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UNIT-I 
 

 
Concept of Multivariate Analysis: 
  

In botanical and zoological survey the interest of scientists is to investigate the 

new species of animals or trees and to identify their classes and families.  A doctor wants 

to diagnose the disease of a newly arrived patient.  The agricultural scientists investigate 

the suitability of a piece of land for the cultivation of a particular crop.  The selection 

committee for appointing a group of individuals for a particular job applies different test 

procedures to select the candidates.  Selection committee in educational institute selects 

students for admission into a course.  In all the above cases the investigation is not done 

on the basis of a single criterion.  For example, a doctor only examining the temperature 

of a patient cannot diagnose it as typhoid.  He needs to observe some other symptoms for 

his proper diagnostic decision.  The suitability of apiece of land for a particular crop is 

judge on test scales of fertility of land, the amount of potash in the land, the soil type, etc.  

The test scores on educational qualification, age, health condition, behavior, etc., of 

candidates help the selection committee in selecting a candidate. 

The above discussion indicates that a decision regarding an object or individual 

depends on the simultaneous study of several characteristics observed from the objects.  

Since the characteristics are observed from an objects, these are inter-related.  For a 

reliable and valid conclusion about any population parameter vector, it needs the study of 

inter-related variables observed from a sample of objects selected randomly from the 

population under study.  Since the variables cannot be splitted off from each other as 

these are dependent among themselves. 

 

From the above discussion it is clear that one needs to analyze all the variables observed 

from n sample objects simultaneously.  Multivariate analysis is a statistical technique for 

simultaneous analysis of two or more variables observed from one or more sample 

objects.  In this analysis, the inter-relationships of the variables are studied along with the 
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study of mean, variance and some other characteristics related to univariates analysis.  

However, the main objective of the analysis is to estimate the extent or amount of 

relationship among the variables.  For example, one may need to observe the magnitude 

and direction of influences of some socio-economic variables which mobilize the couples 

to adopt family planning method, or to study the causes of preferring a particular 

industrial item by consumers, or to identify the causes of a disease which affects the 

community or to identify the class and family of newly observed species.  All these 

analyses depend on multivariate data observed on same occasion from sample 

individuals. 

 From the objective of the analysis it is clear that the multivariate data are of two 

types, viz., dependent and independent.  Accordingly, one needs to study the extent of 

relationship of dependent and independent sets.  Also it needs the analysis of the structure 

of inter-relationships of the variables altogether.  Thus multivariate analysis can be 

classified into two type, viz., (a) Inter-dependence analysis, and (b) Dependent analysis. 

  

 The main components of inter-dependence analysis are (i) Principal Component 

Analysis, (ii) Factor Analysis, (iii) Cluster analysis, where as  the dependent analysis 

deals with (i) discriminant Analysis, (ii)Canonical Correlation Analysis, (iii) Multivariate 

Analysis of Variance, and (iv) Multivariate Regression Analysis. 

 
 
 
Random Vector: 
Definition: A random vector is a vector whose elements are random variables i.e., if 

1 2, ,..., nX X X are random variables then the n-tuple 

1

2

n

X
X

X

 
 
 =
 
 
 

X
#�

is called a random vector. 
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Distribution function of X
�

: 
 The Joint distribution function is X

�
is defined by 

 
( ) ( )

( )
1 2

1 1 2 2

, ,...,

         , ,...,
n

n n

F F x x x

P X x X x X x

=

= ≤ ≤ ≤

X
�  

Which is a monotonic non-decreasing in each of its arguments with basic consideration 
( )

( )
, ,..., 0

       , ,..., 1

F

F

−∞ −∞ −∞ =

∞ ∞ ∞ =
 

Joint density function of X
�

: 
 The Joint probability density function of x

�
is defined by 

( ) ( )

( )
1

1 2
1 2

1 2

1 1 1 10 0

( , ,..., ), ,...,
...

         = lim , ,
n

n
n

n
n

n n n nx x

F X X Xf f X X X
x x x

P x X x x x X x x
∆ → ∆ →

∂
= =

∂ ∂ ∂

< < + ∆ < < + ∆

x

…

�
"

 

Conversely, the distribution function can be expressed in terms of the density 
function as follows 

( ) ( )

( )
1 2

1 2 1 2, , ,
nxx x

n n

F f

f X X X X X X

−∞

−∞ −∞ −∞

= ∂

= ∂ ∂ ∂

∫

∫ ∫ ∫

x

x x x
�

� � �

" " "
 

Conditional density function: 
Definition: The conditional density function of X

�  given that the random vector Y
�

 has a 
specified value y

�
is defined by 

( ) ( )
( ) ( )
( ) ( )

0

1 2 1 2 1 2

lim

            , ,..., , , ,..., , ,...,

            
n n n

f P

f x x x y y y f y y y

f f

∆ →
= ≤ ≤ + ∆

=

=

y
x y x y Y y y

x,y y

�� � �� � � �

� � �

 

where ( )f y
�

 is the marginal density of y
�

 and is obtained by the integration. 

( ) ( ),f f
∞

=−∞

= ∂∫
x

y x y x
�

� �� �
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Mean vector or Expectation of  X
�

: 
The mean vector of is denoted as and is defined as ( )E X

�
and 

1 1

2 2

( )
( )

( )
: :

( )p p

E X
E X

E

E X

µ
µ

µ

   
  
  = = =  
        

X µ
� �

(say) 

 
The Variance-Covariance matrix of X

�
: 

 The Variance-Covariance matrix of X
�

 is denoted by Σ and is defined as 

            

( )

1 1

2 2
1 1 2 2

2
n n n1 1 1 1 2 2 1

2
2 2 1 1 2 2 2

( ) ( ( ))

  
   [( )( ) ]
 

 , ,

  
[X -µ ] [(X -µ )(X -µ )] ... [(X -µ )(X -µ )]

[(X -µ )(X -µ )] [X -µ ] ... [(X -µ

n n

n n

E E E

E

X
XE X X X

X

E

µ
µ µ µ µ

µ

 
 

  
  
       
  
    

= − − ′

= − − ′

−
−

= − − −

−

=

Σ X X X X

X µ X µ

� � � �

� �� �

"#

( )

n n2

2
n n n n n n1 1 2 2

11 12 1

21 22 2

1 2 nXn

)(X -µ )]
: : : :

[(X -µ )(X -µ )] [(X -µ )(X -µ )] ... [X -µ ]

...

...
  where ( ): : : :

...

n

n
ij i i j j ji

nnn n

E x x

σ σ σ
σ σ σ

σ µ µ σ

σ σ σ

 
 
 
 
 
 
 

 
 
   

  
 
  

= = − − =

 

 
We can  see Σ  is a symmetric matrix 
 
Un-Correlated, Orthogonal and Independent Random Vectors: 
Definiton: Two random vectors X

�
 and Y

�
 are called Uncorrelated if 

( ) ( ) ( ) ( ) ( )' '  or  cov , 0E E E= =XY X Y X Y
� � � � � �
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Orthogonal if ( ) 0E ′ =XY
� �

 

Independent if ( ) ( ) ( ),f f f=X Y X Y
� � � �

 

Note: 

1. If X
�

 and Y
�

are uncorrelated and either ( ) ( ) ( )0 or  0E E= =X Y
� �

or then X
�

 and 

Y
�

are orthogonal 

2. If X
�

 and Y
�

are independent then 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

             

            

E f

f f

f f E E

′ ′= ∂ ∂

′= ∂ ∂

  
′ ′ = ∂ ∂ = 

     

∫ ∫

∫ ∫

∫ ∫

x y

x y

x y

XY xy xy x y

xy x y x y

x x x y y y X Y

� �

� �

� �

� � � � �� � �

� � �� � �

� � � � �� � �

 

i.e., and are independent implies uncorrelated 

3. The converse of ‘2’ need not be true 

 
                 MULTIVARIATE NORMAL DISTRIBUTION 
 
 
MULTIVARIATE  NORMAL  DENSITY: 
 
Suppose X is a scalar normal variate with mean µ  and variance 2σ  then the p.d.f of X 
can be written as 

     

1 2 1( )( ) ( ) 22( : , ) , 0,
x x

f x ke
µ σ µ

µ σ σ µ
−− − −

= > −∞ < < ∞                         (1) 
 

 Where,    k= 1
2σ π
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Now suppose 

1

2

:

p

X
X

X

X

 
 
 =  
  
 

�
     is a p-variate random vector and  

Its mean vector is given by 
  

                 

1 1

2 2

( )
( )

( )
: :

( )p p

E X
E X

E

E X

µ
µ

µ

   
  
  = = =  
        

X µ
� �

                                                                      (2) 

 
and its variance –covariance matrix is given by          
 
            ( )V( ) ( ) ( ( ))E E E ′= − −  X X X X X

� � � � �
 

                
                         [( )( ) ]E ′= − −X µ X µ

� �� �
 

           
2

1 1 1 1 2 2 1 p p p
2

2 2 1 1 2 2 2 2 p p

2
p p 1 1 p p 2 2 p p

E[X -µ ] E[(X -µ )(X -µ )] ... E[(X -µ )(X -µ )]
E[(X -µ )(X -µ )] E[X -µ ] ... E[(X -µ )(X -µ )]

V(X)=
: : : :

E[(X -µ )(X -µ )] E[(X -µ )(X -µ )] ... E[X -µ ]

 
 
 
 
 
  

�
 

 

              =

11 12 1

21 22 2

1 2

...

...
: : : :

...

p

p

p p pp

σ σ σ
σ σ σ

σ σ σ

 
 
  =
 
 
  

Σ  (say)                                                                    (3) 

 
Where,  
               ( ) ( )ij i i j j jiE x xσ µ µ σ = − − =   
 
clearly, Σ  is symmetric & positive definite matrix. 
 
Now the multivariate normal density of  X

�
 can be obtained  by replacing  

 the positive quantity   2 1( )( ) ( )x xµ σ µ−− −   by the quadratic form 
 
                      1( ) ( )−′x - µ Σ x - µ

� �� �
                                                                                      (4) 
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and is given by 

            

1 1( )  ( )
2( )f ke

−′−
=

x - µ Σ x - µ
x : µ,Σ � �� �
� �

                                                               (5) 
 
Where (k>0) is chosen so that the integral over the entire p-dimensional  
 
Euclidean space of  1 2, ,..., pX X X is unity. we observe that 
 
            ( ) 0f ≥x : µ,Σ

� �
                     ( ∵k is chosen as positive) 

 
since  Σ  is positive definite 
 

                    

1

1

        ( ) ( ) 0

1  ( ) ( ) 0
2

−

−

′ >

′⇒ − <

x - µ Σ x - µ

x - µ Σ x - µ
� �� �

� �� �

 

                    
1

0

1 ( ) ( )
2    = 1 e e

−′−
⇒ <

x - µ Σ x - µ
� �� �  

 
i.e.  0 ( , )f k≤ ≤x : µ Σ

� �
  i.e. ( )f x

�
is bounded. 

 
Now  we should find k(>0) such that 
 

1 1( ) ( )
2... ( ) ... 1f x k e

−′− ∑∞ ∞ ∞ ∞
= =∫ ∫ ∫ ∫

−∞ −∞ −∞ −∞

x - µ x - µ
dx� �� �
�

                                               (6) 

 

              

1 1( ) ( )1 2...k e
−′− ∑∞ ∞− = ∫ ∫

−∞ −∞

x - µ x - µ
dx� �� �
�

                                                       (7) 

since  1−Σ  is positive definite ∃ a non singular matrix A such that 
 
              1 A A− ′=Σ                                                                                                         (8) 
 
then (7) can be written as 
 

           

1 ( ) ( )1 2...
A A

k e
′ ′−∞ ∞− = ∫ ∫

−∞ −∞

x - µ x - µ
dx� �� �
�

                                                           (9) 
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If we use the linear transformation from X

�
to a new random vector Y

�
such that 

 
             )AY = (X - µ

� � �
                                                                                                  (10) 

then (9) becomes 
 

         
1
21 ...k J e

′−∞ ∞− = ∫ ∫
−∞ −∞

y y
dy� �

�
                                                                              (11) 

 
where J is the Jacobian obtained when X

�
 is transformed into Y

�
 and is given by 

 

           

1 1 1

1 2

2 2 2
1

1 2

1 2

...

...
mod

: : : :

...

p

p

p p p

p

y y y
x x x
y y y
x y xJ

y y y
x x x

−

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂=

∂ ∂ ∂

∂ ∂ ∂

 

 
 

               

11 12 1

21 22 2

1 2

...

...
mod mod

: : : :
...

p

p

p p pp

a a a
a a a

A

a a a

= =  

 
Where  A    is determinant of A. 
 
∴ Equation  (11) becomes  

                 

1
11 2...

mod
k e

A

′−∞ ∞− = ∫ ∫
−∞ −∞

y y
dy� �
�
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1

1

1 2
1 2

mod

1 2
1 1 22 ( 1)

mod 2

p

i

p

i
i

yie dyiA

yie dy
A

π
π

=

∞

= −∞

 −∞ 
= ∫ 

 −∞
 

−
= =

∏

∏ ∫∵

 

              

  i.e.,              

/ 2
21

1/ 21

1/ 2 / 2

(2 )           ( )
mod

1
(2 )

p

p

A A A

k

π

π

−

−
′= = =

=

Σ
Σ

Σ

∵

 

                                     1( −Σ∵ is positive definite to  
1/ 2 1/ 21 1

1/ 2
1mod − −= =Σ Σ
Σ

 )   

 
substituting k in (5) we get the p.d.f of the random normal vector  X

�
and is given by 

 

            
1

1/ 2

1 ( ) ( )1 2( , ) / 2(2 )
f epπ

−′−
=

x - µ Σ x - µ
x : µ Σ

Σ
� �� �

�
             (12) 

 
thus (12) is the p.d.f of a  multivariate  normal vector X

�
whose mean  vector  

 
and variance-covariance matrix are respectively given by µ

�
  and Σ  

 
and is denoted  as ( , )n x/µ Σ

� �
 and its distribution is denoted  as ( , )pN µ Σ

�
. 

 
NOTE 1: 
                 
               From (10) ,we may see that   
 
              ( ) ( )E AE=Y X - µ

� � �
 

                       

( ( ) )

( )

A E

A

= −

=

=

X µ

µ - µ

0

� �

� �
�

 

i.e. Y
�

  has zero mean vector. 
The variance-covariance matrix Y

�
of is given by  
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                V( ) [( ( )) ( )) ]E E E ′= − −Y y y (y y

� � � � �
 

                         

=E[ ]      ( E( )=0)

=E[A( -µ)( -µ) A ]

=AV( )A
=AΣA

′

′ ′

′
′

yy y

X X

X

∵
�� � �

� �� �
�

 

but from (8), 
 
                    1( )A A −′=Σ  
                        1 1( )    (A A A− −′= ∵  is a non-singular) 
           1 1V( ) ( )AA A A− −′ ′∴ =Y

�
 

                       k k

k

I I
I

=
=

 

 
Thus  if X

�
is ( , )pN µ Σ

�
 ,then the random vector Y

�
defined as 

( )A=Y X - µ
� � �

    (where A is defined as in (8) ) follows ( , )p kN I0
�

. 
In other words , the individual element  of Y

�
are standard normal variates  and 

mutually independent          i.e. (0,1)iY N∼  with cov( , ) 0i jY Y = . 
 
NOTE 2. 
 In the practical situations ‘A’ can be computed as follows .since Σ is a  
 symmetric p.d. matrix we may write  1 2( , ,..., )pdiag λ λ λ′ = =ΩΣΩ Λ ,when Ω  is the 
normalized latent vector  matrix and Λ  is the latent root matrix and since Σ is p.d. all 

1 2, ,..., pλ λ λ  are positive .Therefore Λ can be written 1/ 2 1/ 2( ) ( )′=Λ Λ Λ  

Where,         1/ 2
1 2( , ,..., )pdiag λ λ λ=Λ  

then  

                  
1/ 2 1/ 2

1 1/ 2 1/ 2 1 1 1

( ) ( )
( ) ( ) ( )A A− − − −

′ ′=

′ ′ ′⇒ = =

ΩΣΩ Λ Λ
Σ Ω Λ Λ Ω

 

 
where 

       

1 1 1/ 2

1/ 2 1/ 2

1/ 2

1

( ) ( )
      ( ( ) )

thus, 

1 1where     ( ,..., )
p

A
A

diag
λ λ

− − ′ ′=

′ ′⇒ = Λ = Λ

′=

=

-1/2

1/2

Ω Λ
Λ Ω

Y Λ Ω (X - µ)

Λ

∵

� � �
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The transformation from X
�

 to Y
�

 follows ( , )p kN 0 I
�

.This transformation is  
called “whitening”. 
 
 
 
ALTERNATIVE METHOD OF OBTAINING THE P.D.F. OF  
MULTIVARIATE  NORMAL VARIATE:- 
 

              Suppose  

1

2

:

p

Y
Y

Y

 
 
 =  
  
 

Y
�

 

 is a multivariate normal vector with mean vector 0
�

 and variance-covariance  
matrix  pI . 
i.e. (E =Y) 0

� �
 

i.e.  ( ) 0iE y i= ∀                                                                                                              (a) 
 
and    

              

2
1 1 2 1

2
2 1 2 2

2
1 2

( ) ( ) ... ( )
( ) ( ) ... ( )

V( )
: : ... :

( ) ( ) ... ( )

p

p

p p p

E y E y y E y y
E y y E y E y y

E y y E y y E y

 
 
 =  
 
  

Y
�

 

                           =

1 0 ... 0
0 1 ... 0
: : ... :
0 0 ... 1

pI

 
 
  =
 
 
 

 

          i.e. 2( ) 1 &  ( ) 0   i i jE Y E YY i j= = ∀ ≠                                                                  (b) 

Thus iY s′  are i.i.d. with ‘0’ mean and unit variance .now  consider the p.d.f. of Y
�

 ,which 
is given as  
            1 2) ( , ,..., )pf f y y y=(Y

�
  

                      1 2( ) ( )... ( )pf y f y f y=  

                       =
1

( )
p

i
i

f y
=
∏     (since iy s′  are i.i.d. ) 
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                     = 
1

1 2
1 2
2

p

i

yie
π=

−
∏         (since (0,1)iY N∼ ), 

1 2
1 2( )
2i

yif y e
π

−
= ) 

                     

2

1
/ 2 / 2

1 1
1 12 2        

(2 ) (2 )

n

i
j

p p

y
e e

π π
=

− ′−
= =

∑ y y
� �                                         (1) 

 
let us make use of the following linear transformation of Y

�
 into X

�
 

          A= +X Y b
� � �

   where A is non-singular                                                                (2) 
 
Now the p.d.f  of X

�
 becomes  

 
                 1 2( ) ( , ,..., )pf f x x x=x

�
 

                          = / 2

1 1 1( ) ( ) (1 2 ( )
(2 ) p

A A
e J

π

− −′ ′− x - b x - b)
x� �� �
�

 

where ( )J x
�

 is the jacobian  and is given by           
 

             ( )
d

J
d

=
y

x
x��
�

 

                    

1 1 1

1 2

2 2 2

1 2

1 2

1

1

...

...

: : : :

...

1 1     ( )

1 1( ) ( ) ( )1 2( ) / 2(2 )

p

p

p p p

p

y y y
x x x
y y y
x x x

y y y
x x x

A

A
A A

AA
f epA π

−

−

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂=

∂ ∂ ∂

∂ ∂ ∂

=

= =

−′ ′−
∴ =

x - b x - b
x

∵

� �� �
�

 

 
Which  is the p.d.f. of   X

�
 in terms of  A & b

�
and now let us interpret b

�
 and A 

From  (2),  
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                 ( ) ( )       ( ( ) )E AE E= + = =X Y b b Y 0∵
� � �� � �

 
 i.e           ( )E= =b X µ

�� �
say                                                                                            (4) 

  
  V( ) AV( ) pA AI A AA′ ′ ′ ′= = =X Y

� �
    (from  (b)) 

                                = Σ   say                                                  (5) 
 
∴ b
�

 is the mean vector of X
�

 and  AA′  is the variance-covariance matrix of X
�

 
 
using (4) & (5) in (3) we get, 
 

               
/ 2

1 1( ) ( )21( ) 1/ 2(2 ) modp
f e

π

−− ′
=

x-µ Σ x-µ
x

Σ

� �� �
�

                                             (6) 

                                          2 1/ 2(         )AA A A′ = ⇒ = ⇒ =Σ Σ Σ∵  
 
since  2 0,A= >Σ Σ  is positive definite and therefore mod 1/ 2 1/ 2=Σ Σ  and (6) can be  
written  as       

/ 2

1 1( ) ( )21( ) 1/ 2(2 ) p
f x e

π

−− ′
=

x-µ Σ x-µ

Σ

� �� �
�

                                                      (7) 

 
Eq (7) is the p.d.f . of  the multivariate normal variate X

�
 where mean is µ

�
 and  

variance –covariance   matrix is Σ and is denoted by ( , )n x/µ Σ
� �

. 

The distribution function of X
�

 is denoted as  ( , )pN µ Σ
�

. 
 
Definition: If X

�
 is a random vector with mean µ

�
 and   the variance-covariance matrix , 

Σ  and  its  p.d.f. is given by (7)  then  X
�

 is said to follows  p-variate normal  
distribution   and is denoted  as       ( , )pN ∑X µ∼

� �
. 

 
 
 
 
 
 
 
 
 
 
 



14 
 

PROFPERTIES OF MULTIVARIATE NORMAL DISTRIBUTION 
 
THEOREM:   
                    Let  X

�
 (with p components) be distributed according to ( , )pN µ Σ

�
then, 

C=Y X
� �

 is distributed according to ( , )N C C C′µ Σ
�

 for C non-singular.  
PROOF: 
         Since ( , )pNX µ Σ∼

� �
 & its p.d.f. is given  as 

 

                     
/ 2

1 1( ) ( )
21( ) 1/ 2(2 ) p

f x e
π

−′−

=

x - µ Σ x - µ

Σ

� �� �
�

                                          (1) 

 
Now ,consider the linear transformation  
                  C=Y X

� �
 where C is non-singular 

              1C−⇒ =X Y
� �

                                                                                                    (2) 
 
Now the p.d.f. 1 becomes interms of Y

�
 as 

 
1 1 1 1( ) ( )1 2( ) ( )/ 2 1/ 2(2 )

C C
g e Jpπ

− − −′−
=

y - µ Σ y - µ
y y

Σ
� � � �

� �
                                      (3) 

 
where ( )J y

�
 is the Jacobian  and is given by  

 

             1( ) mod modJ C−∂
= =

∂
xy
y��
�

 

                      
2

1
mod

1
C

C

C C

=

=

=
′

Σ
Σ

 

                     =
1/ 2

1/ 2C C′
Σ
Σ

                                                                                                (4) 
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Using (4) &  (3)  ,we get  
 

                 
/ 2

1 1 1 1( ) ( )1 2( ) 1/ 2(2 ) p

C C
g e

C Cπ

− − −′−
=

′

y - µ Σ y - µ
y

Σ
� � � �

�
 

                         

1 1 1 1[ ( )] [ ( )]1 2
/ 2 1/ 2(2 )

1 1( ) ( ) ( )1 2
/ 2 1/ 2(2 )

C C C C
ep C C

C C C C
ep C C

π

π

− − −′− − −
=

′

−′ ′− − −
=

′

y µ Σ y µ

Σ

y µ Σ y µ

Σ

� � � �

� � � �

 

 
                         = ( / , )n C C C′y µ Σ

� �
                                                                                 (5) 

But  
                ( ) ( )E CE C= =Y X µ

� � �
                                                                                     (6) 

         & V( V( )C C C C′ ′= = ∑Y) X
� �

                                                                         (7) 
 
 Now, if we write the multivariate normal p.d.f. of  Y

�
 with mean µ

�
 and  the  

variance-covariance matrix C C′Σ  that will becomes as (5) and therefore  
 
                   ( , )C N C C C′X µ Σ∼

� �
. 

 
                                     Hence the proof. 
 
 
THEOREM: 
      
              If a multivariate normal vector is divided into two subvectors and one  

sub -vector is uncorrelated with other sub-vector ,then those two sub-vectors of  

variables  are independent  and each sub-vector is also a multivariate normal vector. 

                                                  (OR)  

Let            1
1

2

( , ) &p pN×

 
∑ =  

 

X
X µ X

X
∼ �

� �� �
 

Where 1X
�

 is 1q×  and  2X
�

 is ( ) 1p q− ×  and 
1

2

 
=   
 

µ
µ

µ
�

�
�
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                  11 12

21 22

 
=  
 

Σ Σ
Σ

Σ Σ
 

 
where ,  11Σ  is variance-covariance matrix of  1X

�
 

              22Σ  is variance-covariance matrix of  2X
�

 
and       12Σ  is covariance matrix of 1X

�
& 2X
�

 
              21Σ  is covariance matrix of 2X

�
& 1X
�

. 
 
Now if 12 21 0q p q× −

′= =Σ Σ  

then , 2X
�

& 1X
�

 are independent and  
1 11

2 2 22

( , )

( , )
q

p q

N

N −

1X µ Σ

X µ Σ

∼
� �
∼

� �

 

 PROOF: 
            We are given 12 21qXpq

′= =Σ 0 Σ  
i.e. the covariance matrix of 1p×X

�
 is given by  

 

                            11

22

0
0

 
=  
 

Σ
Σ

Σ
 

In order to show that, the random vectors 1X
�

 & 2X
�

are independently normally 
distributed, we have to show that  
 
                 1 11 22( , ) ( , ) ( , )n n n= 1 2 2x/µ Σ x /µ Σ x /µ Σ

� � �� � �
 

we have, 

                      
1/ 2

1 1( ) ( )1 2( , ) / 2(2 )
n epπ

−′−
=

x - µ Σ x - µ
x/µ Σ

Σ
� �� �

� �
                                  (1) 

 
consider the Q.F in (1), 
          
        i.e.,     1Q ( ) ( )−′= x - µ Σ x - µ

� �� �
 

                      

1
1 1 1 111

222 2 2 2

1
1 111

1 1 2 2 1
2 222

0
0

0
( ) ( )

0

x x

x x

x
x x

x

µ µ

µ µ

µ
µ µ

µ

−

−

−

′− −    
=     − −       

−  
 ′ ′= − −     −    

Σ
Σ

Σ
Σ

� �� �
� �� �

� �
� �� � � �

 

                   ( 11Σ∵  is the variance-covariance matrix of 1X
�

 and hence positive definite) 
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1 1

1 11 2 22

1 1
11 2 22

( ) ( )

( ( ) ( ) (

− −

− −

 
 ′ ′=      

′ ′= +

1 1

1 2
2 2

1 1 1 1 2 2 2

x - µ
x - µ Σ x - µ Σ

x - µ

x - µ ) Σ x - µ x - µ Σ x - µ )

� �
� �� � � �

� � � �� � � �

 

 
                      1 2Q +Q=                                                                                                   (2) 
also we have, 

               11
11 22

22

0
0
∑

∑ = = ∑ ∑
∑

                                                                            (3) 

Using (2) & (3) in (1) we get , 
 

            

1 1Q Q1 11 22 2( , ) 1/ 2 1/ 2/ 2 ( ) / 2(2 ) (2 )11 22

n e e
q p qπ π

− −
=

−
x/µ Σ

Σ Σ
� �

 

where 1 2Q &Q  are is as  given in (2), 
        ( , ) ( , ). ( , )1 11 22n n n∴ =x/µ Σ x /µ Σ x /µ Σ1 2 2� � �� � �

 

Thus ,the joint p.d.f. of the  normal variates 1 2, ,..., pX X X  is the product  of the  
marginal p.d.f. of 1 2, ,..., qX X X  and the marginal p.d.f. of 1,...,q pX X+ . Thus,  
the two sets of normal variates are independent. 
 
 
 
 
 
THEOREM: 
          If 1X

�
& 2X
�

 are independent and are distributed as 11 2 22( , ) & ( , )q p qN N −1µ Σ µ Σ
� �

 

respectively then , 11

22

0
,

0pN
   ∑   
      ∑      

11

2 2

µX
X µ

∼� �
� �

. 

 
PROOF:-  
 
              we have given , 

                                   
1 q 1 11

2 p-q 2 22

X N (µ ,Σ )

X N (µ ,Σ )

∼
� �
∼

� �

 

and 1X
�

& 2X
�

  are independent   i.e. 1X
�

, 2X
�

 are uncorrelated. 
  i.e. 12 21cov( ) 0= ∑ = ∑ =1 2X , X

� �
. 
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We have to find out the joint p.d.f. of  )f (x
�

 of   
 
 
 

1

2

X
X =

X
�

�
�

 

we have, 
( ) ( ) (      (g f f= 1 2x x x ) ∵
� � � 1X

�
& 2X
�

 are independent) 
                                 

1 2

11 2 22

1 1
12 2

1/ 2 1/ 2/ 2 ( ) / 2
11 22

       ( , ). ( , )

1 1       ,  (where ( ) ( ),  i=1,2)
(2 ) (2 )

Q Q

i ii iq p q

n n

e e Q
π π

− − −

−

=

′= =

1 1 2

i i i

x /µ Σ x /µ Σ

x - µ Σ x - µ
Σ Σ

� �� �

� �� �
 
 

        1 2
1 ( ) 112

11 221/ 2/ 2
22

01    
0(2 )

Q Q

p
e

π

− +  
= = = 

 

Σ
Σ Σ Σ

ΣΣ
∵                                 (1) 

 
                        Where 1 1

1 2 11 22( ) ( ) ( ) ( )Q Q − −′ ′+ = +1 1 1 1 2 2 2 2x - µ Σ x - µ x - µ Σ x - µ
� � � �� � � �

            (2) 
 
Let us consider  
                           1Q ( ) ( )−′= x - µ Σ x - µ

� �� �
                                                                       (3) 

where  , 
  
       

11

2 2

µx
x = ,µ =

x µ
� �

� �� �

  is ( )E X
�

 and the variance-covariance matrix X
�

is 

                 1V ) cov( )
cov( ) V( )
 

=  
 

1 2

2 1 2

(X X , X
Σ

X , X X
� � �
� � �

 

                     = 11 12

21 22

 
 
 

Σ Σ
Σ Σ

 

But ,since 12 21 qXp q−′= =Σ Σ 0  

                 11

22

0
0

 
=  
 

Σ
Σ

Σ
                                                                                           (4) 

Now,    
1

11
1

22

0
0

Q
−

−

′    
=            

1 1 1 1

2 2 2 2

x - µ x - µΣ
x - µ x - µΣ
� �� �
� �� �

 

                1 1
11 1 2 22( ) ( ) ( ) (− −′ ′= +1 1 1 2 2 2x - µ Σ x - µ x - µ Σ x - µ )

� � � �� � � �
                                               (5) 

 
from (2) & (5)  ,  1 2Q Q Q+ =  
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1/ 2

1
1 2( ) / 2(2 )

Q
g epπ

−
∴ =X

Σ�
 

 
Where, Q is given by (3) but ( )g X

�
 is nothing but  ( , )n x/µ Σ

� �
. 

Thus ( )pN
 

=  
 

1

2

X
X µ,Σ

X
∼�

� ��
    where, Σ  is as given by (4). 

 
 
THEOREM: 
                 If 1 2, ,..., pX X X  have a joint normal distribution , a necessary & sufficient 
condition for one subset of some random variables and the subset consisting of the 
remaining random variables be independent is that each covariance of a variable from one 
set and a variable from the other set be ‘0’. 
 
PROOF:-     
Necessary condition:- 
                  With out loss of generality let us assume that the first q variables form the first 
subset and the remaining p-q variables form the second subset. 
                 In order to prove the necessary condition, we have given that the variables of 

1 2, ,..., qX X X  are independently distributed with the variables 1 2, ,...,q q pX X X+ + and we 
have to prove  
                  cov( , ) [( ( ))( ( ))] 0i j i i j jX X E X E X X E X= − − =   
where , 1 & 1i q q j p≤ ≤ + ≤ ≤  
 we have  

         1 2 1 2cov( , ) ... ( ( )( ( )) ( , ,..., ) ...i j i i j j p pX X x E X x E X f x x x dx dx dx
∞ ∞

−∞ −∞

= − −∫ ∫  

                             1 1 1... ( ( )) ( ... ) ...i i q qx E X f x x dx dx
∞ ∞

−∞ −∞

 
= − 
 
∫ ∫ . 

                                         2 1 1... ( ( )) ( ... ) ...j j q p q px E X f x x dx dx
∞ ∞

+ +
−∞ −∞

 
− 

 
∫ ∫   

( )1 1 1 2 1( ,...., ) ( ,..., ) ( ,..., )p q q pf x x f x x f x x+=∵  

                                 

[ ( )] [ ( )]

[ ( ) ( )][ ( ) ( )]

0.0
0

i i j j

i i j j

E X E X E X E X
E X E X E X E X

= − −

= − −

=
=
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Thus if one set of variables is independent of the remaining variables then, the set of 
variables are uncorrelated with the other set of variables. 
 
SUFFICIENT CONDITION: 
      Here we have given 

                        )       & cov( , ) 0i jX X
 

∑ = 
 

1

2

X
X = & X : N(µ,

X
�

� � ��
 

 where , iX  is from 1X
�

 
            jX  is from 2X

�
 

i.e.  12cov( ) 0q p q× −= ∑ =1 2X , X
� �

 and  we  have to prove 21X & X
� �

 are independently 
distributed. 
              The proof is already available. 
 
NOTE: 
           To prove the necessary condition of the above theorem  we need not assume  

1,..., pX X  are normally distributed. 
 
THEOREM: 
             If pX N (µ,Σ)∼

� �
and if a set of components of X

�
 is uncorrelated with the set of 

other components, the marginal distribution of the set is multivariate normal with means, 
variances and co-variances obtained by taking the proper components of µ

�
 and Σ  

respectively. 
 
 
 
 PROOF: 
           Without loss of generality let us assume that the set consists of first ‘q’components 
of X
�

 is uncorrelated with other components. 

             i.e. if 
 
 
 

1

2

X
X =

X
�

�
�

 where 1X
�

 is 1q×  & 2X
�

 is ( ) 1p q− ×  

             12 21cov ) 0 ′= = =1, 2(X X Σ Σ
� �

 
            i.e. 1 2X & X

� �
 are independent. 

 
What all we have to prove is the marginal distribution of  1X

�
 is 1, 11( )qN µ Σ

�
. 

             This is already proved above. 
THEOREM: 
            If X

�
  has multivariate normal distribution, then any subset of the components of 

X
�

  have a (multivariate) normal distribution. 
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                                                 (OR) 
 If X

�
 is distributed as ( , )pN µ Σ

�
, the marginal distribution of  any (sub) set of 

components of X
�

 is multivariate normal with means, variances and co-variances 
obtained by taking the proper components of µ

�
 and Σ  respectively. 

