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UNIT-1
LESSON —1 - EMERGENCE OF QUANTUM

MECHANICS

Objective

Presentation of brief review of classical concepts and their limitations in understanding the sub-
microscopic realm of atoms and their constituents and new concepts put forward to eliminate the limitations

thus | eading to the consequent emergence of quantum mechanics.
1.1.1 Introduction

Towards the end of nineteenth century classical mechanics, constituting Lagrangian — Hamiltonian
formulation of Newtonian Mechanics, proved to be successful in explaining the motion and interactions of
material objects and most of the related experimenta findings. Maxwell’s Electromagnetic (EM) theory was
equally successful in predicting and analyzing the behaviour of radiant energy. Therefore many scientists
believed that classical mechanics and EM theory together provided physics with elegant and unquestionable
fundamental laws.

In the classical picture, the position and path of a particle are sharply defined whereas the radiation
(EM-field) exists over a region of space. These classical pictures of particles and radiation are mutualy
exclusive. But experiments in the beginning of the twentieth century gave firm evidence for the existence of
the wave-like behaviour of particles (electron diffraction experiments of Davisson and Germer — 1927; G.P.
Thomson-1928) and the particle like behaviour of radiation (Photoel ectric effect-1905; Compton effect-1923).
This dua nature of matter and radiation and allied phenomena of micro-particle world could not be explained
by the classical pictures. This inability of classical physics necessitated a new branch of physics, called

Quantum Mechanics.
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Historical development of any branch of science, more so theoretical physics like Quantum
Mechanics, involves two main stages:
(i) accumulation of experimental facts, discovery of semi-empirical laws,
development of preliminary hypothesis and theories.
(ii)discovery of genera laws which provide a basisfor interpreting alarge

number of phenomena.
1.1.2 Black Body Radiation:

The failure of classical laws was first felt acutely in their inability to account for the experimentally
observed energy distribution (energy density Vs wavelength or frequency) in the continuous spectrum of
black body radiation.

A black body is one, which absorbs all the radiation it receives. The best example is an isothermal
cavity with a small aperture into which radiation from outside is admitted and trapped. In such a container,
radiation bounces around inside the cavity and eventually comes into thermal equilibrium at the temperature
of the cavity. The properties of the black body radiation depend solely on the temperature (T) of the black
body.

For anayzing the radiation (EM waves in the cavity), it was treated as a superposition of normal
modes characteristic of the cavity. In each norma mode, field was assumed to vary with time simple
harmonically and accordingly each mode was considered equivalent to a simple harmonic oscillator. Thusthe
absorption of radiation by the walls of the cavity was treated as equivalent to atransfer of energy to the walls
by the oscillators and the emission was the reverse process.

According to classicd physics, oscillators emit or absorb energy in a continuous fashion. Rayleigh-
Jeans law was rigorously derived on the basis of classical physics. Average energy density p (v) dv of the

black body radiation in the frequency range v and v +dv was derived to be
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where ‘¢’ isthe velocity of light and 'k’ is the Boltzmann constant.

This law agreed with experiment only for small values of v (fig.1.1.1).
Also a serious fundamental difficulty became apparent; there would be according to this formula a
disproportionate amount of energy radiant in very high frequency radiations like x-rays and y-rays - an event
known as the ultraviolet catastrophe. But such a phenomenon has never been observed.

In an effort to remove these difficulties, Planck (1900) hits upon aformula

p(v)dv = ( dov (1.1.2)

where h = 6,626 x 10 Jsis called the Planck’ s constant.

S.N.Bose (1924) derived Planck’s equation using a statistical approach based entirely on the idea that
radiation is made up of tiny particles (quanta or photons). It derives the black body radiation entirely in
guantum terms without using the idea of EM radiation at all. Thus, Bose secured strong mathematical footing

for the quantum theory of light.
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This expression is in agreement with the experiment p(v)dv

for al frequencies. But when he developed a theoretical Planck’s law

judtification for such a formula he was forced to make a
startling non-classical assumption that the energy states of an
oscillator must be an integral multiple of the constant h and
frequency v of the radiation it emits. If E represents the
smallest permissible energy change, Planck’'s famous

guantum equation is

E=hv (or) E=nhv (n=123....) N Fig1.1.1

It follows that the oscillator cannot slowly radiate energy as the classical electrodynamics requires, for it
would then be led into states other than the allowed ones. Therefore radiation is not emitted continuously but
in discrete bundles (or) packets of radiant energy equal to hv . These bundles (or) packets of radiant energy
are caled Quanta. The light quantum is given the name Photon by the American physical chemist Gilbert
Lewis in 1926. It is obvious however that, quanta of different frequencies have different sizes (energies).
Planck thought at first that his hypothesis applied only to the radiating object (or oscillator) and possibly to the
emitted radiation in their immediate neighbourhood. However thisinitiated a series of events which changed

our whole concept of interaction of EM radiation with matter.

1.1.3 Photodlectric Effect

Classical physicsreceived another jolt in the explanation of the photoelectric effect.When radiation falls
on certain materials, electrons are emitted. This effect is called photoelectric effect.
If E, istheenergy required to separate an electron from the metal surface, v isthe electron’s velocity after

separation and E is the energy of the absorbed light, then

Rayleigh Jeans law
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% mv:=E - E, (1.1..3)

According to classicad EM theory, E depends on the sgquare of the amplitude (or) intensity of the incident
radiation. Therefore the velocity of the photoelectrons should increase with increasing intensity of incident
radiation. But experiments proved that the intensity increases only the number of photoel ectrons released but
not their velocity. Further for any particular material, there is a minimum frequency of the radiation called the
threshold frequency, below which no photoelectrons are emitted. The existence of the threshold frequency
also could not be explained from classical laws.

In 1905, Einstein proposed a daring simple explanation by further developing the quantization of
energy concept by assuming that
(i) the quantization phenomenon was a property of the radiation itself. (ii) the quantization process applied to
both absorption and emission of the radiation (iii) the energy bundles (or photons) preserve their identity
throughout their life.

Accordingly, each photon carries an amount of energy equal to hv . The equation (T) can be written

% mv>= hv -hv, whereE,=hv, (1.1.4)

His interpretation of the threshold frequency was that a quanta of light below threshold frequency (v, ) does
not have enough energy to remove an electron. The quanta above the frequency (v > v,) possess the
required energy. Intensity increases the number of photons and hence the number of photoel ectrons but not
the energy of the photons and the K.E of photoelectrons. This interpretation is a great success to Quantum

Theory.
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1.1.4 Compton Effect

The explanation of the phenomenon of X-ray scattering, like that of energy distribution of Black Body
Radiation, necessitated the rejection of the classical concept of continuous energy distribution of radiation.
The experimental evidences strongly supported the Quantum ideas of the particle aspects of radiation.

According to classical ideas, when X-rays are incident on a scatterer, the electric vector of the
incident waves accelerates the electrons in the scatterer. According to el ectrodynamics, an accelerated charge
radiates energy. Consequently, the electrons radiate energy due to the forced oscillations under the action of
the incident X-ray beam. Therefore we expect the scattered radiation to have the same wavelength as the
incident radiation (coherent scattering). But according to experimental evidence, the scattered radiation, in
addition to the unmodified incident radiation, consists of intense long wavelength component (incoherent
scattering). This is explained by Compton using Quantum Theory. This incoherent X-rays scattering is
called Compton Effect.

Energy distribution of Black Body Radiation was explained by Planck with a radical postulate that
radiation is emitted in bundles (photons). Photoel ectric effect was explained by Einstein with the extension of
the idea of photon and the assumption that the photon preserves its identity during propagation and interaction
with matter.

Einstein’s mass energy relation (E = mc®) endows the photon (E = hv ) with amassm = hv /c®. The
concept that photons behave as particles through out their life with more concrete particle aspects like
momentum (p =mc = hv/c = h/ L) was put forward by Compton to explain incoherent x-ray scattering
known as Compton effect.

Based on these ideas, Compton derived the equation

M= (1-cosa) (1.15)
m.C

e
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where A\ is the difference between the unmodified incident radiation and modified scattered radiation and o

isthe angle of scattering.

h . . .
When o = 90°, AL = ——. Itiscaled Compton Wavelength and is equal to 0.0242 A. This corresponds to
m,C

the energy of 0.51 MeV.
The theoretical predictions were verified in scattering experiments conducted with carbon and
Molybdenum K, radiation. The results of the Compton Effect provide a good evidence of the particle concept

of photon and also a good check of theory of Relativity.
1.1.5 Photon

It is quite interesting to have a glimpse at the historical development of the concept of a novel idea
‘photon’. The idea of photon, the particle of radiation (light) originates more directly from Albert Einstein’s
work (1905) on the photoelectric work. However many years passed by before establishing the physical
reaity of the photons and they were only given this name in 1926 by Gilbert Lewis.

The primary reason for the delay was the lack of direct and accurate experimental confirmation of
Eingtein'sideas. In 1905, the experimental data of photoe ectric effect, on which Einstein had based his idea
was not sufficiently accurate to exclude the possibility of other theoretical explanations of photoelectric effect
and there was no other evidence in favour of Einstein’sidea. Einstein himself, as late as 1911, expressed that
“l insist on the provisional nature of this concept which does not seem reconcilable with the experimentally
verified consequences of the wave theory”.

Raobert Millikan, who provided the accurate experiments needed to prove the correctness of Einstein's
idea was, ironically, motivated by a strong desire to prove them wrong. Finally Einstein's idea was proved
and in Millikan’swords “1 spent ten years of my life testing that 1905
equation of Einstein’s and contrary to all my expectations, | was compelled in 1915 to assert its unambiguous

verifications in spite of its unreasonableness’. After Millikan’s work, momentum associated with quantum of
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light was envisaged. Only in 1923 Arthur Compton’s investigations of Compton Effect asserted that EM
guanta behave exactly like particles, exchanging both energy and momentum in collisions with electrons.
To complete the story of the photon, it is a boson with zero mass and spin 1. It obeys Bose-Einstein

statistics. Every second, nearly about 1000 billion photons of sunlight fall on a pinhead.

1.1.6 Hydrogen Atomic Spectrum

An important development of Quantum Physics started in 1913, when Bohr theoretically derived the

well-known Ritz-Rydberg empirical relation for the wave number

v =R (iz —izj (1.1.6)

m n

where R is the Rydberg constant. For different spectral series ‘m’ takes on different integral values, whereas
for different lineswithin aseries‘n’ takes a different integral values. For examplem=2and n=34,5,.... for
the popular Balmer’s series.

Bohr’ stheory is based on the following postul ates:
1. The eectron of the hydrogen atom moves about the nucleus (the proton) in certain circular orbits
(stationary states) without radiating energy.
2. The alowed stationary states are such that the angular momentum of the electron is equd to the integra
multiple of /2t (Im=nh, n=1,2,3,....).
3. When an electron makes a transition from a state of energy E; to a state of energy E; (where E; > E;)
electromagnetic radiation (photon) of frequency v = (E - Ef)/h is emitted.
In his theory Bohr retained the concept of Rutherford’s nuclear model of the atom with a central heavy proton
and a revolving electron. Classical electrodynamics predicts that the orbital electron should radiate energy
because of its acceleration and slowly spiral into the nucleus. But to account for the stability of the hydrogen
atom, Bohr postulated stationary non-radiating orbits. According to classical physics, the electron should emit
radiation of frequency, which is equal to the orbital frequency of the electron. Thisis not in agreement with

the experiments. To rectify this defect, Bohr formulated his third postulate,v = (E; - E)/h.
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1.1.7 Old Quantum Theory

Planck-Einstein photon theory, Bohr theory and their numerous variations generally go under the
name Old Quantum Theory.

In addition to the spectrum of hydrogen, Bohr’s theory could explain the Stark and Zeeman effects.
A semi-quantitative description of the energy levels of multi-electron atoms was also given. However, adhoc
selection rules forbidding transitions between certain energy levels were required in the explanation of
Zeeman and Stark effects and also the spectra of multi-electron atoms. Though the frequencies of the spectra
lines were explained by the old quantum theory, the calculation of their intensities could not be attempted.
For this purpose an adhoc rule called the Correspondence Principle was to be put forward by Bohr in 1918.
This principle was based on the fact that Bohr’s spectral frequency in the limit of large quantum numbers
asymptotically equals the actua orbital frequency of the electron, which would be radiated according to the
classical eectrodynamics. Based on thisit is postulated that for the states of the atom associated with large
guantum numbers, actual radiation intensity may approach that given by the application of the classica
electrodynamics. There is till another ambiguity in the classical intensity calculation for a transition, for the
intensity computed differed for the two states involved and we don’t know how much contribution of each
state is to be taken. Further, a number of experimental observations like dispersion could not be properly
explained. Besidesthese practical difficulties, there are important conceptua difficulties.

The existence of discrete stationary states was experimentally verified. But as long as the classica
picture of well-defined particle orbits is retained, it remains incomprehensible why certain orbits should be
completely stable and other not allowed to exist a all. This perplexing question was responsible in part for
the ultimate realization that particle states at microscopic

level are not describable in terms of well defined orbits but must be pictured in terms of some kind of waves.
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1.1.8 Wave-particle Duality

Old Quantum Theory visualized radiation as a stream of photons. This theory was successful in
explaining Photoelectric Effect, Compton Effect etc. However it in no way invalidated the old well-tested
wave theory of light, which was very successful in the explanation of the phenomena like interference and
diffraction. Thusradiation is to be sometimes treated as particles and some times as waves. This paradox is
called wave-particle duality.

Based on the symmetry of nature, de Broglie (1925) postulated that micro-particles like electrons
should also have wave properties. This was experimentally confirmed by the electron diffraction experiments
of Davisson-Germer (1927), Kikuchi (1928) and G.P.Thomson (1928). In these experiments, electrons were
diffracted by crystal lattices as waves would be. The wave-particle duality therefore was not something
limited to radiation but appeared to be a more general phenomenon: particles under certain circumstances
behave like waves and radiation (waves) may have certain particle properties.

To understand the diffraction pattern of electrons or photons and at the same time to resolve the wave-
particle duality, the electron (or) photon is to be treated as a particle whereas the laws of the motion in the
micro-world are wavelike in character. The wave here plays the role of probability amplitude in the
probability distribution of the particles. This description leads to an important limitation that no physica
measurements are capable of providing information of unlimited precision about the simultaneous values of
position and momentum of a particle. Thisisthe famous uncertainty principle of Heisenberg: Ax Ap,=h/2.

Uncertainty principle is the heart and soul of Quantum Mechanics and therefore it is worthwhile to
understand the principle through a thought experiment (gedanken experiment). Thought experiment is one,
which is not intended to be carried out as a practical redlity, but it is‘al in mind’. Theideais that by using
our understanding of the laws of Physics, we can construct imaginary experiments and predict their outcomes,

thereby highlighting features of those laws, which may not be obvious at the first sight.
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Heisenberg’' s gamma microscope set up to measure the position of electron is one such experiment. As shown
in the figure-2, a gamma-ray photon (frequency = v and momentum = hv /c) from a source collides with the
electron.

The electron (mass = m) recoils with velocity ‘v’ at an angle “y’ from the initial direction (say x —
direction) and the photon bounces into the microscope (with changed momentum = hov’/ c) at an angle ®.
Accordingly, the momentum along the X-axis (py) transferred to the electron is given as
pe=mv cos y = hv/c—(hv'/c)cos @

The photon may enter the objective of the microscope along path OA or OB. Therefore @ varies from (90 —
0) to (90 + 8) where 0 is the angle between the path of the photon entering the microscope and the axis of the
microscope. Therefore p, can have arange of values indicated below:

hulc- (hv'/c) cos(90-0)<py< hvlc- (hv'/c) cos (90 +6)

= hv lc- (hv'/c) sin@<py< hvlc+ (hv'/c) sin @

Therefore, the possible variation in py, namely Apy, is

Apc = (2hv'/c)sin®@=(2h/L')sin O

This Apy is the uncertainty in the value p,  In the determination of the position of the electron, the resolving
power of the microscope plays an important role.

Resolving power = Ax= L'/ (2 sin 6).

Thisisthe minimum distance, between two pointsin the field of view, which can be distinguished as separate.
Therefore, if Axisless, the accuracy in measurement of position of the electron is more. For this purpose, we
have to use gamma rays of lower wavelength or higher frequency. It is evident that Ax is the uncertainty of
the position of the electron. From the

equations for Ap, and A, it is obvious that as the wavelength of the gamma photon increases, Ax increases
and Apy decreases and vice-versa. The product of the uncertainties

AXAp=[L'/(2sin0)] (2h/A')sin6=h
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From the accurate theoretical derivation, presented in the next lesson, it can be proved that Ax Apy> h/2.
1.1.9 Quantum Mechanics

The mgor difficulty with the old quantum theory was the lack of coherence in the structure of the
principles. Problems were first solved by the classical laws of motion and later quantum conditions were
added, instead of being an integral part of it. For thisreason, the old quantum theory was finally abandoned in
favour of what is known as New Quantum Theory or Quantum Mechanics. In this theory, instead of starting
with classica laws of motion and adding quantum conditions as an after thought, the classical concepts are
abandoned amost entirely. The theory is developed to give as natura consequences of it the quantization,
dual nature, uncertainty principle and other important features of them.

Heisenberg, argued that most of the conceptual difficulties were because the old quantum theory was
built on quantities like electron orbits and quantum jumps which cannot be experimentally observed.
Therefore he felt that the new quantum theory should be built on nothing but observable physical quantities
like frequencies and intensities of spectra lines. With this background, Heisenberg (1925) developed his new
mechanics (Matrix Mechanics) with the help of powerful mathematical tools like Fourier analysis and Matrix
theory. Physicists have hardly acquainted with matrix mechanics before another mechanics (Wave
Mechanics) was formulated by Schrodinger (1926). The essential feature of his theory is the incorporation of
the expression for the deBroglie wavelength into the general classical wave equation. Subsequently, it was
shown that the matrix mechanics and wave mechanics are mathematically equivalent and lead to the same
results. Now, both matrix mechanics and wave mechanics together go under the
more general hame Quantum Mechanics. Dirac developed his own operator techniques, which further

enriched quantum mechanics.
Summary of lesson

The limitations of the laws of classical physics to explain the phenomena of Black Body Radiation,

Photoel ectric Effect, Compton Effect and Hydrogen Atomic Spectrum have been outlined. New concepts like
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Planck’s quantization, Wave-particle Duality and Uncertainty Principle, which emerged to overcome the
limitations, have been explained. The consequent emergence of the new branch of physics, namely Quantum

M echanics has been explained.
Key terminology

Planck’ s quantization — Black body radiation — Compton effect — Compton wavel ength — Quantum —
Photon — Bohr model — Wave-particle duality — Uncertainty principle — Matrix mechanics — Wave mechanics

— Quantum Mechanics.

Self assessment questions

(i) Explaintheterm’s Black body radiation and ultraviolet catastrophe.

(i) What isthe revolutionary idea put forward by Planck to explain Black Body Radiation?

(iii) Compare laws of Black body radiation formulated by Rayleigh-Jeans and Planck.

(iv) Give Einstein’s explanation of Photoelectric effect.

(v) What isthe role of Compton Effect in the formulation of the particle aspect of radiation?

(vi) Explain wave-particle duality.

(vii) What isthe relation between thought experiment of gamma microscope and uncertainty principle?

(viii) Differentiate between classica physics, old quantum theory and quantum mechanics.

REFERENCE BOOKS

1. A Textbook of Quantum Mechanics — Mathews P M and Venkatesan K (Tata Mc Graw Hill Publication
Co. Ltd., N. Delhi)

2. Advanced Quantum Mechanics— Rajput B S (Pragati Prakashan, Meerut)

3. Quantum Mechanics— Chatwal G R and Anand SK (Himalaya Pub. House, Bombay)
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UNIT -1
LESSON - |l - OPERATOR ALGEBRA

Objective

Introduction and explanation of various operators like linear and Hermitian operators which
are useful for the foundation of the basic structure of Quantum Mechanics and their algebra
1.2.1 Introduction

Quantum Mechanics was developed by eminent scientists who had strong foundation in both
physics and mathematics. Modern approach treats quantum mechanics as a new subject with its own
set of postulates. The development of the theory is based on mathematical techniques using
operators. Operator agebra follows the genera laws of commutation, association and distribution
with respect to addition. But multiplication is not necessarily commutative, asiswith matrices. Itis
of interest to understand operators and the related algebra for understanding the Foundations of
Quantum Mechanics, given in the next lesson.
1.2.2 Operators

An operator is a mathematical quantity which operating on any function transforms it into
another. Generally, operators are indicated by symbols with a caret over them as A. If A isan
operator which operates on function ‘f * and converts into another function ‘g’, this process is
represented as

Af=g. (1.2.1)
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Example-1

Some common operators are given below:

A~

() addition operator : A =4+ (i1) differential operator :

W >
11
2le

o>
Ql

(iii) integral operator : C = j dx (iv) square root operator :

(v) multiplication operator : I% = Xx (or) smply I% =X
Accordingly, if wetakef = X 2, we have

d(x?)
dx

(YAf=4+f = 4+ X2 (i) Bf = = 2X

(i) Ct = [ x2dx = x°/3 (iv) Df = VX% = X

(v) Ef =x(X?) = x3
1.2.3Linear Operators

An operator A is said to be linear if it has the following characteristics:

A (fl + fz) = Afl + Afz }

A(cf) = cA(f) (1.2.2)
where c isaconstant and f, f1,f, are arbitrary functions

Conditionsin equation - 2 can collectively be written as

A (cify +Cof ) = cy(Afy) + ca(Af)) (1.2.3)

where ¢, C; are constants and fy, f, are arbitrary functions. This equation implies that a linear
combination of two (or more) functions, say f1 and f,, is converted into some linear combination of A

f]_ and Afz .
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Example-2

. d . ) .

) d_ isalinear operator, since
X

d df df
— (afi+cfy) =ci—2 +c —2
dx (6 +oh2) " dx ® dx

(i) \/_ isanon-linear operator, since

J9+16 isnotequa to +/9 + 416 =3+4 = 7, but equal to V/25=5

1.2.4 Anti-linear Operators

If an operator follows the relation
A (fL+f,) = Afy +Af,
A(cf) = ¢ A(f) } (1.24)
(or) A (cify +Cof2) = cr* (Afy) + co* (Af)) (1.2.5)

where ¢;* and c,* are the complex conjugates of the constants ¢; and ¢y, then A is called an anti-

linear operator.
Complex conjugation operator is an example of the anti-linear operator. If Tis a complex

conjugation operator, then 'IA' (cf) =c* 'IA' f.

1.2.5 Operator Equations

Consider the operators A = and B =x. To understand the result of A B, let it operate

dx
on an arbitrary function f. The order of operations by convention is always from right.

xf = i(xf) = %1‘ +xi =1.f +x£:(1+xi)f
dx dx dx dx dx

ABf =

gl
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:>i xf = (1+xi ) f
adx dx

If the arbitrary function ‘f * is removed from both the sides

d d
—X = (I+x — 1.2.6
o ( o ) (1.2.6)

Equations of this type are called operator equations. The full meaning of the operator equations can
be demonstrated only when they operate on functions.

Example-3

2
Prove the operator equation (i + xj (i - xj = 8—2 - X -1
OX OX OX

Let LHS expression operate on an arbitrary function f. Then

() (e (35

0° 0 0 2 0° OX 0 0 2
=% . Comex L Fr =%y x Lx Sy

o xR et =ty ox T ox b oox
—a_zf_f_xi Xi 2 —if- 2 i - 2

axz 8Xf+ aXf - x f 8)(2 x f-f= axz X -1 f

On removing f on both the sides, we have

1.2.6 Eigenvalues and Eigenfunctions

If an operator, operating on any function, converts it into some function and a multiplicative

constant, then the equation representing the operation is called an eigenvalue equation. For example

~

A@n = an¢n (2.2.7)
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is called an eigenvalue equation. In this equation ¢, are called the eigenfunctions of the operator A
and the corresponding eigenvalues are a,.

Example-4

2

If A = PVl and @n = SINNX, we have
X

82
F(sin nx) =-n?sinnx
X

Here a,=-n’ areeigenvalues corresponding to the eigenfunctions  sin nx

1.2.7 Degener ate eigenvalues and Degr ee of degeneracy

Let us consider an eigenval ue equation
Ay imn = (P+m?+10%) y mn (1.2.8)
where v, m, are the eigenfunctions of the operator A and
a;mn = (I + m* + n) are the corresponding eigen values.

Forthecasewhenl =1, m=1andn=1, v ., isthe egenfunction and
a.;. = (1 + 1+ 1) = 3 is the eigen value. This eigenvalue corresponding to only one distinct
eigenfunction is said to be non-degenerate. Now, let us consider the eigenfunctions v ,11 . W 121
v 112. All these eigenfunctions have the same eigenvalue
Qmn = @211 = Aigi=ay12=(1P+m*+n’) = 6

It means that there are three distinct eigenfunctions v ,., . w1,; and y 1, for one distinct
eigenvalue a |mn = 6. Similarly, in many eigenvalue problems, severa distinct or linearly

independent eigenfunctions may belong to the same eigenvalue. In such cases, the eigenvalueis said



IQuantum Mechanics 1.6 Operator Algebrd

to be degenerate and the number of linearly independent eigenfunctions is the degree of degeneracy.
In the exampl e cited above, the degeneracy isthree.
Note: The eigenfunctions in the set { ¢,} aresaid to be linearly independent, if no relation ¢, o1 + C2

P2 +..... + C,pn exists between them, except the trivial one with

1.2.8 Ortho-normality of Eigenfunctions

Consider a set of eigenfunctions { ¢,}. The eigenfunctions are said to be ortho-gondl, if
| om'®) @nx)dx = 0, (form#n)
They are said to be normalized, if
[ on' ) @n() dx = 1

The set of eigenfunctions are said to be ortho-normal (i.e., both orthogonal and normalized), if

[ om®) onx)dx = 8m (1.2.9)
, M=n

where 0 =
0, m#n

The limits of integration, to be used, shall indicate the region over which the eigen-functions are
expected to be valid.
Example-5

Check the ortho-normality of the eigenfunctions ¢n(x) = B sin (nnx/a),

whereB = v2/aintherangex =0tox = a
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(i) pn(x) are orthogona, if | = J'Oa Om (X) on(X)dx=0
In the present problem | = B? joa sin (mmx/a) sin (nmx/a) dx

= (B%2) J.Oa [cos {(m-n) tx/a} - cos {(m+n) nx/a}] dx

= [(B%/ (m-n)2 x]sin (m-n) nx/a |2 - [(B?/ (m+n)2 x| sin (m+n) nx/a X2 = 0

Hence @n(X) are orthogonal.

(i) @n(X) are normalized, if | = La on(x) en(¥)dx=1

In the present problem, | = (+/2/a)? J: sin (nmx/a) sin (nmx/a) dx

(2/a) joa sni(nnx/a) dx = (1/a) j: [1-cos (2nmx/a)] dx

(1/a) j: dx - (1/a) joa cos (2nmx/a) dx

= (V) [X] 5 - (Va) (&2nm) [sin(2nnx/a)] ;5 = (Va)a - 0 = 1
Hence @n(X) are normalized

The results of (i) and (ii) together prove that { ¢n(X)} are orthonormal.

1.2.9 Commuting Operators

Two operators ,AA and I% are said to be commuting operators,
if AB=BA. By this we mean that ABf=BA f for any arbitrary function f ; the difference

(,AA é - é ,AA) is called the commutator of ,AA and I% A bracket notation is used to denote the

commutator as
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[A,B]=AB-BA (1.2.10)

In this notation, ,AA and é are said to commute with each other if [,AA,IAB] =0

Theorem (1)

If two operators,AA and é commute, they share acommon set of eigenfunctions.
Proof:

Since Aand B commute, A B=BA 0]

Let the operator A has a set of eigenfunctions {@n} with eigenvalues a,

A on= aen (i)

Operating with I% from left on both sides, we have

B Apn = B(an) = & (Bon) (iii)
Since AB = B ,AA the LHS can be written as A B on and therefore equation (iii) becomes
A(B ¢n) = & (Bon) (iv)

This equation indicates that the operator ,AA has an eigenfunction ( I% ¢n ) With the eigenvalue a,. But
according to our assumption (equation ii), /AA has an eigenfunction ¢, with the same eigenvalue a..
If this eigenvalue is non-degenerate é(pn must be equal to @, except for a constant multiple.
Therefore é(pn = constant x ¢,. Indicating the constant by by, we have

Bon= bn(Pn (V)
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This shows that B also possesses the same eigenfunctions { gn}which A also possesses. Hence A

and B, the commuting operators share a common set of eigenfunctions.

Theorem 2

If two operators A and B possess the same set of eigenfunctions, prove that the operators commute.
Pr oof

This theorem, in fact, is the converse of the previous theorem. Let the common set of eigenfunctions
possessed by A and B are on(x) with eigenvalues a, and by, respectively.
Therefore ,AA On= a&O®n (vi)
Bon= buon (vi)
Operating from left on both sides of equation (vii) by ,AA , We have
A(B o) = Albnon) = b A(gn) =bnanon  (vi)
Similarly, operating from left, on both sides of equation (vi) by I% , We have

B(A ¢n)= B(apn) = aB(en) = abnon (ix)
From equations (viii) and (ix), we have

VAN

(AB-BA)gn= (bndn - &bn)on )

RHS of equation (x) is zero, since a, and b, are constants and commute with each other.

“(AB-BA)p.= 0

S

:Aéé,& 0 or [,AA,IAS]:O Hence,&andécommute.
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Theorem 3

Showthat [AB,C] = A[B,C] +[A,C] B

Pr oof
LHS= ABC-CAB
Subtracting and adding the same factor ,AA é é

+ACB-CAB =A(BC-CB)+(AC-CA)B

o>

BC-AC

>

LHS =

[B,C] +[A, C] B =RHS

>

Hence the theorem is proved.

Theorem 4

If ,AA andé are two operators each of which commute with their commutator [,AA, é], prove that

Pr oof:

LHS = [A"B] = [A A™,B] = A[A™,B] +[A,B] A™
= A[A A™B] +[A,B] A" =A{A[A™B] +[A,B] A"} +[A,B] A™
= A2[A™B] + A[A,B] A"+ [A,B] A™

Since ,AA commutes with [ ,AA : I% ],the second term equals

L LHS = A?[A™ B] +2[A,B] A™
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Repeating the process (n-2) times, we have

LHS= A" [A™B] +n[A,B] A™ = A" [A%B] +n A™[A,B]
(since ,AA and hence the powers of ,AA commute with [ ,AA I%] )

using ,AA°= land] 1, é] =0, since 1 commutes with é

o LHS=n A”’l[g,é] = RHS, hence proved.
1.2.10 Hermitian Operators

Hermitian operators are very important in the development of Quantum Mechanics.
Therefore, it is necessary to understand the essential features of this class of operators.

If, for any two arbitrary eigenfunctions ¢m (X) and @n(X),
j om A ondx = j (AT om)" ondx (1.2.12)

then AT is called the adjoint of the operator A. If A = AT, then the operator A is called the self-
adjoint or Hermitian operator. Thus a Hermitian Operator is defined according to the following

equation:

[ on Agnd= [ (Agm) ondx (12.12)

Properties
(i) The eigenfunctions of a Hermitian operator are real.
(i) Any two eigenfunctions which belong to two different eigenvalues of a Hermitian operator are

orthogonal.
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Pr oof:

In the case of operator A, consider two eigenfunctions ¢n and ¢, with eigenvalues a, and a,

respectively.
A om=amn Om (1.2.13)
A on=2an ¢n (1.2.14)

Multiplying equation-14 with @n and equation-13 by @, from left and integrating,

[ om Agndx = a| om endx (1.2.15)

[ o0 Aondx=an] o0 om dx (1.2. 16)

Taking the complex conjugation of equation-16, we have

| (A gm) ondx = an [ om on dx (1.2.17)

Using the Hermitian property of operator A(equation-lz), LHS of equations-15 and 17 are equdl;
hence the RHS must also be equal. Therefore,

| om endx = an [ om oo dx (1.2.18)

If we consider the case n = m, the above equation becomes

an| om omdX = an [ om om dx (1.2.19)

From the above equations, it is obvious that an = an, and hence a, = real. This proves the first
property that the eigenfunctions of a Hermitian Operator are real.

