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Classical Mechanics Part
Unit -I
Lesson I

MECHANCS OF SYSTEM OF PARTICLES
Objective: In this lesson we learn about

l) Principles of mechanics of particles

2) Conservation laws
3) Constraints '

Structure: \'
l.l Mechanics of a Particle
1.2 Conservation of energY

1.3 Mechanics of system of particles

1.4 conservation of linear momentum for system of particles

1.5 To prove conservation of total Energy

1.6 Constraints
1.7 Types of constraints.

Introduction: Mechanics is the study of motion of physical bodies. classical mechanics deals with

the situations involving all bodies we come across in our daily life' However.when the particles are

too small or when tr,."v ur. travelling with velocities comparable to that of light' it was found that

normal classical laws io not hold gooU *d we have to apply other types of mechanics like quantum

mechanics and relativistic mechanics. Even systems for which quantum mechanics holds, they are

modeled according to classical mechanics ani transformed to quantum mechanical form for further

analysis. The progress of various sciences like astronautics, stellar dynamics, robotics, aerodynamics,

and various branches o] engineering still depend heavily on the foundation of classical mechanics'

Hence it is very important for every student of physics io have considerable knowledge in classical

mechanics and how the classical ideas were extended into the realm of quantum mechanics'

l.l : Mechanics of a Particle:

The position of any particle can be represented with three coordinates like x,y,z called Cartesian coordinates

When the particle is in motion its position-cfi*g"r *ittr ti*". The general disPlacement can be resolved intc

components utong *,f unJ, u*"r. A, *. already"krgw, the rate of Jhange of displacem^ent with time is callec

velocity. lf the particle possesses a mass m it is said to possess momentum' Newton formulated the laws o

motion for a particle in motion. These laws are known'lsNewton's taws of motion are stated as

First law: A body continues in its state of rest or uniform motion, unless not disturbed by

someextemalinfluence.ltisa|soca|ledLawoflnertia.
Second law: The time-rate of change of momentum is proportional to the impressed force' It

is also called Law of Force'

Third law: To every action there is always equal and opposite reaction' This is known as

Law of action and reaction'
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: From Newton's second law of motion.

n=!1^r\=! ...(l)dt' ' dt

When the total force F is zero, 11r.n 4P.=g, so the linear momentum is conserved ie. When a particle is'dt
moving in zero force field its linear momentum remains as constant. This is called taw of Conservation of
linear momentum

A particle motion need not be confined to ar{rection. The particles may be revolving around a centre of
attmction (Central force field). In this case also [he particle possess momentum, but, as the direction may
change continuously, it is called angular momentum.

Consider a particle of mass om' and linear momentum p at position vector r relative to the origin .O', of
an inertial frame of reference. The moment of momentum is defined as the angular momentum. ... L = r x p
.'. Torque about the origin 'O' is N = r x F

.'. N=rrdV-!' ' dr -

. dt d;lrxl)- dt 
xP

= 41"rp)-(rr, 
")dt

.. N=4(r"o)=4dt' dt
So the rate of change of angular momentum is equal to the Torque acting on the particle.

If the total torque N=0, then *=o=L= constant. Hence the angular momentum is conserved in the'dt
absence of an extemal torque. This is called the law of Conservation of angutar momentum

1.2 Conservation of energs/: A force, which is derivable from scalar potential enerry function in the manner
F = - AV then it is called conservative. If the forces, which are conservative act upon the particle, then

the total enerry ofthe particle (rc+pE) is conserved.
Under the action of such force let the particle moves from position I to position 2. Then workdone by the
particle be,

e pdo
tt/,,= lF.dr= I;.0"

But p=mi and dr=idt

,. w,, = t4(*u).t at'' Jr dt'
ed(1 \

= | --:-l .mi, ldt=Tr_T, ...(3)rt dt\2 )
Where Tt = KE of the particle at the position l. T, = K6 of the particle at the position 2.
We have F=- Vv

e2,. W,= 
J, - YV .d r

12 dV F2

= J, - io' =- l,dv =vt -vz "'(4)
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from (3) &$): Tz-Tt=Vt-Vz =71+l/t=Tray,
> T +r, = constant. So the total energy of the particle is conserved even when it is moving in a conservative

force field.
Till now we dealt with the motion of a single particle. But, in real situafions we have to deal with not a single

particle but a system of particles either independent or interacting with one another and moving under some

system constraints. We now try to understand the relevant principles.

l.3.Mechanics of system of particles:

Consider a system of 'n' particles. The equation of motion interms of Newton's second law can be easily

written as,

n,Ni =it,=ry +tF/ (:i=1,2,3....N) ...(l)
llt

Fju) =.*,..a1 force acting on l'' particle.

F/ = internal force on the i"' particle due to 7'' particle.

All the particles of the system exert forces on one another. So the intemal force on i'h particle must be the

sumofforcesduetoal|otherpartic|esrcfr,jexctudingtheterm,l=i,(Becausefromthedefinition
/=t

4'=0)
Form Newton's third law the force f/ must be equal and opposite in direction to the force Fj '

:. F,j = F] "'(2)
Hence the intemal forces occur in pairs and act along the line joiningthe two particles.

By considering all the particles of ihe system, the equation of motion of the total systern.is,

sr d'ta
)-Pt=--1.2 Lm,r 'iu,i

=lF(,) *in, =lrFG) ...(3)

,. ' , 
trt 

, . 1

we have }tr,' =ZP;=iIlf,' +FjJ=g
i,i i,i o i,i

(r )
| )means i=jterm isexcluded 

I

\i'j )

Let R be the position vector of center of mass.
sr-s-
Lm,r , Lm,r ,

n=-1;-- =-L*' M
i

Where , =1^, is the total mass of the system

;2t.: (3) a 7ua!!!=lnG)=e('t "'(4)
dt'
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Total linear ry;gmentum of $e qlstem

P=lm 'i 'i

= {y* ,i ,=Mir ...(s)dt? '

1.4: Conservation of angular momentum for system of particles:

The total angular momentum of the system of particles L=|(., 
"R,)i

. #=fr>t",*p,)=I(", xp,)+(i, xp,)l

=l(.,'n,) (.'t,lp, =o)

I

=+ O=T", xrj")+lr, "r/ ...(7)

The second term is due to the sum of intemal torques. lf the interacting forces are Newtonian in natuie, the
second term vanishes.

When there is no external torque NG) =0.

'. ff=o+ L= constant'

This is the law of conservation of angular momentum for a system of particles.

1.5. The faw of conservation of total energy: For a system of particles V =yG) *yi"t ...(10)
and also, F,(")=-v, vG) and F,'nt=-V,lr'n,

...(l t)
Here ,/int is the intemal pE function.

lll
vi"t =Zyii *>,v j (", - r, l) = I n,, {", - ", l)jjj

I,
=2, jft, -,,1)= n1",

i

rotat PE ,^' =1r'"' = +Uvii,nt -rtl)

The factor I it tpf..n because, while summing the mutual potential energies, a pair of particles i, j appear

twice.



Proof:

Consider a system of particles in which i'h particle is displaced throrryh dtt by the force f,. Thcn the

amount of work done on the particle is,r)
m, ti.dt,=F,.dr, =l.i't+fri l.ar, ...(12)(. 7)

But dr, =ii.dt .

ao

... (12) ? n i r ii,dt=F!.an +iP/.a?,

Hence for a system of Particles,
t /t \ |

+tt l*;? lar=f ri"t.ar, +lri .dr, ..-(r3')
dt?\z ") ', i.i

l.lt\

consider lr, 
o" =iIhl .dr,+Fi.*r)...tr+l

For the forces obeying Newton's third law, Fl =-Fi
,? t

Ano also, v,i Jv,i (", - t,l) dnd v,i =Y'

:. Ff ---v ivii ,F'i =-Y tV,r and r, =ri -ti

. tri --y v i =-3-(v.,1=-' 
6 v,rfgLl','t ar.r,, fu,,i'\&,J

(s, '\= -Y,it,,i | *(r -r,)l=-Y uv,' ...(15)- \tri , 
.r^ \

wehave Fi=- Y |r,t =-!(r,'\=-ry-l+tld1 t,'' oru t4,,l ,,

f ^ ,l
= -Y, iVii I *b' -r t)l=Y,,V,rLni J

...(16)

Substituting (15), (16) in (la) i

il;;'.1'ilr:,,,irh,+v,,v;0") : : ':l
i,j - i,.i ,i

,I
=-|lv,,v,t .dF,-r,)

- i,i

=-li.orn i' .d",.i ...(17)
2/-/ u ' t't

t,J

Ifthe external force is also conserved,

FiQ\ =-o,r,*") ..'(18)

from the equation (17) & ( I B) we can write ( I 3) as'
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*+(l- ,?)o 
1o,r,".*,-+4",iv,i dr,

on integratio " 1l^ ,;: =-1rt -i>' (r +constant

+ 1:- ,42 +)v, .+*/,'=constant

+ Z+Z=constant

*r,"re r=f vol*Lft,i
?' 2,..,

...(le)

V is the sum of extemal and intemal potential energies ofthe system. Eq. (19) is the conservation of energr.

1.6 Constraints :

A motion, which cannot proceed arbitrarily in any manner, is called constrained motion. Motion along a
specified path is an example of constrained motion. Depending on the nature of the motion of particle, ihe
coordinates are considered to describe the motion. lf the particle is free to move in space, then three
coordinates are needed to describe its motion. Thus imposing constraints on a rnechanital system is to
simpliff the configuration of the system.
Example l: Consider a particle moving in space. It requires three coordinates to determine its position at any
instant. If its movement is restrictod on the surface of a sphere, there exists a relation between its coordinatei
8S'

,? + y2 + 22 =a2 4r=g. ...(t )
Eqn. ( I ) is the eqn. of a sphere with its center at origin; By using the equations of constrainr a coordinate can
be eliminated from the set\of three coordinates. Instead of Cartesian coordinates if we express the problem
interms of spherical polar coordinates (r, 0 and /), thcn the two coordinates 0 and / will be sufficient to
describe the position of tl;eparticle oompletely
Example 2: Consider {fti simple pendulum whose motion'is confined in the vertical plane. To locate the
position dthe bob in mogn.only two coordinatqs are required. Let the motion of the bob taken placed under
a constraint that the distance '/' of the bob is to remain same at all time. This condition imposed by the
constraintcan be expressed in the form of ageqution either between r andy or r and 0 .

.'. Constraints 12 * yz =12, ot r = I ..- (2)
The eqn (2) is used to rpduce the number of coordinatcs, which other wise would have been two.
Example 3. Consider a rigid body. It is defined as a system of particles in which the relative distance of the

constituent particles are fixed:and cannot vary with time. tn this case constraints are expressed by equations
of the formrr=C,r. In &is r,r denote the distance betrreen i'h and 7'n particles and C, are constants. If
r,(*,'y,,2,)and ri(*1,11.t 1| arethe coordinates w.r.t. the origin, then the conditions can be expressed as,

6, - *,)' *(y, - y,)' *(r, * r,f =(cuY ...(3)
In gened for a system of N particles,

.f(xryrzr: xzy2z2:x,ynzn:t)=0 ...(4)



1.7: Types of constraints:

1) Holonomic constraints 2) Non-Holonomic constraints

l. Holonomic Constraints: Constraints that can be

7(x,Y,z, x 2,Y2,2 2........x,YnT, . t) = o
expressed tn

wherc time 'r' may occur in case of constraints which may vary with time.

Ex : Let us consider the motion of a simple pendulum.confined to move in the vertical plane. We would need

onlytwoco-ordinates(contain (x,v,zi orpolarco-ordinates (r,d) withtttneltothepointof suspension

with'o' as)
To locate the position of the bob in motion, however motion of the bob is not free but takes place under a

constraint that the distance ,/' or the bob r to remain the same from 'o' at alt times. This condition imposed

bythe constraint can be expressed in the form ofan equation either by X and I (or) r and d

x2 +Y2 = 12

r = I ...(l)
ln plane polar.co-ordinates the equation looks simpler again one co-ordinate either X or Y in Cartesian co-

ordinates, r (or) d in polar co-ordinates would be sufficient to describe the motion. Now that we have

utilized eq. (l jto reduceihe number of co-ordinates which otherwise would have been two.

offormthe

2. Non-Hofonomic Constraints z

constraints, which are not expressible in the form, 7(X prr,/r, x 2,Y2,22......x ,Y,2, . t) = g

are termed as non-holonomic constraints.

The motion or trre partilt. pln""a on the sudace of sphere under the action of gravitational force is bound by

non-holonomic constraints, for it can be expressed as an inequality.

,z-o2 >o
Equality sigrr holds until the particle rolls

,2 -a2 ro
on the sphere and when it leaves the sphere we must have

Ex : The constraints involved in the motion of the molegules in a gas container are non-holononiic'

Scleronomic & Rheonomic Constraints:

If the constraints are independent of time they are termed as scleronomic but if they contain time explicitly

they are called Rheonomic.
A bead sliding on a moving wire is an example of Rheonomic constraint

Force ofconstraints: I

constraints not only,.interferd with the solution or'the problems in that the co-ordinates are no longer

independent but they ai always associated tsthe forces by virtue of which they reshict the motion of the

system, such forces ;;i"#J ; fbr.* of constraints. wi generally formulate the laws of mechanics in a

way tfrat the work done by the forces of constraints is zero, when the system is in motion'

Forces of constrains in the case of a bead sliding.on a wire is the reaction by the wireexerted on the bead at

each point. The surface of sphere exerts a reacti-on force on the paxticle normally at each point'

Summary: For a particle moving in a force free space the linear momentum and energy are'

conserved. When a particle is m6ving in conseiryative force field linear momentum, angular
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momentum, and total energy of the'system are conserved. These conservation laws frold good even forp
system of particles moving in a conservative force field. ln general in a multi-particle system a particle may:
have specific relation ship with its neighbors and so cannot move arbitrarily. We say that its motion is :a
constrained. The relations, which restrict the motion of particlcs, are called constraints. The constraints ar€
divided in to holonomous and non-holonomous types. Non-holonomous conshaints are further divided into'
scleronomous and rheonomous constraints. Constraints arg"associated with forceqcalled constraint forces.
However the laws of mechanics are so formulated so thatthe work done by the, furccs of constraints are zero.

Key Words: .. :

Angular momentum, linear momentum, total enerS/ (T+V), and constraints, Holonomic, Non-holongmlc
constraints, forces ofconstraints. :

Self Assessment Questions:
l.What are constraints? Give specific examples to explain the forces of constraints.
2.Prove the laws of conservation of linear momentum, angular momentum and enerry for a system of

particles.
3.State and prove work-enerry theorcm.

Reference books:
l.Classical Mechanics: H.Goldstein
2.Mechanics: Simon
3.Mechanics: Gupta, Kumar and Sharma.
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Cla*sical Mechanics Part
Unit I
LesSon 2

Lagt angi an F orfiul ati on

Objective: To leam about .. t _,-_:
i+) ff,. D,Alembert's Principle and derivation of Lagrangian equation of motion from it

2) The concept of virtual displacement and virtual work'

3) Hamilton,s variational principle and deriving Hamilton's canonical equations of motion'

4) Conservation theorems'

5j Rrinciple of Least Action'

Structure:
2. I D'Alembert's PrinciPle

2.2 Lagnnge' s equations
2.3 Virtual displacement and work
2.4 Principle of virtual work
2.5 Hamilton's aPProach,

2.6 Hamiltons variational principle

2,7 Canonical equations of motion
2.8 Conservation theorems
2.9 Principle of least action.

2. I : D'Alembert's PrinciPle

This method is based on the principle of virtual work. The system is subjected to an infinitesimal

displacement .onrirt ni *itrr trre ro*r, -o *ntttints imposed on the system at the-given instant 't'' This

change in the confrgur4tion o{ the system is not associatiO *ittt a change in time (i'e') there is no actual

displacement during which forces and consfaints may change and hence 111" displacement is termed as virtual

displacement.
Now suppose the system is in equilibrium (i.e.) the total force f, on every particle is zero' Then work done

by this force in a smat| virtrra| disp|acement dr, wi|l a|so vanish i.e.,

I, 4'6r' =s

Let this total force be expressed as sum of applied force F,'' and forces of constraints , then above equation

takes the form

l.r;.ar,+ >,4.6r,=s
we now consider the systems for which the virtual work of the forces of constraints is zero. An example of

such a system can be rrla n mind is trrut. purti.ie i.e. constrained to move on a smooth surface' so that the

forces of consmints being r to the surfaJ;iril "il; Ji.ptacement is tangentiar to it. Then virt'al wbrk

done by forces ofconstraints is zero. Thus

I F{ 6r, =g ...(l)



This equation' is termed as pli-nciple of virtual work. To interpret the equilibrium of the system D,Alembert
adopted an idea of a reversed force. D'Alembert conceived that a system would remain in equilibrium under
the action ofa force equal to the actual force 4.
{ plus reversed affective force

P, thus 4.F4)= o (or) F1 - i,, =o
Thus the principle of virtual work takes the form

I h -P,|6r,=s
i

Again writing Fi = Fio * .fi
Z (r,'-p,)ar,+l f,.6r, =o
Dealing with the systqm for which the virtual work of the forces of consttaints is zero. We writeI h"-i)a', =s

i
(Forre of constraints is no more in picture)
It is better to drop subscript 'a' . Thus

I e-c)'o''=o "'(2)i

which is called D'Alembert's principle. To satisf, eq. (2) we can't equate the coefficients of 6 r, to znro.
since dr, are not independent of each other and hence-it is ntcessary to transform dr, changes into the

changes of G ' co-ordinates Q, which are independent of eroh other. :Ihe coefficient of every 6qr will then

equated to zero.

2.2: Lagrange's Eq uation from D'Alem bert,s principle:

The co-ordinate.transformation eq,s are
li = fi14r,4r,.......q,, i) ...(l)

sothat df 
= 

a'i 4, * or, del, * ar. dt
dt 0q, dt 0q, dt """" At dt

...(3)

Further infinitesimal dispracement-6 ri canbe connected with dq, as

dr,=1.fu,-.6s,*qtat' 7oq, ar d-'
But last term is zero since in virtual displace'ment only co-ordinate displacement is considered and not that oftime.

"' 6,, =29aq,' Taqi-"
Now we write eq (2) as

Ie-c)6', =s
,

, =y,#q,**,
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it is not

dq, must have

t F fut6a,-I ir,&, 6a, =0A 'oQi 't 7 'aqi 't

wedenne 1r,h =O,

(The components of generalized force)
As discussed under generalized force q's need not have dimensions of length and similarly

nocessary for the Q 's to have the dimensions of force. But it is necessary that the product Q
the dimensions of work. Thus above eq. takes the form

Ze,6q,-I4 l'+l 6q i =o ...(4)j ii'laqi) "
Let us evaluate the second term ofeq. (4)

Er$)6ei 4^,,,(h)',,
=>{ +( *,,, *)-,,,, 4( *)l o o,Agtl"oq,) "dt\aqttl

=>{+(*,r,*)-*r,+(*]}ur, (s)
?1at1 ''oqi) "dt\q,L

Further

t( s'\ =t i-( s-ls'.9 (Y)s
"luq, )- 

+ Erl% ) * - * laq, )at

=y o'r' 
d. * o"'

? 0q*Aqt'. Atbq,

=r3-(g-. , a4)

? aqilaqrqr. a, )

=+(*)=#* (6)

Also differentiating eq. (3) write 4 i we gilt

Y=Y ...(7)oqi oqi

Putting eq. (6) and (7) ineq. (5), we get

no(6)", = nl** r,(t)- ^ r,[#J] 
", 

=rl*l,t(>.i', *' )] ;rl ; - ri)],,,
With this substitution eq. (4) becomes
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4n, 
o o, 4l*,(#)' #fo o, = o

Where tor l.!m,V,' 'T' is written since it rcpresents the toal K.E. of the system furtherH,2

,il;

rl+fgl -{-n,16q, =o
?La\aq, ) 0qt -'J- "

Since the constaints are holomonic.
ey are.independent of each other and hence to satis$ above eq. the coefficient of each d'q,

vanish (i.e.)
f / \ ^_']
lraf 'r ]- {l = n, ...(s)
l? ar\aa, ) aqi ) -!

As 'l' fiom I to nthere will be 'N' such second order eq's.

' :'li 
'

ri a''

t

should separately
' ,a.,

:iri r

. 1 t-,.
.rilr

23:Vlrtual Dbplacement

Any imagtnary displacement, which is considered with the constrained relation at any given instant (The real
time doesn't change) is, called'virtual displacement. l

Virtual work:
Work done by the forces due to virtual displacement is called virnral work.
Virtnal work dlr=f ,F, 5 r,

Here F, = Frkl + -f. . !

Where .{'is applied fotce and I is forcbs of conshaints

'5r,' is displacement of position co-ordinate only
It does not involve variation of time

6 r, =5 7, (qr,q, ......qr)

2.il Principle of virtuol work :

Suppose the system is in equilibrium the rcsultant force on any particle vanishes
(i.e.) 4 = o for all values of i'.
Now virtual work

5r, =2, F,dr, =g

Z' '' 
6r'= g 

, ,.t

I, 4kl dr, +1, .f,6 ri = o

If the virtual work done by the force of constaints is zero;

fi.e.) I,l 6 r, = 0 then vinral work done by the applied force on a system in equilibrium state vanishes.



(i.e.) dw, = I, rJ') 6r, = s

The necessary condition for state equilibrium is that the virtual work done by all the constrained forces

vanishes. This is called the principle of virtual work.

L 5 Hamiltonian APProach

ln the Lagrangian formulation, the equations of motion for a system iue obtained in terms of generalized

coordinates and generalized vilocitier. Ttt se equatiols of motion form a set of second order differential

equations. Hamilion pffisea an altemative formutation by using generalized coordinates and generalized

mdnenta. This formulation results in two sets of first orderdifferential'equations. Both the formulations are

identical, but the Hamiltonian fnrmulation is more fundamental to the foundations of statistical and quantum

mechanics. This formulation is particularly useful when some of the generalized momenta are the constants of

motion.

Hamiltonian observed ambiguity of Lagrangian function for which jt consists of derivative co-ordinates

Ur);;;;;-ri;ve co-ordinates-are not given iiluat status (or) equal flooding.''Some co-ordinates are not

derivative co-ordinates and some other co-ordinates arc underivative co-ordinates'

Hamiltonian simply place momenta co-ordinate in the case of ril co-ordinate and the entire co-ordinates are

given equal status. The new function would be written as Hlq,,P,,t)

H(q t,pi , t) Hamiltonian quantity is nothing but energr quantlty and it is sum of K,E and P'E

H=T+V
According to Hamiltonian approach if any particlg moY.es in free sp-ace req.uiq '6" co-ordinates (3 

-are

Gcneralized co-ordinates and rest of '3' are mor.nta co,o(inates). If iN' particle body moves in the free

space it requires 6N co-ordinates. out of '6N' co-ordinate)3N are G. co-ordinates and remainin$ 3N are

momenta co-ordinates:-Th; N'farticle bo$y reduced to single particle knowl as system point. This system

p6il; itun.t ttoough '6N' diminsional siice. Then the space is known as phase space'

2.6 Hamilton variational principle

The principle states that the integral l'v -\ot shall have a stationary value (extremum). where I is
-fl

the K.E of the mechanical system. It is a function of position co-ordinates and their derivatives. V is the

p.E. of the mechanical ,yrt"r, it is a function of co-oidinates only. Such'a system for which / is purely a

function of co-ordinates is called conservative system'

Shtement : Hamilton's principle for cgnservative system is stated as follows' L

The motion ofthe system fromtime'1,' totime l, is such thatthe line integal 
i:.

l2

t = lta where
J
tl

L=T -V is an extremum for the path of motion

Deduction: Let us consider a conservative system of particles employing the generalized co-ordinates' The

#s"i;; be written as
lz-
fi-l \,/ \r

lVlo 1'e t1-v\e 1Yt r

tl
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.'. According to Hamilton's principle we have
,J

a IV(q,,4)-v(q,)la' = o
tl

=,ElE d t, + ff d a,)-# o o,],, =o

=+ Ee #)tr,*.',8#64id, =o

=',8(#_ #),,, *.'!I# ftb n )a, = o

Integrating by parts the second term we get

r)
*'Ir ( L 

#)6q, d, . t4#d q, li,t 
:,ni:|Lla n,a, = o1,7@,' . .,. 

eq,)
since in such a variation there is no co-ordinate variation at end points,

d q,li: = o

Hence eq. Reduces to

,nE #)5 
q' d'l nr'Ha t' a'l = o

'h[*r 
- +-+t'+l] 6q, dt = oI,iLaq, aci at \ati )l - "' .'

Since each 5q, are independent of each other, the coefficient of every d'qrshoutd be equated to zero to
satisfy above equafion.

I u, av , [gr]l= o

Lr, 
- t% - Eluq, ))

f+t'+l -*e-nil =o
Ldt\aq,) asj'- ')

Part now for conservative systems ' ,z' is not a function of velocity , 

4 ; ' but only of co-ordinates

l+($z.'l-uq-nll =o
Ldt( a|i ) aq, I

Here we introduce the concept of scalar function catled Lagrangian 'r' for a conservative system and is equaln (r -V) thtu the above equation then takes the form

l4 *\_&l 
=o

La@)- aqiJ

Thus set of eq's. is called Lagrangian eqs.of motion.
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2.7 Hamilton's canonical equations of motion

In Hamiltonian postulation we provide generalized momenta, an independent status placing it on equal

footing with the G.co.ordinates. Hamiltonian is then to be regarded in general as a function of the position co-

ordinates ei,themomenta P, andthe time't' (i.e')

11 = lq ,, r,,t)
The differential of 'H' gives

dH =r.yaq, *7.*ar, + {at ...(l)
?0q,"" aAP' ' at

Further '//' is defined as

n=Lpi di-L
j

So that

an =Zq, ar, *lr,aoi -dL ...(2)
l

But Lagrangian is- t= Llqi,4i,t)
So that

dL =r'+' -' oL " aL

Tori't.4fraei 
+;a

...(3)
Putting the value of dl from eq. (3) in eq. (2)' we get

dH =Zd, *, *Zp, *, - 4#*, -\hat, -ffa,

' '(4)

Recogrising + = P, and + = i', andputtingthese in eq' (4)' we get
- -d?i " 41

a, =24,ar, *lr,ao, -ZF,&,-ZP,at, -ff*
JJJJ

* =|;4, e, -ZF, a, -ffa "'(5)
ji

Comparing coefiicients in eq. (5) and eq. (l)' we get

. aH Iqi=E 
I-'t | ...(6)

b =-yl. t aqtl
AL AH-- = - 

"'Q)At At

eq.(6) is known as Hamilton's canonical eqs' of motion'
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2.E Conservation Theorems
In many problems a number of first integrals of the equations of motion can be obtained immediately; by

this w"e mean relations of the.type

f(qrqr.,.........4r,q2,...........,1) = Constant, which are first-order differential equations.

$onsider as an example a system of mass points under the influence of forces derived from potentials
dependent on positiOn only. Then

+={-%=+=*r!.,(ri +i,i + zi)aii aii aii 0*, a*i 2

: =frt it = pu, ----(l)
which is the .r component of the linear momentum associated with the rth particle. This result suggests an
obvious extension to the concept of momenturn. The generalized momentum associated with the coordinate
ey shall be defined as

nt--L
aQ1

The terms canonical momentum or conjugate momentum are often also used for p, . lf 4 i is not a Cartesian

coordinate, 97 does not necessarily have the dimensions of a tinear momentum. If there is a velocity-

Spendent potential,_ then even with a Cartesian coordinate Q 1 the associated generalized momentum will not

be identical with the usual mechanical momentum. Thus is the case of a group of particles in the
eloctromagnetic field the Lagrangian is

' r=I l^, r,' -Zq,0G) * Itnft,) i -----(2)?2
(s, here denotes "r-r,,?:;:*:; momentum conjugate to .r, is

aL n.y'
P,,=t = ili ii *,7, ----(3)

that is, mechanical momentum plus an additionalterms.
lf the Lagrangian of a system does not contain a given coordinate c; (although it may contain the

conesponding velocity ,i; ), then the coordinate is said to be cyclic or ignorable. The Lagrange equation of
motion,

dAL AL
;:-;-=v'ar oqi dli

Fduces, for a cyclic coordinate, to
d AL ^ dP, -i uil=o ='t =o'

which means that py = coosttnt. 
-{4)Hence we can state as a general conservation theorem that the generalized momentum conjugate to a cyclic

ooordinate is conserved
Consider fint a generalized coordinate q j, for which a change 4; represents a translation of the system

as a whole in some given direction. An example would be one of the Cartesian coordinates qf the center of
mass of the system. Then clearly q, cannot appear in ?", for velocities are not affected by a shift in the

brigin, and therefore the partial derivative of I with rcspect to ql must be zero. Further we will assume

;
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conservative systems for which I/ is not a function of the velocities, so as to eliminate such anomalies as

electromagretic forces. The Lagrange equation of motion for a coordinate so defined then reduces to

d ar ' =-{=e, ----(5)Aac.=Pi= oqi \v''

we will now show that the above eqn. is the equation of motion for the total linear momentum, i'e', that p,

represents the component of the total force along the direction of translation of 4, and P, is the component of

the total linear momentum along this direction. [n general, the generalized force 97 is given by

. sr- Ati
Qi =LF'' ar -Ii

Since dg, corresponds to a translation of the system along some axis'

related as show in fig. (l). By definition of derivative we have-;- 
= L'"'btit!q)

0Q i itqi-+o dq i
dqi

= 
-ll=n,

the vectors r, (q, ) and r,Q , + dq,)are

dqi

where n is the unit vector along the direction of translation. Hence

Qi =ZF,'n=n'F, . ---.^.1
which, rN was stated, is the component of the total force in the direction of n ' To prove the other half of the

statement notes that *iiftift" linitic enerry in the form ,"::
le

7 = !-) m,ii
.ILJ

the conjugate-momentum is

ar o r,i,'9,Pt= aq,=4t oq j
s or'

= ) .m;v i. ._? dQi, i.
| -r

Pi = n'lm,v,

which again, as predicted, is the component of the total system linear momentum along n

Fig 2.1: €hange in a position vector under translation

ofthe sYstem
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St )ose now that the translation coordinate e 1 that we have been discussing is cyclic. Then q , cannot
eDl arin Z andtherefore

- av 
=o, =0.

0qi

But this is just the familiar conservation theorem for linear momentum - that if a given component of
the total applied force vanishes, the conesponding component of the linear momentum is conserved.

In a similar fashion it can be shown that if a cyclic coordinate 4, is such that dq j corresponds to a
rotation of the system of particles around some axis, then the conservation of its conjugate momentum
corresponds to conservation of an angular momentum. By the same argument as used a6ove, f cannot
contain Q i, for a rotation of the coordinate system cannot affect the magnitude of the velocities. Hence the
partial derivative of r with respect to qi must again be zero, and since z is independent of ri, we once

again get equation (5).
The generalized force Q1 is again grven by

Q, =1.F, 9L'7dqt
only the derivative now has a different meaning.

Fig2.2z Change of a position vector under
rotation ofthe svstcm

Here the change in q, must correspond to an infinitesimil rotation of the vector r,, keeping the magnitude of
the vector constant. Form fig. Q) the magnitude of the derivdtive can easily be obtained:

l*'l= r,sinodq,
l^l

and l+l= r,sino
loqi I

and its direction is perpendicular to both r, and n . Clearly the derivative can be written in vector form as
0r,
;- = [Xr;
oQi

With this result the generalized force becomes

-'-'-
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,, =1F,'nxr'

=ln.r, xF,

reducingto 07 =n'lN, =1'11

which proves the first part. A similar manipulation of p., provides proof of the second part of the statement'

AT sr 6r, \'a
o, =il= 4^,n, ,L= Ln'r,''.'" ,

n'll, =n'1
Summarizing these results we see that if the rotation coordinate e; is cyclic,then Q,, which is the

component of the applied torque along n, vanishes, and the component of l' ' along n is constant' We have

recovered the angular rorn"nturn conlservation theorem out of tlie general coniervation theorem relating to

cyclic coordinates.
If a coordinate conesponding to a displacement is cyclic, it means that a translation of the system, as if rigid,

has no effect on tne proutelm. In oiher words, if the system is invariant under translation along a given

direction, the corresponding linear momentum ii conservld. Similarly, the fact that a rotation coordinate is

.yrri. i""a therefore the cJnjugate angular momentum conserved) indicates that the system is invariant under

rotation about the given axis. Thus the momentum conservation theorems are closely connected with the

symmetry Properties of the sYstem'

Another conservation theorem we should expect to obtain in the lagrangian formulation is the conservation

of total enerry for systems where the forces are derivable from poteitials dependent only on position' It is

possible to demonstrate a conservation theorem for which conservation of total enerry represents only a

special case. consider a general Lagrangian, which will be a function of the coordinates q, and the velocities

o 1 andmay also depend explicitly on the time. Then the total time derivative of L is

dr=t OLd4i *t9LgJ-*aLdt l ant dt ? ar' dt 0t

Form Lagnnge's equations

aL a( at'\
q, = Al'd' )

and it can be rewritten as

dr - rr a( gL\a,*S oL ddi 
*oL

-= 
) tQtt ) -:-:----:-T-:_dt I at\a4, )" ? aq, dt 0r

dL -d(. aL\ aL
=' -= 

) 
-r 

A.- tT--:-. dt |dt\" aqt ) 0t

It therefore follows that

a-[s 
" 3L- r)*! = oal+q'ai' ) o'

The quantity in the brackets is often times called the enerry function and will be denoted by h :

h(q,4,t\=| 4,{'t
t' 'o8j
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and eq. can be looked on as giving the total time derivative of ft :

dh 
= _aLdt 0t

If the Lagrangian is not an explicit function of time, that is, if ldoes not appear in L explicitly but only
implicitly through the time variation of q and q,then the above Eq. says that his conserved. The function
i is the total enerry of the system.
2.9 Principle of Leaet Action

'The Important variational principle associated with Hamiltonian formulation is the principle of least action.
Thig is a more general type of variation of the path of a system which allows time as will as position co-
ordinates to vary. At the end points of the path, position co-ordinates are held fixed but changes in the time are
permified. Such a variation is shown in fig.(3) and is denoted by a letter A instead of d .

In mechanics the quantity n= f, I n,4, at is defined as action.

The principle ofleast action for conservative system is then expressed as

A l'Z p,4, at = oJ, ,f

Prcof of Principle of Least Action

q+
l9:

where A is the variation.

...Q)

The actiohl, can be written as,

A= l,:? p,q, dt = f,, @+ n)at

= f,,' Ld'*HQ'a)
Since I/ is conserved, a- variation of action is

' M=Ll,',,' Ldt+H LQ, -tt)

.! = oJ:' Ldt+H Nll,: ...(3) 
.

.Now we proceed to solve the remaining integral L 
f,,' 

Ldt,

Since t, and t, limits are also subject to change in this variation, A

t +dt

tr tr +Atr tz t:+Ah

---.> r

Fig2.3: A-variation

cannot be taken inside the integral. Let
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1,,' 
to, = ,,

Applying eq. (1), we get

N=61+itt' =
Putting eq. (4) in eq. (3)' we get

M=51,,' tdt+tttll,', +H Nli,,', ...(s)

The term i.e. d J" Ldt cannotbe zero in consequence of Hamiltort?s principle 
."*:t:^:principle 

requiros

that 6q,= 0 at end points of the paths but in this variation Lqi =0 at the end points and not dqi'

Therefore the integnr will not vanish. Uiing the nature of d-variation, the integnr can be expressed as I

tf,,' L dt =6 1,,' 
t o, * t or1',', .'.(4)

6 
1,,' 

L dt = 1,,' l(#a a, * ft a u,)*

=t:tla(fl*'.#*'*'7*'
after putting h = *,1#) ltuom Lagrange's equation of motion'

rhus 6 
1,,' 

L dt = f ,' ll*,(ha n, 
)] 

a,.

Putting 6 q i = Lq i - 4 i N' we get

sothat / = L

6 
1,,' 

L dt = f,,' ll,i(g, *, -#u, tlr, =l(# *,

t c= -| p i 4, tt1',1, + L Lrl',' + H L,lt:

=(, * ,-, o, n,)*l',' = Q

since u =]o,,ti-L. Thus 6,4=o1,,'Ip,4,dt'=0

Which proves the principle of least action.

Summary:
l; If a system is subjected to a infinitesimal displacement consistent with the forces and consnains imposed on

the system at the given instant ,r, and if Uris ciiange in tlre configuration of thp systen isnot associated with a

change in time (i.e.) there is no actual displacdent during wlich forces aid'consfiaints may change 1!
henci the displacement, 6ri ,i . , '{t . . ., ,,1,

is termed as virnral disPlacement

-#n,*)i,,

At end Points A47 = o ' Therefore

With this substitution, eq. (5) becomes

6 
1,.' 

rdt = -r*a, *li;, =-zpi4i Ltli,,',

Jtr t OQi



2' The equation Z , 
,,' 6 r, = g is termed as principle of virnral work.