 
PROOF: 

 Let 11 12

21 22

,
    

=         

11

2 2

µX Σ Σ
X = ,µ = Σ

X Σ Σµ
� �

� �� �

 

          
 where 

          

[ ]

1 2

11 22

12 21

( ( )

V( ), V( )

cov( ) cov( , )

E E= =

= =

′′ ′= = =

1 2

1 2

1 2 2 1

µ X ),µ X

Σ X Σ X

Σ X , X Σ X X

� �� �
� �

� � � �

 

Now  we shall make a non singular linear transformation to sub vectors 

              1 1 2

2 2

Y = X + MX
Y = X
� � �
� �

                                                                                     (1) 

choosing M so that the components of 1Y
�

 are uncorrelated with the components of 

2 2Y = X
� �

. The matrix ‘M’ must satisfy the equation. 
        [ ]1cov( ) E ( E ))( E ))qXp q− ′= =1 2 1 2 2Y ,Y 0 Y - (Y Y - (Y

� � � � � �
 

                                         = { }{ }1 1 2 2 2 2E ( -E( ))+M( -E( )) -E( ) ′′  
X X X X X X
� � � � � �

 

     = { }{ }{ } { }{ }{ }1 1 2 2 2 2 2 2E -E( ) -E( ) +ME ( -E( )) -E( )′ ′X X X X X X X X
� � � � � � � �

 

                    = cov( ) M cov( )′ ′+1 2 2 2X , X X , X
� � � �

 
                           = 12 22M+Σ Σ  
Thus ,           1

12 22M −= −Σ Σ                                                                                              (2) 
and the vector 1Y

�
 becomes 

                      1
11 22

−−1 1 2Y = X Σ Σ X
� � �

                                                                               (3) 
and the vector 
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1 1

12 22 12 22              
0

               =CX

q q

p qXq p q p q

I I
I I

− −

− − −

  
  

   
   − − 

= =           

-1
1 1 12 22 2

2 2

1

2

Y X -Σ Σ X
Y = =

Y X

Σ Σ Σ ΣX
X

0 X

� � �
�

� �

�
�

�

�

                  

Since C  is a non singular matrix, Y
�

is non-singular transformation of X
�

 and therefore 
has a normal distribution with mean vector given by 

         
1

12 22

0
q

p q

I
I

−

−

  −
=       

1

2

µΣ Σ
ν

µ
�

�
�

 

            
1

12 22 2
− −  

 = =      

1 1

22

µ Σ Σ µ ν
νµ
�� �
��

      (say) 

and the variance –covariance matrix is given by 
 

         
1

1

V( ) cov( )
V )

cov( ) V( )

 
Ω = =   

 

1 2

2 2

y y ,y
(Y

y ,y y
� � �

�
� � �

 

               =
 
 
 

-1 -1 -1 -1 -1
11 12 22 22 22 21 12 22 21 12 22 21 12 12 22 22

-1
21 21 22 21 22

Σ +Σ Σ Σ Σ Σ -Σ Σ Σ -Σ Σ Σ Σ -Σ Σ Σ
Σ -Σ Σ Σ Σ

 

              
 

=  
 

-1
11 12 22 21

22

Σ -Σ Σ Σ 0
0 Σ

 

which implies that 1 2Y & Y
� �

 are uncorrelated and further 
 
 
 

1

2

Y
Y =

Y
�

�
�

has multivariate 

normal distribution. 
Therefore 1 2Y & Y

� �
 are independent. 

      ∴ 2 2Y = X
� �

 has the marginal distribution 22( , )p qN − 2µ Σ
�

. 
 
 
 
CONDITIONAL DISTRIBUTION:- 
               In the above we have seen 1

12 22
−− Σ Σ1 1 2 2 2Y = X X & Y = X

� � � � �
 are uncorrelated and 

therefore they are independently distributed. 
Write down, 

                          
1

12 22 2
− − Σ Σ 

=   
   

1 1

2 2

Y X X
Y =

Y X
� � �

�
� �
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1

12 22

0
q

p q

I
I

−

−

 −  
=      

1

2

Σ Σ X
X
�
�

 

                          A= X
�

                                                                                        (1) 
The joint p.d.f. of Y

�
 is    1( ) ( ) ( )g g g= 2Y Y Y

� � �
  ( 1 2Y & Y∵

� �
 are independent). 

Also we know that (from the above theorem), 

                          1 1

22

( )

( , )
q

p q

N

N −

− -1 -1
12 22 2 11 12 22 21

2 2

Y µ Σ Σ µ ,Σ -Σ Σ Σ

Y µ Σ

∼
� � �
∼

� �

 

 

( ) ( )2 2 22

1/ 2
11.2

( ) / 2
22

( ) , . ,

1 1           exp ( )
(2 ) 2

1 1           exp (
(2 ) 2

q

p q

g n n

π

π −

∴ =

 ′= − + 
 

′= −

-1 -1
111 1 12 22 2 11 12 22 21 2

-1 -1 -1
1 12 22 2 11.2 1 1 12 22 2

-1
2 2 22 2 2

Y y µ -Σ Σ µ Σ -Σ Σ Σ y µ Σ

Y - µ Σ Σ µ ) Σ (Y - µ +Σ Σ µ
Σ

Y - µ ) Σ (Y - µ
Σ

� � � � � �

� �� � � �

� �� �
) 

 
 

 

 
where , -1

11.2 11 12 22 21Σ = Σ -Σ Σ Σ . 
If we make use of the linear transformation (non singular) as given in(1).The density 
function of  X

�
 is given by 

                        ( ) ( )f g=x y(x)).J(x
� � ��

 
 Where, ( )J X

�
is the jacobian and is given by 

 

            ( ) . 1q p qJ A I I −

∂
= = = =
∂

y
X

x��
�

 

        ( ) ( )f f∴ = 1 2X x ,x
� � �

 
                    

1 1 1 1 1 1) ( )1 12 22 1 12 22 2 11.2 1 12 22 12 22 22
/ 2(2 ) 11.2

1 1( ) ( )1 222                                                                 ( ) / 2(2 ) 22

eq

ep q

π

π

− − − − −′− − − − − − +
=

−′−

−

(x Σ Σ x µ Σ Σ µ Σ x Σ Σ x µ Σ Σ µ1 2 2 1

Σ

x - µ Σ x - µ2 2 2 2

Σ

� � � �� � � �

� �� �                       -->(2)

                     
 
                                                                                                                                   
Now, By the definition conditional density of  X

�
, given that 2 2X = x

� �
 is that 

                 2
( )( )

( )
ff

f
= 1 2

1
2

x , xx /x
x
� �� �
�

                                                                                  (3) 
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where ( )f 1 2x , x
� �

 is given by (2) and 2( )f x
�

is the marginal density of 2X
�

 at the point 2x
�

 
where is nothing but 22( , )n 2 2x /µ Σ

� �
. 

            i.e. 2 22( ) ( , )f n=2 2x x /µ Σ
� � �

  

                 1
22 2( ) / 2

22

1 1exp ( ) ( )
(2 ) 2p qπ

−
−

 ′= − 
 

2 2 2x - µ Σ x - µ
Σ � �� �

 

Using (2) & (4) in (3) we get, 
 

1 1 1 1[( ) ( )] [( ) ( )]1 12 22 11.2 12 222( ) / 2(2 ) 11.2

f eqπ

− − −′− − −
=

x - µ Σ Σ x - µ Σ x - µ Σ Σ x - µ1 1 2 2 1 1 2 2x /x1 2 Σ
� � � �� � � �

� �
                        

                                                                                                                                      (5)  
which is the conditional p.d.f. of 1X

�
 given that 2 2X = x

� �
. 

From  (5), it is clear  that the density (f 1 2x /x )
� �

 is clearly a q-variate normal density with 
mean, 
                      1

1 12 22 2E( ) ( )−= = +1 2 2 2X X x µ Σ Σ x - µ
� � � �� �

 
 
                           ( )ν= 2x

�
  , say                                                                           (6) 

and the variances matrix, 
 
            1

11.2 11 12 22 21var( ) −= = = −1 2 2x X x Σ Σ Σ Σ Σ
� � �

                                                         (7) 
From (6)&(7) we may observe that the conditional mean of 1x

�
 is simply a linear 

function of 2x
�

 and the conditional co-variance of 1x
�

does not depend on 2x
�

 at all. 
 
The above result may be put in the following theorem:- 
                Let the components of X

�
 be divided  in to two groups  composing the sub 

vectors 1 2X & X
� �

. Suppose the mean µ
�

 is similarly divided into 1 2µ & µ
� �

 and suppose the 

co-variance matrix Σ  of X
�

is divided into 1=11 12 2 22Σ ,Σ Σ ,Σ  the co-variance matrices of 

1X
�

 of 1 2X & X
� �

, and of 2X
�

 respectively. Then if the distribution of X
�

 is normal, the 
conditional distribution of 1X

�
 is given 2 2X = x

� �
 is normal with mean 

( )+ -1
1 12 22 2 2µ Σ Σ x - µ

�� �
and co-variance matrix -1

11 12 22 21Σ -Σ Σ Σ . 
 
NOTE:-  
               The above theorem may simply be asked as follows.If 1 2, ,..., PX X X have a joint 
normal distribution, then the conditional distribution of a subset of r.v’s given that the 
remaining r.v’s is also having normal distribution. 
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THE CHARACTERISTIC FUNCTION:- 
 
DEFINITION:- 
                The characteristic function of a random vector X

�
 is  

                                            ( ) ( )iE eφ ′= t Xt ���
 

  defined for every real vector t
�
. 

 
RESULT:- 
             If the components of a random vector X

�
are independently distributed, 

 Then, 

                              1( )

p
i t Xj ji jE e E e

 
 ∑
 ′ ==  
 
 
 

t X
��  

                                ( )
1

it Xp j jE e
j

= ∏
=

 

 
THEOREM:- 
              The characteristic function of X

�
 which is distributed according to  

 

      ( , )N µ Σ
�

 is       

1
2( ) ( )

iiE e eφ
′ ′−′= =

t µ t Σtt Xt � � �����
 

 
for every real vector t

�
. 

 
PROOF:- 
         We have given ( , )NX µ Σ∼

� �
 .  

Since, Σ  and hence 1−Σ  is symmetric and positive definite matrix there exists a non-
singular matrix ′C  such that  
 
 ′ =-1C Σ C I                                                                                                       (1) 
 
             1 1( )  or − −′ ′⇒ = =Σ CC Σ CC                                                                         (1.a) 
we have the p.d.f. of X

�
 is 

                

1 1( ) ( )1 2( ) / 2 1/ 2(2 )
f epπ

−′−
=

x - µ Σ x - µ
X

Σ
� �� �

�
                                            (2) 
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Let us make use of the linear transformation, 
 
                      =X - µ CY

� ��
         (C  is defined as in (1))                                                (3) 

Then the p.d.f. of the new random vector Y
�

is 

              

1 1
1 2( ) J( )/ 2 1/ 2(2 )

g epπ

−′ ′−
=

y C Σ Cy
Y y

Σ
� �

� �
                                        (4) 

where J( )y
�

 is the jacobian transformation and is given by 
 

                 J( ) mod mod∂
= =

∂
xy C
y��
�

=
 ∂ +∂

=  ∂ ∂ 

Cy µx C
y y

∵ � � �
� �

 

                          1/ 2mod= Σ       ( )2from 1(a) ′= =Σ CC C  

                          1/ 2= Σ       ( )0>Σ∵  
Therefore (4) becomes from (1), 

                1( ) ( , )/ 2(2 )
pg e n Ipπ

′
= =

1- y y
2Y y/0� �

� ��
 

          i.e.   ( , )p pN IY 0∼
� �

. 
 The characteristic function of Y

�
is  

                  1( ) ( )

p

j j
jE e E eφ =

 ′ ′
 = =
 
 
 

∑i u yiu y
u �� ��

 

                          ( )
1

iu yp j jE e
j

= ∏
=

            ( jY s′∵  are independent ) 

                           
1

1 2
2

p

j

u je
=

−
=∏                   ( ∵ the characteristic function of the standard  

                            1

1 2
2

p

j
u j

e =

−
=

∑
                                   normal variate  Yj  is 

1 2
2

u jse
−

) 

                          =

1
2e

′− u u
� �                                                                                            (5) 

Now,  

             
( )

( ) ( ) ( )
iit E e E eφ
′′= =

t CY + µt X ���� �              (from (3)) 



27 
 

  i.e.  

             ( ) ( )
i i iE e e E eφ
′ ′ ′ = =  

 

t µ t µ t CYt � � �� � ��
 

                                    
i ie E e
′ ′ =  

 

t µ u Y� �� �            (where  ′ ′=u t C
� �

) 

                                   = 

1
2i

e e
′−′ u ut µ � �� �               (from (5)) 

 

                                    

1
2

i
e

′ ′ ′−
=

t µ t CC t
� � ��             ( ′ ′=u t C∵

� �
) 

                                    

1
2

i
e

′ ′− ∑
=

t µ t t
� � ��             (from 1.a) 

 
                           Hence the proof .                              
     
THEOREM :- 
                 If  every  linear combination of  the components  of a vector X

�
 is normally 

distributed ,then X
�

 is normally distributed . 
 
PROOF:- 
                 Suppose X

�
 is a random vector of p random variables with mean vector  µ

�
 and 

co-variance matrix Σ . 
 Let us consider a linear combination of X

�
 viz… ′c X

��
 ,    where  1 2( , ,..., )pc c c′ =c

�
. 

We have given , ′c X
��

 is normal variate. 
We have, 
                          ( ) ( )E E′ ′=c X c X

� �� �
 

                                      ′= c µ
� �

 
                         V( ) V( )′ ′=c X c X

� �� �
 

                                     
V( )

                 (variance)
′=
′=

c X c
c Σc

�� �
� �

              

If  may be noted ′ ′c µ & c Σc
� � ��

 are scalars and they are respectively the mean & variances of 
the univariate random variables ′c X

��
.  We have given that ( , )N′ ′ ′∑c X c µ c c∼

�� � � ��
. 

Let  Y ′= c X
��

 and from the univariate normal distribution theory.  
The characteristic function of Y is given by  
 

                      Y( ) E( )itt eψ =  
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1 2E(Y) V( )
2

1 2
2

it t Y
e

it t
e

−
=

′ ′−
=

c µ c Σc
� � ��

 

 
If we write t=1  then, ( )tψ becomes  

                           

1
2(

i
eφ

′ ′−
=

c µ c Σc
c) � � ��
�

             where, ( , )NX µ Σ∼
� �

 
which is the characteristic function of a multivariate random vector X

�
 whose mean 

vector is µ
�

  & variance-covariance matrix is of Σ  . 
But the mean & variance-covarince matrix of X

�
 respectively same as &µ Σ

�
 and 

therefore, ( , )N ∑X µ∼
� �

. 
                         Hence the proof. 
 
THOREM :- 
               If ( , )pN ∑X µ∼

� �
  then,  ′c X

��
 is  uni-normal variate with mean ′c X

��
 and  

 variance  ′∑c c
� �

. 
                                     (OR) 
If  1 2, ,..., pX X X are jointly distributed as p-variate normal  then its linear combination 
follows uni-variate  normal distribution. 
 
PROOF:- 

            Let 
1

( ,p

p

X
N

X

 
 

= ∑ 
 
 

X µ# ∼
� �

 

Then its characteristic function is given by  

                  ( ) ( ))iE eφ ′= t Xt ���
 

                          

1
2

i
e

′ ′−
=

t µ t Σt
� � ��                                                                                    (1) 

 

 Let us write 

1

2

p

t
t

t

 
 
 =  
  
 

t
#�
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1

2

.

.

. p

t c
t c

t c

t

 
 
 =  
  
 

= c

#

�

 

 
 
 
 
 
Then (1) becomes , 

                          

1
2( )

it t t
eφ

′ ′−
=

c µ c Σc
t � � ��
�

 

                                 
21it t

2

ityE( )
e

e

′ ′−
=

=

c µ c Σc
� � ��  

                                   ( )tψ=     ,say                                                                               (2)  
where Y is normal variate with mean ′c µ

� �
 and variance ′c Σc

� �
. 

In other words  (2) is the characteristic function ( )tψ of a uni-normal variate whose mean 
is ′c µ
� �

 and variance is ′c Σc
� �

. 
If we consider the linear combination of the components of the normal random vector X

�
 

viz., 
                 Y ′= c X

��
 

                     1 1 2 2X X ... Xp pc c c= + + +   
its mean and variance are given by 
                 (Y) (E E ′ ′= =c X) c µ

�� � �
   &     V(Y) V )′= (c X

��
 

                                                                      
V(′=
′

c X)c
= c Σc

�� �
� �

 

Thus, from the above explanation it follows that  Y ′= c X
��

 follows uvi-variate normal 
distribution, 
              i.e. ,   . Y N( )′ ′ ′= c X c µ,c Σc∼

�� � � ��
 

                 Hence the proof. 
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SAMPLING FROM MULTINORMAL DISTRIBUTION  
 
The Multivariate normal likelihood: 
 

Let us assume that the  p×1  vectors …1, 2, , nX X X
� � �  represent a  random sample from a 

multivariate normal population with mean vector µ
�

 and covariance matrix Σ .  Since  

…1, 2, , nX X X
� � �  are mutually independent (by virtue of randomization) and each has 

distributed as the joint p.d.f. of all the observations is the product of the marginal normal 
densities. 
i.e.  

1, 2 1( ) ( ) ( )n nf x x x f x f x… = "
� � � � �  

              

                           ( )

1

1
2 2

1 ( ) ( )
2

1

1

2 | |
p

n

j
e

π

−′−

=

  =  
  

∏ j jx -µ Σ x -µ

Σ
� �� �

 

                                                                  ( )( ) ,jf x n = jx µ Σ∵
�  

                           ( )

1

1

1 ( ) ( )
2

/ 2 / 2

1
2 | |

n

j

np n
e

π

−

=

′− ∑
=

j jx -µ Σ x -µ

Σ
� �� �

        --- (1)    

When the numerical value of the observations become available, there may be substituted 

for jx
�  in equation (1).     The resulting expression, now considered as a function of 

 and µ Σ
�

  and for a fixed set of observations 1 2, , , nx x x…
� � � , it is  

called as “the likelihood function”  and is denoted as ( )L µ, Σ
�

. 
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ML ESTIMATION OF MEAN VECTOR µ
�

AND VARIANCE –
COVARIANCE MATRIX Σ :                           
 Consider the likelihood function ( )L µ, Σ

�
.given by (1). i.e.  

 

( )

( ) ( )
1

/ 2 / 2

1
21

( )
2

n

j

n p n
L e

π
=

′−

=
Σ

∑ -1
j jx -µ Σ x -µ

µ , Σ
� �� �

�  ---- (2) 

 
Now the maximum likelihood estimates of and µ Σ

�
can be obtained by maximizing 

( )L µ, Σ
�

. 

In order to obtain the MLE’s  of  and µ Σ
�

 ,let us consider logarithms of  (2) and is 

given by 
 
 

( ) 1

1

n 1
log ( ) log 2 log

2 2 2
( ) ( )        -->(3)

n

j

np
L π

−

=

−
= − ′− ∑ j j

µ, Σ Σ x - µ Σ x - µ
� � �� �

                                        

                                                                                                                     - 
 
Consider the last term of (3) and as if is a scalar we may write if as 

 
( ) ( )

( )( )

1

1

n
1

j = 1

n
1

j = 1

1

1
 

 ( ) ( )

( ) ( )

 

                  (  t r ( ) = t r ( )

n

j

n

j

t r

t r

t r

−

=

−

−

−

=

′=

′=

′=

′

 
 
 

 
  

 
  

∑

∑

∑

∑

j j

j j

j j

j j

x - µ Σ x - µ

x - µ Σ x - µ

Σ x - µ x - µ

x - µ Σ x - µ

A B B A

� �� �

� �� �

� �� �

� �� �

∵
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( )( )
n

1

=1
                    -->(4)

j
tr −
          

′
= ∑ j jΣ x -µ x -µ

� �� �
 

 
Now consider 
                                                                                               

 

( )( )

[ ][ ]
1

1

n

j

n

j

=

=

′

′=

∑

∑

j j

j j

x - µ x - µ

x - x + x - µ x - x + x - µ

� �� �

� � � � � �� �
                                                                  

                                    Where    ( )1
n

= + +1 2 nx x + x x"
� � � �     

 

( )( ) ( )( )
1 1

n n

j j= =

′′= +∑ ∑j jx - x x - x x - µ x - µ
� � � � � �� �  

 
 (Since the cross product terms 
 

( )( ) ( )( )
1

0
n

j

n n
=

′ ′= − =∑ j
x - x x - µ x x x - µ
� � � � � �� �  

                                                        
1

n

j

n
=

=
 
  

∑ jx x∵
� �             

and     similarly    

   
( )( )

1

0
n

j =

′ =∑ jx - µ x - x
� � ��      ) 
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Thus  

( )( )

( )( ) ( )( )
1

1

n

j

n

j
n

=

=

′

′′= +

∑

∑

j j

j j

x - µ x - µ

x - x x - x x - µ x - µ

� �� �

� � � � � �� �

 

 
 Substituting  this  in (4) we get , 
 

( ) ( )

( )( ) ( )( )

1

1

1

1

n

j

n

j
tr n

−

=

−

=

′

  ′′= +  
   

∑

∑

j j

j j

x - µ Σ x - µ

Σ x - x x - x x - µ x - µ

� �� �

� � � � � �� �
 
 

( )( ) ( ) ( )1 1

1

n

j
tr n tr− −

=

     ′′= +     
      

∑ j jΣ x - x x - x x - µ Σ x - µ
� � � � � �� �

 
                                                              [Since tr (AB) =tr (BA)] 
 

( )( ) ( ) ( )1

1

n

j
tr n−

=

    ′′= +    
    

∑ -1
j jΣ x -x x -x x-µ Σ x-µ
� � � � � �� �

 
                                                                                                                --- (5) 
            (Since trace of scalar is scalar) 
 
Substituting (5)  in  (3),we get  

( ) ( ) 1log , log 2 log
2 2
np nL µ π −−

Σ = + Σ
�  
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                            ( )( )1

1

1
2

n

j
tr −

=

    ′−    
     

∑ j jΣ x - x x - x
� � � �  

 

                           ( ) ( )1

2
n −′− x - µ Σ x - µ

� �� �     ---- (6) 

Since 
1−Σ   is positive definite   

( ) ( )1 0   −′ > ∀ ≠x - µ Σ x - µ µ x
� � �� � �        

                                                                   0   i f   = =µ x
��       

From (6), we can observe that if the last term is zero then(6) becomes maximum that is 

( )log L µ, Σ
�

 can be maximized with respect to µ
�

 at µ̂ = x
��

 

∴ The MLE of µ
�

 is x
�  substituting the MLE of   µ

�
 ( x
� ) in (6)   

We get 

( ) ( ) 1log log 2 log
2 2
np nL π −−

= +µ,Σ Σ
�       

                       

( )( )1

1

1
2

n

j
tr −

=

    ′−    
     

∑ j jΣ x - x x - x
� � � �      

--- (7) 

Now we have to maximize (7) w.r.t. Σ as the equation is free of µ
�

  

We can prove that (7) attains its maximum value at ˆ=Σ Σ  , 

Where,        ( )( )
1

1ˆ
n

jn =

′= ∑ j jΣ x - x x - x
� � � �               ----(8) 

Thus Σ̂  (given by (8)) is the MLE of Σ  . 
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The maximum value of the  likelihood can be obtained by substituting the MLEs of  
µ  and Σ  respectively given by   

                    ˆ =µ x
�  

and      ( )( )
1

1ˆ
n

jn =

′= ∑ j jΣ x - x x - x
� � � �  

  in (2) and it is given by  
 

( ) ( )

( )( ) ( )( )
1

1 1

/ 2/ 2

1
2

ˆˆ ˆ2

    

n n

j j

nn p

t r n

L

e

π
−

′ ′

= =

−−

    −     
    

     
∑ ∑

=

j j j jx - x x - x x - x x - x

µ , Σ Σ

� � � � � � � �

�

                                                                                                                                                  

                                       

                              

( ) ( )

( )

p/ 2 I/ 2 2

/ 2/ 2 / 2

ˆ2

ˆ2

nn t rn p

nn p n p

e

e

π

π

−−−

−− −

=

=

Σ

Σ
      

                                = const. x 
2ˆ
n

−
Σ  

                                =const. x 

-n
2(generilised  variance)  

 since generalized  variance is defined as Σ̂ .The generalized  variance determines the 

peakedness of the likelihood function and consequently is a natural measure of variability 
when the parent population is multivariate normal. 
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NOTE:- 

1.MLE’s posses an invariance property which means if θ̂  is the MLE of  θ then ˆ( )h θ  
is the MLE of ( )h θ  ,where ( )h θ  is a function of θ . 
 For Example :- 

i.If µ̂
�

 is MLE of µ̂
�

and Σ̂  is MLE of Σ then 
ˆˆ ˆ-1 -1µ Σ µ

� �
 is MLE of 

′ -1µ Σ µ
� �

. 

ii.If  ijσ  is the   
thi j  element of Σ  and ˆ ijσ is the   

thi j  element of  

         Σ̂  where Σ̂ is the MLE of ijσ .  

      Where ( )( )
1

1ˆ
n

ij ik i jk j
k

X X X X
n

σ
=

= − −∑  

                         

                        ( ), .i jCOV X X=  
    
 2.From equation (6) the log-likelihood and  hence the joint  p.d..f depends     on the 

whole set of observations 1 , , nx x…
� � only  through the sample mean x�  and  

the sum of squares and cross product matrix, 

( ) ( )
1

ˆ
n

j
n′

=
=∑ j jx - x x - x Σ

� � � �  

We may express this fact by saying that  ( )ˆ o r  µ x
��

 and   Σ̂  are sufficient statistics . 

Thus the MLEs µ̂
�

 and   Σ̂  are sufficient statistics of µ   and Σ . 
 

3.The MLE of Σ  is  
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( ) ( )
1

1ˆ
n

jn =
=

′∑ j jΣ x - x x - x
� � � �  

Thos formula is not convenient to compute Σ̂ and the following is the convenient 
formula for computation  

1

1ˆ
n

jn =
′ ′= ∑ j jΣ x x - x x

� � � �  

Explanation:- 
 

( ) ( )
1

1ˆ
n

jn =
=

′∑ j jΣ x - x x - x
� � � �  

         

1 1 1 1

1

1 1 1 1

1

n n n n

j j j j

n

j

n n n n

n

= = = =

=

′ ′ ′ ′= − − +

′ ′ ′ ′= − − +

∑ ∑ ∑ ∑

∑

j j j j

j j

x x x x xx x x

x x x x xx xx

� � � � � � � �

� � � � � � � �
       

1

1ˆ
n

jn =

′ ′= ∑ -j jΣ x x x  x
� � � �  

   
 

Sampling Distribution of the MLE’s µ̂
�

and Σ̂  and the independence of µ̂
�

and 

Σ̂ :- Before  going to obtain the sampling distribution of     µ̂
�

and Σ̂  ,let us prove 
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the following result which is useful in obtaining the sampling distributions of   µ̂
�

and 

Σ̂  .    
Result:- 

Suppose  1 , , nX X…
� �  are independent where ( ),Npα αX µ Σ∼

� �
. 

    
Let  

( )j n n
cα ×

=C
 be an orthogonal matrix then 

( )
1

,
n

j
j

c N pα αυ
=

= ∑α jY X Σ∼
� � �  

Where  
1

n

j
j

cα αυ
=

= ∑ jµ
� �   and   

…1 nY , , Y
� � are independent. 

Proof : -  Since ‘C’ is orthogonal matrix , 

 We have 

2

1
1

n

j
j

c α
=

=∑    and   
1

0
n

j j
j

c cα β
=

=∑          ---- (1) 

   

In order to prove ( ),N p αυαY Σ∼
� � , Let us consider the characteristic 

function of  αY
�  is  

( ) 1

n

j
j

i C
iE e E e

α
=

′
′

 ∑ =
 
 

j
α

t X
t Y ��
��
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                                     ( )
1

1

j
n

iC

j

n
i

j

E e

E e

α ′

=

′

=

 
=  

 

=

∏

∏

j

j

t X

u X

��

��  

(Since n…1X , , X
� �  are independent and where jCα=u t

� � ) 

                                 

1
2

1

n i

j
e

′ ′−

=

= ∏ ju µ u Σ u
� � ��

 

                                                    ( )( ),Npj jX µ Σ∵ ∼
� �   

                                      

                                   

1 1

2

1 1

1
2

1
2

n n

j j

n n

j j
j j

i u

i C C

e

e
α α

= =

= =

′ ′−

′ ′−

∑ ∑
=

∑ ∑
=

j

j

µ u Σu

t µ t Σt

� � ��

� � ��  

                                   (Substituting  jC α=u t
� �  ) 

                                     
1

1
2

n

j
j

i C

e
α

=

′ ′−∑
=

jt µ t Σ t
� � ��

 
                                                                        [Using (1)] 
 Which is the characteristic function of   a multivariate normal vector whose mean vector 
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1

n

j
j

C α
=
∑ jµ

� & variance-covariance matrix ∑. 

Thus   ( ),N p αυαY Σ∼
� � , Where  

1

n

j
j

Cα αυ
=

= ∑ jµ
� �  

Now if remains to prove that  …1 nY , , Y
� �  are independent. 

In order to prove  , ,…1 nY Y
� �

are independent  we have to prove that 
(as jY

�
’s  are multivariate normal vector ). 

            ( )cov p pO ×=α βY , Y
� �      (Zero matrix) 

The covariance matrix between αY
�  and βY

�  is  
 

( ) ( )( ) ( )( )cov E E E ′= − −  α β α α β β
Y , Y Y Y Y Y
� � � � � �                                                     

                            = ( )E
 

  
     

′
− −α β βαY Yν ν

� �� �
 

                                  

1 1 1 1

n n n n

i i i j j
i i j j

E C C C Cα α β β
= = = =

 ′   = − −       
∑ ∑ ∑ ∑i j jX µ X µ

� �� �
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( ) ( )
1 1

n n

i i j
i j

E C Cα β
= =

 ′  =     
∑ ∑i j jX - µ X - µ

� �� �

( )( )
1 1

n n

i j i
i j

C C Eα β
= =

 ′=  
 

∑∑ i j jX - µ X - µ
� �� �  

( )
1 1

cov
n n

i j i
i j

C Cα β
= =

′= ∑∑ jX , X
� �  

1 1 1
( ) cov( , )

n n n
i i i i ji j

i i j
c c V X c c X Xα αβ β

= = =
= +∑ ∑∑� � �

 

since iX ′
�

are independent cov( , ) 0i jX X =
� �

 
There fore the second term of the above will vanish. 
There fore now 

1

1

cov( , ) ( )

( ( ) )

n

i ij
i

n

i i
i

i

Y Y c c V X

c c

V X

α αβ β

α β

=

=

′ =

=

=

∑

∑∑
∑

� � �

∵
�

 

But from equation (1) 

1
0

cov( , ) 0

n

i i
i

c c

Y Y

α β

α β

=
=

′∴ =

∑

� �

  

 Thus αY
�  and  βY

�  are independent and consequently , ,…1 nY Y
� �  

are independent. Hence the theorem. 
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Theorem:- 

Let  1 , , nX X…
� �  be an independent random sample from ( )pN µ,Σ

� . 

Then the MLE of µ   say  µ̂  ( also the sample mean) is distributed according to  

( ), /pN nµ Σ
�  and is independent of  the MLE  of   Σ  given by 

               
( )( )

1

1ˆ
n

n α=

′= ∑ α αΣ X - X X - X
� � � �  

and  ˆnΣ  is distributed as 
1

n

α =

′∑ α αz z
� �    where ( ),pNαz 0Σ∼

� �  and is  

1,......... nZ Z
� �

  are independent. 

Proof:-  

We have given a random sample , ,…1 nX X
� � where ( ),pNαX µ Σ∼

� �  

and is independent of βX
�  for α β≠  .We have the MLE’s of  µ  and  Σ are 

respectively given by  

  
1

ˆ 1/
n

n X Xα
α

µ
=

= =∑ � �
 

 
( )( )

1

1ˆ
n

n α=

′= ∑ α αΣ X - X X - X
� � � �                                                    --- 

(1)  

Now there exists an  n x n  orthogonal matrix  ( )bαβ=B with the last row i.e. 
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1

1 1 1, , ,

nb
n

n n n

β β= ∀

 
 
 

"                                                                    --- (1.a) 

Let us define a new random sample  , ,…1 nz z
� �  from the given  random sample  

, ,…1 nX X
� � using the orthogonal transformation from the orthogonal matrix 

Β . Thus   

             1

n

bαβ
β =

= ∑α βz X
� �          for  1, 2, , nα = "                            ---

(2) 
In particular, 

nb β
β

= ∑n βz X
� �   

      

1
nβ

= ∑ βX
�             [The last row of  Β  is  as given in (1.a) ] 

        

      n= X
�                         [From (1)]                                                     --- (3) 

Let us consider   

1 1 1 1

n n n n

i j
i j

b bα α
α α= = = =

′  ′ =   
   

∑ ∑ ∑ ∑α α i jz z X X
� � � �      [ Using (2) ] 

 i.e.  
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1 1 1

n n n

i j i j
i j

b b X Xα α
α = = =

′= ∑ ∑ ∑ � �  

                             

2

1 1 1 1

n n n n

i i j
i j i j

b b bα α α
α α= = = ≠ = =

′ ′= +∑ ∑ ∑ ∑i i i jX X X X
� � � �                                      

                                 
                              

2

1 1 1 1

n n n n

i j i j
i i j

b b bα α α
α α= = ≠ = =

   ′ ′= +   
   

∑ ∑ ∑ ∑i i iX X X X
� � � �  

                                 

                              
1

n

α =

′= ∑ α αX X
� �                                                            --- (4) 

                              [∵ Β  is the orthogonal matrix and as a consequence  

                                   
1

0
n

i jb bα β
α=

=∑      and     

2

1
1

n

ibα
α=

=∑        ] 

Now consider   ˆnΣ   from (1) i.e. 

( )( )
1

ˆ
n

n
α =

′= ∑ α αΣ X - X X - X
� � � �  

            
1 1

n n

α α= =

′ ′= −∑ ∑α αX X XX
� � � �        

( )
1

0
n

α=

 ′ = 
 

∑ αX X - X∵
� �  
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1

n

n
α =

′ ′= −∑ α αX X XX
� � � �  

            
1

n

α =

′ ′= ∑ α α n nz z - z z
� � � �                [Using (3) and (4)] 

                     

            

1

1

n

α

−

=

′= ∑ α αz z
� �                                                                            --- (5) 

From (3) and (5) we observe that  X
�

 ( µ̂
�

) is distributed according to the distribution of  

nz
�  and  ˆnΣ (and hence Σ̂  )is distributed according to the distribution of  

, ,…1 n -1z z
� � . 

Also, since  , ,…1 nz z
� �  are obtained from , ,1 nX X…

� �  using the 

orthogonal linear transformation (using orthogonal  matrix Β ) , ,1 nz z…
� �  are 

independently distributed as  Multivariate normal distribution with common covariance 

matrix  ‘ Σ ’ .Therefore ˆˆ  and µ Σ
�

 are  independently distributed. 

  

Now let us obtain the mean vector of  , ,1 nz z…
� �   

From (3) 

( ) ( )E nE=nz X
� �  

                 
( )( )1n E

n
= +1 2 nX + X + X"

� � �  

                                                      [  'siX∵
�   are independent ] 
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( )

1

1 n

i
i

n E X
n =

= ∑   
1

1 n

i
n n

n
µ µ

=
= =∑

� �
            

 

( )( ),NpiX µ Σ∵ ∼
� �       

Thus  ( ),Np nnz µ Σ∼
� �  

i.e. ( ),n Np nX µ Σ∼
� �  

i.e. 
,Np

n
 
 
 

ΣX µ∼
� �  

From (2), we have  

 
( ) ( )

1

n

E b Eαβ
β =

= ∑α βz X
� �      [  'sβX∵

�   are independent ]  

                    
1

n

bα β
β =

= ∑ µ
�  

                       

                   
1

1n

b n
nα β

β =

= ∑ µ
�  

                   
1

n

nn b bα β β
β =

= ∑µ
�           [

1
nb

nβ =∵
 ] 

                      nα= ∀ ≠0
�  
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Thus each of  , ,1 n -1z z…
� �  are distributed as ( )0,N p Σ

� .Therefore 

from (5) ˆnΣ  is distributed as  

1

1

n

α

−

=

′∑ α αz z
� � , where ( ),Nαz 0 Σ∼

� �  

and is independent  of  ( )β α≠βz
�  

Thus the MLE’s of µ  and  Σ  are independently distributed. 
                           Hence  the  proof. 
 
