*}
$$

If $A / B$ greater than $\chi^{2}$ table value at $5 \%$ level of significance with $\mathrm{m}-1$ d.f., then there is a problem of heteroscedasticity.

## IIlustration 17.1:

The following table gives Per capita personal consumption expenditure $(Y)$ and per capita disposable personal income $(X)$ (in dollars) for the United States, 1970-1984, collected from 20 families. The data is arranged with respect to the order of per capita disposable personal
income $(X)$. Using this data, examine for the presence of heteroscedasticity using GoldfeldQuandt test.

Table 17.1

| Family no. | $Y$ (Expenditure) | $\begin{gathered} X \\ \text { (Income) } \end{gathered}$ | Family no. | $Y$ (Expenditure) | $\begin{gathered} \hline X \\ \text { (Income) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.1 | 6.2 | 11 | 25.5 | 26.1 |
| 2 | 8.0 | 8.1 | 12 | 25.0 | 28.3 |
| 3 | 10.3 | 10.3 | 13 | 29.3 | 30.1 |
| 4 | 12.1 | 12.1 | 14 | 31.2 | 32.3 |
| 5 | 13.1 | 14.1 | 15 | 33.1 | 34.5 |
| 6 | 14.8 | 16.4 | 16 | 31.8 | 36.6 |
| 7 | 17.9 | 18.2 | 17 | 33.5 | 38.0 |
| 8 | 19.8 | 20.1 | 18 | 38.8 | 40.2 |
| 9 | 19.9 | 22.3 | 19 | 40.7 | 42.3 |
| 10 | 21.6 | 24.1 | 20 | 38.6 | 44.7 |

Source: Introduction to Econometrics, Third Edition, G.S.MADDALA, $3^{\text {rd }}$ Edition, John Wiley \& Sons Ltd, p. 200.

## Solution:

As suggested in the Goldfeld-Quandt test, let us omit the central $c=4\left(9^{\text {th }}\right.$ to $\left.12^{\text {th }}\right)$ observations and treat the sample pertaining to first 8 families as LOWER sample and the sample pertaining to last 8 families as UPPER sample.
In the first step let us obtain the OLS regressions for lower and upper samples separately as shown below.

| Lower Sample |  |  | Upper Sample |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Family no. | $\begin{gathered} Y \\ \text { (Expenditure) } \end{gathered}$ | X (Income) | Family no. | Y <br> (Expenditure) | X (Income) |
| 1 | 6.1 | 6.2 | 13 | 29.3 | 30.1 |
| 2 | 8.0 | 8.1 | 14 | 31.2 | 32.3 |
| 3 | 10.3 | 10.3 | 15 | 33.1 | 34.5 |
| 4 | 12.1 | 12.1 | 16 | 31.8 | 36.6 |
| 5 | 13.1 | 14.1 | 17 | 33.5 | 38.0 |
| 6 | 14.8 | 16.4 | 18 | 38.8 | 40.2 |
| 7 | 17.9 | 18.2 | 19 | 40.7 | 42.3 |
| 8 | 19.8 | 20.1 | 20 | 38.6 | 44.7 |
| From the Lower sample we have$\begin{aligned} \bar{X} & =13.20 \\ \bar{Y} & =12.7625 \end{aligned}$ |  |  | $\begin{aligned} & \hline \text { From the U } \\ & \bar{X}=37 \\ & \bar{Y}=34 \end{aligned}$ | per sample we 375 $6250$ |  |
| $\sum X^{2}=1561$ |  |  | $\sum X^{2}=11327$ |  |  |
| $\sum Y^{2}=1457$ |  |  | $\sum Y^{2}=9713$ |  |  |


| Centre for Distance Education | 17.10 | Acharya Nagarjuna University |
| :--- | :--- | :--- |


| $\sum_{\hat{\beta}} X Y=1507$ | $\sum X Y=10475$ |
| :--- | :--- |
| $\hat{\alpha}=0.9539$ | $\hat{\beta}=0.7641$ |
| Regression equation: | $\hat{\alpha}=6.0938$ |
| $\hat{Y}=0.1715+0.9539 X$ | Regression equation: |

In the second step we compute RSS's for lower and upper samples as shown below.

| Lower Sample |  |  | Upper Sample |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $Y$ | $\hat{Y}$ | $e_{i}$ | $Y$ | $\hat{Y}$ | $e_{i}$ |
| 6.1 | 6.1808 | -0.0808 | 29.3 | 29.0945 | 0.2055 |
| 8.0 | 7.8978 | 0.1022 | 31.2 | 30.7756 | 0.4244 |
| 10.3 | 9.9963 | 0.3037 | 33.1 | 32.4567 | 0.6433 |
| 12.1 | 11.7132 | 0.3868 | 31.8 | 34.0614 | -2.2614 |
| 13.1 | 13.6210 | -0.5210 | 33.5 | 35.1313 | -1.6312 |
| 14.8 | 15.8149 | -1.0149 | 38.8 | 36.8124 | 1.9876 |
| 17.9 | 17.5318 | 0.3682 | 40.7 | 38.4171 | 2.2829 |
| 19.8 | 19.3442 | 0.4558 | 38.6 | 40.2510 | -1.6510 |
|  | Total | 0.0000 |  | Total |  |
| 0.0001 |  |  |  |  |  |
| $\mathrm{RSS}_{1}=\sum \mathrm{e}_{\mathrm{i}}^{2}=1.9035$ |  | $\mathrm{RSS}_{2}=\sum \mathrm{e}_{\mathrm{i}}^{2}=20.2995$ |  |  |  |

Now, from Eq. (17.10), the F-ratio of Goldfeld-Quandt test is computed as

$$
\begin{aligned}
& F=\frac{\mathrm{R} \mathrm{~S} \mathrm{~S}_{2} / \text { d.f. }}{\mathrm{R} \mathrm{~S} \mathrm{~S}_{1} / \text { d.f. }} \quad \text { where d.f. }=\left(\frac{n-c}{2}\right)-k=\frac{20-4}{2}-2=8-2=6 \\
& F=\frac{20.2995 / 6}{1.9035 / 6}=10.6643
\end{aligned}
$$

The critical F-values from the F-tables are $F_{6,6}=4.28$ at $5 \%$ l.o.s. and $F_{6,6}=8.47$ at $1 \%$ l.o.s.

## Conclusion drawn:

Since, the calculated F-ratio exceeds the critical F-values at both $5 \%$ and $1 \%$ I.o.s., we conclude that there is evidence of heteroscedasticity in the given data.

Note: The student is advised to examine for the presence of heteroscedasticity for the above given example using other tests viz., Park test, Glejser test, Spearman's rank correlation test, and BPG test and see whether same conclusion is drawn or not.

### 17.3 Remedies of Heteroscedasticity

1. When $\sigma_{i}^{2}$ is Known: The Method of Weighted Least Squares
2. When $\sigma_{i}^{2}$ is Not Known
a. Generalized Lest Square Method
b. Log Transformation

### 17.3.1. When $\sigma_{i}^{2}$ is Known: The Method of Weighted Least Squares

If $\sigma_{i}^{2}$ is known, the most straightforward method of correcting heteroscedasticity is by means of weighted least squares, for the estimators thus obtained are BLUE.
To illustrate the method, we use the two-variable model $Y=\beta_{1}+\beta_{2} X_{i}+u_{i}$. The unweighted least-squares method minimizes

$$
\begin{equation*}
\sum \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right)^{2} \tag{17.27}
\end{equation*}
$$

to obtain the estimates, whereas the weighted least-squares method minimizes the weighted residual sum of squares:

$$
\begin{equation*}
\sum w_{i} \hat{u}_{i}^{2}=\sum w_{i}\left(Y_{i}-\hat{\beta}_{1}^{*}-\hat{\beta}_{2}^{*} X_{i}\right)^{2} \tag{17.28}
\end{equation*}
$$

where $\hat{\beta}_{1}^{*}$ and $\hat{\beta}_{2}^{*}$ are the weighted least-squares estimators and where the weights $w_{i}$ are such that

$$
\begin{equation*}
w_{i}=\frac{1}{\sigma_{i}^{2}} \tag{17.29}
\end{equation*}
$$

that is, the weights are inversely proportional to the variance of $u_{i}$ or $Y_{i}$ conditional upon the given $X_{i}$, it being understood that $\operatorname{var}\left(u_{i} / X_{i}\right)=\operatorname{var}\left(Y_{i} / X_{i}\right)=\sigma_{i}^{2}$.
Differentiating Eq. (17.28) with respect to $\hat{\beta}_{1}^{*}$ and $\hat{\beta}_{2}^{*}$, we obtain

$$
\begin{aligned}
& \frac{\partial \sum w_{i} \hat{u}_{i}^{2}}{\partial \hat{\beta}_{1}^{*}}=2 \sum w_{i}\left(Y_{i}-\hat{\beta}_{1}^{*}-\hat{\beta}_{2}^{*} X_{i}\right)(-1) \\
& \frac{\partial \sum w_{i} \hat{u}_{i}^{2}}{\partial \hat{\beta}_{2}^{*}}=2 \sum w_{i}\left(Y_{i}-\hat{\beta}_{1}^{*}-\hat{\beta}_{2}^{*} X_{i}\right)\left(-X_{i}\right)
\end{aligned}
$$

Setting the preceding expressions equal to zero, we obtain the following two normal equations:

$$
\begin{align*}
& \sum w_{i} Y_{i}=\hat{\beta}_{1}^{*} \sum w_{i}+\hat{\beta}_{2}^{*} \sum w_{i} X_{i}  \tag{17.30}\\
& \sum w_{i} X_{i} Y_{i}=\hat{\beta}_{1}^{*} \sum w_{i} X_{i}+\hat{\beta}_{2}^{*} \sum w_{i} X_{i}^{2} \tag{17.31}
\end{align*}
$$

Notice the similarity between these normal equations and the normal equations of the unweighted least squares.
Solving these equations simultaneously, we obtain

$$
\begin{equation*}
\hat{\beta}_{1}^{*}=\bar{Y}^{*}-\hat{\beta}_{2}^{*} X^{*} \tag{17.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\beta}_{2}^{*}=\frac{\left(\sum w_{i} X_{i}\right)\left(\sum w_{i} X_{i} Y_{i}\right)-\left(\sum w_{i} X_{i}\right)\left(\sum w_{i} Y_{i}\right)}{\left(\sum w_{i}\right)\left(\sum w_{i} X_{i}^{2}\right)-\left(\sum w_{i} X_{i}\right)^{2}} \tag{17.33}
\end{equation*}
$$

Note: $\bar{Y}^{*}=\sum w_{i} Y_{i} / \sum w_{i}$ and $X^{*}=\sum w_{i} X_{i} / \sum w_{i}$. As can be readily verified, these weighted means coincide with the usual or unweighted means $\bar{Y}$ and $\bar{X}$ when $w_{i}=w$, a constant, for all $i$.

### 17.3.2. When $\sigma_{i}^{2}$ is Not Known: Generalized Least Squares Method:

As noted earlier, if true $\sigma_{i}^{2}$ are known, we can use the WLS method to obtain BLUE estimators. Since the true $\sigma_{i}^{2}$ are rarely known, is there a way of obtaining consistent (in the statistical sense) estimates of the variances and covariances of OLS estimators even if there is heteroscedasticity? The answer is yes.

When there is a problem of heteroscedasticity we should not apply OLS method for regression analysis, instead that we should apply generalized least squares (GLS) method for regression analysis. The GLS method is as given below:-
In the case of heteroscedasticity, we may rewrite the general linear model as follows:-

$$
\begin{align*}
& Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i} \ldots+\beta_{k} X_{k i}+u_{i} \quad i=1,2, \ldots, n \\
& \text { with } E\left(u_{i}\right)=0, E\left(u_{i} u_{j}\right)=0 \text { if } i \neq j \& E\left(u_{i}^{2}\right)=\sigma_{i}^{2}=\sigma^{2} \lambda_{i} \tag{17.34}
\end{align*}
$$

Where $\sigma^{2}$ is unknown and $\lambda_{i}$ is known, which may be taken any one of the following forms, depending upon the application.
(i) $\lambda_{i}=X_{i}^{2}$
(v) $\lambda_{i}=\left(a_{0}+a_{1} X_{i}\right)^{2}$
(ii) $\lambda_{i}=X_{i}$
(vi) $\lambda_{i}=\left(a_{0}+a_{1} / X_{i}\right)^{2}$
(iii) $\lambda_{i}=1 / X_{i}^{2}$
(vii) $\lambda_{i}=\left(a_{0}+a_{1} \sqrt{X_{i}}\right)^{2}$
(iv) $\lambda_{i}=1 / X_{i}$
(viii) $\lambda_{i}=\left(a_{0}+a_{1} / \sqrt{X_{i}}\right)^{2}$

Here $X$ is an important explanatory variable which is expected to be well associated with the $\operatorname{var}\left(u_{i}\right)$. In the above $a_{0}$ and $a_{1}$ may be obtained by regressing the OLS residuals $e_{i}$ on $X_{i}$ or $X_{i}^{-1}$ or $X_{i}^{1 / 2}$ or $X_{i}^{-1 / 2}$.
The general linear models given in (17.34) can be written in the matrix notation as follows:-

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}}=\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{17.36}
\end{equation*}
$$

With $E(\underset{\sim}{\mathbf{u}})=\underset{\sim}{\mathbf{0}}$ and $\operatorname{var}(\underset{\sim}{\mathbf{u}})=E\left(\underset{\sim}{\mathbf{u}}{\underset{\sim}{u}}^{\prime}\right)=\sigma^{2} \Omega$
When $\Omega=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
Since $\Omega$ is positive definite matrix there exists a nonsingular matrix $\mathbf{P}$ such that

$$
\begin{equation*}
\Omega=\mathbf{P} \mathbf{P}^{\prime} \text { where } \mathbf{P}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda_{n}}\right) \tag{17.37}
\end{equation*}
$$

So that $\mathbf{P}^{-1} \boldsymbol{\Omega}\left(\mathbf{P}^{\prime}\right)^{-1}=\mathbf{I}_{\mathbf{n}}$
Premultiplying (17.36) with $\mathbf{P}^{\mathbf{- 1}}$ we get

$$
\begin{equation*}
{\underset{\sim}{\mathbf{y}}}^{*}=\mathbf{X}^{*} \underset{\sim}{\boldsymbol{\beta}}+\underset{\sim}{\mathbf{u}} \tag{17.38}
\end{equation*}
$$

where ${\underset{\sim}{\mathbf{y}}}^{*}=\mathbf{P}^{-1} \underset{\sim}{\mathbf{y}}, \mathbf{X}^{*}=\mathbf{P}^{-1} X$, and $\underset{\sim}{\mathbf{u}^{*}}=\mathbf{P}^{-1} \underset{\sim}{\mathbf{u}}$
with i. $E\left({\underset{\sim}{u}}_{\mathbf{u}^{*}}\right)=\underset{\sim}{\mathbf{0}}$,

$$
\text { ii. } E\left({\underset{\sim}{u}}_{\mathbf{u}^{*}}^{\mathbf{u}^{* \prime}}\right)=E\left(\mathbf{P}^{-1} \underset{\sim}{\mathbf{u}} \mathbf{u}^{\prime}\left(\mathbf{P}^{\prime}\right)^{-1}\right)=\sigma^{2} \mathbf{P}^{-1} \Omega\left(\mathbf{P}^{\prime}\right)^{-1}=\sigma^{2} I_{n}
$$

$$
(\because \text { from Eqs. }(17.36) \&(17.37))
$$

Thus Eq. (17.38) is now the classical linear model for which we can apply OLS method. The OLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$ in (17.38) is given by

$$
\begin{align*}
\underset{\sim}{\mathbf{b}} & =\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1} \mathbf{X}_{\underset{\sim}{*}}^{\underset{\sim}{\mid}} \\
& =\left(\mathbf{X}^{\prime}\left(P^{\prime}\right)^{-1} \mathbf{P}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{P}^{\prime}\right)^{-1} \mathbf{P}^{-1} \underset{\sim}{\mathbf{y}} \\
& =\left(\mathbf{X}^{\prime}\left(\mathbf{P} \mathbf{P}^{\prime}\right)^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{P} \mathbf{P}^{\prime}\right)^{-1} \underset{\sim}{\mathbf{y}} \\
& =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \underset{\sim}{\mathbf{y}} \tag{17.41}
\end{align*}
$$

which is called the GLS estimator of $\underset{\sim}{\boldsymbol{\beta}}$ of the model (17.36), which is also BLUE of $\underset{\sim}{\boldsymbol{\beta}}$ and its minimum variance is given by

$$
\begin{equation*}
\operatorname{var}(\underset{\sim}{b})=\sigma^{2}\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \tag{17.42}
\end{equation*}
$$

An unbiased estimator of $\sigma^{2}$ is given by

$$
\begin{equation*}
\tilde{\sigma}^{2}=\frac{{\underset{\sim}{\mathbf{e}}}^{* \prime} \mathbf{e}^{*}}{(n-k)}=\frac{\mathbf{e}^{\prime} \Omega \underset{\sim}{\mathbf{e}}}{(n-k)} \tag{17.43}
\end{equation*}
$$

where

$$
\begin{aligned}
{\underset{\sim}{\mathbf{e}}}^{*} & ={\underset{\sim}{\mathbf{y}}}^{*}-\mathbf{X}^{*} \underset{\sim}{\mathbf{b}} \quad(\text { using OLS formulae }) \\
& =\mathbf{P}^{-1}(\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\mathbf{b}})=\mathbf{P}^{-1} \underset{\sim}{\mathbf{e}}
\end{aligned}
$$

Here ${\underset{\sim}{e}}^{*}$ is OLS residual vector of (17.38)
and $\underset{\sim}{\mathbf{e}}$ is $G L S$ residual vector of (17.36)
Thus GLS estimator $(\underset{\sim}{\mathbf{b}})$ of $\underset{\sim}{\boldsymbol{\beta}}$ for model can be obtained by applying OLS method to the model (17.38).

The GLS estimator, thus, can be computed form (17.41) for a given $\Omega$ and standard errors of the estimates can be obtained using (17.42) \& (17.43) so that the usual significance tests and confidence intervals can be constructed for $\beta_{i}$ 's .

Thus applying GLS method to the original data is equivalent to applying OLS method to the transformed data (where the type of transformation depends upon the nature of heteroscedasticity given in Eq. (17.35)).

### 17.3.3. Log Transformation:

If instead of running the regression (17.34) we can run the regression equation.

$$
\begin{equation*}
\log Y_{i}=\beta_{1}+\beta_{2} \log X_{2 i}+\beta_{3} \log X_{3 i}+\ldots+\beta_{k} \log X_{k i}+u_{i} \tag{17.44}
\end{equation*}
$$

Very often this model reduce the problem of heteroscedasticity. This is because log transformation compresses the scales in which the variables are measured. There by reducing a tenfold difference between two values to a two fold difference. Thus, the number 80 is 10 times of $8, \log _{\mathrm{e}} 80(=4.382)$ is only twice as range as $\log _{\mathrm{e}} 8(=2.0794)$.

An additional advantage of the log-transformation is that the slope coefficients $\beta_{\mathrm{i}}^{\prime}$ 's measure the elasticities of $Y$ with respect to $X_{l}$, explanatory variable that is percentage change in $Y$ for a percentage change in $X_{l}$ for example, if $Y$ is consumption and $X_{2}$ is income, $\beta_{2}$ in (17.34) will measure only the rate of change of mean consumption for a unit change in income, where as $\beta_{1}$ in transformed model (17.44) measures income elasticity.