Using an =an and rewriting equation-18, we have

(@—an [ om ondx =0 (1.2. 20)
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For two different eigenvalues, i.e, for (a,—an) # 0, we have
J- (Pm* ¢on dx =0
This is the condition for orthogonality of ¢ and @, and this proves the second property.
Note:
(i) Inthe case of matrix operators, a matrix (M) is said to be Hermitian, if it is equal to its transpose
conjugate (M") : (M) =M.

(i) M is said to be unitary, if MT=M *, whereM *istheinverse of M
(iii)M issaid to be orthogonal, if MT=M ™, where M isthe transpose of M.
Summary of lesson

Various classes of operators like linear, anti-linear, commuting and Hermitian operators have
been introduced. Their properties and algebra have been illustrated with examples. The concepts of
degenerate eigenvalues and degree of degeneracy have been explained. Thus, the basic knowledge
of operators and their algebra, necessary for laying the foundations of Quantum Mechanics, have
been presented with examples and illustrations.
Key terminology Operator — Linear operator — Anti-linear operator — Operator equation —
Eigenvalues — Eigenfunctions — Degeneracy — Orthogonality — Normalisation — Commuting
operators — Commutator — Hermitian operator.
Self assessment questions

(i) Explainlinear and anti-linear operators with examples.

2
(i) Prove the operator equation [i— j (£+xj = 8—2 - X+ 1
oX OX OX
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(ili) Evaluate the commutator [ A B], if A =x and é=-ihdi
X

2
(iv) What are the eigenfunctions and eigenvalues of the operator 88_2 ?
X

(v) What isdegeneracy? Explain with an example.

(vi) Determine the normalisation constant for the eigenfunction
yn(x) = B sin (nntx/a), in the range x =0 to a

(vii) State and prove the properties of a Hermitian operator.

(viii) Provethat [A,BC] =[ A,B] C + B [A, C].

(ix) Showthat [A,[B,C]+[C,[A,B]+[B,[C,A]] =0

Refer ence books

1. A Textbook of Quantum Mechanics — Mathews P M and Venkatesan K (Tata Mc Graw Hill

Publication Co. Ltd., N. Delhi)

2. Quantum Mechanics — Merzbacher E (John Wiley & Sons, New Y ork).

3. Introduction to Quantum Mechanics— Mathews P T (Mc Graw Hill Book Co., New Y ork).
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UNIT -1
LESSON - |1l - FOUNDATIONS OF QUANTUM
MECHANICS
Objective

Formulation of the principles of the basic foundations of quantum mechanics, their interpretation and

explanation.
1.3.1 Introduction

Schrodinger developed a wave equation governing the behaviour of material particles, utilising the
concept of wave nature of matter introduced by de Broglie. Historically, first a simple method of reasoning
was used to arrive at the Schrodinger equation for a free non-relativistic particle and generalise the equation
for a particle subject to forces. Then comprehensive foundation of quantum mechanics was however laid
based on a set of fundamenta postulates. Necessary details of the foundations, along with elegant Dirac’'s

Bra-K et notation, are dealt in this chapter so asto facilitate their application in the succeeding chapters.

1.3.2 Deduction of the Schrodinger Equation

(i) Timedependent equation

For afree particle of mass m, moving in x — direction , with a momentum p, and energy E, is given

E = p?/(2m) (1.3.2)
Based on the de Broglie hypothesis,
wave length (1) of particle of momentum p, isgivenas = h/p

p=h/A=hk and E=hv = ho (13.2)

Propagation constant k = 2/
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From equations .1.3.1 and 1.3. 2, we have

ho = h%%(2m) (1.3.3)
The possible functions to represent such harmonic waves are
cos (kx — wt), sin (kx — wt), or their linear combinations:

Sy (%, t) =a cos (kx — ot) + b sin (kx — ot) (1.3.4)

The common differentia equations for such waves are

2
6_1//:_( /K) 6_1// oy

62
ok L a4 (135)

ox?

The authenticity of these equations can be checked by substituting in equation-1.3.5, the expressions for v (x,
t) from equation-1.3.4.

It is obvious from equation 1.3.2 that w/k = E/p = p/(2m) and therefore the differential equations
in equation-1.3.5, represent particles of a particular momentum p.
However, we need an equation to represent free particles of all momenta. It can be observed that unlike w/k,
the term w/k® isindependent of p, since

w/k?® = h/(2m). With this in view, y (x, t) of equation-1.3.4, suggests a differential equation involving first

2

order time derivative aa_l/t/ and second order space derivative 0 sz . Using equation-1.3.4, we obtain
X
oy .
E = — o [ -asin (kx — ot) + b cos (kx — wt)
62
Y = ¢ [a cos (kx — ot) + b sin (kx — ot) |
X

In the above equations, if b= ai we get the differential equation connecting them asa@_l/t/ -

o’y

(io/k?) v Substituting from equation-1.3.3, w/k® = h/(2m), we have
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oy . o’y
Y e
o UL
2
—ih M=-(hz/2m)a"’—(f’t) (1.3.6)

This is the Schrodinger equation for a free particle in one dimension. A comparisons of 1.3.1 and 1.3.6

suggest that the Schrodinger equation can easily be deduced if we replace the energy E and momentum p in
, I , ., 0 ., O
the equation-1.3.1 with differential operators E — ih 3 and p— - 1ha— .
X

If aforce F, isacting on aparticle, the body possesses potential energy

oV (x,t)
OX

V (X) given according to the relation F, = - . Accordingly, the total energy E of the particle of

mass m, momentum p and potential energy V(x,t) isgiven as

2

E= P 4vx) (13.7)
2m

With the correspondences E — ih % and p— - ihai in equation-1.3.7, we get the
X

following Schrodinger equation for a particle having both K.E and P.E:

2
in QYO 2o a‘g—(;('t) + V) w0 (1.3.8)
X
In 3D, this equation becomes
in 2—": = [h%(@2m)] VA + Vy (13.9)

The Schrodinger time dependent equations (equations 1.3.6, 1.3.8 and 1.3.9) deduced here are based on
merely trial and error methods depending on assumptions based on past experience. Thus, the procedure is

simply heuristic.
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(i) Timeindependent equation
A lucid heuristic procedure to develop the non-relativistic time independent Schrodinger
eguation is to incorporate de Broglie wavelength of the particle in the genera wave equation. The

usual wave equation is

1 0%y (x,t) i O’y (xt) _
v: o ot? ox?

0 (1.3.10)

2mivt

For stationary waves y(x,t) = y(x) e ' = y(x) e

Substituting, this in the above equation, we obtain

2
V%(ZniU)Z W(X)ezmm _ eznmt d dl/)/(gX) _ o
d?w(x) . 4rn’
dzg : Frse (1.3.11)

It is well known that the de Broglie relation for wave length A, of a particle of momentum p is given as A =

h/p. On substituting this value of A in the above equation, we obtain

d?y(X) .\ 4r?p®

7 = w(X) =0 (13.12)

But, p* = 2m (E-v)

d’w(x) 4r°2m(E-V)
+ X) =0
dx? e Y

2 2
N d“y(X) . 8r“m(E-V)
dx? h?

d?y(X) , 2m(E
dx?

-V
- )l//(x) =0 (13.13)

w(X) = 0(or)

Thisisthe time independent one-dimensional Schrodinger equation of aparticle. In 3-D, it can be written as

V2 + (2m/ hA)(E-V) y = 0 (1.3.14)
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However, the foundations of a new subject like Quantum Mechanics must be based firmly on a self-consistent
comprehensive framework. For this purpose, Schrodinger formulated postulates, popularly called

Schrodinger postulates. They encompass the Schrodinger equation also as will be seen in the next section.
1.3.3 Schrodinger's Postulates

The postulates of any theory are a set of fundamenta statements, which cannot be explained in terms
of more fundamental concepts. Therefore, one should not try to understand the postulates. One should rather
believe them and draw conclusions from them. The conclusions are then tested by experiment and if they are
confirmed, the belief in the postulatesisjustified.

The second point, which should be kept in mind, is the ease with which a postulate may be made to
appear reasonable depends on how readily it relates to every day experiences. In quantum mechanics, the
postulates are about atomic and molecular properties and these are in general quite far from everyday
experience. Consequently, the postulates may also in this sense be difficult to understand.

The main point to keep in mind is that the postulates are justified only by their ability to predict and
correlate experimental facts and their general applicability. With this background in mind, we introduce the
basic postulates of quantum mechanics.

1. Any state of a dynamical system of N-particles is described as fully as possible by a function  (qa,

Oz, ----» Oan, t) such that the quantity y * y dq is proportional to the probability that the variables lie

in a volume element dq at a specific time t. The concise form of v (qy, O, -.e-..e Oan, ) 1S W (q,t)
and is generaly called the Wave Function or State Function. It may be either complex or negative but

guarantees real and positive probability.

The following are its important properties

(i) It isfinite and single-valued

(i) The function and itsfirst derivative should be continuous.

(iii) It should have an integrable square.
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2. For every observable physical quantity, there exists a corresponding linear Hermitian Operator. The
classical expression for an observable is first to be written in terms of its cartesian coordinates (),
momenta (p) and time (t).

Then the following operator correspondences for p, g, t are used to get the operator
expressions

Aop =A (qopv popY top) where

A R .. 0 -
qop= q_)q ’ pop= pq: - Ih_ 1 top= t _)t
aq
3. The State Function vy (q, t) satisfies the quation

0
Hop w(q, ) =ih —w(qt
p V(@ O =ih —w(af)

where He, (q,t) isthe Hamiltonian operator of the system.
This equation is called the Schrodinger's time-dependent equation.

4. If for a set of identical systems in a state y, (g, t), the state function is an eigenfunction of the operator
corresponding to an observable, then the successive measurements will give the same value of the

observable.

Accordingly, if Ay, (g, t) = & (g, t), we will get the same result a, if we perform a series of a

AN

measurements of an observable quantity on different members of the identical system set. If H vy,

(0, t) = En v (q, t) and if this is to be consistent with the Schrodinger's time dependent equation

a A
ih —w(at) = Hvy(q,t),
i atl//(Q) v (q, 1)

—iEt/h

then v (q, t) must be of the form y (q, t) =y (q) e where v (q) is the solution of the equation H

v (@ =Ewv(g.

Thisequation is called the Schrodinger's time-independent or Stationary State equation.
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5. If for a set of identical systems in a state y, (q, t), the state function is not equal to the eigenfunction
of the operator corresponding to a physical observable, then the successive measurements will not
give the same value but arange of values for the observable physical quantity. The average of alarge

number of these measurementsis called the expectation value.

Az < Asz VoAV, 44
Jyv,dq
Thisis consistent with the previous postul ate.
1.3.4 Wave function : Interpretation and Properties

I nter pretation

(i) Wavefunction v (q, t) describes asfully as possible the state of a particle (or a system).

(i) w(q,t) of aparticle is ameasure of its presence and we do not expect the particle in the region where
v =0.

(iif) Since y (g, t) can be negative or complex, it cannot directly be a measure of the presence of the particle.
Therefore, |y (g, t)| 2 dt can be interpreted as the probability of finding the particle in the volume
element dt around q. Accordingly, v * v = |y | ?isthe probability density and is denoted as p.

(iv) Sincethe probability of finding a particle anywherein the space is unity,

[pde=ly*y dt = [|y|?ck=1

Whenever thisintegral exists, y issaid to be normalised. If v isnormalised at t = 0, it remains normalised
. . .0
at al times, indicating af pdt=0.
(v) The probability interpretation of v can be made consistent, only if it is possible to define a probability

current density | which together with probability density

p = w*y saisfies
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P, v.i =0 (1.3.15)

ot
as in the case of the conservation of matter in hydro-dynamics, or conservation of charge in electro-
dynamics. In fact, a relation of the form (equation-1.3.15) can easily be deduced from the

Schrodinger’ s wave equation and its complex conjugate

_ 2
in Y G, v (13.16)
ot 2m
* _ 32
in Y 2 G gyt (13.17)
ot 2m

Multiplying equation-1.3.16 from left by y * and equation-1.3.17 fromright by v and subtracting, we get

*
WY L Ve — (Ve )] =0 (13.18)
ot 2mi

Thisis of the form of equation-1.3.15, if weidentify

e

o [y *Vy - (Vy*)y] (1.3.19)
mi

p=y*y ad T =
Properties

For the probability interpretation to hold good, w must have the following properties (or
admissibility conditions):
(i) w should befinite.
(i) w must be single valued.
(iif) yw must be square integrable.

(iv) v and %—W should be continuous functions of g for al g. The continuity of %—W is due to the implicit
q q

assumption that V(q) is a continuous function of g, except perhaps for a certain number of finite

discontinuities.
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1.3.5Dirac’sBra and Ket notation

Any state of adynamical system is described as fully as possible by a wave function or state function
v (g, t) in Schrodinger’s picture. This function can be expressed as a linear combination of a complete ortho-
normal set of basis functions. If the variable takes a continuous range of values, the state function is
continuous. However, if the variable takes discrete values, it is convenient to use matrix notation to represent
the state function and the linear operators, which operate on it.

Therefore, it is desirable to develop a mathematical structure, which contains all these concepts in a
comprehensive unified way. In this formalism, the values of the state function are considered as projections
(or components) of avector y . This vector is generally called the state vector. For two vectors, in alinear
vector space, a scalar product is defined as follows:

() (ya w)=0(1.3) A
(i)(v oW 0)=(V by J* (1.3.20)

(i) (ya ko yptkewe)=Ke(wa, wo)+ke(wa ye)

(ko VotkeVo wa) =k (W, Va) +k* (Ve, wa)
Obviously, the scalar product is linear with reference to post factor and anti-linear with reference to pre-factor.
Unitary linear vector space or simply unitary space is the linear vector space in which scalar product
is defined. Hilbert space is a unitary space that is complete and the language of the Hilbert space suits better
for the formulation of quantum mechanics. To avoid apparent asymmetry and to make the scalar product
symmetrical with respect to post and pre-factors, Dirac proposed a new notation called ‘Braand Ket’ notation.
In this notation, two different vector spaces linear in themselves but related to each other anti-linearly are

conceived. For example, the vector in the post factor in (v 5, ¥ ) iswritten as |y ,) or smply | b); the

vector in the pre-factor iswritten as ( v ,| or simply ( a|. The vector in the post-factor space, denoted by the
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symbol | ), is caled ket, whereas the vector in the pre-factor space, denoted by the symbol ( |iscalled bra

The scalar product in Dirac bra-ket notation is given as follows:
(Wa, wp)=(a,b) =(ba)*
Thisrelation impliesthat |a)* = ( a| and indicates that the ket space and the bra space are not independent of

each other. They are said to be dua to each other.

A few common definitions are given below in Dirac’s bra— ket notation:

() A isaHermitian operatorif (g A|b)= (b|Ala)* (13.21)

(i) Normalisation condition of y is givenas (y |y ) =1 (2.3.22)
If the state of a system at a particular time t is specified by v, (Q,t), it is denoted in bra-ket notation as |a,t

). The expectation value

(AY=ly*A ydu/ly* ydr =( at|Alat)/ (at|at).

For normalised wave function, since{ a,t|a t) = 1, expectation valueis givenas

(A)y=(at|Alat) (1.3.23)

(iii) Unit operator is denoted as

D> la)y(a'l =1 (1.3.24)

A A 1 0
Note Intwo dimensions (X-Y axis system), the unit vectors i and | are often represented as( j and ( j
0 1

1
These can beexpressedasli)z( j and

0

(i] =(1 0). Smilarly, |j)= (Oj and(j| =(0 1). Accordingly,

1
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1 0 10 00 10
|i>(i|+|j><j|=(j(1 O)+(j(0 1)=( j+( j=( j=unitmatrix

This can be expressed more generaly in n —dimensions as

> | a'y(a'| =1whichisacommon relation for unit operator.

Representation

In Dirac’s bra-ket notation, an operator can be represented by a matrix. For example, consider an

ortho-normal set of basis vectors{|a')} in terms of which the operator B isto be represented. Let B operate
on | a') and give another vector |y’ ). This | ') can in turn be expanded as a linear combination of the basis

vectorsja').
~ Bl =)= bjila)
j

where by; are expansion coefficients. Operating from left on both sides with ¢ all,

we have
(al| Bla'y =(al| > bjaly=(a'| a') bj; =by;
i
since(a’| a') = §;;, because of ortho-normality
~bj=(al| B ') (1.3.25)
From the above equation, it is obvious that the operator I% is represented by a square matrix whose e ements
areb,-i.
1.3.6 Expectation value and Equation of motion

Let alarge number of observations be made on the position of a particle having a specified normalised
wave function y, (Q,t) or state vector |g,t ). After each experiment, the particle is so prepared as to have the

same wave function. According, to probability interpretation, we don't get the same result each time.
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Therefore, we have to take the mean or average value of all the observed values. The result, according to

Quantum Mechanics (postulate V) is expected to be | y.*(q,t) >A<q/El (g,t) dt, where ;< is the position operator

and dr is the volume element. Thisis aso called the expectation value of the position variable and is often

denoted as ( ;< ). Likewise, for any physical observable A, the expectation value, for a normalised state

vector, is given by the relation

(A)Y = Tyr@) Ava@ddr,  =(at]|Alat) (1.3.26)

A better insight of a physical quantity can be had, if we study the time rate of change of that quantity.

The physical quantity is represented in its real form, as an average value [ A

A

= ( A ) ]. Accordingly, A= ( A y={(at |A | & t ). Now, the time rate of change in this average

(expectation value) is given by

dA d . 5 . oA [ a
—=—<at|Alat>=|—<at]||Alat>+<at]|—]|at>+<at|A|—|at>
A4 atlAla [at @ at>r<atiPatsr<atl [atl }

(1.3.27)

Using in the above equation the Schrodinger time-dependent equation and its Hermitian adjoint, namely

Hlat>=inllats ad <at|H=—inl<at] (13.28)
ot ot
we have
A at1%Plats+S<at|AH-H Alat> (1.3.29)
dt ot in

Defining (:j—? = % the above equation can be written as
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dA_oA 1 H] (1.3.30)

FRE

This can also be expressed, in the operator form, as

dA & A 1

—=—+—[AH 1.3.31
dt ot h [ ] ( )

If ,AA does not explicitly depend on time, the equation of motion becomes

dA 1 4 »
T :E[A,H] (1.3.32)

1.3.7 Ehrenfest’s Theorem

In Quantum Mechanics, as adready explained, the equation of motion deals with the time rate of
change in the expectation value of the operator ( ,AA ) which represents a physical variable (A).

dA 0A 1.4~
=+ [AH
o ar [AH]

Thisis of the same form as the classical equation of motion of the physical variable (A), in the poisson bracket

form oA :a—A+{A, H}, if we identify the quantum mechanical poisson bracket as —[A H] —>{AH}.

dt ot

This statement that “the expectation values of operator <,AA> obey the same equation of motion in quantum
mechanics as the dynamical variables A in classical mechanics’ goesin literature as the general statement of
Ehrenfest’s theorem. Physically this statement implies that an infinitesimally small quantum wave packet is
well approximated by classical mechanics.

Specifically, the following equations constitute Ehrenfest’ s theorem:

<E)>=m%<;<> (13.33)
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d, 6 » 8\7
el =-( 2 1.3.34
dt< po=-{ OX ) ( )

M) Proofof(ﬁ)zm%(%)

A

Using equation of motion dd—? = %[A Iﬁ|] and observing that H = p%(2m) + V(x) we obtain
[

A A

d (?() —i<[>A(—2+\A/(x)]> = i<[)A( p_2]> since?(and\?(x)commute
ot in 7 2m in ' 2m

AN AN

= @mihy ({[x,p]p + PIX,pl}) = @mih)y*((hp + pih)

= Cmit) (@0 p)) =(Py/m = (py=m S (X)

) d - oV
Proof of — = (2L
(ii) roof o dt< p) <8x>

A
2

A A N N A A /\2
E( p)= _i<[p,—+V(x)] > = (ih)*<[p,V(X)] > since pandp— commute
at ] 2m 2m
1 e O o

= (i <[-1h—,V(X)]> = <{=—,V(X)] >

OX OX

o 0\ roo 0
Letusstudy [— V(X)ly = —V(X)y-V(X)— v

OX OX OX

_ i/\ A i ] A i _ i/\
—(8XV(X))\4/+V(X)ax y V(X)ax y (8XV(X))W

- [g V) = %\%x)
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d » o oV
Rl =(-[L vV = (9
Olt< p) <[8x’ (x)] ) <6x>

1.3.8 Derivation of Uncertainty Principle

When a physical quantity assumes several values with various possihilities, it is usual to use the mean

square deviation as a measure of the width of the probability distribution or the uncertainty in the value of the

quantity. The uncertainty in an observable A, denoted as (AA)? =<y | (A - A |y >

(1.3.35)

where (,AA - A) is the operator corresponding to the deviation of A from its mean value. Let us consider
simultaneous uncertainties in two observables, namely position x and momentum p, in that direction. For this
purpose, let us introduce corresponding operators
G=%-x and B= p,- p, (1.3.36)
where X and f, are the position and momentum operators and X and BX are the average values of the
position and momentum (from alarge number of measurements).
[é.5]= & x)(P-p,) (P p)R-X)=[ %, p, ] =ih (13.37)
Now let us consider a ket |¢ > and the dual bra < ¢ | where
p>=( & +iAB)|y> and <o|=<w|(d + il )" (1.3.38)In which A
isan arbitrary real parameter. Now, the scalar product
<plo>=<y|(a+i2f ) (a+irp )ly>

=<y|(a -2 ) (a+iAp )ly>

=<yl (@*+iAla B 1+22 B )ly>=0 (1339)

since the scalar product of non-zero vector | y > is always greater than or equal to zero.
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From equations 1.3.35 and 1.3.36, it is evident that
<yl @®lv>=<y|(x=X7|y >=(Ax)?

A2 A N
<wl g ly>=<yl(p-—p)" v >=(Ap)’

(A XY+iA (ih)+ 2% (A p )20

= (Ax)?-Lh+ 22 (Ap)? >0 (1.3.40)
Since A is arbitrary, we will investigate for which value of A, the LHS will be minimum. For this LHS should
be differentiated with respect to A and equated to zero.
LA+ (Ap)® = 0 =-h+2L0 (Ap)° =0 (1.3.41)
L=1/[2 (A p)? (1.3.42)

With this value of A, equation — 1.3.40 yields
(AX)? -0®/[2 (Apx)°] +{ 1/ [2 (Apy)?] }* (Ap)* =0
= [(A p) (AX)]*= h*/ 4
(Apy) (Ax) >h /2 (1.3.43))
Thisisthe minimum uncertainty product.
SUMMARY OF LESSON

First a heuristic method of developing Schrodinger’ s equation has been outlined. Then, the postul ates
of Schrodinger have been stated and explained. Probabilistic interpretation of wave function has been
presented along with the admissibility condition of wave function. Dirac’s bra-ket notation has been put
forward and expectation values and their time development have been studied. Ehrenfest’s theorem has been
explained and proved using the equation of motion. Heisenberg's uncertainty principle has been derived

using operator techniques.
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KEY TERMINOLOGY:

Schrodinger equation — Schrodinger postulates — State function — Dirac bra-ket notation —
Ortho-normality — Hermitian Operator — Representation — Expectation values - Equation of Motion —

Ehrenfest’ s theorem — Uncertainty principle.

SELF-ASSESSMENT QUESTIONS

(1) Develop heuristic method formulating Schrodinger’ s time-dependent equation.

(i) Deduce from the classical wave equation, Schrodinger’ s time-independent  equation.
(iii)  State and explain Schrodinger’ s postul ates.

(iv) Explain the interpretation of state function and its admissibility conditions.

(v) What is Dirac’s bra-ket notation? Explain matrix representation of operators.

(vi) Stateand explain Ehrenfest’s theorem. Derive any one of the relations

A d , » d » oV
= - b) — =-(
a(p) mdt<x> )dt<p> <6x>

(vii)  Derive Heisenberg' s uncertainty principle.
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UNIT -1

LESSON - 1V-SOLUTIONSFOR SOME SIMPLE

SYSTEMS

Objective
Application of Schrodinger’s egquation to simple problems of a particle in a one-dimensional infinite

and finite potentia wells, rectangular box and alinear harmonic oscillator.
1.4.1 Introduction

We have learnt already the necessity of Quantum Mechanics and constructed the essential theoretical
foundations. Now our aim is to apply the basic principles of Schrodinger’s equation to solve some simple
problems like (i) particle in an one dimensiona infinite potential well, (ii) particle in a rectangular box, (iii)
particle in an one dimensional finite potential well, and (iv) particle in an one dimensional harmonic potential
well. The examples are quite useful to illustrate the Schrodinger’s technique of analysis of the energy levels
of a particle, which is under the influence of various potentias. It will be evident from the analysis how
smoothly all the results emerge from the quantum mechanical theory without the necessity of any intermediate

adhoc assumptions.
1.4.2 Particlein an infinitely deep potential well

Let us consider the problem of a particle of mass 'm' in a one-dimensional well of width 'a. The
potential isgiven as (Fig.4.1) Vo)

V=0; 0<x<a T T

V=w; esewhere ...(14.2)

The HamiltonianisH = p% / 2m

Figure-1.4.1
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. 2 2
Hamiltonian operator H = fp’/ 2m= L ...(14.2)
2m dx?

Therefore, using Schrodinger’s equation H y=Ey,

d*y(x)
ax?

+k*y(X)=0 ...(14.3)

where k? = 2mE / h®
The solutionis

v (x)=Asinkx + B cos kx ...(1.4.4)

Since the particle is confined to the box, v (0) =y (a) = o,

these conditions yield

Vy (X) = A sin (n 7 x/a) ...(L45)

E,

wheren=1,23--—-andka=nmn
Therefore k? & = n? n? (or) 2mEa®/ h? = n* 7° Fig 1.4.2
Hence E, = n? (h* / 8ma&’)

Normalization of v (x), namely

j [ Asin(nzx/a) ]% dx=1,yiddsA=+2/ a

0
Eigenvalues and eigenfunctions

Energy of the particle in the infinitely deep potential well

E,=n*(h*/8ma’); n=0,12.... ...(1.4.6)
v X)=+2/ asn(nzx/a) ..(14.7)

From the figure-2, depicting eigenfunctions and eigenvalues, it is evident that the number of nodes increases
with increase in energy (eigenvalues) and hence wavelength decreases. This is in accordance with the de

Broglie principle (x=h/p) which implies decrease of wavelength with the increase of momentum (or energy)
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Average value of py

Let us consider the ground state with the energy E; and the state function y;. The average value of p, is
given by

- A J. T dx N
Pz cp 5= PV [y, .(148))
ot -[Wlllfldx

since [y, y,dx=1  duetonormalization
oo d
Using p,=-ih — , wehave

X

nﬂx)iSin (nﬂ'

“Yadx= 0 ..(L49)
dx a

2 A
< px =-1h (_)jogn(
a
Averagevalue of p,, evaluated from that of p,?
Weknow that P2y, = 2ME,y, ...(1.4.10)

Since the state function is an eigenfunctionof )’ theaveragevalueof  p’ is 2mE,

From the average value of p? if we evaluate the average value of py,

we have (p:)l= +J2mE, (1.4.112)

This result is not inconsistent with the result of equation-1.4.8, because in a large number of

observations, half of the results will be positive and other half will be negative leading to the effective value

of zerofor ( [Sx)l

Uncertainty Principle

For the particle in the well, we cannot give the exact position. But we can only say that it isin the

box. That is, the uncertainty in the measurement of the position will be 'a.
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Since we have for the momentum p, = +4/2 m E; the particle will have either p,=+ 2 m E;

o p,=-42ME;

Thisleads to the uncertainty of 2 /2 m E; inthe momentum

S AXAp,=(a)2 m =2 a\/2 m. h?/8mg*=h ...(14.12)

This is the minimum value. In the upper states the value will be nh. This is Heisenberg's uncertainty
principle.

1.4.3 Particlein a Box

Let us consider the problem of a particle of mass ‘M’ in athree dimensional rectangular box of sides

a, b, c. The potential functionV (X, y, ) Thisisrepresented asfollows:

V(X, Y, 2) = 0; (O<x<a; O<y<h;0<z<c) z
V(X, Y, z) = w; elseawhere (1.4.13) C
d
b Y
C
The Hamiltonian of the problemis X
) Fig.1.4.3

2 2
H= px + py + pz
2M 2M  2M

Hamiltonian operator

2 2 2
H :L[_ihij L pl +L[_ih£j
2M OX 2M oy 2M 0z

N 2 2 2 2
= H:_ZhM (;2+§y2+§2J (1.4.14)
X z

Therefore the Schrodinger time-independent (or stationary state equation

H v =E y) becomes
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0%y . 0%y . o’y

+k?%w =0, wherek?®=2ME/h? 1.4.15
ox>  oy* oz° 4 ( )

Standard technique to solve the above eigenvalue equation is separable variable method. For this, we
write y(X,y,z) as the product of three functions independent of each other as follows:
Y(x.y,z) = X(x) Y(y) Z(2) (1.4.16)

Substituting this in equation-(!.4.15), we abtain

dXZ 2 d 2

2 2 2
(d XJYZ+ X(;YZ +XYd Z +k*XYZ=0 (1.4.17)
y Z

Dividing by XY Z, the equation becomes

1 d*z
+ = = k? 1.4.18
Z dz? ( )

d?X 1 d%y
+

1
X dx® Y dy?

Each term on the LHS is independent of other terms and all of them put together are equal to a constant 'Kk’.
Therefore, if one of the variables is changed, keeping the other two invariant, then also the sum must be
constant. Thisistrue only if each term on LHSis aconstant by itself and is independent of the variables.

Therefore, we can rewrite the equation-1.4.18 as follows:

1 d*X 1 d? 1 d?z
1dX e, 14Y 1 d2 (14.19)
X dx Y dy Z dz
where kq?, k.2, ks> are constants such that k? = k2 + k,? + ks? (1.420)
From, equation-1.4.19, we have
2 2 2
d )2< +ki* X =0; d—\z(+k22Y=0; d—§+k322=0 (1.4.21)
X Z
The solutions are as follows:
X(X) = A;coskix + Bjsinkix
Y(y) = Axcosky + B,sinkyy (1.4.22)

Z(Z) = A;c0Sksz + Bz sinksz
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Since the particle is confined to the box, “y’ must vanish at the surface of the infinite potential. This gives the
boundary condition,

Y =0, when x=0, y=0, z=0; x=a, y=b, z=c (1.4.23)

The condition y = 0 for x=0, y=0, z=0 results in the vanishing coefficients

(A1 =A,=A3=0) of the cosine terms. The condition ¥ =0 for x =a, y =b and

Z=c gives (asin the case of the particlein an infinitely deep potential well

constrained to move along x-axis, which has aready been dealt in the previous section)
kia=0m kb=mn and ksc=nn (1.4..24)

where £,m,n are integers greater than zero (( ormorn=1,2,3,....)