NOTE:- 

 Since , ,1 nX X…
� �  is a random sample  

    

( ) ( ) ( ) ( )( )1E E E E
n

= + + +1 2 nX X X X"
� � � �

 
                            

                         

n
n

= =
µ

µ�
�  

 Thus X� is an unbiased estimator of  µ
�

.Thus sample mean is an          unbiased 

estimator of the population mean vector µ
�

. 
 
 

 
( )

1

1

1ˆ
n

E E
n α

−

=

 ′=  
 
∑ α αΣ z z

� �  

                              
( )

1

1

1 n

E
n α

−

=

′= ∑ α αz z
� �     [ 'z sα∵

�  are 

independent] 
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( )

1

1

1 n

V
n α

−

=

= ∑ αz
�  [ ( )E αz = 0∵

� � ] 

                              

1

1

1 1n n
n nα

−

=

−
= =∑ Σ Σ

 

Thus Σ̂ is not an unbiased estimator of Σ . But 

( )
1

1ˆ ( )
1 1

nn
n n α =

′= =
− − ∑ α αΣ X - X X - X S

� � � �
 

(say) is an unbiased estimator  of Σ [
ˆ

1
nE

n
  = − 

Σ Σ∵
] 

Hence  
( )

1

1 ( )
1

n

n α =

′=
− ∑ α αS X - X X - X

� � � �  is 

called the sample covariance matrix and is an unbiased estimator of Σ .  
  

 From the above theorem, it is obviously follows that the sample mean ( X
� ) and the 

sample covariance matrix 

( )
1

1 ( )
1

n

n α =

 ′= − 
∑ α αS X - X X - X

� � � �        

are independently distributed. Also it may  be seen that  

    
,N

n
 
 
 

ΣX µ∼
� �  
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1

1

1
1

n

S
n α

−

=

′=
− ∑ α αz z

� �  , where ( ),pNαz 0 Σ∼
� �  

i.e.  (n-1)S is distributed according to the distribution of  

1

1

n

α

−

=

′∑ α αz z
� � , where 

, ,1 nz z…
� � are independently distributed as  ( ),pN 0 Σ

� .The matrix 

1

1

n

α

−

=

′∑ α αz z
� � is called  “ Wishart random matrix” and it is distributed according 

to “wishart distribution” with (n-1) degrees of freedom. 

And is denoted as ( )1nW − Σ , where Σ is the covariance matrix of Wishart 
random matrix .  
Hence it may be noted that 

1

1

1
1

n

E
n α

−

=

 ′=  − 
∑ α αΣ z z
� �  

        

W ishart random matrix 
degrees of freedom

E  
=  

   

Thus (n-1)S (and hence S ) provides independent information about Σ  and the 

distribution os S does not depend on µ
�

  .This allows us to construct a statistics for 

making inferences about  µ
�

 as we shall see in the later section. 
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Properties of the Wishart  distribution:-  

 If  1A  is distributed as  ( )
1

Wm Σ   independently of   2A , which is 

distributed as ( )
2

Wm Σ , then 1 2+A A  is distributed as 

( )
1 2

Wm m+ Σ . That is the degrees of freedom are added. 

     Proof: - Since ( )
11 WmA Σ∼ . 

         1A   may be written as 

     

1

1
1

 =
m

α =

′∑ α αA z z
� �  , where   ( ),Npαz 0 Σ∼

� �  

        Also since   2A  is independently distributed as ( )
2

Wm Σ , 
        We may write   

    

1 2

1

2
1

 =
m m

mα

+

= +

′∑ α αA z z
� � , where  ( ),Npαz 0 Σ∼

� �  

    Since  1A  and  2A  are independent, , ,
1 21 m +mz z…

� �  are 
independent    
     and as a consequence   .  

   
( )

1 2

1 21 2
1

W
m m

m m
α

+

+
=

′= + = ∑ α αA A A z z Σ∼
� �   

                       
                               Hence the proof. 
 

 If   ( )WmA Σ∼ ,then  ( )Wm′ ′CAC CΣC∼  

Proof:-Given ( )WmA Σ∼  
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1

 =
m

α =

′∴ ∑ α αA z z
� � , where ( ),pNαz 0 Σ∼

� �  

    
1 1

W
m m

m α
α α= =

′ ′ ′ ′= =∑ ∑α α αCAC Cz z C Y Y
� � � �  

         where ( )pN ′=α αY C z 0 , C Σ C∼
� � �  

             [ ( ) ( )E CE= =α αY z 0∵
� � �    

                            

                        ( ) ( )V V=α αY Cz
� �

′=CΣC   and  αY
�    is normal random 

vector] 

      ( )Wm′ ′CAC CΣC∼  
                                 Hence  the  proof . 
 
P.D.F.  Of  Wishart  Distribution :-  

The p.d.f. of   ( )WnA Σ∼  is given by 

( ) ( )

( )

1 / 21 / 2

/ 2/ 2 ( 1) / 4

1

W
12 1
2

trn p

n p
nnp p p

i

e

n iπ

−− −

−

=

  = 
   + − 

 
∏

AΣAA
Σ

Σ

A   is positive definite and (.)Γ   is gamma function. 
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INFERENCES ABOUT MULTIVARIATE NORMAL MEAN 
VECTOR(S) 

 
One  Sample  Problem: 

Suppose 1 2 nX , X , ...., X
� � �

 is  a  random  sample  from   a   multivariate   
normal  population. Now, our  statistical  problem  is  whether  the  given  
sample   has  come  from  the  multivariate  normal  population, whose  mean  
vector  is  given  by  0µ = µ

� �
.  In other words, we have  to  test 

                        0H  : 0µ = µ
� �

  vs   1H  : ≠ 0µ µ
� �

 

 based   on  the  given  random  sample 1 2 nX , X , ...., X
� � �

 .   
Two  Sample  Problem: 
                  Suppose  we  have  two  different  samples  from  two  different  
multivariate  normal  populations ( , )pN (1)µ Σ

�
 and 2( , )pN ( )µ Σ

�
  with  common  

variance-covariance  matrix Σ .  Now, our statistical problem is whether the 
two normal populations have the same mean vector or not.  In other words, our 
problem is equivalent to  test  the    hypothesis  
     0H : (1) (2)µ = µ

� �
  vs   1H  : ≠(1) (2)µ µ

� �
  

 based on  the  given  two  samples.  
        
For developing  the  test  statistics in the above two problems, we  have  to  
consider   whether the common  covariance matrix Σ  is  known  or  not.  First, 
let us develop the test statistics for the above one-sample case as well as two-
sample case assuming the population variance-covariance matrix Σ  is  known. 
                   
Developing Test Statistics  When  Σ   is  known : 
One-Sample problem: 
If 1 2 nX , X , ...., X
� � �

 is  a  random  sample  of  size n drawn  from  a  multivariate  
normal  population  with known variance-covariance matrix Σ , then obtain   
the  test  statistic  for  testing  
              0H  : 0µ = µ

� �
   vs   1H  : 0µ µ≠

� �
    

and  the  critical  region  of  size  ‘α ’  as  well  as  the  confidence  region  for  
µ
�

  of  confidence  1- α . 

Proof :-  
In order to obtain the above result,  let  us  prove  the  following  theorem. 
Theorem(1) : 
 If  a  p-component  vector Y

�
∼ pN (0, )Σ

�
, where Σ   is  non- singular  (positive  

definite ),  then  
       
Y′
�

−′Σ Y
�
∼ 2

pχ                                                 (1)→                                               

where 2
pχ   is Chi-square distribution  with  p d.f . 

Proof:  We  have  given      Y
�

 ∼  pN ( )0,Σ
�

. 
Since, Σ   is  p.d.f   ∃   a  non-singular  matrix  C  such  that,  
                                  ′C Σ C  = I   
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                         ⇒  Σ  = ( )′ -1-1C  I C  = ( )-1′C  C                                (2)→  
Let  us  define  the  linear  transformation,  
                                               Z = CY

� �
                                    (3)→  

Then,  E (Z)
�

 =  C E(Y)
�

 = 0
�

  
          V ( Z

�
 ) = V (CY

�
) =  C V ( Y

�
) C′  =  ′C Σ C  =  I   ( from (2) ) 

Since the transformation is linear,  
          Z

�
∼  pN (0 , I)

�
  i.e ., 1 2 pZ , Z ,..., Z ,  the  individual  components  of  Z

�
  

are distributed  as  N(0,1).    
Further, since the  covariances  are  zeros,  1 2 pZ , Z ,..., Z  are independent which 
follows from the normality of the components. 
 
 ∴  Z Z′

� �
 = 2 2 2

1 2 pZ +Z +.............+Z ∼  2
pχ  

⇒  Y C CY′ ′
� �

 ∼   2
pχ                           ( from (3)) 

⇒  -1Y Σ Y′
� �

  ∼   2
pχ                            (from  (2)) 

      Hence  the  result (1) . 
 

Proof of the Result:-    
We  have  given  the  random  sample 1 2 nX , X , ...., X

� � �
 from  pN ( )µ,Σ

�
,   

where  Σ  is  known . 
Now, we  know  that,  the  sample  mean,  X

�
∼ pN ( / )nµ,Σ

�
. 

Define  the  random  vector, Y
�

= n  ( X - µ )
� �

                            (4)→  

With (Y)E
�

 = n E (X - µ)
� �

 = n ( µ - µ )
� �

 = 0
�

 .  

         V( Y
�

) = V( n ( )X - µ 
� �

) = n  V( X 
�

)   =  n  Σ n   =  Σ  . 
         Thus, the  mean  vector  of  Y

�
 is  0

�
 and  covariance matrix  is Σ .  

         Further, since the transformation in (4)  is  linear, 
                                                 Y

�
∼ pN (0, )Σ

�
                                            

  Now, from the above theorem (1), it immediately follows 
                                                -1Y Σ Y′

� �
 ∼  2

pχ   

              ⇒        n ′(X - µ)
� �

-1Σ (X - µ)
� �

n  ∼   2
pχ                      (from (4)) 

              ⇒               n ′(X - µ)
� �

-1Σ (X - µ)
� �

∼  2
pχ      

Thus,  the test statistic for 0H  : 0µ = µ
� �

  is  given  by                                                                            

                                n 0 ′(X - µ )
� �

-1Σ 0(X - µ )
� �

                                 (5)→  

which  follows  2χ distribution  with  p d.f. 

          Let  2
pχ (α)  be  the  number  such  that  Pr { }2 2

p p χ   χ  (α) ≥ =α . 

 Thus,                    Pr { n 0 ′(X - µ )
� �

-1Σ 0(X - µ )
� �

  ≥  2
pχ (α)  }  = α    

and  to  test  0H : 0µ = µ
� �

 ( given ), we  use  

              n 0 ′(X - µ )
� �

-1Σ 0(X - µ )
� �

  ≥   2
pχ (α)                                    (6)→    

as  critical region. 
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Similarly,  we  use  the  inequality,  
                           * ′(X - µ )

� �
-1Σ *(X - µ )
� �

 ≤   2
pχ (α)                       (7)→  

for obtaining the confidence region for µ
�

 (the  set  of  all *µ
�

satisfying  (7))  

with  confidence  1 -α . 
                  Hence  the  result. 
 

 
Two  Sample  Problem :-                                                                                                     
                  Suppose  we  have  a  sample  

1

(1) (1) (1)
1 2 nX , X , ............, X
� � �

  from  

pN ( )(1)µ ,Σ
�

and  another sample 
2

(2) (2) (2)
1 2 nX , X , ..........., X
� � �

 from pN 2( )( )µ ,Σ
�

,  
where  Σ   is  known .  Now,  under  the  null  hypothesis  
                    0H : (1) (2)µ = µ

� �
                                                                      

 1 2

1 2

n n
n + n

 ( ) ( ) ′
  

(1) (2) -1 (1) (2)X - X Σ  X - X
� � � �

∼   2
pχ , 

where, (1)X
�

= mean  of  the  random  sample 
1

(1) (1) (1)
1 2 nX , X , ............, X
� � �

   

           and     (2)X
�

= mean  of  the  random  sample  
2

(2) (2) (2)
1 2 nX , X , ..........., X
� � �

. 

 
Solution: 
  
From the given hypothesis, we have 
    ( )(1)

1,pN n(1)X µ Σ∼
� �

  & ( )2 (2)
2,pN n( )X µ Σ∼

� �
                          (1)→  

Now  define,   Y
�

 = (1) (2)X - X
� �

                                                           (2)→    
with  mean  vector, E( )Y

�
 = (1) (2)-µ  µ
� �

                                                (3)→  
and variance- covariance  matrix,  
       ( )V Y

�
 = ( )V (1) (2)X - X

� �
                        

                           = 2 1( ) ( ) v( , ) v( , )V V Co Co+ − −(1) (2) (1) (2) ( ) ( )X  X X X X X
� � � � � �

 

                  =
1 2

+
n n
Σ Σ =

1 2

1 1+
n n

 
 
 

Σ                                                   (4)→  

 (since  the  two  samples  are  independent and  as  a consequence the 
covariance matrices 2 1v( , ) & v( , )Co Co= =(1) (2) ( ) ( )X X 0 X X 0

� � � �
                                                    

Since  the  transformation  used  in  (2)  is  linear, we have  

                        Y
�

 ∼  
1 2

1 1, +
n npN

  
     

(1) (2)µ - µ Σ 
� �

  

                            ⇒  ( )− (1) (2)Y µ - µ
� � �

∼
1 2

1 1, +
n npN

  
     

0 Σ 
�

 

     Now, from the above theorem (1), it immediately follows 

    ( ) ′ − 
(1) (2)Y µ - µ

� � �

-1

1 2

1 1 +  
n n

  
  

  
Σ ( ) − 

(1) (2)Y µ - µ
� � �

 ∼ 2
pχ  

But, under  the  null  hypothesis, 0H : (1) (2)µ = µ
� �
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      ( )(1) (2) X - X ′
� �

-1

1 2

1 1Σ +  
n n

  
  

  
( )(1) (2) X - X
� �

∼  2
pχ       (from(2))        

⇒  1 2

1 2

n n
n + n

( )(1) (2) X - X ′
� �

1−Σ  ( )(1) (2) X - X
� �

∼  2
pχ  

           Hence  the  proof . 
 

NOTE :-   
(i) The  critical  region  for  testing  hypothesis, 0H  : (1) (2)µ = µ

� �
at α level  of  

significance  is  given  by 1 2

1 2

n n
n + n

 
 
 

( )(1) (2) X - X ′
� �

1−Σ  ( )(1) (2) X - X
� �

 ≥  2
pχ (α)  

where, 2
pχ (α)   is  a  number  such  that  2 2

p pP ( χ χ (α) )≤  = α   . 

(ii) Mahalonobis (1930)  suggested ,  (1) (2)( µ - µ )′
� �

1−Σ (1) (2)( µ - µ )
� �

  as  a   
measure  of   the  distance  between  two  populations . 
(iii) The ( )1 α− %  confidence interval  for (1) (2)µ - µ

� �
 is  given  by  the  set  of 

*ν
�

 all which are satisfying the inequality, 

 1 2

1 2

n n
n + n

 
 
 

 ( )(1) (2) * X - X - ν ′
� � �

1−Σ  ( )(1) (2) * X - X - ν
� � �

  ≤   2
pχ (α) . 

 
 
         When ‘Σ ’Is Unknown:-                   

Introduction:- 
                One of  the most  important  groups of  problems in Univariate theory  
relates  to questions concerning the mean (µ)  of  a  give distribution, when the 

variance 2(σ ) of the distribution is unknown .  On the basis of a sample, one 
may  wish to decide  whether  the mean  is equal  to a  specified number ( 0µ ) 
or one may wish to give an interval with in which ‘µ ’ lies . The following is  
the mathematical  formulation of  one sample  t-test. 
                 Suppose 1 2 nX ,X ,..........,X denote a random sample from a normal 
population ( , )N µ σ . Now the well – known test statistic for testing the 
hypothesis 0 0H  : µ = µ  against  1 0H  : µ µ≠  is given by 

       t  = 0X - µ
S n

   where,  
n

i
i=1

1X = X
n∑   , 

n
2 2

i
i=1

1= (X -X)
n-1

S ∑ .     

                  This  test  statistic  follows  students’  t-distribution  with  n-1 
degrees of freedom .  We reject 0H  is | t | exceeds a specified percentage point 
of  a  t-distribution  with  n-1 degrees of  freedom . 

                                           
2

2

(n - 1) S 2  χn-1σ
∼  

                                             ( )2σ(X - µ) N 0 , n ∼  

                                  i.e., n  (X - µ)  N (0 , σ)∼  
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                  Regecting  0H  when | t |  is  large  is  equivalently  to  rejecting  0H  
is  its  square. 

                            
2

2 0
2

(X - µ )t  = 
s n

 =  2 -1
0 0n (X - µ ) (S ) (X - µ )                          (1)→   

is  large . Thus the test becomes .     
                 Reject 0H  in favour of 1H  at  α   level  of  significance, if 
                       ( )2 -1 2

0 0 n-1n (X - µ ) (S ) (X - µ ) t /2> α                                (2)→     

where,  ( )1 /2nt α− denotes the  upper ( )100 /2 thα  percentile of  the  

t-distribution  with  n-1d.f  and X   is  the  mean  of  the  given  sample  

1 2 nx ,x ,.......,x    and 2S  is the sample variance of the given sample. 

                 Now, the multivariate  analogue of  2t given in (1)  is 
                                    2 -1

0 0T  = n (X - µ )  S (X - µ )′
� �� �

                                      (3)→  

Where, X & S
�

 are respectively the sample mean and sample covariance matrix 
obtained . Using the multivariate  normal  sample 1 2 nX , X , ...., X

� � �
 and are given 

by   

                                
n

i
i=1

1X  =   X
n ∑� �

 

                                
n

i=1

1 = ( - )( - )
n-1

′∑ i iS X X X X
� � � �

                            (4)→   

and  

10

20
0

p0 p×1

µ
µ

µ  = 
:

µ

 
 
 
 
  
 

�
 is the specified value of  population  mean vector µ

�
. 

 
 

                  The statistic 2T  is called Hotelling’s 2T  in honour of  Harnold 
Hotelling, a pioneer in multivariate analysis, who first obtained its sampling 
distribution. 

It may be proved that 2
p,n-p

(n - 1) pT   F
(n - p)

∼                                           (5)→  

where, p,n-pF denotes F-distribution with  p, n-p degrees of freedom. 

                  The above explanation about 2T  statistic can be summarized as 
follows. 
                   Let 1 2 nX , X , ...., X

� � �
be a random sample from  p (µ , Σ)N

�
   

population  (Σ  is unknown), then Hotellings 2T – stastistics for testing. 
             
               0H  : 0µ = µ

� �
 against 1H  : 0µ µ≠

� �
, is given by (3) and  0H  may be 

selected at  α -level  of significance infevour of   1H  is  
                              2 -1

0 0T  = n (X - µ )  S (X - µ )′
� �� �

 

                                   >  p,n-p
(n - 1) p  F ( )
(n - p)

α                                          (6)→                            
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where,  p,n-pF ( )α  is the upper  th100α  percentile of the p,n-pF  distribution and 

X & S
�

 are respectively . The mean vector and covariance matrix of the given 
sample 1 2 nX , X , ...., X

� � �
. 

 
Definition  of  Hotelling’s 2T -distribution(statistic): 
   Suppose Y

�
 is a  p-variate random vector distributed according to pN ( )0,Σ

�
.  

Suppose
n

i=1
 ′=∑ i iB Z Z
� �

 ( where each i Z
�
∼ pN (0, )Σ

�
  and are independent) is 

a Wishart random matrix and is distributed as Wishart distribution with n 
degrees of freedom i.e. B n(Σ)W∼ .  
Now, if Y

�
 and B  are independent then the quantity 

            2  = T
n

 ′  
 

-1BY   Y
� �

  

is called as  Hotelling’s 2T statistic and it distribution is called as Hotelling’s 
2T -distribution with n d.f. and is denoted as  

           2T ∼ 2
nT  

 
 
NOTE :- 

(1) the statistic
2T

n
 is  the  ratio  of  two  independent 2χ - variates  with  p d.f.  

and   n-p+1 d.f.  respectively i.e., 
2T

n
  =  

2
p

2
1n p

χ
χ − +

 . 

 

(2) 
2

p,n-p+1
T n - p + 1
n p

F 
 
 

∼   , where  p,n-p+1F  is the F-distribution with p        

      and  n-p+1 degrees  of  freedom. 
 
 
 

THE LIKELIHOOD RATION PRINCIPLE 
 

Deriving  2T -statistic  as  the  Likelihood  Ratio Test  of  0H : 0µ = µ
� �

: 

           There is a general principle for constructing  test  procedures called  the 
Likelihood Ratio (LR) principle method  and  the 2T -statistic can be derived as 
the LR test of   0H : 0µ = µ

� �
 as explained below. 

                   Suppose  1 2 nX , X , ...., X
� � �

 (n > p) is given random sample from 

pN (µ , Σ)
�

, the likelihood function is 
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( )np 2 n 2

n
-1

α=11
L( )  =  

2π

1- ( )  Σ ( )2
 e

′∑ α α
µ,Σ

Σ

x -µ x -µ

�
� �� �            (1)→  

Under the hypothesis, 0H : 0µ = µ
� �

, the likelihood becomes, 

     
( )np 2 n 20

n
-1

α=11
L( )  =  

2π

1- ( )  Σ ( )2
 e

′∑ 0 0α α
µ ,Σ

Σ

x -µ x -µ

�
� �� �       (2)→  

The likelihood ratio criterion is 

                            Σ

µ,Σ

max  L( )
λ  = 

max  L( )
0µ , Σ

µ , Σ
�

�

�

                                             (3)→  

i.e., the numerator is the maximum of the likelihood function for µ , Σ
�

 is the 

parameter space restricted by the null hypothesis  ( 0µ = µ
� �

) and Σ  is positive 
definite and the denominator is the maximum over the entire parameter space 
(Σ  is positive definite). 
 When the parameters are unrestricted the MLE’s of andµ  Σ

�
 from (1) are 

given by   
                            Ωˆ = µ x

��
 

                           Ω
1ˆ = ( - ) ( - )α αn α

′∑Σ x x x x
� � � �

                                  (4)→  

When  0 = µ µ
� �

,the likelihood function given by (2), minimizes at  

                           0 0 0
1ˆ = ( - )( - )α αn α

′∑Σ x µ x µ
� �� �

                               (5)→   

Substituting (4) in (1), we get ( after simplification), 

               -np 2
n 2µ,Σ np 2

Ω

1max  L( ) =  e
ˆ(2π)  

µ,Σ
Σ� �

                   (6)→   

Similarly, substituting (5) in (2),we get  

                -np 2
n 2Σ np 2

1max  L( ) =  e
ˆ(2π)  

0

0

µ ,Σ
Σ�

               (7)→    

 
Substituting (6) & (7) in (3),we get, 

                              

n 2
ˆ

λ = 
ˆ

 
 
  
 

Ω

0

Σ

Σ
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                 2 n
ˆ

  λ  = 
ˆ

⇒
Ω

0

Σ

Σ
 = 

n

=1
n

=1

( )( )

( )( )

α

α

′− −

′− −

∑

∑

α α

α 0 α 0

x  x x x

x µ x µ

� � � �

� �� �

   (7a)→   

                 2 n  = 
+ n ( )

  λ
′

⇒
0 0

A
A x - µ ) (x - µ

� �� �

  

     Where    A= 
n

=1
( )( )

α

′− −∑ α αx  x x x
� � � �

                                      (8)→  

Consider the matrix, 
( 1) ( 1)

( )

( ) 1p p

n

n+ × +

 
 =
 ′ − 

0

0

A x - µ
B

x - µ
� �

� �

 

                                               = 
11 12

21 22

 
 
 
  

B B

B B

#
" # "

#
. 

    We have, -1
11 22 21 11 12B  = B  B - B B B  

                          -1
22 11 12 22 21= B  B - B B B  

-1 = -1   - n  ( ) (-1) n  ( )  ′∴ 0 0B A x - µ x - µ
� �� �

 

              =  + n ( )′0 0A x - µ ) (x - µ
� �� �

. 

2 n  = 
n  ( )

- 
n  ( ) -1

  λ

′

∴
0

0

A
A x - µ

x - µ
� �

� �

 

                =  
-1-  -1 - n  n  ( )′0 0

A
A (x - µ )  A x - µ

� �� �

 

                =  
  1 +n ( )   ( )′ -1

0 0

A
A x - µ A x - µ

� �� �

 

                =  
1

  1 + ( )n ′ -1
0 0x - µ )  A  (x - µ

� �� �

. 

Where  A  is as given in (8) . But we have, 

                S = 
1 1= )

n-1 n-1
′∑ α α

α
A (x - x) (x - x

� � � �
  

                     ⇒     A  =  (n-1) S 
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2 n 1λ  = 
1+n

 
′

∴ -1
0 0(x - µ )  [(n - 1)S] (x - µ )

� �� �

 

              =  
1

n1+ )
(n-1)

′ -1
0 0(x - µ )  S (x - µ

� �� �

 =  2
1

1+T /(n-1)
         (9)→   

where, 2T  = n( )′ -1
0 0x - µ )  S (x - µ

� �� �
 is  Hotelling’s   2T -statistic. 

 
Now, from (7a) & (9),  we can see 

                  
2T1 + 

(n - 1)
 = 

n

=1
n

=1

( )( )

( )( )

α

α

′− −

′− −

∑

∑

α 0 α 0

α α

x µ x µ

x  x x x

� �� �

� � � �

 

                      ⇒     2T   =  

n

=1
n

=1

( )( )
(n-1)  -1

( )( )

α

α

 
′− − 

 
 ′− − 
 

∑

∑

α 0 α 0

α α

x µ x µ

x  x x x

� �� �

� � � �

 

                                        =  (n-1)  
0

Ω

Σ̂
- 1

Σ̂

 
 
 
 

                                   (10)→  

                   In this formula, we need not find the inverse of a matrix, where as 
in the original formula we have to evaluate 1S −  . 

 
 Theorem : 2T - statistic is invariant (unchanged) under changes in the units 
of  measurements for X

�
 of the form,  

                              Y = CX + d
� � �

, where C is non-singular              (1)→  
          Proof :- We have, pN (X µ , Σ)

� �
∼ , 

                                i.e., E(X) = µ
� �

   E⇒ (Y) = Cµ + d
� ��

  (∵from (1))   (2)→   

Now, we have the 2T - statistic for testing, 0H : 0µ = µ
� �

 vs 1H : 0µ µ≠
� �

 based on 

the given sample 1 2 nX , X , ...., X
� � �

 is  

                         2
xT  = n ( )′ -1

0 x 0x - µ )  S  (x - µ
� �� �

                                    (3)→    

where         ′∑
n

x i i
i=1

S
1=  (x - x) (x - x)

n - 1 � � � �
                                   (3a)→     

From (1) we can see  ′pY N Cµ + d , CΣC )(∼
� �

. 

  Now, the 2T - statistic  for  testing,    
       0H  :

0Y Y µ = µ
� �

 vs   1H  : ≠
0Y Yµ  µ

� �
 

where, Y µ = Cµ + d
�� �

    &     
0Y 0 µ = Cµ  + d

�� �
                          (4)→       

based  on the sample 1 2 nY Y Y, ,....,
� � �

 is given by  
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                        2
yT  = n ′

0 0Y
-1
Y Y(Y - µ )  S (Y - µ )

� � � �
                                 (5)→    

where, Y = C x + d
� � �

  (from (1) ) 

                  
1

 
n - 1

 ′∑
n

i i
i=1

y (y y) (y - y)S  = -
� � � �

                                        (6)→  

and  
0Yµ

�
 is given by (4). 

       In order to show that the  Hotelling’s  2T  is invariant under the changes in 
the units of measurements, we have to show, 2 2

y xT  = T  . 

For that, consider 2
yT  given from (5), 

                      2
yT  = n ( ′

0 0

-1
y y ySy - µ )   (y - µ )

� � � �
 

                            = n ( )′ -1
0 y 0SCx - Cµ )   (Cx - Cµ

� �� �
         (using (4) )    

                            = n ( )′ ′ -1
0 y 0Sx - µ )  C   C(x - µ

� �� �
                      (7)→  

But,  
1

n - 1
′∑

n

i i
i=1

y   (y y) (y - y)S  = -
� � � �

 

              
1=  

n -1
′∑

n

i i
i=1

(Cx  - Cx) (Cx - Cx)
� � � �

                  (using (1) ) 

              
1=  

n -1
′ ′∑

n

i i
i=1

C(x  - x) (x - x) C
� � � �

 

              ′x= CS C                                                                 (from (3a)) 

    ′⇒ -1 -1 -1 -1
y xS  = (C ) S C  

   ′⇒ -1 -1
y x C S C = S   

Using this in (7), we get 
    2

yT  = n( )′ -1
0 x 0Sx - µ ) (x - µ

� �� �
  = 2

xT                  (from (3))  

Thus, 2T  is invariant under the changes in the units of measurements. 
NOTE : The above theorem may be stated as “ The  Hotellings  2T  is 
invariant under linear transformation ( or under changes in the location and 
scale ) of the sample . 
 
Uses  Of  The  2T -statistics :- 
(i)For testing the significance of one sample mean vector x

�
 : 

Suppose 1 2 nX , X , ...., X
� � �

 is  a  random  sample  from   a   p-variate   
normal  population pN ( )µ,Σ

�
, where  both and µ Σ

�
 are  assumed as 

unknown. Now, our  statistical  problem  is  whether  the  given  sample   has  
come  from  the  multivariate  normal  population, whose  mean  vector  is   

0 µ
�

.    In other words, we  want  to  test  the hypothesis 

0H  : 0µ = µ
� �

  vs   1H  : ≠ 0µ  µ
� �

                                               (1)→ ,  

where  0µ
�

 is the given mean vector. 

  For testing the above hypothesis, derive the test statistic. 
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Solution: 
          We have given a random sample of size n viz., 1 2 nX , X , ...., X

� � �
  

   from pN ( )µ,Σ
�

, where both and µ Σ
�

 are unknown. 

 
Now, we know that the mean vector  
              X

�
∼ pN ( / )nµ,Σ

�
  (since X

�
is a linear function of the sample) 

Define  the  random  vector, = ( )nY X - µ
� � �

                            (2)→  
         Whose population mean vector and population variance-covariance matrix are    
          respectively given by 
                  ( )= E( )= ( )E n n =Y  X - µ  µ - µ 0

� � �� � �
.  

         V( Y
�

) = V( n ( )X - µ 
� �

) = n  V ( )X - µ 
� �

=n V( X 
�

)   =  n  Σ n   =  Σ  . 
         Thus, the  mean  vector  of  Y

�
 is  0

�
 and  covariance matrix  is Σ .  

         Further, since the transformation in (2)  is  linear, we have 
                                                 Y

�
∼ pN (0, )Σ

�
                                   (3)→                

          We have the sample variance-covariance matrix    

                            
n

i=1

1 = ( - )( - )
n-1

′∑ i iS X X X X
� � � �

                           (4)→   

          Now, we know that    (n-1)S follows Wishart distribution with n-1 degrees  
  freedom and parameterΣ that is  

 
                                (n-1)S ∼ n-1W ( )Σ                                              (5)→  

Further,  we know that the sample mean vector X
�

 and the sample variance-
covariance matrix   S are independently distributed.     
From (2), it immediately follows that the random vector Y

�
and the random 

matrix  (n-1)S  distribute independently. 
  
Now, by the definition  of  Hotelling’s 2T distribution, the statistic 
 

              2 ( 1) = 
( 1)
n ST
n

 −′  − 

-1

Y   Y
� �

                                       (6)→  

follows Hotelling’s 2T distribution with n-1d.f.  i.e. 
           2T ∼ 2

1nT −  
Substituting (2) in (6), we can see that 
            2  = ( ) ( )T n ′ -1X - µ  S X - µ

� �� �
∼ 2

1nT −                           (7)→  

Now, under 0H  : 0µ = µ
� �

  (7) becomes                                                                            

            2
0 0 = ( ) ( )T n ′ -1X - µ  S X - µ

� �� �
∼ 2

1nT −                        (8)→  

   where, 
n

i=1

1
n

 = ∑ ixx
��

  and     
n

i=1

1= ( - )( - )
n-1

′∑ i iS X X X X
� � � �

          

Thus, the formula (8) gives us the Hotelling’s 2T  statistic which can be used to 

test (1) and follows 2
1nT −  
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At  the given α  level of significance, 0H  may be rejected infavour of  1H  if 

                   
2

p,n-p
T n - p  (α)

n - 1 p
 F 

 
 

>     (or)   2 2
0T  > T   .              (5)→  

 Where, 2
0 p,n-p

(n - 1) pT  =   (α)
n - p

 F    and    p,n-p  (α)F   is  the  upper th100 α  

percentile of   the  F-distribution  and  can  be obtained  from  the 
 F-tables. 
 

   
 
         Nature Of  2T - statistic ( Distribution) :-  

  We can write, 

                 

-1n

i i i
2 i=1

0 0

(X  - X) (X  - X )
T  = n (X - µ )  n  (X - µ )

n - 1

 ′ 
 ′
 
 
 

∑ � � � �
� �

     

    which is of the form,                       

              
-1multivariate multivariateWishart random matrix

normal r.v normal r.vd.f

′    
    

    
. 

 Since   the multivariate normal random vector and the Wishart random matrix, 
given in 2T  are independently distributed  ( X & S

�
∵  are independently 

distributed ). Their joint distribution is the product of the marginal normal and 
Wishart  distributions and therefore  2T -distribution can be obtained from this. 
          
(ii) Computation Of  Confidence Region For Mean  Vector :- 
          The  100(1- α)  percent confidence region  for  the  population mean µ

�
  

of  pN ( )µ,Σ
�

 based on  the given  random  sample  1 2 nX , X , ...., X
� � �

 is  

 given  by  the  set  of  all  µ
�

 satisfying  the  inequality, 

-1 2
0n (x - µ)  S  (x - µ)  T ( )α′ ≤

� �� �
  ,where 2

0 p,n-p
(n - 1) pT (α)  =  F  (α)

n - p
. 

 
 
(iii) A  Two Sample Problem  (An application of  Hotelling 2T -
statistic) :- 
                    Another  situation  in which the  2T -statistic is used is that in 
which the null hypothesis is that the mean of one normal population is equal to 
the mean of the other, where the covariance matrices are assumed equal but 
unknown. 
                    Suppose  (1) (1) (1)

1 2 nX , X , ..., X
� � �

 is a sample from  pN ( )(1)µ ,Σ
�

 and  
(2) (2) (2)
1 2 nX , X , ..., X
� � �

 is a another sample (independent of the first sample ) from  

pN ( )(2)µ ,Σ
�

. 
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 Now, we wish to test the null hypothesis, 
  (1) (2) (1) (2)

0H  : µ  = µ  or  µ  - µ  = 0
� � � �

,against (1) (2)
1H  : µ   µ≠
� �

     (1)→  

 The sample means from the hypothesis , 

             ( )
1n

(1) (1)
i p 1

i=11

1 = /
n

N n∑ (1)X X µ , Σ
� � �

∼      

  and     ( )
2n

(2) (2) 2
i p 2

i=12

1 = /
n

N n∑ ( )X X µ , Σ
� � �

∼   

 Now define, (1) (2)Y = X  - X
� � �

                                                         (2)→  

with  mean,  E E E(1) (2)(Y) = (X ) - (X )
� � �

 =  (1) (2)µ - µ
� �

                   (3)→     

and the variance- covariance matrix, 
 V( Y
�

) = V( (1)X
�

) + V( (2)X
�

)    (∵The two samples are independent)                  

                = 
1 2

1 1 + 
n n
Σ Σ  

                =  
1 2

1 1 + 
n n

 
 
 

Σ                                                                  (4)→   

Since the transformation in (2) is linear, from (3) and (4) it follows                   
                 
 

               p
1 2

1 1, +
n n

N
  
  

  

(1) (2)Y µ - µ Σ
� � �
∼  

      i.e., p
1 2

1 1( ) , +
n n

N
  

−   
  

(1) (2)Y µ - µ 0 Σ
� �� �

∼       

      i.e., 
( ) ( )

p

1 2

 - 
N ( )

1 1+
n n

(1) (2) (1) (2)X - X µ - µ
0 ,Σ� � � �
�

∼       (using (2))     (5)→  

 The sample covariance matrix from sample 1, which is denoted  by 1S  and is 
given by 

                   
1n

(1)
1 i

i=11

1= ( - )
n - 1

′∑ (1) (1) (1)
iS X  X ) (X - X

� � � �
 . 

