
ECONOMETRIC
 (

(MSC 

 

 

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR, 

ECONOMETRIC
(DMSTT23)  

MSC - STATISTICS
 
 

  

 

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,  

GUNTUR 

ANDHRA PRADESH 

ECONOMETRIC 

STATISTICS) 

ACHARYA NAGARJUNA UNIVERSITY 

CENTRE FOR DISTANCE EDUCATION 



 
 
Econometrics  1.1        Introduction to Econometrics  
 

 
 

Lesson 1 
 

 INTRODUCTION TO ECONOMETRICS 
 
1.0 Objective: 
 
 After studying the lesson the student will have clear idea on the need of a separate 
discipline of Econometrics and on various steps of the methodology of Econometrics, as it is 
illustrated by the well-known Keynesian consumption function. 
 
Structure of the Lesson: 
 

1.1 What is Econometrics? 
1.2 Why a Separate Discipline? 
1.3 The Aims and Methodology of Econometrics 
1.4 Self Assessment Questions 
1.5 References  

 
1.1 What is Econometrics? 

 
Literally speaking, the word “Econometrics” means measurement in economics.  Although 
measurement is an important part of econometrics, the scope of econometrics is much broader, 
as can be seen from the following: 
 

The application of statistical and mathematical methods to the analysis of economic 
data, with a purpose of giving empirical content to economic theories and verifying them 
or refuting them. 
 

In this respect econometrics is distinguished from mathematical economics, which consists of 
the application of mathematics only, and the theories derived need not be necessarily have an 
empirical testing. 
 
1.2 Why a Separate Discipline? 

 
Econometrics is an amalgam of economic theory, mathematical economics, economic 

statistics, and mathematical statistics. Yet the subject deserves to be studied in its own right for 
the following reasons. 

 
. Economic theory makes statement or hypotheses that are mostly qualitative in nature. 
For example, microeconomic theory states that, other things remaining the same, a reduction in 
the price of a commodity is expected to increase the quantity demanded of that commodity.   
Thus, economic theory postulates a negative or inverse relationship between the price and 
quantity demanded of a commodity. But the theory itself does not provide any numerical 
measure of the relationship between the two; that is, it does not tell by how much the quantity 
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will go up or down as a result of a certain change in the price of the commodity. It is the job of 
the econometrician to provide such numerical estimates. Stated differently, econometrics gives 
empirical content to most economic theory. 
 

Mathematical economics is mainly concerned with to express economic theory in 
mathematical form (equations) without regard to measurability or empirical verification of the 
theory. Econometrics, on the other hand, is mainly interested in the empirical verification of 
economic theory. As we shall see, the econometrician often uses the mathematical equations 
proposed by the mathematical economist but puts these equations in such a form that they lend 
themselves to empirical testing. And this conversion of mathematical equations into econometric 
equations requires a great deal of ingenuity and practical skill. 
 

Economic statistics is mainly concerned with collecting, processing, and presenting 
economic data in the form of charts and tables. These are the jobs of the economic statistician. 
It is he or she who is primarily responsible for collecting data on gross national product (GNP), 
employment, unemployment, prices, etc. The data thus collected constitute the raw data for 
econometric work. But the economic statistician does not go any further, not being concerned 
with using the collected data to test economic theories. Of course, one who does that becomes 
an econometrician.  
 

Although mathematical statistics provides many tools used in the trade, the 
econometrician often needs special methods in view of the unique nature of most economic 
data, namely, that the data are not generated as the result of a controlled experiment. The 
econometrician, like the meteorologist, generally depends on data that cannot be controlled 
directly.  
 

In econometrics the modeler is often faced with observational as opposed to  
experimental data. This has two important implications for empirical modeling in econometrics. 
First, the modeler is required to master very different skills than those needed for analyzing 
experimental data.  Second, the separation of the data collector and the data analyst requires 
the modeler to familiarize himself/herself thoroughly with the nature and structure of data in 
question. 
 
1.3 The Aims and Methodology of Econometrics 

 
The aims of econometrics are: 

1. Formulation of econometric models that is formulation of economic models in an 
empirically testable form.  Usually, there are several ways of formulating the econometric 
model from an economic model because we have to choose the functional form, the 
specification of the stochastic structure of the variables, and so on.  This part constitutes 
the specification aspect of the econometric work. 

2. Estimation and testing of these models with observed data.  This part constitutes the 
inference aspect of the econometric work. 

3. Use of these models for prediction and policy purposes. 
 
How do econometricians proceed in their analysis of an economic problem? That is, 

what is their methodology? Although there are several schools of thought on econometric 
methodology, we present here the traditional or classical methodology, which still dominates 
empirical research in economics and other social and behavioral sciences. 
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Broadly speaking, traditional econometric methodology proceeds along the following lines: 
 

1. Statement of theory or hypothesis. 
2. Specification of the mathematical model of the theory 
3. Specification of the statistical, or econometric, model 
4. Obtaining the data 
5. Estimation of the parameters of the econometric model 
6. Hypothesis testing 
7. Forecasting or prediction 
8. Using the model for control or policy purposes. 

 
To illustrate the preceding steps, let us consider the well-known Keynesian theory of 
consumption. 
 

1. Statement of Theory or Hypothesis 
 

Keynes stated: 
 

The fundamental psychological law . . . is that men [women] are disposed, as a rule and 
on average, to increase their consumption as their income increases, but not as much as 
the increase in their income.  In short, Keynes postulated that the marginal propensity 
to consume (MPC), the rate of change of consumption for a unit (say, a rupee) change 
in income, is greater than zero but less than 1. 

 
2. Specification of the Mathematical Model of Consumption 

 
Although Keynes postulated a positive relationship between consumption and 

income, he did not specify the precise form of the functional relationship between the 
two. For simplicity, a mathematical economist might suggest the following form of the 
Keynesian consumption function: 

 
                                                    0< 1Y Xα β β= + <                          (1.1) 
 

where Y = consumption expenditure and X = income, and where α and β, known as the 
parameters of the model, are, respectively, the intercept and slope coefficients. The 
slope coefficient β measures the MPC. This equation, which states that consumption is 
linearly related to income, is an example of a mathematical model of the relationship 
between consumption and income that is called the consumption function in 
economics. A model is simply a set of mathematical equations. If the model has only one 
equation, as in the preceding example, it is called a single-equation model, whereas if 
it has more than one equation, it is known as a multiple-equation model.   But, in this 
book, we have confined ourselves to only single-equation models. In Eq. (1.1) the 
variable appearing on the left side of the equality sign is called the dependent variable 
and the variable on the right side is called the independent or explanatory variable. 
Thus, in the Keynesian consumption function, Eq. (1.1), consumption (expenditure) is 
the dependent variable and income is the explanatory variable.  
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3. Specification of the Econometric Model of Consumption 
 

The purely mathematical model of the consumption function given in Eq. (1.1) is 
of limited interest to the econometrician, for it assumes that there is an exact or 
deterministic relationship between consumption and income. But relationships between 
economic variables are generally inexact. Thus, if we were to obtain data on 
consumption expenditure and disposable (i.e., after tax) income of a sample of, say, 500 
Indian families and plot these data on a graph paper with consumption expenditure on 
the vertical axis and disposable income on the horizontal axis, we would not expect all 
500 observations to lie exactly on the straight line of Eq. (1.1) because, in addition to 
income, other variables affect consumption expenditure. For example, size of family, 
ages of the members in the family, family religion, etc., are likely to exert some influence 
on consumption. 

 
To allow for the inexact relationships between economic variables, the econometrician 
would modify the deterministic consumption function Eq. (1.1) as follows: 

                              
                                 Y = α + β X+u ,            0 < β < 1                          (1.2) 

where u, known as the disturbance (error) term, is a random (stochastic) variable 
that has well-defined probabilistic properties. The disturbance term u may well represent 
all those factors that affect consumption but are not taken into account explicitly. 

 
Eq. (1.2) is an example of an econometric model. More technically, it is an 

example of a linear regression model, which is the major concern of this book. The 
econometric consumption function hypothesizes that the dependent variable Y 
(consumption) is linearly related to the explanatory variable X (income) but that the 
relationship between the two is not exact; it is subject to individual variation. The 
econometric model of the consumption function can be depicted as shown in the 
following figure. 

 
 

 

Figure 1.1 
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4. Obtaining Data 
 

To estimate the econometric model given in Eq. (1.2), that is, to obtain the 
numerical values of α and β, we need data. Let us look at the data given in Table I.1, 
which relate to the U.S. economy for the period 1981–1996. The Y variable in this table 
is the aggregate (for the economy as a whole) personal consumption expenditure (PCE) 
and the X variable is gross domestic product (GDP), a measure of aggregate income, 
both measured in billions of 1992 dollars. Therefore, the data are in “real” terms; that is, 
they are measured in constant (1992) prices.  

 
TABLE 1.1: DATA ON Y (PERSONAL CONSUMPTION EXPENDITURE) AND X 

(GROSS DOMESTIC PRODUCT, 1982–1996), BOTH IN 1992 BILLIONS OF DOLLARS 
            

Year       Y                 X 
 

Year       Y                 X 
 

1982    3081.5  4620.3 
1983    3240.6             4803.7 
1984  3407.6  5140.1 
1985  3566.5  5323.5 
1986  3708.7  5487.7 
1987  3822.3  5649.5 
1988  3972.7  5865.2 
1989  4064.6  6062.0 

1990  4132.2  6136.3 
1991  4105.8  6079.4 
1992 4219.8  6244.4 
1993  4343.6  6389.6 
1994  4486.0  6610.7 
1995  4595.3  6742.1 
1996  4714.1  6928.4 
 

 
Source: Economic Report of the President, 1998, Table B–2, p. 282. 

 
5. Estimation of the Econometric Model 

 
Now that we have the data, our next task is to estimate the parameters of the 

consumption function. The numerical estimates of the parameters give empirical content 
to the consumption function. The actual mechanics of estimating the parameters will be 
discussed in Lesson 2. Now, note that the statistical technique of regression analysis is 
the main tool used to obtain the estimates. Using this technique and the data given in 
Table1.1, we obtain the following estimates of α and β, namely, −184.08 and 0.7064.  

 
Thus, the estimated consumption function (i.e., regression line) 

 
                                  ˆ 184.08 0.7064 Y X= − +                 (1.3) 
 

 is shown in the following figure. 
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Figure 1.2 

 
As the above figure shows, the regression line fits the data quite well in that the data 
points are very close to the regression line. From this figure we see that for the period 
1982–1996 the slope coefficient (i.e., the MPC) was about 0.70, suggesting that for the 
sample period an increase in real income of 1 dollar led, on average, to an increase of 
about 0.7 dollar in real consumption expenditure. We say on average because the 
relationship between consumption and income is inexact; as is clear from the above 
figure; not all the data points lie exactly on the regression line. In simple terms we can 
say that, according to our data, the average, or mean, consumption expenditure went up 
by about 0.7 dollar for a dollar’s increase in real income. 

 
6. Hypothesis Testing 

 
Assuming that the fitted model is a reasonably good approximation of reality, we 

have to develop suitable criteria to find out whether the estimates obtained in, say,       
Eq. (1.3) are in accord with the expectations of the theory that is being tested. As noted 
earlier, Keynes expected the MPC to be positive but less than 1. In our example we 
found the MPC to be about 0.70. But before we accept this finding as confirmation of 
Keynesian consumption theory, we must enquire whether this estimate is sufficiently 
below unity to convince us that this is not a chance occurrence or peculiarity of the 
particular data we have used. In other words, is 0.70 statistically less than 1? If it is, it 
may support Keynes’ theory. 

 
Such confirmation or refutation of economic theories on the basis of sample 

evidence is based on a branch of statistical theory known as statistical inference 
(hypothesis testing). Throughout this book we shall see how this inference process is 
actually conducted. 
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7. Forecasting or Prediction 
 

 If the chosen model does not refute the hypothesis or theory under consideration, 
we may use it to predict the future value(s) of the dependent, or forecast variable Y on 
the basis of known or expected future value(s) of the explanatory, or predictor variable 
X. 

 
To illustrate, suppose we want to predict the mean consumption expenditure for 

1997. The GDP value for 1997 was 7269.8 billion dollars.  Putting this GDP figure on the 
right-hand side of Eq. (1.3), we obtain 

 

1997Ŷ  = −184.0779 + 0.7064 (7269.8)  = 4951.3167                (1.4) 
 

or about 4951 billion dollars. Thus, given the value of the GDP, the mean, or average, 
forecast consumption expenditure is about 4951 billion dollars. The actual value of the 
consumption expenditure reported in 1997 was 4913.5 billion dollars. The estimated 
model Eq. (1.3) thus over-predicted the actual consumption expenditure by about 37.82 
billion dollars. We could say the forecast-error is about 37.82 billion dollars, which is 
about 0.76 percent of the actual GDP value for 1997. When we fully discuss the linear 
regression model in subsequent chapters, we will try to find out if such an error is “small” 
or “large.”  But what is important for now is to note that such forecast errors are 
inevitable given the statistical nature of our analysis. 

 
There is another use of the estimated model Eq. (1.3).   Suppose the President 

decides to propose a reduction in the income tax. What will be the effect of such a policy 
on income and thereby on consumption expenditure and ultimately on employment? 

 
Suppose that, as a result of the proposed policy change, investment expenditure 

increases. What will be the effect on the economy? As macroeconomic theory shows, 
the change in income following, say, a dollar’s worth of change in investment 
expenditure is given by the income multiplier M,  which is defined as 

 
                    M = 1/ 1                                        (1.5) 
 

If we use the MPC of 0.70 obtained in Eq. (1.3), this multiplier becomes about M = 3.33. 
That is, an increase (decrease) of a dollar in investment will eventually lead to more than 
a threefold increase (decrease) in income; note that it takes time for the multiplier to 
work. The critical value in this computation is MPC, for the multiplier depends on it. And 
this estimate of the MPC can be obtained from regression models such as Eq. (1.3). 
Thus, a quantitative estimate of MPC provides valuable information for policy purposes. 
Knowing MPC, one can predict the future course of income, consumption expenditure, 
and employment following a change in the government’s fiscal policies. 

 
8. Use of the Model for Control or Policy Purposes 

 
Suppose we have the estimated consumption function given in Eq. (1.3). 

Suppose further the government believes that consumer expenditure of about 4900 
(billions of 1992 dollars) will keep the unemployment rate at its current level of about 4.2 
percent (early 2000). What level of income will guarantee the target amount of 
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consumption expenditure? If the regression results given in Eq. (1.3) seem reasonable, 
simple arithmetic will show that 

 
                    4900 = −184.0779 + 0.7064X                           (1.6) 
 

 which gives X = 7197, approximately. That is, an income level of about 7197 (billion) 
dollars, given an MPC of about 0.70, will produce an expenditure of about 4900 billion 
dollars.   As these calculations suggest, an estimated model may be used for control, or 
policy, purposes. By appropriate fiscal and monetary policy mix, the government can 
manipulate the control variable X to produce the desired level of the target variable Y. 

 
1.4 Self Assessment Questions  
 
1. What is Econometrics? Explain why a separate discipline of econometrics is need? 
2. Explain the Role of Econometrics and what are the aims of Econometrics? 
3. Discuss the scope, nature and limitations of Econometrics. 
 
 
1.5 References  
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Lesson 2 
 

 SIMPLE REGRESSION ANALYSIS: ESTIMATION  
 

2.0 Objective: 
 
 After studying the lesson the student will have clear idea regarding the objective of 
regression analysis, correlation vs regression, the estimation of the simple linear regression 
model and properties of the estimators. 
 
Structure of the Lesson: 
 

2.1 Introduction  
2.2 Regression versus  Causation 
2.3 Regression versus Correlation 
2.4 Terminology and Notation 
2.5 Simple Linear Regression Equation 
2.6 The Significance of the Stochastic Disturbance Term 
2.7 The Simple Linear Regression Model 
2.8 Principle of  Least Squares Estimation  
2.9 Properties of  Least Squares Estimators 
2.10 The Coefficient of Determination r 2:A Measure of “Goodness of  Fit” 
2.11 Self Assessment Questions  
2.12 References  

 
2.1 Introduction 

 
Regression analysis is one of the most commonly used tools in econometric work.  

Regression analysis is concerned with describing and evaluating the relationship of a given 
variable (often called the explained or dependent variable) with one or more other variables 
(often called the explanatory or independent variables) with a view to estimate and/or predict 
the (population) mean or average value of the dependent variable in terms of the known or fixed 
(in repeated sampling) values of the independent variables.   

 
If we are studying the dependence of a variable on only a single explanatory variable, 

such as that of consumption expenditure on real income, such a study is known as simple (two-
variable) regression analysis.  However, if we are studying the dependence of one variable on 
more than one explanatory variable, such as the study of the yield of a particular crop on 
rainfall, temperature, sunshine, and fertilizer, it is known as multiple regression analysis. In 
other words, in simple regression there is only one explanatory variable, whereas in multiple 
regression there are several explanatory variables. 



 
 
Centre for Distance Education   2.2                     Acharya Nagarjuna University   
 

 

Some illustrations: 
1. The well-known Keynesian consumption function, which is already explained in 

Lesson1. 
2. A monopolist, who can fix  

      X=price or output (but not both),    may want to find out the response of  
      Y=demand for a product,  to changes in price.   
Such an experiment may enable the estimation of the price elasticity (i.e., price 
responsiveness) of the demand for the product and may help determine the most 
profitable price. 

3. A labor economist may want to study the  
Y=rate of change of money wages  

in relation to    X=the unemployment rate.    
Such knowledge may be helpful in stating something about the inflationary process in an 
economy, for increases in money wages are likely to be reflected in increased prices.  

4. The marketing director of a company may want to know how  
             Y=demand for the company’s product  

       is related to     X=advertising expenditure.  
Such a study will be of considerable help in finding out the elasticity of demand with 
respect to advertising expenditure, that is, the percent change in demand in response to, 
say, a 1 percent change in the advertising budget.  This knowledge may be helpful in 
determining the “optimum” advertising budget. 

5. Finally, an agronomist may be interested in studying the dependence of  
             Y=  crop yield, say, of wheat,  
  on       X= rainfall.  
Such a dependence analysis may enable the prediction or forecasting of the average 
crop yield, given information about the rainfall. 

 
2.2 Regression versus  Causation 

 
Although regression analysis deals with the dependence of one variable on other 

variables, it does not necessarily imply causation. In the words of Kendall and Stuart, “A 
statistical relationship, however strong and however suggestive, can never establish causal 
connection and our ideas of causation must come from outside statistics, ultimately from some 
theory or other.” 
 

In the crop-yield example cited previously, there is no statistical reason to assume that 
crop yield does not depend on rainfall. The fact that we treat crop yield as dependent on rainfall 
(among other things) is due to non-statistical considerations.  Common sense suggests that the 
relationship cannot be reversed, for we cannot control rainfall by varying crop yield. 
 

In all the examples cited in Section 2.1, the point to note is that a statistical relationship 
in itself cannot logically imply causation. To ascribe causality, one must appeal to a priori or 
theoretical considerations. Thus, in the well-known Keynesian consumption function, discussed 
in Lesson1, one can invoke economic theory in saying that consumption expenditure depends 
on real income. 
 
2.3 Regression versus  Correlation 

 
Closely related to but conceptually very much different from regression analysis is 

correlation analysis, where the primary objective is to measure the strength or degree of linear 
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association between two variables. The correlation coefficient measures this strength of (linear) 
association. For example, we may be interested in finding the correlation (coefficient) between 
smoking and lung cancer, between scores on statistics and mathematics examinations, 
between high school grades and college grades, and so on. In regression analysis, as already 
noted, we are not primarily interested in such a measure. Instead, we try to estimate or predict 
the average value of one variable on the basis of the fixed values of other variable. Thus, we 
may want to know whether we can predict the average score on a statistics examination by 
knowing a student’s score on a mathematics examination. 

 
Regression and correlation have some fundamental differences that are worth 

mentioning. In regression analysis there is an asymmetry in the way the dependent (explained) 
and independent (explanatory) variables are treated. The dependent variable is assumed to be 
statistical, random, or stochastic, that is, to have a probability distribution. The independent 
variable, on the other hand, is assumed to have fixed values (in repeated sampling), which was 
made explicit in the definition of regression. Thus, we assumed that the variable age was fixed 
at given levels and height measurements were obtained at these levels. In correlation analysis, 
on the other hand, we treat both the variables symmetrically; there is no distinction between the 
dependent and independent variables. After all, the correlation between scores on mathematics 
and statistics examinations is the same as that between scores on statistics and mathematics 
examinations.  Moreover, both variables are assumed to be random.  Most of the correlation 
theory is based on the assumption of randomness of variables, whereas in regression theory we 
have to assume that the dependent variable is stochastic but the independent variable, need 
not be stochastic always and in most of the occasions, may be non-stochastic or fixed variable. 

 
2.4 Terminology and Notation 

 
Before we proceed to a formal analysis of regression theory, let us spell out  briefly on 

the matter of terminology and notation. In the literature, the terms dependent variable and 
independent variable are described variously. A representative list is: 

 
a) Dependent variable   Independent variable(s) 

       ↕                                           ↕ 
b) Predictand   Predictor(s) 

       ↕                                           ↕ 
c) Regressand   Regressor(s) 

       ↕                                           ↕ 
d) Explained variable  Explanatory variable(s) 

       ↕                                           ↕ 
e) Effect variable  Causal variable(s) 

       ↕                                           ↕ 
f) Endogenous variable Exogenous variable(s) 

       ↕                                           ↕ 
g) Target variable  Control variable(s) 

Unless stated otherwise, the letter Y will denote the dependent/explained variable and 
the X’s (X1, X2, . . ., Xk) will denote the independent/explanatory variables, Xk being the kth 
explanatory variable. The subscript i or t will denote the ith or the tth observation or value. Xki (or 
Xkt) will denote the ith (or tth) observation on variable Xk. As a matter of convention, the 
observation subscript i will be used for cross sectional data (i.e., data collected at one point in 
time) and the subscript t will be used for time series data (i.e., data collected over a period of 
time).  
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The term random is a synonym for the term stochastic. A random or stochastic variable 
is a variable that can take on any set of values, positive or negative, with a given probability. 

 
2.5 Simple Linear Regression Equation 

 
We may postulate the relationship between a dependent variable Y  and an independent 

variable X as 
( )Y f X=          (2.1) 

 which indicates that the variable X is influencing the other variable Y.  Here the function ( )f X   
may be either a linear function or a non-linear function.  Let us confine ourselves, in this lesson, 
to only a linear function.  Hence, we may write the Eq.  (2.1) as  
 Y Xα β= +          (2.2) 
where  α and β are the unknown parameters and are very often called as intercept and slope 
coefficients. Here, it may be noted that the above Eq. (2.2) is a deterministic or mathematical 
liner relationship, which is not suitable for measuring and testing the relationship between 
economic variables.  Therefore, we have to convert the deterministic Eq. (2.2) into a stochastic 
equation by introducing a stochastic term into the equation.  Thus, the linear relationship        
Eq. (2.2) may, now, be expressed as a stochastic linear relationship given by  
 Y X uα β= + +         (2.3) 
where u  is a stochastic or random variable (often called as error term or disturbance term) with 
known p.d.f.  In the above equation Xα β+  is the deterministic component of Y   and u  is the 
stochastic or random component.  Eq. (2.3) is known as a simple linear regression equation. 
The unknown parameters  α and β are called as regression coefficients or regression 
parameters, which are to be estimated from the data on Y  and X . 
 
2.6 The Significance of the Stochastic Disturbance term 

 
The following are the various reasons for inclusion of the stochastic disturbance term u  in the 
simple linear model. 

1. Unpredictable element of randomness in human behavior/responses: For instance, if 
Y=consumption expenditure of a household and X=disposable income of the household, 
there is an unpredictable element of randomness in each household’s consumption. The 
household does not behave like a machine.  In one month the people in the household 
are on a spending spree.  In another month they are tightfisted. 
 

2. Effect of a large number of omitted variables.  Again, in our example, X is not the only 
variable influencing Y.  The family size, tastes of the family, spending habits, and so on, 
affect the variable Y.  The error u  is a catchall for the effects of all these variables, 
some of which may not even be quantifiable, and some of which may not even be 
identifiable. But it is quite possible that the joint influence of all or some of these 
variables may be so small and at best nonsystematic or random that as a practical 
matter and for cost considerations it does not pay to introduce them into the model 
explicitly.   
 

3. Unavailability of data: Even if we know what some of the excluded variables are and 
therefore consider a multiple regression rather than a simple regression, we may not 
have quantitative information about these variables. It is a common experience in 
empirical analysis that the data, which we would like to have ideally, often are not 
available. For example, in principle we could introduce family wealth as an explanatory 
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variable in addition to the income variable to explain family consumption expenditure. 
But unfortunately, information on family wealth generally is not available. Therefore, we 
may be forced to omit the wealth variable from our model despite its great theoretical 
relevance in explaining consumption expenditure.  
 

4. Measurement error in Y. In our example this refers to measurement error in the 
household consumption.  That is, we cannot measure it accurately.  The disturbance 
term u  may represent these errors of measurement.   
 

5. Wrong functional form: Even if we have theoretically correct variables explaining a 
phenomenon and even if we can obtain data on these variables, very often we do not 
know the form of the functional relationship between the regressand and the regressors. 
Is consumption expenditure a linear (in variables) function of income or a nonlinear (in 
variables) function?  In two-variable models the functional form of the relationship can 
often be judged from the scatter diagram. But in a multiple regression model, it is not 
easy to determine the appropriate functional form, for graphically we cannot visualize  

 
For all these reasons, the stochastic disturbance uassume an extremely critical role in 
regression analysis, which we will see as we progress. 
 
2.7 The Simple Linear Regression Model 

 
If we have n observations on  Y  and ,X  we can write Eq. (2.3) as 

                                                                                         (2.4)i i iY X u iα β= + + ∀   
Now, our objective is to get estimates of the unknown parameters α and β  of the above 
equation based on the given n sets of observations on Y  and X .  In order to do this we have 
to make some assumptions about the error terms iu s, which are given below. 

1. Zero mean.  ( ) 0  iE u i= ∀ .   Equivalently ( )          i iE Y X iα β= + ∀  

2. Homoscedasticity or Common Variance. 2 2var( ) ( )      i iu E u iσ= = ∀ . 

3. No autocorrelation between the disturbances.  In other words, iu and ju  (i ≠ j) are 

uncorrelated. i.e. cov( , ) ( ) ( ) ( ) ( ) 0     i j i j i j i ju u E u u E u E u E u u i j= − = = ∀ ≠ .  
4. X values are fixed in repeated sampling.  Values taken by the regressor X are 

considered fixed in repeated samples. More technically, X is assumed to be non-
stochastic. 

5.  Zero covariance between iu  and Xi, or cov( , )i iX u = 0. It will be automatically fulfilled if 
X variable is non-random or non-stochastic 

6. The number of observations n must be greater than the number of parameters to be 
estimated. Alternatively, the number of observations n must be greater than the number 
of explanatory variables.  

7. The regression model is correctly specified. Alternatively, there is no specification bias 
or error in the model used in empirical analysis. 

The set of n equations given in Eq. (2.4) along with the above assumptions is called simple 
linear regression model.  
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2.8 Principle of  Least Squares Estimation  
Now, let us consider the simple linear regression model, which is explained in the 

above section, given by 
 

         1,2,...,i i iY X u i nα β= + + =      

 ( ) 0      iE u for all i=      

 2

0                  ; , 1, 2,. . . ,
( , ) ( )

                = ; , 1, 2,. . . ,i j i j

for i j i j n
cov u u E u u

for i j i j nσ

≠ =
= = 

=          
(2.5) 

2where  ,  , and α β σ  are unknown parameters. 

Let us suppose that  ˆ  α and β̂  are some arbitrary estimates of the unknown parameters α
and β  of the above model.  Then the unknown regression model Eq. (2.5) may be replaced 
with an estimated regression model as  

ˆˆ          1, 2,...,                                                                   (2.6)i i iY X e i nα β= + + =  
      
where  ie  is the difference between observed iY   and estimated ˆˆ ˆi iY Xα β= +   often called as 
‘residual’.    
Now, the method of principle of least squares is that the α̂ and β̂  should be chosen so as 
the residual sum of squares 

 
n

2 2 2
i

1 1 i=1

ˆˆ ˆ( )  = (Y )                                                       (2.7)  
n n

i i i i
i i
e Y Y Xα β

= =

= − − −∑ ∑ ∑  

is least.  In order to minimize 2

1

n

i
i
e

=
∑ , the partial derivatives of it  with respect to ˆ  α and β̂   are 

set to be equal to zero.   So that  

( )

( )

2

1 1

2

1 1

ˆˆ            2 0
ˆ

ˆˆ            2 0                                                      (2.8)ˆ

n n

i i i
i i

n n

i i i i
i i

e Y X

e X Y X

α β
α

α β
β

= =

= =

∂ 
= − − − = ∂ 

∂  = − − − = ∂ 

∑ ∑

∑ ∑
 

Simplifying these equations, we get 
 

     1 1

ˆˆ
n n

i i
i i
Y n Xα β

= =

= +∑ ∑  

2

1 1 1

ˆˆ                                                                          (2.9)
n n n

i i i i
i i i
X Y X Xα β

= = =

= +∑ ∑ ∑  

 
The pair of equations given above are popularly known as the normal equations of the 

straight line ˆˆY Xα β= +  .   
Dividing the first equation of Eq. (2.9) by n, we get 

1 1

1 1ˆˆ ,                 where    ,    
n n

i i
i i

Y X X X Y Y
n n

α β
= =

= + = =∑ ∑     (2.10) 
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If we replace ˆ,α using Eq. (2.10), in second equation of Eq. (2.9), we get 

2

1 1 1

2 2

1

ˆ ˆ( )   

ˆ             -n                                      

n n n

i i i i
i i i

n

i
i

X Y Y X X X

nX Y X X

β β

β

= = =

=

= − +

 = +  
 

∑ ∑ ∑

∑    (2.11) 

Rearranging Eq. (2.11), we get 

1

2 2

1

1 -   
cov( , )ˆ

1 var( )-

n

i i
i

n

i
i

X Y X Y
X Yn
XX X

n

β =

=

= =
∑

∑
                (2.12) 

From Eq. (2.10) we get 
ˆˆ -Y Xα β=          (2.13) 

 
Eqs. (2.12) and (2.13) are known as the least squares estimators of the parameters  α
and β  respectively. 
 
Remark 1:  From first Eq. (2.8), we have  

( )
1

ˆˆ 0
n

i i
i
Y Xα β

=

− − =∑
 

                   (2.14) 
 
 
 
Remark 2:  From Eq. (2.10), we may note that the estimated regression line passes through the 
point of means ( , )X Y . 
 
2.9 Properties of  Least Squares Estimators 

 
From Eq. (2.12), we may write that  
 

 

1

2 2

1

1

2 2

1

1 -  
ˆ

1 -

- n  
  

-n

n

i i
i

n

i
i

n

i i
i

n

i
i

X Y X Y
n

X X
n

X Y X Y

X X

β =

=

=

=

=

=

∑

∑

∑

∑

 

1
0   . .       

n

i
i

e i e T h e su m o f th e r e s id u a ls is z e r o
=

⇒ =∑  
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( )

1

2

1

1 1

2 2

1 1

1

2 1 1 1

1

1

ˆ ,    where x -  and y -

   -     

   ,    = - = - = - =0                             

  

n

i i
i

i i i in

i
i

n n

i i i
i i
n n

i i
i i

n

i i n n n
i

i i in
i i i

i
i

n

i i
i

x y
X X Y Y

x

xY Y x

x x

xY
x X X X nX nX nX

x

wY

β =

=

= =

= =

=

= = =

=

=

= = =

=

 =  
 

=

∑

∑

∑ ∑

∑ ∑

∑
∑ ∑ ∑

∑
∵

2

1

         where                                                                  (2.15)i
i n

i
i

xw
x

=

=∑
∑

 

and we may note that       

              
n

i=1
0,iw =∑

    

2

21

1

1 ,
n

i n
i

i
i

w
x=

=

=∑
∑

   

n n

i=1 i=1
1                       i i i iw x w X= =∑ ∑

  
 (2.16)  

From Eq. (2.15) we may notice that β̂  is a linear function of the actual observations iY , 
i=1,2,…,n. 
Substituting Eq. (2.15) in Eq. (2.13) and rearranging it we get   

 

1

1ˆ                                                                                           (2.17)
n

i i
i

Xw Y
n

α
=

 = − 
 

∑
 

 
 
 
 
 
Using Eq. (2.4) in Eq. (2.15) we ge 
Substituting Eq. (2.4) in Eq. (2.15), we get

  

1

ˆ  = ( ) =             (using Eq.(2.16))      (2.18)
n

i i i i i i i
i

wY w X u wuβ α β β
=

= + + +∑ ∑ ∑  

 
Taking expectation on both sides, we get 

1

ˆE( )= E( ) =                                          ( E( )=0 )                   (2.19)
n

i i i
i
w u uβ β β

=

+∑ ∵  

  
 
 
Similarly, subtitling Eq. (2.4) in Eq. (2.17) we get  

Thus  from  Eqs. (2.15) and (2.17), the least squares estimators α̂ and β̂   are linear 

estimators. 

Thus β̂  is a linear unbiased estimator of β
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( )

( )

1

1 1 1

1

1ˆ

1   =

1   =                     using Eq.(2.16)                                             (2.20)

n

i i i
i

n n n

i i i i i
i i i

n

i i
i

Xw X u
n

X w X X w X Xw u
n

Xw u
n

α α β

α α β β

α

=

= = =

=

 = − + + 
 

 − + − + − 
 

 + − 
 

∑

∑ ∑ ∑

∑
 

Taking expectation on both sides, we get 
1ˆE( )= E( )=                                ( E( )=0  i)           (2.21)i i iXw u u
n

α α α + − ∀ 
 

∑ ∵  

 
 
 
 
The variance of β̂   is given by 

( )

( )

( ) ( )( )

2

2

1

2 2

1 1

2 2

1

2

ˆ ˆvar( )

                            using Eq.(2.18)

            

                             0

           

n

i i
i

n n

i i i j i j
i i j

n

i i i j
i

E

E wu

E w u ww u u

w E u E u u

β β β

σ

=

= ≠ =

=

 = −  
  =   
   

 
= + 

 

= =

=

∑

∑ ∑

∑ ∵

( )( )2 2 2

1
                        

n

i i
i
w E u σ

=

=∑ ∵
  

Using Eq. (2.16), we get

  

 
 
 
 
 
 
 
We derive in a similar fashion the variance of α̂ as 

2

2

1

ˆvar( )                                                                                          (2.22)n

i
i

x

σβ

=

=

∑
 

Thus α̂  is linear unbiased estimator of α  
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( )

( )

( ) ( )( )

2

2

1

2
2

1

2 2 2

1 1

ˆ ˆvar( )

1                              from Eq. (2.20)

1                      E 0 i j         

1 2           

n

i i
i

n

i i i j
i

n n

i i
i i

E

Xw u
n

Xw E u u u
n

XX w w
n n

α α α

σ

=

=

= =

 = − 

  = −    

 = − = ∀ ≠ 
 

 
= + − 
 

∑

∑

∑ ∑

∵

( )( )

( )

2 2

2
2

2

1

  E

1                                     using Eq. (2.16)

i

n

i
i

u

X
n x

σ

σ

=

=

 
 
 = +
 
 
 

∑

∵

 

and rearranging slightly, we get 
 

2 2 2 2 2 2

2 2 21 1 1

2 2 2

1 1 1

ˆvar( )                     (2.23)

n n n

i i i
i i i

n n n

i i i
i i i

x nX X nX nX X

n x n x n x
α σ σ σ= = =

= = =

+ − +
= = =
∑ ∑ ∑

∑ ∑ ∑
 

 
From Eq. (2.20) we have 

( ) ( )

1

1

1ˆ  

          =

ˆ          =                  using Eq. (2.18)

n

i i
i

n

i i
i

Xw u
n

u X wu

u X

α α

β β

=

=

 − = − 
 

−

− −

∑

∑  

Now the covariance between

 

α̂ and β̂ is  

( ) ( ) ( ){ } ( ) ( ){ }
( ){ } ( ) ( ){ }( )

( )

2

2

2

1

ˆ ˆ ˆ ˆˆ ˆcov , =E  =E X

ˆ ˆ ˆ                 =-XE -Xvar               E 0

X                 =-                                            from Eq. (2.22)                 (2u
n

i
i

u

u

x

α β α α β β β β β β

β β β β β

σ

=

 − − − − − 

− = − =

∑

∵

.24)

  

The least-squares estimator β̂  is BLUE (Gauss-Markov theorem for simple linear 
regression model): 

In the above, we have already shown that β̂   is a linear unbiased estimator of β .  Now, 

in order to show that β̂   is BLUE, we have to yet show that β̂   has minimum variance among 
the class of all unbiased estimators. 



 
 
Econometrics  2.11        Simple Regression Analysis : Estimation   
 

 
 

Now, let us consider an arbitrary linear estimator of β given by  

1
  =                                                                                                       (2.25)

n

i i
i

b c Y
=
∑

 
where the problem is to choose the weights sic  such that  

 E( )= b β  
and to make the var( )b  as small as possible.  Using  Eq. (2.4) in  Eq. (2.25), we get 

1

1 1 1

      ( )

          

n

i i i
i

n n n

i i i i i
i i i

b c X u

c c X c u

α β

α β

=

= = =

= + +

= + +

∑

∑ ∑ ∑       

 

Taking expectation on both sides, we get  

( )
1 1

( ) =           ( ) 0
n n

i i i i
i i

E b c c X E uα β
= =

+ =∑ ∑ ∵  

and       ( ) =       E b β ⇔
1 1

0 and 1
n n

i i i
i i
c c X

= =

= =∑ ∑
 

    (2.26) 

Under conditions given in Eq. (2.26), the above equation becomes  

            
1

     =
n

i i
i

b c uβ
=

+∑  

( )

( )

2

2

1

2 2

1

2 2

1

and   var( )

                       

                    ( )               ( ) 0             

                                         

n

i i
i

n

i i i j
i

n

i
i

b E b

E c u

c E u E u u i j

c

β

σ

=

=

=

 = − 
  

=   
   

= = ∀ ≠

=

∑

∑

∑

∵

                                                                           (2.27)

 

The problem now is to minimize var( )b subject to the conditions given in Eq. (2.26).  

But, from Eq. (2.22) the variance of OLS estimator β̂  is  

2 2

1

ˆvar( )
n

i
i

wβ σ
=

= ∑  where 
2

1

i
i n

i
i

xw
x

=

=

∑
      (2.28) 

for comparing var( )b with ˆvar( )β , we write  

( )

( ) ( )22 2

1 1 1 1

 

2                                                 (2.29)

i i i i

n n n n

i i i i i i i
i i i i

c w c w

c w c w w c w
= = = =

= + −

= + − + −∑ ∑ ∑ ∑
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Consider

( )

( )

2

1 1 1

1

2 2

1 1

1 1

2 2 2

1 1 1

1                                                fro m  E q . (2 .2 8 )

1                                

n n n

i i i i i i
i i i

n

i i
i
n n

i i
i i
n n

i i i
i i
n n n

i i i
i i i

w c w w c w

x c

x x

c X X c

x x x

= = =

=

= =

= =

= = =

− = −

= −

= − −

∑ ∑ ∑

∑

∑ ∑

∑ ∑

∑ ∑ ∑

∵

( )

( )
2 2

1 1

1 1                                                   u s in g  E q . (2 .2 6 )

                       0                                                                          (2 .3 0 )

i i

n n

i i
i i

x X X

x x
= =

= −

= −

=

∑ ∑

∵
 

 
Substituting Eq. (2.30) in Eq. (2.29), we get   

( )22 2

1 1 1
                                                                          (2.31)

n n n

i i i i
i i i
c w c w

= = =

= + −∑ ∑ ∑  

Substituting Eq. (2.31) in Eq. (2.27) we get 

( )

( )

22 2

1 1

22

1

var( )

ˆ           = var( )

n n

i i i
i i

n

i i
i

b w c w

c w

σ

β σ

= =

=

 
= + −  

+ −

∑ ∑

∑
 

Since ( )2

1

0
n

i i
i

c w
=

− ≥∑ , we have  

ˆvar( ) var( )                                                                                              (2.32)b β≥  

Equality hold only when i ic w= for all i, in which case obviously ˆb β=  

  Thus β̂   is a linear unbiased estimator of β  with minimum variance among the class of 

all linear unbiased estimators.  Therefore, by definition, β̂   is BLUE of β .   
Hence Gauss-Markov theorem is proved in case of simple linear regression model. 
 
The least-squares estimator of 2σ : 
We have the simple linear model  

         1,2,...,i i iY X u i nα β= + + =       (2.33) 

with the assumptions  
1. ( ) 0                      iE u i= ∀ .   

2. 2 2var( ) ( )      i iu E u iσ= = ∀ . 
3. cov( , ) ( ) ( ) ( ) ( ) 0     i j i j i j i ju u E u u E u E u E u u i j= − = = ∀ ≠ .  

If we average the above equation over the n sample values we obtain  
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        Y X uα β= + +         (2.34) 
 
Subtracting Eq. (2.34) from Eq. (2.33) we get  
 ( )-    i i iy x u uβ= +  
suppose β̂  is least squares estimator of β then we have ˆˆi iy xβ= .  Hence the residual  

( ) ( ) ( )ˆ ˆˆ=y y - - =-i i i i i i i ie x u u x x u uβ β β β− = + − + −  

Therefore 

 
( ) ( ) ( ) ( )

2 22 2

1 1 1 1

ˆ ˆ= 2
n n n n

i i i i i
i i i i

e x u u x u uβ β β β
= = = =

− + − − − −∑ ∑ ∑ ∑  

Taking expected values of each term on the right-hand side gives 

( ) ( )

( )

2
2 2 2

1 1

2
2 2 1

1 1 1

2 21

1 1

ˆ ˆ                       using(2.22)

 

                           = ( ) ( )                   

n n

i i
i i

n n n

i i in
i i i

n n

i in
i i

E x Var x

E u u E u u

E u E u

β β β σ
= =

= = =

= =

 − = =  
    − = −        

 −  
 

∑ ∑

∑ ∑ ∑

∑ ∑ i j

1
i

1 1

2 21

2

( E(u u ) 0)

                           = ( ) ( )              ( E(u ) 0)

                           =n ( )

                           =(n-1)  

n n

i in
i i

n

var u var u

nσ σ

σ

= =

=

 
− = 

 
−

∑ ∑

∵

∵

 

( ) ( ) ( )

( )

( )

2
1

2

2

2

ˆ      using(2.18)

                                           

                                            

n
i i

i i i i
i i

i i
i i i

i

i i

i

x u
E x u u E x u u

x

x u
E x u u x

x

x u
E

x

β β
=

  
− − = −      

 
= − 

  
 
 =
 
 

∑∑ ∑∑
∑ ∑ ∑∑
∑
∑ ( )

2 2

2

2

               0

( )
                                                                ( ( ) 0)

                                             

i

i i
i j

i

x

x E u
E u u

x

σ

=

= =

=

∑

∑
∑

∵

∵

 

Hence, 2 2 2 2 2

1
   +(n-1) 2 =(n-2)    

n

i
i

E e σ σ σ σ
=

 
= −  

∑  

Thus the least squares estimator 
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          (2.35) 
 
 
 
 

2.10 The Coefficient of Determination r 2:A Measure of “Goodness of 
Fit”: 
 
 
We now consider the goodness of fit of the fitted regression line to a set of data; that is, 

we shall find out how “well” the regression line fits the data.  If all the sample observations 
( ), ,   1,2,...,i iY X i n= , lie on the fitted regression line, then we say that the regression fit is 
“perfect” fit, but this is a very rare case. Generally, there will be some positive residuals and 
some negative residuals and let us hope that these residuals, around the fitted regression line, 
are as small as possible. The coefficient of determination r2 (simple regression case) or R2 
(multiple regression case) is a summary measure that tells how well the regression line fits the 
data. 

 
We have the residual,  

ˆˆ ˆ=Y Y -                    i=1, 2, ..., ni i i i ie Y Xα β− = −     (2.36)  

But we have the OLS estimator of α  
ˆˆ Y Xα β= −  

which is substituted in Eq. (2.36) to get  

( )
ˆ ˆ=Y -                          i=1, 2, ..., n
ˆ   =Y

ˆ   =y   ,   where = & y =Y  

i i i

i i

i i i i i i

e Y X X

Y X X

x x X X Y

β β

β

β

− +

− − −

− − −                                   (2.37)

 

squaring Eq. (2.37) on both sides and summing over the sample we get  
2 2 2 2

1 1 1 1

ˆ ˆ= 2 y
n n n n

i i i i i
i i i i
e y x xβ β

= = = =

− +∑ ∑ ∑ ∑  

Thus, the residual sum of squares is quadratic function of β̂ . 
 
But we know that 

1

2

1

y
ˆ

n

i i
i
n

i
i

x

x
β =

=

=
∑

∑
  

There fore

  2 2 2 2 2 2 2 2 2

1 1 1 1 1 1

ˆ ˆ ˆ2
n n n n n n

i i i i i i
i i i i i i
e y x x y xβ β β

= = = = = =

= − + = −∑ ∑ ∑ ∑ ∑ ∑  

which may be rewritten as 
 

2

2 1ˆ =
2

n

i
i

e

n
σ =

−

∑
      

is an unbiased estimator of 2σ  
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( )
2

2 2 2 2 2 2 2

1 1 1 1 1 1 1

ˆ ˆ ˆ                            (2.38)
n n n n n n n

i i i i i i i
i i i i i i i

y x e x e y eβ β
= = = = = = =

= + = + = +∑ ∑ ∑ ∑ ∑ ∑ ∑
 

 which is a famous decomposition of sum of squares and is usually writes as  
             

           (2.39) 
 
where              
   TSS = total sum of squared deviation in Y variable                         

                    = 2

1

n

i
i

y
=
∑  

  ESS = explained sum of squares from the regression of Y on X                        

                    = 2

1

ˆ
n

i
i

y
=
∑  

  RSS = residual or unexplained sum of squares from the regression ofY on X   

                    = 2

1

n

i
i

e
=
∑  

Now substituting 1

2

1

y
ˆ

n

i i
i
n

i
i

x

x
β =

=

=
∑

∑
in Eq. (2.38), we get 

2 2

1 12 2 2 2

2 2 21 1 1 1

1 1

                                          (2.40)

n n

i i i in n n n
i i

i i i in n
i i i i

i i i
i i

x y x y
y e y e

x x y

= =

= = = =

= =

   
   
   = + = +
∑ ∑

∑ ∑ ∑ ∑
∑ ∑

 

But, by definition the simple correlation coefficient ‘ r ’ is given by 

1

2 2

1

n

i i
i
n

i i
i

x y
r

x y

=

=

=
∑

∑
          (2.41) 

 
Substituting Eq. (2.41) in Eq. (2.40), we get 

2

2 2 2 2 2 1

21 1 1

1

       1

n

in n n
i

i i i n
i i i

i
i

e
y r y e r

y

=

= = =

=

= + ⇒ = +
∑

∑ ∑ ∑
∑

 

 

 

 

TSS=ESS+RSS
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                    (2.42) 
 
 
 
 
 
 
 
 
 
 
In the above equation the square of correlation coefficient 2'r ' is usually called as coefficient of 
determination. 
Note: The coefficient of determination obviously lies between 0 and 1. i.e., 20 < r  < 1. 
 

2.11 SELF ASSESSMENT QUESTIONS 
 

1. Derive OLS estimators in a two variable linear model. 
2. Explain the significance of the disturbance (error) term in a two variable              

regression model. 
3. Explain the justification for the inclusion of disturbance (error) term in a simple linear 

model.  
4. Show that OLS estimators of intercept and slope in a two variable regression model are 

unbiased. 
5. Prove Gauss-Markov theorem in case of simple linear regression model. 
6. Show that OLS estimators of intercept and slope in a two variable regression model are 

BLUEs. 
7. Show that the sum of residuals is zero in a simple linear model. 
8. Derive the least squares estimator of a regression coefficient and its variance in a two 

variable linear model. 
9. Derive the normal equations for simple linear model. 
10. Derive the least square estimate of the variance of the disturbance term in the  single 

linear  model and show that it is unbiased. 
11. Distinguish between regression and correlation. 
12. Let ˆ

xyβ and ˆ
yxβ represents the slopes in the regression of X and Y and Y on X

respectively.  Show that 2.xy yx r=β β  where ( )2 ,r r x y= .     
13. Define coefficient of determination in simple linear model. 
14. Derive the coefficient of determination in simple linear model.                                                                 
15. Derive an unbiased estimator of the variance of the disturbance term in the single linear 

model. 
 
 
 
 

( )

2

2 1

2

1

2

2 1

2

1

         1  1 -

ˆ

(OR)    using Eq. (2.39)    

n

i
i

n

i
i

n

i
i

n

i
i

TSS

TSS

e
RSS

r
y

y
ESS

r
y

=

=

=

=

−=

=

=

=

∑

∑

∑

∑
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Lesson 3 
 

 SIMPLE REGRESSION ANALYSIS: TESTS OF 
SIGNIFICANCE AND PREDICTION 

 
3.0 Objective: 

 
 The objective of this lesson is to derive the significance tests and confidence in travels 
for the slope ( )β and intercept  ( )α  of the simple linear model.  Further, in this lesson, point 
and interval predictions are derived for the predictor (dependent) variable.  
 
Structure of the Lesson: 
 

3.1  Introduction 
3.2 The Sampling Distributions of the OLS Estimators 

3.3 Test of the Significance and Confidence Interval of β  

3.4 Test of the Significance and Confidence Interval ofα  

3.5 Prediction in the Least-Square Model 
3.6 Self Assessment Questions 
3.7 References  

 
3.1 Introduction 

 
 The results established in Lesson 2 are based on the assumption that the 

( )20,iu iid σ∼ .  Thus iu is a random variable whose mean is zero and whose variance is 2σ .  

Further iu s are independently and identically distributed.  But, the probability distribution 
function of iu is not specified.   
 Now to carry out the tests of significance about the parameters of the regression model, 
we need further assumption about the probability distribution of the u’s. The standard 
assumption is that of normality, which may be justified by appeal to the Central Limit Theorem, 
since the u’s represent the net effect of many separate but unmeasured influences. 
 

Estimation of the regression model is half the battle and testing the fitted regression 
model is other half.  In this lesson we discuss the testing of the regression model along with the 
prediction or forecasting.  
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3.2 The Sampling Distributions of the OLS Estimators: 
 

 Let us reconsider the two variable regression model (Eq. (2.4) in Lesson 2) along the 
additional assumption of the normality of the disturbance term u. 

         1,2,...,   i i iY X u i nα β= + + =       (3.1) 
where  

i. ( ) 0  iE u i= ∀    

ii. 2 2var( ) ( )      i iu E u iσ= = ∀ . 
iii. cov( , ) ( ) 0     i j i ju u E u u i j= = ∀ ≠  
iv. iu is normal (additional assumption) 

the above assumptions may stated in compact form  

( )20 ,                   fo r  i= 1 ,2 , .. . ,  n   
i id

iu N σ∼       
(3.2)  

From equation (2.18) (Lesson 2), the OLS estimator of β  is given by 

21

1

ˆ= ,      where ,  =X -X                                           (3.3) 
n

i
i i i i in

i
i

i

xwu w x
x

β β
=

=

+ =∑
∑

 From the above equation, we may notice that the OLS estimator β̂  is a linear combination of 
normal random disturbances iu s .  But, we know that every linear combination of a set of 
independent normal variates is also a normal variate.  Thus from Eqs. (3.2) and (3.3), we may 
say that the sampling distribution of β̂  is a normal variate whose mean and variance are given 
by  

( ) ( )( )
1

ˆ( )                        0
n

i i i
i

E w E u E uβ β β
=

= + = =∑ ∵
 

( )
2

2

1

ˆand   var( )                          from Eq. (2.22)n

i
i
x

σβ

=

=

∑
 

 
 
    

Similarly, from equation (2.20) of lesson 2, the OLS estimator of α 

1

1ˆ                                                                                        (3.5)
n

i i
i

Xw u
n

α α
=

 = + − 
 

∑  

Since α̂ is a linear combination of independent normal random disturbances 'iu s , α̂ is also a 
normal variate and its mean is given by 

( ) ( )( )ˆ              0iE E uα α= =∵  
From equation (2.23) of lesson 2, variance of α̂ is given by  

2

2

1

ˆTherefore sampling distribution of    is  ,                                  (3.4)n

i
i

N
x

σβ β

=

 
 
 
 
 
 

∑
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( ) ( )
2

21

2

1

ˆvar                                                                                             3.6

n

i
i
n

i
i

X

n x
α σ=

=

 
 
 =
 
 
 

∑

∑
 

 
 

 

 

 
Note: The standard deviation of the sampling distribution of an estimator is often referred to a 
standard error of the estimator. 
 
3.3 Test of the Significance and confidence interval of β : 

 
 Since the sampling distribution of β̂ , from the above section, involves the unknown 

parameter 2σ , it is not operational as it stands.  To derive the sampling distribution of β̂ , which 

does not depend on the unknown 2σ , we have to adopt the following two results. 

i. 

2

21
22

n

i
i

n

e
χ

σ
=

−

∑
∼            (3.8)   

and      ii.       2

1

n

i
i
e

=
∑ is independently distributed of β̂ .                   (3.9) 

From Eq. (3.4) of the above section, we may write 

( )
2

1

ˆ
0,1

n

i
i

N
x

β β

σ
=

−

∑
∼                      (3.10) 

We know that the t-distribution is the ratio of a standard normal variate to the square root of an 
independent 2χ variate divided by its degrees of freedom (d.f.).  Therefore, from Eqs.(3.9) & 
(3.10) we may immediately write 

 
( ) ( )2 2

1 1

2 2

1 1

ˆ ˆ

 

2 2

distribution with n-2 d.f.

n n

i i
i i

n n

i i
i i

x x

e n e n

t t
β β σ β β

σ

= =

= =

− −

= =

− −

∑ ∑

∑ ∑
∼  

But, an unbiased estimator of 2σ  is 

Therefore the sampling distribution of α̂ is 

 

2

21

2

1

ˆ ,                                                                                     (3.7)

n

i
i
n

i
i

X
N

n x
α α σ=

=

 
 
 
 
 
 

∑

∑
∼  
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2

2 1ˆ 
2

n

i
i
e

n
σ ==

−

∑
            (3.11) 

Therefore the above equation will be  

 
( ) ( )

2

1

ˆ ˆ
 2

ˆ
ˆ

n

i
i

n
SEx

t tβ β β β
βσ

=

− −
= = −

∑
∼       (3.12)               

    

where ( ) 2

1

ˆ ˆ
n

i
i

SE xβ σ
=

= ∑          (3.13) 

is known as the standard error of β̂ , which is the square root of the estimated ( )ˆvar β . Thus 

the standard normal variate given in Eq. (3.10), when σ  is replaced by σ̂ , follows student-t 
distribution with n-2 d.f. 
 
If we set the null hypothesis about the β as  

0 0:H β β=  
against the alternative hypothesis 

1 0:H β β≠  
then Eq. (3.12) with 0β β= may be used as the test statistic for testing the above 0H  and is 
given by  

( ) ( )0
ˆ

2
ˆ

n
SE

t tβ β
β

−
= −∼                    (3.14) 

Reject 0H at 100ε percent level of significance (l.o.s.) if ( )2 2t t nε> − , otherwise accept 1H .  