We know that k? = 2ME/ h” and accordingly, using equations-1.4.20 and 1.4. 24, we have
2ME/ h? = Ky* + ko + Kg*

:>E:h2/2M (k]_2+k22+k32)
R’z? (17 m? n?
= —t—t—
2M (az b? czj

hz (12 m* n?
or Eqpn= (— +— (1.4..25)

P + _
8M (a*> b* c?
The eigenfunctions v, , are given as
Vemn (X,Y,2) = N sin (£ 7 x/a) sin (m & y/b) sin (n & z/c) (1.4..26)

where N = B,B,B; is the normalisation constant.

b
The normalisation condition, J.Oa J.o J.Oc y*y dx dy dz = 1, can be written as
b
N2 joa [ jo Sin? (€ 7 x/a) sin? (m 7 y/b) sin? (n 7 2/c) dx dy dz = 1
= N? (a@/2)(b/2)(c/2) =1 =N?(abc/8) = 1

ThisgivesN = ,/8/(abc) and accordingly
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Vemn (XY,2) = 4/8/(abC) sin (n 7 x/a) sin (nwy/b) sin(mzc)  (1.4.27)
Equations-(1.4..25) and (1.4..27) give the expressions for the evaluation of eigenval ues and eigenfunctions.
Energy levels and degeneracy

The eigenvalues (or) energy values of the particle of mass ‘M’ in the box of sides a,b,c is given

(equation-1.4.25) asfollows:

h2 (17 m* n?
En,E,m = (_ +— (1428)

- +_
8M |a®* b* c?

Where {,m,n have integral values greater than zero.
These are called quantum numbers. For a special case of a cubic box
(a=b=¢),

2

h
Eotm= 0+ m?+n 1.4..29
L0, 8Ma2 ( ) ( )

(i) For the lowest quantum state ({ =m=n= 1),

h? 3h?
1+1+1)=
az( ) 8Ma

(1.4.30)

Ei11= 2

There is only one set of quantum numbers (£,m,n) = (1,1,1) and hence one eigenfunction v ;1 for this state.

Therefore this energy state or eigenvalue is said to be non-degenerate.

2

(ii) Consider the next higher energy state with energy, 43|\/|—hz
a

. For this eigenvalue or energy state there are
three sets of quantum numbers (2,1,1), (1,2,1) and (1,1,2) which give the same energy. That is this energy
state is associated with three eigenfunctions 11, W121 and yy1,. Therefore the degeneracy of the state is
three and the level is called three-fold degenerate.

Note: It is important to note here that if we reduce the symmetry of the potentia field, the degeneracy is

partidly or fully removed. For exampleif a=b = c, weobservethat E;;; = E;,; # E;1, andthe stateisonly

doubly degenerate.
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If a= b= c, asinthe case of arectangular box , itisobviousthat E,;;# Ej»1 # Ej1. andthe state becomes

non-degenerate.
1.4.4 Particlein an One-dimensional Finite Potential Well

Let us consider a particle of mass'm’ with energy ‘E’ moving in a potential field shown in figure-4

and is represented as follows:

V(X)
V(x) =0 ; O<x<a 4
V(X) =V, x>a ...(1.4.31) Vo VA
V(X) =V,; x<0
For the localised states (i.e., when E< V), (iii) @) (i)
Schrodinger’ s equations in the three zones
a X
Figure-1.4..4
are given asfollows:
ddz):/;l +2;;E%:0 o<x<a .
d;”; : 2m(\;02— E) =0 : x>a . (1.4.32)
d;? _2m(\;02_ 5 =0 : x<0 g
The solutions, as usual, are as follows:
Yi(x) = Arcoskix + A, sinkgx
Py(x) = Biele*  + By ...(1.4.33)

Yi(x) = Cy gl + Ce
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2mE and k2= 2m(V, — E)

where k;* = 2 2

...(1.4.34)

In the second zone x takes positive values and therefore the term B, e'?* 5 0 asx — . Similarly, in the

third zone, x takes negative values and therefore theterm C, e 5w asx — -o. Accordi ngly, for wave
functions to be finite as per the requirement of Schrodinger’s postul ates, the values of B; and C, must be made

—K,X

zero. This eliminates the terms B, e*2* and C, e in the second and third zones. Therefore solutions in

equation-1.4.33 become,

lP]_(X) = Aicoskix + A, sinkix
Yy(x) = Bye ...(1.4.35)

LPQ,(X) = Cl ekzx

d
Continuity conditions of y and d_l// a x=0are
X

W,(0) = Wy(0) (dl”lj - (%j ...(14.36)
dx ..o dx /.,
They yield the following results:
A]_ = C]_ ; klAz = sz]_ (1437)
The equation-1.4.37 gives A1/A; = ki/k, (1.4.38)
. .. dy
Continuity conditions of y and d_ a x=aare
X
Yi(a) = Yo(a) ; dvy ) _[(dvs ...(14.39)
dx /.. dx /..

They yield the following relations:
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Solutions for

koa

A;coskia+ A,snkia = Bze

(1.4.40)
_kra
-k;A; sin kja+ kA, cos kja = 'sze
Dividing thefirst by the second in equation —1.4. 40,
cosk,a+ A sink,a B,e
A coska+ A, 1 =S __t ...(1.4.41)

—k,A sinka+kA coska —k,B,e™ Kk,
Dividing the numerator and denominator of the LHS by A, cos kj;a, we have

A

+tank,a

1
=-= ..(14.42
K, (1.4.42)

A

tank,a+k;

Substituting (A1/A;) = (ki/kz) in the above equation, we obtain

1

+tank,a

K, ! 1 kt+ktanka 1
2 k _k? k

B ﬁ tank.a+ k, ) k" tank,a+kk, )
2

= k1k2 + k22 tan k]_a = k]_2 tan k]_a— klkz

2k .k
k1 _kz
Substituting the values of k; and k, from equation-1.4.34,
2. E(V. - E
tan a 2mE _ Vo ~E) (L4.44 )

n?  2E-V,
Case (i) (when V, — o0)

For V, — oo, equation-1.4.44 becomes

tana 2mE =0 ...(1.4.45)
hz
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Thisequationisvalid if

a‘/sz =nm; n=123,... ...(1.446)
n

n?h® _ n’h?

2ma?  8ma

2B voss o = where n=1,2,3,.... ...(1.4.47)

2

This equation for energy levelstallies exactly with that of infinitely deep potential well, as expected.
Case (ii) (When V =V, isfinite)
General solution is obtained by graphical method by plotting (from equation-1.4.43) tan kia and 2k;k,

/ (ki? — k,?) on the same graph sheet as functions of k;a. The intersections of the two curves give the allowed

Squaring the equation and substituting

Tank,a
k, values and hence !
the allowed energy levels. From the graph
the non-trivial values of kja are given by

Ka<nm ;n=1,273... (1.4..48) 0 n/ o/ 13y ka

ki’ = Z;lr;E , we have
n2h2
En< el (Evo = (1.4..49) Fig14.5

From this equation, it is evident that the

Allowed energies of the particle in a finite potential well are similar to those of the one-dimensiona box.
They are however less than those of the one-dimensional box. The sequence of the eigenvalues is not
changed..

For E > 0, the Schrodinger’ s equations-1.4.32 become
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d’y 2

dle kT va=0 ~N

2

dd)Z’Z” +k,2y2=0 . . (1.4.50)
2

d(lll)/:ZIII + k||2‘l’3:0 7

where k, % = Z;nE and k,* = —Zm(iz_vo)

+ikx

The solutions for all the equations are of the type e ™" and hence they remain now zero even when x — =+ oo,
Therefore the particle is not confined to any region of space (i.e., not localised). Further al solutions are
possible and hence the spectrum is continuous. Classicaly, the particle in such a state (i.e., with E > V)
approaching the well undergoes an instantaneous acceleration on reaching the edge of the well and equa

retardation at the opposite edge. But is would keep on going with no probability of reflection. However, in

guantum mechanics, the particle in such a state has a non-zero probability of its being reflected by the well.
1.4.5 Linear Harmonic Oscillator

Linear harmonic oscillator is a particle of mass ‘m', vibrating under the influence of a restoring force
which isdirectly proportional to its displacement ‘x’ from the equilibrium position (i.e., F =-kx). Thissimple
model is of interest in the study of chemical bonds and molecular spectra. The vibrations of diatomic and
polyatomic molecules and oscillations of other more complicated systems expressed in terms of their normal
modes are afew problems that can be analysed on the basis of this model.

Polynomial Method:

The classical Hamiltonian of the linear harmonic oscillator is

2
H=P 1 kx> (1.4.51)
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where ‘m’ is the mass and ‘k’ is the force constant. It is convenient to express it in terms of the classical

vibrational frequency of the oscillator,

v =02 = i 5 (1.4..52)
27 \m

where ‘o’ is the angular frequency and ‘v’ is the linear frequency.

2
1
Since k = m w? we have H = 2p— +=m o>C (1.4..53)
m

Then the time-independent Schrodinger’s equation (Hy = Ey) becomes

2

A

u+%moo2 x>y = Ey (1.4.54)

2m

With p—-ih di and X — X, equation-1.4.54 becomes
X

2
dl//+2m

o (E- %m o)y =0 (1.4..55)

Substituting, for simplicity,

= 2ME and a=mo/ (14.56)
hi
d’y 2.2
we obtain Ve +(A- o x) =0 (1.4..57)
X

For further simplification, substituting & = \/E X, we have

d2 A,
dzglz + (g—é j y =0 (1.4..58)

Asymptotic Solution

For large values of x and hence &, since &° >> A ,
a
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2
equation-1.4.58, can be written as ;jzg/z =y (1.4..59)
2
Let us assume asolution i = ce™ /2 (1.4..60)
and substitute it in equation-1.4.59
2 2 2 2
tHs= AV = 9 (et r2y G peet® iz gy
d°¢® dg dé
2 2
== [oe 7+ ce (8]
620202
= cet 12(22+ 1) (1.4..61)

If weassume £ — ., , the‘1’ in the expression (&2 + 1) can beignored and therefore

2
LHS= ce™ 222 = £y = RHS

Therefore, y = ce** '2 (1.4..62)
isavalid solution of equation-1.4.59, when & — , Thissolution is called the asymptotic solution. Since, the
positive sign leadsto infinite values of y for large values of &, it is obvious that ce52 '2is not finite and
therefore is not an acceptable wave function. The only acceptable solutionis

w =cet’”? (1.4..63)

Itiswell known that e get 2 (1.4..64)

issquare integrable for afinite‘n” over thetotal range of & from -co to +oo. Therefore,

f (&) e‘52 '2 s square integrable when &) is apolynomial in & terminating after a finite number of terms.

Therefore, for ageneral solution of equation-1.4.58, we can assume
y =& et ? (1.4..65)

with the above substitution in equation-1.4.58, we obtain
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d?f df A
de? 2§E +(__1jf =0 (1.4..66)

o

Let us compare this equation with Hermite differential equation

f'-2ef” +2nf=0 (1.4..67)

This equation isidentica to Hermite's equation, provided i -1=2n (1.4..68)
a

Polynomial solutionsexistforn=0, 1, 2,.....
S2mE/ A% = 2n+ )mo/ A
>E =(n+%)ho (1.4..69)

Even in the lowest level n = 0, the quantum mechanica oscillator still has energy 7@ / 2. This is
called the zero-point vibrational energy, which persists even at the absolute zero of temperature.

The existence of zero-point energy is in accordance with the uncertainty principle — for if the
oscillator had zero energy, it would have zero momentum and would also be located at the position of the
minimum potential energy thus enabling precise determination of position and momentum simultaneoudly.

Since ¢ &) is identified with the Hermite polynomial y &), the eigen-functions of the linear harmonic

oscillator are
1/2
. Ja
() =N e "*H Wax| ; whereN,=| —"= (1.4.70)
v ] N
n_x2 dn _x2
and  H,(x)= (-1)"e* —(e™) (1.4.71)

dx
Vibrational Spectrum
Harmonic oscillator is an ideal model to explain the vibrations of a diatomic molecule. In
Spectroscopy ‘v’ isgenerally used, instead of n, for vibrational quantum number. Accordingly, the vibrational
energy isexpressed asE, = (v + ¥2) % o. Conventionally, the vibrational energy is expressed in cm™ units by

dividing E, with hc, where‘c’ isthe velocity of light and is denoted as G(v). Therefore,
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G(v) =E/,/hc =@ (v + %), (1.4..72)
where we=%h®/(hc) = /(27w c) = vibrational frequency.

In the electronic spectrum of a diatomic molecule, if the selection rule
Av = £ 1 is only taken, one band is predicted in the absorption spectrum because of the same energy
difference between successive energy levels.  But, practically, we observe a large number of bands.
Therefore, a non-harmonic oscillator model is necessary to explain even the gross structure of the spectrum.
For a harmonic oscillator, the selection rule is Av = 0, + 1, + 2, .... Accordingly, overtones can also be
explained.
Eigenfunctions

The eigenfunctions (wave functions) of the harmonic oscillator are given by the relation,

v,(X)= Nne‘“XZ/ZHn(\/Ex). They are shown in the figure-6. Asis seen in the figure normal statev =0

corresponds to Gaussian function with the maximum probability in the middle. All other states with v > 0
have two peaks, which coincide with the extremes of classical range. In between, there are v nodes and (v-1)
subsidiary peaks. These maxima diminish in amplitude and are crowded towards the centre of the range. The
wave function and hence the wave mechanical probability density has large values just in the region of
classical vibration, but that also some what outside this region the probability density is not negligible,
although it falls off exponentially there. Thus, in wave mechanics the oscillator in a given energy level can
reach, with a non-zero probability region that a classical oscillator of the same energy and the same force
constant can never reach. While classically the oscillator stays for the greater part of the time at the turning
points, wave mechanically for v = 0, there is broad maximum of probability distribution in the neighbourhood
of the classical turning points, but lying some what more towards the centre. In addition, for v > 0, there are
other maxima of wave mechanical probability distribution between the two outer most maxima. No classica

analogues exist for these maxima.
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Fig 1.4.6 wave functions of linear harmonic oscillator

Summary of lesson

Schrodinger’s wave equation has been developed for a particle in a linear infinite potential well and
aso finite potential well. The eigenvalues have been solved and compared. Problem of a particle in three

dimensions (in a rectangular box) has been solved and degeneracy explained. The eigenvalues and

eigenfunctions of alinear harmonic oscillator have been derived and discussed.

Key terminology

Infinite Potential Well — Finite Potential Well — Localised States — Harmonic Potential — Degeneracy
— Non-degenerate state — Asymptotic Solution — Hermite Polynomials.

Self assessment questions
(i). Solve the Schrodinger’s equation for a particle in a linear potential well of width ‘a’.

Discuss the
eigenvalues and eigenfunctions.

(ii) Solve the Schrodinger’s equation for a particle in an one-dimensional infinitely deep potential well.
Deduce uncertainty principle.

(iii) Solve the Schrodinger’s equation for a particle in a rectangular box. Discuss the degeneracy of the
energy levels.
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(iv)  Write the Schrodinger’s equation for a particle in an one-dimensional finite potential well. Solve the

equation for the localised states.

(v) Solve the Schrodinger's equation for a linear harmonic oscillator. Discuss the eigenvalues and

eigenfunctions.

Refer ence books

1. A Textbook of Quantum Mechanics — Mathews P M and Venkatesan K (Tata Mc Graw Hill Publication
Co. Ltd., N. Delhi)

2. Quantum Mechanics —Merzbacher E (John Wiley & Sons, New Y ork).

3. Quantum Mechanics— Chatwal G R and Anand SK (Himalaya Pub. House, Bombay)

4.  Quantum Chemistry — Eyring H, Walter Jand Kimball G E (John Wiley and Sons., New Y ork).
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UNIT -1
LESSON -V -SYSTEMSWITH SPHERICAL

SYMMETRY

Objective:
Determination and discussion of eigenvalues and eigenfunctions of rigid rotator and

hydrogen atom.
1.5.1 Introduction

Systems with spherical symmetry are of great importance. Central force problems form an important
class. These areforces, which are derivable from a potential that depends only on the distance ‘r’ of a moving
particle from afixed point. Accordingly, central potential V =V(r).

The Schrodinger’ s equation for a particle of mass‘m’ under the influence of such apotential is

qu/Jril—rzT][E—V(r)]w:O (1.5.1)

2
where V? = iz i (rzij'*‘ > 1 0 % (sin® %)"‘ 2;20 2? (1.5.2)
r-sin r-sin

In thislesson, it is convenient to first study ssmpler cases of Rigid rotator with free axis and Rigid rotator with

fixed axis (or plane rigid rotator), which possess no potential energy to reckon with and then analyse the

problem of Hydrogen atom, whichis acentral force problem.
1.5.2 Rigid Rotator with Free Axis:

It is a system of two point masses (particles) m; and m, connected by a mass-lessrigid rod of definite
length ‘' and rotating about an axis passing through the centre of mass and normal to the plane containing the
two masses.

If the two particles are constrained to remain in one plane, then the direction of rotation of the axis of

the rotation is fixed and the systemis called the rigid rotator with fixed axis. If thereis no such constraint and
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if the plane of these two particles can move, then the axis of rotation is free to take any position in space. This
system is called the rigid rotator with free axis. ldeal diatomic molecule without vibrations is the best

example of the system.

For a rigid rotator, since r = constant, the term with 8_ is zero. There is no potential energy.
r

Therefore for arigid rotator of reduced mass . = mym,/ (m, +my), the Schrodinger’ s equation is

1 o 8 1 % 2uF
— (SN0 —)y+ + =0
Zsng 20 "0 20’ tante 92 T w2 Y
2
19 Gne¥y, 12 a";+2'2E v=0 (1.5.3)
sn6 00 20’ sn’6 o¢% &

where | = momentum of Inertia= pr?

It is a differentia equation with two independent variables and so can easily be solved by the well-

known method of separation of variables.

Using y = 0 (6) © (¢),

) 1 2
sin?0 { 1 d (sm@d@j+ 2IE®} :_éd 154

® |snodol do h dg?
Since each side is dependent on one variable only and is independent of the other, each side should be equal to

the same constant (say m?), which isindependent of 6 and ¢.

2
d qj =-m*® (15.5)
d¢
in2
and 3N 9 .ii(sined—e)}rz”f@ - (15.6)
® sing do deo h

Solution of equation-1.5.5is
D, (¢) = Ae™ (1.5.7)
For @ , (¢) to be single valued,

D (0) = D (0 +21) = AE™ = AMET20 — A™ = A™ ™
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Therefore, €™ =1 and thisistrueif m=0, +1, +2,....

Normalisation condition is given as

21
jo O+ Opdp=1

2 . .
A2 jo e ™ g™ gy = 1

= A2 f” db=1 =—A2@2m)=1oAz_1_

0 N2
LDy ()= L €™ m=0,+1,+2,.... (1.5.8)

\ 27
Equation-1.5.6 can be rewritten as
2

_ii(sined—(aj L P (159)
sn6 do de h sin“o

Thisthetaequationisidentically equal to associated L egendre differential equation,

if 2};—5 L+ 1) (1.5.10)

According to the properties of associated Legendre differential equation, it has an acceptable polynomial
solution only for integral value of ‘£’ such that £ > | m|. Therefore, from equation-1.5.10, the energy levels of

the rigid rotator are given by the relation

21E
PRI
hz
(O)E= 2 L(L+1:L=0.1.2... (1.5.11)

Accordingly, the normalized ® (6) are the associated L egendre polynomials

O (0) as given below:
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2+ (=|m!
2 (I+|m]!

1/2
O0)=0,,0)=¢ ( J P, ™ (cos 0) (1.5.12)

wheree=1, m<0; ¢=(-1)", m>0

| I+
R | Y G -
P, ™ (cos 0) o (sin ©) (dcos@j (sin ©)
Thetotal wave functionis

Pem (0,0) =Opm (0) P m (9) = Ye.m(0,0) (1.5.13)

Here Y ..(0,0) are called spherical harmonics.
Rotational Spectrum

Rigid rotator model explains the rotational spectrum of a diatomic molecule, which occurs in the
microwave and far infra-red regions. The rotational quantum number is generally denoted as ‘J in

spectroscopy. Accordingly, the rotational energy is given as

2 2

EJ:Z—IJ(J+1) = EJ=

—J@+1); J=012...
7|

Conventionally, the energy is expressed in cm ™ units by dividing E, by hc, where ¢ is the velocity of light,
and is denoted as F(J). Accordingly,

2
F(J) =E,/ hc= hz— J(@+1) = BJ(3+1), where
87 “lhc

eB= 2
87°lc

~F(@)=BJI(*D); J=0,1,2...

The selection rule for transitions between various energy levels is AJ = + 1. Accordingly, the rotational
spectrum is equidistant with a separation of 2B between successive lines, as can be seen in the energy level
diagram (fig.1). From the spectrum, we can determine experimentally B value, then evaluate moment of

inertia‘ | * and hence (since | = pr?) inter-nuclear distance (r).
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Figure-15.1

1.5.3 Rigid Rotator with Fixed Axis (or) Plane Rigid Rotator :

Plane rigid rotator is one, which is constrained to aplane. Let it be constrained to XY -plane. Thenits

axisisfixed with @ = 90°. Therefore in Schrodinger’s equation-1.5.3, the terms with % will vanish and sin

0=sin90°=1. Accordingly, the equation-1.5.3 becomes
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System with

d’y  2IE
dd)‘/z’ * T w0 (1.5.14)
If we substitute ZI—E =m? (1.5.15)
hi
2
equation-1.5.14 becomes 3(:; +mPy =0 (1.5.16)

The solution, obviously, is given by y (¢) = Ae™

For it to be single valued, as aready explained, m=0, +1, +2,....

Further, the normalisation constant isA = i
N2
Accordingly, the solution is

ym (9) = L g ; m=0,+1,42,.... (1.5.17)

Jor

From equation-1.5.15, the eigenvalues are given by the relation

232
E=En= m2|h ;m=0,+1, £2,.... (1.5.18)
1.5.4 Hydrogen Atom

The problem of hydrogen atom, is a two-body problem (namely of the electron of mass ‘m' and proton of

mass’M’). Since, we are not interested in trandational motion of the atom as a whole, the centre of mass of

the system is taken as the origin of the coordinate system. Since the system is centro-symmetric, it is most

convenient to use spherical polar coordinates. The problem can be treated (as in the case of rigid rotator) asa

single particle problem of reduced mass p = —Y

, with the radia coordinate ‘r’ which is equa to the

distance between the eectron and the nucleus. Potential energy of attraction between the electron and the

nucleusis
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_—Zé
.

v (15.19)

(Here Z = 1 for H-atom. But for generality ‘Z’ isretained. The treatment, then, remains same for H-like ions
He', Li*" etc. with appropriate )

Schrodinger’s equation for H-atom is

2
V2y + %(E+ 28 =0 (1.5.20)
r
2
Wherevzzizi(rzi)+ 2:_L i(sinei)+% 82 (15.21)
r<or or r<sinf o060 00 r<sn<0 o¢
It iswell known that the operator for the square of the orbital angular momentum
L? = -n? (1.5.22)
2
Using thisin equation-1.5.21, we have _ii(sinaij+ - 12 0 5
sing 060 00) sin“60 o¢
10 0 I_A2
Vi= = —(rP—)- 1.5.23
r? ar( ar) her? ( )
L* has eigenfunctions Y .,(0,0) and eigenvalues € (¢(+1) h?
where £=0,1,2,....and £ > | m|.
S L2 Y™6,4) = C ()R Y,"(0,4); €=0,1,2,...; € > | m]| (15..24)
From equations 1.5.20 and 1.5.23,
10 ,,0y 1 5 2u ze’
= 2 (P y- L v+ —(E+ — =0 1.5.25
A AT (1.3.23)
Using separable variable technique with y (r, 6,0) =N R (r) Y (0,9) (1.5.26)

1d ,drR, 2ur? ze’ 1,5
— — + E+ = LY 152
Rdr dr h? ( r ) hZY( ) (15.27)
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The LHS is dependent only on ‘r’ whereas the RHS is dependent only on 6 and ¢. But they are equal to each
other. Therefore they must be independent of r, 6 and ¢; and each must be equal to a constant, say ‘\’.

1

oy (I_A2 Y) =r= 2 Y(6,0) =Ah2Y(0,0)

We know already (equation-1.5.24) that A = € (¢+1) with £ =0,1,2,....

Therefore equation-1.5.27 becomes

1d ,dR, 2 ze* (1 +Dn?
— —@rF—)+ —=[(E+ - R=0 15.28
r? dr( dr) hz[( r ) 2ur? ] ( )
I(I +2)7° i : : . .
The term ? appears as an addition to the potential and can be considered as centrifugal potentia
ur

since its negative gradient is equal to the centrifugal force experienced by a particle moving in an orbit of

radius ‘r’ with angular momentum /I (| +1)%° . Alternatively, it may be looked upon as the K .E associated

with the rotary part of themotion (L? /2 | ) where | = ur? isthe moment of inertia.

Equation-1.5.28 can also be written as

2 2 2
d |§+Eﬁ+2—’;[(E+ Ze )_I(I+1)2h
dr rdrn r 2ur

]R=0 (1.5.29)

With the change of the variable as p = ar, the above equation becomes

d’R 2 dR 2uE  2u ze* . 1(1+1
RO BE 2 2 (0
dp r dp o‘h he pa Jo}

]R=0 (1.5.30)

For bound states (E<0)

Let usintroduce a new parameter n and also write ‘o’ in terms of other known constants as

2
= % J=24E andn= 2;122e (15.31)
(04

With these parameters, equation-1.5.30 can be written as
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2 J—
: |§+£ﬁ+ L I(Itl)]R=0 (15.32A)
dp® pdo 4 p p
d? -1 n I(+1
@ L prets N D0 (15.328)
dp 4 p p

The asymptotic solution (for p — o) can be obtained using equation — 1.5.32(A):

=R(p) ~e P~ (1.5.33)

d’R _R
dp® 4

The asymptotic solution (for p — 0) can be obtained using equationl.5.-32(B):

d? I +1 )
- (pR- D (hRy=0=R(p)~ p (1534)
dp p

The correctness can be checked by back substitution
Therefore, the actual solutions for al valuesof p (or) r may be of the form
R(p) ~f(p)p'e P’ (15.35)

With this substitution in equation 1.5.32(A) or 1.5.32(B), we have

2
;)3p£-+@€+219)g%+{nE-Df=0 (1.5.36)

This equation is similar to the Associated Laguere Differential Equation

pL" +(p+1- p)L'+(g—p)L=0 (1.5.37)
ifg=n+{ andp=20+1

(or) (q—-p)=(m-C-1)and (p+1-p)=Q2L+2-p) (1.5.38)
This differential equation has a polynomial solution when q—p = +ve integer.

~n-L-1 = +ve integer (1.5.39)
Since £ =0, 1, 2,...., from equation-1.5.39 we haven=0+1=1,2,3,.... (1.5.40)

From equation-1.5.31
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e o —ha’ _—n?[2ze’ ’
8u 8u | h°n
5 2,524
S E MR 103 (15.41)
n n2h2

These bound state energies are in accordance with those obtained from Bohr’ s theory. The wave functions are
an,E,m (r, e! (I)) = Rn,’i ( r) Ylm(0’¢)

where R, (1) areradia functionand Y (,, (6, ¢) are spherica harmonicsinvolving angular functions.

Note: The normalised radial wave functions are as follows;

Ruc(r)=- 2Z i (n—|—1)!3 27Zr le—Zr/(nao) Li:l E
na, ) 2n(n+1)!]"{ na, na

(0]

i, o S (DR (N )2 "
where |, (P)= 2, (=1 —1-K)I(2 +1+k)!

a = pe? h? = Bohr'sfirst orbit radius.
Degeneracy of eigenvalues
The energy levels (eigenvalues)

_ —2r*uze

En - nzhz

: n=123....

For a particular value of n, thereis only one specific eigenvalue as is predicted by Bohr theory. But there will
be a number of eigenfunctions vy ., m». FOr a particular value of principal quantum number n, the orbital
angular momentum gquantum number ¢ takes the values €= 0,1,2....n-1 and for each value of £ there are (2 €
+1) magnetic quantum numbers m from -£ to +£. Therefore, the total number of eigenfunctions (y ¢ n) for a

particular eigenvalue

n-1
E.is Z (2 ¢+ 1) =n° Accordingly, degeneracy of each level isn’.
0
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Spin of the electron is not considered in the present case. If the spin is aso taken into consideration, the
degeneracy doubles (2n?) because every s = ¥ level has two sub levels depicted by ms = + % From this
guantum mechanical theory of Hydrogen atom, intensities of spectral lines, selection rules, polarisation rules
and other physical parameters are correctly predicted in addition to the positions of the energy levels (spectra
lines).

Wave functions

Wave functions of hydrogen atom are W, ¢n(r, 0, &) =R, (1) Ylm(Q, gb) where R, (r) areradial

function and Y (., (0, ¢) are spherical harmonics involving angular functions. To distinguish the three
dimensional distribution ¥Y*¥, from the Bohr-Sommerfeld concept of an electron moving in a circular or
eliptic orbit, the 3D distributions are called or bitals.

The orbitals are designated by the principa quantum number ‘n’ followed by a symbol signifying
azimuthal quantum number ¢ (£ = 0,1, 2, 3,...— s, p, d, f..). The value of the magnetic quantum number ‘m’
is added as a subscript to the symbol. For example the orbitals withn=2, £ =1 and m = +1, 0, -1 are denoted
by 2p., 2p, and 2p.;.

Sometimes the orbitals (wavefunctions) are expressed in terms of Cartesian coordinates and these are
expressed as subscripts instead of the values of ‘m’. For example, since ¥,10 ~ I €C0S 6 = z (except for a
numerical constant), p, ~ p,. It isdifficult to pictorialy represent the 3D probability densitiesin 2D figures.
Thereforeit is convenient to study separately the radial part
R, (r) and the angular part Y,"(6,¢).

Radial functions [Rpe ()]

All Ry () contain afactor r'. So they are all zero at the origin except for states for which £ = 0 (s-

state). Thisleadsto an important fact that s-states interact with the nuclear moments more strongly than other

states. We know that R*R = R? is the probability density of the electron at a particular r along a particular
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direction. More important is the radial probability density. D( r ) = 4nr’R? of an electron to be somewhere at a
distancer, irrespective of the direction. D (r) (vs) r graphsfor afew states are shown in figure-2.

The curves for 1s, 2p and 3d orbitals have one maximum only and it is interesting to note that these
are at distances equal to the radii of the corresponding Bohr orbits (r = na,). Other curves have more than one
maximabut it is evident that the electron spends most of its time in the outermost zone. For a particular n, the
maximum corresponding to a greater £ is closer to the nucleus.

Angular Functions[Y,"(6,4)]

It is evident that the size of the orbital is determined by the radial function. The shape of it is
determined by the angular function. Hence the angular function is of great importance in understanding the
geometrical and other related properties of molecules. Y*Y is the angular probability density which is
positive everywhere. However the angular function Y = ©@® will have different signs in different regions of
space. The sign of the wave function is useful in discussing symmetry. Therefore we will depict, in figure-3
the diagrams of both the angular probability and angular probability density. In this diagram ©® and [
values are shown by solid and dotted lines respectively.

s—orbitals

For s-orhitals, Y o = i and hence it is spherically symmetrical. Thisis represented by a spherein 3D and

Jan

in 2D by its cross-section, thecircle.

p-orbitals
. /3 . . . .
For the p, (or p,) orbital Y= 4— cos 0. This function will be maximum at 6 = 0 and 6 =t and
T

vanishes at 6 = /2. On one side of the xy plane, it is +ve and on the other it is —ve. Such an orbital is said to

be anti-symmetric with reference to reflection in the ‘xy’ plane.
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For p. orbital, Y; 1 ~sin@e” e except for a constant. For convenience a linear combination of
these degenerate eigenfunctions, (p, = p.;) are used to construct new orbitals designated as py and p, (px ~ r
sinB cosp = x and
py ~ 1 (sinB sing = y). They have the same shape as p, orbitals except that the maxima are along the x and y
axes respectively.
d-orbitals

Similar procedures may be used for representing the d-or bitals.

