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UNIT-1

LESSON – I - EMERGENCE OF QUANTUM

MECHANICS

Objective

Presentation of brief review of classical concepts and their limitations in understanding the sub-

microscopic realm of atoms and their constituents and new concepts put forward to eliminate the limitations

thus leading to the consequent emergence of quantum mechanics.

1.1.1 Introduction

Towards the end of nineteenth century classical mechanics, constituting Lagrangian – Hamiltonian

formulation of Newtonian Mechanics, proved to be successful in explaining the motion and interactions of

material objects and most of the related experimental findings. Maxwell’s Electromagnetic (EM) theory was

equally successful in predicting and analyzing the behaviour of radiant energy. Therefore many scientists

believed that classical mechanics and EM theory together provided physics with elegant and unquestionable

fundamental laws.

In the classical picture, the position and path of a particle are sharply defined whereas the radiation

(EM-field) exists over a region of space. These classical pictures of particles and radiation are mutually

exclusive. But experiments in the beginning of the twentieth century gave firm evidence for the existence of

the wave-like behaviour of particles (electron diffraction experiments of Davisson and Germer – 1927; G.P.

Thomson-1928) and the particle like behaviour of radiation (Photoelectric effect-1905; Compton effect-1923).

This dual nature of matter and radiation and allied phenomena of micro-particle world could not be explained

by the classical pictures. This inability of classical physics necessitated a new branch of physics, called

Quantum Mechanics.
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Historical development of any branch of science, more so theoretical physics like Quantum

Mechanics, involves two main stages:

(i) accumulation of experimental facts, discovery of semi-empirical laws,

development of preliminary hypothesis and theories.

(ii)discovery of general laws which provide a basis for interpreting a large

number of phenomena.

1.1.2 Black Body Radiation:

The failure of classical laws was first felt acutely in their inability to account for the experimentally

observed energy distribution (energy density Vs wavelength or frequency) in the continuous spectrum of

black body radiation.

A black body is one, which absorbs all the radiation it receives. The best example is an isothermal

cavity with a small aperture into which radiation from outside is admitted and trapped. In such a container,

radiation bounces around inside the cavity and eventually comes into thermal equilibrium at the temperature

of the cavity. The properties of the black body radiation depend solely on the temperature (T) of the black

body.

For analyzing the radiation (EM waves in the cavity), it was treated as a superposition of normal

modes characteristic of the cavity. In each normal mode, field was assumed to vary with time simple

harmonically and accordingly each mode was considered equivalent to a simple harmonic oscillator. Thus the

absorption of radiation by the walls of the cavity was treated as equivalent to a transfer of energy to the walls

by the oscillators and the emission was the reverse process.

According to classical physics, oscillators emit or absorb energy in a continuous fashion. Rayleigh-

Jeans law was rigorously derived on the basis of classical physics.  Average energy density  ρ ( ) d of the

black body radiation in the frequency range  and  +d was derived to be
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ρ ( ) d =
3

28

c


kT d (1.1.1)

where ‘c’ is the velocity of light and ‘k’ is the Boltzmann constant.

This law agreed with experiment only for small values of (fig.1.1.1).

Also a serious fundamental difficulty became apparent; there would be according to this formula a

disproportionate amount of energy radiant in very high frequency radiations like x-rays and γ-rays  -  an event 

known as the ultraviolet catastrophe. But such a phenomenon has never been observed.

In an effort to remove these difficulties, Planck (1900) hits upon a formula
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where h = 6,626 x 10-34 Js is called the Planck’s constant.

S.N.Bose (1924) derived Planck’s equation using a statistical approach based entirely on the idea that

radiation is made up of tiny particles (quanta or photons). It derives the black body radiation entirely in

quantum terms without using the idea of EM radiation at all. Thus, Bose secured strong mathematical footing

for the quantum theory of light.
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This expression is in agreement with the experiment

for all frequencies. But when he developed a theoretical

justification for such a formula he was forced to make a

startling non-classical assumption that the energy states of an

oscillator must be an integral multiple of the constant h and

frequency  of the radiation it emits. If E represents the

smallest permissible energy change, Planck’s famous

quantum equation is

E = h (or) E = nh (n=1,2,3…..)

It follows that the oscillator cannot slowly radiate energy as the cla

would then be led into states other than the allowed ones. Therefore ra

in discrete bundles (or) packets of radiant energy equal to h . These

are called Quanta. The light quantum is given the name Photon by t

Lewis in 1926. It is obvious however that, quanta of different frequ

Planck thought at first that his hypothesis applied only to the radiating o

emitted radiation in their immediate neighbourhood. However this init

our whole concept of interaction of EM radiation with matter.

1.1.3 Photoelectric Effect

Classical physics received another jolt in the explanation of the ph

on certain materials, electrons are emitted. This effect is called photoele

If Eo is the energy required to separate an electron from the metal sur

separation and E is the energy of the absorbed light, then


ssical electrodynamics requires, for it

diation is not emitted continuously but

bundles (or) packets of radiant energy

he American physical chemist Gilbert

encies have different sizes (energies).

bject (or oscillator) and possibly to the

iated a series of events which changed

otoelectric effect.When radiation falls

ctric effect.

face, v is the electron’s velocity after



()d

Planck’s law

Rayleigh Jeans law

Fig 1.1.1
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2

1
mv2 = E - Eo (1.1..3)

According to classical EM theory, E depends on the square of the amplitude (or) intensity of the incident

radiation. Therefore the velocity of the photoelectrons should increase with increasing intensity of incident

radiation. But experiments proved that the intensity increases only the number of photoelectrons released but

not their velocity. Further for any particular material, there is a minimum frequency of the radiation called the

threshold frequency, below which no photoelectrons are emitted. The existence of the threshold frequency

also could not be explained from classical laws.

In 1905, Einstein proposed a daring simple explanation by further developing the quantization of

energy concept by assuming that

(i) the quantization phenomenon was a property of the radiation itself. (ii) the quantization process applied to

both absorption and emission of the radiation (iii) the energy bundles (or photons) preserve their identity

throughout their life.

Accordingly, each photon carries an amount of energy equal to h . The equation (T) can be written

as

2

1
mv2 = h - h o where Eo = h o (1.1.4)

His interpretation of the threshold frequency was that a quanta of light below threshold frequency ( o ) does

not have enough energy to remove an electron. The quanta above the frequency ( >  o) possess the

required energy. Intensity increases the number of photons and hence the number of photoelectrons but not

the energy of the photons and the K.E of photoelectrons. This interpretation is a great success to Quantum

Theory.
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1.1.4 Compton Effect

The explanation of the phenomenon of X-ray scattering, like that of energy distribution of Black Body

Radiation, necessitated the rejection of the classical concept of continuous energy distribution of radiation.

The experimental evidences strongly supported the Quantum ideas of the particle aspects of radiation.

According to classical ideas, when X-rays are incident on a scatterer, the electric vector of the

incident waves accelerates the electrons in the scatterer. According to electrodynamics, an accelerated charge

radiates energy. Consequently, the electrons radiate energy due to the forced oscillations under the action of

the incident X-ray beam. Therefore we expect the scattered radiation to have the same wavelength as the

incident radiation (coherent scattering). But according to experimental evidence, the scattered radiation, in

addition to the unmodified incident radiation, consists of intense long wavelength component (incoherent

scattering). This is explained by Compton using Quantum Theory. This incoherent X-rays scattering is

called Compton Effect.

Energy distribution of Black Body Radiation was explained by Planck with a radical postulate that

radiation is emitted in bundles (photons). Photoelectric effect was explained by Einstein with the extension of

the idea of photon and the assumption that the photon preserves its identity during propagation and interaction

with matter.

Einstein’s mass energy relation (E = mc2) endows the photon (E = h ) with a mass m = h /c2. The

concept that photons behave as particles through out their life with more concrete particle aspects like

momentum (p = mc = h /c   =   h/ λ) was put forward by Compton to explain incoherent x-ray scattering 

known as Compton effect.

Based on these ideas, Compton derived the equation

λ = 
cm

h

e

(1-cos ) (1.1.5)
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where λ is the difference between the unmodified incident radiation and modified scattered radiation and  

is the angle of scattering.

When  = 90o, λ = 
cm

h

e

. It is called Compton Wavelength and is equal to 0.0242 Å. This corresponds to

the energy of 0.51 MeV.

The theoretical predictions were verified in scattering experiments conducted with carbon and

Molybdenum K radiation. The results of the Compton Effect provide a good evidence of the particle concept

of photon and also a good check of theory of Relativity.

1.1.5 Photon

It is quite interesting to have a glimpse at the historical development of the concept of a novel idea

‘photon’. The idea of photon, the particle of radiation (light) originates more directly from Albert Einstein’s

work (1905) on the photoelectric work. However many years passed by before establishing the physical

reality of the photons and they were only given this name in 1926 by Gilbert Lewis.

The primary reason for the delay was the lack of direct and accurate experimental confirmation of

Einstein’s ideas. In 1905, the experimental data of photoelectric effect, on which Einstein had based his idea

was not sufficiently accurate to exclude the possibility of other theoretical explanations of photoelectric effect

and there was no other evidence in favour of Einstein’s idea. Einstein himself, as late as 1911, expressed that

“I insist on the provisional nature of this concept which does not seem reconcilable with the experimentally

verified consequences of the wave theory”.

Robert Millikan, who provided the accurate experiments needed to prove the correctness of Einstein’s

idea was, ironically, motivated by a strong desire to prove them wrong. Finally Einstein’s idea was proved

and in Millikan’s words “I spent ten years of my life testing that 1905

equation of Einstein’s and contrary to all my expectations, I was compelled in 1915 to assert its unambiguous

verifications in spite of its unreasonableness”. After Millikan’s work, momentum associated with quantum of
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light was envisaged. Only in 1923 Arthur Compton’s investigations of Compton Effect asserted that EM

quanta behave exactly like particles, exchanging both energy and momentum in collisions with electrons.

To complete the story of the photon, it is a boson with zero mass and spin 1. It obeys Bose-Einstein

statistics. Every second, nearly about 1000 billion photons of sunlight fall on a pinhead.

1.1.6 Hydrogen Atomic Spectrum

An important development of Quantum Physics started in 1913, when Bohr theoretically derived the

well-known Ritz-Rydberg empirical relation for the wave number

 = R 









22

11

nm
(1.1.6)

where R is the Rydberg constant. For different spectral series ‘m’ takes on different integral values, whereas

for different lines within a series ‘n’ takes a different integral values. For example m = 2 and n = 3,4,5,…. for

the popular Balmer’s series.

Bohr’s theory is based on the following postulates:

1. The electron of the hydrogen atom moves about the nucleus (the proton) in certain circular orbits

(stationary states) without radiating energy.

2. The allowed stationary states are such that the angular momentum of the electron is equal to the integral

multiple of h/2 π  (Iω = nħ,    n = 1,2,3,….). 

3. When an electron makes a transition from a state of energy Ei to a state of energy Ef (where Ei > Ef)

electromagnetic radiation (photon) of frequency  = (Ei - Ef)/h is emitted.