Here, ( )2 2t nε − is a two-tailed percentile of t distribution with n-2 d.f. at ε l.o.s. and is defined 
as  

( ) ( ){ } ( ){ }2 2 2Pr 2 2 Pr 2 1t n t t n t t nε ε ε ε− − < < − = < − = −  

For instance, when 5%ε = , we chose ( )0.025 2t n− such that  

( ) ( ){ }0.025 0.025Pr 2 2 0.95t n t t n− − < < − =  
The hypothesis most frequently tested is  

  0 : 0H β = vs 1 : 0H β ≠  
and the test statistic can be obtained by substituting 0 0β = in Eq. (3.14) and is given by 
 
 
 
 
 
 
Now, based on Eq. (3.15), we may draw the conclusion 
 

( ) ( )
ˆ

2
ˆ

n
SE

t tβ
β

= −∼                                                   (3.15) 
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              (3.16) 
 
 
 
 
 
Note: 

1.  If Eq. (3.16) is drawn as the conclusion, then we say that the regression coefficient β is 
significant and in this case, the regression model Eq. (3.1) is said to be well fitted. 

2. The two-tailed t value ( )/ 2 2t nε −  can be obtained from student-t table at given ε and n-2 
d.f. 

The ( )%100 1-ε confidence interval of β : 

A ( )100 1- %ε confidence interval for β , based on Eq. (3.12), is given by 
 
 
 

(3.17) 
 
 
3.4 Test of the Significance and confidence interval ofα : 

 
From Eq. (3.7) of section Eq. (3.2), we may write 

( )
2 2

1 1

ˆ
0,1

n n

i i
i i

N
X n x

α α

σ
= =

−

 
 
 

∑ ∑
∼      (3.18) 

We know that the t-distribution is the ratio of a standard normal variate to the square root of an 
independent 2χ variate divided by its d.f.  Therefore, from Eqs. (3.9) and (3.18) we may write 

( )
22 2

11 1

ˆ

2
- 2

nn n

ii i
ii i

e nX n x
ntt α α σ

σ
== =

−
=

  − 
 

∑∑ ∑
∼  

The above equation may be rewritten as  

( )
2 2

1 1

ˆ
 2                                                             (3.19)

ˆ
n n

i i
i i

n
X n x

t tα α

σ
= =

−
= −

 
 
 

∑ ∑
∼  

where 

2

2 1ˆ
2

n

i
i
e

n
σ ==

−

∑
is an unbiased estimator of 2σ  

Thus the standard normal variate given by Eq. (3.18), in which σ  is replaced by σ̂ , follows 
student-t distribution with n-2 d.f. 
The test statistic for testing 0 0:H α α=  vs 1 0:H α α≠ may be obtained from the above           
Eq. (3.19) as 

( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ2 ,    2t n SE t n SEε εβ β β β− − + −2 2  

( ) ( )

( )

0

1

ˆ
 2   reject : =0 ˆ

or  equvalently accept : 0 at  l.o.s.

If t t n H
SE

H

ε

β
β

β

β ε

= > −

≠

2
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( )0ˆ
2

ˆ( )
n

SE
t tα α

α
−

= −∼

        

(3.20) 

where 2 2

1 1

ˆ ˆ( )
n n

i i
i i

SE X n xα σ
= =

 
=  

 
∑ ∑        (3.21) 

 
is the standard error of α̂  
Reject 0H at 100ε percent level of significance (l.o.s.) if ( )2 2t t nε> − , otherwise accept 1H .   
The hypothesis most frequently tested is  

  0 : 0H α =  vs 1 : 0H α ≠  
and the test statistic can be obtained by substituting 0 0α = in Eq. (3.20) and is given by 
 
 
 
Now, based on Eq. (3.21), we may draw the conclusion        
 

 
 

 
 (3.23) 

 
 
 
 
 
Note: If the conclusion Eq. (3.23) is drawn, then we say that the intercept (constant) α is 
significant. 
The ( )%100 1-ε confidence interval ofα : 

A ( )100 1- %ε confidence interval forα , based on Eq. (3.19), is given by 
 
(3.24) 
 
 
 
 

3.5 Prediction in the Least-Square Model: 
 

Since α̂ and β̂ are the BLUEs of  α and β the optimum  point (BLUE) prediction is given by the 
regression value corresponding to fX , that is  

 
 

 
 
 
The true value ofY  in the prediction period is given by 

 f f fY X uα β= + +  

( ) ( )ˆ
2

ˆ
n

SE
t tα

α
= −∼                                                   (3.22) 

( )
( )

( )

0

1

ˆ
 2   Reject : =0 

ˆ

or  equvalently Accept : 0 at  l.o.s.

If t n H
SE

H

ε

α
α

α

α ε

= > −

≠

2t
 

( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ2 ,  2t n SE t n SEε εα α α α− − + −2 2  

 
ˆˆ ˆf fY Xα β= +               (3.25) 
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 where fu indicates the value that would be drawn from the disturbance distribution in the 
prediction period.  The prediction error may then be defined as 

( ) ( )
ˆ

ˆˆ    =u

f f f

f f

e Y Y

Xα α β β

= −

− − − −
      (3.26) 

since ( ) 0fE u = and α̂ and β̂  are unbiased estimators of α and β , we have 

( ) ( ) ( ) ( )( )t
ˆ0          E u 0f f f tE e E Y E Y Xα β= ⇒ = = + =∵   (3.27) 

Thus the least-squares predictor ˆ
fY  given in Eq. (3.25) is an unbiased predictor of ( )fE Y .   The 

variance of the prediction error is given by (using Eq. (3.27))  
( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2

222 2

var                                                                             

ˆˆ ˆ            2

ˆ ˆˆ                         2 2

f

f f

f f

f f f

e E e

E u E X E E u

X E u X E

α α β β α α

β β α α β β

=

 = + − + − − − 

   − − + − −   

 

But we known that both ( )α̂ α− and ( )β̂ β− are linear functions of 1 2, ,. . ., nu u u and by 

assumption fu is independent of 1 2, ,. . ., nu u u .  Therefore fu is uncorrelated with ( )α̂ α− and 

( )β̂ β−  and thus 

( ) ( )ˆˆ 0  0f fE u and E uα α β β  − = − =     

Therefore the above equation becomes 

( ) ( ) ( ) ( ) ( )2 ˆ ˆˆ ˆvar var var var 2 cov ,f f f fe u X Xα β α β= + + +
    (3.28) 

But ( ) 2var fu σ= we have from equation (2.22), (2.23) and (2.24) 

( ) ( )
2

2 2
21

2 2 2

1 1 1

ˆ ˆˆ ˆvar( ) , var   cov , -

n

i
i

n n n

i i i
i i i

X
Xand

x n x x

σ σβ α σ α β=

= = =

 
 
 = = =
 
 
 

∑

∑ ∑ ∑
 

 But, ( )ˆvar α may be rewritten as  

( )
2

2

2

1

1ˆvar n

i
i

X
n x

α σ

=

 
 
 = +
 
 
 

∑
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Substituting ( ) ( ) ( )ˆ ˆˆ ˆvar ,  var , var( ) and cov ,fu α β α β in Eq. (3.28) we get    

 ( ) ( ) ( )
222

2 2

2 2 2 2

1 1 1 1

21 1var 1   = 1               3.29ff f
f n n n n

i i i i
i i i i

X XX X XXe
n nx x x x

σ σ

= = = =

   
   −
   = + + + − + +
   
      

∑ ∑ ∑ ∑

  

 
The variance of the prediction error is thus at its minimum value when fX X= and increases 

nonlinearly as fX departs from X .  From Eq. (3.26) fe is seen to be a linear function of normal 
variables and so if is itself distributed normally.  Thus 

( )
( )

2

2

1

0,1

11

f

f
n

i
i

e
N

X X
n x

σ

=

 
 −
 + +
 
  

∑

∼  

Replacing the unknown σ by its estimate ( )2

1

ˆ 2
n

i
e nσ

=

= −∑ then gives 

( )
( )

2

2

1

ˆ
2

1ˆ 1

f f

f
n

i
i

Y Y
t n

X X
n x

σ

=

−
−

 
 −
 + +
 
  

∑

∼       (3.30) 

Everything is Eq. (3.30) is known except fY and so, in the usual way, we derive a ( )100 1 ε−  

percent confidence interval of fY  as  
 
 
 
 
 
 
 
 
 
where / 2 ( 2)t nε − indicates the 100 / 2ε percent point of the t  distribution with (n-2) degrees of 
freedom. 
Sometimes interest centers on predicting the mean value of fY , that is  

( )f fE Y Xα β= +  
Rather  than fY itself, since there is, of course, no way of predicting the value of a single 

drawing from ( )p u .  The prediction error is now 

( ) ( ) ( ) ( )2 2

/ 2 / 2
2 2

1 1

1 1ˆ ˆˆ ˆˆ ˆ1 ,   1f f

f fn n

i i
i i

X X X X
X t X t

n nx x
ε εα β σ α β σ

= =

− −
+ − + + + + + +

    
    
    
         

∑ ∑
        

(3.31) 
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( )
( ) ( )

ˆ

ˆˆ    =

f f f

f

e E Y Y

Xα α β β

= −

− − − −
 

which gives 

( ) ( )2

2

2

1

1var f
f u n

i
i

X X
e

n x
σ

=

 
 −
 = +
 
  

∑
 

and so a ( )100 1 ε− percent confidence interval for ( )fE Y  is 
 
 
 
 
 
 
 
 
 
 
Note: 

1. For the choice of 0.05ε = , the confidence intervals given in Eqs. (3.31) and (3.32) are 
respectively the 95% confidence intervals for fY and ( )fE Y . 

2. Similarly  for choice of 0.01ε = , the confidence intervals given in Eqs. (3.31) and (3.32) 
are respectively the 99% confidence intervals for fY and ( )fE Y .  

 
3.6 SELF ASSESSMENT QUESTIONS  

 
1. Derive the test for the significance of regression coefficient is simple linear model. 
2. Show that, under the assumption of normality of error term, the least squares estimators 

of the regression coefficients are normally distributed. 
3. Derive the tests for the significance of OLS estimators in a two variable linear regression 

model. 
4. Derive the sampling distribution of the OLS estimators in simple linear model. 
5. Derive the confidence intervals for the coefficients of the simple linear model.  
6. Obtain the confidence interval for the slope of the simple linear model, making the 

necessary assumptions.  
7. Obtain the confidence interval for the intercept of the simple linear model, making the 

necessary assumptions.  
8. Discuss the point prediction in the simple linear model.  
9. Construct interval prediction for the regressand in the simple linear model. 
10. Construct interval prediction for the mean of the regressand in the simple linear model. 
11. Discuss the forecasting problem in the simple linear model. 
12. Obtain the predictor for the mean of the regressand in the simple linear model. 
13. Obtain the predictor for the regressand in the simple linear model. 
 

( ) ( )2 2

/ 2 / 2
2 2

1 1

1 1ˆ ˆˆ ˆˆ ˆ,  f f
f fn n

i i
i i

X X X X
X t X t

n nx x
ε εα β σ α β σ

= =

    
    − −    + − + + + +    
         

∑ ∑
 (3.32) 
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Lesson 4 
 
OTHER FUNCTIONAL FORMS OF REGRESSION 

MODELS 
4.0 Objective: 
 
 The objective of this lesson is to make the student familiar with some commonly used 
regression models, those may be nonlinear in the variables but are linear in the parameters.   
Some important functional forms of regression models discussed in this lesson are a) The log-
linear model, b) semi log models, and c) reciprocal models. 
 
Structure of the Lesson: 
 

4.1  Introduction 
4.2 The log-linear model 
4.3 The semi log models 
4.4 The reciprocal models 

4.5 Self Assessment Questions 

4.6 References  
 

4.1 Introduction 
 

As already mentioned in the earlier lessons, this text book is concerned primarily with 
models that are linear in the parameters; they may or may not be linear in the variables. In the 
following sections, we consider some commonly used regression models that may be nonlinear 
in the variables but are linear in the parameters or that can be made so by suitable 
transformations of the variables. In particular, we discuss the following regression models: 

 
1. The log-linear or constant elasticity model 
2. Semilog regression models 
3. Reciprocal regression models. 

 
We discuss the special features of each model, when they are appropriate, and how they are 
estimated.   
 
 In the log-linear model both the regressand and the regressor(s) are expressed in the 
logarithmic form. The regression coefficient attached to the log of a regressor is interpreted as 
the elasticity of the regressand with respect to the regressor. 
 
 In the semilog model either the regressand or the regressor(s) are in the log form. In the 
semilog model where the regressand is logarithmic and the regressor X  is time, the estimated 
slope coefficient (multiplied by 100) measures the (instantaneous) rate of growth of the 
regressand. Such models are often used to measure the growth rate of many economic 
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phenomena.  In the semilog model if the regressor is logarithmic, its coefficient measures the 
absolute rate of change in the regressand for a given percent change in the value of the 
regressor. 
 In the reciprocal models, either the regressand or the regressor is expressed in 
reciprocal, or inverse, form to capture nonlinear relationships between economic variables. 
 
4.2 The Log-Linear Model: 
 
Consider the following model, known as the exponential regression model: 

0 ,      1, 2,  . . .,  iu
i iY X e i nββ= =       (4.1) 

which may be expressed alternatively as 
0log log log ,               1, 2,  . . .,  i i iY X u i nβ β= + + =    (4.2) 

where log = natural log (i.e., log to the base e, and where e = 2.718). 
If we write Eq. (4.2) as 

log log ,                       1, 2,  . . .,  i i iY X u i nα β= + + =     (4.3) 

where 0logα β= , and this model is linear in the parameters α  and β and linear in the 
logarithms of the variables Y and X, and can be estimated by OLS regression. Because of this 
linearity, such models are called log-log, double-log, or log-linear models. 
 

If the assumptions of the classical linear regression model are fulfilled, the parameters of 
Eq. (4.3) can be estimated by applying the OLS method to the following model 

* * ,             1, 2,  . . .,  i i iY X u i nα β= + + =       (4.4) 

where  * *log  and logi iY Y X X= =  . The OLS estimators ˆˆ and α β will be the BLUEs of  α  and 
β  respectively and are given by 

2 2

* * * *

1

* *

1

* * ˆ
0

1

ˆ                                                                                   (4.5)
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ˆˆ                                                          ˆ  
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=
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          One attractive feature of the log-log model, which has made it popular in applied work, is 
that the slope coefficient β  measures the elasticity of Y with respect to X , that is, the 
percentage change in Y  for a given (small) percentage change in X . Thus, if Y  represents the 
quantity of a commodity demanded and X  its unit price, β  measures the price elasticity of 
demand, a parameter of considerable economic interest. 
 

Two special features of the log-linear model may be noted: The model assumes that the 
elasticity coefficient between Y  and X , β , remains constant throughout, hence the alternative 
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name constant elasticity model. In other words, the change in logY  per unit change in log X  
(i.e., the elasticity, β ) remains the same no matter at which log X  we measure the elasticity. 

Another feature of the model is that although ˆˆ and α β are unbiased estimates of  and α β ,  0β  

(the parameter entering the original model) when estimated as 0
ˆˆ eαβ = is itself a biased 

estimator. In most practical problems, however, the intercept term is of secondary importance, 
and one need not worry about obtaining its unbiased estimate. 

  
In the two-variable model, the simplest way to decide whether the loglinear model fits the 

data is to plot the scatter diagram of logY against log X ,and see if the scatter points lie 
approximately on a straight line. 

 
4.3 The Semi Log Models: Log-Lin and Lin-Log Models  
 
 Log–Lin Model (to Measure the Growth Rate): 
 
 Economists, businesspeople, and governments are often interested in finding out the rate of 
growth of certain economic variables, such as population, GNP, money supply, employment, 
productivity, and trade deficit.  
 
We may recall the following well-known compound interest formula from your introductory 
course in economics.  

t
t 0Y  = Y (1 + r )        1, 2,  . . .,  t n=       (4.7) 

Taking natural log on both side ( )0log log log 1                1, 2,  . . .,                                        (4.8)tY Y t r t n= + + =  
Now letting 

0logYα =  

( )log 1 rβ = +  
and adding the disturbance term to Eq. (4.8) we obtain 

log                    1,2,  . . .,                                                  (4.9)t tY t u t nα β= + + =  
This model is like any other linear regression model in that the parameters  and α β are linear. 
The only difference is that the regressand is the logarithm of Y and the regressor is “time,” 
which will take values of 1, 2, 3, etc.  
 
Models like Eq. (4.9) are called semilog models because only one variable (in this case the 
regressand) appears in the logarithmic form. For descriptive purposes a model in which the 
regressand is logarithmic will be called a log-lin model.  In this model the slope coefficient 
measures the constant proportional or relative change in Y  for a given absolute change in the 
value of the regressor (in this case the variable t), that is, 
 

  

relative change in regressand =
absolute change in regressor

β  

 
The OLS Estimators of the parameters of and α β of Eq. (4.9) are given by 
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It may be noted the above OLS Estimators ˆˆ and α β  are the BLUEs of and α β  respectively 
 
Lin–Log Model: 
Unlike the growth model just discussed, in which we were interested in finding the percent 
growth in Y for an absolute change in X , suppose we now want to find the absolute change in 
Y  for a percent change in X . A model that can accomplish this purpose can be written as: 

log     1, 2,. . .,                                                           (4.12)i i iY X u i nα β= + + =  
For descriptive purposes we call such a model a lin–log model. 
The interpretation of the slope coefficient β  is 

 change in Y =
change in logX

 change in Y    =
realative change in X

β
 

The second step follows from the fact that a change in the log of a number is a relative change. 
The OLS Estimators  and α β  respectively given by  

( )
1

2 2

1

1 log log
ˆ                                                                       (4.13)
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It may be noted the above OLS Estimators ˆˆ and α β  are the BLUEs of and α β  respectively 
 
4.4 The Reciprocal Models 
 
Models of the following type are known as reciprocal models.

 1             1, 2,. . .,                                                         (4.15)i i
i

Y u i n
X

α β
 

= + + = 
   

 

Although this model is nonlinear in the variable X because it enters inversely or reciprocally, the 
model is linear inα and β  and is therefore a linear regression model. 
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This model has these features: As X increases indefinitely, the term β  (1/ X ) approaches zero 
(note: β  is a constant) and Y approaches the limiting or asymptotic value α . Therefore, 
models like (4.15) have built in them an asymptote or limit value that the dependent variable 
will take when the value of the X variable increases indefinitely. 
 
The OLS Estimators  and β α  of the reciprocal (4.15) are respectively by   

( )
2

*

1

*

1

* *

1 1

2

1

ˆ  
1 1

1 1 1ˆˆ =Y     ,  and                                              (4.16)
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It may be noted the above OLS Estimators ˆˆ and α β  are the BLUEs of and α β  respectively 
 
4.5  Self Assessment Questions  
 
1. Explain the following models  
          (i) Log-linear,        (ii) Semilog and      (ii) Reciprocal 
2. Derive the estimators in exponential regression model. 
3. Estimate the elasticity in a log-linear (exponential regression) model. 
4. Distinguish between linear and log-linear models. 
5. Explain the estimation method of a log-linear model.  
6. Explain the estimation method of an exponential model. 
7. Derive the least squares estimators in linear-log model. 
8. Derive the least squares estimators in log-linear model. 
9. Derive the least squares estimators in reciprocal regression model. 
10. Distinguish between log-linear and semi log-linear models. 
11. Distinguish between linear and reciprocal models. 
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Lesson 5 
 

 APPLICATIONS OF SIMPLE LINEAR 
REGRESSION ANALYSIS 

 
5.0 Objective: 
 
 The objective of this lesson is to demonstrate the student the computations involved in 
simple linear regression analysis, which was explained through Lessons 2- 4 with some 
practical applications. 
 
Structure of the Lesson: 
 

5.1 Introduction 
5.2 Estimation of the consumption function for United States  
5.3 Estimation of the expenditure on durable goods 
5.4 Self Assessment Questions 
5.5 References  

 
5.1 Introduction 
 
 In Lesson 2, we have discussed the estimation of simple linear model where as in 
Lesson 3, we have discussed the testing the significance of the estimated regression model.  In 
Lesson 4, we have discussed the estimation of some non-linear models, those can be 
transformed into simple linear model with some simple transformation of the variables of the 
model.  
 
 Now in this lesson, we demonstrate the simple linear regression analysis discussed in 
Lessons 2, 3 and 4 with some suitable applications.  The computation pertaining to an example 
of simple linear model are presentation in Section 5.2 and those pertaining to an example of a    
non-linear model are presented in Section 5.3. 
 
5.2  Estimation of the Consumption function for United States: 
 
 The following table gives the data on percapita disposable income (income after 
deducting income tax) ( )X  and percapita consumption expenditure ( )Y  both in constant 
dollars for the United States.  Using this data estimate the consumption function for United 
States for the period 1970-1984 and using this estimated consumption function predict the 
percapita consumption for the year 1985 at a given percapita disposable income  of 5,100 US 
dollars.   
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Table 5.1: Per capita personal consumption expenditure ( )Y  and per capita disposable 

personal income ( )X  (in 1972 dollars) for the United States, 1970-1984 

 Year Y X
1970 3277 3665 
1971 3355 3752 
1972 3511 3860 
1973 3623 4080 
1974 3566 4009 
1975 3609 4051 
1976 3774 4158 
1977 3924 4280 
1978 4057 4441 
1979 4121 4512 
1980 4093 4487 
1981 4131 4561 
1982 4146 4555 
1983 4303 4670 
1984 4490 4941 

 
Source: Economic Report of the President, 1984, p. 261. 

 
Solution: 
We will carry out below the regression analysis of per capita consumption expenditure ( )Y   on 

per capita disposable income ( )X  .  
 

Year Y  X 2Y  2X  XY  
1970 3277 3665 10738729 13432225 12010205 
1971 3355 3752 11256025 14077504 12587960 
1972 3511 3860 12327121 14899600 13552460 
1973 3623 4080 13126129 16646400 14781840 
1974 3566 4009 12716356 16072081 14296094 
1975 3609 4051 13024881 16410601 14620059 
1976 3774 4158 14243076 17288964 15692292 
1977 3924 4280 15397776 18318400 16794720 
1978 4057 4441 16459249 19722481 18017137 
1979 4121 4512 16982641 20358144 18593952 
1980 4093 4487 16752649 20133169 18365291 
1981 4131 4561 17065161 20802721 18841491 
1982 4146 4555 17189316 20748025 18885030 
1983 4303 4670 18515809 21808900 20095010 
1984 4490 4941 20160100 24413481 22185090 

Total 57980 64022 225955018 275132696 249318631 
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Computation of regression coefficients: 
From the above table we have  

           n = 15, 
  Y∑   = 57980   X∑    = 64022 

 
2Y∑  = 225955018     2X∑  = 275132696 

 XY∑ = 249318631 

  
64022 4268.1333

15
X = =

      

57980 3865.333
15

Y = =
  

Substituting the above values in Eq. (2.12) of Lesson 2 we get OLS Estimate of β  
( )

2

249318631 15 4268 .1333*3865 .3333ˆ
275132696 15 4268 .1333

123484 .0222  0 .9862
125217 .5822

β
−

=
−

= =
 

Similarly substituting β̂ , X  and Y  in Eq. (2.13) of Lesson 2 we get  

3865.333333-0.9862*4268.1333= -343.90α̂ =  
Hence the estimated consumption function for United States of the period 1970-1984 is  

 ˆ -343.90 0.9862*Y X= +  
In the estimated regression ˆ 0.9862β = is the estimate of the marginal propensity to consume, 
which means on the average 98.6 dollars will be the consumption expenditure for every 100 
dollars of disposable income.  
Computation of 2σ̂ : 

From Eq. (2.35) of Lesson 2 the unbiased estimator of 2σ̂ is 

  

2

2 1ˆ =
2

n

i
i
e

n
σ =

−

∑
 

ˆˆ ˆ ˆ,    where  ,        i i i i ie Y Y Y Xα β= − = +  

 
Computation of residuals ie s : 

Y Ŷ ˆe Y Y= − 2e  
3277 3270.52 -6.48 41.99
3355 3356.32 1.32 1.74
3511 3462.83 -48.17 2320.35
3623 3679.8 56.8 3226.24
3566 3609.78 43.78 1916.69
3609 3651.2 42.2 1780.84
3774 3756.72 -17.28 298.6
3924 3877.04 -46.96 2205.24
4057 4035.81 -21.19 449.02
4121 4105.83 -15.17 230.13
4093 4081.18 -11.82 139.71
4131 4154.16 23.16 536.39
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4146 4148.24 2.24 5.02
4303 4261.65 -41.35 1709.82
4490 4528.91 38.91 1513.99

TOTALS -0.01 16375.77
  

2 16375.77ˆ =1259.675
13

σ =  

The Computation of Coefficient of Determination r 2: 
From Eq. (2.42) of Lesson 2 we have the coefficient of determination r 2 

 ( )

2 2

1 1

2
2 2 2

1 1

2
 

16375.77
1 1 1 0.9911

225955018 -15 3865.3333

n n

i i

i i

n n

i i

i i

r

e e

y y nY

= =

= =

= − = − = − =

−

∑ ∑

∑ ∑
  

Alternative computation of 2r : 
Since r  is nothing but the correlation coefficient between X andY , by definition 2r  is   

( )
( ) ( )

( )
( )

( )

2

2 2

2 2
2

22 1
2

2 2

1

cov , var
var var var

275132696 15 4268.1333    0.9862   0.9911
225955018 15 3865.3333

n

i
n

i

r
X Y X

X Y Y

X n X

Y n Y

β

β =

=

  = =

−
−

= = =
−−

∑

∑

 

Testing the significance of regression coefficient (β ) at 5 level of significance   
Suppose we want to test the significance β we set the null hypothesis  

0 1: 0 vs : 0H Hβ β= ≠  
The test statistic for testing the above hypothesis is given by (from equation (3.15) of Lesson 3)

 
( ) ( )
ˆ 0.9862

ˆ ˆ
t
SE SE
β
β β

= =

     
where from Eq.(3.13),

                                         

 

 

( )

( )

2 2 2

1 1

2

ˆ ˆ ˆ

1259.675           
275132696 14*4268.13333

           0.281

n n

i i
i i

SE x X nXβ σ σ
= =

= = −

=
−

=

∑ ∑

  

 
( )

0.9862 0.9862 = 3.5096
ˆ 0.281

t
SE β

= =  

From student t-table, at 5%ε =  level of significance  
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 ( )0.025 13 2.160t =  

Since ( )0.0253.5096 13 2.160t t= > = from equation Eq. (3.16) of Lesson 3,  

 we will reject 0 : 0H β = .   
 
Thus we conclude the regression coefficient β  is significantly different from zero, which 
establishes the linear influence of X on Y.   Hence, the model is well fitted. 
 
 
The 95% confidence interval of β : 
From Eq. (3.17) of Lesson 3, the 95% confidence interval of β is  

 

( ) ( ) ( ) ( )[ ]
[ ]
[ ]

0.025 0.025
ˆ ˆ ˆ ˆ 13 ,   13

. .    0.9862 2.160*0.281,  0.9862 2.160*0.281

  0.3792, 1.5932

       

. .  

t SE t SE

i e

i e

β β β β− +

− +

 
 
Testing the significance of intercept (α ) at 5% level of significance:   
Suppose we want to test the significance of α we set the null hypothesis  

0 1: 0 vs : 0H Hα α= ≠  
The test statistic for testing the above hypothesis is given by (from Eq. (3.22) of Lesson 3)

 
( )
ˆ 343.90 0.2761

ˆ 1245.7163
t
SE
α
α

−
= = = −

                                              

 

where

 

 

( )

2

2 2 1

1 1 2 2

1

2

ˆ ˆ ˆ( )

          

275132696           1259.675*  1245.7163
14* 275132696 14*4268.13333

n

in n
i

i i n
i i

i
i

X
SE X n x

n X nX
α σ σ =

= =

=

 
= =     − 

 

= =
 − 

∑
∑ ∑

∑

 

 

  
We have  ( )0.025 13 2.160t =  

Since ( )0.0250.2761 13 2.160t t= < =  

from equation Eq. (3.16) of Lesson 3, we accept 0 : 0 H α = .   
 
Thus we conclude the intercept or constant term α  is not significant. 
Note: The insignificance of the constant termα , however, does not influence the above 
conclusion that the fitted model is a good one. 
 
The point prediction of the consumption expenditure for the year 1985 at given per capita 
disposable income tX =5100 US dollars can be obtained from Eq. (3.25) as  



 
 
Centre for Distance Education   5.6                     Acharya Nagarjuna University   
 

 

 1985 1985 -343.9 0.9862*5100ˆ -343.90 0.9862* 4685.72Y X = += + =  
95% Interval prediction for 1985Y from Eq. (3.31) 

 
( ) ( )2 2

0.025 0.025
2 2

1 1

1985 1985
1985 1985

1 1ˆ ˆˆ ˆ1 ,   1
n n

i i
i i

X X X X
Y t Y t

n nx x
σ σ

= =

− −
− + + + + +

    
    
    
         

∑ ∑
 

We have 
( )2

2

1

19851
n

i
i

X X

n x
=

−
+

∑
=

( )2

2

5100 4268.13331

15 275132696 15* 4268.1333

−
+

−
=0.4351 

Therefore, 95% Interval prediction for 1985Y  is 

 

[ ] [ ]( )
( )

4685.72 2.160 * 1 0.4351 ,   4685.72 2.160 * 1 0.43511259.675 * 1259.675 *

4593.882,  4777.558

− + − +

=
 

Similarly, a 95%  confidence interval for 1985( )E Y  from Eq. (3.32) is 

 

( ) ( )

( )
( )

2 2

0.025 0.025
2 2

1 1

1985 1985
1985 1985

1 1ˆ ˆˆ ˆ,       

= 4685.72 2.160* 1259.675 * 0.4351,   4685.72 2.160* 1259.675 * 0.4351

4635.1522,   4736.2878

n n

i i
i i

X X X X
Y t Y t

n nx x
σ σ

= =

− −
− + + +

    
    
    
         

− +

=

∑ ∑

 
 

5.3 Estimation of the Expenditure on Durable Goods: 
 

 In the following table we have data quarterly data: about expenditure on durable goods 
(in billions of 1992 dollars) and total personal consumption expenditure (in billions of 1992 
dollars) using this data, estimate the following exponential (log-linear) regression model. 

 0
tu

t tY X eββ= Where   
 where Y =expenditure on durable goods, billions of 1992 dollars.  X =total personal consumption expenditure, billions of 1992 dollars. 
And test for its goodness of fit. 
 
Table 5.2: EXPENDITURE ON DURABLE GOODS AND TOTAL PERSONAL CONSUMPTION 

EXPENDITURE (BILLIONS OF 1992 DOLLARS) 
Observation Y X Observation Y X  

1993-I  504.0 4286.8 1996-I  611.0 4692.1 
1993-II  519.3 4322.8 1996-II  629.5 4746.6 
1993-III 529.9 4366.6 1996-III  626.5 4768.3 
1993-IV 542.1 4398.0 1996-IV 637.5 4802.6 
1994-I  550.7 4439.4 1997-I  656.3 4853.4 
1994-II  558.8 4472.2 1997-II  653.8 4872.7 
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1994-III  561.7 4498.2 1997-III  679.6 4947.0 
1994-IV  576.6 4534.1 1997-IV  648.8 4981.0 
1995-I  575.2 4555.3 1998-I  710.3 5055.1 
1995-II  583.5 4593.6 1998-II  729.4 5130.2 
1995-III 595.3 4623.4 1998-III  733.7 5181.8 
1995-IV  602.4 4650.0  

 
Source: Economic Report of the President, 1999, Table B-17, p. 347. 

Solution: 
The exponential regression model 

  0 ,      t 1, 2,  . . .,  tu
t tY X e nββ= =  

may alternatively be expressed as 
 log log ,                       t 1, 2,  . . .,  t t tY X u nα β= + + =  
where  0logα β=   

* log tX X=   
* log  tY Y=  

 
The log values of the given data are computed below:  

Observation 
* log  tY Y=  * log tX X= Observation

* log  tY Y=  * log tX X=

1993-I  6.22258 8.36330 1996-I  6.41510 8.45364
1993-II  6.25248 8.37166 1996-II  6.44493 8.46518
1993-III 6.27269 8.38174 1996-III  6.44015 8.46975
1993-IV 6.29545 8.38891 1996-IV 6.45755 8.47691
1994-I  6.31119 8.39827 1997-I  6.48662 8.48743
1994-II  6.32579 8.40564 1997-II  6.48280 8.49140
1994-III  6.33097 8.41143 1997-III  6.52150 8.50654
1994-IV  6.35715 8.41938 1997-IV  6.47512 8.51339
1995-I  6.35472 8.42405 1998-I  6.56569 8.52815
1995-II  6.36904 8.43242 1998-II  6.59222 8.54290
1995-III 6.38907 8.43889 1998-III  6.59810 8.55291
1995-IV  6.40092 8.44462  

 
From the given data we have  n=23 
 *X = 8.4508  *Y = 6.4070  

 
2*

1

n

t
t
X

=

=∑ 1642.6376 
2*

1

n

t
t
Y

=

=∑ 944.4005 

 * *

1

n

t
X Y

=

=∑ 1245.4542 

Using Eqs. (4.5) and (4.6) we can compute  
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2 2

* * * *

1

* *

1

* * ˆ -9.6971
0

1

ˆ 1.9056
1

ˆˆ -9.6971  ˆ 0.00006

n

i i
i
n

i
i

X Y X Y
n

X X
n

Y X e eα

β

α β β

=

=

−
= =

−

= − = ⇒ = = =

∑

∑

 
 

Computation of 2r : 

( )
( )

2 2

2 2

* *
*

2 2 1
*

* *

1

2

1
var

0.985
1var

n

t
i
n

t
i

r
X XX n

Y Y Y
n

β β =

=

−
= = =

−

∑

∑
 

Testing the significance of regression coefficient (β ):  
We set the null hypothesis  0 1: 0 vs : 0H Hβ β= ≠  
The test statistic for testing the above hypothesis is given by (from equation (3.15) of Lesson 3)

 
( ) ( )
ˆ 1.9056

ˆ ˆ
t
SE SE
β
β β

= =

     
where

                                         

 

 

( ) 2 2 2* * *

1 1

ˆ ˆ ˆ 0.05137
n n

i i
i i

SE x X nXβ σ σ
= =

= = − =∑ ∑   

Therefore,  the t-ratio is   
( )

1.9056 1.9056 = 37.0956
ˆ 0.05137

t
SE β

= =  

From student t-table, at 1%ε =  level of significance t-critical value is   
 ( )0.005 21 2.831t =  

Since ( )0.00537.0956 21 2.831,t t= > =  from equation Eq. (3.16) of Lesson 3,  

we will reject 0 : 0H β = .   
Thus we conclude the regression coefficient β  is highly significant, which establishes 
the linear influence of X on Y.    
Hence, the model is well fitted and the estimated exponential regression model for 
Expenditure on Durable Goods is 
 
 1.9056ˆ 0.00006t tY X=  
 

5.4 Self Assessment Questions  
 
1. Explain a simple linear model by means of an illustration.  
2. Explain the justification for the inclusion of disturbance (error) term in a simple linear 

model by means of an example.  
3. Give some illustrations of simple linear model. 
4. Explain the estimation of consumption function. 
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5. Explain the estimation of demand function. 
6. Explain the estimation of supply function. 
7. The following data gives age and blood pressure (B.P.) for  12 persons.  Obtain the 

regression of  B.P. on age and test for the significance of slope.  Further, estimate the 
blood pressure when the age is 45 years. 
Age in years 
(X) 

Blood pressure  
(Y) 

Age in years 
(X) 

Blood pressure (Y) 

          56          147            55            150 
          42          125            49            145 
          72          160            38            115 
          36          118            42            140 
          63          149            68            152 
         47          128            60            155 

 
8. Fit  a power curve (log-log model) of the form Y=aXb  from the following data: 

X 1 2 3 4 5 6 7 8 
Y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

 
9.  The expected remaining life of an electronic part is believed to be related to the age of the 

part. The ages of 10 of these parts that were in use on a certain data were recorded in 
operating hours. When each part burned out, the elapsed time was recorded. The results 
were as follows: 

Age of part (in hrs.) 40 65 90 5 30 10 80 85 70 25
Remaining life (in hrs.) 30 20 10 80 40 65 15 15 20 50

 
Fit the exponential curve (log-lin model) of the form  Y=abX . 
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Lesson 6 
 

MULTIPLE REGRESSION ANALYSIS: 
ESTIMATION 

 
6.0 Objective: 
 
 In this lesson, the student will be exposed to the multivariate analogue of the concepts 
used in simple regression analysis discussed in Lesson 2.  After studying the lesson the student 
will have clear idea regarding the general linear regression model and its basic assumptions.  
Further, the student will learn how to estimate the unknown regression coefficients 1 2, ,..., kβ β β  
and σ2, variance of the disturbance u, in general linear regression model using the principle of 
least squares. 
 
Structure of the Lesson: 
 

6.1 Introduction  
6.2 General Linear Regression Model and Assumptions 
6.3 Ordinary Least Squares Estimation of the Regression Coefficients  
6.4  Estimation of σ2 
6.5 Self Assessment Questions 
6.6 References 

6.1 Introduction 
 

 The two-variable model studied extensively in the previous lessons is often inadequate 
in practice. In our consumption–income example, for instance, it was assumed implicitly that 
only income X affects consumption Y. But, we know that besides income, a number of other 
variables are also likely to affect consumption expenditure. An obvious example of other 
variable is wealth of the consumer. As another example, the demand for a commodity is likely to 
depend not only on its own price but also on the prices of other competing or complementary 
goods, income of the consumer, social status, etc. Therefore, we need to extend our simple 
two-variable regression model to cover models involving more than two variables. A regression 
model that involves more than one exogenous (independent) variable is called a multiple 
regression model or general linear model. Thus, adding more variables leads us to the 
discussion of multiple regression models, that is, models in which the dependent variable, or 
regressand, Y depends on two or more explanatory variables, or regressors. 
 
 Throughout, we are concerned with multiple linear regression models, that is, models 
linear in the parameters; they may or may not be linear in the variables.  The description and 
assumptions of the general linear model are explained in Section 6.2.  The ordinary least 
squares estimation of the model is described in Section 6.3.  Finally, an unbiased estimator of 

2σ   based on least squares residuals is derived in Section 6.4. 
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6.2 General Linear Regression Model and Assumptions 
 

Let us assume that a linear relationship exists between a variable Y  (endogenous variable) and 
(k-1) explanatory variables 2 3 kX ,X , . . . ,X  and a disturbance term u .  If we have a sample of ‘n’ 
observations on Y  and X ' s  we can write  

1 2 ... kβ β β= + + + +1 2 ky x x x u             (6.1) 
where 

1

2

3

:
n

Y
Y
Y

Y

 
 
 
 =
 
 
  

y , 1

1
1
1
:
1

 
 
 
 =
 
 
  

x ,

21

22

23

2

:
n

X
X
X

X

 
 
 
 =
 
 
  

2x ,…,

1

2

3

:

k

k

k

kn

X
X
X

X

 
 
 
 =
 
 
  

kx  and 

1

2

3

:
n

u
u
u

u

 
 
 
 =
 
 
  

u  

Here it may be noted that 1x  is a column vector of units to allow for an intercept term. The 'sβ  
are unknown population (model) parameters and are frequently called as regression 
coefficients. Even if we know their values, the linear combination ( 1 2 ... kβ β β+ + +1 2 kx x x ) would 
not determine the y vector exactly, for economic relations are stochastic, not exact.  Thus u  is 
a disturbance vector measuring the discrepancies between the linear combination and any 
actual sample realization of Y values. 
 
Eq. (6.1) may be expressed in matrix form as 
                                          y = Xβ + u                                      (6.2) 

            where [ ]1 2 kX = x x ... x , 

1

2

k

β
β

β

 
 
 =
 
 
 

β  

The central problem is now to obtain the estimate of the unknownβ , the vector of regression 
coefficients.  To make any progress with this we need to make some further assumptions about 
how the observations on Y have been generated. 
 
Assumptions of the linear Model 
 

1. ( ) 0E =u  i.e., ( )E =y Xβ                                                                            (6.3) 

This means that the values of disturbance term will take both positive and negative 
discrepancies from its expected value and on balance, they will average out at zero i.e,    

( ) 0  1,2, ,iE u i n= ∀ = …  
 

2. 2( )E Iσ=′uu         (6.4) 
Since E( )=0u , E( ) var( )′ =uu u  is the variance - covariance matrix of u and this 
assumption gives 
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1 1 2 1 n

2 1 2 2 n

n 1 n 2 n

var(u ) cov(u ,u ) ... cov(u ,u )
cov(u ,u ) var(u ) ... cov(u ,u )

. . ... .
cov(u ,u ) cov(u ,u ) ... var(u )

 
 
 
 
 
 

=

2

2

2

0 ... 0
0 ... 0
. . ... .
0 0 ...

σ
σ

σ

 
 
 
 
 
   

 

 
This is a double assumption, namely  
i. 2var( )     for all 1,2,...,iu i nσ= =  i.e. All disturbances have the same variance. 
ii. ( , ) 0    for all 1,2,...,i jcov u u i j n= ≠ =   i.e. All disturbances are pair wise 

uncorrelated. 
 

The first property is referred to as homoscedasticity (or homogeneous variances) and its 
opposite as heteroscedasticity.  If the sample observations related to travel expenditures 
of a cross section of households, the assumption of homoscedasticity would probably 
not be a reasonable one, since low income families will almost certainly have low 
average expenditures on travel and also a low variance of actual travel expenditure 
about the average, while high income families will tend to display both higher mean 
levels of expenditure and greater variance about the mean.  The second part of this 
assumption - all disturbances being pair wise uncorrelated – is a very strong assumption 
indeed.  Again, in the context of the travel example it means that the size and sign of the 
disturbance for any one family has no influence on the size and sign of the disturbance 
for any other family. 
 

3. ( ) kρ =X                                                          (6.5) 
This assumption states that the explanatory variables do not form a linearly dependent 
set.  For example, if we had just two explanatory variables, X2 & X3 and if this 
assumption was not fulfilled, then there would exist an exact relationship 

3 1 2 2X Xc c= +  
which,  is substituted in the regression equation 

1 2 2 3 3Y= + X X uβ β β+ +  
gives 

 
( )

( ) ( )
1 2 2 3 1 2 2

1 1 3 2 2 3 2

X X

   = X

Y c c u

c c u

β β β

β β β β

= + + + +

+ + + +
                  (6.6) 

The constants 1c  and 2c  can be determined exactly, and we can estimate the intercept 
and slope of Eq. (6.6), but it is not possible to obtain the estimates of the three β  
parameters. 
 

4. X  is a non-stochastic matrix. 
It means that if we take another sample of n observations, the X  matrix of explanatory 
variables remains unchanged, the only source of variation then being in the u  vector 
and hence in the y  vector.  However, the social sciences are notoriously difficult for 
being observational and non-experimental so that in general the X  variables are not 
subject to experimental control by the social scientist.  There are three main points to be 
made about this assumption.  
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 First of all, in spite of the remarks above, there are cases where the X   data can be 
controlled.  In a cross-section survey, the sample design may call for the inclusion of 
certain numbers of families with specific characteristics, and sampling is continued until 
these specifications are met.  Second, even if it is not in fact feasible to control the X
data precisely, it is still useful to be able to make statistical inferences which are 
conditional on the X  values actually present in the sample.  In this light it is very much 
an assumption of convenience in that it simplifies dramatically the derivation of several 
basic statistical results.  Third, once these simple results have been derived, it is 
possible to weaken the assumption to allow the X variables to be stochastic, but 
distributed independently of the disturbance term, and then see what modifications of 
the earlier results are required. 
 

6.3 Ordinary Least Squares Estimation of the Regression   
 

      Coefficients 
The most frequently used estimating technique for the general linear regression model, namely,  

y = Xβ + u                                              (6.7) 

is the principle of least squares method.  If the unknown vector β in the above equation is 

replaced by an arbitrary estimator β̂ , then we may define a vector of errors, or residuals  

       ˆe = y - Xβ           (6.8) 

The least-squares principle for choosing β̂  is to minimize the sum of the squared residuals, 
namely,   

2

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ    (since the transpose a sca

ˆ ˆ                                 (from Eq. (6.8))

              

              

n

i
i
e

=

=

′ ′ ′ ′

′ ′ ′ ′

′ ′

′ ′

′

∑
-β X - Xβ + β X Xβ

- 2β X + β X Xβ

e e = (y - Xβ) (y - Xβ)

= y y y y

= y y y lar is the same scalar)
 

In order to minimize ′e e , we have to differentiate it with respect to β̂  which gives 

 ˆ-2 2ˆ
′∂ ′ ′= +

∂
e e X y X Xβ
β

        
(6.9) 

Now the Ordinary least squares (OLS) estimator of β̂
 
of the unknown β  can be obtained by 

setting Eq. (6.9) equal to zero vector and solving it for β̂ .  Thus setting Eq. (6.9) to zero vector,   
we get 
  ˆ′ ′(X X)β = X y

        
(6.10) 

Which is a non-homogeneous system of k linear equations, those are to be solved for k 
unknowns 1 2

ˆ ˆ ˆ, , , kβ β β… and are often referred to as the OLS normal equations. 
The assumption of the GLM, namely, ( ) kρ =X ensures that ′X X is nonsingular and hence 
inverse of ′X X  exits. Hence, from Eq. (6.10), the OLS estimator of β , is given by  
 

           
(6.11) 

    ˆ ′ ′-1β=(XX) Xy            
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and the vector of errors or residuals given by Eq.(6.8), where β̂ is OLS estimator of β , is called 
the vector of OLS residuals. Using Eq. (6.8) in Eq. (6.10) we get  

( )ˆ ˆ ˆ′ ′ ′ ′=(X X)β = X Xβ+e (X X)β+ X e  

which implies 

1

1

(kX1)1

1 (kX1)(kX1)

0
0

 0

0

′   
   ′   

′ ′   = = =
   
   
   ′   k

x e
x e

X e 0x e

x e

                 (6.12) 

This is a fundamental OLS result.  The first element in this equation gives (since 1X  is the 
vector of units). 

(6.13) 
 
 
 
 
 
 
 
                                             
  
provided that the regression equation contains a constant term.  The remaining elements in Eq. 
(6.12) state that the residual has zero sample correlation with each X  variable. 
 
6.4 Estimation of σ2: 

 
As the values of u are not directly observable, it seems plausible to base an estimate of σ2 on 
the residual sum of squares (RSS) ′e e .  
We have from Eq. (6.8) 

( ) ( )

ˆ   

                         where  

                                                                                                            (6.14)

=

′ ′ ′ ′= −

=

-1 -1

e y - Xβ

y - X X X X y M = I X X X X

My  

   

 
Here, M  is an important matrix.  It can be easily verified that it is symmetric and idempotent 
(i.e.,  & ′ ′ 2M = M MM = M = M ).  It also follows 
                      ( ) ( )=0′ ′= -1MX X - X X X X X       (6.15) 
 
From Eqs. (6.7), (6.14) and (6.15) 

1
1

0 0 0
n

i
i
e e

=

′ = ⇒ = ⇒ =∑x e  

That is, the residuals from the OLS regression always have zero mean 
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                                                                    (6.16)  e = My = M(Xβ + u) = Mu        

    

 ( )
( )

and 
                         is symmetric    

                          is idemponent   

′ ′ ′

′

′

2

e e = u M Mu
= u M u M

= u Mu M

∵

∵                (6.17)

 

Taking expectation on both sides, we get 
( ) ( )

( )( ) ( )
( )( ) ( )( )
( ) ( )( )

( )

( ) ( )( )

2 2

2

2

                  is scalar

                 tr tr ( )

                        E

           

           

E E

E tr

E tr

tr

tr

tr tr

σ σ

σ

σ

′ ′=

′ ′=

′= =

′= =

 ′ ′=  

′ ′= −

n

-1
n

-1
n

e e u Mu

u Mu u Mu

Muu AB BA

M uu I

I - X X X X

I X X X X

∵

∵

∵

( )( )
( )

( )

12

2

2

     (   tr ( ) = tr ( )  )

           

           

           
k

n tr

n tr

n k

σ

σ

σ

−

 
 
 ′ ′= −
 

= −  
= −

AB BA

X X X X

I

∵

 

2Thus   and E
n k

σ
′  = − 

e e

 

    hence 
n k
′
−

e e
 is an unbiased estimator of 2σ  which we denote as 2σ̂     (6.18) 

 
σ̂  is often referred to as the standard error of the estimate and may be regarded as the 
standard deviation of the Y values about the regression plane and is given by 
      ˆ  ( )n kσ ′= −e e         (6.19)  
 
6.5 SELF ASSESSMENT QUESTIONS 
 
1. Explain a general linear model (GLM) along with its assumptions. Also give two 

applications of GLM.  
2. Explain the justification for the inclusion of disturbance (error) term in a general linear 

model. 
3. Explain a multiple regression model along with its assumptions.  
4. Explain the significance of disturbance (error) term in a general linear model by means 

of an illustration. 
5. Derive the normal equations for a three-variable regression model. 
6. Derive the normal equations for multiple regression model. 
7. In a general linear (multiple regression) model 2, )nσy = Xβ + ε,   ε (0 I∼ , derive the 

OLS estimator of β .  
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8. In a general linear model 2, )nσy = Xβ + ε,   ε (0 I∼ , derive the OLS estimator of  2σ
and show that it is unbiased.  

9. In a general linear model, derive the OLS estimator of the variance of the disturbance 
(error) term and show that it is unbiased. 

10. In a multiple regression model, derive an unbiased estimator of the variance of the 
disturbance (error) term. 

11.  Define a multiple linear regression model and mention the standard assumptions on the 
statistical disturbance term. 

12. For a general linear model 2, )nσy = Xβ + ε,   ε (0 I∼ , show that the maximum 
likelihood estimator and OLS estimator of β  are the same. 

13. Show that the sum (mean) of the residuals in a GLM is zero. 
14. Show that the vector of residuals uncorrelated with the data matrix X . 
15. Prove that if a regression is fitted without a constant term, the sum (mean) of the 

residuals need not be zero. 
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Lesson 7 
 

MULTIPLE REGRESSION ANALYSIS:  
PROPERTIES OF OLS ESTIMATORS 

 
7.0 Objective: 
 
 After studying this lesson the student will understand that ordinary least squares 
estimator β̂

 
ofβ in general linear model (multiple linear regression model) y = Xβ + u , is the 

best linear unbiased estimator of β , which is the famous Gauss-Markov theorem.  He/she will 
be knowing the importance of coefficient of the determination of R2 and adjusted coefficient of 
determination 2 
 
Structure of the Lesson: 
 

7.1 Introduction 
7.2  OLS Estimators are  Linear Unbiased Estimators  
7.3 OLS Estimators are BLUEs (Gauss-Markov theorem) 
7.4 Coefficient of Determination R2  

7.5 Adjusted R2 or   2  and its use 

7.6 Self Assessment Questions 
7.7 References 

 
7.1 Introduction 

 
This lesson is a continuation of Lesson 6, which is devoted for studying the properties of 

ordinary least squares estimator of β in the GLM  

y = Xβ + u   
which is derived in Lesson 6 and is given by 

ˆ ′ ′-1β = (X X) X y  

In Section 7.2, we will show that each component of β̂ is a linear combination of 1 2, , , nY Y Y…

 

and also we will show that β̂ is linear unbiased estimator of β .  In Section 7.3, we will establish 

the famous Gauss-Markov theorem which states that β̂ is best linear unbiased estimator ofβ , 

which means that no other linear unbiased estimator of β  has smaller variance than the OLS 

estimator β̂ . 
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In Section 7.4, we will derive the formulae for the coefficient of determination R2, which 
measures the proportion of variation in the dependent variable ( )Y  explained by linear 

combination of the explanatory variables ( )2 3 kX ,X , . . . ,X  as compared with the total variation 
inY . 

In Section 7.5, we will discuss the adjusted R2 or 2R which will be useful for knowing the 
explanatory power of an additional variable. 

 
7.2 OLS Estimators are  Linear Unbiased Estimators 

 
 We known that the OLS estimator of β  in the GLM y = Xβ + u is  

ˆ ′ ′-1β = (X X) X y
        

(7.1) 

Since y = Xβ + u ,(7.1) can be written as 

ˆ ′ ′-1β = β + (X X) X u 
        

 (7.2) 
Since X  is non-stochastic matrix, 

-1ˆ( ) ( ) ( )                                 ( ( )= )E E E′ ′= +β β X X X u = β  u 0∵
   

(7.3) 
 
 

 
 
 
 
The linearity property refers to linearity in y  (or u ) as is seen in Eqs. (7.1) or (7.2), for each 

element in β̂  is a linear combination of the elements of y  (or u ), the weights being functions of 

the X  data matrix which are non-stochastic. 
 
The variance-covariance matrix of β̂  
From Eqs. (7.2) and (7.3) we have  

ˆ ˆ ˆ( )E ′ ′− = = -1β β β -β (X X) X u  

Now by definition the variance-covariance matrix of  β̂  is 

( )( )
-1 -1

-1 -1

2 -1 -1 2

ˆ ˆ ˆvar( )

           = E ( ) ( )

           = ( ) [ ] ( )   (  is nonstochastic)

           = ( ) ( )            ( [ ]= )

         
n n

E

E

Eσ σ

 ′=  
 
 ′ ′ ′′
 
′ ′ ′ ′

′ ′ ′ ′

β β -β β -β

X X X uu X X X

X X X uu X X X X

X X X I X X X uu I

∵

∵
2 -1  = ( )σ ′X X    (7.4)

 

Thus the OLS estimator β̂ is a linear unbiased estimator ofβ , More specifically, each 

element of β̂ is a linear unbiased estimator of the corresponding element of β  
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The elements on the main diagonal of Eq. (7.4) give the sampling variances of the 
corresponding elements of β̂ , and the off-diagonal terms give the sampling co-variances 

between the two corresponding elements of β̂ . 
 
7.3 OLS Estimators are BLUEs(Gauss-Markov theorem): 

 
The following proof is somewhat round about, but it has the advantage of establishing a further 
important result at the same time. 
Let c denote an arbitrary k-element column vector of known constants and define a scalar 
quantity µ  as 

µ ′= c β
         

(7.5) 

If we choose (0 1 0  0)′=c … , then 2µ β= . 
Thus we can use Eq. (7.5) to pick out any single element inβ  . Or if we choose

 2, 1 , 11 n k nX X+ +
′  =  c  

Then ( )1 2 2, 1 , 1 1 1( ),     for E 0,n k k n n nX X E Y uµ β β β+ + + += + +…+ = =  
which is expected value of the dependent variable Y  in period (n+1), conditional on the X  
values in that period. 
 
We wish to consider the class of linear unbiased estimators of µ  .  Thus define a scalar m 
which will serve as a linear estimator ofµ , such that 

                 ( = )m ′ ′ ′= a y = a Xβ+a u y Xβ+u∵      (7.6) 

where a  is some n-element column vector.  The definition ensures linearity.  To ensure 
unbiased ness we have 

( ) ( )                 ( ( )=0)                            (7.7)E m E E′ ′ ′ ′= = =a Xβ + a u a Xβ c β u∵

 only if    ′ ′a X = c          (7.8)

 
The variance of m is given by  

( )

( )

( )
( ) ( )( )

2

2

2 2

2

var(m)

                           Eqs. (7.6)&(7.7)        

          ( )               is scalar

                       E

           

E m E m

E from

E

σ σ

σ

= −  

 ′=
 

′ ′ ′=

′= =

=

n n

a u

a uu a a u

a' I a uu I

a'

∵

∵

                                                                                             (7.9)a

 
 

Now we should minimize (7.9) subject to the condition 

( ) .                  from Eq. (7.8)i e′ ′X a = c X a - c = 0  
This is equivalent to minimize the function  
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( )2φ ′ ′ ′= −a a λ X a - c         (7.10) 

with respect to a  and λ  and thus we obtain 

0 2 2 0φ∂
= ⇒ − =

∂
a Xλ

a
       (7.11)  

( )0 2 0φ∂ ′= ⇒ =
∂

X a - c
λ

       (7.12) 

Pre-multiplying Eq. (7.11) by ′X , we get  

( ) ( )
1

                       using Eq. (7.12)
−

′ ′ ′ ′− = ⇒ ⇒ =X a X Xλ 0 c = X Xλ λ X X c  

Substituting back λ  in Eq. (7.11) we get ( )′ -1a = X X X c  

Hence, from Eq. (7.6) the linear estimator m ′= a y of µ ′= c β  has minimum variance for the 

choice of  

( )′= -1a X X X c          (7.13)  
Therefore by definition  

 

 

( )

( )( )ˆ ˆ                             the OLS estimator 

m ′ ′ ′ ′= =

′ ′ ′= =

-1

-1

a y c X X X y

c β β X X X y∵
 

becomes the BLUE of µ ′= c β  . 
 