The d, ~ (3cos’® -1) orbitals are designated as d =d, . .. Thisorbita hastwo large lobes along z

222—x2—y2 3z
axis and a small “smoke-ring” about the xy plane. Other four independent orthogonal orbitals are given by
the linear combinations of d., ~ sin’@ e **' * and d.; ~ sind cosd €' * orbitals. They are dy,, 0y , dy, and

dX2 e Each of these orbitals has four equivalent lobes with two nodal planes separating them. The orbital

dxz_yz differs from d,, in that its lobes lie along the Cartesian axis x and y instead of making an angle of 45°

with them.
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Summary of lesson

The Schrodinger equation for rigid rotator with free axis has been formulated and solved. The
resulting eigenvalues have been used to explain the rotational spectrum of diatomic molecules. Schrodinger
equation of Plane rigid rotator has been solved. Schrodinger’'s analysis of the hydrogen atom has been

presented. The degeneracy of the hydrogen energy levels has also been discussed.
K ey terminology

Central force — Associated Legendre Polynomial — Spherical Harmonics — Plane Rigid Rotator —
Rotational Spectrum — Hydrogen Atom — Associated Legendre Differential Equation — Asymptotic Solution —

Degeneracy of Hydrogen Eigenvalues.
Self-assessment questions

(i) What is centra potential? Write the Schrodinger equation for such a problem in spherical polar
coordinates.

(i) Explainrigid rotator model. Derive its eigenvalues and explain the rotational spectrum of a diatomic
molecule.

(iii) Solvethe Schrodinger equation of arigid rotator with fixed axis.

(iv) Formulate the Schrodinger equation for hydrogen atom and separate the angular and radial parts.

(v) Solvethe Schrodinger equation of H —atom and derive the eigenvalues.

(vi) Writethe eigenvalues and eigenfunctions of hydrogen atom. Hence explain the degeneracy.
Reference books

1. A Textbook of Quantum Mechanics— Mathews P M and Venkatesan K (TataMc Graw Hill Publication
Co. Ltd., N. Delhi).
2. Advanced Quantum Mechanics— Rajput B S (Pragati Prakashan, Meerut).

3. Quantum Mechanics— Chatwal G R and Anand SK (Himalaya Pub. House, Bombay).
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UNIT -2

Lesson-VI - Time Independent Perturbation Theory

(For non-degenerate systems)
Objective of thelesson

In this section, the theory of time-independent perturbation is  discussed. We consider the corresponding
Schrodinger time  -independent wave equation and obtain the expressions for 1% order  and 2™ order energy
and wave functions. The theory will be applied to some physical examples and eval uate the energy and wave

function.

2.1.1Introduction

In the development of quantum mechanics, only very simple physica situations have been treated using
schrodinger wave equation for which exact analytic solutions can be (found).In majority situations of physical
interest, the exact solution of the schrodinger equation may have a quite complicated, rendering an analytic
solution of the corresponding eigen value problem too difficult to obtain if not altogether impossible. In
guantum mechanics, perturbation theory is an approximation scheme for describing such a complicated
guantum system in terms of a simpler one. The main idea here isto start with a simple system and gradually
turn on an additional perturbing Hamiltonian representing a weak disturbance to the system. As such
Hamiltonian can be split into several terms, some of which may play by far the most significant role than
others and such terms can be treated exactly to obtain analytic solution to the eigen value problem, and the
effect of the rest of the terms can be estimated in an approximate way. Here are three important
approximation methods, which are (i) perturbation method (ii) variation method (iii) the WKB method.

In order to develop the wave mechanical perturbation theory the basic idea is taken from the
perturbation theory in classical mechanics, which is explained as follows. The motion of a planet in the solar
system is essentialy determined from the gravitational force of the sun. Of course the gravitational force of

attraction of the other planets, though small till influences the motion of the planets in their orbits and as a
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result the orbit instead of being a closed ellipse isa slowly processing ellipse. The perturbation theory enables
us to calculate these small changes. Similarly quantum mechanical systems can be treated with perturbation
methods.

In the case of perturbation theory, these are two cases which can treated separately as (i) Time-
dependent perturbation theory (ii) Time-independent perturbation theory. Further Time-independent
perturbation theory is applied to degenerate and non-degenerate system separately.

The stationary perturbation theory concerns with finding the changes in energy levels and eigen
functions of a system when a small disturbance is applied. In such cases, the Hamiltonian may be considered
as spilt into two parts, one of them is a magjor part, which characterizes the system for which exact solution is

obtained for the wave equation; while the second part is small and treated as perturbation.

2.1.2 Theory

Now, In this section we study the time-independent perturbation theory applied to a non-degenerate
system. If one energy value or energy level is corresponding to only one wave function, then such a systemis

called as non-degenerate system.

We start with the schrodinger wave equation, which basically describes a single particle, for obtaining the
energy values and eigen functions for the 1% order and 2™ order perturbations.
We begin with an unperturbed Hamiltonian H® which is also assumed to have no time dependence. It has

known eigen functions arising from the time independent schrodinger equation which iswritten as.

HOY g0, 2.1.1)

() " This means

n

Where E; isthe energy of the n™ level of the system and corresponding eigen function is v
eigen values and eigen /functions of the unperturbed problem is E? E,M,E?....E® and y,?, .,

w2y respectively.

For the perturbed system, the eigen function v, satisfies the equation.
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Where E, are the energy values of the modified Hamiltonian; representing the operator

A __h2
H =( v2+vj ........ (2.1.3)

Let usassume that it is possible to expand H interms of some parameter, giving the expression.
H=H® + AHO+ 22H@+ ... (2.1.4)
Where H° is the unperturbed Hamiltonian and is large compared with HY (i.e.) the energy associated with
H® islarge when compared with the energy associated with H®.
Further it is aso assumed that it is possible to expand eigen function v, and eigen value E;, of the tota
Hamiltonian of equation (2.1.2) in terms of A as.
S AR Y =R R S RN — (2.1.5)
R (2.1.6)
in which the quantities E,®, E® ... and y,\?, w,@ ...isto be found.
Equations (2.1.4), (2.1.5) and (2.1.6) and now substituted in eq.(2.1.3), yielding.
[HO+AHY] [y @+ ay @ +r 2y @+ = [EnO+AE P+ E -] [wnO+ P+ 2y P+ ]
Which in turn gives
HOW, O3 (HOy, D-+HOOy, @) + 22(HOy, @+ H Oy, OY e
=E, Oy, O (B Oy O+ E Oy @) 2 E, Oy O+ E Oy O+ B, Py @) oo 2.1.7)
The above equation is satisfied for al powersof A, only if the equal powers of A on either sideareequal. On

comparing equal powers of A% A", A2 -----we get.

For A%, HOW O=E, QYN0 - (2.1.8)
For 7\‘1’ HO\I/n(l)+H(l)\I/n(O) - En(o)\lfn(l)"'En(o)\Vn(l)+En(l)\Vn(O) _________ ) (2 1.9)
For XZ, H(O)\Ifm(z)"'H(l)\lfm(l) = Em(l)\lfm(l)+Em(2)\|fm(o) ________ -(2.1.10)

Equations(2.1.8),(2.1.9),(2.1.10) corresponds to unperturbed, first order perturbation and second order

perturbation equation respectively, we can also obtain higher order terms to get more and more accurate
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corrections to exact solution. Using the equation (2.1.9) and (2.1.10) we calculate the 1% order and 2™ order

energy values and eigen functions respectively.
First Order correction to the energy value E,
Taking the eq.(2.1.9) we now obtain the first order corrections to the energy value E,®.
(i.0) HOYO+HOPy O=E Oy O+E Oy @ - (2.1.9).
Using the expansion theorem, the perturbed eigen function y,* can be expanded interms of the unperturbed

eigen function as

l//r(11) = zaml//Sn -------------- (21.11)

Substituting this equation (2.1.11) in eq.(2.1.9), we determine the first order correction, we have.

Za H l//fn)+H l//n Zoszn l//r(n)-i-E()l//rE) --------------- (21.12)

From the unperturbed system for m™ level, we know
L — (2113)

so that (2.1.12) now rewritten as.

S B Y S B ~ERy

(OR)
D« m(EgO) - Ego))ygr?) +H ]1//r(10) = Er(f))wgo) ---------- (2.1.14)

On multiplying both sideswith ) from left side and integrating over the space integral, we get

IZa )y e dT+Il,t/n HYyOdr = E éo)jl//go)*wr(]o)dr -------- (2.1.15)

Making use of the orthonormal condition of the wave function
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ie) [yl ydr =5,
where &; =0 if izj > -weeeeee- (2.1.16)
=1if iz
The equation (2..1.15) below:

J’ w OH Oy Odr = EW

n

OR EY = [y HyPdr=H[) -orereee (2.1.17)

R L R R R s (2.1.173)

whichisfirst order perturbation of the energy value.

First order correction for wave function y,®

For obtaining the first order wave function y., we once again consider the eq.(2.1.9) and multiplying on

both sides with y,®" from left side and then integrate over the space integral, we get the situation as

[Sanle® - EPO 01 + 0 MO

- [EQy - (2.1.18)

Using the condition as per eg. (2.1.16), we have

am[Er(,?) — Er(]o)]+ M?)* H (1)l/lr(]0)d’[ =0

(.e) a, =

_ J'Wr(r?f H (1)wr(]0)dl.
EO _gW

m n

(W IH lv?)  HY

Er(ﬁ) _ E,go) Er(ﬁ) _EgO

=- = (21.19)
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so that y, ¥ = _ 02 ] ‘/’rgo) H(l)‘/’r(lo)df (0) ===---- (2.1.19)
o Erg"?) _ Er(no) m

Now after thefirst order corrections to energy value and eigen function, we get.

E,=E9+ Y

®+Ajwﬁhamw$fdr=5$l+m4$ ----- (2.1.20)

=y + Ay

n

GIe)
L |wyH
_AZ j El

o_go |/n

n

—
o
~

(=* is written omitting m=n)

HO
AZ( Eo}u R (2.1.21)

Second order correction for energy value E,®
We consider the eg. (2.1.10) for evaluation a® En®. Again the function y,? is expressed as alinear

combination of known function y,\?, as

=> Byl (2.1.22)

On substituting egs. (2.1.22) and (2.1.11) in eq.(2.1.10), we get

Zﬂ H Oy 0 +Za H @y 19 Zﬂ Oy +Zﬂ e (2.1.23)

onusing eq.(2.1.13), we have

3 Ba(EQ —E@ )y ZamEn yl Za H Wy O+ EPy©

=Y a ,EQ-HDYy O G O (2.1.24)
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Now multiplying both sides of eq. (2.1.24) with y, %" from |eft side, and integrating over the space integrals,

we get.
el 0 e 9 (-1 s e e o129
m
Applying condition (1.1.16) to eg. (2.1.25) we get.

EQ) = S gy [y ® HO e

= Zam<y/f]°) | H @ Iy/,(1°)> = Z(amH,(:]) ------------- (2.1.26)

Substituting the value of o, from eqg. (2.1.19), we have

SRS L

E}
2 0 _ 0
1 HO @
o EP=-3 £0 _EO (2.1.27)

Second order correction to eigen function y,®

For obtaining y,®, multiply eq.(2.1.24) with v, on both sides from left; and integrating over the space

integral, we get.

< () OV G

aijwr(,?) (E,(}) - Hrll)jy/r(,?)dr + E,QZ)M? A L— (21.28)
m
on using condition (2.1.16) again here aso, the above equation isreduced to .

g e
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o Bn =zﬁ[a@ [y Hml,,ggmf} ......... 0129

0)yy (1), (0 1 o) (1), (0
_ W(Z):_zjwr(n)H“wﬁ) EV -y HPde | 0150
ey | e |

(=" is used to omit m=n)
In order to get the energy values and eigen functions, the values of E,?, E;? and y\?,y? are substituted

from the equation (2.1.17), (2.1.27) and (2.1.194), (2.1.30) in the following equation.

EX = E® + AEY 4+ 22E

n
o=y + Ay Py
Using the above theoretical considerations, the corresponding 1% order and 2™ corrections to the perturbed
system can be cal cul ated.

Proceeding in the above manner, we can evaluate higher order corrections for the perturbed systems to more

and more accuracy.

2.1.3 Application of the time dependent perturbation on theory for Non-
degenerate system

In this we take up the following examples and eval uate the perturbed energy and eigen function.
(i) The perturbed Harmonic oscillator.
(i) The Normal Helium atom.
i ThePerturbed Harmonic Oscillator
Let us consider the wave equation for the perturbed Harmonic oscillator in one dimensions as.

d’w 2m 1k ar* bat
2 T2 E-3 2 N
dx X 2 X v v

V21 o H—— (2.1.31)
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This equation reduces to Harmonic oscillator wave equation if the constants aand b are zero. Assuming a
and b are small, we treat these terms as perturbation.
ie) HO9=a +bx* ... (2.1.32)

Let us calculate the first order correction to the energy En® given by eq.(2.1.17)

e B [yl e

w7 axgy nde + [y bx 'y Vdr —-(21.33)

-

,(10) is even function, over a

Since the first integral on the right sideis an odd function as x*is odd and l//(o)kl//

symmetrical limitswhose valueis zero. As such the value of the first integral is zero (i.e.) first order

perturbation due to ax® is zero.

©dA ......... (2.1.34)

n

Hence EY = bjl//,ﬂo)* Xy

From the knowledge of the linear Harmonic oscillator, whose wave function is given by .

v (x)=N.H, @) exp-£2/2] ......(2135)
b
Where. £ =ax& a = (T—i(j andh® = me*?

Substituting (2.2.5) in eg. (2.2.4) we get.
a 4
EY =b.[NZH?(£)e™ (%][d—gj
b a a

=h.

NE ['H2©) e £tde (2.1.36)
a o

For evaluating thisintegral, consider the following recurrence relations from Hermite polynomials.

(@) :%Hn FUE +OH, —2E) oo (2.1.37)
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or E°H (&) = %éH JHUE)+NEH —LE) (2.1.38)

Replaying n=n+1 and n=n-1in eq.(2.1.38), we have

EH_+1(8) = % H o +2E) +(+DH (E) oo (2.139)

EH, -1(&) :%an -1&)+(n-DEH, -2(8) ......... (2.1.40)
Now Substituting egs. (2.1.39) and (.2.1.40) in eg. (2.1.38), we get.

£2H, () =%Hn+2(§)+(n+%)Hn(§)+n(n—1)Hn2(5) 2141

Squaring and substituting in eg. (2.1.36), we have

e _p.No Té FHn+2(§)+(n+1)+n(n—1)Hn2(5)} dE ... (2.142)
a’ s |4 2

a

From Hermite polynomials, we know that

aézZ

[ & H,(©)H,,()dz =0 if mem

=2'nJr  ifmeEne. ... (2.1.42)

Using those result in eg.(2.1.42), it becomes

@) Nr? 1 n+2 1 2 n 2 pn-2
E.’ =h. 39— N+ 2)2" + (n+=)"n2"(n-1)“2"“(n-2)!
a’ 16 2

S |1 n{1—16(n+2)n§2+(n+%)(n!)2“+n2(n—1)22”‘2(n—2)|}

1 5
mz2"n | ¢

Where we used the normalized function of Harmonic oscillator.
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a

N,valueas N, = il
2

722"n

On simplification, we get

EW =2

n 40!4

(2n® +2n+1)

Now the total energy to first order becomes.

232
E,=EY+EY =(n+%)hwc+@}“ n

. (2n* +2n+1)
4 mK

i The Normal Helium atom:
Helium atom consists of a nucleus of charge Ze at the origin and two e ectrons with radius vectorsr; and r,
asshowninFig. (2.1.1) €

I
rq N

2

Fig. 2.1.1

Neglecting the motion of the nucleus, the Hamiltonian of the system is written as.

1*2Vy? 2 _ %2 2 2
H{_ Lyz_ 2% }{ “ vg-ﬁ}f— ........ (2.1.43)
2m r,

in which V1 and V, represent the coordinates of electrons 1 and 2 respectively.

Now, the wave equation for the two electrons is written as

2 2 2
vfw+v§w+?{5+§+3—e—}w:o 218

r.l r.2 r.12
e2
Theterm — isconsidered as the perturbed term, since omitting this term, the above equation can be exactly

r12

solved. Hence, the perturbed Hamiltonian is written as.
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HO=S (2.1.45)

Separately writing the unperturbed wave equation into two equation by substituting.

v (X121, %,Y,2,) = 07 (4 Y1 2)U5 (%, Y52,) oo (2.1.46)

In polar coordinatesry, 61,01, and r,,0,, ¢, to the normal state, the wave function is:
l//1(83,100 = l//foo (r101¢1)‘l’1(8c)> (r202¢2) ------ (2.1..47)

=Up (10,6,)uy’ (r,0,0,)
and the corresponding energy valueis:

El(gg,loo = E1(0) + E§°) =-2Z°E,, ....(21.48)

Where Ey, is the energy corresponding to one electron =

5 =13.6eu

Thefirst order perturbed energy function E® is the average value of the perturbation function H® over the

unperturbed state of the system. Hence, First order correction to the ground state energy is

Y= [y )z = j [‘#’100 100 ]2d .......... (2.1.49)

“ul ' U](_O) go)dfldl'z

We know that

2%
Z3 2 7( 2)
ul® =y 9 - (—j e ... (2.1.50)
a

2

27r
inwhich p;=—2 and radius r, = ——
a, 4z “me

so that l//1(03 100 =
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and space integral dt is
dr = dr,dr, = rdr,Sn6,do,d¢,r/dr,Sn6,do,dg,

on subgtituting (2.1.51) in energy equation (2.1.50), we get

Evaluation of theintegral in eg.(2.1.52.) may be done by expanding i in terms of legendre polynomials and

12

5Z
hence the value of the integral leadsto avalue of H

for thefirst order correction to the ground state.

The energy corrected to first order isthen given by :
E=-2Z°E, +gZ.EH = —{ZZ2 —%Z}EH

It may be noted that E® is about 31% of E©, since

EY 5ZE,, 5

E, 2Z°E, 8z
The correction is subtractive which is understandabl e since the effect of the electron-electron contraction isto
reduce the electron nucleus attraction. Then the result holds good for two electron atoms like Li*, B, B¥*
etc., ....with Z=345 .......
Summary of the Lesson
Perturbation theory is an extremely important tool for describing real quantum systems, as it turns out to be
very difficult to find exact solutions to the Schrodinger equation for Hamiltonians of even moderate
complexity, most of the Hamiltonians to which we know exact solutions, such as the hydrogen atom, the
guantum harmonic oscillator and the particle in a box, are too idealized to adequately describe most systems.
Using perturbation theory, we can use the known solutions of these simple Hamiltonians to generate solutions

for awide range of more complicated systems.
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Self-assessment questions
1) Caculate the second order energy for the above example.
2) The unperturbed wave function of a particle trapped on an infinite potential well of

bottoma y\© = (E)% an?®*

a a
If the system is perturbed by raising the floor of the well by a constant amount Vg,
calculate first order and second order corrections to the energy of the n™ state.

3) Calculate the first order and second order energy correction in the case of the plane

rotator under the influence of the electric field E*, described by the wave equation .

d?y 2l L
+—|E + uE" cos =0
d¢2 hZ( u ¢>‘/

Where | isthe moment of inertia and p, the electric moment.
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UNIT -2

LESSON -VII Thetimelndependent perturbation
theory — Degener ate case

Objective of the L esson

In the discussion of perturbation theory for non-degenerate states of a system, we assumed that a given
eigen value is associated with a single eigen function representing a single state of the systems. If a given
eigen value is associated with several functions, which represent a multiplicity of state of equal (same) energy,

then we say that this eigen state is degenerate.
2.2.1Theory

An energy level is called a-fold degenerate when these exist o linearly independent wave functions such as

Wity Wi2eensnes Wk, Satisfying the wave equation.

Clearly, we can explain this if we have a eigen function "’I(g)"/’l(gz)"’l(f:)%) ........ wl((?)? corresponding to the

eigen state El((o) . Such that thereis no relation of the form.

Cl‘//(o) + Czl//(o) 1-————- + Ca‘//;((%) -

K1 k2 ~ 0...... (2.2.1)

connecting them, then we say that the o eigen functions are linearly independent and this eigen state ES’) isa

fold degenerate.
We have shown earlier that eigen functions belonging to different eigen values are orthogonal, however eigen
functions belonging to the same eigen value need not be orthogonal.
Let, in the perturbed state, the Schrodinger wave equation be given by
Hy=Ey ......... ....(22.2)

Where H is the perturbed Hamiltonian, E the perturbed energy and  the perturbed wave function.
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Now, the perturbed Hamiltonian can be expressed interms of unperturbed Hamiltonian H© as.

H=HO+HY + 22H2 ...........(223

Let usassume y @,y 9).......y ©) are not orthogonal. We have,

10, 00 <0 D00y - €0 )0y - 0L 0

Consider the linear combination X

civ @scow O Cow @2 x @ (2. 2.4)
so that we have

H Oxl((o) - C1E1(<0)'/’|(3) + CZElEO)WI(((? t ot Cy EQWI((%) ...... (2.2.5)

=E, X}

which proves that the linear combination le is also an eigen function corresponding to the same degenerate

energy value.

We can choose the constants in eg.(2.2.4) in an infinite number of ways, we can construct infinite number of
such linear combinations, all of them being eigen function of the same eigen value. There is nothing unique
about any set of eigen functionsfor a degenerate level.

For instance, we can select the following o linear combination:

\
Xlgg): C11W£2)+C12WI502)+ -------- +Clay/l£?z)
0 0 0 0
XIEZ) = Cle//IEl) + CZZWISZ) T + CZaWIEa) > ceneen2.2.6.
XO-c w@+cC,pu®+... +Cy
/
which may be represented as :

O_%c.,0 (=
W-Louwd (=123....0) ......22.
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These combinations are entirely equivalent to the origina set @ 9.y . Thetransformation

expressed by eq. (2.2.7) is known as linear transformation with constant coefficients. With this background
about degenerate states, we now discuss the perturbation for such states.
The wave equation for unperturbed systemis:

H Oy © C E@y @ i, 228

There are severed eigen states for this unperturbed system, each of them corresponding to several degenerate

eigen function as

Energy value eigen functions.

E¢” ERTZ AR 7 .
E{" YR W e )
ES T T

We can assume the linear combination of eq.(2.2.7), provided the function v is:

vkl =VK +Ay/l(3|')+/12y/|(<|2) ............. (2.2.9)
and  Ey = EI((O) +AES) +,IZE|((|2) reeeeen(222.10)

Now substitute the values of H, vy, E from equation (2.2.3), (2.2.9) and (2.2.10) the perturbed equation
given by
Hy, -Esv, =0 ... (2.2.11)

We have

(HO+ AHO 4 22H@ 4 X + Ay + 22y

Rewriting the above.

(HOXO - EOX )+ A(H Y + HOy O —El Y —EPXO)+...=0......(22.12)
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We now take up thefirst order perturbation equation, which can be obtained by equating coefficient of A equa

to zero.

(e) HyP +HYyw O -EP O -EUXP =0 .o (2.2.13)
Let usexpand ! as.

@ _ (0)
Vi _;Cklklllwklll rrnaan(2.2.14)

On substituting equation (2.2.14) and 2.2.7 in equation (2.2.13)

We get

©)y, ©) 4§ 1), © (0), (0) - & 1) (0) =
Z CklklllH Vo + |Z:1 CyH LT Z CklklllEk Vo IZl'ClllEl(d)‘/’( ) =0
— PETE! _

Since H (O)l//lg?l)l = EIE?)V/IE?I)I we have after recommendation.
kflck' d 1[El((?_) - EI((O)JW(k?'I)l g Elc"l(E'(‘P —H (1))W(k1])1 L e (2.2.15)

Multiplying both sides with "/(k?)* from left, and integrating over configuration space

> Cklklll(Ei(j-) — EEJIV/‘((?R (//l(gl)ldr

k4t
= ,% C“]_{El((::')jl//l((?)* (//l((::'ldr - _[l//l((?)* H (1)W|((::'ldr} .............. (2216)
=1

when kizk, le((?)wl((‘;}ldf -0 and when k=k?, El(((,)) _ E£9) —0 L.H.S. reducesto zero.

Sothat eq.2.2.17.

We use the notation
.............. (2.2.18)
and since ¥,y 9......y\9 are non-orthogonal.

we introduce the symbol A= Iy/l((?)wl((?:l)_df .......... (2.2.19)
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Using the above symbals, eq. 2.2.17 becomes

a 1 1),
) C”]_(EklA'Il— H(-l)l)*o
I'=1 ! !

or % cHl(HEll)l - EEI')AJ_I]_)=O ............ (2.2.20)
I'-1

As there are o eigen functions Y y9,....y (Y we can similarly get o equations like eq.(2.2.20) for
170,1,23.....aa EQ.(2.2.20) represents a system of o homogeneous linear simultaneous equation in o
unknown quantities
In the expanded from, these o equations are.

(Hy -EPAC, + (HY —EYAL)C, +.t (HY —EWA,)C, =0

(H3; - E&})Aﬂ)cm T (Hg% - E&PAzz)sz S (Hgln)( - E]gl)Aza)Cza =0 .. (2.2.21)

(H;lcl - Elg:ll)Aal)Cal + (Hzgc12) - E|£|1)AD£2)CD£2 to + (H(SB - EISL)Amx )Caa = O
To understand how this set of equations is solved, a knowledge of determinations and their use in solving such

equations is necessary, if such a set of homogeneous linear equations is to have non-zero solutions is that the

determinant of the coefficients of the unknown quantities vanish.

e |[HY-EWA, HY-EYA,... HY _EWA_

i =0 (2222
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Using the condition A;'=0 if jI*

= 1ifj=Ay .
We have
(HL-EY) HY . HY
HY  HY-EY) ..., HY
........................ =0 ........(22.23)
HWY HY HY _gW

equation (2.2.22) and (2.2.23) are known as secular equation.

If the secular equation is in diagonal form that is al the elements except on the principal diagona are

(0) are themselves the correct zeroth order wave

zero, then the initially assumed eigen functions Wl(g),y/l@ ....... Yol

functions.

The secular equation in which all the elements on the principal diagonal isin the form.

HY -EY 0 0 oo 0

0 HY-EY 0 e 0
---------------------------- =0 ......(2.2.24)
0 0 O---mn-- HY _EW

thenits expansionis
(HY -ENHE -E) -~ (H —Ed) =0

Theroots of the equation are:
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B = HY HE - L.
In such acasg, dl the coefficients Cj1, Cis........ Ci, turn out to the zero.

Equation (2.2.23) may be written in another useful from by making use of the substitution .

_H0O
HoZHO 40O o g = T i
ij ij ij ij /l
© , 40 o _ B —Ey
and E, —E7 +AEy or Ey =
After taking at /A and using.
HlO) =0 if j
= EY ifj=l.
With the above eq.(2.2.23) becomes
Hll'EkI H12 Hl(x
Ha1 HoBq ----mmmmmmmmmeees Ha,
____________________________________________ =0 ...(222)
Hocl Hoc2 -------------- Hococ-EkI

Observing the equations (2.2.22) and (2.2.23), we note that if a perturbation has non-vanishing matrix
elements H;; among a set of degenerate states, then it will change the wave function in the zeroth order. If the
set of wave functions is non-degenerate on the other hand. The perturbation effect the wave functions only in

thefirst and second orders.
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2.2.2 Stark effect of Hydrogen atom

When an atom is placed in auniform electric field, the energy levels are shifted. The shifting of energy levels
produce a splitting of spectral line, called stark effect which was first observed in 1913 by stark in hydrogen
atom.

Let us consider the first order change in energy levels of a hydrogen atom due to an externa eectric field of
strength, E, along the positive Z-axis which is polar axis whose coordinates are Z= rCosb.

For the hydrogen atom, the unperturbed Hamiltonian is given as

2 2

H(O):%VZ -S (2.2.26)

Where p isthe reduced mass.
Now considering the perturbation H® is taken as

HO — (eEz—+eE1COS0  wvernnn.... (2.2.27)

in which eis electric charge and the externa electric field E.

In case of hydrogen atom, potential energy and wave function are spherically symmetric. Now, the parity of
the spherical harmonics depends on the azimuthal quantum number % as (-1)', which gives odd parity, if % is

odd and even parity when | iseven. Further, even if parities were different, matrix elements connecting states
with different m values al so vanish, making the interaction impotent to split m-degeneracy.

For the ground state of the hydrogen atom(n=1,1=0,m=0), the wave function is spherically symmetric and has
the same form for all orientation, there is no degeneracy.

The ground state wave function for hydrogen atom is

yoccRANOdO9)

(2.2.28)
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The perturbation H® has the odd parity according the eqg. (2.2.29)
@)

100,100 = V100 H Wy 100 0 = 0

In order to understand the above, we have
H® = +eErCosd

The first order perturbation energy in the ground state of Hydrogen atomiis.
Hﬁ))o,loo = +eE[ [ y100(+CosO)y o *Sinédecrdy

where \|I100=R10 YOO (G,d))

and Y oo(0,9)=NgoPo (Cos0) Do()= 1

Jan

1
< do(0) = N P (Coso) =.1

1

Noo=——
2

.
Raolr) {2—} exp(h)
a, a,

2° % —r
a, a,

0

1
NAar
alrnm 2
Now AH &) 1o —+eEj ”rCosH—e r’Snédrdodd =0 ......22.30
000
Thus we observe that there is no first order stark effect to the ground state of the hydrogen atom.
The first excited state (n=R) of hydrogen atom is four-fold degenerate since it has the (I,m) values (0,0),
(1,0),(1,1) and (1,-1). Let the eectric field E is applied along the positive Z-axis which interacts with the
electric dipole moment giving the perturbing Hamiltonian, HV=eEZ=erECosf.

with the help of the quantum number (n | m), the four-fold degenerates states are specified as
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l//(nlm): ¥200.:¥210,¥211+¥ 21-1
As the degeneracy is four-fold. We have to evaluate sixteen matrix elements of H® in the perturbation theory
for degenerate states.

Clearly, we write the above four wave function as .

1
WZOO = Rzo(r)YOO (9,¢) :T Rzo(r) ............... (2231)
7T
3
Wi = Ry ()Y, (0,9) = T R, (r)Cosf ......... (2.2.32))
7T
3 i
Vo = R21Y11 = gRZl(r)SHQG .............. (2232)
Ea
w21-1=Ro1¥i_1= mgng e Roi(r)  wovviiininn (2233)

In these v, has even parity and w10, Wo11, and w11 have odd parity.

Writing down the secular equation with the sixteen matrix elements, we have.

H g))o,zoo -E Hglgo,zu Hgl(go,zu H %)0,21,4

Hglflzoo H £11)1,211 -E H £11)1,210 H £11)1,21,71

Hgll)o,zoo H b o Hibon—E  Hibas 22,34
H21,-1.200 H 211?—1,211 H gi),—l,Zlo H g),—l,Zl,—l - E(l)

Since o and oo have even parity. He element of the secular determinant.
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H i o0 = [WaooH Pypdr =0 oo 2235

Similar to the equation (2.2.4)
Inasimilar way, H £11)1,2111 H 91)0,210 H gll),—1,21,—1 are Zero

That means the four diagonal elements of matrix are Zero since they correspond to same parity.
Now the off-diagonal elements between states of different in values (i.e.)