Similarly, the sample covariance matrix from sample 2, denoted by  2S  and is 
given by 

                    
2n

(2) 2 2 2
2 i

i=12

1= ( - )
n - 1

′∑ ( ) ( ) ( )
iS X  X ) (X - X

� � � �
 . 

 Let us denote, 1 1 2 2

1 2

(n -1) + (n -1) =
n + n  - 2

S SS                         (6)→   
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 We know that  1 1(n -1)S   and  2 2(n -1)S    are Wishart random matrices and 
are distributed as  

1 2n -1 n -1w ( )  &  w ( )Σ Σ  respectively, where 
1n -1w ( )Σ   is  

Wishart distribution with 1(n 1)−  d.f  and  
2n -1w ( )Σ  is  Wishart  distribution 

with  2(n 1)−  d.f.  both have the parametric matrix  Σ . 
  By  assumption, the samples are independent, so 1 1(n -1) S  and 2 2(n -1) S  
are  also independent . Therefore from (6), 1 2(n +n 2)S−  is distributed as 
Wishart  distribution with  1 2n + n 2−  d.f  and with the parametric matrix  Σ ,  
i.e.  

1 21 2 n + n -2(n +n 2)S  w (Σ)− ∼                                 (7)→  
     
Since, the sample variance-covariance matrix is independently distributed with 
the sample mean vector, 1S  is  independently  distributed with (1)X

�
 and since 

the two samples are independent, 1S  is  independently  distributed with  (2)X
�

 

and therefore  1S  is  independently  distributed with  (1) (2)X - X
� �

. 

Similarly, 2S  is   independently  distributed with  (1) (2)X - X
� �

. 

Therefore, 1 1 2 2

1 2

(n - 1) S + (n - 1) SS = 
n + n  - 2

     is  independently  distributed with  

(1) (2)X - X
� �

.  
Thus, from the above explanation and from (5) & (6) and by the definition of   

2T -distribution, we have  

      2T  =  
( ) ( )(1) (2) (1) (2)

-1

1 2

X - X  - µ - µ
S

1 1+
n n

′ 
 
 
 
 
 

� � � �  
( ) ( )(1) (2) (1) (2)

1 2

X - X  - µ - µ

1 1+
n n

 
 
 
 
 
 

� � � �  

   
  

           =  ( ) ( ) ( ) ( )-11 2

1 2

n n
n +n

  ′        
 

(1) (2) (1) (2) (1) (2) (1) (2)X - X - µ - µ X - X - µ - µS
� � � �� � � �

(8)→  

                                                                                                                            
is  distributed  as   2T -distribution with  1 2n + n 2−  d.f  . 

Now, by virtue of  the  relation  between  2T  and  F – distribution, we have 

         
1 2

2

p , n + n - 2 - (p-1)
1 2 1 2

T p  F
n + n - 2 n + n - 2 - (p-1)

 ∼  

    i.e.,      
1 2

2

p , n + n - p-1
1 2 1 2

T p  F
n + n - 2 n + n - p-1

 ∼  

under  (1) (2)
0H  : µ  = µ
� �

  i.e.,  (1) (2)µ  - µ  = 0
�� �

 ,    (8) becomes 

2T =  ( ) ( )1 2

1 2

n n
n +n

 
 
 

(1) (2) -1 (1) (2)X - X  S X - X
� � � �

                  (9)→  
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if  2T  >  
1 2

1 2
p , n +n - p -1

1 2

p(n + n - 2)  F (α)
n + n - p - 1

, where
1 2p , n +n - p -1F (α)   is  table  F- 

value  at α    level  of  significance  with  ( p, 1 2n + n - p - 1) d.f.,   then 

0H  : (1) (2)µ  = µ
� �

 may be rejected . 

 
Confidence  Interval :- 
                   An  100(1- )α % confidence  region  for  estimation  of  

(1) (2)µ  - µ
� �

 is  given by  the  following  set   (∵ from (8)),  

( ) ( ) 21 2
0

1 2

n n < T
n +n

  
− −  

  

(1) (2) -1 (1) (2)m X - X m  S X - X m
� � � � � � �

 

where, 
1 2

2 1 2
0 p , n +n -p-1

1 2

p(n + n - 2)T  =  F (α)
n + n - p - 1

. 

 
 
The  Two  Sample  Situation,When  1 2Σ ≠ Σ  :- 
                   In  the above  problem, we have  assumed  that  the  covariance 
matrices  of  both  the  populations are assumed as equal  i.e., 1 2Σ = Σ = Σ . 
Now, let  us  suppose  that  1 2Σ ≠ Σ  i.e.,  the  population  covariance  matrices  
are  not  equal . 
                   In this  case, no  tests  are available  for  making  inferences   about  

(1) (2)µ - µ
� �

,when the sizes  of  the samples are  small . However, if  1 2n & n  are  

large  i.e.,  in case  of  large  samples,we have  the  following  result. 
 
Result :- 
                Let  the  sample  sizes  be  such  that  1 2n -p  and  n -p   are  large . 

An  approximation  100(1- α) %  confidence  region  for  (1) (2)µ - µ
� �

 is  given  

by  all  (1) (2)µ - µ
� �

 satisfying , 

            ( ) ( )
-1

(1) (2) (1) (2)
1 2

1 2

1 1X - X  - µ - µ  S  +  S
n n
 ′      � � � �

 

                                                     ( ) ( )(1) (2) (1) (2) 2
px - x  - µ - µ   χ (α) 

  ≤
� � � �

 

where, 2
pχ (α)  is  2χ - table  values with  p.d.f  at  100α%   level  of  

significance. 
Proof:-   (1) (2) (1) (2)E (X - X ) = µ - µ

� � � �
  

        & V( (1) (2)X - X
� �

) = V( (1)X
�

) + V( (2)X
�

) = 1 2
1 2

1 1 Σ +  Σ
n n

. 

By  the  central  limit  theorem,                     
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                    (1) (2) (1) (2)
p 1 2

1 2

1 1X - X µ - µ , Σ + Σ
n n

N  
 
 � � � �

∼   . 

If  1 2&Σ Σ  are known,  

  ( ) ( )
-1

(1) (2) (1) (2)
1 2

1 2

1 1X - X  - µ - µ   +  
n n
 ′  Σ Σ    � � � �

    

                                                                 

                                                ( ) ( )(1) (2) (1) (2) 2
pX - X  - µ - µ  χ (α)  

 � � � �
∼ , 

approximately,  when  1 2n & n   are  large, with  high    probability 

1 1 2 2S Σ   and  S  Σ→ → . Consequently, the  approximation  holds  with  

1 2S & S , in  place  of  1 2Σ   and  Σ  respectively . 
                   Hence  the  theorem .                                                                                          

 
 

NULL DISTRIBUTION  OF HOTELLING   2T   
 
Statement:- Let  pNY (ν,Σ)

� �
∼  and  let A be  a  Wishart  random matrix  

independently  distributed as 
1

m

α α
α=

′∑Z Z
� �

, where  'sαZ
�

  are  

i.i.d pN (0,Σ)
�

∼  . Also let   

                                2T m ′ -1= Y A Y
� �

                                          (1)→    

then , 
2T m - p + 1

m p
 
 
 

is  distributed  as  a  non-central  F  with  

p and m-p+1 d.f.  and non-centrality parameter ′ -1ν Σ ν
� �

.   Further, if ν = 0
� �

, then 

                           
2

p, m - p +1
T m - p + 1 F
m p
 
 
 

∼                         (2)→  

and the distribution of  2T  is called   2T -distribution. 
 
Proof :- Since  Σ is positive definite, there exists a non-singular  C such that 

                     ′ pCΣC = I  so that ,  ′ -1Σ = (C C)                        (3)→  

Define ,  and ′* *Y = CY  A = CAC
� �

                                     (4)→    
 
We can see that , * *E(Y ) = Cν = ν

� � �
 (say) 

         V V ′*(Y ) = (CY) = CΣC = I
� �

                   (using (3))         (5)→   

Thus ,  pN* *Y (ν ,I)
� �
∼ . 
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Since A is distributed as  
1

m

α α
α=

′∑Z Z
� �

,   ′*A = CAC  is distributed as   

                            ′′ ′∑ ∑
m m

* *
α α α α

α=1 α=1
C Z Z C = Z Z

� � � �
                        (6)→   

where , (p pN N′ =*
α αZ = CZ C0,CΣC ) (0,I)
� � � �

∼  . 

 
   Eq (1) can be written as   

                          
    

    

                                  (7)

2T m

m

m

m

′

′ ′ ′

′ ′

′ ′ →

-1

-1 -1 -1

-1

* * *

= Y A Y

= Y C (C ) A (C) CY

 = (CY) (CAC ) (CY)

= Y A Y

� �
� �
� �

� �

    

 

where,  pN*Y (0,I)
� �
∼  and  *A  is independently distributed as * *

1

m

α α
α=

′∑Z Z
� �

 in 

which  's*
αZ
�

 are i.i.d pN (0,I)
�

∼ . 

               Also, since  and Y A
�

 are independently distributed ,  from eq. (4) , 

 and * *Y A
�

 are also independently distributed . 

                Let ( )ij p pω ×Ω =  is an orthogonal matrix in which first row is defined by  

                         1      ,  j=1,2,......,p
*
j

j

Y
ω

′* *
=

Y Y
� �

             (8)→  

where , *
jY  is thj  component of  *Y

�
. 

Now define , *U = ΩY
��

 

                     ′*B = ΩA Ω                                                        (9)→  

The  thi  component of U
�

 is given by  
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                 [using (8)]

         
0          otherwise  

         (Since ,   is orthogonal matrix) 

p
*

i ij j
j=1

p
ij

1j
j=1

U Y

if   i = 1

ω

ω
ω′

 ′



∑

∑* *

* *

=

= Y Y

Y Y=

Ω

� �

� �

   

. 
                           

Thus ,                                              (10)
0
0

0

 ′
 
 
  →
 
 
 
 

* *Y Y

U =

� �

�
#

   

 
 
From equation (7) ,  

( ) ( ) ( )

2

1

 

                        (   is orthogonal)

           (  )

                                             [ using (9)]

T
m

−

′ ′

′ ′′ ′

′ ′ ′

′

* * *

* * *

* * * -1

-1

= Y IA IY

= Y ΩΩA ΩΩY Ω

  = ΩY ΩA Ω ΩY Ω = Ω

= U B U

� �
∵

� �
∵

� �

� �

   

  

11 12 1

21 22 2
*

1 2

00 0

0

p

p

p p pp

b b b
b b b

b b b

   ′
  
    ′        
    

* *

*

Y Y

= Y Y

"
� �""

� � # # # #
"

 

11b ′* *= Y Y
� �

                                                                                (11)→    

where , 11b  is first diagonal element of  -1B . 
But we know that , 
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                    11

11

1b
b ′ -1

1 22 1

=
- b B b
� �

  ,    where    11

22

b
b

 ′
 
  

1

1

bB =
b

�
�

 

 
Thus , from eq (11) , 

                                      
2

11.2.......p

T
m b

′* *Y Y= � �                                    (12)→  

where , 11.2.......p 11b = b ′ -1
1 22 1- b B b
� �

 . 

               Let us suppose that  Ω  is fixed (given). Then, just as we show *A  is 

distributed as  *

1

m

α
α=

′∑ *
αZ Z

� �
,  we can show that ′*ΩA Ω   is distributed as  

1

m

α α
α=

′∑V V
� �

,  when  *
α αV = ΩZ

��
 and  'sαV

�
 are  i.i.d pN (0,I)

�
∼  .  

Now,  with little difficult , we may show that 11.2.......p 11b = b ′ -1
1 22 1- b B b
� �

 is 

conditionally distributed as  
-( -1)

2

1

m p

α
α

ω
=
∑ , 

        where   each αω  is . . (0,1)i i d N∼  .  

      Therefore,        
-( -1)

2 2
-( -1)

1
 

m p

m pα
α

ω χ
=

∼∑ . 

More over,  the conditional distribution of 11.2....... pb  does not dependent on  Ω , we 

have 11.2....... pb  is  unconditionally  distributed as  2
-( -1)m pχ  . 

Also, since  pN* *Y (ν ,I)
� �
∼ ,      

2*

1

p

i
i

Y
=

′ ∑* *Y Y =
� �

 

where , * *( ,1)i iY N ν∼   and  *
iY ’s are independent . 

               Thus , ′* *Y Y
� �

 has non-central  2χ -distribution with non-centrality 

       = 
2*

1

p

i
i
ν

=
∑ = ′* *ν ν =

� �
′ ′ν C Cν
� �

                                  [from(5)] 

                                      ′ -1= ν Σ ν
� �

                                       [from (3)]  

Thus ,     
2T

m
 is distributed as the ratio of non-central   2

pχ   and  an independent 

central 2
-( -1)m pχ .  
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Thus , 
2

( , - 1)
- ( -1)

p m p
T m p F
m p +

 
 
 

∼  (non-central) and non-centrality parameter 

′ -1ν Σ ν
� �

. 

                If  ν = 0
�

 then, ′ -1ν Σ ν = 0
� �

 and therefore in this case , the distribution is 

central . (p,m- p+1)F  ,the distribution of  2T  is called   2T -distribution with ‘m’ 

degrees of freedom . 
 

      
                                                                              

COMPARISION  OF  SEVERAL  MULTIVARIATE POPULATION  MEANS  
 
MANOVA for one way classification:  
 
               Suppose we have ‘g’ populations , each is distributed multivariate normal 
with mean vectors 1 2 gµ ,µ ,........,µ

� � �
 respectively . Let us suppose that all 

populations have the same covariance matrix Σ . Thus, we have the ‘g’ populations. 

                                

1

2

 

p

p

g p

N

N

N

Π

Π

Π

1

2

g

(µ ,Σ)

(µ ,Σ)

(µ ,Σ)

�

�
#

�

∼
∼

∼

  

               Now , we have a sample of size ‘ in ’ from thi  population iΠ  . Thus, we 
have ‘g’ samples from the ‘g’ populations as follows : 

                      

1

2

Population   

Population   

        
Population g

Π

Π

Π

1

1

1

11 12 1n

21 22 2n

g1 g2 gn

: X ,X ,......,X

: X ,X ,......,X

 : X ,X ,......,X

� � �

� � �
#

� � �

 

Using the above random samples , MANOVA is used to investigate whether the 
population mean vectors are same and if  not , which mean components differ 
significantly. Thus , the null hypothesis is 
 

                        0H 1 2 g: µ = µ = ...... = µ
� � �

                                                       (1)→  

 
ASSUMPTIONS  CONCERNING  THE  STRUCTURE  OF  THE  DATA :- 
(1) 

ii1 i2 inX ,X ,......,X
� � �

is a random sample of size in form a population with mean 

iµ
�

,i=1,2,…..g.The random samples from different populations are independent. 

(2) All populations have a common covariance matrix Σ  . 
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(3) Each population is a multivariate normal. Condition (3) can be relaxed by 
appealing to the central limit theorem , when the sample sizes  in ’s are large . If the 

mean vector of  thi  population is written as  
                                         i iµ = µ + τ

�� �
                                                                   (2)→  

Here, µ
�

 is the overall mean vector of all population and  iτ�
 is a component due to the 

specific population , then the null hypothesis (1) can be written as   
                       0 0H 1 2 g: τ = τ = ...... = τ =

� � �
                                            (3)→  

The response ijX
�

 , distributed as ( )pN iµ + τ ,Σ
��

, can be expressed in the 

suggestive form, 

                

                                                           (4)

overall treatment random
               

 mean    effect   error

→

     
     
     

ij i ijX = µ + τ + ε
� � ��

   

        i = 1,2,…..,g   &  j = 1,2,….., in  .  

where , Nijε (0,Σ)∼
� �

 are independent random variables. (4) is called as MANOVA  

model for comparing of population mean vectors. Here  µ
�

 is overall mean vector and 

iτ�
 represents the thi  treatment effect with 

                                      
1

g

i
i

n
=
∑ iτ = 0

� �
                                                                      (5)→  

A vector of observations may be decomposed as suggested by model (4) . Thus, 

( )

                                 (                    (6)

overall estimated
residual

observation    sample   treatment   ˆ    
mean effect 

→

   
    
           

ij i ij i

ij
i

x = x + x - x) + (x - x )

ε
µ τ

� � � � � �

��
When    mean of sample thi

ii i1 i2 inx = x ,x ,......,x
� � � �

 

                 ( )1  
g 1 2 gx = x + x + ...... + x

� � � �
                          (general mean) 

      From (6), we may write the cross product, 

( )( ) ( ) ( )( ) ( ) ( )( )i
′′ +ij ij ij i ij i ix - x x - x = x - x + x - x x - x x - x

� � � � � � � � � � � �
       

                                   ( )( ) ( )( )′ ′
ij i ij i ij i i= x - x x - x + x - x x - x
� � � � � � � �

                                               

                                                    ( )( ) ( )( )′′
i i i ij i+ x - x x - x + x - x x - x
� � � � � � � �

 

 Summing the cross product over i and j , we get  
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1 1 1
( (    

i in ng

j i j= = =

′ ′∑∑ ∑∑
g

ij ij ij i ij i
i=1

x  - x)(x - x) = x  - x )(x - x )  
� � � � � � � �

  

                                                      
1 1

(  
ing

i j= =

′∑∑ ij i i+ x  - x )(x - x)
� � � �

 

                                                      
1 1

(  
ing

i j= =

′∑∑ i ij i+ x  - x)(x - x )
� � � �

 

                                                      
1 1

 
ing

i j= =

′∑∑ i i+ (x  - x)(x - x)
� � � �

                           (7)→  

But, since 
1
(

in

j=
∑ ij ix  - x ) = 0

� � �
.,  Eq (7) becomes , 

1 1 1 1
( (    

i in ng g

i j i j= = = =

′ ′∑∑ ∑∑ij ij ij i ij ix  - x)(x - x) = x  - x )(x - x )  
� � � � � � � �

 

                                                         

                                                            
1

g

i
i

n
=

′∑ i i+ ( x - x)(x - x)
� � � �

                         (8)→  

 total(corrected) residual(within) treatment(between)

 sum of square   sum of squares +    sum of squares 

& cross products & cross products   & cross products

⇒ =

     
     
     
     

 

That is (8) may be written as  

              
1 1

(
ing

i j
W B

= =

′ +∑∑ ij ijx - x)(x - x) =
� � � �

                                                (9)→   

 where , 
1 1

(
ing

i j
W

= =

′∑∑ ij i ij i= x - x )(x - x )
� � � �

   

                    1 1 2 2( -1) ( -1) ...... ( -1)g gn S n S n S= + + +    

       where , iS  is sample covariance matrix of thi  sample . 

 and  
1

(
g

i
i

B n
=

′∑ i i= x - x)(x - x)
� � � �

. 

                      
  Now, we summarise the calculations leading to the test statistic in a MANOVA table 
. MANOVA  table  for  comparing  population  mean  vectors :- 
 
    Source   of 
     variation 

             Matrix  of  sum  of           
          squares & cross product 

Degrees  of 
     freedom 
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   Treatments 
  
 
Residual(error) 

1

g

i
i

B n
=

′∑ i i= (x - x)(x - x)
� � � �

 

1 1
( ( )

ing

i j
W

= =

′∑∑ ij i ij i= x - x ) x - x
� � � �

 

 
      g-1 
 
 
      n-g 

              Total 
(correlated for 
    the mean )       

 

1 1
(

ing

i j
B W

= =

′+ ∑∑ ij ij= x - x)(x - x)
� � � �

 

 
 
      n-1 

 
                      
               Now one of the test statistic for testing (3) involves generalized variances and 
is given by 

                                   * W
B W

Λ
+

=                                                            (10)→   

The quantity  *Λ  is called Wilk’s lamda  and related to likelihood ratio criterion. The 
exact distribution of  *Λ  can be derived for the special  
cases listed in the following table . 
 

  
      Distribution of Wilk’s lamda , *Λ  :- 
 
 

    No . of 
   variables 
 

    No .of       
    groups 

          Sampling    distribution    for 
             
            multivariate   normal   data 

      
 
      
      p - 1 
 
 
 
 
 
     p = 2    
 
 
 
 
 
      p 1≥  
 
 
 
 

        
 
     
     g 2≥  
 
 
 
 
 
      g 2≥  
 
 
 
 
 
      g = 2   
 
 
 
 

1

*
1

*
-1, -

-
1-

-1 g

i
i

g

i
i

g n g

n g
F

g
=

=
 
 
 
 

 
   Λ   Λ    ∑
  

∑
∼  

1

*
1

* 2( -1),2 - -1

- -1
1-

-1 g

i
i

g

i
i

g n g

n g
F

g
=

=
 
 
 
 

 
   Λ   
  Λ  ∑   

∑
∼

1

*
1

*
, - -1

- -1
1-

g

i
i

g

i
i

p n p

n p
F

p
=

=
 
 
 
 

 
   Λ   Λ    ∑
  

∑
∼  
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      p 1≥    
 

 
      g = 3  

1

*
1

* 2 ,2( - -2)

- - 2
1-

g

i
i

g

i
i

p n p

n p
F

p
=

=
 
 
 
 

 
   Λ   
  Λ  ∑   

∼
∑

     Bartlett has shown that if  oH  is true and 
1

g

i
i

n n
=

=∑  is large, 

  

*( ) ( )-1- ln  -1- ln  
2 2

Wp g p gn n
B W

+ +   − Λ = −    +   
   

has approximately a  2χ - distribution with  p(g-1) d.f. consequently.   
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Principle Component Analysis  
Introduction  :  

Suppose  1 2 pX ,X ,...,X  are  the given  random  variables. Then,  principle 

component  analysis (P.C.A)  is  concerned  with  explaining  the  variance-

covariance  structure  of  the  variables  through  a  few  standardized  linear 

combinations (SLC)  of  the  original  variables (we  call  a  linear  combination 

1 1 2 2 pX X ............ Xpl l l+ + +   as an  SLC  if  2
i

i
l∑ =1 ). 

 

Algebraically  principal components (PCs)  are  particular standard linear 

combinations (SLCs) of the components of the original pattern and 

geometrically, these LCs represent the selection of new coordinate system 

obtained by rotating the original system with X1, X2,…, Xp as the coordinate 

axes. The  new  axes  represent the directions  with  maximum  variability  and  

provide  a  simpler  and  more  parsimonious (avoiding  of  excess)  description  

of  the  covariance  structure . As  we  shall  see , principle  components depend  

solely  on  the  covariance matrix  (or  the  correlation  matrix)  of  the  random  

variables 1 2 pX ,X ,...,X . Their development  does  not  require  a  multivariate  

normal  assumption. 

 

The general objections of P.C.A are   

(i)   Data-reduction and 

(ii)  Interpretation. 

 

Although p components required to reproduce the total system variability, 

often much of this variability can be accounted by a small number ‘k’(<p) of the 

principal components.  If there is almost as much information in the k 

components as there is in the original ‘p’ variables, then the ‘k’ principal 

components replace the original ‘p’ components of the pattern.  And the original 

data set consisting of n measurements on p-component pattern is reduced to 

one consisting of n measurements on k-principal component pattern. In other 
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words, PCA reduces the dimensionality of the given data, losing as little 

information as possible. This technique was developed by Hotelling(1933).  

 

          
      An  analysis  of  principle  components  often  reveals  relationships  that  

were  not  previously  suspected  and  there  by  allows  interpretations  that  

would not  ordinarily  result.  In other words, the  key  problem  is  the  

interpretation  of  the  principle  components. 

        PCs  may  be  inputs  to a  multiple  regression analysis  or  cluster  

analysis.  Moreover , (scaled)  principle  components  are one factoring   of  the  

covariance  matrix  for  the  factor  analysis  model. 

                              

An example:- 

                               Suppose  we  consider  a  sample  of  n students  and  they  

are  asked  to  write  five  papers  mechanics ( 1X ), vectors ( 2X ), algebra ( 3X ), 

analysis( 4X )  and  statistics ( 5X ).  The  examination  in  the  first  two  papers  

is  conducted  in  the  closed  book  system ,  where  as  in  the  remaining  

three  papers  in  the  open  book system.                        

 Thus , we  have  totally  ‘5n’ observations  so  that  n  observations  on  each  

paper . One  question  which  can  be  asked  concerning  this  data  is  how  the  

results  on  the  five  different  papers  should  be  combined  to  produce  an  

overall  scare  various   answers  are  possible.  One obvious  answer  would  be  

to  use  the  overall  mean  that  is  the  linear  combination  

( )1 2 3 4 5X X X X X 5/+ + + + .   But , can  one  do  better  than  this? .  This  is  one  

of  the  questions  that  principle  component  analysis  seeks  to  answer . 

 

Definition  Of  Principle  Component :- 

 

Definition:- 

               If   X
�

  is a random  vector  with  mean  µ
�

 and  variance – covariance  matrix  Σ , 

then  the  principle component  transformation is the  transformation. 

                     X Y→
� �

 = Ω  (X - µ)′
� �

                                                           → (1) 

where , Ω   is  orthogonal  matrix , such  that   
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         1 2 p 1 2Ω ΣΩ= = diag(λ ,λ ,............,λ ),    ................ 0Λ pλ λ λ′ ≥ ≥ ≥ >     

          The  strict  positivity  of  the  eigen  values  iλ  is  guaranteed  if , Σ   is  positive  

definite.  The thi   principle  component  of  X
�

 may  be  defined  as  the   thi element  of  the  

vector  Y
�

 , namely  as   i iY = ω  (x-µ)′
�� �

 ,  where  iω�
  is  the   thi column  of   Ω   and  may  be  

called  the  thi  vector  of  principle  components  leadings. 

 

An  Alternative  Definitions:-   

                         If  X
�

  is  a  px1  random  vector  with  mean  µ
�

  and  variance-covariance  

matrix  Σ  , then  the  first  principle  component  of  X
�

   is  defined  by  the  Standardized  

Linear   Combination (SLC)  of  X
�

. 

  

                            1 1Y β  X′=
��

         (   where ,  1 1β β′ =1  ) 

such  that  1V(Y )    is  larger  than  the  variance  of  any  other  SLC   α X′
��

 . 

  i.e., 1V(Y )  V(α ,X)′≥
��

  for  an  arbitrary  ‘α
�

’ ( α α′
� �

=1 ) .  In  otherwords  1Y   has  the  

largest  variance  among  all  SLC’s  of    X
�

.  

 
Principle Component  Definition :- 

In  general  the kth   principle component  of X
�

 is defined  by the SLC  of                 

X
�

,  k kY  = β X′
��

  (  where,  ′k kβ β =1 ),  which  is  uncorrelated  with   first   k-1   principle    

component   and   k iV(Y )  V(Y )≥  ,      for   i=1,2,………….,k-1 . 

 

          
          
           Derivation  Of   The  Principle  Components:- 

                              Suppose  X
�

  is  px1  random  vector  with  mean  vector  µ
�

  and                    

        covariance-matrix  Σ   i.e., X  (µ,Σ)∼
� �

 , then  by  definition , the  first  principle   

        component  is  the  SLC  of  X
�

  which  has  largest  variance  among  all  SLC’s   

        of  X
�

 . Thus  we  should  seek  a  LC  of  X
�

  viz.,   

                      Y ′ = ω X
��

                                                                                        (1)→  

        with  largest  variance ,  
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                  V(Y) = ′ω  V(X) ω
�� �

= ′ω  Σ ω
� �

                                                          (2)→  

        such  that ω ω′
� �

 = 1   . 

 Thus , we  have  to  maximize  (2)  subject  to  the  condition 

                     ′ωω
� �

 = 1                                                                                          (3)→  

        which  is  equivalent  to  maximizing  the  function  ,   

                                       ( ,λ) =  - λ( -1)φ ′ ′ω ω Σω ωω
� � � � �

                                                 (4)→  

        w.r.t  ω
�

  and  λ  , where  ‘λ ’  is  a  Lagranges  multiplier.  This  implies  to  solve  

        the  equations  ,     = 0
ω
φ∂
∂ �
�

     =>      Σω = λω
� �

  

                                                        i.e.,    (Σ-λI)ω 0=
� �

                                                (5)→  

                                      0
λ
φ∂
=

∂
      =>       ω ω = 1′

� �
                                                   (6)→  

        Using   (5)  &   (6)   ,  from (2)  , we get ,  V(Y)   =  λω ω′
� �

  = λ                        (7)→  

        From  (5) , to have  a  non-zero  solution  for  ω
�

 , we  must  have ,  

                                            Σ-λI  = 0                                                                          (8)→  

        We  know  that  (8)  is  a  characteristic  equation , and  ‘λ ’  is a  latent  root  and   

         From (5) ,ω
�

  is  the  corresponding  latent  vector  of  the  equation . But,  we   

         know  that , solving (8) for  ‘λ ’  gives  p-latent   roots  (positive) , 

         1 2 3 pλ λ λ ................. λ 0≥ ≥ ≥ ≥ ≥                                                                       (9)→  

         With  the  corresponding  latent  vectors  , 1 2 pω ,ω ,...............,ω  respectively , 

         i.e.,   we  have  from  (5) , i i iΣω  = λ ω
� �

,    i= 1,2,…………p                           (9. )a→  

         Since  1λ   is  the  largest  latent  root  among  all  latent  roots  and  1ω�
  is  the   

         corresponding  latent  vector  . 

         From  (1)  and  (7)  ,  1 1Y  = ω X′
��

,  is  the  first  principle  component  with  variance,   

         1 1V(Y ) = λ  . 

         Let  us  denote  the  first  principle  component  by 1Y  . Now , 1 1Y  = ω X′
��

     (10)→  

         1 1V(Y ) = λ                                                                                                         (11)→  

         Now , let  us  show  that  for  2  ≤   k  ≤   p  ,   K KY  = ω X′
��

                              (12)→         

         is  the  thK   principle  component  with  variance  ,  K KV(Y ) = λ                    (13)→  

         By  definition , KY  should  uncorrelated  with  1 2 K-1Y ,Y ,..............Y  ,  which  can  be   
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         easily  verified  as  follows  (for   J = 1,2,………..k-1) .                                                    

        Cov(Yk,Yi)=Cov ( )′ ′k iω Χ,ω Χ  

              = i Cov ( ) ′ ′kω X, X ω  

              = ′k iω Σ ω  

              = iλ ′k iω ω                                  [From(5)] 

                                         =   0      (∵  Kω
�

 &  Jω�
  are orthogonal  vectors )  

Also by definition, the kth PC Yk has largest variance than Yk+1,…,Yp which can 

also be verifying from  (13). 

                                          K K+1 Pλ λ ............. λ 0≥ ≥ ≥ ≥  

                              K K+1 PV(Y ) V(Y ) ............... V(Y ) 0⇒ ≥ ≥ ≥ ≥ . 

          Hence  the   proof .  

            
          

   Remark   :- 

                          The  above  result  may  be  asked  as  no  standard  linear  combination           

        (SLC) of  X
�

 has a variance larger than  1λ  ,the variance  of  first   principle    

        combination. 

                              From  the  above  result  , we  may  say  that  construction (derivation ) 

        of  principle  components  of  a  given  random  vector  X
�

  is  equivalent  to  the 

        problem  of   the  construction (derivation)   of  the  latent  roots  and  latent  vectors 

        of  the  variance-covariance  matrix  Σ   of  X
�

 in  case  of  known  Σ . 

         

           Note:-   

(1) If  Σ   is  not  known ,  we  may  construct  the  principle  component  of  the   

random  vector  X
�

  based  on  the  sample  variance – covariance  matrix  or  sample  

correlation  matrix . 

(2) If  the  population  correlation  matrix  ‘ρ ’  is  given ,  we  may  use  it  in  place    

of   Σ   to  construct  the  principle  components . 

        (3) The  principle  components  of   the  random  vector  X
�

  derived  from          

               population    (sample)  correlation  matrix  are  different  from  the  principle  

               components   derived   from   population  (sample )  covariance  matrix.                       
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         Properties   Of   Principle  Components  :-  

(1) Sum  of  the  variances  of  all  p.c’s  equal  to  the  trace  of  Σ .  

 Proof :- Let  1 2 pY ,Y ,................,Y   are  the  p.c’s  obtained  from random variable X
�

. 

              Let  us  denote ,  1 2 p p×pΛ = diag( λ ,λ ,..................,λ )  

                                          1 2 p p×pΩ = ( ω ,ω ,...................,ω )
� � �

   

              where ,  iλ 's   are  the  latent  roots  and  iω 's
�

  are  the  latent  vectors  of    

              the  covariance  matrix  Σ   of  the  random  variable  X
�

 . Then , we  have, 

                                ′Ω ΣΩ  = Λ  . 

                         ⇒  Tr(Λ)  = Tr(Ω ΣΩ)′  

                      ⇒    1 2 pλ +λ +..................+λ  =  Tr(ΣΩΩ )′                                             

   ⇒  1 2 pV(Y )+V(Y )+......................+V(Y )   =  Tr(ΣI)  

                                                              =  Tr(Σ)  

                                                              =  1 2 pV(X )+V(X )+.......................+V(X )  

                                                                                                           i(λ  =  iV(Y )) . 

(2) Product  of  the  variance  of  p.c’s  is  equal  to  the  determinant  of  Σ  i.e.,  Σ  ( or  

generalized  variance) . 

             Proof :-   We  have  ′Ω ΣΩ   = Λ   

                            ⇒   Λ    =   ′Ω ΣΩ  

         ⇒  1 2 pλ λ ...............λ   =   ′ΣΩΩ  

     ⇒   1 2 pV(Y )V(Y )...............V(Y )  =  ΣI  

                                                        =  Σ     

                  Hence  the  proof .  

(3) The  sum  of  the  first  K  eigen  values  divided  by  the  sum  of  all  eigen   

values ,   

                1 2 k

1 2 p

λ +λ +....................+λ
λ +λ +....................+λ

  =   1 2 kλ +λ +....................+λ
Tr(Σ)

 

represents  the  ‘Proportion  of  total  variation’  explained  by  the  first  K  principle  

components .  

(4) The  principle  components  of  a  random  vector  are  not  scale  invariant . It  is    

one  disadvantage  of  principle  component  analysis . 



82 
 

     

       Theorem  :- 

                               An  orthogonal  transformation  Y
�

 = CX
�

  of  a  random  vector X
�

    

        leaves  invariant  the  generalized  variance  and  the  sum  of  the  variance  of  the   

        components . 