 
 

                                                                                                                     (7.14)  
 
If follows directly that  

1. Each OLS coefficient is the best linear unbiased estimator of the corresponding 
regression coefficient. 

2. The BLUE of any linear combination of the ' sβ  is the same linear combination of the 
ˆ's.β  

3. The BLUE of ( )sE Y is 1 2 2
ˆ ˆ ˆ

s k ksX Xβ β β+ +…+ . 
 
Note: 
The above result is often called as Gauss-Markov theorem, which may be stated as follows: 
 In the general linear model ( ),   0E= + =y Xβ u u and ( ) 2

nvar σ=u I , the ordinary least 

squares estimator   ( )ˆ ′ ′= -1β X X X y is the best linear unbiased estimator (BLUE) of β or more 

specifically for any arbitrary ˆ,  ′c c β is the BLUE of ˆ,  ′c c β . 
 
7.4 Coefficient of Determination R2  

 
We have the multiple linear regression model or GLM  

Thus ˆ′c β  is the BLUE of ′c β and as a consequence β̂  is the BLUE of β  
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( ) ( ) 2,  E 0 and var nσ= =y = Xβ + u u u I
 

and the OLS estimator of β is   

 
ˆ ′ ′-1β = (X X) X y         (7.15) 

 Decomposing the y vector into the part explained by the regression and the unexplained part, 

ˆˆ= + = +y y e Xβ e         (7.16) 
It follows that  

( ) ( )ˆ ˆ

ˆ ˆ ˆ2

ˆ ˆ ˆ2 ( from Eq.(7.16) )                                       (7.17)

′′ = + +

′ ′ ′= + +

′ ′ ′ ′ ′= + +

y y y e y e

y y e e y e

β X Xβ e e β X e

   

But we have 

 

ˆ

       =            ( from Eq. (7.15) )

=                                                                                          (7.18)

′ ′

′ ′ ′ ′

′ ′

-1

X e = X (y - Xβ)

X y - X X(X X) X y

X y - X y = 0 

 

using Eq. (7.18), Eq. (7.17) becomes 
 ˆ ˆ ˆ ( from Eq.(7.15) )                           (7.19)′ ′ ′ ′ ′ ′ ′= =y y β X Xβ + e e β X y + e e  

However, 2

1

n

i
i

Y
=

′ = ∑y y  is the sum of squares of the actual Y values.  But normally our interest is 

analyzing the variation inY , measured by the sum of the squared deviations from the sample 
mean, namely, 

( )2 2 2

1 1

n n

i i
i i
Y Y Y nY

= =

− = −∑ ∑        
  

Thus, subtracting 2nY  from each side of the decomposition (7.19) gives a revised 
decomposition,

 ( ) ( )2 2ˆ

                          

nY nY

TSS ESS RSS

′ ′ ′ ′− = − +

= +

y y β X y e e

      (7.20)
 

where TSS indicates the total sum of squares inY ; and ESS and RSS are the explained and 
residual (unexplained) sum of squares respectively.. 
 
 
              

    (7.21) 
 
 
 
 
 
Thus 2R  measures the proportion of the total variation in Y  explained by the linear combination 
of the regressors and obviously lies between 0 and 1 (since 0 ESS TSS≤ ≤ ).  Most computer 

The coefficient of determination R2 is defined as the ratio of ESS to TSS and is 

 

2
2

2

ˆ  - ny
 - ny

ESSR
TSS

′ ′
= =

′

β X y
y y        
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programs routinely produce 2R , along with the estimated GLM.  It may be noted from Eq. (7.21), 
the 2R  will never decrease with the addition of any variable to the set of regressors (both TSS 
and 2ny in ESS will always be the same for any given set of Y values.  The quantity 
ˆ ˆ ˆ′ ′ ′ ′=β X y β X Xβ is a positive definite quadratic form and hence it will be always positive and will 
be increased when a new variable is added to the set of existing regressors).  If the added 
variable is totally irrelevant the ESS simply remains constant.  
 
Notes: 

1. The positive square root of R2 is defined as the multiple correlation coefficients.
   

2. Both R and R2 lies between 0 and 1.  i.e., 20 1 and 0 1R R≤ ≤ ≤ ≤ .  If it is 1, the fitted 
regression line explains.  100 percent of the variation in Y.  On the other hand, if it is 0, 
the model does not explain any of the variation in Y.  Typically, however, R2 lies 
between these    extreme values. 
 

3. The fit of the model is said to be “better’’ the closer
 
R2 is to 1.  Recall that in the two-

variable case we defined the quantity r as the coefficient of correlation and indicated that 
it measures the degree of (linear) association between two variables. The three-or-more-
variable analogue of r is the coefficient of multiple correlation, denoted by R, and it is a 
measure of the degree of association between Y and all the explanatory variables jointly. 
Although r can be positive or negative, R is always taken to be positive. In practice, 
however, R is of little importance. The more meaningful quantity is R2.  
 

4. The value of R2 (or R) closer to 1 indicates a higher value of ESS, which results in the 
case of a strong linear relationship between the dependent variable Y and the set of 
independent variables 2 3, , , kX X X… .  On the other hand, when the linear relationship is 
very weak, we get a smaller value of ESS when closer to ‘0’.  Thus R2 measures the 
goodness of fit of the models 
 

7.5 Adjusted R2 or 2 and its use 
 

From Eqs. (7.20) and (7.21), R2 may also be written as  

 

2
21 1

 - ny
RSSR
TSS

′
= − = −

′
e e

y y        (7.22) 

An important property of R2 is that it is a non-decreasing function of the number of explanatory 
variables or regressors present in the model; as the number of regressors increases, R2 almost 
invariably increases and never decreases. Stated differently, an additional X variable will not 
decrease R2.  From Eq.(7.22) we may note that adding any extra explanatory variable can 
never increase the RSS and thus can never decrease the R2, since that expression of R2 takes 
no account of the number of the number of explanatory variables in the model.  
 
 It is sometimes useful to compute an R2, adjusted for degrees of freedom, especially 
when comparing the explanatory power of different numbers of explanatory variables.  From Eq. 
(7.22) R2 may be re-written as 
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 ( )
2

2
1

ny

nR
n

′
= −

′ −

e e

y y
        (7.23) 

The adjusted R2 is defined as 

 ( ) ( )
2

2

( )1
ny 1

n kR
n

′ −
= −

′ − −

e e

y y
       (7.24) 

The rationale behind the adjustment is that k parameters have been used in fitting the 
regression plane from which the residual sum of squares is measured, and one parameter, the 
sample mean, has been estimated in computing TSS. These provide unbiased estimators of 2σ
and variance ofY . 
 From Eqs. (7.22)  and (7.24), 2 may be re-written as 

( ) ( )2 2

2

1 11 1 1
ny

n nR R
n k n k

′− −
= − = − −

− −′ −

e e

y y

   

(7.25) 

 
 It is immediately apparent from the above equation that for k > 1,   

 2R  < 2R ,        for ( )2 2 21 11 1 1    ( 1 1)n nR R R n n k
n k n k
− −

− = − > − − > − ⇒ >
− −

∵  

• which implies that as the number of X variables increases, the adjusted R2 increases 
less than the unadjusted R2.     

• Further from Eq.(7.25), it is possible for the adjusted coefficient of determination 2 to 
decline if an additional variable produces too small a reduction in 1- R2 to compensate 

for the increase in 
1 .n

n k
−
−

    

• Therefore, generally, 2R is also reported by most statistical packages along with the 
conventional R2.   
 

Thus 2 will be useful to examine a whether an additional explanatory variable has more 
specifically, significant influence on the Response variable.  When a new explanatory variable is 
added to the existing explanatory variables and if it produces an increase in 2 then we may say 
that the new variable has some significant influence on Response or dependent variable.  
Otherwise, the new variable has no significant influence and hence we may discard that new 
variable from the analysis.  
 
Besides R2 and adjusted R2 as goodness of fit measures, other criteria are often used to judge 
the adequacy of a regression model. Two of these are Schwarz criterion and Akaike’s 
Information criterion, which are given below and are used to select between competing 
models.  

Schwarz criterion :           log loge e kSC n
n n
′

= +  

 Akaike information criterion:   2log e e kAIC
n n
′

= +
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7.6 Self Assessment Questions  
 
1. Show that OLS estimators are BLUEs in a general linear model. 
2. State and prove Gauss-Markov theorem and also discuss the importance of this  

theorem in linear estimation. 
3. Stating clearly the underlying assumptions, prove Gauss-Markov theorem.   
4. Stating the assumptions clearly show that the OLS estimator of β , in the general  

linear model ,y = Xβ + ε  is best linear unbiased. 
5. Under certain conditions show that the ordinary least squares estimators are best    

linear unbiased. 
6. Prove that the OLS estimator of β , in the general linear model ,y = Xβ + ε  is  unbiased 

linear estimator. 
7. In a multiple regression model, show that the OLS estimator of the variance of the 

disturbance (error) term is unbiased. 
8. Define the coefficient of determination R2  and derive a formula for it. 
9. Define the coefficient of multiple correlation R and derive a formula for it. 
10. Distinguish between R2  and adjusted  R2 and explain the use of adjusted  R2. 
11. Prove that the coefficient of determination R2 is the square of simple correlation between y

and ŷ , where ˆ ′ ′= -1y X(X X) X y . 
12. Derive the variance-covariance matrix of the OLS estimator of β , in the GLM .y = Xβ + ε  
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Lesson 8 
 

MULTIPLE REGRESSION ANALYSIS: THE 
PROBLEM OF INFERENCE AND PREDECTION   

 
8.0 Objective: 
 
 Testing the estimated GLM is an important aspect of the multiple regression analysis.  In 
this lesson, the student will be exposed for checking the goodness of fit of the estimated GLM 
as well as the testing the significance and construction of confidence intervals for individual 
regression coefficients.  Further, from this lesson the student will understand how to predict or 
forecast the dependent variable using the well fitted model.  Using both point and interval 
prediction methods. 
 
Structure of the Lesson: 
 

8.1 Introduction 
8.2  Testing the Significance of the Individual  Regression Coefficients 
8.3 Testing the Significance of the Complete Regression  
8.4 Set of linear Hypothesis 
8.5 Test procedure for Rβ = r   

8.6 Prediction 
8.7 Self Assessment Questions  
8.8 References  
 

8.1 Introduction 
 

 This lesson, a continuation of Lesson 3, extends the ideas of hypothesis testing and 
interval estimation developed there for simple linear model to GLM. Although in many ways the 
concepts developed in Lesson 3 can be applied straightforwardly to the multiple regression 
model, a few additional features are unique to such models, and it is these features that will 
receive more attention in this Lesson. 
 
 If our sole objective is point estimation of the parameters of the regression models, as 
we have seen in Lessons 6 and 7, the method of ordinary least squares (OLS) does not require 
any assumption about the probability distribution of the disturbances uis. But if our objective is 
estimation as well as inference, then we need to assume that the ui follow some probability 
distribution in addition to the standard assumptions of the GLM. As in case of simple regression 
models, for multiple regression models also, we assume that the ui follow the normal distribution 
with zero mean and constant variance σ2.  With the normality assumption of the disturbances 

'siu , we are able to develop the procedures for hypothesis testing and interval estimation of the 
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β parameters.  In Section 8.2, we develop the test procedure for examining the significance of 
each β  parameter along with the construction of its confidence interval and in Section 8.3, we 
develop the test procedure for the significance of complete regression.  Section 8.4 and 8.5 are 
devoted for developing the test procedure for a set of linear hypothesis Rβ = r .  In section 8.6, 
we have discussed the problem of prediction. 
 
8.2 Testing the Significance of the Individual  Regression 

Coefficients: 
 

 From Lesson 6, we have the multiple linear regression model (GLM)  

  
 (8.1)                                                                            y = Xβ+u

 
 with the assumption

 
 

i)   ( )E 0.=u  

ii)  ( ) ( ) 2 .var E nσ′= =u uu I  

iii) The data matrix X is nonstochastic and full rank matrix.
 Now, let us make an additional assumption namely 

           iv)  Suppose that the elements of u  are  normal so that u  is a multivariate normal 
vector. 
The above all four assumptions may now be restated in compact form as  

( )2,              nN σ∼u 0 I
       (8.2)

 

 From Eq. (7.1) of Lesson 7, the ordinary least squares (OLS) estimator of β is given by  

 

ˆ ′ ′-1β = (X X) X y
        (8.3) 

From Eqs. (8.1) and (8.3), we have 
 ( ) ( )ˆ ′ ′ ′ ′= +-1 -1β = X X X y β X X X u       (8.4) 
From Eqs. (7.3) and (7.4) of Lesson 7, we have 
         ( ) ( ) 2ˆ ˆ and   var                  E σ ′= =β β β X X

     (8.5)
 

From Eq. (8.4) we may notice that each element of β̂  is a linear combination of the elements of 
,u  which is the multivariate normal vector.  But, we know that every linear combination of a set 

of normal variates is also a normal variate and hence, β̂ is also a multivariate normal variate 
and from Eq. (8.5) it immediately follows that  
   ( )2ˆ ,       N σ ′∼β β X X         (8.6) 

Result 1:  The sampling distribution of the residual sum of squares ′e e , where ˆ= −e y Xβ can 
be shown as  

 2
2 n kχ

σ −

′e e ∼    

Proof:  We have from Eqs. (6.16) and (6.17) of Lesson 6, 

 
  (8.7) and                                                                       ′ ′= =e Mu e e u Mu   

where ( )= ′ ′-1M I - X X X X is an idempotent matrix and it’s  trace is given by 
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( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

tr =tr        =tr -tr

           =tr -tr   =tr -tr   

           =n-k       

n n

n n k

′ ′ ′ ′

′ ′

-1 -1

-1

M I - X X X X I X X X X

I X X X X I I  

But for every idempotent matrix its rank is nothing but its trace and therefore  
 ( ) n kρ = −M                     (8.8) 

Since M is an idempotent matrix of rank n-k, there exist an orthogonal matrix (Eigen vector 
matrix) P  such that  
 n k−=P'MP E          (8.9) 
where n-kE  is the Eigen root diagonal matrix, which is diagonal with (n-k) units and k zeros on 
its main diagonal.  This is due to the fact any idempotent matrix will have 1’s or 0’s as eigen 
roots.   
The orthogonal matrix P  may be used to define a transformation from to u v  , namely
 or ′= =u Pv v P u  (since P is orthogonal matrix, ′-1P = P ) 
Using this transformation in Eq. (8.7) we get 

( )( )
2 2 2
1 2

                               from Eq. 8.9

 the first -  diagonal elements of  
     ...             

are 1's and remaing  diagonal elements of  are 0'sn k

n k
v v v

k−

′ ′ ′=

′=


= + + +

n-k

n-k

n-k

e e v P MPv

v E v

E
E

∵ 
 
 

 

But the mean vector and variance-covariance matrix of  v  are 

   ( ) ( )E E′=v P u = 0

( ) ( ) ( )2 2 2and        n n nE E σ σ σ′ ′ ′ ′ ′ ′= = = = =vv P uu P P I P P P I P P I∵  

Therefore,     ( )2, nN σv 0 I∼  

Thus the elements of v  are ( )20,  i

iid
v N σ∼ and therefore 

 ( )
22 2 2

21 2
2 2 8.10

...     is a chi-square variate                in k
n k

vv v v
σ

χ
σ σ

−
−

 ′ + + +  =   
  

e e ∼ ∵
 

Hence the result. 
Result 2:  The OLS residual vector ˆ= −e y Xβ  is distributed independently of β̂ .  The OLS 
estimator   
Proof:   The covariance matrix between e and β̂  is 
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( )( )( ) ( ) ( ) [ ] [ ]( )

( ) ( )-1

ˆ ˆ                                    

                                                              from Eq. (3.4)

                

E E E E E E

E

   ′ ′− = = = =   
   

 ′ ′=  

e e β -β e β -β e Mu M u 0

Muu X X X

∵

( )( ) ( ) ( )( )
( ) ( )

-12 2

-12

                       

                                      

                                      nXk

Eσ σ

σ

 ′ ′ ′ ′= =
 

 ′ ′=  
=

-1
n n n

-1

I -X X X X I X X X uu I

X X X - X X X

0

∵  

From Eqs. (8.6) and (8.7), we may notice that each β̂ and e are multivariate normal vectors and 

further from the above we have just seen they are uncorrelated.  Therefore β̂ and e are 

independently distributed and hence ′e e is distributed independently of β̂ .  

 From (8.6) we have ( )2ˆ ,i i iiN aβ β σ∼  where iia is ith diagonal element of ( )′ -1X X and hence 

  ( )
ˆ

0,1i i

ii

N
a

β β
σ
− ∼  

From Eq. (8.10), we have 2
2 χ

σ
′e e ∼  with (n-k) d.f. and independently distributed with ˆ

iβ  
Thus by definition of student t -distribution, 

2

2

ˆ

( )
ˆ

 
( )

ˆ
ˆ       

( )ˆ
ˆ ˆ ˆ ,          where ( )                                               (8.11) ˆ( )

i i

ii

i i

ii

i i

ii

i i
n k i ii

i

t
n ka

n k a

n ka

t SE a
SE

β β
σσ

β β

β β σ
σ

β β β σ
β −

′−
=

−

−
=

′ −

′ −
= = − 

−
= =

e e

e e

e e∵

∼

 

Under : 0o iH β =  
ˆ

ˆ( )
i

n k
i

t t
SE
β
β −= ∼ ,   where ˆ ˆ( )i iiSE aβ σ=       (8.12) 

Thus we may use the above t as a test statistic for : 0o iH β = . 
Now, based on Eq. (8.12), we may form the decision rule 
 
 
 
 
 
 
 



 
 
Econometrics  8.5       Multiple Regression Analysis :   
 

 
 

 
 
 
                                                                                                                                     (8.13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ( )%100 1-ε confidence interval of iβ : 

From Eq.(8.11)  we can construct ( )1 %ε− confidence interval for iβ  as follows: 

We have by definition, the ( )1 %ε− confidence interval for a student ‘t’ variate with n-k d.f. is 

        ( ) ( ){ }2 2Pr 1t n k t t n kε ε ε− − < < − = −       

     ( ) ( )2 2

ˆ
Pr 1ˆ( )

i i

i

t n k t n k
SEε ε
β β ε

β

 − ⇒ − − < < − = − 
  

               (from Eq. (8.11)  )    

    ( ) ( ){ }2 2
ˆ ˆ ˆPr ( ) ( ) 1i i i it n k SE t n k SEε εβ β β β ε⇒ − − < − < − = −      (Since  ˆ( )iSE β >0)   

    ( ) ( ){ }2 2
ˆ ˆ ˆPr ( ) ( ) 1i i i it n k SE t n k SEε εβ β β β ε⇒ − > − > − − = −     (multiplying with minus)     

    ( ) ( ){ }2 2
ˆ ˆ ˆ ˆPr ( ) ( ) 1i i i i it n k SE t n k SEε εβ β β β β ε⇒ + − > > − − = −  

    ( ) ( ){ }2 2
ˆ ˆ ˆ ˆPr ( ) ( ) 1i i i i it n k SE t n k SEε εβ β β β β ε⇒ − − < < + − = −  

 
which implies  
 
 
 
 
 
 

(8.14) 
 
 

( )
( )

( )

0

1

ˆ
    reject : =0 ˆ

  or  equvalently                       accept : 0 at  l.o.s.

    

 :

i
i

i

i

If t t n k H
SE

H

Decision Rule

ε

β
β

β

β ε

= > −

≠

2   

Here, ( )2 2t nε − is a two-tailed percentile of t distribution with n-k d.f. at ε

l.o.s. and is defined as  

( ) ( ){ } ( ){ }2 2 2Pr Pr 1t n k t t n k t t n kε ε ε ε− − < < − = < − = −  

For instance, when 5%ε = , we chose ( )0.025t n k− such that  

( ) ( ){ }0.025 0.025Pr 0.95t n k t t n k− − < < − =  

( ) ( )( )2 2
ˆ ˆ ˆ ˆ( ),   ( )    

            is 100(1- ) percent confidence interval of 
i i i i

i

t n k SE t n k SEε εβ β β β

ε β

− − + −
 



 
 
Centre for Distance Education   8.6                     Acharya Nagarjuna University  

8.3 Testing the Significance of the Complete Regression: 
 

Here the null hypothesis is 

( )

0 2 3

2 3

: 0 i.e., 0

where 

k

k

H β β β

β β β

= = = = =

′=

β

β
      (8.15) 

 We may develop a test procedure as follows: 
Let us consider the model in deviation form i.e.,

 

( )2 2 3 3        i=1,2, ,n                                (8.16)i i i k ki iy x x x u uβ β β= + + + + − ∀ …  
 
The model in matrix notation as 

 ( )* * *= , where = + =* *y X β+ u - u X β u u u - u  
where 

  

2 1 1

3 2 2

21 31 1 21 2 31 3 1

22 32 2 22 2 32 3 2

2 3 2 2 3 3

,

k n n

k k k

k k k

n n kn n n kn k

y Y Y
y Y Y

y Y Y

x x x X X X X X X
x x x X X X X X X

x x x X X X X X X

β
β

β

 −   
     −    = = =
    
      −     

 − − − 
   − − −  = =
  
    − − −   

*

β y

X

 

Here thus y ' s and 'x s are in deviation form. 
We have 

 
( )

( )
*

*

ˆ

   =

′ ′=

′ ′+

* * *

* * *

β X X X y

β X X X u
 

and ( )( )12ˆ ,N σ −′* *β β X X∼         (8.17) 

Since each component of β̂  is a linear combination of 'u s  of *u , where ( )2
* 0, nN σu I∼ . 

From Eq. (8.17) we may write ( )( )12ˆ ,N σ −′− * *β β 0 X X∼  

But we have a result that if a normal vector ( )0,N Σz ∼ then 1 2
pχ

−′Σz z ∼  where ( )p ρ= Σ
 

Therefore 

( ) ( )( )
( )( )

2
12

1 ˆ ˆ   

               is full rank matrix and hence  = = order of =k-1 

                      

k

p

χ
σ

ρ

−
′ ′− −

′

* *

* * * *

β β X X β β

X X X X

∼

 
Already we have a result  

 2
2 n kχ

σ −

′e e ∼          
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and is independently distributed with β̂ .   
Therefore by definition of F-distribution, we have the ratio of two chi-square varieties divided by 
the respective d.f. is a F variate and hence   

 
( ) ( )( )

( ) k-1,n-k

ˆ ˆ ( 1)
F F

k

n k

′ ′− − −
=

′ −
* *β β X X β β

e e
∼

 
under 0H : =β 0 , 

         
( )

( ) k-1,n-k

ˆ ˆ ( 1)
F F

k
n k

′′ ′ −
=

′ −
* *β X X β

e e
∼  

    ( ) ( )( )1
k-1,n-k

ˆ ( 1) ˆF    
k

F
n k

−
′ ′ −

′ ′⇒ = =
′ −

** *
* * * *

β X y
β X X X y

e e
∼ ∵      (8.18)

  
But by definition we have the coefficient of determination 

 

*2 2
* * *

* *

ˆ
ˆ                                                       (8.19)ESSR R

TSS

′
′ ′ ′= = ⇒ =

′
*

**

β X y
β X y y y

y y  
We also have 

( )2 2
* *

* *

1- 1-                                                        (8.20)RSSR R
TSS

′
′ ′= = ⇒ =

′
e e e e y y

y y
  

Substituting Eqs. (8.19) and (8.20) in Eq. (8.18) we get 

 ( ) ( ) ( ) ( )

2 2
* *

k-1,n-k2 2
* *

( 1) ( 1)F F
1 1

R k R k
R n k R n k

′ − −
= =

′− − − −

y y

y y
∼     (8.21) 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decision Rule:  

Testing the overall significance of a regression in terms of 2R - Alternative but 

equivalent test to the test (8.18). 

Given the k-variable regression model: 

 2 2 3 3  i i i i k ki iY X X X uβ β β β= + + + + +  

To test the hypothesis 

0 2 3: 0kH β β β= = = =  vs  1H : Not all slope coefficients are simultaneously zero 

compute 
 ( ) ( )

2

2

( 1)F
1
R k
R n k

−
=

− −
 

 If ( )1,F F k n kε> − − , reject 0H ; otherwise you may accept 0H  where 

( )1,F k n kε − −  is the critical F  value at the ε  level of significance and ( 1k − ) 

numerator df and ( -n k ) denominator d.f. 
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8.4 Set of linear Hypothesis 
 

Consider a set of q  linear hypotheses about the elements ofβ ,  

Rβ = r         (8.22) 

where R  is a known matrix of order Xq k and r  is a known q-element vector.  We also assume 
R  to have rank q that is there is no linear dependency between the hypotheses.  It is extremely 
important to understand the range of various hypotheses represented by       Eq. (8.22).  We 
illustrate them with some examples 

1. Testing the Significance of Individual regression coefficient:  
Suppose we wish to test 0H : 0iβ = vs 0H : 0iβ ≠ .  Then we have to choose 

[ ]0 0 1 0 0  and 0= =R r in Eq.(8.22).  Here R  contains only a single 

row ( )1q =  with a unit in the ith position and 0’s everywhere else, and r  is the scalar 
zero. 
 
 

2. Testing the equality of two regression coefficients: 
Suppose we wish to test the hypothesis 0 2 3 2 3: 0 i.e., H β β β β− = = .  Then choose 

[ ]0 1 1 0  and 1= − =R r  
3. Testing a linear restriction on the coefficients: 

We may represent the hypothesis 0 3 4: 1 as H β β+ = Rβ = r  

where [ ]0 1 1 0= −R  

2

3

k

β
β

β

 
 
 =
 
 
 

β , 1=r    

4. Testing the significance of overall  or complete  regression Equation: 
 

If we choose

 ( ) ( )1 1

0 1 0 0 0
0 0 1 0 0

and 

0 0 0 1 0k Xk k Xk− −

   
   
   = =
   
   
   

R r  

Then Eq. (8.22) is equivalent to the joint hypothesis 

2

3
0 0 2 3

0
0

:  or : 0

0

k

k

H H

β
β

β β β

β

   
   
   = = = = =
   
   

  

…  

that is, the set of explanatory variables 2 3, , , kX X X has no linear influence in the 
determination of Y .  This is very important hypothesis.  The test of this hypothesis is 
often referred to as a test of the overall relation. 
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5. [ ]0 s=R I and =r 0  

Here 0  is a null matrix of order ( )sX k-s  and r  is an s -element column vector.  This set 
up the hypothesis that the last s  elements in β  are jointly zero, i.e., 

 1 2 0k s k s kβ β β− + − += = = =  
For example, in an equation explaining the rate of inflation the explanatory variables 
might be grouped into two subsets, those measuring expectations of inflation and those 
measuring pressure of demand.  The significance of either subset might be tested by 
using this for formulation with the numbering of the variables so arranged that those in 
the subset to be tested come at the end. 

It is thus clear that a procedure for testing the general hypothesis Rβ = r  will be extremely 

useful and powerful, since various specifications for R  and r  will cover a range of different 
hypothesis. 

 
8.5 Test procedure for Rβ = r  

We have ( )( )12ˆ ,N σ −′β β X X∼  

Since β̂  has multivariate normal distribution ˆRβ  has multivariate normal distribution with 

 ( )ˆE =Rβ Rβ  and ( ) ( ) 12ˆvar σ −′ ′=Rβ R X X R
        (8.23) 

i.e.,  

 
( )( )
( )( ) ( )

12

12

ˆ ,

ˆ ,    

N

N

σ

σ

−

−

′ ′

′ ′− =

Rβ Rβ R X X R

Rβ r 0 R X X R Rβ r

∼

∼ ∵
 

But we have a result if, ( ),Nz 0 Σ∼ , then 1 2
pχ

−′Σz z ∼  where ( )  p is ρ Σ
 

Therefore   

 

( ) ( ) ( )
( )( )

( )

11 2
2

1

(8.24)
1 ˆ ˆ                                                  

where =

             =number of independent linear hypothesis 

q

q

χ
σ

ρ

−−

−

′  ′ ′− − 

′ ′

Rβ r R X X R Rβ r

R X X R

∼

 

We have already 2
2                                                                                         (8.25)n kχ

σ −

′e e ∼  

and is independently distributed with β̂ .  Therefore from Eqs. (8.24) and (8.25) by the definition 
of F distribution, we have  

 

( ) ( ) ( )
( )

11

, (8.26)
ˆ ˆ

                                        q n k

q
F F

n k

−−

−

′  ′ ′− − =
′ −

Rβ r R X X R Rβ r

e e
∼  

which can be used as a test statistic for 0 :H Rβ = r .  If the value of F exceeds the critical     F -

value with ,q n k− d.f. at given l.o.s, we reject 0 :H Rβ = r , otherwise we accept 0H  
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8.6.Prediction 
 

Suppose that we have fitted a regression equation, and we now consider some specific vector 
of regressor values, 

21 f kfX X′  =  c  

The 'sX  may be hypothetical if an investigator is exploring possible effects of different 
scenarios, or they may be newly observed values.  In either case we wish to predict the value of 
Y conditional on c .  Any such prediction is based on the assumption that the fitted model still 
holds in the prediction period.  When a new value fY is also observed it is possible to test this 

stability assumption.  An appealing point prediction is obtained by inserting the given X
values into the regression equation, giving

 
1 2 2

ˆ ˆ ˆ ˆˆ
f f k kfY X Xβ β β β′= + + + = c     (8.27) 

In the discussion of the Gauss-Markov theorem it was shown that ˆ′c β is the BLUE of ′c β .  In the 

present context ( )fE Y′ =c β .  Thus ˆ
fY is an optimal predictor of ( )fE Y .  Moreover, it was shown 

in Eq. (8.23) that ( ) ( )2ˆvar σ ′ ′= -1Rβ R X X R .  Replacing  R by ′c  gives 

( ) ( )ˆ ˆvar var′ ′=c β c β c  

If we assume normality for the disturbance term, it follows that  

( )
( )

ˆ
0,1

ˆvar
N

′ ′

′

c β - c β

c β
∼  

when the unknown 2σ in ( )ˆvar β is replaced by 2σ̂ , the usual shift to the t − distribution occurs, 

giving  
( )

( )
( )

ˆ

ˆ

f fY E Y
t t n k

σ

−
= −

′ ′ -1c X X c
∼        (8.28) 

from which a 95 percent confidence interval for ( )fE Y is  

( ) ( )0.025
ˆ ˆfY t n k σ ′ ′± − -1c X X c      (8.29) 

We have ˆˆ
fY ′= c β as before, and now f fY u′= +c β .  The prediction error is thus  

( )ˆˆ
f f f fe Y Y u ′= − = − c β - β  

The process of squaring both sides and taking expectations gives the variance of the prediction 
error as  

( ) ( )
( )( )

2

2

ˆvar var

             1

fe σ

σ

′= +

′ ′= + -1

c β c

c X X c
 

From which we derive a t statistic 

( )
( )

ˆ

ˆ 1
f fY Y

t t n k
σ

−
= −

′ ′+ -1c X X c
∼       (8.30) 



 
 
Econometrics  8.11       Multiple Regression Analysis :   
 

 
 

Thus a 95% confidence interval for fY is ( ) ( )( )0.025
ˆ ˆ 1fY t n k σ ′ ′− + -1c X X c∓  (8.31) 

Thus in brief 
1. ˆˆ

fY ′= c β is point predictor for ( )fE Y  

2. ( ) ( )( )0.025 0.025
ˆ ˆ,f fY t Y t′ ′ ′ ′− +-1 -1c X X c c X X c is interval predictor for ( )fE Y , where  

0.025t is a two-tail interval value of t distribution with n-k d.f. at 5% l.o.s 

3. ( ) ( )( )0.025 0.025
ˆ ˆ1 , 1f fY t Y t′ ′ ′ ′− + + +-1 -1c X X c c X X c is interval predictor for fY , where  

0.025t is a two-tail interval value of t distribution with n-k d.f. at 5% l.o.s 
 

8.7 Self Assessment Questions  
 
1. Derive the test procedure for the significance of a regression coefficient in the multiple 

regression (general linear) model  
2. Derive the test for the significance of a general linear model completely. 
3. Derive the test for testing the equality of two regression coefficients. 
4. Derive the test for testing the significance of a subset of regression coefficients. 
5. Under the assumption of normality of disturbances, the OLS estimator of  β , in  GLM                   

  ,y = Xβ + ε  is distributed as a multivariate normal. 
6.  Define multiple correlation coefficient R and explain the test for significance of R. 
7. Define the coefficient of determination R2 and derive the test for significance of R2. 
8. Derive the test procedure for testing the significance of an individual regression coefficient in 

a general linear model. 
9. Derive the test procedure for the meaningfulness of  a general linear model.     
10. Derive the test for the significance of a complete general linear model. 
11. Construct confidence interval for the parameters of the general linear model. 
12. For the general linear model Y = Xβ + u , explain the test for testing 0 :H Rβ = r again 

the alternative 0 :H ≠Rβ r when R  is a known matrix of order mXk and of rank m and r r 
is a known mX1 vector. 

13. For the general linear model  Y = Xβ + u , Derive the test procedure for testing  null  
hypothesis 0 : ,H =Rβ 0  where R  is a matrix of linear restrictions on the parameters of .β   

14. Discuss the problem of prediction in GLM. 
15. Construct the point predictor of the regressand in GLM. 
16. Construct the interval predictor of the regressand in GLM. 
17. Construct the point predictor of the mean of the regressand in GLM. 
18. Construct the interval predictor of the mean of the regressand in GLM. 
19. Prove that the estimator of the variance of the disturbance term is distributed as a Chi-

square distribution. 
20. Prove that the OLS residual vector ˆ= −e y Xβ  is distributed independently of β̂ , the OLS 

estimator of β . 
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Lesson 9 
 

MULTIPLE REGRESSION ANALSIS: 
APPLICATIONS 

9.0 Objective: 
 
 The objective of this lesson is to demonstrate the application of the multiple regression 
analysis technique which we have discussed in lessons 6-8 some practical illustrations. 
 
Structure of the Lesson: 
 

9.1 Introduction 
9.2 Estimation of GLM - An application to the child mortality in relation to per 

capita GNP and female literacy rate 
9.3 Estimation of log-linear model:  an application to the Cobb - Douglas 

production function  
9.4 Estimation of polynomial regression model: an application to the total cost 

function 
9.5 Self Assessment Questions 
9.6 References  

 

9.1 Introduction 
 

In this lesson, we consider some practical illustration, where our multiple regression 
analysis, discussed in lesions 6-8, can be applicable.  In section 9.2, consider child mortality 
data for demonstration of multiple regression analysis.  In section 9.3, we estimate the famous 
Cobb-Douglas production function using multiple regression analysis technique lastly in section 
9.4, we estimate the total cost function using polynomial regression model by applying multiple 
regression analysis technique.  

 
9.2 Estimation of GLM - An Application to Child Mortality in Relation 

to per capita GNP and Female Literacy Rate 
 

In the following table, we have given the cross-sectional data for 64 countries on child mortality 
(CM), Female literacy rate in percent (FLR) and per capita GNP in 1980. 
 

Table 9.1: FERTILITY AND OTHER DATA FOR 64 COUNTRIES 
Observation  CM FLR PGNP Observation CM FLR PGNP 

1 128 37 1870 33 142 50 8640 
2 204 22 130 34 104 62 350 
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3 202 16 310 35 287 31 230 
4 197 65 570 36 41 66 1620 
5 96 76 2050 37 312 11 190 
6 209 26 200 38 77 88 2090 
7 170 45 670 39 142 22 900 
8 240 29 300 40 262 22 230 
9 241 11 120 41 215 12 140 

10 55 55 290 42 246 9 330 
11 75 87 1180 43 191 31 1010 
12 129 55 900 44 182 19 300 
13 24 93 1730 45 37 88 1730 
14 165 31 1150 46 103 35 780 
15 94 77 1160 47 67 85 1300 
16 96 80 1270 48 143 78 930 
17 148 30 580 49 83 85 690 
18 98 69 660 50 223 33 200 
19 161 43 420 51 240 19 450 
20 118 47 1080 52 312 21 280 
21 269 17 290 53 12 79 4430 
22 189 35 270 54 52 83 270 
23 126 58 560 55 79 43 1340 
24 12 81 4240 56 61 88 670 
25 167 29 240 57 168 28 410 
26 135 65 430 58 28 95 4370 
27 107 87 3020 59 121 41 1310 
28 72 63 1420 60 115 62 1470 
29 128 49 420 61 186 45 300 
30 27 63 19830 62 47 85 3630 
31 152 84 420 63 178 45 220 
32 224 23 530 64 142 67 560 

 
Note: CM = Child mortality, the number of deaths of children under age 5 in a yea r per 1000 live 
births. 
FLR = Female literacy rate, percent. 
PGNP = per capita GNP in 1980. 
 
Source: Chandan Mukherjee, Howard White, and Marc Whyte, Econometrics and Data Analysis 
for Developing Countries, Routledge, London, 1998, p. 456. 
 
Using the above child mortality data estimate the regression equation of the child mortality (CM) 
on the female literacy rate (FLR) and per capita GNP (PGNP) and carry out the multiple 
regression analysis completely. 
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Solution: 
From the given data we have 
 Sample size n = 64 and number of variables k = 3 

       Y∑   = 9056  2X∑    = 3276  3X∑  = 89680 

   
2Y∑  =1645102   2

2X∑  = 210304  2
3X∑  = 593717400 

 2X Y∑ = 361686 3X Y∑ =7370550  2 3X X∑ =5789760 

  

9056 141.50
64

Y = =  

2 3
2
2 2 3

2
3

64 3276 89680
= 210304 5789760  

593717400

n X X
X X X X X

X

   
   ′ =    
     

∑ ∑
∑ ∑

∑
 

2

3

9056
361686
7370550

Y
X Y
X Y

   
   ′ = =   
     

∑
∑
∑

X y  

( )
0.077114818 -0.001203744 0.000000090
-0.001203744 0.000025290 -0.000000065
0.000000090 -0.000000065 0.000000002

 
 ′ =  
  

-1X X

 
 
Estimation of Regression Model: 
From Eq. (6.11), the OLS estimator of β is 

( )
1

2

3

ˆ

ˆ ˆ

ˆ

0.077114818 0.001203744   0.000000090 9056 263.642
  0.001203744   0.000025290 0.000000065 361686 2.2316

0.000000090 0.000000065   0.000000002 7370550

β

β

β

 
 

′ ′= = 
 
  

−   
   = − − = −   
   − −   

-1β XX X y

0.005647

 
 
 
  

 

Thus the estimated regression model is  

1 2 2 3 3
ˆ ˆ ˆˆ          

i.e., CM 263.642 2.2316 FLR 0.005647 PGNP

Y X Xβ β β= + +

= − −
 

 
Estimation of 2σ : 
From Eq. (6.18) an unbiased of 2σ is  

2ˆ RSS TSS ESS
n k n k n k

σ
′ −

= = =
− − −
e e
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2

2 2

2

TSS  Total Sum of Squares
       

       

       1645102 64*141.50
       363678

nY

Y nY

=

′= −

= −

= −
=

∑
y y

  

 

[ ]

2

2

ESS  Explained Sum of Squares
ˆ       

9056
        263.642 2.2316 0.005647 361686 64*141.50

7370550
        257362.3731

nY

=

′ ′= −

 
 = − − − 
  

=

β X y

 

 

2ˆ

363678 257362.3731       
64 3

       1742.8791

TSS ESS
n k

σ −
∴ =

−
−

=
−

=
 

Coefficient determination 2R and adjusted 2R : 

From Eq. (7.21) 2 257362.3731 0.708
363678

ESSR
TSS

= = =  

( )

( )

2 2 21 1 1

64 -1                              1- 1 0.708
64 -3

                              0.6981    

nAdjustged R R R
n k
− = = − − − 

 = −  
=

 

Testing the Significance of 2R or Estimated model: 
From Eq. (8.21) we have test statistic for  

 

2
0 2 3 0: 0   (OR)   : 0  isH H Rβ β= = =  

 

( )
( ) ( )

( )
( ) ( )

2

2

1 0.708 3 1
73.8325

1 0.708 64 31
R k

F
R n k

− −
= = =

− −− −
 

Here 3 1,64 3 2,61F F F− − =∼  
From F - table, F - critical values are: 

 2,61 2,60 3.15F F = (at 5% l.o.s)  

 2,61 2,60 4.98F F = (at 1% l.o.s)  
Since, the calculated F -Value (73.8325) is greater than both 5% and 1% critical                    
F -values (3.15, 4.98).  We reject 0H . 
Hence we may conclude the estimated regression model is well fitted or the coefficient of 
determination 2R is highly significant i.e, 2 0R ≠ at both 1% and 5% l.o.s.  
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Testing the significance Individual Regression Coefficients: 
From Eq. (8.11) the t − test for 0 : 0iH β = is 

 
( )
ˆ

ˆ
i

n k
i

t t
SE
β
β

−= ∼  

we have for i=1,2,3. 

 
( )
ˆ ˆ

ˆ ˆ
i i

i
iii

t
aSE

β β
σβ

= =  , where ( )1, 2,3iia i = ith diagonal elements of ( )′ -1X X  

Thus substitute  

 
11

22

33

0.077114818
0.000025290
0.000000002

a
a
a

=
=
=

 

 ˆ 41.7478σ =  
in the above formula we get the t -ratios 

 

1

2

3

22.7411
10.6294
3.0246

t
t
t

=
= −
= −

 

From student t table at α =5% l.o.s.  ( ) ( )64 30.025 0.025 2.00n kt t− −= =  

95% C.I. of iβ is  

 
( ) ( ) ( ) ( )( )ˆ ˆ0.025 ,  0.025i n k i i n k it SE t SEβ β β β− −− +

 
95% C.I. of 1β is  

 

( ) ( ) ( ) ( )( )
( )
( )

1 61 1 1 61 1
ˆ ˆ0.025 ,  0.025

263.642 2.00 *11.5932,  263.642 2.00 *11.5932

240.4556, 286.8284

t SE t SEβ β β β− +

− +  

Similarly 95% confidence interval of 2β : ( )2.6515,  1.8117− −  
and 95% confidence interval of 3β : ( )0.0094, 0.002− −  
 
The above results may be presented in the follows table 
 

The estimated Model 
Variable coefficients standard error t -statistic 95% C.I. 

Constant 
FLR 
PGNP 

  263.642000
-2.231600
-0.005647

11.5932
0.2100
0.0019

 22.7411**
-10.6294**
  -3.0246**

(240.4556,286.8284)
(-2.6515,-1.8117) 
(-0.0094,-0.002) 

  2R =0.708  
2R =0.6981             critical t -values: ( )61 0.025t =2.00 (5% l.o.s) 

 73.8325F =                        =2.96 (1% l.o.s) 
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ANOVA Table for Multiple Regression Analysis: 
 

Source of Variation Sum of Squares Degrees of 
freedom 

Mean Sum of 
Squares 

F -value 

Due to regression 
 

Due to residuals 

ESS =257362.3731
 

RSS =106315.6269

k-1 = 2 
 

n-k = 61 

128681.2 
 

1742.9 

73.8326** 

Total TSS=363678.0000 n-1 = 63   

                 critical F -value: 2,61F ≅ 3.15 (at 5% l.o.s) 

                                  2,61F ≅ 4.98 (at 1% l.o.s) 
Where ** indicates the calculated t-values and calculated F-values are highly significant.  It 
means that for the estimated model all regression coefficients are individually highly significant 
as well as the coefficient of determination 2R  is also highly significant.  i.e., The overall fitting of 
the model is also significant. Thus,  the estimated model is well fitted. 
  
9.3 Estimation of Log-Linear Model:  An Application to the Cobb-

Douglas Production Function   
 

 We demonstrate transformations in this section by taking up the multivariable extension of the 
two variable log–linear model discussed in Lesson 4. The specific example we discuss is the 
celebrated Cobb–Douglas production function of production theory. 
 
The Cobb–Douglas production function, in its stochastic form, may be expressed as 
 32

1 2 3  ui
i i iY X X eβββ=          (9.1) 

where Y  = output,  2X = labor input,  3X = capital input 
 u = stochastic disturbance term,   e = base of natural logarithm 
From Eq. (9.1) it is clear that the relationship between output and the two inputs is nonlinear. 
However, if we log-transform this model, we obtain: 

 1 2 2 3 3

0 2 2 3 3 0 1

log  log   log    log  
            log  log  ,                   where log  

i i i i

i i i

Y X X u
X X u

β β β
β β β β β

= + + +
= + + + =

  (9.2) 

 
Thus written, the model is linear in the parameters 0β , 2β , and 3β  and is therefore a linear 
regression model. Notice, though, it is nonlinear in the variables Y  and X  but linear in the logs 
of these variables. In short, (9.2) is a log-log, double-log, or log-linear model, the multiple 
regression counterpart of the two-variable log-linear model (4.3).  
 
The properties of the Cobb–Douglas production function are quite well known: 

1.  2β  is the (partial) elasticity of output with respect to the labor input, that is, it measures 
the percentage change in output for, say, a 1 percent change in the labor input, holding 
the capital input constant. 

2. Likewise, 3β  is the (partial) elasticity of output with respect to the capital input, holding 
the labor input constant. 
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3. The sum ( )2 3+β β  gives information about the returns to scale, that is, the response of 
output to a proportionate change in the inputs. If this sum is 1, then there are constant 
returns to scale, that is, doubling the inputs will double the output, tripling the inputs will 
triple the output, and so on. If the sum is less than 1, there are decreasing returns to 
scale—doubling the inputs will less than double the output. Finally, if the sum is greater 
than 1, there are increasing returns to scale—doubling the inputs will more than double 
the output. 
 

We may before proceeding further, note that whenever you have a log–linear regression model 
involving any number of variables the coefficient of each of the X  variables measures the 
(partial) elasticity of the dependent variable Y  with respect to that variable. Thus, if you have a 
k-variable log-linear model: 
 1 2 2 3 3log log  log  log logi i i k ki iY X X X uβ β β β= + + +…+ +    (9.3) 
each of the (partial) regression coefficients, 2β  through kβ , is the (partial) elasticity of Y with 
respect to variables 2X  through kX . 
To illustrate the Cobb–Douglas production function, we consider the data shown in Table 9.2; 
these data are for the agricultural sector of Taiwan for 1958–1972. 

 
TABLE 9.2: REAL GROSS PRODUCT, LABOR DAYS, AND REAL CAPITAL INPUT IN THE 

AGRICULTURAL SECTOR OF TAIWAN, 1958–1972 

Year 
Real gross product Labor days Real capital input 
(millions of NT $)* 

Y  
(millions of days) 

2X  
(millions of NT $)

3X  

1958 16607.70 275.5 17803.70 
1959 17511.30 274.4 18096.80 
1960 20171.20 269.7 18271.80 
1961 20932.90 267.0 19167.30 
1962 20406.00 267.8 19647.60 
1963 20831.60 275.0 20803.50 
1964 24806.30 283.0 22076.60 
1965 26465.80 300.7 23445.20 
1966 27403.00 307.5 24939.00 
1967 28628.70 303.7 26713.70 
1968 29904.50 304.7 29957.80 
1969 27508.20 298.6 31585.90 
1970 29035.50 295.5 33474.50 
1971 29281.50 299.0 34821.80 
1972 31535.80 288.1 41794.30 

 
Source: Thomas Pei-Fan Chen, “Economic Growth and Structural Change in Taiwan—1952–
1972, A Production Function Approach,” unpublished Ph.D. thesis, Dept. of Economics, 
Graduate Center, City University of New York, June 1976, Table II. *New Taiwan dollars. 
Assuming that the model (9.2) satisfies the assumptions of the classical linear regression 
model, we obtained the following regression by the OLS method.  
 



 
 
Centre for Distance Education   9.8                     Acharya Nagarjuna University  

The estimated Model 
Variable coefficients standard 

error 
t -statistic 

Constant 
log 2X  
Log 3X  

-3.3380 
 1.4988 
 0.4899 

2.4500 
0.5398 
0.1020 

-1.36 
    2.78* 

     4.80** 

  2R =0.889  
2R =0.871            critical t -values: ( )12 0.025t =2.179 (5% l.o.s) 

                                  =3.055 (1% l.o.s)  
ANOVA Table for Multiple Regression Analysis: 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Sum of 
Squares 

F -value 

Due to 
regression 
Due to residuals 

 
0.53804 
0.06716 

 
 2  
12  

 
0.26902 
0.00560 

 
48.07** 

Total 0.60520 14 
  

                critical F -value: 2,12F ≅ 3.88 (at 5% l.o.s) 

                                  2,12F ≅ 6.93 (at 1% l.o.s)  
From the above results, we may notice that the overall log-linear or Cobb-Douglas model is well 
fitted though the constant term is not statistically significant.  Here it may be noted the output 
elasticity of Labour is just significant where as the output elasticity of Capital is highly 
significant. 
 
From the above analysis we see that in the Taiwanese agricultural sector for the period 1958–
1972 the output elasticities of labor and capital were 1.4988 and 0.4899, respectively. In other 
words, over the period of study, holding the capital input constant, a 1 percent increase in the 
labor input led on the average to about a 1.5 percent increase in the output. Similarly, holding 
the labor input constant, a 1 percent increase in the capital input led on the average to about a 
0.5 percent increase in the output. Adding the two output elasticities, we obtain 1.9887, which 
gives the value of the returns to scale parameter. As is evident, over the period of the study, the 
Taiwanese agricultural sector was characterized by increasing returns to scale. 
 
From a purely statistical viewpoint, the estimated regression line fits the data quite well.  The 

2R  value of 0.8890 means that about 89 percent of the variation in the (log of) output is 
explained by the (logs of) labor and capital.  
 
Note:  Here the details of the computation of the results are not presented, as they are similar of 
those presented in the previous application presented in section 9.2. 
 
9.4 Estimation of Polynomial Regression Model An Application to 

the Total Cost Function 
 

 We now consider a class of multiple regression models, the polynomial regression 
models, that have found extensive use in econometric research relating to cost and production 
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functions. In introducing these models, we further extend the range of models to which the 
classical linear regression model can easily be applied.  
 
 The parabola is represented by the following equation:  
 2

0 1 2Y X Xβ β β= + +   
which is called a quadratic function, or more generally, a second-degree polynomial in the 
variable X  —the highest power of X   represents the degree of the polynomial (if 3X  were 
added to the preceding function, it would be a third-degree polynomial, and so on). 
The stochastic version of the above equation may be written as 
 2

0 1 2i i i iY X X uβ β β= + + +         (9.4) 
which is called a second-degree polynomial regression. 
 
The general kth degree polynomial regression may be written as 
 2

0 1 2
k

i i k i iY X X X uβ β β β= + + + + +…       (9.5) 
Notice that in these types of polynomial regressions there is only one explanatory variable on 
the right-hand side but it appears with various powers, thus making them multiple regression 
models. Incidentally, note that if iX is assumed to be fixed or nonstochastic, the powered terms 
of iX  also become fixed or nonstochastic. 
 
In short, polynomial regression models can also be estimated by the traditional OLS method.  
 As an example of the polynomial regression, consider the data on output and total  cost of 
production of a commodity in the short run given in Table 9.3.  Using this data we fit the 
following cubic or third-degree polynomial regression equation: 
 2 3

0 1 2 3i i i i iY X X X uβ β β β= + + + +        (9.6) 
where Y  = total cost and X  = output. 
 

TABLE 9.3: TOTAL COST ( )Y  AND OUTPUT ( )X  

Output 
Total cost, 

$ 
1 193 
2 226 
3 240 
4 244 
5 257 
6 260 
7 274 
8 297 
9 350 

10 420 
 
Source: Basic Econometrics-4th Edition, Author: Damodar N.Gujarati p.227 
When the third-degree polynomial regression was fitted to the data of Table 7.4, we obtained 
the following results: 
 
The estimated regression equation 
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 2 3ˆ 141.7667 63.4776 -12.9615 0.9396i i i iY X X X= + +  
 i.e., Estimated Total cost= 141.7667+63.4776output-12.9615 output2 +0.9396 output3  

 
The estimated Model 

Variable coefficients standard 
error 

t -statistic 

Constant 
X  2X  3X

  141.7670
63.4780

-12.9615
0.9396

6.3750
4.7790
0.9857
0.0591

22.24** 
13.28** 

-13.15** 
15.90** 

  2R =0.998  
2R =0.998             critical t -values: ( )6 0.025t =2.447 (5% l.o.s) 

                                  =3.707 (1% l.o.s)  
ANOVA Table for Multiple Regression Analysis: 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Sum of 
Squares 

F -value 

Due to regression 
Due to residuals 

38918 
65 

3  
6  

12973 
11 

1202.22** 

Total 38983 9  

        critical F -value: 3,6F ≅ 4.76 (at 5% l.o.s) 

                        3,6F ≅ 9.78 (at 1% l.o.s) 
From the above results we may observe that the individual regression coefficients as well as the 
coefficients determination R2 are highly significant.  Hence, we may conclude that the cubic 
model is the best fit for the estimation total cost.  Since R2=0.998, almost 99% of variation in the 
total cost is explained by the number of output units. 
 
9.5 Self Assessment Questions  
1. Explain how you estimate the Cobb-Douglas model given by 

        
32

1 2 3  ui
i i iY X X eβββ=  

2. Explain the multiple regression analysis by means of an illustration. 
3. Distinguish between traditional regression model and Cobb-Douglas model by means of 

illustrations. 
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Lesson 10 
 

TESTS FOR THE CHOICE BETWEEN LINEAR 
AND LOG-LINEAR MODELS 

10.0 Objective: 
 
 After studying this lesson, the student will learn how to choose a true model between the 
given linear and log-linear models using different tests, since a demonstration problem is also 
given. 
 
Structure of the Lesson: 
 

10.1 Introduction 
10.2 MWD (MacKinnon, White, and Davidson) Test  
10.3 The BM (Bera and McAleer) test 
10.4 Self Assessment Questions 
10.5 References  

 
10.1 Introduction 

 
  Sometimes equations are estimated in log form to take care of the heteroscedasticity 
problem (which we will discuss in Lesson 16).  In many cases the choice of the functional form 
is dictated by other considerations like convenience in interpretation and some economic 
reasoning.  For instance, if we are estimating a production function, the linear form 
 1 2X L Kα β β= + +         (10.1)

 where X is the output, L the labor, and K the capital, implies perfect substitutability among the 
inputs of production.  On the other hand, the logarithmic form 

 1 2log log logX L Kα β β= + +        (10.2) 
implies a Cobb-Douglas production function with unit elasticity of substitution.  Both these 
formulations are special cases of the CES (constant elasticity of substitution) production 
function. 
 For the estimation of demand functions the log form is often preferred because it is easy 
to interpret the coefficients as elasticities.  For instance, 
 1 2log log logQ P Yα β β= + +       (10.3) 
where Q is the quantity demanded, P the price, and Y the income, implies that 1β is the price 
elasticity and 2β is the income elasticity.  A linear demand function implies that these elasticities 
depend on the particular point along the demand curve that we are at.  In this case we have to 
consider some methods of choosing statistically between the two functional forms. 
 