@ .

H gi)l,ZIO’ H Si)l,Zl,—l; H %)0,211; H %O,Zl,—l’ H 2:;.,—1,211’ H Si),—l,Zlo; H S(.))O,le; H %)1,200’ H %))0,21,—1; andH 21,-1,200

are also Zero since.
J-Ozn exp[i(ml - m)9}1|¢ =0ifm»m .......2236

Hence, out of the sixteen matrix eements, the only two matrix elements remains non-Zero are

H @

260,220@NAH ;10‘200 These two are again symmetrical, it is enough if we valuate one element out of the two.

Let us consider.

H %20 = [WaoH Moot oo 2.2.37

1

Voo :E

The evaluation of Rgb) istaken up from the radial part of the hydrogen atom wave function.

For which Ry /1)

1
3 2
[ 2Z (n—1-1! ' At ' 2zrl . 241,27
R (1) [naoj o P }3] e B
Which in turn gives
3 _ _
Rzo(r):(zi)/z.(z " yexpi- )
a0 (2,70 289
al

so that
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LRV Yo -
Vo = \/_(200) 2(2 ao)eXp(Zao) ............ (2.2.38)

Inasimilar way

[3
Voo = ECOSHRu(r)

N Y. LA
\/;Cose(RaO) .aoﬁ.exp(zao) v (2.2.39)

Where g istheradius of the first Bohr orbit

Substituting the values of (2.2.38) and 2.2.39in eq.(2.2.37) gives.

H o =+ {j(—/(%—) P }

m a, 2a, 4, \/§

exp

) o ) cos “0sn ode ) Tagly (2.2.40)

Now
b4 4 3
[ cos *0sin 040 = ~[ cos *0d (Cos ) = - <20 - =1 _1)_2
; ! 3 3 3 3
2r
jdgb:zn
0
« % .
j(i ) (Z—L Yo' _e ridr
0 2a0 aO ao\/§
[1 )3 ! {(2 x)eaoxaodx using X:L
220 a3 a,

3 T o4
=——|(2-x )ex"dx
S@J;( )



IAcharya Nagarjuna University 1.13 Centre for Distance Education|

Hx o [

%\é"

—a
48-120 042 =-3/3
[ 1= e 3,33,

%\o”

ek
Hg))o,zlo \/— 471- 2”( 3,33

=—-3a,eF, Now, the secular equation becomes

(nim) 200 210 211 21-1

200 -E 3aeE -0 0

210 | -3aeE -EY 0 0 =0
211 0 0 EY 0

21,1 0 0 0 -EW

It can be observed that the states oo, 210 are effected by the electric field and the sates yoi1, War1
remain unchanged.
The eigen states corresponding to the eigen value 3eEay is (Wao-W210)/N2 and the eigen state for —3eEay is

(Ya00tW210)/N2 . The energy along with the eigen states of the n=2 state of hydrogen atom in an electric field

E along the Z-directionisillustrated in Fig.2.1.

\/I
/ Elo + 3eEa, (W 200 =V 210) 2

\ El(O) (\Ilzlo,\ll21-1)

B\ —3eEa (¥ a0 +¥o10)

E

Fig. 2.2.1 Energies and wave functions of the first excited state of hydrogen atom in an electric field E.
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This means that the hydrogen atom in the first excited state behaves as though it has a permanent dipole
moment of magnitude 3a,eE with three different orientations — one state parallel to the external electric field,
one dtate anti-parallel to the field and two states with Zero component along the field. The states y,y; and
1.1 do not posses dipole moments and therefore do not have afirst order interaction with the field. Since the
ground state of all atoms and nuclei are very likely to be non-degenerate, it is expected that an atom or nucleus
in the ground state do not possess a permanent electric dipole moment. This means, atoms and nuclei in the
ground state can possess electric charge, electric quadrupole moment, magnetic dipole moment etc., but not
magnetic pole, electric dipole moment, magnetic quadrupole moment etc.,

Self Assessment Questions
1. Givethetheory of time-independent perturbation theory for degenerate case.
2. Why do we say that the hydrogen atom in the first excited state possesses a permanent dipole-
moment?
3. Why the hydrogen atom in the ground state does not show afirst-order stark effect?
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UNIT -1

LESSON —VIII - TheVariation method
and W .K.B method

Objective of thelesson

Under some circumstances, perturbation theory is an invalid approach to take. This happens when the system
we wish to describe cannot be described by a small perturbation imposed on simple system .in quantum
electrodynamics, for instance, the interaction of quarks with the gluon field cannot be treated perturbatively at
low energy because the interaction energy becomes too large. When faced with such systems, one usually
turnsinto other approximation schemes, such as the variation methods and W.K.B approximation.

In the variation method, one has to make some guess of the wave function, they apply the variation
principle to improve the guess of the wave function and obtain the upper bound for the ground state energy.
Here we do not try to find a correction to aready known unperturbed eigen value and eigenfunction, but
determine the total eigen values and eigen functions as close to the experimental values as possible through a

variation calculation.
2.3.1 The Variation method
(a) thevariation principle and theory.
(b) application to ground state of helium atom.

Thevariation principle
The essentia idea of the method is to evaluate the expectation value <H> of the Hamiltonian

operator H of the system with respect to atrial wave function . In order to explain the principle involved

to evaluate the energy of the ground state, let us consider the wave equation as

Hy =Ey 2.3.1)
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e h? .
Where the Hamiltonian operator H = — 2—V2 +V (r) and E isthe energy value.
m

Multiplying eq.(2.3.1) with and integrating over all variables

Iw*Hl//dr = Iw*Ewdr = ij*wdr

if ¢ is normalized wave function

the equations give the expectation value of the energy of the system in the state represented by the wave

function v .

The approximate wave function w can be obtained by variation principle. In this approach, we guess a wave
function and calculate the energy value .The energy of the system is correct , if the trial wave function is
correct. In accordance with principle of variation, if the true energy is E, and the correct wave function
then any other acceptable wave function wi ,indicates which trial wave functions is close to the true wave

function to give the best energy value. For a proof of the theorem , expressthe trial wave functiony as alinear

NS N

combination of the true (but unknown) wave functions

W=06 + 0,0, Fogd o oady (2.3.49)

where oy, oy , O3, .cet..... an  arethe arbitrary parameters that can be varied to minimum in the

energy .for our convenience, let us take
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\P:(X1¢1+(12(I)2. e (235)

subgtitute thisin equation (2.3.2), we get

E= J-(a1¢1* +0£2¢;)H (¢, +a,,)dr
) J(al¢l* +a2¢;)(a1¢1 +062¢2)d1'

(9 Elo! [ ;4,07 + 20,0, [ ¢, 6,07 + a3 [ 4,6,d7]

=af [ §; Ho,dr + 2,0, [ $;He,dr + a2 [ ;Hp,dr........... (2.3.6)

as we require the minimum value of E, it is necessary to minimize the energy E
with respect to the parameter o; and o,

differentiating with respect to o; , we get.

E[2a1j¢£¢1dr+2azj¢£¢2dr]+§7i[afj¢f¢l dr + 200, [ g1 4,07 +
a,” [ $1¢,d7] =20, [ $; H, dr + 201, [ ¢ Hg, r]......... (2.3.7)

inasimilar way, differentiating with respectto a,, we get
* * aE 2 * *
El20t, [ §;¢,d7 + 20, [ 9, 9, 0]+ ——[," [ 916, O + 20,00, [ 9,07 +
2

azzjgb;gbzdr] = 2a1j¢1* Hg,dr + 2a2j¢; He,dr]eooonne... (2.3.8)

in order to minimize E with respect to a1, and a, , then

and using the symbols

Hy=[oHpdr (2.3.10)

Aij = J'ﬁb.ﬁb, dr
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applying the equation (2.3.9) and (2.3.10)to(2.3.7) we get

(H,-EA ), +(H, —EAL)a, =0............. (2.3.11)

similarly, from the equation(2.3.8), we get after minor rearrangements for Hp,=Hxand Ap,= Ap for
convenience and symmetry.

(H,, —EA,)a, + (H,, —EA,,)a, =0............... (2.3.12)

equation(2.3.11)and(2.3.12) together are called secular equations.

In our case , we consider only the first two terms of the variation function v, we can generaize to other term

aso.
Equation 2.3.11 and 2. 3.12 can be solved for ad provided the determinant for trivial solutionis
H,-EA
Hll _ EAll 12 12
=0 (2.3.13)

H21_EA21 H22_EA22

in amore general way, for n independent functions the secular equation in the form of determinant is
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2.3.2 Application of Variation M ethod

Application to the ground (normal) state of the Helium atom

As an example, we take up to obtain the energy of Helium atom in the ground state.
Helium atoms consist of electrons of charge ‘-€', and nucleus ‘ +Z¢'.

Thetotal potential is

V=Vi+VotVa o, (2.3.19)
-e M2
: : ) -e
Where the potential energiesare given as: \E//
r 2
2 2 2
Vl _ Ze | — /e ’ e (2.3.15) Fig:2.3.1 Helium atom
Iy I, EP
Neglecting the nuclear motion, the Hamiltonian is represented as
32 2 2 2
He " [v2eve]- 2222 € (2316
7T °m r r, 1,
h2
In atomic units, representing the Bohr radius a, = 47 2me?
The Hamiltonian becomes.
2 2 2 2
He Lt [y2 v &2 2 . (2.3.17)
2 a'O aO Rl a'0 RZ a'0 R12

Here €/a, isthe atomic unit of energy.

In atomic units H takes the form

For the case of Helium, suppose one of the electronsis labeled 1, in the ground states, and the other labeled 2

isin the exited state 2.The ground state electron experiences the full attractive force of charge ‘+2€' .
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The wave function is represented as

3
NOC 1L g (CHT) (2.3.19)

N

Even though the electron 2 does not experience attractive force from nuclear, in choosing the trial wave

function for electron 2 istaken as

3
w0 - L 726 2R (qy)........ (2.3.20)

In

These considerations show that good trial wave function must be of the form.

p=vOp0 =Lz fe? R (2321
T

Where Z* is between 1 and 2.
Since W19, ¥,© are normalized wave functions for hydrogen like atoms, ® must be a normalized wave
function.

The expression for H given in eq.(2.3.18) is how modified by adding and subtracting (Z'/R;+ Z'/R,)becomes

1 1 it it
H{_l(v12+vg)_z__z_}_ﬁ_£+i
2 R1 RZ R1 RZ 12
=H%)—(Z—zl NEIS I S (2.3.22)
R1 R2 R12
1 1g2,y2) 2 2
Where, H, =——(vl +v2)————

Since @ is assumed a normalized function, the variational energy Eq, is given as

S T — (2.3.23)

(771
Hp=Hip—(z Z{Rl+Rjgb+R12gb ............... (2.3.24)



IAcharya Nagarjuna University 1.7 Centre for Distance Education|

Let
Hyp=Eg
z Z

I A A VU= Y S (2.3.25)
(I-e),{ AAAaars ijs Ep

Which is similar to two individual hydrogen-like atom wave function; whose energy is

Elp =—(z*) au
Now eg 2.3.25 becomes

1)2 1 1 1
H¢=—(Z )d)—(Z—Z {Rl +§]¢+E¢ ........ (2.3.26)

Now the variational energy Eq, of eq (2.3.23) becomes.

1
E, 4 W-(z- z{— —j¢+—¢}dr
j R R) R, (2.3.27)

~(z*f [ ¢ pdr-(z- le¢(ﬁ+ij¢d +[¢ —¢dr

Since ® is normalized.

[pp*de=1 nr(2.3.28)
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And we write other integrals as.

[_ 1)3 —Zl(R1+R2)]* 1\ )
N1 RN

1) 27 (R+R,) -2Z (R +R,)
__2) D € dr,dr, + [ ———dr,dr, +} ..... (2.3.29)
T R,

2 Rz
Thefirst of theintegral in theintegral |, is
2Z/(Ry)

_[& 2Z/(R,)
= Tdrlj e Z Ry,

:je_

Using the knowledge of gamma functions and other simple integrals.

27

Ry :
r—RORdy S ¢ HIREAR, Srob. b,

1,
e 22"R

= 1677 RIdR, [ ™ R?dR, ......(2.3.30)

Similarly, the second integral in I, becomes.

Ih=—... (2.3.3))
- @
Inserting these values of integral in eq2.3.29
16 2
I, = (Z 2) 2 = =2Z"....... 2.3.32
(2

Now the remaining integral in eq.2.3.27 is
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1
l, :I¢ —¢dr
2
6 1 1
Zl e—zz Rle—ZZ R,
=( 2) dr,dz,....2.3.33
T R,
The above integral can be evaluated using the knowledge of Legender polynomia and electrodynamics which
yields the value.
1 6
l, = 2 2) ST __271..2334
- 8 (Zl) 8

Using the results of 2.3.32 and 2.3.34 in eq.2.3.27 We get

E, =—(z'f -(z-z*)2z* +§zl

=(z') - 2zz* + g Z'.(au.)....2.3.35)

| =167% [ e MR AR [e " ™RIdR,

2
T

‘16”{4@11)2 4(2;} 2]

to minimise E,, with respect to variational parameter Z*, we set dE/dZ'=0.

.......... 2.3.30

Thisgives

dE _
dz*
WhereZ! =Z-5/16.........(2.3.36)

221—ZZ+g:0

Thus Z'is taken as the effective nuclear charge of helium. The factor 5/16 is called the screening factor.
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Substituting the Z* in the energy equation 2.3.35

5 5
Egp =2 -222(Z2*+ =)+ =7 au
¢ =(2) ( 16) 3
=-(ZY? AUt e, (2.3.37)

=2 (Z")? Exs(H) [ EorE (H)=-1/ 2] which is ground state

energy of hydrogen atom in the 1s orbital

=2(Z-5/16)°E1s (B)

=2 (% )2ELH (.. Z =2 for Helium atom)

=2 (% )? (-13.60 eV) (..E;=-13.60 eV)

=-7745¢eV

Which is the approximate ground state energy of helium atom. Further, the energy of the ground state He" ion

iS4E;5(H) = -54.40 V.
Hencetheionization potential of heliumis (-54.40) —(-77.45) =23 eV.
The experimental valueis 24.58 eV.
By introducing more parametersin thetria function, the accuracy may be improved further.
2.3.3 The WKB Method
(@) Validity of the Method
(b) Principleof the Method

(c) Connection formulafor penetration of a barrier.
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I ntroduction

Wentzel-Kramers-Brillouin (WKB) approximation is a final type of time independent approximate
calculations. It appliesto only situations in which the potential energy is dowly varying function of position.
Problems of one dimension and also of three dimensions reducible in one dimension (radial) are solved by this
method.

A dowly changing potential means the variation of potential energy V( r ) dightly over severd
wavelengths ( De Broglie waves) of the particles

The De Broglie wavelength associated with a particle moving with energy E in aregion of potential
Vis

P (2.3.38)
p

[2m(E -V)|2
Since 1 m7P=E -V

m?v?= 2 m (E-V)

p=mv= 1/|2m(E —V)|

The propagation constant

k= 27” =(2m/ 1) [E-V (x)]¥2

P=17k = Pl (2.3.39)

Mathematically slowly varying potential can be expressed by the conditions

1 dk
<

— <1
n? dA
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substituting value of k from (2.3.39), we get

X el 2.3.40
[2m(E-V)]*'"? = [47(E-V)] = ( )

This equation gives the validity of W.K.B approximation.

Principle of the method

W.K.B. method consists of inintroducing an expression in the powers of . Thus Schrodinger equation ( at
least in some regions of space ) is reduced in its classica limit.  However, the method has wider range of
applicability than the classical approximation, because this procedure can be carried out even in regions of
space where classical interpretation is meaningless ( region E <V isinaccessible to classical particle)

Let y (x) bethewave function satisfying Schrodinger’ s equation.

......... (2.3.41)

Let the solution of egn. (2.3.41) be of the form

o =Ce . (2.3.42)

Where Cis constant, ¢ (x) isyet, an undetermined function of x, we have

8_(0 = it %

OX OX
2
824’ C ip(X)/h of ’ C ip(X)/h ﬂ
—=—8 J—1 + —e N 2.3.43
ox* h oX h OX ( )
... 0¢ : o¢' . .
now substituting 8_ = and 8_ =¢ equation (2.3.43) takes the form
X X

2 .
8_(0 :£ei¢(x)/r« .(¢‘)2 + Cl_ei¢(x)/h q)
aXZ hZ h
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o

X2

Substituting values of ¢ and from( 2.3.42) and (2.3.44) in (2.3.41), we get

—}_%ew)m Py C%e“”(x)’h i +§-,_T[E ~V(x)]Ce?™'"=0

or C g0 |- ¢2+ing"+2m(E - V)| =0

hZ
As y = Ce"™'" 0 therefore above equation gives
ing"'—¢'>+2m(E-V)=0 .......... (2.3.45)

To get an approximate solution of (4.8), we apply W.K.B. method and hence expand

¢(x) inpowersof 7 i.e,

¢(x>=¢0(x>+h¢1(x)+%¢;(x)+———— (2.3.6)

where the subscripts ¢’s are independent of 7. Let us assume that on account of the smallness of 7, the
first two termsin equation (2.3.46) give a sufficiently good approximationto ¢ .

Differentiating equation (2.3.43), we get

hz ™
$09= 500+ R8I+, (9 +-———-
- (2.3.47)
§00 =4+ 19 0+ g, (R + ===
_/

Substituting valuesof ¢' and ¢" from (2.3.47) in equation (2.3.45), we get

. , A 2
in [%+h¢"1(><)+3¢'2(x)+——]- [¢c')(x)+h¢1'(x)+%¢'2(x)+——]2+ 2m(E —V) =0....(2.3.48)

collecting coefficients of various powersof 7, we see that up to second order in

#i, weseetheresult is

[2M(E V) -2 ]+ hig"—20' 5 |+ n%[i6,]+ n7[ig,"~4'2~¢'s 6", 1=0 ....(2:3.49)
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in order to that equation (2.3.49) may hold identicaly in 7 , the coefficients of each power of

A must vanish separately. This requirement leads to the following leads series of equations.
2m(E-V)-¢'2=0 ()

i¢"0—2¢"$,=0 (D) o 2350

ig,"~¢'1—¢"5 ¢",=0 (c)

and so on..

These equations may be solved successively. That is the first equation ,¢, in terms of (E-V),the second
equation defines¢ ; the third defines ¢ , intermsof ¢ ;and ¢, etc..

From equation (2.3.50a), we obtain,

$'o=t J2(E-V) ... (2.3.51)

integration of above eg. gives,

b, = if L2mE-V)dx (2.3.52)

where X, is an arbitrary fixed value of x.

From equation(2.3.50b) we obtain

id,
¢, = 2_0-
Do
integration of above equation yields
é, = IE logd +C, e (2.353)

where C; is a constant integration. This result isinconvenient if ¢; is negative. Therefore keeping in mind the

log of negative of function differs only by an imaginary constant from the logarithm of absolute value of the

function. We replace egn.2.3.53 by
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¢, = IE logg[+C, (2.3.54)

Where C,is an arbitrary constant.

Similarly

m| —— L, mA =
ox) 1 ) g e (2.3.55)

9, 3 3
2m(E -V *x[2m(E-V):

_1

= :
From equation 2.3.54 we see that ¢, is represented as logarithm of |¢0'| therefore it is not, in general, small
compared with ¢, . Consequently ¢, and ¢, both must be retained. On the other hand from egn.(2.3.55) we

see that ¢, will be small whenever dv/dx is small and(E-V) is not too close to zero. Further it can be seen

easily that the smallness of the higher approximations (¢, , ¢, ....etc) requires the smallness of all derivatives

of V. Thus the W.K.B. approximation will be suitable in cases where V is a sufficiently smooth and slowly
varying function of position.

Thus the approximate W.K.B. solution of egn. (2.3.45) may be expressed in the form

¢ = ¢O(x+ % inlogg, |j ........ (2.3.56)

assuming constant C, is absorbed in ¢, (X)

Substituting value of @¢(X) from (2.3.6) in equation (2.3.42) and rearranging the result, we finally obtain the
approximate solution ¢5app of eguation (2.3.44) in the form

¥ .p = C[2M(E —v)]*% {Aexp(i%jjx- (\/ﬂE—i\/))dx} ........... (2.357)

X
Where C remains arbitrary. The two solutions contained in (2.3.57) and differing in sign of the exponent are

linearly independent, and hence the approximate general solution, according to W.K.B. approximation is
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Vg = C[Zn(E—V)]i[[Aexr{%ji(\/m)de +[Bex;{%j£(m)dxﬂ ... (2358)

where A and B are arbitrary constants. The positive exponential corresponds to a wave moving in the
positive direction and the negative exponentia corresponds to a wave moving in the negative direction. For
the special case when V() is a constant, these reduce respectively to the plane waves.

ipx —ipx

e’” and e *

The alternative from of equation (2.3.58) may be expressed as
1 X
Vi = CL2{E V)] 4 cos[ /20{E V] e+
X

Where C and ¢ are arbitrary constants.
The approximate solutions (2.3.57) and (2.3.58) of the Schrodinger equation are usualy called W.K.B. v -

functions.
Connection Formulasfor penetration of a barrier

W.K.B. method is applicable to the problems only where the potential function does not change too rapidly,
because in the regions approximation considered do not apply. In the problems where the potential function
vary slowly in some regions, so that W.K.B. method is inapplicable; we find the solution in the regions of
inapplicability of W.K.B. method by some other methods and carry it to the regions where W.K.B. method is
applicable. In order to connect these two solutions: we need for the connection formulas.

To treat the problem of barrier penetration where W.K.B approximation is valid, we must find how to connect

solutions in the region where V>E with those where

V(X)

E>V
1l | V>E

X = a(E-V)
Fig2.3.2
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Consider the potential barrier shown in Fig. 2.3.2 Suppose the energy of particle is such that E =V at point
X=a.

Classicdly, the particle should slow down to zero velocity at this point and then turn back. Quantum
mechanically we know that the wave penetrates some distance further into the barrier. Obvioudy we cannot
use the W.K.B. approximation in the region near x=a because when E=V, the condition for its applicability
breaks down.

Thusif we start with a given solution at some distanceto theright of x =a (in| region) say,

P, dx

Jpooa h
where P, = 1/2r‘n(V - Ei

From W.K.B. approximation method, we know that a sufficient distance to left of x =a ( in region Il), the

(2.3.59)

approximate solution will be

A ¢ Pdx B ¢ Pdx
p~——expi|—— |[+—exp —i| =] ....... (2.3.60)
\/Epuhj\/pz (IhJ

@ where P, = J2m(E-V)and A and B are unknown constants . The values of A and B can not be found By

W.K.B. method alone, because they are determined by the nature of the solution in the region of
inapplicability of W.K.B. method. To obtain the values of A and B we need an exact solution near x = a; but
it istoo complex problem to be solved. If the W.K.B. method is applicable at small enough region x = a; then
the potential function can be represented approximately by a straight line with in region, with slope equa to
that of potential curve at the classical turning point x = a. asE =V, we can write,

V- E=C(x-a),
. oV . . , .
Where C is a constant equal to 8_ . Thus in the region x = a, the Schrodinger equation reduces
X X=a

approximately to
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8(0 2
oxX? h

m
— C(x-a)p=0 ... (2.3.61)

This difficult equation can be solved by Bessel’s function The solution of the equation (2.3.61) is carried far
enough from x = a, so that W.K.B. approximation becomes applicable. In this way, we may determine the

constants A and B. Here we shall simply results without going through the complex procedure.

Case (A) Barrier totheright

Let V>E, totheright of x =aand P, = 1/2r’r_1(V - Ei P = 1/2r’r_1( E—Vi

Let us consider that far to the right of x= a, the W.K.B. approximate solution, which is exponential, Viz.,

¢ Pdx
Si|== e (2.3.61)

for to the left to x= a, the connection formula states this sol ution approaches,

0, ~—2_cos _.j P 7). (2.3.62)
VP, h 4
Thus the connection formula may be expressed as
¢ Rax ¢ P,
R ! 2 x 7)o (2.3.63)
Jor o

similarly, if the approximate solution is an increasing exponential to the right of x= a, the following

connection hold.
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Case (B) Barrier totheleft

For the solution which decays exponentially to the left of x=a, we obtain the connection formula.

‘P, dxj

If the solution increases exponentialy to the left, we obtain the following connection formula.

P, dx)

It may be noted that the connection formulas enable us only to obtain the relation between the solutionsin a

........... (2.3.65)

1.[IPdX7r

oo U jr

Conclusion and summary

region at some distance to the right of the turning point x=a, with those in a region some distance to the left.

In order to obtain the form of the wave function in the intermediate region, we have should consider the exact
. . . 1
solution, which involves Bessal functions of order — .

For applying W.K.B. approximation, the following requirements must be satisfied.

1. On either side of the turning point, there exist regions when the potentia functions changes dowly so
that W.K.B. approximation is applicable.

2. In the region near the turning point x=a where W.K.B. method becomes inapplicable, the kinetic
energy can be represented approximately by a straight line (E-V) = C(x-a). In order other words the
potential should not undergo a large fractional change in slope within this region. Inside the barrier

W.K.B. approximation beginsto hold after.

JX'Q/Zm(E—V)dx/h

becomes appreciably greater than unity.
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In this lesson, we develop another approximate method, which gives a direct solution of Schrodinger equation.
This method, which is usually referred to as W.K.B. method is applicable to potentials which are such that the
Schrodinger equation is separable to one dimensional equation,

further, the potentia should be dowly varying we obtain the W.K.B. solution of the one dimensional
schrodinger equation. Those solutions are used to describe the quantization condition which determiner the

energy values corresponding to bound state problem.

Conclusion We have shown that the quantization condition is closely related to the Bohr-Sommerfield
guantization condition of the old quantum theory.

Self assessment questions

1 Apply the W.K.B. method to evaluate the energy eigen value corresponding to the
Harmonic oscillator potential. [V(/l) = % mo 2/12}

2 Show that the W.K.B. energy levels corresponding to the free fall of aparticlein

1 3) &
earth’sgravitationd fieldisgivenby E, :§|:9[n+zj ﬂzmgzhz:l

3 Use the variation method to estimate the ground state energy of aparticlein the

potation. V=o A<O
V=Ko A>0
Choose 1e~** asthetrial wave function.

4. A particle of mass mis bound by a potentia V (r)=-V " where 72 /mvoa2 =0.75
Use variation method with the trial wave function € to get a good limit on the
lowest energy eigen values.

5. Calculate the transmission probability of a particle through a potential well with the
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Help of W.K.B. method.
6. Evaluate the energy values of a) normal state of hydrogen, b) normal state of helium

using variation method.
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UNIT -2

LESSON — I X - Time-dependent perturbation theory

Objective of the L esson

Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a time-dependent
perturbation v(.t.) applied to a time independent Hamiltonian H°. The eigen functions and eigen state of this
perturbed Hamiltonian is also time-dependent.
We are interested in the following quantities:

() Time-dependent expected value of some observable, with a specified initial state.

(i) The time-dependent amplitudes of those quantum states that are energy eigen ketsin the

unperturbed systems.

The first quantity is important because it gives rise to the classical result of a measurement performed on a
macroscopic number of copies of the perturbed system. The second quantity looks at the time-dependent
probability of occupation for each eigen state, which is particularly useful in laser physics, where one is
interested in the populations of different atomic states in a gas where a time-dependent electric field is
applied.

2.4.1. The method of variation of constants

Consider the time-dependent schrodinger wave equation of an unperturbed system.

If the unperturbed system is conservative, then the Hamiltonian H® depends only on the space variable r

but not on timet. Now, for such a case, the total wave function y/,?(r,t) including timeis

—27iEOdt

v )=y (e ]
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ie (O);
=, O T ) (2.4.2)

Where E,(P) isthe energy of the stationary states and wﬁf’)(r) are eigen functions of the time-independent wave

equation.
1)y O )0, Oy 24.3)
The genera solution of eg. (2.4.1) isalinear combination of solutions representing different stationary states.
ie) vOr=sam Ot (2.4. 4)
n

0

If Wgo)(r) is normalized like the functions y/g )(r,t) forming an orthonormal set, then for each n value, [a,]

represents the probability of the system in that particular stationary state. The sum of the sguares of the
mixing Coefficients a, is represented as.

SJa=1 e, (2.4.5)

. * *
since [y wdr=>an an=2|an |2:1
n n

Further |a,’=1, &=1, when the unperturbed system isin the stationary state y/go)(r ,t), then all the

coefficients a(k=n) in eq. (2.4..4) are zero.

Now, consider the wave eguation of a perturbed system.

H(r,t)y/(r,t):—:—g[w(r,t)]............(2.4. 6)

As the Hamiltonian depends on space variables r as well as on time t, the energy cannot be conserved and there
can be no stationary states. For solving eg.(2.4.6) by perturbation theory, let us
take the Hamiltonian H™ as sum of two terms, the time-independent Hamiltonian H°(r) of the unperturbed

system and asmall perturbation H'(r,t) which depends on space variablesr and timett.
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Now, the perturbed wave equation is.

(HO+HO) =L (24.7)

w(X1, X2, t)=Yan (t)w@ (X1, X2...o) ... (2.4.8)
The Coefficients a,(t) being functions of time t.

Substituting eg. (2.4.8) in eg. (2.4.6) gives

s an(OH %) s (+)H 0, )

h 0 ,() 7 oy,
= —_— ) ——— 24.9
A H 0,0 _ _ n
wan mVe =T at

Hence, we get from (2.4..8)

> a,(t)yH "y = —% >yl ORI (2.4.10)
7

multiply eq.(2.4.10) by Wﬁﬁ)* and integrating over the configuration space. We have

- oa_(t
Zjan (t)l//,(no) H (1)1//,(1°)dr = Z J’ a, ( ) (O)dr
oa, (t i -
.~.%:am(t) =—%Zan(t)jy/,(f) HWy Odr ...........2.411,
with m=0,1,2,3,..............

Thus we obtained a set of first-order differential equations involving the functions a,(t). At the time t=0 a

measurement of energy will lead to a particular value corresponding to one of the stationary states of an
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unperturbed system because it is only for stationary states that the energy has a definite value. Let this be

denoted as EI(O) .

This means at time t=0, the wave equation is represented by l//l(o) but not by eg. (2.4. 4)

Hence, at time t=0,

a(0)=1, n=l=m.
a(0)=0, n=l. } ...... (24.12.)
or  a(0)=dm

Therefore, we can find solution of eg.(2.4. 11) numerically but physically it cannot be done, as there are

infinite equations.
If HY(r,t) is small, the rate of change of the Coefficients % issmall in the time interval t=0to t in which it

acts and the relation (2.4. 12) is valid throughout this interval. We now solve the equation (2.4.11) by

neglecting all terms except with n=l, retaining all(t) on theright hand side, we have.

da ()  2ni
? =-=-a(OH W (2.4.13)

Where H |(|1) = n//l(o)* H (1)1,,

Rewriting equation 2.4.13 as

da, (t i
, (1) :—ﬁ.H,(,l)dt
a (t) h
Integrating

j'da| (t) :_27ﬂ j’H(O)dt
dt By

0 0

(ie) logla, (t)]= —% H Ut



IAcharya Nagarjuna University 15 Centre for Distance Education|

o a,(t)= exp[—%m H Pt} ................... (2.4.14).