It is one reason why the log models are quite popular in empirical econometrics. Suppose we want to run the regression function

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \tag{17.45}
\end{equation*}
$$

where $X_{i}=$ Labour productivity from $\mathrm{i}^{\text {th }}$ firm

$$
Y_{i}=\text { Labour compensation for } \mathrm{i}^{\text {th }} \text { firm . }
$$

1. Test for heteroscedasticity using Glejser approach
(form is $\left|e_{i}\right|=a_{0}+a_{1} \sqrt{X_{i}}$ )
2. If heteroscedasticity presents, obtain the estimates of $\beta_{0} \& \beta_{1}$ using GLS method.

## Note :

$$
\begin{equation*}
\text { If } Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \text { and } \operatorname{var}\left(u_{i}\right)=\sigma^{2} \lambda_{i} \tag{17.46}
\end{equation*}
$$

Then transform the above model by dividing it with $\sqrt{\lambda_{i}}$ which results into the model

$$
\begin{equation*}
Y_{i}^{*}=\beta_{0} z_{0 i}+\beta_{1} z_{1 i}+v_{i} \tag{17.47}
\end{equation*}
$$

Where

$$
\begin{aligned}
& Y_{i}^{*}=Y_{i} / \sqrt{\lambda_{i}} \\
& z_{0 i}=1 / \sqrt{\lambda_{i}} \\
& z_{1 i}=X_{i} / \sqrt{\lambda_{i}} \\
& v_{i}=u_{i} / \sqrt{\lambda_{i}}
\end{aligned}
$$

Now $\operatorname{var}\left(v_{i}\right)=\operatorname{var}\left(u_{i} / \sqrt{\lambda_{i}}\right)=\frac{v \operatorname{ar}\left(u_{i}\right)}{\lambda_{i}}=\sigma^{2}$
Now applying GLS (WLS) method to model (17.46) equivalent to applying OLS method to model (17.47), which is optimum in practical situation.

## REMARKS:

1. Documenting the consequences of heteroscedasticity is easier than detecting it. There are several diagnostic tests available, but one cannot tell for sure which will work in a given situation.
2. Even if heteroscedasticity is suspected and detected, it is not easy to correct the problem. If the sample is large, one can obtain White's heteroscedasticity corrected standard errors of OLS estimators and conduct statistical inference based on these standard errors.
3. Otherwise, on the basis of OLS residuals, one can make educated guesses of the likely pattern of heteroscedasticity and transform the original data in such a way that in the transformed data there is no heteroscedasticity.
4. We emphasize that all the transformations discussed previously are ad hoc; we are essentially speculating about the nature of $\sigma_{i}^{2}$. Which of the transformations discussed previously will work will depend on the nature of the problem and the severity of heteroscedasticity. There are some additional problems with the transformations we have considered that should be borne in mind:
i). When we go beyond the two-variable model, we may not know a priori which of the $X$ variables should be chosen for transforming the data.
ii). Log transformation as discussed in section 17.3 is not applicable if some of the $Y$ and $X$ values are zero or negative.
iii). When $\sigma_{i}^{2}$ are not directly known and are estimated from one or more of the transformations that we have discussed earlier, all our testing procedures using the $t$ tests, $F$ tests, etc., are strictly speaking valid only in large samples. Therefore, one has to be careful in interpreting the results based on the various transformations in small or finite samples.

### 17.4 Self Assessment Questions

1. Explain various detection methods of heteroscedasticity.
2. Explain Park test for detecting the heteroscedasticity.
3. Explain Glejser's test for detecting the heteroscedasticity.
4. Describe Spearman rank correlation test for detecting the heteroscedasticity.
5. Describe Gold-field test for detecting the heteroscedasticity.
6. Explain Breusch-Pagan-Godfrey (BPG) test for detecting the heteroscedasticity.
7. Explain White's test for detecting the heteroscedasticity.
8. Explain Bartlett's test for testing the homogeneity of variances.
9. Detail the problem of heteroscedasticity and describe a test procedure for detection of this problem.
10. Explain the method of weighted least squares.
11. Distinguish between weighted least squares method and ordinary least squares method.
12. Derive the weighted least squares estimators of the parameters of a linear model with heteroscedastic disturbances.

| Centre for Distance Education | 17.16 | Acharya Nagarjuna University |
| :--- | :--- | :--- |

13. Distinguish between weighted least squares method and ordinary least squares method.
14. Derive the weighted least squares estimators in a linear model with heteroscedastic disturbances.
15. Derive the generalized least squares estimators in a linear model with heteroscedastic disturbances.
16. Distinguish between weighted least squares method and generalized least squares method.

### 17.5 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

Lesson 18

# AUTO CORRELATION - NATURE, SOURCES AND CONSEQUENCES 

### 18.0 Objective:


#### Abstract

In Lesson 16 we considered the consequences of relaxing the assumption that the disturbance (error) terms have common variance (homoscedasticity). We now come to the next assumption that the disturbance terms in the regression model are independent. This lesson relaxes this assumption, which means the disturbances are correlated. The objective of this lesson is to discuss the nature, sources and consequences of correlated disturbances.


## Structure of the Lesson:

### 18.1 Introduction

### 18.2 The nature and sources of autocorrelation

### 18.3 OLS estimation in the presence of autocorrelation

18.4 Consequences of using OLS in the presence of autocorrelation
18.5 Summary and Conclusions
18.6 Self Assessment Questions

### 18.7 References

### 18.1 Introduction

The student may note that there are generally three types of data that are available for empirical analysis: (1) cross section, (2) time series, and (3) combination of cross section and time series, also known as pooled data. In developing the classical linear regression model (CLRM) we made several assumptions. However, we noted that not all these assumptions would hold in every type of data. As a matter of fact, we saw in the previous lessons that the assumption of homoscedasticity, or equal error variance, may not be always tenable in crosssectional data. In other words, cross-sectional data are often plagued by the problem of heteroscedasticity. However, in cross-section studies, data are often collected on the basis of a random sample of cross-sectional units, such as households (in a consumption function analysis) or firms (in an investment study analysis) so that there is no prior reason to believe that the error term pertaining to one household or a firm is correlated with the error term of another household or firm. If by chance such a correlation is observed in cross-sectional units, it is called spatial autocorrelation, that is, correlation in space rather than over time. However, it is important to remember that, in cross-sectional analysis, the ordering of the data must have some logic, or economic interest, to make sense of any determination of whether (spatial) autocorrelation is present or not.

The situation, however, is likely to be very different if we are dealing with time series data, for the observations in such data follow a natural ordering over time so that successive observations are likely to exhibit inter-correlations, especially if the time interval between successive observations is short, such as a day, a week, or a month rather than a year. If you observe stock price indexes, such as the BSE SENSEX or NSE NIFTY over successive days, it is not unusual to find that these indexes move up or down for several days in succession. Obviously, in situations like this, the assumption of no autocorrelation (no serial correlation) in the error terms that underlies the CLRM will be violated.

In this lesson we take a critical look at this assumption with a view to answering the following questions:

1. What is the nature and sources of autocorrelation?
2. What are the theoretical and practical consequences of autocorrelation?

The student will find this lesson is in many ways similar to Lesson 16 on heteroscedasticity in that under both heteroscedasticity and autocorrelation, the usual OLS estimators, although linear, unbiased, and asymptotically (i.e., in large samples) normally distributed, are no longer minimum variance among all linear unbiased estimators. In short, they are not efficient relative to other linear and unbiased estimators. Put differently, they may not be BLUEs. As a result, the usual, $t, F$, and $\chi^{2}$ may not be valid.

### 18.2 The Nature and Sources of Autocorrelation

The term autocorrelation may be defined as "correlation between members of series of observations ordered in time [as in time series data] or space [as in cross-sectional data]". In the regression context, the CLRM assumes that such autocorrelation does not exist in the disturbances $u_{i}$. Symbolically,

$$
E\left(u_{i} u_{j}\right)=0 \text { for all } i \neq j
$$

Put simply, the CLRM assumes that the disturbance term relating to any observation is not influenced by the disturbance term relating to any other observation. For example, if we are dealing with quarterly time series data involving the regression of output on labor and capital inputs and if, say, there is a labour strike affecting output in one quarter, there is no reason to believe that this disruption will be carried over to the next quarter. That is, if output is lower this quarter, there is no reason to expect it to be lower next quarter. Similarly, if we are dealing with cross-sectional data involving the regression of family consumption expenditure on family income, the effect of an increase of one family's income on its consumption expenditure is not expected to affect the consumption expenditure of another family. However, if there is such dependence, we have autocorrelation. Symbolically,

$$
E\left(u_{i} u_{j}\right) \neq 0 \text { for all } i \neq j
$$

In this situation, the disruption caused by a strike this quarter may very well affect output next quarter, or the increases in the consumption expenditure of one family may very well prompt another family to increase its consumption expenditure.

Before we find out why autocorrelation exists, it is essential to clear up some terminological questions. Although it is now a common practice to treat the terms autocorrelation and serial correlation synonymously, some authors prefer to distinguish the two terms. For example, Tintner defines autocorrelation as "lag correlation of a given series with

| Econometrics | 18.3 | Auto Correlation - Nature ..... |
| :--- | :--- | :--- |

itself, lagged by a number of time units," whereas he reserves the term serial correlation to "lag correlation between two different series." Thus, correlation between two time series such as $u_{1}, u_{2}, \ldots, u_{10}$ and $u_{2}, u_{3}, \ldots, u_{11}$, where the former is the latter series lagged by one time period, is autocorrelation, whereas correlation between time series such as $u_{1}, u_{2}, \ldots, u_{10}$ and $v_{2}, v_{3}, \ldots, v_{11}$, where $u$ and $v$ are two different time series, is called serial correlation.

## The following are the reasons or sources of autocorrelation:

1. Inertia. A salient feature of most economic time series is inertia, or sluggishness. As is well known, time series such as GNP, price indexes, production, employment, and unemployment exhibit (business) cycles. Starting at the bottom of the recession, when economic recovery starts, most of these series start moving upward. In this upswing, the value of a series at one point in time is greater than its previous value. Thus there is a "momentum" built into them, and it continues until something happens (e.g., increase in interest rate or taxes or both) to slow them down. Therefore, in regressions involving time series data, successive observations are likely to be interdependent.
2. Specification Bias: Excluded Variables Case. In empirical analysis the researcher often starts with a plausible regression model that may not be the most "perfect" one. After the regression analysis, the researcher does the postmortem to find out whether the results accord with a priori expectations. If not, surgery is begun. For example, the researcher may plot the residuals $e_{i}$ obtained from the fitted regression and may observe the patterns of the plots. These residuals (which are proxies for $u_{i}$ ) may suggest that some variables that were originally members but were not included in the model for a variety of reasons should be included. This is the case of excluded variable specification bias. Often the inclusion of such variables removes the correlation pattern observed among the residuals. For example, suppose we have the following demand model:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{X}_{2 \mathrm{t}}+\beta_{3} \mathrm{X}_{3 \mathrm{t}}+\beta_{4} \mathrm{X}_{4 \mathrm{t}}+\mathrm{u}_{\mathrm{t}} \tag{18.1}
\end{equation*}
$$

where $Y=$ quantity of beef demanded, $X_{2}=$ price of beef, $X_{3}=$ consumer income, $X_{4}=$ price of pork, and $t=$ time. However, for some reason we run the following regression:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{X}_{2 \mathrm{t}}+\beta_{3} \mathrm{X}_{3 \mathrm{t}}+v_{\mathrm{t}} \tag{18.2}
\end{equation*}
$$

Now if model (18.1) is the "correct" model or "true" relation, running model (18.2) is tantamount to letting $v_{\mathrm{t}}=\beta_{4} \mathrm{X}_{4 \mathrm{t}}+u_{t}$. And to the extent the price of pork affects the consumption of beef, the error or disturbance term $v$ will reflect a systematic pattern, thus creating (false) autocorrelation. A simple test of this would be to run both models (18.1) and (18.2) and see whether autocorrelation, if any, observed in model (18.2) disappears when model (18.1) is run. The actual mechanics of detecting autocorrelation will be discussed in next lesson.
3. Specification Bias: Incorrect Functional Form. Suppose the true or correct model in a cost-output study is as follows:

Marginal $\operatorname{cost}_{i}=\beta_{1}+\beta_{2}$ output $_{i}+\beta_{3}$ output $_{i}^{2}+\mathrm{u}_{i}$
but we fit the following model:

The disturbance term $v_{i}$ is, in fact, equal to $\beta_{3}$ output ${ }^{2}+u_{i}$, and hence will catch the systematic effect of the output ${ }^{2}$ term on marginal cost. In this case, $v_{i}$ will reflect autocorrelation because of the use of an incorrect functional form.
4. Cobweb Phenomenon. The supply of many agricultural commodities reflects the so-called Cobweb phenomenon, where supply reacts to price with a lag of one time period because supply decisions take time to implement (the gestation period). Thus, at the beginning of this year's planting of crops, farmers are influenced by the price prevailing last year, so that their supply function is

$$
\begin{equation*}
\text { supply }_{t}=\beta_{1}+\beta_{2} P_{t-1}+u_{t} \tag{18.5}
\end{equation*}
$$

Suppose at the end of period $t$, price $P_{t}$ turns out to be lower than $P_{t-1}$. Therefore, in period $t+1$ farmers may very well decide to produce less than they did in period $t$. Obviously, in this situation the disturbances $u_{t}$ are not expected to be random because if the farmers overproduce in year $t$, they are likely to reduce their production in $t+1$, and so on, leading to a Cobweb pattern.
5. Lags. In a time series regression of consumption expenditure on income, it is not uncommon to find that the consumption expenditure in the current period depends, among other things, on the consumption expenditure of the previous period. That is,

Consumption $_{\mathrm{t}}=\beta_{1}+\beta_{2}$ income $_{t}+\beta_{3}$ consumption $_{t-1}+u_{t}$
A regression such as (18.6) is known as autoregression because one of the explanatory variables is the lagged value of the dependent variable. The rationale for a model such as (18.6) is simple. Consumers do not change their consumption habits readily for psychological, technological, or institutional reasons. Now if we neglect the lagged term in (18.6), the resulting error term will reflect a systematic pattern due to the influence of lagged consumption on current consumption.
6. Manipulation of Data. In empirical analysis, the raw data are often "manipulated". For example, in time series regressions involving quarterly data, such data are usually derived from the monthly data by simply adding three monthly observations and dividing the sum by 3. This averaging introduces smoothness into the data by dampening the fluctuations in the monthly data. Therefore, the graph plotting the quarterly data looks much smoother than the monthly data, and this smoothness may itself lend to a systematic pattern in the disturbances, thereby introducing autocorrelation. Another source of manipulation is interpolation or extrapolation of data. For example, the Census of Population is conducted every 10 years in our country, the last being in 2010 and the one before that in 2000. Now if there is a need to obtain data for some year within the intercensus period2000-2010, the common practice is to interpolate on the basis of some adhoc assumptions. All such data "massaging" techniques might impose upon the data a systematic pattern that might not exist in the original data.
7. Data Transformation. As an example of this, consider the following model

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t} \tag{18.7}
\end{equation*}
$$

where, say, $Y=$ consumption expenditure and $X=$ income. Since Eq. (18.7) holds true at every time period, it holds true also in the previous time period ' $t-1$ '. So, we can write Eq. (18.7) as
Econometrics $18.5 \quad$ Auto Correlation - Nature .....

$$
\begin{equation*}
Y_{t-1}=\beta_{1}+\beta_{2} X_{t-1}+u_{t-1} \tag{18.8}
\end{equation*}
$$

$Y_{t-1}, X_{t-1}$, and $u_{t-1}$ are known as the lagged values of $Y, X$, and $u$, respectively, here lagged by one period. Now if we subtract Eq. (18.8) from Eq. (18.7), we obtain

$$
\begin{equation*}
\Delta Y_{t}=\beta_{2} \Delta X_{t}+\Delta u_{t} \tag{18.9}
\end{equation*}
$$

where $\Delta$, known as the first difference operator, tells us to take successive differences of the variables in question. Thus, $\Delta Y_{t}=Y_{t}-Y_{t-1}, \Delta X_{t}=X_{t}-X_{t-1}$, and $\Delta u_{t}=u_{t}-u_{t-1}$. For empirical purposes, we write(18.9) as

$$
\begin{equation*}
\Delta Y_{t}=\beta_{2} \Delta X_{t}+v_{t} \tag{18.10}
\end{equation*}
$$

where $v_{t}=\Delta u_{t}=\left(u_{t}-u_{t-1}\right)$.
Equation (18.8) is known as the level form and Eq. (18.9) is known as the (first) difference form. Both forms are often used in empirical analysis. For example, if in Eq. (18.8) $Y$ and $X$ represent the logarithms of consumption expenditure and income, then in Eq. (18.9) $\Delta Y$ and $\Delta X$ will represent changes in the logs of consumption expenditure and income. But as we know, a change in the log of a variable is a relative change, or a percentage change, if the former is multiplied by 100 . So, instead of studying relationships between variables in the level form, we may be interested in their relationships in the growth form.

Now if the error term in Eq. (18.7) satisfies the standard OLS assumptions, particularly the assumption of no autocorrelation, it can be shown that the error term $v_{t}$ in Eq. (18.10) is autocorrelated. It may be noted here that models like Eq. (18.10) are known as dynamic regression models, that is, models involving lagged regressand.

The point of the preceding example is that sometimes autocorrelation may be induced as a result of transforming the original model.

### 18.3 OLS Estimation in the presence of Autocorrelation

What happens to the OLS estimators and their variances if we introduce autocorrelation in the disturbances by assuming that $E\left(u_{t} u_{t+s}\right) \neq 0(\mathrm{~s} \neq 0)$ but retain all the other assumptions of the classical model? Note again that we are now using the subscript $t$ on the disturbances to emphasize that we are dealing with time series data.

We revert once again to the two-variable regression model to explain the basic ideas involved, namely, $\mathrm{Y}_{t}=\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{t}}+u_{t}$. To make any headway, we must assume the mechanism that generates $u_{t}$, for $E\left(u_{t} u_{t+s}\right) \neq 0(\mathrm{~s} \neq 0)$ is too general an assumption to be of any practical use. As a starting point, or first approximation, one can assume that the disturbances are generated by the following mechanism

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1 \tag{18.11}
\end{equation*}
$$

where $\rho$ is known as the coefficient of autocovariance and where $\varepsilon_{t}$ is the stochastic disturbance term such that it satisfied the standard OLS assumptions, namely,

$$
\begin{align*}
E\left(\varepsilon_{t}\right) & =0 \\
\operatorname{var}\left(\varepsilon_{t}\right) & =\sigma_{\varepsilon}^{2}  \tag{18.12}\\
\operatorname{cov}\left(\varepsilon_{t} \varepsilon_{t+s}\right) & =0 \quad s \neq 0
\end{align*}
$$

The scheme in Eq. (18.11) is known as Markov first-order autoregressive scheme, or simply a first-order autoregressive scheme, usually denoted as $\operatorname{AR}(1)$. The name autoregressive is appropriate because Eq. (18.11) can be interpreted as the regression of $u_{t}$ on itself lagged one period. It is first order because $u_{t}$ and its immediate past value are involved; that is, the maximum lag is 1 . If the model were $u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\varepsilon_{t}$, it would be an $\operatorname{AR}(2)$, o second-order, autoregressive scheme, and so on. The coefficient of autocovariance $\rho$ in Eq. (18.11), can also be interpreted as the first-order coefficient of autocorrelation, or more accurately, the coefficient of autocorrelation at lag 1.