When comparing the linear with the log-linear forms, we cannot compare the 2 'sR
because 2R is the ratio of explained variance to the total variance and the variances of y and 
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log y are different.  Comparing 2 'sR in this case is like comparing two individuals A and B, 
where A eats 65% of a carrot cake and B eats 70% of a strawberry cake.  The comparison does 
not make sense because there are two different cakes. 

 
 The question of estimation in linear model versus log-linear model has received 
considerable attention during recent years.  Several statistical tests have been suggested for 
testing the linear versus log-linear.   In this lesson we have discussed only two of these tests, 
which are easy to apply. 
 
10.2  MWD (MacKinnon, White, and Davidson) Test 

 
The choice between a linear regression model (the regressand is a linear function of the 

regressors) or a log–linear regression model (the log of the regressand is a function of the logs 
of the regressors) is a perennial question in empirical analysis. We can use a test proposed by 
MacKinnon, White, and Davidson, which for brevity we call the MWD test to choose between 
the two models. 

 
To illustrate this test, assume the following 

0 :H  Linear Model: 1 2 2 3 3    1, 2, ,i i i k ki iY X X X u i nβ β β β= + + + + + = ……   (10.4) 

1 :H  Log–Linear Model: 1 2 2 3 3log log log logi i i k ki iY X X X vα α α α= + + + + +…  (10.5) 
where, as usual, 0H  and 1H  denote the null and alternative hypotheses. 
 
The MWD test involves the following steps: 
Step I: Estimate the linear model (10.4) using OLS method and compute the estimate of Y  
values given by 
 1 2 2 3 3

ˆ ˆ ˆ ˆˆ ,    1, 2, ,i i i k kiY X X X i nβ β β β= + + + + = ……     (10.6) 
Step: II: Estimate the log–linear model (10.5) by applying OLS method and obtain the estimates 
of  logY  values given by  

 1 2 2 3 3ˆ ˆ ˆ ˆlog log log log ,    1, 2, ,i i i k kiY X X X i nα α α α= + + + + = ……   (10.7) 

Step III:  Using the îY  values (computed at step I) and log tY  values (computed at step II), 
compute an artificial variable namely 

 
ˆlog log ,    1, 2, ,i i iZ Y Y i n= − = …       (10.8) 

Now regress Y  on 2 3, , ,  and kX X X Z… variables. Reject 0H  if the coefficient of Z  is 
statistically significant by the usual t  test, otherwise accept 0H  . 
Step IV: Compute another artificial variable (as in Step III) namely 
 ( )ˆ exp log ,    1, 2, ,i i iW Y Y i n= − = …       (10.9)

 
Now regress logY  on 2 3log , log , , log  and kX X X W…  variables. Reject 1H  if the coefficient of 
W  is statistically significant by the usual t  test, otherwise accept 1H . 
 
The logic of MWD test is quite simple. If the linear model is in fact the correct model, the 
constructed variable Z  should not be statistically significant in Step III, for in that case the log 
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values of the estimated Y  values from the linear model and those estimated from the log–linear 
model should not be different. The same comment applies to the alternative hypothesis 1H . 
 
An application (The demand for roses): 
Table 10.1 gives quarterly data on these variables: 
   Y  = quantity of roses sold, dozens 
 2X  = average wholesale price of roses, $/dozen 
 3X  = average wholesale price of carnations, $/dozen 
 1971–III to 1975–II in the Detroit Metropolitan area you are asked to consider the following 
demand functions: 

 1 2 2 3 3

1 2 2 3 3

     
log log log

t t t t

t t t t

Y X X u
Y X X v

β β β
α α α

= + + +

= + + +
  

 
Table 10.1: Quarterly data on the Sales of Roses 

Year and 
quarter  

  
Y  2X  3X  

Year and 
quarter  

 
Y 2X  3X  

1971– III 11,484 2.26 3.49 1973 – III 8,038 2.60 3.13 
         – IV 9,348 2.54 2.85          – IV 7,476 2.89 3.20 
1972 – I 8,429 3.07 4.06 1974 –I 5,911 3.77 3.65 
         – II 10,079 2.91 3.64          – II 7,950 3.64 3.60 

          – III 9,240 2.73 3.21       – III 6,134 2.82 2.94 
          – IV 8,862 2.77 3.66         – IV 5,868 2.96 3.12 
1973 – I 6,216 3.59 3.76 1975 – I 3,160 4.24 3.58 
         – II 8,253 3.23 3.49          – II 5,872 3.69 3.53 

 Source: Basic Econometrics-4th Edition, Author: Damodar N.Gujarati p.236 
 
Solution: 
Here 
 0H :  the true model is linear i.e., 1 2 2 3 3t t t tY X X uβ β β= + + +  
    versus 

  1H : the true model is log-linear i.e., 1 2 2 3 3log log logt t t tY X X vα α α= + + +  
Now, as per the above MWD test the computations are presented below   
Step 1: 
 The estimated linear model: 

   ( ) ( ) ( )
2 3

2

ˆ 9734 3782.2 2815
   3.37  6.61       2.97

                          21.84     0.77

t t tY X X
t

F R

= − +

= −

= =

 

From student- t  table, at 5% l.o.s. the two-tailed critical value of twith 13 d.f. = 2.179. 
Since calculated t -values of all the regression coefficients are greater than the critical                    
t value, we may conclude that all coefficients are statistically significant.   Since F -value is 
large, the coefficient of determination 2R   is also significant and thus the above linear model is 
well fitted to the given data.    
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Using the above estimated linear model we tabulate t̂Y values.    
 

t  tY  2tX  3tX  t̂Y
1 11484 2.26 3.49 11011.6
2 9348 2.54 2.85 8150.8
3 8429 3.07 4.06 9552.8
4 10079 2.91 3.64 8975.5
5 9240 2.73 3.21 8445.7
6 8862 2.77 3.66 9561.3
7 6216 3.59 3.76 6741.4
8 8253 3.23 3.49 7342.9
9 8038 2.60 3.13 8712.2
10 7476 2.89 3.20 7812.4
11 5911 3.77 3.65 5751.0
12 7950 3.64 3.60 6101.9
13 6134 2.82 2.94 7345.2
14 5868 2.96 3.12 7322.4
15 3160 4.24 3.58 3776.2
16 5872 3.69 3.53 5715.7

 
Step 2: 
 The estimated log-linear model: 

  ( ) ( ) ( )
2 3

2

 log 9.228 1.7612log 1.3403log
        16.23  5.90            2.54

                          17.50     0.73

t t tY X X
t

F R

= − +

= −

= =

 

Since calculated t -values of all regression coefficients are greater than critical t  value (2.179), 
we may conclude that all coefficients are statistically significant at 5% l.o.s.   Since F -value is 
large, 2R  is also significant thus the above log-linear model is well fitted to the given data. 
Using the above log-linear model we tabulate below log tY values. 
 

t  log tY  2log tX  3log tX  log tY
1 9.34871 0.81536 1.24990 9.46701 

2 9.14292 0.93216 1.04732 8.98987 

3 9.03943 1.12168 1.40118 9.13031 

4 9.21821 1.06815 1.29198 9.07824 

5 9.13130 1.00430 1.16627 9.02223 

6 9.08953 1.01885 1.29746 9.17241 

7 8.73488 1.27815 1.32442 8.75190 



 
 
Econometrics  10.5       Tests for the Choice between…   
 

 
 

8 9.01833 1.17248 1.24990 8.83813 

9 8.99194 0.95551 1.14103 9.07433 

10 8.91945 1.06126 1.16315 8.91775 

11 8.68457 1.32708 1.29473 8.62596 

12 8.98093 1.29198 1.28093 8.66927 

13 8.72160 1.03674 1.07841 8.84738 

14 8.67727 1.08519 1.13783 8.84168 

15 8.05833 1.44456 1.27536 8.39311 

16 8.67795 1.30563 1.26130 8.61893 
 
Step 3: 
 Using ˆlogY , the last column of the table, obtained at Step 1 and logY , the last column 
of the table, obtained at Step 2 we compute an artificial variable 
 

 
ˆlog logt t tZ Y Y= − and tabulated below. 

t  tY  2tX  3tX  tZ  

1 11484 2.26 3.49 -0.16030

2 9348 2.54 2.85 0.01601

3 8429 3.07 4.06 0.03428

4 10079 2.91 3.64 0.02401

5 9240 2.73 3.21 0.01919

6 8862 2.77 3.66 -0.00690

7 6216 3.59 3.76 0.06413
8 8253 3.23 3.49 0.06336

9 8038 2.60 3.13 -0.00190
10 7476 2.89 3.20 0.04572

11 5911 3.77 3.65 0.03117

12 7950 3.64 3.60 0.04708

13 6134 2.82 2.94 0.05442

14 5868 2.96 3.12 0.05702

15 3160 4.24 3.58 -0.15660

16 5872 3.69 3.53 0.03204
 
Now using the above table we regress the variable Y  on 2X , 3X  and Z  and the regression 
results are as follows 

 ( ) ( ) ( ) ( )
2 3

2

ˆ 9728 3783.1 2817.7 85.0 
   3.22  6.33       2.84        0.02

                          13.4     0.77

t t t tY X X Z
t

F R

= − + +

= −

= =
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Since the t-value (0.02) is less than the critical t -value (2.179), the coefficient of Z  (85) is not 
significant.  Therefore as per MWD Test, we accept 0H .  In other words, we conclude that 
the true model is linear  
 
Step 4: 
 Using Ŷ , the last column of the table constructed at Step 1 and ( )exp logY , the last 

column of the table constructed at Step 2, we compute another artificial variable,  
 ( )ˆ exp logt t tW Y Y= −  and tabulated below. 

t  log tY 2log tX  3log tX  tW  

1 9.34871 0.81536 1.24990 -1914.60

2 9.14292 0.93216 1.04732 129.43

3 9.03943 1.12168 1.40118 321.87

4 9.21821 1.06815 1.29198 212.95

5 9.1313 1.00430 1.16627 160.49

6 9.08953 1.01885 1.29746 -66.50

7 8.73488 1.27815 1.32442 418.77

8 9.01833 1.17248 1.24990 450.82

9 8.99194 0.95551 1.14103 -16.15

10 8.91945 1.06126 1.16315 349.13

11 8.68457 1.32708 1.29473 176.47

12 8.98093 1.29198 1.28093 280.63

13 8.72160 1.03674 1.07841 389.07

14 8.67727 1.08519 1.13783 405.84

15 8.05833 1.44456 1.27536 -640.29

16 8.67795 1.30563 1.26130 180.23
 
Now using the above table we regress the variable logY  on 2log X , 3log X  and W  and the 
regression results are as follows 

 ( ) ( ) ( ) ( )
2 3 t

2

 log 9.1489 1.9705log 1.5896log 0.0001 W
       17.08   6.42            3.07               1.66

                                                           14.17     0.78

t t tY X X
t

F R

= − + +

= −

= =

 

Since the t -value (1.66) is less than the critical t -value (2.179), the coefficient of W  is not 
significant.  Therefore as per MWD Test, we accept 1H .  In other words, we conclude that 
the true model is log- linear. 
 

In this particular example by applying MWD Test we get conclusion of both linear model 
and non-linear model are true models.  In between these, we choose linear model, since when 
compared with calculate t -value of W in log-linear model is larger than the calculate t –value of 
Z in linear model.  Thus ultimately we choose linear model as the true model.  But, in general 
the MWD Test will conclude either linear model or non-linear model as the true model.  
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10.3 The BM ( Bera and McAleer )Test 
 

This is the test suggested by Bera and McAleer which for brevity we call the BM test to choose 
between the two models  i) A linear regression model  or ii) A log–linear regression model. 
The BM test involves the following steps: 
 
The null and alternative hypotheses 0 1,  and H H  are same as in the MWD test. 
Step I and Step II are same as in MWD test. 
Step III:  Using the îY  values computed at Step I, run the following artificial regression 

 1 2 2 3 3 1 ,    1, 2, ,i i i k ki iZ X X X i nβ β β β ε= + + + + + = ……    (10.10) 

 
ˆ  logi iwhere Z Y= ,    1,2, ,i n= …        

and obtain the residuals 1̂ ,    1, 2, ,i i nε = … , from the regression equation (10.10).  
Now, the test for 0H  is based on 1θ in the artificial regression  

  1 2 2 3 3 1 1 1ˆ +     1, 2, ,i i i k ki i iY X X X i nβ β β β θ ε ω= + + + + + = ……  (10.11) 
         
We use the usual t -test to test this hypotheses. If 1 0θ = is accepted, we accept 0H  that is 
we choose the linear model   
 
Step IV:  Using the log iY  values computed at Step II, run the following artificial regression 

           1 2 2 3 3 2log log log ,    1,2, ,i i i k ki iW X X X i nα α α α ε= + + + + + = ……   (10.12) 

 where  W exp(log )i iY= ,    1,2, ,i n= …        
and obtain the residuals 2ˆ ,    1, 2, ,i i nε = … , from the regression equation (10.12).  
Now, the test for 1H  is based on  2θ  in the artificial regression  
       1 2 2 3 3 2 2 2ˆlog log log log +     1,2, ,i i i k ki i iY X X X i nα α α α θ ε ω= + + + + + = ……   (10.13) 
         
 If 2 0θ = is accepted, we accept 1H  that is we choose the log-linear model.   
Remark :  A problem arises if both these hypotheses are rejected or both are accepted. 
Notes:  

1. The student is advised to apply the above BM test to the application given in MWD test. 
2. The above two tests can also be applied for the choice between linear model and semi-

log linear model (obtained from linear model by replacing Y  variable with logY  
variable). 

 
10.4 Self Assessment Questions  
 

1. Explain the MWD test for choosing between linear and log-linear models for the given 
data. 

2. Explain the BM test for choosing between linear and log-linear models for the given 
data. 

3. Explain the MWD test for choosing between linear and semi-log linear models for the 
given data. 
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4. Explain the BM test for choosing between linear and semi-log linear models for the given 
data. 

5. Discuss the merits and demerits of the MWD test.  
6. Discuss the merits and demerits of the BM test. 
7. Distinguish between MWD test and BM test. 
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Lesson 11 
 

ESTIMATION SUBJECT TO LINEAR 
RESTRICTIONS 

 
11.0 Objective: 
 
 In this lesson, the student will learn how to obtain the OLS estimator of β in the GLM    
  y = Xβ + u  

subject a set of linear restrictions on β namely 
  Rβ = r  
which is often called as restricted least squares estimator.  Further, he/she will also learn an 
important application of restricted least squares estimator.  
 
Structure of the Lesson: 
 

11.1 Introduction 
11.2 Restricted least squares estimation 

11.3 An alternative Expression of the test statistic for 0H : Rβ = r  

11.4 Self Assessment Questions 
11.5 References 

 
11.1 Introduction  

 
 Economic theory often suggests that the coefficients of a relation should obey a linear 
restriction; for example, constant returns to scale imply that the exponents in a Cobb-Douglas 
production function should sum to unity, and the absence of the money illusion on the part of 
consumers implies that the sum of the money income and price elasticities in a demand function 
should be zero.  These restrictions may be dealt with in two ways.  One is to fit the function free 
of any restrictions and then test whether the estimated coefficients come sufficiently close to 
satisfying the restriction.  The appropriate theory for the test has already been developed in the 
previous lessons. 
 
 An alternative way of dealing with the problem is to incorporate the restriction in the 
fitting process so that the estimated coefficients satisfy the restriction exactly.  In some cases 
this is most simply done by working out directly the special form of the estimating equations for 
the problem in hand. 
 
 For instance, consider the Cobb–Douglas production function: 
 32

1 2 3
iu

i i iY X X eβββ=  
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where Y  = output, 2X = labor input, and 3X  = capital input. Written in log  form, the equation 
becomes 
 0 2 2 3 3log log logi i iY X X uβ β β= + + +   
where 0 1logβ β= . 
 
Now if there are constant returns to scale (equi-proportional change in output for an equi-
proportional change in the inputs), economic theory would suggest that 
 2 3 1β β+ =  
which is an example of a linear restriction.  There are two approaches to deal this problem. 

1. The first approach is to fit the function free of any restrictions and then test whether the 
estimated coefficients come sufficiently close to satisfying the restrictions. Thus estimate 
the above log-linear model by applying OLS and test for  
 0 2 3 0: 1  i.e., :  =1,H Hβ β ′+ = c β   

where ( ) ( )0 2 30 1 1    c β β β′ ′= =β  
by applying the usual t -test namely 

 ( )
1

ˆ n kt t
σ

−

′ −
=

′ ′

c β

c X X c
∼  

2. An alternative approach is to incorporate the restrictions in the fitting process so that the 
estimated coefficients satisfy the restrictions exactly.  Thus in the above example, we 
incorporate the restriction 2 3 1 β β+ = in the above log-linear model and then estimate 
the resultant model.  This estimator is called the restricted least squares estimator.  

 
11.2 Restricted Least Squares Estimation  
  

In Lesson 8, we have described the test procedure for the hypothesis that the elements of 
the population vectorβ obey the set of ( )q k≤ linear restrictions in the relation  

 
0 :H Rβ = r

 
If 0H is not rejected, one may wish to re-estimate the model, incorporating the restrictions in the 
estimation process.  One important reason for such re-estimation is that it will improve the 
efficiency of the estimates.  This produces an estimator b which then satisfies 

 
Rb = r

         
(11.1) 

 First we describe the estimator b and next we look at an important application of this new 
estimator. 
The assumed model, as before, is  

 ( ) ( ) 2  with E  and E σ′= = ny = Xβ+ u u 0 uu I
    

(11.2)
 

Now we should chose an estimator b ofβ , which minimizes  

( ) ( )′b by - X y - X  

subject to the restrictions  Rb = r .  For this purpose, we define 
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 ( ) ( ) ( )2ϕ ′ ′= −b b λ Rb -ry - X y - X
      (11.3)

 

where λ denotes a column vector of q Lagrange multipliers.  Taking the partial derivatives of  ϕ  
gives 

 
2 2 2φ∂ ′ ′ ′= − + −

∂
X y X Xb R λ

b
 

and      ( )2φ∂
= −

∂
Rb - r

λ
 

 
Setting these partial derivatives to zero gives the equations to be solved for b and λ , namely  

0′ ′ ′− − =X Xb X y R λ         (11.4) 

and  =Rb -r 0          (11.5) 

Pre-multiplying Eq. (11.4) by ( )′ -1R X X gives  

 ( ) ( )( )ˆ ˆ0    is the OLS estimator of ′ ′ ′ ′− − = =-1 -1Rb Rβ R X X R λ β X X X y β∵  

where β̂  is unrestricted least squares estimator and the above may be written as   

 
( ) ( ) ( )ˆ      ′ ′= − 

-1-1λ R X X R r Rβ Rb = r∵
 

Substituting this in Eq. (11.4) and simplifying then we get 

 
( ) ( ) ( )ˆ ˆ ′ ′ ′ ′ 

-1-1 -1b = β + X X R R X X R r - Rβ       (11.6) 

Formula (11.6) defines the restricted least-squares estimator satisfying the set of q restrictions 
embodied in Rb = r . 
To prove that b  is unbiased estimator ofβ : 

We have ( )ˆ ′ ′-1β = β+ X X X u and using this in Eq. (11.6) we get 

 

( ) ( ) ( ) ( )( )     ′ ′ ′ ′ ′ ′ ′ ′ 
-1-1 -1 -1 -1b = β + X X X u + X X R R X X R r - Rβ - R X X X u

 Since Rβ = r , we may write b as 

 
( ) ( ) ( ) ( )                     (11.7) ′ ′ ′ ′ ′ ′ ′ ′= −  

-1-1 -1 -1 -1b β + X X X u X X R R X X R R X X X u  

Taking expectation on both sides we get 

 
( ) ( )( )            0E E= =b β u∵  

 
To derive var( b ): 
Eq.  (11.7) becomes  

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1

1                         where =

−

−

 ′ ′ ′ ′ ′ ′ ′ ′− = −  

 ′ ′ ′ ′ ′ ′= −  

-1-1 -1 -1

-1-1 -1

b β X X X u X X R R X X R R X X X u

A X X X u A I X X R R X X R R
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By definition 

 
( ) ( )( )

( ) ( ) ( )1 1

var

           

E

E− −

 ′= − − 
 

′′ ′ ′ ′=

b b β b β

A X X X uu X X X A
 

 

( ) ( ) ( )( )
( )

12 2

12

var                                  

                      (Explanation of simplification is given below)

Eσ σ

σ

−

−

′′ ′= =

′=

nb A X X A uu I

A X X

∵
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

A A = -   

                   =

                                 

   

       ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′−          

 ′ ′ ′ ′ ′ ′−  

 ′ ′ ′ ′ ′−  

-1 -1-1 -1 -1 -1 -1 -1 -1

-1-1 -1 -1 -1

-1-1 -1 -1

X X X X X X R R X X R R X X I R R X X R R X X

X X X X R R X X R R X X

X X R R X X R R X X

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1

                               +

                   =

                  =                                   last t

−

   ′ ′ ′ ′ ′ ′ ′ ′ ′   

 ′ ′ ′ ′ ′ ′−  

′

-1 -1-1 -1 -1 -1 -1

-1 -1 -1 -1

-1

X X R R X X R R X X R R X X R R X X

X X X X R R X X R R X X

A X X ∵( ))wo terms will be cancelled

 
11.3 An alternative Expression of the test statistic for 0H :  Rβ = r  

 
Corresponding to the restricted least squares estimator b , we may define the residual vector  
 * = −e y Xb

         (11.8)
 

which may be written as 

 ( ) ( )ˆ ˆ ˆ
*e = y - Xβ - X b -β  = e - X b -β  

where ˆ=e y-Xβ is the vector of OLS residuals vector.  Now 

 ( ) ( ) ( )ˆ ˆ′′ ′ ′= +* *e e e e b -β X X b -β   

The cross product term vanishing since 0′ =X e .  Thus 

 ( ) ( ) ( )ˆ ˆ′′ ′ ′− =* *e e e e b -β X X b -β       (11.9) 

Using Eq. (11.6) in Eq. (11.9) we get 
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( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

11 1

11 1

11

ˆ

ˆ                      

ˆ ˆ              

−− −

−− −

−−

′  ′ ′ ′ ′ ′ ′− =  

 ′ ′ ′ ′ 
′  ′ ′=  

* *e e e e r - Rβ R X X R R X X X X

X X R R X X R r - Rβ

r - Rβ R X X R r - Rβ

   (11.10) 

But from Eq. (8.26) for testing the null hypothesis 0 :H Rβ = r , we have the test statistic, namely 

 
( ) ( ) ( )

( )

11

,

ˆ ˆ
q n k

q
F F

n k

−−

−

′  ′ ′ =
′ −

r - Rβ R X X R r - Rβ

e e
∼     (11.11) 

Using Eq. (11.10), then Eq. (11.11) becomes 
 

 
( )

( )
( )

( ) ,
RR UR

q n k
UR

RSS RSS q q
F F

RSS n k n k −

′ ′− −
= =

′− −
* *e e e e

e e
∼     (11.12) 

 
where RRRSS = Residual sum of squares from Restricted Regression Model = ′* *e e  
 URRSS = Residual sum of squares from Unrestricted Regression Model= ′e e  
Or equivalently from (11.9), it can be seen 

 
( ) ( ) ( )

( ) ,

ˆ ˆ
q n k

q
F F

n k −

′ ′
=

′ −

b -β X X b -β

e e
∼       (11.13) 

Thus we may use any one of the formulae Eqs. (11.11), (11.12) or (11.13) as test statistic for
0 :H Rβ = r .  But in between these formulae, formula Eq. (11.12) is simpler, which we will use 

in the later applications. 
 
Note:  In the above we have,  
 Unrestricted Regression Model: y = Xβ + u  

 Restricted Regression Model: y = Xβ + u with the set of linear restrictions Rβ = r
 

 
11.4 Self Assessment Questions  
 
1. Explain the OLS estimation of the GLM 2,    (0, )u nY X u u Iβ σ= + ∼  subject to the linear 

restrictions R rβ = .  

2. For the GLM y = Xβ + u , explain the test for testing 0 :H Rβ = r again the alternative 

0 :H ≠Rβ r when R  is a known matrix of order mXk and of rank m and r  is a known mX1 
vector. 

3. Derive the restricted least squares estimator of β  in the GLM ,Y X uβ= +  
2 (0, )u nu Iσ∼   subject to R rβ = .  

4. Show that the restricted least squares estimator is unbiased. 
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5. Derive the variance of the restricted least squares estimator. 
6. In the GLM y = Xβ + u , derive the test statistic for 0H :  Rβ = r  in terms of the residual 

sum of squares of restricted and unrestricted regression models. 
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Lesson 12 
 

TEST OF STRUCTUAL CHANGE IN 
REGRESSION MODELS 

12.0 Objective: 
 
  After studying this lesson, the student will understand clearly the concept of structural 
change or parameter stability and some tests for testing the structural change between two 
regression equations. Chow test for equality of two regressions is also demonstrated with an 
example. 
 
Structure of the Lesson: 
 

12.1 Introduction  
12.2 Test for structural change between two regression equations 
12.3 Testing the structural change in intercept  
12.4 Testing the structural change in slope  
12.5  Tests of structural change with k variables 
12.6 Chow test for the equality of two regression equations with k 

variables 

12.7 The chow test (test of structural change with ( )1n k<  

12.8 Tests of Structural change (k variables, p periods) 
12.9 Self Assessment Questions 
12.10 References  

 
12.1 Introduction 

 
 When we use a regression model involving time series data, it may happen that there is 
a structural change in the relationship between the regressand Y and the regressors. By 
structural change, we mean that the values of the parameters of the model do not remain the 
same through the entire time period. Sometime the structural change may be due to external 
forces (e.g., the oil embargoes imposed by the OPEC oil cartel in 1973 and 1979 or the Gulf 
War of 1990–1991), or due to policy changes (such as the switch from a fixed exchange-rate 
system to a flexible exchange-rate system around 1973) or action taken by Congress (e.g., the 
tax changes initiated by President Reagan in his two terms in office or changes in the minimum 
wage rate) or to a variety of other causes. 
 
 When we estimate a multiple regression equation and use it for predictions at future 
points of time we assume that the parameters are constant over the entire time period of 
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estimation and prediction. To test this hypothesis of parameter constancy (or stability) some 
tests have been proposed.  
 
12.2 Test  for Structural Change between Two Regression Equations: 
 
Suppose we have data on two variables 
 Y = consumption expenditure 
 and X =disposable income 
The data cover two distinct sub periods, 1n  observations relating to war time years and 2n
observations relating to peace time years.  Suppose we wish to investigate whether there is any 
change, or shift in the consumption function between the wartime and peace time periods.  
Such a change is referred to as a structural change or structural break.  Let us denote the 
consumption functions by 
 1 1 1Y X uα β= + +  wartime function      (12.1) 
 2 2 2Y X uα β= + +   peace time function     (12.2) 
This is the unrestricted form of the model, allowing intercepts and slopes to be different in the 
two periods.  This model would be set up in the matrix form as follows. 
 

 
1 1 1

1 1 1

1 1 1

1 2 1 2 1 2

1 1 1

2 2 2

1

1

1 1 12

22 2 2

1 0 0
1 0 0

1 0 0

0 0 1

0 0 1

0 0 1

n n n

n n n

n n n

n n n n n n

Y X u
Y X u

Y X u

Y X u

Y X u

Y X u

α
β
α
β

+ + +

+ + +

+ + +

     
     
     
                  = =                       
     
     
     

    (12.3) 

where the war time observations have been listed first and the peace time observations last.  
More compactly,   Eq. (12.3) can be written as 

 

1

1

2 2

2

α
β
α
β

 
        + = +             
 

1 1 1

12

y X 0 u
y = = Xβ u

0 X uy
     (12.4) 

where the data matrix X is block-diagonal.  As discussed above this is the unrestricted model.  
Applying OLS to equation Eq. (12.4) gives 
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( )

( )
( )

( )
( )

1

11

2

2

11

1 1
2 22 2 2 2 2 2

ˆ
ˆ

ˆ
ˆ
ˆ

  =

α

β
α

β

−

−−

− −

 
 
  ′ ′= = 
 
  

 ′ ′ ′   ′
   = 

′  ′  ′ ′     

1 1 1 1 1 11 1

β X X X y

X y X X X yX X 0
X y0 X X X X X y

   (12.5) 

These estimates are seen to be identical with those obtained by applying OLS separately to 
Eqs. (12.1) and (12.2).  Using Eq. (12.5), one can obtain the vector eof 1 2n n+ residuals, and 
′e e  gives the unrestricted residual sum of squares.  Also the unrestricted residual sum of 

squares, ′e e  for model Eq. (12.4) may be obtained as the sum of residual sum of squares 
obtained for models Eqs. (12.1) and (12.2). 
 
Now let us set up the null hypothesis of no structural change between wartime function and 
peace time function. i.e., 0 1 2 1 2: ,H α α β β= =  
Now the model becomes  
    i=1,2, , ni i iY X uα β= + + …  
where 1 2 1 2,α α α β β β= = = = and 1 2n n n= + .   
The model is called as restricted model and it may also be written as 

 
2

α
β

     
= +     

    

1 1

2

y X
u

Xy
        (12.6) 

 
The contrast with the unrestricted model in Eq. (12.4) is that 1 2and X X  matrices are now 
stacked vertically, so that only two parameters are required to describe the relation. 
Now we can test the given 0H by using the following test statistic, (From Eq. (11.12) of Lesson 
11), in which 2q = (number of restrictions) and 4k = (number of parameters in unrestricted 
model) 

 
( )

( )
( )

( ) 2, 4

2 2
4 4

RR UR
n

UR

RSS RSS
F F

n RSS n −

′ ′− −
= =

′ − −
* *e e e e

e e
∼

 
   (12.7) 

where ′e e  ( )URRSS  is residual sum of squares obtained from unrestricted model (12.4) and 

′* *e e  ( )RRRSS  is residual sum of squares obtained from restricted model (12.6).   
 If the calculated F − value from Eq. (12.7) is greater than the critical 2, 4nF − at a given 

l.o.s α , we reject 0 1 2 1 2:  , H α α β β= = .  In otherworld’s, we conclude there is a structural 
change between wartime and peace time consumption functions.  Otherwise we accept 0H of 
no structural change. 
 
12.3 Testing the structural change in intercept 
 For testing the structural change in the intercept i.e., 0 1 2:H α α α= = , the restricted and 
unrestricted models may then be set up as follows: 
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 2
2 2 2 22 2

  unrestrited Model                            Restricted Model

            
α

α
α

β
β

          = + = +                      

1
1 11 1 1 1

y yi 0 X i X
u u

0 i X i Xy y
   (12.8) 

Now OLS may then be applied directly to each model in Eq. (12.8) and 0H may be tested using 

the following test statistic ( )1,  3q k= = . 

 ( ) ( ) 1, 33 3
RR UR

n
UR

RSS RSSF F
n RSS n −

′ ′ −−
= =

′ − −
* *e e e e

e e
∼

     
(12.9) 

All the above notations are as in the usual way. 
  

If the calculated F − value from Eq. (12.7) is greater than the critical 2, 4nF − at a given l.o.s α
, we reject 0 1 2 1 2:  , H α α β β= = .  In otherworld’s, we conclude there is a structural change 
between wartime and peace time consumption functions.  Otherwise we accept 0H of no 
structural change. 
 
12.4  Testing the structural change in slope 
For testing the structural change in the slope  

0 1 2: ,H β β β= = the restricted and unrestricted models may then be set up as follows: 

 
2

2 2 2 22 2

  Restricted Model                                      unrestrited Model                    

         

α
α
α
β

        = + =                  

1
1 11 1 1 1

y yi 0 X i X 0 0
u

0 i X 0 0 i Xy y

1

2

1

2

α
β
β

 
 
  +
 
 
 

u
 (12.10)

 

where 1i denoted a column vector of 1n units, 2i  is column vector of 2n units, 1X  is a column 
vector of 1n observations on wartime income, and 2X a column vector 2n observations on peace 
time income OLS may then be applied directly to each model in Eq. (12.10)  and 0H may be 

tested using the following formula ( )1,  4q k= = . 
 

 
( ) ( ) 1, 44 4

RR UR
n

UR

RSS RSSF F
n RSS n −

′ ′ −−
= =

′ − −
* *e e e e

e e
∼      (12.11) 

 
where ′* *e e ( )RRRSS and ′e e ( )URRSS are respectively the residuals sum of squares obtained 
from restricted and unrestricted models.  
 
If the calculated F − value from Eq. (12.7) is greater than the critical 2, 4nF − at a given l.o.s α , we 

reject 0 1 2 1 2:  and H α α β β= = .  In other words, we conclude there is a structural change 
between wartime and peace time consumption functions.  Otherwise we accept 0H of no 
structural change. 
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Note: In the above test it may be noted that the unrestricted model in testing 0 1 2:H α α= , is the 
restricted model in testing 0 1 2:H β β= . 
 
12.5 Tests of structural change with k variables 

 
Let us write the usual general linear model  
 y = Xβ + u          (12.12)

 
Suppose we have war time data, and peace time data onY ,  2 3 kX ,X , ,X…  variables. 
The general linear model for wartime data becomes 

 1 1 1 1y = X β + u
 
        (12.13)

 
and for peace time data Eq. (12.12) may be written as 

 
 2 2 2 2y = X β + u         (12.14) 

where 1y and 2y are respectively vectors of 1 2and n n observations on endogenous variable in 

wartime and peace time 1X and 2X  are respective data matrices of 1xkn and 2xkn orders on 
explanatory variables in wartime and peace time.  1 2and u u are the respective disturbance 
vectors and   1 2β , β are the respective vectors of unknown parameters in both the models.   
The models (12.13) and (12.14) can be combined as

 

 2 22 22

0
 

0
      

= +      
         

1 11 1
y βX u

X uy β
      (12.15) 

The model (12.15) is called the unrestricted model. 
 
Let us partition 1X and 2X by the first column of units and the remaining k-1 columns of 
observations on the explanatory variables as follows: 
 * *

1 2 2 1 and    = =   1 1X i X X i X  
Now we consider the following 3 types of models: 
Model-I (common regression for both periods):  

      
*
1
*

22 2 2

     
= +     

     

1 11
y ui X

β
uy i X

 

Model-II (differential intercepts and common vector of regression slopes):
 

      

*
1

2*
* 22 2 1

α
α
 

      = +      
        

1
1 11

y ui 0 X
uy 0 i X β

  

 
Model-III (Differential intercepts and differential slopes): 

       

1

*
21
**
1 22 2 1
*
2

α
α
 
       = +              
  

1 11
y ui 0 X 0

β uy 0 i 0 X
β

      (12.16) 
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where we have partitioned the k-elements β  vector as  

 
2

*3

k

α
β

α
β

β

 
 
   
 = =  
   
 
  

β β         (12.17) 

Application of OLS to each model will yield a residual sum of squares (RSS) with an associated 
number of degrees of freedom as indicated by  
 Model I:  RSS1     n-k 
 Model II:  RSS2     n-k-1 
 Model III:  RSS3     n-2k 
where 1 2n n n= + indicates the total number of observations in the combined samples.  The test 
statistics for various hypothesis are then as follows: 

0 1 2:H α α=    Test of differential intercepts 

 ( ) ( )
1 2

1, 1
2

RSS -RSS
RSS 1 n kF F

n k − −=
− −

∼       (12.18) 

 
* *

0 1 2:H =β β
   

Test of differential slope vectors 

 

( ) ( )
( ) ( )

2 3
, 2

3

RSS -RSS k-1
RSS 2 k n kF F

n k −=
−

∼       (12.19) 

 

0 1 2:H =β β
    

Test of differential regressions (intercepts and slopes) 

 

( )
( ) ( )

1 3
, 2

3

RSS -RSS k
RSS 2 k n kF F

n k −=
−

∼       (12.20)
 

 
The degrees of freedom in the numerator are simply obtained as the difference in the degrees 
of freedom of the two residual sums of squares in the numerator.  This is equal to the number of 
restrictions involved when going from the unrestricted to the restricted model. 
 
In the above tests, if the computed F -value does not exceed the critical F -value taken from 
the F -table at a given l.o.s, then we accept 0H .  Otherwise, reject 0H . 
 
Note: In the similar manner, one can test the structural change in a subset of coefficients                 
(i.e, the stability of a subset of coefficients).  The principle of the test is the same as in all the 
test of structural change. 
 
12.6 Chow Test for the equality of Two regression Equations : 

 
 Suppose we have data on the variables Y (dependent variable) and k-1 explanatory 
variables 2 3, , , kX X X… for two sub periods namely sub period–I and sub period–II.  Further let 
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Let us suppose there are 1n sets of observations in sub period–I and 2n sets of observations in 
sub period–II. 
 
Now the GLM for sub period–I may be written as    
 

111
1 1 1 1

11 1
 

nn kn k xxx x
y = X β + u

        (12.21) 

Similarly the GLM for sub periods–II may be written as 

 
222

2 2 2 2
11 1

 
nn kn k xxx x

y = X β + u
        (12.22) 

where 1y and 2y are respectively vectors of 1 2and n n observations on endogenous variable in 

wartime and peace time 1X and 2X  are respective data matrices of 1xkn and 2xkn orders on 
explanatory variables in wartime and peace time.  1 2and u u are the respective disturbance 
vectors and  1 2β , β are the respective vectors of unknown parameters in both the models. 
Now our objective is to test the null hypothesis 
 0 1 2:H =β β  

         (12.23) 
i.e., there is no structural change in the regressions of two sub periods 
  Or 
 0 :H Both the regression equations are equal. 
For this purpose, Chow-test is as follows: 
This test assumes that 

 ( )1

2, nN σ1u 0 I∼  and ( )2

2, nN σ2u 0 I∼ .  That is, the error terms in the two sub period 

regressions are normally distributed with same (homoscedastic) variance 2σ . 
 The two error terms 1tu and 1tu are independently distributed. 

Now, the mechanics of Chow-test are as follows: 
1. Estimate the regression Eq. (12.21) of sub period–I, and compute 1 1 1 1

ˆ= −e y X β  and 

hence, obtain the residual sum of squares 1 1′e e  denoted by 1RSS with d.f. 1n k− . 
2. Similarly estimate the regression Eq. (12.22) of sub period–II, and compute 

2 2 2 2
ˆ= −e y X β  and hence, obtain the residual sum of squares 2 2′e e  denoted by 2RSS

with d.f. 2n k− . 
3. Since the samples of period– I and period– II are independent, we can add 1RSS and 

2RSS to obtain what may be called the unrestricted residual sum of squares 

( )URRSS given by  

 ′ ′UR 1 2 1 1 2 2RSS = RSS + RSS = e e + e e      (12.24) 

with ( )1 2 2n n k+ − d.f. 

4. Under 0 1 2:H = =β β β (say), the pooled regression of Eqs. (12.21) and (12.22) becomes 

 x1x1 x1

 
nxk nn k

y = X β + u         (12.25) 
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where  1 2 ,   n n n= +
1 1 1

2 22

,  ,
     

= = =           

y X u
y X u

X uy
 

Now, the regression model (12.25) is called as restricted regression model and by 
applying OLS to it yields restricted residual sum of squares denoted by RRRSS , given by  

 ′RRRSS = e e  ,   where ˆ= −e y Xβ  with (n-k) d.f.   (12.26) 
5. Now, the idea behind the Chow test is that if in fact there is no structural change (that 

regression Eqs. (12.21) and (12.22) are essentially the same) then RRRSS and URRSS
should not be statistically different.  Therefore if we form the F -ratio 

 
( )

( ) , 22 k n k

k
F F

n k −=
−

RR UR

UR

RSS - RSS
RSS

∼      (12.27) 

then Chow has shown that under 0 1 2:H =β β , F ratio given above follows                    

F distribution with ( ), 2k n k− d.f. 
6. If the above computed F value does not exceed the critical F value taken from the 

F  table at a given level of significance, then we accept 

 0 :H  No structural change between two regressions 
which means  the two regressions are  essentially the same, 
otherwise we reject 0 ,H  that is the two regressions are different. 

Note:   In the above test, we may use the following alternative formula for computing the 
residual sum of squares, 
 RSS= Total sum of squares-Explained sum of squares = TSS-ESS (12.28) 
 
There are some limitations about the Chow test that must be kept in mind: 

1. The assumptions underlying the test must be fulfilled. For example, one should find out if 
the error variances in the regressions (12.21) and (12.22) are the same.  

2. The Chow test will tell us only if the two regressions (12.21) and (12.22) are different, 
without telling us whether the difference is on account of the intercepts, or the slopes, or 
both. But in Lesson 13, on dummy variables, we will see how we can answer this 
question. 

 
An application of Chow test: 

The following table gives data on disposable personal income (Y) and personal savings(X) 
in billions of dollars for the United States for the sub period–I (1970-1981) and sub period-II 
(1982-1995).  Using this data, test for the equality of the two regression equations of sub 
period–I (1970-1981) and sub period-II (1982-1995) using Chow test. 
 

Table 12.1: SAVINGS AND PERSONAL DISPOSABLE INCOME (BILLIONS OF 
DOLLARS), UNITED STATES, 1970–1995 

Sub Period I Sub Period II 

Observation  Savings
(Y)  

Income 
(X) Observation Savings

(Y)  
Income  

(X) 
1970 61.0 727.1 1982 205.5 2347.3 
1971 68.6 790.2 1983 167.0 2522.4 
1972 63.6 855.3 1984 235.7 2810.0 
1973 89.6 965.0 1985 206.2 3002.0 
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1974 97.6 1054.2 1986 196.5 3187.6 
1975 104.4 1159.2 1987 168.4 3363.1 
1976 96.4 1273.0 1988 189.1 3640.8 
1977 92.5 1401.4 1989 187.8 3894.5 
1978 112.6 1580.1 1990 208.7 4166.8 
1979 130.1 1769.5 1991 246.4 4343.7 
1980 161.8 1973.3 1992 272.6 4613.7 
1981 199.1 2200.2 1993 214.4 4790.2 

1994 189.4 5021.7 
1995 249.3 5320.8 

Source: Economic Report of the President, 1997, Table B-28, p. 332. 
 
Solution: 
Let us suppose the following three regressions: 
 for sub period-I: 1 1 1t t tY X uα β= + +       (12.29) 
 for sub period-II: 2 2 2t t tY X uα β= + +       (12.30) 
 for total period:   t t tY X uα β= + +       (12.31) 
Now our object is to test the null hypothesis  
   0 1 2 1 2:  and   i.e. there is No Structural Change between the equationsH α α α β β β= = = =  
            i.e., The two regression equations (12.29) and (12.30) are same. 
against the alternative hypothesis 

1 : there is a Structural Change between the equationsH  
            i.e., The two regression equations (12.29) and (12.30) are not the same. 
 
From Eq. (2.42) of Lesson 2, we have the relation   

  

2 1 RSSr
TSS

= −
        

which implies
    

( )21RSS r TSS= −
 

In the following application of Chow test, we use this formula for computation of residual sum of 
squares (RSS) in each of the regressions (12.29) to (12.31).  The advantage of this formula is it 
does not require the estimation of the parameters (and hence the residuals). 
 
The various steps of Chow test are as follows: 
1. Estimation of 1RSS  based on regression Eq. (12.29) based on the sample of                    

sub period-I:  we have   
        1n =12                  2k =  

 X∑ =15748.5  Y∑ =1277.3 

     X =106.4417   Y =1312.3750 

          
2X∑ =154199.23        

2Y∑ =23218025.97 

   XY∑ =1881149.97 
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Coefficient of determination (square of correlation coefficient) is 

  
( )

( )( )
1

1 1

2
1

2
1 2 2 2 21 1

n

n n

XY XY
r

X X Y Y

−
= =

− −

∑
∑ ∑

0.9021 

Total sum of squares is given by 

        
2 2

1TSS Y nY= − =∑ 18241.2892 

Therefore,    ( )2
1 1 11RSS r TSS= − = 1785.0321 

2. Estimation of 2RSS  based on regression Eq. (12.30) based on the sample of                    
sub period-II:      
 

      we have 
   2n =14                      2k =  

 X∑ =53024.6      Y∑ =2937 

 X =3787.4714          Y =209.7857 

  
2X∑ =212664792.5  

2Y∑ =628760.26 

    XY∑ =11299709.93 

      2
2r = 0.2072  

  2TSS =12619.6171 

  ( )2
2 2 21RSS r TSS= − = 10005.2207 

 
3. Estimation of  RRRSS  based on the regression Eq. (12.31)  using the pooled sample of the 

samples of sub period-I and sub period-II: 
 we have 

      n =  26                     2k =  

  X∑ = 68773.10  Y∑ = 4214.30 

      X =  2645.1192      Y = 162.0885 

  
2X∑ = 235882818.47        

2Y∑ = 782959.49 

    XY∑ =13180859.9 

              2r = 0.7672  
           TSS =99870.0865 
 Therefore, ( )21RR r TSS= − =RSS 23248.2982 

From Eq. (12.24) =URRSS 11790.2528 
Substituting RRRSS  and URRSS  in Eq. (12.27) we get  
 F = 10.69 
At 1% of l.o.s. the critical F value at (2, 22) d.f. is 7.72  
Since the above calculated F  value is greater than the critical F  value at 1% l.o.s. we reject 

0H  .   
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Hence, we may conclude that there is a high significant difference between the two 
regression equations of sub period-I and sub period-II.  In other words, we conclude that  
there is a structural change between the two regression equations. 
 
Remark: A drawback of the above Chow test is that we could not tell whether the structural 
difference in the two regressions was because of differences in the intercept terms or the slope 
coefficients or both. 
 
12.7 Test of Structural Change when 1<kn  

 
 A special problem arises if one of the sub periods has fewer observations than the 
number of parameters to be estimated in the model.   Suppose, we may have a sample of 
( )1 >kn observations on the variables 2 3 kY,X ,X , ,X… .  An additional sample of ( )2 <kn

observations on these variables become available and the question is whether they may be 
considered to come from the same population or the regression for the two samples have no 
structural change.  The appropriate test is as follows. 
 
1. To the first 1n observations fit the OLS regression  

       1 1 1 1= +y X b e            (12.32) 

      where 1X  is data matrix of 1n  observations on the set of 2 3 kX ,X , ,X… variables and
 compute the residual sum of squares 1 1′e e . 

2. Pool the 1 2n n+ sample observations to give y and X and fit the least-squares regression 

  = +y Xb e         (12.33)
        and again compute the residual sum of squares ′e e .   

3. The test of the null hypothesis that the 2n additional observations obey the same relation as 
the first sample is given by  

  
( )

1 1 2

1 1 1

( ) nF
n k

′ ′−
=

′ −
e e e e
e e

       (12.34) 

 which is distributed as F with ( )2 1, -kn n degrees of freedom. 
4. Compute the F statistic defined in Eq. (12.34) and reject the hypothesis of a common 

structure if F exceeds a preselected critical value of ( )2 1, .n n kF −  
 

12.8 Tests of Structural change (k variables, p periods) 
 

Now let us consider the tests of structural change for the relationships of k explanatory variables 
between p periods.  The tests need not be applied only across periods.  We might examine the 
stability of a relation across countries, industries, social groups, or whatever. 
The usual hierarchy of three models may be set up as follows: 
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 i. 

*
1
*

2 2 2
*

*

 

p pp

α

   
        = +         
     

1 1
y i X
y i X

uβ
i Xy

       (12.35)
 

Common intercept, common slope vector in all p classes. 

 ii. 

1*
1

2*
2 2 2

*
*
p

p pp

α
α

α

                = +                   

1 1
y i 0 0 X
y 0 i 0 X

u

0 0 i Xy β

     (12.36)
 

Differential intercepts, common slope vector 

 iii. 

1

2

*
1

*
2 2 2

*
1

**
2

*

0 0
0 0

0 0

p

p pp

p

α
α

α

 
 
 
    
    
    = +    
    
        
 
 
 

1 1
y i 0 0 X
y 0 i 0 X

uβ

β0 0 i Xy

β

   (12.37)
 

Differential intercepts, differential slope vectors.  Here ii is the column vector of in units 

( )1, 2, ,i p= …  and *
iX is the ( )x k-1in matrix of observations on the explanatory variables in 

class ( ) 1, 2, ,i i p= … .  
Application of OLS to each model will yield a residual sum of squares (RSS) with an associated 
number of d.f. as indicated by  
 Model I:  RSS1     n-k 
 Model II:  RSS2     n-k-p+1 
 Model III:  RSS3     n-pk 
where 1 2 pn n n n= + + +… indicates the total number of observations in the combined samples.   
The test statistics for various hypotheses are as follows: 
 
Test of differential intercepts: 

 0 1 2: pH α α α= = =…  

   
 

( ) ( )
( ) ( )

1 2
1, 1

2

RSS -RSS -1
RSS 1 p n k p

p
F F

n k p − − − +=
− − +

∼      (12.38) 

 
Test of differential slope vectors:

  
 

* * *
0 1 2: pH = = =β β β…
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( ) ( )( )
( )

2 3

3

RSS -RSS k-1 1
RSS

p
F

n pk
−  =

−
      (12.39) 

 
Test of differential regressions (intercepts and slopes): 

 
* * *

0 1 2 1 2:  and p pH α α α= = = = = =β β β… …
    

 

 

( ) ( )
( )

1 3

3

RSS -RSS 1
RSS

p k
F

n pk
−  =

−
      (12.40) 

 
The degrees of freedom in the numerator are simply obtained as the difference in the degrees 
of freedom of the two residual sums of squares in the numerator.  This is equal to the number of 
restrictions involved in going from the unrestricted to the restricted model; 
In the above tests, if the computed F -value does not exceed the critical F -value taken from 
the F -table at a given l.o.s, then we accept 0H .  Otherwise, reject 0H . 
 
Note: In the similar manner, one can test the structural change in a subset of coefficients (i.e, 
the stability of a subset of coefficients).  The principle of the test is the same as in all the test of 
structural change. 
 
12.9 Self Assessment Questions 
 
1. Explain Chow-test for comparison of two regression equations. 
2. Describe a test for testing the equality of two regression equations. 
3. Describe a test for testing the equality of slopes in two regression equations. 
4. Describe a test for testing the equality of intercepts in two regression equations. 
5. Describe a method of testing the equality of two regression equations. 
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Lesson 13 
DUMMY VARIABLES 

 
13.0 Objective: 
 
  After studying this lesson, the student will understand clearly what does it mean by a 
dummy variable, how the dummy variables can be used for comparing two or more regression 
equations, and what is its advantage when compared with Chow test for equality of two 
regressions. 
 
Structure of the Lesson: 
 

13.1 Introduction (the nature of dummy variables) 
13.2 Regression on one quantitative variable and one dummy variable 

with two classes or categories 
13.3 Regression on one quantitative variable and one qualitative variable 

with more than two classes 
13.4 Regression on one quantitative variable and two qualitative 

Variables (two dummy variables) 
13.5 A generalization (two or more sets of dummy variables) 
13.6 The  use of dummy variables for testing the equality of two 

regressions-an alternative to the Chow test 
13.7 The use of dummy variables in seasonal analysis 

13.8 Self Assessment Questions 

13.9 References  
 

13.1  Introduction (The Nature of Dummy Variables) 
 

In regression analysis it frequently happens that the dependent variable is influenced, 
not only by variables which can be readily quantified on some well known defined scale (e.g. 
income, output, prices, costs, height, and temperature) but also by variables which are 
essentially qualitative in nature (e.g. sex, race, color, religion, nationality, wars, earthquakes, 
strikes, political upheavals, and changes in government economic policy).  For example, holding 
all other factors constant, female college teachers are found to found to earn less than their 
male counter parts, and non-whites are found to earn less than whites.  This may result from 
sex or race discrimination, but whatever the reason, qualitative variables such as sex and race 
do influence the dependent variable and clearly should be included among the explanatory 
variables.  
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Since such qualitative variables usually indicate the presence or absence of a “quality” 
or an attribute, such as male or female, black or white, or Catholic or non-Catholic, one method 
of “quantifying” such attributes is by constructing artificial variables which take on values 1 or 0, 
0 indicating the absence of an attribute, and 1 indicating the presence of that attribute variable 
which assume such 0 and 1 values are called dummy variables.  Alternative names are 
indicator variables, binary variables, categorical variables, qualitative variables, and 
dichotomous variables.   

 
Thus dummy variables are specially constructed variables which may be used to 

represent various factors such as 
1. Temporal effects (wars, earthquakes, strikes, etc.) 
2. Spatial effects (regional differences, nationality, etc.) 
3. Qualitative variables (sex, race, color, etc.) 
4. Broad grouping of quantitative variables (grouping of age, income etc.) 

 
Under the heading of temporal effects we sometimes postulate that a behavioral relation 

shifts between one period and another; for example the consumption function might be 
expected to show a down ward shift in wartime compared with its peace time position, or a 
wage-determination equation might shift with a change of political regime or many relations may 
be expected to show seasonal shifts, if we are dealing with quarterly or monthly data.  Spatially 
we sometimes expect shift in economic functions between one region of a country and another 
as a consequence of regional differences in economic structure and prospects.  Then 
qualitative variables such as sex, marital status, social or occupational class will often play an 
important role in determining economic behavior and must be incorporated in the estimation 
process.  Finally, we may sometimes have fully ordinal variables such as income and age but a 
broad grouping may be sufficient for the purpose in hand.  All of these cases may be handled 
by the specification of appropriate dummy variables. 

 
Dummy variables are a data-classifying device in that they divide a sample into various 

subgroups based on qualities or attributes (gender, marital status, race, religion, etc.) and 
implicitly allow one to run individual regressions for each subgroup. If there are differences in 
the response of the regressand to the variation in the qualitative variables in the various 
subgroups, they will be reflected in the differences in the intercepts or slope coefficients, or 
both, of the various subgroup regressions.  

 
Dummy variables can be incorporated in regression models just as easily as quantitative 

variables.  As a matter of fact, a regression model may contain regressors that are exclusively 
dummy, or qualitative, in nature.  Such models are called ANOVA models. 

 
Although a versatile tool, the dummy variable technique needs to be handled carefully. First, 

if the regression contains a constant term, the number of dummy variables must be one less 
than the number of classifications of each qualitative variable. Second, the coefficient attached 
to the dummy variables must always be interpreted in relation to the base, or reference, group—
that is, the group that receives the value of zero. The base chosen will depend on the purpose 
of research at hand. Finally, if a model has several qualitative variables with several classes, 
introduction of dummy variables can consume a large number of degrees of freedom. 
Therefore, one should always weigh the number of dummy variables to be introduced against 
the total number of observations available for analysis. 

 
Among its various applications, this lesson considered but a few. These included                    

(1) comparing two (or more) regressions, and (2) deseasonalizing time series data.  
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13.2 Regression on one quantitative variable and one dummy 
variable with two classes or categories 
 

 Suppose we have data on two variables 
Y  = Consumption expenditure 

and    X  =Disposable income 
The data cover two distinct sub periods, 1n  observations relating to wartime years and 2n
observations relating to peace time years.  Suppose we wish to investigate whether there is any 
change, or shift, in the consumption function between the wartime and peace time periods.  
Such a change is referred to as a structural change or structural break.  Let us denote the 
consumption functions by 
 1Y X uα β= + +  wartime function       
 2Y X uα β= + +   peace time function     (13.1) 
 
Here we assumed the slope coefficient β  is common in both periods.  Now, to see whether 
there is any structural change or not (that is to test 0 1 2:H α α= ), we have two alternative 
procedures. 
 

1. Write restricted (with 1 2α α= ) and unrestricted (with 1 2α α≠ ) models and obtain the 
residual sum of squares (RSS) in both the models and use the following formula 

 
( ) 1, 2

restricted RSS - unrestricted RSS
unrestricted RSS 2 nF F

n −=
−

∼  

2. By incorporating a dummy variable(s), appropriately, in the model. 
 
The first procedure, we have already discussed elaborately in Lesson 12.  Now, we 
discuss the second procedure in this lesson. 