3. The equation I - e -P,).6r, = 0 is calted D,Atembert,s principle

4. The scalar function called Lagrangian , L' for a conservative system is equal w (r _v) .

In terms of L, the equations of motion can be obtained as l+(+)- jll = o
La\aq') qt) -

This set of equations are cailed Lagrangian equations of motion.

5. The genenlized momentum associated with the coordinate e; shall be defined as

AL
P i =---_ eli

The terms canonical rnomenfum or conjugate momentum arc often atso used for p,
If a i is not a Cartesian coordinate, 4; does not necessarity have the dimensions of a tinear momentum.

6. The generalized force e, is again given by

O, = Ie,'9T oqr

7. The equations of motion defined in tetms of generalized coordinatps and momenta. aH IO; =- |
oPi 

I

ir, = -0H I, 
^qi)AL AH-a= a

are called Hamilton's equntions of motiqn.

8. In mechanics the quantity ,l 
f,' 

> r,A, at is defined as action.

The principle of least action,for conservative system is then expressed as

t l'z p,q, dt = o4i 
/

Key words: ''D?Alembert's Principle , Lagrangian equations . virtual displacement, virtual work.
Hamilton's variational principle , Hamilton's canonicil equations of motion , Principle of Least Action.

Self Assessment Questions:
l.State and prove the principle of least action.

l.!e1ve Lagrange equations ofmotion firom Hamiltons principle.
3.Derive Lagrange equatiqis of motion from D'Alembert's principle.



4 Derive Lagrange equations of motion
S.Derive Hamilton's equations of motion.

. Reference books:
l.Classical Mechanics: H.Goldstein
2.Mechanics: Simon
3. Mechanics: Gupta, Kumar and Sharma



Classical Mechanics Part
Unit I
Lesson 3

Kinematics of a Rigid body
Objective: To learn the dynamics of a rigrd body interms of Eular's angles, writing equations of motion,
concept of infinitesimal rotations, coriolis force and its influence in daity life

Structure:

].f The independent coordinates ofa rigid body
3.2 Transformation matrix

;;3.3 The Euler angles
.. 3.4 Infinitesimal iotations
.- 3.5 Coriolis force

3.1 The Independent Coordinates of a Rigid Body

A rigid body with // particles can at most have 3il degrees of feedorq but these are greatly reduced
by the constraints, which can be expressed as equations of the form 

- -- :

tij= c,j ...(l)
Here ru is the distance between the rth particles and the r'r are conrtimts. The actual number of degrees

of fieedom cannot be obtained simply by subtracting the number of constrdnt equations from 3t/ , for there
1

are t/tf(N-l) possible equations of the form of eq. (l), which exceeds :x for large N. In truth, the eq. (l)
ur. rio, all independent. To fix a point in the rigid body it is not necessary to speci$ its distances to all other
points in the body. One need only state the distances to any three other non-collihear points. Thus, once the

, positions of three of the particles of the rigid body are determined, the constraints fix the positions of all
remaining particles. The number of degre6s of freedorir therefore cahnot be more than nine.

There are in fact three equations of rigid constraints imposed on them,
112=C12t t2j = C23 lB = CB

that reduce the number of degrees of freedom to six.
.;A rigid body in space thus needs six indep,endent generali?ed coordinates to speciff its configuration.

The configuration of a rigid body is completely specified by locating a Cartesian set of coordinates fixed in
the rigid body. Three of the coordinates are needed to specifr the cooidinates of the origin of this "body" set
of axes. The relative to a coordinate system parallel to the external ar<es, but with the same origin as the
primed axes.

:r



r
ax

Fig 3.1: Direction Cosines of the body set of
-axes relative to an external set ofaxes'

There are many ways of specifing the orientation of a cartesian set of axes relative to another set with

common origrn. A most tuitzut procedure is io rt t the direction cosines of the primed axes relative to the

unprimed. Thus the J *i, 
"outO 

U. tpt"in"JU' its three direction cosines xltx2tx3with respect to the

x,y,z U<es.lf,aScUStomary i,l,k arethreeunitvectorsalong 'r,y,: and i"i"k'perfOrmthesamefunction

in the primed system, then these direction cosines are defined as

(rt=cos(l',i)=1''i
d2 = cos(i',i) = i''t "'Q)
d3 =cos(i',k)=i''k

The vector i' can be expressed in terms of i' 1' k by the relation

t' =(t'. t)t + (t'. 1)1+ (i''tr)tr

+ l'=ai+ar i+a3k "'(3)
Similarly the direction cosines of the y' axiswith x,y,z may be designatedby p"p'arldl 9t'Mdthese will

be the components of i' in the unprimed reference frame' ;

:

i' = Fri+ Bri+ Pr} ...(4)

An equation analogous-to (4) qan be writtcn for k" with the direction cosines of the :' axis designated

byl's. Thus we can write

i=(i.i')i'+(i.;'['+(i.k'].' ''
+ l=ai'+ Frf+rrH "'(5)

with analogous equations for ; and tc . .

The coordinates of a point in a given reference frame are the componertts 0f the position vector, r, along the

arces of the system. Tire x' coordinate is then given in terms of f,y,, y
x' = (r.i')=a,r +azy+a3zl

while for the other coordinatcs we obtain
Jy'=prx+p2y+p3z ...(6)

z'--yp+YtY+732

What has been done here for the components of the r v@tor cin obviously be do.ne for any arbinary vejtor'

If G is some vector, ;il th; *rponint of G along the x' axis will be related to its x,v,z compon€nts by

G,, =(G. i') = a,G, +arG, + AtG",
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and so on' The set of nine direction cosines thus comptetely spells out the transformation between the twocoordinate systems.
The connections between the direction cosines arise from the fact that the basis vectors in both coordinatesystems 1e ortlrcgonal to each other and have unit magnituoe, inlymuors,l.j=j.k=k.i=0,
and t.i=t.i=k.k=l ...(7)
with similar relations for l',i'and k'. we can obain the conditions satisfied by the nine coefficients byforming all possible dot produc8 among the three equations for i,land k in terms of i,,i,and k, (as in eq. 5),making use ofthe eq.Z)
dP, + ftf^ * lrT n =0, l,m= 1,2,3;l * m,

a? + F? +r? =t t=r,23 "'(8)
These two sets of three equations each are exactly sufficient to reduce the number of independent quantitiesfrom nine to thrce' Formally, the six .q*tio* cin be combined into one by using the Kronecker d.-symboldo, defined by

6n=l l=m
=Q l*m

Equation (8) can then be written as
apr+ Brpr*ltlr=6t, ...(9)

The use of dirpction cosines to describe the connections between two cartesian coordinate systemsnevertheless has a ntrmber of important advantages. with their aid many of the theorems about the motion ofrigid bodies can be expressed wittr geat 
"1."g*T 

and generatity, -d in a form naturarty leading to theprocedures necessarily used in speciarirativity and quaff;m ,r.r,ini.r.
32 Traneformation Matrix
consider two successive tansformations are made.conesponding to two successive dBplacements of the rigidbody. Let the first fransformation from rto r, be O"not"iUi n; 

--

x'v=bpp1, (10)

and fte s'rcceeding hansformation from r' to a third coordinate set r' by A :
xi =a,2 xl (l l)

Therelationbetween ri and xr @nthenbeobainedbycombiningthetwoeqs(10)and(ll)
x'l =a,1b1, x,

This may also be nrritten as
x'! = c"x'

where c1i =a11b21

The successive application of two ortlrogonal nansformation A,B is thus equivalent to a third linear
tansformation c . The rpsultant operator c can be considered as the pnrduct of the two operators I and B :

C= AB,
and the matix elements cii ane by definition the elements of the square matrix obtained by multiplying the
two square matrices A and B .

The elements of the tansformation D= BA arc
dt1 =b12a1r, (t4)

(r2)
(13)

t"!t,:h generally do not agree with the mafiix elements of c, matrix multiplication is associative, in a product
ofthree ormorc mahices the ordor ofthe multiplications is unimportant :



(m)c=r(nc) (ls)

ThesumA+BisamafiixCwhoseelementsarethesumofthecorrespondingetemenBofAandB:
cii=clii*bii' .. ^!,-^L^r^L^-^oo -'

of greater importance is the transfoimation inverse to A , the operation that changes r' back to r ' This

transformation will be ca[ed A-r and its matrix erements designated by oii. we then have the set of

equations

_-a-'-' xi=e'i j x'j, (.'r'= Ar\ (16)

which must be consistent with

Substituting .r, from (16), eq' (17) becomes

x'k=oki d'i j x'j (18)

since the components of r, ar€ independen! eq. (l g) r1 corregt onry if the summation reduces identically to

;l. ii;;.;;tr;"i"nt or-"1 t;t; I ior i=l and zero fot i+k; in svmbols'

a1i4'1 i =61,i (19)

The left-hand side of eq. (19) is easily recogrized as the mafiix element for the product AA-r , while the right-

hand side is the elemeioittt" muttii known as the unit mafiix I :

x'2 = alt xt (17)

(r o o'\

'=[: ; l,l
...(20)

Equation (30) can therefore be written as

AA-1 =l QD -,
which indicates the r€ason for the desigration of the inverse marix by A-t. The transformation

;onesponding to 1 is k"* * the identity **tio*u'ion' producing no change in the coordinate system:

l=lx .

Similarly multiplying any matrix I by t ' 
in any order' leaves I unaffected:

1A=Al=A
lnstead of substituting .x, in eq. (18) in terms of x" one could equally as well demand consistency by

,titinuting .r' iiom the two equations, leading in analogous fashion to

a';i aip=6i*

ln matrix notation this reads

A-rA =l ___(22)

Consider now the double sum

Or1 A1, ai,

which can be written either as

ctio'ii *ffi C1; = a11a1;

or as ar,rdr j with d1, =atiaii !

Applyingtheorthogonalityconditions,ic'ara,r=5pi,k=l'2'Slhesuminthefintformreducesto
51,ai, = ait

on the other hand, the same sum fiom the second point of view, and with the help of eq' (19) can be writte

all 611 = a1t

Thus the elements of the direction matrix I and the reciprocal A-r are relaed by



a!.1=ait (23)
In general, the matrix obtained from I by interchanging rows and columns is known as the transposed
matrix, indicated by i .Symbolically

A-r =.i (24)
{f this result is substituted in eq. (22),we obtainIl=1, es)
which is identical with the set of orthogonality conditions,
A rectangular matrix is said to be of dimension mxn if it has m rows and n columns, i.e. if the matrixelementis a,r,then i runsfrom I to m,and./ from I to n. clearly,thetransposeofsuchamatrixhasthe
dimension zxn. If a vector column matrix is ponsidered as a rectangular matrix of dimension mxl, the
transpose of a vector is of dimension I x rz, that is, a one-row matrix. The product AB of two rectangular
T"g"et exists only if the number of columns of A is the same as the number of rows of B . This is anobvious consequence of the definition of the multiplication operation leading to 

" 
rut i* ;;;; 

! r "'u 'J sr

" ctj=oi*b*J
From this viewpoin! the product of a vector column matrix with a square matrix does not exist.A useful commutation property ofthe poduct of a vector and a square matrix that

Ax=xi
A square matrix that is the same as its transpose,

A,i = A1i

is said to be symmetric. when the ffanspose is the negative of the matrix.
A,i =- Aii

the matrix is antisymmetric or skew symmetric. It is clear that in an antisymmetric matrix, the diagonat
elements are always zero for any squaf,e matrix A, the matrix a, defined as

l, = ](.1*a)
is symmetric, olnd a corresponding ahtisymmetric matrix can be defined as

lt -\A,=;lA-Al
It obviously follows that

A=Ar +A,
and i=A, +A"

'Analogous to the definition (25) br an orthogonal mafii4 a unitary mafiix A satisfies the condition
' A+A=l
-Let A be considered an operator qcting upon a vector F.(or a single-column matrix F) to produce a vector
.G:

G=AF
llf the coordinate system is transformed by a matix B the components of the vector G in the new system will
rbe given by
.. BG=BAF
ryhich can also be witten
, BG=BAB-IBF

t Q6)
Eq. (26) can be interpreted as sating that the operator BAB-! acting upon the vector F, expressed in the new

,system, produces the vector G r likewise expreSsed in the new coordinates. Therefore consider BAB-! to be
ihe form taken by the operator A 'when transformed to a new set of axes:



A'=BAB-I (27)

Anv tansformation of a matrix having the form of eq' (27) is known a similarity transformation'

tre definition of matrix multiplication is ioenticai *-iiriirtit ror the multiplication of determinants' Hence

lml= lll'lsl -r^r- ^*L^-^-arirrr
Since the determinant of the unit matrix is l, the determinantar form of the orthogonarity conditions, can be

written
lll.lll= r

As the 
"it"i "t" 

determinant is unaffected by interchanging rows and columns' we can write' '

lAl'= l,
'which implies that the determinant of an orthogonal matrix can only be +l or -l '

'

3.3The Euler Ahglee

The six relations that express the orthogonality conditioT,.:{'*'tlh number of independent elemen6

to three. But in order to characterize *,. r"tio" 
"r 

a rrgio body ttrere'is an additional requirement the matrix

;i;*tt must satisff, beyond those implied by orthogonality'

Considgr a simple matrix with the determinant -l :

(-r o o)
s=lo -l ol=-l

[o o -t)

- Fig l.Z: Inversion of the cootdinate axes'

ThetransformationShastheeffes-tofchangtngthe.qigr,ofeachofthecomponentsorcoordinateaxes
(fig.I). Such an op"*tion ii*rio*s a right-han<l-edloordinate system into a left-handed one and is known as

an-inversion orreflection ofthe coordinate axes' 
) a left-handed one

From the nature of nir op"oii* it it clear that an invbrsion of a right hAnded system intc

cannot be accomplished by any rigid change i" nt 
".19"t"1ion 

of thJcoordinate a:<es' An inversion thereforc

nruet cottetponat to a physical displacement of a rigid body'

In order to describe ttre motion of rigid boiies in ihe Lagrangian formutation of mechanics, it will

therefore be necessary to seek three independ.nt pu.u*.fto 1rr..i-rrine 
the orientation of a rigid body in such

a manner that the ,o*rponJinl ottrrogi,nu manix of transfbrmaiion tras the determinant'+I. only when

such generalizeO coooOirltgs niu. U..-n found can one write a Lagrangian.for the sy.s.tem and obtain the

Lagrangian equations of motion. A number of such sets of pararneters have been described in the literature'

Bui the most common anesenrUre ttg Euler angles

The Euhr 
"ngt* 

ur" th;; jgfia as thethrle successive angles of rotation. within limits, the choice tif

rotation angles is arbitrary. The main ."";;;;;h;i-wiri ue"ronowed'frere is used widely in celesti{l



ON

mechanics, applied mechanics, and freqrcntly in molecular and solid state physics. Other conventions will be
described below.

O) (c)

Flg 33: The ruO$onr defhltrg Oe Euhrlan enghs.

The sequence employed here is started by rotating the initiat system of axes, xyz, by an angle /
counterclochvise about the z ads, and the resulhnt coordinate system is labeled the 6qe axes. In the second

stage the intermediate axes, gq( are rotated about the f axis counterclockwise by an angle d to produce

another intermediate set, the ('q'(' axes. The 6' axis is at the intersection of the ry and f '4' planes and is

known as fie line of nodes. Finally ttw €'n'(' axes ar€ r@ted counterclockwise by the angle y thus the ('
axis to produce the desired x'y':' system of o<es. Figure 2 illustrates the various stages of the sequence. The

Euler angles 0,5 and yz thus completely speciry the orienation of the r'y'z' system relative to the ryz and

can thereforc act as the three needd generalized coordinates.

The elements of the complete transformatio'n A can be obtained by writing the matix as the triple product of
the separate rotations, each of which has a rclaivcly simple matrix form. Thus, the initial rotation sbout z can

be descdbed by a matrix D

E=Dr
where I and r standforcolumnmaffices. Similarlythetansformationfrom €n€ to ('q'('canbedescribed

bydmatrix C.
€'= CE

and ttre last rotation to x'y'z' by a matix B
r'= BE'

Hence the matrix of the completebansformation
r'= Ar

is the product of the successive matrices,
A=BCD

Now the D tarrsformation is a rctation about z, and hence has a matrix of the form is

(e)



(*"0 sin/ q
P = | -sinC cos/ 9l

[o o r/

The C transformation conesponds to a rotation about f ' with the matrix

(r o o)

" 
= lo cosd sina 

I

[o -sind crs9)

and finally B is a rotation about (' and therefore has the same form as D :

( costlr sinr1 0)

3 = l-sinr7 cost/ o 
l

[o o rJ

The product maffix A = BCD then follows as

( cosrgcos/-cos0^sin $1inty cosrTsin/+cosdcos/sin14 sinr4sind)

6 = f -sin rycosi-cosgsin Q costy -sinrgsin/+cosgcos/cosr4 
cos14sind j

I sindsin/ -sindcos/ cosd )

The inverse transformation from body coordinates to space axes

' , = A-lx'

is then given immediately by trre 1ansry1d 
manix A : 

'sin d )
1"o,,y"o".6-cosdsin./sinr/_sinyrcos/+cosdsinr/cost4slnly''-.-_.1

A-r =f = | cosl4sin/+cosdcos/ sinrg -sinr4sinr/+cosdcos Qcosty -sinyzcos/ |

I 
t1,:t;"::cose srlr 

sindcosr4 cosd )

v"rir,r"tionf, *" ,r"nll1,fi[J-a demonstration that A represents a proper' orthogonal matrix will be

;fti;ih" exercises'

The initial rotation could be taken about any of the three cartesian lxes' ln the subsequ

onrv rimitation is that no two successi". r"d;;;;;.d th.ffi;ilil. n toat oit*elve conventions is

therefore possibte in defining ttre pulel "lg;; 
(t"; {ght-h*dtd";&;; w*lt The two most frequentlv

used conventions differ only in ttrg grroice or axi, t6',, tr,. ,..ono-'totuii*. i trtiti convention is commonly

used in engineering applications ,"t"ting to di ffinffiffi;ffi; *hicres such as airtraft and satellites'

*f 
tlt#.ilr*HfT#.", 

associated with transformations A and. s . Then to qualif as vectors thev

must be commutative in addition:

But the ffffi ""r.*" rotations, ile., o.ne rotation performed after another, it corresponds to the product AB

, of the two mafices. This concrusion, tt uio. surnof finite .",#;6.;d1on tne order of the rotations' is

srikingry demonstrated by a simpre 
"*p"rir"ni. 

tilustrates tt.'trqur*. of evlnp r1 rotatin' a block first

through 90 about ,;;;-'*i, fired in',h..;b"i, il;;;ii tit, 
"uoirr 

the v' axis, while presents the same

rotations in reverse order'
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^ lal Vertical position

Flg 3.4: Illustrating the

x' (a) Vertical position (b) Rotated 900 about y' (c) Rotated 900 about
Fig 3.5: The two rotations shows in fig 3.4, but performed in reverse; order.

An infinitesimal rotation is. an orthogonal transformation of coordinate axes in which the components of av@tor are almost the same in both seis of axes- the change is inirnitesimal. Thus the *i component of some, W r 
loutd be practically the same as x, , the difference being extremety smail:

L li = xt +€il Jl *Ep x2+€t3 .r3 
- ----o

- Il|e marix elements €n,€r2 and so on ar€ to be considered as infinitesimals, so that in subsequentollationl:nlf the nrsi nonvanishing order in e,, need be retained. For any generat component xi theequrtions of infinitesimar transformation can be written as
xi = xi +e,J x j.

+ xj = |16,, +e,r)r, (t)
"Thc quantity 47 will be recognized as the element of the unit matrix, and eq. (l0l) appears in matrix notation't3 l

, llttT ttrat th9 typicql fo,11 for the matrix of an infinitesimal hansformation is r+ e, that is, it is almost the' ide_nrig ransformation, differing at m6st by an infiniteril;i;p;;l;r.
, fftnltesimal 

transformation; words are commute. If l+e, and r+e, are trvo infinitesimal transformation,
tlpn one of the possible products is ' -'

(l* e, )(t+ €r)=12+ e1 I + I e2 + €r €2

=1+ e, + e2 (3)

z'

I,'fu'aLL-^ Y
@) Rotated 900 about z, ClnotarXo m, afout

effect of two rotations performed in a given order

'l',#,ft,x, )l -,



negrecting higher order infinitesimals. The product in reverse order merely interchanges e, and e2 
' 
this has

no effect on the resul! as matrix addition is alwavs commutative'

If A = l+ e is the ."*iioiiit dnsformation' th"n the inverse is

A-r =t- e (4) :

," "*.:;, 
;,H;1"'a"*,t"n to, the inverse matrix, the orthogonaritv of A implies that I = (r+ E) must

be equat to A-r . Hence the infinitesimafmatrix is antisymmetric:

E=-€
since the diagonal erements of an antisymmetric matrix are necessarily zero there can be only three distinct

elements in any 3x3 antisymmetric matrix. ii"n.. tt"r. is no loss oigenerarity in writing e in the form

( o 
-;: 

-arrz'\
.=l-^, o dt\ I 6)

The three ,1ffi.r-frtr,*),1, are crearly to be identified with the three independent parameters^

specifiing the rotation. rt. ,t*g, in-the components of a vector under-the infinitesimal transformation of

the coordinate, 'yut*''* 
U" t*pi*tO 

-blttre 
matrix equation

x'-x = dx =€ x (6)

with in expanded form, with e given by (5) becomes

&r = xzdfilt-4d(12

&z = xt&lr-x'd{l3 (7)

,n r*nfr.io"Jffi:;;fill th. fry "ja 
component of the.cross product of two vectors; namelv the cross

product of r with u u"r,o, a't having.o*ion.n[- dt r,Nrr,dKl, ' Therefore write equivalently as

dr=rx&L (8) '''')'::'
The vector r transforms under an orthogonal matrix B according to the relations '

x', =b,,x, (9) 
nitesimal rotatibn can

Letogotothelimitofaninfinitesimalangleao.thecole.snldinsfor|hulaforaninfi
be obtained. In this limit coso app,'oache, unity, and ,'"t g"!t i" o; the resultant'expression tl tl'

infinitesimal charge in r is then. \ . ^"'""""";'=i;-::::9,3[ -ioso)+(ri,?itt r

Comparisonwithindicatesthatdoisindeedavectorandisdeterminedby
dd2=ndQ (l l) r--^-:L:-^ +r^6

The concept of an infinitesimal rotation provides a powerful toor fqr describing the motion of a rigid Qody

in time. consider some arbitrary vector ,i"ii""i".Jiiirr. r..tt."irut-p.ut.t, 1i9rr 
as the position vector of

a point in the uoov,-oi ,t, total angular-momentum. usually;il ; vector will varv in time as the body

moves, but the ctrange will often d.eneld on the coordinate ,yrt * to *ttich the observaiions are refened' For

example, if the vector happens to be the ,oiu. u..to, from ihe origi""ith" body set of'axes to a point irt the

rigid body then, clearly, such a vector upptuo constant when measured by the body iet of axes' ''' 
'

Ttrechangeinatimedrofthe"o'pon"n.,ofageneralvectorcu''.*byanobserverinthebodysys&n
of o<es will differ from the conespondinf"ft""gl.*."tn by.an observer in the space system' 'A reldibn

between the two differential changes i" c; b-e derived on'trrr-u"rir of physical arggrnents. we can write

that the only diftereni. tg;;" r{" *o is the effect of rotation of the body axes:

(oc)**" = (ac)o*, +(&).,
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consider now a vector fixed in the ri.sid body. As the body-rotates there is of course no change in thecotlponents of this vector as 
-s."n 

by the t"dy ;b;;; i.J.,"rii*iu" to body axes. The onty contribution totd)** is then the effect or tn" .aii- of the uJy.' B;; ;i;"" the vector i, n*eo'in the body system, it

l*f: X$J*?y"rclockwise, 
and the change in the vector as observed in space is that given by and hence

(re)-, =aKlxG
For an arbihary vectorthe change relative to the space axes is the sum of the two effects:(re).'*, =(rc)o.o, *orr-rc - irz)

ffi:Ti#J:"fl,'lfl-:,:l*,::'ln"]ff;:,"j,l"f: two observers is then obained by dividing the terms

( ae) roc t
I ot ),p*,=l;-Jo* +atxG (13)

Here or is the instantaneous angurar verocity of the body defined by the rerationadt=ilL
The vector rolies along the axis of *J'#fi"*rimal rotation occurring between t and t+dt,a direction
ffi;" 

as the instantaneous axis of rotation. In magnitude r r"ur*., the instantaneous rate of rotation of the
A more formal derivation of the basic can be givcn in terms of the orthogonar matrix of transformation::fff[lfi:[T]l"l"r'#:*dilt*. rhe impo";"i;i c 

"rong 
th.-ii',p".""*rs is rerated to the

G, = d,rG,, = ai; G,i

As the body moves in time the componenb Gi will change as will also the elements o,, of the transformationmatrix. Hence the change in G, in a differentialtime element d, is
dG1 =a.1idc,, + do jpi (15)

components in the two systems will then be the same instantaneously, but differentials will not be the same,since the two systems are moving relative to each other. Thus Gi = G., but aridGj = dc;,the prime
emphasizing the differential is measured in the body axis system. The change in the matrix A in the time dt
il.tl$ 

a change from the unit mahix ana ir,.r"rorc.orr"rponJrio'ttre matri-x . oirr,. innnitesimal rotation.

doi,=(E),, _.,,
using the antisymmetry property of e. In terms of the permuation symbol e,r* the elements of e are suchthat \ 

'r^

- €i =- e;is d{L* \ _., m.
Equation can now be writte\

dG, = 46;+e,ri dKLrq,

The last term on the right w.ili be. recognized as the exprdssion for the ,th component of a cross product, sothat the final expression for the'retation-between differentials in the two systems isdG,=46;+(At,.C)' (16)
which is the same as the ith component
The arbihary nature of the vector G made use of in the derivation can be emphasized by writing as anoperator equation acting n some given vector:(a\ (a\

la),= l.r), *" (t7)



Here the subscripts s and r indicate the time derivatives are to be those observed in.the space and body

irJdrtd system'of axes, rcsPectivelY'

3.5 The Coriolls Force

*^ -^ ( a '\ - f 4) + or x is the basic kinematical law upon which the dynamical equations of motion
'lhe trQ. l-:- | = |

", 
;;#i; |"1#.. .But 

its. vari*ty is not resricted solerv to rigid bodv 19ti_on. 
Ir mav be used

whenever we wish to discuss the motion 
"f 

lp"#illl"Jili{[utti.r":s, relative to a rotating coordinate

svstem. The above equation provides tr,. n 
"o!i'i-oaii.#onr 

of ttr'e iquations of motion relative to the non

ulll","r:ei'J:i;ilt",f#ff*or, r, from the origin of the terrestrial svstem to the siven particle:

*n"r. n,""iJi,;:il verocities.f ,h: Jilfle relative to the space an{.rotating-set.of ares, respectiverv, and

oris the (constant) angurar velocity orthe eirt]iretativeto the'in"nialvr,"r.-In the second step Eq'(17) is

used to obtain the time rate of change of v':

f 
d"t'\ 

="- =[tt] +(oxYr
IotJ, -' \dt/,

:a,+2(roxv,)+ox(orxr)ltllwrrerev,hasbeensubstitutedfiomequationlSandwherea.

and a, are the accelerations oi ttre particle in the two systems. Finally, the equation of niotion' which in the

inertial system is simPlY
F = Dtlr

expands, when expres,ad in tttt rotating coordinates' into the equation

F - 2m(orx v, )- raor'x(<o x r)= ma' (20)

To an observer in the rotating system it thercf; appears as if the particles is moving under the influence of

an effective forca F"g-'"';; 
=r-.zrir*",)-zr<ox(orxr). (21) 

- _.--.^: -^-*ar r^ ,.i, 
'/

Let us examine the nature of the terms occuning in the last term is a vector normal to or and pointing outward'

Further. Its magnitude is motzrsin'. It will therefore be recognized that this term ls 
simply the familiar

cenfifugal force. when the particle is stationary in the moving:ystem the centrifugar force is the only added

term in the efuive forpe. ivhen tte partiJrel;;"e rc riidate term known asthe corio&s force comes

into pray. The order of magrritude gf Ftf of these forcJs may 
"*ilv 

u".urculated for a particle on the earth's

surface. The earttr rotates counterclockrvit;;;;th. Nortn Fote;fth; *g"lar velocity relativd to the fixed

stars:
( zo _Y3665'l= 7.292x10-s wl

'=[t;6ooIrutrJ-
I

tlo'

Fig 3.6: Direction of Coriolis deflection in the
Northern HemisPhere.
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The coriolis forclo.n a moving particle is perpendicular to both ro and v. In the Northern Hemisphere ,wherc ar points out of the ground:tlt; a;"td il;., 
-rr(r,.rii** 

to deflect a projectire shot arong theearth's suface' to the right of its direction of travel;. The coriolis deflection reverses direction in the
:rXHHt"::H:l[f,*o#"- ui irt'-eq*ror, where ois horizont r. ft;'r;s,it"de orthe coriolis

2av =l.Sxl}av.
which fur a velocitv of_r05 cm/sec (Tuqlry 2000 mph) is l5 cmlsec2, or abour 0.0r59.The coriolis forci also p]avs a irgtftJ-i r;[ il;;y il;ographic and m-eteororogioar phenomena
l,lf*,'ffiii:J:Tffi:F,fjm,:_r:llu;, o',,", rone aisianc",, ,u.r, ." the circuration pattem of rhe hade

(a) Idealized tu,

Fig.3.7: Cyclone Formation.
'Masses of air tend to mov9, otherthings be equal,.from-regions of high pressure to regions of low pressure- the so-called pressure gradient flow. "ln 

the'vertical oir?tion the pressure gravitatlonar forces roughlybalance gradient so that if is only in the to.i"onat;l,n. th"t;;* are persistent long-range motions of airmasses - which we perceive as winds. The- pressure gradient forces are quite modes! and comparable inmagnitude to the coriolis.forces acting on aiir*rc, iloning ut"uruul speeds. In the absence of coriolisforces the wind directions ideally, *ouft be perpendicular to th-e isobars. However the coriolis forces deflectthe wind to the right of this direction in the sense indicated in the figure o. rrr"-o"irection to the rightcontinues until the wind vector is parallel to the isobars and the coriolis-force is in ttre opposlte direction toand ideally just balances, 
-!he prgs-sure-gradient force. rne wina then continues parallel to the isobars,circulating in the Northern^Hgmisphere in"a counterclockwise direction about u 

"enter'oiio* 
pressure. In theSotrdremHemisphere the coriolis forde acts in 

-the 
opposite direction, and the cyclonic direction.Another classical instance where-coriolis force b.aur.r u r.usurabte effect is in the deflection from theverticaf of a freely falling particle' since the particll velocity is almost vertical and <o lies in the north-southvertical plane, the deflectingforce 2m(vxa)is in the east-west direction. Thus, in the Northem Hemisphere, a

body falling freely will be deflected to the east. calculation of the deflection is greatly simplified by choosingthe z axis of the tenestrial coordinate system to be along the direction ofthe upward vertical as previouslydefined' If the y axis is taken as pointingiorth, then ttre eq"uatLn olmotion in the x(east) direction is

^t4=-rr(orrr),

O) Actual



=-2manzsinl, QZ)

where d is the coratitude. The effect of the coriolis force on v" would constitute a sman correction no tlrc

deflection, which itself is very small. Henc. ir,. u.rti."l velocity 
"ppt"ti"g 

in (22) may be computed as if

Coriolis forces were absent :

vr=-gt and t=

Withthesevalues,EqQ2)maybeeasi$integratedtoeivetheieflectionas

--Q t3 sin1 or x=2rlv'l-tin6. ;.',ix=_13 sins or -=?lffrr"t.

An order or magnitude of the deflection can be obtained by assuming 0=tl2 (conespondi"g to S
Equator) and z = l0Om.The deflection is then' roughly' x = 2'2 tt'' 

"- Thus. two types of
Effects due to tne Coriolis terms also 

"Opt;"il 1tomlc 
physics' Thus' trilo Wpes of motion may occur

simultaneously in polyaiJmi"-rnot.rutrr: The'molecule rotates 
"r 

u tigio whole, 1na 
tn9, atoms viDrarc abos

their equilibrium positioirs:'- A;; resurt of the vibrations the atoms-are in motlon retative to the rdatfug

coordinate system or ii,"-,nor"*r". rrr" coiorir'i.rr *il tnen ue ditrerent from zero and will cause the

atoms to move in a direction perpendicular;'il;'i;'i*l oscittatioii' 
-i-erturuattons 

in-molecular spec'tn dtr

,o corioris forces thus appear as interaction, i"*r"."",iJr",rt'i"*i""0 vibrational levels of the molecule'

'

SummarY:
A rigid body with N particles can 

1t 
most have 3N degrees of freedom, but these are great|y redtrceb

;y ttre con"sraints, which can be expressed as equations of the form

r,j = cu

Hereruisthedistancebetweenthelthparticlesandthec'sof€constants:-
A rigid body in space thus needs six independent generalized coordinates to speciff its configuration ';

The Euler angles are defineo as the truee su.".rrin. angres orrotutifn. within limits, the choice of rotation "'

angles is arbitrary' 
1L^ ^-iar+aria- nf rhe ! | the xyz and can ' '

Euler angles 0,Q and r4 completely specify the orientation of the 'r'y'z' system relative to

therefore act as the three needed generalized coordinates'

An infinitesimar rotation is an orthogonal transformation of coordinate axes in which the componen* of a

vector are almost rfr. ru*" in Uotft slts of axes- the change is infinitesimal'

The concept of an infinitesimal rotation pJa"r 
" 

po*""tt r toor for aeicribing the motion of a rigid body in

tf!*"'uf 
vector frorp the origin-of the bodv set of axesappe?:^::::T':*:ily"Td bv the bodv set of

axes. The change in atime dl of the.on,pJn.nooia generat vector G as seen by an observer in the body

system of ar<es will differ from tho conesponding chang" a.s s:eh by an observer in the space system' 'A
relation between the two differential ctrange's in c-can bJderived on tire basis of physical argtments' $/e cirn

show that'the only difference betwe€n the fwo is'the effect of rotation of the body axes:

The time rate of change of.the vector G as seen by the trvo observers is

f€) =f49) +,,xG
\ dt )*n \ dt /uoav

- Here o is the instantaneous angular velocity of the body defined by the relation

adt--Nt
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The vector olies along the axis of the infinitesimal rotation occurring between t and t+dt,a direction
ffif 

as the instantaneous a'xis of rotation. In magnitude r r.*ur., thi insantandous rate of roation ofthe

rr'" eq. [4) =( d\
' \dt ), \d, ),*t x is the basic kinematical law upon which the dynamical equations of motion for

a rigid body are founded' But its vatidity is not restricted solely to rigid body motion. It may be usedwhenever we wish to discuss the motion'oia particle,.or tyri; l-rparticres, rerative to a mtating coordinate'iiifiT #*lJfilf:i#ilt".'#. need'ed 'oiit.uiiod;;i. equations ormotion rerative to the non
' when the particle is stationary ii G movlngsystem the centrifugal force is the only added term in theeffective force. when trre partilbi;;rd "i;-C;;;i;r;;;;;?r, 

into pray

Key words : Transformation matrix, Euler's angles, infinitesimal rotations ,coriolis force
Self Assessment euestions:
].Write a note on Euler's angles

-2.!Vhat 
are Infi nites imat rotaiions?

3.Discuss the properties of Transformation matrix.
+ E'xpnrn the rate of change of vector in a moving frame of reference.S.Explain a) centripetal ac-celeration fj i"Joli, f"*..
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2.Mechanics: Simon
3. Mechanics: Gupta, Kumar.and Sharma.



Classicel Mechanics Part
T'NIT-I
Lesson n 

,'* Rigid body Eguations of Mstion

ObJective:
To learn 

ebcity' fnomcnt of irrrtiq rotationalii Jou,,tt" angular momentum , utgularv
finrii"ln.ti oru tlgiauoov' mdrcnt of irprtia of a r$d body'

2) Euler's equation of n-otion 
'nO 

atso tolque free motion of a rigid body'

Zi dynamics of sPinning toP'

)l= ,"i^eff = rsinoo,.