In his theory Bohr retained the concept of Rutherford’s nuclear model of the atom with a central heavy proton

and a revolving electron. Classical electrodynamics predicts that the orbital electron should radiate energy

because of its acceleration and slowly spiral into the nucleus. But to account for the stability of the hydrogen

atom, Bohr postulated stationary non-radiating orbits. According to classical physics, the electron should emit

radiation of frequency, which is equal to the orbital frequency of the electron. This is not in agreement with

the experiments. To rectify this defect, Bohr formulated his third postulate, = (Ei - Ef)/h.
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1.1.7 Old Quantum Theory

Planck-Einstein photon theory, Bohr theory and their numerous variations generally go under the

name Old Quantum Theory.

In addition to the spectrum of hydrogen, Bohr’s theory could explain the Stark and Zeeman effects.

A semi-quantitative description of the energy levels of multi-electron atoms was also given. However, adhoc

selection rules forbidding transitions between certain energy levels were required in the explanation of

Zeeman and Stark effects and also the spectra of multi-electron atoms. Though the frequencies of the spectral

lines were explained by the old quantum theory, the calculation of their intensities could not be attempted.

For this purpose an adhoc rule called the Correspondence Principle was to be put forward by Bohr in 1918.

This principle was based on the fact that Bohr’s spectral frequency in the limit of large quantum numbers

asymptotically equals the actual orbital frequency of the electron, which would be radiated according to the

classical electrodynamics. Based on this it is postulated that for the states of the atom associated with large

quantum numbers, actual radiation intensity may approach that given by the application of the classical

electrodynamics. There is still another ambiguity in the classical intensity calculation for a transition, for the

intensity computed differed for the two states involved and we don’t know how much contribution of each

state is to be taken. Further, a number of experimental observations like dispersion could not be properly

explained. Besides these practical difficulties, there are important conceptual difficulties.

The existence of discrete stationary states was experimentally verified. But as long as the classical

picture of well-defined particle orbits is retained, it remains incomprehensible why certain orbits should be

completely stable and other not allowed to exist at all. This perplexing question was responsible in part for

the ultimate realization that particle states at microscopic

level are not describable in terms of well defined orbits but must be pictured in terms of some kind of waves.
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1.1.8 Wave-particle Duality

Old Quantum Theory visualized radiation as a stream of photons. This theory was successful in

explaining Photoelectric Effect, Compton Effect etc. However it in no way invalidated the old well-tested

wave theory of light, which was very successful in the explanation of the phenomena like interference and

diffraction. Thus radiation is to be sometimes treated as particles and some times as waves. This paradox is

called wave-particle duality.

Based on the symmetry of nature, de Broglie (1925) postulated that micro-particles like electrons

should also have wave properties. This was experimentally confirmed by the electron diffraction experiments

of Davisson-Germer (1927), Kikuchi (1928) and G.P.Thomson (1928). In these experiments, electrons were

diffracted by crystal lattices as waves would be. The wave-particle duality therefore was not something

limited to radiation but appeared to be a more general phenomenon: particles under certain circumstances

behave like waves and radiation (waves) may have certain particle properties.

To understand the diffraction pattern of electrons or photons and at the same time to resolve the wave-

particle duality, the electron (or) photon is to be treated as a particle whereas the laws of the motion in the

micro-world are wavelike in character. The wave here plays the role of probability amplitude in the

probability distribution of the particles. This description leads to an important limitation that no physical

measurements are capable of providing information of unlimited precision about the simultaneous values of

position and momentum of a particle. This is the famous uncertainty principle of Heisenberg: x px ≥ ħ/2.

Uncertainty principle is the heart and soul of Quantum Mechanics and therefore it is worthwhile to

understand the principle through a thought experiment (gedanken experiment). Thought experiment is one,

which is not intended to be carried out as a practical reality, but it is ‘all in mind’. The idea is that by using

our understanding of the laws of Physics, we can construct imaginary experiments and predict their outcomes,

thereby highlighting features of those laws, which may not be obvious at the first sight.
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Heisenberg’s gamma microscope set up to measure the position of electron is one such experiment. As shown

in the figure-2, a gamma-ray photon (frequency =  and momentum = h /c) from a source collides with the

electron.

The electron (mass = m) recoils with velocity ‘v’ at an angle ‘ψ’ from the initial direction (say x – 

direction) and the photon bounces into the microscope (with changed momentum = h / / c) at an angle Ф.  

Accordingly, the momentum along the X-axis (px) transferred to the electron is given as

px = mv cos ψ  =  h /c – ( h / / c)cos Ф  

The photon may enter the objective of the microscope along path OA or OB. Therefore Ф varies from (90 –

θ) to (90 + θ) where θ is the angle between the path of the photon entering the microscope and the axis of the 

microscope. Therefore px can have a range of values indicated below:

h /c - ( h / / c)  cos (90 – θ) < px < h /c - ( h / / c)  cos (90 + θ) 

 h /c - ( h / / c)  sin θ < px < h /c + ( h / / c)  sin θ 

Therefore, the possible variation in px, namely px, is

px = (2 h / / c) sin θ = (2 h /  / )sin θ  

This px is the uncertainty in the value px. In the determination of the position of the electron, the resolving

power of the microscope plays an important role.

Resolving power = x =  / / (2 sin θ). 

This is the minimum distance, between two points in the field of view, which can be distinguished as separate.

Therefore, if x is less, the accuracy in measurement of position of the electron is more. For this purpose, we

have to use gamma rays of lower wavelength or higher frequency. It is evident that x is the uncertainty of

the position of the electron. From the

equations for px and x, it is obvious that as the wavelength of the gamma photon increases, x increases

and px decreases and vice-versa. The product of the uncertainties

x px ≈ [ / / (2 sin θ)] (2 h /  / )sin θ = h 
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From the accurate theoretical derivation, presented in the next lesson, it can be proved that x px ≥ ħ/2.  

1.1.9 Quantum Mechanics

The major difficulty with the old quantum theory was the lack of coherence in the structure of the

principles. Problems were first solved by the classical laws of motion and later quantum conditions were

added, instead of being an integral part of it. For this reason, the old quantum theory was finally abandoned in

favour of what is known as New Quantum Theory or Quantum Mechanics. In this theory, instead of starting

with classical laws of motion and adding quantum conditions as an after thought, the classical concepts are

abandoned almost entirely. The theory is developed to give as natural consequences of it the quantization,

dual nature, uncertainty principle and other important features of them.

Heisenberg, argued that most of the conceptual difficulties were because the old quantum theory was

built on quantities like electron orbits and quantum jumps which cannot be experimentally observed.

Therefore he felt that the new quantum theory should be built on nothing but observable physical quantities

like frequencies and intensities of spectral lines. With this background, Heisenberg (1925) developed his new

mechanics (Matrix Mechanics) with the help of powerful mathematical tools like Fourier analysis and Matrix

theory. Physicists have hardly acquainted with matrix mechanics before another mechanics (Wave

Mechanics) was formulated by Schrodinger (1926). The essential feature of his theory is the incorporation of

the expression for the deBroglie wavelength into the general classical wave equation. Subsequently, it was

shown that the matrix mechanics and wave mechanics are mathematically equivalent and lead to the same

results. Now, both matrix mechanics and wave mechanics together go under the

more general name Quantum Mechanics. Dirac developed his own operator techniques, which further

enriched quantum mechanics.

Summary of lesson

The limitations of the laws of classical physics to explain the phenomena of Black Body Radiation,

Photoelectric Effect, Compton Effect and Hydrogen Atomic Spectrum have been outlined. New concepts like
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Planck’s quantization, Wave-particle Duality and Uncertainty Principle, which emerged to overcome the

limitations, have been explained. The consequent emergence of the new branch of physics, namely Quantum

Mechanics has been explained.

Key terminology

Planck’s quantization – Black body radiation – Compton effect – Compton wavelength – Quantum –

Photon – Bohr model – Wave-particle duality – Uncertainty principle – Matrix mechanics – Wave mechanics

– Quantum Mechanics.

Self assessment questions

(i) Explain the term’s Black body radiation and ultraviolet catastrophe.

(ii) What is the revolutionary idea put forward by Planck to explain Black Body Radiation?

(iii) Compare laws of Black body radiation formulated by Rayleigh-Jeans and Planck.

(iv) Give Einstein’s explanation of Photoelectric effect.

(v) What is the role of Compton Effect in the formulation of the particle aspect of radiation?

(vi) Explain wave-particle duality.

(vii) What is the relation between thought experiment of gamma microscope and uncertainty principle?

(viii) Differentiate between classical physics, old quantum theory and quantum mechanics.

REFERENCE BOOKS

1. A Textbook of Quantum Mechanics – Mathews P M and Venkatesan K (Tata Mc Graw Hill Publication

Co. Ltd., N. Delhi)

2. Advanced Quantum Mechanics – Rajput B S (Pragati Prakashan, Meerut)

3. Quantum Mechanics – Chatwal G R and Anand S K (Himalaya Pub. House, Bombay)
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UNIT - 1

LESSON - II - OPERATOR ALGEBRA

Objective

Introduction and explanation of various operators like linear and Hermitian operators which

are useful for the foundation of the basic structure of Quantum Mechanics and their algebra.

1.2.1 Introduction

Quantum Mechanics was developed by eminent scientists who had strong foundation in both

physics and mathematics. Modern approach treats quantum mechanics as a new subject with its own

set of postulates. The development of the theory is based on mathematical techniques using

operators. Operator algebra follows the general laws of commutation, association and distribution

with respect to addition. But multiplication is not necessarily commutative, as is with matrices. It is

of interest to understand operators and the related algebra for understanding the Foundations of

Quantum Mechanics, given in the next lesson.

1.2.2 Operators

An operator is a mathematical quantity which operating on any function transforms it into

another. Generally, operators are indicated by symbols with a caret over them as Â. If Â is an

operator which operates on function ‘f ’ and converts into another function ‘g’, this process is

represented as

Â f = g. (1.2.1 )
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Example-1

Some common operators are given below:

(i) addition operator : Â = 4 + (ii) differential operator :


B =
dx

d

(iii) integral operator :


C =  dx (iv) square root operator :


D =

(v) multiplication operator :


E = x x (or) simply


E = x

Accordingly, if we take f = x 2, we have

(i) Âf = 4 + f = 4 + x 2 (ii)


B f =
dx

xd )( 2

= 2 x

(iii)


C f =  x 2 dx = x 3 / 3 (iv)


D f = 2x = x

(v)


E f = x(x 2) = x 3

1.2.3 Linear Operators

An operator Â is said to be linear if it has the following characteristics:

Â (f1 + f2) = Âf1 + Âf2

Â(cf) = c Â(f) (1.2.2)

where c is a constant and f, f1,f2 are arbitrary functions

Conditions in equation - 2 can collectively be written as

Â (c1f1 +c2f2) = c1(Âf1) + c2(Âf2) (1.2.3)

where c1, c2 are constants and f1, f2 are arbitrary functions. This equation implies that a linear

combination of two (or more) functions, say f1 and f2, is converted into some linear combination of Â

f1 and Âf2 .
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Example-2

(i)
dx

d
is a linear operator, since

dx

d
(c1f1 +c2f2) = c1

dx

df1 + c2
dx

df 2

(ii) is a non-linear operator, since

169  is not equal to 9 + 16 = 3 + 4 = 7, but equal to 25 = 5

1.2.4 Anti-linear Operators

If an operator follows the relation

Â (f1 + f2) = Âf1 + Âf2

Â(cf) = c* Â(f) (1.2.4 )

(or) Â (c1f1 +c2f2) = c1* (Âf1) + c2* (Âf2) (1.2.5)

where c1* and c2* are the complex conjugates of the constants c1 and c2, then Â is called an anti-

linear operator.