Given the $\operatorname{AR}(1)$ scheme, it can be shown that

$$
\begin{align*}
& \operatorname{var}\left(u_{t}\right)=E\left(u_{t}^{2}\right)=\frac{\sigma_{\varepsilon}^{2}}{\rho^{2}}  \tag{18.13}\\
& \operatorname{cov}\left(u_{t} u_{t+s}\right)=E\left(u_{t} u_{t-s}\right)=\rho^{s} \frac{\sigma_{\varepsilon}^{2}}{1-\rho^{2}}  \tag{18.14}\\
& \operatorname{cor}\left(u_{t} u_{t+s}\right)=\rho^{s}, \quad \mathrm{~s}=1,2, \ldots \tag{18.15}
\end{align*}
$$

Note that because of the symmetry property of covariances and correlations, $\operatorname{cov}\left(u_{t} u_{t+s}\right)=\operatorname{cov}\left(u_{t} u_{t-s}\right)$ and $\operatorname{cor}\left(u_{t} u_{t+s}\right)=\operatorname{cor}\left(u_{t} u_{t-s}\right)$.

Since $\rho$ is a constant between -1 and +1 , Eq. (18.13) shows that under the $\operatorname{AR}(1)$ scheme, the variance of $u_{t}$ is still homoscedastic, but $u_{t}$ is correlated not only with its immediate past value but its values several periods in the past. It is critical to note that $|\rho|<1$. If, for example $\rho=1$, the variances and covariances listed above are not defined. If $|\rho|<1$, then it is clear from Eq. (18.14) that the value of the covariance will decline as we go into the distant past.

One reason we use the $\operatorname{AR}(1)$ process is not only because of its simplicity compared to higher-order AR schemes, but also because in many applications it has proved to be quite useful. Additionally, a considerable amount of theoretical and empirical work has been done on the $A R(1)$ scheme.

Now return to our two-variable regression model: $\mathrm{Y}_{t}=\beta_{1}+\beta_{2} \mathrm{X}_{\mathrm{t}}+u_{t}$. We know that the OLS estimator of the slope coefficient is

$$
\begin{equation*}
\hat{\beta}_{2}=\frac{\sum x_{t} y_{t}}{\sum x_{t}^{2}}, \quad \text { where } x_{\mathrm{t}}=X_{t}-\bar{X} \text { and } y_{t}=Y_{t}-\bar{Y} \tag{18.16}
\end{equation*}
$$

and its variance is given by

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum x_{i}^{2}} \tag{18.17}
\end{equation*}
$$

Now under the $\operatorname{AR}(1)$ scheme, it can be shown that the variance of this estimator is:

| Econometrics | 18.7 | Auto Correlation - Nature ..... |
| :--- | :--- | :--- |

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}=\frac{\sigma^{2}}{\sum x_{t}^{2}}\left[1+2 \rho \frac{\sum x_{t} x_{t-1}}{\sum x_{t}^{2}}+2 \rho^{2} \frac{\sum x_{t} x_{t-2}}{\sum x_{t}^{2}}+\cdots+2 \rho^{n-1} \frac{\sum x_{1} x_{n}}{\sum x_{t}^{2}}\right] \tag{18.18}
\end{equation*}
$$

where $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$ means the variance of $\hat{\beta}_{2}$ under first-order autoregressive scheme.
A comparison of Eq. (18.18) with Eq. (18.17) shows the former is equal to the latter times a term that depends on $\rho$ as well as the sample autocorrelations between the values taken by the regressor $X$ at various lags. And in general we cannot foretell whether $\operatorname{var}\left(\hat{\beta}_{2}\right)$ is less than or greater than $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$. Of course, if $\rho=0$, the two formulas will coincide. Also, if the correlations among the successive values of the regressor are very small, the usual OLS variance of the slope estimator will not be seriously biased. But, as a general principle, the two variances will not be the same.

To give some idea about the difference between the variances given in Eqs. (18.17) and (18.18), assume that the regressor $X$ also follows the first-order autoregressive scheme with a coefficient of autocorrelation of $r$. Then it can be shown that Eq. (18.18) reduces to:

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R(1)}=\frac{\sigma^{2}}{\sum x_{t}^{2}}\left[\frac{1+r \rho}{1-r \rho}\right]=\operatorname{var}\left(\hat{\beta}_{2}\right)_{O L S}\left[\frac{1+r \rho}{1-r \rho}\right] \tag{18.19}
\end{equation*}
$$

If, for example, $r=0.6$ and $\rho=0.8$, using Eq. (18.19) we can check that $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}=2.8461 \operatorname{var}\left(\hat{\beta}_{2}\right)_{O L S}$.To put it another way, $\operatorname{var}\left(\hat{\beta}_{2}\right)_{O L S}=\frac{1}{2.8461} \operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$ $=0.3513 \mathrm{var}\left(\hat{\beta}_{2}\right)_{A R 1}$. That is, the usual OLS formula [i.e. Eq. (18.17)] will underestimate the variance of $\left(\hat{\beta}_{2}\right)_{A R 1}$ by about 65 percent. The point of this exercise is to warn you that a blind application of the usual OLS formulae to compute the variances and standard errors of the OLS estimators could give seriously misleading results.

Suppose we continue to use the OLS estimator $\hat{\beta}_{2}$ and adjust the usual variance formula by taking into account the $\operatorname{AR}(1)$ scheme. That is, we use $\hat{\beta}_{2}$ given by Eq. (18.16) but use the variance formula given by Eq. (18.18). What now are the properties of $\hat{\beta}_{2}$ ? It is easy to prove that $\hat{\beta}_{2}$ is still linear and unbiased. As a matter of fact, the assumption of no serial correlation, like the assumption of no heteroscedasticity, is not required to prove that $\hat{\beta}_{2}$ is unbiased. Is $\hat{\beta}_{2}$ still BLUE? Unfortunately, it is in the class of linear unbiased estimators, but it does not have minimum variance. In short, $\hat{\beta}_{2}$, although linear unbiased, is not efficient. The student will notice that this finding is quite similar to the finding that $\hat{\beta}_{2}$ is less efficient in the presence of heteroscedasticity. There we saw that the weighted least-square estimator $\hat{\beta}_{2}^{*}$ studied in Section 17.3 of Lesson 17, a special case of the generalized least-squares (GLS) estimator, was efficient. In the case of autocorrelation can we find an estimator that is BLUE? The answer is yes, as can be seen from the discussion in the next lesson.

### 18.4 Consequences of using OLS in the presence of autocorrelation

As in the case of heteroscedasticity, in the presence of autocorrelation the OLS estimators are still linear unbiased as well as consistent and asymptotically normally distributed, but they are no longer efficient (i.e., minimum variance). What then happens to our usual hypothesis testing procedures if we continue to use the OLS estimators? Again, as in the case of heteroscedasticity, we distinguish two cases. We continue to work with the two-variable model, although the following discussion can be extended to multiple regressions without much trouble.

### 18.4.1 OLS estimation allowing for autocorrelation:

As noted, $\hat{\beta}_{2}$ is not BLUE, and even if we use $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$, the confidence intervals derived from there are likely to be wider than those based on the GLS procedure. This result is likely to be the case even if the sample size increases indefinitely. That is, $\hat{\beta}_{2}$ is not asymptotically efficient. The implication of this finding for hypothesis testing is clear: We are likely to declare a coefficient statistically insignificant (i.e., not different from zero) even though in fact (i.e., based on the correct GLS procedure) it may be.
The message is: To establish confidence intervals and to test hypotheses, one should use GLS and not OLS even though the estimators derived from the latter are unbiased and consistent.

### 18.4.2 OLS estimation disregarding autocorrelation:

The situation is potentially very serious if we not only use $\hat{\beta}_{2}$ but also continue to use $\operatorname{var}\left(\hat{\beta}_{2}\right)=\sigma^{2} / \sum x_{t}^{2}$, which completely disregards the problem of autocorrelation, that is, we mistakenly believe that the usual assumptions of the classical model hold true. Errors will arise for the following reasons:

1. The residual variance $\hat{\sigma}^{2}=\sum e_{i}^{2} /(n-2)$ is likely to underestimate the true $\sigma^{2}$.
2. As a result, we are likely to under estimate RSS and hence to overestimate $R^{2}$.
3. Even if $\sigma^{2}$ is not underestimated, $\operatorname{var}\left(\hat{\beta}_{2}\right)$ may underestimate its variance under (firstorder) autocorrelation $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$ [given in Eq. (18.18)].
4. Therefore, the usual $t$ and $F$ tests of significance are no longer valid, and if applied, are likely to give seriously misleading conclusions about the statistical significance of the estimated regression coefficients.
To establish some of these propositions, let us revert to the two-variable model. We know that under the classical assumption

$$
\begin{equation*}
\hat{\sigma}^{2}=\sum e_{i}^{2} /(n-2) \tag{18.20}
\end{equation*}
$$

provides an unbiased estimator of $\sigma^{2}$, that is, $E\left(\hat{\sigma}^{2}\right)=\sigma^{2}$. But, if there is autocorrelation, given by $\operatorname{AR}(1)$, it can be shown that

$$
\begin{equation*}
E\left(\hat{\sigma}^{2}\right)=\frac{\sigma^{2}[n-[2 /(1-\rho)]-2 \rho r]}{n-2} \tag{18.21}
\end{equation*}
$$

where $r=\sum_{t=1}^{n-1} x_{t} x_{t-1} / \sum_{t=1}^{n} x_{t}^{2}$, which can be interpreted as the (sample)correlation coefficient between successive values of the $X$ 's. If $\rho$ and $r$ are both positive (not an unlikely assumption for most economic time series), it is apparent from Eq. (18.21) that $E\left(\hat{\sigma}^{2}\right)<\sigma^{2}$; that is, the usual residual variance formula, on average, will underestimate the true $\sigma^{2}$. In other words, $\hat{\sigma}^{2}$ will be biased downward. Needless to say, this bias in $\sigma^{2}$ will be transmitted to $\operatorname{var}\left(\hat{\beta}_{2}\right)$ because in practice we estimate the latter by the formula $\hat{\sigma}^{2} / \sum x_{i}^{2}$.

But even if $\hat{\sigma}^{2}$ is not underestimated, $\operatorname{var}\left(\hat{\beta}_{2}\right)$ is a biased estimator of $\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1}$, which can be readily seen by comparing Eq. (18.17) with Eq. (18.18),for the two formulas are not the same. As a matter of fact, if $\rho$ is positive (which is true of most economic time series) and the $X$ 's are positively correlated (also true of most economic time series), then it is clear that

$$
\begin{equation*}
\operatorname{var}\left(\hat{\beta}_{2}\right)<\operatorname{var}\left(\hat{\beta}_{2}\right)_{A R 1} \tag{18.22}
\end{equation*}
$$

that is, the usual OLS variance of $\hat{\beta}_{2}$ underestimates its variance under $\operatorname{AR}(1)$ [see Eq. (18.19)]. Therefore, if we use $\operatorname{var}\left(\hat{\beta}_{2}\right)$, we shall inflate the precision or accuracy (i.e., underestimate the standard error) of the estimator $\hat{\beta}_{2}$. As a result, in computing the $t$ ratio as $t=\hat{\beta}_{2} / S E\left(\hat{\beta}_{2}\right)$ (under $\mathrm{H}_{0}: \beta_{2}=0$ ), we shall be overestimating the $t$ value and hence the statistical significance of the estimated $\beta_{2}$. The situation is likely to get worse if additionally $\sigma^{2}$ is underestimated, as noted previously.

### 18.5 SUMMARY AND CONCLUSIONS

1. If the assumption of the classical linear regression model-that the errors or disturbances entering into the model are random or uncorrelated-is violated, the problem of serial or auto correlation arises.
2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of economic time series, specification bias resulting from excluding important variables from the model or using incorrect functional form, the cobweb phenomenon, data massaging, and data transformation.
3. Although in the presence of autocorrelation the OLS estimators remain unbiased, consistent, and asymptotically normally distributed, they are no longer efficient. As a consequence, the usual $t, F$ and $\chi^{2}$ tests cannot be legitimately applied. Hence, remedial measures may be called for and are discussed in the next lesson.

### 18.6 Self Assessment Questions

1. Define the concept of Auto correlation with reference to a two-variable linear model with first order-Auto regression scheme.
2. Distinguish between simple correlation and serial correlation.
3. Define the concept of autocorrelation with reference to a two-variable linear model with first order-autoregressive scheme.
4. Explain Auto-correlation with suitable examples.
5. Explain various sources of auto correlation.
6. Define Auto Correlation. Explain the problem of auto Correlation in two variable linear model.
7. Explain the consequences of autocorrelation if we apply OLS estimation method.
8. Explain the consequences if we apply OLS estimation method disregarding autocorrelation.

### 18.7 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, $A(1973)$ : Theory of Econometrics, Harper \& Row, New York.

## Lesson 19

## AUTOCORRELATION - DETECTION AND REMEDIES

### 19.0 Objective:

This lesson is continuation of Lesson 18 and after studying this lesson, the student will be familiarized with some popular detection methods such as Durbin-Watson d test as well as some remedies of autocorrelation.

Structure of the Lesson:

### 19.1 Introduction

### 19.2 Detection of autocorrelation

19.3 Estimation of relationships with autocorrelated disturbances
19.4 Summary and conclusions
19.5 Self Assessment Questions
19.6 References

### 19.1 Introduction

Recall that the assumption of no autocorrelation of the classical linear regression model (CLRM) relates to the population disturbances $u_{t}$, which are not directly observable. Therefore, how does one know that there is autocorrelation in any given situation? How does one remedy the problem of autocorrelation? Instead of the unobservable disturbances, we have their proxies, the residuals $e_{t} ' s$, which can be obtained by the usual OLS procedure. Although the $e_{t}$ 's are not the same thing as $u_{t}{ }^{\prime} s$, very often a visual examination of the $e_{t}{ }^{\prime} s$ gives us some clues about the likely presence of autocorrelation in the $u$ 's. Actually, a visual examination of $e_{t}{ }^{\prime} s$ or ( $e_{t}^{2} ' s$ ) can provide useful information not only about autocorrelation but also about heteroscedasticity. In Section 19.2, we study some popular methods of the detection of autocorrelation while in Section 19.3, we explain some estimation methods in the presence of autocorrelation. In Section 19.4, we present the brief summary and conclusions.

### 19.2 Detection of Autocorrelation

## 1. Graphical Method

The importance of producing and analyzing plots of [residuals] as a standard part of statistical analysis cannot be overemphasized. Besides occasionally providing an easy to
understand summary of a complex problem, they allow the simultaneous examination of the data as an aggregate while clearly displaying the behavior of individual cases.

There are various ways of examining the residuals. We can simply plot them against time, the time sequence plot. Alternatively, we can plot the standardized residuals against time. The standardized residuals are simply the residuals ( $e_{t}{ }^{\prime} s$ ) divided by the standard error of the regression $(\hat{\sigma})$, that is, they are $\left(e_{t} / \hat{\sigma}\right)$. Notice that the residuals $e_{t}{ }^{\prime} s$ and $\hat{\sigma}$ are measured in the units in which the regress and $Y$ is measured. The values of the standardized residuals will therefore be pure numbers (devoid of units of measurement) and can be compared with the standardized residuals of other regressions. Moreover, the standardized residuals, like $e_{t}$ 's, have zero mean and approximately unit variance. In large samples $\left(e_{t} / \hat{\sigma}\right)$ is approximately normally distributed with zero mean and unit variance.

The graphical method we have just discussed, although powerful and suggestive, is subjective or qualitative in nature. But there are several quantitative tests that one can use to supplement the purely qualitative approach. We now consider some of these tests.

## 2. Durbin-Watson $d$ Test

The most celebrated test for detecting autocorrelation is that developed by statisticians Durbin and Watson. It is popularly known as the Durbin-Watson d statistic, which is computed from the vector of OLS residuals $\underset{\sim}{\mathbf{e}}=\underset{\sim}{\mathbf{y}}-\mathbf{X} \underset{\sim}{\boldsymbol{\beta}}$. It is denoted in the literature variously as d or DW and is defined as

$$
\begin{equation*}
d=\frac{\sum_{i=2}^{n}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{n} e_{t}^{2}} \tag{19.1}
\end{equation*}
$$

which is simply the ratio of the sum of squared differences in successive residuals to the RSS. Note that in the numerator of the $d$ statistic the number of observations is $n-1$ because one observation is lost in taking successive differences. A great advantage of the $d$ statistic is that it is based on the estimated residuals, which are routinely computed in regression analysis. Because of this advantage, it is now a common practice to report the Durbin-Watson $d$ along with summary measures, such as $R^{2}$, adjusted $R^{2}, t$, and $F$. Although it is now routinely used, it is important to note the assumptions underlying the $d$ statistic.

1. The regression model includes the intercept term. If it is not present, as in the case of the regression through the origin, it is essential to rerun the regression including the intercept term to obtain the RSS.
2. The explanatory variables, the $X^{\prime}$ s are nonstochastic, or fixed in repeated sampling.
3. The disturbances $u_{t}$ 's are generated by the first-order autoregressive scheme, $u_{t}=\rho u_{t-1}+\varepsilon_{t}$. Therefore, it cannot be used to detect higher-order autoregressive schemes.
4. The error term $u_{t}$ is assumed to be normally distributed.
5. The regression model does not include the lagged value(s) of the dependent variable as one of the explanatory variables. Thus, the test is inapplicable in autoregressive models.


Figure 19.1 (a): Positive auto correlation


Figure 19.1 (b): Negative auto correlation
The above figures indicate why $d$ might be expected to measure the extent of first-order autocorrelation. The mean of the residuals is zero, so the residuals will be scattered around the horizontal axis. If the $e$ 's are positively auto correlated, successive values will tend to be close to each other, runs above and below the horizontal axis will occur, and the first differences will tend to be numerically smaller than the residuals themselves. Alternatively, if the $e$ 's have a first-order negative autocorrelation, there is a tendency for successive observations to be on opposite sides of the horizontal axis so that first differences tend to be numerically larger than the residuals. Thus $d$ will tend to be "small" for positively auto (serial) correlated $e$ 's and "large" for negatively auto (serial) correlated $e$ 's. If the $e^{\prime}$ s are random, we have an in-between
situation with no tendency for runs above and below the axis or for alternate swings across it and $d$ will take on an intermediate value.

The Durbin-Watson statistic is closely related to the sample first order autocorrelation coefficient of the $e^{\prime} s$. Expanding Eq. (19.1), we have

$$
\begin{equation*}
d=\frac{\sum_{t=2}^{n} e_{t}^{2}+\sum_{t=2}^{n} e_{t-1}^{2}-2 \sum_{t=2}^{n} e_{t} e_{t-1}}{\sum_{t=1}^{n} e_{t}^{2}} \tag{19.2}
\end{equation*}
$$

Since $\sum_{t=2}^{n} e_{t}^{2}$ and $\sum_{t=2}^{n} e_{t-1}^{2}$ differ in only one observation, they are approximately equal to $\sum_{t=1}^{n} e_{t}^{2}$.
Therefore, Eq. (19.2) may be rewritten as

$$
\begin{equation*}
d \simeq 2(1-\hat{\rho}) \tag{19.3}
\end{equation*}
$$

where $\hat{\rho}=\sum_{t=2}^{n} e_{t} e_{t-1} / \sum_{t=1}^{n} e_{t}^{2}$ is the coefficient in the OLS regression of $e_{t}$ on $e_{t-1}$. Ignoring endpoint discrepancies, $\hat{\rho}$ is seen to be the simple correlation coefficient between $e_{t}$ and $e_{t-1}$ and hence, $-1 \leq \hat{\rho} \leq 1$. Thus, Eq. (19.3) implies that $0 \leq d \leq 4$
that is the range of $d$ is from 0 to 4 and as well as we have the following:
$d<2$ for positive autocorrelation of the $e^{\prime}$ s
$d>2$ for negative autocorrelation of the $e^{\prime} \mathrm{s}$
$d=2$ for zero autocorrelation of the $e^{\prime} \mathrm{s}$
It is also apparent from Eq. (19.3) that

- if $\hat{\rho}=0, d \approx 2$; that is, if there is no serial correlation (of the first-order), $d$ is expected to be about 2. Therefore, as a rule of thumb, if $d$ is found to be closer to 2 in an application, one may assume that there is no first-order autocorrelation, either positive or negative.
- If $\hat{\rho}=+1$, indicating perfect positive correlation in the residuals, $d \approx 0$. Therefore, the closer $d$ is to 0 , the greater the evidence of positive autocorrelation.
- If $\hat{\rho}=-1$, that is, there is perfect negative correlation among successive residuals, $d \approx 4$. Hence, the closer $d$ is to 4, the greater the evidence of negative autocorrelation.