" = "=Jt, --{l)

Struchrne:
4.1 AngularvelocitY
4.2 Anzular momentum

;.; i;;il;;" *a p'oau.m orinertia

+.+ it"ati"""f kinetic eners/

+.5 Moment of inertia of a rigid body

4.6 Euler's equations of rnotion

i.i i"tq* frb motion of a rigid body

i.z.i Cdnt *ution of kinetic energy

4.?.2 Conservation of angular momentunl

4.7.3 HeaW sYmmehic toP

4.7.4 First integrals of equation of mouor

4.?.6 Notational motion

4.7.7 Fast toP.

4.1: ANUGALRVEII)CITY
A rigid U"aV ,"i-p"*ss simultaneousf' tr T*JatiPP! Itd r@tionel motion' and tre equations of

motion, govemingttJ',#rffi"#iJl"",iiv i"*r* u"t trc ransratiqrar and rotational co'ordinates'

consider the mtation of rigid body abo't an ods .og wftffii fte body anddarfor example' a point P of the

body at a perpendicular distance Piv ftoF.$e axis. Thclr P lll'otr6 in a circlc with ccnter at /v and radius

pN . If r is the position-vector of p relative to thc origin o, (may bc 4.n -P center of mass) the

pN=rsin.,where d isangle'of rwithocis. tnatime d,P woulditt"itOpOadistance rsinAdS'along

an arc ofangle d/.

Linearspeed= rsine!d

1'

But



If either the axis of rotation (direction of it)or the magnltuoe 
Scnanees 

with time, i rvip be a function ofi.
time' we can likewise consider changes in components of ;, abng the space set or body set of ares. rfeither set ofcomponents ur","prorrti by ar,,at,o.'then rrg urs space set or bo

I

o = ia, + la, +ka,

Vector property of J suggess that rotation
orthogonal ores and vice-vena.

'..' :t I ':

along a cerbin oris can be decomposed into rotation about.

{.2 ANGULAR MOMENTUM :

\--L

Fig 4.1:

Ifthe rigid body is taken as a rigid collection of partictes, then angutar momentum is given by

L=fz(r, xv,)

-\r r )=4^'[r,""1 , , fr

-=.... | (+ )l=1^'[n't;,.nlJ

=) L= 
F^,Fn,,,)-(,,t)r] (fr,om(r))

s! fo, / *\l
= 4,,larl 

_lrr .,),I ...(a)

In terms of components of vectors involved in this equation, we writeL=lLr+lLr+kL,

._a _*l

=Z^,[{,r, *rr, +kat,)r,2-[t ;)t,*ir, **,)]



lJ

;,.

tr)

Equating coeffrcients of l,l,k '
r,\

r,=lat,ln,Vl -r?F'rl^,',v,-',1^'''''f =l,-o'+toot'+to11z' 'h

f,'? 
r\' 

' 
i I

[-
Lr=l-ot,/.nixiri *,rl^,Ql - r?Y''1'''''') = I ,-a)'+ I oot'+ I 'a"

L, l

| -, 
'1 I not, + t uatr""(4)'

L,=l-o, L^,r,r,-rrlnili-'i*',1^,Ql-tll = I ,.o)' + I 
'a'+ 

t uat'""(4)

fii'

*t 
H?XfJffA:i3"n",?ffi:.3H31*i writrcn as a 3 x 3 arrangement orrows and corumns as

in a matrix nation.

1,r,'l (,- I ry ,-l 1'r,'l
lr,l=l,o I)ry'nll'rl "'(s)

[r,J [r- 14, Io)\r,) ,

+ t"=ri ...(6) , :i

Equation (6) implies that when t operates on angulT velocity vector i, a physically different vector' the

angutar momentum, ;,-;C. t is tteretoire .?ir.t"nt pr,ysi; entitlt teiteo as the moment of inertia

tensor. The components of I have ue.n arrangealn matrix firom in eq. (s) in a way to facilitate understanding

;ii;tr ntformation : othenrvise I is basically atenso_r-. _
Now we come to physical meaning of tne coffinents of l' The diagonal element of matrix form'
'.- 

Io=Z^,ti-r,')= I.', lr? *'?l 
e

,,=f^,Q -r?)=i^,Q? *'?) "'(7)
i,t

r. =l^,Q7 -,?l = 2,,k? * fi\
1t

are called the moments of inertia coefficients. These are the moments of inertia of the body about the

x, y, z - axes seParatelY. -rl

i



Iry=Io=-Zfrfirrt

Ir=Ir=-1^,r14= ...(8) -i..>r

ro=ro=_\^,r,r,

13hS * the pnyuoF..gl it*iu associated wth the conesponding-co-ordinate pranes. obvious I is asymmeric te'sor and is additive in nature; tlrq@L;i;;;?. ufrv *, ,rr"."#r;,irr,"se of its parts.A mathematical stmcture having;in;;;*t4+.i;;; l'i;;;;", is termed a tensor of rank two. rn thissense' r is a tensor of rank two ia *" tr,-uilrriti;.r, * ."Jiryi" ,yp" I to emphasize its tensoriar character.
44 ROTATIONAL KINXTIC ENERGY OF A RIGID BODYThe kinetic 

;"1r9r 
ormotion oip-syJtenrtpli"rc, is defined byrs!'=1L^''i' ...(t)

;i:f;"T 
summation extendseall the particles of tlre body and u, is the rinear vetocity of the ith particle

Iqr;'*
B,'t-/ "l*,2
(l) =r r=jIX,,1-,p.,

'' =5.*fp;,;

-=iI'';'Ni
='H{S'**/;i]

In terms of moment of ineitia tensor rqO i, ii,ui'U"



,--1,,F"t-[", t)'l

={t', V,'-''t"'' I}; = t; ...(3)

".t.i, "'(4)from (3) & Q\ r -- rrtt ' 
t.,t 

,,-^^.,^- ^. ": : netic energr expression is,

Let n be a unit vector in the direction of ar so that Qt=a)t and the kit

T=" n.1.o = J- b' "'(5)' 2--'- 2

Such that the moment of 'I about the otis of rotation'

I=n.I.n "'(6)
' l-

But(2) = 7=!-ot'L

And break uP into t*ntno of i and l' :

I r 
].[u' *3r, *k"]f = lliat, 

+ ito r, + kot 
"J'[L' 

+ lLv + ttr'- J

I f ' orLrl= ,Wrtt 
+ ayLy + @zt'z l

=l@,iVor,*l,,-o.r+l-co"\t 
*rr(rttr+lway+ln')
+ar"Q -o', + I ,ot, + I oeo"\

I " " rloa!=:ll oco| + I )ry@i 
1

+21 oat rto, + 2l not ,to, + 2l oa ta 'l " '(7)

L has the simPle form
L=il ta x + il 2co, +kl 3@ " 

'''(8)

and therefore kinetic .ntT expression also assumes the simple form :

r=Li.t'
2
I t ,,\.fur''+ilz@v+w3a')=rFr, + iot, +ka

1 ^ l '*Lt^r? ...(9)
=L I (oi +;l zoti 2 , -

wtriir ls an e-xpressioiinvolving the principal momer$s of inertia.

4.5 MOMENT OF INERTIA OF A RIGID BODY 3 
. . -L^-r.L^ -oi- armic 

'":

we shall show that n.I.n is the moment oiin rtiu of the rigid body about the axis of rotation,

{- f .il
n.I.n = " tT',h' 

-',(r, .)l} n

by putting up the operator I . Simplifing, we get



(
n.r.tr = ".{Ir, l,ro-r,(.,.")ill'7 "]

=1^,h, (n.o)_(r, .nXr, .oI

=Tr,(r, .r,)-fr, .n)(r, .n)]

since n.n = l, ?1.r1 = 7,2 . Taking out"common
r.hs. =Zr,r,.[a -n(r, .n)J

t

=1^,r,.[n"(r,,.n)J

as nx(4 xn) = (n.n)r, -fr, ..")l Ngw, bl virtue of the property of scarar tripre product,
r.hs.,,- Irlr,(;;*n). (r, xn)

t

=Z^,f r, 'n f2 = 7,'

r, oubide we obain

d6 EULER'S EQUATTONS OF MOTTON OF A RtctD BODy :
ffi:'*Tff Sfff 'flnfff#:#tl;;i ;*t,#;"'0., the actpn or a torque N

dL .i.

7 = N "'(l)

( dL\
, | ; | =Ircit,l+ Ircbri+Ireb,k. ...(4)

,, ,./ \ tlt );a,
Thet*ompolpnt (2) is obtaineg'as

if, =N.i.=/r a,-(irl,)
\ ./,

rr
, = Irot --latrl,-o,Lrl'r0,i:l

in such a way

tn a coolinl system rotating with body, we have the following relation beween the two time derivatives
(a r a)"*" =(a1E)* +i,

F4.(l) in terms of body-axes is thercfore,(n\ +
f -:| +axL=N .,.@\ca )c.ty "'\-,,

It is found most convenient to choose the principar axes for which.. L= I $tri+ I2atr!+ I 3otrk .. .pl
whel€ ar',ar , and at, are the components of the angular velocity vector along tlre principal axes.
Form eq (3) and remembering that the principal moments oiir*i. and the body base noarr, i,rk ar€eonstant in the time with respect to the body co,ordinate system, wi find that the time derivative of L, that isA.lA , in rotating system is



ilenren roR Dlsr4xcE M

a , _\

=I,it, -(I,' Ir)o4 a,'''(5)
fiomeq.(3)'Bycyclicpermutationofx,y,aweobtaintheremainingtwoequations,viz.,

t t- - \ f

N r=Ir', -(1, - I,)co'ot' "'(6)
lt-\

N,=Irat, -(1, - Ir)at'at, "'(7)

These three equations or" tn#ufo's equation for the motionOf a qrgtd body with one point fixed' ''

4.7 TORQUE FREE MOTON OF A RIGID x)DY :

WhenN:0, Euler's eqs' Become
at.\

a \jiIro)r=o)ro)r(tr- tr)

Irio'=a'"at'(l' -lt) "'(l)

Irior=ol'o'rQr- Ir)
rt is possibre to integrat€ equations i1 egs of e'iptic f'rrctio11with initial conditions of'kinetic energt and

tota[ angura*o."n ,il,;hi"h ; tn" ,nt"gnr-oi"onrt-t "fthe 
;;;; for, thgr-e arc no net forces bcting

on fhe s),stem. The systern is consetrat'rvr ffift;;4;i."t qqt4dp6 finnish following ttuo con$an!'

of motion: t

4.7.1 Conservrtion of Klnetlc Energt :. ''

ii"ftrprvi"g tq. (l) bi;;; otv,o'z respectively and adding gles

I ra-,tb, + I rol, cb v + I rol, 1|s' = @'&) vo.'(l' - I' + I'- l' + /' - t2 ) = 0

_ d(1,--r)_But ;l;,,r: )= 
I,at,cit, 

"tc'

And therefore the left hand side is

!(t',,'i *lr,'j *f,r"2)= o '

The gives the conservation of kinetic enerry' i'e'

r=!tt 3 *f,tr'3 *f,tr'7= corststtt "'(2)

47.2 Conservetion of angular monentun':
enotfr., ."nrtart of mofron is the angular rnomentum L, since we

It =4 = 0and therefore l, is conserved:
dt

'I

\,_l

.i' I
have presumed N=0, whenog

L=ll(Dr + il2o, *W3tDr= cotlstaflt' "'(3)
We shall describe a very interesting solution of
r€presentation of motion of rigid body based on thc

motion of inertia+l l iPsoid.

4.7.3 Heavy symmetric toP:

tk problem due to Pginsot - Tit ll,t ,F*Td:ul
intt6"ft of motion, eqs.'(2) and (3) deVdbping into the

The symmenic top is approximated b 
""T.ty -of 

tisq h{i.* like ttre child's top and gyroscope' It pivots

around a fixed point O on the symmetry a<is ana *Juf. the distance of O from G, the center of mass, to be l'



il*#{,6;#}.ff'#Hffit ff T*ipte 
axiq we pu l,=rz. onrv rorce acting on the top is grc

tr zlVerfinl

x'

Fig f.3:

Lirp of modes

til?:l'fl'r#S;Af#g3"*i* rct orsnenlispd ceorrinatee to describe the motion in this case.

L 

.=.r 
-y - *,,(r r, * rrr)* i ;ro'rz _ trost ose,

which on substit'ting br -grrrrr wlociths in Enns of Euler,s anghs,

,=1,,(6, *i,+sin2 q.*[U*,, e)-,gr"ore 1,,
fs we lrow that, "ry*j16-L'*r, '*J *.;, has rorowing tr,rce r)"es ormotion :Prccession : IVhich is rotation aoout rG';-*ir.- sucrr'a,od;;;*rponds to angre (.

):t* 
: which is rotation about'ilttsrmodhE .r1 oris or line of nodes. such a rot"rion corresponds to angle

spin : which is rotation about s' axis. s'ch a rotation cones.ponds to argte p. The spin velocity about
z'-cis is ari given W(i*re*i, 'l

4?.4 Firsr integntr orluadom *rjt- ,
since the lagrangian does nc *ntrin the Eulcr's angles p and time t, i.e., they arc cyclic, theconesponding momena pe, Fs and bld en€rB/ E are constant in time.

. These $r€e inEgrals ofrncion arc exprrced by
AL -(. r \

P, = j= Itlty+Qcosd 
f = I3oi - t,s. ...(2)

?tY\/
whcrc a is a constant, ard

p, =#= I,isin'0+ r, qosa(i.i.*a)= l,a ...(r)

-----
v
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whcre b is a constant, and

I (.2 .2 \ r

T +Y =+lb +Q sin'el+t;'i +mgtcos?=E "'(4)
z\ ) z

Equations(2,3)maybesolvedfor rpr and /' yielding 

'=# 
----(5)

. . I,a _(b_ac_oso\cosd. __{6)
Lnd v =T-[-ri",a 

JvuJv'

Substituting (5) and (6) in thc enerry equation' we obain

F,= E-g"Y =LI,b' *f,t,p' 
"in'o+mgicosoe -u 21.' 2' 2'

=lr,b' .t;,(#)' **sr*"e "'(?)

This oquation, when solved for d as a function of t, involves the use of ertiptic integrals which tend to

inroduce complexity. 
- 

Therefor,e ,o*" or#';;t; ffii be found out which describe the phenomenon

qualitativety. one ,*r, *.y-ir-irr* oi tr""ii*';t#;ii" tq*tioi til t"t'i"rt' like the potential v(e) ' is a

function of a alone :

r .fp_acose)......(8)v,(e)=ngtasl+1t,, sing )
This is a one-dimensional problem in d coordi""" l" 

11911):,: 
ol"t the effectivepotential as a function of

e.v,(elassumesinfinitevalues for 0=0 or n,V' assumesutinitutvalue' lnf'gute' d' atwhich lz'is

minimum must therefor€ be a solution of the equatiol:

dv' = mstsi^e* tr"(S\- r,(b-|,?:el' *",
d0 - [ sina ) '' sind

=-mstsin0+{'(a-"*;lJ9 
D*") =o "'(e)

rf enerry ,'= ,-(';;)r' ,d motion is a bound motion' confined between the two values

4 and 02 of 0, which are the roots of the equation 
.1

' E'=V'(0)

:? E'=mstooso.*;r,[ffi9)'"','o' ' ,,'*'

The variation in the angle a r reteneo tothe nutation of the symmetry rixis of the top and is an up and down

mdion of ttre symmetry axis. tf, however, the minimurn efrective pot*tiut equals the enerry E', ' 
the angle 0

kecps frxed at value ao anO the top precesses wittr the constant angrrlar velocity given by " l

, b-acos0
p = 

-J 
....(l l) about the vertical axis.

stn- oL

4.7.5 Precccrion without Nutation .. - !- ^L---3 : ^ -l
consider the angu.lar velocity of precession and spinwhen nutation is absent i.e., z'- axis remains fixed at

d6. From eq. (9), it is obvious that, for 
" 
gJ; ;;:ihere will'be 'hvo angularfrequencies of precession /t

grven by



6r-vl'*@po = -- : - t t' ;r -"'5' t'| 
..,(12)z(1,:{cosa

*i::Tfi,J"r1,K[J":'*:: ;T,:T 3j]?:lTl_,^lsron 
wilr be fast whire that with negarive sign is#ffi;'ffi'ffi,l#r",,Til::ffi,::i.e.,

tl t2 -lngt(1, -lr)cosao >o

fz r4ngt(Ir-!r)coseo ...(13)r!

Fig 4'4: rllustrating'the effect of two rotationS'performed in a given order

Thus ttris equation limits the values of f forwhich steady precession may occur at the angredo. Further, we

ffi ffi"|ojllto' 
rtt' for /, in terms of 

,coL, theangular velocity about :'-axis cailed spin angurar verociry

io _ I tat', t tlVlgL2 - qnd I, crtser) 
(t34)

21, cos4o \ rJnl

Pufing for l,o from eq.(S)

. -' 2 rt cosdo l'-l: -EE-) j

- | /r sin2 do lrt *(rr -q^st tr*eo)t'21 /tA\z r,crrse, L-'-l-' .J 
...(t4)

we ntlte that for 0s < 
'c 

12, physical motion is possible .nJ * stated prcviously, for uniform precession,quantity under radical must be positive, i.e.,' I: a|2 -4mgt lrcosd)0

...(t s)
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This is the minimum spin angular velocity ari berow which the top cannot pnecess miformly at the angle B0

and is given uv 
"q*tiolrr(;;:*";;',r(r',\^^quantity.yraer,radical 

will not be zero and hence two values

<r

of/o aregivenbY

. (b-aasos)* It a',go=-ff= /, *roo

.lr

: b-acosi) * ngl. ...(16)and ho=>ffi Isa,,,

It is the slow precession which is ordinarily observed with a rapidly spinning top (large ari )'

4.7.5 Nutational Motion :

Irt us now investigate the nutational motion ttr"t we have mentimed earlier. At the angle go, the effective

potential v,(e) tu.sa minimum value; it eorresponds to a point of stable equilibrium' d' and It being the

tuming angles corresponding to th9 gffective .nl'g, E'.: llfollows' therefore' that situation exists for which

the nutationar motion of the axes ofthe top..n u.i'rr.,ibed as a frequency of these oscillations and given by

...(17)

rr,- c-raL-. o'r'(il\ = trlo, -4aiiocos0o13/02 cos2 Lo+iil ...,tt)
We tlndtnat -F b-r,

The angular frequency of oscillation about do obviously depends on spin velocity ari through a and on /0"

This motion is derineated by the procesgional angrrlar nelo"ity io which is dictated by spinning velocity ari 
'"

It is customary to depict tte motion of the top-by tncip.the curve of the intersection of the figure at<is*

(symmetry axis) on 
" il; 

oi unit radius. 
-r[i, 

tu* is-then the locus of the figure o<is' The polar cq-.

ordinates of a point * 
thil; 

are-* io"nti"at ,nitr, trrc Euler angles 0,Q for the-body system' The bounding

angles 01 and d, ontheunitspheresatisfytheequation(10),rvhsn E'=V'(g\'inwhich flPv and fare

determined from the initial conditions. lf we multiply this equation by sin2 9, it becomes-a cubic equation in

cosd. Refening to fig 4(a). there are two real roots-co sg1,cos02 Uet*etn -i anO +l' The third root can' inl

fact, be shownto be greaterthan l, on aconsideration of eq.(10) and is 
"*."lll,yttcal 

interest' Initially'

when the top is spinning fast, nutation motion is absent and cosdl = cosdo ' If initially d = 0 ' the initial value

cosd, and d satisfies equation (10). During nutation, the precessionar velocity varies in accordance with eq.

(5). If 2'.

lal<lci or lrll.lr'l'
wecandefine an$e Lsas follows : cosd3 = #=:

...(le)
.{l ' li i

o<03, it has an oPPosite sign. Alsoif e>q,i has the same sign as @i and forIn view ofequation (5),

Ll is nesative. i.e.
d0 le-e"

the slope of the potential enerry curve in fig.4(a) is negative, or, the angle between

ar! throughout the nutation, and ttie figure axis trace out a curve shown in fig' on

changes sign during nutation. The conesponding motion is shown in fig.
tangent to the same sing as

the unit sphere. lf q > et,i



(a) (b) (c)
Fig 4.5: The podDlc rlrpcr for the locru of the figure axis

or flc rritsphcrc

4.7.7 Fast top :

The fast top is a top spinning very rapklly rbout 0re figurc ods with angular velocity at,,andis initially at restat an angre 0, andthen rereased. Forthis, we have thc initiar conditions :
i) initial angle, 0 =4, ii) initially at rcst 0=0,)=0, iii) spinning with at, , ttr =ti o =oL
So the equations (5, 6, 7 ) become.,

ItV o

Il
a

Iry oc,os4,
|=-

Il
E'=mglcos 0t

...(20)

-- In.Sotion, d begin to differ frronr thcir initial aro nlues so that first two terms of eq. (z) will now havesome value' consequently, to koep E mtant, the term ^gtire shoutd decrease. tn otner words, energycan be conserved only by a decteasc in pocntial energy that is, by an increas e in 0. The initial d, is,
therefore, the same 6 0r, the minimun ralue O can have (from eq. eO) *="ore,). .When 

released in this
mannerifhe top always starts to frtl, snd continues to fall until the other bounding angle d, is reached,precessingmeanwhile. The figure 0xb hcn begins to rise again to g1, the complete motion being shown in
fie s(c).



Ifnowweassume ltro'>^gt, i.e., the rotational kinetic ercryy abogt the symmetry axis is much

larger than the maximurn'allowable change in pot€ntirl.cry3l, drcn we fird that / is small and to a first

approximation,wecanset !" \: .

. , \|
o '\:,1 =rpzd0' le=an

- A6=4
I stito

Il
Let t be the amplitude of this sinusoidal (nutatiural) mdion in thc mit of a-angle and Ake place about the

mean value 00, obviouslY, ' ';'

0o=h+6
and therefore, at any time angle d is a function of time, varying sinusoidally about the value do :

0=00-6 gosrlt=0+.6 -5 cos@t

so that 6=-!=.(a -dcosart)
SlIl t/1

obtained on using eq. (5)

The average of / is glven bY

- r--'f #;(a-a"o''')a('')
10)=- fln.

lalott)

...Qt)

Putting o=+,we get

.i,=ffi.a
But 4' =*!#
Therefore q.(23), becomes r

, Itio mglsin9l<e,=4;i;A rT
Is'ilo , Il
If It- v'

(Putting for a)

= y8! . __424)
I{i'o

Thus we conclude about Fast Top that :

i) since lpz >> mgl, d, the amplitude of nutatiorU is small

...@)

...Q3)

.1'?

rif."'



ii) since 0 = 0o + 5 - 6 cos o t , nutation is sinusoidal (simple harmonic).
iii) singe IsVo = I,a>mgl

i_A
< / > is small as inferred from eq. @a). Thus the precession is slow.
iv) since @e =e,fiequency of nutation is large.

rfr*u:tHjfiil"t:*"0 from res! pt"""rr", slowtv and notates simpte harmonicaily with a targe frequency

Summary:
A rigid body can possess simultaneously the hanslational and rotational motion, and the equations ofmotion' govemingthe two tlpes of motion, miyinvotve u"trttrtr ilnslational and rotational co-ordinates.If the rigid bodv ii taken as a rigio correctlon-ofpurtlrrcr,lr,rn;;;;, momentum is given by

L=f z(r, "v,)

*"fffi;t":'e 
components of the vectorial quantities involved we can write the components of angular

r
,,=Lr,1^,(,' -rl)-rr\r,*,y, -r,l^,",r,] =ro@x+ root, + r.oe),,i i I -^

t-
tr=L-r,1o,ix,li +@y1r,(,, - yl)-r,Zr,y,r,] 

= t y,@, + r ,.at, + r n,-,,
,f

t, =L-t,1r,r,r, -rrlttirizi *r,lr,(,, - rd = I oe, + I,ra, + I ..at,.,iJ

I is'therefore a differcntlhysical entity, termed as the moment of inertia tensor. The components of I have
Itrffitlt:frf.matrix 

rioi' in ;;;;;';.liat" unJ"otunJiie'or rinear ransformation ; otherwise r is
The diagonal element of matrix form.

r * =}r,Q,' - *l) = Zr, b,, i ,?)
ii

I o =Z*,b' - y?) = E^, Gi .,i)
, * =Fr,(,, - r?) = 

1^,, 
(rl * r?l

are. called the moments of inertia coefficients. These
r, !, z - axes separately.

I,r= I n=-Z*,*,y,
f .r=Irr=-1^,y,r,

Iu=Io=-lm,z,xi

are the moments of inertia of the body about the
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are tenned as the products of inertia associated with the conesponding co-ordinate planes. obvious I is a
symmetric tensor and is additive in nature; the moments of inertiaof a body are the sums of those of its parts.
A mathematical structure having nine components in three dimensions is iermed a tensor of rank two. In this
sense, I is a tensor of rank two and we shall write such an entity in type I to emphasize its tensorial characten

The kinetic enerry of a rotating rigid body can be written as

l-+
T =:-a.L)

and the torque
( dL\ -)N:l=l +axL
\ctt )r*

And the components of torque

a.

N * =1r at, -(1, - Ir)at, ro,

N r=Iri, -(t, - Ir)at,a4

N,=Iri" -(r, - Ir)at,at,
These three equations are the Euler's equation for the motion of a rigid body with one point fixed.
For torque free motion, kinetic enerry

r = f, r,r! * | r rrl * 
L r rrl= conStont

To represent the motion of a spinning top, the Euler's angles are the most convenient set of generalized co-"
. !,ordinates

The Lagrangian L for a top is

L=T-v=!r,(r-,t+, "\ | '
2 '\ r 'or'')+-ltar''-mglcos9

which, on substituting for angular velocities in terms of Euler's angles,

r = I I,(e' * l.'+ sin2 d. +ft. 6"or' 0)- nst cosl
z\ /

Since the Lagrangian does not contain the Euler's angles 9 and timeit, i.e., they are cyclic, the
conesponding momenta ps, p1 and total energC/ E are constant in time.

These three integrals of motion are expressed by

aL ,(. 1 ^)P, = 
- 

= Itl tY+ Qcos9 l= Itat't = Ird.o(p\/
where a is a constant, and

aL .', .)^ - ^(''. -)Po = 7i = Ir Qsin" 0 + I, cosdl y+ Qcos0 l= I,boQ\i
where b is a constant, and



r +v = ?(U' 
. r' ,in' a) * *,1 + mgt coso =E

M.Sc. PHYSICS l6 The rieid body....

From the analysis of the motion of spinning top we leam that ,there is a minimum spin angular velocity o!
below which the top cannot precess uniformly. The fast top rcleased from rest, prccesses slowly and nutates
simple harmonically with a large frequency and small amplitude.

Key words :,,Angular velocity, angular momentum ,momenB and products of inerti4 Rotational kinetic
ener$/, moment of inertia of a rigid body , F,uler's equations of motion, Torque free motion of a rigid body,
Heavy symmific top, First integrals of equation of motion, Nutational motion , Fast top.

Self-assessment q uestions
lDefine Euler angles and deriWEuler's equations of motion in terms of Euler's angles.
2 What do you understand by ffie inertia tensor of a rigid body?
3.Deduce Euler's equations of motion of a rigid body with one point fixed. What is inertia tensor? Discuss is
properties.
4.Explain the motion of heavy symmetric top.
Reference Books:
l.Classical Mechanics: Goldstein
2.Mechanics: Simon
3 Classical Mechanics: Guptq Kumar and Sharma



Classical Mechanics Part
Unit II
Lesson 5

Objec'tives
To learn 

r ^-r -^- !-^;!^r r*anl. About inertial and non-inertial frames of refenence

2. Why Galelian transformations are not satisfactory .il-.-!^-,
3. How Lorentz t"-rforr"tion satisfactorily explahs {ro invnriance of Physical laws

4. Consequences of Lorentz transformation

5. hinoipies of relativistic mechanics

Structure:

5.1 Basic postulates of spocial theory of.rclativity

5.2 Galilean transformation

5.3 Postulates of special relativity
5 .4 l,ot enZ Transformation
5.5 The relativistic law of addition of velocities

5.6.Kinematic effects .of Lorentz transformation

5.6.1 Lorentz - Fitzerald Contraction
5.6.2 Time delation
5.? Covarient four-dimensional formulations

5.8 Force and enerry relations in relativislic mechanics :

S.9.Lagnngian formulation of relativistig. Mechanics

5. I O Covarient Lagrangian formulation.

Introduction: [,aws of classical mechanics hold,go$d when 6s velocitics of the particles of the

system are small compared with velocity of light. Wtprre€ v-chcilies invohpd approach the

nrto.ity of light tho tnre descrrpion co.tgil---------,tcni with tbe g;tpefigpqpl,frcA ig provided by speoial

theory of relativity

5.1 Basic postulates of spccial thoory of relativity
n space system oUeying Newtonli laUlif motion F.=,?n is calfod.,rn io.ofiial system. lt appean that a

system moving uniformfy with respect tq I 'spaoc systq!.flroUld i6Flf bc an jrcrthf-sVstem'':'To show it'

c-onsider trvo co-ordinatosystems. Onc inertial qrtem S ,gnd $p'd1orl.$' ntrying uribrmly'u{lh,Fspect !o

S witlr velocity rt , A.gvenpoint P is lqcafiFd by ftc ra{ini"t!9tgr.r 1p.d rr. rlviiN! re!@'to tlrfim systonls

which are related as

rl = r-Yi ...(l)
Since the rehtive velogity is constant, ttte fry timc dcqiv?t-w-ofcqptio6.{t}$

5:

il =i-v ...(2)



and dnother differentiation gives i, = i i.e.

er = a ...(3)
8o tbat the acceleration is same il Ft! systems if Newton's taw holds in one system it should hotd in theofher' if the force has same form in both systems._ ln many oi ur.'*uur probrems of mechanics the force isobriously unchanged between the two ,yrt#., as for examite. *ltr, a constant force field such as , = mE.The transformation represented by e+ (l)and eq (3)is ""ili caiun runil"il.i]"i,""o ,n", the velocityof lisht should be diffirent in trreivdsliil.

i2 Galilean transformation
Now' suppose there. is a s-ourc-e of light at the origin of the unprimed system emifting spherical wavestrnvoling with the speed c . Let the radilus vector r & the position vector of a point on some given wavesurface. w"r rve'r'v

Fig 5.1 :Illustrating the Galileen trangformation

Ttn in the unprimed system tlre vetocity of the point on the wave surface is i = ch, wherc n is a unitwc{or along r ' According to equation (l), however, the conesponding wave velocity in the primed system ist' = cn - v ' In the slatem moving with respect to tire source ortigr,t irre magnitua;"i;; wave velocity will
ln general no longer be c ; indeed, since it depends on direction, thi ,"aves will no longer be spherical.

ilcw transformation needed :,
A long series of inves{galions' especially the-famous.experiments of Michelson and Morley, have indicatedttat the velocity of light iJ always the sami in all directioni and is independent of the relative uniform motionsof the observer, the tansmittinf medium and the souroe. sincr fr" propagation of light in vacuum with thelpeed c is a consequence of Maxwell's equations, it must ue con"tuaeO that the Galilean fiansformation doesnot preserve the form of Ma:<well's cquations..Now, it is a posnrlate of physics, tr,J'uri prt"nomena of physicstt"gq aPpear the same in all systoms moving- yiro-rmrr iruri"iry.'to'..rri ;t1,.. 

-Morrr"r.nb 
madeentirely-within a given sysbm srut be incafrulc of diitinguidriris"tlr4 wrtir t* au othen moving

ylfo.rm]v with respect to it This postulale of equivalg.n;rrq;; that physical faws must be phnsed in an
identical manner for a.ll uniformiy moving sisterni; i.e., be r"*td;;;-JtFl"o ,o a Galiteantrad;fo.rmation. Experimentally both Nerion;s lads and Maxwell's equations seemed to satisfr the
equivalence Postulate ll1llr.lh:"fqcaJJr, i^.e., acg$ing to Gatilerrn hil'f;;"n,-ila,*welrs equations

.{1*:1 jl"*lL ."ncluded tlrat ii is dre form or Mo-t".rlt eq,ratio* that must be kept invariant andmetttore the Galilean tansfonnation could not be conect. A new relationship between unifo*ly rnoving
sysitems, the Lorentz fansformation, must be found that preserves the speed of light in ail uniformly movini



syst€ms. Einstein showed that such d nansformation requires revision of the usual concepts of time an{ r.
simultaneity.
fhe progpm of the theory of special relativity is therefore--two fold. First there must be obtained o

fi:ansformation betrveen trv6 unifolmty movin! systems that will preserve the velocity of light. Second,.thcr?

laws of physicS must be examined as to their Uansformation properties under this LorenE translolatiocl;
ttrose laws that do not keep their form invariant are to be generalized as to obey the equivalence postulate 

;:
5.3 Postulates of special relativity - 

'ic

From above discussion, we anive it the following two postulates of special relativity.
""C;

1. The principle of equivalence of physical hws: '-
Thii principle states that all laws of physics take the same identical form for all frames ol t=16rcncs ln:lt

uniform r.tutini motion, i.e., for all the'inlrtial franres of reference. This is a direct consequence of thcs:re

absence of an absolute oi n*io frame of reference. For, if the laws of physics were to take on different forms

in different fumes of reference, it would be easily inferred from these differences as to which of them are at

rest in space and which in motion. But, as ore fiaue seen, such distinction between the state of rest and of
uniform motion is excluded by the absence of a universal frame of reference.

i

2. Principle of constancy of velocity of llght
This pinciple states ttr"t tt. vetocity of-light in free space is the same (c) relative to any inertial franre of

reference, i.e., it is inrariant to fansformation from one inertial frame to another and has thui the same valg

(3 x | 08 n / sec) fir att observes irrespective of their state of motion.

This postulate is clearly a statement of the result of Michelson- Morley experiment.

The two implications of the above postulate are immediately obvious.

i) Velocity being not invariani to Galilean transformation , it follows that if c be the velocity of light in

frame S, thatinfiame S'movingrelativeto S withvelocity v, mustbe C'=C-v. Inaccordancewifr

the second postutate of the special theory of relativity, howevdrwe have C' =C' since C must always

have the same value inespective ofthe state of motion ofthe frames of reference.

Fig 5.2 : Illustrationbf principle ofconstancy of velocity of light ' r

ii) Again, suppose a flash of light is emitted fiom the oiigin when points O 3nd.o.' 
of the two n"t".t 

"d, ii
referince S 

-ind 
S, just cross each other [see fig. (2)]. Suppose further that it is possible f3r. the fro:,xt

obeervers in the two iir*es of reference to see the light or rather the wavefront spreading out into^ sP@J,pg

Then, in view of the constancy of the valtn of C, ine.spective of the motion of the two OTt-.^ o1'^re-fbrem0;:iir

each of ttre two obserers x o ind o' respectively will, even after drifting apart, claim to be at the.center ol.-,t3

' !i t':

...1.

itnr



the spreading spherical wavefront of light as shown in fig. (2), thinking that the other has moved away fipln
-the center of the sphere

5.4 Lorentz Transformation
. Einstein first derived these tansformation equations with the following objectives in mind. (Howert

these transformation equations are called Lorentz tansformation equatiJns as Lorentz fint derived tlrcrc
equations in his theory ofelecfomagnetism.)

i) transformation must be linear ii) It shourd preserve the speed of light, and
iii) It should approach Galilean transformation in the limit of iow qpeeJs compared to speed of light.

We consider two uniformly moving systems whose origins coincide at time I = o. Further at I = 0, ld
'a source of light, fixed at the origin oflhe unprimed system, emit a pulse of tight. The pulse of light sprea6
9,S T a growing sphere. Thus an obserer fixed in the unprimed system witt see i speadin! spfrerttht
wavefront propagating with speed c, the equation of which can be written as

But since- speed ofligit being invariant, observ.er in the primed system moving with respect to the source,wlfl
a|soseethepu|seof|ightpropagatingasthespherica|wivefrontiromhisourJrign_equationbeing

*'2 *y'2 +z'2 = C2 l'2 ...(Z\
which shows that time is no more scalar invariant but is a function of a particular coordinate systcm h
uniform motion relative to other systems.
Inspection of equations (l) anci (2) reveals that the desired hansformation must be such that

,' + y' +:2 = C2t2 ...(r)

...(4)

. x2 + y' + ,2 -C2t2 = ,'2 + y'2 + /2 -C2t'2
..,(3)

Writing .r1 ,.r2 dnd .r, for x,y and z , the equation becomes
44

lr! -c2t2 =Zrl'-c2tt2
u,: ,=l ,=l
If we put xr = iCt, a fourth imaginary co-ordinate, then

44

Z "'o =Z-';
p=l p)l

This means that the square of the radius vector is invariant under a transformation of co-ordinates in the fo.r;
dimensional x11x2tx3 and xo space.