Now in order to test the null hypothesis  
 0 1 2:H α α=  
we can combine the two consumption functions given in Eq. (13.1) by incorporating a dummy 
variable namely D  and now, the regression equation of Y (consumption expenditure) on 
quantitative variable X  (disposable income) and a dummy variable D  which has two 
categories may be written as 

 ( )1 2 1Y D X uα α α β= + − + +  
D = 1 if observation belong to peace time year 
     = 0 if observation belong to war time year 

After pooling the data of two periods, the  model of the above regression equation becomes  

 ( )1 2 1 1 2  1, 2, ,  ( )t t t tY D X u t n n n nα α α β= + − + + = … = +    (13.2) 
 where  

 tY   = consumption expenditure in year ' 't  

 tX = disposable income in year ' 't  

   tu = disturbance term in year ' 't  

 tD =1 if t is peace time year 
          =0 if t is wartime year 
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What is the meaning of the above model. Assuming, as usual, that ( )=0tE u , we see that 

 Mean consumption function in wartime:  ( ) 1, 0t t t tE Y X D Xα β= = +   

 Mean consumption function in peace time: ( ) 2, 1t t t tE Y X D Xα β= = +  (13.3) 
 
Thus, the model (13.2) postulates that the wartime consumption function and peacetime 
consumption function have the same slope ( )β  but different intercepts ( 1 2 and α α ).  In other 
words, it is assumed that the level of consumption expenditure in peace time and wartime are 
different, but the marginal propensity to consume (or rate of consumption expenditure) is same 
in both periods.  If β is not common to both periods nothing to be gained by using dummy 
variables; One merely fits separate regressions to wartime data and peace time data. 
 
The model (13.2) may be written in matrix form as  

y = Xγ + u          (13.4) 
where 

1 11

1 11

1 2 1 21 2

1 1 1

2 1 2

1

2 1

1 11

1 0
1 0

1 0,  ,  ,  
1 1

1 1

n n n

n nn

n n n nn n

y X u
y X u

y X u

X uy

X uy

α
α α

β+ ++

+ ++

     
     
     
            = = = − =            

      
     
              

y X γ u  

From the model (13.2), it is clear that, 1α gives the common intercept for both periods and  

2 1α α−  gives the additional intercept for peace time. Now testing the significance of D  in 
equation (13.2) is, in effect, testing the hypothesis 
 0 2 1 2 1: 0 i.e., H α α α α− = =        (13.5) 
which is testing whether the peace time and the war time intercepts are significantly different or 
not.  Thus, using a dummy variable in the equation, we can test the structural change in 
wartime and peace time consumption function.  Alternatively 0H  may be interpreted as 
there is no significant difference between the levels of the consumption expenditure pertaining 
to wartime period and peace time periods, In other words, there is no effect of war on the level 
of the consumption expenditure if we accept 0H .   
 
 The statistical significance of the estimated 2 1α α−  may be tested based on the 
traditional t-test by running the regression model (13.4) for the given data.  If t-test shows that 

2 1α α−  is statistically significant, we reject 0 :H  the levels of mean consumption expenditure 
are same for both periods.  Thus we conclude that the intercepts of the two equations are 
different. 
 
Remarks: 

1. To distinguish the two categories of the qualitative variable, we have introduced only 
one dummy variable.  Hence, one dummy variable suffices to distinguish two 
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categories.  The general rule is this: If a qualitative variable has m categories, 
introduce only m -1 dummy variables. 

2. The group, category or classification that is assigned the value ‘0’ is often referred to 
as the base, control, comparison or omitted category.  It is the base in the sense that 
comparisons are made with that category. 
 

13.3 Regression on one quantitative variable and one qualitative 
variable with more than two classes 
 

Suppose that based on the cross-sectional data we want to regress the annual expenditure on 
health care by an individual on the income and education of the individual.  Since the variable 
education is qualitative in nature, suppose we consider three mutually exclusive levels of 
education: 

1. Less than high school 
2. High school   
3. College 

 
Now, unlike the previous case, we have more than two categories of the qualitative variable 
‘education’.  Therefore, following the rule that the number of dummies be less one than the 
number of categories of the variable, we should introduce only two dummies to take care of the 
3 levels of ‘education’.  Assuming that the 3 educational groups have a common slope but 
different intercepts in the regression of ‘annual expenditure on health care’ on ‘annual income’, 
we can use the following model: 
 

 0 1 0 1 2 0 2) ) ,( (       1,2, ,  i i ii iY D D X u i nα α α α α β− −= + + + + = …   (13.6) 
 
where  i=sample unit 
             n=n1 +n2 
 Y = annual expenditure on health care 
 X =annual income 
 1D =1 if high school education 
      =0 otherwise 
 2D = 1 if college education 
      =0 otherwise 
 
Note that in the preceding assignment of the dummy variables we are arbitrarily treating the 
“less than high school education” category as base category. 
Therefore, the intercept 0α  will reflect the intercept for this category.  The differential intercepts 

1 0α α−  and 2 0α α−  tell by how much the intercepts of the other two categories differ from the 
intercept of the base category. 
 
From model (13.6), it is clear that 

1. The intercept of the group of individuals ‘less than high school education’ is 0α  
2. The intercept of the group of individuals of ‘high school education’ is 1α  
3. The intercept of the group of individuals of ‘college education’ is 2α  
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Alter running the regression (13.6), one can easily find out whether the differential intercepts 

1 0α α−  and 2 0α α−  are individually statistically significant, that is, different from the base 
group.  We may also test 0 1 0 2 0:  =0 and =0  H α α α α− −  simultaneously using ANOVA 
technique. 
 
 If 1 0α α− is not statistically significant, then 0α is the common intercept for both the 
categories of individuals of ‘less than high school education’ as well as ‘high school’ education’.  
If 1 0α α−  is statistically significant, then 1α  is the intercept of the category of individuals ‘high 
school education'. 
 
13.4 Regression on one Quantitative variable and two Qualitative 

Variables (two dummy variables) 
 

The technique of dummy variable can be easily extended to handle more than one qualitative 
variable.  Suppose we have data on two variables namely 
 Y =annual salary of a college teacher 
 X = years of teaching experience 
The data covers both male and female teachers as well as color (black, red or white) of the 
teacher. 
 
Now we can write the regression model with one quantitative variable and two qualitative 
variables (sex & color) as 

 0 1 1 1 2 2i i i i i iY S C C X uα α γ γ β= + + + + +       (13.7) 
where i= ith sample unit 
 Y = annual salary 
 X =year of teaching experience 

 
1     if male
0 otherwise

S


= 


 

 1

1       if red
0 otherwise

C


= 


 

 2

1    if white
0 otherwise

C


= 


 

Notice that the first qualitative variable sex has two categories and hence needs one dummy 
variable(s) where as the second qualitative variable color has three categories and hence 
needs two dummy variables, C1 and C2.  Note also that the omitted or base category now is 
“black female teacher”, Once again, the model (13.7) assumes common slope for all categories 
and differ only in the intercept coefficients.  OLS estimation of the model (13.7) enable us to test 
a variety of hypothesis.  Thus if 1α is statistically significant, it will mean that sex has an impact 

on the teacher’s salary.  Similarly if 1γ ( )2γ  is statistically significant it means that the mean 
salary of the red (white) teacher is significantly different from that of a black teacher. 
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Category    intercept 
Black female teacher   0α  
Black male teacher   0 1α α+  
Red female teacher   0 1α γ+  
Red male teacher   0 1 1α α γ+ +  
White female teacher   0 2α γ+  
While male teacher   0 1α α γ+ +  
 

13.5 A generalization (two or more sets of dummy variables) 
 

Following the preceding discussion, we can extend our model to include more than one 
quantitative variable and more than two qualitative variables.  The only precaution to be taken 
is that the number of dummies for each qualitative variable should be one less than the 
number of categories of that variable.  An example is given in the following.  
 
Suppose that we have cross-sectional budget data for a number of quarters and we postulate 
that the consumption (q) of some commodity is given by 
 q =f(seasonal Dummies, Social Class factors other Economic variables) 
     If there are 4 seasons and 3 social classes then one way to set up this relation is  
  0 1 1 2 2 3 3 1 1 2 2 2 2 k kq Q Q Q S S X X uα α α α β β γ γ= + + + + + + + + +…  (13.8) 
      where 

  
1  if observation relates to Quarter ' ', =1,2,3
0   otherwise                                                  i

i i
Q 

= 


 

  
1    if observation relates to Social class ' ', =1,2
0         otherwise                                                  j

j j
S


= 


  

 and 2 3, , , kX X X…  are the set of k-1 economic variables such as income and relative 
 prices.  Here the base or omitted category is IV-Quarter and Social class III 
 
 Category    Intercept 
 IV Quarter & Social class III:  0α  
 IV Quarter & Social class I  : 0 1α β+  
 IV Quarter & Social class II : 0 1α β+  
 I Quarter & Social class III: 0 1α α+  
 I Quarter & Social class I  : 0 1 1α α β+ +  
 I Quarter & Social class II : 0 1 2α α β+ +  
 II Quarter & Social class III:  0 2α α+  
 II Quarter & Social class I  :  0 2 1α α β+ +  
 II Quarter & Social class II :  0 2 2α α β+ +  
 III Quarter & Social class III:  0 3α α+  
 III Quarter & Social class I  :  0 3 1α α β+ +  
 III Quarter & Social class II : 0 3 2α α β+ +  
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Another common application of this type occurs in the estimation of production function.  
Suppose we have data on output ( )Y  and inputs ( )X  for m firms over n years and we wish to 
estimate a production function.  In doing so we might allow specifically for “year effects” and 
“firm effects” by fitting 
 

1 1 2 2 1 1 1 1 2 2 1 1 2 2 3 3

                                                                                                   1, 2, ,  and 1, 2, ,
ij n n m m ij ij k kij ijY T T T F F F X X X u

i m j n

µ α α α β β β γ γ γ− − − −= + + + + + + + + + + + + +

= … = …

… … …
 

           (13.9) 

where 
th1 if observation belongs to i  firm (i=1,2, ,m-1)

0                                                           otherwiseiF


= 


…

 

 

th1 if observation belongs to j  firm (j=1,2, ,n-1)
0                                                           otherwisejT


= 


…

 
 
13.6 The Use of  Dummy Variables for Testing the Equality of Two 

Regressions- An Alternative to the Chow Test 
 
In the last lesson, we have discussed the Chow test to examine the structural stability of 

a regression model. The example we discussed there related to the relationship between 
savings and income in the United States over the period 1970–1995. We divided the sample 
period into two, 1970–1981 and 1982–1995, and showed on the basis of the Chow test that 
there was a difference in the regression of savings on income between the two periods.  
However, we could not tell whether the difference in the two regressions was because of 
differences in the intercept terms or the slope coefficients or both. Very often this knowledge 
itself is very useful.   

 
 For explaining the use of dummy variables for testing the equality of two regressions, let 
us reproduce Eqs. (12.29) and (12.30) here. 
 for sub period-I (1970–1981): 1 1 1t t tY X uα β= + +     (13.10) 
 for sub period-II (1982–1995): 2 2 2t t tY X uα β= + +     (13.11) 
We see that there are four possibilities, which are given below. 

1. Both the intercept and the slope coefficients are the same in the two regressions. This is 
the case of coincident regressions ( 1 2 1 2 and α α β β= = ). 

2. Only the intercepts in the two regressions are different but the slopes are the same. This 
is the case of parallel regressions ( 1 2 1 2 and α α β β≠ = ). 

3. The intercepts in the two regressions are the same, but the slopes are different. This is 
the situation of concurrent regressions ( 1 2 1 2 and α α β β= ≠ ).  

4. Both the intercepts and slopes in the two regressions are different. This is the case of 
dissimilar regressions ( 1 2 1 2 and α α β β≠ ≠ ). 

 
The Chow test procedure discussed in the last lesson, as noted earlier, tells us only if two 

(or more) regressions are different without telling us what is the source of the difference (which 
of (2) to (4)).   But, this problem can be solved by using dummy variables appropriately.  In other 
words, the source of difference, if any, can be pinned down by considering the following pooled 
regression.   
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( ) ( )( )1 2 1 1 2 1t t t t t tY D X D X uα α α β β β= + − + + − +     (13.12) 
  where  Y  = savings 
  X  = income 
     t = time 
   D = 1 for observations in sub period-II (1982–1995) 
        = 0, otherwise (i.e., for observations in sub period-I (1970–1981)) 
 
Now, estimating the above pooled regression equation (13.12) is equivalent to estimating 
the two individual regression equations (13.10) and (13.11).  Further, by testing the 
significance of the coefficients of the variables tD and t tD X ,  we can decide which one of 
the above three possibilities ((2) to (4)) is the source of difference between the two 
regression equations (13.10) and (13.11).    
 
An application on the use of dummy variables: 
 

For demonstration of the above procedure let us reconsider the example, which is used for 
the demonstration of the Chow test for the equality of the two regression equations in Section 
12.6 of Lesson 12.  Let us pool all the observations (26 in all) of Table 12.1 and present the 
data in the flowing table along with the  dummy variables tD and .t tD X  

 

t=Year-1969 
Saving

( tY ) 
Income 
( )tX  tD  t tD X  

1 61.0 727.1 0 0 
2 68.6 790.2 0 0 
3 63.6 855.3 0 0 
4 89.6 965.0 0 0 
5 97.6 1054.2 0 0 
6 104.4 1159.2 0 0 
7 96.4 1273.0 0 0 
8 92.5 1401.4 0 0 
9 112.6 1580.1 0 0 

10 130.1 1769.5 0 0 
11 161.8 1973.3 0 0 
12 199.1 2200.2 0 0 
13 205.5 2347.3 1 2347.3 
14 167.0 2522.4 1 2522.4 
15 235.7 2810.0 1 2810.0 
16 206.2 3002.0 1 3002.0 
17 196.5 3187.6 1 3187.6 
18 168.4 3363.1 1 3363.1 
19 189.1 3640.8 1 3640.8 
20 187.8 3894.5 1 3894.5 
21 208.7 4166.8 1 4166.8 
22 246.4 4343.7 1 4343.7 
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23 272.6 4613.7 1 4613.7 
24 214.4 4790.2 1 4790.2 
25 189.4 5021.7 1 5021.7 
26 249.3 5320.8 1 5320.8 

 
We estimate the multiple regression equation (13.12) with the above data using Minitab 
statistical  package and presented the output below: 
 
Predictor       Coef       StDev          t        P 
Constant        1.02       20.16       0.05    0.960 
D             152.48       33.08       4.61    0.000 
X            0.08033     0.01450       5.54    0.000 
DX          -0.06547     0.01598      -4.10    0.000 
 
S = 23.15       R-Sq = 88.2%     R-Sq(adj) = 86.6% 
 
The estimated pooled regression equation: 

 ( )1.02 152.48 0.08033 0.06547t t t t tY D X D X= + + −
   

 

Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    3       88080       29360     54.78    0.000 
Error        22       11790         536 
Total        25       99870 
 
From t-tables, we have two-tailed critical t -value with 22 (26-4) d.f. at 1% l.o.s. is 2.819.   
 
From the above estimated regression equation, we may notice that the t -values (4.61 and    -
4.1) of the regression coefficients of the dummy variables D  and DX  are in magnitude greater 
than the critical t -value (2.819), and hence we may conclude that the regression coefficients of 
both D  and DX  are statistically highly significant.  
 
Thus the regression coefficients ( )2 1α α− and ( )2 1β β− of regression equations (13.12) are 
significantly different from zero.   
 
Therefore, 1 2α α≠ and 1 2β β≠ . i.e., the intercepts and slopes in the two regression equations 
(13.10) and (13.11) are different.  
  
Thus we conclude the two regression equations (13.10) and (13.11) are dissimilar, which is due 
to the 4th possible of the difference (listed in the beginning of the section). 
 
 Thus, by introducing dummy variables D  and DX  in the regression equation 
(13.12), we are able to identify the source of the structural change between two 
regression equations (13.10) and (13.11). 
 
 In other words, using dummy variables in a regression equation in an appropriate 
manner, we are not only testing the structural change between two regression equations, 
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but also we are identifying the source of the structural change out of four possibilities 
(mentioned in the beginning of this section).   
 

Here, it may be noted using Chow test, one can test whether there is a structural change 
or not between two given regression equations, but it cannot identify the source of structural 
change.  Hence, using dummy variables in regression analysis is better alternative method 
instead of applying Chow test. 

 
Note: one can easily extend the use of dummy variables for the case of more than two 
regression equations (or equivalently for more than two categories or classifications) as 
given below. 
 
For instance, with quarterly data we may specify 

1 2 1 2 3 1 3 4 1 4

1 2 1 2 3 1 3 4 1 4

) ) )
                                  ) ) )

( ( (
( ( (

i

X X X
Y D D D

X D D D u
α α α α α α α

β β β β β β β
− − −

+ − + − + − +

= + + +
+   (13.13) 

where  

 

1 if an observation in Quarter i (i=2,3,4)
0                                            otherwiseiD


= 
  

Eq. (13.15) allows intercepts and regression slopes to vary across all four class.   
  
 Testing the significance of individual regression coefficients of dummy variables 2D , 3D , 

4D , 2D X , 3D X and 4D X in the above regression model (13.13) is equivalent to testing the 
homogeneity of intercepts and homogeneity of slopes between the regression equation of four 
classes.  Thus, just by testing the significance of the individual regression coefficients of dummy 
variables in a single regression equation, we are able to compare 4 regression equations in 
various aspects.  

 
13.7 The Use of Dummy Variables in Seasonal Analysis 

 
Many economic time series based on monthly or quarterly data exhibit seasonal patterns 

(regular oscillatory movements). Examples are sales of department stores at Christmas and 
other major holiday times, demand for money (or cash balances) by households at holiday 
times, demand for ice cream and soft drinks during summer, prices of crops right after 
harvesting season, demand for air travel, etc. Often it is desirable to remove the seasonal 
factor, or component, from a time series so that one can concentrate on the other components, 
such as the trend. The process of removing the seasonal component from a time series is 
known as deseasonalization or seasonal adjustment, and the time series thus obtained is called 
the deseasonalized or seasonally adjusted time series. Important economic time series, such 
as the unemployment rate, the consumer price index (CPI), the producer’s price index (PPI), 
and the index of industrial production, are usually published in seasonally adjusted form.  There 
are several methods of deseasonalizing a time series, but we will consider only one of these 
methods, namely, the method of dummy variables.   

 
Deseasonalization of time series data: 
 Suppose we have 4n quarterly observations on a variable ,Y  such as unemployment, 
imports or food prices.  Such variables are likely to display a pronounced seasonal movement, 
and for purposes of economic intelligence and policy it is important to produce a 
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“deseasonalized” series, from which one can better assess whether unemployment, say, is 
really increasing or decreasing.  There are several methods of deseasonalizing series in 
practice, but here we are only concerned with applications of dummy variables. 
Let ijY denoted the observation on Y in the jth quarter of ith year (j=1, 2, 3, 4; i=1,2,…,n).  This 
series contain seasonal components apart from trend and/or cyclical components.  
Deseasonalizing the series means to eliminate the seasonal component from the series.  This 
can be achieved using dummy variables in the regression analysis frame work as follows: 
 
 Suppose 1D , 2D , 3D  and 4D are four dummy variables to represent the four seasonal 
(quarters) effects respectively defined as 

 
1 if t occur in quarter j, j=1, 2, 3, 4

0                                 otherwisejtD


= 
      

(13.14) 

Similarly to represent the trend and/or cyclical effects in the series, we have to incorporate the 
following polynomial in time ' 't of sufficiently higher order ' 'p . 
 2

1 2
p

pt t tα α α+ + +…         (13.15) 

With the above explanation we may write the value of Y in the time period ' 't as 
 2

1 2 1 1 2 2 3 3 4 4
p

t p t t t t tY t t t D D D D uα α α β β β β= + + + + + + + +…   (13.16) 
where u is random effect  
For 4n quarterly observations on the variables Y , we can write the model in compact form from 
Eq. (13.16) as follows: 
 y = Pα +Dβ +u         (13.17) 
where  
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Now, the deseasonalized series would be now be defined as 
 ds −y = y Db          (13.18) 

 where ( )′ ′-1b = D ND DNy , ( )′ ′-1N = I - P P P P     (13.19)  
Substituting Eq. (13.19) in Eq. (13.18) we get 
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 dsy = Ty , where ( )′ ′− -1T = I D D ND D N      (13.20)  

Thus the deseasonalized series of y can be expressed as a linear transformation of y .  Here, it 

may be noted T is idempotent matrix, but not symmetric. 
 
13.8 Self Assessment Questions 
 
1. Explain dummy variable regression models and explain how this is a better approach than 

Chow-test for comparison of two regression equations. 
2. What are dummy variables? Bring out its applicability while testing the equality of two 

regression equations each with one exogenous variable. 
3. Discuss the use of dummy variables with a suitable example. 
4. Define Dummy variables-explain how you would use them to examine the presence or 

absence of structural changes in the frame work of linear models. 
5. Explain the use of dummy variables in seasonal adjustment of time series data. 
 
13.9 References  
 
1. Gujarati, D.N. (2005):  Basic Econometrics, 4th Ed., Tata McGraw-Hill. 
2. Johnston, J. (1984):  Econometric Methods, 3rd Ed., McGraw-Hill, New York. 
3. Montgomery, D.C., Peck, E.A.  and Geoffrey Vining, G. (2003):  Introduction to Linear             

Regression Analysis,  3rd  Ed., Wiley 
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, 3rd Ed., John Wiley &      

Sons, New York. 
5. G.S. Maddala (2001): Introduction to Econometrics, 3rd Ed., John Wiley & Sons, Ltd. 
6. Johnston, J. and DiNardo J (1997):  Econometric Methods, 4th Ed., McGraw Hill. 
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics,           

John Wiley & Sons, New York. 
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper & Row, New York. 
 



 
 
 
 
Econometrics  14.1       Multicollinearity   
 

 
 

Lesson 14 
 MULTICOLLINEARITY 

 
14.0 Objective: 
 
 After studying this lesson, the student will have some clarity on the concept, nature and 
consequences of multicollinearity.  From this lesson, the student will know how to detect 
multicollinearity using some tests and what the remedial measures are for multicollinearity 
problem. 
 
Structure of the Lesson: 
 

14.1 Introduction 
14.2 The nature of multicollinearity 
14.3 Consequences of multicollinearity 
14.4 Detection of multicollinearity  
14.5 Remedial measures  
14.6 Self Assessment Questions  
14.7 References  

 

14.1 Introduction 
 

 Very often the data we use in multiple regression analysis cannot give decisive answers 
to the question we pose.  This is because the standard errors are very high or equivalently the t-
ratios are very low.  The confidence intervals for the parameters of interest are thus very wide.  
This sort of situation occurs when the explanatory variables display little variation and/or high 
intercorrelations. The situation where the explanatory variables are highly intercorrelated is 
referred to as multicollinearity.  When the explanatory variables are highly intercorrelated, it 
becomes difficult to disentangle the separate effects of each of the explanatory variables on the 
explained variable.  The practical questions we need to ask are how high these intercorrelations 
have to be to cause problems in our inference about the individual parameters and what we can 
do about this problem.    
 
 The term ”multicollinearity” was first introduced in 1934 by Ragnar Frisch in his book on 
confluence analysis and referred to a situation where the variables dealt with are subject to two 
or more relations.  In his analysis, there was no dichotomy of explained and explanatory 
variables.  It was assumed that all variables were subject to error and given the sample 
variances and covariances, the problem was to estimate the different linear relationships among 
the true variables.  We will, however, be discussing the multicollinearity problem as it is 
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commonly discussed in multiple regression analysis, namely, the problem of high 
intercorrelations among the explanatory variables. 
 
14.2 The Nature of Multicollinearity 

 
 Originally multicollinearity meant the existence of a “perfect,” or exact, linear relationship 
among some or all explanatory variables of a regression model. For the k-variable regression 
involving explanatory variable 2, , , kX X X1 … (where 1X = 1 for all observations to allow for the 
intercept term), an exact linear relationship is said to exist if the following condition is satisfied: 
 1 1 2 2 0k kX X Xλ λ λ+ + + =…        (14.1) 
where 2, , , kλ λ λ1 …  are constants such that not all of them are zero simultaneously. 
Today, however, the term multicollinearity is used in a broader sense to include the case of 
perfect multicollinearity, as shown by Eq. (14.1), as well as the case where the X  variables are 
intercorrelated but not perfectly so, as follows: 
 
 1 1 2 2 0k k iX X X vλ λ λ+ + + + =…       (14.2) 
where iv  is a stochastic error term. 
To see the difference between perfect and less than perfect multicollinearity, assume, for 
example, that 2 0λ ≠ . Then, Eq. (14.1) can be written as 

 31
2 1 3

2 2 2

k
i i i kiX X X Xλ λλ

λ λ λ
= − − − −…       (14.3) 

which shows how 2X  is exactly linearly related to other variables or how it can be derived from 
a linear combination of other X variables. In this situation, the coefficient of correlation between 
the variable 2X  and the linear combination on the right side of Eq. (14.3) is bound to be unity. 
Similarly, if 2 0λ ≠  Eq. (14.2) can be written as 

31
2 1 3

2 2 2 2

k k
i i i ki iX X X X vλ λ λλ

λ λ λ λ
= − − − − −…      (14.4) 

which shows that 2X is not an exact linear combination of other 'X s because it is also 
determined by the stochastic error term iv .   
 
 The preceding algebraic approach to multicollinearity can be portrayed following by the 
figure. In this figure the circles Y , 2X  and 3X represent, respectively, the variations in Y  (the 
dependent variable) and 2X  and 3X (the explanatory variables). The degree of collinearity can 
be measured by the extent of the overlap (shaded area) of the 2X  and 3X  circles.   There is no 
overlap between 2X  and 3X , and hence no collinearity.   There is a “low” to “high” degree of 
collinearity—the greater the overlap between 2X  and 3X  (i.e., the larger the shaded area), the 
higher the degree of collinearity. In the extreme, if 2X  and 3X  were to overlap completely (or if 

2X  were completely inside 3X , or vice versa), collinearity would be perfect. 
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Figure 14.1 

 Why does the classical linear regression model assume that there is no multicollinearity 
among the 'X s ? The reasoning is this: If multicollinearity is perfect in the sense of     Eq. (14.1), 
the regression coefficients of the X variables are indeterminate and their standard errors are 
infinite. If multicollinearity is less than perfect, as in Eq. (14.2), the regression coefficients, 
although determinate, possess large standard errors (in relation to the coefficients themselves), 
which means the coefficients cannot be estimated with great precision or accuracy. The 
explanation of these statements is given in the following sections. 
 
There are several sources of multicollinearity. As Montgomery and Peck note, multicollinearity 
may be due to the following factors: 
 

1. The data collection method employed, for example, sampling over a limited range of the 
values taken by the regressors in the population.  

2. Constraints on the model or in the population being sampled. For example, in the 
regression of electricity consumption (Y ) on income ( 2X ) and house size ( 3X ) there is 
a physical constraint in the population in that families with higher incomes generally have 
larger homes than families with lower incomes. 

3. Model specification, for example, adding polynomial terms to a regression model, 
especially when the range of the X  variable is small.  

4. An over defined model. This happens when the model has more explanatory variables 
than the number of observations. This could happen in medical research where there 
may be a small number of patients about whom information is collected on a large 
number of variables.  
 

 An additional reason for multicollinearity, especially in time series data, may be that the 
regressors included in the model share a common trend, that is, they all increase or decrease 
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over time. Thus, in the regression of consumption expenditure on income, wealth, and 
population, the regressors income, wealth, and population may all be growing over time at more 
or less the same rate, leading to collinearity among these variables. 
 
14.3 Consequences of Multicollinearity 

 
 Recall that if the assumptions of the classical model are satisfied, the OLS estimators of 
the regression estimators are BLUEs.  It can be shown as explained below that even if 
multicollinearity is very high, as in the case of near multicollinearity, the OLS estimators still 
retain the property of BLUEs.   
 
 First, it is true that even in the case of near multicollinearity the OLS estimators are 
unbiased. But unbiasedness is a multisampling or repeated sampling property. What it means is 
that, keeping the values of the X variables fixed, if one obtains repeated samples and 
computes the OLS estimators for each of these samples, the average of the sample values will 
converge to the true population values of the estimators as the number of samples increases. 
But this says nothing about the properties of estimators in any given sample. 
 
 Second, it is also true that collinearity does not destroy the property of minimum 
variance: In the class of all linear unbiased estimators, the OLS estimators have minimum 
variance; that is, they are efficient. But this does not mean that the variance of an OLS 
estimator will necessarily be small. 
 
 Third, multicollinearity is essentially a sample phenomenon in the sense that even if the 
X variables are not linearly related in the population, they may be so related in the particular 
sample at hand: When we postulate the theoretical (population) regression function, we believe 
that all the X  variables included in the model have a separate or independent influence on the 
dependent variable Y . But it may happen that in any given sample some or all of the X  
variables are so highly collinear that we cannot isolate their individual influence onY .  So 
although the theory says that all the 'X s are important, our sample may not be “rich” enough to 
accommodate all X  variables in the analysis. 
 
 As an illustration, consider the consumption–income example we know that, besides 
income, the wealth of the consumer is also an important determinant of consumption 
expenditure. Thus, we may write 

 i 1 2 i 3 iConsumption  =  +  Income  +  Wealth  + iuβ β β  
  

Now it may happen that when we obtain data on income and wealth, the two variables 
may be highly, if not perfectly, correlated: Wealthier people generally tend to have higher 
incomes. Thus, although in theory income and wealth are independent variables to explain the 
behavior of consumption expenditure, in practice (i.e., in the sample) it may be difficult to 
disentangle the separate influences of income and  wealth on consumption expenditure. 

 
 Ideally, to assess the individual effects of wealth and income on consumption 
expenditure we need a sufficient number of sample observations of wealthy individuals with low 
income, and high-income individuals with low wealth. Although this may be possible in cross-
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sectional studies (by increasing the sample size), it is very difficult to achieve in aggregate time 
series work. 
 
 For all these reasons, the fact that the OLS estimators are BLUEs despite 
multicollinearity is of little consolation in practice. We must see what happens or is likely to 
happen in any given sample as explained below. 
 
 The presence of multicollinearity has a number of potentially serious effects on the OLS 
estimators of the regression coefficients.  In cases of near or high multicollinearity, one is likely 
to encounter the following consequences: 
 

1. Even though, the OLS estimators are BLUEs, they have large variances and 
covariances, making precise estimation difficult as demonstrated below. 
 Suppose there are only two explanatory (independent) variables and let us 
suppose the variables 2 3,   and y x x are in deviation form then the model is  
 2 2 2 3     1, 2, ,i i i iy x x u i nβ β= + + = …      (14.5) 

( )
( )
( ) 2

with    0

       0

        var

i

i j

i

E u

E u u

u σ

=

=

=

 

This model in compact form is  

 
y = Xβ +u         (14.6) 

where 

  

1

2

n

Y
Y

Y

 
 
 =
 
 
 

y , 

21 21

22 32

2 3n n

x x
x x

x x

 
 
 =
 
 
 

X , 2

3

β
β
 

=  
 

β ,

1

2

n

u
u

u

 
 
 =
 
 
 

u  

We have the variance-covariance matrix of β̂ , the OLS estimator of β , is  

 ( ) ( )
2

1 2 2 32
2

2 3 3

ˆvar ,         where 
x x x
x x x

σ −  
′ ′= =  

 

∑ ∑
∑ ∑

β XX XX   (14.7) 

 

That is  ( ) ( )( ) ( )
22
3 2 3

222 2
2 3 22 3 2 3

ˆvar
x x x
x x xx x x x

σ  −
=  −−  

∑ ∑
∑ ∑∑ ∑ ∑

β  (14.8) 

Now, from Eq. (14.8), we have 
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( ) ( )( ) ( )

( ) ( )
( )( )

( )( )

2
32

2 22 2
2 3 2 3

2

2

2 32
2 2 2

2 3

2

2 2
2 23

ˆvar

            

1

                                                                                            (14.9)
1

β σ

σ

σ

=
−

=
 
 −
 
 

=
−

∑
∑ ∑ ∑

∑∑ ∑ ∑

∑

x

x x x x

x x
x

x x

x r

 

where 2 3
23 2 2

2 3

x x
r

x x
= ∑
∑ ∑

is the simple correlation between 2 3and x x . 

Similarly,  ( ) ( )( )
2

3 2 2
3 23

ˆvar
1x r

σβ =
−∑

      (14.10) 

 ( ) ( )( )
2 2

23
2 3 2

2 3 23

 ˆ ˆcov ,
1
r

x x r
σβ β = −

−∑
     (14.11) 

 If there is strong multicollinearity between 2 3and x x , then the correlation 23r will be 
large and approaches to unity.  As a consequence from equations (14.9), (14.10) and 
(14.11), we see that  
 ( ) ( ) ( )2

12 2 3 2 3
ˆ ˆ ˆ ˆ1    var ,  var ,  and cov ,r β β β β→ ⇒ →∞ →∞ →±∞  

Therefore, strong multicollinearity between 2 3and x x results in large variances and 

covariance of the OLS estimator 2̂β  and 3̂β . 
When there are k-1(more than two) explanatory variables, multicollinearity produces 
similar effect.  In this case 

 ( ) ( )
2

2 2
ˆvar ,      j=2,3,...,k

1j
j jx R
σβ =

−∑
    (14.12) 

where 2
jR  is the coefficient of determination from the regression of jX on the reaming    

k-2 explanatory variables. 
From Eq. (14.12), we may observe that  
 ( )2 ˆ1   var   j jR β→ ⇒ →∞  

Thus multicollinearity among the explanatory variables produce larger variances and 
covariances of the OLS estimators. 
 

2. Wider Confidence Intervals: Because of consequence 1, the confidence intervals of 
the regression coefficients tend to be much wider. 
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3. “Insignificant” t Ratios:  Recall that to test the null hypothesis 0 :H  0iβ = , we use the 

t ratio   
ˆ

ˆ( )
i

iSE
β
β

 , and compare the estimated t value with the critical t value from the 

student t-table. But, as we have seen, in case of high collinearity, the estimated standard 
errors ˆ( )iSE β  increase dramatically, thereby making the t values smaller. Therefore, in 
such cases, one will increasingly accept the null hypothesis 0 :H  0iβ =  that the relevant 
true population value is zero.  Hence, the probability of accepting a false hypothesis (i.e., 
type II error) increases.  Thus, the t  ratio of one or more regression coefficients tend to 
the statistically insignificant. 
 

4. A High R2 but Few Significant t Ratios:  Although the t  ratio of one or more 
coefficients is statistically insignificant 2,R  the overall measure of goodness of fit, can be 
very high. 
Consider the k-variable linear regression model: 

 1 2 2 3 3i i i k ki iY X X X uβ β β β= + + + + +     (14.13) 
In cases of high collinearity, it is possible to find, as we have just noted, that one or more 
of the partial slope coefficients are individually statistically insignificant on the basis of 
the t test. Yet the 2R  in such situations may be so high, say, in excess of 0.9, that on the 
basis of the F  test one can convincingly reject the hypothesis that 

2 3 0.kβ β β= = = =  Indeed, this is one of the signals of multicollinearity—insignificant t 

values but a high overall 2R  (and a significant F  value). 
 

5. The OLS estimators and their standard errors can be sensitive to small changes in the 
data. 
 

14.4 Detection of Multicollinearity 
 

Having studied the nature and consequences of multicollinearity, the natural question is: How 
does one know that collinearity is present in any given situation, especially in models involving 
more than two explanatory variables? Here it is useful to bear in mind the following limits. 
 

1. Multicollinearity is a question of degree and not of kind. The meaningful distinction is not 
between the presence and the absence of multicollinearity, but between its various 
degrees. 

2. Since multicollinearity refers to the condition of the explanatory variables that are 
assumed to be non-stochastic, it is a feature of the sample and not of the population. 
 

Therefore, we do not “test for multicollinearity” but can, if we wish, measure its degree in any 
particular sample. 
 
Since multicollinearity is essentially a sample phenomenon, arising out of the largely non-
experimental data collected in most social sciences, we do not have one unique method of 
detecting it or measuring its strength. What we have are some rules of thumb, some informal 
and some formal, but rules of thumb all the same. We now consider some of these rules. 
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1. High 2R  but few significant t ratios: As noted, this is the “classic” symptom of 
multicollinearity. If 2R  is high, say, in excess of 0.8, the F  test in most cases will reject the 
hypothesis that the partial slope coefficients are simultaneously equal to zero, but the 
individual t  tests will show that none or very few of the partial slope coefficients are 
statistically different from zero.   
 

2. High pair-wise correlations among regressors:  Another suggested rule of thumb is that 
if the pair-wise or zero-order correlation coefficient between two regressors is high, say, in 
excess of 0.8, then multicollinearity is a serious problem. The problem with this criterion is 
that, although high zero-order correlations may suggest collinearity, it is not necessary that 
they be high to have collinearity in any specific case. To put the matter somewhat 
technically, high zero-order correlations are a sufficient but not a necessary condition for the 
existence of multicollinearity because it can exist even though the zero-order or simple 
correlations are comparatively low (say, less than 0.50).   
Therefore, in models involving more than two explanatory variables, the simple or zero-order 
correlation will not provide reliable guidance to the presence of multicollinearity. Of course, if 
there are only two explanatory variables, the zero-order correlations will suffice. 
 

3.  Variance Inflation factor (VIF): 
 In the multiple regression model 

  
y = Xβ +u  with ( ) ( ) 20,  varE σ= = nu u I       (14.14) 

 we have ( ) 1ˆ −′ ′=β X X X y  is the OLS estimator of β . 

 Now, the variance of the ith component of β̂  is  

 ( ) 2ˆvar  ,i iiaβ σ=     where iia is the ith diagonal  element of ( ) 1−′XX  

              
( )

2

2 2

1
1i ix R

σ
=

−∑
        (14.15) 

 where ( )2 2

1

n

i ij i
j

x X X
=

= −∑ ∑  

  
2

icoefficient of determination of X  on the remaining k-2
          explnatory variables
iR =

 

  
But,  Eq. (14.15) can be written as  
 

  
( )

2

2
ˆvar i i

i

VIF
x

σβ =
∑

        (14.16) 

  where 
( )2

1
1i

i

VIF
R

=
−

        (14.17) 
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But, we know that 20 1iR≤ ≤ .  Therefore, from Eq. (14.17), we may note that if 2
iR  increases 

toward unity, iVIF  also increases and in the limit it can be infinity (that is 2 1i iR VIF→ ⇒ →∞ ). 
 
 Some authors therefore use the VIF as an indicator of multicollinearity. The larger the 
value of iVIF , the more “troublesome” or collinear the variable iX . As a rule of thumb, if the 

VIF  of a variable exceeds 10, which will happen if 2
iR  exceeds 0.90, that variable is said be 

highly collinear. 
 
 Note:VIF  as a measure of collinearity is not free of criticism. As Eq. (14.16) shows, ( )ˆvar iβ  

depends on three factors: 2σ , 2
iX∑ , and iVIF . A high VIF  can be counterbalanced by a low 

2σ  or a high 2
iX∑ . To put it differently, a high VIF is neither necessary nor sufficient to get 

high variances and high standard errors. Therefore, high multicollinearity, as measured by a 
high VIF, may not necessarily cause high standard errors. In all this discussion, the terms high 
and low are used in a relative sense. 
 
4. Eigen values and condition index: 
Since ′XX  is a symmetric positive definite matrix, we know that all the eigen values of ′XX  are 
real and positive.  Let us denote the eigen values by 1 2, , , kλ λ λ… .   Further, let us denote maxλ
and minλ as the maximum and minimum of 1 2, , , kλ λ λ… .  Belsley, Kulh, and Welsch suggest a 
statistic, based on maxλ and minλ , called the condition index number of the Xmatrix, defined by 

 ( ) max

min

Maximum eigenvalue
Minimum eigenvalue

CI
λ
λ

= =X
     

(14.18) 

  
Various applications with experimental and actual data sets suggest that condition index 
( )CI X  in the range of 20 to 30 are probably indicative of serious collinearity problems.  Thus, 

as a rule of thumb if the condition index is between 10 and 30, there is moderate to strong 
multicollinearity and if it exceeds 30 there is severe multicollinearity. Some authors believe that 
the condition index is the best available multicollinearity diagnostic.  

 
14.5 Remedial Measures 

 
 Rule-of-Thumb Procedures 
One can try the following rules of thumb to address the problem of multicollinearity, the success 
depending on the severity of the collinearity problem. 
 
1. A priori information.  

Suppose we consider the model 
  1 2 2 3 3 i i i iY X X uβ β β= + + +         (14.19) 
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where Y  = consumption, 2X  = income, and 3X  = wealth.  As noted before, income and wealth 
variables tend to be highly collinear. But suppose a priori we believe that 3 20.10β β= ; that is, 
the rate of change of consumption with respect to wealth is one-tenth the corresponding rate 
with respect to income. We can then run the following regression: 

  1 2 2 3 3

1 2 2

0.10 
    
i i i i

i i

Y X X u
X u

β β β
β β

= + + +
= + +

       (14.20) 

where i 2i 3iX  = X + 0.1X . Once we obtain 2β̂ , we can estimate 3β̂  from the postulated 
relationship between 2β  and 3β . 
How does one obtain a priori information? It could come from previous empirical work in which 
the collinearity problem happens to be less serious or from the relevant theory underlying the 
field of study.  
 
2. Combining cross-sectional and time series data.  
A variant of the extraneous or a priori information technique is the combination of cross-
sectional and time-series data, known as pooling the data. Suppose we want to study the 
demand for automobiles in the United States and assume we have time series data on the 
number of cars sold, average price of the car, and consumer income. Suppose also that 

 1 2 3log log logt t t tY P I uβ β β= + + +        (14.21) 
where Y  = number of cars sold, P  = average price, I  = income, and t = time. Our objective is 
to estimate the price elasticity 2β  and income elasticity 3β . 
 
In time series data the price and income variables generally tend to be highly collinear.  
Therefore, if we run the preceding regression, we shall be faced with the usual multicollinearity 
problem.   A way out of this has been suggested by Tobin. He says that if  we have cross-
sectional data (for example, data generated by consumer panels, or budget studies conducted 
by various private and governmental agencies), we can obtain a fairly reliable estimate of the 
income elasticity 3β  because in such data, which are at a  point in time, the prices do not vary 

much. Let the cross-sectionally estimated income elasticity be 3β̂ .  Using this estimate, we may 
write the preceding time series regression as 

 *
1 2 logt t tY P uβ β= + +         (14.22) 

where *
3

ˆln - lnt t tY Y Iβ= , that is, *Y  represents that value of Y after removing from it the effect 
of income.   We can now obtain an estimate of the price elasticity 2β  from the preceding 
regression. 
 
 Although it is an appealing technique, pooling the time series and cross-sectional data in 
the manner just suggested may create problems of interpretation, because we are assuming 
implicitly that the cross-sectionally estimated income elasticity is the same thing as that which 
would be obtained from a pure time series analysis. Nonetheless, the technique has been used 
in many applications and is worthy of consideration in situations where the cross-sectional 
estimates do not vary substantially from one cross  section to another.  
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3. Dropping a variable(s) and specification bias.  
When faced with severe multicollinearity, one of the “simplest” things to do is to drop one of the 
collinear variables. But in dropping a variable from the model we may be committing a 
specification bias or specification error.  Specification bias arises from incorrect specification 
of the model  used in the analysis.  Hence the remedy may be worse than the disease in some 
situations because, whereas multicollinearity may prevent precise estimation of the parameters 
of the model, omitting a variable may seriously mislead us as to the true values of the 
parameters. Recall that OLS estimators are BLUE despite nearcollinearity. 
 
4. Transformation of variables.  
Suppose we have time series data on consumption expenditure, income, and wealth. One 
reason for high multicollinearity between income and wealth in such data is that over time both 
the variables tend to move in the same direction. One way of minimizing this dependence is to 
proceed as follows.  
If the relation 
  1 2 2 3 3t t t tY X X uβ β β= + + +       (14.23) 
holds at time t, it must also hold at time t − 1 because the origin of time is arbitrary anyway. 
Therefore, we have 
  1 1 2 2, 1 3 3, 1 1t t t tY X X uβ β β− − − −= + + +        (14.24) 
If we subtract Eq. (14.24) from Eq. (14.23), we obtain 
  ( ) ( )t 1 2 2 2, 1 3 3 3, 1Y ,t t t t t tY X X X X vβ β− − −− = − + − +   where -1-t t tv u u=  (14.25) 
Eq. (14.25) is known as the first difference form because we run the regression, not on the 
original variables, but on the differences of successive values of the variables. 
The first difference regression model often reduces the severity of multicollinearity because, 
although the levels of 2X  and 3X  may be highly correlated, there is no a priori reason to 
believe that their differences will also be highly correlated. 
 
Another commonly used transformation in practice is the ratio transformation.  Consider the 
model: 
  1 2 2 3 3t t t tY X X uβ β β= + + +        (14.26) 
where Y  is consumption expenditure in real dollars, 2X  is GDP, and 3X  is total  population. 
 Since GDP and population grow over time, they are likely to be correlated. One 
“solution” to this problem is to express the model on a per capita basis, that is, by dividing       
Eq.  (14.23) by 3X , to obtain: 

  

2
1 2 3

3 3 3 3

1t t t

t t t t

Y X u
X X X X

β β β
     

= + + +     
           (14.27)  

Such a transformation may reduce multicollinearity in the original variables. 
 
 But the first-difference or ratio transformations are not without problems.  For instance, 
the error term tv  in Eq. (14.25) may not satisfy one of the assumptions of the classical linear 
regression model, namely, that the disturbances are serially uncorrelated. Therefore, the 
remedy may be worse than the disease.   
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 Hence, one should be careful in using the first difference or ratio method of transforming 
the data to resolve the problem of multicollinearity. 
 
5. Additional or new data.  
 Since multicollinearity is a sample feature, it is possible that in another sample involving 
the same variables collinearity may not be so serious as in the first sample. Sometimes simply 
increasing the size of the sample (if possible) may reduce the collinearity problem.  

 
 For example, in the three-variable model from Eq. (14.9), we can see that  as the sample 

size increases, 2
2x∑  will generally increase.    Therefore, for any given 23r , the variance of 2β̂  

will decrease, thus decreasing the standard error, which will enable us to estimate 2β  more 
precisely.   Obtaining additional or “better” data is not always that easy. 

 
6. Ridge Regression 
 One of the solutions often suggested for the multicollinearity problem is to use what is 
known as ridge regression first introduced by Hoerl and Kennard.  Simply stated, the idea is if 
′X X is close to singularity, then add a constant λ  to the variances of the explanatory variables 

or equivalently to the diagonal elements of ′X X  ,  before solving the normal equations.  The 
simple ridge estimator is  
 
 ( ) 1ˆ λ −′ ′= +Rβ X X I X y

       (14.28)
 

 
There are several interpretations of ridge estimator.  One is to obtain the least squares 
estimator of β  subject to the condition 2 .β ′Σ = =i cβ β   Therefore to yield the ridge estimator of 

β  , we minimize the quantity 

 ( ) ( ) ( )λ′ ′− − + − cy Xβ y Xβ β β  ( where λ   is the Lagrangian multiplier) 

Differentiating it with respect toβ , we get 

 ( )2 2 2 0  or  λ λ′ ′ ′ ′− + + = + =X y XXβ β XX I β X y  

Solving this equation for β  gives the ridge estimator ˆ
Rβ  given in Eq. (14.28).   

Since, we have 

 
y = Xβ +u  with ( ) ( ) 20,  varE σ= = nu u I   

It follows directly from Eq. (14.28) that 

 
( )
( ) ( )

1

1 1

ˆ ( )

    

λ

λ λ

−

− −

′ ′= +

′ ′ ′ ′= + +

Rβ XX I X Xβ +u

X X I X Xβ + X X I X u
 

and  the mean vector and variance-covariance matrix of  ˆ
Rβ  are given by 

 ( ) ( ) 1ˆ λ −′ ′= +RE β XX I XXβ  
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( ) ( ) ( )

( ) ( )

( ) ( ){ }
( ) ( )

1 1

1 1

1 12

ˆ ˆ ˆ ˆ ˆvar

              =

              =

             = 

λ λ

λ λ

σ λ λ

− −

− −

− −

 ′   = − −     
 ′   ′ ′ ′ ′+ +     

   ′ ′ ′ ′+ +   

′ ′ ′+ +

R R R R RE E E

E

E

β β β β β

XX I X u XX I X u

XX I X u u X XX I

X X I X X XX I

 

The ridge estimator ˆ
Rβ is thus biased, but it may be shown that the variances of the elements of 

ˆ
Rβ  

are less than those of the OLS estimator.  This raises the possibility that a ridge estimator 
may have a smaller mean-square error (MSE) than the OLS estimator.  Hoerl and Kennard 
show that there always exists a constant 0λ > such that  

 ( ) ( )
1 1

ˆ
k k

i i
i i
MSE MSEβ β

= =

<∑ ∑  

where iβ are the estimators of iβ from the ridge regression and ˆ
iβ are the least squares 

estimators and k is the number of regressors.  The main difficulty centre on the selection of a 
numerical value for the arbitrary scalar λ .  Unfortunately, λ is a function of the regression 
parameters iβ and error variance 2σ , which are unknown .  Hoerl and Kennard suggest trying 
different values of λ and picking the value of λ  so that “the system will stabilize” or the 
“coefficients do not have unreasonable values.”  Thus subjective arguments are used.  Some 
others have suggested obtaining initial estimates of iβ and 2σ and then using the estimated λ .  
This procedure can be iterated and we get the iterated ridge estimator.   
 
    The ridge technique essentially consists of an arbitrary numerical adjustment to the 
sample data, and one does not really know how to interpret the resultant estimators. 
 
  One other problem about ridge regression is the fact that t is not invariant to units of 
measurement of the explanatory variables and to linear transformations of variables.  If we have 
two explanatory variables 1X and 2X ; and we measure 1X in tens and 2X in thousands, it does 
not make sense to add the same value of λ to the variances of both.  This problem can be 
avoided by normalizing deviated variable by dividing it by its standard deviation.  Even if 1X and 

2X are measured in the same units, in some cases there are different linear transformation of 

1X and 2X that are equally sensible. 
 
7. Principal Components Regression 
In the multiple regression equation 
 0 1 1 2 2 k kY X X X uβ β β β= + + + + +…      (14.29) 
if the explanatory variables 1 2, , , kX X X… are highly collinear that is in the case of 
multicollinearity problem as a remedial measure we can use principal component regression 
analysis as explained below. 
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 In case of multicollinearity problem it is advantageous to disregard some of the variables 
in order to reduce the problem.  An alternative way to reduce the dimensionality is to use 
principal components.  In the general principal component analysis the principal components 
with largest variances are used in order to explain as much of the total variation of the data on 

1 2, , , kX X X…  where as in the context of multiple regression, it is sensible to take those 
principal components having the largest correlations with the dependent variable because the 
purpose in a regression is to explain the dependent variable.  Thus, here we have to include the 
principal components in the regression analysis, according to the magnitude of their correlations 
with the dependent variable.  In other words, the principal component with highest correlation 
with Y should be included first, the principal component with next highest correlation with Y
should be included next and so on. 
 
 If the principal components have a natural intuitive meaning (i.e., a good interpretation).  
It is better to leave regression equation expressed in terms of the principal components.  
Otherwise, it is more convenient to transform back to the original variables. 
The regression equation (14.29) in deviation form is  
 ( )1 1 2 2 k ky x x x u uβ β β= + + + + −…       (14.30) 
Eq. (14.30) can be written as 
          where -y u uε ε′ == x β +       (14.31) 

 

1

2

k

x
x

x

 
 
 =
 
 
 

x , 

1

2

k

β
β

β

 
 
 =
 
 
 

β  

Let us denote the variance-covariance matrix of the variables 1 2, , , kx x x…  by kxkV .  Since V  is 
positive definite matrix all eigen roots of V  are positive, and we denote them as  1 2, , ,λ λ λ… k  . 
Now, let us denote the eigen vectors of V  corresponding to these eigen roots as  

1 2, , , kw w w  and if we denote   

   ( )1 2= k k kx
Ω w w w  

then we have the relation 
 1 2( , , , )λ λ λ′ = … kdiagΩVΩ ,     where Ω  is orthogonal matrix  (14.32) 
Now suppose 1 2, , ,   … kz z z are the principal components (obtained from the original variables 

1 2, , , kx x x… , which are in deviation form) , then by the definition of principal components we 
may write  
 1 1 2 2 ,          i=1,2, ,k′= + + + =… …i i i ik k iz w x w x w x w x  
The above  1 2, , ,… kz z z  principal components can be written in a vector form as  
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1 1

2 2

′   
   ′    ′= = =
   
   ′   k k

z
z

z

w x
w x

z Ω x

w x

       (14.33) 

Since Ω  is an orthogonal matrix, we have ′ = kΩΩ I . 
Now, Eq. (14.33) may be rewritten as  
 1 1 1 1( ) ( )           ( )− − − −′ ′= = =x = Ω z Ω z Ωz Ω Ω∵     (14.34) 
Using Eq. (14.34) in Eq. (14.31) we get 

 
   = +                                                                                                        (14.35)

ε

ε

′ ′= +

′

y zΩβ

zα
 

where   

1

2

1

α
α

α

 
 
  ′= =
 
 
 k kx

α Ω β        (14.36) 

Eq. (14.35) can be written as 
 1 1 2 2 3 3 k ky z z z zα α α α ε= + + + + +…       (14.37) 
Now, the regression equation (14.37) is with the new set of k  explanatory variables 1 2, , ,… kz z z
(principal components), those can be obtained using Eq. (14.33) from the original k explanatory 
variables 1 2, , ,  ,kx x x which are in deviation form. 
 
The difference between the regression Eq. (14.30) and the regression Eq. (14.37) is in the 
former regression equation the explanatory variables 1 2, , , kx x x are highly collinear where as 
in the later regression equation, the explanatory variables 1 2, , ,  … kz z z are uncorrelated. 
 
 The estimates of 1 2, , ,α α α… k  may be obtained by applying OLS method to regression 
Eq. (14.37) in the usual way.  Then, the OLS estimates of the original parameters 1 2, , , kβ β β…
may be obtained from the following equation which is based on Eq. (14.36) 

   ˆ ˆ=β Ωα          (14.38) 

The variance-covariance matrix V  can be computed based on the sample observations made 
on the variables 1 2, , , .kx x x…   Using this matrixV , one can compute  the orthogonal matrix Ω , 
as the matrix of the eigen vectors of V  corresponding to the computed eigen roots 1 2, , ,λ λ λ… k . 
 
Notes:   

1. In the equation (14.37), the OLS estimators ˆiα ’s are unaltered if some of the principal 
components 'jz s are deleted from the equation. 

2. One can think of choosing only those principal components that have highest correlation 
with y  and discard the rest, but the same sort of procedure can be used with the 
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original set of variables 1 2, , , kx x x by first choosing the variable with the highest 
correlation with y , then the one with the highest partial correlation, and so on.  This is 
what  ”step wise regression program” do.  

3. The linear combinations 'sz often do not have economic meaning. This is one of the 
most important drawbacks of the above method. 