The exact sampling or probability distribution of the $d$ statistic given in Eq. (19.1) is difficult to derive because, as Durbin and Watson have shown, it depends in a complicated way on the $\mathbf{X}$ matrix of the given sample. This difficulty should be understandable because $d$ is computed from $e_{t}{ }^{\prime} s$, which are, of course, dependent on the given $\mathbf{X}$ matrix. Therefore, unlike the $t, F$, or $\chi^{2}$ tests, there is no unique critical value that will lead to the rejection or the acceptance of the null hypothesis that there is no first-order autocorrelation in the disturbances $u_{t}$ 's. However, Durbin and Watson were successful in deriving a lower bound $d_{L}$ and an upper bound $d_{U}$ such that if the computed $d$ from Eq. (19.1) lies outside these critical values, a decision can be made regarding the presence of positive or negative auto (serial) correlation.

| Econometrics | 19.5 | Auto Correlation - Detection ..... |
| :--- | :--- | :--- |

Moreover, these limits depend only on the number of observations $n$ and the number of explanatory variables ( $\mathrm{k}-1$ ) and do not depend on the values taken by these explanatory variables. These limits, for $n$ going from 6 to 200 and up to 20 explanatory variables, have been tabulated by Durbin and Watson.

The mechanics of the Durbin-Watson test are as follows, assuming that the assumptions underlying the test are fulfilled:

1. Run the OLS regression for the given data and obtain the residuals.
2. Compute $d$ from Eq. (19.1). (Most computer programs now do this routinely.)
3. For the given sample size and given number of explanatory variables, find out the critical $d_{L}$ and $d_{U}$ values.
4. Now follow the decision rules given below.

The testing procedure is as follows:
Set the null hypothesis $\mathbf{H}_{0}$ : zero auto correlation
If $\mathrm{d}<=\mathbf{2}$ : Set the alternative hypothesis $\mathrm{H}_{1}$ : positive first-order auto correlation

## Decision Rules:

1. If $d<d_{L}$, reject the null hypothesis $\mathrm{H}_{0}$ in favor of the alternative hypothesis of $\mathrm{H}_{1}$.
2. If $d>d_{U}$, do not reject the null hypothesis.
3. If $d_{L}<d<d_{U}$, the test is inconclusive.

If $\mathbf{d} \mathbf{> 2}$ : Set the alternative hypothesis $\mathrm{H}_{1}$ : negative first-order auto correlation Decision Rules: Replace d with 4- d and follow the above decision rules.

Remark: Even when the conditions for the validity of the Durbin-Watson test are satisfied, the inconclusive range is an awkward problem, especially as it becomes fairly large at low degrees of freedom. A conservative practical procedure is to use $d_{U}$ as if it were a conventional critical value and simply reject the null hypothesis if $d<d_{U}$. The consequences of accepting $H_{0}$ when autocorrelation is present are almost certainly more serious than the consequences of incorrectly presuming its presence.

Note: The student is advised to refer any text book on Econometrics for Durbin and Watson d-tables of $d_{L}$ and $d_{U}$ constructed at $1 \%$ and $5 \%$ levels of significance.

## Illustration 19.1

The following table gives data on indexes of real compensation per hour $(\mathrm{Y})$ and output per hour $(X)$ in the business sector of the U.S. economy for the period 1980-1997, the base of the indexes being $1992=100$. For this data examine for the presence of auto correlation using Durbin-Watson d-test.

Table 19.1: INDEXES OF REAL COMPENSATION AND PRODUCTIVITY, UNITED STATES, 1980-1997

| YEAR | $Y_{t}$ | $X_{t}$ | YEAR | $Y_{t}$ | $X_{t}$ |
| ---: | :---: | :---: | ---: | :---: | :---: |
| 1980 | 89.7 | 79.8 | 1989 | 95.8 | 93.3 |


| 1981 | 89.8 | 81.4 | 1990 | 96.4 | 94.5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 91.1 | 81.2 | 1991 | 97.4 | 95.9 |
| 1983 | 91.2 | 84.0 | 1992 | 100.0 | 100.0 |
| 1984 | 91.5 | 86.4 | 1993 | 99.9 | 100.1 |
| 1985 | 92.8 | 88.1 | 1994 | 99.7 | 101.4 |
| 1986 | 95.9 | 90.7 | 1995 | 99.1 | 102.2 |
| 1987 | 96.3 | 91.3 | 1996 | 99.6 | 105.2 |
| 1988 | 97.3 | 92.4 | 1997 | 101.1 | 107.5 |

Source: Economic Report of the President, 2000, Table B-47, p. 362

## Solution:

From the above data we have

$$
\begin{array}{rlrl}
\mathrm{n}=18 & \sum X^{2} & =157172.00 \\
\sum X=1675.40 & \sum Y^{2} & =165488.30 \\
\sum Y & =1724.60 & \sum X Y & =161060.40 \\
\hat{\beta}_{2}=\left(\sum X Y-n \bar{X} \bar{Y}\right) /\left(\sum X^{2}-n \bar{X}^{2}\right) & =0.4379 \\
\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}=55.0485
\end{array}
$$

Estimated regression equation: $\hat{Y}_{t}=55.0485+0.4379 \mathrm{X}_{\mathrm{t}}$
Computation of Durbin-Watson d-statistic:

| $\boldsymbol{t}$ | $Y_{t}$ | $X_{t}$ | $\hat{Y}_{t}=\hat{\alpha}+\hat{\beta} \mathrm{X}_{\mathrm{t}}$ | $e_{t}=Y_{t}-\hat{Y}_{t}$ | $e_{t-1}$ | $e_{t}-e_{t-1}$ | $\left(e_{t}-e_{t-1}\right)^{2}$ | $e_{t}^{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 89.7 | 79.8 | 89.9962 | -0.2962 | -- | -- | -- | 0.0878 |
| 2 | 89.8 | 81.4 | 90.6969 | -0.8969 | -0.2962 | -0.6007 | 0.3608 | 0.8045 |
| 3 | 91.1 | 81.2 | 90.6093 | 0.4907 | -0.8969 | 1.3876 | 1.9254 | 0.2407 |
| 4 | 91.2 | 84.0 | 91.8356 | -0.6356 | 0.4907 | -1.1262 | 1.2684 | 0.4040 |
| 5 | 91.5 | 86.4 | 92.8866 | -1.3866 | -0.6356 | -0.7511 | 0.5641 | 1.9228 |
| 6 | 92.8 | 88.1 | 93.6311 | -0.8311 | -1.3866 | 0.5555 | 0.3086 | 0.6908 |
| 7 | 95.9 | 90.7 | 94.7698 | 1.1302 | -0.8311 | 1.9614 | 3.8469 | 1.2774 |
| 8 | 96.3 | 91.3 | 95.0325 | 1.2675 | 1.1302 | 0.1372 | 0.0188 | 1.6064 |
| 9 | 97.3 | 92.4 | 95.5143 | 1.7857 | 1.2675 | 0.5183 | 0.2686 | 3.1888 |
| 10 | 95.8 | 93.3 | 95.9084 | -0.1084 | 1.7857 | -1.8941 | 3.5878 | 0.0118 |
| 11 | 96.4 | 94.5 | 96.4340 | -0.0340 | -0.1084 | 0.0745 | 0.0055 | 0.0012 |
| 12 | 97.4 | 95.9 | 97.0471 | 0.3529 | -0.0340 | 0.3869 | 0.1497 | 0.1246 |
| 13 | 100.0 | 100.0 | 98.8426 | 1.1574 | 0.3529 | 0.8044 | 0.6471 | 1.3395 |
| 14 | 99.9 | 100.1 | 98.8864 | 1.0136 | 1.1574 | -0.1438 | 0.0207 | 1.0273 |
| 15 | 99.7 | 101.4 | 99.4558 | 0.2442 | 1.0136 | -0.7693 | 0.5919 | 0.0597 |
| 16 | 99.1 | 102.2 | 99.8061 | -0.7061 | 0.2442 | -0.9504 | 0.9032 | 0.4986 |
| 17 | 99.6 | 105.2 | 101.1199 | -1.5199 | -0.7061 | -0.8138 | 0.6623 | 2.3102 |
| 18 | 101.1 | 107.5 | 102.1272 | -1.0272 | -1.5199 | 0.4927 | 0.2428 | 1.0551 |
| SUMS | 1724.6 | 1675.4 | 1724.6000 | 0.0000 |  |  | 15.3726 | 16.6509 |

From the above table we have

$$
\sum_{t=2}^{n}\left(e_{t}-e_{t-1}\right)^{2}=15.3726 \text { and } \sum_{t=1}^{n} e_{t}^{2}=16.6509
$$

Now substituting these values in Eq. (19.1), we get Durbin-Watson statistic value $d=0.9232$
Let us set the null hypothesis

## $\mathrm{H}_{0}$ : zero autocorrelated disturbances

Since, D-W statistic value $\mathrm{d}<2$, let us set the alternative hypothesis

## $\mathrm{H}_{1}$ : positive first-order autocorrelated disturbances

## Conclusion drawn:

From Durbin-Watson d-tables, the critical d-values at 5\% l.o.s. are

$$
d_{L}=1.158 \text { and } d_{U}=1.391
$$

Since, the calculated d-value ( 0.9232 ) is less than the critical $d_{\mathrm{L}}$ value, by applying the decision rules given in (19.5), we reject $\mathrm{H}_{0}$. Thus, there is a problem of autocorrelation in the given data. Hence, we conclude that the estimated regression model using the above wages-productivity data yields the first order positive auto correlated residuals. Therefore, the estimated model

$$
\begin{equation*}
\hat{Y}_{t}=55.0485+0.4379 \mathrm{X}_{\mathrm{t}} \tag{19.6}
\end{equation*}
$$

is not the correct estimated model and we have to estimate it using a different estimation method which we will discuss in the next section.

## 3. The Wallis Test for Fourth-order Autocorrelation

Wallis has pointed out that many applied studies employ quarterly data, and in such cases one might expect to find fourth-order autocorrelation in the disturbance term. The appropriate specification is then

$$
\begin{equation*}
u_{t}=\rho_{4} u_{t-4}+\varepsilon_{t} \tag{19.7}
\end{equation*}
$$

To test the null hypothesis, $H_{0}: \rho_{4}=0$, Wallis proposes a modified Durbin-Watson statistic,

$$
\begin{equation*}
d_{4}=\frac{\sum_{t=5}^{n}\left(e_{t}-e_{t-4}\right)^{2}}{\sum_{t=1}^{n} e_{t}^{2}} \tag{19.8}
\end{equation*}
$$

where the $e$ 's are the usual OLS residuals. Wallis derives upper and lower bounds for $d_{4}$ under the assumption of a nonstochastic $\mathbf{X}$ matrix.

## 4. Durbin's $\boldsymbol{h}$-test for a Regression Model with Lagged Dependent Variables

We know that the Durbin-Watson test procedure was derived under the assumption of a non-stochastic $\mathbf{X}$ matrix, which is violated by the presence of lagged values of the dependent variable among the regressors. Durbin has derived a large-sample (asymptotic) test for the
more general case. It is still a test against first-order autocorrelation, and one must specify the complete set of regressors. Consider the relation,

$$
\begin{align*}
y_{t}= & \beta_{1} y_{t-1}+\cdots+\beta_{r} y_{t-r}+\beta_{r+1} x_{1 t}+\cdots+\beta_{r+s} X_{s t}+u_{t}  \tag{19.9}\\
& \quad \text { with } u_{t}=\rho u_{t-1}+\varepsilon_{t} \quad|\rho|<1 \text { and } \boldsymbol{\varepsilon} \sim N\left(0, \sigma_{\varepsilon}^{2} \mathbf{I}\right)
\end{align*}
$$

Durbin's basic result is that under the null hypothesis $H_{0}: \rho=0$, the statistic

$$
\begin{equation*}
h=\hat{\rho} \sqrt{\frac{n}{1-n \operatorname{var}\left(\hat{\beta}_{1}\right)}} \stackrel{a s y}{\sim} N(0,1) \tag{19.10}
\end{equation*}
$$

where $n=$ sample size
$\operatorname{var}\left(\hat{\beta}_{1}\right)=$ estimated sampling variance of the coefficient of $y_{t-1}$ in the OLS regression of Eq. (19.9) $\hat{\rho}=\sum_{t=2}^{n} e_{t} e_{t-1} / \sum_{t=2}^{n} e_{t-1}^{2}$, the estimate of $\rho$ from the regression of $e_{t}$ on $e_{t-1}$, the $e$ 's in turn being the residuals from the OLS regression of Eq. (19.9).

## The test procedure is as follows.

1. Fit the OLS regression denoted by Eq. (19.9) and note $\operatorname{var}\left(\hat{\beta}_{1}\right)$.
2. From the residuals compute $\hat{\rho}$ or, alternatively, if the Durbin-Watson statistic has been computed, we may use the approximation $\hat{\rho} \simeq 1-d / 2$.
3. Substitute $\operatorname{var}\left(\hat{\beta}_{1}\right)$ and $\hat{\rho}$ in Eq. (19.10) to obtain $h$, and if $h>1.645$, reject the null hypothesis at 5 percent level of significance in favor of the hypothesis of a positive firstorder autocorrelation.
4. A similar one-sided test for negative autocorrelation can be carried out for negative $h$.

## 5. The Breusch-Godfrey (BG) Test for Higher Order Autocorrelation

To avoid some of the pitfalls of the Durbin-Watson $d$ test of autocorrelation, statisticians Breusch and Godfrey have developed a test of autocorrelation that is general in the sense that it allows for (1) nonstochastic regressors, such as the lagged values of the regressand; (2) higher-order autoregressive schemes, such as $\operatorname{AR}(1)$, $\operatorname{AR}(2)$, etc.; and (3) simple or higherorder moving averages of white noise error terms.

We use the two-variable regression model to illustrate the BG test, which is also known as the LM test, although many regressors can be added to the model. Also, lagged values of the regressand can be added to the model. Let

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t} \tag{19.11}
\end{equation*}
$$

Assume that the error term $u_{t}$ follows the $p^{\text {th }}$ order autoregressive, $\operatorname{AR}(p)$, scheme as follows:

$$
\begin{equation*}
u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\ldots+\rho_{p} u_{t-p}+\varepsilon_{t} \tag{19.12}
\end{equation*}
$$

where $\varepsilon_{t}$ is a white noise error term as discussed previously. As you will recognize, this is simply the extension of $\operatorname{AR}(1)$ scheme.

| Econometrics | $19.9 \quad$ Auto Correlation - Detection ..... |
| :--- | :---: | :---: |

The null hypothesis $H_{0}$ to be tested is that

$$
\begin{equation*}
H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{p}=0 \tag{19.13}
\end{equation*}
$$

That is, there is no serial correlation of any order. The BG test involves the following steps:

1. Estimate (19.11) by OLS and obtain the residuals $e_{t}{ }^{\prime} \mathrm{s}$.
2. Regress $e_{t}$ on the original $X_{t}$ (if there is more than one $X$ variable in the original model, include them also) and $e_{t-1}, e_{t-2}, \ldots, e_{t-p}$, where the latter are the lagged values of the estimated residuals in step 1. Thus, if $p=4$, we will introduce four lagged values of the residuals as additional regressors in the model. In short, run the following regression

$$
\begin{equation*}
e_{t}=\alpha_{1}+\alpha_{2} X_{t}+\rho_{1} e_{t-1}+\rho_{2} e_{t-2}+\ldots+\rho_{p} e_{t-p}+\varepsilon_{t} \tag{19.14}
\end{equation*}
$$

and obtain $R^{2}$ from this (auxiliary) regression. Since there are only $n$ values of $e$ available, this regression might be carried out using only the last $(n-p)$ observations.
3. If the sample size $n$ is large (technically, infinite), Breusch and Godfrey have shown that

$$
\begin{equation*}
(n-p) R^{2} \sim \chi_{p}^{2} \tag{19.15}
\end{equation*}
$$

That is, asymptotically, $(n-p) R^{2}$ value obtained from the auxiliary regression (19.14) follows the chi-square distribution with $p$ d.f.. If in an application, $(n-p) R^{2}$ exceeds the critical chi-square value at the chosen level of significance, we reject the null hypothesis $H_{0}$ [Eq. (19.13)], in which case at least one of $\rho_{1}, \rho_{2}, \ldots, \rho_{p}$ is statistically significantly different from zero.

The following practical points about the BG test may be noted:

1. The regressors included in the regression model may contain lagged values of the regressand $Y$, that is, $Y_{t-1}, Y_{t-2}$, etc., may appear as explanatory variables. Contrast this model with the Durbin-Watson test restriction that there are no lagged values of the regressand among the regressors.
2. As noted earlier, the BG test is applicable even if the disturbances follow a $p^{\text {th }}$ order moving average (MA)process, that is, the $u_{t}$ are generated as follows:

$$
\begin{equation*}
u_{t}=\varepsilon_{t}+\lambda_{1} \varepsilon_{t-1}+\lambda_{2} \varepsilon_{t-2}+\ldots+\lambda_{p} \varepsilon_{t-p} \tag{19.16}
\end{equation*}
$$

where $\varepsilon_{t}$ is a white noise error term, that is, the error term that satisfies all the classical assumptions.
3. If in Eq. (19.12) $p=1$, meaning first-order auto regression, then the $B G$ test is known as Durbin's $M$-test.
4. A drawback of the BG test is that the value of $p$, the length of the lag, cannot be specified a priori.

### 19.3 Estimation of Relationships with Autocorrelated Disturbances

Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS estimators, we may need to remedy the problem. If one or more of the diagnostic tests described in the previous section suggest autocorrelated disturbances, then we have to apply one of the following estimation methods.

## 1. The method of Generalized Least Squares(GLS):

Consider the two-variable regression model

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t} \tag{19.17}
\end{equation*}
$$

and assume that the error term $u_{t}$ follows the $\operatorname{AR}(1)$ scheme, namely,

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1 \tag{19.18}
\end{equation*}
$$

If we replace $t=t-1$ in Eq. (19.17), we get

$$
\begin{equation*}
Y_{t-1}=\beta_{1}+\beta_{2} X_{t-1}+u_{t-1} \tag{19.19}
\end{equation*}
$$

Multiplying Eq. (19.19) with $\rho$ on both sides, we obtain

$$
\begin{equation*}
\rho Y_{t-1}=\rho \beta_{1}+\rho \beta_{2} X_{t-1}+\rho u_{t-1} \tag{19.20}
\end{equation*}
$$

Subtracting Eq. (19.20) from Eq. (19.19) and using Eq. (19.18), we get

$$
\begin{equation*}
Y_{t}-\rho Y_{t-1}=\beta_{1}(1-\rho)+\beta_{2}\left(X_{t}-\rho X_{t-1}\right)+\varepsilon_{t} \tag{19.21}
\end{equation*}
$$

We can express Eq. (19.21) as

$$
Y_{t}^{*}=\beta_{1}^{*}+\beta_{2} X_{t}^{*}+\varepsilon_{t}
$$

where

$$
\begin{aligned}
Y_{t}^{*} & =Y_{t}-\rho Y_{t-1} \\
X_{t}^{*} & =X_{t}-\rho X_{t-1} \\
\beta_{1}^{*} & =\beta_{1}(1-\rho)
\end{aligned}
$$

since the error term $\varepsilon_{t}$ in Eq. (19.18) satisfies the usual OLS assumptions, we can apply OLS to the transformed variables $Y_{t}^{*}$ and $X_{t}^{*}$; and obtain estimators with all the optimum properties of BLUE. Here, it may be noted applying OLS to Eq. (19.22) is equivalent to the application of generalized least squares (GLS).