We know that in three-dimensional case, if we nrtate co-ordinate axes, then the components of a vector in,nerr

systemaregivenby ,L=too,x, andthelengthofthevectorremainsunchanged, i."., fr,r, =trrr'.
Y=f P=l P=t

-- Thus basing on the lmlory of above equation which represents spatial rotation of co-ordinate axes in thrw
dimensional.orthogondl space, ]ve can say that equation (4j represenis orthogonal trnrro*uiio;;;;;ili;
four dimensional space or in other words Lorentz transformation. 

"t" 
m"r"[ the orttrogonai;ril;;;; ;]

four dimensional space - the latter also being recognized as woild,space or r*ainrcirf.i't rp*;. I"p1p,t?
transformation can, therefore, be represented as

4

xr, =lor,*,,
v=l

whet€ ar" is the linear hansformation matrix. We arc herc concemed only with a transformaiion thd
involves unifollV moving systems whose axes are parallet and is catled pure Lorcntz transformation. Sudrl,



lusformation does not involve any spatial rotation. I-et us consider that primed system is moving with

wloclty v along x, axis. Now

x', =larux,

."f = 4s1"1 *aPx2+4,r,x3*agx4

xl, = arr*, t a22x2 1cl23x3 * a74x1
fi ^2 - uzt-t ' 'i ...(6)

xl = a31x1 *a32x2*a33x3+a31x4
' 

x\ = a4txtla42x2*cl4x3*a44x4

llbv.iously xf ,.rland "l Ueing space cmrdinates will be real for which 
',L,,a24t}34 

should be imaginary

(because xt = iCt is imaginary). Similarly, for xf to be imaginary it is essential that aa1,aa2 and a43

aldnents be imaginary while aoo real.

As ttrc primed system is taken to be moving along x3 axis, then rl ond x2;teing in a direction perpendicular

lo ftat of system motion, will remain uneffected by the transformation. i'e',

...(s)

...(e)

rl = tt'
*L=xz

As the components 13 and .r4 undergo transformation and hence .r1 aild x2

Gnsformation matrix of xl and xf . Thus equation (6) become

"l ="r
,'z = xz ...0)
xr3 = a34+a34x4

xta = aa34*a44x4

llterEfore the matrix of transformation is

fl : : :l
lo I o o | ...(s)
l0 0 an oyl
Lt o ao,, oon) '

Frrtlrer these matrix elements have to obey some sort of orthogonality conditions as for spatial rotation in

tlreedimensional space, i.e.,

should not aPPear in the

larrat, = Srrt

=lifr=I
,:f-.,

" =Iiflt*x ',

ltttdi8 F = I =3 andfirst v = 3 and v'= 4,weget

al3+a2r=1 ...(10) ':

Aho,with It = 1. =4 and v = 3and 4,

ah + a2* = I ...(ll)
frntrer aean.*a34d*=0 ...(12)

il*6 orthogonality condition furnishes the three equntions (10), (ll) and (12) connecting the four matrii

iJcments. ih" four unknown elements can be determined uniquely only when fourth relation between them is
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].f-"ta.a We know that the origin of primed system (rj = O) is moving uniformly along .r, - axis, thus after
nme t its .r, coordinate will be vt, i.e.,

x3=vt=r.*=-itq=-ipxc
I'which, witlr matix relation for xj, gives

r,'i 
--"j 

= osx3*a34x4

=(a3a - ip a.o) ro = 0
C a34 = iBas,
which when substituted in equation (10), gives

I
;?? = __:

,lr- p'

i,r,u, oro=$
,lt- p'

dn solvingequations (l l) and (12), we can showthat
' ooo= -.l+ and an = &

Ir- B' - 
Jr-q,

We can now write the Lorentz transformation as
r0 0 0

0l 0

E]
000
100

' /"t;p '/l-a
o -'/ga 

/,rry
xl =t
yt =y
)_ z-vt t...\

,lt- B'
/\

ict' ='.1+l* ict

\'lt-p') l;F
, t -(rlc'1,I'--\r '- l-------=

'lr- P'

H]

.Ljl

o o t/,- . iB/-
/ ,lr- p' / ,h- p'

o o -iB/- r/
/J'-B' /l;F

I

0

0

0 L;]

l3)



Eq. (13) is known as Lorentz transformation equations. It is obvious that Lorentz ransformation to t""l'*
ordinate system is possible when p< t indicaiiig tttut on. cannot have q relative vetocity g€ater than c ' ihe

speed of light.

5.5 The relatlvistic law of addition of velocities

Let uS consider three frarnes of reference S,S| and ^S't ; St moving with velocity

with velocity l/rrelative to Sr. Now here we find out the rclative velocity of Srr

transformation equations conta ining St with S,and srrwith Srarerespectively'

Jl

yl

zr

tl

Substituting eq. (l) and (2), we get

tll =t
y"=y

f4tr

tz, relative to S and S

with respect to s. The

=x
=y

' 
-(',1c'\'
,[-'l lc2

rll = rl
ytt = y'
,, :l -v.lz"=#

Ir-,1lc2

t'=@
Ir'vl lc2

...(t) ...(2)

\

z-vt
lv^
n __!-

ll aZ
fL

r-vl lc'

Where , =#-
l'-v)



And similarly ,rr =

Fmm these equatiotts for err and rrr rye inftr tha.trro Lorcntz trarsformations canied out in succession are
equivalent to one Lorentz tmrcfonnation. we also note that the rctative velocity v of sr with respect to .s is
not simply the sum of v, and v2 but

Vr *Vt

l+vrvz/./c'
Further, the expressio4 for r Fqq bepfrt,in dre fprm

I t ,\/ ,r'l

,=.1 ,_P%)t",1)1
I I *uPfz I'L /V J

Whichshowsthat v canmtbocontecqud!ootgr€atertlnn c,thespeedof liglrtaslong a,^thefactorsvf
,fr '% are smal{ enough. Fion eq. (3} of v' 1 C anf y2 = C, then

,=-9*.9-=g
t*c /",

that is, when velocity of light is add to the velocity of light, we ob,tain velocity of light.

t tr Klncmatic effecb of lorcntz triit0rnrtlon
. 

'l].re.two 
loxs€quences of l,orcntz ransiitrnration, that so calldd Lnrentz-Fitzerald contraction of length

and dilation of time scateq are exptained as foilows.

5.6.1 Lorcntz - FiEorald Contrection
lrt us consider that a rigid rod at rest is lying along z-o<is in the unprimed syst€m. Its length in its own

system is

...(3)

An

^tr
/;

I = z2_zt
obrserver connected with'the pnfned sys&m tlht is moving uniformly with respect to unprimed system

a$res the length of the rod by locating simultrneorsly th,position of both .end points as ; j and :l in his
tem at the same time tr . Thus frrom Lorcntz equatiqilr, we have

zl +il
2t =#:" ,I-p,

So the apparcnt length is

(,,-,,),tiF = (,i-"1)
or t,[vf =1i
Thus, to the moving tretver, rod appean to be contracd.

5.6.2 Time dflatlon
Suppose in unprimed FJstem, at point z, a clock is located.

in the moving primed system notes a time
At time l2 on this clock an observer fixed

zl +vtltr=ffi
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, l) -v:f C2
- .a-:' $-P'

so that apparent time interval is

ll-rf = ''1
lt- B'

'' -rl)rkr-r,), it appears to the moving observer that the stationary clock is moving at a slow rate.sincc [tl -
The effect is called "time dilation".

5.7 Covariant four - dimensional formulations
The task of veriffing the laws of physics for inva'iance in form under Lorentz transformation is easily

r . done by writing thim-interms of ilri fourdin'a;ional world. Invariance of form under Lorentz
lll ''' tansformation is not the only invariant properly demanded of physical laws. Clearly the physical-content of

any given relation cannot be affected by the particular orientation chosen for the spatial axes, the laws of
physics must also be invariant in form under rigid rotations, i.e., proper spatial orthogonal transformations.

Normally we do not worry about the invariance of our theories under spatial rotations. In consfructing any

equation it is always required that the terms of the equation be all scalars, or all vectors, in genei'al all terms

mrst be tensors oi the iame ranh and this requirement-automatically ensures the desired invariance under

rotation. Thus a scalar relation will have the general form.
a = b,

and since both sides ofthe equation, being scalars, are invariant under spatial rotations the relation obviously

holds in all coordinate systems. A vector relation of the form F = G, really stands for three separate

relations between the components of the vector Fi = Gt

The values of these components, of course, are not invariant under the spatial rotation, rather they .are

transformed to new values 4r , c,f that are the components of the transformed vectors, Ft , G I . But because

both sides of the component rclations transform in identical fashion, the same relation must hold between the

transformed components :

iirl =o]
The relationship between the two vector*is thus undisturbed by tt.rc spatial rotation; in the new system we still
have Fl = Gl
Similarly, an equality between twotensors of the second nink is C = D

. Necessarily implies the same equality between the two transformed tensors Cr = Dr, because the two

, t€nsors transform covariantly under a spatial rotation. On ttre other hand, an equation involving separately a
component of a vector and say a component of a tensor obviously can not remain invariant in form under a
three dimensional orthogonal transformation. Invariance of a physical law under rotatioh of the spatial
coordinate system requires covariance of the terms of the equation under three-dimensional orthogonal
transformation.
Now, the restricted Lorentz transformation has be6n identified as on orthogonal transfoimation in

Minkowski, or wortd space we have already studied about scalars and vectors in this four dimensional space.

Similarly one can set up tensors of other ranks in this space, with transformation properties th4t 6re obvious
generalizations of the three dimensional transformations. These tensors of vfrious ranks will be called as

world tensor. The invariance of the form of any physical law undei Lorentz transformation will then be

.$-
'!- siu\l/ *I" '
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immediately evident once it is expressed in a covariant fourdimensional form, all terms being world tensors
of the same rank. A law failing to meet the requirements of the equivalence principle cannot be put into a
covariant form.

:li' The simplest example of a four-vector is the position vector of a "point" in Minkowski ,space, with'':'i components (xr,x2,4',x6). Since the four coordinates of a world point tell where in ordinary space
something happened and when it happened, it is perhaps mdre descriptive to speak of a point in four-

':','{imensional space as an event As a particle move in ordinary space is corresponding point in four-
dimensional space will describe a path known as world line. The four-ve ctor & o represenb the change in the

position four-vector for a differential motion along the world line. From the dot product of &, with itself we

can form a world scalar, denoted by dr and defined by the equation

(ar)' = **o*o ...(t)

The significance of dr can be made clear by evaluating eq. (l) in the Lorene system in which the particle is
momentarily at rest. In such a system the components of the transformed vector *L * (o,o,o,icdlt) and the

invariant dr is given by

(ar)' = -**| d'L = b,'f
Thus dr is the time interval as measured on a clock traveling with the particle, hence it is refened to as an
interval of the particle's proper time ot world time.
The relation between dc and an interrral of time as measured in a given Lorentz system can be derived
direcUy by expanding the eq. (l).

1l-1
(ar)' = -*Kar)'*(ay), +(a)2 -c2(at\21,' c'-

which is equivalent to the relation
dr

...(2)
,1,:F

=dt

Here p being used to represent the velocity of a particle as observed in one inertial system. Eq. (2) says that

ri time interval measured in tfib rest system is always longer than the conesponding time intervalobserved in a
system in which the particle is not at rest. This is an example of the familiar "time-ditation".
The square of the magnitude of the four-vector is not necessarily positive definite. Four-vectors for which the

.., square of the magnitude is greator than or equal to. zero arc called spaceJike; when the squares of the- 
magnitude are nqgative they areJqown as thne-lilce vqclors, As an example of these concepts it may. be noted

'" ' that the difference vector between two world poinc ban be eithdr ipaceJike or timeJike. l-et X b'be the

difference vector, defined as -{

X, = r'ry -x2r'
thb subscripts I and 2 denoting the trryo events. The pagnitude of X o !s gven by 

,. . i:

*r*, = 1", -rrl' -C'(t, -tr)'
Thus xo is space-like if the two world points are separated such that

,,)
1., -"rl'>c'k,-tr)',

, *l(*)'.(#)'.(#)'
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while it is time-like if
1", -.rlt .czQ,-h)".

The condition for a timelike difference vector is equivalent to stating that it is possible to bridge the distance

betrreen the two events by a light sigrral, while if the points are separated by a spaceJike difference vector

they cannot be connected by any wave traveling with the speed C .

The four-velocity r" is defined as the ratqof change of the position vector of a particle with respect to prQper

time:
dx,

il, =: at
with space and time componen$

dxi dxi vi
-:-:' dr aflr- p2 lt- p'

t ui=+andza =$ ...g1
,lt- P' {l' -'

(: dxn =-i6n
The world velocity has a constant mag,'rdde, for the sum ily4v is give by

.v2a2

, u,u, = ft-ftt=-r' ...(5) :,

and it is thus also time-like
Now consider the example of vector and scalar electromagnetic potentials, which together form a four'vector

Ar -+(l,ig). f tne potentials satisfr the Lorentz gauge condition

v.A + i#=o ...(6)

Then they separately satisfr wave equations of the form

...(3)

...(7)

'"...(s)

In the language of Minkowski space the Lorentz condition can be written in covariant form as

,'n-*#=-ft
o,, -## = -4,rp

uno 
-- o

Ax,,

In obvious generalization of the threedimensional'del operator V, the four dimensional gradient-operalor

may be denoted by the symbol n. d.ftnown as the D'Atembertiorr) is therefore a world scalar differerrtial
operator:

.-r- O' -gz-l Oz

dxrlx, Cz At'
Hence the set of wave equations eq. (6), can be written as a clearly covariant world vector equation.

a2A =-4oJ,--tt 
C

...(e)



5., Force and energy equations in relativistic mechanics
NeMon's equations of motion, being invariant under a Galilean transformation, cannot be invariant under

r.orentz transformation, they must be suitably generalized to provide a law of force satisf,ing the covariance
requirements of special relativity. For velocities small compared to C we have

4bu,\= r ...(t)
dt'

Eq. (l) is not Lorentz-invariant, therefore, its relativistic generalization will be a four-vector equation, whose

spatial component reduces to (l) in the limit as B -+0. The only four-vector whose space part reduces.to v

for small velocities is the world velocity n,. Further, while zr can be taken as an invariant properly of the

particle, we know that time I is not a Lorentz-invariant but it can obviously replaced by the scalar proper time
r,whichapproaches t as B+0. ThegeneralizedNewton'sequationsofmotionforasingleparticlemust
therefore have the form

!(*u,) = v,
AT

...(2)

...(4)

Where [, ir ror. four-vector, known as the Minkowski force. K, reduces to { in the limit of small

velocities. Thus K, may be equal to the product of .q with any function of B that reduces to unity as p -+0;
the exact relation clearly depends upon the Lorentztransformation properties of Force components. Two types
of approach have been used to determine the behaviour of r under Lorentz transformation.
One procedure begins by pointing out that, fundamentally, forces arise from only a few physical sources-
forces are either gravitational, electromagnetic, or possibly nuclear. The transformation properties must be the

same for all forces no matter what their origin.
The electromagnetic force on a particle is given by

(a(, r ^) tda,\
F,= al ;l d--v.A l+ - ' | ...(3)'[dt,\' C ) C dt )

In terms of the four-vector potentiat Ar, ttre expression O - f,v.t can be written covariantly as .

o -fv.t.= -f ,lt- F' ,.A,
d, t,

and the force components 4 become

F, =-L'C ,F:T(-*,"^").#) (s)

The expression in the parentheses transforms as the spatial component of a four-vector, so that 4 is equal to

the produce ,fi$ and the spatial component of a four-vector, which is to be identified as the Minkowski

force [n. Hence the connection between the ordinary and Minkowski forces must be

Fi = Ki rlt:F ...(6)

lrrespective of the origin of the forces A by-product of this derivation is the particular form of the Minkowski
force on charged particles :

-( ^ ,ll \
x 

" =11 !-1u,e,1-*1,o | ...(7)' L[d, o" ).
The alterative procedure attempts to avoid the necessity of using a physical theory beyond mechanics itsel{, il
simply defines force as being the time rate of change of momentum, in all Lorentz systems.



...(8)

The momentum indicated in (8), however, is notmv,, but rather some relativistic generalization that reduces to

it in the limit of small velocities.

Now from the relation between r and ,, and the definition of world velocity, we can write the spatial

components ofeq. (2) as/'\dl^u, 1,,
at,fi- Bz IJt-B' )

dp,
-:-= 

f i
dt

=:,(#l=*,,t'-F
is defined by

Which reduces to mv, as B-+0. Comparison of (9) with a, =# and un

'l- P2

forms the spatial part of a four-vector that is called the four-momentum :

Pu =mu, ...(10)

The generalized equation of motion for a single particle thus can also be written as

Comparison with (s) shows that the conservation of momentum theorem is invariant providing the momentum

...(e)

...(14)

= -: shows that 4,

,lr- P'

dP, =t ...(r r)

--Lv
AT

So far only.the space part ofthe four-vector eq. (ll) has been discussed; nothing has been said about the

phpical si-gnifiran.e oifourttr equation. The tine-like part of the four-vectot k, can be obtained directly

from the dot product of (l I ) with the world velocity :

d, , d(m ) ,.u,h@u,)= t*li",u, 
)= 

K,u, "'(t2)

Since the square of the magnitude z is a constant, -C' , and m is here likewise a constant, the left hand side

of (12) vanishes, leaving

K,u,=,F':r* icKo= =o ...(r3)" t_B' 
^lt_8,(..

f't""=r'1ftf*o'#
F,V, icko F.t ick4 I

-:-:-::r

Jr- p' 
^lt 

- p' ,lt - P' ^lr- P' )
The fourth - component of the Minkowski force is therefore

K.=L+' c,[_pz

t- p'

and the conesponding fourth component ofequation (2) appears as
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Now, the kinetic eners/ 7 is defined in general to be such that F.v, the rate at which the force does work on
the particle, is the time rate of increase of t

*ffi=Fzr

{ =y,.odt
( d',

l.:F.o=m_.

...(ls)

...(16)

ilr d(l .,\ dT)_mr_ i=_: 
idt dt\z ) at 

1

This is a definition of kinetic energ/ that agrees with the form )^r. .

Thus form (ls) & <tel ,=fi ...(17)
lt- p'

In the limit as p2 becomes much less than eq. (17) can be expanded as
/ ^'t\ r

r + mc2lt*{l= 
^c, 

*':' ...(18)
\ 2) 2

Comparison of eq. (10) with eq. (17) shows tnat {is the fourth component of the four-momentum. In order
C

to preserve the conect transition to non-relativistic values, it is preferable to transfer the name ..Kinetic
Enerry" to a separate quantity, K, defined by

K =T -mC' =mCr 0 -l)
Z will often called as the enerS/. Any situation that conserves the spatial linear momentum must also
conserve ?n. To veriff this theorem we need only note that the statement "spatial linear momehtum is
conserved" must be invariant under a Lorentz transformation.
To express kinetic enerry in terms of four momentum, we write the Lorentz invariant of four momenfum, i.e.,
its magnitude

P,Po=l#.+][+.+lFF 
lJt_p, ")l,lt_p, 

c)
m2v2 T2 ^) T2

=]F--=T-- =r- --

lt_pr) c2 ' 
c2

Also PoPo = ^'r'o =' - m2 C2

Therefore, - mzcz = p' -Llz
Tz = pzcz + m2ca ...(20)

Which is the relativistic analogue of the relation ,=fr in nonretativistic mechanics except that I here

includes the rest energ/.
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5.9 Lagrangian formulation of relativistlc Mechanics

Now we want to set up a Lagrangian that will give the comect relativistic equations of motion' The.

concept of Lagrangian was'introdricedin two wiys, nimely D'Alembert's principle and Hamilton's principle.

Since the D'Atembert's principte involrrcs the momentum P, which is now different from non-relativistic

mornentum m,v,, appnoach to this new Lagrangian formulation is not possible by this wav._ 
lamilton's

principle is still helpful in finding a function for I for.which the Euler-Lagrange equations' obtained from

this variational principle, agree with known relatlvlstic equations of motion. For Jxample, we take the case of

a single particli actA-;;ft conservative forces independent of velocity and suppose a suitable relativistic

'.4Lagrangian for such a case is found to be

7=-^g',[f,p' -v, ...(l)
Herc v purely depends upon position, then introduction of the Lagrangian in Euler-Lagrange equations 

:

a(g\-L=o
dtlaoi ) ar,

should yield a relativistic equation.

-! tu,
aL =-*c'*_&.tu, ,lt- p'

fl!i

i- P'
Which when substituted in eq. (2) gves

/\
d I tnv: .l AV

-t 
------:- | 

=- 

-dt[,firy I ox,

=Fi 

i

/\
dl rilei I F

-':'=-+ =Kael/r - p' ) l- p'
and is the relativistic equation of motion.
We have thus shown that the choice of Z represented by eq. (l) is correct.

(r-r), but

9= ,^'' = p,,
avi ,h_ B,

i.e., partial derivative of Z with velocity is still the momentum.

ordinates q, , canonical momenta can still be defined as

...(2)

This in fact is true since from equation (l) we have

.'....':

We note that l, is no longei

AL
P, =; , :,r .1.

oQi

Which shows that if a coordinate is cyciib,'conjugate momentum will be conserved. Since ft: 9.tfi!,iollf .,,.,.

canonical momentum and the generuffo* of iagrange's equations are tlie same as in non-relativistic case, '

the function
sr.11=).4, p, -L

i
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Would still represent a constant of motion provided t does not contain time explicitly - a condition also "l 'l
imposed in non-relativistic case. As z,is no longer (r-v\ nor is ltr, equal to 2T, we are to prove in

another way that A is also the total energ/. In the case of a single particle, t/ is given by

n =>++mtJr-f, +v
a 

^lr- 
P'

which, on solving reduces to

rr mCz
lJ =: +V =T +V =E

,lr - P'
For velocity dependent potential

We consider Lagrangian for a single particle in an elecfo,magnetic field. The force acting on a particle
with charge g is given by

.=n(r.jt,,."))
which can be put in the form

"_la(a) al(-^ q_..\
'' 

=La[*. fA ]lt v- ;o' e' 
1

/\
putting ,, =l -%.1

l.,lt- B' )
for relativistic case, we write

/\Td[ nv, I [a(a) a1( , a \;l -- r=t;[* f ,r)lrr*zv.e')...(t)dr[Jr_8,) fdr\av,) ar,)\" c ) "
Which can be derived from Hamiltsn's principle provided r is given by

L=-mCz Jq -qQ+{v.A ...(4)' ., C
The canonical momentum will have additional terms, due to the dependence of potential on velocity along
with rzz,, i.e.,

rF 1

o, = #=frlr-^c'n[1;P -q6*3u 
^-|

=_3i-*Le, =ro,*LA,
"[v P' c "' "'"' c "'

This additional term is also present;i*the non-relativistic case.

5.l0Covariant Lagrangian Formulations
In the lagran$an procedure no effect has been made to keep the ideal of a covariant four-dimensional form

for all laws of mechanics. Thus the time r has beenfieated as a parameter entirely distinct from the spatial
coordinates, while a covariant formulation would require that space and time be considcred as entirely similar
coordinates in worldspace. Now some invariant parameter should be used, instead of r, to tnce the prog€ss
of the systeni point in configuration space. lf the parameter of integration is a Lorentz invariant then the
Lagrangian function itself must be a worldsealar in any covariant formulation. Finally, instead of being a
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function of x, and i,, the Lagrangian shonld be a frrctlonofthepoordinates in Miskowskispace and of their

derivatives with respect to the invariant pardrneter.
We consider a system of only one particle. The'natural choice of the invariant parameter in such a system
would seem to be the particle's proper time r . But the various components of the generalized veloci$ u, ,

must then obey the rclation

-tlu U, = Q2 ...(l)
Which shows they are not independent. Thenfprc wg shall instead assume the choice of some Lorentz
invariant quantity d with no further specification than that it bo a monotone function of the progress of the

world point along the particle's world line. Now we represent the dlfferentiation with respect to d by

,!. = 
&'
de

A suiably covariant Hamilton's principle mwttherefore appear as

6 r = atln(ro,r,r)aa, ...(2)
el

Where the Lagrangian function n must be q world scalar.
The Euler-Lagrange equations coresponding to eq. (2) arc

...(3)

The problem is to find the fonn of n swh t|et q. (3) is equivalent to the equations of motio n, ft (^r,) = *,

Now

h(h)-ff=o

Now a suitabte n is given by the retation ^('r,'f)= -+ t(rrr*) ...(s)

The new Lagrangian n is a homogeneous frmction of ttre generalized velocities in the first degree

" = (r,iL)= onbo,*'ul ...(6)

+=++=icl ...(4)dt de dt xi
tz -oz / *r\
[r(,,,t,i,)at = Z ltlx u,ic \l'i ot
,, -ai \ '4)

A Lagrangian obeying eq."{6) is often cdled a homogenrcous Lagrangian. , From Euter's theorem on

homogeneous functions that if a is homogeneous to fint degree in xf , then

'dnn='i 
axt,

One can then show that as a result the func{on n identically'satisfres the rclation

( o ( u")-ull,; =o ...(7,)

lnl4)-e, t
Let us carry out the transformation for a free particle. Now the 'non covariant' Lagrangian for the free

particle is t=- ^g,[ll]iri.
By the transformation of eq. (5) a possible'ogvuiail !,agrar€ian is tten

6)
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n= - mc ,l- *L *), .(8)"'- 1l " P 'tt "'\"'
With this Lagrangian the Euler-Lagrange equations are equivalent to

The trraraineter d must'-re a monotone function of the propen time r so that derivatives with respect to 0 are

relatecj to those interms of r according to

.,:,=&, =d, u.,"dede
llencc: rhe Lagrangian esuat;L-ns co;"respond to

/\
,J I ntCu, I a(mu,) 

^)-. r I dr"'!V-ut'u'' )
Which iir,: equa.tions of rrotion for a single particle.
ln tho o:her method, the cova-riant Lagrange equations can therefore be written directly in terms of r :

*0

...(e)

Nou, it is iequired tlrat i be a world scalar (or lirnction of a world scalar) that leads to the conect equations of
tnotitrn For exa.mple, a suitable n for a free particle would clearly be the quadratic expression

I  = -- nlu,,U,,
2

...(t0)

t[ e use eq. (8) for the 'klnetic energy' part ofthe Lagrangian in all subsequent discussions.
If the paticle is not fr,:e, but is acted on y extemal forces, then interaction terms have to be added to the

[,agla-rrgian of eq. (10) Lrat would lead to the conesponding Minkowski forces. Now we consider the example
of a particle in electromagnetic field.
A suitable Lagrangian can easily be seen to be

/ \ | ;,..a / \nll o, u r)= ; r,, ou u i 1- u r,l r(x t) ...(l l)

T'he corresponding Llgrange's Jquations are then

LQu,,,) = _ * * * *( 4, 
" 

n "),dr' C dr Cx"\C n ")'

Wlrich are exactty the genbra"lized equations of motion ftfuu;)= tn, with the Minkowski force k, on a

charged parlicle,

0,,=+(+(,,o,\-9)'' C\1xo" dr)
Ar n - n -Now /), =9-/' =nn),, +1A,,=p" *+A, ...(12)
&t,.'CPt'lC"

"lhus again we note that the 'mechanical momentum' four-vector Pp diffen fnrm the canonical momentum

p,, l,y tt ierm llnear in the electromagnetic potential. The canonical momentum conjugate to x, is now

iT isd iEyr_ c- c _V

,t'^ \ ^!_l:L l_e1 = od:tr}u, ) 6x,
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Where E is the total enerry of the particle, T+q6. The comection between the magrritude of the spatial

'mechanical' momentum and the energ/ f is given by T2 = P2C2 + m2C4. From eq. (12) it is seen that the

canonical momenta conjugate to r, fiom the components of a spatial Cartesian vector f related to P by

t=P+4A ...(13)
C

Interms of /, eq. T2 = p2C' +mzca can be rewritten as

t :,2

12 =lt-1t,1 +*zca ...(14)\ c)
Which is a useful relation between the enerry ?" and the canonical momentum vector f .

Summary : When the velocities of particles become comparable to the velocity of light the Newtonian
mechanics fails and Galelian hansformation do not holds good. We need a new transformation and a new

mechanics. Such transformations arc the Lorentz transformation and the new mechanics is called relativistic
mechanics.

Using the basic postulates of special theory of relativity we derived the form of Lorentz

Transformation. Depending on them we learned about the relativistic law of addition of velocities

and kinematic effects of LorenE fiansformation like Lorcntz- Fitzerald Contraction, Time dilation .

We came across the Covarient fourdimensional formulations, Force and enerry relations in relativistic

mechanics, Lagrangian formulation of relativistic Mechanics, and Covarient Lagrangian formulation.

Key words : Basic postulates of special theory of relativity. Galilean transformation . Postulates ot'
special relativity . Lorentz Transformation . Kinematic effects of Lorentz transformation . Lorentz -
Fitzerald Contraction. Time dilation. Covarient four-dimensional formulations Lagrangian formulation of
relativistic Mechanics. Covarient Lagrangian formulation.

Self-assessment questions:
l. State the basic postulates of special theory of relativity and derive Lorentz transformation

from them.
2. State and explain basic postulates of special theory of relativity. Deduce the formula for

addition of velocities in relativisitic mechanics.
3. Discuss about co-variant four-dimensional formulation. Derive equations for force and

energy in relativistic mechanics.
4. Explain Lagranian formulation of relativistlc mechanics and also explain covariant

Lagrangian formulations

Reference Books:
l.Mechanics: Simon
2.Classical mechanics: H. Goldstein
3. Classical mechanics: Gupta Kumar and Sharma.



Classical Mechanics Part
T]NIT-II
Lesson 6

Canonical (or) Contact Transformations
Objective:
1) To infoduce the concept of Canonical transformations
2) To define the various generating functions
3) Explaining the Poisson brackets.
4) hoving the canonical invariance of poisson brackets.
5) lrarning about lagrange brackets and thejr invariance under canonical

transformation.
Structure ofthe lesson :
6.1 Transformation
6. I. I Point transformation
6. I .2 Canonical transformation
6.2 Generating function
6.2.1 First form
6.2.2 Second form
6.2.3 Third form
6.2.4 Fourth transformation
6.3 Examples of canonical transformations.
6.4 Simple harmonic oscillator
6.5 Poisson bracket
6.6 Invariance of poisson brackets
6.7 Legrange bracket

6.1 Transformation : A given system can be described by more than one set of generalized
coordinates. We can choose a set, which is most convenient for the solution of the problem under
consideration. For example to discuss the motion of a particle in a plane, we may use as generalized
coordinates.

The Cartesian coordinates qr=x, q2=y
(or) The plane polar coordinates Qr = r,Q2 = 0

We note that second set is more convenient because for central force o is a cyclic coordinate, while
in first set neither r nor y is cyclic. By choosing second set, solution of the problan becomes easy

as only one variable r is to appear in the Hamiltonian. Ihus we want to discuss here a specific
procedure for transforming one set of variables in to other set which may be more convenient. If a
problem has been formulated in the form of Hamilton's canonical equations. The contact
transformations can be aimed to put these equations into a more easily soluble form i.e. to make
integration of the equation of motion simpler.
Suppose we transform from Cartesian to plane pglar coordinates, then transformation equations are

f , , / \
r={r +y- --r(x,y) d=tan-rl Ll= e\,y)

\ x,/
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This is an example of coordinate transformation. We shall discuss the transformation between

generalized coordinates that are canonical.

6.1.1 Point Transformation
Generalising the form transformation from one set of coordinates q, to a new n1 Qi can be

expressed as e i = Q,lq i,t) .Such transformations are called point transformations.

We know that configuration space is adequate only in providing the information about the

position coordinates t 1 and not about the velocitiesri, . Therefore transformations of the type

e i = e i \t , ,,) "un 
be referred to as the transformations of the configuration space (or) in other

words point transformations are the transformations of configuration space.

6. 1.2 Canonical Transformation
'fhe transformations of the type represented by forthcoming equation in which Q1 and Pj are

canonical are called contact (or) canonical transformations. lt is essential to provide information of
coordinates as well as of momenta. We know that phase space adequately provides the specification

of coordinates 4, tr well as of momenta r, for the system under consideration. We can say that

canonical transformations are the transformations of phase space. They are characterized by the

properly that they leave the form of Hamilton's equations of motion invariant.

We-know that while deducing Lagrangian equations, no stess was given to any particular choice of
coordinate system. Lagrangian equations of motion are invariant in form with respect to the choice

of the set of any generalized coordinates. Therefore in neco set gl, Lagrange's equations will be

(( \ \lalaLl at It_t _t---t-u
lo,l,ub,) 

uo')

i.e. Lagrange's equations are covariant with respect to point transformations and if we define l, as

At/.\p,=#_le,e, 
Ioei\ ./

The Hamilton's canonical equations will also be covariant i.e.

b, =*(e,,r,)' b, =:g@,,r,)vi-Opi\Yi,'i t- Og,'&i,'il
Therefore this transformation is extended to Hamiltonian formulation. In Hamiltonian formulation
we admit the existence of one more independent variable called momentum and above general form
must be widened to accommodate the new variable. Consequently the simultaneous transformation
of the independent coordinates and momenta q,,p, to a new set Qj,Pj can be represented in the

form
Qi =Qi (q, p,t)
pi=pj(q,p,t) ...(l)



t
For Q,,P, the new set of coordinates to be canonical like e1 {td oi ofold set as is demanded in

Hamiltonian formulation, they should be able to be expressed in Hamiltonian form of equations of
motion i.e.,

b =okj oPt

i =-ok, )ei
Where ft is a function of (Q,p,t) i.e. tc(g,r,t)and is substitute for the Hamiltonian H of old set in new
set of coordinates. More over if Qi,Pi are to be canonical coordinates they must also satisfu the

modified Hamilton's principle ofthe form

'r-f - 
I

a [llr,o,-r(g,r,t)la=o ...(2)
iLT' ' J

The old coordinates pi,e1 dte already canonical.
tr.f 

- 
I

olllnp,-n(q,p,t)l&=o ...(3)
iLi J

The simultaneous validity of above rplations (2) & (3) as their right hand side is zero does not mean
that the integrands of the two integrals are equal. We can write

u(( \ .l
a []ll n fi t - n lZ@,o, - r)fat =o ...(4)
,,f\; ) i )

in which the integrand to a certain extent is unknown. Eq. (4) will not be affected if we add to (or)
subtract from it a total time derivative of a function r = F(q, p,tl because

t,

a [{a=alr(q,p,iliJdt ' \""'41
\

=9! 
t? e' t?

- ao,6o,l,. *o't), = Q

Since at end points the variation in q , and p, vanishes. Therefore we can write eqn.

,,- (( .\

(4)as ri]lZ plei-Hl-It pie,-kl-{la,=o
ilt , ./ \ ) dt)

Thus, it follows that

6.2 Generating Function
4U,',-4-(4',0,-r)=#

rhe firstbracket otl( n, o, -H)-l}r, n,-r)=* .,.(l)
. .,\ / \i )dl



is regarded as a function of q,p, and r, the second as a function of 2,,Pj and t. F is thus in

general a function of (+n +t) variables Q 1, p1,Q1,P1 and r . But the two sets of variables (coordi'"ates)

are connected by the 2n transformation equations and out of +r variables besides t only 2n are

independent. Now ris a function of both old and n€w set of coordinates and therefore out oi'2rr

variables. n should be taken from new and z from old set i.e., one variable should be out o,' s', '1n1i

o 1 and other should be from Qi , P, set. Thus following fourforms of function F are possible ,.

F, (q, Q,t), F2 (q, P, t), Fr(p,Q, tl Fo(p, P,t)

As r is a function of old and new set of coordinates, it can affect the transformation from old set to

new set, i.e. transformation relations can be derived by the knowledge of 'che function .F . l'a is tLiirs

termed as the generating function. Out of these above four forms choice of one partlcular rvill

depend upon the problem for example if we are dealing with a point transform;Iiorr, then becat':rc rlf
the relation ei=ei(q,t), qi and g, can not be treated as indepcndent variables and hence fi;:qt F31n'r

F,(q,Q,t) of the generation function is to be excluded.

Now we shall consider the individual cases concerning these forms.

6.2.1. First form 4 (q,Q,t) : For this case we can write eqn. (1)

Zo,i,-n =ZPtei-k *ff{o,e,i ...(2)
J)

Now F, = Fr(q,Q,t) so that it's total time de,rivative is

d4 
= t aFr o *I a4 o,*4'T= 7ut,ot*1un,ui' a

Putting this in eq.(2) we get

40, 
o, -H =>Pi Q l -k .4#0, .4#n'.*

T(#,,)0,.4(,,.E)n, -r*p *ff =o ...(3)

since q, and g, are to be fteated as independent variables. Eq. (3) can hold only if the coef"ficient of

t 1 and g, separately vanish i.e.