4. Changing the units of measurement of the 'sx will change the principal components.  
This problem can be avoided if all variables are standardized to have unit variance 

 
14.6 Self Assessment Questions  
 
1. Explain the problem of multicollinearity and explain the estimation   procedure of the model 
in the presence of multicollinearity 
2. Explain the problem of multicollinearity and their consequences. 
3. What are the sources of multicollinearity. 
4. Explain the problem of multicollinearity with a suitable example.  Also discuss the 

implications and tools for handling this problem. 
5.  Describe a test procedure for detection of multicollinearity and suggest some remedial 
measures. 
6. Describe variance inflation factor as a test for detection of multicollinearity. 
7. Describe condition index based on eigen values as a test for detection of multicollinearity. 
8. Explain the Ridge regression method in detail and give the reasons for the popularity of this 
method.  
9. Explain the Ridge regression method in detail and also explain its importance. 
10. Explain the principle component regression method in detail as a remedial measure. 
 
14.7 References  
 
1. Gujarati, D.N. (2005):  Basic Econometrics, 4th Ed., Tata McGraw-Hill. 
2. Johnston, J. (1984):  Econometric Methods, 3rd Ed., McGraw-Hill, New York. 
3. Montgomery, D.C., Peck, E.A.  and Geoffrey Vining, G. (2003):  Introduction to Linear             

Regression Analysis,  3rd  Ed., Wiley 
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, 3rd Ed., John Wiley &      

Sons, New York. 
5. G.S. Maddala (2001): Introduction to Econometrics, 3rd Ed., John Wiley & Sons, Ltd. 
6. Johnston, J. and DiNardo J (1997):  Econometric Methods, 4th Ed., McGraw Hill. 
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics,           

John Willey & Sons, New York. 
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper & Row, New York. 
 
 
 



 
 
 
 
Econometrics  15.1       Generalised Least Squares Estimator  
 

 
 

Lesson 15 
 

 GENERALIZED LEAST SQUARES ESTIMATOR 
 

15.0 Objective: 
 
 In the lessons studied so far, we consider the regression models with spherical 
disturbances, which means the disturbances are uncorrelated and having common variance.  
Now, in this lesson our objective is to study the regression model with nonspherical 
disturbances, which are serially (auto) correlated or (and) having heterogonous variances. 
 
Structure of the Lesson: 
 

15.1 Introduction  
15.2 The sources of nonspherical disturbances  
15.3 Properties of OLS estimators under nonspherical disturbances 
15.4 The generalized least squares estimator  

15.5 Derivation of an unbiased estimator of 2σ   

15.6 To show that GLS estimator is also ML estimator 
15.7 Self Assessment Questions 
15.8 References 

 
15.1 Introduction 

 
The assumptions usually made concerning the linear regression model y = Xβ + u    are     

 ( )                                                                                                           (15.1)E =u 0  

   ( ) 2                                                                                                     (15.2)and Var σ=u I                    
Eq. (15.2) is described as the assumption of spherical disturbances.  It involves the double 
assumption that the disturbances (error terms) are homoscedastic as well as non-autocorrelated 
(serially uncorrelated).  Sometimes this assumption may not be fulfilled; and in place of the 
assumption (15.2) we have to make the following assumption  
 
 ( ) 2Var σ=u Ω         (15.3) 

 
The assumption (15.3) is described as nonspherical disturbances, since it allows the 
heteroscedastic disturbances and autocorrelated disturbances. 
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In the following sections, we will discuss the following 
1. The sources of nonspherical disturbances. 
2. To study the properties of OLS estimators in the presence of nonspherical disturbances. 
3. To develop appropriate estimation procedure for the general linear model fulfilling the 

assumption (15.3). 
 

15.2 The Sources of Nonspherical Disturbances 
 

 If the sample observations relate to households or firms in a cross-section study, the 
assumption of a common disturbance variance at all observation points is often implausible.  
For example, if Y refers to family expenditure and X to family income, the variance about the 
Engle curve is likely to increase with the size of X .  Similarly if Y denotes profits and X is 
some measure of firm size, the same property is to be expected.  The specification of the 
disturbance variance-covariance matrix of disturbances would then be  

 ( )

2
1

2
2

2

0 0
0 0

0 0 n

Var

σ
σ

σ

 
 
 = =
 
 
  

u Ω    

which is the standard case of nonspherical disturbances and it still assumes that the 
disturbances are pair wise uncorrelated. 
 Another possibility of nonspherical disturbances in cross-section studies will arise when 
we are dealing with grouped data.  Suppose the model is 
                t=1,2,. . ., nt t tY X uα β= + +  
where the 'stu are homoscedastic with zero covariances.  However, suppose we only have 
access to data which have been averaged within m groups, where the ith group contains in   
observations.  The form of the appropriate model to the data is now 
          1,  . . .,  i i iY X u i mα β= + + =  
and clearly 

 ( ) ( )
2

2var       where var         1,  . . .,  i i
i

u u i m
n
σ σ= = =  

Thus 

 

( )

1

2 2
2

1 0 0

10 0

10 0
m

n

nVar

n

σ σ

 
 
 
 
 = =  
 
 
 
  

u Ω  

 Another possibility of nonspherical disturbances will arise when we are dealing with 
regression models using time series data, which occur relatively often in economics, business, 
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and some fields of engineering.  The assumption of uncorrelated and independent disturbances 
in time series data is often not appropriate.  Usually, the disturbances in time series data exhibit 
serial correlation, that is ( )cov , 0 , when j 0i i ju u + ≠ ≠ .  Such disturbances are said to be 
autocorrelated, which is a special case of nonspherical disturbances.  There are several 
sources of autocorrelation.  Perhaps the primary cause of autocorrelation in regression 
problems involving time series data is failure to include one or more important regressors in the 
model.   
 
15.3 Properties of OLS Estimators under Nonspherical Disturbances 

 
Our assumed model is  
  y = Xβ + u        

where X is taken as a nonstochastic matrix with full column rank, 
 ( )E =u 0   and ( ) ( )2    or  Var σ=u Ω V

    
 

The OLS estimator of βmay be expressed as usual as 

 ( ) ( )1 1
ˆ

− −
′ ′ ′ ′= = +β X X X y β X X X u  

Thus ( )ˆE =β β
 
so that OLS estimator β̂  is still unbiased.  The variance-covariance matrix of β̂  

is given by 

 
( ) ( )( ) ( ) ( )

( ) ( )

1 1

1 1
2

ˆ ˆ ˆvar = E

            =                                                               (15.4 )

E

σ

− −

− −

′  ′ ′ ′′= − −  
 

′ ′ ′

β β β β β X X X uu X X X

X X X ΩX X X
 

Thus the conventional formula ( ) 1
2σ

−
′X X no longer measures the variances of the OLS 

estimator, and any application of it is potentially misleading.  More importantly, even if one could 
use Eq. (15.4) to estimate the sampling variances the substitution of these numbers in the 
conventional t formulas and confidence interval formulas is strictly invalid since the assumptions 
used in deriving those inference procedures no longer apply.  For the same reason the optimal 
minimum variance property of OLS no longer holds.    
Thus, even though the OLS estimator β̂ is unbiased estimator of β , it is not the BLUE of 
β .  Hence, there is a need to the development of a more appropriate estimator.  
 
15.4 The Generalized Least Squares (Aitken) Estimator  
 
Our assumed model is  
 y = Xβ + u          (15. 5) 

where X is taken as a nonstochastic matrix with full column rank, 
 ( )E =u 0  ,   and ( ) ( )2    or  Var σ=u Ω V
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Since, the nonspherical variance-covariance matrix Ω  ( )or  V  is symmetric positive definite 

matrix, there exists a nonsingular matrix T such that 
 ′TΩT = I          (15.6) 
Now pre-multiply Eq. (15.5) with this non-singular matrix T to obtain  
 * * *y = X β + u           (15.7) 

where * =y Ty , * =X TX , and * =u Tu       (15.8) 

with    i) ( )*E =u 0 ,   

          ii) ( ) ( )* * 2 2E E σ σ′ ′ ′ ′= = =u u Tuu T TΩT I    (from Eq. (15.6))                  (15.9) 

Thus the model as given in Eq. (15.5) with nonspherical disturbance variance-covariance matrix 
is transformed into the traditional general linear model with spherical disturbance variance-
covariance matrix (as given in Eq. (15.2)).  As a consequence, we can apply OLS method to the 
model (15.7) to obtain OLS estimator of β  and is given by 

 ( ) ( )1 1
* * * * (15.10)  =                                                     

− −
′ ′ ′ ′ ′ ′=b X X X y X T TX X T Ty  

and ( ) ( ) ( )1 1
2 * * 2var σ σ

− −
′ ′ ′= =b X X X T TX       (15.11) 

Since T  is nonsingular matrix from Eq. (15.6) 
 ( )                                                                    (15.12)′ ′⇒ =-1 -1 -1 -1T Ω T = I   T T Ω      
Using Eq. (15.12) in Eqs. (15.10) and (15.11) we get 
 

( )
( ) ( )

1

1
2

                                                                                               (15.13)

and    var                                                         σ

−

−

′ ′=

′=

-1 -1

-1

b X Ω X X Ω y

b X Ω X                           (15.14)
 

 
The estimator b given in Eq. (15.13) is called the generalized least squares (GLS) estimator or 
Aitken’s estimator and the variance-covariance matrix of b is given in Eq. (15.14).  Since the 
model (15.7) satisfies the assumptions given in Eq. (15.9) which required for an application of 
OLS, it immediately follows that b  is the BLUE of β  in the model (15.5). 

It may be noted that the above formulae are only operational if the elements of Ωare known. 
Note: If we take ( )Var =u V in the model (15.5) then 

 ( ) ( ) ( )1 1

   and var .
− −

′ ′ ′= =-1 -1 -1b X V X X V y b X V X

 This procedure of transforming the original variables in such a way that the transformed 
variables satisfy the assumptions of the classical linear regression model and then applying 
OLS to them is known as the method of generalized least squares (GLS). In short, GLS is OLS 
on the transformed variables that satisfy the standard least-squares assumptions. The estimator 
thus obtained is known as GLS estimator or Aitken Estimator, and this estimator is BLUE. 
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15.5 Derivation of an unbiased estimator of 2σ  

Applying OLS to the transformed model (15.7), we get an unbiased estimator of 2σ  given by  

 ( )
2

* *

ˆ                                                                                                  (15.15)
n k

σ
′

=
−

e e
  

where  

 ( )* * * = =e = y - X b Ty - TXb T y - Xb  

Then  

 

( ) ( )
( )

( ) ( )
( ) ( )

( )

( )

( )

2ˆ

                     using Eq. (15.12)

     ,    where              

2
    

      

n k

n k

n k

n k

n k

σ
′ ′

=
−

′
=

−

′
=

−

′ ′ ′ ′ ′+
=

−

′ ′ ′
=

−

-1

-1

-1 -1 -1

-1 -1

y - Xb T T y - Xb

y - Xb Ω y - Xb

eΩ e e = y - Xb

yΩ y - b XΩ y b XΩ Xb

yΩ y -b XΩ y
  (since from Eq.(15.13) )           (15.16)′ ′=-1 -1XΩ Xb XΩ y

 
is an unbiased estimator of 2σ  
 
15.6 To show that GLS (Aitken) estimator is also ML estimator 
Let us consider the model 

 
y = Xβ+u

 
        (15.17) 

with  
1. X is a nonstochastic and full rank matrix 
2. ( )E =u 0  

3. ( ) 2Var σ=u Ω  
4. u  is normally distributed 

Since ( )2,N σ0 Ωu ∼ , the likelihood function is 

 ( )
( )

2
1

2
1/ 2/ 2 2

1

2 n
p e σ

π σ

′−

=
-1u Ω u

Ω
u  

The likelihood in terms y is 
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 ( )
( )

( ) ( ) ( )2
1

2
/ 2 1/ 22

1
2

n JeL p σ

πσ

′−
==

-1y-Xβ Ω y-Xβ
yy X

Ω
 

where Jacobian transformation ( ) mod mod 1uJ ∂
= = =

∂ ny I
y

 

Now, the log likelihood is 

     ( ) ( ) ( ) ( )2
2

1 1log 2 log log
2 2 2 2

log n nL π
σ

σ ′− − −= − -1Ω y - Xβ Ω y - Xβ  (15.18) 

Maximizing log Lwith respect to β  implies minimizing the weighted sum of squares 

 ( ) ( )′ ′ ′ ′ ′ ′=-1 -1 -1 -1y - Xβ Ω y - Xβ y Ω y - 2β XΩ y +β XΩ Xβ    (15.19) 

with respect toβ . This is equivalent to differentiate Eq. (15.19) with respect to β  and setting 
equal to zero and is  

 

( )

( )
( )

11

1

    0

    2 2 0

     

     *

−−

−

′ ′ ′ ′ ′∂
=

∂

′ ′⇒ − + =

′ ′⇒ =

′ ′⇒ =

-1 -1 -1

-1 -1

-1

-1 -1

y Ω y - 2β XΩ y +β XΩ Xβ

β

XΩ y XΩ Xβ

β XΩ X XΩ y

β XΩ X XΩ y
     (15.20)

 

Thus *β  the MLE of β
 
is same as b , the GLS estimator β .

 
On the assumption of normality for the disturbance term all the inference procedures carry 
through for this model.  Thus the test of 
 0 :H rRβ =  
is based on  

 

( ) ( ) ( )
11

2   
ˆ

r r q
F

σ

−− ′ ′′ ′− Ω −  =
Rb R X X R Rb

    (15.21) 
where 2σ̂  is as given in Eq. (15.16), having the ( ),F q n k− distribution under the null 

hypothesis, where b is the GLS estimator defined in Eq. (15.13). 
 The above formulae are only operational if the elements of Ω are known.  In some 
exceptional cases this may be so, but in most practical cases it is not.  We must therefore 
proceed to the development of operational procedures for such cases, but there is, in fact, no 
single procedure which is generally applicable.  One must look for the procedure which is best 
suited to the features of each specific problem in turn.  
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15.7 Self Assessment Questions  
 
1. Explain GLS method of estimation for GLM model.    
2. Explain the generalized least squares (GLS) estimates and discuss the method of obtaining 

them.  Also list out their properties. 
3. Derive Aitken estimators of a general linear model. 
4. Show that GLS estimator is BLUE. 
5. Show that Aitken estimator is BLUE. 
6. State and prove Aitken  theorem for a generalized linear model    

n X k n X 1n X 1 kX 1
y = X β + u with 

( ) ( ) 20 and .E E σ′= =u uu Ω  
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Lesson 16 
 

  HETEROSCEDASTICITY: NATURE AND 
CONSEQUENCES 

  

16.0 Objective: 
 
  One of the assumptions made in traditional multiple linear regression model regarding 
the disturbances is that they have common variance (homoscedasticity).  This lesson relaxes 
this assumption, which means the disturbances are having heterogeneous variances and such 
disturbances are called heteroscedastic disturbances.  The objective of this lesson is to discuss 
the nature, sources and consequences of heteroscedastic disturbances.    
 
Structure of the Lesson: 
 

16.1 Introduction 
16.2 The nature or sources of heteroscedasticity 
16.3 OLS estimation in the presence of  heteroscedasticity 
16.4 Consequences of using OLS in presence of  heteroscedasticity 
16.5 Self Assessment Questions 
16.6 References  

 

16.1. Introduction 
 

  An important assumption of the traditional multiple linear regression model is that the 
variance of each disturbance term iu , conditional on the chosen values of the explanatory 
variables, is some constant number equal to 2

uσ . This is the assumption of homoscedasticity, 
or equal (homo) spread (scedasticity), that is, equal variance. Symbolically, 
 ( ) 2                  1, 2, ,i uVar u i nσ= = …         

If we relax the assumption of homoscedasticity that is if the disturbance terms iu s  do not have 
the equal variance, then we say that disturbances are heteroscedastic disturbances and in 
this case the disturbance terms iu s   have unequal or heterogeneous variances.  The multiple 
linear regression model with heteroscedastic disturbances is described as heteroscedasticity, 
which may be written symbolically, 
 ( ) 2                  1, 2, ,i iVar u i nσ= = …        (16.1) 

 Notice the subscript of 2σ , which reminds us that the conditional variances of iu  ( or 
equivalently conditional variances of iY ) are no longer constant. The nature, sources and 
consequences of heteroscedasticity are studied in the following sections of this lesson. 
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16.2. The Nature or Sources of Heteroscedasticity  
 

 To make the difference between homoscedasticity and heteroscedasticity clear, assume 
that in the two-variable model 

 1 2i i iY X uβ β= + + , Y  represents savings and X  represents income.  

 
  Figure 16.1       Figure 16.2 
 
The above figures 16.1 and 16.2 show that as income increases, savings on the average also 
increase. But in Figure 11.1 the variance of savings remains the same at all levels of income, 
whereas in Figure 16.2 it increases with income. It seems that in Figure 16.2 the higher income 
families on the average save more than the lower-income families, but there is also more 
variability in their savings. 
 
There are several reasons why the variances of iu  may be variable, some of which are as 
follows. 

1. Following the error-learning models, as people learn, their errors of behavior become 
smaller over time. In this case, 2

iσ  is expected to decrease. As an example, consider 
Figure 16.3, which relates the number of typing errors made in a given time period on a 
test to the hours put in typing practice. As Figure 16.3 shows, as the number of hours of 
typing practice increases, the average number of typing errors as well as their variances 
decreases. 



 
 
 
 
Econometrics  16.3       Heteroscedasticity:.. 
 

 
 

 
Figure 16.3 

2. As incomes grow, people have more discretionary income and hence more scope for 
choice about the disposition of their income. Hence, 2

iσ  is likely to increase with income. 

Thus in the regression of savings on income one is likely to find 2
iσ  increasing with 

income (as in Figure 16.2) because people have more choices about their savings 
behavior. Similarly, companies with larger profits are generally expected to show greater 
variability in their dividend policies than companies with lower profits. Also, growth 
oriented companies are likely to show more variability in their dividend payout ratio than 
established companies. 
 

3. As data collecting techniques improve, 2
iσ  is likely to decrease. Thus, banks that have 

sophisticated data processing equipment are likely to commit fewer errors in the monthly 
or quarterly statements of their customers than banks without such facilities. 
 

4. Heteroscedasticity can also arise as a result of the presence of outliers. An outlying 
observation, or outlier, is an observation that is much different (either very small or very 
large) in relation to the observations in the sample. More precisely, an outlier is an 
observation from a different population to that generating the remaining sample 
observations. The inclusion or exclusion of such an observation, especially if the sample 
size is small, can substantially alter the results of regression analysis. 
 

5. Another source of heteroscedasticity arises when there are specification errors in the 
regression model.  Very often, heteroscedasticity may be due to the fact that some 
important variables are omitted from the model. Thus, in the demand function for a 
commodity, if we do not include the prices of commodities complementary to or 
competing with the commodity in question (the omitted variable bias), the residuals 
obtained from the regression may give the distinct impression that the error variance 
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may not be constant. But if the omitted variables are included in the model, that 
impression may disappear. 
 

6. Another source of heteroscedasticity is skewness in the distribution of one or more 
regressors included in the model. Examples are economic variables such as income, 
wealth, and education. It is well known that the distribution of income and wealth in most 
societies is uneven, with the bulk of the income and wealth being owned by a few at the 
top. 
 

7. Other sources of heteroscedasticity:  (1) incorrect data transformation (e.g., ratio or first 
difference transformations) and (2) incorrect functional form (e.g., linear versus log–
linear models).  
 
Note that the problem of heteroscedasticity is likely to be more common in cross-

sectional than in time series data. In cross-sectional data, one usually deals with members of a 
population at a given point in time, such as individual consumers or their families, firms, 
industries, or geographical subdivisions such as state, country, city, etc. Moreover, these 
members may be of different sizes, such as small, medium, or large firms or low, medium, or 
high income. In time series data, on the other hand, the variables tend to be of similar orders of 
magnitude because one generally collects the data for the same entity over a period of time. 
Examples are GNP, consumption expenditure, savings, or employment in India.  
 
16.3. OLS Estimation in the Presence of Heteroscedasticity 

 
In case of heteroscedasticity the assumed model is  
  y = Xβ +u ,           (16.2) 

 with ( )E =u 0   and ( ) ( )

2
1

2
2

2

0 0
0 0

0 0 n

Var E

σ
σ

σ

 
 
 ′= = =
 
 
  

u uu V
 (from Eq. (16.1))

 

where X is taken as a nonstochastic matrix with full column rank, 

   
 

The OLS estimator of βmay be expressed as usual as 

 ( ) ( )1 1
ˆ

− −
′ ′ ′ ′= = +β X X X y β X X X u  

Thus  ( )ˆE =β β     so that OLS is still unbiased.   

The variance-covariance matrix of β̂  is given by 
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( ) ( )( )
( ) ( )

( ) ( )

1 1

1 1

ˆ ˆ ˆvar

          = E

          =                                                                      (16.3 )

E
− −

− −

′= − −

 ′ ′ ′′ 
 

′ ′ ′

β β β β β

X X X uu X X X

X X X VX X X

 

Thus in the case of heteroscedasticity, the conventional formula 

 ( ) ( ) 1
2ˆvar σ

−
′=β X X

 
no longer measures the sampling variances of the OLS estimator, and any application of it is 
potentially misleading.  More importantly, even if one could use Eq. (16.3) to estimate the 
sampling variances the substitution of these numbers in the conventional t formulas and 
confidence interval formulas is strictly invalid since the assumptions used in deriving those 
inference procedures no longer apply.  For the same reason the optimal minimum variance 
property of OLS no longer holds.    
 

Thus in the presence of heteroscedastic disturbances, even though the OLS estimator β̂ is 

unbiased estimator of β , it is not the BLUE of β .  Hence, there is a need to the development of a 

more appropriate estimator.  
 

16.4. Consequences of  using OLS in Presence of Heteroscedasticity 
 

 The OLS estimators are derived under the assumption of homoscedasticity and hence in 
the presence of the problem of heteroscedasticity the OLS estimators are not valid due to the 
following reasons: 
 

1. The OLS estimators are still unbiased and consistent (in case of large sample), but they 
are not BLUEs that is they are not possessing minimum variance. In other words, though 
the OLS estimators are unbiased and consistent, they are not efficient (variances are 
large) in small as well as large samples. 
 

2. In view of (1), the standard errors of the OLS estimates become large and as a 
consequence the tests of significance are less powerful.  Even if we use the formula 
(16.3)  for obtaining the estimators of the variances of ˆ 'siβ , the standard errors of ˆ 'siβ
will become large and as a consequence, the tests based on them will be misleading. 
Therefore, the wrong decisions may be taken regarding the inclusion of the variables in 
the analysis. 
 

3. When there is the problem of heteroscedasticity and if we mistakenly apply OLS 
formulae (derived under the assumption of homoscedasticity) for the estimate of the 

common variance of the disturbances iu , viz. 2ˆ
( )
e e
n k

σ
′

=
−

then 2σ̂ is a biased estimator of

2σ (when the disturbances are homoscedastic 2σ̂  is unbiased of 2σ ). The OLS 
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estimators of the variances of the estimators ˆ 'siβ  viz., ( ) 2ˆ ˆvar ii
i aβ σ=  (where iia is the 

thi diagonal element of ′X X ) are biased since 2ˆ
( )n k

σ
′

=
−
e e  is biased estimator of 2σ .  

Hence, t and F tests based on it will be misleading.   And as a consequence, the usual 
t and F  test (based on 2σ̂ ) are very much likely to exaggerate the statistical 
significance of the conventionally estimated parameters.      
 

Thus if we erroneously disregard heteroscedasticity and use the conventional OLS estimators of 
the variances of the regression coefficients, the t and F tests of significance based on it will be 
highly misleading because in situations of heteroscedasticity the usual estimator of 2σ , viz.,   

  2ˆ
( )n k

σ
′

=
−
e e          (16.4) 

is no longer unbiased. 
 
 Thus in case of heteroscedasticity problem instead of using BLUEs of the regression 
coefficients (those can be obtained using generalized least squares (GLS) method to the 
regression equation) if we use OLS estimators mainly we get the above problems: 
 
 16.5 Self Assessment Questions 
 
1. Explain the problem of heteroscedasticity. What are its sources and consequences? 
2. Detail the problem of heteroscedasticity and describe a test procedure for detection of this 

problem. 
3. Explain heteroscedasticity with suitable examples. 
4. What is meant by Heteroscedasticity? What are the consequences of using OLS in it’s 

presence? 
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Lesson 17 
 

  HETEROSCEDASTICITY: DETECTION AND 
REMEDIES 

 

17.0 Objective: 
 
  This lesson is continuation of Lesson 16 and after studying this lesson, the student will 
understand a number of detection methods of heteroscedasticity and some remedies of 
heteroscedasticity. 
 
Structure of the Lesson: 
 

17.1 Introduction 
17.2 Detection of heteroscedasticity 
17.3 Remedies of heteroscedasticity 
17.4 Self Assessment Questions 
17.5 References  

 
17.1.  Introduction 
 
 As with multicollinearity, the important practical question is: How does one know that 
heteroscedasticity is present in a specific situation? Again, as in the case of multicollinearity, 
there are no hard-and-fast rules for detecting heteroscedasticity, only a few rules of thumb. But 
this situation is inevitable because 2

iσ  can be known only if we have the entire Y  population 
corresponding to the chosen 'sX . But such data are an exception rather than the rule in most 
economic investigations. In this respect the econometrician differs from scientists in fields such 
as agriculture and biology, where researchers have a good deal of control over their subjects. 
More often than not, in economic studies there is only one sample Y  value corresponding to a 
particular value of X . And there is no way one can know 2

iσ  from just one Y  observation. 
Therefore, in most cases involving econometric investigations, heteroscedasticity may be a 
matter of intuition, educated guesswork, prior empirical experience, or sheer speculation.  
 
 With the preceding caveat in mind, let us examine some of the informal and formal 
methods of detecting heteroscedasticity. As the following discussion will reveal, most of these 
methods are based on the examination of the OLS residuals ie  since they are the ones we 
observe, and not the disturbances iu . One hopes that they are good estimates of iu , a hope 
that may be fulfilled if the sample size is fairly large. 
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 As we have seen, heteroscedasticity does not destroy the unbiasedness and 
consistency properties of the OLS estimators, but they are no longer efficient, not even 
asymptotically      (i.e., large sample size). This lack of efficiency makes the usual hypothesis-
testing procedure of dubious value. Therefore, remedial measures may be called for. There are 
two approaches to remediation: when 2

iσ is known and when 2
iσ  is not known. 

 
17.2. Detection of Heteroscedasticity 

 
For detection of heteroscedasticity, we have several methods which are given below. 

1. Park test 
2. Glejser’s test 
3. Spearman’s rank correlation test 
4. Gold field-Quandt Test 
5. Breusch–Pagan–Godfrey Test 
6.  White’s General Heteroscedasticity Test 
7. A test for homogeneity of variances 
8. Bartlet’s test for homogeneity of variances 

Let us discuss these methods one by one 
 
17.2.1. Park test  

 
 Park suggested that 2

iσ  is some function of the explanatory variable iX . The functional 
form he suggested was  
 2 2 2 2      log log logiv

i i i i iX e X vβσ σ σ σ β= ⇒ = + +                                   (17.1) 

where iv  is the stochastic disturbance term.  Since 2
iσ is generally not known, Park suggests 

using 2
ie  as a proxy and running the following regression: 

 

 
2 2

2

log  log log

          log               where  = log
i i i

i i

e X v
X v

σ β

α β α σ

= + +

= + +
    (17.2) 

 
 If β turns out to be statistically significant, it would suggest that heteroscedasticity is 
present in the data. If it turns out to be insignificant, we may accept the assumption of 
homoscedasticity. The Park test is thus a two stage procedure. In the first stage we run the OLS 
regression disregarding the heteroscedasticity question. We obtain 2

ie  from this regression, and 
then in the second stage we run the regression (17.2).  
 
 Although empirically appealing, the Park test has some problems. Goldfeld and Quandt 
have argued that the error term iv  entering into (17.2) may not satisfy the OLS assumptions and 
may itself be heteroscedastic.   Nonetheless, as a strictly exploratory method, one may use the 
Park test. 
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17.2.2. Glejser Test: 
 

 The Glejser test is similar in spirit to the Park test. After obtaining the residuals ie  from 

the OLS regression, Glejser suggests regressing the absolute values of ie on the X  variable 

that is thought to be closely associated with 2
iσ . In his experiments, Glejser used the following 

functional forms: 

  

1 2

1 2

1 2

1 2

1 2

2
1 2

| |

| |  
1| |  

1| |   

| |  

| |  

i i i

i i i

i i
i

i i
i

i i i

i i i

e X v

e X v

e v
X

e v
X

e X v

Xe v

β β

β β

β β

β β

β β

β β

= + +

= + +

= + +

= + +

= + +

= + +

      (17.3) 

where iv  is the error term. 
 
Again as an empirical or practical matter, one may use the Glejser approach. But Goldfeld and 
Quandt point out that the error term iv  has some problems in that its expected value is nonzero, 
it is serially correlated, and ironically it is heteroscedastic.   An additional difficulty with the 
Glejser method is that models such as 
 1 2| |  i i ie X vβ β= + + and 2

1 2| |  i i iXe vβ β= + +     (17.4) 
are nonlinear in the parameters and therefore cannot be estimated with the usual OLS 
procedure. 
 
Glejser has found that for large samples the first four of the preceding models give generally 
satisfactory results in detecting heteroscedasticity. As a practical matter, therefore, the Glejser 
technique may be used for large samples and may be used in the small samples strictly as a 
qualitative device to learn something about heteroscedasticity. 
 
17.2.3. Spearman’s Rank Correlation Test: 

 
We define  the Spearman’s rank correlation coefficient as 
 

 ( )2

1
1 6 1

n

s i
i

r d n n
=

= − −  ∑          (17.5) 

 
where id = difference in the ranks assigned to two different characteristics of the thi  individual or 
phenomenon and n = number of individuals or phenomena ranked. The preceding rank 
correlation coefficient can be used to detect heteroscedasticity as follows:  
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Assume 0 1| |i i iY X uβ β= + +   

Step 1. Fit the regression to the data on Y and X and obtain the residuals ie  . 

Step 2. Ignoring the sign of ie , that is, taking their absolute value | |ie , rank both | |ie  and iX  

(or îY ) according to an ascending or descending order and compute the Spearman’s rank 
correlation coefficient sr  given in Eq. (17.5).  
Step 3. Assuming that the population rank correlation coefficient sρ is zero and n > 8, the 
significance of the sample sr  can be tested by the t test as follows: 
 

 
2

2
1

s

s

r nt
r
−

=
−          

 (17.6) 

 
If the computed t  value exceeds the critical t value at the chosen level of significance 
with d.f. = n – 2, we may accept the hypothesis of heteroscedasticity; otherwise we may 
reject it. If the regression model involves more than one X  variable, sr  can be computed 
between | |ie  and each of the X  variables separately and can be tested for statistical 
significance by the t test given in Eq. (17.6). 
 
17.2.4. Goldfeld-Quandt Test: 

 
 This popular method is applicable if one assumes that the heteroscedastic variance 2

iσ   
is positively related to one of the explanatory variables in the regression model. For simplicity, 
consider the usual two-variable model: 
 1 2i i iY X uβ β= + +

        
 (17.7) 

Suppose 2
iσ is positively related to Xi as 

 2 2 2
i iXσ σ=  

        
 (17.8) 

where 2σ is a constant..  Assumption (17.8) postulates that 2
iσ  is proportional to the square of 

the X variable. Such an assumption has been found quite useful in the study of family budgets.  
 
         If Eq. (17.8) is appropriate, it would mean 2

iσ  would be larger, the larger the values of iX . 
If that turns out to be the case, heteroscedasticity is most likely to be present in the model. To 
test this explicitly, Goldfeld and Quandt suggest the following steps: 
 
Step 1. Order or rank the observations according to the values of iX , beginning with the lowest 
X value. 
 
Step 2. Omit c central observations, where c is specified a priori, and divide the remaining 
(n - c) observations into two groups each of (n - c) 2 observations. 
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Step 3. Fit separate OLS regressions to the first (n - c) 2  observations and the last (n - c) 2  
observations, and obtain the respective residual sums of squares 1RSS  and 2RSS , 1RSS  
representing the RSS from the regression corresponding to the smaller iX  values (the small 
variance group) and 2RSS  that from the larger iX  values (the large variance group). These 
RSS each have 

 
( -  ) - - 2-  or   d.f.

2 2
n c n c kk  

 
        

 (17.9) 

where k is the number of parameters to be estimated, including the intercept.  For the two-
variable case k is of course 2. 
 
Step 4. Compute the ratio 

 2

1

RSS df
RSS df

F =  
        

 (17.10) 

If iu  are assumed to be normally distributed (which we usually do), and if the assumption of 
homoscedasticity is valid, then it can be shown that the computed F  follows the F - distribution 
with numerator and denominator d.f. each of ( )- - 2 2n c k . 
 
If in an application the computed F  is greater than the critical F  at the chosen level of 
significance, we can reject the hypothesis of homoscedasticity, that is, we can say that 
heteroscedasticity is very likely.  
 
 The ability of the Goldfeld–Quandt test to do this successfully depends on how c is 
chosen. The power will be low if c  is too large, so that 1RSS  and 2RSS  have very few degrees 
of freedom. However, if c  is too small, the power will also be low, since any contrast between 

1RSS  and 2RSS  is reduced. A rough guide is to set c  at approximately 3n .  For the two-
variable model the Monte Carlo experiments done by Goldfeld and Quandt suggest that c is 
about 8 if the sample size is about 30, and it is about 16 if the sample size is about 60.   
 
 Before moving on, it may be noted that in case there is more than one X  variable in the 
model, the ranking of observations, the first step in the test, can be done according to any one 
of them. Thus in the model: 1 2 2 3 3 4 4i i i i iY X X X uβ β β β= + + + + , we can rank or order the data 
according to any one of these 'sX . If a priori we are not sure which X  variable is appropriate, 
we can conduct the test on each of the X  variables, or via a Park test, in turn, on each X . 
  
17.2.5. Breusch–Pagan–Godfrey (BPG) Test: 

 
 The success of the Goldfeld–Quandt test depends not only on the value of c (the number of 
central observations to be omitted) but also on identifying the correct X  variable with which to 
order the observations. This limitation of this test can be avoided if we consider the Breusch–
Pagan–Godfrey (BPG) test. 
 
To illustrate this test, consider the k-variable linear regression model 
 1 2 2 ,  1, 2,...,i i k ki iY X X u i nβ β β= + + + + =…    

    
 (17.11) 
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Assume that the error variance 2
iσ  is described as 

 ( )2
1 2 2  ,  1, 2,...,i i m mif Z Z i nσ α α α= + + + =  

    
 (17.12) 

that is, 2
iσ  is some function of the nonstochastic variables 'sZ ; some or all of the 'sX  can 

serve as 'sZ . Specifically, assume that  
 2

1 2 2  ,  1,2,...,i i m miZ Z i nσ α α α= + + + =  
     

 (17.13) 

that is, 2
iσ  is a linear function of the 'sZ . If 2

2 3 10, ,m iα α α σ α= = = = = which is a constant. 

Therefore, to test whether 2
iσ  is homoscedastic, one can test the hypothesis that 

0 2 3: 0mH α α α= = = = .  
 
This is the basic idea behind the BPG test. The actual test procedure is as follows. 
Step 1. Estimate (17.11) by OLS and obtain the residuals 1 2, , , .ne e e…  

Step 2. Obtain the maximum likelihood (ML) estimator of 2σ  given by  
2 2

ie nσ =∑ . 

                   [Note: The OLS estimator is ( )2
ie n k−∑ .] 

Step 3. Construct an auxiliary variable ip  defined as  

  2 2
i ip e σ=

        
 (17.14) 

 which is simply each residual squared divided by 2σ . 
Step 4. Regress ip  thus constructed on the 'sZ  as 
 1 2 2    , i  1,2, ,ni i m mi ip Z Z vα α α= + + + + =  

 
  

where iv  is the residual term of this regression. Compute 
 1 2 2ˆ ˆ ˆˆ     i  1,2, ,ni i m mip Z Zα α α= + + + =      (17.15) 

Step 5. Obtain the ESS (explained sum of squares 
22ˆ= ip n p−∑  from Eq. (17.15) and define 

 / 2ESSΘ =  
 

        (17.16) 
 
Assuming iu are normally distributed, one can show that if there is homoscedasticity and if the 
sample size n increases indefinitely, then 

 2
1

asy

mχ −Θ∼     
     (17.17) 

that is, Θ follows the chi-square distribution with (m − 1) degrees of freedom. (Note: asy means 
asymptotically) 
 
Therefore, if in an application the computed Θ (obtained in Eq. (17.16)) exceeds the 
critical 2χ value at the chosen level of significance with m-1 d.f., one can reject the 
hypothesis of homoscedasticity; otherwise one does not reject it. 
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17.2.6. White’s General Heteroscedasticity Test: 
 

Unlike the Goldfeld–Quandt test, which requires reordering the observations with respect to the 
X  variable that supposedly caused heteroscedasticity, or the BPG test, which is sensitive to 
the normality assumption, the general test of heteroscedasticity proposed by White does not 
rely on the normality assumption and is easy to implement. As an illustration of the basic idea, 
consider the following three-variable regression model (the generalization to the k-variable 
model is straightforward): 
 1 2 2 3 3i i i iY X X uβ β β= + + +  

 
      (17.18) 

 
 
The White test procedure as follows: 
Step 1. Based on the given the data, we estimate the model (17.18) and obtain the residuals, ie . 
 
Step 2. We then run the following (auxiliary) regression: 
 2 2

1 2 2 3 3 4 2 5 3 6 2 3i i i i i i i ie X X X X X X vα α α α α α= + + + + + +  
 

  (17.19) 
That is, the squared residuals from the original regression are regressed on the original X  
variables or regressors, their squared values, and the cross product(s) of the regressors. Higher 
powers of regressors can also be introduced.  Note that there is a constant term in this equation 
even though the original regression may or may not contain it. Obtain the 2R  from this 
(auxiliary) regression. 
 
Step 3. Under the null hypothesis that there is no heteroscedasticity, it can be shown that 
sample size (n) times the 2R  obtained from the auxiliary regression asymptotically follows the 
chi-square distribution with d.f. equal to the number of regressors (excluding the constant term) 
in the auxiliary regression. That is, 
 2 2

dfasy
nR χ∼  

 
       (17.20) 

where d.f. is as defined previously. In our example, the d.f. is 5 since there are 5 regressors in 
the auxiliary regression. 
 
Step 4. If the chi-square value obtained in Eq. (17.20) exceeds the critical chi-square value at 
the chosen level of significance, the conclusion is that there is heteroscedasticity. If it does not 
exceed the critical chi-square value, there is no heteroscedasticity, which is to say that in the 
auxiliary regression Eq. (17.19), 2 3 4 5 6 0α α α α α= = = = = . 
 A comment with regard to the White test is, if a model has several regressors, then 
introducing all the regressors, their squared (or higher powered) terms, and their cross products 
can quickly consume degrees of freedom. Therefore, one must use caution in using the test. 
 
17.2.7. A test for homogeneity of variances: 

 
 If we have plentiful cross-section data we may apply this standard test for homogeneous 
variances to the Y  data.  If we split the data on endogenous variable Y  in to m classes 
according to the size of Y  and compute 
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( )

1

2

21

1 1

i

n

i
i

nm
i i

ni n n

i i
i i

s n

s n

λ
=

=

= =

=
∑ 

 
 

∏
∑ ∑

       (17.23) 

 where in = number of observations in ith class 

  ( )2

1

n

i ij i
j

s Y Y
=

= −∑        (17.24) 

Now under  2 2 2 2
0 1 2: mH σ σ σ σ= = = =…  

 
( )( )

2
1

1 1 1 1

2 log

and 2 log log log

e m

n n n m

e i e i i i e i i
i i i i
n s n n s n

µ λ χ

µ λ

−

= = = =

= −

   = − = −   
   
∑ ∑ ∑ ∑

∼
 (17.25) 

 
Then under the assumption of homogeneous variances, if calculated µ is greater than the table 

2χ value at given level of significance with m-1 d.f. then we may conclude that there is a 
problem of heteroscedasticity. 
 
17.2.8. Bartlet’s test for homogeneity of variances: 

 
It is a slightly modified and powerful of the above test and is given below: 

 

( )( )

( )

1 1 1

1

1

log log

1 1 11
3 1

where 1,  i=1,2, ,m   f=

m m m

e i i i e i i
i i i

m

i i

m

i i i
i

A f s f f s f

B
m f f

f n f

= = =

=

=

 = − 
 

 
= + − −  

= −

∑ ∑ ∑

∑

∑…

 

Under 0 :H homoscedasticity variances 

 2
1( )m

A approximately
B

χ −∼        (17.26) 

If A B greater than 2χ table value at 5% level of significance with m-1 d.f., then there is a 
problem of heteroscedasticity. 
 
Illustration 17.1: 
      The following table gives Per capita personal consumption expenditure ( )Y  and per capita 

disposable personal income ( )X  (in dollars) for the United States, 1970-1984, collected from 
20 families.  The data is arranged with respect to the order of per capita disposable personal 
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income ( )X . Using this data, examine for the presence of heteroscedasticity using Goldfeld–
Quandt test. 
 

Table 17.1 

 Family no. 
Y

(Expenditure) 
X  

(Income)  Family no. 
Y

(Expenditure) 
X  

(Income) 
1 6.1 6.2 11 25.5 26.1
2 8.0 8.1 12 25.0 28.3
3 10.3 10.3 13 29.3 30.1
4 12.1 12.1 14 31.2 32.3
5 13.1 14.1 15 33.1 34.5
6 14.8 16.4 16 31.8 36.6
7 17.9 18.2 17 33.5 38.0
8 19.8 20.1 18 38.8 40.2
9 19.9 22.3 19 40.7 42.3
10 21.6 24.1 20 38.6 44.7

  
Source: Introduction to Econometrics, Third Edition, G.S.MADDALA, 3rd Edition, John Wiley & 
Sons Ltd, p. 200. 
 
Solution: 
As suggested in the  Goldfeld–Quandt test, let us omit the central c=4 (9th to 12th ) observations 
and treat the sample pertaining to first 8 families as LOWER sample and the sample pertaining 
to last 8 families  as UPPER sample.   
In the first step let us obtain the OLS regressions for lower and upper samples separately as 
shown below.  
 

Lower Sample Upper Sample 

Family no. 
Y

(Expenditure) 
X  

(Income)  Family no. 
Y

(Expenditure) 
X  

(Income) 
1 6.1 6.2 13 29.3 30.1
2 8.0 8.1 14 31.2 32.3
3 10.3 10.3 15 33.1 34.5
4 12.1 12.1 16 31.8 36.6
5 13.1 14.1 17 33.5 38.0
6 14.8 16.4 18 38.8 40.2
7 17.9 18.2 19 40.7 42.3
8 19.8 20.1 20 38.6 44.7

From the Lower sample we have 

      
13.20X =

 
       

12.7625Y =
 2 1561X =∑  

 
2 1457Y =∑  

From the Upper sample we have 
       37.3375X =

         34.6250Y =
 2 11327X =∑  

2 9713Y =∑
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1507XY =∑  
ˆ 0.9539β =  

ˆ 0.1715α =  Regression equation: 
ˆ 0.1715 0.9539 Y X= +  

10475XY =∑  
ˆ 0.7641β =  
ˆ 6.0938α =  Regression equation: 
ˆ 6.0938 0.7641 Y X= +  

 
In the second step we compute RSS’s for lower and upper samples as shown below. 

Lower Sample Upper Sample 
Y  Ŷ  ie Y  Ŷ ie  

6.1 6.1808 -0.0808 29.3 29.0945 0.2055
8.0 7.8978 0.1022 31.2 30.7756 0.4244

10.3 9.9963 0.3037 33.1 32.4567 0.6433
12.1 11.7132 0.3868 31.8 34.0614 -2.2614
13.1 13.6210 -0.5210 33.5 35.1313 -1.6312
14.8 15.8149 -1.0149 38.8 36.8124 1.9876
17.9 17.5318 0.3682 40.7 38.4171 2.2829
19.8 19.3442 0.4558 38.6 40.2510 -1.6510

 Total 0.0000 Total 0.0001

2
1 iRSS = e 1.9035=∑  2

2 iRSS = e 20.2995=∑  

 
Now, from Eq. (17.10), the F-ratio of Goldfeld–Quandt test is computed as  

 

2

1

R S S d .f.
R S S d .f.

F =

 

where d.f.
20 4= 2 8 2 6

2 2
n c k− − = − − = − = 

 
 

           

20 .2995 6 10 .6643
1 .9035 6

F = =
 

The critical F-values from the F-tables are 6,6F =4.28  at 5% l.o.s.  and  6,6F =8.47  at 1% l.o.s. 

Conclusion drawn:
 

Since, the calculated F-ratio exceeds the critical F-values at both 5% and 1% l.o.s., we 
conclude that there is evidence of heteroscedasticity in the given data. 
 
Note:  The student is advised to examine for the presence of heteroscedasticity for the above 
given example using other tests viz., Park test, Glejser test, Spearman’s rank correlation test, 
and BPG test and see whether same conclusion is drawn or not. 
 
17.3  Remedies of Heteroscedasticity  

 
1. When 2

iσ  is Known: The Method of Weighted Least Squares 

2. When 2
iσ  is Not Known 

a. Generalized Lest Square Method 



 
 
 
 
Econometrics  17.11       Heteroscedasticity:..  
 

 
 

b. Log Transformation 
 

17.3.1.  When 2
iσ  is Known: The Method of Weighted Least Squares  

 
 If 2

iσ  is known, the most straightforward method of correcting heteroscedasticity is by means of 
weighted least squares, for the estimators thus obtained are BLUE. 
To illustrate the method, we use the two-variable model 1 2 i iY X uβ β= + + . The unweighted 
least-squares method minimizes 

 ( )2
2

1 2
ˆ ˆˆi i iu Y Xβ β= − −∑ ∑         (17.27) 

to obtain the estimates, whereas the weighted least-squares method minimizes the weighted 
residual sum of squares:  

 ( )2
2 * *

1 2
ˆ ˆˆi i i i iwu w Y Xβ β= − −∑ ∑        (17.28) 

where *
1̂β and *

2β̂  are the weighted least-squares estimators and where the weights iw  are such 
that  

 2

1
i

i

w
σ

=          (17.29) 

that is, the weights are inversely proportional to the variance of iu  or iY  conditional upon the 

given iX  , it being understood that ( ) ( ) 2var vari i i i iu X Y X σ= = . 

Differentiating Eq. (17.28) with respect to *
1̂β  and *

2β̂ , we obtain  

 ( )( )
2

* *
1 2*

1

ˆ ˆ ˆ2 1ˆ
i i

i i i

wu
w Y Xβ β

β
∂

= − − −
∂
∑ ∑  

 ( )( )
2

* *
1 2*

2

ˆ ˆ ˆ2ˆ
i i

i i i i

wu
w Y X Xβ β

β
∂

= − − −
∂
∑ ∑  

Setting the preceding expressions equal to zero, we obtain the following two normal equations: 
 * *

1 2
ˆ ˆ

i i i i iwY w w Xβ β= +∑ ∑ ∑        (17.30) 

 * * 2
1 2

ˆ ˆ
i i i i i i iw X Y w X w Xβ β= +∑ ∑ ∑        (17.31) 

Notice the similarity between these normal equations and the normal equations of the 
unweighted least squares.  
Solving these equations simultaneously, we obtain  
 * * * *

1 2
ˆ ˆY Xβ β= −          (17.32) 

and 

 
( )( ) ( )( )

( )( ) ( )
*
2 22

ˆ i i i i i i i i i

i i i i i

w X w X Y w X wY

w w X w X
β

−
=

−

∑ ∑ ∑ ∑
∑ ∑ ∑

    (17.33) 

Note: *
i i iY wY w=∑ ∑ and *

i i iX w X w= ∑ ∑ . As can be readily verified, these weighted 

means coincide with the usual or unweighted means Y  and X  when iw w= , a constant, for   
all i . 
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17.3.2. When 2
iσ  is Not Known: Generalized Least Squares Method: 

 
As noted earlier, if true 2

iσ  are known, we can use the WLS method to obtain BLUE estimators. 

Since the true 2
iσ  are rarely known, is there a way of obtaining consistent (in the statistical 

sense) estimates of the variances and covariances of OLS estimators even if there is 
heteroscedasticity? The answer is yes. 
  
 When there is a problem of heteroscedasticity we should not apply OLS method for 
regression analysis, instead that we should apply generalized least squares (GLS) method for 
regression analysis.  The GLS method is as given below:- 
In the case of heteroscedasticity, we may rewrite the general linear model as follows:- 
 1 2 2 3 3  1, 2, ,i i i k ki iY X X X u i nβ β β β= + + …+ + = …  

 with ( ) ( ) ( )2 2 20, 0   &  i i j i i iE u E u u if i j E u σ σ λ= = ≠ = =    (17.34) 

Where 2σ is unknown and iλ is known, which may be taken any one of the following forms, 
depending upon the application. 

 

( )
( )

( )
( )

22
0 1

2

0 1

2
2

0 1

2

0 1

(i)                        (v) 

(ii)                       (vi) 

(iii) 1                   (vii)

(iv) 1                    (viii) 

i i i i

i i i i

i i i i

i i i i

X a a X

X a a X

X a a X

X a a X

λ λ

λ λ

λ λ

λ λ

= = +

= = +

= = +

= = +

    (17.35) 

Here X is an important explanatory variable which is expected to be well associated with the 
( )var iu .  In the above 0a  and 1a may be obtained by regressing the OLS residuals ie on iX or 

1
iX
− or 1/ 2

iX or 1/ 2
iX
−  . 

The general linear models given in (17.34) can be written in the matrix notation as follows:- 
 y = Xβ + u          (17.36) 

With  ( )E =u 0  and ( ) ( ) 2var E σ′= = Ωu uu  

 When ( )1 2, , , ndiag λ λ λΩ = …   

Since Ω  is positive definite matrix there exists a nonsingular matrix P  such that 
 ( )1 2where , , , ndiag λ λ λ′Ω = =PP  P …    

So that ( )′ -1-1
nP Ω P = I          (17.37) 

Premultiplying (17.36) with -1P we get   
 * * *y = X β + u           (17.38) 

where * = -1y P y , * X= -1X P , and * = -1u P u       (17.39) 

with i. ( )*E =u 0 ,   
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( ) ( )( ) ( )

( )

1 1* * 2 2ii.      

                                                            from Eqs. (17.36) & (17.37)

nE E Iσσ− −′ ′ ′ ′= = Ω =-1 -1u u P uu P P P

∵
      (17.40) 

Thus Eq. (17.38) is now the classical linear model for which we can apply OLS method.  The 
OLS estimator of β  in (17.38) is given by  

  

( )
( )( ) ( )

( )( ) ( )

( )

1
* * * *

11 1

11 1

1
1 1

 

 

                                                                                    (17.41)

P

−

−− −

−− −

−
− −

′=

′ ′ ′ ′=

′ ′′ ′=

′ ′= Ω Ω

-1 -1

b X X X y

X P X X P P y

X PP X X PP y

X X X y

 

which is called the GLS estimator of  β  of the model (17.36), which is also BLUE of βand its 
minimum variance is given by 
 

  ( ) ( ) ( )1 1
2 * * 2 1var b σ σ

− −
−′ ′= = ΩX X X X      (17.42) 

An unbiased estimator of 2σ is given by 

 
( ) ( )

2

n k n k
σ

′ ′Ω
= =

− −

* *e e e e
       (17.43) 

 
where   

 
( )

( )
* * *   using OLS formulae

   

= −

= -1 -1

e y X b

P y - Xb = P e
 

Here *e  is OLS residual vector of (17.38) 
and e is GLS residual vector of (17.36) 
 Thus GLS estimator ( )b of β for model can be obtained by applying OLS method to the 

model (17.38). 
 
 The GLS estimator, thus, can be computed form (17.41) for a given Ω and standard 
errors of the estimates can be obtained using (17.42) & (17.43) so that the usual significance 
tests and confidence intervals can be constructed for ' siβ . 
 
 Thus applying GLS method to the original data is equivalent to applying OLS method to 
the transformed data (where the type of transformation depends upon the nature of 
heteroscedasticity given in Eq. (17.35)). 
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17.3.3. Log Transformation: 
 
If instead of running the regression (17.34) we can run the regression equation . 
 1 2 2 3 3log log log logi i i k ki iY X X X uβ β β β= + + +…+ +    (17.44) 
Very often this model reduce the problem of heteroscedasticity. This is because log 
transformation compresses the scales in which the variables are measured.  There by reducing 
a tenfold difference between two values to a two fold difference.  Thus, the number 80 is 10 
times of 8, loge80(=4.382) is only twice as range as loge8(=2.0794). 
 
 An additional advantage of the log-transformation is that the slope coefficients i'sβ
measure the elasticities of Y with respect to lX , explanatory variable that is percentage change 
in Y for a percentage change in lX for example, if Y is consumption and 2X is income, 2β in 
(17.34) will measure only the rate of change of mean consumption for a unit change in income, 
where as 1β in transformed model (17.44) measures income elasticity. 
 
 It is one reason why the log models are quite popular in empirical econometrics. 
 Suppose we want to run the regression function 
 0 1i i iY X uβ β= + +         (17.45) 

 where  iX = Labour productivity from ith firm 
   iY = Labour compensation for ith firm . 

1.  Test for heteroscedasticity using Glejser approach 
(form is 0 1i ie a a X= + ) 

2. If heteroscedasticity presents, obtain the estimates of 0 1&β β using GLS method. 
Note : 
 If 0 1i i iY X uβ β= + + and ( ) 2var i iu σ λ=      (17.46) 

Then transform the above model by dividing it with iλ which results into the model 

 *
0 0 1 1i i i iY z z vβ β= + +         (17.47) 

Where  

 

*

0

1

1
i i i

i i

i i i

i i i

Y Y

z

z X

v u

λ

λ

λ

λ

=

=

=

=

 

Now ( ) ( ) ( ) 2ar
var var i

i i i
i

v u
v u λ σ

λ
= = =  

Now applying GLS (WLS) method to model (17.46) equivalent to applying OLS method to  
model (17.47), which is optimum in practical situation. 
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REMARKS:  
1. Documenting the consequences of heteroscedasticity is easier than detecting it. 
There are several diagnostic tests available, but one cannot tell for sure which will work 
in a given situation. 
 
2. Even if heteroscedasticity is suspected and detected, it is not easy to correct the 
problem. If the sample is large, one can obtain White’s heteroscedasticity corrected 
standard errors of OLS estimators and conduct statistical inference based on these 
standard errors. 
3. Otherwise, on the basis of OLS residuals, one can make educated guesses of the 
likely pattern of heteroscedasticity and transform the original data in such a way that in 
the transformed data there is no heteroscedasticity. 
 

3. We emphasize that all the transformations discussed previously are ad hoc; we are 
essentially speculating about the nature of 2

iσ  . Which of the transformations discussed 
previously will work will depend on the nature of the problem and the severity of 
heteroscedasticity. There are some additional problems with the transformations we 
have considered that should be borne in mind: 
 

i). When we go beyond the two-variable model, we may not know a priori which 
of the X variables should be chosen for transforming the data. 
 
ii). Log transformation as discussed in section 17.3 is not applicable if some of 
the Y and X values are zero or negative. 
 
iii). When 2

iσ  are not directly known and are estimated from one or more of the 
transformations that we have discussed earlier, all our testing procedures using 
the t tests, F tests, etc., are strictly speaking valid only in large samples. 
Therefore, one has to be careful in interpreting the results based on the various 
transformations in small or finite samples. 
 