Complex conjugation operator is an example of the anti-linear operator. If


T is a complex

conjugation operator, then


T (cf) = c*


T f.

1.2.5 Operator Equations

Consider the operators Â =
dx

d
and



B = x. To understand the result of Â


B , let it operate

on an arbitrary function f. The order of operations by convention is always from right.

Â


B f =
dx

d
x f =

dx

d
(x f ) =

dx

dx
f + x

dx

df
= 1 . f + x

dx

df
= (1+ x

dx

d
) f
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
dx

d
x f = (1+ x

dx

d
) f

If the arbitrary function ‘f ’ is removed from both the sides

dx

d
x = (1+ x

dx

d
) (1.2.6)

Equations of this type are called operator equations. The full meaning of the operator equations can

be demonstrated only when they operate on functions.

Example-3

Prove the operator equation 












x

x













x

x
=

2

2

x


- x2 – 1.

Let LHS expression operate on an arbitrary function f. Then














x

x













x

x
f = 













x

x













xf

x

f

=
2

2

x


f -

x


(xf) + x

x


f - x

2
f =

2

2

x


f - f

x

x




- x

x


f + x

x


f - x

2
f

=
2

2

x


f - f - x

x


f + x

x


f - x

2
f =

2

2

x


f - x

2
f - f = 2

2

x


- x

2
- 1 f

On removing f on both the sides, we have














x

x













x

x
=

2

2

x


- x2 – 1.

1.2.6 Eigenvalues and Eigenfunctions

If an operator, operating on any function, converts it into some function and a multiplicative

constant, then the equation representing the operation is called an eigenvalue equation. For example

Â φn = an φn (1.2.7)
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is called an eigenvalue equation.  In this equation φn are called the eigenfunctions of the operator Â

and the corresponding eigenvalues are an.

Example-4

If Â =
2

2

x


 and  φn = sin nx, we have

2

2

x


(sin nx) = - n2 sin nx

Here an = - n2 are eigenvalues corresponding to the eigenfunctions sin nx

1.2.7 Degenerate eigenvalues and Degree of degeneracy

Let us consider an eigenvalue equation

Â l,m,n = (l2 + m2 + n2)  l,m,n (1.2.8)

where  l,m,n are the eigenfunctions of the operator Â and

a l,m,n = (l2 + m2 + n2) are the corresponding eigen values.

For the case when l = 1, m = 1 and n = 1,  1,1,1 is the eigenfunction and

a 1,1,1 = (1 + 1+ 1) = 3 is the eigen value. This eigenvalue corresponding to only one distinct

eigenfunction is said to be non-degenerate. Now, let us consider the eigenfunctions  2,1,1 ,  1,2,1

 1,1,2. All these eigenfunctions have the same eigenvalue

a l,m,n = a 2,1,1 = a 1,2,1 = a 1,1,2 = ( l2 + m2 + n2) = 6

It means that there are three distinct eigenfunctions  2,1,1 ,  1,2,1 and  1,1,2 for one distinct

eigenvalue a l,m,n = 6. Similarly, in many eigenvalue problems, several distinct or linearly

independent eigenfunctions may belong to the same eigenvalue. In such cases, the eigenvalue is said
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to be degenerate and the number of linearly independent eigenfunctions is the degree of degeneracy.

In the example cited above, the degeneracy is three.

Note: The eigenfunctions  in the set { φn } are said to be linearly independent, if no relation c1 φ1 + c2

φ2 +….. + cn φn exists between them, except the trivial one with

c1 = c2 = ……= cn = 0.

1.2.8 Ortho-normality of Eigenfunctions

 Consider a set of eigenfunctions { φn }. The eigenfunctions are said to be ortho-gonal, if

 φm
*(x)   φn(x) dx  =  0, (for m ≠ n) 

They are said to be normalized, if

 φn
*(x)   φn(x) dx = 1

The set of eigenfunctions are said to be ortho-normal (i.e., both orthogonal and normalized), if

  φ m
*(x)   φn(x) dx  =  δmn (1.2.9)

1, m = n

where δmn =

                            0,    m ≠ n 

The limits of integration, to be used, shall indicate the region over which the eigen-functions are

expected to be valid.

Example-5

Check the ortho-normality of the eigenfunctions φn(x) = B sin (nπx/a),  

where B = a/2 in the range x = 0 to x = a.
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(i) φn(x) are orthogonal, if I = 
a

0
φ m

*(x)   φn(x) dx = 0

In the present problem I = B2


a

0
sin (mπx/a) sin (nπx/a) dx  

= (B2/2) 
a

0
[cos {(m-n) πx/a}   -    cos {(m+n) πx/a}] dx

= [(B2a/ (m-n)2 π]sin (m-n) πx/a | ax
x

0 - [(B2a/ (m+n)2 π]sin (m+n) πx/a  | ax

x

0 = 0

Hence φn(x) are orthogonal.

(ii)  φn(x) are normalized, if I = 
a

0
φ n

*(x)   φn(x) dx = 1

In the present problem, I = ( a/2 )2


a

0
sin (nπx/a) sin (nπx/a) dx   

= (2/a) 
a

0
sin2(nπx/a) dx    =  (1/a) 

a

0
[1-cos (2nπx/a)]  dx   

= (1/a) 
a

0
dx - (1/a) 

a

0
cos (2nπx/a)  dx   

= (1/a) [x] ax
x

0 - (1/a) (a/2nπ) [sin(2nπx/a)] ax

x

0 = (1/a) a - 0 = 1

Hence φn(x) are normalized

The results of (i) and (ii) together prove that { φn(x)} are orthonormal.

1.2.9 Commuting Operators

Two operators


A and


B are said to be commuting operators,

if


A


B =


B


A . By this we mean that


A


B f =


B


A f for any arbitrary function f ; the difference

(


A


B -


B


A ) is called the commutator of


A and


B . A bracket notation is used to denote the

commutator as
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[


A ,


B ] =


A


B -


B


A (1.2.10)

In this notation,


A and


B are said to commute with each other if [


A ,


B ] = 0

Theorem (1)

If two operators


A and


B commute, they share a common set of eigenfunctions.

Proof:

Since


A and


B commute,


A


B =


B


A (i)

Let the operator


A  has a set of eigenfunctions {φn} with eigenvalues an




A  φn = anφn (ii)

Operating with


B from left on both sides, we have



B


A φn =


B (anφn) = an (


B φn ) (iii)

Since


A


B =


B


A , the LHS can be written as


A


B  φn and therefore equation (iii) becomes



A(


B  φn) = an (


B φn ) (iv)

This equation indicates that the operator


A has an eigenfunction (


B φn ) with the eigenvalue an. But

according to our assumption (equation ii),


A  has an eigenfunction φn with the same eigenvalue an.

If this eigenvalue is non-degenerate


B φn must be equal to φn except for a constant multiple.

Therefore


B φn =  constant x φn. Indicating the constant by bn, we have



B φn = bnφn (v)
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This shows that


B also possesses the same eigenfunctions { φn}which


A also possesses. Hence


A

and


B , the commuting operators share a common set of eigenfunctions.

Theorem 2

If two operators


A and


B possess the same set of eigenfunctions, prove that the operators commute.

Proof

This theorem, in fact, is the converse of the previous theorem. Let the common set of eigenfunctions

possessed by


A and


B are φn(x) with eigenvalues an and bn respectively.

Therefore


A  φn = anφn (vi)



B φn = bnφn (vii)

Operating from left on both sides of equation (vii) by


A , we have



A(


B  φn) =


A(bn φn ) = bn



A( φn ) = bn an φn (viii)

Similarly, operating from left, on both sides of equation (vi) by


B , we have



B (


A  φn ) =


B (anφn) = an



B (φn) = anbn φn (ix)

From equations (viii) and (ix), we have

(


A


B -


B


A ) φn = (bn an - anbn ) φn (x)

RHS of equation (x) is zero, since an and bn are constants and commute with each other.

(


A


B -


B


A ) φn = 0




A


B -


B


A = 0 or [


A ,


B ] = 0 Hence


A and


B commute.
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Theorem 3

Show that [


A


B ,


C ] =


A [


B ,


C ] + [


A ,


C ]


B

Proof

LHS =


A


B


C -


C


A


B

Subtracting and adding the same factor


A


C


B ,

LHS =


A


B


C -


A


C


B +


A


C


B -


C


A


B =


A (


B


C -


C


B ) + (


A


C -


C


A )


B

=


A [


B ,


C ] + [


A ,


C ]


B = RHS

Hence the theorem is proved.

Theorem 4

If


A and


B are two operators each of which commute with their commutator [


A ,


B ], prove that

[


A n,


B ] = n


A n-1 [


A ,


B ].

Proof:

LHS = [


A n,


B ] = [


A


A n-1,


B ] =


A [


A n-1,


B ] + [


A ,


B ]


A n-1

=


A [


A


A n-2,


B ] + [


A ,


B ]


A n-1 =


A {


A [


A n-2,


B ] + [


A ,


B ]


A n-2} + [


A ,


B ]


A n-1

=


A 2 [


A n-2,


B ] +


A [


A ,


B ]


A n-2 + [


A ,


B ]


A n-1

Since


A commutes with [


A ,


B ],the second term equals

[


A ,


B ]


A


A n-2 = [


A ,


B ]


A n-1 since



A [


A ,


B ]


A n-2 = [


A ,


B ]


A


A n-2 = [


A ,


B ]


A n-1

 LHS =


A 2 [


A n-2,


B ] + 2 [


A ,


B ]


A n-1



Acharya Nagarjua University 1.11 Centre for Distance Education

Repeating the process (n-2) times, we have

LHS =


A n [


A n-n,


B ] + n [


A ,


B ]


A n-1 =


A n [


A o,


B ] + n


A n-1 [


A ,


B ]

(since


A and hence the powers of


A commute with [


A ,


B ] )

using


A o = 1 and [ 1,


B ] = 0, since 1 commutes with


B ,

 LHS = n


A n-1 [


A ,


B ] = RHS, hence proved.

1.2.10 Hermitian Operators

Hermitian operators are very important in the development of Quantum Mechanics.

Therefore, it is necessary to understand the essential features of this class of operators.

 If, for any two arbitrary eigenfunctions    φm (x)  and φn (x),

  φm
*



A  φn dx =  (


A † φm )*  φn dx (1.2.11)

then


A † is called the adjoint of the operator


A . If


A =


A †, then the operator


A is called the self-

adjoint or Hermitian operator. Thus a Hermitian Operator is defined according to the following

equation:

  φm
*



A  φn dx =  (


A  φm )*  φn dx (1.2.12)

Properties

(i) The eigenfunctions of a Hermitian operator are real.

(ii) Any two eigenfunctions which belong to two different eigenvalues of a Hermitian operator are

orthogonal.
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Proof:

In the case of operator


A , consider two eigenfunctions   φm and φn with eigenvalues am and an

respectively.