From eq.(4.1.14), we can understand how the Coefficient & changes during the time when the perturbation is

acting, during the time, the wave function is

a, )y = exp[—%u Hl(ﬁ)t}//,(o) (fromeq. 2.4.8)
=y exp{—sz (E®+H Iﬁ”)+} (usingeq. 24.2) ... (2.4.15)

Now, our aim is to consider the remaining set of equation in (2.4. 11) and find the behaviour of the

Coefficients ay(t) with mxl.

Using theinitial value of &(0)=1, on the R.H.S. of eq.2.4. 11. and neglecting al other a,’s we obtain.

da,(t) 24 o, 0
T dyn R
:_sz o exp{+2Tm Erﬂf)t}H By ) exp[—% E,(O)t} "

da,(t) 24 { 27 (_0) (o) }
So——=——HJexpl—\E~-E,) k| ......... 24.16
dt h ml p h ( | m ) ( )

With H Eil) = jy/gg)* H (1)1//|(O)dr

Let the field act during the time interval t=0 to t in which perturbation H® remains constant and it is zero
before and after the field applied.
Now, we integrate eq.(2.4. 16) during the interval t fromOtot.

We have

.t _27;-,,1
am(t)=—2ijH,(ﬁ)e h (E,(O) = E,(T?))+ dt for mel.

0
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—2ni
ri et (€0 -EN)
h " 2z(E®@-ED)
h

—24 (g0 -EQ))
e h
S ) [ —
EI(O) _ Eéo)

H (1)m| eomt _q ES?) - EI(O)
=— where oy =—————

iomt
- am(t) = —% H r(%l) L (2.4.17)

“mi

Which isthe first order perturbation theory.

Now, we calculate the probability of the particle in the m™ state in the following procedure:

Probability = a:n(t)am(t)=/am(t)/2 ............... (2.4.18.)
1 (lomt Y .—iomt 1)y 1 @ 2
wzml(e m 1)(e m 1)Xh2|Hm||
{2
dam® Pz —— M §n2(omt/2) ... (2.4, 19)
w2n1 h2

Let usploty against x=mm asshowninFig. 2.4.1. It can be observed that the most important contributions to
the transition probability come from those final states with energy E;, which are very close to and centered

around theinitial state of energy E,. The full width of the curve at half maximum A—E -
T

2.4.20
o (24.20)

~Sn(omt /2)

602m|
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Fig. 2.4.1
If we interpret AE as the uncertain by in energy and At(t) is the certainty in time ‘t’, the equation (2.4.20) then
implies that
AE At ~ 21th

This can be explained more clearly asbelow: for maximum value of Y we get.

w2m 02m |\ 2 2 )3l 2 )8

o e ]

1 omlt
= {5

2
j neglecting higher powers of t.

2
The highest peak valueis tT , which can be easily observed from the Fig. (2.4.1).

The peak values we get, when Y is zero.

Snz(wm| %)

(e) — 72/ g
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ep

This means the height of the peak values is proportional to t? and its width decreases inversely ast. Since the
area under the curve is proportional to t, the probability of time during the system in one or another states is
proportional to t, which implies the probability per unit time.
Transition to the Continuum
We have so far considered transition between states and m and I. We shall now consider transitions from a
discrete state m to a continuum of states around E;, where the densities of state are p(m). When the final
states are densely packed forming a continuum, we can replace the summation by an integral. In order to
obtain the explicit expression for transition probability, let us assume that the system is enclosed in a cubical
box. The stationary states of the system are discrete, but separated in energy by an interval, which isinversely
proportional to the volume of the box.

If we consider a box of infinite size, the levels with in the energy interval increases and merge into a
conti nuum.

Now the transition probability for m" state is given as.

2
T am® o nd) 2 ASnZemt/2)

ml 5 Za) 2m|

In this, the probability is largest for the states whose unperturbed energy Eﬁﬁ) isclose to EI(O). Asthe levels

are closer, they form a cluster around EQ)—EI(O) and all the levels in the cluster nearly represent the same

physical properties. Summing al levelsin the cluster and we get the total transition.

Probability (i.e) YJan(t)P

(i-€)Z1am(®) %= [lam() | p(m)dE

Where p(m) is the density of final states and p(m)dE is the number of such statesin the range dE.
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Instead of considering transition to a particular state, we may consider transition to group of states of nearly

equal energies. The probability of transition per unit time is now obtained, by considering the central peak of

4502 (o t/2) N
—————— asthedomain of integration in the interval (-oo,00)
o~ml

© 45n2(omt/2) c
2= om Yy

2

p)= 2 H® 12 o) T
—00 o ml

p2 M
. E=hw, dE=Hdw

- . 2
1 © 4Sn t/2
p0=21HE 2 om | “Snlomt2)y,
—00 o~ml

on integration, we get.
P)=" | HE [ p(m). 2
Trangition per unit timeis
=25 M P p(m)

Which has wide application in quantum mechanics.
Thisis known as Fermi’s Golden Rule. It may be concluded that the transition probability per unit time®

i) is proportional to |Hr(Tli) |2.

i) Is proportional to p(m) density states.
iii) Is non-zero only between continuum states of the equal energy.
Einstein transition probabilities

Spontaneous emission, absorption and induced emission of radiation were satisfactorily given by Direc. In

this we discuss the Einstein Coefficients of emission and absorption of radiation.
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The transition taking place from a non-degenerate stationary state of energy E, to another degenerate
stationary state E|(E,>E)) causing an emission or absorption of radiation of frequency, is given, according to

Bohr’ s frequency rules, as

G = (2.4.20)

The probability that a system in the lower energy state absorb a quantum of radiation energy and goes to the
higher statein unit timeis.

Bl->k P9 )
B._.m is known as Einstein’s Coefficient of absorption. Let N, atoms are present in a state at any instant of
time then number of transition per second is

NI B 5k P9 )
The probability of emission consists of two parts (i.e.) one part independent of the radiation density and the
other proportional to the density.
Since the transition from the upper state to lower state energy causes emission of radiation of energy is.
Ak—s| + Bkl P9Ik )

in which A, is the Einstein Coefficient of spontaneous emission By, is the Einstein Coefficient of induced
emission.
Now, let the number of atomsin this state is denoted by N, then the number of reverse transition is.

Nk [Ak—>1 +Bk 1 P9k ]

The emission and absorption must be equal at the thermal equilibrium.

NI BI—>kp(9yq ) = Nk[Ak—>1 +Bk—>1 P(%K )]

N _ Agsp +By—>1 (%) (2.4.21)
Ni Bl_>kpr(9K)

From quantum statistical mechanics.
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|:‘_l — () —E)|KT =eNIKT (5 499
k

Equating ( 2.4.21) and ( 2.4.22), we get

K IKT _ [Ak—>1 +Bik—>1 (9K )]
Bl—>k P(9KI )

2
or B_sk p(9k1 e KI/KT =Bk _s p(9K )= AK _>|

Ak—>|
h9
Bl_ske Kl |Kt

or p(9y ) = :
—BK->|

The radiation energy, according to Planck’ s law, is

( )_8Hh93 1
PYI= 3 Tex—h9/kD)-1]

Hence Einstein Coefficients are related by

Br>m=Bms>n

AL

and A= 3Bk

Adiabatic Approximation

In the adiabatic case, we expect on physical grounds that solutions of the Schrodinger equation can be
approximated by means of stationary eigenfunctions of the instantaneous Hamiltonian, so that a particular
eigenfunction at one time goes over continuously into corresponding eigenfunction at alater time.

If the equation
H (t)¢n (1) = En (D)¢n ()
can be solved at any time we assume that a system that is discrete non-degenerate state Wﬁﬂ) with energy E,(,ﬂ’)

at t=(0) is likely to be in the state ¢t) with energy el) at time t, provided that H(t) varies very sowly with

time.
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The wave function  obeys the time-dependent schrodinger equation.

inoV _
17 po =H )y
1t . .
v =sa 1) (t)exp[.—f E (1)t }
| 1710

t v
Then Izlh[aI ¢ + A, ]{exp% JE, (t)dt } =0
0
Multiplying by ¢,, we has

2[0r <dnld >+a <dnlé >]exp[%(tj)E| (t)- En(t')dt}o

1.
n

or Op=—38 <¢p|¢ > eXp[%}El (t)- E( )dtIZI
0
To evaluate <¢|dp>, we have

oH
E([)' +Hg =E 4 +Ey

or <¢n |%|¢|>+ En<¢n |¢|>: E|<¢n |¢|>: = <¢n |¢I>

¢n|aH|¢.>

15
or <¢n|¢|>_ E —E,

To find <¢n|¢n>, on differentiating <¢|p>=1 w.r.t. time.
A Charged Particlein an Electromagnetic Field

In order to apply the time-dependent perturbation theory to the charged particle, the effect of electric and

magnetic fields on the particle must be investigated.
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The electromagnetic force on a particle of charge e, and mass m moving with velocity v in an
electromagnetic field characterised by electric field E and magnetic field B (or scalar potential ¢ and vector
potential A) is

F=cE+eVX—B
C

¢ being speed of electromagnetic waves.
<On|¢r>+<n|0n>=0
<dn|dr>=ia(t), a—real.

For new eigen function ¢n = ¢netr(.).

Wehave  <¢y [p>=I(a+y).

Choosing y suitably, we can make this vanish. Hence

o oa oH PO
o0 =320 % 11 x| o (1 ek |

hwnn

Let the System beinitidly at state m and the time variation is small: thus

Op = - ! <¢n Ia;t) I¢5m>emm”t ;n=m
@ann
1 0w ot
an(t)zh <¢n| ot |¢m>e -1
ann

With the above approximation this equation shows that the probability amplitude for a state other than the
initial states oscillates in time and show no steady increase over long periods of time even though H changes

by afinite amount.
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Sudden Approximation
The sudden approximation consists of the change in Hamiltonian discontinuous on different times.

fort<O

Supposethat H=H,
H=H; fort >0

and
Then Hou, = Er?Sn fort<0
Hou, =E. 9, fort>0
[// = ZanuneiiEn %
_ —iEn
and v =xXaue %
E

Equating the two solutions at t(0)=0.
b =22, <Up U, >
The sudden approximation consists in using above equation when the change in the Hamiltonian occupies a
very short finite interval of timet,. Suppose that
H=H, fort<o,
H=H; fort>0
and H=H; forO<t<t,.

The intermediate Hamiltonian H, which is taken constant in time, has a complete set of energy eigen

functions:

H W = B, W
The exact solution can be expanded in terms of the u’ s with constant coefficients.

W= %Cka exp(— 1= %} forO<t <t

Application of the continuity condition at t=0 gives
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Cy :%an <Wg |Wn >:%an<k|n>

and at t=ty gives

b =§Ck<u |K)expl-i(E — E, ko /1)

z /J|k exp (Ek_Et)tOIh}<k|n>

n
When t,=0, the exponentia is equal to unity and b is given by (1).
The sudden approximation will be best only when t, is small. So on expansion exponential term in above

equation.

o a-~ Za<ul{ H—H)}In>

Thus error in sudden approximation is proportional to to for small t,. 1f Hy depends upon time, then
idOHyat can be taken in place of Hito .

If Hi=H, then
it
by = d4gn —>(kIHi = Ho |m)

This can be used even when (h-Hg) is not small as compared to Hy taking t, small.
Self Assessment Questions

1. OQutline the theory of time-dependent perturbation theory.

2. State and probe Fermi-Goden rule for the rate of transitions induced by a constant
Perturbation.

3. Calculate the transition probability per unit time and per unit of radiation. Evaluate
the Einstein’ s Coefficients for spontaneous emission.

4. Writenoteson (i) Adiabatic approximation. (ii) Sudden approximation.
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UNIT -3

LESSON -X - Algebraof Angular Momentum

Objective of the L esson

In this lesson, the quantum mechanical definition of the angular momentum., its operator formis givenin
the beginning. The components of angular momentum and the commutation relations between
[Li_r], [Li_pi], [Li, L;] have been worked out.

3.1.1 Introduction

Angular momentum ( which is described as an operator) plays a much importance role in quantum mechanics
than in classical mechanics ( where it is described as a dynamical variable). This is probably due to greater
importance of periodic motions in quantum mechanics. A periodic motion can be understood as a motion in a
closed orhit, which involves angular momentum. The existence of the intrinsic angular momentum (spin
angular momentum) could also be another reason and another most importance reason is that the angular
momentum is quantized which is not the case with the linear momentum.

Whenever a conservation law holds good for a physical quantum system, the Hamiltonian of the
system is invariant under the corresponding group of transformations. The converse of this statement is not
true as even if the system has a Hamiltonian, which is invariant under a group of transformations, there may
nor be a corresponding conservation law. Wigner showed that al symmetry transformations of quantum
mechanical states can be chosen so as to correspond to either unitary orantiunitary operators. It is unitary
transformations, it has other consequences which may be tested by the experiments.

The present chapter is devoted to symmetries with respect to rotations , which is reflected in the angular
momentum vector operator ( not an ordinary vector as in classicad mechanics ) has been defined by the

commutation rules for its components, the orbital angular momentum and spin angular momentum of particle
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have been constructed , their eigen values and eigen functions have been obtained and the connection between
rotations and angular momentum has been established.

This entire unit is divided in to five parts: i) Deals with the preliminaries of the angular momentum,
commutator algebra etc.; ii) The eigen value problem of orbital angular momentum is described in detail; iii)
In this the spin angular momentum, the pauli spin matrices and their properties have been discussed; .iv) In
this lesson the emphasizeis given to the eigen value problem of tota angular momentum J. v) The last part of
the unit consist of the addition of angular momenta associated with different physical systems and related

numerical problems
3.1.2Angular Momentum oper ator

Central forces are derivable from a potentia that depends only on the distance r of the moving particle from a

fixed point, usualy the coordinate origin. The Hamiltonian operator is

P2 hZ
H=—+V(r)=—V?+V(r)
2m 2m

Since central forces produce no torque about the origin, the orbital angular momentum
L=rxp

Is conserved. In classical mechanicsthisisthe statement of Keplar's second law.

According to the correspondence principle, we must expect angular momentum to play an equally
essential role in quantum mechanics. The operator that represents angular momentum in the coordinate
representation is obtained fromL = r x p by replacingp by (7 /i) V :

L=rx(hli) V

Where 1 = Xi + Y] + ZK

and p, the linear momentum operator = p, i + p, | + p,k =
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Hencel = X \Y

= 1(YPzZPy)+ (ZPxXP2)+K(XPy-yPy)

The three components of operator L, can therefore be written as,

Lx = (YPrzpy)
Ly = (ZPXpy)

= —ih(z%—x%)
L. = (Xpyypd)

N
= |h(xay yaxj

A

~»>
D

v

’
e

X=rsind cos¢ ;
y=rsinb sing;

Z = rcosd

Fig. 3.1.1 the axes along which three components of the angular momentum are resolved
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3.1.2 Thethree components of orbital angular momentum in spherical polar

coordinates

L= —ih —Sin¢i—COS¢COIHi
00 0¢

Ly=—ih —cosq&i—singz&cot@i
00 0¢

L= —in2

o9
2 2 2
And L® = I—x_*_l—y_*_l—z
On substituting the valuesof L, , Ly and L,
2
S A YRR
sino 00 00 ) sin*0 0¢°

3.1.3 Commutation algebra of the angular momentum oper ator

a) with position operators
) [LaX = [(ypzpy).X] =0;
[Lo Y1 = [(YPzPy), ]

=[yp; .yl Hzpy.y] = ihz
and

[LXa Z] = _ﬂjy

Similarly
i) [Ly,x] = [(zpexp.), X]
=2z(px, x) =-ibz; [Ly,y]= O
and

[Ly, z] =ibx
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iii) [Lo, x]  =iby;
Lyl =-ibx;
[L,, Z]=0

in these equations the value of the Heisenberg commutator
[rip]=0if i#]
=ihifi=j
has been used
b) with linear momentum operators
i) [Lx Pd =0;
[L B =[ (yP-zpy), py ]
= (YPz By)- (zpy, Py)
=[y. p1 p.

= ihpx

and [Lx, pz] = [yp P2 {2y, P
= -ihpy
ii) [Ly,Pd = -ibp;
[Ly, P] =0
and [Ly, p;] = ibpx,
i) [LzPJ=ibpy ,
[Lz Pyl = -ibpy
and [L,,P] =0
¢) with angular momentum operators
DILx L] =[(yP-zpy) , (2PeXPy) ]

=( YPz ZPx) - (ZPy, XP2)
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=Y(P22) py —X(z.p2) Py
= -ihypxt+ ihxpy
= ih(xpy —yPx)
=ihL,

Similarly
[Ly, L] =ihLy

and [L,, Ly =ibL,

combining the three relations we have

=| LXL = ihL

i j Kk
= Ly Ly L,
Ly Ly L,

= i[Ly Lo+ j[La L +k[LxLy] = ibL

(d) [L% L] = [LA+LA+L% L
=[L% LJ+[L? L +[L%L)]
= [LyLy, L+ [LoLs L (Since[L%, Lx] =0)
=Ly[Ly, Ld+Ly, LIL#LIL, LIHL, LL,
= L [ihLJ+(-ihL,L,)+L(ihLy) +ibL,L,
=0

Thus the components of the angular momentum operator do not commute among themselves through they
commute with the square of the angular momentum operator. As will be shown, the commutation relations,

[Li, Ljl= ih €jjx L., determine the quantal properties of the angular momentum . That is the eigen values and
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the eigen vectors of the angular momentum operator are completely determined by above commutator and the
general properties of the Hilbert space. Therefore, the commutation relations themselves are taken for the

definition of the angular momentum operator in quantum mechanics.

3.1.4 The angular momentum operator commutes with Hamiltonian
operator( H)

H=K.E+P.E
=T+V
2 2
T:P— = L
2m 2mmr 2
L? =r2p2+h2£(r2£j
or or

2 2
Hence T = —= - h zi(rZEJ
2mr 2mr © or or

Or[L,T] =0 since[L%L]=0
And[L,V]=0
Hence[L, T+V] =[L,H] =0
Thus the operator L commutes with H. For this reason the operator L is aso known as constant of motion
Summary of the lesson

The angular momentum definition and its three components are given in detail. The three components
of angular momenta are also described in spherical polar coordinates. The commutation relations of angular
momentum with the position operators, with the components of the linear momentum are worked out. The
values of the commutator between angular momenta components in pairs have also been obtained and it is

al'so shown that the commutator [ L2, L;]=0 for any value of i.
K ey terminology

Angular momentum, Components of the angular momentum, commutation relations,
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Self Assessment questions

1. Define the angular momentum operator
2. Write the three components of the angular momentum operator in Cartesian and spherical polar
coordinates

3. Obtain the commutation relations
a) the components of the angular momentum. and position coordinates
b) components of the angular momentum and the components of linear momentum
c) between the components of the angular momentum in pairs

4. Show that LXL = ihL

5. Prove that the operator L? commutes with any component of the angular
momentum operator

6. Show that the orbital angular momentum operator is a constant of motion.

Refer ence books

1. A Textbook of Quantum Mechanics — Mathews P M and Venkatesan K (Tata Mc Graw Hill
Publication Co. Ltd., N. Delhi)

2. Quantum Mechanics — Merzbacher E (John Wiley & Sons, New Y ork)

3. Introduction to Quantum Mechanics—Mathews P T (Mc Graw Hill Book Co.,
New Y ork).

4. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986
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UNIT -3

LESSON — XI - Eigen Value Problem Of Orbital
Angular Momentum

Objective of thelesson

In this lesson the eigen value problem of the operators L, and L? are discussed. The problem consist of writing

the two operators in spherical polar coordinates, their eigen functions and eval uation of their eigen values

3.2.1Problemof L,

Consider

Lz= Xpy-ypx

-—ih xi—yi ___________ -(3.2.1)
oy 0 X

0 _0 o 0 00 0 04 (32.2)

oy or'oy 00'oy o¢ oy
Similarly

0_ 00 096 00 629
ox or ox 90 ox 0¢ OX

In spherical polar coordinates
X=rsnb cos¢ ;
y=rsino sin ¢;

Z =rcosH

= x*+y?+2%

Tand =y/x ;
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Tand = \|X* +y°® Iz

Similarly
or X

00 X _%_ -y .o
oX r

&_zsec20.1/x2+y2 L X XPsxPy

Substituting (3.2.4) in (3.2.2), we get

o 0 Xy 0 X

S (3.25)

(3.2.6)

Xy 0
X—=—. —t —
6y 8I’ r Zsecz 0 /XZ + yzl 80 X%CZ ¢ a¢

and

o Xy 8 y2 0

(3.2.7)

y. o=t

0
—+
OX r or

756C 202+ y2 00 X2sec2p 0

then egn (3.2.1) becomes

L= x 2y 2

= Y Y
( L, Y ji
sec’ ¢ x*sec’ ¢ ) 0
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Eigéﬁ value and Eigen function of L,

Let the operator L, actsonthe ¢, givesthe eigen valuem.

L,®=md

®=do exp(% mgbj

O istheegen function of L,

In one complete rotation ¢ changes to (¢ +2r) or n complete revolutions. It will be (¢ + 2zn). During

this process, the wave function remains unchanged.

ie, ®(p+2m)=0, exp(i?m (¢ +27m)

. n . . mn m. . . .
From this 7 isan integer, if n=1, — = — in onerevolution; So on can take only inter times % values.

3.2.2 Problem of L2
L2 =|-2x+|-2y+|-2z

Consider Ly=yp,-zpy
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L2 — hZ y2 82 28_2_ yZ 82 _yi_ g
- 0z? y? oyoz oy oz
Similarly
]
12 = 72 22_2+ 28_2_ 0° —XE— 3
oo ox? 0z° 00X  Ox 0z
i |
0? 0? 0? 0 0
2= oz |yr xS 2 —y S oxZ
g {y ox> oy? Xyaxay yay 8x}
Then
L2 = Li+L3+L2

={(¢+f)§+(%+f)§+(x2+f)§_ g—%—&g—&%—@zﬁ—bﬁ}

I
1
St
N
1
-
N
<
N
|
i
Q|
7\
-
Q|
N—
1

I
>
N
1
-
N
<
N
i
N
‘m
N
|
)
-
|
| I |

but the value of Laplacian operator V ?in terms of spherical polar coordinatesis given by

, 1 0( ,0 1 o (. 0 1 ok
Vie— —|1r " — |+ 55— |9n0— |+ 5
r<or or) r<sin“0 00 00) r-sin“0 d¢
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2 w2 r’oe 2r o 1 o (. 0 1 0?
oo rPVi=—_—_—4+5 — 4+~~~ ldnf— |[+———
r2or r® or r?sin’6 00 00 ) r*sin’0 o¢*
2
Hence, L2 =-—p? _ii(sineijvt _1 0
sing 00 00 ) €in*6 0¢°

LetY " (0, ¢) is the eigen function for the operator L * then L > Y=c Y isthe eigen value equation. Then

2
h? _ii(sinQﬁj+ 12 8\2 +c Y=0
00) sn“0 o¢
Let Y'n(0.6) =1(0)5(¢)
isthe solution of the above equation . By applying variable and separable method, the
above equation can be divided in two separate equations

Multiplying with sin” @ on both sides, the above equation becomes,

oY?

2

0

= =0
00

sin@

(sin@ﬂ)+csin2 oY +
00

Separating the two variables

2
sin@i(sinea—Y) +csin® oY :_8Y2 =m’(say)
00 00 ¢

oY?
op®

+m?6 =0

2
L% 6oy sc--" )y =0
sing 96 o0 sin®6

then solution of the | of above two equationsis

£(0)=——= exp(img)
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The second is associated Legendre polynomial if C=¢ (¢+1)

And henceits solution is

@0 =m
17(0)—\/ Y P™ (cos6)

Therefore eigen value equation for L? is
L2 Y, (0.9)= 6(+1) 22 Y, (0.9) (0.9)

The eigen value of the operator L is/ (¢+1) and the eigen function for L?is

Y, (9,¢)=J @+3(-jm ) P"(cos@)exp(img)

47(1 +m)

thus from the above equation the eigen value equations for the two operators are represented by

A .
Lzyl == = I
i O0¢
Ym

L2y|m:_ﬁal

5" 11 +D)R2y"

Thefirst few spherical harmonics are listed bel ow:
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, +i
Yt =$1/Eei'¢ cosf sing :J;‘/EM
8r 8r r
s 15 i 15 (x+iy)?
Y‘2=_ —e—2'¢sn20=— —_—
2 "M\ 32r REZENE

Under a coordinate reflection, or inversion, through the origin, which isrealized by the

transformation __, ¢+n ¢ — -6, the azimuthal wave function €

ismultiplied by

(-pym @ B7(C0S0) 1y (1y*m hence, Y (0, ¢) ismultiplied by(-1) ', when r i changed to —.

The spherical harmonics are thus eigen functions of the parity operator Up which changesr into —.

Upy (r)=w (-r)

UpY,"(0.¢) = (-D'Y,"(0.9)

i.e,, Y," has definite parity in consonance with the parity of angular momentum quantum number .

The spherical harmonics form an orthonormal set since

2r o i .
jo jY,'n(e,qs)* Y (0,4)sn0dOdp=5,,5
0
We may now define two new operators:
+= Lyt Ly,
L-=LsiLy

Which can be written in terms of spherica polar coordinates as

L,= he' (i +icotd i)
00 00

L= -he“‘)(i —i cot@ij
00 00

The eigen value equations for these two operators are
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Lo Y™ (0.4) =n)(¢~m)(£+ m+D)Y,"(0,9)

L-Y,"(0,4) = 1) (£ —m)(£ —m+1)Y," (0, ¢)
The operators L. and L- arein fact raising and lowering operators for the magnetic quantum number.
Summary of the Lesson

The summary of the problem of the orbital angular momentum can be written as follows:

Quantity Operator form Eigen function Eiagljen
value
.0 1 :
L, ‘lh% 5(9):E9Xp('m¢) mn
2
1 0(..0) 1 & 2+ ~|m || I(I+ D7
| __(s.m_}__ _ -
Lima@ ) sroar] | O ggmy ¢ eos0)

Further the two new angular momentum operatorsL. and L. (which areidentified asraising and lowering

operators) are defined and their eigen value equations also given

Key terminology

The operators L?, L, raising and lowering operators, orthogonality of spherical harmonics
Self assessment questions

Derive the eigen value and eigen function of the operator L,

L Derive the eigen value and eigen function of the operator L2

2. Derive the expression for the kinetic energy in terms of the operator L?
3. Define the operators and write down its eigen value equation

Refer ence books

1.  Advanced Quantum Mechanics—B. S. Rajput (Pragati Prakasan, Meerut 1990)
2. Quantum Mechanics — Merzbacher E (John Wiley & Sons, New Y ork)
3. Introduction to Quantum Mechanics—Mathews P T (Mc Graw Hill Book Co., New Y ork).
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4.  Quantum Mechanicsby V. K. Thankappan (Wiley Eastern. Ltd, New Delhi, 1986
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UNIT -3

LESSON — XII - The Spin Angular Momentum

Objective of thelesson

In this lesson the intrinsic angular momentum or spin angular momentum of the particles is discussed. The
components of the spin angular momentum along the three coordinate axes are defined in terms of Pauli’ s spin

operator. The matrix form of the operators are derived and their properties are discussed in detail
3.3.1 The Spin Angular Momentum

Definition _ In 1920, it was found that orbital quantum properties are unable to explain some
observed troubled features, which were observed in the spectra of alkali halides. The spectral lines of
alkali like atoms appears doublets which could not be explained by the wave function which is a
function of orbital angular momentum alone. The true explanation of the doublet structure of the
terms of alkali halides is explained by introducing the concept of electron spin. Spin (S) is a vector
guantity, with the dimensions of angular momentum. Stern and Gerlach experiment later verified its
existence experimentally. The total angular momentum is a sum of orbital angular momentum and

the spin of electron.
i.e :] = I__+ é
The characteristic values of the component of the spin in any prescribed direction are > & —E . The

spin is measured in the units of 7 and the characteristic values are reformed to as 1/2 and —1/2 . Now we

will seethe interpretation of the theory of spin of the electron given by Pauli.

Aswe have said already, the spin of the electron is represented by the é and besidesthis|et us

introduce an operator o (known as Pauli’ s spin operator) such that
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Spin of the electron is aso angular momentum as mentioned before. Therefore, it should satisfy the angular

momentum commutation relations.

éX é:iS In the units of 7
ERETE P ]/ ——— (3.3.2)

Now introducing (1) and (2), we get

c.0,-0,0,=20, W

c,0,-0,0,=20, (3.3.3)
c,0,-0,0,=20,
al intheunitsof 7
Theeigenvaluesof & are S(St+1) = 12(1/2+1)= U4 -----mmmmmmmm- (3.3.9)
g =§62=%[Gf+65+622] (3.3.5)

The spin operator s are anti commutein pairs
ie o,0,+0,0,=0
Consder 2i[o,0,+0,0,] =0,[0,0,-0,0,]+[0,0,-0,0,]c,
=¢c0,0,~6.0,+0,6:~0,0,6, =0

~lowo,+0,0,]1=0
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ie. [oxo,)+=0
Smilarly [oy o ,]+=0
and [0 ,0,]+ =0
In view of this equation,
Oxoy—0yOx =20,
becomes
2o oy=20,
SO xoy=10,;
Oyo =10
and o ,0x=i0y

3.3.2 spinmatrices o oy ,0;

Let the operator o , be operated onthe ket | k) giving the eigen value a

e o,|k)=alk)
o2k)=a?|k)

Laatl

Therefore, there are two eigen values corresponding to in operator o ,which are £1.

The matrix representation of these eigen valuesis a 2X2 matrix.

B

O x:-Since o, isa2x 2 matrix, oxandayshould also be 2 x 2 matrices since this has two anti

commute.

a
Let o = & 2
a, a,
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Considerc, o 40 ,0,=0

I AT
-z HE 26

:231 0 _00:> e
0—28.4_00 a1_4—

[« %)
.'.Gx =

a, O
and

+ 0 a:s*
O =
a, 0
= = a; and a,=a;
0 a,
Gx = i
a, 0
65 = O a2 O 8.2
a, 0 a, 0

:>|a2|2 -1

We may teke = exp(ia)
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iB
Smilarlyo, =( ?ﬂ eO j
e

oyx0,+0,0,=0

0 e« 0 e“’+ 0 e'? 0
e '@ 0 Jle 0 e '’ 0 Jle ™

(exp(i(a—ﬂ)) 0 J+(exp(i(a—ﬂ))
0 exp( i(a - B)) 0
(exp( i(a = p)) +exp( —i(ax - B))
0 exp( i(a - B)) +exp( —i(a - B))

cos( a — ) 0 (0 0
( 0 COS(a—ﬂ)j_(O OJ

settingazo;ﬂ:%

These matrices are known as Pauli’ s spin matrices.

exp( i(a - B))

(6 %)
(6 %)
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2

01 0 —i 1 0
SO, = o, =] . ando, =
2 oo (0 oo )

3.3.3 Eigen functionsfor o,

C
let (Clj isthe eigen function of o, and aiits eigen value. Then the eigen value equation of o, is
2

1 0)fc o
=a = C, = ac,
0 -1)lc, c,

- ¢, = ac,
orc,c,| = a®lc,c,|=> a=+1
ifa =1

o )50

Ifa =1,c=1,c=0

If a=-1,¢c,=0, c,=1

1 0
The two wave functions are (OJand ( 1] .

e

o and B represent , what is called , pure states.. In an ensemble of spin % particles, it isunlikely that dl

the particles are spin-up or all and spin down. It ismore likely that some of the particles are spin-up and
the others are spin —down. The spin-wave front, or spinor,y corresponding to an ensemble s, therefore, a

linear superposition of o and f:
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C
Y =Cio+ Cf} =
C,

=X+ TA-,

where |c1|2 +|c2|2 =1

The first one is known as spin up function denoted by the symbol (1) and the second one is known as spin

down function. denoted by the symbol (])
Spin multiplets

Consider the system consisting of two spins, the total value of spin s= 1 then the ways of arranging these

three spinsis given by
MY [+t |4
J2

these are called triplet states. In this case the spins are parallel for s=0 the state is called singlet state, the

spins are anti parallel and it is represented by
1
-]

3.3.4 Properties of the Pauli’s Spin Matrices

These matrices are 2x2 matrices
i) Hermitian matrices

i.e ox=0; oy= csyJr 6,= o,

¢ I (O —ij
orexample o, =|
i 0
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0 —i
andot, =| . : henceo,= o’
y y y
10
similarly we can prove oy = csyT and o,= o,

ii) Tracelessmatrices
That means the sum of the diagonal elements of al the three matricesis zero

01 - :
o, = 10 Z:aii = 0and similarly for o, and o, the trace is zero
iii) Anticommutein pairs

ox0y + 6y0x=0 and cyclic

P I e TE

iv) ox o, =i c,and cyclic

ol ol

andv)cx =0'y =c/2=1
0 1\(0 1) (1 0
1 0Jl1 o) |0 1
0 -i)(0 -i) (1 0
i i o 1

0 0
1 0)(1 0) (10
0 -1) (0 1

0 s

Summary of thelesson

The three components of the spin operator are derived in the form of matrices known as Pauli’s spin
matrices. The properties of these spin matrices are discussed in depth. The wave function associated with

the Z component of the spin angular momentum is also derived.
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Self assessment - questions
1. Derive Pauli spin matrices.
2. State and prove the properties of the Pauli spin matrices.