P, =! (q,Q,i- eli

', = -# (q,Q,i

k=H+ff{r,0,,)

...(4r,

...(s)

...(6)

on solving eqn. (4) we find Qt =Qth t,\,t)
which when substituted in eq. (5) gives

P, = Pllel,PiJl ...(8)

Eqns. (7) & (8) are the desired fansformation equations and relation (6) gives connection between

old and new Hamiltonian.

...(7)
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6.2.2. Second form rr(q,r,t) : To apply q. (2) for this case, change of basis of description from

q,e to g, p shoulel be effected for which we use Legendre transformation discussed in brief as

follows.
Consider a function of only two variables i.e. fll,yl so thdt

0f, af
df ==-7'***oxq

=u dx+v dy ...(A)
Suppose we'want to change the basis of descripion ftom fi,/tg hdep€ndent variables u aurrdy then let
g be the function of u and y dsfined by thc fr1rati4llr

s|,y) = f (x,y)_ttx
dg=df -udx-xdu

=udx+vb-udx-xdu
=v dy- x du

which is exactly in the form desired so thcl we can write

-ot dr*@0,fu' au

where u=9{ and *=-Foy ou

and is quite identical to equation (A)

thus if ,={, then the relation
Ax

sfu,v) = fG,v)-* ...(B)
Would be appropriate to effect a change from the bdsis r,y tO u,y

Now we apply it to the presentcase.

Herep. --o\, dei

Then puttinS u = -P1, x=Qj, ! = Qi, g = F2, f = \ and one morevariable r ineq.(B), we get

Fr(q,,P,,t\ = Fr(q 1,Q1,1) * Yr, O; ...(9) "

I
putting from eq. (9) the value of 4 in eq.(2) we get

l-p,i,-H -lr,b,-n
jj

* o- 
u[, r, (0,, r,,,1-2 r,a,ldt t 7"1

=LP, r, - o .4#r,.4# r, .! -2i,, e, -le, b,

=> p, o i - k + eL-.4# a, .Z# i,, 1{* - r) t, : +[# - o,) r,

*n*o?-*=o ...(lO)
At



Since q, and r, are independent'variables.

Eq. (10) can be satisfied onlY when

o,=#b,,P,,'\

n,=#b,r,,,\

k=H+*(0,,r,,,) .-.trll
0t

eq. (l l) can be solved tg give
Pi = Pjlei,pi,t)

which when substituted in (12) will yierd on solving

Qi = Qilq,'P,'')
which are desired fiansformation equations.

6.2.3. Third form 4 (p,Q,,l: To connect r, with 4 we again apply Legendre transformation' For

this case we see that
anpt=6

Also g(r,y\=1$,yl-ux. where u*{ *^ taking a=P1,t=9i,1=Q1,g=Fs,f=Fr and one more

variable r, we write
F, (9, p,t) = Ft (Q,q,!)-4 r t o,

rt (Q,q,t\ = F, (9, p,t\-4 o t r,

equation (2) therefore appears asi -Er, pi-H =\e,b,-**ftnb,O,t\
JT

which on further simplification and on equating the coeffrcients yields the fiansformation equation.

...(l l)

...(12)

n, = -#(p,'e,''l

,, =-#b,,e,r\

r = a +a!l (p,,e,,,1 ...(16)
At -'

eq. (14) gives Qt = Qi(c,p,r)

and eq.(15) gives Pt = Pi(q,p,t)

Which are the desired transformation equations.

d.2.4. Fourth form ru(p,r,t): q ard Pr can be connpcted by kgendre fiansformation to give

Fr{1r, P,tl = rr(q,Q,i*Z rP 
1 -l n I I

JJ

...(14)

...(15)



and eq. (2) reduces to

-\n,n,-a = -ZQ, p1-k+! rn.(1t,r,t) i .,

which on following same procedure gives the foltowing ecuations
0F^ I

Qi = -TVi,Pi,,l ...(17)
i

et = *(p,,r,,,) ...(18)

o = ,"1ry-(0,,,r,,) ...(le)
EI

Which lead to the transformations.

6.3 Examples of Canonical Transformation
Let us first consider few special cases of the forms of function when thby do not invotve time(A) , =40,r,

The function is a special case ofgenerating function F2 and hence applying eqs. (ll), (12) and (13)
we get

P,=*=+lt1pi=e,
'oQi 4i J ,..

Q,=*= +lt1P1 = t1ui- apj- a.r j
r=n+a!!=f1, since pz + flv)0t

Thus the function F generates the identity transformation. Further if r=f a ,p, then this will give
l

Q1 = -4i,Pi=-Pi dfid k=H . This shows the fact that space,inversion constitutes a specialcase of a
canonical transfornration.
(B) r=\tp1 .:

j

This corresponds to F, generating function when it is not a function of I and thus gives
Pi=Qi Pj=-QJ H=k

(C) r =lf,(or)", *trrr. I is arbihary ' - F2

:li
.'. pi=f ,n I ei = fi (q), * = n ,,

' ? 
, aql rr \aa"'- -'

This demonstrates the type of generating frrnction requircd to generate a point transformation.
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6.4 Exemples I : Simple lhrmonlc osclllator.

Suppose Hamiltonian for a particle is given by , = I(rn' * 4) *O we want to determine irnzf n)
motion.
The problem is given in canonical coordinates p, urd qr. We shall transform this into new set of'

canonical coordinates r, urd g, in which 4l Qt are cyclic and corresponding momenta are

constant. Then we shall inrcgrate the equation of motion, so obtained to get the result. Finally we
shall answer interms ofthe same coordinates fu $rd q,.

Consider that the contact fiansformations are generated by the function.

n = pq2 ae ...(l)
so that for this hansformation

p=*- = 2pqcote '
oq

p = -+ = Irg2 eose"2g ..,(2)
aQ

H = kfsincert=fkll
from eq. (2) we anive at

i1 = .[flu sinQ

o = Jno, *r,O "'(3)

so that new Hamiltonian, I is

"' ft=L(rt'*"t')2t ' M)

=L( * 
P 

"in' 
o*4F 

P *"' o\2\P M -)

=#("^'o.ff*"'o) "'(4)

Thus we have obtained Hamiltonian in the set of coordinates e and g .

rc p =*J* this reduces to r;,ii,

t = 9= p.lL ...(5)2P lM
Which is in quite simple form since p does not appear in t and so is an ignorable coordinate, its

conesponding momentum will be constan! i.e.,

'p=-L=o
aQ

Sothat P=a= constant

Alsog =L=E=toonstant
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Sothat O=E.t+P ...(6)

...(2)

Where p is a constant of integration fixed by the initial conditions. This illustrates that how easy it
becomes, in new set of coordinates, to integrate the Hatnilton's equations of motion. Finally the
result is to be given in the same set in which question is asked. We take the following steps.

Putting this value of g in the expression for q i.eu eq. (3) we get

F.tfr .l v
n= l; '*tlffi .' * PI

E.lr; I -= rl- srnl ,t* .t + 0l ...(7)
IP IYM ')

Which is the equation for simple harmonic motion executed by simple harmonic oscillator.

Example 2 : Show that the transformation P = I b' *o'l
Q = tan-t (qlp) iscanonical.

It is quite obvious that for such a case H (q, pl= t(B,rl since the generating function does not involve

time. Since old set of coordindtes q, p are danonical.

P __ _aH aH
as c =*# "'(l)

But p=-9.i,*L.b.aP aa -'
n =-#.i''.fi.0
aH ak aP.akaQ
aq= ar'ac* a aq

aH ak aP ak ao
* = *' ur. A ,, "'(3)

Form the given fiansformation equations, we have
AP ^AP -AQ -q AA p
-7- = F, -;- = i, * = -;----;r-i = -;-0P fu " 0P p'+q'' 0q p'+q2

Also differentiating tansformation equations widr rcsp€ct to p and p respectively we find

'= 
, #. nff o = [" #-,#)1,, *q,

o = ,9*nfu. AQ 'AO '=(,fi-o#)ln.n
Solving simultaneously, we find

#=frr'#=fr7#=-0,#=o
Then equations (l) and (2) become

P = 
GtAP-qQ 

; 4 =6{n1* os "'(4)



aH Ak D A|AH Ak s Ak

aq=s aP+6+Aao' ap = n *-Sz -laa
...(5)

Thus from equations (l), (4) and (5) we have

Vh*o=-ff-W#
6+e'-ob= 'ff-Wr1#

Solving these simultaneously, we find

p=-L o=!aQ aP

Form which we infer that p a\rd e are canonical and hBnce the fansformation is canonical.

Example : 3 For a certain canonical transformdion it is knoum that

s=E\ r,
,=+Q'*o')*-' (tr).:r,

Find p(q,p) and r(q,Q)
Form the expression for g, We find pand put it in F to get F(q,Q') that is

o=,[e,4
Sothat r=Is' tu' i+-)n,[e u'

=In, "i,"'$*|a,[77
We now use equation of tansformation

P =-oF
dQ

= *fl e'sin-' {+ }q,[a' nriaQLz- a 2 1

=-osin-l L*l o'--L
Q' 2- ole +

*|n**@ -t -lrel
r1.1

=_l or,n-' L_!L*L--J9-\ r{o,Ol= -pstn-t 4'a z,[e,4 z@4J -"'-, o

Aswe want P(q,p\,change g into G;7 toget
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P(q,p)=-,6q "i"-'ffi
=-,lq' + p2 ta;tbld

6.5 POISSON BRACKETS

Let F be any dynamical variable of a system. Suppose F is function of conjugate variables e1 and

p, and r then

# = #(r', Pi,t) = 4# . r, .4# . p, *#

=tfil a.H - ar an)*ar
i\aqt aPi aPi fui ) a'

On using Hamilton's canonical equations of motibh." 
'

The first bracketed term is called Poisson Bracket of r with a . In general if .r and / are two
dynamical variables then their Poisson bracket is defrned as

t,,y:,.=rfg Y-+yl ...(r).tt4'P 
?Lan, E, Apj asIJ "'\-'

from which it is quite eqsy !o arrive at the following properties of Poisson brackets.
Ir,vl= -ly,rl

Properties : [t'"] =o r''- F,r*rl=[r,y]+[r,r] "'(z)

b,y,rl= ylx,zl+lx,ylz

Lt,t1l.o = o =lP,,Pi\,0
Also fn,,r,l.o=o,ifi*i ...(3)

=l,if i = j
The equation (3) is known as the fundamental basic Poisson braokets.
Property III of eq. (2) can be obtained as follows.

[r.u+rl= t['jl a(Y+=) - ax a(Y+:))
' |\Aq., dpi dpi Aqr )

=rfil tu + a- 9)'-yfg a'. a g)
|\tut apt aqt 'ap) ) jlani fui api 4i )

=tfil av - a. -A-') *yfg1 a - a' 
-e-)

7l9q t',apt dpi aVt ) ?\aqt apt dpt aqt )
=[*,y]* [r,rl

Properties of eqn. (3) can be obtained as follows.

ln,,n,lo.o =Z(++, -+ 9l/\4* opr dpt fu* )
Because Qi or 4 i is not the function of p, . So
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?t =!,=oop* op*

giving b,t,l,o= o = |p, pt\.,

Further lo,, 0,1,., = F(* * 
^, 

*) -1 * T
the second term vanishes because # =0 and fi = o

Also y=d,* and 
u!' 

,-o,r
ocl * oP*

Sothat fn,,o,l1r.o =z6n 6,r

=6,j

=O if i* j :1

=l if i=J
Examiile zlf l6,yl is the Poisson braeket of I'and p ften prove that

a) fito,rt=l#,rl.V,*)
b) frro,rr=l#,r).1r,!#1 .,.

We have from the definition of poisson bracketthat [p,yJ = # #'# #

6.6 Invariance of Poisson Brackeh with rpspGct to,cuonical Transformation
Poisson brackets are invariant under a canonicaltransformation. Wc can express this mathematically
as ' 

Ir,ylo.o = lr,yb.n ----(l)
The equivalence ensures the equality in valuc and no8of form i.e. r andy do not necessarily have the

same form in terms of the two sets of coordinates.
We consider first the general case

r-.,r -sl( e av - e av\ -,[y( , *,* ar aer]- a (', q, .q tu,)I
Lx'vte'p = 4la ,n - ar, aq ) ',31E,|.tA. ,,A f ,4|.*, * h1 ai ))



=4$b,q,L,,. #b, r,L.,l ...(2)

On arranging and recollecting the terms.
Fromeq.(2)wecanwrite bt,n)s.r simplybyputting 41fat r and x fory(or)altematively

V,n,ln.r=-b,,*L,,

=-[aq, & aqi ar I=- +\ao, aP,- aP, a%f

=-y I4t-'l * tur*L@t\-%(L?1r *g4)l
*lug"\aqr ap* ' @, oF, ) ap"\aq, 0Q, aPr aQ, ))

_ _s I a, e( aqi aqr _oqi lqr ) *q s( _%-- Er -%gt\\
?luqrl\aQ^ ae^ aP, N. ) apr?\aQu )P,n aP^ aQ" ))

= -1{#b i. e rl.,. fih,, o,L.,l

s- dr . =_+ .(3)=-4 u*un oPr

similarty b,r,ln., =#
putting equ4tions (3) and (4) in equation (2), we get

b, vio., = rl- # #. # #l = b, v\., ... (4)

Which is the desired result Since with either of the sct of conjugate variables i.e. with (q,p) or with

(g,r) the value of the Poisson*hackct remains'dre sarne, it is of no use to write the subscrip on the

bracket and we shall now omit theeame.
We have shown that a canonical ransfqmation.oan bo generated from functions rrlq,,g,,tl

rr\q,,e,,tlnrbi,Qi,t) and rnlp,,e,t). In the.case of 4 genergting functior\ we have derived the

relations
aF, o =_0F,pi =6 ri=-6

From these relations it is quitstasy to see that

? = -u.'l: = -y ...(s)0Q, 0Q, 04 i 0q i
Similarly in the sse of rrlq,, er,r) generating ffmctioh fie retations art

0F, o.=aF,Pi=6 Ltt=E
From these relations we find thbt
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y-=!!, =g ...(6)AP, dP,fui dqi ''-\-'

Similarly from r, and r.4 generating functions we can find ftat

%-=+ .....(7) *=-9 ..,(B)oe, dp j "--'" op, opt

Now we write the fundamental Poisson brapket

IQ,,r,l.o=1(#^L #*%)
Applying the results ofequations (7) and (5) we iind

Ie,,P,L.o=>(**-l?%liVq* a% ioPr Qt l
AO,^rl=6 = o" =l9"Ptb''

and similarly b,,Q1l* = s =b,,QtL.,

lp,,p,L.o = olp,,ptL,p ...(9)

Thus we have proved the assertion for the frrndasrental bndrcb.

6.7 LAGRANGE'S BRACXETS
Lagrange's bracket of (r, v) with respect to dre basis fur" e, ) is defincd as

(u.uu,=4(** **).(r)
We note that
a) Ligrange bracket is invariant undercanonical rarsfornrntion
Poincares theorcm states that the integral

t, = [l2,oo, oo, ...(2)

Taken over an arbirary twodimensional surfacc S oGdrc 2n dimensional (c,p) phase space is
invariant under canonical. fiansformation.
Position of a point on any two dimensidffil surfacc h rp€cificd cornplctety W two paramcters e.g. :

rr,v expressed aS

Qr = Qtg''ll 
...(3)

r*,rolli;J;:rll*r @) toi tcrms of new vartuibb{r,r} by lffi of racobian.
ah,. ".1&idpt=ffi^.* ...(4)

^t , laot AY#=\ilil (d)

l& arl
I

.7)



as the Jacobian
Further the statement that the integral J, remains invariant implies that

IEon, ap, = I[dq &t ...(6)
s,r.s,,

Where l, ,,, ,,) is another set of canonical coordinates to which the set b t, p il has been bansformed'

From equation (5) &.(6)

M%PI7a#dudv=[qT#^*
fu,,P,)

'sinr. ttri surace s is arbitrary area &tdv is arbitary and therefore expressions on both the sides will

be equal only when the integran{t * identical, i'e',

:r s- d(q,,pr) _t4Qi,Pit-ir 4-Nf=4f,"i

...(7)

in Lagrange's brackets notation. 
n cnnonical transforn rless to designateffrusiagiunge's bracket is invariant under canonical fiansformation and it is worth

any basiito the bracket i.e. hence drop the subscripts q,p ot QP '
Lagrange brackets do not obey the commutative law :

{,,"}=I g+-%tu) = -r(yY!-++)''.' ?[ au a, at av ) 1\at aY at av )

lao
Wpa
la,

"Yj
Au

0Qt

A"

9_:
Au

IUYJ

la'
Qi

laq t ap il\rla, arl= S
7lq' u ?ln al

a4l

-arl
aPil.a

aPj aPr aat]l
Ar- At A, )

s(aqi api 
-@, 

@r'l=yf
1\u a au av)?\

fu,n\r.o = lu,nls.,

...(8)

V"o1l = o

we find that {p,,p,l=o
h"n1l= a'

The relations at once follow from the general expession for Lagrange's bracket because of

independent nature of coordinarcs (q, p).

r r o(u%__y%)...(e)Pi,lil= +lu" uu, - q a" )
But since q'S ortd p's ane independent.

opr 
=o and ?r = ooqi oqr

From equation (9) h,,e )= o Similarly b,'nil= o "'(10)

=4(** **) =-{n'u}



The second term vanishes because of the same neason. The partial derivatives have the values

Summary: We have explaincd canonical bansformdions and the four forms of generatin! functions
' . The concept of Poisson brackets and their invariance under canonical nansformations are discussed.

W"g" brackets and their invariance under canonical transformations are explained.

Key words : Transformation - Point transformation - canonical transformation - Generating'function - simple harmonic oscillator- Poisson bracket-Ingrange bracket

Self- Assessment quesfio4s
l. Derive the canonical tnnsformation equations?

?. yllt is a generating function? obtain the four forms of generating fimction.
3. Define Poisson bracket? Show that Poisson brackets are canonically invariant.
4. Define Lagrange's bracket? Show that lagrange's brackeb are invariant under canonical fiansformation.

S.show that the fansformation p = * b' *o') g = tan-t (qlp) iscanonical.
2.',
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2.Classical mechanics: H. Goldstein
3. Classical mechanics: G,uptq Kumar and Sharma

b,,p)=E(*# #*) =1*W o,)

*=0, ,o,a|$=anqli dPt

h,,p)= Ido 6ry =6u
*
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Lesson 7 
:

HAMILTON - JACOBI METHOD

Obiecfrves:
l. Deriving the Hamilton - Jacobi equation.

?. Solving Hamilton - Jacobj gquation

3. Applying Hamilton - Jacobi theory to Kepler's problem'

4. Knowing about Action and angle variables

5. Solving-Harmonic oscillator problem uSing action angle variable method

Structure:
J.l Hamilton - Jacobi partial diflerential equation

.7.2 Solution of Hamilton - Jacobi equation

7.3 Hamilton - Jacobi equation for Hamitton 's characEristic function.

7.4 Physical significance of Hamilton 's characteristic function

7.5 Solution of Kepler's problem by Hamilton - Jacobi method

7.6 Action and angle variables
?.7 Solution of harmonic osciltator equation by actign angle variable method

7.8 Separation of variables in Hamilton - Jacobi equation.

Introduction:
, Canonical transformations provide a general procedure for easy solution of mechanical problems. There are

two ways of effecting such transformation.
i) One way to oUaln ttre solution of a mechanical protlem is to transform old set of coordinates into new set

of coordinates that are all cyclic and c9nsequently all momenta arc constants. In this way the new €quatioilt

of motion can be integrated to give a solution and is adopted with Hamiltonian H is conserved. Ttlt Yu{ 
*q

only a'sort of coordiiate transformation and not a method in it self. We switch Hht,pt)to hlgl,Pi) and

then apply Hamilton's equations of motion, which aie then integrated to yield the rcsult. 
--

ii) Anothlr way to oUtain thb solution is to seek canonical hansformation from coordinates and momenta

(q,p)attime rioun"*setof:constantquantitieswhichmaybe 2n initialvalues (co,pol at t=0.

The transformation equations are
q=q(qo,po,t) p= p (qo,poJ\

Since these equations of tansformation give the values of q, p in terms of their initial values (qo p) at time

t=0. They .are the desired solution of a mechanical problem. Thus gfeatest advantage of such a

transformation is that we are doubly benefited i.e. in obtaining transformation equations we anive at the

solution as well. Tlrc way is due to Jacobi. Thus Jacobi's way is a tansformation as well as a method in

itself. In it we do not first transform and then apply Hamilton;q equations of motion but while performing

transformation we are anivrng at the result as well.
This procedure is morc general because it can be applied to the cases for which Hamiltonian involves the time.
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7.1 Hamilton -Jacobi Partial Differentlal Equation
Under the second kind transformation, as the new sa is of constant coordinates (initial values qo, po). lf we
require that the transformed Hamiltonian k is zero, then the new equations of motion (involving coordinates of
tansformed set p,,Qr) are

s.=ak =s)aPj [ ...rn
i', =-!=oloQi )

Which obviously ensures that the new coordinates P1,Q1 re constant in time i.e. both the coordinates arc

rendered cyclic in this technique.
The new Hamiltonian * is related to old Hamiltonian H and to the generating function F by the equation

K=H+oF
At

lVhich will be zero only when
AF

H(q, p,t)+:=O .,.@ i.;
ol

The generating function F is to be the funstion of one old coordinate and one new coordinate because it has
only 2n independent variables and performs the hansformation between old and new set Let rs ake F to bo a

function of (q, p,t)' . With such a generating function, we can write the equation of ransformation as

aFni=fi(t'r,t)

WittrthissubstitutionHamiltonian n(q,,n,,)becomes H(qr,+,Dandtheequation-ql 
1

H(q1,g2,-..4o: p1,p2....-p,, )*ff(t,r,r) = 0

( an AF \ ar.
Hlct t, t z *... 4,, h,.. -.#,,)* ff {0, r,1)= o . ..(3)

Equation (3) is a partial differential equation in (n+l) rariables (n for q's and one for r and p is conshnt)
while eqn. (2) is in Qn+tl rariables. This shorvs that the above substitution has reduccd the number 6f
vrariables by n. Eqn. (3) is called Hamiltonian Jacobi's bquation, the solution of which is called Hamilton's
pnncipal fimction and is denoted by S. Thus oqution (3) is also Ermed as H-J equation for the Hamilton's
principal finction.

7.2 Solufron of Hamilton Jecobl equetion
Solution of Hamilton Jacobi equation is to obtain fiansformation equation in which coordinate of new set be
constant quantities. Since ttrese coordinates, being consant quantities can be taken as tnitial values tre
solution of Hamilton - Jacoti equation is the desired-solution of ihe mechanical problem. We can expresstfte
hansformation equation and hence the solution as

q=dqo, po,t) q=qlf t,at,t)



FCunnvn NAGARJUNA uNlvERSlw CENTEN FOR DISTANCE EDUCA

Where F1 and aJ aterelated to initial values of g and p at the time t'

To obtain solution of Hamilton Jacobi equation (3), we integBte eqtration Q) to ob$n its soltrtion s ' the

Hamilton,s principar tu;;tion, then it *il1'me*ii;."i0" depldencaon the old coordinates and time. lt will

ilb";pdnt frfm *re sotuiion as to how the new momenta P, appear in '9.

Equation (3) has the form of a first order partial difrerential equation in (n+r) variables. consequently-a,

complete solution must involve (n+l) independent constants of integration d1;a,2r..,^'."'u"*,' As eqn'(3)

whose solution is s , is a partial differential equation, only derivative'i of s with respect to q, ard t will

appear in the equation. This means (S+a) will also be the soltrtion of eq. (3) where a is any additive

constant. out of (z+t) constants of inrcgration one should therefore be an additive oonstant to s but since

this additive constant will have no effect in tansformation, we can take s to be involving only n constants

(a1,a2.....an)' . Hence a complete solution of eq' (3)can be written as

S = S(q1, 42,.. ...Q n, a1, (tr 2 t......a r,t) ...(4)

where none of n consants ir rotrty additive. we can ake these n oonstants as the ncw mbmenta P, i'e'

aJ=Pj
Therefore n transformation equations can be written as

NI
P1 = fibi,o,l) "'(5)

whichare,, equationsandat t=lo gtvethe n valuesof a, intirmsoftheinitialvaluesof q 8nd p' Thus

constants of integration are evaluated in terms ofthe spoific inithl coJrditions of the pnoblem i'e'

o, = o-,(l,,nr,rlJ 
...(6)

Pl = Pr(t1,n1,t)J "-\'

Which is one of the ransformation equations'

?he second tut tm*"ti* iquations which provide the new constaRt coordinates appear as

lSQ,,a,,t)
Qt=Fi= oPi

-aslq,,art) ...A
. oot

which are r equations and at t=to give the n values of p, interms of dre known initial values of qi' F4'

(7) can be 'tumed inside out' to fumish 4y interms of a 1' F i and I '
: -' 

ei=4i@i,oi,t) "'(8)
which solves the problem by grving the coordinates as function of time and initial conditions'

?.3 Discuss about the Hamilton's princlpol ftncdon whlch b the sotutbn of HrnlltonJrobl F4ultlqn

From the sotution or a -.1 .q*tiotr" *. ,oo8l,ize s , the Hamilton's principal firnction as the generating

function which gives rise to a can-onical ransformition involving constant momenta and constant coordinates'

as we have explaiJi" .*rio steps of this rng-ttlod. with the achicvenrent of cansfonnation equtioru

lolution ofmechanical problem is obained'

Choice of a, as ttre new momenta is arbitary to some extent, we can clroose n quantities z,, which are

,'independent f*rtion, of a1,the constanb of integration f t,,=r:f,i(a1,a2,-'-o.ol' This choice expEsssr

Hamilton's principal function sQ , ,r , ,t).

To have more information about the sigrificance of thi frnretion S, we consider its t@l time derirntive' i'e'



S = S(q r,ar,r)
' dS s.dS s.dS aS

A=+ur,'nt.4u, 'ot* at

"'(e)
from eq. (5) * = o,qli

Fromeq (, n*# = o'

as

---Ha
Also a7 = 0, since a, is constant.

Putting these in eq. (9)
dS s,
i= LP,4i - H

,

-L i
?

= lL dt + a constant ...(10)

The expression differs from Hamilton's principle in a consrant showing that this time integral is of indefinite
form. Thus the same integral when in definite form shapes the Hamilton?s principle which results in the/
solution of mechanical pmblems, while in,Mefinie form it sh4pq.s the Hamiltonls principle function that,
provides an altemative way of solving the problems.

T.4Hamilton - Jacobi Equatlon for Hamilton's Characterlstic Function
Conservative Systems :
For conservative systems in'which t/ doesnot deperd on time I explicitly, we have ff as constant, a, is th€
total energy E of the system. Hamilton Jacobi equation for Hamihon's principal function S(q, p,t) becomes

...(l)

Since the.explicit dependence of s on r is involved in the last term, we can separate the variables. Let us
:rssume the solution of the form

Slq,,a,,tpatle,,o1)-ort ...(2)
from which it follows that

aS 0a .aS:-=-:- -o:--at.dqi 04i At

Putting these in eq. (l), we-findthat

o(n,#).ff=o

( ^ \
Hlq,.?l=o,
U oqt)

Which is independent of time.

equal to r-.

rdl

. iirbl

Out of a, integration constints, one constan:.a1 is a constant of motion bein$

.i

7.5 Physical significance of Hamilton's Ch-arecterlstic funcfion a)

We write it as a = olq r,a r)
'f



dat s Oar ) *g O, dd,_=>'-
& - 10q,"'' ?0o, dt

=r.\a,
?aq'

Since ar's are constant.

as=4=o'

l_ . \ :, = I}n,e,lat =action ,4-\ r )
Thus ar is identified as actiofr ,{ . Functbn ar is callcd Hamilton's chnracteristic frrnction.

7.5Kepler'sproblem(SolutionbyHrnlh5-JrcoblM$hod) r ^, - --^! -n fi;i;tfi I" g.".*r-**G iri nneing tln pcsr of a clurgBd particle under the action of a central force.

To be more close to G r.do" @lori"wc atftoorc tlre modqrin'an invese squtre field. Lrt us suppose

,il;p*fi. 
"i*, 

rfr"rgr ,'it ro"ing abctril r *atiorury nuctlls widr positive charge :e, where : is atomic

nu*Uo. Denoting thJ conjupte r*tcr,tur along 7 ard' e directions rcspectively by P, at'd P0,

Hamiltonian function becomes

,--!(r:.r+l -* (,)
2m( r-) r

As the system is conserrrativg HamifOnian witl rePreeqnt tre total enerry a1 of the sy5tem

For such system H =at= E (sa!) ...(la)

Pi *4 = 2ME*2*1" "'Q)'r-r
Since no explicit dependence on r is involwd in

shall proceed with Hemiltonrs charactcristic

transformation.
aS 0o

u 
=-=--' oqt 4'

aS Oot
f =-=--r Ar Ar

^ aS dattt=6a=6A

Eo. (2) i, f@)' *lf@.)' = 2ME *2ne2z-a-\-,-\ar) ,r\Ae) r
Scparating tlre variables, = rr(t\* re(el

H we can separate the variables. Further for such cases we

fimction o bking as the generating function for the

0a
tt,
dat

dt
=ZP, q t

J



( aar"\' t (%-\' =2mE *r^"', ...(r)l* )*7lae t r
Sirrce in a centat force rnotion angular momentum is consenad' P,

pr=#= constant

as=a20+ const8nt of integration ..:(4'.)

Weknowthai nr-#= (+gt

#=A when i*r hence #= O,

Fmm equation (5), on calculating pt

The integral'is cvaluatcd to give

I Mezz (M'enz' .2ltdl\t'';=a-l.;r*7)
Where Fl=Fr+%

...(5a)

L=*1*(rl4)'''r a; y t'-W1
Eq.(6) is of the form

i,-i[-"**-eX
Which is the equation of a conic wilh coccttuicitY e,

where .t = o!'"

Me'z

"or(e- 
p) ...(6)

,*Q-el)] rur

...(7)

= colltttillt.



r.;6
' '={lt. ^;n) '(q)

'lf E < 0, e< l, path of the particle is an ellipse.

, E=o,e= l, path is parabola.

E > 0,e>1, path is a hYPerbola. , .

ln fepler problem we ar€ interested in ellipfiaal pqth,, F''rOm equdion (D the rslatian bgqyeen the major otis

of the'conic and the eners/ when.it is an ellipse,can be'expressed as .

2el
ZO = ---;I -e'

Vhich on using relation (8) gives

^ -t"'o=-T; ri.

?.7 Ac6on (phase Integrals) and Angle ver{rbles:
We extend Hamilton --lacoiri,procedire so as to sdopt it particularly to thq,solutiqrl of problenrs in periodic

hotions. In this technique we'do not cheos€ r, F th. new momentq buf insteld we use suiably defined

constants ,/, which fofm a set of n independent functions of the a, ts and arc called mtion variables.

Suppose we have separated the variabtes in Hamilton-Jacobi partial diffcrential equdion obbining

p, = *bi,a1,a2,.......,ao) ...(l)w., J

IVhich gives p, = pllQ l,at,a2,....r,n)
We shall define the phase integral (or) action variable coqiugate to ttrc coordlPF qr E the integnl

t, = {e1de 1
...(2)

Where the integration is to be canied even a complete peribd oToscillation or rctation cycle of qr.

is a cyclic coordinate, its conjugate momentum p_, is constant and this integral is to bc talcen from

J, =ZrP, ...(3) forallcycliccoordinates" , ' 1, , . .

If we compare eq.(2) with the action A? -i"--;n=lro,4 j& = t1n,a,
It becomes quite obvious why ./, is designarcd as agtion variable.. :.

Eq. (2) can also be written as

lt={ffi*, "'(3a) 'a1 "
since the definite integral evatuated here is pt a function of 9, i.e. q, simply appcars hers as a wri$lc of

integration. Each action variable "1, is firnction of a1,.....a, consta0ts of integntion.

...(e)

In case q,

0w Us

Jt = Ji(a1,.......,ar) ...(4)

We can sofve above equations for a's getting o, = or(Jr,...J ol . 
:

ny mearii of these nitations we can expnss,dre Hamilto.n'j clfqraciirisiic'firnction o as

'b=ot(qr,....'.qn,J1,.....Jn) ...(5) - .. :

While Hamiltonian appears as function of ,/,'s are called atigle variables ar, and are given by the expressiott



...(6)

Since "/, has the dimensions of angular momentum coordinate conjugate to it should be an angle and hence

the name angle variable.
Now the equations of motion for the angle variables are

' OH t, r \ -. lr r \ tAt, q,,= 
ff(J,,........J 

n) = vi(Jr,.....,J n) ...(6a) 
:

having a solution a, =v,t + P, ..'(7)

Where vr's are a set of constant functions of the action variables. Eqr (7) shows that co,'s"are linear

functions of time.
Eq. (6) and (7) can be combined and solved for g's to give

e j =Q j (J r,.......J n, f,,....../n,r) ...(8)

The greatest advantage of action and angle variables lies in the fact that one can obtain the frequencies of
prtioii. motion t"itn6,",t finding a corplete solution for the motion of the system as can be seen from the

iollowing.
tit us OJnote change in an angle variable ar, with the completion of one cycle by q, one of ttre coordinates

aa(q ,,a,),i=-{-

by La., givgqas

A,i={**,

Putting ,, =#

L@i=ffi*,
=+{#*'= #{' ds' "'(to)

On usiqg transformation .equation
â

ThusAar, =fiJ,=6,,
=lwheni=j
= 0 when i#.f ,

The above exprcssions shows that only when q., (as i=; ) goes thtough a com'flae period a, changes by

...(e)

unity. Then from equation (7)
Latt = Yt 61

As we have just stated Aar, = l

,pe,riod aseociated with 4,.
Thus l=v,r,

i,
when q, go€s thtough a complete period i.d,lwhen At = t l where r, is the

.: .
.! _

Ivj=7 =aJ
'j

From abore expression v, is to be identified as the frequpncy associated q.rth the periodic motion 9f s, :I
hence we calcutate the frequency of periodic motion without finding a complete solution for the mo-tion of the

system.
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7."1 Solution of Harmonic oscillator problem by Action Angle variable method
For such a problem there is only one action variable

e ri
L ={nat = {ff(n,") on ...(l)

at v) ,,8;"
we know 111a1 9eY,(._- | tnrc ,l , _Q-

0q Vft
.Then from eq.(l)

Substituting in eq. (2) for the periodic variation of coordinate

t'?-\ 'n={[,T)""t

-2xlmtJ-2al+ lcosz 0de- r^ d

Where limits are taken over a complete cycle in q. Solving the above integral

t;,r=zttatl-

JITA=--l-2nlm

...(2)

...(3)

...(2)

Since the system is conserVative. H is constant. Let us choose it to be a. Then

H =o= 
J 

-lK2nlm
The frequency of oscillation is

IAH IE0)=V=-=- = 
--i-t N .2xYm

Which is the formula for the frequency of harmonic oscillator.

7.9 Separation of variables in the Hamilton-Jacobi Equation
Under certain conditions to solve the partial differential Hamilton-Jacobi equation, it is possible b

separate tlre variables in the Hamilton-Jacobi equation. F/-"/ technique is a useful tool only when such a
separation can be effected.
A coordinate e7 is said to be separable in the t/ -J equation when Hamilton's principal function can be split

into two additive parts, one of which depends only on the coordinate I i and the other is entirely independent

of q ,. lf qt is taken as a separable coordinate, then the Hamiltonian must be such that

S(4r,.......,qni d1t......on:t) = 5, (qr:a1,.,..,an:t) +St(qr,........,Qn,ay,.....a,,t) ...117

and the H - J equation can be split into two equations one separately for ,S, and the other for sr. Similarly
the H -J equation is described as completely separable.
A solution for Hamilton's principal function of the form
. S=ESi(q,:a1,....a,:t)

will then split the H - J equation into n equations of the type



( as, \ .-.
n,lq,:lJ-:ar,.....,e, l= a, .'.(3)

\eli)
The constants a, are referred to now as the separation constants' In eq' (3) involves only one of the

coordinates q, andthe conesponding partial derivative of S, with respect to q, . lt is possible to reduce them

to quadratures. One has to solve for the partial derivative of S, with respect to q, and then integrate over q' '

The transition from Hamilton's principal function s to the characteristic function for conservative mechanical

systems can be treated as an instance where t is a separable variable in H - J equation'

S(q,o.r)= So(a,l) +a(q,a) "'(4)
Under the assumption, f/ is not an explicit function of time, the H - J equation with this trial solution

,u,E)**=o ...(s)

The fint term is independent of r and the second term can be a function of I . Hence the equations can hold

only ifthe two terms are both constant with equal and opposite values

T = -o' "'(6) ,(0,*)=,,
\ oq)

...(7)

The fint equatlon is solved by so = - a,t , the second eq' is the fI - J equation for ar '

( aat Dar )
HIQ 2,.....t, :r,?*, " "' -# 

)= ",''' 
(8)

a = at(4r,a\+at' (42,...'..qn,a) "'tql
0a'

Pr=T=T!
04t

...(10)

The constant 7 is thus the separation constant and the obvious solution for ar'

@t= f 8t

a=al +fQt ...(l l)
The separated form for ar then appears as

g,'
,=Zr,(q,,o\= ar(qr,a) *Zo,n, "'(12)

,=l i=2

Here ar,isthesolutionofthereduced H-J equation (

( aa, \ .-,\
n1er,ffi,"2,......-an 

)= 
a1 "'(13)

This is an ordinary first order differential equation in the independent variable qr, it can be immediately

reduced to quadratures, and the complete solution fot a canbe obtained

,=,,(q 1,o) + att (q,'a\ 
:

Wherc q, reprcsents the set of all q's except 41 then H - J eq' appears

( o..t / aar, )) ,1alq,,?),.f1n,,: ll = ar "'(r4)
t dqi \" oqi))
( dar,'\ ( ar' ) ,,

A u,,?l= sle',ft '"' ) "'(ls)
\- ocli) \ .ryi )



...(16)

and the separation of the variable has been accomplished

The separability of the H -"/ equation depends not only on the physical, problem involved but also thet

system'of grn.tutir"d coordinates employed. Thus the one body central force problem'is sepa,rable in polar

coordinates,. but not in cartesian coordinates.