      Proof :- We  have  given  X
�

  is  the  original  random  vector and Y
�

 is the transformed 

                  random  variable  using  the  orthogonal  matrix  C . Now, we  have  to  show 

                  that  ,  ( )cov X,X′
� �

  =  ( )cov Y,Y′
� �

  ,  where    

                  is  determinant  and    
p

i
i=1

V(X )∑  =  
p

i
i=1

V(Y )∑  

                 since , ‘C’  is orthogonal  we  have,   C C′  =  CC′  =  I                            →   (1)  

                 Now ,  cov ( Y,Y′ )  =  cov ( CX,(CX)′
� �

) 

                                                  =  C cov ( X,X )C′ ′
� �

 

                                                  =  CΣC′   

                         ⇒ cov(Y,Y )′
� �

 =  CΣC′  

                                                  =  C Σ C′  

                                                  =  Σ CC′  

                                                  =  Σ I                                                            ( ∵  from (1)) 

                                                  =  Σ   

                                                  =  ( )cov X,X′
� �

 

            ⇒  generalized  variance  of  Y
�

 =  generalized  variance  of  X
�

 . 

                   We  have ,  
p

i
i=1

V(X )∑  = Tr (Σ )  

                                                   = Tr (Σ I) 

                                                   = Tr (Σ CC′ )                                                  (∵  from (1)) 

                                    = Tr ( CΣC′ ) 

                                    = 
p

i
i=1

V(Y )∑            (∵ CΣC′   is  covariance  matrix of  Y
�

) ⇒  

Sum  of  the  variances  of  original  variables (total population  variance)                       
                    =  Sum  of  variances  of  principle  components . 
                    =  1 2 pλ +λ +.......................+λ .  

         
         Note :-   
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                              The   above  theorem  may  be  stated  as  follows .  The  generalized   
         variance   of  the  vector  of  principle  components  is  the  generalized   variance   
         of  the  original  vector  and  the  sum  of  the  variances  of  the  principle  compo- 
         nents  is  the  sum  of  the  variances  of  the  original  variates . 
 
      Results :- 
                                        If  X

�
  is  a  random  vector  with  covariance  matrix Σ  and i iY = ω X′

��
                                

      is  the  thi  principle component of  the random vector 1 2 pX = (X ,X ,................,X )′
�

, 

      then  the  correlation  coefficient  between  thi  principle  component  and  thJ  original 

      variable (that  correlation  coefficient  between  iY   and JX  )  is  given  by  

                       
i JY ,Xρ  =  i

iJ
JJ

λ
ω

σ
     i,J = 1,2,……….,p   ,   where  JJσ  = JV(X )  

      iλ  is  thi   largest  root  of  Σ   and  iJω   is  thJ   component  of  iω�
 , when  iω�

  is  the 

       latent  vector  of  Σ   corresponding  to  iλ  . 

        Proof :-  Denote    Jl�
  =  th 

0
0
:

J
J
0
0

 
 
 
 

→ 
 
 
  
 

position                

        Now ,  JX  = JXl′
��

 .  Also  we  have  given ,  iY  = iω X′
��

                                       (1)→  

                       
i JY ,Xρ   =  i J

i JJ

cov (ω X , l X)
λ σ
′ ′
� � ��   

( )i J

i J

cov Y ,X
V(Y )V(X )

 

                                  =  i J

i JJ

cov (ω X , l X)
λ σ
′ ′
� � ��           ( ∵ iV(Y )   = iλ  , the  thi  larger  latent  root  

                                                                           of  Σ  , using  (1)  & JJσ    is  thJ   diagonal 

                                                                           element  of  Σ  ) . 

                                  =  i J

i JJ

ω  cov (X , X ) 
λ σ

l′ ′
� �� �  

                                     =  i J

i JJ

ω  Σ 
λ σ

l′
� �                                                                            (2)→       

         ( ∵  Σ  is  covariance matrix of  X
�

 ) 

       Since  iω�
  is  the  latent  vector  of  Σ   corresponding  to  latent  root  iλ  , we  have  

                            iΣω
�

 = i iλ ω
�
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                      ⇒  iω Σ′
�

 = i iλ ω ′
�

      (Taking  transpose  &  Σ  = ′Σ )                            (3)→  

       Using  (3)  in  (2) , we  get  , 

                               
i JY ,Xρ   =  i i J

i JJ

λ ω  
λ σ

l′
�    

                                          = i

JJ

λ
σ

  ( i1 i2 iJ iJ+1ω 0+ω 0+................+ω 1+ω 0+............+0 ) 

                                          =  i

JJ

λ
σ

 iJω      for  i,J = 1,2,…………,p  

                      Hence  the  proof . 

 
      Principle  Components  Obtained  From  Standardized  Variables :- 

                              Suppose  X
�

  is  a  random  vector  with  mean , µ
�

= 

1

2

p

µ
µ
:
:

µ

 
 
 
 
 
 
 
 

  

       and  covariance  matrix , Σ  =  

11 12 1p

21 22 2p

p1 p2 pp

σ σ .... σ
σ σ .... σ
:
σ σ .... σ

 
 
 
 
  
 

 

       Now ,  the  standardized  random  vector  of   X
�

 is  given  by  

                           Z
�

  = 

1 1

11

2 2

22

p p

pp

X -µ
σ

X -µ
σ
:
:

X -µ
σ

 
 
 
 
 
 
 
 
 
 
 
 
 

   = 

11

22

pp

1 0 .. .. 0
σ

10 .. .. 0
σ

: :
: :

10 0 .. ..
σ

 
 
 
 
 
 
 
 
 
 
 
 
 

  

1 1

2 2

p p

X -µ
X -µ

:
:

X -µ

 
 
 
 
 
 
 
 

  

                                                           = D ( X - µ
� �

)                                                      (1)→  

       Where , D = diag 
11 22 pp

1 1 1, ,.....................,
σ σ σ

 
 
 
 

 

       Now , cov ( Z,Z′
� �

) = D cov ( X-µ , (X-µ) )′
� �� �

D′  
                                       = DΣD          ( since  D = D′  &  cov( X,X′

� �
) = Σ  )              (2)→  
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         But  we  verify  that,                

DΣD =  

11

22

pp

1 0 ... ... 0
σ

10 ... ... 0
σ

: :
: :

10 0 ... ...
σ

 
 
 
 
 
 
 
 
 
 
 
 
 

11 12 1p

21 22 2p

p1 p2 pp

σ σ ... ... σ
σ σ ... ... σ
: :
: :
σ σ ... ... σ

 
 
 
 
 
 
 
 

 

                                                                                 

11

22

pp

1 0 ... ... 0
σ

10 ... ... 0
σ

: :
: :

10 0 ... ...
σ

 
 
 
 
 
 
 
 
 
 
 
 
 

            

 

                =  

1p12

11 22 11 pp

2p21

11 22 22 pp

p1

11 pp

σσ1 ... ...
σ σ σ σ

σσ 1 ... ...
σ σ σ σ

: :
: :
σ

... ... ... 1
σ σ

 
 
 
 
 
 
 
 
 
 
 
  
 

 

 
                                
                     = ρ   ,  the  correlation  matrix  X

�
 .                                                      (3)→  

      From  (2) & (3)  ,  cov( Z,Z′
� �

)= ρ  

      Thus , the  covariance  matrix  of  standardized  random  vector Z
�

  is  nothing  but  

      the  correlation  matrix  of  the  original  random  vector  X
�

 . 

                               Now , the  principle  component  of  Z
�

 may  be  obtained  from  the   

      eigen  vectors  of  the  correlation  matrix ρ   of  X
�

 . The  thi  principle component of  

      the  standardized  variables 1 2 pZ ,Z ,...................,Z  with cov( Z,Z′
� �

)=ρ =cov( X,X′
� �

) 

      is  given  by   iY  = iω′�
z
�

 = iω′�
D (X-µ)

� �
      ,  i=1,2,……….p                  ( ∵  from (1)) 
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      Moreover , 
p

i
i=1

var(Y )∑ = 
p

i
i=1
λ∑  =  Tr (ρ ) 

                                                        =  
p

i
i=1

V(Z )∑  

                                                        =  p                                                         ( ∵ iV(Z )  =1 ) 

      and  cov( i JY ,Z ) =  iJ iω λ                 where , i,J= 1,2,…………..,p. 
      Here , ( i iλ ,ω

�
)  , i=1,2,………….,p  are  eigen  value – eigen  vector  pairs  of  ‘ρ ’ 

       with  1 2 pλ λ ................... λ≥ ≥ ≥ . 
       
 
      Note :-    

                   The principle  components  discussed  so  far  are  called  as  population   

        principle  components . The  computation  of  principle  components  is  possible   

        only  when  Σ  or ρ  is  known , which  is  a  rare  practical  situation .  Therefore , 

        we  have  to  estimate  the  population  principle  components  from  the  given   

        sample . The  estimation  of  the  population  principle  components  is  equivalent  

        to  finding  the  eigen  values  and  the  eigen  vectors  of  the  sample  covariance   

        matrix  S  obtained  from  the  sample . Therefore  estimated  population  principle   

        components  are  also  called  as  Sample  Principle  Components. Sometimes , we  

        may  obtain  the  sample  principle  components  from  the  sample  correlation   

        matrix R. But, the  sample  principle  components  obtained  from  S  are  different  

        from  those obtained  from R .                                  . 

 

    Result :-   

                    If  S = ( )iJ p×p
s  is  the  sample  covariance  matrix  of  the  given  sample   

        1 2 nx ,x ,..............,x
� � �

from  a  multivariate population  and 1 1
ˆ ˆ(λ ,ω )
� 2 2

ˆ ˆ(λ ,ω )
�

…… p p
ˆ ˆ(λ ,ω )
�

                 

         are the eigen value – eigen vectors pairs of S , then the thi  sample principle   

         component is given by 

 
              

Consider a pattern  (random vector)       

1

2

.

.

p

p

X
X

R

X

 
 
 
 = ∈
 
 
 
 

X                                                   (1) 
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with Covariance matrix Σ given by 

 

11 12 1

21 22 2

1 2

. . .

. . .
. . .

 
. . .
. . .

. . .

p

p

p p pp

σ σ σ
σ σ σ

σ σ σ

 
 
 
 

=  
 
 
 
  

Σ                                            (2) 

 

where σij = Cov(Xi, Xj) 
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FACTOR ANALYSIS 

 
INTRODUCTION:- 
 

Factor  analysis is a mathematical model which attempts to explain the correlation 

between a large set of variables in terms of a small number of underlying unobservable factors. In 

other words , the essential purpose of factor analysis is to describe , if possible , the covariance 

relationships among many variables in terms of a few underlying but unobservable , random 

quantities called factors. Basically, the factor model is motivated by the following argument. 

Suppose variables can be grouped by their correlations . That is all variables within a particular 

group are highly correlated among themselves but have relatively small correlations with 

variables in a different group. It is conceivable that each group of variables represents a single 

underlying construct, or factor , that is responsible for the observed correlations.  Factor analysis 

was originally developed by psychologists interested in psychometric measurement. 

 

  Arguments over the psychological interpretations of several early studies and the lack of 

powerful computing facilities impelled its developments a statistical method. The advent of high 

speed computers has generated a renewed interst in the theoretical and computational aspects of 

factor analysis.most of the original techniques have been abandoned and early controversies 

resolved in the make of recent developments.It is till true that each application of the technique 

must be examined on its own merits to determine its success. 

  

Factor analysis can be considered as an extension of principal component analysis. Both can be 

viewed as attempts to approximate the covariance matrix  Σ .However, the approximation based 
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on the factor analysis model is more elaborate . The primary question is factor analysis is whether 

the data are consistent with a prescribed structure.  

 In order to get a feel for the subject we first describe a simple example . 

Example 1 (Spearmon,1904): In children examinations performance in classics ( 1x ),French ( 2x ) 

and English ( 3x ) .It is found that the  correlation matrix is given by 

 

                         
1   0.83   0.78
       1      0.67
                  1

 
 
 
 
 

 

 

Although this matrix has full rank its dimantionality can be effectively reduced from p =3 to 

p=1by expressing the three variables as follows 

      

1 1 1

2 2 2

3 3 3

x f u
x f u
x f u

λ
λ
λ

= + = + 
= + 

                                                                                                       --- (1) 

In these equations f is an underlying ‘common factor’ and 1 2,  λ λ  and  3λ are  known as factor 

loadings.The terms 1 2,  u u  and 3  u represent random disturbance terms.  The common factor may 

be interpreted   as ‘general ability’ (or ‘intelligence’) and iu  will have small variance is ix  is 

closely related to  general ability. The variation is iu consist of two parts  which we shall  not try 

to disentangle in practice.First,this variance represent the extent to which an individuals ability at 

classics , say, differs from his general ability and second it represents the fact that the examination 

is only an approximate measure of his ability in the subject. 

The model defined in (1) can be generalized to include  k >1 common factors. 

 

ORTHOGONAL FACTOR MODEL: 

The observable random vector x
�

with p component has mean µ
�

and covariance matrixΣ . The 

factor model postulates that x
�

is linearly dependent upon a few unobservable random variables 

1, , kF F…  called comman factors and p additional sources of variations 1 2, , , pu u u"  called random 

disturbances or error or specific factors . In particular, the factor analysis model is  
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              ( )

1 1 1 1 1 1 2 2 11

2 2 2 1 1 2 2 2 22

1 1 2 2

         1

k k

k k

p p pp p p k k

X F F F u

X F F F u

X F F F u

µ λ λ λ

µ λ λ λ

µ λ λ λ









= + + + + +

= + + + + +

= + + + + +

"

" "#

"

 

(or)  in matrix notation. 
    ( ) ( ) ( ) ( ) ( )

                 p×1 p×kp×1 k×1 p×1
x = µ +Λ F +u       (2)
� � ��

  

Where 

11 1

22 2

P P

X
X

= , ,

X k

F
F

F

µ
µ

µ

    
    
    = =
    
    

     

X µ F
## #� ��

 , 

11 12 11

21 22 22

1 2P

= ,

k

k

p p pk

u
u

u

λ λ λ
λ λ λ

λ λ λ

  
  
   =
  
       

u Λ

"
"

# # ##�
"

 

                        
The matrix Λ  is called the matrix of factor loadings, where  ijλ  is the loading of thi  variable 

( )iX  on thj factor ( )jF .Note that the thi  specific factor iu  is associated only with the thi  

response iX . 

The   p  deviations  1 1 2 2 p pX µ , X µ , ,X µ− − −" are expressed in terms of  k+p random variables  

 1 2 k 1 2 pF ,F , ,F ,µ ,µ , ,µ" "  are unobservable. 

         From (1) ,it may be noted that each equation looks like a multiple regression equation but 

for one exception.  The common factor in (1) 1 2 kF ,F , , F"  are unobservable where as in multiple 

regression equation the independent variables can be observed .This distinguishes the factor 

model from the multivariate regression model. With so many unobservable quantities (k+p) a 

direct verification of the factor model (1) from observations on 1X , ,X p… is hopeless.  

However, with some additional assumptions about the random vectors F
�

 and µ
�

, the model in(2) 

implies certain covariance relationships ,which can be checked. 

 

 We assume that  

                              

k k

1 2 p

p k

E( )=0 , V( )=E( )=I
E( )=0 , V( )=E( )
                      = =doag(ψ ,ψ , ,ψ ) 

 and cov( , )=E( )=0  

×

×

′ 
′ 


′ 

F F FF
u u uu

ψ

u F uF

� � � ��
� � � � �

"

� �� �

                      ---- (3)                            

 
The model (2) with the assumptions (3) is called the 'Orthogonal Factor model' 
The assumption (3) implies the following implicit assumptions. 
•  All common factors are standardized to have variance 1 and uncorrelated with one another 
( )V( )=IF

�  
•  All  specific factors (random disturbances) are have zero means and uncorrelated 
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    ( )1 2 p V( )= =doag(ψ ,ψ , ,ψ )u ψ "
�

 

• Common factor and specific factor are uncorrelated ( )cov( )=0u,F
��

. 
  The Orthogonal model with  k  common factors  
                           ( )( 1) ( 1) ( 1) ( 1)p p k pp k× × × ××= + Λ +X µ F u

� � ��
                                                               ---- (4)                         

     Where iX  = 
thi response variable 

                 iµ  = mean of iX  
                ijλ  = loading of iX  on  jF                                          

                jF  =  thj common factor 

                iu  = thi specific factor. 
The unobservable random vectors  F

�
 and u

�
 satisfy F

�
and u

�
  are indpendent  

        1 2 pE( )=0 , V( )=ψ=doag(ψ ,ψ , ,ψ )u u "
� �  

The orthogonal factor model implies a covariance structure for X
�

.From the model in (4) , we 
have 

                        ( )( ) ( )( )
                        

′ ′=

′ ′ ′ ′ ′ ′= + + +

X -µ X -µ ΛF + u ΛF + u

ΛFF Λ ΛFu uF Λ uu
� � � �� �� �

� � � �� � � �

 

 
 
so that 

                

( ) ( )( )
( ) ( ) ( ) ( )

V E

                 E E E E
                 ψ                                  ( From(3))             ---- (5)  

 ′= =  
 

′ ′ ′ ′ ′ ′= + + +

′= +

Σ X X -µ X -µ

Λ FF Λ Λ Fu uF Λ uu
ΛΛ

� � �� �

� � � �� � � �
                 

 
Also from the model (4),we have  

             
( ) ( )

( ) ( )( ) ( ) ( )

  

cov , E E E      (From(3))    ---- (6)

′ ′ ′= = +

′ ′ ′= = + =

X -µ F ΛF + u F ΛFF uF

X F X -µ F Λ FF uF Λ
� � � � � � �� ��

� � � � � � ���

                                       

 
From the model (1), we have 

    
k

i i ij j i
j=1

X µ λ F +u  ,       i=1,2, , p= +∑ "  

Covariance-structure for the orthogonal factor model 
                  

( )

( ) ( )

( ) ( )
ij

k

i i ij j i
j=1

k k
2

i i i ij j
j=1 j=1

i j ij

1. V ψ

    X µ λ F +u

                                                    ---- (7)
   V X λ ψ   cov X , X λ λ

2. cov ,     cov X , F λ

l l

or

and

or

′ = +

= = 

= + =



= = 

∑

∑ ∑

X ΛΛ

X F Λ

�

� �
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From the above ,thus ( )iV X  can be split into two parts.   

 First  
k

2 2

1
i ij

j
h

=

=∑λ   is called the communality and represents the variance of iX    which is shared 

with the other variables via the  common factors.   

In particular ( )ij

22
i jλ   cov X , F =   represents the extent to which iX  depends on the  

thj common factor . On the other hand iψ  is called specific or unique variance and is due to the 
specific factor iu  it  explains the variability in iX  not shared with other variables. 
Thus from (7) 
              

( )
N N

i

i1 i2 ik
2 2 2

ii i
specific varianceV X communality

λ λ λ  ψ           σ = + + +
����	���


"                                            ---- (8) 

               

( )
N N N

i

2
ii i

communality specific varianceV X

ψihσ = +                                                                           ---- (9) 

 so that the thi communality is the sum of squares of the loadings of  the thi variable on k 
common factors. 
 
NOTE:The validity of the k-factor model can be expressed in terms of a simple condition on Σ  
From (5) we have 
             ψ′= +Σ ΛΛ                                                                                            ---- (10) 
The converse also holds .  If Σ can be decomposed into the form (10), then the k-factor model 
holds  For X

�
.   However , F

�
and  u

�
 are not uniquely determined by  X

�
. 

Factor analysis is invariant of scaling of variables 
Suppose  x= +Λ +X µ F u

� � ��
                                                      ---- (1)   

 is the factor model.                                                  
Now rescaling the variables of X

�
 is equivalent to set  

                      

1 2 p

11

21

1

p1

,  C=diag(c ,c , ,c )

Xc 0 0 0
X0 c 0 0

    =     0 0 c 0

X0 0 0 c

C where=

  
  
  
  
  
  

      

Y X "
� �

"
"

#"
## # # % #

"

 

                            

             

1 1 1

2 2 2

p p

c X
c X

c Xp

Y
Y

Y

   
   
   
   ⇒ =
   
   
   
   

# #
# #

                                                    - ---- (2)   

Premultiplying (1) with C we get  

                            

y

 V( )=
. .,                                -------(3)

x x x

y y y

C C C

and C C C C
i e

ψ
ψ

= + Λ +

′ ′ ′Λ Λ +
′Σ = Λ Λ +

Y µ F u

Y
� � ��

�
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( )
2 2 2
1 1 2 2

when 

                     

                 =diag(c ,c , ,c )

y x

y x

p p

C

C C C Cψ ψ

ψ ψ ψ

Λ = Λ

′= =∵

"

 

 
From (1)  

x

V( )=
                               -------(4)

x x x

x x x

ψ
ψ

′Λ Λ +
′⇒ Σ = Λ Λ +

X
�  

 
But we have  

    
( )y                                 

    C                            
     =

x

x x x

y y y

C C C C

C C Cψ
ψ

′Σ = Σ =

′ ′= Λ Λ +
′Λ Λ +

∵
 

Which is nothing but (3). 
 
Thus the factor loading matrix yΛ for the scaled random vector Y

�
is obtained by scaling the 

factor loading matrix xΛ of the original random vector X
�

 . Similarly the specific variance 

matrix yψ  for the scaled random vector Y
�

 is obtained by premultiplying and postmuliplying 

the specific variance matrix xψ of the original r.v. X
�

 by C . In other words,factor 

analysis(unlike principal component analysis) is unaffected by a rescaling of the variables. 

 

Non-uniqueness of factor loadings(Rotated Factors) 

Let T is any k k×  orthogonal matrix . So that , TT T T I′ ′= = .Then the factor model  

             = +Λ +X µ F u
� � ��

                                                       ---- (1)             

Can be written as         
( )( )

* *

* *

    =

    =                         ----(2)

where ,  and 

TT

T T

T T

′= + Λ +

′+ Λ +

+Λ +

′Λ = Λ =

X µ F u

µ F u

µ F u

F F

� � ��
� ��

� ��
�

        

 Since ,  * *( ) ( )  and V( ) ( )E T E T V T T IT I′ ′ ′= = = = =F F 0 F F
� � � ��

. 

  It is impossible , on the basis of observations on X
�

 to distinguish the loadings  Λ from those 

of *Λ . That is the factor F
�

and * T ′=F F
� �

have the same statistical properties and even though the 

loadings *Λ  are in general different from the loadings Λ , they both generate the same 

covariance matrix. That is 
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* *

                  -----(3)
   =

   = +                  -----(4) 

TT
ψ

ψ

ψ

′Σ = ΛΛ +
′ ′Λ Λ +

′Λ Λ

 

 Thus the variance-covariance matrix Σ  can be decomposed as either (3) or (4).And if Λ  is the 

factor loadings, then * TΛ = Λ  (for any orthogonal matrix T) , is also the factor loadings. 

However, the communalities given by the diagonal elements of * *′′ΛΛ = Λ Λ  are uneffected by 

the choice of T. 

                  This determinancy in the definition of factor loadings is usually resolved by rotating  

(multiplying by an orthogonal matrix). The factor loadings Λ  to satisfy an arbitrary constant 

such as  1ψ′Λ Λ  is diagonal or 1D−′Λ Λ  is diagonal , 11 22( , ,....., )ppD diag σ σ σ=  . Where in 

either case the diagonal elements are written in decreasing order.. Once the loadings and 

specific variances are obtained , factors are identified and estimated values for the factors 

themselves (called factor scores) are frequently construted. 

  

METHODS OF ESTIMATION:- 

            Given observations 2, ,......., n1X X X
� � �

 on p generally correlated variables , factor analysis 

seeks to the question ,’Does the factor model  

                                                                            ----(1)= +Λ +X µ F u
� � ��

 

With a small number of factors , adequately represent the data? 

                In essence , we tackle this statistical model building problem by trying to verify the 

covariance relationship  

                                                                            ----(2)ψ′Σ = ΛΛ +  

The sample covariance matrix S is an estimator of the unknown Σ .If the off-diagonal elements 

are small or those of the sample correlation matrix R are essentially zero,the variables are not 

related and factor analysis will not prove useful.In these circumstances ,the specific factors play 

the dominant role ,where as the major aim of the factor analysis is to determine a few important  

common factors. 

            If Σ  appears to deviate significantly from diagonal matrix then a factor model can be 

entertained and the initial problem is one of the estimating the factor loadings 'ij sλ  and specific 

variances 'i sψ .We shall consider two of the most popular methods of parameter estimation. 

1.Principal factor method (Analysis). 

2. Maximum likelihood method (factor analysis) 
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The solution from either method can be rotated in order to simplify the interpretation of 

factors  

Principal factor analysis: 

We have the factor model (k-factor)  

( )( 1) ( 1) ( 1) ( 1)p p k pp k× × × ××= +Λ +X µ F u
� � ��                                                       -----(1) 

Where X
�

 =  p-component random vector 

             µ
�

= mean of X
�

 

            Λ  = matrix of factor loadings                                          

            F
�

 = vector of common factors 

            u
�

 = p-component random vector 

 

with  covariance matrix of X
�

  

               ′= +Σ ΛΛ ψ                                                                                    -----(2) 

Where  ( )1 2( ) , , , kV diag= =ψ u ψ ψ ψ"
�

. 

In practical situation ,since Σ   is not known,  Σ is replaced by its estimate the sample covariance 

matrix S   which is obtained from the observations 1, , nX X…
� �

  .Since,factor analysis is invariant 

of the scaling of the variables the correlaton matrix R   ,computed from the observations  

1, , nX X…
� �

 on p-variable random vector X
�

,may also be used in place of   S . 

 

Let us suppose the data is summerised by the correlation matrix R  so that an estimate of  Λ  and 

ψ  is rought for the standardised variables. 

 

Now our problem is to obtain the estimates of Λ  and ψ  from equation (2) ,replacing the 

unknown Σwith known R (when the variables standardised Σ  is equivalent to the population 

correlation matrix ρ ).Then we have  

                                ˆ ˆ ˆ′= ΛΛ +R ψ                                                        -----(3) 

Comparing the diagonal elements on both sides  ,we get  

                            

2

k
2 2

1

ˆ1   for i=1,2,---,p

ˆ ˆ   

i i

i ij
j

h

where h

ψ

=

= +

=∑λ

�
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Is the preliminaryestimate of  the  
thi communality 2

ih  and may be obtained either of the following 

two ways: 

1) The square of the multiple correlation coefficient of the 
thi   variable iX   on the remaining p-1 

variables. 

2) The largest absolute correlation coefficient between  iX and one of the remaining p-1 variables. 

i.e.,  max
j i

ijr
≠

 

Note that the estimated communality 2
ih  is higher when iX  is highly correlated with the other as 

we would expect. Now     ( ) ( )2
i îˆ ˆ=diag 1diag h= −ψ ψ  has to be subtracted from  R  to obtained 

the matrix               

                      

2
1 12 1p

2
12 2 2p

2
1p 2p p

ˆ
ˆ

ˆ

ˆ

h r r
r h r

r r h

− =

 
 
 
 
 
  

R ψ

"
"

# # #
"

                                                                   ---- (4)                            

  Which is called the reduced correlation matrix because the 1’s on the diagonal have been  

replaced by the estimated communalities   2
îh . 

  Suppose  1 2 pa a a≥ ≥ ≥" are eigen values of ˆ−R ψ   and  , ,1 2 pω ,ω ω"
� � �

  are   the corresponding 

eigen vectors, then we may  decompose ˆ−R ψ  as  

                    
p

1

ˆ i
i

a
=

′− =∑ i iR ψ ω ω
� �

                                                                               ---- (5) 

  Suppose the first K eigen values 1 2 k, , ,a a a" are positive then 

            
p

1

ˆ ˆˆ i
i

a
=

′ ′− = = ΛΛ∑ i iR ψ ω ω
� �

                                                                   ---- (6)          

  Where ,  1 2 k p k
ˆ a a a

×
 Λ =  1 2 kω ω ω"

� � �
   

                     
1
2=ΩA                                                                                                 ---- (7)   

( )Ω = 1 2 kω ω ω"
� � �

and ( )1 2 k, , ,diag a a a=A "  is the estimate of the factor loading matrix 

Λ̂  . Since  , Ω   is orthogonal matrix, we may see that 

 

            1/ 2 1/ 2 1/ 2 1/ 2ˆ ˆ′ ′ = =Λ Λ = A ΩΩA A IA A                                                                ---- (8)  
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Finally, the revised estimates of the specific variances are given in terms of Λ̂    by  

                    
k

2

1

ˆˆ 1 , 1,2, ,ij
j

i p
=

= − =∑iψ λ "                                                           ---- (9) 

Where  ˆ
ijλ  is the ( ), thi j element of the estimated factor loading s matrix Λ̂  given by (7)  .Then 

the  principal  factor solution is permissible is all the ˆ iψ  are non-negetive. 

Thus for the k factor model (1) the principal factor estimates of the factors loading matrix Λ is 

given by (7) and the estimates of communalities 2
ih are given by the diagonal elements of ˆ ˆ ′ΛΛ . 

                 i.e.       
k

2 2

1

ˆ
i ij

j
h

=

= ∑λ                                                                                  ---- (10) 

The estimates of the specific variables ˆ ′iψ s are given by  (9) 

 

NOTE: 

• The principal factor analysis can be performed iteratively with the communality estimates 

given by (10)  

• becoming the initial estimates for the next stage. 

• If we are given the sample covariance matrix S ,it may be converted into  R   and then 

above analysis can be performed. 

 

Example: 

Consider the open/closed book data of the following table with correlation matrix. 

 

                        

1 0.553 0.547 0.410 0.389
1 0.610 0.485 0.437

1 0.711 0.665
1 0.607

1

 
 
 
 
 
 
  

 

If  k>2 then S<0 and the factor model is not well defined . The principal factor solutions for  k=1 

and k=2, where we estimate the thi communality 2
îh by max

j
ijr  ,are given in the table . The 

eigen values of the reduced correlation matrix are 2.84,0.38, 0.08,0.02 and -0.05, suggesting that 

the two-factor solution fits the data well. 

In the above table principal factor solutions for the open/closed book data with k=1 and k=2 

factors. 
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variable 
             

1

2ˆ                 (1) 
k

ih λ
=
��������

 
       

( ) ( )
2

2ˆ             1          2  
k

ih λ λ
=
������������

 

1 0.417                          0.646 0.543        0.646      0.354 

2 0.506                          0.711 0.597        0.711     0.303 

3 0.746                          0.864 0.749        0.864      -0.051 

4 0.618                          0.786 0.680        0.786       -0.249      

5 0.551                          0.742 0.627        0.742        -0.276  

 

 

The first factor represents overall performance and for k=2, the second factor , which is much less 

importent 

 ( )2 10.38 2.84a a= << =  , represents a contrast acrossthe range 2 1ih <<  for all i, and therefore a 

fair propertion of the variance of each variable is left unexplained  

by the comman factor. 

 

PRINCIPAL COMPONENT METHOD (PRINCIPAL COMPONENT SOLUTIO OF THE 

FACTOR MODEL) 

 

Suppose  1, , nx x…
� �

 are observations on p  generally correlated variables and the data is 

summarised either into the sample correlation matrix R . 

Let the orthogonal factor model with k comman factors 

 ( )( 1) ( 1) ( 1) ( 1)p p k pp k× × × ××= +Λ +X µ F u
� � ��                                                     -----(1) 

Where X
�

 =  p-component random vector 

            µ
�

 = mean of X
�

 

           Λ  = matrix of factor loadings                                          

           F
�

 = vector of common factors 

           u
�  = vector of random distrubances  

 

with               V( ) ′= = +X Σ ΛΛ ψ
�

                                                            -----(1.a) 
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                               V( )=ψ u
�

 

Now the principal component method is to obtain the estimates of Λ and ψ  using the sample 

covariance matrix S or sample correlated matrix R  . 

Suppose 1 2 pa a a≥ ≥ ≥" are the latent roots of S (or R  ) and let us consider the first 'k' roots 

i.e. 1 2 p, , ,a a a"  

Let  1 2 , , kω ,ω ω"
� � �

 be the corresponding latent vectors. Then the estimated matrix of factor 

loadings is given by 

                    1 2 k p k
ˆ a a a

×
 =  1 2 kΛ ω ω ω"

� � �
                                                    -----(2) 

and the estimated specific variances are provided by the diagonal elements of the matrix 

              ( )ˆ ˆ ˆ ˆ′ ′−S -ΛΛ R ΛΛ                                                                                          -----(3) 

so that ( )1 2 kˆ ˆ ˆ ˆ=diag , , ,ψ ψ ψ ψ"   with
k

2
i ii ij

j=1

ˆˆ -s= ∑ψ λ   
k

2
i ii ij

j=1

ˆˆ -r
 

= 
 

∑ψ λ estimates of communalities  

are given by the diagonal elements of ˆ ˆ ′ΛΛ  

i.e. 

                       2 2

1

ˆ
k

i ij
j

h λ
=

=∑  

NOTE: 

• Consider the residual matrix ( )ˆ ˆ ˆ′ +S - ΛΛ ψ  ersulting from the approximation of S  by the 

principal component solution. The diagonal elements are zero and if the other elements are also 

small,we may subjectively take the 'k' factor model to be appropriate. 

• The contribution to the total sample variance = Tr( )S     from the thj  commaon factor is given 

by 

                    ( ) ( )
p

2
ij

i=1

ˆ   j ja a′=∑ j jλ ω ω
� �

 

                             ( )            1ja ′= =j jω ω∵
� �

    

                             = thj  latent root of  S   (Where is ja  the thj  latent root of   S ) 

Thus , proportion of total sample variance due to thj factor                                                                                         
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  for factor analysis of  'S'
Tr(S)

 
    for factor analysis of  'R'

p

j

j

a

a



= 

  

• (For  worked out examples see page nos: 388-391 of Applied Multivariate Analysis by 

Johnson&Wichern) 

 

MAXIMUM LIKELYHOOD FACTOR ANLYSIS: 

 

Suppose  1, , nx x…
� �

are 'n' observations drawn on X
�

 which follows population ( ),Np µ Σ
�

 and X
�

 is 

having the  following  k  factor model  

                     ( )( 1) ( 1) ( 1) ( 1)p p k pp k× × × ××= + Λ +X µ F u
� � ��                                                                           

                                                                                          

                       µ
�

 = mean of X
�

 

                     Λ  = matrix of factor loadings                                          

                      F
�

 = vector of common factors 

                      u�  = vector of random  distrubances 

with the asumptions 

                       

1 2 p

E(F)=0=E(u)
V(F)=I ,    V(u)=ψ=doag(ψ ,ψ , ,ψ ) 

cov(F,u)=0 

� �
"

� �
� �  

 

These assumptions implicitly imposes the restriction on  Σ as follows  

                  ψ′= +Σ ΛΛ                                                                           -----(2) 

Since ( )~ ,NpX µ Σ
� �

,its log -likelyhood is given by   

         ( ) ( )
n

1
i i

i=1

1 log log 2
2 2
nL π −− ′= − ∑Σ x -µ Σ x -µ

� �� �
 

if we  with its MLE X  , then   log L   becomes   

( ) ( )
n

1
i i

i=1

1
n

1 log log 2
2 2

n                 = log 2  Tr( S )                 
2 2

nl L

n

π

π

−

−

− ′= = −

 − + 
 

∑Σ x -µ Σ x -µ

Σ Σ

� �� �

                               -----(3) 
Where 
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( ) ( )

n

n i i
i=1

1 S         
n

′= ∑ x -µ x -µ
� �� �    

   Σ is as given by   (2)   

Maximizing (3) is equivalent to minimizing the following function w.r.t.Λ  and ψ  

        ( )1
n nF(Λ, )=log +Tr S log S p− − −ψ Σ Σ

                                                      ----- (4) 

                ( )nS and p are constants∵
 

Since from (2) ,Λ  is not uniquely determined . We have minimize (4) subject to the following 

uniqueness condition  

                  
-1ψ , a diagonal matrix′ = ∆Λ Λ                                                          -----(5) 

The MLEs Λ̂  and ψ̂  obtained by minimizing (4)  subject to (5) satisfy  

    ( )
-1 -1 -1 -1
2 2 2 2

n
ˆ ˆ ˆˆ ˆ ˆ ˆψ S ψ ψ ψ 1

    
= +    

    
Λ Λ ∆                                                            -----(6) 

 

so that the thj  column of  
-1
2 ˆψ̂ Λ  is the (non-normalised) eigen vector of  

-1 -1
2 2

nˆ ˆψ S ψ corresponding to 

eigen value i
ˆ1+∆  

where          1 2 k
ˆ ˆ ˆ≥ ≥ ≥∆ ∆ ∆"  

clearly,for the above, the MLE of  Λ̂   can be obtained only for a given  ψ̂ ,whose initial value can 

be taken as 

               
( ) ( ) ( ) ( )( )0 0 0 0

1 2ˆ ˆ ˆ ˆ, , , kdiag=ψ ψ ψ ψ"
 

where  i
1 1ˆ 1
2 ii

k
p s

  = −  
  

ψ  

where  
iis  is the thi diagonal element of  

( 1)
nn

n
=

−
SS  

The next modified value of  ψ̂  is given by  

                     
( ) ( ) ( ) ( )( )1 1 1 1

1 2ˆ ˆ ˆ ˆ, , , kdiag=ψ ψ ψ ψ"
 

Where  ( )1ψ̂  is the thi  diagonal element of the computed matrix  ˆ ˆ
n ′−S ΛΛ    

Using this ( )1ψ̂ ,we can obtained the revised value of Λ̂  using (6). 