Regression equation (19.22) is known as the generalized difference equation. In this equation we lose one observation because the first observation has no antecedent. Although conceptually straightforward to apply, the method of generalized difference in Eq. (19.22) is difficult to implement because $\rho$ is rarely known in practice. Therefore, we need to find ways of estimating $\rho$ and we have given below some of the methods.

## $\rho$ based on Durbin-Watson d statistic:

We have an easy method of estimating $\rho$ from the relationship between $d$ and $\rho$ established previously in Eq. (19.3), from which we can estimate $\rho$ as follows.

$$
\begin{equation*}
\hat{\rho} \approx 1-d / 2 \tag{19.23}
\end{equation*}
$$

Thus, in reasonably large samples one can obtain $\rho$ from (19.23) and use it to transform the data as shown in the generalized difference equation (19.22). Keep in mind that the relationship between $\rho$ and $d$ given in (19.23) may not hold true in small samples.

## $\rho$ estimated from the residuals:

If the $\operatorname{AR}(1)$ scheme

$$
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1
$$

is valid, a simple way to estimate $\rho$ is to regress the residuals $e_{t}$ on $e_{t-1}$, for the $e_{t}$ 's are consistent estimators of the true $u_{t}$, as noted previously. That is, we run the following regression

$$
\begin{equation*}
e_{t}=\rho e_{t-1}+v_{t} \tag{19.24}
\end{equation*}
$$

where $e_{t}{ }^{\prime} s$ are the residuals obtained from the original regression and where $v_{t}$ 's are the error term of this regression. Note that there is no need to introduce the intercept term in Eq. (19.24), for we know the OLS residuals sum is zero.

## Iterative methods of estimating $\rho$ :

All the methods of estimating $\rho$ discussed previously provide us with only a single estimate of $\rho$. But there are the so-called iterative methods that estimate $\rho$ iteratively, that is, by successive approximation, starting with some initial value of $\rho$. Among these methods the following may be mentioned: the Cochrane-Orcutt iterative procedure, the Cochrane-Orcutt two-step method, the Durbin two-step method. Of these, the most popular is the CochranOrcutt iterative method. Remember that the ultimate objective of these methods is to provide an estimate of $\rho$ that may be used to obtain GLS estimates of the parameters. One advantage of the Cochrane-Orcutt iterative method is that it can be used to estimate not only an $\operatorname{AR}(1)$ scheme, but also higher-order auto regressive schemes, such as $e_{t}=\rho_{1} e_{t-1}+\rho_{2} e_{t-2}+v_{t}$, which is $\operatorname{AR}(2)$. Having obtained $\rho_{1}$ and $\rho_{2}$, one can easily extend the generalized difference equation (19.22).

## 2. The Cochrane-Orcutt (C-O) iterative procedure.

Consider the two-variable regression model

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t} \tag{19.25}
\end{equation*}
$$

and assume that the error term $u_{t}$ follows the $\operatorname{AR}(1)$ scheme, namely,

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1 \tag{19.26}
\end{equation*}
$$

where the error terms $\varepsilon_{t}$ 's are well-behaved.

Now, the above model can be rearranged in two equivalent forms as

$$
\begin{equation*}
Y_{t}-\rho Y_{t-1}=\beta_{1}(1-\rho)+\beta_{2}\left(X_{t}-\rho X_{t-1}\right)+\varepsilon_{t} \tag{19.27}
\end{equation*}
$$

Or $\quad Y_{t}-\beta_{1}-\beta_{2} X_{t}=\rho\left(Y_{t-1}-\beta_{1}-\beta_{2} X_{t-1}\right)+\varepsilon_{t}$
If $\rho$ is known in Eq. (19.27), the unknown parameters $\beta_{1}$ and $\beta_{2}$ could be estimated by applying OLS straightforwardly. Similarly, if $\beta_{1}$ and $\beta_{2}$ are known, $\rho$ could be estimated by applying OLS to the regression equation (19.28).

It is important to note that the above two equivalent forms of equations (19.27) and (19.28) are the basis for Cochrane-Orcutt iterative method for estimation of model (19.25) with $\operatorname{AR}(1)$ scheme. Starting with any value for $\rho$, the quasi first differences in the generalized difference equation (19.27) could be computed, and OLS applied to it would then yield estimates of $\beta_{1}$ and $\beta_{2}$. These estimates in turn can be used to compute the $Y_{t}-\beta_{1}-\beta_{2} X_{t}$ series. Regressing this series on itself lagged on period in Eq. (19.28) yields a revised estimate of $\rho$, which can then be fed back into Eq. (19.27), and the iteration process continues until a satisfactory degree of convergence is reached.

Various steps of Cochrane-Orcutt iterative method of estimation of model (19.25) are as follows.
Step 1: Estimate the two variable model (19.25) by applying standard OLS technique and obtain the estimates of $\beta_{1}$ and $\beta_{2}$ denoted by $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$.

Step 2: Now, compute the residuals given by

$$
e_{t}=Y_{t}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{t}, \quad t=1,2, \ldots, n
$$

and run the regression

$$
e_{t}=\hat{\rho} e_{t-1}+\hat{\varepsilon}_{t}
$$

which is the estimated equation (19.28). Here $\hat{\rho}$ is OLS estimate of $\rho$ given by

$$
\begin{equation*}
\hat{\rho}=\sum_{t=2}^{n} e_{t} e_{t-1} / \sum_{t=2}^{n} e_{t-1}^{2} \tag{19.29}
\end{equation*}
$$

Step 3: Using the above estimated $\hat{\rho}$, compute the quasi first differences given by

$$
Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1} \text { and } X_{t}^{*}=X_{t}-\hat{\rho} X_{t-1}
$$

Now, the generalized difference equation (19.27) with $\rho=\hat{\rho}$ can be written as

$$
\begin{equation*}
Y_{t}^{*}=\beta_{1}^{*}+\beta_{2} X_{t}^{*}+\varepsilon_{t}, \quad t=2,3, \ldots, n \tag{19.30}
\end{equation*}
$$

where $\beta_{1}^{*}=\beta_{1}(1-\hat{\rho})$.
Now by applying OLS to Eq. (19.30) we can get the estimates of $\beta_{1}$ [from the relation (19.31)] and $\beta_{2}$. Now, denote these second round estimates of $\beta_{1}$ and $\beta_{2}$ by $\hat{\hat{\beta}}_{1}$ and $\hat{\hat{\beta}}_{2}$.
Econometrics $19.13 \quad$ Auto Correlation - Detection .....

Step 4: Now, repeat the above steps (2) and (3) by replacing $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ with the above $2^{\text {nd }}$ round estimates $\hat{\hat{\beta}}_{1}$ and $\hat{\hat{\beta}}_{2}$ respectively to compute $3^{\text {rd }}$ round estimates $\hat{\hat{\beta}}_{1}$ and $\hat{\hat{\beta}}_{2}$.
Repeat the above steps (2)-(4) until the successive estimates of the parameter $\rho$ differ by less than some prescribed amount.

Illustration 19.2: Consider the data, given in Illustration 19.1, on indexes of real compensation (wages) and productivity in the business sector of the U.S. economy for the period 1980-1997. We have already seen that in Illustration 19.1, the OLS method is not a suitable estimation method, since autocorrelation is presented in the data. Hence, let us re-estimate the model using Cochrane-Orcutt iterative method.

## Solution:

STEP 1: Estimating the model $Y_{t}=\beta_{1}+\beta_{2} X_{t}+u_{t}$ using OLS method:
From the data of illustration 1 , we have
$\mathrm{n}=18$
$\sum X=1675.40 \quad \sum Y^{2}=165488.30$
$\sum Y=1724.60 \quad \sum X Y=161060.40$
$\hat{\beta}_{2}=\left(\sum X Y-n \bar{X} \bar{Y}\right) /\left(\sum X^{2}-n \bar{Y}^{2}\right)=0.4379$
$\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}=55.0485$
Estimated regression equation: $\hat{Y}_{t}=55.0485+0.4379 \mathrm{X}_{\mathrm{t}}$

## FIRST ITERATION :

STEP 2: COMPUTATION OF OLS RESIDUALS AND HENCE ESTIMATING $\rho$

| t | $Y_{t}$ | $X_{t}$ | $\hat{Y}_{t}=\hat{\beta}_{1}+\hat{\beta}_{2} \mathrm{X}_{\mathrm{t}}$ | $e_{t}=Y_{t}-\hat{Y}_{t}$ | $e_{t-1}$ | $e_{t} * e_{t-1}$ | $e_{t-1}^{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 89.7 | 79.8 | 89.9962 | -0.2962 | -- | -- | -- |
| 2 | 89.8 | 81.4 | 90.6969 | -0.8969 | -0.2962 | 0.2657 | 0.0878 |
| 3 | 91.1 | 81.2 | 90.6093 | 0.4907 | -0.8969 | -0.4401 | 0.8045 |
| 4 | 91.2 | 84.0 | 91.8356 | -0.6356 | 0.4907 | -0.3119 | 0.2407 |
| 5 | 91.5 | 86.4 | 92.8866 | -1.3866 | -0.6356 | 0.8813 | 0.4040 |
| 6 | 92.8 | 88.1 | 93.6311 | -0.8311 | -1.3866 | 1.1525 | 1.9228 |
| 7 | 95.9 | 90.7 | 94.7698 | 1.1302 | -0.8311 | -0.9394 | 0.6908 |
| 8 | 96.3 | 91.3 | 95.0325 | 1.2675 | 1.1302 | 1.4325 | 1.2774 |
| 9 | 97.3 | 92.4 | 95.5143 | 1.7857 | 1.2675 | 2.2633 | 1.6064 |
| 10 | 95.8 | 93.3 | 95.9084 | -0.1084 | 1.7857 | -0.1936 | 3.1888 |
| 11 | 96.4 | 94.5 | 96.4340 | -0.0340 | -0.1084 | 0.0037 | 0.0118 |
| 12 | 97.4 | 95.9 | 97.0471 | 0.3529 | -0.0340 | -0.0120 | 0.0012 |
| 13 | 100.0 | 100.0 | 98.8426 | 1.1574 | 0.3529 | 0.4085 | 0.1246 |
| 14 | 99.9 | 100.1 | 98.8864 | 1.0136 | 1.1574 | 1.1731 | 1.3395 |
| 15 | 99.7 | 101.4 | 99.4558 | 0.2442 | 1.0136 | 0.2476 | 1.0273 |


| 16 | 99.1 | 102.2 | 99.8061 | -0.7061 | 0.2442 | -0.1725 | 0.0597 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 17 | 99.6 | 105.2 | 101.1199 | -1.5199 | -0.7061 | 1.0732 | 0.4986 |
| 18 | 101.1 | 107.5 | 102.1272 | -1.0272 | -1.5199 | 1.5613 | 2.3102 |
| SUMS | 1724.6 | 1675.4 | 1724.6000 | 0.0000 |  | 8.3932 | 15.5958 |

From the above table we have

$$
\sum_{t=2}^{n} e_{t} e_{t-1}=8.3932 \text { and } \sum_{t=2}^{n} e_{t-1}^{2}=15.5958
$$

Now substituting these values in Eq. (19.29) we get

$$
\hat{\rho}=0.5382
$$

STEP 3: REESTIMATING $\beta_{1}$ and $\beta_{2}$ by estimating $Y_{t}^{*}=\beta_{1}^{*}+\beta_{2} X_{t}^{*}+\varepsilon_{t}$ using OLS method

| t | $Y_{t}$ | $X_{t}$ | $Y_{t-1}$ | $X_{t-1}$ | $Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1}$ | $X_{t}^{*}=X_{t}-\hat{\rho} X_{t-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 89.7 | 79.8 | -- | -- | -- | -- |
| 2 | 89.8 | 81.4 | 89.7 | 79.8 | 41.5261 | 38.4541 |
| 3 | 91.1 | 81.2 | 89.8 | 81.4 | 42.7723 | 37.3930 |
| 4 | 91.2 | 84.0 | 91.1 | 81.2 | 42.1727 | 40.3006 |
| 5 | 91.5 | 86.4 | 91.2 | 84.0 | 42.4189 | 41.1937 |
| 6 | 92.8 | 88.1 | 91.5 | 86.4 | 43.5574 | 41.6021 |
| 7 | 95.9 | 90.7 | 92.8 | 88.1 | 45.9578 | 43.2873 |
| 8 | 96.3 | 91.3 | 95.9 | 90.7 | 44.6895 | 42.4880 |
| 9 | 97.3 | 92.4 | 96.3 | 91.3 | 45.4742 | 43.2651 |
| 10 | 95.8 | 93.3 | 97.3 | 92.4 | 43.4360 | 43.5731 |
| 11 | 96.4 | 94.5 | 95.8 | 93.3 | 44.8433 | 44.2888 |
| 12 | 97.4 | 95.9 | 96.4 | 94.5 | 45.5204 | 45.0430 |
| 13 | 100.0 | 100.0 | 97.4 | 95.9 | 47.5822 | 48.3895 |
| 14 | 99.9 | 100.1 | 100.0 | 100.0 | 46.0830 | 46.2830 |
| 15 | 99.7 | 101.4 | 99.9 | 100.1 | 45.9368 | 47.5292 |
| 16 | 99.1 | 102.2 | 99.7 | 101.4 | 45.4444 | 47.6296 |
| 17 | 99.6 | 105.2 | 99.1 | 102.2 | 46.2673 | 50.1991 |
| 18 | 101.1 | 107.5 | 99.6 | 105.2 | 47.4983 | 50.8845 |
|  |  |  |  | Totals | 761.1800 | 751.8000 |

$$
\begin{array}{rlrl}
\mathrm{n}^{*} & =17 & \sum Y^{* 2}=34135.850 \\
\sum Y^{*} & =761.18 & \sum X^{* 2} & =33489.070 \\
\sum X^{*} & =751.80 & & \sum X^{*} Y^{*}=33762.686 \\
\hat{\beta}_{2} & =0.4157 & & \\
\hat{\beta}_{1}^{*} & =26.3919 \Rightarrow & \hat{\beta}_{1}=\hat{\beta}_{1}^{*} /(1-\hat{\rho})=57.1464
\end{array}
$$

| Econometrics | 19.15 | Auto Correlation - Detection ..... |
| :--- | :--- | :--- |

## SECOND ITERATION:

STEP 2: RECOMPUTING THE RESIDUALS USING LATEST $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ AND HENCE REESTIMATING $\rho$

| t | $Y_{t}$ | $X_{t}$ | $\hat{Y}_{t}=\hat{\beta}_{1}+\hat{\beta}_{2} \mathrm{X}_{\mathrm{t}}$ | $e_{t}=Y_{t}-\hat{Y}_{t}$ | $e_{t-1}$ | $e_{t}{ }^{*} e_{t-1}$ | $e_{t-1}^{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 89.7 | 79.8 | 90.3186 | -0.6186 | -- | -- | -- |
| 2 | 89.8 | 81.4 | 90.9837 | -1.1837 | -0.6186 | 0.7322 | 0.3827 |
| 3 | 91.1 | 81.2 | 90.9006 | 0.1994 | -1.1837 | -0.2361 | 1.4011 |
| 4 | 91.2 | 84.0 | 92.0645 | -0.8645 | 0.1994 | -0.1724 | 0.0398 |
| 5 | 91.5 | 86.4 | 93.0622 | -1.5622 | -0.8645 | 1.3505 | 0.7474 |
| 6 | 92.8 | 88.1 | 93.7688 | -0.9688 | -1.5622 | 1.5135 | 2.4403 |
| 7 | 95.9 | 90.7 | 94.8496 | 1.0504 | -0.9688 | -1.0176 | 0.9386 |
| 8 | 96.3 | 91.3 | 95.0990 | 1.2010 | 1.0504 | 1.2614 | 1.1033 |
| 9 | 97.3 | 92.4 | 95.5563 | 1.7437 | 1.2010 | 2.0941 | 1.4423 |
| 10 | 95.8 | 93.3 | 95.9304 | -0.1304 | 1.7437 | -0.2274 | 3.0405 |
| 11 | 96.4 | 94.5 | 96.4293 | -0.0293 | -0.1304 | 0.0038 | 0.0170 |
| 12 | 97.4 | 95.9 | 97.0112 | 0.3888 | -0.0293 | -0.0114 | 0.0009 |
| 13 | 100.0 | 100.0 | 98.7156 | 1.2844 | 0.3888 | 0.4994 | 0.1511 |
| 14 | 99.9 | 100.1 | 98.7571 | 1.1429 | 1.2844 | 1.4679 | 1.6498 |
| 15 | 99.7 | 101.4 | 99.2975 | 0.4025 | 1.1429 | 0.4600 | 1.3061 |
| 16 | 99.1 | 102.2 | 99.6301 | -0.5301 | 0.4025 | -0.2133 | 0.1620 |
| 17 | 99.6 | 105.2 | 100.8772 | -1.2772 | -0.5301 | 0.6770 | 0.2810 |
| 18 | 101.1 | 107.5 | 101.8333 | -0.7333 | -1.2772 | 0.9365 | 1.6311 |
|  |  |  |  |  | Totals | 9.1180 | 16.7350 |

From the above table we have

$$
\sum_{t=2}^{n} e_{t} e_{t-1}=9.1180 \text { and } \sum_{t=2}^{n} e_{t-1}^{2}=16.7350
$$

Now substituting these values in Eq. (19.29) we get
$\hat{\rho}=0.5448$
STEP 3: REESTIMATING $\beta_{1}$ and $\beta_{2}$ by estimating $Y_{t}^{*}=\beta_{1}^{*}+\beta_{2} X_{t}^{*}+\varepsilon_{t}$ using OLS method

| t | $Y_{t}$ | $X_{t}$ | $Y_{t-1}$ | $X_{t-1}$ | $Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1}$ | $X_{t}^{*}=X_{t}-\hat{\rho} X_{t-1}^{*}$ |
| :---: | ---: | :---: | :---: | :---: | :---: | ---: |
| 1 | 89.7 | 79.8 | -- | -- | -- | -- |
| 2 | 89.8 | 81.4 | 89.7 | 79.8 | 40.9272 | 37.9212 |
| 3 | 91.1 | 81.2 | 89.8 | 81.4 | 42.17272 | 36.8494 |
| 4 | 91.2 | 84.0 | 91.1 | 81.2 | 41.56442 | 39.7584 |
| 5 | 91.5 | 86.4 | 91.2 | 84.0 | 41.80993 | 40.6328 |
| 6 | 92.8 | 88.1 | 91.5 | 86.4 | 42.94648 | 41.0252 |
| 7 | 95.9 | 90.7 | 92.8 | 88.1 | 45.33817 | 42.699 |


| Centre for Distance Education | 19.16 | Acharya Nagarjuna University |
| :--- | :--- | :--- |


| 8 | 96.3 | 91.3 | 95.9 | 90.7 | 44.04915 | 41.8824 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9 | 97.3 | 92.4 | 96.3 | 91.3 | 44.83121 | 42.6554 |
| 10 | 95.8 | 93.3 | 97.3 | 92.4 | 42.78636 | 42.9561 |
| 11 | 96.4 | 94.5 | 95.8 | 93.3 | 44.20363 | 43.6658 |
| 12 | 97.4 | 95.9 | 96.4 | 94.5 | 44.87672 | 44.4119 |
| 13 | 100.0 | 100.0 | 97.4 | 95.9 | 46.93188 | 47.7491 |
| 14 | 99.9 | 100.1 | 100.0 | 100.0 | 45.41527 | 45.6153 |
| 15 | 99.7 | 101.4 | 99.9 | 100.1 | 45.26976 | 46.8608 |
| 16 | 99.1 | 102.2 | 99.7 | 101.4 | 44.77873 | 46.9525 |
| 17 | 99.6 | 105.2 | 99.1 | 102.2 | 45.60564 | 49.5166 |
| 18 | 101.1 | 107.5 | 99.6 | 105.2 | 46.83321 | 50.1821 |
|  |  |  |  | Totals | 750.4100 | 741.4100 |

$$
\begin{array}{rlrl}
\mathrm{n}^{*} & =17 & \sum Y^{* 2}=33177.60 \\
\sum Y^{*} & =750.41 & \sum X^{* 2}=32570.00 \\
\sum X^{*} & =741.41 & \sum X^{*} Y^{*}=32825.12 \\
\hat{\beta}_{2} & =0.4153 & & \\
\hat{\beta}_{1}^{*} & =26.0283 \Rightarrow \hat{\beta}_{1}=\hat{\beta}_{1}^{*} /(1-\hat{\rho})=57.18588
\end{array}
$$