A  φm = am  φm (1.2.13)



A  φn = an  φn (1.2.14)

Multiplying equation-14 with  φm
* and equation-13 by φn

* from left and integrating,

  φm
*



A  φn dx = an  φm
* φn dx (1.2.15 )

  φn
*



A  φm dx = am  φn
* φm dx (1.2. 16)

Taking the complex conjugation of equation-16, we have

 (


A  φm)*  φn dx = am
*
 φm

* φn dx (1.2.17)

Using the Hermitian property of operator


A (equation-12), LHS of equations-15 and 17 are equal;

hence the RHS must also be equal. Therefore,

an  φm
* φn dx = am

*
 φm

* φn dx (1.2.18)

If we consider the case n = m, the above equation becomes

am  φm
* φm dx = am

*
 φm

* φm dx (1.2.19)

From the above equations, it is obvious that am = am
* and hence am = real. This proves the first

property that the eigenfunctions of a Hermitian Operator are real.

Using am
* = am and rewriting equation-18, we have

(an – am)  φm
* φn dx = 0 (1.2. 20)
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For two different eigenvalues, i.e., for (an – am)   ≠  0, we have 

 φm
* φn dx = 0

This is the condition for orthogonality of φm  and φn and this proves the second property.

Note:

(i) In the case of matrix operators, a matrix (M) is said to be Hermitian, if it is equal to its transpose

conjugate (M†) : (M†) = M.

(ii) M is said to be unitary, if M† = M -1 , where M -1 is the inverse of M

(iii)M is said to be orthogonal, if MT = M -1, where MT is the transpose of M.

Summary of lesson

Various classes of operators like linear, anti-linear, commuting and Hermitian operators have

been introduced. Their properties and algebra have been illustrated with examples. The concepts of

degenerate eigenvalues and degree of degeneracy have been explained. Thus, the basic knowledge

of operators and their algebra, necessary for laying the foundations of Quantum Mechanics, have

been presented with examples and illustrations.

Key terminology Operator – Linear operator – Anti-linear operator – Operator equation –

Eigenvalues – Eigenfunctions – Degeneracy – Orthogonality – Normalisation – Commuting

operators – Commutator – Hermitian operator.

Self assessment questions

(i) Explain linear and anti-linear operators with examples.

(ii) Prove the operator equation 












x

x













x

x
=

2

2

x


- x2 + 1.
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(iii) Evaluate the commutator [


A


B ], if


A = x and


B = -iħ
dx

d

(iv) What are the eigenfunctions and eigenvalues of the operator
2

2

x


?

(v) What is degeneracy? Explain with an example.

(vi) Determine the normalisation constant for the eigenfunction

        ψn(x) = B sin (nπx/a), in the range x = 0 to a 

(vii) State and prove the properties of a Hermitian operator.

(viii) Prove that [


A ,


B


C ] = [


A ,


B ]


C +


B [


A ,


C ].

(ix) Show that [


A , [


B ,


C ] + [


C , [


A ,


B ] +[


B , [


C ,


A ] ] = 0

Reference books

1. A Textbook of Quantum Mechanics – Mathews P M and Venkatesan K (Tata Mc Graw Hill

Publication Co. Ltd., N. Delhi)

2. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York).

3. Introduction to Quantum Mechanics – Mathews P T (Mc Graw Hill Book Co., New York).
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UNIT - 1

LESSON - III - FOUNDATIONS OF QUANTUM

MECHANICS

Objective

Formulation of the principles of the basic foundations of quantum mechanics, their interpretation and

explanation.

1.3.1 Introduction

Schrodinger developed a wave equation governing the behaviour of material particles, utilising the

concept of wave nature of matter introduced by de Broglie. Historically, first a simple method of reasoning

was used to arrive at the Schrodinger equation for a free non-relativistic particle and generalise the equation

for a particle subject to forces. Then comprehensive foundation of quantum mechanics was however laid

based on a set of fundamental postulates. Necessary details of the foundations, along with elegant Dirac’s

Bra-Ket notation, are dealt in this chapter so as to facilitate their application in the succeeding chapters.

1.3.2 Deduction of the Schrodinger Equation

(i) Time dependent equation

For a free particle of mass m, moving in x – direction , with a momentum p, and energy E, is given

as

E = p2/(2m) (1.3.1)

Based on the de Broglie hypothesis,

wave length () of particle of momentum p, is given as  = h/p

p = h/ = ħk    and  E = h  =  ħω      (1.3.2 ) 

Propagation constant k = 2/
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From equations .1.3.1 and 1.3. 2, we have

 ħω =    ħ2k2/(2m) (1.3.3)

The possible functions to represent such harmonic waves are

cos (kx – ωt), sin (kx – ωt), or their linear combinations: 

ψ (x, t) = a cos (kx – ωt) + b sin (kx – ωt)    (1.3.4) 

The common differential equations for such waves are

t


 = - (ω/k)  

x


;

2

2

t

 
 =  (ω/k)2

2

2

x

 
(1.3.5)

The authenticity of these equations can be checked by substituting in equation-1.3.5, the expressions for ψ (x, 

t) from equation-1.3.4.

It is obvious from equation 1.3.2 that   ω/k  =  E/p  =  p/(2m) and therefore the differential equations

in equation-1.3.5, represent particles of a particular momentum p.

However, we need an equation to represent free particles of all momenta.  It can be observed that unlike ω/k,  

the term ω/k2 is independent of p, since

ω/k2  =   ħ/(2m).  With this in view, ψ (x, t) of equation-1.3.4, suggests a differential equation involving first 

order time derivative
t


and second order space derivative

2

2

x

 
. Using equation-1.3.4, we obtain

t


 =  – ω [ -a sin (kx – ωt) + b cos (kx – ωt) 

2

2

x

 
= -k2 [a cos (kx – ωt) + b sin (kx – ωt) ]  

In the above equations, if b = ai we get the differential equation connecting them as
t


=

(iω/k2 )
2

2

x

 
.  Substituting from equation-1.3.3,  ω/k2  =   ħ/(2m), we have  
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t


 = (i ħ/2m)

2

2

x

 
.

 i ħ 
t

tx



 ),(
= - (ħ 2 /2m)

2

2 ),(

x

tx



 
(1.3.6)

This is the Schrodinger equation for a free particle in one dimension. A comparisons of 1.3.1 and 1.3.6

suggest that the Schrodinger equation can easily be deduced if we replace the energy E and momentum p in

the equation-1.3.1 with differential operators E  iħ 
t


and p  - iħ

x


.

If a force Fx is acting on a particle, the body possesses potential energy

V (x) given according to the relation Fx = -
x

txV



 ),(
. Accordingly, the total energy E of the particle of

mass m, momentum p and potential energy V(x,t) is given as

E =
m

p

2

2

+ V(x,t) (1.3.7)

With the correspondences E  iħ 
t


and p  - iħ

x


in equation-1.3.7, we get the

following Schrodinger equation for a particle having both K.E and P.E:

i ħ 
t

tx



 ),(
= - (ħ 2 /2m)

2

2 ),(

x

tx



 
 + V(x,t) ψ(x,t)     (1.3.8) 

In 3D, this equation becomes

iħ 
t


= [ ħ2/(2m) ] 2ψ + V ψ        (1.3.9) 

The Schrodinger time dependent equations (equations 1.3.6, 1.3.8 and 1.3.9) deduced here are based on

merely trial and error methods depending on assumptions based on past experience. Thus, the procedure is

simply heuristic.
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(ii) Time independent equation

A lucid heuristic procedure to develop the non-relativistic time independent Schrodinger

equation is to incorporate de Broglie wavelength of the particle in the general wave equation. The

usual wave equation is

2

1

v 2

2 ),(

t

tx



 
-

2

2 ),(

x

tx



 
= 0 (1.3.10)

For stationary waves ψ(x,t) = ψ(x) e iωt =  ψ(x) e 2πiυt

Substituting, this in the above equation, we obtain

2

1

v
(2 π i υ)2 ψ(x) e 2πiυt - e 2πiυt

2

2 )(

dx

xd 
= 0

2

2 )(

dx

xd 
+ )(

4
2

2

x



= 0 (1.3.11)

It is well known that the de Broglie relation for wave length λ, of a particle of momentum p is given as λ = 

h/p.  On substituting this value of λ in the above equation, we obtain 

2

2 )(

dx

xd 
+ )(

4
2

22

x
h

p



= 0 (1.3.12)

But, p2 = 2m (E-v)


2

2 )(

dx

xd 
+ )(

)(24
2

2

x
h

VEm


 
= 0


2

2 )(

dx

xd 
+ )(

)(8
2

2

x
h

VEm


 
= 0 (or)

2

2 )(

dx

xd 
+ )(

)(2
2

x
VEm





= 0 (1.3.13)

This is the time independent one-dimensional Schrodinger equation of a particle. In 3-D, it can be written as

2ψ + (2m/ ħ2)(E-V) ψ = 0        (1.3.14) 
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However, the foundations of a new subject like Quantum Mechanics must be based firmly on a self-consistent

comprehensive framework. For this purpose, Schrodinger formulated postulates, popularly called

Schrodinger postulates. They encompass the Schrodinger equation also as will be seen in the next section.

1.3.3 Schrodinger's Postulates

The postulates of any theory are a set of fundamental statements, which cannot be explained in terms

of more fundamental concepts. Therefore, one should not try to understand the postulates. One should rather

believe them and draw conclusions from them. The conclusions are then tested by experiment and if they are

confirmed, the belief in the postulates is justified.

The second point, which should be kept in mind, is the ease with which a postulate may be made to

appear reasonable depends on how readily it relates to every day experiences. In quantum mechanics, the

postulates are about atomic and molecular properties and these are in general quite far from everyday

experience. Consequently, the postulates may also in this sense be difficult to understand.

The main point to keep in mind is that the postulates are justified only by their ability to predict and

correlate experimental facts and their general applicability. With this background in mind, we introduce the

basic postulates of quantum mechanics.

1. Any state of a dynamical system of  N-particles  is described as fully as possible by a function  ψ (q1,

q2, ...., q3N,  t)  such that the quantity ψ * ψ dq  is proportional to the probability that the variables lie 

in a volume element dq at a specific time  t.  The concise  form of  ψ (q1, q2, ........ q3N, t)  is  ψ (q,t)   

and is generally called the Wave Function or State Function. It may be either complex or negative but

guarantees real and positive probability.

The following are its important properties

(i) It is finite and single-valued

(ii) The function and its first derivative should be continuous.

(iii) It should have an integrable square.
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2. For every observable physical quantity, there exists a corresponding linear Hermitian Operator. The

classical expression for an observable is first to be written in terms of its cartesian coordinates (q),

momenta (p) and time (t).

Then the following operator correspondences for p, q, t are used to get the operator

expressions

Aop = A (qop, pop, top) where

tt=t;
q

i-=p=p;qq=q opqopop 



 ˆˆˆ 

3. The State Function ψ (q, t) satisfies the quation  

Hop  ψ(q, t) = i ħ  t)(q,
t






where Hop (q,t) is the Hamiltonian operator of the system.

This equation is called the Schrodinger's time-dependent equation.

4. If for a set of identical systems in a state ψn (q, t), the state function is an eigenfunction of the operator

corresponding to an observable, then the successive measurements will give the same value of the

observable.