This procedure is to be continued until the latest estimates  Λ̂  and  ψ̂  satisfy the relation (5). 
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NOTE: 

Ordinarily the observations are standardised and a sample correlation matrix is factor analysed.Of 

the data is  

summerised  into a sample correlation matrix  R ,then the above method of maximum likelihood 

factor analysis may be  

carried out replacing   or nS S  by R  to get the some estimates of Λ  and  ψ  .This is due to the 

fact that the MLEs are  scale invariant. 

An worked out example is given in page no:394 of Applied Multivariate Statistical analysis by 

Richard A.Jhon and Wichern.   

 

GOODNES OF FIT TEST: 

One of the main advantages of the maximum likelihood technique is that it provides a test of the 

hypothesis     

 0H  : k  comman factors are sufficient to against describe the data . 

1H :  Σ  has no constraints. 

The likelihood ratio statistic λ  is given by     

                  ˆ ˆ2 log λ = ( - log  -1)np a g−                                                                                            -----(1) 

where â   and   ĝ  are the arithmatic and geomatric means of the eigen values of 1
nS−Σ . 

But we have   

                  ( ) ( )1 1ˆ ˆ ˆTr S log S p=p a-log g-1− −− −Σ Σ
                                                                       -----(2) 

When  ˆ ˆˆ ˆ′= +Σ ΛΛ ψ    

comparing (1) & (2), we have 

         
( )( )1 1ˆ2 log λ = Tr S log S pn − −− − −Σ Σ

     

                                 when   ˆ ˆˆ ˆ′= +Σ ΛΛ ψ  

Now under   0H  the statistic 2 log λ − has an asymptotic 2
mχ  distribution , 

where   

               
( ) ( )21 1m=

2 2
p k p k− − −

     
According to Bartlet, an improved test statistic is given by (3) replacing n by 

              ( )( )n = n-1- 2 4 5 / 6p k′ + +
 

NOTE: See for example 9.7 page no.399 of AMSA by Johnson. 
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FACTOR ROTATION: 

We have  

                 ( )( )

( )* *

   TT

   T T

     

′= +
′ ′= +

′= +

′= +

Σ ΛΛ ψ
Λ Λ ψ

Λ Λ ψ

Λ Λ ψ

 

where   *  T=Λ Λ     

            T  is an orthogonal matrix 

Thus if  Λ   is a factor loadings matrix which reproduce  Σ   ,then any other factor loadings matrix  
*Λ  obtained from Λ  by an orthogonal transformation ( T ) have the same ability to reproduce the 

covariance matrix (or correlation matrix).From matrix algebra,we know that an orthogonal 

transformation corresponds to a rigid rotation of the coordinate axes.For this reasonan orthogonal 

transformation of the factor loadings and the implied orthogonal transformation of the factor is 

called "factor rotation". 

Let  Λ̂  be the p k×  matrix of estimated factor loadings obtained by any method ,then  

                      
*ˆ ˆ T  where TT =T T=I′ ′=Λ Λ                                                                      -----(1) 

is a  p k×  matrix of rotated loadings. Moreover ,the estimated covariance (or correlation) matrix 

remains unchange ,  

since     ( )* *ˆ ˆ ˆ ˆˆ ˆ     ′′ + = +ΛΛ ψ Λ Λ ψ                                                                                         -----(2) 

since ,the original loadings may not be readily interpretable , it is usual practice to rotate them 

until a " sample structure" is achieved.Ideally we should like to see a patern of loadings such that 

each variable loadings highly on a single factor and has  

small-to-moderate loadings on the remaining factors. Of course, it is not always possible to get 

this simple structure.A conveniant analytical choice of rotation is given by the "varimax method" 

described below:The verimax method of orthogonal rotation was provided by kaiser(1958).Its 

rationale is to provide axes with a few large loadings and as many near zero loadings as 

possible.This is accomplished by an iterative maximization of a quadratic function of the 

loadings. 
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Devote the matrix of rotated loadings as  

               ˆˆ  T∆ = Λ  

Now the ( ), thi j   element of   ∆   viz; ijδ    represants the loadings of the 
thi   variable on the 

thj   

factor . 

The function φ    that the variance criterionmaximizes is the sum of the variances of the squared 

loadings within each 

column of the loadings is normalised by its communality,that is  

                
( )

2
2 4 2

1 1 1 1 1

p pk k k

ij i ij i
i j i j i

d d d p dφ
= = = = =

= − = −∑∑ ∑∑ ∑
 

          Where 2

1

1  
p

ij
ij ij

ji

d and d d
h p
δ

=

= = ∑  

2
ih  is the  

thi  communality is the  
thi  diagonal element of     ˆ ˆ ′∆ ∆  

The varimax criterian φ   is a function of  T  , and the iterative algorithm proposed by Kariser 

finds the orthogonal matrix    

 G   which maximizes φ . 

In the case where k=2,the calculations simplify.For then  T  is given by 

                       

cos sin
T=

sin cos
θ θ
θ θ

 
 −   

 

and represents a rotation of the coordinate axis clockwise by an angle  θ   . The value of  θ  can be 

determined by  

the relation    T T=I′  

In the case where k>2 ,an iterative solution for the rotation is used. 

See example 9.8,9.9,9.10,9.11 in the pages 401-408 of AMVA by Richard Johanson & Wichern. 
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                     DISCRIMINATION AND CLASSIFICATION 
INTRODUCTION: 
                  Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating  new objects 

(observations) to previously defined groups.  Discriminant analysis is rather exploratory in 

nature. As a seperatory procedure, it is often employed on a onetime basis in order to investigate 

observed differences when causal relationships are not well understood. Classification procedure 

are less exploratory in the sense that they lead to well defined rules, which can be used  for 

assigning new objects. Classification ordinarily requires more problem structure than 

discrimination. Thus, the immediate goals of discrimination and classification, respectively, are 

as follows: 

Goal 1: To describe either graphically (in three or fewer dimensions) or  algebraically, the 

differential features of objects (observations) from several known collections(populations). We 

try to find “discriminants” whose numerical values are such that the collection are separated as 

much as possible. 

Goal 2: To sort objects(observations) into two or more labeled classes. The  emphasis is on 

deriving a rule that can be used to optimally assign a new object to the labeled  classes. 

 

       We shall follows convention and use the term discrimination to refer to ‘Goal 1’. This 

terminology was introduced by R.A.Fisher in the first modern treatment of separatory problems. 

A more descriptive term for this goal, however, is separation. We shall refer to the second goal 

as classification, or allocation.  A function that separates may some times serve as an allocator, 

and, conversely, an allocator rule may suggest a discriminatory procedure. Thus, in practice Goal 

1& Goal2  frequently overlap and distinction between separation and allocation is not clear. 

          

 The problem of classification arises when an investigator makes a number of  

measurements on an individual and wishes to classify the individual into one of several 

categories on  the basis of these measurements. The investigator cannot identify the individual 

with a category directly but must use these measurements. In many cases it can be assumed that 

these are a finite number of categories or populations from which the individual may have come 

and each population is characterised by a probability distribution of the measurements. Thus, an 

individual is considered as a random observation from this population. The question is : Given an 

individual with certain measurements, from which population did it arise? 
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 In some, instances, the categories are specified before hand in the sense that the 

probability distributions of the measurements are completely known.  In other cases, the form of 

each distribution may be known, but the parameters of the distribution must be estimated from a 

sample from that population .In some other cases, the form of the distribution of the populations 

may not be known. 

 

            Let us give an example of a problem of discrimination and classification. Prospective 

students applying for admission into college are given a battery of tests; the vector of scores is a 

set of measurements x
�

. The prospective students may be a member of one population consisting 

of these students who will successfully complete college training or, rather, have potentialities 

for successfully completing training, or he/she may be member of the other population, those 

who will not complete the course successfully. The problem is to classify a student applying for 

admission on the basis of these scores on the entrance examination. Before that we have to 

describe or explore the differential scores between the two categories of the students from the 

past information. Also, we have to prepare a discriminant function that separates the two 

categories of students clearly as much as possible. This problem is called discrimination. 

 

SEPERATION AND CLASSIFICATION FOR TWO POPULATION: 

       To fix ideas, we list below situations where one may be interested in  

      (1). Separating or discriminating two classes of objects.  

Or   (2). Assigning a new object to one of the two classes .  

Or      both (1)&(2). 

 

              It is convenient to label the classes 1 2π & π . The objects are ordinarily separated or 

classified on the basis of measurements on, for instance, P associated random variables. 

1 2( , ,..., )pX X X′ =X
�

. The observed values of X
�

differ to some extend from one class to the other 

(of the values of X
�

were not very different for objects in 1 2π & π ,there would be no problem; 

i.e., the would be indistinguishable and new objects could be assigned to either class 

indiscriminately).  We can think of the totality of values from the first class as being the 

population of x
�

values for 1π  and those from the second class as the population of x
�

 values for 

2π .  These two populations can then be described by probability density functions 
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1 2( ) & ( )f fx x
� �

, and consequently, we can talk of  assigning  observations to populations (or 

objects to classes).  

 

The following are some more examples: 

(1). Separation of two species of chickweed based on the measurements sepal  

       and petal lengths, petal left depth, bract length, scarious tip length and  

       pollen diameter. 

(2). Discrimination of  successful and unsuccessful college students based  on the  

       entrance examination scores, high school grade point average and number of     

       high school activities. 

(3). Classification of purchasers of  a new product and laggards (those slow to 

       purchase) based on particulars of education, income, family size and amount  

       of previous brand switching. 

(4). Discriminating male-skulls and female-skulls based on the anthropological  

       measurements like circumference and volume on ancient skulls. 

(5). Separating good and poor credit risks based on the particulars of income, age,  

       member of credit cards and family size. 

 

 From  the above examples, it is clear that allocation or classification  rules  are usually 

developed from learning samples. Measured characteristics of randomly selected objects known 

to come from each of the two populations are examined for differences. Essentially, the set of 

possible sample outcomes is divided into two regions 1 2&R R , such that is a new observation 

falls in 1R , it is allocated to population 1π  and is it falls in 2R , we allocate it to population 2π .  

Thus one set of observed values favours 1π , the other set of values favours 2π .  Here, it may be 

noted that classification rules cannot usually provide and error-free method of assignment. This 

is because there may not be a clear distinction between the measured characteristics of the 

populations ; i.e. the groups may overlap. It is then possible, for example, to incorrectly classify 

a 2π object as belonging to 1π  or a 1π object as belonging to 2π .  

 

          A good classification procedure should result in a few misclassifications.  In other words, 

the chances or probabilities of misclassification should be small.  As we shall see, there are 

additional features that an “optimal” classification rule should be possessed. 
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STANDARDS OF GOOD CLASSIFICATION: 

          In constructing a procedure of classification, it is desired to minimize the probability of 

misclassification or more specifically it is desired to minimize on the average the bad effects of 

misclassification. 

         Suppose an individual is an observation from either population 1π  or population 2π . The 

classification of an observation depends on the vector of measurements  

                              ( )1 2 1
, ,.... p p
x x x

×
= ′x
�

 

on that individual. We set up a rule that if an individual is characterized by certain sets of values 

of 1 2, ,..., px x x  it will be classified as from 1π ; if it has other values it is classified as from 2π . 

 

        We can think of an observation x
�

 as a point in a P-dimensional space.  We divide this space 

into two regions 1 2&R R  if the observation falls in 1R , we classify it as coming from 1π  and if it 

falls in 2R we classify it as coming from 2π . 

 

        Usually, the statistician  can make two kinds of errors in classification. If the individual is 

actually from 1π  and is misclassified into 2π ;  or if it is actually from 2π and is misclassified 

into 1π . We need to know the relative undesirability of these two kinds of misclassification. 

 

             Let 1 2( ) & ( )f fx x
� �

be the p.d.f.’s  associated  with the 1p× random vector X
�

 for 

populations 1π & 2π  respectively. An object, with associated measurements x
�

, must be assigned 

to either 1 2π (or)π .   Let Ω  be the sample space that is the collection of all possible observations 

x
�

. Let 1R  be that set of x
�

 values for which we classify objects as 1π  and 2 1R R= Ω−  be the 

remaining x
�

values for which we classify objects as 2π . Since every object must be assigned to 

one and only one of the two populations, the sets 1 2&R R  be mutually exclusive and exhaustive. 

  

EXPECTED (OR AVERAGE) COST OF MISCLASSIFICATION (ECM): 

 

      In order to obtain ECM we consider the following conditional probabilities: 

P  (correctly classifying an observation (object) that actually is drawn from 1π ) 
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1

1 1( / )  ( )
R

P R f d= ∈ = ∫1X π x x
� � �

   = P(1/1)  (say)                    (1)  

P(correctly classifying an observation that actually is drawn from 2π ) 

       
2 1

2 2( / ( )
R R

P R f d
=Ω−

= ∈ = ∫2X π ) x x
� � �

  = P(2/2)      (say)              (2) 

P(misclassifying an observation that is drawn from 1π ) 

        
2

2 1 1( / ) (
R

P R f d= ∈ = ∫X π x) x
� � �

      = P(2/1)      (say)             (3) 

P(misclassifying an observation that is drawn from 2π ) 

        
1

1 2( / ) ( )
R

P R f d= ∈ = ∫2X π x x
� � �

   = P(1/2)     (say)           (4) 

Misclassification probabilities when p=1: 

 
Let  

        1P = prior probability of 1π  

            = P(drawing an observation from 1π )     = P( 1π )       (5) 

and 2P = prior probability of 2π   

           = P(drawing an observation from 2π )       = P( 2π )      (6) 

 

Now the overall probabilities of correctly or incorrectly classifying objects can be derived as the 

product of the prior and conditional classification probabilities. Thus we get 

 

P(correctly classified as 1π )=P(observations comes from 1π  and is correctly  

                                                       Classified as 1π ) 



110 
 

                                           = 1 1 1( / ). ( )P R P∈X π π
�

  = P(1/1). 1P    (from (1)&(5))   (7)  

similarly 

 P(correctly classified as 2π )=P(2/2). 2P                                     (from (2)&(6))   (8) 

P(misclassified as 1π ) = P(observations comes from 2π and is misclassified as 1π  )      

                                    = 1 2( / ). ( )P R P∈ 2X π π
�

  = P(1/2). 2P   (from (4)&(6))         (9) 

P(misclassified as 2π ) = P(observation comes from 1π  and is misclassified as 2π ) 

                                    = 2 1( / ). ( )P R P∈ 1X π π
�

 = P(2/1). 1P    (from (3)&(5))       (10) 

 

A good classification rule must take into account the misclassification costs.  Although the 

statistician may not know these costs in each case, he will often have at least a rough idea of 

them. The costs of misclassification can be defined by a cost matrix C: 

                      True population|   Classified as 

                                                                       (11) 

 

The  costs are  

      (1). Zero for correct classification . 

      (2). C(1/2) is cost involved when an observation drawn from 2π  is               

             incorrectly classified into 1π . 

      (3). C(2/1) is cost involved when an observation actually drawn from 1π  is               

             incorrectly classified as 2π . 

      Clearly, a good classification procedure is one which minimize in some sense  

or the cost of misclassification. Now , the expected cost of misclassification(ECM) 

is obtained by multiplying the off-diagonal entries in (11) by their probabilities of  

occurrence. Consequently a reasonable classification rule should has an ECM as small as 

possible.  From the above the ECM may be defined as follows : 

ECM= C(1/2) .P(misclassification into 1π ) + C(2/1) .P(misclassification into 2π ) 

         =C(1/2) .P(1/2). 2P  +C(2/1) . P(2/1) . 1P                  (12) 
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DEFINITION: 

                         Expected (or average)cost of misclassification (ECM) is the sum  

of the products of costs of each misclassification multiplied by the probability of  

its occurrence. Its formula is given by (12). 

 

THEOREM (Optional ECM regions or Bayes regions): 

                   The regions 1 2&R R that minimize ECM are defined by the values  

of x
�

 for which  the following inequalities hold. 

            1 1
1

2 2

( ) (1/ 2): /
( ) (2 /1)
f PCR
f C P

  
≥   
   

x
x
�
�

                                      (1) 

              (density ratio) ≥  (cost ratio)/(prior probability ratio)  

            1 1
2

2 2

( ) (1/ 2): /
( ) (2 /1)
f PCR
f C P

  
<   
   

x
x
�
�

                                      (2) 

PROOF: 

                   We have the expected cost of misclassification (ECM) as  

          ECM = C(1/2) .P(1/2) 2P +C(2/1).P(2/1) 1P                  (3)    

where C(1/2) = ……. 

           C(2/1) = ……. 

            1P       = ……. 

            2P       = ……. 

            P(1/2) = ……. 

             P(2/1) = ......... 

But , we have  

                       
1

2(1/ 2) ( )
R

P f d= ∫ x x
� �

 

                        
2

1(2 /1) ( )
R

P f d= ∫ x x
� �

                                        (4)              

using (4) in (3) we get  

        ECM = C(1/2) 2P
1

2 (
R

f d∫ x) x
� �

 + C(2/1) 1P
2

1(
R

f d∫ x) x
� �

      (5) 

Noting that 1 2R RΩ = ∪  so that the total probability 

1 2

1 1 1 1 21 ( ) ( ) ( )   ( &
R R

f d f d f d R R
Ω

= = +∫ ∫ ∫x x x x x x ∵
� � � � � �

 are disjoint)   (6) 
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using (6) in (5),we get  

   ECM = C(1/2) 2P

1

2( )
R
f d∫ x x
� �

+ C(2/1) 1P

1

11 (
R
f d

 
 
 
  

− ∫ x) x
� �

 

            = 
1

2 2 1 1 1[ (1/ 2) ( ) (2/1) ( )] (2/1)
R
C p f C p f d C p− +∫ x x x

� � �
      (7) 

Now 1P , 2P ,C(1/2) and C(2/1) are non-negative. In addition  1 2( ) & ( )f fx x
� �

are Non-negative for 

all x
�

and are the only qualities in ECM that depend on x
�

. Therefore, minimization of ECM is 

equivalent to minimize the function 

          

1

2 2 1 1[ (1/ 2) ( ) (2/1) ( )]
R
C p f C p f d−∫ x x x

� � �
                             (8) 

But, from the theory of integration (8) will be minimized is 1R  includes there values of x
�

 for 

which the integrand  

           C(1/2) 2P 2 1 1( ) (2 /1) ( ) 0f C p f− ≤x x
� �

                             (9) 

and  for all x
�

 those not included in 1R  or equivalently for all x
�

 those included 

in 2R  

           2 2 1 1(1/ 2) ( ) (2 /1) ( ) 0C p f C p f− >x x
� �

                             (10) 

Thus from (9), 

            1 2 2 1 1{ / (1/ 2) ( ) (2 /1) ) 0}R C p f C p f= − ≤x x (x
� � �

 

                1 1 2 2{ / (2 /1) ( ) (1/ 2) }C p f C p f= ≥x x (x)
� � �

 

                1 1

2 2

( ) (1/ 2)/ /
( ) (2 /1)
f pC
f C p

    = ≥   
     

xx
x
��
�

                         (11) 

                                1 2 1 2( , , , , (1/ 2) & (2 /1)allf f p p C C∵  are all positive) 

similarly from (10), 

          1 1
2

2 2

( ) (1/ 2)/ /
( (2 /1)
f pCR
f C p

    = <   
     

xx
x)
��
�

                         (12) 

where (12) gives (2). 

 

REMARK: 

                  It is clear from (1) & (2) that the implementation of the minimum ECM  
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rules requires  

(1). The ratio of p.d.f.’s is 1 2/f f is to be evaluated at a new observation 0x
�

. 

(2). The cost ratio (1/ 2)
(2 /1)
C
C

 

(3). The prior probability ratio 1

2

p
p

 

The appearance of ratios in the definition of the optimal classification regions has significance as 

often it is much easier to specify the ratios than their component parts. 

SPECIAL CASES OF MINIMUM “ECM” REGIONS  

CASE (1):  

                  (Equal prior probabilities i.e. 1 2p p=  or 1

2

1p
p

= ) 

In this case (1) & (2) become  

                  

1
1

2

1
2

2

( ) (1/ 2): ;
( ) (2 /1)
( ) (1/ 2):
( ) (2 /1)

f CR
f C
f CR
f C

≥

<

x
x
x
x

�
�
�
�

 

CASE (2): 

                  (Equal misclassification costs that is C(1/2)=C(2/1)) 

In this case (1/ 2) 1
(2 /1)
C
C

=  and therefore (1) & (2) become 

                  

1 2
1

2 1

1 2
2

2 1

( ): ;
( )
( ):
( )

f pR
f p
f pR
f p

≥

<

x
x
x
x

�
�
�
�

 

CASE (3): 

                     1 2 & (1/ 2) (2 /1)p p C C= =  

In this case 1

2

(1/ 2)1
(2 /1)

p C
p C

= =   and therefore (1) & (2) become  

                   

1
1

2

1
2

2

( ): 1;
( )
( ): 1
( )

fR
f
fR
f

≥

<

x
x
x
x

�
�
�
�

  

NOTE: 

(1). When the prior probabilities are not known, they are often taken to be  
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        equal. 

(2). Similarly when the misclassification costs are unknown, they are often taken  

     to be equal. 

(3). If 1

2

(1/ 2)
(2 /1)

pC
C p

=   then 2 1(1/ 2) (2 /1)C p C p=  and hence 

                 

1
1

2

1
2

2

( ): 1;
( )
( ): 1
( )

fR
f
fR
f

≥

<

x
x
x
x

�
�
�
�

 

OPTIMAL TOTAL PROBABILITY OF MISCLASSIFICATION (TPM)        

   REGIONS : 

         

                 Criteria other than the ECM can be used to derive “optimal” classification procedures. 

For example, one might ignore the costs of misclassification and  

Choose  1 2&R R  to minimize the total probability of misclassification (TPM). 

  TPM=P(misclassifying as 1π  observation or misclassifying a 2π  observation) 

          = P( x
�

comes from 1π  and is misclassified )+ 

                                              P( x
�

comes from 2π and is misclassified) 

          2 1 1 2 2( / . ( ) ( / ). ( )TPM P R P P R P⇒ = ∈ + ∈1X π ) π X π π
� �

 

                         

2 1

1 1 2 2( ) ( )
R R

P f d P f d= +∫ ∫x x x x
� � � �

 

                         1 2(2 /1) (1/ 2)p P p P= +                                 (1)  

But, when C(1/2)=C(2/1) (i.e. when misclassification costs are equal) 

we get from equation (12) of page 14, 

           1 2(1/ 2)[ (2 /1) (1/ 2)]ECM C p P p P= +                      (2) 

Now, from (1) & (2), it can be easily seen that minimizing (1) is equivalent  

to minimizing (2). In other words, minimizing TPM is equivalent to  

minimizing ECM with equal misclassification costs. Thus the optional TPM 

regions 1 2&R R  are same as those given in case(2) of page 20. Thus 
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1 2
1

2 1

1 2
2

2 1

( )/
( )

( )/
( )

f pR
f p

f pR
f p

 
= ≥ 
 
 

= < 
 

xx
x

xx
x

��
�

��
�

                                         (3) 

 

ALLOCATING AN NEW OBSERVATION 0x
�

 BASED ON BAYE’S  

                                       POSTERIOR  PROBABILITIES  

        We can also allocate a new observation 0x
�

 to the population with the largest posterior 

probability ( / )iP 0π x
�

. By Baye’s rule, the “posterior” probabilities are 

                  ( / )iP 0π x
�

=P( 1π  occurs and observe 0x
�

)/P(observe 0x
�

) 

                                  = P(observe 0x
�

/ 1π ).P( 1π )/ 

                                                 P(observe 0x
�

/ 1π ).P( 1π )+P(observe 0x
�

/ 2π ).P( 2π ) 

                                  = 1 0 1

1 1 2 2

( ).
( ). ( ).

f p
f p f p+0 0

x
x x

�
� �

 

                                

                                1 1

1 1 2 2

( )
( ) ( )
p f

p f p f
=

+
0

0 0

x
x x

�
� �

                           (1) 

                  

                    1 0( / ) 1 ( / )P P= −2 0π x π x
� �

 

                                    1 1 0

1 1 2 2 0

( )1
( ( )
p f

p f p f
= −

+0

x
x ) x

�
� �

 

                                     2 2

1 1 2 2

( )
( ) ( )
p f

p f p f
=

+
0

0 0

x
x x

�
� �

                       (2) 

Now classify an observation 0x
�

 into 1π  when  

                              1 2

1 1 0 2 2

( / ) ( / )
( ) ( )

P P
p f p f

>

⇒ >
0 0

0

π x π x
x x
� �
� �

 

                                                         (∵Numerators of (1) & (2) are equal) 

                              1 2

2 1

( )
( )
f p
f p

⇒ >0

0

x
x
�
�

                        (3) 

   Now from(3), it can be seen that allocating a new observation to a population  

based  on Baye’s posterior probabilities is same as optional TPM rule. 
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NOTE:  

           The  above method is also equivalent  to classify a new observation using  

optional ECM (Baye’s method ) rule when misclassification costs are equal. 

 

CLASSIFICATION  INTO ONE OF TWO KNOWN MULTIVARIATE  

   NORMAL POPULATIONS (With common covariance matrix ∑ ) 

         Classification procedures based on normal populations predominate in  

statistical  practice because of their simplicity and reasonably high efficiency  

across a wide variety of population models. We assume 1 2( ) & ( )f fx x
� �

 are  

multivariate normal densities; the first with mean vector 1µ
�

,and the second  

with mean vector  2µ
�

 and both with common matrix Σ . Now the p.d.f. of the  

two populations 1 2π & π  is given by 

      

1 1( ) (1 2( / 2 1/ 2(2 )

if ei p

−′−
=

x - µ Σ x - µ )ix)
π Σ

� �� �
�

   for i=1,2,….      (1) 

The  ratio of densities after simplification is  

                  

1 11 1( ) ( ) ( ) ( )( ) 1 1 2 21 2 2
( )2

f
e

f

− −′ ′− +
=

x - µ Σ x - µ x - µ Σ x - µx

x
� � � �� � � � �

�
 

                             

1 1
1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 22 2 2 2 2 2 2 2e
− − − − − − − −′ ′′ ′ ′ ′ ′ ′− + + − + − −

=
xΣ x xΣ µ µ Σ x µ Σ µ xΣ x xΣ µ µ Σ x + µ Σ µ2 2 2� � � � � � � �� � � � � � � �  

       

1 1

11 1 1 1( )( ) 1 21 2
( )2

                                           (     1, 2)i

f
e

f

for i− −

− − − −′ ′ ′ ′−
⇒ =

′ ′= =i

µ Σ x - µ Σ x µ Σ µ - µ Σ µx 2 1 1 2
x

µ Σ x xΣ µ

� �� � � � � � �
�

∵
� �� �

 

                      

11 1[( ) ( ) ( )]2 2e
− −′ ′−

=
µ - µ Σ x µ - µ Σ µ + µ1 1 2 1 2�� � � � � �                   (2)  

           

  for  1 1 1 1 1( ( )2 1 1 2
− − − − −′ ′ ′ ′′∑ = +µ - µ ) µ + µ µ Σ µ µ Σ µ - µ Σ µ - µ Σ µ1 2 1 1 2 1 2 2� � � � � � � � � � � �

 

                                                                             

                                              1
1 1 1 1    ( )2 2
− − − −′ ′ ′ ′= ∑ =µ µ - µ Σ µ µ Σ µ µ Σ µ1 1 2 2 1∵

� � � � � � � �
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By minimum ECM classification rule, we have 

                    

1 2
1

2 1

1 2
2

2 1

( ) (1/ 2):
( ) (2 /1)

( ) (1/ 2):
( (2 /1)

f pCR
f C p

f pCR
f C p

  
≥   
  

  
<   
  

x
x

x
x)

�
�

�
�

 

From (2) we have, after taking logarithms on both sides  

   

  

1 1
1 2

1 1
2 2 2 2

2

1

1: ( ) ( ) ( ) log
2
1: ( ) ( ) ( ) log
2

(1/ 2).  
(2 /1)

R K

R K

C pwhere K
C p

− −

− −

′ ′− ≥

′ ′− <

=

1 2 1 2 1

1 1 1

µ - µ Σ x µ - µ Σ µ + µ

µ - µ Σ x µ - µ Σ µ + µ

�� � � � � �

�� � � � � �
                  (3) 

The regions 1 2&R R given by (3) are called as minimum ECM regions for two  

 normal populations. 

 

NOTES: 

               

(1). The first term of (3) viz  

               1( )2 l−′ ′=µ - µ Σ x x1 � ��� �
,     where 1( )−=l Σ µ - µ1 2� � �

               (4) 

        is the well known Fisher (linear) discriminant function, which is actually  

        obtained  by Fisher with entirely different argument which we will  

        discuss later. 

  

(2). The minimum ECM classification rule for two normal populations is given  

       by allocating  0x
�

 to 1π  is  

           11 1( ) ( ) ( ) log2 0 2 22
K− −′ ′− ≥µ - µ Σ x µ - µ Σ µ + µ1 1 1�� � � � � �

              (5) 

                                                   where 2

1

(1/ 2)
(2 /1)

C pK
C p

=  

        otherwise, allocate 0x
�

 to 2π  

(3). The regions 1 2&R R  given by  equation (3) are called as best regions of classification. 

(4). The regions 1 2&R R  given by equation (3) are called as Baye’s regions of classification. 
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(5). If the misclassification costs are equal i.e. C(1/2)=C(2/1), then the regions  

      1 2&R R  given by (3) with 2

1

pK
P

=  are called as minimum(optional) TPM  

       regions for two normal  populations. 

(6). The minimum or optional TPM classification rule for two normal  

       populations is given by allocate 0x
�

 to 1π  if  

       

1 1
2

2

1

1( ) ( ) ( log
2

   

K

pwhere K
p

− −′ ′− ≥

=

1 0 1 2 1 2µ - µ Σ x µ - µ Σ µ + µ )
�� � � � � �             (6) 

 (7).  If misclassification costs are equal and prior probabilities are equal  i.e.  

         C(1/2)=C(2/1) and 1 2p p= , then K=1 and consequently logK=0 and  

        those from (3), we have  

                

1 1
1

1 1
2 2 2

1: ( ) ( ) ( )
2

1  : ( ) ( ) ( )
2

R

and R

− −

− −

′ ′≥

′ ′<

1 2 1 2 1 2

1 2 1 1

µ - µ Σ x µ - µ Σ µ + µ

µ - µ Σ x µ - µ Σ µ + µ

�� � � � � �

�� � � � � �

     (7)  

      In this case, the classification rule is  allocate 0x
�

 to 1π  if 

             1 1
2

1( ) ( ) ( )
2

− −′ ′≥1 2 0 1 2 1µ - µ Σ x µ - µ Σ µ + µ
�� � � � � �

              (8) 

     allocate  0x
�

 to 2π  otherwise. 

           This case may be used when both misclassification costs as well as prior  

    probabilities are unknown. 

(8). Let  

               1 11( ) ( ) ( )
2

U − −′ ′= −1 2 1 2 1 2µ - µ Σ X µ - µ Σ µ + µ
�� � � � � �

 

                   1 1( ) ( )
2

−  ′= −  
1 2 1 2µ - µ Σ X µ + µ

�� � � �
 

       Now let us obtain the distribution of U. since U is a linear combination of  

multivariate  normal vector X
�

, U is distributed as univariate normal. 

      If  1~ ( , )pNX µ Σ
� �

 

                   1
2

1( ) ( ) ( )
2

E U −′= Σ1 1 2µ - µ µ - µ
� � � �

 

                             
2
α

= ,  where 1
2( ) ( )α −′= 1 1 2µ - µ Σ µ - µ

� � � �
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                    1 1( ) ( ) cov( ) ( )V U − −′ ′= 1 2 1 2µ - µ Σ X, X Σ µ - µ
� �� � � �

 

                              

1 1
2 2

1
2 2

( ) ( )

( ) ( )

α

− −

−

′=

′=

=

1 1

1 1

µ - µ Σ ΣΣ µ - µ

µ - µ Σ µ - µ
� � � �

� � � �
 

Thus ~ ,
2

U N α α 
 
 

. 

     If 2~ ( , )pNX µ Σ
� �

 

                In this case, we may show that ~ ,
2

U N α α− 
 
 

. 

Here α  is the mahalnobis squared distance 2D  between 1 2µ & µ
� �

. 

 

CLASSIFICATION INTO ONE OF TWO MULTIVARIATE NORMAL 

POPULATIONS WHEN THE PARAMETRERS ARE UNKNOWN 

 

            Suppose
111 12 1nX , X , ...X

� � �
, be a random sample of size 1' 'n , from population 

1 1: ( , )Nπ µ Σ
�

 and let 
221 22 2nX , X , ..., X

� � �
be a random sample of size 2' 'n from  

population 2 2: ( , )Nπ µ Σ
�

. Since  1 2µ ,µ &Σ
� �

 are unknown we replace them with  

their unbiased estimators viz., 

               1 2
1 2

1 1,
n n

= =∑ ∑
1 2n n

1α 2α
α=1 α=1

X X X X
� � � �

                          (1) 

and           1 1 2 2

1 2

( 1) ( 1)
2

n S n SS
n n

− + −
=

+ −
                                   (2) 

 where   

                 

1

1 1
11

2 2
2

1 ( )
1

1 )
1

n

S
n

S
n

α=

′=
−

′=
−

∑

∑
2

1α 1 1α

n

2α 2 2α
α=1

X - X )(X - X

(X - X )(X - X

� � � �

� � � �

                  (3) 

Now, the estimated (or sample) minimum ECM regions can be obtained from the above method 

replacing 1 2µ ,µ &Σ
� �

 with their unbiased estimators 2 & S1X , X
� �

 (given by 

(1) & (2)) respectively. They  are form equations as follows : 
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1 1
1

1ˆ : ( ) ( ) ( ) log
2

R S S− −′ ′− ≥1 2 1 2 1 2X - X X X - X X + X
� � � � � � � [ ]2 1(1/ 2) (2 /1)c p c p       (4 ) 

1 1
2 2

1ˆ : ( ) ( ) ( ) log
2

R S S− −′ ′− <1 2 1 1 2X - X X X - X X + X
� � � � � � �

 [ ]2 1(1/ 2) (2 /1)c p c p      (5) 

from (4)&(5), the estimated sample minimum classification ECM rule for two  

normal populations is given by  

Allocate 0X
�

 to  1π  if  

 

1 11( ) ( ) ( ) log  
2

S S K− −′ ≥1 2 1 2 1 2X - X X - X - X X + X
� � � � � � �

          (6) 

                              where K=  [ ]2 1(1/ 2) (2 /1)c p c p  

Allocate 0X
�

 to 2π  otherwise. 