  17.4 Self Assessment Questions  
 
1. Explain various detection methods of heteroscedasticity. 
2. Explain Park test for detecting the heteroscedasticity. 
3. Explain Glejser’s test for detecting the heteroscedasticity. 
4. Describe Spearman rank correlation test for detecting the heteroscedasticity. 
5. Describe Gold-field test for detecting the heteroscedasticity. 
6. Explain Breusch–Pagan–Godfrey (BPG) test for detecting the heteroscedasticity. 
7. Explain White’s test for detecting the heteroscedasticity. 
8. Explain Bartlett’s test for testing the homogeneity of variances. 
9. Detail the problem of heteroscedasticity and describe a test procedure for detection of this 

problem. 
10. Explain the method of weighted least squares. 
11. Distinguish between weighted least squares method and ordinary least squares method. 
12. Derive the weighted least squares estimators of the parameters of a linear model with 

heteroscedastic disturbances. 
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13. Distinguish between weighted least squares method and ordinary least squares method. 
14. Derive the weighted least squares estimators in a linear model with heteroscedastic 

disturbances. 
15. Derive the generalized least squares estimators in a linear model with heteroscedastic 

disturbances. 
16. Distinguish between weighted least squares method and generalized least squares method. 
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Lesson 18 
 

AUTO CORRELATION - NATURE, SOURCES 
AND CONSEQUENCES 

 

18.0 Objective: 
 

In Lesson 16 we considered the consequences of relaxing the assumption that the 
disturbance (error) terms have common variance (homoscedasticity).  We now come to the next 
assumption that the disturbance terms in the regression model are independent.   This lesson 
relaxes this assumption, which means the disturbances are correlated.  The objective of this 
lesson is to discuss the nature, sources and consequences of correlated disturbances.   

 
Structure of the Lesson: 
 

18.1 Introduction 
18.2 The nature and sources of autocorrelation 
18.3 OLS estimation in the presence of autocorrelation 
18.4 Consequences of using OLS in the presence of autocorrelation 
18.5 Summary and Conclusions 
18.6 Self Assessment Questions 
18.7 References  
 

18.1 Introduction 
 

 The student may note that there are generally three types of data that are available for 
empirical analysis: (1) cross section, (2) time series, and (3) combination of cross section and 
time series, also known as pooled data. In developing the classical linear regression model 
(CLRM) we made several assumptions. However, we noted that not all these assumptions 
would hold in every type of data. As a matter of fact, we saw in the previous lessons that the 
assumption of homoscedasticity, or equal error variance, may not be always tenable in cross-
sectional data. In other words, cross-sectional data are often plagued by the problem of 
heteroscedasticity. However, in cross-section studies, data are often collected on the basis of a 
random sample of cross-sectional units, such as households (in a consumption function 
analysis) or firms (in an investment study analysis) so that there is no prior reason to believe 
that the error term pertaining to one household or a firm is correlated with the error term of 
another household or firm. If by chance such a correlation is observed in cross-sectional units, it 
is called spatial autocorrelation, that is, correlation in space rather than over time. However, it is 
important to remember that, in cross-sectional analysis, the ordering of the data must have 
some logic, or economic interest, to make sense of any determination of whether (spatial) 
autocorrelation is present or not. 
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The situation, however, is likely to be very different if we are dealing with time series 
data, for the observations in such data follow a natural ordering over time so that successive 
observations are likely to exhibit inter-correlations, especially if the time interval between 
successive observations is short, such as a day, a week, or a month rather than a year. If you 
observe stock price indexes, such as the BSE SENSEX or NSE NIFTY over successive days, it 
is not unusual to find that these indexes move up or down for several days in succession. 
Obviously, in situations like this, the assumption of no autocorrelation (no serial correlation) in 
the error terms that underlies the CLRM will be violated. 

 
In this lesson we take a critical look at this assumption with a view to answering the following 
questions: 

1. What is the nature and sources of autocorrelation? 
2. What are the theoretical and practical consequences of autocorrelation? 

 
The student will find this lesson is in many ways similar to Lesson 16 on 

heteroscedasticity in that under both heteroscedasticity and autocorrelation, the usual OLS 
estimators, although linear, unbiased, and asymptotically (i.e., in large samples) normally 
distributed, are no longer minimum variance among all linear unbiased estimators. In short, they 
are not efficient relative to other linear and unbiased estimators. Put differently, they may not be 
BLUEs. As a result, the usual, t , F , and 2χ may not be valid. 
 
18.2 The Nature and Sources of Autocorrelation 

 
The term autocorrelation may be defined as “correlation between members of series of 

observations ordered in time [as in time series data] or space [as in cross-sectional data]’’.   In 
the regression context, the CLRM assumes that such autocorrelation does not exist in the 
disturbances iu . Symbolically, 

( ) 0   for all i jE u u i j= ≠  
Put simply, the CLRM assumes that the disturbance term relating to any observation is 

not influenced by the disturbance term relating to any other observation. For example, if we are 
dealing with quarterly time series data involving the regression of output on labor and capital 
inputs and if, say, there is a labour strike affecting output in one quarter, there is no reason to 
believe that this disruption will be carried over to the next quarter. That is, if output is lower this 
quarter, there is no reason to expect it to be lower next quarter. Similarly, if we are dealing with 
cross-sectional data involving the regression of family consumption expenditure on family 
income, the effect of an increase of one family’s income on its consumption expenditure is not 
expected to affect the consumption expenditure of another family. However, if there is such 
dependence, we have autocorrelation. Symbolically, 

( ) 0   for all i jE u u i j≠ ≠
 

 
In this situation, the disruption caused by a strike this quarter may very well affect output 

next quarter, or the increases in the consumption expenditure of one family may very well 
prompt another family to increase its consumption expenditure. 
 

Before we find out why autocorrelation exists, it is essential to clear up some 
terminological questions. Although it is now a common practice to treat the terms 
autocorrelation and serial correlation synonymously, some authors prefer to distinguish the two 
terms. For example, Tintner defines autocorrelation as “lag correlation of a given series with 
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itself, lagged by a number of time units,’’ whereas he reserves the term serial correlation to “lag 
correlation between two different series.’’ Thus, correlation between two time series such as 

1 2 10, , ,u u u… and 2 3 11, , ,u u u… , where the former is the latter series lagged by one time period, is 
autocorrelation, whereas correlation between time series such as 1 2 10, , ,u u u…  and 2 3 11, , ,v v v… , 
where u and v are two different time series, is called serial correlation.  

 
The following are the reasons or sources of autocorrelation: 
1. Inertia. A salient feature of most economic time series is inertia, or sluggishness. As is well 

known, time series such as GNP, price indexes, production, employment, and 
unemployment exhibit (business) cycles. Starting at the bottom of the recession, when 
economic recovery starts, most of these series start moving upward. In this upswing, the 
value of a series at one point in time is greater than its previous value. Thus there is a 
“momentum’’ built into them, and it continues until something happens (e.g., increase in 
interest rate or taxes or both) to slow them down. Therefore, in regressions involving time 
series data, successive observations are likely to be interdependent. 
 

2. Specification Bias: Excluded Variables Case. In empirical analysis the researcher often 
starts with a plausible regression model that may not be the most “perfect’’ one. After the 
regression analysis, the researcher does the postmortem to find out whether the results 
accord with a priori expectations. If not, surgery is begun. For example, the researcher may 
plot the residuals ie obtained from the fitted regression and may observe the patterns of the 
plots. These residuals (which are proxies for iu ) may suggest that some variables that were 
originally members but were not included in the model for a variety of reasons should be 
included. This is the case of excluded variable specification bias. Often the inclusion of such 
variables removes the correlation pattern observed among the residuals. For example, 
suppose we have the following demand model: 

 
 

  t 1 2 2t 3 3t 4 4t tY  =  + X  + X  + X  + uβ β β β      (18.1) 
 where Y = quantity of beef demanded, 2X = price of beef, 3X = consumer income,             

4X  = price of pork, and t = time. However, for some reason we run the following regression: 

  t 1 2 2t 3 3t tY  =  + X  + X  + vβ β β        (18.2) 
 Now if model (18.1) is the “correct’’ model or “true” relation, running model (18.2) is 

tantamount to letting t 4 4tX + tv uβ= . And to the extent the price of pork affects the 
consumption of beef, the error or disturbance term v will reflect a systematic pattern, thus 
creating (false) autocorrelation. A simple test of this would be to run both models (18.1) and 
(18.2) and see whether autocorrelation, if any, observed in model (18.2) disappears when 
model (18.1) is run. The actual mechanics of detecting autocorrelation will be discussed in 
next lesson.  

 
3. Specification Bias: Incorrect Functional Form. Suppose the true or correct model in a 

cost-output study is as follows: 

  
2

1 2 3Marginal cost  =  + output  + output +ui i i iβ β β     (18.3) 
 but we fit the following model: 
  1 2Marginal cost  =  + outputi i ivα α +       (18.4) 
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 The disturbance term iv is, in fact, equal to 3β
2output iu+ , and hence will catch the 

systematic effect of the 2output term on marginal cost. In this case, iv will reflect 
autocorrelation because of the use of an incorrect functional form. 

 
4. Cobweb Phenomenon. The supply of many agricultural commodities reflects the so-called 

Cobweb phenomenon, where supply reacts to price with a lag of one time period because 
supply decisions take time to implement (the gestation period). Thus, at the beginning of this 
year’s planting of crops, farmers are influenced by the price prevailing last year, so that their 
supply function is 
 

  1 2 1supplyt t tP uβ β −= + +        (18.5) 
 Suppose at the end of period t , price tP turns out to be lower than 1tP− .Therefore, in period 

1t + farmers may very well decide to produce less than they did in period t . Obviously, in 
this situation the disturbances tu are not expected to be random because if the farmers 
overproduce in year t , they are likely to reduce their production in 1t + , and so on, leading 
to a Cobweb pattern. 

 
5. Lags. In a time series regression of consumption expenditure on income, it is not 

uncommon to find that the consumption expenditure in the current period depends, among 
other things, on the consumption expenditure of the previous period. That is, 

  t 1 2 3 -1Consumption  = + income consumptiont t tuβ β β+ +    (18.6) 
 A regression such as (18.6) is known as autoregression because one of the explanatory 

variables is the lagged value of the dependent variable.  The rationale for a model such as 
(18.6) is simple. Consumers do not change their consumption habits readily for 
psychological, technological, or institutional reasons. Now if we neglect the lagged term in 
(18.6), the resulting error term will reflect a systematic pattern due to the influence of lagged 
consumption on current consumption. 

 
6. Manipulation of Data. In empirical analysis, the raw data are often “manipulated’’. For 

example, in time series regressions involving quarterly data, such data are usually derived 
from the monthly data by simply adding three monthly observations and dividing the sum by 
3. This averaging introduces smoothness into the data by dampening the fluctuations in the 
monthly data. Therefore, the graph plotting the quarterly data looks much smoother than the 
monthly data, and this smoothness may itself lend to a systematic pattern in the 
disturbances, thereby introducing autocorrelation. Another source of manipulation is 
interpolation or extrapolation of data. For example, the Census of Population is conducted 
every 10 years in our country, the last being in 2010 and the one before that in 2000. Now if 
there is a need to obtain data for some year within the intercensus period2000–2010, the 
common practice is to interpolate on the basis of some adhoc assumptions. All such data 
“massaging’’ techniques might impose upon the data a systematic pattern that might not 
exist in the original data. 
 

7. Data Transformation. As an example of this, consider the following model 

  1 2t t tY X uβ β= + +         (18.7) 
 where, say, Y = consumption expenditure and X = income. Since Eq. (18.7) holds true at 

every time period, it holds true also in the previous time period ' -1't . So, we can write      
Eq. (18.7) as 
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  1 1 2 1 1t t tY X uβ β− − −= + +        (18.8) 

 1tY − , 1tX − , and 1tu −  are known as the lagged values of Y , X , and u ,respectively, here 
lagged by one period. Now if we subtract Eq. (18.8) from Eq. (18.7), we obtain 

  2t t tY X uβ∆ = ∆ + ∆         (18.9) 
 where ∆ , known as the first difference operator, tells us to take successive differences of 

the variables in question. Thus, 1t t tY Y Y −∆ = − , 1t t tX X X −∆ = − , and 1t t tu u u −∆ = − . For 
empirical purposes, we write(18.9) as 

  2t t tY X vβ∆ = ∆ +         (18.10) 

 where ( )1t t t tv u u u −= ∆ = − . 
 
 Equation (18.8) is known as the level form and Eq. (18.9) is known as the (first) 
difference form. Both forms are often used in empirical analysis. For example, if in Eq. (18.8) Y
and X represent the logarithms of consumption expenditure and income, then in           Eq. 
(18.9) Y∆ and X∆ will represent changes in the logs of consumption expenditure and income. 
But as we know, a change in the log of a variable is a relative change, or a percentage change, 
if the former is multiplied by 100. So, instead of studying relationships between variables in the 
level form, we may be interested in their relationships in the growth form. 
 

Now if the error term in Eq. (18.7) satisfies the standard OLS assumptions, particularly 
the assumption of no autocorrelation, it can be shown that the error term tv in Eq. (18.10) is 
autocorrelated. It may be noted here that models like Eq. (18.10) are known as dynamic 
regression models, that is, models involving lagged regressand.  
 
  The point of the preceding example is that sometimes autocorrelation may be induced 

as a result of transforming the original model. 
 
18.3 OLS Estimation in the presence of Autocorrelation 

 
What happens to the OLS estimators and their variances if we introduce autocorrelation in 

the disturbances by assuming that ( ) ( )0 s 0t t sE u u + ≠ ≠ but retain all the other assumptions of 
the classical model? Note again that we are now using the subscript t on the disturbances to 
emphasize that we are dealing with time series data. 

 
We revert once again to the two-variable regression model to explain the basic ideas 

involved, namely, 1 2 tY Xt tuβ β= + + . To make any headway, we must assume the mechanism 

that generates tu , for ( ) ( )0 s 0t t sE u u + ≠ ≠ is too general an assumption to be of any practical 
use. As a starting point, or first approximation, one can assume that the disturbances are 
generated by the following mechanism 
 1 ,    -1< <1t t tu uρ ε ρ−= +        (18.11) 
where ρ  is known as the coefficient of autocovariance and where tε is the stochastic 
disturbance term such that it satisfied the standard OLS assumptions, namely, 
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( )
( )

( )

2

         0

     var

cov 0     0

t

t

t t s

E

s
ε

ε

ε σ

ε ε +

=

=

= ≠        

(18.12) 

 The scheme in Eq. (18.11) is known as Markov first-order autoregressive scheme, or 
simply a first-order autoregressive scheme, usually denoted as AR(1). The name 
autoregressive is appropriate because Eq. (18.11) can be interpreted as the regression of tu on 
itself lagged one period. It is first order because tu and its immediate past value are involved; 
that is, the maximum lag is 1. If the model were 1 1 2 2t t t tu u uρ ρ ε− −= + + , it would be an AR(2), o 
second-order, autoregressive scheme, and so on.  The coefficient of autocovariance ρ  in Eq. 
(18.11), can also be interpreted as the first-order coefficient of autocorrelation, or more 
accurately, the coefficient of autocorrelation at lag 1. 
 
Given the AR(1) scheme, it can be shown that  

 ( ) ( )
2

2
2var t tu E u εσ

ρ
= =        (18.13) 

 ( ) ( )
2

2cov
1

s
t t s t t su u E u u εσρ

ρ+ −= =
−

      (18.14) 

 ( )co ,     s=1,2, . . .s
t t sr u u ρ+ =       (18.15) 

Note that because of the symmetry property of covariances and correlations,
( ) ( )cov covt t s t t su u u u+ −= and ( ) ( )co r co rt t s t t su u u u+ −= . 

 
Since ρ is a constant between −1 and +1, Eq. (18.13) shows that under the AR(1) 

scheme, the variance of tu is still homoscedastic, but tu is correlated not only with its immediate 

past value but its values several periods in the past. It is critical to note that 1ρ < . If, for 

example 1,ρ = the variances and covariances listed above are not defined. If 1ρ < , then it is 
clear from Eq. (18.14) that the value of the covariance will decline as we go into the distant past.  

 
One reason we use the AR(1) process is not only because of its simplicity compared to 

higher-order AR schemes, but also because in many applications it has proved to be quite 
useful. Additionally, a considerable amount of theoretical and empirical work has been done on 
the AR(1) scheme. 

 
Now return to our two-variable regression model: 1 2 tY X .t tuβ β= + +  We know that the 

OLS estimator of the slope coefficient is 

 2 t2
ˆ ,    where   t t

t t t
t

x y
x X X and y Y Y

x
β = = − = −∑

∑
    (18.16) 

and its variance is given by 

( )
2

2 2
ˆvar

ix
σβ =
∑

        (18.17) 

Now under the AR(1) scheme, it can be shown that the variance of this estimator is: 
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( )
2

1 2 12 1
2 2 2 2 21

ˆvar 1 2 2 2t t t t nn

AR
t t t t

x x x x x x
x x x x

σβ ρ ρ ρ− − −
 

= + + + + 
  

∑ ∑ ∑
∑ ∑ ∑ ∑

  (18.18) 

where ( )2 1
ˆvar

AR
β  means the variance of 2β̂ under first-order autoregressive scheme.  

A comparison of Eq. (18.18) with Eq. (18.17) shows the former is equal to the latter times a term 
that depends on ρ as well as the sample autocorrelations between the values taken by the 
regressor X at various lags. And in general we cannot foretell whether ( )2

ˆvar β  is less than or 

greater than ( )2 1
ˆvar

AR
β . Of course, if 0ρ = , the two formulas will coincide.  Also, if the 

correlations among the successive values of the regressor are very small, the usual OLS 
variance of the slope estimator will not be seriously biased. But, as a general principle, the two 
variances will not be the same. 
 

To give some idea about the difference between the variances given in Eqs. (18.17) and 
(18.18), assume that the regressor X also follows the first-order autoregressive scheme with a 
coefficient of autocorrelation of r. Then it can be shown that Eq. (18.18) reduces to: 

 ( ) ( )
2

2 22(1)

1 1ˆ ˆvar var
1 1AR OLS

t

r r
x r r

σ ρ ρβ β
ρ ρ

   + +
= =   − −   ∑

    (18.19) 

If, for example, r = 0.6 and ρ = 0.8, using Eq. (18.19) we can check that

( ) ( )2 21
ˆ ˆvar 2.8461var

AR OLS
β β= .To put it another way, ( ) ( )2 2 1

1ˆ ˆvar var
2.8461OLS AR

β β=

( )2 1
ˆ0.3513var

AR
β= . That is, the usual OLS formula [i.e. Eq. (18.17)] will underestimate the 

variance of ( )2 1
ˆ

AR
β  by about 65 percent. The point of this exercise is to warn you that a blind 

application of the usual OLS formulae to compute the variances and standard errors of the OLS 
estimators could give seriously misleading results. 

 
Suppose we continue to use the OLS estimator 2β̂ and adjust the usual variance formula by 

taking into account the AR(1) scheme. That is, we use 2β̂ given by Eq. (18.16) but use the 

variance formula given by Eq. (18.18). What now are the properties of 2β̂ ? It is easy to prove 

that 2β̂  is still linear and unbiased. As a matter of fact, the assumption of no serial correlation, 

like the assumption of no heteroscedasticity, is not required to prove that 2β̂  is unbiased. Is 2β̂
still BLUE? Unfortunately, it is in the class of linear unbiased estimators, but it does not have 
minimum variance. In short, 2

ˆ ,β  although linear unbiased, is not efficient. The student will notice 

that this finding is quite similar to the finding that 2β̂  is less efficient in the presence of 

heteroscedasticity. There we saw that the weighted least-square estimator *
2β̂  studied in Section 

17.3 of Lesson 17, a special case of the generalized least-squares (GLS) estimator, was 
efficient. In the case of autocorrelation can we find an estimator that is BLUE? The answer is 
yes, as can be seen from the discussion in the next lesson. 
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18.4 Consequences of using OLS in the presence of autocorrelation 
 
As in the case of heteroscedasticity, in the presence of autocorrelation the OLS estimators 

are still linear unbiased as well as consistent and asymptotically normally distributed, but they 
are no longer efficient (i.e., minimum variance). What then happens to our usual hypothesis 
testing procedures if we continue to use the OLS estimators? Again, as in the case of 
heteroscedasticity, we distinguish two cases. We continue to work with the two-variable model, 
although the following discussion can be extended to multiple regressions without much trouble. 

 
18.4.1 OLS estimation allowing for autocorrelation: 

As noted, 2β̂  is not BLUE, and even if we use ( )2 1
ˆvar

AR
β , the confidence intervals 

derived from there are likely to be wider than those based on the GLS procedure. This result is 
likely to be the case even if the sample size increases indefinitely. That is, 2β̂ is not 
asymptotically efficient. The implication of this finding for hypothesis testing is clear: We are 
likely to declare a coefficient statistically insignificant (i.e., not different from zero) even though 
in fact (i.e., based on the correct GLS procedure) it may be.  
The message is: To establish confidence intervals and to test hypotheses, one should use 
GLS and not OLS even though the estimators derived from the latter are unbiased and 
consistent.  
 
18.4.2 OLS estimation disregarding autocorrelation: 
The situation is potentially very serious if we not only use 2β̂  but also continue to use 

( ) 2 2
2

ˆvar txβ σ= ∑ , which completely disregards the problem of autocorrelation, that is, we 

mistakenly believe that the usual assumptions of the classical model hold true. Errors will arise 
for the following reasons: 

1. The residual variance ( )2 2ˆ 2ie nσ = −∑  is likely to underestimate the true 2σ . 

2. As a result, we are likely to under estimate RSS and hence to overestimate 2R . 

3. Even if 2σ  is not underestimated, ( )2
ˆvar β  may underestimate its variance under (first-

order) autocorrelation ( )2 1
ˆvar

AR
β  [given in Eq. (18.18)]. 

4. Therefore, the usual t and F tests of significance are no longer valid, and if applied, are 
likely to give seriously misleading conclusions about the statistical significance of the 
estimated regression coefficients. 

 To establish some of these propositions, let us revert to the two-variable model. We 
know that under the classical assumption 
 ( )2 2ˆ 2ie nσ = −∑         (18.20)

 provides an unbiased estimator of 2σ , that is, ( )2 2ˆE σ σ= . But, if there is autocorrelation, 
given by AR(1), it can be shown that 

 ( ) ( )2
2

2 1 2
ˆ

2

n r
E

n
σ ρ ρ

σ
 − − −   =

−
      (18.21) 
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where 
1

2
1

1 1

n n

t t t
t t

r x x x
−

−
= =

=∑ ∑ , which can be interpreted as the (sample)correlation coefficient 

between successive values of the 'sX . If ρ and r are both positive (not an unlikely assumption 

for most economic time series), it is apparent from Eq. (18.21) that ( )2 2ˆE σ σ< ; that is, the 

usual residual variance formula, on average, will underestimate the true 2σ . In other words, 2σ̂

will be biased downward. Needless to say, this bias in 2σ  will be transmitted to ( )2
ˆvar β  

because in practice we estimate the latter by the formula 2 2ˆ ixσ ∑ . 

But even if 2σ̂  is not underestimated, ( )2
ˆvar β is a biased estimator of ( )2 1

ˆvar
AR

β , which 

can be readily seen by comparing Eq. (18.17) with Eq. (18.18),for the two formulas are not the 
same. As a matter of fact, if ρ is positive (which is true of most economic time series) and the

'sX  are positively correlated (also true of most economic time series), then it is clear that 

 ( ) ( )2 2 1
ˆ ˆvar var

AR
β β<         (18.22) 

that is, the usual OLS variance of 2β̂  underestimates its variance under AR(1) [see Eq. 

(18.19)]. Therefore, if we use ( )2
ˆvar β , we shall inflate the precision or accuracy (i.e., 

underestimate the standard error) of the estimator 2β̂ . As a result, in computing the t ratio as 

( )2 2
ˆ ˆt SEβ β=  (under H0: 2β  = 0), we shall be overestimating the t value and hence the 

statistical significance of the estimated 2β . The situation is likely to get worse if additionally 2σ  
is underestimated, as noted previously. 
 
18.5 SUMMARY AND CONCLUSIONS 
 
1. If the assumption of the classical linear regression model—that the errors or disturbances 
entering into the model are random or uncorrelated—is violated, the problem of serial or auto 
correlation arises. 
 
2. Autocorrelation can arise for several reasons, such as inertia or sluggishness of economic 
time series, specification bias resulting from excluding important variables from the model or 
using incorrect functional form, the cobweb phenomenon, data massaging, and data 
transformation.  
 
3. Although in the presence of autocorrelation the OLS estimators remain unbiased, consistent, 
and asymptotically normally distributed, they are no longer efficient. As a consequence, the 
usual t, F and 2χ  tests cannot be legitimately applied. Hence, remedial measures may be 
called for and are discussed in the next lesson. 
 
18.6 Self Assessment Questions  
 
1. Define the concept of Auto correlation with reference to a two-variable linear model with first 

order-Auto regression scheme. 
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2. Distinguish between simple correlation and serial correlation. 
3. Define the concept of autocorrelation with reference to a two-variable linear model with first 

order-autoregressive scheme. 
4. Explain Auto-correlation with suitable examples. 
5. Explain various sources of auto correlation. 
6. Define Auto Correlation.  Explain the problem of auto Correlation in two variable linear 

model. 
7.  Explain the consequences of autocorrelation if we apply OLS estimation method. 
8. Explain the consequences if we apply OLS estimation method disregarding autocorrelation. 
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Lesson 19 
 

AUTOCORRELATION – DETECTION AND 
REMEDIES 

19.0 Objective: 
 
 This lesson is continuation of Lesson 18 and after studying this lesson, the student will 
be familiarized with some popular detection methods such as Durbin-Watson d test as well as 
some remedies of autocorrelation. 
 
Structure of the Lesson: 
 

19.1 Introduction 
19.2 Detection of autocorrelation  
19.3 Estimation of relationships with autocorrelated disturbances 
19.4 Summary and conclusions 
19.5 Self Assessment Questions 
19.6 References 

 

19.1 Introduction 
 

Recall that the assumption of no autocorrelation of the classical linear regression model 
(CLRM) relates to the population disturbances tu , which are not directly observable. Therefore, 
how does one know that there is autocorrelation in any given situation? How does one remedy 
the problem of autocorrelation?  Instead of the unobservable disturbances, we have their 
proxies, the residuals 't se , which can be obtained by the usual OLS procedure. Although the

't se are not the same thing as ' ,tu s  very often a visual examination of the 't se  gives us some 
clues about the likely presence of autocorrelation in the 'su . Actually, a visual examination of 

't se or ( 2 't se ) can provide useful information not only about autocorrelation but also about 
heteroscedasticity.   In Section 19.2, we study some popular methods of the detection of 
autocorrelation while in Section 19.3, we explain some estimation methods in the presence of 
autocorrelation.  In Section 19.4, we present the brief summary and conclusions. 

 
19.2 Detection of Autocorrelation  

 
1. Graphical Method 

 
The importance of producing and analyzing plots of [residuals] as a standard part of 

statistical analysis cannot be overemphasized. Besides occasionally providing an easy to 
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understand summary of a complex problem, they allow the simultaneous examination of the 
data as an aggregate while clearly displaying the behavior of individual cases. 

 
There are various ways of examining the residuals. We can simply plot them against time, 

the time sequence plot. Alternatively, we can plot the standardized residuals against time. The 
standardized residuals are simply the residuals ( 't se ) divided by the standard error of the 

regression ( )σ̂ , that is, they are ( )ˆte σ . Notice that the residuals 't se and σ̂ are measured in 

the units in which the regress andY is measured. The values of the standardized residuals will 
therefore be pure numbers (devoid of units of measurement) and can be compared with the 
standardized residuals of other regressions. Moreover, the standardized residuals, like 't se , 

have zero mean  and approximately unit variance. In large samples ( )ˆte σ  is approximately 
normally distributed with zero mean and unit variance. 

 
The graphical method we have just discussed, although powerful and suggestive, is 

subjective or qualitative in nature. But there are several quantitative tests that one can use to 
supplement the purely qualitative approach. We now consider some of these tests. 

 
2. Durbin–Watson d Test 

 
The most celebrated test for detecting autocorrelation is that developed by statisticians 

Durbin and Watson. It is popularly known as the Durbin–Watson d statistic, which is 
computed from the vector of OLS residuals ˆ.e = y - Xβ

 
It is denoted in the literature variously as 

d or DW and is defined as 
  
 
 
 
 
 
 
           (19.1) 
 
which is simply the ratio of the sum of squared differences in successive residuals to the RSS. 
Note that in the numerator of the d statistic the number of observations is 1n −  because one 
observation is lost in taking successive differences. A great advantage of the d statistic is that it 
is based on the estimated residuals, which are routinely computed in regression analysis. 
Because of this advantage, it is now a common practice to report the Durbin–Watson d along 
with summary measures, such as 2 ,R adjusted 2 ,R  t , and .F   Although it is now routinely 
used, it is important to note the assumptions underlying the d statistic. 
 
1. The regression model includes the intercept term. If it is not present, as in the case of the 

regression through the origin, it is essential to rerun the regression including the intercept 
term to obtain the RSS. 

2. The explanatory variables, the 'sX  are nonstochastic, or fixed in repeated sampling. 

( )2
1

2

2

1

n

t t
t

n

t
t

e e
d

e

−
=

=

−
=
∑

∑
   



 
 
 
Econometrics  19.3       Auto Correlation – Detection …..  
 

 
 

3. The disturbances 'stu are generated by the first-order autoregressive scheme, 

1 .t t tu uρ ε−= +   Therefore, it cannot be used to detect higher-order autoregressive 
schemes. 

4. The error term tu is assumed to be normally distributed. 
5. The regression model does not include the lagged value(s) of the dependent variable as 

one of the explanatory variables. Thus, the test is inapplicable in autoregressive models. 
 

 
Figure 19.1 (a): Positive auto correlation 

 
Figure 19.1 (b): Negative auto correlation 

 
The above figures indicate why d  might be expected to measure the extent of first-order 

autocorrelation. The mean of the residuals is zero, so the residuals will be scattered around the 
horizontal axis. If the 'se  are positively auto correlated, successive values will tend to be close 
to each other, runs above and below the horizontal axis will occur, and the first differences will 
tend to be numerically smaller than the residuals themselves. Alternatively, if the 'se  have a 
first-order negative autocorrelation, there is a tendency for successive observations to be on 
opposite sides of the horizontal axis so that first differences tend to be numerically larger than 
the residuals. Thus d  will tend to be “small'' for positively auto (serial) correlated 'se  and “large'' 
for negatively auto (serial) correlated 'se . If the 'se  are random, we have an in-between 
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situation with no tendency for runs above and below the axis or for alternate swings across it 
and d will take on an intermediate value. 

 
The Durbin-Watson statistic is closely related to the sample first order autocorrelation 

coefficient of the 'se . Expanding Eq. (19.1), we have 

 

2 2
1 1

2 2 2

2

1

2
n n n

t t t t
t t t

n

t
t

e e e e
d

e

− −
= = =

=

+ −
=
∑ ∑ ∑

∑
      (19.2) 

Since 2

2

n

t
t
e

=
∑ and 2

1
2

n

t
t
e −

=
∑ differ in only one observation, they are approximately equal to 2

1
.

n

t
t
e

=
∑

Therefore, Eq. (19.2) may be rewritten as  
 ( )ˆ2 1d ρ−          (19.3) 

where 2
1

2 1

ˆ
n n

t t t
t t
e e eρ −

= =

= ∑ ∑  is the coefficient in the OLS regression of 1on t te e − . Ignoring end-

point discrepancies, ρ̂  is seen to be the simple correlation coefficient between 1 and t te e − and 

hence, ˆ1 1ρ− ≤ ≤ .  Thus, Eq. (19.3) implies that  
0 4d≤ ≤          (19.4) 

that is the range of d  is from 0 to 4 and as well as we have the following: 
 d < 2 for positive autocorrelation of the 'se  
 d > 2 for negative autocorrelation of the 'se  
 d  = 2 for zero autocorrelation of the 'se  
 
It is also apparent from Eq. (19.3) that 

• if ˆ 0,  2dρ = ≈ ; that is, if there is no serial correlation (of the first-order), d is expected to 
be about 2. Therefore, as a rule of thumb, if d  is found to be closer to 2 in an 
application, one may assume that there is no first-order autocorrelation, either positive 
or negative. 

• If ˆ 1ρ = + , indicating perfect positive correlation in the residuals, 0d ≈ . Therefore, the 
closer d is to 0, the greater the evidence of positive autocorrelation.  

• If ˆ 1ρ = − , that is, there is perfect negative correlation among successive residuals, 
4d ≈ . Hence, the closer d is to 4, the greater the evidence of negative autocorrelation.  

 
The exact sampling or probability distribution of the d statistic given in Eq. (19.1) is difficult 

to derive because, as Durbin and Watson have shown, it depends in a complicated way on the 
X  matrix of the given sample.  This difficulty should be understandable because d is computed 
from 'te s , which are, of course, dependent on the given X  matrix. Therefore, unlike the 

2,  ,  or t F χ  tests, there is no unique critical value that will lead to the rejection or the 
acceptance of the null hypothesis that there is no first-order autocorrelation in the disturbances

'tu s . However, Durbin and Watson were successful in deriving a lower bound Ld and an upper 
bound Ud such that if the computed d from Eq. (19.1) lies outside these critical values, a 
decision can be made regarding the presence of positive or negative auto (serial) correlation. 
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Moreover, these limits depend only on the number of observations n and the number of 
explanatory variables (k-1) and do not depend on the values taken by these explanatory 
variables. These limits, for n going from 6 to 200 and up to 20 explanatory variables, have been 
tabulated by Durbin and Watson.  

 
The mechanics of the Durbin–Watson test are as follows, assuming that the assumptions 
underlying the test are fulfilled: 
 

1. Run the OLS regression for the given data and obtain the residuals. 
2. Compute d from Eq. (19.1). (Most computer programs now do this routinely.) 
3. For the given sample size and given number of explanatory variables, find out the critical 

Ld and Ud values. 
4. Now follow the decision rules given below. 

 
The testing procedure is as follows: 
Set the null hypothesis    H0: zero auto correlation 
If d<=2: Set the alternative hypothesis H1: positive first-order auto correlation 
 

Decision Rules: 
1. If Ld d< , reject the null hypothesis H0 in favor of the alternative hypothesis of H1. 
2. If Ud d> , do not reject the null hypothesis. 
3. lf L Ud d d< < , the test is inconclusive. 

           (19.5) 
If d>2: Set the alternative hypothesis H1: negative first-order auto correlation 
Decision Rules: Replace d with 4- d and follow the above decision rules. 
 
Remark: Even when the conditions for the validity of the Durbin-Watson test are satisfied, the 
inconclusive range is an awkward problem, especially as it becomes fairly large at low degrees 
of freedom. A conservative practical procedure is to use Ud  as if it were a conventional critical 
value and simply reject the null hypothesis if Ud d< .  The consequences of accepting 0H when 
autocorrelation is present are almost certainly more serious than the consequences of 
incorrectly presuming its presence.  
 
Note:  The student is advised to refer any text book on Econometrics for Durbin and 
Watson d-tables of   and L Ud d constructed at 1% and 5% levels of significance. 
 
Illustration 19.1 

The following table gives data on indexes of real compensation per hour (Y) and output 
per hour(X) in the business sector of the U.S. economy for the period 1980–1997, the base of 
the indexes being 1992 = 100.   For this data examine for the presence of auto correlation using 
Durbin-Watson d-test. 
 

Table 19.1: INDEXES OF REAL COMPENSATION AND PRODUCTIVITY,  
UNITED STATES, 1980–1997 

YEAR tY  tX  YEAR tY  tX  

1980 89.7 79.8 1989 95.8 93.3
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1981 89.8 81.4 1990 96.4 94.5
1982 91.1 81.2 1991 97.4 95.9
1983 91.2 84.0 1992 100.0 100.0
1984 91.5 86.4 1993 99.9 100.1
1985 92.8 88.1 1994 99.7 101.4
1986 95.9 90.7 1995 99.1 102.2
1987 96.3 91.3 1996 99.6 105.2
1988 97.3 92.4 1997 101.1 107.5

Source: Economic Report of the President, 2000, Table B-47, p.362 
 
Solution: 
From the above data we have 
      n = 18  2X∑ = 157172.00 

X∑ =1675.40 
2Y∑  = 165488.30 

Y∑ =1724.60  XY∑ = 161060.40 

( ) ( )2

2 2ˆ 0.4379XY nXY X nXβ − −= =∑ ∑  
1 2

ˆ ˆ 55.0485Y Xβ β= − =  
Estimated regression equation: t

ˆ 55.0485+0.4379XtY =  
 
Computation of Durbin-Watson d-statistic: 

t tY  tX  t
ˆˆ ˆ+ XtY α β=

 

ˆ
t t te Y Y= −

 
1te −  1t te e −−

 
( )2

1t te e −−
 

2
te  

1 89.7 79.8 89.9962 -0.2962 -- -- --- 0.0878 

2 89.8 81.4 90.6969 -0.8969 -0.2962 -0.6007 0.3608 0.8045 

3 91.1 81.2 90.6093 0.4907 -0.8969 1.3876 1.9254 0.2407 

4 91.2 84.0 91.8356 -0.6356 0.4907 -1.1262 1.2684 0.4040 

5 91.5 86.4 92.8866 -1.3866 -0.6356 -0.7511 0.5641 1.9228 

6 92.8 88.1 93.6311 -0.8311 -1.3866 0.5555 0.3086 0.6908 

7 95.9 90.7 94.7698 1.1302 -0.8311 1.9614 3.8469 1.2774 

8 96.3 91.3 95.0325 1.2675 1.1302 0.1372 0.0188 1.6064 

9 97.3 92.4 95.5143 1.7857 1.2675 0.5183 0.2686 3.1888 

10 95.8 93.3 95.9084 -0.1084 1.7857 -1.8941 3.5878 0.0118 

11 96.4 94.5 96.4340 -0.0340 -0.1084 0.0745 0.0055 0.0012 

12 97.4 95.9 97.0471 0.3529 -0.0340 0.3869 0.1497 0.1246 

13 100.0 100.0 98.8426 1.1574 0.3529 0.8044 0.6471 1.3395 

14 99.9 100.1 98.8864 1.0136 1.1574 -0.1438 0.0207 1.0273 

15 99.7 101.4 99.4558 0.2442 1.0136 -0.7693 0.5919 0.0597 

16 99.1 102.2 99.8061 -0.7061 0.2442 -0.9504 0.9032 0.4986 

17 99.6 105.2 101.1199 -1.5199 -0.7061 -0.8138 0.6623 2.3102 

18 101.1 107.5 102.1272 -1.0272 -1.5199 0.4927 0.2428 1.0551 

SUMS 1724.6 1675.4 1724.6000 0.0000     15.3726 16.6509 
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From the above table we have  

( )2
1

2

n

t t
t
e e −

=
−∑ =15.3726 and 2

1

n

t
t
e

=
∑ =16.6509 

Now substituting these values in Eq. (19.1), we get Durbin-Watson statistic value   
d=0.9232 

Let us set the null hypothesis     
H0: zero autocorrelated disturbances 

Since, D-W statistic value d<2, let us set the alternative hypothesis 
H1: positive first-order autocorrelated disturbances 

 
Conclusion drawn: 
From Durbin-Watson d-tables, the critical d-values at 5% l.o.s. are  
 dL=1.158  and     dU=1.391 
Since, the calculated d-value (0.9232) is less than the critical dL value, by applying the decision 
rules given in (19.5), we reject H0.  Thus, there is a problem of autocorrelation in the given data. 
Hence, we conclude that the estimated regression model using the above wages-productivity 
data yields the first order positive auto correlated residuals.  Therefore, the estimated model 

t
ˆ 55.0485+0.4379XtY =         (19.6) 

is not the correct estimated model and we have to estimate it using a different estimation 
method which we will discuss in the next section. 
 
3. The Wallis Test for Fourth-order Autocorrelation 

 
Wallis has pointed out that many applied studies employ quarterly data, and in such cases one 
might expect to find fourth-order autocorrelation in the disturbance term. The appropriate 
specification is then 
 4 4t t tu uρ ε−= +         (19.7) 

To test the null hypothesis, 0 4: 0H ρ = , Wallis proposes a modified Durbin-Watson statistic, 
  
 
 
 
 
 
           (19.8) 
 
where the 'se  are the usual OLS residuals. Wallis derives upper and lower bounds for 4d  under 
the assumption of a nonstochasticX  matrix.  
 
4. Durbin’s h-test  for a Regression Model with Lagged  Dependent Variables 

 
We know that the Durbin-Watson test procedure was derived under the assumption of a 

non-stochastic X  matrix, which is violated by the presence of lagged values of the dependent 
variable among the regressors. Durbin has derived a large-sample (asymptotic) test for the 

( )2
4

5
4

2

1

n

t t
t

n

t
t

e e
d

e

−
=

=

−
=
∑

∑
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more general case. It is still a test against first-order autocorrelation, and one must specify the 
complete set of regressors.   Consider the relation, 
 1 1 1 1t t r t r r t r s st ty y y x X uβ β β β− − + += + + + + + +     (19.9) 

with 1      1t t tu uρ ε ρ−= + <  and ( )20,N σ εε I∼  

Durbin's basic result is that under the null hypothesis 0 : 0,H ρ = the statistic  
 
  
 
 
             

(19.10) where n = sample size 

( )1̂var β = estimated sampling variance of the coefficient of 1ty −  in the OLS regression of               

                Eq. (19.9) ρ̂ = 2
1 1

2 2
,

n n

t t t
t t
e e e− −

= =
∑ ∑

 
the estimate of ρ  from the regression of te on 1te − ,   

                 the 'se  in turn being the residuals from the OLS regression of Eq. (19.9). 
 
The test procedure is as follows. 
1. Fit the OLS regression denoted by Eq. (19.9) and note ( )1̂var β . 

2. From the residuals compute ρ̂ or, alternatively, if the Durbin-Watson statistic has been 
computed, we may use the approximation ˆ 1 2dρ − . 

3. Substitute ( )1̂var β and ρ̂ in Eq. (19.10) to obtain h , and if h >1.645, reject the null 

hypothesis at 5 percent level of significance in favor of the hypothesis of a positive first-
order autocorrelation. 

4. A similar one-sided test for negative autocorrelation can be carried out for negativeh . 
 

5. The Breusch–Godfrey (BG) Test for Higher Order Autocorrelation 
 

To avoid some of the pitfalls of the Durbin–Watson d test of autocorrelation, statisticians 
Breusch and Godfrey have developed a test of autocorrelation that is general in the sense that 
it allows for (1) nonstochastic regressors, such as the lagged values of the regressand; (2) 
higher-order autoregressive schemes, such as AR(1), AR(2), etc.; and (3) simple or higher-
order moving averages of white noise error terms. 

 
We use the two-variable regression model to illustrate the BG test, which is also known 

as the LM test, although many regressors can be added to the model. Also, lagged values of 
the regressand can be added to the model. Let 

1 2t t tY X uβ β= + +        (19.11) 
Assume that the error term tu follows the pth order autoregressive, AR(p), scheme as 

follows: 
1 1 2 2t t t p t p tu u u uρ ρ ρ ε− − −= + + + +…

     
(19.12) 

where tε is a white noise error term as discussed previously. As you will recognize, this is 
simply the extension of AR(1) scheme. 

( ) ( )
1

ˆ 0 ,1
ˆ1 var

a synh N
n

ρ
β

=
−

∼  
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The null hypothesis 0H  to be tested is that 

0 1 2: 0pH ρ ρ ρ= = = =…        (19.13) 
That is, there is no serial correlation of any order. The BG test involves the following steps: 
1. Estimate (19.11) by OLS and obtain the residuals 'ste . 
2. Regress te on the original tX (if there is more than one X variable in the original model, 

include them also) and 1 2, , , t pt te e e −− − … , where the latter are the lagged values of the 
estimated residuals in step 1. Thus, if p = 4, we will introduce four lagged values of the 
residuals as additional regressors in the model. In short, run the following regression 

1 2 1 1 2 2t t p t p tt te X e e eα α ρ ρ ρ ε−− −= + + + + + +…
   

(19.14)  

and obtain 2R  from this (auxiliary) regression.  Since there are only n values of e available, 
this regression might be carried out using only the last (n − p) observations.  
 

3. If the sample size n is large (technically, infinite), Breusch and Godfrey have shown that 
 
 

(19.15) 
           

That is, asymptotically, ( )n p− 2R  value obtained from the auxiliary regression (19.14) 

follows the chi-square distribution with p d.f.. If in an application, ( ) 2n p R−  exceeds the critical 

chi-square value at the chosen level of significance, we reject the null hypothesis 0H [Eq. 
(19.13)], in which case at least one of 1 2, , , pρ ρ ρ…

 
is statistically significantly different from 

zero. 
 

The following practical points about the BG test may be noted: 
1. The regressors included in the regression model may contain lagged values of the 

regressand Y , that is, 1tY − , 2tY − , etc., may appear as explanatory variables. Contrast 
this model with the Durbin–Watson test restriction that there are no lagged values of 
the regressand among the regressors. 
 

2. As noted earlier, the BG test is applicable even if the disturbances follow a pth order 
moving average (MA)process, that is, the tu are generated as follows: 

            1 1 2 2t t t t p t pu ε λ ε λ ε λ ε− − −= + + + +…      (19.16) 
where tε is a white noise error term, that is, the error term that satisfies all the 
classical assumptions. 
 

3. If in Eq. (19.12) p = 1, meaning first-order auto regression, then the BG test is known 
as Durbin’s M-test. 
 

4. A drawback of the BG test is that the value of p, the length of the lag, cannot be 
specified a priori.  

 
 

( ) 2 2
pn p R χ− ∼  
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19.3 Estimation of Relationships with Autocorrelated Disturbances       
            

Knowing the consequences of autocorrelation, especially the lack of efficiency of OLS 
estimators, we may need to remedy the problem.  If one or more of the diagnostic tests 
described in the previous section suggest autocorrelated disturbances, then we have to apply 
one of the following estimation methods. 
 
1. The method of Generalized Least Squares(GLS): 

Consider the two-variable regression model 
1 2t t tY X uβ β= + +        (19.17) 

and assume that the error term tu follows the  AR(1) scheme, namely, 

1  ,             -1< 1t t tu uρ ε ρ−= + <
     

(19.18) 
If we replace t=t-1 in Eq. (19.17), we get 

   1 1 2 1 1t t tY X uβ β− − −= + +       (19.19) 
 Multiplying Eq. (19.19) with ρ  on both sides, we obtain 
   1 1 2 1 1t t tY X uρ ρβ ρβ ρ− − −= + +       (19.20) 
Subtracting Eq. (19.20) from Eq. (19.19) and using Eq. (19.18), we get  

1 1 2 1(1 ) ( )t t t t tY Y X Xρ β ρ β ρ ε− −− = − + − +     (19.21) 
We can express Eq. (19.21) as  
              
 
 

(19.22) 
 
 
 
 
 
 
 
 

      since the error term tε in Eq. (19.18) satisfies  the usual OLS assumptions, we can apply OLS 

to the transformed variables *
tY  and *

tX ; and obtain estimators with all the optimum properties 
of BLUE.  Here, it may be noted applying OLS to Eq. (19.22) is equivalent to the application of 
generalized least squares (GLS).  

 
Regression equation (19.22) is known as the generalized difference equation.  In 

this equation we lose one observation because the first observation has no antecedent.  
Although conceptually straightforward to apply, the method of generalized difference in           
Eq. (19.22) is difficult to implement because ρ is rarely known in practice.  Therefore, we need 
to find ways of estimating ρ  and we have given below some of the methods.   

 
 
 
 
 

* * *
1 2t t tY Xβ β ε= + +       

where 

  

*
1

*
1

*
1 1

 

(1 )

t t t

t t t

Y Y Y
X X X

ρ

ρ

β β ρ

−

−

= −

= −

= −
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ρ  based on Durbin–Watson d statistic:  
 
We have an easy method of estimating ρ  from the relationship between d and ρ established 
previously in Eq. (19.3), from which we can estimate ρ  as follows. 

ˆ 1 2dρ ≈ −           (19.23) 
Thus, in reasonably large samples one can obtain ρ  from (19.23) and use it to transform the 
data as shown in the generalized difference equation (19.22). Keep in mind that the relationship 
between ρ  and d given in (19.23) may not hold true in small samples. 
 
ρ  estimated from the residuals: 
 
 If the AR(1) scheme  

1 ,             -1< 1t t tu uρ ε ρ−= + <  
is valid, a simple way to estimate ρ  is to regress the residuals te  on 1te − , for the 'ste  are 

consistent estimators of the true ,tu  as noted previously. That is, we run the following 
regression 

1               t t te e vρ −= +        (19.24) 
where 'te s are the residuals obtained from the original  regression and where 'stv are the error 
term of this regression. Note that there is no need to introduce the intercept term in Eq. (19.24), 
for we know the OLS residuals sum is zero. 
 
Iterative methods of estimating ρ: 
 
All the methods of estimating ρ  discussed previously provide us with only a single estimate of 
ρ . But there are the so-called iterative methods that estimate ρ iteratively, that is, by 
successive approximation, starting with some initial value of ρ. Among these methods the 
following may be mentioned: the Cochrane–Orcutt iterative procedure, the Cochrane–Orcutt 
two-step method, the Durbin two–step method.  Of these, the most popular is the Cochran–
Orcutt iterative method. Remember that the ultimate objective of these methods is to provide an 
estimate of ρ  that may be used to obtain GLS estimates of the parameters. One advantage of 
the Cochrane–Orcutt iterative method is that it can be used to estimate not only an AR(1) 
scheme, but also higher-order auto regressive schemes, such as 1 1 2 2t t t te e e vρ ρ− −= + + , which 
is AR(2). Having obtained 1 2 and ρ ρ , one can easily extend the generalized difference equation 
(19.22).  
 
2. The Cochrane–Orcutt (C–O) iterative procedure. 

 
Consider the two-variable regression model 

1 2t t tY X uβ β= + +        (19.25) 
and assume that the error term tu follows the  AR(1) scheme, namely, 

1  ,             -1< 1t t tu uρ ε ρ−= + <
     

(19.26) 
where the error terms  'stε  are well-behaved.   
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Now, the above model can be rearranged in two equivalent forms as  

1 1 2 1(1 ) ( )t t t t tY Y X Xρ β ρ β ρ ε− −− = − + − +      (19.27) 
Or ( )1 2 1 1 2 1t t t t tY X Y Xβ β ρ β β ε− −− − = − − +      (19.28) 
If ρ  is known in Eq. (19.27), the unknown parameters 1 2and β β  could be estimated by 

applying OLS straightforwardly.  Similarly, if 1 2and β β are known, ρ  could be estimated by 
applying OLS to the regression equation (19.28). 
 

It is important to note that the above two equivalent forms of equations (19.27) and 
(19.28) are the basis for Cochrane-Orcutt iterative method for estimation of model (19.25) with 
AR(1) scheme.  Starting with any value for ρ , the quasi first differences in the generalized 
difference equation (19.27) could be computed, and OLS applied to it would then yield 
estimates of 1 2  .andβ β   These estimates in turn can be used to compute the 1 2t tY Xβ β− −
series.  Regressing this series on itself lagged on period in Eq. (19.28) yields a revised estimate 
of ρ , which can then be fed back into Eq. (19.27), and the iteration process continues until a 
satisfactory degree of convergence is reached.  

 
Various steps of Cochrane-Orcutt iterative method of estimation of model (19.25) are as follows. 
 
Step 1: Estimate the two variable model (19.25) by applying standard OLS technique and 
obtain the estimates of 1 2  andβ β  denoted by 1 2

ˆ ˆ .andβ β  
 
Step 2: Now, compute the residuals given by 

1 2
ˆ ˆ  ,    1, 2, , .t t te Y X t nβ β= − − = …       

            and run the  regression 
  1ˆ ˆt t te eρ ε−= +  

             which is the estimated equation of (19.28).  Here ρ̂  is OLS estimate of ρ given by 
 
 
           (19.29) 
 
 
Step 3:  Using the above estimated ρ̂ , compute the quasi first differences given by 

  

* *
1 1ˆ ˆ  and t t t t t tY Y Y X X Xρ ρ− −= − = −        

Now, the generalized difference equation (19.27) with ˆρ ρ=  can be written as  
* * *

1 2 ,t t tY Xβ β ε= + +    2,3, ,t n= …      (19.30) 

where  ( )*
1 1 ˆ1  β β ρ= − .         (19.31) 

Now by applying OLS to Eq. (19.30) we can get the estimates of 1β  [from the relation 

(19.31)] and 2β .  Now, denote these second round estimates of 1 2andβ β by 1 2
ˆ ˆˆ ˆandβ β .

 

 
 

2
1 1

2 2

ˆ
n n

t t t
t t

e e eρ − −
= =

= ∑ ∑  
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Step 4:  Now, repeat the above steps (2) and (3) by replacing 1 2
ˆ ˆ andβ β with the above 2nd            

round estimates 1 2
ˆ ˆˆ ˆandβ β  respectively to compute 3rd round estimates 1 2

ˆ ˆˆ ˆˆ ˆ andβ β .   
Repeat the above steps (2)-(4) until the successive estimates of the parameter ρ differ by less 
than some prescribed amount. 
 
Illustration 19.2: Consider the data, given in Illustration 19.1, on indexes of real compensation 
(wages) and productivity in the business sector of the U.S. economy for the period 1980–1997.  
We have already seen that in Illustration 19.1, the OLS method is not a suitable estimation 
method, since autocorrelation is presented in the data. Hence, let us re-estimate the model 
using Cochrane-Orcutt iterative method. 