Accordingly, if


A ψn (q, t) = an (q, t), we will get the same result an if we perform a series of a

measurements of an observable quantity on different members of the identical system set. If


H  ψn

(q, t) = En ψ (q, t) and if this is to be consistent with the Schrodinger's time dependent equation  

i ħ t)(q,
t





=



H ψ (q, t), 

then ψ (q, t) must be of the form ψ (q, t) = ψ (q) e –iEt / ħ where ψ (q) is the solution of the equation H 

ψ (q) = E ψ (q).  

This equation is called the Schrodinger's time-independent or Stationary State equation.
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5. If for a set of identical systems in a state ψn (q, t), the state function is not equal to the eigenfunction

of the operator corresponding to a physical observable, then the successive measurements will not

give the same value but a range of values for the observable physical quantity. The average of a large

number of these measurements is called the expectation value.

dq

dqA
=>A<=A

nn

nn




*

* ˆ
ˆ





This is consistent with the previous postulate.

1.3.4 Wave function : Interpretation and Properties

Interpretation

(i) Wave function  (q, t) describes as fully as possible the state of a particle (or a system).

(ii)  (q, t) of a particle is a measure of its presence and we do not expect the particle in the region where

 = 0.

(iii) Since  (q, t) can be negative or complex, it cannot directly be a measure of the presence of the particle.

Therefore, | (q, t)| 2 d can be interpreted as the probability of finding the particle in the volume

element d around q. Accordingly,  * = | | 2 is the probability density and is denoted as .

(iv) Since the probability of finding a particle anywhere in the space is unity,

  d =   * d =  | | 2 d = 1.

Whenever this integral exists,  is said to be normalised. If  is normalised at t = 0, it remains normalised

at all times, indicating
t


  dt = 0.

(v) The probability interpretation of  can be made consistent, only if it is possible to define a probability

current density


j which together with probability density

 =  * satisfies
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




t


.



j = 0 (1.3.15)

as in the case of the conservation of matter in hydro-dynamics, or conservation of charge in electro-

dynamics. In fact, a relation of the form (equation-1.3.15) can easily be deduced from the

Schrodinger’s wave equation and its complex conjugate




)(
2

2
2

qV
mt

i 





 
 (1.3.16)

- *)(*
2

* 2
2




qV
mt

i 





 
 (1.3.17)

Multiplying equation-1.3.16 from left by  * and equation-1.3.17 from right by  and subtracting, we get

0]*)(*.[
2

*









mit


(1.3.18)

This is of the form of equation-1.3.15, if we identify

 =  * and


j = ]*)(*[
2

 
mi


(1.3.19)

Properties

For the probability interpretation to hold good,  must have the following properties (or

admissibility conditions):

(i)  should be finite.

(ii)  must be single valued.

(iii)  must be square integrable.

(iv)  and
q


should be continuous functions of q for all q. The continuity of

q


is due to the implicit

assumption that V(q) is a continuous function of q, except perhaps for a certain number of finite

discontinuities.
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1.3.5 Dirac’s Bra and Ket notation

Any state of a dynamical system is described as fully as possible by a wave function or state function

 (q, t) in Schrodinger’s picture. This function can be expressed as a linear combination of a complete ortho-

normal set of basis functions. If the variable takes a continuous range of values, the state function is

continuous. However, if the variable takes discrete values, it is convenient to use matrix notation to represent

the state function and the linear operators, which operate on it.

Therefore, it is desirable to develop a mathematical structure, which contains all these concepts in a

comprehensive unified way. In this formalism, the values of the state function are considered as projections

(or components) of a vector  . This vector is generally called the state vector. For two vectors, in a linear

vector space, a scalar product is defined as follows:

(i) ( a ,  b ) ≥ 0(1.3) 

(ii)( a, b)=( b, a)* (1.3.20)

(iii) ( a , kb  b + kc  c ) = kb ( a ,  b ) + kc ( a ,  c )

(kb  b + kc  c,  a ) = kb* ( b ,  a ) + kc* ( c ,  a )

Obviously, the scalar product is linear with reference to post factor and anti-linear with reference to pre-factor.

Unitary linear vector space or simply unitary space is the linear vector space in which scalar product

is defined. Hilbert space is a unitary space that is complete and the language of the Hilbert space suits better

for the formulation of quantum mechanics. To avoid apparent asymmetry and to make the scalar product

symmetrical with respect to post and pre-factors, Dirac proposed a new notation called ‘Bra and Ket’ notation.

In this notation, two different vector spaces linear in themselves but related to each other anti-linearly are

conceived. For example, the vector in the post factor in ( a ,  b ) is written as | b  or simply | b ; the

vector in the pre-factor is written as   a | or simply  a |. The vector in the post-factor space, denoted by the
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symbol | , is called ket, whereas the vector in the pre-factor space, denoted by the symbol  | is called bra.

The scalar product in Dirac bra-ket notation is given as follows:

( a ,  b ) =  a , b  =  b, a *

This relation implies that | a * =  a | and indicates that the ket space and the bra space are not independent of

each other. They are said to be dual to each other.

A few common definitions are given below in Dirac’s bra – ket notation:

(i)


A is a Hermitian operator if  a|


A | b  =  b|


A | a * (1.3.21)

(ii)    Normalisation condition of ψ is given as  ψ | ψ  = 1 (1.3.22)

        If the state of a system at a particular time t is specified by ψa (q,t), it is denoted in bra-ket notation as |a,t

. The expectation value




A  = ψ*


A   ψ d / ψ*  ψ d =  a, t |


A | a, t  /  a, t | a, t .

For normalised wave function, since  a, t | a, t  = 1, expectation value is given as




A  =  a, t |


A | a, t  (1.3.23)

(iii) Unit operator is denoted as


i

| a i   a i | = 1 (1.3.24)

Note In two dimensions (X-Y axis system), the unit vectors


i and


j are often represented as 






 1

0

and 






 0

1

.

These can be expressed as | i  = 






 1

0

and

 i | = (1 0). Similarly, | j  = 






 0

1

and  j | = (0 1). Accordingly,
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| i   i | + | j   j | = 






 1

0

(1 0) + 






 0

1

(0 1) = 






 0

0

1

0

+ 






 0

1

0

0

= 






 0

1

1

0

= unit matrix

This can be expressed more generally in n – dimensions as


i

| a i   a i | = 1 which is a common relation for unit operator.

Representation

In Dirac’s bra-ket notation, an operator can be represented by a matrix. For example, consider an

ortho-normal set of basis vectors {| a i} in terms of which the operator


B is to be represented. Let


B operate

on | a i and give another vector |i . This | i  can in turn be expanded as a linear combination of the basis

vectors |a i .




B |a i  = | i  = 
j

b j i |a j 

where bji are expansion coefficients. Operating from left on both sides with  a j |,

we have

 a j |


B |a i  =  a j | 
j

bji |a j  =  a j | a j  b j i = b j i

since  a j | a i   =  δ j i, because of ortho-normality

b j i =  a j |


B |a i  (1.3.25)

From the above equation, it is obvious that the operator


B is represented by a square matrix whose elements

are b j i.

1.3.6 Expectation value and Equation of motion

Let a large number of observations be made on the position of a particle having a specified normalised

wave function ψa (q,t) or state vector |q,t . After each experiment, the particle is so prepared as to have the

same wave function. According, to probability interpretation, we don’t get the same result each time.
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Therefore, we have to take the mean or average value of all the observed values. The result, according to

Quantum Mechanics (postulate –V) is expected to be  ψa*(q,t)


x ψa (q,t) d, where


x is the position operator

and d is the volume element. This is also called the expectation value of the position variable and is often

denoted as 


x . Likewise, for any physical observable A, the expectation value, for a normalised state

vector, is given by the relation




A  =  ψa*(q,t)


A  ψa (q,t) d, =  a, t |


A | a, t  (1.3.26)

A better insight of a physical quantity can be had, if we study the time rate of change of that quantity.

The physical quantity is represented in its real form, as an average value [


A

= 


A  ]. Accordingly,


A = 


A  =  a, t |


A | a, t . Now, the time rate of change in this average

(expectation value) is given by

,|
t

A|ta,ta,|
t

A
|ta,ta,|A|,

t
ta,|A|ta, 


































tata
dt

d

dt

Ad

(1.3.27)

Using in the above equation the Schrodinger time-dependent equation and its Hermitian adjoint, namely









ta
t

itaH ,|,|  and |,|, ta
t

iHta 







 (1.3. 28)

we have










taAHHAta
i

ta
t

A
ta

dt

Ad
,||,

1
,||,


(1.3.29)

Defining
dt

Ad

dt

dA )(


 , the above equation can be written as
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],[
1

HA
it

A

dt

dA







 (1.3.30)

This can also be expressed, in the operator form, as

],[
1 







 HA

it

A

dt

Ad


(1.3.31)

If


A does not explicitly depend on time, the equation of motion becomes

],[
1 



 HA
idt

Ad


(1.3.32)

1.3.7 Ehrenfest’s Theorem

In Quantum Mechanics, as already explained, the equation of motion deals with the time rate of

change in the expectation value of the operator (


A ) which represents a physical variable (A).

],[
1 







 HA

it

A

dt

Ad



This is of the same form as the classical equation of motion of the physical variable (A), in the poisson bracket

form },{ HA
t

A

dt

dA





 , if we identify the quantum mechanical poisson bracket as },{],[

1
HAHA

i





.

This statement that “the expectation values of operator 


A  obey the same equation of motion in quantum

mechanics as the dynamical variables A in classical mechanics” goes in literature as the general statement of

Ehrenfest’s theorem. Physically this statement implies that an infinitesimally small quantum wave packet is

well approximated by classical mechanics.

Specifically, the following equations constitute Ehrenfest’s theorem:




p  = m
dt

d




x  (1.3.33)
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dt

d




p  = - 
x

V






 (1.3.34)

(i) Proof of 


p  = m
dt

d 


x 

Using equation of motion ],[
1 



 HA
idt

Ad


and observing that H = p2/(2m) + V(x) we obtain

dt

d




x  = 






)](
2

,[
1 2

xV
m

p
x

i
= 





]
2

,[
1 2

m

p
x

i
since



x and )(xV


commute

 = (2miħ)-1  { [


x ,


p ]


p +


p [


x ,


p ] }   =    (2miħ)-1  (iħ


p +


p iħ)

 = (2miħ)-1  (2iħ


p ) = 


p  / m  


p  = m
dt

d




x 

(ii) Proof of
dt

d




p  = - 
x

V








dt

d




p  = 






)](
2

,[
1 2

xV
m

p
p

i
= (iħ)-1 



)](,[ xVp since
m

p
andp

2

2




commute

= (iħ)-1 







)](,[ xV
x

i = 







)](,[ xV
x

Let us study )](,[ xV
x






ψ  =  )(xV

x






ψ - 

x
xV




)(  ψ  

= ( )(xV
x






) ψ + 

x
xV




)(  ψ - 
x

xV




)(  ψ  = ( )(xV
x






) ψ 

 )](,[ xV
x






= )(xV

x






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
dt

d




p  =  - )](,[ xV
x






 = - 

x

V








1.3.8 Derivation of Uncertainty Principle

When a physical quantity assumes several values with various possibilities, it is usual to use the mean

square deviation as a measure of the width of the probability distribution or the uncertainty in the value of the

quantity.  The uncertainty in an observable A, denoted as (ΔA)2 =<ψ | (


A -


A )2 | ψ >  

(1.3.35)

where (


A -


A ) is the operator corresponding to the deviation of A from its mean value. Let us consider

simultaneous uncertainties in two observables, namely position x and momentum px in that direction. For this

purpose, let us introduce corresponding operators

x-x= ˆ̂ and p-p=
xx

ˆ


 (1.3.36)

where x̂ and px
ˆ are the position and momentum operators and x and px

are the average values of the

position and momentum (from a large number of measurements).