NOTE: 

(1) The estimated or sample minimum TPM rule for two normal populations with unknown 

parameters can be obtained from (6) replacing K with ( )2 1/p p . 

(2) When 1 2p p= & ( ) ( )1/ 2 2 /1c c= ,the estimated or sample minimum ECM rule is equivalent 

to sample ML rule and is given by  

Allocate  0x
�

 to 1π  if 

        1 11( ) ( ) ( )
2

S S− −′ ′≥ +1 2 0 1 2 1 2x - x x x - x x x
� � � � � � �

                       (6) 

Allocate 0x
�

 to 2π  otherwise. 

(3) The estimated minimum ECM rule or sample ML rule amounts to comparing the                  

      scalar variable (univariate normal variable) 

                        1
2

ˆ ˆ           ,where ( )y l l S −′= = 1x x - x
� � �� �

                (7) 

   evaluated at 0x
�

   is 

                                     0 0
ˆy l ′= x
��

 

with the number 

                              

1

1 2

1ˆ ( ) ( )
2
1    = ( )                (8)
2

m S

y y

−′= +

+ →

1 2 1 2x - x x x
� � � �  

where  
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1 1

1

2

ˆ( )
ˆ

y S l

y l

− − ′= =

′=
1 2 1 1

2

x - x x x

x
� � � ��

��

  

Thus allocate 0x
�

 to 1π  if  

                      0 ˆy m≥                                      (9) 

otherwise allocate 0x
�

 to 2π  

    That is, the estimated minimum ECM rule for two normal populations is   

               to creating two univariate normal populations for the y values by taking an 

appropriate linear combination of the observations from populations  

1π  and 2π  and then assigning a new new observation 0x
�

 to 1π  or 2π  depending upon 

whether 0 0
ˆy l ′= x
��

 falls to the right or left of the midpoint m̂ , between the two normal 

means 1 2  and  yy . 

(4) The linear function (7) is known as Fisher linear discriminant  function. Which is obtained by 

Fisher with a different argument for separating two populations. 

 

CLASSIFICATION OF NORMAL POPULATION WHEN 1 2≠Σ Σ  

  Here we have 1 1 2 2 2 1 2: ( , ) and  : ( , )  when N N ≠1π µ Σ π µ Σ Σ Σ
� �

. 

 Let 1( )f x
�

 be the p.d.f. of 1π  and 2 ( )f x
�

 be the p.d.f. of 2π . Then on simplification, 

    

1
1 2

2

1 1 1 1
1 2 1 1 2 2

1 1 1
1 1 1 2 2 2

2

( )log log ( ) log ( )
( )

                   =1/2 ( ) ( )   (1)

    where  =1/2log 1/ 2( )   (2)

f f f
f

λ

λ

− − − −

− −

 
= − 

 
′ ′′ − + − − →

  ′ ′+ − →  
 

x x x
x

x Σ Σ x µ Σ µ Σ

Σ
µ Σ µ µ Σ µ

Σ

� � �
�

� � � �

� � � �

 

we have general formula for minimum ECM region and is given by  

             
[ ]
[ ]

1 1 2 2 1

2 1 2

: log ( ) / ( ) log  k   ,where  K=c(1/2)p / (2 /1)

: log ( ) / ( ) log  k                                      (3)

R f f c p

R f f

≥

< →

x x

x x
� �

� �
 

Now, the minimum ECM regions for classification of two normal populations when 1 2≠Σ Σ  

is given by: 

 

1 1 1 1
1 1 2 1 1 2 2

1 1 1 1
2 1 2 1 1 2 2

: 1/ 2 ( ) ( ) log  k

R : 1/ 2 ( ) ( ) log  k

R µ µ λ

µ µ λ

− − − −

− − − −

′ ′′− − + − − ≥

′ ′′− − + − − <

x Σ Σ x Σ Σ x

x Σ Σ x Σ Σ x
� � �� �

� � �� �
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       where λ  & k are given as (2) & (3)                               (4) 

The allocation rule that minimizes the ECM is given by : 

Allocate 0   to 1x π
�

 if  

1 1 1 1
0 1 2 0 1 1 2 2 01/ 2 ( ) ( ) log  kλ− − − −′ ′ ′− − + − − ≥x Σ Σ x µ Σ µ Σ x
� � �� �

        (5) 

Allocate 0 2  to x π
�

 otherwise. 

           In practice, the classification rule in (5) is implemented by substituting the sample 

quantities  1 2 1 2 1 2 1 2, ,   and     for , ,   and  S Sx x µ µ Σ Σ
� � � �

  respectively. 

QUADRATIC CLASSIFICATION RULE (NORMAL          

       POPULATIONS WITH  1 2≠Σ Σ ) 

            Allocate 0   to 1x π
�

 if  

                   1 1 1 1
0 1 2 0 1 1 2 2 0

ˆ1/ 2 ( ) ( ) log  kS S S S λ− − − −′ ′ ′− + − − ≥x x x x x
� � � � �

     (6) 

allocate 0 2  to x π
�

 otherwise. 

                 Where  1 1 1
1 1 1 2 2 2

2

ˆ 1/ 2log 1/ 2( )
S

S S
S

λ − − 
′ ′= + −  

 
x x x x
� � � �

      (7) 

NOTE: 
           

 (1). Minimum TPM rule or quadratic classification rule when 1 2≠Σ Σ  is a special             

        case of  (6) when 2 1/K p p= . 

(2). If the misclassification costs are equal and prior probabilities are equal  

       (i.e. 1 2(1/ 2) (2 /1) &C C p p= = ). Then the MC rule or QCR is obtained by      

       taking   K=1 or log K=0  in the rule (6). 

 

FISHERS DISCRIMINANT FUNCTION-SEPARATION OF TWO 

POPULATIONS (NOT NECESSARY MULTIVARIATE NORMAL) 
                 Fishers idea was to transform the multivariate observations x

�
’s to univariate 

observation y’s such that the y’s derived from population 1 2 and  π π  were separated as  

much as possible . Fisher suggested taking linear combination of x
�

’s to create y’s because 

they are simple function of x
�

 and are easily handled 

mathematically . 

Fisher’s approach does not assume that the populations are normal. 
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  If does, however , implicitly assume the population covariance matrices are equal because a 

pooled estimate of the common covariance matrix is used. 

          Let 11 12 1 1
, ,..., nx x x

� � �
 be a random sample of size 1n  from population 1π  and let 

21 22 2 2
, ,..., nx x x

� � �
 be a random sample of size 2n  from population 2π .Now  

                   1x
�

 be the mean of 1st sample  

              1S  be the sample covariance matrix of 1st sample 

                   2x
�

 be the mean of 2nd sample 

                   2S  be the sample covariance matrix of 2nd sample 

Denote 1 2 2

1 2

( 1) ( 1)
2

n S n SS
n n

− + −
=

+ −
                             (1) 

Which is a pooled sampled covariance matrix. 

Now, Fisher’s idea is as follows 

      Consider the linear combination 

                y ′= w x
��

, when w
�

is x  vector of real number    (2) 

using the linear transformation, the multivariate observation of 1st sample will be transformed 

into univariate observations given by 
                   11 12 1 1

, ,..., ny y y  

       when  1 1 1, 1,2,...,i iy i n′= =w x
��

 

similarly the second sample 21 22 2 2
, ,..., nx x x

� � �
will be transformed into  

                           21 22 2 2
, ,..., ny y y  

         when 2 2 2, 1, 2,...,i iy i n′= =w x
��

 

Now 1 1y ′= w x
��

 

         2 2y ′= w x
��

 

and   

1 2
2 2

1 1 2 2
2 1 1

1 2

( ) ( )

2

n n

i i
i i

y

y y y y
s

n n
= =

− + −
=

+ −

∑ ∑
                       (3) 

consider 

       separation 1 2

y

y y
s
−

=                     (4) 

Now, Fisher’s idea is to select the linear combination w
�

 such that the separation given in (4) 

is maximum. In other words, the objective is to select the linear combination of x
�

 (i.e. ′w x
��

) 
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to achieve maximum separation between the sample means 1 2&y y . Equation (4) may be 

written as 

[ ]

2 1 2

2
1 2

2

2
1 2

2

(squared distance between sample mean y  )
pooled sample variance of y

(y )                     =

( )
                     =           (from (3))

y

y

and yseparartion

y
s

s

=

−

′ −w x x
� ��

 

but  2
ys S′= w w

� �
    (from (3) & (1)) 

2
1 2squared distance between y & ( )

pooled variance of y
y

S
φ

′
∴ = =

′
w d
w w� �
� �

 say           (5)     

                                                                              where  1 2( )= −d x x
� ��

 

Now, as per Fisher’s idea, (5) has to be maximized w.r.t. w
�

. 

Which implies  

2 2( ) ( ) ( ) ( )
0

S S

S
φ

∂ ∂′ ′ ′ ′−
∂ ∂ ∂= =

′∂

w w w d w d w w
w w

w w w
� � � � � � � �

� �
� � �

 

          

2

1

-1

( )2( 2( ) 0
( ( ) 0

( )    (  S is positive defined matrix)   
( )

        =CS                                                                 

S S
S S

S S −

′ ′ ′⇒ − =
′ ′⇒ − =

′
⇒ =

′

w w w d).d w d w
w w)d w d w

w ww d
w d

d

� � � � � � � �
� � � � � �

∵� �� �
� �
�

 (6)→

 

where SC
′

=
′

w w
w d� �
� �

  and C is ratio of two scalars thus w
�

 is a scalar multiplier of the vector  

1S − d
�

. 

Using    

              

1
2 1 2

2 1 1

1

  in (5)  we get 
C ( )          =

             =                                                         (7)

CS
S

C S SS
S

φ

−

−

− −

−

=
′

′
′ →

w d
d d

d d
d d

� �
� �
� �

� �

 

Now using 1CS −=w d
� �

 in (5) we get  

                  φ 1=    S −′d d
� �

                                                      (8) 

Thus, from (7) & (8), we can see that for either  

                                 1CS −=w d
� �

 or w
�

= 1S − d
�

 

the same ratio  φ , we are setting . Thus φ  will be maximized if we take  
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                          w
�

= 1S − d
�

= 1
1 2( )S − −x x
� �

                                   (9) 

and the maximum value of φ  is  

                     
1

-1
1 2 1 2
2

     =( - ) S ( - )
     =D     (say)                                                (10)

m Sφ −′=
′

→

d d
x x x x� �
� � � �

 

Now, the linear function  

                       -1
1 2   =( - ) S          (from (2) & (9))          (11)

Y ′=

′ →

w X
x x X
��

� � �
 

is called as Fisher’s linear discriminant  function . and the maximum ratio 2D ,where 2D  

given by (10),is called the sample squared distance or squared Mahalnobis distance between 

sample means 1 2  and  x x
� �

. 

                    The linear discriminant function given by (11) converts the two multivariate 

samples into two univariate samples such that the corresponding univariate sample means are 

sepearted as much as possible to the relative to pooled sample variance . 

We can employ (11) as a classification device as given below. 

AN ALLOCATION RULE BASED ON FISHER’S DISCRIMINANT 

FUNCTION : 
           We have the Fisher’s linear discriminant  function  

                        1
1 2,           where ( )          (1)y S −′= = − →w x w x x

� � �� �
 

Let ‘m’ be the midpoint between 1 2  and   yy  and is given by  

                            1 2
-1

1 2 1 2

( ) / 2

    =1/2 ( ) S ( )                     (2)

m y y= +

′− + →x x x x
� � � �

 

Now , the allocation rule or classification rule based on Fisher’s discriminant function is as 

follows: 

Allocate 0   to 1x π
�

 ,if    

                        1
0 1 2 0 0( )  or  y 0y S m m−′= − ≥ − ≥x x x

� � �
 

Allocate 0 2  to x π
�

 ,if  

                            0 0  or y 0
                                       (3)
y m m< − <

→
 

NOTE: 

    (1). If 1 2 2~ ,  and ~ ,1π µ Σ π µ Σ
� �

 then the Mahalnobis distance between 2 and  1µ µ
� �

 is                
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            denoted by , 2
∆µ µ1� �

 and is given by  

                                   2 -1
2 2=( - ) ( - ), 2
′∆ 1 1µ µ Σ µ µµ µ1 � � � �� �

 

(2).   2 1 =( - ) ( - ),
−′∆ x µ Σ x µx µ � �� �� �

 

(3). Mahalnobis 2D  test statistic  to test separation between  1 2   andπ π  (or )    

      0 2 1 2:   vs   H :H = ≠1 1µ µ µ µ
� � � �

 

     suppose 1 1 2 2: ( , )    and  : ( , )p pN Nπ µ Σ π µ Σ
� �

 1 1,Sx
�

 are the sample mean and      

     sample covariance matrix of a sample drawn from 1 2 2 2 and  ,  are        Sπ x π…
�

. 

     Now Mahalnobis 2D  test statistic is given by  

                   

2 1
1 2 1 2

1 1 2 2

1 2

( ) ( )
(n -1)S ( 1)                                where S=

2

D S
n S

n n

−′= − −
+ −
+ −

x x x x
� � � �  

     under 
1 2

21 2 1 2
0 , 1

1 2 1 2

1: ~
( 2) p n n p
n n p n nH D F
n n p n n + − −

  + − −
  + − +  

 

     which can be used as for testing the significant difference  1 2−µ µ
� �

. If 0H  is     

     rejected , we can conclude that the separation between  the two populations    

     1 2    andπ π  is significant. 

(4). Two sample  2T  and Mahalnobis 2D  are closely associated as  

                                               2 21 2

1 2

n nT D
n n

 
=  + 

 

(5). In case of two normal populations with common covariance matrix, Fisher’s     

      method is corresponds to a particular case of minimum ECM rule with equal   

      prior probabilities  and equal costs of TPM rule with equal prior probabilities .    

      Further, it is same as ML rule . 

(6). The expression in minimum ECM rule for two multivariate normal populations   

       1
1 2 1 2( ) ( 1/ 2( ))w S −′= − − +x x x x x
� � � � �

 is frequently called Anderson’s classification. 

(7). Fisher’s method is also a special case of allocation rule based on Bayeson   

      posterior  probabilities when the prior probabilities 1 2 and  pp  are same for  

      the case of two multivariate normal populations. 
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CLASSIFICATION WITH SEVERAL POPULATIONS 

THE MINIMUM “TPM” METHOD: 
                    Let  1 2 gπ ,π ,...,π  are g populations. Let ( )if x

�
 be the density associated  with 

population   , 1,2..i i=π ….g. Let   

             i prior probability of population , 1,2,...   (1)ip the i g= = →π  

             Now, for a given new observation 0x
�

, we have to allocate it to one of the populations 

1 2 gπ ,π ,...,π . If is equivalent to, if the total sample space Ω  is divided into 1 2, ,..., gR R R  

disjoint regions, and is the new observation 0x
�

falls in region kR , then 0x
�

will be allocated to 

the population kπ . Now, if 0x
�

 is actually drawn from population iπ  and if it is allocated to 

 (i K)k ≠π  then we say that this is misclassification. 

Thus, if kR  be the set of 'sx
�

 classified as iπ  and let  

                                  
k

k

i
R

( / ) (classify  in to / )
            = f ( )                                        (2)

iP k i P
d

π=
→∫

x π
x x �
� �

 

The conditional probability of  misclassifying an x
�

 from into1 2 3 gπ   π  or π  or... or π  

is given by 

                   CPM(1) = P(2/1)+P(3/1)+…+P(g/1) 

                                 
2

( /1)
g

i

P i
=

= ∑                                          (3) 

   In a similar manner, we can obtain the conditional probabilities of misclassification  

CPM(2),CPM(3),…,CPM(g). 

Multiplying each conditional CMP by its prior probability and summing gives the totals 

probability of misclassification(TPM). 

          Thus total probability of misclassification can be obtained as follows: 

     TPM=P(misclassification an observation x
�

 ) 

             =P(misclassification x
�

 from 1π ). 1( )P π +… 

                                           +P(misclassification x
�

 from gπ ). ( )gP π  
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i
1

1 1

1 1

( )        where p ( )

( / )     (from (3))

= ( )                                               (4)
k

g

i i
i
g g

i
i k i
g g

i i
i k i R

CPM i P P

P P k i

P f d

=

= ≠ =

= ≠ =

= =

 
=  

 
 

→  
 

∑

∑ ∑

∑ ∑ ∫

π

x x
� �

 

Determining optimal classification procedures based on TPM amounts 

choosing the mutually exclusive regions  1 2, ,..., gR R R  such that (4) is 

minimum.  

THE MINIMUM “ECM” METHOD: 
The expected cost of misclassification (ECM) can be obtained as follows: 

ECM=Expected cost of misclassifying an observation x
�

 

         =(conditional expected cost of misclassifying an x
�

 form 1π ) 1( )P π  

             +…+(conditional expected cost of misclassifying an x
�

 from gπ ). ( )gP π . 

         = 1 2. (1) . (2) ... . ( )gp ECM p ECM p ECM g+ + +  

         =
1

. ( )
g

i
i
p ECM i

=
∑                    (5) 

where ECM(i)=conditional expected cost of misclassifying an x
�

 from iπ  

                      = i k
1

(conditional expected cost of misclassifying an  from  into )
g

k
k i
=
≠

∑ x π π
�

 

                      = i k
1

( / ) (conditional probability of misclassifying an x from  into )
g

k
k i

c k i
=
≠

∑ π π
�

 

      
1

( ) ( / ) ( / )
g

K
K i

ECM i c k i p k i
=
≠

=∑                                                         (6) 

where ( / )c k i =the cost of misclassifying x
�

 to iwhen actually it belongs to ( )k i k≠π π  

and ( / )p k i  is as given by  (2). 

(Here it may be noted ( / ) 0c i i = , the misclassification cost for correct  classification) 

using (6) in (5), we get  
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1 1

1 1

( / ) ( / )

         = ( / ) ( )                (7)
k

g g

i
i K

K i

g g

i i
i K R

K i

ECM p c k i p k i

p c k i f d

= =
≠

= =
≠

 
 =  
  
 
  → 
  

∑ ∑

∑ ∑ ∫ x x
� �

 

 Thus (7) gives the expected cost of misclassification , Now, an optional   classification 

procedure obtained by minimizing ECM (given by (7)) for the choice  of 1 2, ,..., gR R R  is called 

minimum ECM method. 

             

The choice of mutually  exclusive  regions 1 2, ,..., gR R R  for when (7) is minimum 

are called minimum ECM regions. 

                 

THEOREM (MINIMUM “ECM” CLASSIFICATION RULE) 
 The classification regions that minimize the                 

                                       
1 1

( / ) ( )   
k

g g

i i
i K R

K i

ECM p c k i f d
= =

≠

 
 =  
  

∑ ∑ ∫ x x
� �

 

      are defined by allocating x
�

 to that population ,  k=1,2,...gkπ  

for which  

                              
1

( / ) ( )                                             (8)
g

i i
i
i k

p c k i f
=
≠

→∑ x
�

 

is smallest. If a tie occurs x
�

 can be assigned to any of the tied populations. 

Minimum ECM classification rule with equal misclassification costs  

                                            (OR) 

Minimum TPM classification rule: 
              Suppose all the misclassification costs are equal , in which case the minimum ECM 

rule reduces to minimum TPM rule. Thus in this case minimum ECM classification rule becomes 

(from (8)) 

     Allocate x
�

 to  kπ  if  

                                
1

( )                                                  (9)
g

i i
i
K i

p f
=
≠

→∑ x
�
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is smallest. If tie occurs  x
�

 can be assigned to any of the tied populations. 

         Now (9) will be smallest when the omitted term ( )k kp f x
�

 is largest. Consequently,    

the minimum ECM rule with equal misclassification costs (OR) minimum TPM rule is as 

follows: 

Allocate x
�

 to kπ  if  

                               ( ) ( )    i k                                         (10)k k i ip f p f> ∀ ≠ →x x
� �

 

or equivalently, Allocate x
�

 to kπ  if  

                               log( ( )) log( ( ))    i k              (11)k k i ip f p f> ∀ ≠ →x x
� �

 

NOTES: 
 (1). It is interesting to note that the classification rule (10) is identical to the one that        

        maximizes the posterior probability,  

                        

k

1

( / ) (  comes from  given that  was observed)
( )) ( ) ( )              =    

( ) ( )( )

k

k k
g

i i
i

p p
p f prior likelihood

prior likelihoodp f

π π

=

=

×
=
∑ ×∑

x x x
x

x

� � �
�

�

 

      Thus rule (10) or rule (11) is identical with the rule obtained based on Bayes     

      posterior Probabilities. 

(2). On case if prior probabilities are equal, rule (10) (or rule (11)) reduces to 

           Allocate x
�

 to kπ  if  

                    ( ) ( )      i k                (12)k if f> ∀ ≠ →x x
� �

 

        or equivalently Allocate x
�

 to kπ  if 

                         log ( ) log ( )      i k                (13)k if f> ∀ ≠ →x x
� �

 

               The rule (12) or (13) is called as ML rule which is a special case of minimum   

        TPM rule as well as minimum ECM rule. 

(3). Generally , the minimum ECM rules have these components a) prior probabilities  

                                                                                                      b) misclassification costs      

                                                                                                      c) density functions 

               These components must be specified or estimated before the rules can be    

       implemented. 

CLASSIFICATION WITH NORMAL POPULATIONS 
                          We have ‘g’ multivariate normal populations  
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1 1 1

2 2 2

: ( , )
: ( , )

: ( , )

p

p

g p g g

N
N

N

µ
µ

µ

π Σ
π Σ

π Σ

�
�#

�

 

In this case 

  

11 ( ) ( )
2

1/ 2/ 2

1

1( )          for i=1,2,....,g
(2 )

1 1log ( ) log(2 ) log (( ) ( ))          (14)
2 2 2

i i i

i p
i

i i i i i

f e

pf

π

π

−′−

−

=

  ′= − − − → 
 

x-µ Σ x-µx
Σ

x Σ x - µ Σ x - µ

� �� �
�

� � �� �

 

CASE (1): UNEQUAL iΣ  

                     In this case the minimum TPM rule (or minimum ECM rule with  equal 

misclassification costs) is as follows: 

From (14) we have  

            11 1log( ( )) log log(2 ) log ( ) ( )
2 2 2kk k k i i i
pp f p −′= − − − Σx π Σ x-µ x-µ

� � �� �
 

Now the above rule becomes (from (11)) 

  Allocate k  to x π
�

if  

        
1

k

log( ( )) log( ( ))

1 1                     =log p log(2 ) log ( ) )        (15)
2 2 2

maxk k i i
i

k i i i

p f p f

p −

=

′− − − →

x x

π Σ x - µ Σ (x - µ

� �

� �� �

 

The constant /2 log(2 )p π  can be ignored in (15) since it is same for all populations. We there 

fore define the quadratic discrimination score for thi  population is 

 11 1( ) log log ( ) )    for  i=1,2,...,g                 (16)
2 2

Q
ii i i i id p −′= − − →x Σ x-µ Σ (x-µ

� � �� �
 

 The quadratic score ( )Q
id x
�

 is composed contributions from the generalized variance iΣ , the 

prior probability ip , and Mahalnobis (or statistical) squared distance between x
�

 and population 

mean iµ . 

        Using discriminant  scores the classification rule (15) becomes  

Allocate k  to x π
�

                        

                   The quadratic score ( ) { ( )}               (17)maxQ Q
k i

i
d d= →x x

� �
 

Where ( )Q
id x
�

 is given by (16). 
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              In practice, the i and iµ Σ
�

 are unknown and hence a training set of correctly classified 

observations is often available for the construction of estimates. The relevant sample quantities 

for population iπ  are  

                                     i

i

 sample mean vector
S  = sample covariance matrix  and 
n  = sample size 

i =x
�

 

Using the above estimation in (16) , we get the estimate of the quadratic discriminant score 

ˆ ( )Q
id x
�

 as  

                  11 1ˆ ( ) log log ) )        (18)
2 2

Q
i i i i i id p S S −′= − − →x (x - x (x - x
� � � � �

 

and the classification rule based on the sample is as follows: 

    

ESTIMATED MINIMUM “TPM” RULE FOR SEVERAL NORMAL 

POPULATIONS- UNEQUAL   iΣ  

                        Allocate k  to x π
�

 if the quadratic score  

                                 ˆ ˆ( ) ( )}                       (19)max{Q Q
i i

i

d d= →x x
� �

 

where ˆ ( )Q
id x
�

 is given by (18) for 1,2,...,i g= . 

 

CASE-2:- iΣ ’s ARE EQUAL 

                  ESTIMATED MINIMUM “TPM” RULE (BAYES ALLOCATION RULE ) 

NORMAL POPULATION –EQUAL iΣ : 

           In the case we have 1 2 ........ ( )g say= = = =Σ Σ Σ Σ  and hence the dicriminant score in (16) 

becomes  

                1 1 11 1 1ˆ ( ) log log
2 2 2

Q
i i i i id p− − −′ ′ ′=− − + − +x Σ xΣ x µ Σ x µ Σ µ
� � � �� � �

 

The first two terms are same for 1 2( ), ( ),..... ( )Q Q Q
gd d dx x x

� � �
 and consequently, they can be ignored  

for allocatory purposes. Define the linear discriminant score  

                       1 11( ) log                       (20)
2i i i i id p− −′ ′= − + →x µ Σ x µ Σ µ

� �� � �
 

An estimate of ( )id x
�

viz, ˆ ( )id x
�

 is based on the pooled estimate of Σ , 
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                        1 1 2 2

1 2

( 1) ( 1) ... ( 1)
                 (21)

...
g g

g

n S n S n S
S

n n n g
− + − + + −

= →
+ + + −

 

and is given by  

                          1 11ˆ ( ) log                  (22)
2i i i id S S p− −′ ′= − + →x x x x x

� � � � �
 

consequently, the estimated minimum TPM rule for equal covariance normal populations is as 

follows: 

 Allocate k  to x π
�

 if  the linear discriminant score ˆ ˆ( ) max{ ( )}      (23)k ii
d d= →x x
� �

 

  Where  ˆ ( )id x
�

is given by (22) 

NOTE:- 

(1). In the above minimum TPM rules , for any case , if 1 2 3 ...... 1/gp p p p g= = = = = ,    

      we may ignore those term log ip  is discriminant scores , as it is same for all    

      discriminant  scores. In this case the minimum TPM rule is reduced to ML rule in   

      which case the allocation rules are same  as above except ignoring log ip . 

(2). Expression (20) is a convenient linear function of x
�

. An equivalent classifier    

       for equal covariance matrices case can be obtained from (16) by ignoring the term   

       1log
2

− Σ  and is given by   

                                       11( ) ( ) log
2 i i ip−′− − − +x µ Σ x µ
� �� �

 

      The classification rule with sample estimates instead for unknown populations    

      quantities is given by  Allocate k to x π
�

,if  

                           21 ( ) log
2 k kD p− +x

�
 is largest   for k=1,2,…,g.                    (24) 

                    where 2 1( ) ( ) ( )k k kD S −′=x x - x x - x
� � � � �

 

      is Mahalnobis squared distance between x
�

 and the sample mean kx
�

. 

      Thus , we see the rule (24) or equivalently  rule (23) assigns x
�

 to the closest    

       population (The distance in penalized by log ip ). 

(3). In note(2) , if we assume 1 2 3, , ......, gp p p p  are equal and hence allocation rule may    

       be significant as follows:  

       Allocate k  to x π
�

, if 21 ( )
2 kD− x

�
 is largest 
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           Or  equivalently 2 ( )kD x
�

 smallest                            (25) 

In other words , we are allocating  x
�

 to that population whose sample mean vector is closest  to  

x
�

 . This  rule is also called as ML classification rule. 

 

FISHER’S METHOD FOR DISCRIMINATING AMONG SEVERAL POPULATIONS 

WHEN PARAMETERS ARE SPECIFIED 
 

                Fisher also proposed a several population extension of his discriminant method, which 

was discussed for the case of two populations. The motivation behind the Fisher discriminant 

analysis is the need to obtain a reasonable representation of the population that involves only a 

few linear combinations of the observations, such as 1 2
′ ′l x, l x
� � � �

and so on.  His approach has 

several advantages and one is interested in separating several populations for  

1) Visual inspection or  

2) Graphical descriptive purposes.  

 It allows for the follows:-                      

 

1. Convenient representation of the g populations that reduce the dimension from a very 

large number of characteristics to a relatively few linear combinations. Of course, some 

information – needed for optimal classification- may be lost unless the population 

means lie completely in the lower dimensional space selected.  
 

2. Plotting of the means of the first two or three linear combinations (discriminates). This 

helps display the relation ship and possible groupings of the populations. 
 

 

3. Scatter plots of the sample values of the first two discriminates, which can indicate 

outliers or other abnormalities in the data. 

 

               The primary purpose of Fishers Discriminant analysis is to separate populations.  

However, it can also be used to classify a new observation into one of the populations. It is not 

necessary to assume that the g populations are multi variate normal. However we assume the 

population covariance matrices are equal and of full rank. That 

is 1 2 g= = −−− = =Σ Σ Σ Σ .Thus, we have g populations with mean vectors 1 2, ,........ gµ µ µ
� � �

 

and common covariance matrix∑ .  
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Let  
1

1 g

i
ig =

= ∑µµ
��

 

and  
1

( )B
g

i=
′−=∑ i iµ µ)(µ -µ

� � � �
                                                             --------(1) 

we consider the linear combination y = lx
��

 

which has expected value 

E(y) E( / )i iπ= =′ ′l X l µ
� � � �

 (for population iπ ) 

                                  iyµ=  (say) 

and variance V(y) l cov( )l= ′ ′X,X
� �� �

 

                             2
yl l σ′= =Σ

� �
 for all populations.                              --------(2) 

we defuse the overall mean, 

                  
1

1 1g

y iy
ig gµ µ
=

= = ′∑ ∑
g

i
i=1

l µ
� �

 

                                       
1

1( )
g

i
i

l g µ
=

= ′ ∑� �
 

                                       l µ= ′
� �

                 (From (1))                       -------(3) and form the ratio  

2

1
2

sum of squared distances from populations to over all mean of Y
common population variance of Y

( )
        

g

yiy
i

y

µ µ

σ
=

−
=
∑                                                             

2

1
( )

                

g

i
i
l l

l l

µ µ
=

−′ ′
=

∑′

∑ � �� �
� �

 

 

  1
( )( )

g

i i
i
l l

l l

µ µ µ µ
=

− −′ ′
=

∑′

∑� �� � � �
� �

 

  l Bl
l l
′=
∑′� �
� �

                        (from (1)) 
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     Thus     

2

1
2

( )
g

yiy
i

y

µ µ

σ
=

−∑ l Bl
l l
′=
∑′� �
� �

                                         --------(4) 

The ratio (4) measures the variability between the groups of Y- values relative to the common 

variability within the groups. We can then choose l
�

to maximize the ratio (4) Thus if we write    

                                    l Bl
l lλ ′=
∑′� �
� �

                                                    -------(5) 

  

Then we have to maximize (5) with respect to   l
�

   when implies 

 

                       0 ( ) ( ) 0lll l Bl l Bl ll l l
λ ∂∂ ∂ ′′= => ∑ − ∑ =′ ′∂ ∂ ∂�� � � � � �� � �

                           

                                  ( ) ( ) 0l l Bl l Bl l=> ∑ − ∑ =′ ′
� � � � � �

 

                                      ( ) 0l BlBl ll l
′=> − Σ =
∑′� �� �� �

 

                                   1 ( ) 0l BlBl ll l
− ′=>∑ − =

∑′� �� �� �
  

                                    1( ) 0B I lλ−=> ∑ − =
�

    (using (5))                -------(6) 

Thus l
�

 is the latent vector corresponding to a latent rootλ  of 1B−∑ . As, we are  seeking for a 

l
�

 which maximizesλ  ,let 1λ  be the non zero largest latent root of  1B−∑  and 1l�
 be the  

corresponding latent vector. Now, the linear combination,   1 1Y l X= ′
��

 is called Fisher’s first 

linear discriminant . 

 

             Similarly if 2λ  is the next non Zero largest latent root of 1B−∑   and 2l�
  correspondent 

latent vector then , 2 2Y l X= ′
��

 is Fisher’s second linear discriminant.  

         Let 1 2 ...... 0sλ λ λ> > > >  denote the s<min(g-1,p) non zero eigen values of 1B−∑  

and let 1, 2,.......... sl l l
� � �

 be the corresponding latent vectors. Now, the linear combinations 

                               

                                          ( )k kY l X k s= <′
��

                                    .........(7) 

is Fisher’s kth linear discriminant. 
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Fishers method for discriminating several populations when parameters are unknown 

 

Fisher’s sample linear discriminants: 

 

     In general, ∑  and the isµ′
�

 are unknown, but we have a training set consisting of correctly 

classified observations. Suppose the training set consist of a random sample of size  in from 

population , 1,2,3.....i i gπ =  

Let ix′�
 be the mean vector and iS  be the covariance matrix of ith sample. Now denote the 

sample between groups matrix. 

                          0
1
( )( )

g

i i
i

B x x x x
=

= − − ′∑ � � � �
 

Where,                 
1

1 g

i
i

x xg =
= ∑� �

                           .                                ……(8) 

0B  is an estimate of B  

Also, an estimate of ∑ is based on   the sample within groups matrix is  

                                                
1
( 1)

g

i i
i

W n S
=

= −∑                                  .……(9) 

Consequently, 
1

,( )
g

p i
i

WS n nn g =
= =

− ∑                         .                     ……(10) 

is an estimate of ∑ . 

We consider the linear transformation, 

                                            y l x= ′
� �

                                                ……..(11) 

Under the linear transformation, (11) the given multi variate samples can be transformed into 

univariate samples whose means and variances are given by 

Means  :  1 2,, ....... gy y y  

Variances: 
1 2

2 2 2, ,...... gy y ys s s  

We denote the overall sample as 

                                            
1

1 g

i
i

y yg =
= ∑                                          ……..(12) 
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Now form  the ratio, 

                λ = sum of squared distances fro sample means to overall mean 

                                           Total within samples variation 

                    

                   

2

1

2

1 1

( )

( )
i

g

i
i
ng

ij i
i j

y y

y y
=

= =

−
=

−

∑

∑∑
 

                    

2

1

2

1 1

( )

( )
i

g

i
i
ng

ij i
i j

l x l x

l x l x
=

= =

−′ ′
=

−′ ′

∑

∑∑
� � � �

� � � �

        (from (11)) 

                    1

1 1

( )( )

( )( )
i

g

i i
i
ng

ij j ij i
i j

l x x x x l

l x x x x l
=

= =

− −′ ′
=

− −′ ′

∑

∑∑
� � � � � �

� � � � � �

 

                    1

1

( )( )

( 1)

g

i i i
i

g

i i
i

l x x x x l

l n S l
=

=

− −′ ′
=

−′

∑

∑
� � � � � �

� �

 

(By using the definition of sample covariance matrix) 

                    0l B l
l Wl
′=
′� �
� �

             (from (8) & (9) )                                   …..(13) 

The ratio (13) measures the variability between the groups of g values relative to the total 

variability within the groups. 

               Now, Fisher suggested to choose l
�
 such thatλ given by (13) is maximum, 

Maximization of λ  with respect to l
�

 implies. 