## THIRD ITERATION:

STEP 2: RECOMPUTING THE RESIDUALS USING LATEST $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ AND HENCE REESTIMATING

| t | $Y_{t}$ | $X_{t}$ | $\hat{Y}_{t}=\hat{\alpha}+\hat{\beta} \mathrm{X}_{\mathrm{t}}$ | $e_{t}=Y_{t}-\hat{Y}_{t}$ | $e_{t-1}$ | $e_{t}^{*} e_{t-1}$ | $e_{t-1}^{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 89.7 | 79.8 | 90.3250 | -0.6250 | -- | -- | -- |
| 2 | 89.8 | 81.4 | 90.9895 | -1.1895 | -0.6250 | 0.7434 | 0.3906 |
| 3 | 91.1 | 81.2 | 90.9064 | 0.1936 | -1.1895 | -0.2303 | 1.4148 |
| 4 | 91.2 | 84.0 | 92.0692 | -0.8692 | 0.1936 | -0.1683 | 0.0375 |
| 5 | 91.5 | 86.4 | 93.0658 | -1.5658 | -0.8692 | 1.3610 | 0.7555 |
| 6 | 92.8 | 88.1 | 93.7718 | -0.9718 | -1.5658 | 1.5217 | 2.4519 |
| 7 | 95.9 | 90.7 | 94.8515 | 1.0485 | -0.9718 | -1.0189 | 0.9444 |
| 8 | 96.3 | 91.3 | 95.1007 | 1.1993 | 1.0485 | 1.2574 | 1.0993 |
| 9 | 97.3 | 92.4 | 95.5575 | 1.7425 | 1.1993 | 2.0898 | 1.4383 |
| 10 | 95.8 | 93.3 | 95.9313 | -0.1313 | 1.7425 | -0.2287 | 3.0363 |
| 11 | 96.4 | 94.5 | 96.4296 | -0.0296 | -0.1313 | 0.0039 | 0.0172 |
| 12 | 97.4 | 95.9 | 97.0110 | 0.3890 | -0.0296 | -0.0115 | 0.0009 |
| 13 | 100.0 | 100.0 | 98.7136 | 1.2864 | 0.3890 | 0.5004 | 0.1513 |
| 14 | 99.9 | 100.1 | 98.7551 | 1.1449 | 1.2864 | 1.4727 | 1.6548 |
| 15 | 99.7 | 101.4 | 99.2950 | 0.4050 | 1.1449 | 0.4637 | 1.3107 |
| 16 | 99.1 | 102.2 | 99.6272 | -0.5272 | 0.4050 | -0.2135 | 0.1640 |



From the above table we have

$$
\sum_{t=2}^{n} e_{t} e_{t-1}=9.1410 \text { and } \sum_{t=2}^{n} e_{t-1}^{2}=16.7661
$$

Now substituting these values in Eq. (19.29) we get $\hat{\rho}=0.5452$

STEP 3: REESTIMATING $\beta_{1}$ and $\beta_{2}$ by estimating $Y_{t}^{*}=\beta_{1}^{*}+\beta_{2} X_{t}^{*}+\varepsilon_{t}$ using OLS method

| t | $Y_{t}$ | $X_{t}$ | $Y_{t-1}$ | $X_{t-1}$ | $Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1}$ | $X_{t}^{*}=X_{t}-\hat{\rho} X_{t-1}^{*}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 89.7 | 79.8 | - | -- | -- | - |
| 2 | 89.8 | 81.4 | 89.7 | 79.8 | 45.4207 | 32.4956 |
| 3 | 91.1 | 81.2 | 89.8 | 81.4 | 46.8298 | 32.2410 |
| 4 | 91.2 | 84.0 | 91.1 | 81.2 | 45.4032 | 34.3323 |
| 5 | 91.5 | 86.4 | 91.2 | 84.0 | 44.3947 | 36.6778 |
| 6 | 92.8 | 88.1 | 91.5 | 86.4 | 44.7679 | 38.2142 |
| 7 | 95.9 | 90.7 | 92.8 | 88.1 | 46.4504 | 40.1054 |
| 8 | 96.3 | 91.3 | 95.9 | 90.7 | 46.5232 | 39.0153 |
| 9 | 97.3 | 92.4 | 96.3 | 91.3 | 46.9235 | 39.8972 |
| 10 | 95.8 | 93.3 | 97.3 | 92.4 | 44.9328 | 40.2520 |
| 11 | 96.4 | 94.5 | 95.8 | 93.3 | 44.8786 | 42.2698 |
| 12 | 97.4 | 95.9 | 96.4 | 94.5 | 45.1153 | 43.3427 |
| 13 | 100.0 | 100.0 | 97.4 | 95.9 | 45.4800 | 46.8975 |
| 14 | 99.9 | 100.1 | 100.0 | 100.0 | 45.3255 | 45.5800 |
| 15 | 99.7 | 101.4 | 99.9 | 100.1 | 44.4167 | 46.9345 |
| 16 | 99.1 | 102.2 | 99.7 | 101.4 | 43.3806 | 47.8436 |
| 17 | 99.6 | 105.2 | 99.1 | 102.2 | 42.2450 | 51.1707 |
| 18 | 101.1 | 107.5 | 99.6 | 105.2 | 42.4910 | 53.1981 |
| Totals |  |  |  |  |  | 749.7700 |

$$
\begin{array}{rlrl}
\mathrm{n}^{*} & =17 & \sum Y^{* 2}=33120.2 \\
\sum Y^{*} & =749.77 & \sum X^{* 2}=32514.77 \\
\sum X^{*} & =740.78 & \sum X^{*} Y^{*}=32768.91 \\
\hat{\beta}_{2} & =0.4153 & & \\
\hat{\beta}_{1}^{*} & =26.009 \Rightarrow & \hat{\beta}_{1}=\hat{\beta}_{1}^{*} /(1-\hat{\rho})=57.1878
\end{array}
$$

From the above computations, we may notice that the corresponding values of $\hat{\rho}, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$ at SECOND and THIRD iterations are approximately equal. Hence, we take the values computed at THIRD iteration as the estimates of $\hat{\rho}, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and are given by

$$
\begin{aligned}
& \hat{\rho}=0.5452 \\
& \hat{\beta}_{1}=57.1878 \\
& \hat{\beta}_{2}=0.4153
\end{aligned}
$$

Thus the estimated regression model for the given wages-productivity data, using CochraneOrcutt iterative method, is obtained as

$$
\hat{Y}_{t}=57.1878+0.4153 \mathrm{X}_{\mathrm{t}}
$$

Compare this estimated regression model with the regression model (19.6), which is estimated using OLS method, ignoring the presence of auto correlation. We may note that this model is different from the model (19.6).

## 3. The Cochrane-Orcutt two-step method.

This is a shortened version of the Cochrane-Orcutt iterative procedure. In step 1, we estimate $\rho$ from the first iteration, and in step 2 we use that estimate of $\rho$ to run the generalized difference equation. Sometimes in practice, this two-step method gives results quite similar to those obtained from the more elaborate Cochrane-Orcutt iterative procedure. Let us explain this method for k-variable regression model.

Consider the general linear regression model with k-1 explanatory variables $X_{2 t}, X_{3 t}, \ldots, X_{k t}$

$$
\begin{equation*}
Y_{t}=\beta_{1}+\sum_{i=2}^{k} \beta_{i} X_{i t}+u_{t}, \quad t=1,2, \ldots, n \tag{19.32}
\end{equation*}
$$

and assume that the error term $u_{t}$ follows the $\operatorname{AR}(1)$ scheme, namely,

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1 \tag{19.33}
\end{equation*}
$$

where the error terms $\varepsilon_{t}$ 's are well-behaved.
The above model can be rearranged in two equivalent forms as

$$
\begin{align*}
& Y_{t}-\rho Y_{t-1}=\beta_{1}(1-\rho)+\sum_{i=2}^{k} \beta_{i}\left(X_{i t}-\rho X_{i(t-1)}\right)+\varepsilon_{t}  \tag{19.34}\\
\text { Or } \quad & Y_{t}-\beta_{1}-\sum_{i=2}^{k} \beta_{i} X_{i t}=\rho\left(Y_{t-1}-\beta_{1}-\sum_{i=2}^{k} \beta_{i} X_{i(t-1)}\right)+\varepsilon_{t} \tag{19.35}
\end{align*}
$$

Now, the two steps of Cochrane-Orcutt two-step method of estimation of model (19.32) are as follows.

Step 1: Estimate the general linear model (19.32) by applying standard OLS technique and obtain the estimates of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ denoted by $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}$ respectively. Now, compute the residuals,

$$
\begin{equation*}
e_{t}=Y_{t}-\hat{\beta}_{1}-\sum_{i=2}^{k} \hat{\beta}_{i} X_{i t}, \quad t=1,2, \ldots, n \tag{19.36}
\end{equation*}
$$

and run the regression

$$
e_{t}=\hat{\rho} e_{t-1}+\hat{\varepsilon}_{t}
$$

which is the estimated equation (19.35). Here $\hat{\rho}$ is the OLS estimate of $\rho$ and by definition

$$
\begin{equation*}
\hat{\rho}=\sum_{t=2}^{n} e_{t} e_{t-1} / \sum_{t=2}^{n} e_{t-1}^{2} \tag{19.37}
\end{equation*}
$$

Step 2: Using the above estimated $\hat{\rho}$, compute the quasi first differences given by

$$
Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1} \text { and } X_{i t}^{*}=X_{i t}-\hat{\rho} X_{i(t-1)}, \text { for } i=2,3, \ldots, k
$$

Now, the generalized difference equation (19.34) with $\rho=\hat{\rho}$ can be written as

$$
\begin{equation*}
Y_{t}^{*}=\beta_{1}^{*}+\sum_{i=2}^{k} \beta_{i} X_{i t}^{*}+\varepsilon_{t}, \quad t=2,3, \ldots, n \tag{19.38}
\end{equation*}
$$

where $\beta_{1}^{*}=\beta_{1}(1-\hat{\rho})$
Now by applying OLS to the above equation we get the estimates of $\beta_{1}$ (from the estimate of $\beta_{1}^{*}$ ), $\beta_{2}, \beta_{3}, \ldots, \beta_{k}$. Now, if we denote these revised estimates of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ by $b_{1}, b_{2}, \ldots, b_{k}$, then the estimated regression model, using CochraneOrcutt two-step method, is given by

$$
\begin{equation*}
\hat{Y}_{t}=b_{1}+\sum_{i=2}^{k} b_{i} X_{i t}, \quad t=1,2, \ldots, n \tag{19.39}
\end{equation*}
$$

Exercise to the students: Apply the above Cochrane-Orcutt two-step method to the wagesproductivity example discussed in illustration 2, and compare your results with those obtained from the Cochrane-Orcutt iterative method.

## 4. Durbin's two-step method.

Let us explain this method for $k$-variable regression model.
Consider the general linear regression model with k-1 explanatory variables $X_{2 t}, X_{3 t}, \ldots, X_{k t}$

$$
\begin{equation*}
Y_{t}=\beta_{1}+\sum_{i=2}^{k} \beta_{i} X_{i t}+u_{t}, \quad t=1,2, \ldots, n \tag{19.40}
\end{equation*}
$$

and assume that the error term $u_{t}$ follows the $\operatorname{AR}(1)$ scheme, namely,

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad-1<\rho<1 \tag{19.41}
\end{equation*}
$$

where the error terms $\varepsilon_{t}$ s are well-behaved.
The above model can be rearranged in the generalized difference equation form as

$$
\begin{equation*}
Y_{t}-\rho Y_{t-1}=\beta_{1}(1-\rho)+\sum_{i=2}^{k} \beta_{i}\left(X_{i t}-\rho X_{i(t-1)}\right)+\varepsilon_{t} \tag{19.42}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
Y_{t}=\beta_{1}(1-\rho)+\rho Y_{t-1}+\sum_{i=2}^{k} \beta_{i} X_{i t}-\sum_{i=2}^{k} \beta_{i}^{*} X_{i(t-1)}+\varepsilon_{t} \tag{19.43}
\end{equation*}
$$

Durbin suggests the following two-step procedure for estimation of the model (19.40).

Step 1: Treat (19.43) as a multiple regression model, regressing $Y_{t}$ on the 2 k -1 variables $Y_{t-1}$, $X_{2 t}, X_{3 t}, \ldots, X_{k t}, X_{2(t-1)}, X_{3(t-1)}, \ldots, X_{k(t-1)}$ and treat the estimated value of the regression coefficient of $Y_{t-1}(=\hat{\rho})$ as an estimate of $\rho$.

Step 2: Using the above estimated $\hat{\rho}$, compute the quasi first differences given by

$$
Y_{t}^{*}=Y_{t}-\hat{\rho} Y_{t-1} \text { and } X_{i t}^{*}=X_{i t}-\hat{\rho} X_{i(t-1)}, \text { for } i=2,3, \ldots, k
$$

and the generalized difference equation (19.42) with $\rho=\hat{\rho}$ can be written as

$$
\begin{equation*}
Y_{t}^{*}=\beta_{1}(1-\hat{\rho})+\sum_{i=2}^{k} \beta_{i} X_{i t}^{*}+\varepsilon_{t}, \quad t=2,3, \ldots, n \tag{19.44}
\end{equation*}
$$

Now, by applying OLS to the above equation we get the estimates of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$, which are denoted by $b_{1}, b_{2}, \ldots, b_{k}$. Thus, the estimated regression model, using Durbin's twostep method, is

$$
\begin{equation*}
\hat{Y}_{t}=b_{1}+\sum_{i=2}^{k} b_{i} X_{i t}, \quad t=1,2, \ldots, n \tag{19.45}
\end{equation*}
$$

Exercise to the students: Apply the Durbin's two-step method to the wages-productivity example discussed in illustration 2, and compare your results with those obtained from the Cochrane-Orcutt iterative procedure and the Cochrane-Orcutt two-step method.

Remark: As explained in Cochrane-Orcutt two step method and Durbin's two-step method we can also explain Cochrane-Orcutt iteration method for the case of k-variable general linear model.

### 19.4 Summary and Conclusions

1. The remedy depends on the nature of the interdependence among the disturbances. But since the disturbances are unobservable, the common practice is to assume that they are generated by some mechanism.
2. The mechanism that is commonly assumed is the Markov first-order autoregressive scheme, which assumes that the disturbance in the current time period is linearly related to the disturbance term in the previous time period, the coefficient of autocorrelation $\rho$ providing the extent of the interdependence. This mechanism is known as the $\operatorname{AR}(1)$ scheme.
3. If the $\operatorname{AR}(1)$ scheme is valid and the coefficient of autocorrelation is known, the serial correlation problem can be easily tackled by transforming the data following the generalized difference procedure. The $\operatorname{AR}(1)$ scheme can be easily generalized to an AR(p).
4. Even if we use an $\operatorname{AR}(1)$ scheme, the coefficient of autocorrelation is not known a priori. We considered several methods of estimating $\rho$, such as the Durbin-Watson $d$,
Econometrics $19.21 \quad$ Auto Correlation - Detection .....

Cochrane-Orcutt iterative procedure, Cochrane-Orcutt two-step method, and the Durbin two-step method.
5. In large samples, these methods generally yield similar estimates of $\rho$, although in small samples they perform differently. In practice, the Cochrane-Orcutt iterative method has become quite popular.
6. Using any of the methods just discussed, we can use the generalized difference method to estimate the parameters of the transformed model by OLS, which essentially amounts to GLS. But since we estimate $\rho(=\hat{\rho})$, we call the method of estimation as feasible or estimated GLS, or FGLS or EGLS for short.
7. Of course, before remediation comes detection of autocorrelation. Among the methods of detection, Durbin-Watson $d$ test and Breusch-Godfrey (BG) test are the popular and routinely used is the Durbin-Watson $d$ test. It is better to use the BG test, for it is much more general in that it allows for both AR and MA error structures as well as the presence of lagged regressand as an explanatory variable. But keep in mind that it is a large sample test.

### 19.5 Self Assessment Questions

1. Explain how the plot of residuals against the regressand variable will be useful for detecting serial correlation.
2. Explain in detail how various residual plots are useful in checking the standard assumptions on the error terms in a linear regression model.
3. Explain the role of residuals plots in regression analysis.
4. Explain various estimation procedures of a model, briefly, in the presence of autocorrelation.
5. Explain the procedure for Durbin-Watson test to detect the Autocorrelation.
6. Explain Durbin-Watson test for detection of serial correlation in a regression model and discuss the limitations of the test.
7. Describe the Durbin-Watson test of serial correlation and discuss merits and demerits of the test.
8. Describe the Wallis Test for examining fourth-order autocorrelation.
9. Describe the Breusch-Godfrey (BG) test of (higher order) serial (auto) correlation.
10. Describe Durbin's $h$-test for a regression model with lagged dependent variables.
11. Explain the Cochrane-Orcutt iterative method for estimation of the parameters in a simple linear model in the presence of autocorrelated disturbances.
12. Explain the two-step Cochrane-Orcutt method for estimating the parameters of a linear model in the presence of autocorrelated disturbances.
13. Describe the two-step Durbin's method for estimating the parameters of a linear model in the presence of autocorrelated disturbances.
14. Explain any one of estimation procedures in the case of auto Correlation. Give DurbinWatson test for Auto Correlation.

### 19.6 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.

Lesson 20

## QUALITATIVE RESPONSE REGRESSION MODELS

### 20.0 Objective:

In this lesson we consider several models in which the dependent variable (regressand) itself is qualitative in nature. After studying this lesson, the student will be familiar with some popular binary regression models namely Logit and Probit models, which are increasingly used in areas of social sciences and medical research.

## Structure of the Lesson:

### 20.1 Introduction

### 20.2 The nature of qualitative response models

### 20.3 The linear probability model (LPM)

### 20.4 The Logit model

### 20.5 The Probit model

20.6 The Tobit model
20.7 Measuring goodness of fit
20.8 Summary and conclusions
20.9 Self Assessment Questions
20.10 References

### 20.1 Introduction

In all the regression models that we have considered so far, we have implicitly assumed that the regressand/dependent/response variable $Y$ is quantitative, whereas the explanatory variables are either quantitative, qualitative or mixture of those two variables. But there are several practical problems or illustrations, where a dependent variable or response variable will be a dummy variable which take two or more values.

Qualitative response regression models are widely being used in areas of social sciences and medical research. However these models pose interesting estimation and interpretation challenges.