3. Write down the eigen function of the operator o,
Refer ence books

1. Quantum Mechanics — Merzbacher E (John Wiley & Sons, New Y ork)
2. Introduction to Quantum Mechanics—Mathews P T (Mc Graw Hill Book Co., New Y ork).
3. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi, 1986

4. Quantum Mechanics — Gupta, Kumar , Sarma (Pragati Prakasanm, Meerut 1990
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UNIT - 3

LESSON - XIIl THE TOTAL ANGULAR
MOMENTUM OPERATOR J

Objective of thelesson
Thislesson is devoted to understand the algebra of total angular momentum operator J, which is defined
asJ=L £ S. Itisfurther planned to derive the commutation relations of the three resolved components of J

and the operator J.
3.4.1 Introduction

The total angular momentum is defined asJ=L+Sand J,, J, J, are the components of J. In analogy
with the orbital angular momentum operators, we have the relations,

[Dy, J,)=ih 303y, 3,]=ihd,

And [P J=0---------- (3.4.3)
F=F+3%+ K,

Let usnow consider the Eigen value problem of J ,and .

Let A#% and m# arethe eigen values of J and J, respectively. To find out the relation

between A and m, let us construct new the operators:
3.4.2 Definitionsof J,and J.operators

3 =3, +id,

and  J=),idy (3.4.4)
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Then [P J, 1=[F I, +id}]

=[F, 3 i [F 3]

Slmllaﬂy, ‘JZ‘]+ ‘J+ ‘]Z = h\]+(

------- (3.4.6)
JJ-JJ=hd
From equation (3.4.4) J, = J. I
J, -3 i
J="—=—|J, -
Y 2i 2 [ " ‘]

[3, 3] = [T Jtid]

[J 3+ [, 3]

i B [343)]

hJ,

Similarly [J,, 3] = -7 J.

[9. 3] =[(3+3), (3+id) ]

= [Jx I H[Ix Jy]"'i[\]yv J+[J y Jy]
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=i[i7d,]+i[-iRd,]

[J.d] =2h J, (3.4.8)
or [3.,3.]=+2n],

similarly

Now, the eigen value equations of J, and J, are

3, Am) = mi| Am) - — — - ——————— (3.4.9)

J22m) = ArZ| Am) ———————————— (3.4.10)
F and J, can have the simultaneous eigen function | im) since they commute.

Toshow A >m?
Consider the expectation value of ( F*-J,)
e F-F,=F+F=12[33+13]=12[2J"+3.J]
Since, J,J! >0

F- %, , has only non-negative expectation val ues.

ie(Am|3%-JZ/am) >0

M <A——m o — — —— (3.4.11)
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— mliesin between- /1 and V1

Toshow J, and J. arerising and lowering operators
Next we develop again aladder procedure similar to the method employed for the harmonic oscillator. If we

act on Eq. 3.4.7 with J, and J- and apply 3.4.9 and 3.4.10. We obtain the following equations
[3,3,1=£hJ, JJ,. -3, 3, =+hd,

JJ,=3.J,+n), =J,.(J,%h)

JZJi|},m>: J.(J, ih)|},m>

= Ji(mhih)|},m>

=(m+1)AJ, | Am)

J A3, | Am} = (m+D)nd, | Am)

=J,

im) isan eigen function with eigen values(m+1)7.

J 43| Am} = (m-1)aJ_| Am)

= J_|Am)

isan eigen function with eigen values (m-1) 7 .

If the successive operations are performed like thiswe found J. isaraising operator and J. isa lowering
operator but the minimum value can never be less than - ﬁ and the maximum value can never be greater than

+\/I .Let m; and m, are the upper and lower limits of m. ThenJ+| },ml> =0
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and J| im,) =0

JJ = (K-id) (K +d)
=P+ B[, 3]
=F+F- 1,
3, -32-3,)|am)=0
= (A=m —m)n*| am;) =0
=A-m-m =0
3.3 |am,) =2 =mi —m,) im,)=0

= 2A-m;-m,=0
Hence,

A-mf-m=A-m-m,
= (M —m’ —m,+m) =0
= (M +m)(m, -m)—(m,-m) =0
(m,+m)(m,-m -1 =0

= m, =-mandm, =m, +1.

The second possibility isruled out  since the lowest value m;, can never be more than highest value m;of m.

Wetherefore have my, = -my
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my= - m, = | (say)
=>The eigen value of J, liesbetween - to +j.
Then
A-m}—m =0
= A=m(m, +1) = j(j+1)
01 R — j-1,j e (3.4.1)

thus, for agiven value of J, the eigen values of J, are mii = Ji, (j-1) % ,(-2) i ,-------- - (-1 7,
h ,Theseare 2j+1 in number, and there are thus 2j+1 orthogonal eigen vectors for every value of j. Since 2j+1

can be any positive number, we seethat for every dimension it is possible to construct a vector space that is
closed under operations of the algebra of the three operators J,, J, J, that are constrained by the commutation

relations.

Since the value of j, the maximum value of the projection of the angular momentum vector on the z-axis, fixes
the length of the angular momentum vector uniquely, the latter is usually specified by its j value. Thus the

statement: the angular momentum of the particleis 3/2, means that the
. 35 . :
angular momentum vector is of length 22 7. Thislength can, however, never be observed directly

For agiven value of j, there are (2j+1) linearly independent vectors | ] m> , corresponding to the (2j+1)

different values of m given by (11), which are common eigen vectors ¥ and J - f

one of these vectorsis given, the others can be generated from it by the repeated application of J . and J-.
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let (2j+1) =M (say) an integer .

o 3.5
and A=j(j+)=0,—,2,——————
j(j+1) 1272

Now consider, the eigen value equations of J, and J. operators,,
J, | Am) = ¢, (Am)7] Am+ 1)

J_ | Am) = ¢, (Am)A| Am+1)

(Am]3,3_[am) = |c?

n2(xm +1[am -1)
(Aml3? - 32 - rJ,|am)
=(L-m2-m)n?

= e, P=22-m?-m

= j(j+)+m?2-m

=?+j+m?-m

= (j+m)(j-m)+(j-m)

lc.] = (G=-m)(j+m+1)n

Similaaly = c_ =.4/(j+m)(J-m +1)n
23 am) = (= m)(G+ m o+ 1n|am+t)
and) _[am)=/(j- m)(j- m+1)a[rm -1)
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3.4.2 Matricesfor J%and J,

Matrix element (d.)m? m= </1m1 J.

/1jm>=¢(j —m)(J+m+1)s ,

mm+1
Consider j=1/2 then J’ eigen values are j(j+1) 7% = 3/ 4h°

J, eigen values = +1/2 and -1/2 (since (2j+1)=(2* 1/2+1=2)

Therefore
3., )
o 32| 4 (01
4
similarly J = 01
100
h
oz Slr o) (7 )
0 —h| 2(0 -1
2
01
JX:E(J++J )=E
2 20 0
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Summary of thelesson

Thetota angular momentum operator Jis defined. The commutation relations between the three
components J and the operator J* are derived. The operators J, and J. are also defined and their commutation
for agiven value of J, the eigen values of J, are mi = J#, (j-1) #,(-2) i ,-------- - (-1) 7,4 7, Theseare
2j+1in number, and there are thus 2j+1 orthogonal eigen vectors

for every value of j. Since 2j+1 can be any positive number, we seethat for every dimensionitis
possible to construct a vector space that is closed under operations of the algebra of the three operators J, | J,,
J, which are constrained by the commutation relations n relations with operators J and J* are al so derived.

The eigen value equations of the operators J. and J. have been obtained. The matrix representation of

operators J, J, &, Ji. J. Fhas also been presented.
Key terminology
Total angular momentum operator J-The operators J, and J., the operator J*-Eigen val ue equations of
the operators J, and J-The matrix representation of operators J, J,, J, J. J., F
Self assessment questions
1.  Definethe operators J, and J. and show that these two operators commute with the operator J*
2. Obtain the commutation relations between the operators J, and J.

3. Obtain the eigen value equations for the operators J, and

4.  Givethe matrix representation of the operators J, J, J, Ji, J. F by taking J=1/2
Refer ence Books

1. Quantum Mechanicsby V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986
2. Quantum Mechanics— Merzbacher E (John Wiley & Sons, New Y ork)

3. Introduction to Quantum Mechanics — Mathews P T (Mc Graw Hill Book Co., New Y ork).

s

Advanced Quantum Mechanics—B. S. Rgput (Pragati Prakasan, Meerut 1990)
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. Quantum Mechanics L. I. Schiff (Mc Graw Hill, Tokyo 1968)
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UNIT -3

LESSON - X1V The Addition of Angular Momentum

Objective of thelesson
In this lesson the problems related to the addition of angular momenta associated with different
systems have been discussed. The Clebsch -Gordon Coefficients dso known as Wigner coefficients have
been evaluated for different values of J. Wigner- Ecart Theorem which is most widely used in the evaluation

of transition probabilitiesin the radiation emission problems has a so been included

3.5.1The Addition of Angular M omentum

If two distinct physical systemsor two distinct sets of dynamical variables of one system ,which are described
in two different vector spaces, are merged ,the states of the composite system are , vectors in the direct
product space of the two previously separate vector spaces. If J; and J, are the angular momentum of the two

physical systems, Then

J=J, + J isthetotal angular momentum of the entire system. Ji, Jiy, Ji, are the components of J;, Jo

Jy, J; components of J.

Ji=dx+ Jx and soon
Each component of J; commutes with each component. The total component of J satisfies the angular

momentum commutation relations:

[B3)=ihd, 5 [3, 3] =ihd ; [3,3]=ih] (35.0)
Now, the problem of addition of two angular moment consists of obtaining the eigen values of J, and J and

their eigen vectors in terms of the direct products of the eigen vectors of J;, and J2and of J,and F,. The
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normalized simultaneous eigen vectors of the four operators 32 Fo, Jiy . b, can be symbolized by the direct
product kets.

| j1j2mlm2> =| J1m1>| j2m2> (35.2

These congtitute a basis in the direct product space . These form a basisin the product space . From this basis

, itisdesire to construct a new basis with the eigen vectors of J, and F.

Corresponding to three angular momentum vectors J;,J, ,J we have six hermitian operators . TN S T

X, F and J, out of these %, and J%, commute with every component of Jand F also .

e [d, Bl =[ &, Pl = [FF]=[F F =0

But J* does not commute with J;, and J,, we therefore have two sets of simultaneous ei gen functions
.They are

1. P, Py, Xy
2. ¥, 0 P, 0,

3.5.2 Clebsch-Gordon coefficients

3. Thebasis vectors corresponding to first set of vectors, 1, F, Ji; , L.
is denoted by

| iadomm,) =] jmy)] j,m,) (3.5.4)

or briefly with | m,m, )

4. and corresponding to the second set, 7y, Jo, ¥, J,
itisgiven by

| j1i, im)are briefly by | jm)
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We thus have \
‘]12| jljzrrﬁm2> = jl(jl +1)h2| j1j2mlm2>
| Jlmum, ) = myfi| , j,mm, ) N (35.5)

‘]22| j1j2rnlm2>: jz(jz +1)h2| j1j2mlm2>

‘]22|j1j2rnlm2>:rnlh| j1j2mlm2> /

3 Juipim = (G+08% Jyi,im
Jz| j1j2jm>=mh| jljzjm> ----------------- (3.5.6)

‘]12| j1j2jm> = jl(j1+1)h2| jljzjm>

‘]22| jlj2jm>: jz(jz +1)h2| jljzjm> )
We shall now write the transformation equation between | j, j, jm) and | j, j,mm,) as

|j1j2jm> = Z|j1j2m1mz><j1j2m1m2|j1j2jm> """""""" (3-5-7)

mm,
Herej,, j» can be assumed to have fixed values and m;,m, are variables.

In the above equation, the transformation coefficient

(iydomum, | jyj,jm) =Chl e (35.9)
is dso called Clebsch-Gordon coefficient or Wigner coefficient. The problem of addition of angular

momentum now consists of founding the above coefficients. Occasionally the above coefficients can aso

written as
(iiamm, | Jyd, im)= (mm, | jm)

With j; and j, are the maximum values of m; and ms.
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Now let us apply the operator j,=j1, +j» onthetwo kets, then we have
I iizim) =7 j,j,im)  =mn n;zliljzﬁhmz><1'1]2”1m2|ilizim>
Smilaly — (j,j,mm,|(Jy, +3,,)) =(my + my )] j,j,mm,)
Or (jyiommy |[i,| ivizim)= i, j,mm, | i, jm)
ANd { jyj,mum, [3y, + 3y, 1o im) = (Mg + my)a(j,j,mm, | juj, im)

(iyJ,mm, | j;i,im)=0 unlessm=m,+m, --(3.5.10)

Now apply J.on | jm), we have [mm,)J_| jm) =|mm,)J, +J, | jm)

ie J(i+m(-m+)(mm,|jm-1 = (i, - m)(j, + m +(m, +1m, | jm)+

\/(Jz _mz)(jz +m, +1)<m1m2 +1| Jm>

Similarly operating J, we get

VG =m)(j+m+D(mm, | jm+1) = (], +m)(j, —m +2)({m, ~1m, | jm)+
VG, + M), —m, +1)(mm, =1 jm) e (35.12)

Now in thefirst of the above two equations, if we let m=j, m;=j; then
my+1+my= m=> my-j-j1-1

Then, the first equation given

V2j(i, (i~ =D IG-DW (o= i+ i =DCo+ i = i) (Jai— Ju] i) - (35.13)
And let in the second equation m= j-1,my =j; ; My+ml —1=m =>m,= j-j;

With this, we have,(from the second equation)
V215 =10 ) =G+ i =10 o=+ i+ i — 1 125G, -G — ) Ji~) - (35.14)

These equations are known as recursion relations.
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According to condition (35.13) (j,(j — j, —=1)| j(j —1) can be determined if (j, —1j — j, | jj) is known

then (j,j— j;| ij) can be determined of both of them are known. Continuing in this manner, for fixed values

ju.j2) we can determine all the C.G coefficients in terms of just one of them.

e (jod—a| i) or (Jrizda(i=i0)]ixi2 i)

The above coefficient is different from zero only if -j,< j— j; < jzi.e. the range of m,

Or -1, <1<+, (3.5.15)

The coefficients can equally be expressed asterms ((j, — ), | ii)or (i, —i,i—i.i»|ivi2ii))

With—1< j—j, < j,00j, = J; S J< Jp+ p-m (3.5.16)

From (!5)and (16) the three angular momentum quantum numbers must satisfy the condition.
P T N I P Pl (35.17)

= j=]1+],d:+3,-1 |j1_j2|

i.e. for the fixed values of j,,j, the equation

| j1j2jm>= Z| j1j2mlm2><j1j2mlm2| j1j2jm>
mym,

gives anew basisin the (2j;+1)(2j,+1) dim space.

3.5.3 C.G coefficientsj=1 ,j,=1/2.

The total number of C.G coefficients are (2j,+1)(2j,+1)=6 .The C.G coefficient matrix is a 6X6 matrix. m;

takes the values 1 0-1 and m, takes 1/2, -1/2 and m takes the valuesji+j,to |j, — j,| i.e 3/2, 1/2, -1/2, -3/2
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j values corresponding to j;=1, j,=1/2.are given by
m my my j
j 1+j 2:3/2 J =1 J 2=:U2 m=3/2
j1tj2-1=1/2 j1=1 jr1=-12 j1+2=3/2
| ir1=1 2= jrtjz1=1/2
j1r1=0 j-1=-1/2 j1tj2=312
jitj2-2=-1/2
jir2=-1 =% jitj-1=12
jitj2-3=-3/2 jir2=-1 jor1=-12 ji+2=3/2
j— 32 3/2 1/2 3/2 1/2 3/2
m—3/2 1/2 1/2 1/2 1/2 3/2
ml m 2
Cy 0 0 0 0 0
1 1/2
1 1/ 0 <c, Cyu 0 0 0
0 1/2 0 c5 Cg 0 0 0
0 C C 0
0 Sz, 5 044 045 0
AT 84 c5)5 c
-1 -1/2 %
Now consider
| jm) |mm,)
23
22 1
EEY 13)
55 c(l)1 o 0O 0 0 o0 ‘1;1
11 Cn Cx 0 0 0 2
‘EE> 1 0 5, cy 0 0 0 0 1
EE NI °3)
2 2 0 0 0 ¢y Cg O ‘0 ;1>
‘l;l> 0 0 0 0 0 cg4 2
2 2 11
‘Eﬁ> ‘ 2>
$ -3
2
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33V o iV 3V/311
22 Hr2 Ho/\2 2
(23t =\cn\111l
2 272
33 1
<EE‘: <1E‘:> C121 _l:> Cll —1
33 1
=[33)-3)

Now to find the other coefficients let usapply J.on gg> , then we have

33\ _ 1
§§> = (dt+d) ‘1 2>

e (j+mNj+m+1) jm=1) = /(j, +m)(j, —m +1 mm, )+ (i, +m, j, —m, +1) mm, -1)
ia¢E§;ﬁ;W%}qg§
TN S —

From the matrix, we have

11 1
— V= (o
‘22> 2 2>

J.

-1
1—)+c
2> 33
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Multiplying the above two equations , we get

EE :o:ﬁc* 0o}, Lo 1712
2122 3=\ 2| 2/ 43 2| 2

2. 1
- §C33+EC32
1
C C
— B _ V3 _B
Cs -2 Csy
—/3

because they arereal coefficients.

Now consider equation (3.5.19) and apply J. on both sides, we get

31 2 1 1| -1
J==)=,=(J_+J, )0=)+(J_+J, )—=|1—
\22> (0, ﬁ 2. nﬁ\ 2
L.H.S
3-1
2.2|——
2237

e o) o
LR
R.H.S(Z)Zi.e(Jl+J2)%‘1_71>:%\/§‘0—71>+0

A3

3-1\ 1 1 \F—1>
STV 1=V [flo==
‘22> ﬁ‘ 2> 3" 2

-
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Again from the matrix

‘1—1> 1
:(:54

= 0—)+c
2 2 2> %

_1£>
2

Multiplying the above two eguations, we have

<1—_1 §—_1>: ﬁ0;<o—_1 o‘_1>+icgs<_1l _11>
22|22 3 2| 2/ 3 2 2

D\F*:_i*
3%4 Jé%s
1

5¥:¥£g:53and
Gs |2 Gs

3
Ces=1,

With thisthe CG coefficient matrix for J;=1 and J,= 1/2 are

33 1 0 0 0 0 0
¥ )
31 o L 2 o o o 2
22 v3 V3 P:}>
11> o 2 - X o o o 2
22/ |_ 3 43 |ol>
3-1 2 1 2
== 0O 0 O < = 0
2 2> 3 \/§ O_—l>
1j> o o o 2 2 9 2
272 513 !
3-3 ‘ 2
25 o o o0 o0 o0 1 ‘_1:}>
2
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3.5.3 TheWigner- Eckart theorem

The Wigner- Eckart Theorem is in general used in calculating the transition probabilities of laser emission
transitions. Before going to the proof of the theorem first let us get acquainted with some of the preliminaries
used in the theorem

Euler angles

The operator Jcan be expressed as a unitary operator as arotation at operator as

i(n.J)0

R, (0) = exp(- )

R(@By) =R (@R, ()R, (r) = Exp(- '“JZ)EX ( Ifijxp(_ifzj

Rotation Matrix
Consider R(afy | jm) = Z\ jmt)( jm* \R(aﬂy)| jm)
mt

<jm ‘R(aﬂy)| Jm>:<jm1‘exp(_i:‘]2jexp(_l'fl\]yjexp(_i;‘lz) jm)

il )

[ 2 aj i exp(ﬂj= D!\ (aBy)

Where dri]im=<jml‘exp _iﬁJyme)
Therefore  R(eBy)| jm) = Z DI, (apy)| jm")

D). (afy)=exp(-im'a)d . exp(-imy)is called rotation matrix.
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Some properties of the Rotation matrix

1. Unitary
E D) D!, =6 .
l nmm mm mm

Z Dm1 mim11 =0 i
2.Symmetry

dl (B)=(C-D"" d). . (-B)
=d}(-p) =P +27)

3.In the case of a system consists of two particles with angular momentaj, and j, , we have
iy )| §,m,) =| jljzmlm2>:ZCr£;£§2"m| jm)
J

of the system is not rotated through (afy ) ,we have

R(epBy)| j;my)| j,m,) = ZC:,;’mz’m R(aBy)| jm)

=]

> D) DE|jmi)|j,m;)= Zc,:;:aw'
Mg

i)

2D Do, Do C el [ imt) =3 Co D im')
mimg jm*

jm

Equating the coefficients of ‘ jm1> on both sides we have

jad1l
i i1 i j1l2]
Dmlm o z Drr111r71l szémzcmllnilmlcml”hm
mim;
n
; [ Jad2] i1 i
ie D), = ZCm%;ﬁm CmmDmDnﬁmz
mlmz

i1 iz _ iai2] iv
Danmzmz ZC 1mllemlmDmlm

jm*)

with m= m; + m, and m *=m*;+m’,
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These equations are known as Clebsch-Gordon series .
4.[D}, do =8’
2r V4 2r
where d© = [da [ sin BdB [ dy =8z°
0 0 0

2

i i 8
1 J2 —
5. [DL (©)DE (©)d(®)= 211

. 8r?
Ia i2 j1 — j1i2ls j1i2ls
[DE (©)D) (®)DL d(©)= 2T 7 Contnt ot

I11. Spherical Tensor
The (2k+1) operators qu for g=-k, -k...... k are said to form the components of a spherical tensor of rank k
of they transform under rotations.

TA(r)

qq d

ie T (N >Ti ()= ZD

wherer, and r are the positions of apoint in the rotated and origina systems.

Some properties of spherical tensor qu

(8) The matrix element of T

<ocljlml |qu|ajm> vanishes unless k=m*-m and | j— j1| <q<j+jt
jj mm* are angular momentum quantum numbers aande: * represent the totality of all quantum numbers

needed to specify eigen states of system completely.

2) commutation relations of qu are
[J T = kAT,

[.79= J(q—K)q+k+1)aT

[FT= J(q+kNa—k+2)aT,

3)R(apy)Ty =2 Dy T:(r)

qa d
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The statement of Wignar-Eckart theorem

(j,m, [Ty jymy)=Cle M where HT"” matrix element is called reduced matrix
2Ma[lg | )1 mem 1 :

Pr oof
<j2m2 |qu| j1ml>:<j2m2 |R_1RquR_1R| j1m1>: z<j2m2 qukl

mim,q

M )D i, Do Do
Integrating on both sides, we have

8r’ o ik )
CJl Jf C]lklz <J ml ‘T

. mam 2772 1
2]2 +1mllqlm% ma'm 2 4

<j2m2 |qu| j1ml>: Jlrn’ll>

jlmi>}

. . - 1 1 . ]
m Tk :Chk]z - ]11qu ml -|-|:<l
<Jz 2| q | Jlm1> mqm, 2j2+1{mi§m% /—2j2+_1cmlqmz<lz 2‘ q

(1om, [Ty ismy) = Cy (i i)

mam, \/m

Summary of thelesson
The eigen value problem of the resultant operators J* and Jz has been discussed in depth. The values of the
C.G coefficients have been determined for J;=1 and J,= 1/2 . The rotational operators and spherical symmetric

tensor have been explained and using these quantities the Wigner- Ecart theorem has been proved.

Self assessment questions

1 Derive the recursion relations for the total angular momentum operator for a system of
two particles

2. What are C. G. Coefficients. Evaluate the C.G. coefficientsfor J;=1 and J,= 2

3. State and Prove Wigner- Ecart theorem
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Key terminology

Recursion relations- C. G. Coefficients- Spherical tensor- Wigner- Ecart theorem
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UNIT - 4

LEESON - XV - Equations of motion
In Schrodinger and in Heisenberg Pictures

OBJECTIVESOF THE LESSON

1. Tolearnthe equations of motion in the Schrodinger and Hei senberg representations

2. To study the correspondence between these two representations.

3. Study on the similarity between Heisenberg equation of motion and corresponding classical equation.
4.1.1 Introduction

The dynamics of a system can be studied with the help of equation of motion. If the state of the system is
known at a particular time, one can find the state at a previous/future time. Asthe state of physical systemis
described by a state vector in the vector space, the equation of motion could be equation for the state vector.
A state vector or adynamical variable as such is not observable. But the expectation value of the dynamical
variable is an observable quantity. Therefore, the variation of expectation value of dynamical variable with
time can be considered as an equation of motion.

The time dependence can be viewed as a change in the state vector or in the dynamical variable, or in both.
When the state vector changes with time by keeping operator constant, then the resulting equation of motion
represents the Schrodinger picture. In the Heisenberg picture, the operator changes with time while the state
vector remains constant, however in the interaction picture, both the state vector and the operator change

with time. Here, we discuss Schrodinger and Heisenberg pictures only.
4.1.2 Schrodinger Picture

In this picture the state vectors are time dependent kets and the operators are constant intime.  So, the

equation of motion is the equation for V:
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ihw = Hly(t)) (4.1.1)

The subscript s indicates Schrodinger picture. One can express the time dependence of W4(r ,t), inthe
Schrodinger picture, by unitary transformation
Py(r,p) = U(t) (r) (4.1.2)

with the condition that U(0)=1, then one can write

Yy(r) =¥s(r,0). (4.1.3)

Now,

(Welwe)=Uw Uy )=(v U0 [y )= (v |y )=1if UTMU (1) =

which would imply that if W¢(r) is normalized, Wr, t)remains normalized at all time ,t, only when U(t) is

unitary. Fromegans(4.1.1) and (4.1.2), we have

[ a‘gt(t) HU(t)}ws(r) 0

The corresponding operator equation is

ou (t)

in T = HU(t)

If H does not depend on time, t, then above equation has a solution of the form

U(t)=U (0™ =g (4.1.4)

Therefore from egn (4.1.2), we obtain
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lw(r0)=e"" |y (M) (4.15)

From egn (4.1.1) and egn (4.1.5), the time rate of change of the matrix element of an observable A, with

timeisgiven by

)= lvilAlw.)
=] Sl | A+ Tl o A )|

= .| 2 . iny | AH - HAv,)

= .| 2. +in s [ A ve) (416)

If As does not depend explicitly on time, first term of the right side of eqn (4.1.6) reducesto zero. Then

egn (4.1.6) becomes

d

A =in(.l[AH]v.) 417)

Comparing this equation with the equation of motion for the dynamical variables A in classical mechanics,
we see that the expectation values of operators obey the same equation of motion in quantum mechanics
(Ehrenfest's theorem), provided we identify the commutatory bracket divided by ih with the quantum
mechanical Poisson Bracket.

4.1.3 The Heisenberg Picture

In this representation, the wave function yy(r) does not change with time while the operators change with
time. The subscript H stands for Heisenberg picture. The time-independent state yy(r) is obtained from

y4(r,t) by the unitary transformation (U(t)=exp(-iHt/h)) i.e.,

W (1) =U v, () (4.18)
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where y4(r,t) is the state vector in Schrodinger picture, and yy(r) is in the Heisenberg picture and is

independent of time.

The operator in the Heisenberg picture can be written as

A}I (t) — U 7l(t)A5U (t) — eth/h Ag efth/h

Differentiating this equation with respect to time, we get
d

ot =

iHt/7 —iHt/ 7
(™" Ae™)

d
dt
[

_ '%(eth/h HAgefth/h ) _i%(ei"“’h& He Mt/ ) +U’ aa;"tgu

=10A H]+ % ©)

The egn (9) represents the variation of dynamical variables with time in the Heisenberg picture.
In the interaction Picture the state vector and operators can be represented as
¥, (1)) = exp(iHt/7)|w,(t))

A(t) = exp(iHt/n) A exp(-iHt/n)
So that the interaction and Heisenberg pictures are the ssme when H = 0 (H' represents the explicit time

dependence of Hamiltonian). InthiscaseHys = Hy -
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4.1.4 Correspondence between Schrodinger Picture and Heisenberg Pictures

In quantum mechanics, we have two fundamental entities, one is the state vector, representing state
of a the physical system and the other is dynamical operator. We are interested in knowing the time
development of these quantities i.e., their equations of motion. In Schrodinger picture, the state vector yg(t),
depends on time while operator, say A, is time independent. Whereas, in Heisenberg representation the
operator change with time while the state vector remains constant.  As the physical process cannot depend
on aparticular choice of representation, there must exit some relation between them.

At t =0, state vector and operator are to be identical in both representations, i.e.,

The Schrodinger state vector at timet, | (r,t)) isrelated to

v, (r,0)) by unitary operator as
(e (r.)|wo(r.t))=(w(r.0)|w,(r,0)) dueto conservation of probility.
va(r.0)) =l (1)) and A=A, 0).
(1) = U@ (r.0)

=U(t)|w(r.,0)) (4.1.10)

Since |y,,) does not depend on time, the time differential of the above equation gives

AQ)

8U
= :|hE|wH> (4.1.12)
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Further, |y (t)) satisfies the Schrodinger time dependent eguation (egn.),

so the above equation can be written as

HS

v (r.0) =in ey (1)

- oU
or H.U Oy (r,0)) =in—|v (1))

Snce |y, (r)) =|w.(r,0)), theaboveequationreducesto

HU(t) = ihaua_t(t) (4.1.12)

The solution of egn (12) is
U(t) = exp(-iHg/b) (4.1.13)
Where Hs is assumed to be time-independent.

For conservative systems, the Hamiltonian gives the energy of the system. Therefore, in

any representation H does not depend ontime, so that H; =Hs=H.  Hence

Since the expectation value of an operator is the same, irrespective of its representation, so

v, (t)=e"™" |y, )=Uly,) (4.114)
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(Wu| A Olwa) = O|A ) = (wiU'|A|Uy,)
Therefore,
An() =UTA U (4.1.15)

This gives us the relation between any Heisenberg and Schrodinger operators, defining observables.