Summary: We have explained Hamilton - Jacobi partial differential equation and derived the solution of
Hamilton- Jacobi equaiion. Hamilton - Jacobi equation for Fiamilton's characteristic function and the

physical signifrcance of Hamilton ts characteristic function are explained The solution of Kepler's

ptobler was derived by Hamilton - Jacobi method .The concept of Action and angle variables was

explained Solution of harmonic oscillator equation was derived by action angle variable method

Key words: Hamilton - Jacobi partial differential equation - Hamilton 's .characteristic function. -
Kepler's problem - Action and angle variabtes - Separation of variables in Hamilton - Jacobi equation.

Self- Assessment questions

t. Write down the Hamilton Jacobi equation for Hamilton's princiiial function.
Z. Cive an account of the Hamilton-Jacobi theory and iltustrate it by applying it to the Kepler's problem

3. What do you understand by Flamilton's characteristic function?
4. Explain Action angle variables.

Reference Boola: l

{;Mechanics;,Symon ,:,

3 : ?ff 1 i3' Ti.ill#fi , t ":#:ilih and sharma

| \'i l.
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-
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,(,,,*)- ",1

I

+



Classical Mechanics Part
I]NIT-II
Lesson 8

Small Oscillations
Obfecthe: ' 

'

t. To obtain Lagrangeis equationof m.otion for small oscillations of a systern. t:
2. Expressing vibrational problems in terms'of,normal crnrdifiates I :1 ')
3. OUAiiring normal freqdencies andi[ustraling hou dre dreory can'be applied to explain the free

vlbnrtions of a lirreu tii $ornic- niolecule. ,'

4. Vibrations in sysrcms wfth e:(Ernal bfces:

Structure:
:

8.1 hinciple axes fansfolihation
8.2 Normal coordinarcs and normal frcquencies

8.3 Free vibrations of alinear tri atomic rnolecule ( I case, II case )
8.4 Forced vibrations and the effect of dissiparive forces

tntrcductlon : The theory of small oscillations finds wide spread physical applications in acoUstics, t

moiecular spectr4 vibrations of mechanisms, and coupled electrical circuits._lf the.deviations of the system ,

Rom saUte'equili6tium conditions arc smatl enough, the mgtion cdn'generally be described as that of a systetn ,'

of coupled linear harmonic oscillators.

-+-l :\Equetion of motbn for e vibretlngsystcm :

Let us consider a consewative s)rstem in which the potential eners/ is a function of position only. - lt 
I

A system of particlis is said to de in sable equilibrium if atl the particles are and-remain at rest. In thc-

conservative forcl field, therefore, genemlized forces acting on each particle must vanish.

( av\
vi=_t7t ...(l)' \ett )o

This equation yields values qoi of the generalized cmrdinates that the particles have. in equilibriuht

configuration. lf the equilibriwr b be,stlblc, the porcntial pnerry must be a minimum w!91 w.aluate{rr[

these-qsr. The displad-r;ntr of the generalized coordinates from their equllibrium value will be denoted py

n, and so. :

7i=goi+{i.', -.,',1', ., t' "'(2)
Since qol'are i*rO, *\,*rO the 'rr' as generalired co-ordinates for the system.

#),",n* 
+"""'"'(3)
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M.Sc. PHYSICS 4 Small oscillations

Eqn. (13) may also be written as

(vo-t'ro)= g

where 'a' is now a column matrix of 'n' components.

s.l PRINCTPAL AXES TRANSFOiTMATION
The symmetric nature of 'l' bears an important advantage. We can choose d'certain system of body axes

with respect to which the'off-diagonal elements should disappear and onlythe diagonal elements remain in the
expression for I. Such axes are called the principal axes of the body and the conespondi4g npments of lnertia
as the principal moments of Inertia.
If we denote this form of Moment of Inertia by lt and 11,12 and

("'o o)
1r=lo r) ol ...(l)

l-l
(0 0 Ii)

But we know that L= Ii

.=r]

r:,:r ..i., .,,l*' '''.

I Ir(D- |
t-l
| 1.a.. |'t'llt,t,
I laQ)- I

rr'meqn.,[iJ =[l i ;] lr) =

obain.

ot L, = Irot,Lr=l2a)r,L"=ll@- ...(2)

i.e. each of angular momentum component along a principal axes is a function of corre3ponaing angutar
velocity only related to it via the principal moment of lnertia about that direction.
If 'I' is not symmetric such a procedure leads us into the realm of diagonalisation of matrix, a process which
only means that by a suitable transformation of axes we shall kick out the off-diagonal elements leaving only
the diagonal ones. The diagonal form of inertia tensor in which 11,12,t3 appear-as elements is very gasy to

,. tI

Ngw we solve the following determinant equation which will be cuhic in 'I' and therefore witt fumish'ttuee
values fot I, lri:, 11,12,.13 which are desired principalmoments of lnertia.

l,--, I.,y I,, 
l

1,, Ir-I tnl=o ...(3)

l,*- Iy, 1,,-ll
This eqn. (3) is called the secular equation of Inertia t€nsor and its solutions, the secular values-(or) eigen
values.
If the symmetry axis of the body is taken as il(es of roation and tha origin of body axes lies on this, then the
principal axes are the symmetry axis and any two perpendicular al(es in the plane.normal to the symmetry
axis. In such cases, we shall have two equal roots of qn. (3). ;

In case of a sphere, every axis through center is symmery axis and thereforc any three orthogorial axes
through the center are principal axes.
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8.2 NORMAL COORDINATES AND NORMAL FREQUENCTES OF VIBRATION
When a solution of equations of motion conhin oniy o*,ingle frequency (normal) the coordinateappearing in that solution is called the Normal coordinatc. ttrererore, fi; gr;;;-[Alo]iinu*r, each one ofthem executing oscillations of one single frequency, ars cafied Nonnal cooritinates

consider Ar MA =(ororl!')lo')'' \, c)lc:=)
' Ar M,q = qql + 2bqtrq, + cql

where A=(qr)- 
"column 

matrix
\ez )

, =(: ') - Marix
\a c)

A' =(q, q) + Transpose Matrix of .A' ' ',

The transformation of equations of motion into such coordinatcs (normal coordinates), denoted by 7 and
thereforc of Lagrangian is effecrcd by means of lincar transformation.
We define the new set of coordinarci 41 rslatod to thc original coordinarcs a, by the defi'ning equations

ui =lap nt ...(t)
k

lf we express als and als s the elenrents of the single column matrix (n) and ,n, respectivety then, we can
write eqn. (l) as ,t = an ,..(2)

"r;r-l

Ilorder to find out Lagrangian in new-cootdina.tcs, wc shatl fint express kinetic and potential enerry in terms
of q.

The potentiai enerry is r =llvtt ui at
-h*

v =!\u t vtt ur

Which is quadratic in ,a, and thcrefore can be ",p**C; 
', "'

Y=!u'Yu
2

Putting for 'a'.from eqn. (2), we get

, =|tuqy' vorl

I. 
= lrnr orvon

=+nr nq (;o'vo=n)

Further above eguation is quadratie in 'y' so that

v=+zLt nl

, =*T,i ,? (: t,, =a1l) ',.

r;'i.'{



Small oscillations

The kinetic energy is given bY

r =lLlr,r'it,'t'r "'(3)

=t ll d,,r,rir =f,t, r,t247'
l -.-.

=i-h, a'Tan

=ru' u (" a'ro = tl

lsr.z=;L',t'
-t

Therefore, the Lagrangian in New.coordirnte system will be

bll,ti'-!f ,,? ri' ...(4)
^tL'l " 'r4- t=t - l=l

AL .1. AL n

giving 
#,=7^r h=-E ir,

which when substituted in

a( ar\ aL- | "- l_.:=0
dr\04, ) 0n,

gves l(a,+ rfq,)=o
/=l

Therefore the equations of motion in new coordinates are

ii1+ot12ry=0

iz+d.qz = o

...(s)

ir+aint =0

In the above eqn. (5), the coordinate ?, conesponds to arr,42 to o4 el'r,. Thus each coordinate executes only

one single frequency oscillation and therefore er,4z atl are called as Normal coordinates.

The solution of equation

qt+aint=0

will be

qt=Atccsa,/+ Blsina,/ tf tltOl
th=Al+Bt if d=ol '..(6)

4r= Ate't t + B,e-'l' tf ;i .o)

In the first case since al arcreal and positive. All coordinales always finite for any time 't' and we then say

lhat the equilibrium is stable for the cer;e ol>0. But for the reit of the two cases, we find tlrat the

coordinates become infinite as the time advances and consequentty such solution refen to unstable

equilibrium.
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Normal modes of vibration:
a=2xu

The solution become

Qt = Ar aos2n urt + B, sin2x urt

'.:.= 
n' 

"ot'" ":.:.* 
t'"tn'o 

'.':.t . ...(7)

en = An cns2r ont + Bn sin2n unt

where A's and B's are2narbitrary constants to be determined from the initial conditions.
Suppose we choose these coordinates such that all except A, and 4 are zero. Then only coordinate 7, will
vary periodically with time, while the other coordinates will remain zero for all times. Such a situation
corresponds to a normal mode of vibration i.e. the system is vibrating in a normal mode. Obviously, any of
the coordinates can be given liberty to vary with time by such a choice of cdordinates and therefore, there will
be'n'normal modes of vibration and'n'normal frequencies u1;u21u3......!), correspondingto each normal

coordinate 4r, 42, 4t..... 4 n

We write eqn. (7) as

et = At cos(a1r+d, )
where d, is the phase factor. Then from eqn. ( l ) the old coordinates are given by

. u j =2o,, 41 cos(art + 6r\ ...(S)
h.

8.3 FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE i

Let us consider a linear triatomic symmefiic molecule of the type txzl @.9. COz) shown in figl. where 'y' is

the central atom and we shall neglect the interaction between this and end atoms x. We further assume that
there exists on elastic bond between the central atom and the end atoms of force constant 'k', Let the mass of
each end atom be 'm' and that of central atom be 'M'.

{r qr qtW yr
F'ig 8.1: Y& molecule. 

.,

Let us denote the displacements of at6ms from equilibrium ionfiguration by the generalized coordinates

7r,qz and 4r. Then

Kinetic enerry 7 =|r(d,' * dr'\* ua,

2r=(d,q,d,)lI X :lfll
[o o ^)la,)(^ 0 0\

givenr=h)=lo 
^4 

ol ...(l)
\0 0^)

Potentiaf enerry , =Irbr-q,\' ***bz-qz)'
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.t. v =L*(o? *zqtr *qt, -zq,qr-2cr';l

(k -k o)(er')
or zv =(qr ez s)l-k 2k -*l ln I

Io -h r)lq')
'.(* -k o)

n =(r)=l- k zk -r | ...(z)

Io -k *)
Then we write secular equation

lV -atzT l= 0.

l*-r'n -k o 
I

| -r k-azM -k | = o ...(l)

I o -k k-a'nl
on developing this equation, we gp!

k -,, ^)\z;-,'ult -,'^)- i'l- *.r(*-,'^l-o= o

(r -,' *llQ* -,' u)(* - r' ^l- 
x' I = s

" 
(r'*-*)fu1u *z^)-rzmul =o :

The cubic equation gives three values of 'ar'.

Normal frequencies:

at=0

,r= E
I

l^ =[L(,* ?L)it
[-' ['\ u ))

The first case refers to mhslatory motion (r, =0) of the auns and t|e rest two to th oscillatory motion.

In order to calculate the conesponding normal coordinates 4t,qzard ?r we shall proceed with

l, =loirnr

f o, ) ( o,, arz o,r'l f tl,'l

lorl=lo^ azz or'llnrl "'fsl
lsr./ [o, atz ott)\nt)

Therefore our aim is to calculate the components ofeigen vocfion ol,o2atnd a3.

FirstCase 2 a4=S andcalculationofthecomponents a1to21and a3, ofeigenvector ot :

For this purpose, we apply the relation

I (vu -o2rr) o, =o (i=t,23) .
I

...(4)



Ac,fARY4 NAGAFJUNA UNtvE

From eqn. (3), we write for a, as

(*-rl^ -k o

| -k 2k-afu -k
( o -k k-aln

substftuting @l = 0

(k -k o)fo,,) ,

l-t 2k -kllar,l=s
Io -k k)1",,)

giving Aa11-ka21 = g

-karr+2ka21 +karr=e

-ka21+ ka31 
= 

0

dn=e2r=e!t= a (say) ...(6)

r"l
at =lal

l")
which shows that displacements of atl the atoms are in the iarrr. oir"ction and equal in amount.-IT
second case : o,2 =il; *o calcurate the components ap,a22. .frrd ae of eigen veotor a :

For this purpose, we can write

fr-r|^ -k
| -r zh-colu

| .o -k
IT

Substituting az = 
"lL, 

we get
lm

ozz=0
dt2=-o32=p (say)

Sothatcomponent of a, arc

(p\
or=l o 

I

l-P) , ,!

similarty for the third case ,"=-l" lr.*-\, " 
:''': r :" : ;i ' 

'
'- J 

ll r t 
- 

M ) ^d 
componen8 of eigen vector a3 are to be calculated putting

l[;il '

:r lf:;) =,
*-rl^)lorz)

a! =L(t*4\.zr\ M )
( zn*

SM,"1 _k

t0

-k

-kM
m

-k

0

- kt'

2mk

]tar 
e



Solving, -!#t"r-tuzt=o
' kI'I

-l@*--:-a,,-ka" = 0

, 2m,
-fur, +fifu" =g

on solving these equations we get

aB=a33 = T
2m 2mazt=-Ta.tt = -Vf,

So that the comPonents of a, will be

t",\l{^lo'=l-#r l "'(8)

lr )
Eqn. (6) (7) and (8) define the required components of eigen vectors'

the following orthogonalitY.

al'Ta = | ...(9)

(ap /) (n 00)
Because('u)=1" o -ffrlna tr=ll y:l

[." -B 'i ) \o o ^)

lf a,P,y are known for which we aPPIY

we write eqn. (9) as
/\
l" a "l(,0lp o -/llo M

l" -2^, ' l[o o
v M, )
/ \r
l" a "l[o^lB o -Pll"u
I zm ll-.
[r -ir r )\am

il [ !, +,) li: :]

Bm r^\ | oo)
BM -2rml=lo' ol

-Bm rni ) \o o t)

'l l-t; I :'l

nr4',.4)) [o o tJ

l,,Q^
(or) | 0

['

+M) o

2ft^
0
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...(10)

l=

I

tl2n+M

I

42m+M

I

,l2n

[;'] W
I

ttl

-o=ffi
B= | 

,(zr)T

{,'('.T)l'
Now usirg crp, (6), (?),(8) and (10) with eq, (5), we can write for the normal coordinates 4r,42 and 4t

Q)1associated with normal frequencies ar,orand
rcspectively. i.e.

Which completes the discussion.

(r) o+ o+ '+
1b1<< . '+
(c) a". .'f <'-'

ffi Fig 8.2: Vlbrrtions of trhtomic (linear)
molecule

It can be seen that in case 2, with @21wa find that az2 =0
al2 = -o32

Which indicates that the central aton does not ake part in mdion and end atoms oscillate with equal
amplitude but opposirc in phase (see fig.2 (b).

In case (3)
ot!=o33 = f

2mazt=-Tf
Which indicates that end atoms vibrate in phase with equal amplitude, where as the central atom vibrates in
opposite phase with a different amplitude. [see fig. 2c]

8.4 FORCED VIBRATIONS AND THE EFFECT OF DISSIPATIVE FORCES
Force vibrations occur when the system is displaced initialty from the equilibrium configruation'and is then

allowed to oscillate by itself. The system is set into oscillation by an extemal driving force that continues to

act on the system after I = 0 . The fiequency of such a forped oscillation is then determined by the frequency

ofthe driving force and not by Se rcsonant @uencies.
If 4 is the generalized force conesponding to the coordinate 4i, then the tsneralized force @, for the

normal coordinate ( is

Qi = ai; F1 "'(l)
The equations of motion when expressed in normat coordinates nori-become
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i,+otei=Q ...(2)
Eq. (2) afe a sp1,gf lnl hpmogeneous differcntial equations that can be sohed only slt* we know the

"'' 
j 

dependence of e, on time. While the solution will not be as simple as in the free case, th normal coordinates
r:;' 

pr€serve their advantage of separating the variables, andeach equation involves only a single coordinates.
'Frqquently the drivingforce varies sinusoidally with timE. Since eq. (2) are linear equations, its solutions for
particularfrequencies can be superposgd to find the cnmpFte solution for grrcn Q. It is thereforc of gsneral

,. importance !o gtudy the nature of theoscillations when the fqce gt 6n bc written 8s

Q,=Qo,crls(at+6) ...(3) . ir
:111 . uiherc 'a' is the angular frequency of an extemal force. ,

The equations of motion now appear as

1,+oil €, = Qo,cos(at+6i) ...(4)
.A. complete solution of eq. (a) consists of the gen€ral soh.nion.o tlre homogcneors equation (i.e. tlp free

-. modes of vibrations),place a particular.sohtion othe inho4ogeneous qtuqtion
The solution of eq. (4) have the fonn

ir =8, cos(arl+ d,) ...(5) .2, -,_r, .__.._.1 ..: 
1.,.

Here the amplitudes Bi are determined by substituting tHe solutbn in gqutiots.

Two factors deter.miqe the gxtent to which each norma! mode is excited. One is the arnplitude of the
"gen-eralized driving'forcb gr. lf the force on each particle has no component in the direction of vibration of
some particulars normal mode, then obviorsly the generalized force conesponding to the mode,.wili.vanish

:,r .'Fd 90, will be'zero. an eitcmd force tan excite a normal mode only if it tcn& to move the perticlcs in the

same direction as in the given mode. The second factor is tho closcnesg,of the driving frequency to the free

mffl?":l*Tffo.nori*,oo in eq. (6), the ,ctoser 'o' opproaches to any a4 the strongu wilt ,r,"; *oo.
be excited relative to the other modes. Indeed eq. (6) apparcntly predicts infinite amplitude wheri the driving
frequency agrees exactly with one of the ar, s - The familiar phenomenon of Resomnce.

In many physical systems these forces when prcsenl arc proportional io thc particle velocities and can
therefore be derived from a dissipation firnctionl 'Let 

us firsr consider the effects of frictional forces on the
free modes of vibration. .,

:r1 From in definition, bf mtst be a homogeneous quadratic function of the velocities
I

S= ,\in,nt ...(8)

" ThCcoefficiens Sr'rdbclearlysymmeric 5,,=Sr andingsneratwillbefunctionsofthecoordinates. Ineq.
(8) we shall dlier $r' as denodig these cotrstant factors. It wlll be remCmbered $at 25 is thc rab of energy

dissipation due to the frictional forces.

,, The complete setof Lagmnge equations of motiorf now became
Tu4r+3rnr+Vqn1 =0 ...(e)
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:,'li lfthe friotional.force is proportional"both to-the particle's velocity and its mass,'then s will be diagonalr.' whenevgr t is. When such simultaneous. diagonalization is feasib[, ;hr; t# equations of motion aledecouplod in.the normaf coordinates with the form
, (,-s,,€i*a? 6 =o (no summation) , i :

""'(10) i
Here the 5, arc the non-negative coefficiens in the diagonalized form of s when expressed in terms off,.
Being a set'of linear differential equations with constant coefficients, eq. (lo) , eq. (lO) is solved by functionsofthe form -' ' -1-

'€t =Ct e-''" t'rl

where ar, satisfies the quadratic equation
: ,rl ..'1 'al'+iulS,-al =g ' (nosummation)...(ll) :.,

Eq. (10) has the two solutions , ,,,"

. ll", .r
a]=xrlaf -!- -;rt .,QZ)| 4 '2

The motion is therefore not a pure oscillation, for as' is complex. It clear from pg. (12) that the imaginary part

of ol, results in a factor exp -+ because of the non-negative nature of the sf s this is atways an

exponentially decreasing function of time. al !n9 particle vibrate, they do work against the frictional folces,
g.l th9 eners/ of the system'must deqeaservith time. The real part oieq. (12) coirsponds to the oscillatory '
factor in the modon, and it will noted that the presence of friction atso etieits ttrr fn qlpn"y of the vibratiori.. tf the d,isoipation is small, tlrc squared term in 5, is neglected and the frequenby of oscillation reduces,to ttre
friction free value.
The oont'plete hotion is then simply an exponential damping ofthe frree modes of vibration.

citc,e_3y't2r_tot1 
i.,.., ,...(13) " : ./

rl$::dilsiealion function cannot be diagonalized along wittr T,qnd V, the soiution is much mdre diffcult,to' obtairt. :"' '- '

.' SuppoSe:sOek a solution to ft. (8) ofthe form I'

.,, ,.,, ,,,e1.=coi"-''' =Care:KT ;zoirt ..,(14) ,, ,",, 
. 1 

.,'.,.witht|ri3'qr*lo1"e(9)becomeasetofsimultalrcous|inegreqqations..,:.i

Vrar-iat!uar-a2Trar=O ...(15)

Itigconve4i-enttowrite,e),,ds iv sothat, :,, ., i ,

v=-ist=- K-2ttiv
and thus '-t' is the real part of d. In terms of square mafices of V, T and S .fhe set of equation (15) become
a column matrix equation involvingv : i:i .- '

Va+vFa+v2Ta=0 ...(17)
The set of fromoge4eous eq. (t5) or (17) c4n be solvedfor the a, only for certain valuqs of o (or) d.:,'
Convert the matrix equation (17) intg a scalar equation for d

a' Va+v a'Fu + v2a'To = 0 ...(18)

by multiplyingfrom the lefi with.a' :

Eq. (17) is a quadratic equation for y with coeffrcients that are,matrix
those encountered in equation.I . r .

Vr t liJ"ITa1=g

' 't'

products of,the same general type as



.,.1virtue of the symmetry of V, F and T the matrix products qrc all real, and can be seen by expanding'a' as

c; riB . Hence if d is a solution of the quadratic equation its complex conjugate d' also bq a solution. Now,

the sum of the nro roots of a quadratic equation is negative of the coefficient of the linear term divided by the

coefficient of the square term.

v+vk=-2k=-# (te)

Hence 'k' canbe expressed in terms of the real and imaginary parts of a, as

...(20)y=L1'ilo'oi* F' f i)
2 7,,\a,a,+ Fi 9tl

The dissipation function must alwaya be positive, and 't' is positive definite, hence 'ik' cannot be negative.

The oscillations of the system may decrease exponentially with time, but they can never increase with time.

The frequencies of oscillation, glven by the real part of ot, be affected by the dissipative forces, bul the

change will be small if the damping is not very large during a period of oscillation.
Conslder forced sinusoidal oscillations in the presence of dissipative forces. Representing the variation of the

driving force with time by

Fj = Foj e-id

Where Fo, maybe complex, the equations of motion are

Vr7r+3uq1+T;ii1=Fis-tot ...QD

Let the solution of these eq. (21) is of the form eJ = A j e-'''
Then the following set of inhomogeneo$ linear equations for the amplitudes A , arc obtained.

Q, -irs,,-rrru),n,-4 =o ...e2)

The solution to these equations may easily be obtained fiom Cramer's rule.
tt=o,(a\ 1o(a\ ...83)

Where o(o) is the determinant of the coefficients of A, in eq. (22) nd o/a) is the modification in a(ar)

resulting when the y'fr column is replaced by &r ..........Fb,

For a system of 'n' degrees of freedom it is therefore possible to r€present O(r) .t
o(r) = G (a - at ) (a - o4).... {a - co, X, * ri ) @ * ril ..... {, * ri)
Where'G' is some constant.
Using product notation and denoting 'al by 21 6 ,this representation can be writtcn as

D(a)=cfiQ"Q-v,\+ik,)(2/v+v,)+rk,) ...Q4)
j=l

When rationalize eq. (24)to separate l, into its real and imaginary parts, the denominator will be

D' (a) o(a) = G G' fi(4n'z (, - r,l' + *,'l (+n' (, + v,)z + t,2) . . . (25)
,=l

The amplitudes of the forced oscillation thus exhibit typical rcsonance behaviour in the neighborhood of the
frequencies of free oscillations +r, . As a result of the presence of the damping cohstants &,, the resonance

denominators no longer vanish at the free mode frequencies, and the amplitudes remain finite. The driving
frequency at which the amplitude peaks is no longer exactly at the free frequencies because of frequency
dependence of terms in ' Ar' other than the particular rcsonance denominator. If ttrc damping is small enough

to preserve a recognizable resonant pealc the s\ift in the resonance frequencies is usually small.
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Summary:Avibratingsystemcanbg-reRresentedasasuperpositionofsimpleharmonicoscillators'
Lagrange,s equation of ,iotion are suitable i" *pt t."t for small iscillations of a system ' However the

problem can be best rcpresented if rep-resent"d-il;;; of normal coordinates' So' normal coordinates and

normar frequencies .*?;iiil--o t 
" 

uiu,"tionioro linearti atomic morecule are explained

Key words: Principle axes transformation - Normal coordinates and normal frequencies - Free vibrations

ofl fin.", t i atomii *oiecute - Forced vibrations - Dissipative forces

Self-Assessment Questions
iOl"ir G Lagrange';eq*tion of motion for small oscillations of a system'

i:il;i;t" th" oiittu:tiont of a tinear ri atomic molecule'

3.Explain the effect of dissipative force'

Reference Bootrs:
l.Mechanics: Simon
2.Classical mechanics: H. Coldstein'

i. biassicar mechanics: Gupta, Kumar and Sharma

4.Analytical Dynamics: Whittaker'
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Statistical Mechanics Part
Unit - III
Lcsson 1

CLASSICAL STATISTICAL ilIECHANICS

Obiectives:

l. To infioduce the concept of statistical mechanics

2.Toexplainconceptofphasespace,pspace'fspacc,andgnenscmble

3. To explain the three typei of ensembles, like miqo canorical, canonical and grand canonical

ensembles

4. To explain the ensemble averagp' density of distribrfion in &e plrasC spaO'e

5. To discuss the equipartition theorem

Structure;

1.1 Intoduction

1.2 Phase sPace

1.3 Ensemble

1.3.1 Micno-canonicalensemble

1.3.2 Canonicalensemble

1.3.3 Grand canonical ensemble

, 1.4 Ensemble Average

1.5 Density of Distribution in the phaso space

1.6 Equipartition Theorcm

1.T INTRODUCTION:

In statisticat mechanics we study the physicat systems consisting of very lgqp number of particles (N -
10,). The simplest physicat'system of ,ihterest is a perfect gns in thermal equilibrium. From the

macroscopic point of view it appearc to be a continuum. 'A cornplere set.of thermodynamic variables,

characterizing its equilibrium state, is the energt E, volume V and the numlot of molecules N. "The N'

although referred to molecules for convenience, is a macroscopic variable as^it.is directly related to the mass

ofthe gas.



From the microscopic point of view the gas (mauer) consisls of discrete particles, like atoms,.or
molecules' In classical mechanics, the microscopic description will speciry at a given time, the positims .

and velocities (or momenta) of all the particles in the gas. It is impossible to measure them instantaneoush
as N - 1023' with lapse of time, the description of the behavior of the gas will require solving un 

"nor,n'o,rl 
'

number of equations of motion involving collisions. To get out of this impasse, we can try to ritate rhe 
;

macroscopic description based on a few variables with the microscopic description based on a large number
of variables, by using the method of (i) kinetic theory, or (ii) statistical mechanics.

The drastic reduction in the number of variables occurs becbuse a measurcmerit of tlre
macroscopic property, like pressure P, gives an average of the values over a finite time interval
(-ls)' During this period the molecules undergo a very large number of collisions as the time
interval between trvo successive collisions is of the order of l0-t%. The mathematical process of
averaging over a coordinate obviously eliminates it, resulting in simplicity. For exampte, consider
the kinetic theory calculation of pressure of a gas in a cubical box of side length L.

Let C*i be the velocity component alongthe edge parallel to the x-axis for the ith moleculelof
mass m' The rate of momentum transfer to a wall normal to the x - axis is given by (nurpber of
collisions per s) x (Momentum imparted per collision) : (c*i / 2L) x (2mCx1). Therefore, tho 

l

pressure P exerted by the molecules on that wall is :

total forceon the wallP-
area of the wall

wnere{ = *$.:,
-t-;

Where Ci is the average value of Cl for all the molecules. Thus N(-1023) velocity coordinates are redused

to a single suitably averaged coordinate.

In kinetic theory certain basic assumptions are made regarding the nature of molecules and their *utiral
interactions. Statistical mechanics does not concem itself with such details as it deals mainly with fhe

energy aspects of the molecules. It makes assumptions of a more genqral nature, uses the theory of
probability and it is mathematically simpler. We shall discuss the method of statistical mechanics as firs
formulated by Josiah Willard Gibbs.

I.2 PHASE SPACE:

First consider a very simple case. A bead of mass m moves freely and arbitrarily a string stretchbd along

the x - axis. It has one degree of freedom. The position of the bead at time 't' is x(t) and its vetocity V* =

_ m(Cl, +---+Ci r r -c *: f .NC:,



, 'fortror.ntum px : m x ) at that instant. The state of the bead at anfinstant can be represented by a point

n fit? nypothetical-two-dimensional space, called the phase space, whose coordinates are x and p*' As the '

b"it'rou., on the string, the value of x changes. Under accelerating force, p* also changes' As a result the

e"itry:F

rlqli:,

fiaces a trajectory in the phase space with the passage of time (Fig l'l)'

';li,

irJvi:: , .i'

'yYii' .'r "

".,?._"

STRING

BE,AD

(a)

(rY (b)

Fig 1.2(a) A gas containing N molecules (system).

(b) p-space for the system, (c) I-space and the
representative point for the entire system.

X
ft)

Fig 1.1(a) A bead sliding on a string (b) Phase space and phase line

for the bead.

,q, molecule of an'ideal gas can be represented as a structure-less particle. Such a molecule has three

translational tlegrees of freedom. Its phase space has six dimensions whose cartesian coordinates 8r€ X1' X21

n, 
"p,,'pr, pr. 11 i, called the I-r - space, lvhere p stands for molecule. The instantaneous translational state of

tr," rbi".ut. is'given by the representative point in this hypothetical space' For a system of N molecules

'rrfl
tgar)'tfr. iristantaneous state (Fig.l.2a) is represented by a set ofN points in the p - space' one for each

molecule (Fig.l.2b). It is a symbolic picture of the space because, it is-noflossible to display a six-

dimensional space. The totdl number of translational degree of freedom is 3xN:3N. Following Ehrenfest,

we can construct a phase space, for all the molecules, which has 6N dimensions. It is called the f space,

where f stands for gas. It is spanned by 3N coordinate axes and 3N momentum zxes' The 6N coordinates

(xn, xzt, X3l, "...:, XtNr-xin, XrN, Pll,.P2t, P3l, """"'' PIH' Pzl' PrN)

refresents. the positions and momenta of atl the molecules (state of the system) at a given time.' In the .F -

space, the instantaneous state of the whole system (gas of N molecules) is given by a single representative

point(or phase point),Fig 1.2c. The notation [x], [p] stands for the 3N coordinate axes and 3N momentum

dX9S;

'r,

o Representative point

(c)
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In general, if f independent position coordinates and f moment coordinates arF required to fully specift,,ttre

state of a-system, then the system is said to possess f degrees of fieedom.

Any set of f generalized coordinates Qr, Qz, .....q1(cartisian, polar or some other convenient set).can

be'used to uniquely determine the configuration of the system. The corresponding generalized momentaarp

. Pr, h, ......Pr. The f space is then a conceptual Euclidean space having 2f rectangutar axes [q], [p]. , Tho

microscopic state of the whole system is specified by a representative point in this space. With the lapse of
time, some or all of the 2f coordinates take on different values (Fig L3). As a result, the representative poini

traces a phase line (or phase trajectory) in the accessible phase space (Fig 1.4). Each point on the phase,lip

represents one such possible microscopic state. A.point in the phase space is accessible if it corresponds to
the physical specification of the system under observation. For example, the states of the crystalline fomof
sodium are inaccessible at very high t€mperature. The system is likely to pass through alt the accessiHe

states. In this sense, the 2f coordinates take on all possibie vatues. We can say that they are randomized.

The phase line tends to fill the accessible phase space. The measurement of macroscopic variables 
r:

(like P,V,T etc) involves taking time averages over an appropriate portion of the phase line of the system. -,

' (a) (b) (c)
F'ig 1.3 A few possible state of the system (gas containing N
molecules). For convenience only few molecules are shown.

EVNIEVTI EVhI

Fig 1.4 Phase space and a portion of the phase lide.



'., Sri for we have not introduced any concept of statistical mechanics. The problem of solving an enonnous

number of equations of motion and of calculating the time averagss of interest is still with us. Around 1900

,,Gibbs suggested that a way out is to introduce the idea of an ensemble of system.

TI.$ENSEMBLE:

:. , Each phase point on the phase line of single systE,rl develops ofi of the previous point in time, according

r:totlrc laws of mechanics. Gibbs replaced the time dependent picture by static picture in which the entire

r;plnse line exist at one time (Fig l.5a). Then each phase point represents a separate system with the same

llhaeroscopic properties (E, V, N) as the systom of interest but a different microscopic state. In other words,

*'iv6,,imagine, a large number M(M+cr,) of system, similar in stnrcture to the system of interest but suitable

tilrhiiomized in the accessible, unobserr,"able, microscopic states. Instead of aking the time average' we take

tlri average over this artificially constnrcted group existing simultaneously at orie time. Such a group of

.ttplicas or collection of similar non-interacting independen! imaginary systems is called an ensemble by

Gibbs (Fig l.5b). We have assume.d that the time average of some properly of a system in equilibrium is

same as the instantaneous ensemble averagg. This is known as the ergodic hypothesis'

All the members of an ensemble, which are identical in features like N, V, E, are referred to as-elements'

These elements, though identical in sfiucture (same macroscopic state), are randomized in the sense that they

differ from one another in the coordinates and momenta of the individual molecules, that is, the elements

difrer in their unobsenr"able microscopic states. The various elements, being imaginary, do not interact with

cach other. Each element behaves independently, in accordarpe with the laws of mechanics (classical or

quantum).

AFDGD

I
I
I

dri
Ft

Fig 1.5(a) & (b) a: Ihe ensemble (e small portion) at one time
b: Schematic lattice reprcsentetion of an ensemble

A clear difference exists befiveen the actual system of interest and an element of the ensemble. The

rystem is physical object about which we intend to make predictions. The elements of ensemble arc mental

copies of it to enable us to use the probabilig theory.

System of
lnterest
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Thus an ensemble of systems consists of randomized 'mental' pictures of the system of interest thailexist

simultaneously: It is to be viewed as an intellectual exercise to imitate and reptesent at one time the,sta$bf

the actual'system as developed in the course of time. It is easier to compute the statistical behavior of such a

suitable chosen ensemble than to study the behavior of any particular complex system. Results so obaifrbd

enable us to predict the probable behavior ofsystem of interest. irst,

An ensemble average is the average at a fixed time'over all the elements in an enbemble. It is difficukto
prove the exact.equivalence of the ensemble average and the time average over a single system;,,Hou4strcr,

one can hope that the former would cliisely approximate the latter, if the following essential conditim,are

satisfied.

l. The system of interest is a macroscopic system consisting of a large number of molecules (N.+glso

that we can randomizd in atrue sense the microscopic variables.