### 20.2 The Nature of Qualitative Response Models

Consider an example of Indian Parliamentary elections assume that there are two political parties Congress and BJP. The dependent variable here is vote choice between the two political parties. Suppose we let
$Y=1$, if vote is for a Congress candidate.
$=0$, if vote is for a BJP candidate.
Here in this example the explanatory (cause) variables used in the vote choice are unemployment, inflation rates, present ruling party, caste of the candidate etc. Here in this example it may be noted that the regressed is a qualitative variable.

One can think of several other examples (listed below) where the dummy dependent variable is qualitative in nature.

1. A family either owns a house or it does not.
2. A family either owns a car or it does not.
3. Both husband and wife are government employees or only one spouse.
4. A certain drug is effective in curing an illness or it does not.
5. A firm decides to declare a stock dividend or not.

We don't have to restrict our response variable yes or no dichotomous or binary categories only. Suppose in the parliamentary elections there are many parties are contesting for instance in Andhra Pradesh in Guntur, the candidates pertaining to Congress, TDP, BJP, CPI, and CPM. Then the dependent variable takes $1,2,3,4$, and 5 . This is the case where the dependent variable is polychotomous (multiple category) response variable. In particular, if the response variable take three categories then it is called as trichotomous variable.

In polychotomous regression models, the regressand may be either ordinal (i.e. an ordered categorical variable such as education example: school, college, university) or the regressand is nominal where there is no inherent ordering such as religion (Hindu, Muslim, Sikh, Christian)

There are some other qualitative response regression models where the response variable may be

1. The number of visits to one's physician per year.
2. The number of patents received by a firm in a given year.
3. The number of articles published by a university professor in a year.
4. The number of telephone calls received in a span of 5 minutes.
5. The number of cars passing through a toll gate in a span of 5 minutes.

These are the examples of Poisson probability regression models. There are three approaches to develop a probability model for the above binary response variable or polychotomous response variable and they are

1. The linear probability model (LPM).
2. The LOGIT model (logistic regression model)
3. The PROBIT model.

It is important to note that the fundamental difference between a traditional regression model and qualitative response regression model is that in the traditional regression model the regressand $Y$ is quantitative, where as in the qualitative response regression model, the regressand $Y$ is qualitative. In a model where $Y$ is quantitative, our objective is to estimate the expected or mean value given the values of the regressors as given below.

$$
\begin{align*}
& Y_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i}  \tag{20.1}\\
& E\left(Y_{i} / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right)=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}
\end{align*}
$$

But, in the models where $Y$ is qualitative, our objective is to find the probability of something happening such as voting for a Congress candidate or owning a house or a certain drug is effective etc., Hence qualitative response regression models are often known as probability models.

We have to seek the answers for the following questions:

1. How do we estimate qualitative response regression models? Can we estimate simply with the usual OLS procedure?
2. Are there any special inference problems.
3. How to measure the goodness of fit?
4. How do we estimate and interpret polychotomous regression models ? Also how do we handle models in which the regressand is ordinal or nominal?

### 20.3 The Linear Probability Model (LPM)

For the sake of simplicity, we consider the regression model with only one explanatory variable $X$ as given below

$$
\begin{align*}
& Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}, \quad \text { with } E\left(u_{i}\right)=0, \quad i=1,2, \ldots, n \\
& \text { where } Y_{i}=1, \text { if } i^{\text {th }} \text { family have own house. } \\
& =0, \text { if } i^{\text {th }} \text { family does not have own house. }  \tag{20.2}\\
& X_{i}=\text { Income of } i^{\text {th }} \text { family. }
\end{align*}
$$

The above model is a typical linear regression model because the regressand $Y_{i}$ is a binary variable/dichotomous variable and it is called a linear probability model[LPM].

From Eq. (20.2) we may write

$$
\begin{equation*}
E\left(Y_{i} / X_{i}\right)=\beta_{1}+\beta_{2} X_{i} \tag{20.3}
\end{equation*}
$$

Let us denote

$$
\begin{aligned}
P_{i} & =P\left(\text { the event of the } \mathrm{i}^{\text {th }} \text { family have own house }\right) \\
1-P_{i} & =P\left(\text { the event of the } \mathrm{i}^{\text {th }} \text { family does not have own house }\right)
\end{aligned}=P\left(Y_{i}=1\right)
$$

Thus the variable $Y_{i}$ has the following probability distribution

| $Y_{i}$ | $P\left(Y_{i}\right)$ |
| :--- | :--- |
| 0 | $1-P_{i}$ |
| 1 | $P_{i}$ |
| Total 1 |  |

that is $Y_{i}$ follows the Bernoulli probability distribution. Now, by the definition of mathematical expectation

$$
\begin{equation*}
E\left(Y_{i}\right)=\sum Y_{i} P\left(Y_{i}\right)=0\left(1-P_{i}\right)+1 P_{i}=P_{i} \tag{20.4}
\end{equation*}
$$

From Eqs. (20.3) and (20.4) we may write

$$
E\left(Y_{i} / X_{i}\right)=\beta_{1}+\beta_{2} X_{i}=E\left(Y_{i}\right)=P_{i}
$$

that is the conditional expectation of the model (20.2) can in fact be interpreted as the conditional probability of $Y_{i}$. Since the probability $P_{i}$ must lie between 0 and 1, we have the restriction

$$
\begin{equation*}
0 \leq E\left(Y_{i} / X_{i}\right)=\beta_{1}+\beta_{2} X_{i} \leq 1 \tag{20.5}
\end{equation*}
$$

Thus, $\beta_{1}+\beta_{2} X_{i}$ is interpreted as the probability that the event will occur at given the $X_{i}$. The calculated value of $Y_{i}$ from the regression model (20.2) that is $\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}$ will then give the estimated probability that the event will occur given the particular value of $X_{i}$. The above LPM posses the following problems.

## 1. Non-Normality of the disturbances:

From equation (20.2) we may write the disturbance term $u_{i}$ as

$$
u_{i}=Y_{i}-\beta_{1}-\beta_{2} X_{i} \quad i=1,2, \ldots, n
$$

Thus the probability distribution of $u_{i}$ is

|  | $u_{i}$ | $P\left(u_{i}\right)$ |
| :--- | ---: | ---: |
| when $Y_{i}=1$ | $1-\beta_{1}-\beta_{2} X_{i}$ | $P_{i}=\beta_{1}+\beta_{2} X_{i}$ |
| when $Y_{i}=0$ | $-\beta_{1}-\beta_{2} X_{i}$ | $1-P=1-\beta_{1}-\beta_{2} X_{i}$ |

Obviously $u_{i}$ cannot be assumed to be normally distributed as it follows the Bernoulli distribution and hence, there is a problem with the application of the usual tests of significance.

However, in large sample any distribution approaches normal distribution and hence, we can assume $u_{i}$ as normal in large samples.

## 2. Heteroscedasticity of the disturbances:

Even if $E\left(u_{i}\right)=0$ and $\operatorname{cov}\left(u_{i}, u_{j}\right)=0 \forall i \neq j$ (that is no auto correlation), the LPM disturbances are not homoscedastic as explained below.
Since the probability distribution of $u_{i}$ is Bernoulli, we have

$$
\begin{align*}
V\left(u_{i}\right) & =P\left(u_{i}\right)\left(1-P\left(u_{i}\right)\right) \\
& =P_{i}\left(1-P_{i}\right) \\
& =E\left(Y_{i} / X_{i}\right)\left(1-E\left(Y_{i} / X_{i}\right)\right) \\
& =\left(\beta_{1}+\beta_{2} X_{i}\right)\left(1-\beta_{1}-\beta_{2} X_{i}\right) \quad \text { (using Eq.(20.3)) } \\
& =W_{i}(\text { say }) \tag{20.6}
\end{align*}
$$

Since $V\left(u_{i}\right)$ is depending on $X_{i}$ which varies from one individual to other, $V\left(u_{i}\right)$ is not common/constant for all $u_{i}$ 's i.e., $V\left(u_{i}\right)$ is not homoscedastic. Thus $u_{i}$ 's are heteroscedastic disturbances.

Dividing Eq. (20.2) by $\sqrt{W_{i}}$ we get

$$
\begin{equation*}
Y_{i}^{*}=\beta_{1} Z_{i}+\beta_{2} X_{i}^{*}+u_{i}^{*} \quad i=1,2, \ldots, n \tag{20.7}
\end{equation*}
$$

where $Y_{i}^{*}=\frac{Y_{i}}{\sqrt{W_{i}}}, Z_{i}=\frac{1}{\sqrt{W_{i}}}, X_{i}^{*}=\frac{X_{i}}{\sqrt{W_{i}}}, u_{i}^{*}=\frac{u_{i}}{\sqrt{W_{i}}}$

$$
V\left(u_{i}^{*}\right)=V\left(\frac{u_{i}}{\sqrt{W_{i}}}\right)=\frac{V\left(u_{i}\right)}{W_{i}}=\frac{W_{i}}{W_{i}}=1
$$

Now, we can verify from the equation Eq. (20.8), $V\left(u_{i}^{*}\right)=1$ and hence $u_{i}^{*}$ 's are homoscedastic. We can estimate the model (20.7) by applying ordinary least square (OLS) method. But for the application of OLS method the practical problem is $Z_{i}$ and $Y_{i}^{*}$, and $X_{i}^{*}$ are in terms of $W_{i}$, where $W_{i}$ is in terms of the unknown parameter $\beta_{1}$ and $\beta_{2}$.

To overcome this problem we have to estimate $W_{i}$ using the following two step procedure.
Step 1: Run the OLS regression for equation Eq. (20.2). Despite the heteroscedasticity problem and obtain $\hat{Y}_{i}=$ estimate of true $E\left(Y_{i} / X_{i}\right)$. Then obtain

$$
\hat{W}_{i}=\hat{Y}_{i}\left(1-\hat{Y}_{i}\right) \text { where } \hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{1} X_{i}
$$

Step 2: Use the estimated $W_{i}$ to obtain $Y_{i}^{*}, Z_{i}$ and $X_{i}^{*}$ from Eq. (20.8) and apply OLS method to the transformed model (20.7) and it may be noted that the transformed model does not have the intercept.
3. Non fulfillment of $0 \leq E\left(Y_{i} / X_{i}\right) \leq 1$ :

Since $E\left(Y_{i} / X_{i}\right)$ in the LPM measures the conditional probability of the event $Y_{i}$ occurring given $X_{i}$. It must necessarily lie between 0 and 1 . But there is no guarantee that $\hat{Y}_{i}$, the estimate of $E\left(Y_{i} / X_{i}\right)$ will necessarily fulfill this restriction and this is the real and practical problem with the OLS estimation of the LPM.

There are two ways of finding out whether the estimated $\hat{Y}_{i}$ lie between 0 and 1 . One is to estimate the LPM by the usual OLS method and find out whether the estimated $\hat{Y}_{i}$ lie between 0 and 1. If $\hat{Y}_{i}<0$, for some $i$, make $\hat{Y}_{i}=0$ and if $\hat{Y}_{i}>1$, for some $i$, make $\hat{Y}_{i}=1$.

The second procedure is to devise an estimating technique that will guarantee that the estimated probability $\hat{Y}_{i}$ will lie between 0 and 1 . The Logit and Probit model discussed later will guarantee that the estimated probabilities will indeed lie between the logical limits 0 and 1.

Note: the traditional $R^{2}$ cannot be used to measure the goodness of fit in case of probability models.

### 20.4 The Logit Model

An explanation of the LOGIT model (logistic regression) begins with the explanation of the logistic function

$$
\begin{equation*}
F(Z)=\frac{1}{1+e^{-z}}, \quad-\infty<\mathrm{z}<\infty \tag{20.9}
\end{equation*}
$$

The logistic function is useful because it can take as an input any value from $-\infty$ to $+\infty$, where as the output is confined to the values between 0 and 1. Thus Eq. (20.9) is a probability function called logistic probability model. The variable $Z$ is usually defined as

$$
\begin{equation*}
Z=\beta_{1}+\beta_{2} X_{2}+\cdots+\beta_{k} X_{k}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j} \tag{20.10}
\end{equation*}
$$

where $X_{2}, X_{3}, \cdots, X_{k}$ are $k$-1 explanatory variables or cause variables or regressors and $\beta_{1}$ is the intercept and $\beta_{2}, \beta_{3}, \cdots, \beta_{k}$ are regression coefficients.

It is easy to verify that as $Z$ varies to $-\infty$ to $+\infty, F(Z)$ ranges from 0 to 1 . Thus $F(Z)$ represents the probability of a particular outcome, given that a set of factor variables. A positive $\beta_{j}$ means that the variable $X_{j}$ increases the probability of outcome, while a negative $\beta_{j}$ means the variable $X_{j}$ decreases the probability of outcome.

Now let us consider a situation where a dependent variable or response variable is a dichotomous that is which takes 0 or 1, which depends on several factors namely $X_{2}, X_{3}, \ldots, X_{k}$. Now our objective is to find

$$
E\left(Y_{i} / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right)
$$

Since $Y_{i}$ takes only two values,

$$
\begin{aligned}
Y_{i} & =1, \text { if the event occurs } \\
& =0, \text { other wise }
\end{aligned}
$$

$Y_{i}$ is Bernoulli variable and by definition we have

$$
\begin{align*}
& E\left(Y_{i}\right)=1 P\left(Y_{i}=1\right)+0 P\left(Y_{i}=0\right)=P\left(Y_{i}=1\right)=P_{i} \quad(\text { say }) \\
& \therefore E\left(Y_{i} / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right)=P_{i}, \quad \text { where } P_{i}=E\left(Y_{i}\right) \tag{20.11}
\end{align*}
$$

Now, if we adopt the logistic model (20.9) for $P_{i}$ given in Eq. (20.11), then we get

$$
\begin{align*}
& P_{i}=\frac{1}{1+e^{-Z_{i}}}, \quad-\infty<Z_{i}<\infty, \quad i=1,2, \ldots, n  \tag{20.12}\\
& \Rightarrow 1-P_{i}=1-\frac{1}{1+e^{-Z_{i}}}=\frac{e^{-Z_{i}}}{1+e^{-Z_{i}}} \\
& \Rightarrow \frac{P_{i}}{1-P_{i}}=\left(\frac{1}{1+e^{-Z_{i}}}\right)\left(\frac{1+e^{-Z_{i}}}{e^{-Z_{i}}}\right)=e^{Z_{i}} \\
& \left.\Rightarrow \log \left(\frac{P_{i}}{1-P_{i}}\right)=Z_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i} \quad \quad \quad \text { from Eq. }(20.10)\right) \tag{20.13}
\end{align*}
$$

Now the model (20.13) is called as LOGIT model. The quantity $\log \left(\frac{P_{i}}{1-P_{i}}\right)=L_{i}$ (say) is called as the "LOGIT".
Note: The model given in Eq. (20.12) with $Z_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}$ is also called as LOGIT model.
Remark: The quantity $\frac{P_{i}}{1-P_{i}}$ is simply the odds ratio in favor of happening the event $Y_{i}=1$.
Thus if $P_{i}=0.8$, it means that the odds are $\frac{P_{i}}{1-P_{i}}=\frac{0.8}{0.2}=4$ to 1 in favor of happening of $Y_{i}=1$.

## Features of Logit Model:

1. As $P_{i}$ goes from 0 to 1 the LOGIT $L_{i}$ goes from $-\infty$ to $+\infty$. That is although the probabilities lies between 0 and 1, the LOGITs are not so bounded.
2. Although L is linear in $X_{2}, X_{3}, \ldots, X_{k}$, the $P_{i} s$ are not so. This property is in contrast with the LPM, where the probability increases linearly with values of $X_{2}, X_{3}, \ldots, X_{k}$.
3. If the Logit, $L_{i}=\log \left(\frac{P_{i}}{1-P_{i}}\right)$ in the LOGIT model is positive it means that when the values of the regressors increase, the odds that the regressand $Y_{i}=1$ (means some event of interest happens) increases.
4. If $L_{i}$ is negative, the odds that the regressand $Y_{i}=1$ decreases as the values of regressors increases. To put it differently the LOGIT becomes negative and increasingly large in magnitude $(-\infty, 0)$ as the odds ratio $\left(\frac{P_{i}}{1-P_{i}}\right)$ decreases from 1 to 0 and becomes positive and increasingly large $(0, \infty)$ as the odds ratio increases from 1 to $\infty$.

## M.L. Estimation of LOGIT model:

The LOGIT model is given by

$$
\begin{align*}
P_{i} & =P\left(Y_{i}=1 / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right) \\
& =1-P\left(Y_{i}=0 / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right) \\
& =\frac{1}{1+e^{-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}}, \quad \text { for } \mathrm{i}=1,2, \ldots, \mathrm{n} \tag{20.14}
\end{align*}
$$

where $Y$ is binary dependent variable (take the value 0 or 1 ) and $X_{2}, X_{3}, \ldots, X_{k}$ are k-1 explanatory variables.

We do not actually observe $P_{i}$ but only observe the outcome

$$
\begin{aligned}
& Y_{i}=1, \text { if the event occurs } \\
& Y_{i}=0 \text {, if the event does not occur }
\end{aligned}
$$

Suppose we have a random sample of $n$ observations $Y_{1}, Y_{2}, \ldots, Y_{n}$, the likelihood function of $Y_{1}, Y_{2}, \ldots, Y_{n}$ is given as

$$
\begin{equation*}
L\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=\prod_{i=1}^{n} f_{i}\left(Y_{i}\right)=\prod_{i=1}^{n} P_{i}^{Y_{i}}\left(1-P_{i}\right)^{1-Y_{i}} \tag{20.15}
\end{equation*}
$$

Taking logarithms on both sides we get

$$
\begin{align*}
\log L & =\sum_{i=1}^{n}\left[Y_{i} \log P_{i}+\left(1-Y_{i}\right) \log \left(1-P_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[Y_{i} \log P_{i}-Y_{i} \log \left(1-P_{i}\right)+\log \left(1-P_{i}\right)\right] \\
& =\sum_{i=1}^{n} Y_{i} \log \left[\frac{P_{i}}{1-P_{i}}\right]+\sum_{i=1}^{n} \log \left(1-P_{i}\right) \tag{20.16}
\end{align*}
$$

Now from Eq. (20.14), we may write

$$
\begin{equation*}
1-P_{i}=1-\frac{1}{1+e^{-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}}=\frac{e^{-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}}{1+e^{-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}} \tag{20.17}
\end{equation*}
$$

From Eqs. (20.14) and (20.17), we get

$$
\begin{equation*}
\frac{P_{i}}{1-P_{i}}=e^{\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}} \Rightarrow \log \left(\frac{P_{i}}{1-P_{i}}\right)=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i} \tag{20.18}
\end{equation*}
$$

Eq. (20.17) may be rewritten as

$$
\begin{equation*}
1-P_{i}=\frac{1}{1+e^{\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}} \tag{20.19}
\end{equation*}
$$

Now, substituting Eq. (20.18) and Eq. (20.19) in Eq. (20.16) we get

$$
\begin{equation*}
\log L=\sum_{i=1}^{n} Y_{i}\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)-\sum_{i=1}^{n} \log \left(1+e^{\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}\right) \tag{20.20}
\end{equation*}
$$

Differentiating the above $\log \mathrm{L}$ with respect to $\beta_{j}, \mathrm{j}=1,2, \ldots, \mathrm{k}$, and setting them equal to zero, we get

$$
\begin{equation*}
\text { We have } \frac{\partial \log L}{\partial \beta_{j}}=0 \quad j=1,2, \ldots, k \tag{20.21}
\end{equation*}
$$

Since the above set of ' $k$ ' equations are in non-linear form and are not in explicit form, one has to solve the ' $k$ ' equations simultaneously using some iterative technique such as NewtonRaphson method or Gauss Newton methods to obtain the estimates of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$. Once, we get these estimates they can be substituted in the logistic model Eq. (20.14) to obtain the estimated logistic model.