                          1
00 ( ) 0W B I ll

λ λ−∂ = => − =
∂ ��

                                 …...(14) 

(See (6) of page 29 for derivation particulars) 

          Now, if we denote 1 2 ...... 0sλ λ λ> > > > (where min( 1, ))s g p= −  are s eigen 

values of (14) and let 1 2, ,.......... sl l l
� � �

 the corresponding eigen vectors, then  

Fisher’s K-th sample linear discriminant is given by  
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                                                ( )k ky l x k s= <′
� �

 

 Thus, Fisher’s sample linear discriminants are eigen vectors of   1
0W B− , 

Where 0B andW are as assigned in (8) & (9). 

Note:  

 

1) If sample means 1 2, ,......... gx x x
� � �

 and sample covariance matrix  1 2, ,.......... gS S S are 

given , then 0B and W can be completed using (8) and (9) respectively. 

2) If raw samples from g populations are given, then 0B  and W can be computed as 

follows: 

First compute the individual sample covariance matrices 1 2, ,.......... gS S S from the 

given samples and then use (9) to compute W . Now, compute the sample covariance 

matrix S  from the combined samples of g samples given by  

 

                         
1 1

1 ( )( )1
ing

ij ij
i j

S x x x xn = =
= − − ′− ∑∑ � � � �

  ,when 
1

g

i
i

n n
=

=∑ . 

Now, 0B can be computed from the following relationship. 

                                 0( 1)n S W B− = +   . 

3) It may  be noted that the pooled sample covariance matrix pS  and combined sample 

covariance matrix S are connected by the  

                                 0( 1)n S W B− = +  

                         Thus, if the individual sample covariance matrix         1 2, ......... gS S S  and the 

combined sample covariance matrix S  are given, then one can obtain W and 0B can be 

obtained as follows 

                            1 1 2 2

0

( 1) ( 1) ......... ( 1)
( 1)

gW n S n S n Sg
B n S W
= − + − + + −
= − −

 

 Now, Fisher’s discriminates can be constructed using the eigen vectors of 1
0W B− . 

4) We know that 1
0W B−  is not a symmetric matrix. Many computer   
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Packages can compute eigen values and eigen vectors only for the symmetric matrices. However, 

the eigen vectors of 1
0W B−  can be computed as follows: 

 Suppose, λ  is a ch root and l
�

is Ch. Vector of 1
0W B− ,then we have  

                              1
0( ) 0W B I lλ− − =

�
 

 The above equations may be rewritten as  

                             

1 1
1 2 2

0
1 1
2 2

0
1 1 1
2 2 2

0
1 1
2 2

0

( ) 0

( ) 0

( ) 0

( ) 0

W B W W l

W B W l

W BW W l

W BW w

λ

λ

λ

λ

− −−

−

− −

− −

− =

=> − =

=> − =

=> − =

�

�

�

�

 

(
1
2W  is square root of W  and 

1
2W −

 is a inverse of 
1
2W ). 

  Where, 
1
2w W l=

� �
 or 

1
2l W w−

=
� �

. 

        Thus if w
�

 is latent vector of the matrix, 
1 1
2 2

0W BW− −
. Corresponding to the latent root of 

λ , then latest vector l
�

of 
1
2

0W B−
corresponding root λ  may be obtained as  

1
2l W w−

=
� �

 

 

        For all practical purposes, for the construction of Fisher’s discriminant functions we use the 

above method. 

 

Classification of a new observation among several populations using Fisher’s 

discriminants:- 

 

             Mainly, Fisher’s discriminates were derived for the purpose of obtaining a low 

dimensional representation of the data that separate the populations as much as possible. 

Although they were derived from separatory considerations, the discriminates also provide the 

basis for a classification rule.   
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                                            CLUSTER ANALYSIS 
 
CONCEPT: 
 
               Multivariate methods deal with the analysis of data of more than two variables 

recorded from n sample objects selected from a specified population. Since the sample 

objects are selected from a specified population, the units are assumed to be 

homogeneous in respect of some characteristics. However, the values of different 

variables recorded from sample objects are not strictly uniform, though there should not 

be any systematic difference in the objects. In general, we expect some variations in the 

values of the variables, even if the sample objects are uniform in respect of some 

characters. For example, the income or the expenditure of middle class of people in a 

country are not exactly uniform, though they belong to the same class.  

Again, the people of a country can be classified as rich, upper middle class, lower middle 

class and poor. For each class of people there may be common variable which influences 

the economic condition. For example, the income of  a person depends on his education. 

This is true for every class of people. But their income or expenditure are not uniform. 

Therefore, there may be some systematic difference in values of the variables recorded 

from sample objects, there may be some similarities in the recorded observations of 

sample objects. Those sample objects which are similar in their recorded information may 

form a group. Dissimilar objects fall in different groups. In general, the objects that share 

similar characteristics are found together. In statistics, the search for relatively 

homogeneous objects is called cluster analysis.  

            The cluster analysis has wide applications in biology, medicine, agriculture, 

marketing, etc. The numerical taxonomy in the field of biology is used to classify the 

animals into class, order and families. Different species of plants have different 

characteristics. Therefore, plant specimens can be classify into homogeneous groups. In 

agriculture, the land fertility of a particular region may not be homogeneous for any type 

of crop. Then the pieces of land  sharing similar fertility for a particular may be grouped 

together. The milk production of cows, even of the same type, may vary due to lactation 

period. Then the cows of the same lactation period may be grouped  together. In 
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economics, the people of a city center may be grouped  according  to their socio-

economic condition. In marketing, people can be grouped according to the similar buying 

habits. In medicine, the patients having similar disease may be clustered together. 

            Since similar objects form a cluster, all the sample points in any cluster will 

provide similar information about the population characteristics. Thus, for further analysis 

one may include one object from each cluster analysis is a data reduction technique in 

rows of the data matrix. 

                       Let  ( )X n p× be a data matrix from a specified population. Let the values 

of the p variables observed from n sample objects be denoted by  1 2, ,..., nX X X . The 

objective of the cluster analysis is to group these n vector of values into 1 1( )n n n<  vectors 

so that the elements in a group are homogeneous. Here the method of clustering is on the 

basis of one-sample observations. Let [ 1, 2,..., ; 1,2,..., ]ij jX i n j m= =  be the vector of 

values of p variables of i-th object in j-th sample. Here the objective of clustering is to 

form 1 1  groups (m <m)m of sample observations in different groups are heterogeneous. 

                    From above discursion is is clear that the CA reduces the sample 

observations in size. It has similar property of other data reduction technique. Namely, 

PCA . this analysis has a similarity with DA in respect of classification of observations. 

But DA derives a rule for an allocating an object to its proper properties based on some 

prior information of the group membership of the object. Whereas, the CA identifies 

homogeneous groups or clusters.  

 There is no unified approach on what actually constitute a cluster.  As per the 

definition what we have discussed above, a cluster constitutes with a similar object.  

Then, we need to decide on a measure of inter-object similarities.  Also, a decision is 

needed to specify a procedure for forming the clusters, based on the chosen measure of 

similarity.  The criterion   of similarity in observations varies from researcher to 

researcher.  However, the basic criterion is that the objects in a cluster should be closer to 

each other than to objects in other clusters.  As a preliminary technique to identify the 

similarity of objects, one can use the diagram of sample objects.  Let us consider that 

from each of ‘n’ sample object values of p variables are recorded.  These values can be 
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represented a p-dimensional diagram.  The values of each variable is plotted in each 

separate axis.  If n sets of values are plotted in p-axes, a diagram will be formed.  The 

cluster can be formed with those objects, which lie nearer in an area of the diagram but 

are dispersed from another area.  The cluster can also be formed mathematically 

calculating distances among sample objects. 

 
BASIC STEPS OF CA: 
 
In CA, the sample objects are clustered on the basis of some characteristics.  Therefore, to 

start with the analysis, a number of decisions must be made regarding the characteristics 

to be considered, the variables to be included in the analysis, the measurement of distance 

between objects and the criterion to group the objects. 

 
 The selection of variables for any CA is important, since the exclusion of 

important variables will be poor or misleading findings.  For eg., if any marketing 

research the consumers are needed to be clustered, their tastes and habits and their 

economic capacities must be considered.  Otherwise, the clustering of consumers will not 

be fruitful.  The initial choice of variables determines the characteristics that can be used 

to identify subgroups. 

 
 After the selection of variables, the next important point to be considered is to 

measure the distance and similarity become objects.  Two objects will be included in two 

separate groups, if their distance is maximum and they will be included in one group if 

they are close to each other.  Therefore, one of the important steps in cluster analysis is to 

measure the distance among objects. 

 
SIMILARITY MEASURES: 
 
          The measurement of similarity or distance is divided into two main parts.  One of 

this is (a) distance – type measure, and another is (b) matching – type measure.    
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Distance type similarity measures: 

Euclidean distance:    

Let 1 2[ , ,..., ]px x x ′=x  and 1 2[ , ,..., ]py y y y ′=  are two p-dimensional observations or 

items or objects, then Euclidean distance between these two points is defined as  

 

( ) ( ) ( )

( ) ( )

22 2
1 1 2 2( , ) ...

          

p pd x y x y x y

′− −

= − + − + + −

= x y x y

x y
 

Statistical distance (Mahalonibis distance):    

Let 1 2[ , ,..., ]px x x ′=x  and 1 2[ , ,..., ]py y y y ′=  are two p-dimensional observations or 

items or objects, then Statistical distance between these two points is defined as  

( ) ( )( , )D ′− −= x y x yx y A  

Ordinarily, = -1A S , where S  contains the sample variances and covariances.   However, 

without prior knowledge of the distinct groups, these sample quantities cannot be 

computed.  For this reason Euclidean distance is often preferred for clustering. 

Minkowski distance:    

Let 1 2[ , ,..., ]px x x ′=x  and 1 2[ , ,..., ]py y y y ′=  are two p-dimensional observations or 

items or objects, then Minkowski distance between these two points is defined as  
1

1
( , )

p mm
i i

i
d x y

=

 
= − 
 
∑x y   

Note 1: When m= 1 Minkowski distance is called as city block distance  

Note 2: When m= 2 Minkowski distance is reduced to Euclidean distance thus Euclidean 

distance is special case of Minkowski distance. 
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Hierarchical clustering methods 
Agglomerative hierarchical clustering algorithm: 
 The following are the steps in the agglomerative hierarchical clustering algorithm for 

groping N objects (items or variables) . 

1. Starts with N clusters, each containing a single entity and an N X N symmetric 

matrix of distance (or similarites) D={dik}. 

2. Search the distance matrix for the nearest (most similar) pair of clusters.  

Let the distance between “most similar” clusters U and V be duv. 

3. Merge cluster U and V.  Lable the newly formed cluster (UV).  Update the 

enters in the distance matrix by (a) deleting the rows and columns 

corresponding to cluster U and V and (b) adding a row and column giving 

the distances between cluster (UV) and the remining clusters. 

4. Repeat steps 2 and 3 a total of N-1 times.(All objects will be in a single 

cluster at termination of the algorithm,.)  Record the identity of cluster that 

are merged and the levels(distances or similarities) at which the mergers 

take place. 

 
Single Linkage (nearest neighbor) Clustering method: 

In this method two objects with lowest distance are merged into a cluster.  This 

cluster is the first one.  At the second step, either a third object is merged to the first 

formed cluster, or the two closest unclustered objects are joined to form a second cluster.  

The decision rests on whether the distance from one of the unclustered objects to the first 

formed cluster is shorter than the distances between the two closest unclustered objects.  

The process continues until all objects belong to a single cluster.  At any step, if a new 

cluster is formed and if the distance between the new cluster and the old one is shortest, 

then both the clusters are combined.  Since an object of a cluster cannot be split from 

the cluster, the distance between two clusters is equal to the distance between 

nearest objects.  After clustering, the objects in the clusters can be represented by a 

diagram.  This diagram is known as Dendrogram. 
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The following are the steps in the single linkage clustering algorithm for groping N 

objects (items or variables) . 

1. Starts with N clusters, each containing a single entity and an N X N symmetric 

matrix of distance (or similarites) D={dik}. 

2. Search the distance matrix for the smallest distance (other than zero) which 

gives the distance between nearest (most similar) pair of clusters.  Let the 

distance between “most similar” clusters U and V be UVd . 

3. Merge clusters U and V.  Label  the newly formed cluster (UV).  Update the 

enteries in the distance matrix by  

         (a) deleting the rows and columns corresponding to cluster U and V      

and   (b) adding a row and column giving the distances between the cluster  

              (UV) and the remaining clusters. Here, the distance between the  

                cluster (UV) and any other cluster W is computed by  

                         { }( ) min ,UV W UW VWd d d=  

In general, if we take two clusters, one is with m objects and another is 

with n objects, then we will get ‘mn’  pairs of objects, one is from the first 

cluster and another is from the second cluster. Thus, we get totally ‘mn’ 

distances. Now the distance between these two clusters is defined as the 

minimum (smallest) of these ‘mn’ distances.    

 

4. Repeat steps 2 and 3 a total of N-1 times.(All objects will be in a single 

cluster at termination of the algorithm,.)  Record the identity of cluster that 

are merged and the levels(distances or similarities) at which the mergers 

take place. 

Complete Linkage (farthest neighbor) Clustering method: 
In this method two objects with lowest distance are merged into a cluster.  This 

cluster is the first one.   At the second step, either a third object is merged to the first 
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formed cluster, or the two closest unclustered objects are joined to form a second cluster.  

The decision rests on whether the distance from one of the unclustered objects to the first 

formed cluster is shorter than the distances between the two closest unclustered objects.  

The process continues until all objects belong to a single cluster.  At any step, if a new 

cluster is formed and if the distance between the new cluster and the old one is shortest, 

then both the clusters are combined.  The distance between two clusters is defined as  

the distance between most distant pair of objects.  After clustering, the objects in the 

clusters can be represented by a diagram.  This diagram is known as Dendrogram. 

 

The following are the steps in the compete linkage clustering algorithm for groping N 

objects (items or variables) . 

1. Starts with N clusters, each containing a single entity and an N X N symmetric 

matrix of distance (or similarites) D={dik}. 

2. Search the distance matrix for the smallest distance (other than zero) which 

gives the distance between nearest (most similar) pair of clusters.  Let the 

distance between “most similar” clusters U and V be UVd . 

3. Merge clusters U and V.  Label  the newly formed cluster (UV).  Update the 

enteries in the distance matrix by  

         (a) deleting the rows and columns corresponding to cluster U and V      

and   (b) adding a row and column giving the distances between the cluster  

              (UV) and the remaining clusters. Here, the distance between the  

                cluster (UV) and any other cluster W is computed by  

                         { }( ) max ,UV W UW VWd d d=  

In general, if we take two clusters, one is with m objects and another is 

with n objects, then we will get ‘mn’  pairs of objects, one is from the first 

cluster and another is from the second cluster. Thus, we get totally ‘mn’ 

distances. Now the distance between these two clusters is defined as the 

maximum ( largest) of these ‘mn’ distances.    
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4. Repeat steps 2 and 3 a total of N-1 times.(All objects will be in a single 

cluster at termination of the algorithm,.)  Record the identity of cluster that 

are merged and the levels(distances or similarities) at which the mergers 

take place. 

 
Average Linkage  Clustering method: 

In this method two objects with lowest distance are merged into a cluster.  This 

cluster is the first one.   At the second step, either a third object is merged to the first 

formed cluster, or the two closest unclustered objects are joined to form a second cluster.  

The decision rests on whether the distance from one of the unclustered objects to the first 

formed cluster is shorter than the distances between the two closest unclustered objects.  

The process continues until all objects belong to a single cluster.  At any step, if a new 

cluster is formed and if the distance between the new cluster and the old one is shortest, 

then both the clusters are combined.  The distance between two clusters is defined as  

the average of the distances between all pairs of objects, one from the first cluster 

and another from the second cluster.  After clustering, the objects in the clusters can be 

represented by a diagram.  This diagram is known as Dendrogram. 

 

The following are the steps in the compete linkage clustering algorithm for groping N 

objects (items or variables) . 

1. Starts with N clusters, each containing a single entity and an N X N symmetric 

matrix of distance (or similarites) D={dik}. 

2. Search the distance matrix for the smallest distance (other than zero) which 

gives the distance between nearest (most similar) pair of clusters.  Let the 

distance between “most similar” clusters U and V be UVd . 

3. Merge clusters U and V.  Label  the newly formed cluster (UV).  Update the 

enteries in the distance matrix by  

         (a) deleting the rows and columns corresponding to cluster U and V      

and   (b) adding a row and column giving the distances between the cluster  
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              (UV) and the remaining clusters. Here, the distance between the  

                cluster (UV) and any other cluster W is computed by  

                         ( )( ) / 2UV W UW VWd d d= +  

In general, if we take two clusters, one is with m objects and another is 

with n objects, then we will get ‘mn’  pairs of objects, one is from the first 

cluster and another is from the second cluster. Thus, we get totally ‘mn’ 

distances. Now the distance between these two clusters is defined as the 

average (mean) of these ‘mn’ distances.    

 

4. Repeat steps 2 and 3 a total of N-1 times.(All objects will be in a single 

cluster at termination of the algorithm,.)  Record the identity of cluster that 

are merged and the levels(distances or similarities) at which the mergers 

take place. 

Nonhierarchical clustering methods 
Nonhierarchical clustering techniques are designed to groups items, rather than variables, 
into a collection of K clusters.  The number of clusters, K, may either be specified in 
advance or determined as part of the clustering procedure.  Because oa matrix of 
distances (similarities) does not have to be determined and the basic data do not have to 
be stored during the computer rum, nonhierarchical methods can be appled to much larger 
data sets than hierarchical techniques. 
 Nonhierarchical methods start from either (1) an initial partition of itms into 
groups or (2) an initial set of seed points, which will form the nuclei of clusters.  Good 
choice for starting configurations should be free of overt biases.  One way to star is to 
randomly select seed points from among the items or to randomly partition the items into 
initial groups. 
 In this section we discuss one of the more poplar nonhierarchical procedure, the 
K-means method. 
 
K-means method: 
MacQueen suggests the term K-means for describing his algorithm that assigns each item 
to the cluster having the nearest centroid (mean).  In its simplest version, the process is 
composed of these three steps. 

1. Partition the items into K initial clusters. 
2. Proceed through the list of items, assigning an item to the cluster whose centroid 

(mean) is nearest.  (Distance is usually computed using Euclidean distance with 
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either standardized or unstandardized observations.) Recalculate the centriod for 
the cluster receiving the new item and for the cluster losing the item. 

3. Repeat Step2 until now more reassingnments take place. 
 

Rather than starting with a partition of all items into K preliminary groups in Step 1, 
we could specify K initial centroid (seed points) and then proceed to Step. 
 The final assignment of items to clusters will be, to some extent, dependent upon 
the initial partition or the initial selection of seed points.  Experience suggests that 
most major changes in assignment occur with the first reallocation step. 
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                                                                       UNIT-1 

1. (2001) 

            (a) Define the generalized inverse of an m n×  matrix and derive four    

            important   properties. 

(b) How do you define the joint , conditional and marginal densities of  

      vectors of random variables. 

                                   (OR) 

(c) Explain and distinguish uncorrelated, orthogonal and independent  

       random vectors. 

(d) Define eigen values and eigen vectors. Establish their properties. 

(20002) 

(a) Define the generalized inverse of an m n×  matrix and indicate a  

method of obtaining the generalized inverse of a square matrix  

whose determinant is zero. 

(b) For a given random vectors X and Y, prove that  

(1) cov(AX,BY)=A[cov(X,Y)] B′  and  

(2) cov(X,Y)= [ ] ( )[ ( )]E XY E X E Y′ ′− . 

                               (OR) 

(c) Show that every matrix satisfies its own characteristic function. 

(d) If X is a 1p× vector of random variables with mean vector, θ  and 

Dispersion matrix, Σ  show that [ ] ( )E X AX tr A Aθ θ′ ′= Σ +   where 

                 A is a symmetric matrix of order p p× . 

            (2003) 

(a) Define non-singular multivariate normal (MVN) distribution and  

      obtain its characteristic function. 
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(b) Let  (1) (2) ~ ( , ).  If  X =(X ,X )pX N µ ′ ′′Σ , where (1) X ′ has K-components  

and  (2) X ′  has  (p-k) components and further and  µ Σ  are partitioned  

appropriately. Then find the conditional distribution of (1) (2) (2)X / X x= . 

                                                          (OR) 

(c) Let ~ ( , )pX N µ Σ and suppose that X is partitioned in the form   

     (1) (2)X=(X ,X )′  , where (1) (2)X : ( 1)  and  X : (( ) 1).q p q× − ×  Then   

     (1) (2)X  and  X  are statistically independent if and only if (1) (2)cov(X , X ) 0= . 

(d) Obtain the maximum likelihood estimators of the parameters of a MVN   

      distribution.   

(2004) 

(a) Define the multivariate normal distribution and obtain its characteristic   

function. 

(b) Define : 

(1) Marginal and  

(2) Conditional distributions  

Prove that the conditional distribution obtained from the multivariate 

normal distribution is normal. 

                                      (OR) 

(c) Show that if X is ( , )pN µ ξ , then the marginal distribution of any subset of       

      X is multivariate normal with mean. Variances and covariances obtained   

      by  taking proper components of µ  and ξ . 

(d) Let µ  and ξ  be the parameters of a multivariate normal distribution.   

      Assuming a random sample from this distribution, obtain the maximum   

      Likelihood. Estimate for µ  and ξ . 

            (2006) 
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(a) Define the characteristic function of a p-dimensional random variables.   

Establish its properties. 

(b) Find the covariance matrix fore the two random variables 1 2  and  XX    

when their joint probability function, 12 1 2( ,P x x ) is represented by the 

entries in the body of the following table: 

                               

                                          (OR) 

(c) Obtain the maximum likelihood estimators of the parameters of a   

      multivariate normal distribution. 

(d) Let X be 3( , )N µ ξ  with  

                             
4 1 0
1 3 0
0 0 2

 
 Σ =  
  

 

                   Are 1 2  and  XX  independent? What about 1 2( ,X )X  and 3X ? 

(Model paper) 

(a) Define the multivariate normal distribution and obtain its characteristic   

      function. 

(b) Prove that the conditional distribution obtained from the multivariate 

normal distribution is normal. 

                                    (OR) 
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(c) Show that if X is ( , )pN µ Σ  then the marginal distribution of any subset of 

X is multivariate normal with mean ,variances and co-variances obtained 

by taking proper components of µ  and Σ . 

(d) Let  µ  and ξ  be the parameters of a multivariate normal distribution . 

assuming a random sample from this distribution, obtain the maximum 

likelihood. Estimates for  µ  and Σ . 

(Model paper) 

(a) Define multivariate normal distribution and obtain its characteristic 

function. 

(b) Define marginal and conditional distributions. Prove that the conditional 

distribution obtained from the multivariate  normal distribution is also 

multivariate normal distribution. 

 

            (2007) 

            (a) Derive the density function of a p-variate normal distribution . 

            (b) Let X has  a trivariate normal distribution with ( ) 0E X = and variance-   

                 covariance matrix 
1/ 2 1/ 2 1/ 2
1/ 2 1 1/ 2

1/ 2 1/ 2 1

− 
 Σ = − − 
 − 

. Find the conditional   

                distribution of  1 2 2 3 3  given  X   and XX x x= = . 

           

                                                       (OR) 

(c) Obtain the characteristic function of multivariate normal distribution . 

(d) Derive the ML estimators of the mean vector and covariance matrix in the 

case of p-variate normal distribution.  

2. (2001) 

      (a) X is a  p-variate random vector having the distribution ( , )pN µ Σ  
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           where   is  (p 1)   and     is  (p p).µ × Σ ×  X is partitioned as    

          (1)
1

(2)

      where  X
X

X
X

 
=   
 

  is of  order ( 1)q× .   and   µ Σ  are also  

          conformably partitioned. Derive (1) the marginal distribution of  (1)X  

          and (2) the conditional  distribution of  (1)X  given (2) (2)X x= .    

            (b) Define the p-variate normal distribution with mean vector   andµ  

                dispersion matrix Σ . Derive three important properties of the multivariate 

                 normal distribution. 

                                                 (OR) 

            (c) In the p-variate normal case, show that the sample mean vector and the         

                 sample covariance matrix are independently distributed. 

           (d) Derive the M.L. estimators of the mean vector and the covariance matrix 

                 in the multivariate normal distribution ( , )pN µ Σ . 

           (2002) 

(a) Define multivariate normal distribution and obtain its characteristic     

      function. 

(b) If  p  is  N ( , )µ ΣX , prove that 1X X−′Σ  has a chi-square distribution with 

P degrees of freedom. 

                                 (OR) 

(c) State and prove a necessary and sufficient condition for     

        and   X BXX AX′ ′  to be independently distributed, given that X is        

     ( , )pN µ Σ . 

(d) Derive the sampling distribution of the sample correlation  coefficient  

                  ( )γ  when the population correlation  coefficient ( )ρ  is zero. 

            (2003) 
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(a) Define Hotelling’s 2T  and derive its probability density function. Explain   

      the uses of this distribution. 

(b) Discuss a test procedure for testing the equality of mean vectors of  two 

            MVN populations, assuming equal dispersion matrices. 

                                                   (OR) 

(c) stating the assumptions clearly , discuss the problem of  comparing several   

      multivariate normal population means. 

(e) Explain the following: 

(1) Wilks lambda criterion. 

(2) Need for simultaneous confidence intervals. 

            (2004) 

(a) Derive the null distribution of Hotelling’s 2T  statistic.  

(b) Show that Hotelling’s 2T  statistic can be used to test equality of means of 

corresponding variables in two multivariate normal populations having the 

same variance-covariance matrix. 

                                                          (OR) 

(c) Explain in detail the procedure of carrying out MANOVA of one way  

      classification.                                    

(d) Define simultaneous confidence regions and illustrate broad steps to obtain   

      the same. 

(2006) 

(a) Derive the null distribution of Hotelling’s 2T  statistic. 

(b) Explain in detail the likelihood ratio principle. 

                                            (OR) 

(c) Explain in detail the one way classification of multivariate data. Write the 

MANOVA table. 

(d) Discuss the Behern-Fisher problem. 
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(Model paper) 

(a) Derive the null distribution of Hotelling’s 2T  statistic. 

(b) Show that Hotelling’s 2T  statistic can be used to test the equality of means 

of corresponding varianles in two multivariate normal populations having 

the same variances-covariance matrix. 

                                              (OR) 

(c) Explain in detail the procedure of carrying out MANOVA of one way 

classification. 

(d) Define simultaneous confidence regions and illustrate broad steps to obtain 

the same.   

(Model paper) 

(a) Derive the MLEs of  the mean vector , µ  and the variance-covariance 

matrix , Σ   based on a random sample of size n draw from  the normal 

population ( , )pN µ Σ . 

(b) Show that the sample mean vector and sample  variance-covariance matrix 

obtained based on a random sample of size n from a normal populations 

( , )pN µ Σ  are independently distributed and also mention their 

distributions.  

(2007) 

(a) Define Hotelling’s 2T  statistic. What is its distribution? What are the 

applications of 2T ? Explain the relationship between Hotelling’s 2T  and 

Mahalnobis 2D . 

(b) Discuss a test procedure for testing the equality of mean vector of two 

multivariate normal populations having equal dispersion matrix. 

                                               (OR) 

(c) Explain MANOVA one way classification with an example. 

(d) Explain in detail the likelihood ratio principle.  

3. (a) How do you test for the goodness of fit of a linear model? 
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(b) What is path analysis? What purposes are served by it? 

                                     (OR) 

(c) What is multicollinearity? Discuss the methods of overcoming     

      multicollinearity . 

(d) Define autocorrelation . What are the consequences of the presence of    

      autocorrelation? 

(2002) 

(a) State and prove Gauss-Markoff theorem for a standard general linear   

model , 
u

1  K 1  n 1
Y X
n n k

β

× = × × × . 

(b) Explain the concept of hetroskedasticity and  describe a test procedure  

      for testing the same. 

                                       (OR) 

(c) Explain the concept of  multicolinearity and indicate the consequences  

      of  OLS estimation of the parameters in the presences of collinearity. 

(d) Explain the concept of auto-correlation and describe  Durbin-Watson 

d-statistic for detecting the same. 

            (2003) 

 

(a) What do you understand by “ dimension reduction”? describe a technique   

       that is used for this purpose. 

(b) Define: 

(1) Canonical variables and 

(2) Canonical correlation 

Explain how do you estimate canonical correlation under the normality 

assumption. 

                                    (OR) 
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(c) What are various properties of principal components? Show that principal   

Components are all uncorrelated. 

(d) Prove that canonical correlations are invariant under non-singular  

      transformations and any function of the variance-covariance matrix that is   

      invariant is a function of the canonical correlations. 

(2004) 

(a) Describe the principal components analysis. 

(b) What are canonical variates and canonical correlations? How do you 

compute them?        

                                      (OR) 

(c) Define principal components and discuss their use in statistical analysis. If 

( , )pN µ ξ  then explain how you would compute the various principals 

components. 

(d) Show that the canonical correlations are invariant under non-singular 

linear transformations of (1) (2),X X variables of the form (1)

( 1)( )
  X

pp p
C

××
 and 

(2)

( ) ( 1)
  X

q q p
D
× ×

. 

(2006) 

(a) What is principal component analysis? How are they useful? 

(b) Suppose the random variables 1 2,XX  and 3X  have the covariance matrix 

                      
1 2 0
2 5 0

0 0 2

− 
 Σ = − 
  

 

                       The corresponding eigen values are 5.8285,2.00,0.1716. obtain  

       the three principal components and their variances. 

                                             (OR) 

 

(c) What are canonical variables? Explain how these are useful in the analysis   
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      of multivariate data. 

(d) For the following covariance matrix  

                                         

                                  

                Obtain the first pair of canonical variables and the canonical 

correlation between them. 

(Model paper) 

(a) Describe the principle component analysis. 

(b) What are canonical variates and canonical correlations? How do you 

compute them. 

                                      (OR) 

(c) Define principle components and discuss their uses in statistical analysis . 

If ( , )pN µ Σ  then explain how you would compute the various principle 

components. 

(d) Show that canonical correlations are invariant under non-singular 

transformations of (1) (2),X X  variables of the form (1) (2)

( 1) ( ) ( 1)( )
 X   X
p q q pp p

C D
× × ××

. 

(Model paper) 

(a) Derive the null distribution of  Hotelling’s 2T  statistic. 

(b) If X is ( , )p iN µ Σ , prove that 1X X−′Σ  has a chi-square distribution with p 

degrees of freedom . 

(2007) 

(a) What do you mean by dimension reduction? Discribe a technique that is 

used for this purpose. 

(b) Let the random variables 1 2 3, ,X X X have the covariance matrix              
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1 2 0
2 5 0

0 0 2

− 
 Σ = − 
  

 

      Obtain the three principal components. 

                                 (OR) 

(c) Define canonical variables and canonical correlations. Explain how do you 

estimate canonical correlation under the normality assumption. 

(d) Show that the canonical correlations are invariant under non-singular 

linear transformations of (1) (2),X X variables of the form (1)
1,p p pC X× ×  and 

(2)
1q q qD X× × . 

                      

4. (2001) 

            (a) Explain principal component analysis. Give the uses of principal    

            components in the factor analysis. 

      (b) Describe cluster analysis and explain its uses. 

                                        (OR) 

      (c) Explain canonical correlations. Show that the multiple correlation     

           coefficient  is a special case of canonical correlation coefficient. How will    

           you obtain the latter? 

     (d) What are canonical variables? Explain how these are useful in the analysis    

           of  multivariate data. 

      (2002) 

(a) Define principal components and explain the procedure of obtaining them. 

(b) What are canonical variates and canonical correlations? How do you 

compute them? 

                                   (OR) 

(c) distinguish between factor analysis and principal component analysis. 
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(d) Given two sets of variates (1) (2)&X X , show that the canonical correlation 

are invariant under non-singular linear transformations of the form  

       (1) (1) (2) (2),Y AX Y BX= =  where A and B are non-singular matrices. 

(2003) 

(a) Let ( ) ~ ( , ), 1, 2......i p if x N iµ Σ = . Derive the optimal classification rule. 

Also obtain the probabilities of misclassification. 

(b) Describe the following hierarchical clustering methods: 

(1) single linkage method.(SLINK) 

(2) complete linkage method (CLINK) 

                                (OR) 

(c) Discuss Fisher’s method for discrimination among several populations. 

(d) Explain the concept of clustering. What is a Dendogram? The following of 

sample correlations for five stocks: 

                   

1
.58 1

 .51 .60 1
.39 .39 .44 1
.46 .32 .43 .52 1

D

 
 
 
 =
 
 
  

 

Treating the sample correlation coefficients as similarity measures, cluster 

analyze  the stocks using the nearest neighbour method and also draw the 

dendogram. 

 

(2004) 

(a) Explain the problem of classification and derive fishers linear discriminant   

      function. 

(b) Explain the importance of cluster analysis and describe of  hierarchial    

      clustering. 

                                       (OR) 
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(c) Explain the problem of classification into one of the two known  

      multivariate normal populations. 

(d) Describe the method of classification of an individual into one of several  

      p-variate normal populations having a common dispersion matrix. ξ    

      where all the parameters are known. 

(2006) 

(a) What is meant by discriminant analysis? Establish the relationship 

between  Fishers discriminant function and Mahalnobi’s 2D statistic. 

(b) Explain the importance of cluster analysis and describe the Hierarchial 

method of clustering. 

                                       (OR) 

(c) Explain Fiher’s method of discriminating between two multivariate 

populations. 

(d) A researcher has enough data available to estimate the density functions  

1( )f x  and 2 ( )f x  associated with populations 1π  and 2π  respectively. 

Suppose C(2/1)=5 units,C(1/2)=10 units and it is known that about 20% of 

all objects (for which the measurement  x  can be recorded) belonging 2π . 

                       Suppose the density function evaluated at a new observation 0x    

     give   1 0( )f x =0.3 and 2 0( )f x =0.4. Do you classify the new observation as     

    1π  and 2π  . 

(Model paper) 

(a) Explain the problem of classification and derive Fishers linear 

discriminant function. 

(b) Let ( ) ~ ( , )i p if X N µ Σ ,i=1,2,…. . Derive the optimal classification rule 

also obtain the probabilities of misclassification. 

(c) Explain the problem of classification into one of the known multivariate 

normal populations. 
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(d) Describe the method of classification of an individual in to one of several 

p-variate populations having a common dispersion matrix Σ  where all the 

parameters are known . 

(Model paper) 

(a) Stating the assumptions clearly , discuss the problem of comparing several 

multivariate normal population means. 

(b) Explain the following: 

(1) Likelihood ratio test 

(2) Need for simultaneous confidence intervals. 

(2007) 

(a) Explain the problem of classification and derive Fisher’s linear 

discriminant  function. 

(b) Explain the problem of classification into one of the two known 

multivariate normal populations.  

                                            (OR) 

(c) What are the standards of good classification? Describe a linear 

discriminant function as a tool  for classification. 

(d) Describe the method of classification of an individual into one of several 

p-variate normal populations having a common dispersion matrix when the 

parameters are known. 

5. (2001) 

      (a) What is the problem of classification and what are the standards of good    

           classification? 

      (b) Discuss the problem of classification into one of two known multivariate  

            normal populations. 

                                        (OR) 

      (c) Explain the concept of discriminant function and discuss,with an example ,     

            its use in discriminatory analysis. 
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(d)When do you apply cluster analysis ? Discuss  single linkage method with    

     an example. 

(2002) 

(a) Explain the problem of classification into one of the two known    

                  multivariate normal populations. 

(b) Distinguish between cluster analysis and discriminant analysis. 

                                  (OR) 

(c) Describe the method of classification of an individual into one of several  

      p-variate  normal populations having a common dispersion  matrix,Σ      

      where all the parameters are known. 

(d) Explain the importance of cluster analysis and describe the method of    

Hierarchical clustering. 

 