2. The number of imagined elements that form the ensemble at one time is large (M+a) so that they

can truly represent the range of states available to the actual system over a really long period of time

(t-+a). In statistical mechanics we shall use the terms system and ensemble in this above sense

only.

In Fig 1.5a, each phase point cbrresponds to an element in the ensemble (Fig l.5b). In an appropriate

ensemble the phase points would be distributed continuously.

An ensemble is also defined as a collection of a very large number of assemblies which are essentially

independent (i.e., in calculating the possible eigen-state of an ensemble we do not have to worry about any

interaction between the assembly of interest and any of the:other assemblies) of one another but which have

been made macroscopically as identical as possible. By being macroscopically identical, we mean that each

assembly is characterized by the same values of set of macroscopic parameters, which uniquely determine

the equilibrium state of the assembly. .',',

1.3.1 Micro-canonical ensemble: I '

The micro+anonical ensemble is a collection of essentially independent assemblies having the same

enerry E, votume V and number N of systqms, where for simplicity we assume that we have only one type

of system. The individual assemblies are separated by rigid, impenneable, and well-insulated walls /p'

!t,

of an assembly exactly.1.6). We cannot actually speciff the macroscopic
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.rGonsider a closed system for. which the

e$itation

total energy H(q'p) = E remains constant, according to the

Tlh,locus ofall the phase points having equal energies in phase space is called an eneigy surface or ergodic

suface. We can now imagine a family of such enerry surface constructed in phase space'and let us consider

two neighboring surfaces with energies E and E + 6E. Each surface divides the phase'space in to two parts'

oncrof higher and the o(rer of lower energy, so that, they will never intersect each other' As they include

some phase volume in between them; they will contain certain number of phase points. The number of

plrase points between them will be consthnt. A very useful ehsemble can be obtained by tiking the density

as Squal to zero for all values of the enerry except in a selected narrow range E,ft' E+68 of Gibbs' such an

"nsembl", 
sPecified bY

p = constant (in the range E to E+6E)

p = 0 (outside this range)

: Fig 1.7 Energr shell in phase space'

may be called a micro-canonical ensemble.

Wc observg the following properties: In case of micro-canonical ensemble

.,(i) As p is a function of energy, this ensemble is in statistical equilibriurn

(ii) Ttie average properties predicated by such ensemble will not vary in the time being in statistical

.i ,equilibrium.

(iiD As p is constant with in the energy shell, the distribution of phase points is uniform (by

Liouville's theorem).

An ensernble of this kind can be regarded as obtained from an originally uniform ensemble by discarding

alt systems having phase points.with positions that do not fall with in the limits in the phase space that

corespond the energr range E to E+6E.

o+



* = l]**(x)dx, * = j*1*1dx ----_- (1.2)' N-J-

tn generat, if R(x) is any arbitrary OroO"* of the points.'

jntj,lNt*lo*
J

* = -=6_ ____-____- (1.3)

JN(x)dx
_t -6

Generalization to higher dimensions is straight forward.

1.5 Density of Distribution.in the phase space:
The use of ensembres in statisticar mechanics is guided by the foilowing factors:

'-l'The aim is to know only the number of system or elements that would be found in different states, that is,in different regions of the I space, at any time, Alr the elements being similar in structure, we need notdistinguish between them.

1l: :"tbe1of ;fements 
in the ensemble is so large (m+a) that there is a coritinuous change in their

Rumber in passing from one region of the phase space to another.
' we can therefore' describe the conditiort of an ensemble by a density D with which the phase points are

:::::T" 
in the r space' It is catled the distribution tunction (or density of digFiblrtio" 

". *b"r,,'tyoensrty). 1

In an ensemble of systems of f degrees of freedom, p i, a.function of 2f position and momentum
coordinates gr, Qz, ...;i..Qr, pr, p2, ...,..prwhich corresponj.ro 6"Zraxes in the phase space. It can also
depend on time t explicitly. The reason is that although we dre free to fix the distributibn at any given time
[, we have as yet no 4ssurance for the distribution to remain same. If it remains ,ur., th.larticurar
distribution would be onebf equiiibrium. we shall discuss this tater on. Thus; in general,

" " D* D(T 42, .....'qr,Pr, p2, ......0r, t) = b(q, p, t) '---*--*- (1.4)
' consider a small region A''of the l'space such thit the position coordinates lie between.ql and gr+dQr,
.i...,9rand qd-dqr, and the momefta lie between p1 and pr+dpr, .....prand p6rdps(pig I.5a). The hyper
Yolume of this region is -

df = dql .....dqrdp, .....dp, = dpdq ----- (l.S)
By the definition of density, the number of system or elements dM lying in the specified infinitesimal region
sitrlgted at the phase point Qr, ..... pr at the instant t is

dM = D(q, p, t) dF -------. (1.6)



If M is the total numberof elements in phase space, then at every instant t'

y=Jodr .----- (1.7)

Wherd the integration is over the whole phase space'

Assuggestedbyeqn(1.3),theensembleaverageofaquantityR(q,p)isdefinedby

U_ IR(l,p)D(q,p,t)dr = *l*G,'o)D(q,p,gdt __---- (r.8)

.lo(o,p,t)dr M

If a system is selected at random from the ensemble, the probability of selecting one whose phase point lies

in the small region at the point 9t, ." "' pl is simply pdT' where

DNo: -;- : 
= 

IpdT= I ----- (1.9)' Joor M

ln terms of p(q, p, t), called the normalized density of distribution'

U _ IR(l, P)P(q, P, t)dPdq : I npar

leG,P' t)dP dq

The ensemble average equati<in (1.10) gives the average value of the physical quantity'R for the actual

system of interest.

The macroscopic average properties (like E, V, N) of a system in thermodynamic equilibrium do not

ohange with time. Therefore,.our ensemble representing it must be such that the ensembte averages t* ti'f:

independent. This is a reasonable requirement. It follows that to construct a suitable ensemble we should

study the behavior of p(or D) with time'

1.6 EQUIPARTITION THEOREM:

(Law of Equipartition of energY) 
,

Statemenfi Equipartition theorem states that if the-,enerry of the system E(p' q) is a homogenoous'

quadratic2 function of any set of / of the generaliznd cpsdinates and momenta then the average enerry of

the system is < E > o, E = kll2,provided that for each momentum in the set

I .A function f (x1, x2, . . ..xr) is hornogeneous of degree 'm' in Jhe variables x|, x2 if

(1,x1, ?ux2, xr ...x') = In(xt, x2, ....xm)

2 A function E; is quadratic in p; if it is of the form Ei0,): bp;2, where b'ts constant..'1

t\

#&,,



I

l

[',*'[#)],='
and for each coordinate in the set

[', 
*'(;+)]n = o,

Where p, , p, , q, -d q, *" the lower and upper limits respectively of p, and q, .

In other words , it states that the mean value of each independent quadratic term in the energr is equal to

] kT' As a law of equipartition of enerry it states tha! when the total ener$/ of the systern is exprcssible as

an a additive quadratic function of momenta or position coordinates, the energr associated with each degrce
of freedom of the system is { kT per particle.

Proof: we consider a system described classically in terms of / position coordinates (qr,...qz ......qr) and

conesponding /momenta (p,...... p2, ......pt. The total eners/ of the system can then be written as a
function of q's and p's, i.e.

E: E(qr....qr, pr.....pr) (t.[)
This total energy can be broken into a sum of two parts.

E = Ei(pi) + Er (qr, gz ...... Qc pr, pz, .......pr) (1.12)

Where E;(pl) is a function of particular momentum pi alone and the second term Er(q, ..... pr) is a function of
all the position coordinates and all momenta (p, .... ps) excluding the particular momentun p which is thc
only variable of the first term of the sum. Such a split of eners/ is of course feasible as the position and'

momentum coordinates are independent of each other.

Ei (p) = upr'? ------- (t.tr)
Where b is some constant

It the system is in equilibrium at a particular temperature T, it will he characteri zd by canonicat

distribution and the mean value of enerry E; arn be expressed as

<EP =
IE.e-F(q'""'P'l

-----(1.14)
ls-FG''-'o')

But in classical theory variation of energy is continuous and we can charge the summation into integration,



i'€" 
o o

J... 
(zr)... J E,"-tto'""'o"dq, "'dp,

<EP=,H (1.rs)

J...t2o... J .-F(cr--nr)6Q,...dPr

ping equation (1.12)

..f.€6o

J .t tl .Jt..-/(Ei+E')60,...dp, Je-e'tn')E 
dn, J...(zr-l)..' lt-o'oo,"oo,. <Ep=t: t; =

T. tttl . jr-rta*'r60,..dp, Jr-t"o')dp,. l.-(,'-r)"' It-t'oo,"oo,
-O*,-@{-€

- 'a 
j

wtrere the integrals containing exp (pE') extend over all terms q and p except pi. These integrals are equal

and thus cancel leaving

'["-tE,do, -+('1.-o't'"60 I
4E,>= { :'-'' =-N---)

Je-F,i dp, Ir-o'do,{{
o l' 

)-#"u.[f-Ei(ni)60 
)

using equation,(I. l3), we find

A (o- \
<E,)=-9roe.l [e-eni6p, I ---- 

(1.16)' aB -"u ")

kt rs innoduce the variable Y = Fip,
only in the argument of logarithm so that

=-#l-rbs.f+rog. j. "*] =-Setbe,f)

=+ = +kr ----- 
(r.rr) r'.'o = frl

A '( ,'. \ 
l

(Ei) =-*rog.l p-i le-w' ay 
Idpt-:)



.l Equation (1.17) is the so called'equipartition theorem'of classical statistical mechanics and obviously

states that the mean value ofeach independent quadratic term in the enerry is equal to j kT.

We have earlier mentioned that classical theory assumes a continuous variation of enerry and thus

enabling us to change the summation into integration and hence a subsequent deduction of equipartition
theorem. It should therefore, be emphasized that the equipartition theorem is valid only in classical
statistical mechanies. However, when the temperature is sufficiently high (and thus the mean energy E of
the 

-system 
is sufficiently high). The spacing AE between the e.rergy levels around the mean energl E is

, small compared to the thermal enerry kT, i.e., AF << kT and them the variation of energr can be

ap$rqkimated as continuous. ln that case quantunn mechanical description of discrete enerry levels can be

- 
ignJretl and equipartition theorem can be taken as valid. But when AE > kT, classical description breaksrlr

Fp*.
. At present we shall calculate the mean energy for one- dimensional harmonic oscillator.

Hamiltoniar for a one- dimensional harmonic oscillator is

nZ
= h+ 

jmor2q' ------- (l.ls)

lvhicft involves two quadratic terms.
', 

The mean enerry is then

* _!:'"^'1rzm6o

'7n'"-^"0'''d,m@'

<EP = (r.le)
@

_l:-*''^oo l"-n"e'rz6o

I I I __ l=_T _= -kT (...F=*_)2p 2p B Tr'
. .- t l'll2 6 / _11/2 r

(Based on theilefinite integrals [x'e-*'dx = ll 1l ana [e-^'dx =l I. .\. 2\a') _* (a/
the integrals in equation (t.t9) are evaluated)

which is expected since there are two quadratic terms and each would confiibute * kT in accordance with

equation (1.17).'

I



Summary:

Statistical mechanics is a scheme for studyfng,tlib macroscopic properties of systems in terms of their

microscopic prbperties. It is a mechanics becs0se it deals with mechanical systems and statistical because it

makes only imprecise (or statistical) predi6tions, the general character of statistical mechanics\does not

depend on $e mechanics (either classical or quantum).which applies only to idealized situations ifr which

we obain lie complete information concemipg the motion of a mechanical system. .statistical mdchi'nics

aims to study the physical properties of mechanical system in a situation when the description is inctrrryplete.,

The basic rirathematical tool in this approach is the theory of probability. Only statistical or probabilistic

consideration can yield a theory, which predicts macroscopic properties from an atomic model of thesystem.'.

Further statistical mechanics predicts the average value of thermodynamic (or,macroscopic) properties,

which diffen from the exact value. However the deviation from the exact value dt"t"ut"t with increasing

the size of the system (i.e. with the incrcase in the number of particles in the sJstem). So the satistical

predictions are nearly correct for a system consisting of a very large number of particles. Thus the statistical.

mechanics is an ocremely useful tool for solving many body problems.

A molecule of an ideal gas can be represented as a structure less particle. Suih a particle has threq,

translational degrees of freedom. As a result, its phase space has six dimensions whose Cartesian

coordinates 8t€ X1. xz, Xr, Pr, Pz, Pr and itvphase space is called p /space where p-stands for molecule' We

can also construct the phase space for the system (gas) consisting of N molecules and it is called the f '.

space,w[ere f - stands for gas. It is spanned by 3N'coordinates and 3N momentum axes. The 6\
coordinatbs in the f- space represents, the positions and momenta of all the mofecules (state of the system)

at a given time. Therefore the instantaneous state of the whole system (gas o{N molecules) is given by a'

single representative point'(oi phase point). Each point on the phase line r$resents one such possiblo

microscopic state. t 
,, ,, 

- ' :'

Each phase point on the phase line of a single ,yrt.,ri develops orjf of the previous point in time"

according to the laws of mechanics. Gibbs replaced the time dependent picture by stalic picture in which thq

entire phase line exist at one time. Let us imagine a large no. of M.(M+ cr) systems, similar in structure to

the system of interest but suitably randomized in the accesqible; uno\r(0ile microscopic states. Instead

of taking the time average, we takel an averaqe over illiQ artificihily-cqrstructed,€foup exisfin-g

simultaneously at one time. Therefore, Such a.group oTreplicas of c-ollectioqs;gf sifiltr, non-interactihg l
independent, imaginary systems is called an ensemble*

There are three types of ensembles. (l) Micro canonicat (l'6nbniwl and (3) Grand canonical

ensembles.ln the micro canonical ensemble neither exchange of enerry nor exchange of particles occur

;{
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among the assemblies (or systems). But the systems can exchange ener$/ among themselves but not the

particles in the canonical ensemble. In the Grand canonical ensemble, the exchange of enerry and particles

will occur between the systems.

According to law of equipartition of enerry, the mean ulue of each independent quadratic term to the

eners/ is equal to %kT per molecule. Equipartition theorem is valid only in classical statistical mechanics

because the classical theory assumes continuous variation ofcnergt or the enerry levels are closely spaced.

Key terminology:

l.Phase space: Suppose a bead of mass 'm' moves freely and arbitrarily on a string stretched along the x -
axis. It has one degree of freqflom. The position of the bead at a tine 't' is x(t) and its velocity is v* = r or

(momentum px = 6y ) at that instant. Therefore, the state of the bead at any instant can be reprcsented by a

p<,int'P' in the hypothetical nvo dimensioJral space called the phase space. whose cooldinates arc x and p*.

2.Ensemble: Collection of similar , non interacting, imaginary, independent systems is called an ensemble.

The members of an ensemble are identical in macroscopic properties. They differ only in their microscopic

states. The members of an ensemble are called elements.

Locus: The path joining all phase points in the phase space is called locus.

Self - assessment questions:

l. Define phase space. What do you mean by p space ard f space?

2. Define an ensemble. ,gfistinguish Sree typesof ensembles, namely, micro canonical, canonical and

grand canonical ense4bles.

3. What do you mean by an ensemble average?

4. State and prove equipartition theorem.

5. Calculate the mean:pnerry for one dimensional linear harmonic oscillator.

Reference:

l. Statistical Mechanics by Gupta & Kumar, K Nath P Co.

2. Statistical Mechanics by Kpuon Huang Mley.Eastem Ltd.

3. Statistical Mechanics by M. Eisner and BJf,. Aganval, Wiley Eastem Ltd.,

4. Statistisil \,lechanics: Theory ard Applications by S.K. Sinha,Tata McGraw Hill Co, Ltd.,



Statistical Mechanics Part
Unit III
Lcsson 2

MICROCANONICAL ENSEMBLE
(Isolated system)

Objectives:

l. To discuss the classical ideal gas on the basis of micro-cdnonical ensemble.

2. To explain the concept of Gibb's paradox and how it was resolved.

Structure:

2.1Innoduction

2.2 PerfectGas (o0 classical i&al Gas-Micro canonical Ensemblo.

2.3 Gibbs Paradox.

2.1 Introduction

An Ensemble in which syatems have the same eners/, same number of particles and same volume is

called a micro+anonical ensemble. lfi this ensemble, dcnsity p for a closed isolated ttrermodynamically

system (a system whose energ/ remains constant is called an isolatcd system) is a function of enerry, and

we take

-. l'= constant benveen the energr shells E and E+6E of phase space.
P(E)J

L = 0 .outside the region ofphase space.

2.2PerletGas (or) clrsshrl ldeal Ges - Mhrc canonlcrl Ensemble:

We consider a micro canonical ensernble of perfeiFgas. Lrt'there be n lroint particles of mass m in a

volume V with totral.eno.rgr in the pffi space is given by 6E at E. The conesponding volume in phase

space is grven by

aF =Jdqr...dqrnj dpr...dp:n ---\2.t1
whife q's refer to posfr{on and p"$ to momentum co-ordinatcs. Since in a pe-ffcci gas, interaction

between the particles.is not presenl eneN'$/ of a pcrfect gas is inhpendent of tirif positions of the

p,4rticles and we can write

Jdq,..:dqrn = Jdxrdyr dzr I &zdwd", .\.1'a,"ay" d2.,, = Vn.,

0)
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Therefore, the corresponding volume AF in the phase space and shown in equations (2.1) can be written '

as

Af = Vo IdPr...dPrn *'. Q.2)

wherc fie momentum spaoe integral islo be evaluatcd subject to the following constraint imposed

by the ensemble:

ln 
E-6E<E<E'

since energr f-: lp,' l2m $ron-retativistic case)
i=l

The above constraint becomes

E-68=lo,;rrt 3s-(2.3)
i-l

The integral in equation (2.2) is just the vohme conained between the 3n dimensional hyper sphere of

radius (2mE)tn and3n dimensional hyper sphere of radius [2m(E - AEIto. The volume of n climensional

hyper-sphere ofradius R is

V"(R)=GR[, 
-:- 

(2.3(a)

where Q = !n'' -- = lo'' -. - o'''
Ju3) Jl*r) n!

l2 ) '[z''J 2'

"'f(n+l)=n! '

based on the above equation 2.3(a), the volume of three dimernional sphcre can be written as.

VrG) = Cr R3

wherecr = fl'' -= "'::, = !l!2= =:':4"--- !:'' '=+""'-'--' r{;.') .(t ir} }irL, i.t; 3

Therefore, the volume of the 3 dimensional hyper spherc bcomes

4
%G)= ian3

In the similar manner the volumi: for 3n dimensional h1ryer spherc of radius Qnflfn wi[ be

-ln12vr= ? (2mE)3"2.
3n,

2'



Therefore the volume contained between hlper spherc of radius (2mE)x and of radius

t2m(E-AEItn wilt be

J ap,...opr" = f n2mE)M'- [2m(E-AEf-]

2'

= ol-^''' 
emE)r- l, -f, - g)"".]

3n! \-'---l L' t' E) 
J2'

By the definition of exponentiar tunction"f, -+)t"" = 
,-H\ E/

Since

(l -x)"= I -nx.n(}lD'.t - n(n-{n-2) x3+-

=l-nx *n'-'' tl'--'' - whennissrfi
2lx' - lt *'*--:..- when n is sufficiently large

=e*

... Jdpr...dprn = #o^et'* tr -e-hz.aE/El

2'
For a macroscopic system 3n s lOp and for

' 3n 
aE>>E.

2

The exponential term in thebracket vanishes. Hence

Idp,...dpr" = {12^e)*
,n!
2

Substituting this in equation (2.2),we get the volume in ttre 6n dimensional phase space.

*3nt2
Af =Yn'n;= (2mE)toz

Jtrr

2'
In classical statistical mechanics, the entropy oof a s]rstem in statistical equilibrium is defined as



| -r^,, . .lo =lo&Ar =tos;lV" '\;<Zner"" 
IIT' J

= n tos lu o''' (znE)'''( ?)"''l . +\-----l \rnl ) 2

=n,os 
["(+)"'[*)"'] 

.+ - -. - (24)

[By making use of the Stirling's approximation to evaluate the factorial

log.n! : logn-n, with e = 2.7182 as the base of natural logarithm']

As the entropy should not depend upon the units of hyper volume AI, to make it dimensionless we divide

it by h3n. 
tS) 

repr€sents the number of states accessible to the ensemble. lntroducing h3n (where h is

plank's constant) as the limit of volume in the phase space.

. r-lo = ros 
[[fr,,

I n(@\'''(Y\''' l
o =nr"*l-I-l /-!/- I . + ------ (2.s)v "'"ul h3 | 'LJ
This does not satisff the additive properly of the entropy as the volume V appears in the argument of the

logarithm. It is therefore not possible to divide the system into two parts and to write the totat entropy as the

sum ( o 1+ o z). This result will, however, bear, the desired additive propcrty if we introduce n! term, so

that.

^rlrlhill

,(o^\'''ryYE'1"\. 3 / \n/\n/

o=roeI

= t*r"[ 5n"+-
2

,:l

l
h3
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we note that now in the argument of logarithm []l *o [!) **, which are votume per particte and the\n/ \n/
enerry per particle respectively and hence a is now additive.

Wi, now, establish the relations between the thermo dynamical and statistical quantities.

(e) lnternal EnelgSr:

. We can write for statistical temperature. t
| (ao\
_=l_l
t \. dE /u."

a f . (4,m\'''. 3= bt L'"tl#J 
+nbgV-nrogn* } "rt-frosn].# 

1*

= *rTrogE;
@ecause V and n are constants and the derivative of the rest ofthe tenns w.r.t. E'will be zero.)

I 3nl
-=-._c 2 E

3n?Sothat E==.r =:nkT (... e =kT)22

c, *coeE)= *)
_ Q.7)

Which is the familiar result for the internal enetg/ of a perfect gas.

(b) Relation between r and T (thermodynemic temperature):

From equation 2.7 itis obvious that

r = kT _.-- (2.8)

This is the relation between statistical temperature r and thermodynamic ternperature T.

(c) Relation between r and P (thermodynemlc prcssurc):

p _ faol
r lOVJ".,



= #[""*.(#)''' * TrogE- ]rosn+n 
rogv'nrog"] .* (+)

A=# ,n bg V) ('.'The deriratives of all other t€rms should be zqo). I

D a. v=n!; =n a.t'w v
So thaq pV = nr
pV:nkT (... e =kT) ...--.(2.9)

(d) Entropy S (thermodynenrh) of pcrfcct grs:

We knowthatthe relation between S and o is

S=ko

=nkros l(g\'''(rYE)"'l * 1r.
l\.lt'i \nAn/ ) 2

?
Putting E= 

;nkT, 
we get

rr@*')"'fl)l 
* l* -.- (2.r0)s=nklosll'T'i' I llll*** -.-(2'lo)'-L[ h2 / \n/J 2

Which is famous Sackur - Tefode iormula for the entropy of a perfect gas.

The thermal de-Broglie wavelengtlt associated with a molecule may be defrned as

l, = h / average thermat momentum of a molecule'

We note that the quantity (2nmkT)rn has the character of an avtrage thermal momentum of a moleoule,

, then

{_ h

(2nnkT)ttz

putting this in equation (2.10), we get

l-lv\ r I 5S=nktogll:1. ^l+;nk (2.11)

L\n / rr) 2



Wherp the argument'of logarithm has a ratio of volume per particle f+)," the volume 1,3 associated with\n/
de Broglie wavelength

(e) Chemiclrl Potentirl, p, ofa perfect gasl

We knowthat

-t'-rq)r \&r /e.u

=*["*(*)-"bsr] .* (;'')

= *tn log V-n logn* n log lu' I *i

=logV- I -logn-log 
^t 

* 
1

Puuing P = n 
fromrelation(c)-t V

p I ol,'l I:=logl-l-:t Lr ) z

p= a(logpl,'-togr- ];2'

= r (log p +.logl.3 -t"g, - :) 
I

t3
=rlogp+rlogt -3r-c 2



E Mi@

-r logp + {t )r '8.12)

Where (r ) is a furrction of temperature alone

f3c
.'. (r)= rtoe ; - T.

2J Gibbs Prredor:

Previously we defined the enfiopy of a system in statistical equilibrium as

o=lnAf

after eraluating the Af , the exprcssion for the entropy of a syrtem is written as

o = n ngfv ( @\''' (Y)"'l * 1""'-"1 [3) [n/ )2
The above equation runs into two main difticuhies

(l) The entopy o should not depend upon the unis of hyper volume AF (since ar has the dimensions of

disturce x momenturn)

(2) Entopy o is not additive because the volume V (not V/n)

occurs in the argument of logarithm. This prevents us from dividing the system into two parb and

writingo=cr1 t62

Of the above two difficulties, the first difEculty is easily rcmoved by dividing AI by h3n. Thereforc

-Sr"^ents the number of states accessible to the ensemble.
n*, 

,oon6 difficulty is not easily removed. In fact, it leads to the famous Gibb's paradox

(apparently setf contadictory t€rm having ttre truth). After dividing AF by h3n' the expression for

entnopy becomes

o=n,og["t*X+)"'] .+

=n,og 
["(*)"'] 

+n bg [#)," . ?

= n rog 

["(*1"] 
. ? ['*(#).']



= n ros [u(,g)"''l * r 6o e.t3)
L \n/ J

(A) Mixfng of Two Eifferent ldsl Gases:

The mixing oftrvo different gases is an irreversible process. It is therefore attended by an in-crease

of the enfiopy. Consider two different ideal gases (nr, vr, T) and (nz,vz,T), Fig 2.1 They are

allowed to mix by removing the partition revenibly'

tlr Vr I nz vz

TIT
Fig 2.1 Mixing of two geses

It can be rcg3rded as the ocpansion of each of the gases to the volume v = v1 + v2' The temperature'

F
and thcrefore a, renrains unchanged for each gas'

n

From equdon 2.13, the change in ensopy is given by

Ao=c12-(o1+o2) 
a

=(nr ln v + n2 ln v)- (nr In v1 + n2 In v2)

= ",'"[i) . - .[i]s -- (2.rs)

This gives the entnopy of mixing for trro different ideat gases is in agreement with experiments' For

I
tfrc case n1.= tt2 = il atrd vl = v2 = 

;u, 
rre get Ao : 2nln2'



(B) Mixing of one ldeal Gas with the same Ideal gas:

Suppose the two gases are the same. Then the removat of the partition should not affect the

distribution of systems over the accessible states. The final entopy ought to be the same with, or
without the partition,

Ao = os2 - (or + oz):0 ------- (2.16)

This result is in agreement with the thermodynamics of a reversible process and also with
experiments, but contradicts (2.13, 2.15). The derivation of (2.13,2.15) das not depend on the
identity of molecules and so would grve the same increase in entropy (2.15) even in this case. ln ,

particular, for the cos€ tr1 = o2 = D ?r' vrc V1 = ,, : 
2, 

we get an unobServed and therefOre

-unaccountable increase of entropy by 2n In2 when a partition is simply removed from a box
containing the same gas throughout. This is the Gibbs paradox.

This Gibbs paradox implies that the entropy of a given gas depends on the history of the gas. For
example if we imagine the present state of the gas to be achieved just by slowly removing one by
one a large number of their partitions, then the final entropy can have any value one desiies. This is
certainly not tenable.

Resolution of the Paradox:

In the case(A), the removal of partition leads to the diffi.rsion of the molecutes through out the

whole volume v (twice the volume if v,: u, =*). There is a random mixing of the different
z

molecules and so an increase of disorder. This is an ineversible process qnd the increase of enx.opy
(2.15) makes sense.

We can imagine.the mixing to be a process in which the position of some of the molecules of one
gas are interchanged with those of the other gas. Each such exchange crcates a new state.
Therefore, the number of accessible states increases or equivalently the enropy increases.

on the other hand, in the case(B), any such interchange of molecules is always an interchange
between identical molecules. Therefore, no new state is crpdted when the partition is removed. It
follows that in this case the application of (2. I 3, 2. I 5) overestimates the number of accessible states
because classicatly we have taken all the molecules, even of the same gas, as distinguishable.

The way out of the paradox is to regard all the identical molecules in the case (B) to be
indistinguishable. If there are n molecules, then n! possible permutations among themsetves do not
lead to physically distinct situations. There is just one way of ananging them. Therefore, our
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estimation of number of accessible states, or equivalently of Af, is too large by a factor of n! we

should replace AI. by AI/n! @olEmann counting), so that (2.13) becomes.

"='"(#) :'.ts) -hn

=hfg)-(nlnn-n)
\h- /

="'[(+)(:)"'] rnoo "-"" (2'\.)

3. 4nm. 56o=i'n zrf 
*,

use of(2.12) gives the conect result (2.16) for the case B and reproduces the result (2.15) for the

case (A). Thus the Gibbs paradox is resolved because of the appearance of the extra terms - n ln n'

It makes the entopy properly additive, as now I, .th., than V, appears in the argument of the

logarithm.

As indistinguishability of identical particles is assumed in quantum mechanics, the Gibbs

paradox will not occur if af(E) is calculated in quantum mechanics.

Summary:

The ensemble in which systems have same enerry, no of particles and volume is called micro

canonical ensemble. In this ensemble ttre density disfiibution fuhction p for a closed isolated

thermodynamically system is a function of enerry and it remains constant in a particular energy

shell in tlrc phase space and it is zero outside ttre region ofthe shell.

, The entrop;| of a system in statistical equilibrium should not depend upon the units of hyper

volume Af in order to make it as a dimensional less quantity, we must divide Af by h3n' Therefore

tf niu". the no. of accessible states to ensemble. Further, it is not possible to under stand

h'n -
AI-

classically why we must divide ft W n! in order to prove that entropy is an additive quantity'

The reason is inherently qrnntum mechanical, we know that quantum mechanically' atoms or

molecules are inherentiy indistinguishable in the sense that a state of the gas or system is described

by n - particle wave function, which is either symmetric or antisymmetric with respect to



interchange of any two particles. A permutation of the particles can at most change the wave
function by sign and it does not produces a new state of the system. Therefore from this fact it
seems re.tsonable that the f space volume element dq dp (dI') corresponds to not one but only

df / n! states of the system. Hence we should oiuio. [r{l uy nr. This rute of counting is known
\h'' .,

as "correct Boltzmann counting". Therefore, in classical statistical mechanics we do not have
consistent way in which we can regard the particles as indistinguishable. In all classical
considerations except counting of the states we must continue to regard the particles in a gas as

distinguishable. Therefore Gibbs paradox should be resolved quantum mechanically in which we
can regard the particles as indistinguishable.

Key Terminologr:

Microcanonical ensemble: Microcanonical ensemble is a collection of essentially independent assemblies
having same enerry, same number of particles and same volume, in which the density function is constant
in the particular energy shell in the phase space. and out side this region, it is zero.

Isolated svstem: The system whose enerry remains constant is called an isolated system.
Ideal sas: A gas in which particles move freely and independently with out having any interaction between
thgm.

Self - assessment questions:

l' Derive an expression for entropy of classical ideal gas on the basis of microcanonical ensemble.
2. Establish the relation between the statistical and thermodynamical parameters.

3. what do you mean by Gibb's paradox? Explain how it can be resorved.

Iieference:

l. Statistical Mechanics by Cupta & Kumar, K Nath & Co.

2. Statistical Mechanics by Kerson Huang, Wiley Eastem Ltd.

3. statisticril Mechanics by M.Eisner and B.K.Agarwal, wiley Eastem Ltd.,
4. Statistical Mechanics :Theory and Applications by s.K. sinha, Tata Mccraw Hill co, Ltd.,



Statistical Mechanics Part

UNIT III
Lesson 3

CANONICAL ENSEMBLE

Objectives:

l. To introducethe concept of distribution function and partition functions.

2. To explain the enerry fluctuations in the canonical ensemble

3. To establish the equivalence between the canonical and micro canonical ensembles.

Structure:

3.1 Canonical Ensemble

3.2 Energy Fluctuations in the Canonical Ensemble

3.1 Canonical Ensemble:

In the first chapter, we studied the microcanonical ensemble in which the macrostate of the

systems is defined by the fixed number of particles N, fixed volume V, and fixed energy E'

However for most physical systems the conbept of fixed energy does not appear satisfactory as the

total enerry E of a system is hardly ever measured. It is convenient to keep a fixed temperature T

of the system in place of a fixed energy E. Forthis purpose the system is placed in contact with an

appropriate,heat reservoir (or thermostat). Now, an infinitely large number of mental copies of a

given system in thermal coirtact with a heat reservoir form an ensemble in which the macrostate of

the system is defined by the fixed parameters T, V, N. Such an ensemble is called a canonical

ensemble. On the other hand, the microcanonical ensemble describes the systems, which are

perfectly isolated.

Thereford in a canonical ensemble, the energy E of a system is necessarily variable. However

the system in contact with the heat reservoir forms a composite'system, whose energy is fixed'

Such a cc.inposite system is described by the microcanonical ensemble.

We wish to consider the question, "what ensemble is appropriate for the description of a system

not in isolation, but in thermal equilibrium with a large system?" To answer it we must find the

probability that the system has enerry E, because this probability is proportional to the density in f

- space for the ensemble we want.
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Consider'an isolated composite system made up of two sub systems whose Hamiltonians are

respectively Hr (pr, Qr) and Ih (pz, q2), with number of particles Nr and N2 respectively. We

assume that Nz ; Nr buf that both Nl and Nz are macroscopically large. We are interested in

system I only. Consider a micro-canonical ensemble of the composite system with tobl energy

between E and E + 26. 
"The 

energies E1 and E2 of the sub systems accordingly can have any values

satisffing.

E. (8, + Ez) < E + 26 _-___ (3.1)

Although this includes a ftlnge of values of E1, E2, the analysis of micro canonical ensemble shows

that only one set of values, namely E, , E, , is important. We assume that Ez >> Er . Let f2 (82) be

the volume occupies by system 2 in its own f - space. The probability of finding system I in a

state within dpr dqr of (pt, q1), regardless of the state of system 2, is proportional to dpr dqr fz (Ez),

where E2 = E - 81. Therefore up to a proportionality constant the density in the f - space for
system I is

p( pr, qr) a fz( E - Er)

since only the values near E1 = Er are expected to be important, and Er <<E, We may perform the

expansion.

k log f2( g - Er) - Sz( E - Er) = SzGz) (3.2(a)

Since Er <<E, Ez approaching E, expand Sz(Ez) in the above equation in Taylor's form above E2 =
E, Therefore

k log 12 G - Er) : Sz(Ez) = Sz(E) r (Ez - q [^{t'l')' \. oE, )u.="

k log 12( B -.E,) : sz(E) - t, T#J' + ......

klogf2(6-Er)=Sz(Ez) - + ...... r qla=+lI \ aE .T)

k log 12( B - Er) - S, (E) - + ------ (3.3)

Where T is the temperature of the larger subsystem. Hence
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I

l-r 'l / n'.\
rz(E-Er)oexn [;s,e)j 

*ol-frJ ----- (3.4)

The first factor is independent of Er and is thus a constant as far as the small sub system is

.concerned. Owing to (3.2) and the fact that Er = Hr (pr, qr), we may take.the ensemble density for

the small sub system to be

p( p, q) = ._H(p,e/kr _-___ (3.5)

Where the subscript I labeling the subsystem has been omitted, since we may now forget about the

,larger subsystem, apart from the information that its temperature is T. The larger subsystem in fact

behaves like a heat rcservoir in thermodynamics. The ensemble defined by (3.5), appfopriate for a

system whose rcrnperature is determined through contact with a heat reservoir, is called the

canonical ensemble'.

The volume in f- space occupied by the canonical ensemble is called the partition function:

,r"pdiiq 
._eH(p,q) __-__ (3.6)aNry,T)= Jffie,,-*,".

Where F = l/kT, and where we have introduced a constant h, which has dimension of momentum x

distance, in order to make Qp dimensionless. The factor lN! appears, in accordance with the. rule

of '.correct Boltamann counting." These constanB are of no importance for the equation of state.

Sfictly speaking we should not integrate over the entire f- space in (3.6), because (3.2) requires

thirt p( pr, q') vanishes if Er > E. The justification for ignoring such a restriction is that in the

,integral (3.6) only one value of thelenergy H (R, O contributes to the integral and that this value

will lie inthe range where the approximation (3.4) is valid. We prove this contention in sec 3.2.