### 20.5 The Probit Model

Let us assume that we have a regression model

$$
\begin{equation*}
Y_{i}^{*}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\ldots+\beta_{k} X_{k i}+u_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i} \tag{20.22}
\end{equation*}
$$

where $Y_{i}^{*}$ is not observed it is commonly called a "latent" variable what we observe is a dummy variable,

$$
Y_{\mathrm{i}}=1, \text { if } Y_{i}^{*}>0
$$

$$
\begin{equation*}
=0 \text {, otherwise } \tag{20.23}
\end{equation*}
$$

For instance if the observed dummy variable $Y_{i}$ is where the given person is employed or not, then $Y_{i}^{*}$ would be defined as "propensity" or "ability" to find employment. Similarly, if the observed dummy variable $Y_{i}$ is whether the person has bought a car or not, then $Y_{i}^{*}$ could be
defined as "desired" or "ability" to buy a car. Note that in both the examples we have given there is "desire" or "ability" involved. Thus the explanatory variables in Eq. (20.22) would contain variables that explain both these variables.

Now from Eq. (20.23) that multiplying $\mathrm{Y}_{\mathrm{i}}{ }^{*}$ by any positive constant does not change $Y_{i}$. Hence, if we observe $Y_{i}$ we can estimate $\theta$ in Eq. (20.22) up to a positive multiple. Hence, it is customary to assume $V\left(u_{i}\right)=1$, this fixes the scale of $\mathrm{Y}_{\mathrm{i}}{ }^{*}$.

If we denote

$$
\begin{equation*}
Z_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i} \tag{20.24}
\end{equation*}
$$

then we get from Eqs. (20.22) and (20.23)

$$
\begin{align*}
P_{i} & =P\left(Y_{i}=1\right)=P\left(Y_{i}^{*}>0\right) \\
& =P\left(Z_{i}+u_{i}>0\right) \\
& =P\left(u_{i}>-Z_{i}\right) \\
& =1-P\left(u_{i}<-Z_{i}\right) \\
& =1-F\left(-Z_{i}\right) \tag{20.25}
\end{align*}
$$

where $F$ is the c.d.f. of error term $u_{i}$. If the distribution of $u_{i}$ is symmetric then

$$
1-F\left(-z_{i}\right)=F\left(z_{i}\right)
$$

and in this case Eq. (20.25) becomes

$$
\begin{equation*}
P_{i}=F\left(z_{j}\right)=P\left(u_{i}<Z_{i}\right) \tag{20.26}
\end{equation*}
$$

Now functional form $F$ in Eq. (20.26) will depend on the assumption made about the error term $u_{i}$. If the cumulative distribution of $u_{i}$ is a normal distribution with mean 0 and variance $\sigma^{2}$, then the above model become a PROBIT model and in this case

$$
\begin{array}{rlrl}
P_{i}=F\left(Z_{i}\right) & =P\left(u_{i}<Z_{i}\right) & \\
& =P\left(u_{i} / \sigma<Z_{i} / \sigma\right) & (\because \sigma>0) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z_{i} / \sigma} e^{-\frac{1}{2} t^{2}} d t & \left(\because \frac{u_{i}}{\sigma} \sim N(0,1)\right) \\
& =\Phi\left(Z_{i} / \sigma\right), & \text { where } \Phi & \text { is c.d.f. of standard norm al variate }
\end{array}
$$

and $F^{-1}\left(P_{i}\right)=Z_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i} \quad$ [from Eq. (20.24)]
Since $F^{-1}$ is the inverse of normal c.d.f., the model (20.27) is called as PROBIT model.
Note: If the cumulative distribution of $u_{i}$ is a logistic distribution then the Eq. (20.26) yields LOGIT model and in this case

$$
\begin{align*}
P_{i}=F\left(Z_{i}\right) & =\frac{1}{1+e^{-z_{i}}} \Rightarrow \frac{P_{i}}{1-P_{i}}=e^{z_{i}} \\
& \Rightarrow \log \left(\frac{P_{i}}{1-P_{i}}\right)=Z_{i i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i} \quad[\text { from Eq. (20.24)] } \tag{20.28}
\end{align*}
$$

Now the above equation is called LOGIT Model. The quantity $\log \left(\frac{P_{i}}{1-P_{i}}\right)=L_{i}$ (say) is called as the "LOGIT".
Remark: The LOGIT model can be derived alternatively as shown in the above note.

## M.L. Estimation of PROBIT model:

The PROBIT model is given by

$$
\begin{align*}
P_{i} & =P\left(Y_{i}=1 / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right) \\
& =1-P\left(Y_{i}=0 / X_{2 i}, X_{3 i}, \ldots, X_{k i}\right) \\
& =F\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right), \quad \text { for } i=1,2, \ldots, n \tag{20.29}
\end{align*}
$$

where Y is binary dependent variable (take the values 0 or 1 ) and $X_{2}, X_{3}, \ldots, X_{k}$ are $k-1$ explanatory variables. Here, $F($.$) is the c.d.f. of the normal variate N\left(0, \sigma^{2}\right)$, given by

$$
F\left(Z_{i}\right)=\Phi\left(Z_{i} / \sigma\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z_{i} / \sigma} e^{-\frac{1}{2} t^{2}} d t, \quad \text { where } \Phi \text { is c.d.f. of standard normal variate }
$$

We do not actually observe $P_{i}$ but only observe the outcome
$Y_{i}=1$, if the event occurs
$Y_{i}=0$, if the event does not occur
Since each $Y_{i}$ is a Bernoulli random variable, we can write

$$
\begin{align*}
& P\left(Y_{i}=1\right)=P_{i}  \tag{20.30}\\
& P\left(Y_{i}=0\right)=1-P_{i} \tag{20.31}
\end{align*}
$$

Suppose we have a random sample of ' n ' observations. Letting $f\left(Y_{i}\right)$ denote the probability that $Y_{i}=1$ (or) 0 . Now, the likelihood functions of $Y_{1}, Y_{2}, \ldots ., Y_{n}$ is given as

$$
\begin{equation*}
L\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=\prod_{i=1}^{n} f\left(Y_{i}\right)=\prod_{i=1}^{n} P_{i}^{Y_{i}}\left(1-P_{i}\right)^{1-Y_{i}} \tag{20.32}
\end{equation*}
$$

Taking logarithms on both sides of Eq. (20.32) we get

$$
\log L=\sum_{i=1}^{n}\left[Y_{i} \log P_{i}+\left(1-Y_{i}\right) \log \left(1-P_{i}\right)\right]
$$

Substituting $P_{i}$ from Eq. (20.29), we get

$$
\begin{equation*}
\log L=\sum_{i=1}^{n}\left\{Y_{i} \log F\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)+\left(1-Y_{i}\right) \log \left[1-F\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)\right]\right\} \tag{20.33}
\end{equation*}
$$

Differentiating Eq. (20.33) with respect to $\beta_{j}, \mathrm{j}=1,2, \ldots, \mathrm{k}$, and setting them equal to zero, we get

$$
\begin{equation*}
\frac{\partial \log L}{\partial \beta_{j}}=0 \quad j=1,2, \ldots, k \tag{20.34}
\end{equation*}
$$

Since the above set of ' $k$ ' equations are in non-linear form and are not in explicit form and hence one has to solve the above ' $k$ ' equations simultaneously using some iterative technique such as Newton-Raphson method or Gauss Newton method to obtain the estimates of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$. Once, we get these estimates they can be substituted in the PROBIT model Eq. (20.29) to obtain the estimated PROBIT model.

### 20.6 The Tobit Model

Let us assume that we have a regression model

$$
\begin{equation*}
Y_{i}^{*}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\cdots+\beta_{k} X_{k i}+u_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i} \tag{20.35}
\end{equation*}
$$

where $Y_{i}^{*}$ is not observed and it is commonly called a "latent" variable. In the Logit and Probit models what we observe is a dummy variable, defined by

$$
\begin{align*}
Y_{\mathrm{i}} & =1, \text { if } Y_{i}^{*}>0 \\
& =0, \text { otherwise } \tag{20.36}
\end{align*}
$$

Suppose, however, that $Y_{i}^{*}$ is observed if $Y_{i}^{*}>0$ and is not observed if $Y_{i}^{*} \leq 0$. Then the observed $Y_{i}$ will be defined as

$$
Y_{i}= \begin{cases}\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i} & \text { if } Y_{i}^{*}>0  \tag{20.37}\\ 0 & \text { if } Y_{i}^{*} \leq 0\end{cases}
$$

where $u_{i} \sim N\left(0, \sigma^{2}\right)$
This is known as the Tobit model (Tobin's probit) and was first analyzed in the econometrics literature by Tobin. It is also known as a censored normal regression model because some observations on $Y_{i}^{*}$ (those for which $Y_{i}^{*} \leq 0$ ) are censored (we are not allowed to see them). Our objective is to estimate the parameters $\beta$ 's and $\sigma$.

## Some Examples:

There have been a very large number of applications of the Tobit model. We present two examples below.

The first example that Tobin considered was that of automobile expenditures. Suppose that we have data on a sample of households. We wish to estimate, say, the income elasticity of demand for automobiles. Let $Y_{i}^{*}$ denote expenditures on automobiles and $X$ denote income, and we postulate the regression equation

$$
Y_{i}^{*}=\alpha+\beta X_{i}+u_{i} \quad \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

However, in the sample we would have a large number of observations for which the expenditures on automobiles are zero. Tobin argued that we should use the censored regression model. We can specify the model as

$$
Y_{i}= \begin{cases}\alpha+\beta X_{i}+u_{i} & \text { for those with positive automobile expenditures }  \tag{20.38}\\ 0 & \text { for those with no expenditures }\end{cases}
$$

The structure of this model appears to be the same as that in Eq. (20.37).
The second example that Tobin considered was the hours worked $(H)$ or wages $(W)$. If we have observations on a number of individuals, some of whom are employed and others not, we can specify the model for hours worked as

$$
H_{i}= \begin{cases}\alpha+\beta X_{i}+u_{i} & \text { for those working }  \tag{20.39}\\ 0 & \text { for those not working }\end{cases}
$$

Similarly, for wages we can specify the model

$$
W_{i}= \begin{cases}\alpha+\beta Z_{i}+v_{i} & \text { for those working }  \tag{20.40}\\ 0 & \text { for those not working }\end{cases}
$$

The structure of these models again appears to be the same as in Eq. (20.37).

## Method of Estimation:

Let us consider the estimation of $\beta$ 's and $\sigma$. We cannot use OLS with the positive observations $Y_{i}$ because when we write the model

$$
Y_{i}=\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i}
$$

the error term $u_{i}$ does not have a zero mean. Since observation with $Y_{i} \leq 0$ are omitted, it implies that only observations for which $u_{i}>-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)$ are included in the sample.

Thus the distribution of $u_{i}$ is a truncated normal distribution and its mean is not zero. In fact, it depends on $\beta_{2}, \beta_{3}, \ldots, \beta_{k}, \sigma$ and $X_{2 i}, X_{3 i}, \ldots, X_{k i}$ and is thus different for each observation. A method of estimation commonly suggested is the maximum likelihood method, which is as follows.

Note that we have two sets of observations:

1. The positive values of $Y_{i}$, for which we can write down the normal density function as usual.

We note that $\left(Y_{i}-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)\right) / \sigma$ has a standard normal distribution.
2. The zero observations of $Y_{i}$, for which all we know is that $Y_{i}^{*} \leq 0$ or $\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}+u_{i} \leq 0$. Since $u_{i} / \sigma$ has a standard normal distribution, we will write this as $u_{i} / \sigma \leq-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right) / \sigma$. The probability of this can be written as $\Phi\left(-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right) / \sigma\right)$, where $\Phi($.$) is the c.d.f. of the standard normal.$
Let us denote the density function of the standard normal by $\phi($.$) and then$

$$
\phi(t)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-t^{2} / 2} \quad \text { and } \Phi(z)=\int_{-\infty}^{z} \phi(t) d t
$$

Using this notation we can write the likelihood function for the Tobit model as

$$
L=\prod_{y_{i}>0} \frac{1}{\sigma} \phi\left(\frac{y_{i}-\left(\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}\right)}{\sigma}\right) \prod_{y_{i} \leq 0} \Phi\left(-\frac{\beta_{1}+\sum_{j=2}^{k} \beta_{j} X_{j i}}{\sigma}\right)
$$

Maximizing this likelihood function with respect to $\beta_{2}, \beta_{3}, \ldots, \beta_{k}$ and $\sigma$, we get the ML estimates of these parameters.

### 20.7 Measuring goodness of fit

There is a problem with the use of conventional $R^{2}$ - type measures when the explained variable $Y$ takes only two values. The predicted values $\hat{Y}$ are probabilities and the actual values $Y$ are either 0 or 1. For the LPM and Logit models, we have $\sum Y=\sum \hat{Y}$, as with the linear regression model, if a constant term is also estimated. For the Probit model there is no such exact relationship although it is approximately valid.

There are several $R^{2}$ - type measures that have been suggested for models with qualitative dependent variables. The following are some of them. In the case of the linear regression model, they are all equivalent. However, they are not equivalent in the case of models with qualitative dependent variables.

1. $R^{2}=$ Squared correlation between $Y$ and $\hat{Y}=[\operatorname{cor}(Y, \hat{Y})]^{2}$.
2. Measures based on residual sum of squares (RSS). For the linear regression model we have

$$
R^{2}=1-\left[\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}\right]
$$

We can use this same measure if we can use $\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ as the measure of $R S S$. Effron argued that we can use it. Note that in the case of binary dependent variable,

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum Y_{i}^{2}-n \bar{Y}^{2}=n_{1}-n\left(\frac{n_{1}}{n}\right)^{2}=\frac{n_{1} n_{2}}{n}
$$

where $\quad n_{1}=n u m b e r$ of 1 's and $n_{2}=$ number of $0 ' s$
Hence Effron's measure of $R^{2}$ is

$$
R^{2}=1-\frac{n}{n_{1} n_{2}} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=1-\frac{n R S S}{n_{1} n_{2}}
$$

Amemiya argues that it makes more sense to define that $R S S$ as

$$
\sum_{i=1}^{n} \frac{\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{\hat{Y}_{i}\left(1-\hat{Y}_{i}\right)}
$$

That is, to weight the squared error $\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ by a weight that is inversely proportional to its variance.
3. Measures based on likelihood ratios. For the standard linear regression model.

$$
Y=\beta_{1}+\sum_{i=2}^{k} \beta_{i} X_{i}+u, \quad \quad u \sim N\left(0, \sigma^{2}\right)
$$

Let $L_{U R}$ be the maximum of likelihood function when maximized with respect to all the parameters and $L_{R}$ be the maximum when maximized with restriction $\beta_{i}=0$ for $i=1,2, \ldots, k$. Then, a measure of $R^{2}$, defined by McFadden, is

$$
\text { McFadden's } R^{2}=1-\frac{\log L_{\mathrm{UR}}}{\log L_{\mathrm{R}}}
$$

However, this measure does not correspond to any $R^{2}$ measure in the linear regression model.
4. Finally, we can also think of $R^{2}$ in terms of the proportion of correct predictions. Since the dependent variable is a 0 or 1 variable, after we compute the $\hat{Y}_{i}$ we classify the $i^{\text {th }}$ observation as belonging to group 1 if $\hat{Y}_{i}>=0.5$ and group 2 if $\hat{Y}_{i}<0.5$. We can then count the number of correct predictions. We can define a predicted value $\hat{Y}_{i}^{*}$, which is also a zero one variable such that

$$
\hat{Y}_{i}^{*}= \begin{cases}1 & \text { if } \hat{Y}_{i}>=0.5 \\ 0 & \text { if } \hat{Y}<0.5\end{cases}
$$

Now define count $R^{2}=\frac{\text { number of correct predictions }}{\text { total number of observations }}$

### 20.8 Summary and Conclusions

1. Qualitative response (dummy dependent variable) regression models refer to models in which the response, dependent, or regressand, variable is not quantitative or an interval scale.
2. The simplest possible qualitative response regression model is the binary model in which the regressand is of the yes/no or presence/absence type. Regarding the dummy dependent variable, there are three different models that one can use: the linear probability model (LPM), the Logit model, and the Probit model.
3. The simplest possible binary regression model is the LPM, in which the binary response variable is regressed on the relevant explanatory variables by using the standard OLS methodology. Simplicity may not be a virtue here, for the LPM suffers from several estimation problems. The LPM has the drawback that the predicted values can be outside the permissible interval $(0,1)$. Even if some of the estimation problems can be overcome, the fundamental weakness of the LPM is that it assumes that the probability of something happening increases linearly with the level of the regressor. This very restrictive assumption can be avoided if we use the Logit and Probit models.
4. In the analysis of models with dummy dependent variables, we assume the existence of a latent (unobserved) continuous variable which is specified as the usual regression model. However, the latent variable can be observed only as dichotomous variable. The difference, between the Logit and Probit models, is in the assumptions made about the error term. If the error term has a logistic distribution, we have the Logit model. If it has a normal distribution, we have the Probit model. From the practical point of view, there is not much to choose between the two. The results are usually very similar.
5. In the Logit model the dependent variable is the log of the odds ratio, which is a linear function of the regressors. The probability function that underlies the Logit model is the logistic distribution.
6. If we choose the normal distribution as the appropriate probability distribution, then we can use the Probit model. This model is mathematically a bit difficult as it involves integrals. But for all practical purposes, both Logit and Probit models give similar results. In practice, the choice therefore depends on the ease of computation, which is not a serious problem with sophisticated statistical packages that are now readily available.
7. A model that is closely related to the Probit model is the Tobit model, also known as a censored regression model. In this model, the response variable is observed only if certain condition(s) are met. Thus, the question of how much one spends on a car is meaningful only if one decides to buy a car to begin with.
8. For comparing the LP, Logit, and Probit models, one can look at the number of cases correctly predicted. However, this is not enough. It is better to look at some measures
of $R^{2}$ 's. We discuss several measures of namely of i) Squared correlation between $Y$ and $\hat{Y}$, ii) Effron's $R^{2}$ iii) McFadden's $R^{2}$ and iv) count $R^{2}$.

Note: In this lesson no illustrations are given since the demonstration of these models require software packages.

### 20.9 Self Assessment Questions

1. Discuss the need of qualitative response models. Explain the linear probability model (LPM)
2. Discuss how logistic regression model is different from the traditional regression model.
3. Explain the LOGIT Model and an estimation procedure of the model.
4. What are the applications of logistic regression model?
5. Explain ML estimation procedure of logistic model and give two of its applications.
6. Describe the PROBIT and TOBIT models.
7. Discuss the need of qualitative response models. Explain the ML estimation of the parameters of the LOGIT model.
8. Explain in detail the PROBIT model and also explain its use in analysis of biological data.
9. Distinguish between Probit and Logit models and give their applications.
10. Explain ML estimation method of Probit model and give two applications of the model.
11. Discuss various measures of goodness of fit for LOGIT/PROBIT models.

### 20.10 References

1. Gujarati, D.N. (2005): Basic Econometrics, $4^{\text {th }}$ Ed., Tata McGraw-Hill.
2. Johnston, J. (1984): Econometric Methods, $3^{\text {rd }}$ Ed., McGraw-Hill, New York.
3. Montgomery, D.C., Peck, E.A. and Geoffrey Vining, G. (2003): Introduction to Linear Regression Analysis, $3^{\text {rd }}$ Ed., Wiley
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, $3^{\text {rd }}$ Ed., John Wiley \& Sons, New York.
5. G.S. Maddala (2001): Introduction to Econometrics, $3^{\text {rd }}$ Ed., John Wiley \& Sons, Ltd.
6. Johnston, J. and DiNardo J (1997): Econometric Methods, $4^{\text {th }}$ Ed., McGraw Hill.
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics, John Willey \& Sons, New York.
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper \& Row, New York.