We will now show that the eigenvalues of operators, being the results of physical measurements, must be

same in both the representations.

Let the state vector in Schrodinger representation be

|l//s> = ZCI

us) (4.1.16)

where

uf> are eigenstates(i =1,2,3,...) on which A, is measured

to yield eigenvalues 4, i.e,

A

uf> = A

uf>

Multiplying both sides by UT with U U" =1, the above equation becomes

UTAUU'|w) = AU'|w)
where UTAU = A, and  |u) =U|u")
or A |ut) = A |u) (4.1.17)

Eqn (17) shows that A, s are aso the eigenvalues of the operator A.  Hence the eigenvalues of the

operators are the same in Schrodinger and Heisenberg representations.
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Now, let us show that the probahilities of finding the system in corresponding eigenstates are same in both

representations.  For that, consider the egn (4.1.16),

|Ws> = izq ui5>

Multiplying both sidesby U' , we obtain

U'ly,) =2 qu’

or

)

) =26 |u') (4.1.18)

In egn (16), ¢ 's give the probabilities of finding the system in the i™ eigenstate and the same ¢; 's occur as
coefficients in egn (18) also. Therefore, the probabilities of finding the system in the corresponding

eigenstates are same in both representations, i.e.,

o = eyl = (! v

)

Since two pictures are equivalent, in principle, we can do our calculations using either one of them.
However, for a general operator equations of motions in Heisenberg picture is difficult to solve for most
systems (there are exceptions) and therefore, we use the Schrodinger picture in which we dea with the more
familiar linear differential equations.

Summarising with the help of metaphor, we can say that the Schrodinger picture rotates the dance floor with
the dancers remaining still, while the Heisenberg picture leaves the dance floor alone and lets the dancers

rotate.
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SUMMARY OF THE LESSON

The equations of motion in Schrodinger and Heisenberg pictures are discussed. The correspondences

between these two pictures are explained in detail

KEY TERMINOLOGY

Schrodinger Picture, Heisenberg Picture, Dynamical variable, Unitary operator, Poisson bracket,

Commutator.

SELF ASSESSMENT QUESTIONS

1. State and explain the equations of motion in the Schrodinger and Heisenberg pictures.

2. Show that the probabilities of finding the system in the corresponding eigenstates are same in
Schrodinger and Heisenberg representations.

3. What is unitary transformation ? Show that the operator equations remain unchanged in a unitary

transformation.

REFERENCE BOOKS

1. Quantum Mechanics by S.N. Biswas (Books and Allied (P) Ltd), India, 1998.
2. Quantum Mechanics by L.I. Schiff (McGraw-Hill Kogakusha, Ltd.), 1968.
3. Quantum Mechanics by G.Aruldhas (Prentice-Hall of India Private Ltd), N.Delhi, 2002.

4. Quantum Mechanics by Thankappan
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UNIT - 4

LESSON - XVI Heisenberg equation:
Correspondence with Classical equation and
Application to Harmonic Oscillator

OBJECTIVESOF THE LESSON:

1. Tolearn the correspondence between Heisenberg equation with Classical Mechanics.

2. Tostudy the Application of Heisenberg equation to the Harmonic oscillator.
4.2.1 correspondence between Heisenber g equation with Classical M echanics.

In order to get the similarity between Heisenberg equation of motion and corresponding classical
equation, we review briefly the structure of classical hamiltonian theory. Let the hamiltonian is a function of

coordinates and momenta, i.e., H=H (qy, 0, - - -; P, P2, - - -), @nd writing a relation between hamiltonian and

H(Ou’qza---; P, pz,...;t) = z P qi -L

Lagrangian as
The variation of Hamiltonian, H, lead to the Hamilton's equations of motion

g=H and p=_H =123
op, og;

The time dependence of any function of the coordinates, momenta, and the time, calculated aong a moving

phase point, is
d oF oF oF -
—F(g,p,t) = — + —Qq + —

_oF +2(8F oH OH oF ]

~a “logap g op
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Here the Hamilton's equations have been used to get the above equation.  The Poisson bracket { A, B} of any

two functions of the coordinates and momenta is defined as

OA OB OB OA
A B} = — 4y —
(AB) z(aqi op 9q op j

In terms of Poisson bracket, the equation of motion for the function F of the dynamical variables becomes

aF a—F+{F,H}
dt ot

The resemblance between the above equation and Heisenberg equation, suggests that quantum anal ogs of the
classical equations of motion can be found by substituting the commutator bracket divided by i h for the

Poisson bracket,

1
{AB} = E[AB]

and working with the Heisenberg picture.
4.2.2 Application of Heisenber g equation to Har monic Oscillator

In the Heisenberg representation the time dependence is assigned to operators leaving the state vector time
independent. The Heisenberg equation of motion for an operator is given by
ihdA/dt = [A,H]
where A isan operator. He has used this equation of motion to Harmonic oscillator.
Let us consider alinear harmonic oscillator having the Hamiltonian

H

p%(2m) + (1/2) k x?

p%/(2m) + (1/2) mo* x> (4.2.1)
where p and x are time dependent operators with infinite Hermitian matrices satisfying the commutation

relation
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[x.p, |=in
The equation of motion for the operator x in the Heisenberg pictureis

. dx
h—=|xH
i & [x,H]
1 1
:%[x,pz]drimwz[x,xz]
——=(p[x. P+ 1% P]P)
inp
T m
o x=2P (4.2.2)
m
In the similar way we can write that
P =—mw?X (4.2.3

Differentiating egn (4.2.2) with respect to t and combining it with egn (4.2.3), we have

X+w°Xx=0 (4.2.4)

This equation can be written in the matrix form as

(X)kn +co2xkn =0 (4.2.5)
The solution of thisequation is

X (1) = X, (0) expico, t) (4.2.6)

where o, = (E, —E,)/h

Differentiating the egn (4.2.6) twice with respect to time, we get
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(Xj = _\len an(O) eXp(kant) = _\len Xin (427)

Substituting egn (4.2.7) in egn (4.2.5), we obtain

(0f -0 )%, =0 o (0f-0%)x,(0)=0 (4.2.8)
It is convenient to derive the relations for the matrix elements, which are independent of time. Generalization

is not different as similar relations hold for matrices that depend on time. In view of egn (4.2.8), al matrix

elements x,n(0) vanish except those for which the transition frequency @y, ==+ ®. Therefore

Xm(0) = 0 i f 0, *To,;

and X@m (0) = 0 if o, =t

n

That is, for agiven value of k only two X, €lements are non-vanishing and those are n=k+1 and n=k-1.

X 1 COrrespondsto w, , , = % =+ (4.2.9)
and

Ek — Ek+l
X 1,1 COrrespondsto o, ., = - -0 (4.2.10)

The structure of x matrix would then be

(0 x, 0 O
X 0 x, 0

(X) _ g X(Z)l 0 X23
X, O
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Similar way the elements of the p matrix can be obtained as

pkn (O) = I ITU)kn an (O)

In view of egns (4.2.9) and (4.2.10), the non-vanishing elements of the p matrix are
Prk-1= imwxix1 and Py 1=-imwx+1 (4.2.11)

The structure of p matrix is

p(x) =imo

The Heisenberg equation of motion of an operator alows us to get the structure of the x and p matrices. To
get the elements of the x and p matrices, we have to use the fundamental equation of Heisenberg method. The

diagonal (k,k) elements of the fundamental commutation relationis

(XP),,, —(PX),, =i

Substituting the matrices for x and p and using matrix multiplication procedures, we get

| XX 0 0 0
0 ~Xo1 X0 t XX 0 0
2|m 0 0 _X12X21 + X23X32 o — Ihakn
0 0 0 Xz Xy t Xy Xy

where d, isthe unit matrix. Equating the elements on both sides, we have
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_h
Xor X0 = Mo
_2n
XX = %
_(k+Dn
Xk,k+lxk+l,k - 2ma)

Solving this system of equations, Since x is Hermitian, we can write

2 (k+Dn

‘ K+l T

and

Xk = oMo

(K+1)h )

2me ket :( 2me

j i (4.2.12)

(4.2.13)

From egns. (4.2.11), (4.2.12), and (4.2.13), we have

Pr k1 Pessk = (_imxk,k+l)(imxk+l,k )

 mo(k+D)n
B 2
or
(rm)(kﬂ)hj%
Pk = T

and

; _(ma)khj%
k,k-1 2
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Now

m = (Xm = ZXniXin = Xnmi Xnezn + Xon Xndn
= (ntl)h/(2m o) + nh/(2m o)
= (2n+1)h/(2m o)

and

Mm = mo®+t)h/2 +monh/2 =mo 2ntl)h/2
Then the Hamiltonian matrix is

Hnn

(12m)mo 2n+1)h/2 +me’2n+l) h/ (4 mo)

(Cntho/2

Theeigenvalues E,, of the Hamiltonian are given by

En = (n+%)ho, n=0123,... (4.2.14)
Thisisthe same as the usua way one can obtain.

Now, one can write the explicit form of the matrices for x(0) and p(0) based on the above equations as

0+J10 0 O..
X(O):(Lj”zﬁoﬁo 0 ..
2mw) 1o J2 0 3 0..

and
0 -1 0 0 O0..
_(mw)*V1 0 V2 0 0.
p(o)_(Zj 0J2 0 -3 0..

We could obtain the energy quantization of the harmonic oscillator results from the application of Heisenberg

equation of motion.
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Summary of thelesson

The Heisenberg representation in the quantum mechanics is a powerful tool in explaining physical
phenomena. A similarity between Heisenberg equation of motion and corresponding classical equation has
been shown. That is the quantum anal ogs of the classical equations of motion can be found by substituting the
commutator bracket divided by 1 h for the Poisson bracket and working with the Heisenberg picture. An
application of the Heisenberg picture is also discussed. Making use of the Heisenberg equation of motion the

eigenvalues of the harmonic oscillator were eval uated.

K ey Terminol Ogy. Heisenberg picture, commutator bracket, harmonic oscillator, eigenval ues.

Self Assessment Questions

1. Obtain a correspondence between Heisenberg equation of motion and classical equation of Moation.

2. Derive eigenvalues of the harmonic oscillator using Heisenberg equation of motion.

Refer ence Books

1. Quantum Mechanics by I.L. Schiff (McGraw-Hill Kogakusha, Ltd, 1968).
2. Quantum Mechanics by G. Aruldhas (Prentice-Hall of India Private Ltd., 2002).

3. Quantum Mechanics by S.N. Biswas (Books and Allied (P) Ltd., 1998).
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UNIT - 4

LESSON —XVI RELATIVISTIC QUANTUM
MECHANICS-I : KLEIN-GORDON EQUATION

OBJECTIVES OF THE LESSON

1. To study the need of relativistic quantum mechanics
2. Tolearnthe Klein-Gordon equation and its solutions
3. Toknow the difficulties with the Klein-Gordon equation

4. To study an application to Klein - Gordon equation

RELATIVISTIC QUANTUM MECHANICS

4.3.1 Introduction

The quantum mechanics studied so far is based on a non- relativistic Hamiltonian and does not satisfy the
requirements of special theory of relativity. In the non-relativistic Schrodinger wave equation, the timeisin
the first order and space is in the second order derivatives. This contradicts the space-time symmetry of
relativity. In this chapter we deal with the motion of particles those with velocities close to that of light. One
of the characteristic feature of relativistic wave equations is these equations are invariant under Lorentz
transformation. In the following, two relativistic equations are considered i.e., particle with spin zero equation

due to Klein-Gordon and the spin 1/2 particle due to Dirac.
4.3.2 Klein-Gordon Relativistic Equation

Schrodinger equation for afree particle of mass m is based on the non-relativistic relation, E= p%2m, between
the energy and momentum of afree particle and the corresponding relativistic relation is given by
E? = ¢ p* + m’c (4.3.1)

Replacing E and p by their operators
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in the eqn (4.3.1) and multiplying with the wave function ¥(r,t) on both sides of the equation gives

or

2 2\2
iza"’—vzyur[m; j v =0 (4.3.2)

This equation is also known as Schrodinger relativistic equation. Rearranging the terms,

we get

1 ¢? mc?
(VZ—?EJW(I’J): hz l//(r,t)

or

m? ¢?

oy (r.t) = . w(r.t) (4.3.3)

where <& is a D' Alembertian operator. The above equation is known as Klein-Gordon equation.

4.3.3 Planewave solution

Taking the plane wave solutions of the Klein-Gordon equation as

Y(rt) = expli(pr-Et)y/h]

and substituting in the Klein-Gordon equation would yield

E==%(p°c + mc*)”

This means that there exist solutions of negative energy. Klein and Gordon were not able to give a proper

explanation to the negative energy states.
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4.3.4 Application of Klein-Gordon Equation to the Hydrogen atom

The Klein-Gordon equation for afree particleis give by
a 2
(ihaj w (r,t)=-n%c?v (r,t)+m?cly (r,t) (4.3.4)

For charged particle in the coulomb field of potential V(r) can be obtained by E -V(r) , where the potential for

the electron is given by

V(r) = —ZTeZ (4.35)

Therefore, the equation of motion of the electron under the influence of coulomb filed is given by

2\2

_R2CV2(r 1) —(ih%+$} w(r,t) +mchy(r 1) = 0

4

2
or vzw(r,t)+hz—1cz[ih§+$j l//(r,t)+:]22—§21//(r,t):o (4.3.6)

Since the potential is independent of time, egn (4.3.3) can be separated with respect to

variablesr and t with the solution of the form
w(r,t) =y (r)e BV (4.3.7)

Substituting egn (4.3.7) in egn (4.3.6) and rearranging the terms, we get

2.4

Voy(r) + (E+§j w(r)—;qz—cczw(r)=0 (4.38)

h2c?
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Since the potential is sphericaly symmetric, we can obtain the solutions, which are separated into radial and

angular parts
y(r,0,®)=R(r)Y, (6,0) (4.3.9)
2 2
izi[rzd—R}—zlz{[aﬂj —m%“—'“in}R:o (4.3.10)
redr dr h°c r r

On substitution of egn (4.3.9) in egn (4.3.8) and making use of separation variables method, we can write the
radial parts of wave equation as

Rewriting egn (4.3.10), with substitution p=ar becomes

a2
1 dfpdR) (AL D=y gy (4.3.11)
dp\" dp p 4 p
2 4(m’c* - E?
where =2 . 2 2E7 g a2=¥ (43.12)
ch hoa nc

Eqgn (4.3.11) is similar to nonrelativistic hydrogen atom theory, except for the factor I(l +1)-y* in place of | (I

+1). By writing

s(s+1)=1(1+1) - y?2 (4.3.13)

egn (4.3.11) takes convenient form

L d_(pzd_R}(ﬂ__a_ij:o (4.3.14)
p-dp dp p 4 P

Well behaved solution of eqn (4.3.14) exist only if

A=n"+s+1 n'=0,12,.. (4.3.15)
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and s to be non-negative to make R(r) finite at the origin. The value of s can be obtained from egn (4.3.13) as

- (1+ 4|22+4| —47/2)% :_%i[(l +y2)2 _yz}% (4.3.16)

Substituting the positive s value from eqn (4.3.16) and A value from eqn (4.3.12) in eqn (4.3.15), we get

Ey . %[o N %)2 _yZ}% (4.3.17)

 [— (vn=n"+1+1)

2
= AV2 taking A =/ —-—
2(I +%)

Taking squares on both sides, we get

E*y’ 2
M c2 _ E2 = A

or

2 -1/2
E = mcz(1+y—j
A
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2 4 2 A1 4 A2
~ mc? 1—)/—+3L2 - me?1- A LA
2A  8A 2 8

Expanding A and A in terms of binomial series and retaining terms up to y*, we obtain

2 2 4
Exmc?li- ¥ |1, % &4

2 + 4
2n Zn(l +;j én

4

_mezl n

2n?2  2n* (I 1)
Jr_i
2

3
-— 4.3.18
; (4.318)

The first term of this equation isthe rest energy and the second term -mc?/2n” gives the Balmer levels of the
hydrogen atom. The third term isthe relativistic correction, which removes the orbital degeneracy and gives a
fine structure to each of | levels.

Isit all well with the Klein-Gordon equation?

We expect that probability density P(r,t) and probability current density (r,t) to satisfy a continuity equation

of theform

oP(r,t)
ot

+V.S(r,t) = 0.

To obtain such an equation, we multiply Klein-Gordon equation on the left by y* , and its complex conjugate

equation by y and then subtracting one from the other, we get
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*azl// 821//* 2 2 2 2
- = C (v*Vy—-yV
Al e (y*Viy—yViy©)
or

Of +oy Oy | oo, - '
— |y Sy [ =CV(Y VY — gV
at(w p wgl) (v Vy—yVy’)

Thisis continuity equation with

i7 . 0 oy”
P(r,t) = CZ(W N,V j (4.3.19)

in . .
S(r,t)=—%(v/ Vy —yVy’©)

The expression for S(r, t) coincides exactly with corresponding non-relativistic case. However, the expression
for P(r, t) is completely different from the one in the non-relativistic case. If y is real, P(r, t) vanishes. When

v is complex, eqn (19) can be written as

P(r 1) = [w*ih v +\u(—ihgj\|}*} 1

ot ot 2me?

1 .

= amer ¥ BV VY]
E 2
E

It follows from this equation that P(r, t) is positive when E is positive and negative when E is negative. In
other words, the probability density takes both positive and negative values. Hence P(r, t) given by egn (19)
can not be regarded as position probability density. This problem was resolved by Pauli and Weisskopf by

interpreting eP(r, t) as the charge density and eS(r, t) as the corresponding current density. Since charges
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can take negative and positive values, this theory is useful only a system of particles having both signs of

charges.

Summary

Since non-relativistic Schrodinger equation did not satisfy the requirements of special theory of relativity,
Klein-Gordon made an attempt to modify the non-relativistic Schrodinger equation. Though they were
successful to a limited extent but could not explain the result of negative probability density, which they
encountered. In addition they were unable to explain the negative energy solutions. But Klein-Gordon could

explain the fine structure of each | levelsin the hydrogen atom spectra.

Key Terminology

Relativistic quantum mechanics, Klein-Gordon equation, hydrogen atom, probability charge density,

probability current density.
Self Assessment Questions

1. Explain necessity of relativistic quantum mechanics ?

2. DeriveKlein-Gordon equation

3. Elucidate the difficulties with the Klein-Gordon equation.

4. Obtain the expression for energy of a charged particle in a coulomb potential using Klein-Gordon

equation and explain the significance of the result.
Reference Books
1. Quantum Mechanicsby L. I. Schiff ( McGraw-Hill Kogakusha, Ltd, 1968).

2. Quantum Mechanicsby G. Aruldhas (Prentice-Hall of India, 2002).

3. Quantum Mechanicsby S. Lokanathan and A. Ghatak
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UNIT - 4

LESSON - XVIII RELATIVISTIC QUANTUM
MECHANICS-I : DIRAC EQUATION

OBJECTIVESOF THE LESSON

1. To study the Dirac equation
2. Tolearnthe Dirac matrices
3. To study the plane wave solutions of the Dirac equation

4. To understand the results of Dirac equation
44.1  Diracequation

In the previous lesson we have seen that the solution of the reativistic Klein-Gordon equation gives the
probability density as a negative instead of a positive definite. To prevent such an occurrence of negative
probability, which is unredlistic, the relativistic equation must be modified. Therefore, Dirac modified the
hamiltonian operator in order to ensure that the hamiltonian or energy should be linear in the momentum
without affecting the relativistic symmetry between energy and momentum. In addition Klein-Gordon could
not explain the negative energy states. Whereas, Dirac gave the explanation for the origin of negative states.
The Dirac proposed that Hamiltonian describing the motion of particle, let us say the electron could

be written as

H = ca.p+ B mc? (1)
Where H islinear in p; B and the coefficients o, ay, o, are to be determined.

With substitution of the hamiltonian from egn (1) in the time dependent Schrodinger eguation of motion

ot
o

e ANy Pe) _ xx &Ny e
l_¥! — l\\\h_ {}— l\\\k_ \}
9
transforms to
.. 0 L
in Y - _inc@.V + Bmc? (2)

ot
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Thisisthe Dirac equation of motion for afree particle.

Let us understand the four quantities ay, ay, o, and B defined in equation (1). We know that the space and
time derivatives are to appear only in p and E, and not in o and 3, since egn (5) is to be linear in all these
derivatives. Therefore, o and 3 have to be independent of p and E and commute with them. Nevertheless, oy,
oy, o, and B may not be mere scalar numbers. If they were, the square of the energy (Hamiltonian) operator
(ean 4) would contain terms proportional to py py, P, mc® etc. But the relativistic expression (egn 1)
contains no such term. Hence, the commutative relations to ay, oy, o, and f were determined by requiring
that H? should reduce to the expression E? = p? ¢ + m® ¢’. Writing H? as HH to facilitate observance of the

non-commuting factors while multiplying, we have

2 2 2 2.2
c(a,p +a,p,+a,p,+pmc)(a,p, +a,p, +a,p, +Bmc)=c"(p°+mc)
or

2 2 2 2
a, p,”+a,o,pp,+o,0,p,p,+o,fpme+o,o,p,p,+a,p+
2 2
O(“yO(‘zpypz_i—O(‘prymC—i_()(“z()(“xl:)zl:)x—i_(x“z()(“yl:)yl:)z_i_(x“z pz +azszmC+

222 2 2 2 2.2
mcBa, p, + mcfoa, p, + mcfoa,p, +B°mc” = p,”+ p, + p,”+mc

Comparing the coefficients of p,’, p,%, p,> and mc?, we obtain

a’=oa’=a’=pp°=1 (©))

x y
Since the products like pypy, pyPz, P2Px and px, py, P, do not appear on the right side so the coefficients on the left
hand side must vanish, which determines the relation between o, ay, o, and 8, i.e.,

The four quantities oy, oy, 0, are said to anti commute in pairs and square of each is unity.

a0, oo, =00, +o,0, =0,0,+o,0,=0

op+pa, =ap+pa, =af+fa,=0 (4)
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4.4.2 Dirac Matrices

As the Dirac Hamiltonian is Hermitian therefore the oy, ay, 0, and B must be Hermitian. One of the constraints
on the a's and f is that these are non-commuting entities. The simplest non-commuting entities, which are
independent of space-time variables and differential operators are matrices. Therefore, oy, ay, 0, and B are
taken to be matrices and these matrices have to obey the egns (3 & 4). Since the squares of al four matrices

are unity, so the eigenvalues are +1 and -1.

We can write
o . o L e~ . b ye~wT b
A _ A s — LSl — s~ s

taking the trace ( = sum diagonal elements = sum of the eigenvalues) of the matrices on the both sides, we

have

f)

_ECKOH)——d TN — 22— <

l

(In the third step the cyclic property of trace of matricesi.e., tr(ABC)=tr(BCA), is used)

It is evident from (i) that tr(oy,)=0 which mean that a, must have the same number of +1 eigenvalues and -1
eigenvalues. The same is true for the other matrices. This restricts the dimension of the matrices and has to
be even number. The simplest possibility is n = 2. There are aready three anti-commuting 2x2 matrices

known as the Pauli's matrices, which are given by

R P

The sguares of the each of these matrices are also unity. But these are ruled out because we need four and

fourth one can not be formed with these three matrices.
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With the dimension n = 4, one can find four anti-commuting matrices. Arbitrarily, b matrix is taken to be
diagonal with two +1 eigenvalues and two -1 eigenvalues. Then one can find the other three 4x4 matrices

anti-commuting with 3 and satisfying other conditions specified by equations (3 & 4). These are

100 0 0001

o1 0 o| 1 O] 0010 [0 o

P=lo0 1 o [o J’ ““lo 10 0| |a, o}

00 0 -1 1000
00 0 -i 001 0]
00|o[oay}_ 000—1{002}

o, = = ;o= = (6)
0 - 00||s O 1000||o O
i 000 0-10 0]

Obviously these matrices are Hermitian since o oy and o, are Hermitian and these are the Dirac matrices. We

can al so abbreviate these matrices as

[ 0] O o
B:{O —I} and a:{a O} (7)

4.4.3 Plane Wave Solutions

Consider the Dirac equation

_%M;\ PR~ e, U . P
RS- SO = ATOPT HITR T

"

where ay, ay, 0,and B are constant matrices. Now we try with plane wave solutions of above equation of the

form

y (r,t) =U (p)e'Prmon (9)

Substituting egn (2) inegn (1) gives

EU (p) = (ca..p+ Amc*)U (p) (10)
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Since components of a are 4 x 4 matrices, so that y and U should also be 4-component objects on which these

matrices can operate. Writing the four-column vector of U as partitioned into two components such as

ul
u, v
U= =14 (11)
3
u4

1 »ra-l |l < >» 1 l «~——x Il ral
~ 1 1 o el | .-~ e || 1 T~
b~ N I - L | 1] 1 L=
1 | €™ <EHDI 1 % L B Y]
[ | ~> —1 L >

After multiplication of matrices on the right hand side and rearranging the terms, we have

(E-mc®)w = c(o.p)v 13
AL ) T (faw N (i
~a T y T~ AW

Multiplying egn (13) with (E+mc?) and replacing (E+mc?) by c.(s.p)v from egn (14), we get

(E?-m?*)v=c(o.p)c(c.p)v
=c%’(c.p)’v
=c’p?v

or

(E? -c?’p?-m?c*)v=0

For non-trivial solution, v# 0. Hence
=
a V=GR NG a2

BGRNG =0
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The same result would follow if we eliminate v rather than w from egns (13) and (14). From egn(15) one

expect that a free particle consists of two branches of energy: one corresponding to E. and other to E..

4.4.4 Negative Energy States

We found that there are two solutions for the energy from previous topic and they are

[ ]
E =J_r(czp2+mzc4)% +mc? T
= E+ 1] l
-t
]
When p = 0, the solutions for the energy are E. = mc®> and E. = - mc®. So the energy spectrum of a free

electron has two branches corresponding to E, and E.: one starting at mc® and extending to +oo as | p| —>00
and other starting at mc? and extending to -0 as o | p| —-o0 (see Fig). The two branches are separated by a
forbidden gap of width 2 mc?. It is very difficult to imagine negative energy states because even a weak
electromagnetic field or a small other perturbation could cause an electron which is in a state of positive
energy to undergo a quantum transition to a state of energy E —-oo, resulting in the release of an infinite
amount of energy. No such thing takes place in reality. To overcome this serious problem, Dirac postulated
that all the negative energy states are ordinary occupied by electrons. This sea of negative energy electrons
would have no physically observable effects. Since electrons obey Pauli exclusion principle, these occupied
states can not accommodate any more electrons. Thus transitions to negative energy states are prevented.
Further, it is assumed that, when éectron occupying the negative energy state receives energy, it goes to
positive energy state and create an empty space and is designated as 'hol€e' in the negative energy sea. The
minimum energy required to jump electron from negative energy state to positive energy is 2mc®. The empty
space created in the negative energy states behaves asif it is a particle of positive charge. This explanation

was accepted when positron was discovered in cosmic rays by Chadwik.
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4.4.5 Position Probability Density

The other relativistic equation must yield the probability density p(r, t) must be positive. This can be shown

by considering Dirac equation

<%
-_— e T w wNee wa acw—we—a N e N £ —

and it's conjugate

—in 2

=incVy ".a + mciy "B (17)

The Hermitian property of a and B and the rule that the order of factors in any matrix product reversed on
Hermitian conjugation are used while writing eqn (2). Multiplying eqn (1) from left by \yT and eqn (2) by y
on right and subtracting one from other, we obtain
t
in|y' 8_\|/+ aL\V = —ihc(y'a.Vy +Vy'ay)
ot ot
or

2 (w'w)+V.(evay) = 0 (18)

Thisis a continuity equation, with P(r, ty=y" v and r,t)=cy ay:.
Here, the quantities P(r, t), S(r,t) can be interpreted as probability density and probability current densities.
The expression for P has same form as the non-relativistic one and is positive definite and the interpretationa

difficulties experienced with the Klein-Gordon equation do not arise here.

4.4.6 Electronin an Electromagnetic Field

Replacingp by p-€eA/c and E by E - eg in the Dirac equation, we get the Dirac equation for an electron in

the electromagnetic field, i.e.,

ihaa—vizw.(p—eA/c)w+ﬁmczy/+e¢y/ (19)
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where A and ¢ are the vector and scalar potentials of the electromagnetic field and let these are

time independent. There exist stationary state solutions

y (r,t)=u(r)e™” (20)

Substituting these solutions egn (1), we obtain

Eu(r) =ca.(p-eAlu(r)+pmciu(r) +epu(r) (21)
Taking

ul
u=| " :(Vj . where v=(ulj and w=( 3}

U, w u, u,

u

4

and substituting for u, a and B in the modified Dirac eqn (21) and then rearranging the terms, we can write
two equations for 2-component quantities v, w as

co.(p-eAlc)w = (E-e¢ - mc®)v (22)
co.(p-eAlc)v=(E-e¢ + mc?)w (23)
Since we are interested in the positive energy solutions, choose

E=mc+¢ (24)
We can write egn (23) with eqn(24) as

co.(p-eAlc)v =(2mc® +e-eq )W (25)
For small values of ¢ and ¢, we can write the above equation as

w= 1/2mc)e.(p-eAlc)v (26)
Substituting this equation in egn (23), we obtain
V@2m)[o.(p-eAlc)]Pv=(c-ep)V (27)
Using the vector identity (6.B) (6.C) = B.C +i6.(BxC)

Wehave [6.(p-€Alc)]® = (p-eAlc)® + ic.(p-eAlc) x (p-eAlc)
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Since p and A are an operators, the vector product in the last term does not vanish. In deed we have

(p-eAlc) x (p-eAlc) = -elc(Axp + pxA

= ieh/lcVxA =ier/cH

Thustheegn. (27) gives
{1U2m(p-eAlc)® - eh2mce. H+ etV = gV (28)
This is known as the Pauli's equation for the electronwith spin 1/2.. Thisis very similar to non-relativistic
Schrodinger equation with one extraterm. This term suggests that the electron, in a magnetic field, acquires
an extraenergy, thatis p. H = -eh/2mco.H, sothat it behavesasif it has a magnetic moment p
associated with its spin:
p= eh/2mc o

= Wwo (29)
where pg isthe Bohr magneton.  Thus, the Dirac equation predicts that for a spin 1/2 particle will have the

magnetic moment.

SUMMARY OF THE LESSON

To overcome the problems of Klein-Gordon equation, Dirac modified the hamiltonian operator in order to
ensure that the hamiltonian or energy should be linear in the momentum without affecting the relativistic
symmetry between energy and momentum. The solution of the Dirac equation reveals the existence of the
negative energy states. The explanation of the negative energy states led to ' hole' concept. The existence of
the hole was confirmed when Chadwik discovered the positron. Dirac could show that the probability charge
density is a positive definite. When an electron motion is considered in the electromagnetic field, the solution

predicts the existence of spin 1/2 for the electron.
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KEY TERMINOLOGY

Relativistic mechanics, Dirac equation, Dirac matrices, Negative energy states, electromagnetic field,

probability density, hole.

SELF ASSESSMENT QUESTIONS

1. Obtain Dirac equation.
2. Determine the Dirac matrices and discuss their properties.
3. Elucidate the negative energy states due to solution of Dirac equation.

4. Show that charge probability density is positive definite using Dirac equation.

REFERENCE BOOKS

1. Quantum Mechanics by L.I. Schiff (McGraw-Hill Kogakusha, Ltd.), 1968.
2. Quantum Mechanics by G.Aruldhas (Prentice-Hall of India Private Ltd), N.Delhi, 2002.

3. Quantum Mechanics By Mathews and Venkatesan (Tata-McGraw Hill, India).
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