]p,x[=)x-x()p-p(-)p-p()x-x(=],[ xxxxx
ˆˆˆˆˆˆˆˆ  = iħ   (1.3.37)

Now let us consider a ket |φ > and the dual bra < φ | where 

|φ > = >|)i+(  ˆˆ       and    < φ | = < )i+(  ˆˆ| †    (1.3.38) In which λ 

is an arbitrary real parameter. Now, the scalar product

<φ | φ > = <  |)i+()i+(| ˆˆˆˆ †
>

= <  |)i+()i-(| ˆˆˆˆ >

= < >|)+],[i+(|
222  ˆˆˆˆ  ≥  0    (1.3.39) 

since the scalar product of non-zero vector | ψ > is always greater than or equal to zero. 
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From equations 1.3.35 and 1.3.36, it is evident that

< >|| 2  ˆ = 


 |)(| 2xx = (Δx)2

< >||
2




= 


 |)(| 2
xx pp = (Δpx)

2

 0)p(+)(ii+)x( 2

x
22   

 (Δx)2 - λ ħ + λ2 (Δpx)
2 ≥ 0       (1.3.40) 

Since λ is arbitrary, we will investigate for which value of λ, the LHS will be minimum.  For this LHS should 

be differentiated with respect to λ and  equated to zero.   

-λ ħ + λ2 (Δpx)
2 = 0  - ħ + 2λ (Δpx)

2 = 0 (1.3.41)

λ = ħ/ [2 (Δ px)
2] (1.3.42)

With this value of λ, equation – 1.3.40 yields 

(Δx)2  - ħ2 / [2 (Δpx)
2] +{ ħ / [2 (Δpx)

2] }2 (Δpx)
2 = 0

 [(Δ px) (Δx)]2 =  ħ2 / 4

(Δpx) (Δx) ≥ ħ /2        (1.3.43) ) 

This is the minimum uncertainty product.

SUMMARY OF LESSON

First a heuristic method of developing Schrodinger’s equation has been outlined. Then, the postulates

of Schrodinger have been stated and explained. Probabilistic interpretation of wave function has been

presented along with the admissibility condition of wave function. Dirac’s bra-ket notation has been put

forward and expectation values and their time development have been studied. Ehrenfest’s theorem has been

explained and proved using the equation of motion. Heisenberg’s uncertainty principle has been derived

using operator techniques.
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KEY TERMINOLOGY:

Schrodinger equation – Schrodinger postulates – State function – Dirac bra-ket notation –

Ortho-normality – Hermitian Operator – Representation – Expectation values - Equation of Motion –

Ehrenfest’s theorem – Uncertainty principle.

SELF-ASSESSMENT QUESTIONS

(i) Develop heuristic method formulating Schrodinger’s time-dependent equation.

(ii) Deduce from the classical wave equation, Schrodinger’s time-independent equation.

(iii) State and explain Schrodinger’s postulates.

(iv) Explain the interpretation of state function and its admissibility conditions.

(v) What is Dirac’s bra-ket notation? Explain matrix representation of operators.

(vi) State and explain Ehrenfest’s theorem. Derive any one of the relations

a) 


p  = m
dt

d




x  b)
dt

d



p  = - 
x

V








(vii) Derive Heisenberg’s uncertainty principle.
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UNIT - 1

LESSON - IV- SOLUTIONS FOR SOME SIMPLE

SYSTEMS

Objective

Application of Schrodinger’s equation to simple problems of a particle in a one-dimensional infinite

and finite potential wells, rectangular box and a linear harmonic oscillator.

1.4.1 Introduction

We have learnt already the necessity of Quantum Mechanics and constructed the essential theoretical

foundations. Now our aim is to apply the basic principles of Schrodinger’s equation to solve some simple

problems like (i) particle in an one dimensional infinite potential well, (ii) particle in a rectangular box, (iii)

particle in an one dimensional finite potential well, and (iv) particle in an one dimensional harmonic potential

well. The examples are quite useful to illustrate the Schrodinger’s technique of analysis of the energy levels

of a particle, which is under the influence of various potentials. It will be evident from the analysis how

smoothly all the results emerge from the quantum mechanical theory without the necessity of any intermediate

adhoc assumptions.

1.4.2 Particle in an infinitely deep potential well

Let us consider the problem of a particle of mass 'm' in a one-dimensional well of width 'a'. The

potential is given as (Fig.4.1)

V = 0 ; 0 < x < a

V =  ; elsewhere …(1.4.1)

The Hamiltonian is H = p2
x / 2m

a0

V(x)

Figure-1.4.1

X
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Hamiltonian operator
dx

d

2m
-=2m/p=H

2

22
2

x

ˆˆ …(1.4.2)

Therefore, using Schrodinger’s equation


H ψ=Eψ,  

0=(x)k+
dx

(x)d 2

2

2




…(1.4.3)

where k2 = 2mE / ħ2

The solution is

ψ (x) = A sin k x + B cos k x                …(1.4.4)    

Since the particle is confined to the box, ψ (o) = ψ (a) = o,  

these conditions yield

ψ (x) = A sin (n π x/a)                           …(1.4.5 )                                        

where n = 1,2,3 --- and ka = n π         

Therefore k2 a2 = n2 π2 (or) 2mEa2 / 2 = n2 π2

Hence En = n2 (h2 / 8ma2)

Normalization of  ψ (x), namely 

a/2=Ayields1,=dx])/ax(nA[ 2
a

0

sin

Eigenvalues and eigenfunctions

Energy of the particle in the infinitely deep potential well

En = n2 (h2 / 8ma2); n = 0,1,2…. …(1.4.6 )

)a/xn(a/2=(x)  sin …(1.4. 7)

From the figure-2, depicting eigenfunctions and eigenvalues, it is evident that the number of nodes increases

with increase in energy (eigenvalues) and hence wavelength decreases. This is in accordance with the de

Broglie principle (x=h/p) which implies decrease of wavelength with the increase of momentum (or energy)

n =3

n =2

n =1

E3

E2

E1

Fig 1.4.2
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Average value of px

Let us consider the ground state with the energy E1 and the state function ψ1. The average value of xp is

given by



xp = dxp=
dx

dxp
=p 1x1

11

1x1

x 1





ˆ

ˆ *

*

*








, …(1.4.8))

since 1=dx11
* due to normalization

Using


xp = - i ħ 
dx

d
, we have

0=dx)
a

xn
(

dx

d
)

a

xn
()

a

2
(i-=>p<

a

0x


sinsin …(1.4.9)

Average value of px, evaluated from that of px
2

We know that  111

2

x Em2=p̂ …(1.4.10)

Since the state function is an eigenfunction of p
2

x
ˆ the average value of p

2

x is 2 m E1

From the average value of p2
x if we evaluate the average value of px ,

we have Em2=p 1x 


1)( (1.4.11)

This result is not inconsistent with the result of equation-1.4.8, because in a large number of

observations, half of the results will be positive and other half will be negative leading to the effective value

of zero for 1)(


xp

Uncertainty Principle

For the particle in the well, we cannot give the exact position. But we can only say that it is in the

box. That is, the uncertainty in the measurement of the position will be 'a'.
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Since we have for the momentum px = Em2 1 the particle will have either Em2+=p 1x

or Em2-=p 1x

This leads to the uncertainty of 2 Em2 1 in the momentum

Em22(a)=px 1x h=a/8mh.m2a2= 22 …(1.4.12)

This is the minimum value. In the upper states the value will be nh. This is Heisenberg's uncertainty

principle.

1.4.3 Particle in a Box

Let us consider the problem of a particle of mass ‘M’ in a three dimensional rectangular box of sides

a, b, c. The potential function V (x, y, z) This is represented as follows:

V(x, y, z) = 0; (0<x<a; 0<y<b;0<z<c)

V(x, y, z) = ; elsewhere (1.4.13)

The Hamiltonian of the problem is

H =
M

p

M

p

M

p zyx

222

222



Hamiltonian operator

222

2

1

2

1

2

1










































z
i

My
i

Mx
i

M
H 

 

























2

2

2

2

2

22

2 zyxM
H



Therefore the Schrodinger time-independent (or stationary state eq



H ψ = E ψ) becomes 

X

Z

a

b

c

Y

(1.4.14)

uation

Fig.1.4.3

c
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02

2

2

2

2

2

2


















k

zyx
, where k2 = 2ME/ ħ2 (1.4.15)

Standard technique to solve the above eigenvalue equation is separable variable method. For this, we

write ψ(x,y,z) as the product of three functions independent of each other as follows: 

Ψ(x,y,z) = X(x) Y(y) Z(z)       (1.4. 16) 

Substituting this in equation-(!.4.15), we obtain









2

2

dx

Xd
YZ + X

2

2

dy

Yd
Z + XY

2

2

dz

Zd
+ k2 XYZ = 0 (1.4.17)

Dividing by XYZ, the equation becomes

X

1
2

2

dx

Xd
+

Y

1
2

2

dy

Yd
+

Z

1
2

2

dz

Zd
= -k2 (1.4.18)

Each term on the LHS is independent of other terms and all of them put together are equal to a constant ’k’.

Therefore, if one of the variables is changed, keeping the other two invariant, then also the sum must be

constant. This is true only if each term on LHS is a constant by itself and is independent of the variables.

Therefore, we can rewrite the equation-1.4.18 as follows:

X

1
2

2

dx

Xd
=-k1

2 ;
Y

1
2

2

dy

Yd
= -k2

2 ;
Z

1
2

2

dz

Zd
= -k3

2 (1.4.19)

where k1
2, k2

2, k3
2 are constants such that k2 = k1

2 + k2
2 + k3

2 (1.420)

From, equation-1.4.19, we have

2

2

dx

Xd
+ k1

2 X =0;
2

2

dy

Yd
+ k2

2 Y = 0;
2

2

dz

Zd
+ k3

2 Z = 0 (1.4.21)

The solutions are as follows:

X(x) = A1 cos k1x + B1 sin k1x

Y(y) = A2 cos k2y + B2 sin k2y (1.4.22 )

Z(z) = A3 cos k3z + B3 sin k3z
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Since the particle is confined to the box, ‘ψ’ must vanish at the surface of the infinite potential.  This gives the 

boundary condition,

Ψ = 0,    when  x=0, y=0, z=0; x=a, y=b, z=c    (1.4.23) 

The condition ψ = 0 for x=0, y=0, z=0 results in the vanishing coefficients  

(A1 = A2 = A3 = 0) of the cosine terms.  The condition Ψ = 0 for x = a, y = b and  

z = c gives (as in the case of the particle in an infinitely deep potential well

constrained to move along x-axis, which has already been dealt in the previous section)

k1a = ℓ π, k2b = m π   and  k3c = n π     (1.4..24)

where ℓ,m,n are integers greater than zero (ℓ or m or n = 1,2,3,….) 