 
Solution: 
STEP 1: Estimating the model 1 2t t tY X uβ β= + + using OLS method: 
From the data of illustration 1, we have 
n = 18     2X∑ = 157172.00 

X∑ =1675.40    
2Y∑ = 165488.30  

Y∑ =1724.60  XY∑  =  161060.40 

( ) ( )2

2 2ˆ 0.4379XY nXY X nYβ − −= =∑ ∑  
1 2

ˆ ˆ 55.0485Y Xβ β= − =  
Estimated regression equation:  t

ˆ 55.0485+0.4379XtY =  
 
FIRST ITERATION : 
STEP 2: COMPUTATION OF OLS RESIDUALS AND HENCE ESTIMATING ρ  

t tY  tX  1 2 t
ˆ ˆˆ + XtY β β= ˆ

t t te Y Y= − 1te −  1*t te e −  2
1te −  

1 89.7 79.8 89.9962 -0.2962 -- -- -- 
2 89.8 81.4 90.6969 -0.8969 -0.2962 0.2657 0.0878 
3 91.1 81.2 90.6093 0.4907 -0.8969 -0.4401 0.8045 
4 91.2 84.0 91.8356 -0.6356 0.4907 -0.3119 0.2407 
5 91.5 86.4 92.8866 -1.3866 -0.6356 0.8813 0.4040 
6 92.8 88.1 93.6311 -0.8311 -1.3866 1.1525 1.9228 
7 95.9 90.7 94.7698 1.1302 -0.8311 -0.9394 0.6908 
8 96.3 91.3 95.0325 1.2675 1.1302 1.4325 1.2774 
9 97.3 92.4 95.5143 1.7857 1.2675 2.2633 1.6064 

10 95.8 93.3 95.9084 -0.1084 1.7857 -0.1936 3.1888 
11 96.4 94.5 96.4340 -0.0340 -0.1084 0.0037 0.0118 
12 97.4 95.9 97.0471 0.3529 -0.0340 -0.0120 0.0012 
13 100.0 100.0 98.8426 1.1574 0.3529 0.4085 0.1246 
14 99.9 100.1 98.8864 1.0136 1.1574 1.1731 1.3395 
15 99.7 101.4 99.4558 0.2442 1.0136 0.2476 1.0273 
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16 99.1 102.2 99.8061 -0.7061 0.2442 -0.1725 0.0597 
17 99.6 105.2 101.1199 -1.5199 -0.7061 1.0732 0.4986 
18 101.1 107.5 102.1272 -1.0272 -1.5199 1.5613 2.3102 

SUMS 1724.6 1675.4 1724.6000 0.0000   8.3932 15.5958 

From the above table we have  

1
2

n

t t
t
e e −

=
∑ =8.3932 and 2

1
2

n

t
t
e −

=
∑ =15.5958 

Now substituting these values in Eq. (19.29) we get   
ρ̂ =0.5382 
 

STEP 3: REESTIMATING 1 2andβ β by estimating * * *
1 2t t tY Xβ β ε= + +  using OLS method 

 

t tY  tX  1tY −  1tX −  *
1ˆt t tY Y Yρ −= − *

1ˆt t tX X Xρ −= −

1 89.7 79.8 -- -- -- -- 
2 89.8 81.4 89.7 79.8 41.5261 38.4541
3 91.1 81.2 89.8 81.4 42.7723 37.3930
4 91.2 84.0 91.1 81.2 42.1727 40.3006
5 91.5 86.4 91.2 84.0 42.4189 41.1937
6 92.8 88.1 91.5 86.4 43.5574 41.6021
7 95.9 90.7 92.8 88.1 45.9578 43.2873
8 96.3 91.3 95.9 90.7 44.6895 42.4880
9 97.3 92.4 96.3 91.3 45.4742 43.2651

10 95.8 93.3 97.3 92.4 43.4360 43.5731
11 96.4 94.5 95.8 93.3 44.8433 44.2888
12 97.4 95.9 96.4 94.5 45.5204 45.0430
13 100.0 100.0 97.4 95.9 47.5822 48.3895
14 99.9 100.1 100.0 100.0 46.0830 46.2830
15 99.7 101.4 99.9 100.1 45.9368 47.5292
16 99.1 102.2 99.7 101.4 45.4444 47.6296
17 99.6 105.2 99.1 102.2 46.2673 50.1991
18 101.1 107.5 99.6 105.2 47.4983 50.8845

Totals 761.1800 751.8000

     n*  = 17                    
2*Y =∑  34135.850 

 
*Y∑ = 761.18            

2*X =∑ 33489.070 

            
*X∑ = 751.80          * *X Y =∑ 33762.686 

   2β̂  = 0.4157 

   
*
1̂β  = 26.3919 ⇒    ( )*

1 1 57.1464ˆ ˆ ˆ1β β ρ == −  
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SECOND ITERATION: 
STEP 2: RECOMPUTING THE RESIDUALS USING LATEST 1 2

ˆ ˆandβ β AND HENCE  
REESTIMATING  ρ  
 

t tY  tX  1 2 t
ˆ ˆˆ + XtY β β= ˆ

t t te Y Y= − 1te −  1*t te e −  2
1te −  

1 89.7 79.8 90.3186 -0.6186 -- -- -- 
2 89.8 81.4 90.9837 -1.1837 -0.6186 0.7322 0.3827
3 91.1 81.2 90.9006 0.1994 -1.1837 -0.2361 1.4011
4 91.2 84.0 92.0645 -0.8645 0.1994 -0.1724 0.0398
5 91.5 86.4 93.0622 -1.5622 -0.8645 1.3505 0.7474
6 92.8 88.1 93.7688 -0.9688 -1.5622 1.5135 2.4403
7 95.9 90.7 94.8496 1.0504 -0.9688 -1.0176 0.9386
8 96.3 91.3 95.0990 1.2010 1.0504 1.2614 1.1033
9 97.3 92.4 95.5563 1.7437 1.2010 2.0941 1.4423

10 95.8 93.3 95.9304 -0.1304 1.7437 -0.2274 3.0405
11 96.4 94.5 96.4293 -0.0293 -0.1304 0.0038 0.0170
12 97.4 95.9 97.0112 0.3888 -0.0293 -0.0114 0.0009
13 100.0 100.0 98.7156 1.2844 0.3888 0.4994 0.1511
14 99.9 100.1 98.7571 1.1429 1.2844 1.4679 1.6498
15 99.7 101.4 99.2975 0.4025 1.1429 0.4600 1.3061
16 99.1 102.2 99.6301 -0.5301 0.4025 -0.2133 0.1620
17 99.6 105.2 100.8772 -1.2772 -0.5301 0.6770 0.2810
18 101.1 107.5 101.8333 -0.7333 -1.2772 0.9365 1.6311

Totals 9.1180 16.7350

From the above table we have  

1
2

n

t t
t
e e −

=
∑ =9.1180 and 2

1
2

n

t
t
e −

=
∑ =16.7350 

Now substituting these values in Eq. (19.29) we get 
ρ̂ =0.5448 

 

STEP 3: REESTIMATING 1 2andβ β by estimating * * *
1 2t t tY Xβ β ε= + +  using OLS method 

t tY  tX  1tY −  1tX −  *
1ˆt t tY Y Yρ −= − * *

1ˆt t tX X Xρ −= −  

1 89.7 79.8 -- -- -- -- 
2 89.8 81.4 89.7 79.8 40.9272 37.9212 
3 91.1 81.2 89.8 81.4 42.17272 36.8494 
4 91.2 84.0 91.1 81.2 41.56442 39.7584 
5 91.5 86.4 91.2 84.0 41.80993 40.6328 
6 92.8 88.1 91.5 86.4 42.94648 41.0252 
7 95.9 90.7 92.8 88.1 45.33817 42.699 
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8 96.3 91.3 95.9 90.7 44.04915 41.8824 
9 97.3 92.4 96.3 91.3 44.83121 42.6554 

10 95.8 93.3 97.3 92.4 42.78636 42.9561 
11 96.4 94.5 95.8 93.3 44.20363 43.6658 
12 97.4 95.9 96.4 94.5 44.87672 44.4119 
13 100.0 100.0 97.4 95.9 46.93188 47.7491 
14 99.9 100.1 100.0 100.0 45.41527 45.6153 
15 99.7 101.4 99.9 100.1 45.26976 46.8608 
16 99.1 102.2 99.7 101.4 44.77873 46.9525 
17 99.6 105.2 99.1 102.2 45.60564 49.5166 
18 101.1 107.5 99.6 105.2 46.83321 50.1821 

Totals 750.4100 741.4100 
 

n*  = 17              
2*Y =∑  33177.60 

       
*Y∑  = 750.41      

2*X =∑ 32570.00 

      
*X∑  = 741.41    * *X Y =∑ 32825.12 

          2β̂  = 0.4153 

          
*

1̂β  = 26.0283⇒ ( )*
1 1

ˆ ˆ ˆ1 57.18588β β ρ= − =  
          THIRD ITERATION: 
STEP 2: RECOMPUTING THE RESIDUALS USING LATEST 1 2

ˆ ˆandβ β AND HENCE 
REESTIMATING  ρ  

t tY  tX  t
ˆˆ ˆ + XtY α β=  ˆ

t t te Y Y= − 1te −  1*t te e −  2
1te −  

1 89.7 79.8 90.3250 -0.6250 -- -- -- 
2 89.8 81.4 90.9895 -1.1895 -0.6250 0.7434 0.3906
3 91.1 81.2 90.9064 0.1936 -1.1895 -0.2303 1.4148
4 91.2 84.0 92.0692 -0.8692 0.1936 -0.1683 0.0375
5 91.5 86.4 93.0658 -1.5658 -0.8692 1.3610 0.7555
6 92.8 88.1 93.7718 -0.9718 -1.5658 1.5217 2.4519
7 95.9 90.7 94.8515 1.0485 -0.9718 -1.0189 0.9444
8 96.3 91.3 95.1007 1.1993 1.0485 1.2574 1.0993
9 97.3 92.4 95.5575 1.7425 1.1993 2.0898 1.4383

10 95.8 93.3 95.9313 -0.1313 1.7425 -0.2287 3.0363
11 96.4 94.5 96.4296 -0.0296 -0.1313 0.0039 0.0172
12 97.4 95.9 97.0110 0.3890 -0.0296 -0.0115 0.0009
13 100.0 100.0 98.7136 1.2864 0.3890 0.5004 0.1513
14 99.9 100.1 98.7551 1.1449 1.2864 1.4727 1.6548
15 99.7 101.4 99.2950 0.4050 1.1449 0.4637 1.3107
16 99.1 102.2 99.6272 -0.5272 0.4050 -0.2135 0.1640



 
 
 
Econometrics  19.17       Auto Correlation – Detection …..  
 

 
 

17 99.6 105.2 100.8731 -1.2731 -0.5272 0.6712 0.2780
18 101.1 107.5 101.8282 -0.7282 -1.2731 0.9270 1.6207

Totals 9.1410 16.7661

From the above table we have  

1
2

n

t t
t
e e −

=
∑ =9.1410 and 2

1
2

n

t
t
e −

=
∑ =16.7661 

Now substituting these values in Eq. (19.29) we get 
ρ̂ =0.5452 
 
 
STEP 3: REESTIMATING 1 2andβ β by estimating * * *

1 2t t tY Xβ β ε= + +  using OLS method 
 

t tY  tX  1tY −  1tX −  *
1ˆt t tY Y Yρ −= − * *

1ˆt t tX X Xρ −= −

1 89.7 79.8 -- -- -- -- 

2 89.8 81.4 89.7 79.8 45.4207 32.4956
3 91.1 81.2 89.8 81.4 46.8298 32.2410
4 91.2 84.0 91.1 81.2 45.4032 34.3323
5 91.5 86.4 91.2 84.0 44.3947 36.6778
6 92.8 88.1 91.5 86.4 44.7679 38.2142
7 95.9 90.7 92.8 88.1 46.4504 40.1054
8 96.3 91.3 95.9 90.7 46.5232 39.0153
9 97.3 92.4 96.3 91.3 46.9235 39.8972

10 95.8 93.3 97.3 92.4 44.9328 40.2520
11 96.4 94.5 95.8 93.3 44.8786 42.2698
12 97.4 95.9 96.4 94.5 45.1153 43.3427
13 100.0 100.0 97.4 95.9 45.4800 46.8975
14 99.9 100.1 100.0 100.0 45.3255 45.5800
15 99.7 101.4 99.9 100.1 44.4167 46.9345
16 99.1 102.2 99.7 101.4 43.3806 47.8436
17 99.6 105.2 99.1 102.2 42.2450 51.1707
18 101.1 107.5 99.6 105.2 42.4910 53.1981

Totals 749.7700 740.7800
 

n* = 17              
2*Y =∑  33120.2 

       
*Y∑ = 749.77      

2*X =∑ 32514.77 

      
*X∑ = 740.78    * *X Y =∑ 32768.91 

          2β̂ = 0.4153 

        
*

1̂β  = 26.009⇒    ( )*
1 1

ˆ ˆ ˆ1 57.1878β β ρ= − =  
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From the above computations, we may notice that the corresponding values of 1 2
ˆ ˆˆ ,  andρ β β  at 

SECOND and THIRD iterations are approximately equal.  Hence, we take the values computed 
at THIRD iteration as the estimates of 1 2

ˆ ˆˆ ,  andρ β β  and are given by  
ˆ  ρ =     0.5452 

1̂ 57.1878β =  

           2β̂ =     0.4153 
Thus the estimated regression model for the given wages-productivity data, using Cochrane-
Orcutt iterative method, is obtained as  

t
ˆ 57.1878 +0.4153 XtY =         

Compare this estimated regression model with the regression model (19.6), which is estimated 
using OLS method, ignoring the presence of auto correlation.  We may note that this model is 
different from the model (19.6). 
 
3. The Cochrane–Orcutt two-step method.  

 
This is a shortened version of the Cochrane-Orcutt iterative procedure. In step 1, we estimate 
ρ from the first iteration, and in step 2 we use that estimate of ρ to run the generalized 
difference equation. Sometimes in practice, this two-step method gives results quite similar to 
those obtained from the more elaborate Cochrane-Orcutt iterative procedure.  Let us explain 
this method for k-variable regression model. 
 
Consider the general linear regression model with k-1 explanatory variables 2 3, ,...,t t ktX X X  

1
2

,      1,2,...,
k

t i it t
i

Y X u t nβ β
=

= + + =∑      (19.32) 

and assume that the error term tu follows the  AR(1) scheme, namely, 

1  ,             -1< 1t t tu uρ ε ρ−= + <
     

(19.33) 
where the error terms  'tε s are well-behaved.   
The above model can be rearranged in two equivalent forms as  

1 1 ( 1)
2

(1 ) ( )
k

t t i it i t t
i

Y Y X Xρ β ρ β ρ ε− −
=

− = − + − +∑     (19.34) 

Or 1 1 1 ( 1)
2 2

k k

t i it t i i t t
i i

Y X Y Xβ β ρ β β ε− −
= =

 − − = − − + 
 

∑ ∑     (19.35) 

Now, the two steps of Cochrane-Orcutt two-step method of estimation of model (19.32) are as 
follows. 
 
Step 1: Estimate the general linear model (19.32) by applying standard OLS technique and   
              obtain the estimates of 1 2, , ..., kβ β β  denoted by 1 2

ˆ ˆ ˆ, , ..., kβ β β respectively. Now,   
               compute the residuals,  

1
2

ˆ ˆ ,    1,2, , .
k

t t i it
i

e Y X t nβ β
=

= − − = …∑      (19.36)  

            and run the  regression 
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  1ˆ ˆt t te eρ ε−= +  

             which is the estimated equation of (19.35).  Here ρ̂  is the OLS estimate of ρ  and by   
            definition  

  2
1 1

2 2

ˆ
n n

t t t
t t
e e eρ − −

= =

= ∑ ∑        (19.37)  

Step 2:  Using the above estimated ˆ,ρ  compute the quasi first differences given by 

  

* *
1 ( 1)ˆ ˆ  and ,    2,3,...,t t t it it i tY Y Y X X X for i kρ ρ− −= − = − =    

    
Now, the generalized difference equation (19.34) with ˆρ ρ=  can be written as  

         (19.38)  
 
 
 
where ( )*

1 1 ˆ1  β β ρ= −        
Now by applying OLS to the above equation we get the estimates of

*
1 1 2 3 (     ), , , ..., kfrom the estimate ofβ β β β β .  Now, if we denote these revised estimates 

of 1 2, , ..., kβ β β by 1 2, ,..., kb b b , then the estimated regression model, using Cochrane-
Orcutt two-step method, is given by

 
 1

2

ˆ ,      1,2,...,
k

t i it
i

Y b b X t n
=

= + =∑      (19.39) 

Exercise to the students: Apply the above Cochrane–Orcutt two-step method to the wages–
productivity example discussed in illustration 2, and compare your results with those obtained 
from the Cochrane–Orcutt iterative method.  
 
4. Durbin’s two-step method.  

Let us explain this method for k-variable regression model. 
Consider the general linear regression model with k-1 explanatory variables 2 3, ,...,t t ktX X X  

1
2

,      1,2,...,
k

t i it t
i

Y X u t nβ β
=

= + + =∑     (19.40) 

and assume that the error term tu follows the  AR(1) scheme, namely, 

1  ,             -1< 1t t tu uρ ε ρ−= + <
     

(19.41) 
where the error terms  tε s are well-behaved.   
The above model can be rearranged in the generalized difference equation form as  

1 1 ( 1)
2

(1 ) ( )
k

t t i it i t t
i

Y Y X Xρ β ρ β ρ ε− −
=

− = − + − +∑     (19.42) 
which may be rewritten as  

*
1 1 ( 1)

2 2
(1 )

k k

t t i it i i t t
i i

Y Y X Xβ ρ ρ β β ε− −
= =

= − + + − +∑ ∑     (19.43) 
Durbin suggests the following two-step procedure for estimation of the model (19.40).  
 

* * *
1

2
,

k

t i it t
i

Y Xβ β ε
=

= + +∑    2,3, ,t n= …  
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Step 1: Treat (19.43) as a multiple regression model, regressing tY on the 2k-1 variables 1,tY −  
2 3, ,..., ,t t ktX X X 2( 1) 3( 1) ( 1), , ...,t t k tX X X− − −   and treat the estimated value of the regression 

coefficient of 1tY −  ( = ρ̂ ) as an estimate of ρ . 
 

Step 2:  Using the above estimated ˆ,ρ  compute the quasi first differences given by 

  

* *
1 ( 1)ˆ ˆ  and ,    2,3,...,t t t it it i tY Y Y X X X for i kρ ρ− −= − = − =    

    
and the generalized difference equation (19.42) with ˆρ ρ=  can be written as  

         (19.44)  
 

 
 
 
Now, by applying OLS to the above equation we get the estimates of 1 2, , ..., ,kβ β β which 

are denoted by 1 2, ,..., .kb b b  Thus, the estimated regression model, using Durbin’s two-
step method, is 

 
1

2

ˆ ,      1,2,...,
k

t i it
i

Y b b X t n
=

= + =∑      (19.45) 

Exercise to the students: Apply the Durbin’s two-step method to the wages–productivity 
example discussed in illustration 2, and compare your results with those obtained from the 
Cochrane–Orcutt iterative procedure and the Cochrane–Orcutt two-step method.  
 
Remark: As explained in Cochrane–Orcutt two step method and Durbin’s two-step method we 
can also explain Cochrane–Orcutt iteration method for the case of k-variable general linear 
model. 
 
19.4 Summary and Conclusions 

 
1. The remedy depends on the nature of the interdependence among the disturbances. But 

since the disturbances are unobservable, the common practice is to assume that they 
are generated by some mechanism. 
 

2. The mechanism that is commonly assumed is the Markov first-order autoregressive 
scheme, which assumes that the disturbance in the current time period is linearly related 
to the disturbance term in the previous time period, the coefficient of autocorrelation ρ 
providing the extent of the interdependence. This mechanism is known as the AR(1) 
scheme. 
 

3. If the AR(1) scheme is valid and the coefficient of autocorrelation is known, the serial 
correlation problem can be easily tackled by transforming the data following the 
generalized difference procedure. The AR(1) scheme can be easily generalized to an 
AR(p). 
 

4. Even if we use an AR(1) scheme, the coefficient of autocorrelation is not known a priori. 
We considered several methods of estimating ρ, such as the Durbin–Watson d, 

( )* *
1

2

ˆ1 ,
k

t i it t
i

Y Xβ ρ β ε
=

= − + +∑    2,3, ,t n= …  
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Cochrane–Orcutt iterative procedure, Cochrane–Orcutt two-step method, and the Durbin 
two-step method. 
 

5. In large samples, these methods generally yield similar estimates of ρ, although in small 
samples they perform differently. In practice, the Cochrane–Orcutt iterative method has 
become quite popular. 
 

6. Using any of the methods just discussed, we can use the generalized difference method 
to estimate the parameters of the transformed model by OLS, which essentially amounts 
to GLS. But since we estimate ρ ( = ρ̂ ), we call the method of estimation as feasible or 
estimated GLS, or FGLS or EGLS for short. 
 

7. Of course, before remediation comes detection of autocorrelation.  Among the methods 
of detection, Durbin–Watson d test and Breusch–Godfrey (BG) test are the popular and 
routinely used is the Durbin–Watson d test. It is better to use the BG test, for it is much 
more general in that it allows for both AR and MA error structures as well as the 
presence of lagged regressand as an explanatory variable. But keep in mind that it is a 
large sample test. 

 
19.5 Self Assessment Questions 
 
1. Explain how the plot of residuals against the regressand variable will be useful for detecting 

serial correlation.   
2. Explain in detail how various residual plots are useful in checking the standard assumptions 

on the error terms in a linear regression model. 
3. Explain the role of residuals plots in regression analysis. 
4. Explain various estimation procedures of a model, briefly, in the presence of 

autocorrelation. 
5. Explain the procedure for Durbin-Watson test to detect the Autocorrelation. 
6. Explain Durbin-Watson test for detection of serial correlation in a regression model and 

discuss the limitations of the test.  
7. Describe the Durbin-Watson test of serial correlation and discuss merits and demerits of the 

test. 
8. Describe the Wallis Test for examining fourth-order autocorrelation. 
9. Describe the Breusch–Godfrey (BG) test of (higher order) serial (auto) correlation. 
10. Describe Durbin’s h-test for a regression model with lagged dependent variables. 
11. Explain the Cochrane-Orcutt iterative method for estimation of the parameters in a simple 

linear model in the presence of autocorrelated disturbances. 
12. Explain the two-step Cochrane-Orcutt method for estimating the parameters of a linear 

model in the presence of autocorrelated disturbances. 
13. Describe the two-step Durbin’s method for estimating the parameters of a linear model in 

the presence of autocorrelated disturbances. 
14. Explain any one of estimation procedures in the case of auto Correlation.  Give Durbin-

Watson test for Auto Correlation. 
 

19.6  References  
 
1. Gujarati, D.N. (2005):  Basic Econometrics, 4th Ed., Tata McGraw-Hill. 



 
 
Centre for Distance Education   19.22       Acharya Nagarjuna University   
 
2. Johnston, J. (1984):  Econometric Methods, 3rd Ed., McGraw-Hill, New York. 
3. Montgomery, D.C., Peck, E.A.  and Geoffrey Vining, G. (2003):  Introduction to Linear            

Regression Analysis,  3rd  Ed., Wiley 
4. Draper, N.R., and H. Smith(1998): Applied Regression Analysis, 3rd Ed., John Wiley &      
Sons, New York. 
5. G.S. Maddala (2001): Introduction to Econometrics, 3rd Ed., John Wiley & Sons, Ltd. 
6. Johnston, J. and DiNardo J (1997):  Econometric Methods, 4th Ed., McGraw Hill. 
7. Hill, Carter, William Griffiths, and George Judge(2001): Undergraduate Econometrics,           

John Willey & Sons, New York. 
8. Koutsoyiannis, A(1973): Theory of Econometrics, Harper & Row, New York. 
 
 



 
 
 
Econometrics  20.1       Qualitative Response Regression..  
 

 
 

Lesson 20 
 
QUALITATIVE RESPONSE REGRESSION MODELS 
 
20.0 Objective: 
 

In this lesson we consider several models in which the dependent variable (regressand) 
itself is qualitative in nature. After studying this lesson, the student will be familiar with some 
popular binary regression models namely Logit and Probit models, which are increasingly used 
in areas of social sciences and medical research. 
 
Structure of the Lesson: 
 

20.1 Introduction 
20.2 The nature of qualitative response models 
20.3 The linear probability model (LPM) 
20.4 The Logit model 
20.5 The Probit model 
20.6 The Tobit model 
20.7 Measuring goodness of fit 

20.8 Summary and conclusions 

20.9 Self Assessment Questions  
20.10 References  

 
20.1 Introduction 

 
 In all the regression models that we have considered so far, we have implicitly assumed 
that the regressand/dependent/response variable Y  is quantitative, whereas the explanatory 
variables are either quantitative, qualitative or mixture of those two variables. But there are 
several practical problems or illustrations, where a dependent variable or response variable will 
be a dummy variable which take two or more values.  
 

Qualitative response regression models are widely being used in areas of social 
sciences and medical research. However these models pose interesting estimation and 
interpretation challenges. 
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20.2 The Nature of Qualitative Response Models 
 

 Consider an example of Indian Parliamentary elections assume that there are two 
political parties Congress and BJP. The dependent variable here is vote choice between the 
two political parties. Suppose we let 
 
 Y =1, if vote is for a Congress candidate. 
     =0, if vote is for a BJP candidate. 
 
 Here in this example the explanatory (cause) variables used in the vote choice are 
unemployment, inflation rates, present ruling party, caste of the candidate etc. Here in this 
example it may be noted that the regressed is a qualitative variable. 
 
 One can think of several other examples (listed below) where the dummy dependent 
variable is qualitative in nature. 
 

1. A family either owns a house or it does not. 
2. A family either owns a car or it does not. 
3. Both husband and wife are government employees or only one spouse. 
4. A certain drug is effective in curing an illness or it does not. 
5. A firm decides to declare a stock dividend or not.  

 
We don’t have to restrict our response variable yes or no dichotomous or binary categories only. 
Suppose in the parliamentary elections there are many parties are contesting for instance in 
Andhra Pradesh in Guntur, the candidates pertaining to Congress, TDP, BJP, CPI, and CPM. 
Then the dependent variable takes 1, 2, 3, 4, and 5. This is the case where the dependent 
variable is polychotomous (multiple category) response variable. In particular, if the response 
variable take three categories then it is called as trichotomous variable.  
 
 In polychotomous regression models, the regressand may be either ordinal (i.e. an 
ordered categorical variable such as education example: school, college, university) or the 
regressand is nominal where there is no inherent ordering such as religion (Hindu, Muslim, 
Sikh, Christian) 
 
 There are some other qualitative response regression models where the response 
variable may be 
 

1. The number of visits to one’s physician per year. 
2. The number of patents received by a firm in a given year. 
3. The number of articles published by a university professor in a year. 
4. The number of telephone calls received in a span of 5 minutes. 
5.  The number of cars passing through a toll gate in a span of 5 minutes.  

 
 These are the examples of Poisson probability regression models. There are three 
approaches to develop a probability model for the above binary response variable or 
polychotomous response variable and they are  

1. The linear probability model (LPM). 
2. The LOGIT model (logistic regression model) 
3. The PROBIT model. 
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 It is important to note that the fundamental difference between a  traditional regression 
model and qualitative response regression model is that in the traditional regression model the 
regressand Y is quantitative, where as in the qualitative response regression model, the 
regressand Y is qualitative. In a model where Y is quantitative, our objective is to estimate the 
expected or mean value given the values of the regressors as given below. 

 
( )

1
2

2 3 1
2

                                                                                    (20.1)

, ,....,

β β

β β

=

=

= + +

= +

∑

∑

k

i j ji i
j

k

i i i ki j ji
j

Y X u

E Y X X X X
 

But, in the models where Y is qualitative, our objective is to find the probability of something 
happening such as voting for a Congress candidate or owning a house or a certain drug is 
effective etc., Hence qualitative response regression models are often known as probability 
models. 
 
We have to seek the answers for the following questions: 

1. How do we estimate qualitative response regression models? Can we estimate simply 
with the usual OLS procedure? 

2. Are there any special inference problems. 
3. How to measure the goodness of fit? 
4. How do we estimate and interpret polychotomous regression models ? Also how do we 

handle models in which the regressand is ordinal or nominal? 
 

20.3 The Linear Probability Model (LPM) 
 

For the sake of simplicity, we consider the regression model with only one explanatory variable 
X as given below 
 
 
 
 
 
 
 
 
             (20.2) 
   
 
 
The above model is a typical linear regression model because the regressand iY  is a binary 
variable/dichotomous variable and it is called a linear probability model[LPM]. 
 
From Eq. (20.2) we may write   
 
 ( ) 1 2i i iE Y X Xβ β= +         (20.3) 
 
 

1 2 ,     with ( )=0,       1, 2, ,β β= + + = …i i i iY X u E u i n   

 where iY  = 1, if ith family have own house. 

     = 0, if ith family does not have own house. 

          iX  = Income of ith family. 
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Let us denote    

( )
( )

th

th

     (the event of the i  family have  house)              1

1- (the event of the i  family   have  house) 0

= = =

= = =
i i

i i

P P own P Y

P P does not own P Y
 

 
Thus the variable iY  has the following probability distribution  

  

( )                

            0     1-  
            1           

           Total    1   
          

i i

i

i

Y P Y

P
P  

that is iY follows the Bernoulli probability distribution. Now, by the definition of mathematical 
expectation  

 ( ) ( ) ( )0 1- 1 = = + =∑i i i i i iE Y Y P Y P P P      (20.4)  
 
From Eqs. (20.3) and (20.4) we may write 
 ( ) 1 2 ( )                  β β= + = =i i i i iE Y X X E Y P  
 
that is the conditional expectation of the model (20.2) can in fact be interpreted as the 
conditional probability of iY . Since the probability iP must lie between 0 and 1, we have the 
restriction    
  
 ( ) 1 20 1β β≤ = + ≤i i iE Y X X        (20.5) 

Thus, 1 2β β+ iX  is interpreted as the probability that the event will occur at given the iX .  The 

calculated value of iY  from the regression model (20.2) that is 1 2
ˆ ˆˆ β β= +i iY X will then give the 

estimated probability that the event will occur given the particular value of iX .  The above LPM 
posses the following problems. 
 
1. Non-Normality of the disturbances:  

From equation (20.2) we may write the disturbance term iu as  

1 2                 1,2, ,i i iu Y X i nβ β= − − = …  
   Thus the probability distribution of iu  is  

 

( )
1 2 1 2

1 2

                                                                              

           when =1        1-             =      
           when =0          -         1- 1-

i i

i i i i

i i

u P u

Y X P X
Y X P

β β β β
β β β

− +
− = 1 2  

         
iXβ−

 

Obviously iu cannot be assumed to be normally distributed as it follows the Bernoulli 
distribution and hence, there is a problem with the application of the usual tests of significance.  
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However, in large sample any distribution approaches normal distribution and hence, we can 
assume iu as normal in large samples.  
 
2. Heteroscedasticity of the disturbances: 
Even if ( ) 0 cov( , ) 0i i jE u and u u= = i j∀ ≠  (that is no auto correlation), the LPM 
disturbances are not homoscedastic as explained below.  
Since the probability distribution of iu is Bernoulli, we have 

 

( ) ( ) ( )( )
( )
( ) ( )( )

1 2 1 2

1 -  

          = 1 -  

         1

        ( )(1 )             (using Eq.(20.3))
        ( )                                                                          

i i i

i i

i i i i

i i

i

V u P u P u

P P

E Y X E Y X

X X
W say

β β β β

=

= −

= + − −

= ( )    20.6

 

 
Since ( )iV u  is depending on iX  which varies from one individual to other, ( )iV u  is not 

common/constant for all iu ’s i.e.,  ( )iV u  is not homoscedastic. Thus iu ’s are heteroscedastic 
disturbances.  
 
Dividing Eq. (20.2) by iW  we get 
   

* * *
1 2 ,     1,2,...,                                                              (20.7)i i i iY Z X u i nβ β= + + =  

where * * *1, , ,i i i
i i i i

i i i i

Y X uY Z X u
W W W W

= = = =
 

   (20.8) 

 

* ( )( ) ( ) 1i i i
i

i ii

u V u WV u V
W WW

= = = =   

Now, we can verify from the equation Eq. (20.8), ( )* 1iV u =  and hence *
iu ’s are homoscedastic. 

We can estimate the model (20.7) by applying ordinary least square (OLS) method.  But for the 
application of OLS method the practical problem is iZ and *

iY , and *
iX  are in terms of iW , 

where iW  is in terms of the unknown parameter 1 2andβ β . 

To overcome this problem we have to estimate iW  using the following two step procedure. 
 
Step 1: Run the OLS regression for equation Eq. (20.2). Despite the heteroscedasticity problem 
and obtain îY =estimate of true ( )i iE Y X . Then obtain  

 ( )ˆ ˆ ˆ1= −i i iW Y Y   where 1 1
ˆ ˆˆ β β= +i iY X  
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Step 2: Use the estimated iW  to obtain *
iY , iZ and *

iX  from Eq. (20.8) and apply OLS method 
to the transformed model (20.7) and it may be noted that the transformed model does not have 
the intercept. 
3.  Non fulfillment of  ( )0 1:i iE Y X≤ ≤  

Since ( )i iE Y X  in the LPM measures the conditional probability of the event iY  occurring given 

iX . It must necessarily lie between 0 and 1. But there is no guarantee that îY , the estimate of 

( )i iE Y X  will necessarily fulfill this restriction and this is the real and practical problem with the 
OLS estimation of the LPM. 
 
 There are two ways of finding out whether the estimated îY  lie between 0 and 1. One is to 

estimate the LPM by the usual OLS method and find out whether the estimated îY  lie between 0 

and 1. If ˆ 0iY < , for some i ,  make  ˆ 0iY =  and if ˆ 1iY > , for some i , make  ˆ 1.iY =  
 
 The second procedure is to devise an estimating technique that will guarantee that the 
estimated probability îY will lie between 0 and 1. The Logit and Probit model discussed later will 
guarantee that the estimated probabilities will indeed lie between the logical limits 0 and 1. 
 
Note: the traditional 2R  cannot be used to measure the goodness of fit in case of probability 
models. 
 
20.4 The Logit Model  

 
 An explanation of the LOGIT model (logistic regression) begins with the explanation of the 
logistic function  

 1( ) ,          - <z<                                                                        
1

(20.9)zF Z
e−= ∞ ∞

+
 

The logistic function is useful because it can take as an input any value from  to +−∞ ∞ , where 
as the output is confined to the values between 0 and 1. Thus Eq. (20.9) is a probability function 
called logistic probability model. The variable Z is usually defined as  

 1 2 2 1
2

                                                    (20.10)
k

k k j j
j

Z X X Xβ β β β β
=

= + + + = + ∑

2 3where , , , kX X X  are k-1 explanatory variables or cause variables or regressors and  1β  is 

the intercept and 2 3, , , kβ β β are regression coefficients. 
 
 It is easy to verify that as Z  varies to to + ,−∞ ∞  ( )F Z  ranges from 0 to 1. Thus ( )F Z  
represents the probability of a particular outcome, given that a set of factor variables.  A positive 
β j  means that the variable jX  increases the probability of outcome, while a negative β j  

means the variable jX  decreases the probability of outcome. 
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 Now let us consider a situation where a dependent variable or response variable is a 
dichotomous that is which takes 0 or 1, which depends on several factors namely 

2 3, ,..., .kX X X   Now our objective is to find 

      ( )2 3, ,...,i i i kiE Y X X X  

Since iY  takes only two values,     

 iY =1, if the event occurs 
    =0, other wise 
iY is Bernoulli variable and by definition we have 

 ( )( ) 1 ( 1) 0 ( 0) = ( 1)=    say= = + = =i i i i iE Y P Y P Y P Y P  

 ( )2 3, , ,i i i ki iE Y X X X P∴ =…  ,   where ( )=i iP E Y               (20.11) 
 
Now, if we adopt the logistic model (20.9) for iP  given in Eq. (20.11), then we get 

1
,   - ,    1, 2, ,

1
 

ii iZP Z i n
e−

= ∞ < < ∞ = …
+     (20.12)

 

1
1 1

1 1i

i

i i

Z

Z ZP
e

e e

−

− −
⇒ − = −

+
=

+   

1 1

1 1

i

i i

i

Z

i

Z

i

Z
Z

P e

P e e
e

−

− −
⇒

+
=

− +
=

  
    

 

          (20.13)
 

 
 
 

Now the model (20.13) is called as LOGIT model. The quantity log
1

i
i

i

P L
P

 
= − 

 (say) is called 

as the “LOGIT”. 

Note: The model given in Eq. (20.12) with 1
2

β β
=

= + ∑
k

i j ji
j

Z X  is also called as LOGIT model. 

Remark: The quantity 
1

i

i

P
P−

 is simply the odds ratio in favor of happening the event 1iY = .  

Thus if 0.8iP = , it means that the odds are 0.8
1 0.2

= =
−
i

i

P
P

4 to 1 in favor of happening of 1iY = . 

Features of Logit Model: 
 
1. As iP  goes from 0 to 1 the LOGIT iL goes from to +−∞ ∞ . That is although the probabilities 

lies between 0 and 1, the LOGITs are not so bounded.  
 

( )1
2

                 log from Eq. (20.10)
1

k
i

i j ji
ji

P Z X
P

β β
=

 
= = + − 

⇒ ∑  
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2. Although L is linear in 2 3, , , kX X X… , the iPs are not so.  This property is in contrast with the 
LPM, where the probability increases linearly with values of 2 3, ,..., kX X X . 

3. If the Logit, log
1

i
i

i

PL
P

 
=  − 

  in the LOGIT model is positive it means that when the values of 

the regressors increase, the odds that the regressand 1iY =  (means some event of interest 
happens) increases. 

 
4. If iL  is negative, the odds that the regressand 1iY =  decreases as the values of regressors 

increases.  To put it differently the LOGIT becomes negative and increasingly large in 

magnitude (- ∞ , 0) as the odds ratio 
1

i

i

P
P

 
 − 

decreases from 1 to 0 and becomes positive 

and increasingly large (0, ∞ ) as the odds ratio increases from 1 to ∞ . 
 
M.L. Estimation of LOGIT model:  
 
The LOGIT model is given by 

 
1

2

2 3

2 3

( 1 / , , ..., )
   1 ( 0 / , , ..., )

1   ,         for i=1,2,...,n                                              (20.14)

1

k

j j i
j

i i i i ki

i i i ki

X

P P Y X X X
P Y X X X

e
β β

=

 
 − +
 
 

= =
= − =

=
∑

+

 

where Y  is binary dependent variable (take the value 0 or 1) and 2 3, ,..., kX X X  are k-1 
explanatory variables. 
 
We do not actually observe iP   but only observe the outcome  
  iY =1, if the event occurs 
  iY =0, if the event does not occur 
Suppose we have a random sample of n observations 1 2, , , nY Y Y… , the likelihood function of 

1 2, , , nY Y Y…  is given as 

 1 2( , , , )nL Y Y Y… = 1

1 1

( ) (1 )i i

n n
Y Y

i i i i
i i

f Y P P −

= =

= −∏ ∏      (20.15) 

Taking logarithms on both sides we get 

 

1

1

1 1

 [ log (1 ) log(1 )]

          [ log log(1 ) log(1 )]

         log log(1 )                                                        
1

(20.16)

n

i i i i
i
n

i i i i i
i

n n
i

i i
i ii

Log L Y P Y P

Y P Y P P

PY P
P

=

=

= =

= + − −

= − − + −

 
= + − − 

∑

∑

∑ ∑
 

 
Now from Eq. (20.14), we may write  
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1
2

1 1
2 2

11 1 =                                           (20.17)

1 1

k

j ji
j

k k

j ji j ji
j j

X

i
X X

e

e e

P

β β

β β β β

=

= =

 
 
 
 

   
   
   
   

− +

− + − +

∑
− = −

∑ ∑
+ +

 

 
From Eqs. (20.14) and (20.17), we get 

 1

2

1
2 log                                      (20.18)

1 1

k
i i

j

ji i

k

j ji
j

X

ji

P P
e X

P P

β β

β β
=

=

+

= ⇒ = +
− −

∑  
 
 

∑  

Eq. (20.17) may be rewritten as 

 
1

2

11

1

k

j ji
j

i
X

P

e
β β

=

 
 +
 
 

− =
∑

+

        (20.19) 

Now, substituting Eq. (20.18) and Eq. (20.19) in Eq. (20.16) we get 

 
1

2

1
1 2 1

log log 1

k

j ji
j

Xn k n

i j ji
i j i

L Y X e
β β

β β =

 
 +
 
 

= = =

=

 ∑   + − +      
 

∑ ∑ ∑   (20.20)  

Differentiating the above  LLog  with respect to jβ , j=1,2,…,k,  and setting them equal to zero, 
we get 

 We have   
log 0                 1,2, ,

j

L j k
β

∂
= = …

∂      
(20.21)

 
Since the above set of ‘k’ equations are in non-linear form and are not in explicit form, one has 
to solve the ‘k’ equations simultaneously using some iterative technique such as Newton- 
Raphson method or Gauss Newton methods to obtain the estimates of 1 2, , , kβ β β… .Once, we 
get these estimates they can be substituted in the logistic model   Eq. (20.14) to obtain the  
estimated logistic model. 
 
20.5 The Probit Model  

 
Let us assume that we have a regression model 

 *
1 2 2 3 3 1

2

                        (20.22)
k

i i i k ki i j ji i
j

Y X X X u X uβ β β β β β
=

= + + + + + = + +∑…  

where *
iY  is not observed it is commonly called a “latent” variable what we observe is a dummy 

variable, 
*

i =1, if > 0
   =0, otherwise                                                                                              (20.23)

iY Y
 

For instance if the observed dummy variable iY  is where the given person is employed or not, 

then *
iY  would be defined as “propensity” or “ability” to find employment. Similarly, if the 

observed dummy variable iY  is whether the person has bought a car or not, then *
iY  could be 
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defined as “desired” or “ability” to buy a car.  Note that in both the examples we have given 
there is “desire” or “ability” involved. Thus the explanatory variables in Eq. (20.22) would contain 
variables that explain both these variables. 
 

Now from Eq. (20.23) that multiplying Yi* by any positive constant does not change iY . 
Hence, if we observe iY  we can estimate θ in Eq. (20.22) up to a positive multiple. Hence, it is 
customary to assume ( ) 1iV u = , this fixes the scale of Yi*. 

 
If we denote 

 1
2

k

i j ji
j

Z Xβ β
=

= + ∑         (20.24) 

then we get from Eqs. (20.22) and (20.23) 

 

( )
( )
( )

( )
( )

*

(20.25)

1 ( 0)

   0

    

   1-

   1-                                                                                                 

i i i

i i

i i

i i

i

P P Y P Y

P Z u

P u Z

P u Z

F Z

= = = >

= + >

= > −

= < −

= −

 

 
where F is the c.d.f. of error term iu .  If the distribution of iu  is symmetric then  

 ( ) ( )1- i iF z F z− =  
and in this case Eq. (20.25) becomes 

( ) ( )i j i iP F z P u Z= = <        (20.26) 
Now functional form F in Eq. (20.26) will depend on the assumption made about the error term 

iu .  If the cumulative distribution of iu  is a normal distribution with mean 0 and variance 2 ,σ  
then the above model become a PROBIT model and in this case  
 

( )
( ) ( )

( )

( )

2/ 1
2

( )

                =                    0

1              =                         0 ,1
2

             ,     w h e re   is  c .d .f .  o f  s ta n d a rd  n o rm a l v a r ia

i

i i i i

i i

z
t

i

i

P F Z P u Z

P u Z

ue d t N

Z

σ

σ σ σ

σπ
σ

−

− ∞

= = <

< >

 
 
 

= Φ Φ

∫

∵

∵ ∼

te

 

and 1
1

2
( )           [from Eq. (20.24)]                    (20.27)

k

i i j ji
j

F P Z Xβ β−

=

= = + ∑
 

Since 1F −  is the inverse of normal c.d.f., the  model (20.27) is called as PROBIT model. 
 
Note: If the cumulative distribution of ui is a logistic distribution then the Eq. (20.26) yields 
LOGIT model and in this case  
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1

2

1
( )

1 1

log [from Eq. (20.24)] (20.28)
1

                  
i

i

i

i

i

i Z

k
i

j ji
ji

i
izP

P F Z
e P

Z
P

X
P

e

β β

−

=

=

= =
+ −

= +
−

⇒ =

 
 
 

⇒ ∑
        

Now the above equation is called LOGIT Model. The quantity log 1
i

i

P
P

 
  
 −

= iL  (say) is called as 

the “LOGIT”. 
Remark: The LOGIT model can be derived alternatively as shown in the above note. 
 
M.L. Estimation of PROBIT model: 
The PROBIT model is given by 

2 3

2 3

1
2

( 1/ , ,..., )
   1 ( 0 / , ,..., )

   ( )  ,         for 1,2,...,                                                           (20.29)

i i i i ki

i i i ki
k

j ji
j

P P Y X X X
P Y X X X

F X i nβ β
=

= =
= − =

= + =∑
 

where Y is binary dependent variable (take the values 0 or 1) and 2 3, ,..., kX X X  are 1k −  

explanatory variables.  Here, ( ) . F   is the c.d.f. of the normal variate ( )20, N σ , given by      

2/ 1
2 is c.d.f. of standard normal variatewhere 

1
( ) ( / )

2
,     

iz t

i iF Z Z e dt
σ

σ
π

−

−∞

Φ= Φ = ∫  

We do not actually observe iP   but only observe the outcome  
  iY =1, if the event occurs 
  iY =0, if the event does not occur 
Since each iY  is a Bernoulli random variable, we can write  
  ( 1)   i iP Y P= =        (20.30) 
  ( 0) 1i iP Y P= = −        (20.31) 
Suppose we have a random sample of ‘n’ observations. Letting ( )if Y  denote the probability 
that iY =1 (or) 0. Now, the likelihood functions of 1 2, ,...., nY Y Y  is given as 

  1
1 2

1 1

( , ,...., ) ( ) (1 )i i

n n
Y Y

n i i i
i i

L Y Y Y f Y P P −

= =

= = −∏ ∏     (20.32)  

Taking logarithms on both sides of Eq. (20.32) we get 

 Log 
1

[ log (1 ) log(1 )]
n

i i i i
i

L Y P Y P
=

= + − −∑
 

Substituting
 
iP from Eq. (20.29), we get 
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 1 1
2 21

log log (1 ) log 1
n k k

i j ji i j ji
j ji

L Y F X Y F Xβ β β β
= ==

      = + + − − +     
       

∑ ∑∑   (20.33) 

Differentiating Eq. (20.33) with respect to jβ , j=1,2,…,k,  and setting them equal to zero, we get 

 
log 0     1,2, ,

j

L j k
β

∂
= = …

∂
       (20.34) 

Since the above set of ‘k’ equations are in non-linear form and are not in explicit form and 
hence one has to solve the above ‘k’ equations simultaneously using some iterative technique 
such as Newton-Raphson method or Gauss Newton method to obtain the estimates of

1 2, ,..., kβ β β .  Once, we get these estimates they can be substituted in the PROBIT model Eq. 
(20.29) to obtain the estimated PROBIT model. 
 
 
20.6 The Tobit Model  

 
Let us assume that we have a regression model 

 *
1 2 2 3 3 1

2
                       (20.35)

k

i i i k ki i j ji i
j

Y X X X u X uβ β β β β β
=

= + + + + + = + +∑  

where Yi* is not observed and it is commonly called a “latent” variable.  In the Logit and Probit 
models what we observe is a dummy variable, defined by 

*
i =1, if > 0

   =0, otherwise                                                                                              (20.36)
iY Y

 

Suppose, however, that *
iY is observed if *

iY >0 and is not observed if * 0iY ≤ . Then the 
observed iY  will be defined as    

*
1

2

*

 0

0 0

k

j ji i i
ji

i

X u if Y
Y

if Y

β β
=

 + +            >=   
                                        ≤

∑
     (20.37) 

   where 2(0, )
iid

iu N σ∼  
This is known as the Tobit model (Tobin’s probit) and was first analyzed in the econometrics 
literature by Tobin. It is also known as a censored normal regression model because some 
observations on *

iY  (those for which * 0iY ≤ ) are censored (we are not allowed to see them). Our 
objective is to estimate the parameters β ’s and σ. 
 
Some Examples: 
 
There have been a very large number of applications of the Tobit model.  We present two 
examples below. 
 
The first example that Tobin considered was that of automobile expenditures. Suppose that we 
have data on a sample of households. We wish to estimate, say, the income elasticity of 
demand for automobiles. Let *

iY  denote expenditures on automobiles and X  denote income, 
and we postulate the regression equation 
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   *
i i iY X uα β= + +   2(0, )

iid

iu N σ∼  
However, in the sample we would have a large number of observations for which the 
expenditures on automobiles are zero. Tobin argued that we should use the censored 
regression model. We can specify the model as  
 

 
for those with positive automobile expenditures

0 for those with no expenditures
i i

i

X u
Y

α β+ +      
=  

                      
 (20.38) 

 
The structure of this model appears to be the same as that in Eq. (20.37). 
The second example that Tobin considered was the hours worked (H) or wages (W). If we have 
observations on a number of individuals, some of whom are employed and others not, we can 
specify the model for hours worked as  

   
for those working

0 for those not working
i i

i

X u
H

α β+ +      
=  

                      
   (20.39) 

Similarly, for wages we can specify the model 

   
for those working

0 for those not working
i i

i

Z v
W

α β+ +     
=  

                     
   (20.40) 

The structure of these models again appears to be the same as in Eq. (20.37).  
 
Method of Estimation: 
Let us consider the estimation of β ’s and σ . We cannot use OLS with the positive observations 

iY  because when we write the model 

    1
2

  
k

i j ji i
j

Y X uβ β
=

= + +∑  

the error term iu does not have a zero mean. Since observation with 0iY ≤  are omitted, it 

implies that only observations for which 1
2

( )   
k

i j ji
j

u Xβ β
=

> − +∑ are included in the sample. 

Thus the distribution of iu is a truncated normal distribution and its mean is not zero.   In fact, it 
depends on 2 3, ,...., ,k σβ β β  and 2 3, , ...,i i kiX X X  and is thus different for each observation. A 
method of estimation commonly suggested is the maximum likelihood method, which is as 
follows. 
 
 Note that we have two sets of observations: 
 
1. The positive values of ,iY  for which we can write down the normal density function as usual. 

We note that ( 1
2

( )
k

i j ji
j

Y Xβ β
=

− +∑ )/σ  has a standard normal distribution. 
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2. The zero observations of ,iY  for which all we know is that * 0iY ≤ or 1
2

0
k

j ji i
j

X uβ β
=

+ + ≤∑ . 

Since /iu σ  has a standard normal distribution, we will write this as

1
2

/ ( ) /
k

i j ji
j

u Xσ β β σ
=

≤ − +∑ .  The probability of this can be written as 

1
2

( ( ) / )
k

j ji
j

Xβ β σ
=

Φ − +∑ ,  where (.)Φ  is the c.d.f. of the standard normal. 

Let us denote the density function of the standard normal by (.)φ  and then 

 
2 / 21( ) e

2
ttφ

π
−=     and ( ) ( )

z
z t dtφ

−∞
Φ = ∫  

Using this notation we can write the likelihood function for the Tobit model as  

   
1 1

2 2

0 0

( )
1

i i

k k

i j ji j ji
j j

y y

y X X
L

β β β β
φ

σ σ σ
= =

> ≤

   − + +   
   = Φ −
   
   
   

∑ ∑
∏ ∏  

Maximizing this likelihood function with respect to 2 3, ,...,   k and σβ β β ,  we get the ML estimates 
of  these parameters.  
 
20.7 Measuring goodness of fit   

 
There is a problem with the use of conventional 2R - type measures when the explained 

variable Y  takes only two values.  The predicted values Ŷ are probabilities and the actual 
values Y  are either 0 or 1.  For the LPM and Logit models, we have ˆY Y=∑ ∑  , as with the 
linear regression model, if a constant term is also estimated.  For the Probit model there is no 
such exact relationship although it is approximately valid.  

 
 There are several 2R - type measures that have been suggested for models with 
qualitative dependent variables.  The following are some of them.  In the case of the linear 
regression model, they are all equivalent.  However, they are not equivalent in the case of 
models with qualitative dependent variables.  
 

1. 2R =Squared correlation between Y  and Ŷ = 2ˆ[ ( , )]cor Y Y . 
2. Measures based on residual sum of squares (RSS).  For the linear regression model we 

have 

         

( )
( )

2

2 1

2

1

ˆ
1

n

i i
i
n

i
i

Y Y
R

Y Y

=

=

 
− 

 = −
 − 
 

∑

∑
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We can use this same measure if we can use ( )
2

1

ˆ
n

i i
i
Y Y

=

−∑ as the measure of RSS.  

Effron argued that we can use it.  Note that in the case of binary dependent variable, 

( )
2

2 2 2 1 1 2
1

1

n

i i
i

n n nY Y Y nY n n
n n=

 − = − = − = 
 

∑ ∑
 

where     1 2 1'         0 'n number of s and n number of s= =
 
 

Hence Effron’s measure of 2R is 

( )
2

2

11 2 1 2

ˆ1 1
n

i i
i

n nRSSR Y Y
n n n n=

= − − = −∑  

Amemiya argues that it makes more sense to define that RSS as 

( )
( )

2

1

ˆ

ˆ ˆ1

n i i

i i i

Y Y

Y Y=

−

−
∑  

That is, to weight the squared error ( )2ˆ
i iY Y−  by a weight that is inversely proportional to 

its variance. 
 

3. Measures based on likelihood ratios.  For the standard linear regression model. 

              
1

2
,

k

i i
i

Y X uβ β
=

= + +∑
            

2(0, )
iid
u N σ∼  

Let URL be the maximum of likelihood function when maximized with respect to all the 
parameters and RL be the maximum when maximized with restriction 0β =i  for 

1,2, ,= …i k . Then, a measure of 2R , defined by McFadden, is 

 2 UR

R

log McFadden's 1
log 

= −
LR
L

 

However, this measure does not correspond to any 2R  measure in the linear regression 
model. 
 

4. Finally, we can also think of 2R in terms of the proportion of correct predictions.   Since 
the dependent variable is a 0 or 1 variable, after we compute  the  îY  we classify the ith 

observation as belonging to group 1 if ˆ 0.5iY >= and group 2 if ˆ 0.5iY < .  We can then 

count the number of correct predictions.  We can define a predicted value *
îY , which is 

also a zero one variable such that  

*
ˆ1  if 0.5 ˆ

ˆ0     if  0.5
i

i

Y
Y

Y

 >== 
<

 

           Now define  

 2 number of correct predictionscount 
total number of observations

=R
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20.8 Summary and Conclusions 
 
1. Qualitative response (dummy dependent variable) regression models refer to models in 

which the response, dependent, or regressand, variable is not quantitative or an 
interval scale. 
 

2. The simplest possible qualitative response regression model is the binary model in 
which the regressand is of the yes/no or presence/absence type.  Regarding the 
dummy dependent variable, there are three different models that one can use: the 
linear probability model (LPM), the Logit model, and the Probit model.  

 
3. The simplest possible binary regression model is the LPM, in which the binary 

response variable is regressed on the relevant explanatory variables by using the 
standard OLS methodology. Simplicity may not be a virtue here, for the LPM suffers 
from several estimation problems.  The LPM has the drawback that the predicted 
values can be outside the permissible interval (0, 1).  Even if some of the estimation 
problems can be overcome, the fundamental weakness of the LPM is that it assumes 
that the probability of something happening increases linearly with the level of the 
regressor.  This very restrictive assumption can be avoided if we use the Logit and 
Probit models.  

 
4. In the analysis of models with dummy dependent variables, we assume the existence 

of a latent (unobserved) continuous variable which is specified as the usual regression 
model.  However, the latent variable can be observed only as dichotomous variable.  
The difference, between the Logit and Probit models, is in the assumptions made about 
the error term.  If the error term has a logistic distribution, we have the Logit model.  If it 
has a normal distribution, we have the Probit model.  From the practical point of view, 
there is not much to choose between the two.  The results are usually very similar.    

 
5. In the Logit model the dependent variable is the log of the odds ratio, which is a linear 

function of the regressors. The probability function that underlies the Logit model is the 
logistic distribution.   

 
6. If we choose the normal distribution as the appropriate probability distribution, then we 

can use the Probit model. This model is mathematically a bit difficult as it involves 
integrals. But for all practical purposes, both Logit and Probit models give similar 
results. In practice, the choice therefore depends on the ease of computation, which is 
not a serious problem with sophisticated statistical packages that are now readily 
available.  

 
7. A model that is closely related to the Probit model is the Tobit model, also known as a 

censored regression model. In this model, the response variable is observed only if 
certain condition(s) are met. Thus, the question of how much one spends on a car is 
meaningful only if one decides to buy a car to begin with.  

 
8. For comparing the LP, Logit, and Probit models, one can look at the number of cases 

correctly predicted.  However, this is not enough.  It is better to look at some measures 
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of 2R ’s.  We discuss several measures of namely of i) Squared correlation between Y  

and Ŷ ,  ii) Effron’s 2R  iii) 2McFadden's R and  iv) 2count R . 
 
Note: In this lesson no illustrations are given since the demonstration of these models 
require software packages. 
 
20.9 Self Assessment Questions  
 
1. Discuss the need of qualitative response models.  Explain the linear probability model (LPM) 
2. Discuss how logistic regression model is different from the traditional regression model. 
3. Explain the LOGIT Model and an estimation procedure of the model. 
4. What are the applications of logistic regression model? 
5. Explain ML estimation procedure of logistic model and give two of its applications. 
6. Describe the PROBIT and TOBIT models. 
7. Discuss the need of qualitative response models.  Explain the ML estimation of the 

parameters of the LOGIT model. 
8. Explain in detail the PROBIT model and also explain its use in analysis of biological data. 
9. Distinguish between Probit and Logit models and give their applications. 
10. Explain ML estimation method of Probit model and give two applications of the model. 
11. Discuss various measures of goodness of fit for LOGIT/PROBIT models. 
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