The thermoOynuti.t of the system is to be obained from the formula

aN(V, T) - e-PA(v'r) (r.t) 
, ,

Where A (V, T) is the Helmholtz free energy. To justiff this identification we show that

(a) A is an extensive quantity,

(b) A is related to the internal enerry U: <H> and the entropy ' i I

' s = - f+l by the thermodynamic relation
\drlu

A=U-TS



That A is an extensive quantity' follows from (3.6), because if the system is made up of two subsysterns

" 
whose mutual interaction can be neglected, then Qy is a product of two factors. To prove the rclation (b),

we first convert (b) into the following differcntial equation for A:

<H>=A-r r+l -- (3.s)\arl,
To prove (3.8), note the identity from equations 3.6 and 3.7

o-irt dpoqsFiA(ur)-!$,ot = 1 -- (3.9)

Differentiating with respect to p on both sides, we obtain

Ofr*f dpdq s0rA(v'r)-t(rbq)r 
lot,tr-H(p,q).r[#)" ] 

: r 
- {3.e(a)

This is the same as

A(v, r)-u(v, r)-r (#)" :0 since u(#)" =-t (#)u, <H, = u

All other thermodynamic functions may bo found from A (V, T) by the Marwell rehtions in
thermodynamics:

P=- r9{)
\avl,

s=-rqa)
\tr ),

G=AtPV
U = <F[> =A +TS

Therefore all calculations in the canonicalensembles@ffinffiF,O witr the calpulation of
the partition function,(3.6)r.

3.2 ENERGY FLUCTUATIONS IN THECANOT{ICAL ENSE}IILE:
We nouAfrrow that the canonical. enser*le is mathernatically quivalent to tle micro canoniel cnsemble

in the sense that although the canonical ensemble contains systems.of all energies the ovenrhetming

majority offfrem have the same enerry. Todo this we calculate,the mean squar€ fluctrution ofeirrry in the

canonical e$ernble. The average energr is



u-<H>=ffiF (3.r0)

Hence multiplying both sides by sF 
A(v' r)

Jop aq1u - H (p, 91 sFtA(ur)-}{p'dl - 0 *---i- (3.1 l).

Differentiating both sides with rcspect to p, weobtain

Ioo ao 
0U 

"otntutt-{n.e)l 
.r-'ap

J op aqo - H) eptA(y 
r)- ryp, cD [A(v, r) - H(p, t *[#)u I = o

we know rr,u, s|.94) = - r fgA)' \ap ), \il/u
Iaoao 

ou"orntv,D-r{nor 1 \B},_.__ Of_

I ap oq(u - Hl sFtA(v' 
r) - t{n qD 

[o*,t, 
- rrtn, et - r(#)" 

] 
= t

Divide tre above equation ilrroughofi bVJ O dq drrv'o- nrnel

u'1..ffi +(3'r2) '"*[n " t(#)rJ=ru-H)

F4uarion 3.12 can also bd writtenas

g*<(U-H)'>=o 

-- 
(3.13)

ap

<(u-[D,t=- g 

- 

(3.13(a))
ap

[au):fau.1 fg!')
lw )"- [ar)" lap )

weknowgr.l g = I
'kT

+T= I

kp
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dfl
ap kp'

dr ./,r)'+-=_Kl-lAB \KB )

= 
il = -'kr2
ap

t'g) =-t{P(yl :-kr2cv frin."." =f9) I
\ap ), \drlu L ' \arl"J

.'.< (U - H)2t = kT2 Cv

.(U'- ZLJH + H2)t *'kT€ Cu

.(<Ht'* 2<H>H+Ht)t : kT' Cv ('.'U = <H>)

<H>2 -2<H>2 + <H2> = kT2 Cv

Therefore the mean square fluctuation of energr is

< Hb - <H>2 : kr2 cv (3.14)

For a macroscopic system <H> cc N and Cv c N. Henoe (3114) is a normal fluctuation. As N

-) @, almost all systems in the ensemble have the energy <H>, which is the intemal energy.

Therefore the canonical ensemble is equivalent to the micro canonical ensemble.

it is instructive to calculate the fluctuations in another way. We begin by calculating the

partition function in the following manner:

.'./w r\- Idpoqe-n
YN\" r.'' - N!h3N

^ Idpdq e-m Ar sinutffi=ffi-=4,(,,)=No.ofstatesaccessib|etotheensemb|e

Ei is the enerry eigen vdlue of the itr state that lies between E and E+6E.

All these are equally probable and these are characterizedby canonical disribution function g-FE, and all

these states are closely spaced

Therefore

oJv.rl- JdPaqg-a' = j*or@)s-FE
N!h3N o
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we know that S(E) : k log ro@)

(o(E) = es(E)&

...o(E) = eors(E) (...p =* )

l.€
*.i-t dpdqg{x(n'er: JdEeprrs@)-El (3.15)

o

Where 'S' is the entropy defined in the micro canonical ensemble. Since both S and U are

proportional to N, the exponent in the last integrand is enormous. We except that as N -+ m the

integral receives contribution only from the neighborhood of the maximum of the integrand.

The manimum of the integrand occurs at E = E, where E satisfies the conditions

rfg) - r (3.16)
\dEl'=c

Ia's)[.#J"=-'o (3'17)

' from the first condition we have.

'fP) =l or g=l 
------(3.r2(a)\dEl"; T AE T

'previouslywedefined*=l (3.170))AJT
by comparing the equations 3.17(a) and (b) we can say that E = U

The first condition implies that E = U, the intemal enerry. Next we note that

f4) =fgl') =-+fg) =-+ (3.rs)
(ap'Jr+ (ar r/r=r T2 [aElE=E T'cu \-

Thus the condition (3.17\ is satisfied if Cv> 0, whibh is ffue for physicttl systems.

In order to evaluate the integral of equation 3.15, let us expand the power of exponent in (3.15)

about E: E in Taylor's form. 
?

trs(E) - EI"= r = [rS(E) - E] + (E - E) f*(rstD- eil
Lotr Je-E
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. (az. .'l

* j e - E)'t#(rser - t)},=, * ---

= rrs(E) - Er + rE - Et tr*- r] . ; cr - ot{rorf* * --

=rrs(E)-Er+ io-rr t{#}* *----

By neglecting higher order terms;

rrs(E) - Et n= 6 ^, [rs@) - E] + ir, -nrt[- +)
-[rs@)-E]- icr-t'+

i

=FS(u)-ut-fru G-W+- (3.1e)(sinceE=u)

Hence

OjOl dp dq s en(nd 
^, "Ftrs-ury iO,"*-'''*t"" ----

Showing that in the canonical ensemble the dishibution in
';

center€d about thevalue E = U with a width equal to

AE=rftr\
Since UcN and Cyc N, AEru is negligibly small as N-+ o for macroscopic system. As N -+

o the Gaussian distibution approaches a 6 function: Finally, let us perform dre integral in

(3.20). It is elementary

(3.20)

enerry is a Gaussian disribution

ior.*'utrkrcv = jd"r*',r.t"" 
^,ja* "'x2t2krzcv 

= JzrifrC
0-u<

Therefore

ffit dP dq s'FH(n o 
^' 

ePGs -tr)

we knowthat partition function

(3.22)
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Qr(V, T) nv sF(N-trt

But according to th€nnodynamios of the system,.we have

e{A(v,r)^retDCN-u) Jffi
+A(V, T) o FgS - U) + I log lzztr{Cv]

2

A(V, T) {U - TS) -+ bg [2nkr€Cy]zp

I
.'. A^{U-TS)-; kT togCy e.23)

Since Cy a N tftri.rt term is negligible when N-+ o. In that limit we have exactly A = U - TS.

Statement (3.23) shows ftrat the enfiopy as defined in the canonical and micro-canonical

ensemble differs only by terms ofthe order of log N.

We have shown ftat:almost all systems in fre canonical ensemble have the same energy of a

system at the given tempenature T. The reason for tris is easy to see, both mathematically and

physically.

In the canonical ensemble we disfiiburc systems in f- space according to the density

function p(p, q) = exp[-BH(p, q)], which is represented in fig 3.1. The density of points fall off

exponentially as we go away from frre origin of f- space. The distribution in energr is

'obained Uy "counting" the number of points on en€r5/ surfaces. As we go away from the

origtn, the enerry increases and the area of the enerry surface incrcases of the peak is due to the

, - rapidity with which the area of the eners/ suiface incrcases as E increases. For an N - body

ll systcm this area increases like d, where .E c N.



From a physical point of view, b micro-canonical ensemble must be equivalent to a canonical

ensemble, othenvise we would seriorrsly doubt the utilitj' of either. A macroscopic substance has

the extensive prcpery, i.e, any part of the substance has the same thermodynamic property as the

whole substance. If we consider a piece of substance isolated from every thing, it is still true that

any part of the substance must be in equilibrium with the rest; and the rpst selres as a heat reservoir

that defines a temperature for the part on whic[ we focus our attention. Therefore the whole

'subshnce must have a well - defined tempemturcs.

We have seen earlier that in the micro+anonical ensemble it matters little whether we take

the entropy to be k times the logarithm of the density of states at the enerry E, the number of

states with energies between E, E + S, or all the states with enerry below E. In all these cases

we arrive at the same thermodynamic behavior. Now we see that it matters little whether we

specify the energr of the system or the temperature of the system, for specif,ing one fixes the

other, and we find the same thermodynamic behavior in both cases. All these examples

illustrate the insensitivity of thermodynamic rcsults to methods of derivation. The reasons

behind this insensitivity are, in all cases, the facts that

(a) density of states c eE

(b) EcN
(c) N+o
On these facts depends the vatidity of satistical mechanics

Summary:

We know that is the micro canonical the macro State of the systems is defined by the frxed

number of particles N, fixed volume V and fixid enerry E. However for most physical

systems, the concept of fixed enerry does not appear satisfactory as the total enerry E of a

system is hardly ever measured. Therefore, it is convenient to keep a fixed temperature T of the

system in place of a fixed enerry E. For this purpose, the system is placed is contact with an

appropriate heat reservoir (or thennostat). Now, an infinitely large no of mental copies of a

given system in thermal contact with a heat reservoir, form an ensemble in which the

macrostate of the system is defined by fixed parameters T, V, and N. such an ensemble is

called a canonical ensemble. The volume in f- space occupied by the canonical distribution
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I function, (C5 is called partition function Q.r(v, T). Since the partition function is the

"'idimensionless quantity the volume in F-space is divided by h'n (since h3N has also vblume

AT.
dimension). Further with regard to the corrnting of the starcs ft should be divided by N! in

',i . accordance with.the nde of ltconcct , Boltznanrt cor&ing". In a canonical ensemble all

' thermodyiramic functions may be obtained from helmholtz free energy A(v, T) by using the

Maxwell's relations in thermodynamics.

For a macroscopic system. U or <ll>cr N'and Cv a N. .The mean square fluctuation in

: energy is normal and as N+o, all most all systems in the sniemble have the same'energy <H>

. which is the intemal Gnerry. Therefore, the canonical ensenfble is equivalent to the

,' microcanonical ensembli. We studied the enerry fluctuation by calculating the partition

function and here also we have seen that'almost all ttc systems in the canonical ensemble have

the same enerry called intemal eners/ at a'given t€mperature T.

Key terminolory:

l.Thermostat: It is an instrument maintaining a constant temperature by the use of a device

. that cuts off the supply of heat when the required temperatu€ is exceeded and automatically

restor€s the supply when the temperatu€ falls below ftat required.

2. Macroscope: Denoting large in confrast to micro - small

3. Mean square fluctuations: In course of time the quantity H varies, fluctuating above its

mean value <H>. Since the deviation H - <H> is alrcmately positive and negative the average

absolute function <AH> = <fl - <H>> is zerc and is not suitable. Hence we prefer to use the

mean square fluctuation defined by :
.( ADb or <U - H)L : <H2> - <H>2.

This quantity is called the ,dispersion of the physical quantity H. It is defined by the.

difference between the mean squarc of the quantity and the square of its mean.
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Self - asscasment querdoH;

l. Obtain an expression for onsemblc dcrrsity by focusing your attention on a small sub system

which is in thermal curcrct widr the larger sub qrstcm.

2. Define the partition function Q(V,T) indre canonknl cnsemblc and explain its

significance.

3. Discuss the eneqy flttctlcions in trc canonical ensomble.

4. Establish tlrc cqgivalence bctrrcen the canonical grd microcanonical cnsernbles by

calculating the partitiq fuircdon.

Reference:

l. Staristical Mechanics by Gtryta & Klmlr, K l{ath & Co.

2. Statistical Mechgnics by Kenon Htnn& Wilcy Ea$ent Ld.

3. Satistical Mechanhs by M; Eisn€r ard B.K, Apnval, Wiley Eastem Ltd.,

4. Statistical Mechanics: Theory ed Applbaliolrs Dy S.K. Sinht, Tatr ldcGnw Hill Cq Ltd.,



Strtirthd Mcchenics Part

UNIT -III
LeSSOn 4

GRAI\D CAITONICAL ENSEMBLE
ObJcctlvcs: To

l. explain the grand canonical ensemble in detail

2. discuss the density fluctuations in the grand canonicat ensemble

3. establish the equivalence betrveen the grand canonical and canonical ensemble

Structure:

4.1 Grand canonical ersemble

42 Densif fluctuations in the grand canonical ensemble

43 Equivalence of the canonical ensernble and the grand canonical ensemble

4T GRAND CANOMCAL ENSEMBLE:

Earlier we studied the canonical ensemble in which the number of particles of the system is fixed, but the

enerry E is variable. However, there are number of physical as well as chemical systems, which are either

exchanging particles with other systems or generating an unlimited number of particles of a definite type.

For example, electomagnetic radiation in a container may be treated as a gas of photons, the number of

particles of which is not definite, since photons are emitted and absorbed continuously by the walls of

container. The system in which the number of particles N ad enerry E vary is called an open system. We

rnay consi&r the system immersed in a heat rcservoir with which it may exchange both energr and particles.

A lqgp nrmrber of mental copies of the given system in thermal contact with a heat reservoir form an

ersemble, which is called a grand canonical ensemble. In this case, the distribution function depends not

only on thc onergr of the quantum state but also on the number N of the particles in the system.

Tlrerefore in a grand canonical ensernble, both energr E and number N of particles are variable.

However the system in contact with the rpservoir forms a composite system whose enerry and number of

particles arc fixed. This composite system is descri-bed by the microcanonical ensemble.

Although the canonical and the microcanonical ensemblb yield equivalent results, it may be ar,

conceptually the canonical ensemble corresponds more closely to physical situations. In experimer,. ,

never deal with a completely isolated systems, nor do we ever directly measure the toAl enerry of a
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macroscopic system. We usually deal with systems with a given temperature - a pararneter tftat we can

control in the experiments.

By the same attitude, we would consider it unphysical to specify the number of particles of a macroscopic

system, for, that is never precisely known. All we can find out from experimen8 is the average number of

particles. This is the motivafion for infoducing the grand canonical ensemble, in which the systems can

have any number of particles, with the average number determined by conditions external to the system.

This is analogous to the situation in the canonical ensemble, wher€, the averags eners/ of a system is

determined by the temperature of the heat reservoir with which it is in contact.

Assume that the f - space for the grand canonical ensemble is spanned by all the canonical momenta and

coordinates of systems with 0, l, 2, ..... number of particles. The density function -describing the

distribution of representative points in f - space is denoted by p (p, q, N), which gives the density of points

representing systems with N particles with the momenta and coordinates (p, q). To find p (p, g, N) we

consider the canonical ensemble for a system with N particles, volume V, and temperatur€ T, but we focus

out attention as a small sub volume V1 of the system. The density p (pr, qr, Nr) is pmportional to the

probability that in the sub volume V1 there are N1 particles with the coordinates (pr, gr).

Let Nz = N - Nr and V2: V - Vr. We assume that

Nz>>Nr

Vz >> V'

If there are N1 particles in V1, there must be N2 particles in the rernaining !2. Hence, neglecting

motecular interactions across the surfacd separating Vzand V1, wo must have

p (pr, qr, N1) a e 
-PHor'qr'Nr) 

Jdp, oq2e-pHoior'*r) ----- (4.1)
v2

Where the integral in equation (4.1) enends over all p2, but only over such vatues of q2 as to keep the N2

particles always'in the volume V2. The Hamiltonians H(p1, gr, Nr) and H(p2, q2, Nt have the same

functional form but refer respectively to N1 particles and N2 particles. We arbitrarily choose the

proportionality constant in e,quation (4.1) so as to gi"ye

s-ftr(Pr,er.Nr ) 
Jdp, 

dq re-m@:,Qz,Nz 
)

v2N!
P (Pr,9r, *t) = 

NJl.,lJ
IOO 

OO s-At(r'*N)
"--- (4.2)

Multiply both numerator and denominator of equation(4.2) by h3N'13N



,-Frtlr,e',*,l [a'^"''o''n"dprdqrh3N,h3NN! " J,-
p (pr, gr, N,) = 

\nl-r! 
(4.2(o)

.v

Hence, equalion (.2(a)) can also be written as

P(Pr,er,*,,= ffi# ## -- (4.3)

fidPdq s-m(o'o)
Where eN (V, T) is the partition function defined as-frfr- in the canonical ensemble (equation

3.6)

Using equation (3.7) we can write

'Q*, (v, T) 
- g-ltA(Nz,vz,r)-A(N,v,r) = g-llA(N-r.rr,v-vr,r)-A(N,v,r)l *--- (4.5)

Qn (V' T)

where A(N,V,T) is the Helmholtz free eners/. Since N>>Nr and V>>Vr.

We may use the approximation

A(N-Nr, V -Vr, T) -A (N, V, T) - -Nr F + Vr P 
--- 

(4.6)

Where p and p are respectivrily the chemical potential and the pressure of the part of the system external to

the small volumeVr:

u = [aA(T,iv,D'l ---- 
(4.7)r* L aN, J",=*

,=_faAqiy,,r)'l __ (4.8)- L oY, Ju,=u

we intoduce the fugacitY, defined bY

2= s0v .--- (4.9)

Substituting (a.9) and (4.6) into (4.5), and then substitutirig (a.fl into (4.3) we obtain

.7N
p(p,9,D= N;t'" 

e-PPv-PHtP'qr 

- 

(4.10)

Where the subscript I identifing t[e volume under consideration has been omitted because the system

external to the volume can now be forgotFn, apart from the information that it has the temperature T,

pressul€ p, and chemical potential p. We now allow the system extemal to the volume under consideration

to become infinite in size. Then the range of N in (4'10) becomes

\\t
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n<N<o

The thermodynamic functions for the volume under consideration may be found as follows. First of all,

the intemal enerry shall be the ensemble average of H (p, q). Second, the temperatur€, prcssure, and

chemical potential shall be respectively equal to T,P, tr. To show that this is a correct recipe, it suffices to '

remind ourselves that thermodynamics has been derived from the canonical ensemble. It is an elementary

thermodynamic exercise to show that if a system is in equilibrium any part of the system must have the some

T, p, p as any other part; but this is the desired result.

To obain a convenient formal recipe for finding all the thermodynamic functions we define the "grand

partition" function as follows:

6

Z(z,Y,T\= ).2'' QN(V, T) ------- (4.1l)
N=0

Which in principle can be calculated from a knowledge of the Hamiltonian. Integrating both sides of (4.10)

overall (p, q) for a given N, and then summing N from 0 to o, we find that

iir{o,o,N)dpdq = s-frv ir- JoP,ll$^
N=o ffi N!h'"
g, o

I lp(p, q, N)dpdq = s- rov I r * Q * ry, D = e- Fv Z(z,Y,T) --.---(4. I I (a))
N=0 N=0

BPV: togZ(z,Y,T) pince ifp(p,q,N)dpdq: ll
N=0

PV
-= =logZ(z,V,T) ------- (4.12)
r. I

Thus the grand partition function directly gives the pressure as a function of z, V and T. The averagB

number N of particles in the volume V is by definition the ensemble average

I N'r*'e*,(v,T)
N: N=o A: zilog Z(2,V, T) *----- (4.13)

i'"'q'.'v,r; oz

Nr=o

The equation of state, which is the equation expressing P as a function of N, V, and T, is obtained by

eliminating z between (a.12) and (4.13).

All other thermodynamic functions may be obtained from the intemal eners/:

U = -: logZ(2,V, T) ------ (4.14)
aB
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After eliminating z with the help of (4.13), U becomes a function of N, V, and T. We can then use the

formulae

'c"= rq), \arl"
Ta

s= fdr tudr
A = U-TS

Altematively, all thermodynamic functions may be found from the Helmholtz free energy, which can be

shown to be directly obtainable fiom log Z through the formula

A = NkT logz-kT log 4qY,T) ------ (4.15)

Again it is necessary to eliminate z with the help of (a. I 3) in order to obtain A as a function of N, V, and

T. The justification for (4.15) is given in the fotlowing two sections.

4.2 DENSITY FLUCTUATIONS IN THE GRAND CANONICAL ENSEMBLE:

We begin a study of the equivalence between the grand canonical ensemble and the canonical ensemble.

These two are niviatly equivalent to each other, if almost all systems in the grand canonical ensemble have

the same number of particles. Since all systems have exactly the same volume, this means that the

fluctuation of density is small. We first find the condition under which the fluctuation of density is small.

The probability that a system in the grand canonical ensemble has N' particles is given by

W(N,) = C'QN/V, T) - sFtN"FA(N"v'r) -------- (4.16)

Where A(N, V, T) is the Helmholtz free enerry calculated from the canonical ensemble for N particles in

volume V at temperature T. For the fluctuation of density in the grand canonical ensemble to be small, it is

necessary and sufficient that W(N') be essentially z.ero except in the neighborhood of some points N' = N,

wtrere W(N') should have a sharp maximum. That is, we require that there be a value N for which

froqJ,'r)l =p --_;- (4.t7)L aN J"'-"

,-[a'A(N"V,T)l ,o ____ (4.rs)'-L aN'2 J*=n.

The fint of these conditions requires that the system have the same chemical potential p as the extemal

system. It is identical with the condition (+.13J. To find the meaning of the second condition we first

express 7 in terms of measurable quantities in the following manner.
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Since the Helmholtz fiee enerry is an extensive quantity it may be written in the form.

A0{', V, T) = N' a(v') .1-- (4'19)

Where v'= V/1.{', and where the dependence on the temperature is understood. Then

aA 
=a(v') - u' 

oa(v')

AN' Av'

4:!",4 @.20)aN'2 Nr' av"

oir the other hand the pressure ofthe system is

p(vl = - 
da(v')

Av'

Hence 
dp(v') _ _ar?(y,l @.21)&' 6lt'"

Comparing (4.21) with (4.20) and (4.18) we obtain

,=f$l =-r'-ry 
-@.zz)

' [6N" /",=* N av

Where u = I. thus (a.18) is the same as the requirement
N 

. ".* \ J. r O, lD ulw Jorrrv s urv rvr{etr

ry <o ------ (4.23)

Experimentally the equation of state of a substance is.always such that ry S 0. Hence (4.23)is fulfilled.
Av

We now expand W(N') about N:

rw(N')rN, -x = w (N) . Y [*,"^'-^' ]",_, 
. ({# 

[#""^'o' ]",=* 
+ - -'

ry * [,",.- 
^,.0(,-#)].=" + --

=w(N)+(N,-N).F,,N'-er.F(lr-*r* 
(N:lq)'l"^^'^,0'[r-fr)' as.(,-'-r)p[-#)]".".-
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= w(N) * o * (* 
;lo)' [o- 

ro,^'-^,, #],.'. * ---
= w(N) - ry [.^^-o,r.#],, =" 

+-
=w(N)- t*';lo'' **By+-

(...ep(N-A'.=w(N) uo- 
( a'A)

o 
[^'"J.,=*=t'

fl-l
= w(N) | r-rlrtN'-N)' +---- 

|LZJ
By the definition of exponential function and by neglecting the higher order terms the above equation can be

unitten as

...[w(N,Ix,-x rW(N) r-irntl{'-")' ---- (4.24)

This leads to a Gaussian distibution ofN', centered about N, with a width equal to

^"= fu*
ffr* 9- 0 as N + o,if (4.23) is tulfilled.

N
: We may also diiectly calculate the mean square fluctuation ofN' and find that

I{N'-N)'w(N') KrNN' =_ __-(4,26).q----- '( aP\
)W(N') v'l -i- |

N.dr \ Av )
AD

We have seen that if + < 0 then almost all systems in the grand canonictil ensemble have the same
Av

number of particles N. Then the grand canonical ensemble is trivially equivalent to the canonical ensemble

_ (4.2s)

forN particles. We must then have

Z(qY,D " #Qr,ry, T) 

- 

(4.27)

"4

v2 gaY tavy



M.Sc. PHYSICS 8 Grand canonical pnsemble

-. from equation 4.27,we obtain -pA(N, V, T) = log4c V, T) - N loe z l
and N =r! u,spqv, D f 

:-- (4'28)

inr
Eliminating z between the two equations of (a.28). yields the Helmhole free enerry, from which all

thermodynamic functions can be obtained. In particular we recover the equation of state in the form (4.12)

by using the formula P = -+ from the canonical ensemble. There is still the question whether there
drl

always exist a z such that the second equation of (4.28) gives any desired Gluc of N. We post pone the

question until the next section, where it is answered in the affirmative.

Since we derive the grand canonical ensemble from the canonical ensemble by focusing our attention

on a volume within the $!stem, the grand canonicat ensemble cannot contain more information than the

canonical ensemble. The gmnd canonical ensemble does, however, make it more convenient for us to

consider density fluctuations. These fluctuations give rise to physically observable effects, eg., the

fluctuaton scattering of light. The formula (4.26) indicates hat near the critical point of a gas, wherc

ap
* = 0, the density fluctuations become abnormally large. This is experimentally bome out by the
6l

phenornenon of critical opalescence.

4.3 EQUIyALENCE OF THE CANONTCAL ENSEMBLE AND THE GRAND

CANONICAL EN$IMBLE:

To complete our irtvestigation of the equivalencc. between the canonical and the grand canonical

ensemble it is necessary to consider values of v for which $ = 0. It will be shown that in such cases
Av

the function W(N) gfi/es in (4.16) will no longer have a sharp maximum: tho equation of state as given

by the recipe in the grand canonical ensemble nevertheless still agees with that given by the recipe in

the canonical ensemble.t In this sense the two ensembles are always equivalent.

Physically the values of 'v' for which $ = 0 comespond to the transition region of a first - order phase
(N

transition. h this region (4.26) leads us to expect that the fluctuations of density in a given volume of the

system will be large. This is also expected physically, for in such a region the system is composed of two or

more phases of different densities. firerefore the nuinber of particleS in any given volume can have a whole

range of values, depending on'the amounts of each phase prcsent. At the critical point of a gas - liquid

system fluctration in density are also expected to be large, because throughout the system molecules are
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spontaneously forming large clusters and breaking up. It is clcar that under these conditions the grand

canonical ensemble must continue to yield th€rmodynamic pedictions that are in agreement with those

obained by the canonical ensemble. Otherwise the validity of ei$cr as a doscripion of matter would be in

doub! for it is a basic experimental fact that we can obtain fie sama thomodynamic information whether we

look at the whole system or at only a sub volume of the qntem

.The 
mattrematical questions that w€ ry to answer are as follows. Suppooe QN (V, T) is given, and we

wish to calculate

g
Z(zv,D= _Ir* QN,(v,T) 

- 

(4.29)
N'=(,

Forgiven values ofa V and T.

(a) For a given value of z is the fotlowing tue for some N

Z (zV,D - Znqr(V, 1) 

- 

(4.30)

(b) Does there always exist a value of z for which N has any giwn positive value?

The answers are obviously no, if Qy(V, T) is any fimetion of N, V, T. We are only interesd, however,

in the answers when QN(V, Q is thc partition function of a physical syslem, Thus we must first make some

assumptions about Qr,r(V, T).

In order to incorporate the salient feahres of a physical sysEm iltb.otrr considerations, any yet keep the

mathematics simple, we assume that we are dealing wi& a systen.

(a) Whose molecules inleract through an intetmolocuhr potentiat that contains a hard - sphere

repulsion of ffnite diameter plus a finite poEnfal of fini4pnge, and

O) WhoseHelmhottrfioeencryhas$e'fonn :

IV
. 

A (N,v) =- i log Qrff) = -i (v) 
-{a.3l)

vl
Where n = i, F = *, and (v)*finirc. The Empe4SrG snatt botf[rBO thrutqlroutour discussions and

N'' KT

will not be displayed unless necessary. The fuirotion (v) b rMfl ttle prcssutl P(v) of the canonical

ensernble by

1v.
(v)= ' ldv'ff(v') (4.32)

vJ
Yg

Where the integration is carried out along an isothenn d 
"1 

is an fftitary corresponding to an

arbifary additive con$ant in the Hdtrholtz ft€e energy. :

Derivation ot(4.32) is as follows:
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We know that A(N,V) = N'a(r/)
olt.

I
a(v') = + A(N,V)

N'

andP(v')=-Oa(v') -- I aA
Av' N' av' 

r!
AAa-l =-N,P(v,)
ov'

Integrating the above equation we get,

v

A(N,V) = -*' it (v') dv' + constant, where v = * --- e.32(a))
oN.

From (4.31), and 4.32(a),*" t *. - ) (v) = - N, i* 1"1 O y' + conshnt (4.32(b))
Po

N' n,

(v)= * l|P(v')au' -lconstant (4.32(c))Vd. V

,f"o- v 1 ,
(")= + l irrr",lov, + ip(v,)d", 1 - $.o**,VLd ; J V

lv.:
(v)= ' lpnlv'1a1vy ..,, ; ..

v J \'.
vs \.

In equation 4.31(c), w introduce vs in the integnl bctween the nngg 0 {nd v suchithat thi integral in the

range between 0 and ve gives an arbiFary additive constant to nulliry the existing constant -f, **o*
(c) We furttrer assume that (v) is such that

AP5 = 
o 

----(43'3)dlt

This immediatety impties *" a;f!"] 
< o 

- 

(4.34),r1)' '!.
\v/

(How that 9= o immediatety impties *" ul!!"] ( 0 is shown betow)av /fy,-,- 
- t-'-;;- --: ,,

l;,/
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v . '-'*': '

A(N,V)=Na(v)=-Vflv)' o " :i'

a(v)= -*q")p

p(v)=-ry=+ f+tpilav av Lp "J

= ![rrnr*"af(n)l ,pt" av J ' .

= t If(v)+n df(v) .o(l/v)l
BL" ' ' O(ttv) Av J

=![n"r-"*#r]
' r T(v)l

P(v)= al rrut -t o ' Ipt" va(l/v)J

aP(v) = aP OQtv) 
: Horc 

g 
. fl) =-+

at - a0^, av ' 'rv'v ar ' \r/ Y2

=-+ lt+{n",-iffi]v' ' F laltlvl
r I artnt - of(v) -f-q'rtp-l=- N Luttr"t-al;o';Ai.FJ

dP(v) . I a2f(v) .nav frt a$lv)' '- r : I'

With these assumptions the gnnd port|t'rgn fitrdott mry bo simplifted in the following manner

z(zv)= i exp tV{ (:, z)l 

- 
1c.3t)

N.0 N

Derivation of this expression is as follow:
6

4qY,T)= ) CQ*(V,T)

= i ,lr* evsv) (... z= {r,ftom o$dhn 4.31 rve hrve Qx(v) = rvr1v;
N{t
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: ) sN 
rosz 

"v 
r(v) ('.' pp : log z)

N=0

= i atut'*z+v(v)l
N=0

6

Z(z,Y\ =l6iv't(v'z)
N=0

Where z is an arbitrary fixed number and

I
0(v, z): (v) + -logz (4.36)

v

Using (4.32) we obtain

llv
0(v, z) : a log z+ ! I dv' PP(v') (4.37)

V Vvo

a26
By (4.34), we have *; S 0, or" A(l/v)'

* . ?*=o 
---(4.3s)ov- v ov t:

We now calculate the grand partition function. For a fixed volume V the partition firnction QHff)

vanishes whenever

N>N.(V)
Where N. (V) is the maximum number of particles that can be accommodatcd in the volume V, such that no

two particles are separated by a distance lcss than the diameter of thc trarU ibtd-re in the inter particte

potential. Therefore Z(cV) is a polynomial of degree N" (V). For large V it is ctear that

N" (V): aV ----- (4.39)

Where a is a constant. Let the largest valw among the terms in this polynomial be exp [VQ"(zI, where

0o(z) = Max[Q(VN, z)] (N: O l, 2,3,......,, 

-(4,40].
Then the following inequality holds:

evc"(z) < z@v)< N"(v) ev6(")

Using (4.39) we obtain

ev4'(') <z@,Y)g nY gvrl'(z)

or 0"(i) sf,bgzlav)<o"(z)ry 
-- 

(4.41)

Therefore
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I

,!J- V togz(a v) = 0.(z) @'a)

This shows that(4.27) isttue.

Let v be a value of v at which 0(v, z) atsumes iS largest possible vilue. Since 0(v, z) is differentiable,

v is determined by the conditions

,/a r\

Iyl =Q 

- 
(4.43)

\ ov /,=;

(t4\ <o ...._ (4.M)
\&'/"=;

By virtue of (4.38) the first condition implies the second. Thereftire i it d.tt*ined by (4.43) alone.

Differentiate equation (4.37) w.r.t. v.,, .-
I lY

O(v,z)-' log z+ ! ldv'PP(v')
V Vvo

aa rY I I
+ = ---; J ovpryv1 + -PP(v) --lagzN v"u v'

(X)*=-+ ion'pxn'j. ipnO -#t*'=o :--- (a'aa(a))

;2
Multiply equation a.M$)throttgh out by -; we get

p

v -r-r I
I ovPry":1 -vP(v)+:losz = ovsp
;-
J du'P1v'1 -v P(v) = -kT l<ry2 --(4.44OD

r"^ -lot I Jav'r{v')-(v-vo)P(v) | -voP(v)=-kTlogz --(a.as)
L;I
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P(v)

Fig 4.1 Typlcd Isothem of r lrblinco lr fic'lnrrlflor
rygion of e first - ordcr pffr fir:llot.

A geometricat representatioir of this condition ir shown in fi3 4.1. The rolume of v is such that the,

difference betrueen the area of ttre rcgion A and that of the 
"gt- 

B is numericrlly equalto -kT log z. The

result is shown in fig 4.2. lt is seen that to evcty raluq of I gledci tlnn tre close packing volume, there

conesponds a value of z This answen the qrrcstim (b) in dre afiirmnhrc, manncr.

lsodrcrn

,/

F'ig 42 arl.hrcllor ofT
There 

'is 
a value of z that correspords to att ttre ralues of i tying

denotedbyzo" isgrvenby

Vl

log z.o = pvr P(vr) - I a"'pn (v') .._- (4.46)
?6

in thc intenial vr <i 3 vz. This value

'



nrvrnffi
Summary:

The systun in which both the number of,portbles N srd encrsr E vrrjr-fr catled amspn systpfn. We

may consider the system immersed in a heat reservoir with which it may exchange both energr rind particles.

A large number of menbl copies of the girrcn qnmn h thcnnal contast with heat reservoir form an

ensemble which is called a grand canonical cmsqnblc. Thereforc in a grand canonical ensemble the

distibution function depends,glot, only on dre gnergr of quantum state but also on the number N of the

particles of the system.

The density p in the grand canonical ensenrble is dcriGf by fuu'usingour 
"qqion 

on a sub volume vr of

the system with respect to larger voluinc vz rvhich acts as heat rcscnrcir. To obtained a convenient formal

recipe for finding all the thermodynamic furc'tiorb. We have defircd the grand partition function.

The density of the function in the grand canonical ensemble shows that if 9. O almost all systems in
Av

the grand canonical ensemble haVe the'same nci. of particles N. As a result frre grand banonical ensemble is
.,loi. '' "i.r . , . ,,. :

fivially equivalent to the canonical ensemble. The density fluctuations in the grand canonical ensemble

AP
become abnormally large near the critical pornt bf gas liquid system'wherc * = O. This is experimentally

bome out by the on.nor.*,i "{rrl;{"e"p**
KeyTerminology: 'l' 'r'' ;'i :; ''

l. Onen svstem: The system in which both the number of particles N and enerry E vary is called an

open system.

2. Fusacitv (z): It is defined as epn. The firgacity is anologus to the pressure and it has pressure

dimension.

3. First order phase transltlon: In the P -V diagram, it is seen that a certain mass of liquid is

converted into gas, the total volume of system expands although P and T remain unchanged where

AD

| = O through out the nansition. The tgpl vol.umg of thepy,s.lgm changes as a relative amount of
oll

the substance in the two phases changes because the two phases have different densities. Such a

transition is called first order phase fansitfon.' , i - i;
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Self - assessment quetdons:

t. Define a grand caldffi orrcnftb obuined thc rmiotn ttprmodyrnmic functions in the grand

canonicat ensemble,

2. Discuss the der*ity flrrt$iortN in fhe grmd canonicd enssm&.

3. Prove the equivalencebetween th gfand canonied onsembh and canonical ensemble.
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