We know that k2 = 2ME/ ħ2 and accordingly, using equations-1.4.20 and 1.4. 24, we have

2ME/ ħ2 = k1
2 + k2

2 + k3
2

 E = ħ2/2M (k1
2 + k2

2 + k3
2)

=
M2

22










2

2

2

2

2

2

c

n

b

m

a

l

or Eℓ,m,n =
M

h

8

2











2

2

2

2

2

2

c

n

b

m

a

l
(1.4..25)

The eigenfunctions  ψℓ,m,n are given as

ψℓ,m,n (x,y,z) = N sin (ℓ π x/a) sin (m π y/b) sin (n π z/c)  (1.4..26)

where N = B1B2B3 is the normalisation constant.

The normalisation condition,   
a b c

0 0 0
 ψ*ψ dx dy dz = 1, can be written as  

N2

  
a b c

0 0 0
sin2 (ℓ π x/a) sin2 (m π y/b) sin2 (n π z/c) dx dy dz = 1 

 N2 (a/2)(b/2)(c/2) = 1 N2 (abc/8) = 1

This gives N = )/(8 abc and accordingly
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ψℓ,m,n (x,y,z) = )/(8 abc  sin (n π x/a) sin (n π y/b) sin (n π z/c)       (1.4..27)

Equations-(1.4..25) and (1.4..27) give the expressions for the evaluation of eigenvalues and eigenfunctions.

Energy levels and degeneracy

The eigenvalues (or) energy values of the particle of mass ‘M’ in the box of sides a,b,c is given

(equation-1.4.25) as follows:

En,ℓ,m =
M

h

8

2











2

2

2

2

2

2

c

n

b

m

a

l
(1.4..28)

Where ℓ,m,n have integral values greater than zero.  

These are called quantum numbers. For a special case of a cubic box

(a = b = c),

En,ℓ,m =
2

2

8Ma

h
( ℓ2 + m2 + n2) (1.4..29)

(i) For the lowest quantum state (ℓ = m = n = 1), 

E1,1,1 =
2

2

8Ma

h
(1 + 1 + 1) =

2

2

8

3

Ma

h
(1.4.30)

There is only one set of quantum numbers (ℓ,m,n) = (1,1,1) and hence one eigenfunction ψ1,1,1 for this state.

Therefore this energy state or eigenvalue is said to be non-degenerate.

(ii) Consider the next higher energy state with energy,
2

2

4

3

Ma

h
. For this eigenvalue or energy state there are

three sets of quantum numbers (2,1,1), (1,2,1) and (1,1,2) which give the same energy. That is this energy

state is associated with three eigenfunctions ψ2,1,1 , ψ1,2,1 and ψ1,1,2. Therefore the degeneracy of the state is

three and the level is called three-fold degenerate.

Note: It is important to note here that if we reduce the symmetry of the potential field, the degeneracy is

partially or fully removed. For example if a = b  c, we observe that E2,1,1 = E1,2,1  E1,1,2 and the state is only

doubly degenerate.
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If a  b  c, as in the case of a rectangular box , it is obvious that E2,1,1  E1,2,1  E1,1,2 and the state becomes

non-degenerate.

1.4.4 Particle in an One-dimensional Finite Potential Well

Let us consider a particle of mass ’m’ with energy ‘E’ moving in a potential field shown in figure-4

and is represented as follows:

V(x)

V(x) = 0 ; 0<x<a

V(x) = Vo ; x > a …(1.4.31) Vo Vo

V(x) = Vo ; x < 0

For the localised states (i.e., when E < Vo), (iii) (i) (ii)

Schrodinger’s equations in the three zones

0 a X

Figure-1.4..4

are given as follows:

2

1
2

dx

d 
+

2

2



mE
ψ1 = 0 ; 0 < x < a

2

2
2

dx

d 
-

2

)(2



EVm o  ψ2 = 0 ; x > a (1.4.32)

2

3
2

dx

d 
-

2

)(2



EVm o  ψ3 = 0 ; x < 0

The solutions, as usual, are as follows:

Ψ1(x) = A1 cos k1x + A2 sin k1x

Ψ2(x) = B1
xke 2 + B2

xke 2
…(1.4.33 )

Ψ3(x) = C1
xke 2 + C2

xke 2
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where k1
2 =

2

2



mE
and k2

2 =
2

)(2



EVm o  …(1.4.34)

In the second zone x takes positive values and therefore the term B1
xke 2   →  as x → . Similarly, in the

third zone, x takes negative values and therefore the term C2
xke 2
→     as x →  -. Accordingly, for wave

functions to be finite as per the requirement of Schrodinger’s postulates, the values of B1 and C2 must be made

zero. This eliminates the terms B1
xke 2 and C2

xke 2
in the second and third zones. Therefore solutions in

equation-1.4.33 become,

Ψ1(x) = A1 cos k1x + A2 sin k1x

Ψ2(x) = B2
xke 2

…(1.4.35)

Ψ3(x) = C1
xke 2

Continuity conditions of ψ and 
dx

d
at x = 0 are

Ψ1(0)  =  Ψ3(0) ;
0

3

0

1





















xx dx

d

dx

d 
…(1.4.36)

They yield the following results:

A1 = C1 ; k1A2 = k2C1 …(1.4.37)

The equation-1.4.37 gives A1/A2 = k1/k2 (1.4.38)

Continuity conditions of ψ and 
dx

d
at x = a are

Ψ1(a)  =  Ψ2(a) ;
axax dx

d

dx

d



















 31 
…(1.4.39)

They yield the following relations:
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A1 cos k1a + A2 sin k1a = B2

ak
e

2

(1.4.40)

-k1A1 sin k1a + k1A2 cos k1a = -k2B
ak

e
2

Dividing the first by the second in equation –1.4. 40,

222

2

121111

1211 1

cossin

sincos
2

2

keBk

eB

akAkakAk

akAakA
ak

ak












…(1.4.41)

Dividing the numerator and denominator of the LHS by A2 cos k1a, we have

2
11

2

1
1

1

2

1

1

tan

tan

k
kak

A

A
k

ak
A

A







…(1.4.42)

Substituting (A1/A2) = (k1/k2) in the above equation, we obtain

2

11

2

2

1

1

2

1

1

tan

tan

k
kak

k

k

ak
k

k








2211

2

1

121 1

tan

tan

kkkakk

akkk






 k1k2 + k2
2 tan k1a = k1

2 tan k1a – k1k2

 tan k1a =
2

2

2

1

212

kk

kk


…(1.4.43)

Substituting the values of k1 and k2 from equation-1.4.34,

tan a
o

o

VE

EVEmE






2

)(22
2

(1.4.44 )

Case (i) (when Vo →  )

For Vo →  , equation-1.4.44 becomes

tan a
2

2



mE
=0 …(1.4.45)
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This equation is valid if

a
2

2



mE
= n π  ;   n = 1,2,3,….       …(1.446) 

(En) Vo →   =
2

22
2

2ma

n 
=

2

22

8ma

hn
where n = 1, 2, 3,…. …(1.4.47)

This equation for energy levels tallies exactly with that of infinitely deep potential well, as expected.

Case (ii) (When V = Vo is finite)

General solution is obtained by graphical method by plotting (from equation-1.4.43) tan k1a and 2k1k2

/ (k1
2 – k2

2) on the same graph sheet as functions of k1a. The intersections of the two curves give the allowed

k1 values and hence

the allowed energy levels. From the graph

the non-trivial values of k1a are given by

k1a < n π   ;  n = 1, 2, 3….  (1.4..48)

Squaring the equation and substituting

k1
2 =

2

2



mE
, we have

En <
2

22

8ma

hn
= (En)Vo =  (1.4..49)

From this equation, it is evident that the

Allowed energies of the particle in a finite potential well are similar to those of the one-dimensional box.

They are however less than those of the one-dimensional box. The sequence of the eigenvalues is not

changed..

For E > 0, the Schrodinger’s equations-1.4.32 become

0
   k1a

Tan k1a

Fig 1.4. 5
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2

2

dx

d I
+

2

Ik ψ1 = 0

2

2

dx

d II
+

2

IIk  ψ2 = 0 . (1.4..50)

2

2

dx

d III
+

2

IIk  ψ3 = 0

where
2

Ik =
2

2



mE
and

2

IIk =
2

)(2


oVEm 

The solutions for all the equations are of the type e ±ikx and hence they remain now zero even when x → ± .

Therefore the particle is not confined to any region of space (i.e., not localised). Further all solutions are

possible and hence the spectrum is continuous. Classically, the particle in such a state (i.e., with E > Vo)

approaching the well undergoes an instantaneous acceleration on reaching the edge of the well and equal

retardation at the opposite edge. But is would keep on going with no probability of reflection. However, in

quantum mechanics, the particle in such a state has a non-zero probability of its being reflected by the well.

1.4.5 Linear Harmonic Oscillator

Linear harmonic oscillator is a particle of mass ‘m’, vibrating under the influence of a restoring force

which is directly proportional to its displacement ‘x’ from the equilibrium position (i.e., F = -kx). This simple

model is of interest in the study of chemical bonds and molecular spectra. The vibrations of diatomic and

polyatomic molecules and oscillations of other more complicated systems expressed in terms of their normal

modes are a few problems that can be analysed on the basis of this model.

Polynomial Method:

The classical Hamiltonian of the linear harmonic oscillator is

H = 2
2

2

1

2
kx

m

p
 (1.4..51)
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where ‘m’ is the mass and ‘k’ is the force constant. It is convenient to express it in terms of the classical

vibrational frequency of the oscillator,

υ  =  ω/(2 π)  =  
m

k

2

1
(1.4..52)

where ‘ω’ is the angular frequency and ‘υ’ is the linear frequency. 

Since k = m ω2, we have H =
m

p

2

2

+
2

1
m ω2x2 (1.4..53)

Then the time-independent Schrodinger’s equation (Ĥψ = Eψ) becomes  




Exm
m

p





22

2

2

1

2
(1.4..54)

With


p → - i 
dx

d
and



x → x, equation-1.4.54 becomes

2

2

dx

d 
+

2

2



m
(E -

2

1
m ω2x2) = 0 (1.4..55)

Substituting, for simplicity,

 λ =  
2

2



m
E and  = m ω/ (1.4..56)

we obtain
2

2

dx

d 
 + (λ -  2 x2)  =0 (1.4..57)

For further simplification, substituting  =  x, we have

22

2





d

d
+ 








 2




 = 0 (1.4..58)

Asymptotic Solution

For large values of x and hence , since 2 >>



,
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equation-1.4.58, can be written as
22

2





d

d
= 2  (1.4..59)

Let us assume a solution  =
2ce 2/ (1.4..60)

and substitute it in equation-1.4.59

LHS =
22

2





d

d
=

2

2

d

d
(

2ce 2/ ) =
d

d
[

2ce 2/ ( )]

=  [
2ce 2/ +

2ce 2/ ( )( )]

=
2ce 2/ (2  1) (1.4..61)

If we assume  → ∞ , the ‘1’ in the expression (2  1) can be ignored and therefore

LHS =
2ce 2/ 2 = 2 = RHS

Therefore,  =
2ce 2/ (1.4..62)

is a valid solution of equation-1.4.59, when   → ∞.  This solution is called the asymptotic solution. Since, the

positive sign leads to infinite values of  for large values of , it is obvious that c
2e 2/ is not finite and

therefore is not an acceptable wave function. The only acceptable solution is

 = c
2e 2/ (1.4..63)

It is well known that n 2e 2/ (1.4..64)

is square integrable for a finite ‘n’ over the total range of  from -∞ to +∞.  Therefore, 

f ()
2e 2/ is square integrable when f () is a polynomial in  terminating after a finite number of terms.

Therefore, for a general solution of equation-1.4.58, we can assume

 = f ()
2e 2/ (1.4..65)

with the above substitution in equation-1.4.58, we obtain
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012
2

2









 f

d

df

d

fd








 (1.4..66)

Let us compare this equation with Hermite differential equation

f  - 2f ’ + 2nf = 0 (1.4..67)

This equation is identical to Hermite’s equation, provided



- 1 = 2n (1.4..68)

Polynomial solutions exist for n = 0, 1, 2,…..

2mE/  2  =  (2n + 1) mω / 

 En = ( n + ½ )  ω (1.4..69)

Even in the lowest level n = 0, the quantum mechanical oscillator still has energy  ω / 2.  This is 

called the zero-point vibrational energy, which persists even at the absolute zero of temperature.

The existence of zero-point energy is in accordance with the uncertainty principle – for if the

oscillator had zero energy, it would have zero momentum and would also be located at the position of the

minimum potential energy thus enabling precise determination of position and momentum simultaneously.

Since f () is identified with the Hermite polynomial H (), the eigen-functions of the linear harmonic

oscillator are

 xHeNx n
x

nn   2/2

)(  ; where N n =

2/1

!2 














nn
(1.4.70)

and Hn (x) =   )(1
22 x

n

n
xn

e
dx

d
e  (1.4.71)

Vibrational Spectrum

Harmonic oscillator is an ideal model to explain the vibrations of a diatomic molecule. In

Spectroscopy ‘v’ is generally used, instead of n, for vibrational quantum number. Accordingly, the vibrational

energy is expressed as Ev = (v + ½)  ω.  Conventionally, the vibrational energy is expressed in cm-1 units by

dividing Ev with hc, where ‘c’ is the velocity of light and is denoted as G(v). Therefore,
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G(v) = Ev / hc = ω e (v + ½ ), (1.4..72)

where   ω e =  ω / (hc)  =  ω / (2 π c)  =  vibrational frequency. 

In the electronic spectrum of a diatomic molecule, if the selection rule

Δv = ± 1 is only taken, one band is predicted in the absorption spectrum because of the same energy 

difference between successive energy levels. But, practically, we observe a large number of bands.

Therefore, a non-harmonic oscillator model is necessary to explain even the gross structure of the spectrum.

For a harmonic oscillator, the selection rule is Δv = 0, ± 1,  ± 2, ….  Accordingly, overtones can also be 

explained.

Eigenfunctions

The eigenfunctions (wave functions) of the harmonic oscillator are given by the relation,

 xHeNx n
x

nn   2/2

)(  . They are shown in the figure-6. As is seen in the figure normal state v = 0

corresponds to Gaussian function with the maximum probability in the middle. All other states with v > 0

have two peaks, which coincide with the extremes of classical range. In between, there are v nodes and (v-1)

subsidiary peaks. These maxima diminish in amplitude and are crowded towards the centre of the range. The

wave function and hence the wave mechanical probability density has large values just in the region of

classical vibration, but that also some what outside this region the probability density is not negligible,

although it falls off exponentially there. Thus, in wave mechanics the oscillator in a given energy level can

reach, with a non-zero probability region that a classical oscillator of the same energy and the same force

constant can never reach. While classically the oscillator stays for the greater part of the time at the turning

points, wave mechanically for v  0, there is broad maximum of probability distribution in the neighbourhood

of the classical turning points, but lying some what more towards the centre. In addition, for v > 0, there are

other maxima of wave mechanical probability distribution between the two outer most maxima. No classical

analogues exist for these maxima.
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(iv) Write the Schrodinger’s equation for a particle in an one-dimensional finite potential well. Solve the

equation for the localised states.

(v) Solve the Schrodinger’s equation for a linear harmonic oscillator. Discuss the eigenvalues and

eigenfunctions.

Reference books

1. A Textbook of Quantum Mechanics – Mathews P M and Venkatesan K (Tata Mc Graw Hill Publication

Co. Ltd., N. Delhi)

2. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York).

3. Quantum Mechanics – Chatwal G R and Anand S K (Himalaya Pub. House, Bombay)

4. Quantum Chemistry – Eyring H, Walter J and Kimball G E (John Wiley and Sons., New York).
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UNIT - 1

LESSON - V - SYSTEMS WITH SPHERICAL

SYMMETRY

Objective:

Determination and discussion of eigenvalues and eigenfunctions of rigid rotator and

hydrogen atom.

1.5.1 Introduction

Systems with spherical symmetry are of great importance. Central force problems form an important

class. These are forces, which are derivable from a potential that depends only on the distance ‘r’ of a moving

particle from a fixed point. Accordingly, central potential V = V( r ).

The Schrodinger’s equation for a particle of mass ‘m’ under the influence of such a potential is

2 ψ + 
2

2



m
 [ E – V ( r ) ] ψ = 0       (1.5.1) 

where 2 =
2

1

r r















r
r 2 +

sin

1
2r 


(sin 




) +

22 sin

1

r 2

2




(1.5.2)

In this lesson, it is convenient to first study simpler cases of Rigid rotator with free axis and Rigid rotator with

fixed axis (or plane rigid rotator), which possess no potential energy to reckon with and then analyse the

problem of Hydrogen atom, which is a central force problem.

1.5.2 Rigid Rotator with Free Axis:

It is a system of two point masses (particles) m1 and m2 connected by a mass-less rigid rod of definite

length ‘r’ and rotating about an axis passing through the centre of mass and normal to the plane containing the

two masses.

If the two particles are constrained to remain in one plane, then the direction of rotation of the axis of

the rotation is fixed and the system is called the rigid rotator with fixed axis. If there is no such constraint and
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if the plane of these two particles can move, then the axis of rotation is free to take any position in space. This

system is called the rigid rotator with free axis. Ideal diatomic molecule without vibrations is the best

example of the system.

For a rigid rotator, since r = constant, the term with
r


is zero. There is no potential energy.

Therefore for a rigid rotator of reduced mass  = m1m2 / (m1 + m2), the Schrodinger’s equation is

sin

1
2r 


(sin 




) ψ + 

22 sin

1

r 2

2








+

2

2



E
 ψ = 0 


sin

1




(sin 








) +

2sin

1
2

2








+

2

2



IE
 ψ = 0   (1.5.3) 

where I = momentum of Inertia = r2

It is a differential equation with two independent variables and so can easily be solved by the well-

known method of separation of variables.

Using ψ =  () (),


2sin







 







 
2

2sin

sin

1



IE

d

d

d

d






= -

2

21

d

d 


(1.5.4)

Since each side is dependent on one variable only and is independent of the other, each side should be equal to

the same constant (say m2), which is independent of  and .


2

2

d

d 
= -m2 (1.5.5)

and


2sin







 








 
2

2
sin

sin

1



IE

d

d

d

d





= m2 (1.5.6)

Solution of equation-1.5.5 is

 m () = Aeim (1.5.7)

For  m () to be single valued,

 m () =  m ( + 2)  Aeim = Aeim ( + 2)  Aeim = Aeim eim2
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Therefore, eim2 = 1 and this is true if m = 0, 1, 2,….

Normalisation condition is given as


2

0
 m*  m d = 1

A2


2

0
e -im eim d = 1

 A2


2

0
d = 1  A2 (2) = 1  A =

2

1

 m () =
2

1
eim ; m = 0, 1, 2,…. (1.5.8)

Equation-1.5.6 can be rewritten as

sin

1

d

d







 




d

d
sin + 










2

2

2 sin

2 mIE


 = 0 (1.5.9)

This theta equation is identically equal to associated Legendre differential equation,

if
2

2



IE
 = ℓ (ℓ + 1)              (1.5.10) 

According to the properties of associated Legendre differential equation, it has an acceptable polynomial

solution only for integral value of ‘ℓ’ such that ℓ   m . Therefore, from equation-1.5.10, the energy levels of

the rigid rotator are given by the relation

2

2



IE
 = ℓ (ℓ+ 1)   

(or) E =
I2

2
 ℓ (ℓ + 1); ℓ = 0, 1, 2….      (1.5.11) 

Accordingly, the normalized  () are the associated Legendre polynomials

ℓ,m () as given below:
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 () = l,m () = 

2/1

!

!

|)|(

|)|(

2

)12(













ml

mll
Pℓ

|m| (cos ) (1.5.12)

where  = 1, m  0 ;  = (-1)m, m > 0

Pℓ
|m| (cos ) =

!2

)1(

ll

l
(sin )|m|

||

cos

ml

d

d












(sin )2 ℓ

The total wave function is

Ψℓ, m (,) = ℓ, m () m () = Yℓ. m(,) (1.5.13)

Here Yℓ,.m(,) are called spherical harmonics.

Rotational Spectrum

Rigid rotator model explains the rotational spectrum of a diatomic molecule, which occurs in the

microwave and far infra-red regions. The rotational quantum number is generally denoted as ‘J’ in

spectroscopy. Accordingly, the rotational energy is given as

EJ =
I2

2
J (J + 1)  EJ =

I

h
2

2

8
J (J + 1) ; J = 0,1,2…..

Conventionally, the energy is expressed in cm -1 units by dividing EJ by hc, where c is the velocity of light,

and is denoted as F(J). Accordingly,

F(J) = EJ / hc =
Ihc

h
2

2

8
J (J + 1) = BJ (J+1), where

e B =
Ic

h
28

F (J) = BJ (J+1) ; J = 0, 1, 2….

The selection rule for transitions between various energy levels is ΔJ =  1. Accordingly, the rotational

spectrum is equidistant with a separation of 2B between successive lines, as can be seen in the energy level

diagram (fig.1). From the spectrum, we can determine experimentally B value, then evaluate moment of

inertia ‘ I ’ and hence (since I = r2) inter-nuclear distance ( r ).
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J F(J)

3 12B

2 6B

1 2B

0 0

2B 4B 6B

Figure-1.5.1

1.5.3 Rigid Rotator with Fixed Axis (or) Plane Rigid Rotator:

Plane rigid rotator is one, which is constrained to a plane. Let it be constrained to XY-plane. Then its

axis is fixed with  = 90o. Therefore in Schrodinger’s equation-1.5.3, the terms with



will vanish and sin

 = sin 90o = 1. Accordingly, the equation-1.5.3 becomes
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2

2





d

d
+

2

2



IE
 ψ = 0      (1.5.14) 

If we substitute
2

2



IE
= m2 (1.5.15)

equation-1.5.14 becomes
2

2





d

d
+ m2 ψ = 0  (1.5.16) 

The solution, obviously, is given by ψ () = Aeim

For it to be single valued, as already explained, m = 0, 1, 2,….

Further, the normalisation constant is A =
2

1

Accordingly, the solution is

ψm () =
2

1
eim ; m = 0, 1, 2,…. (1.5.17)

From equation-1.5.15, the eigenvalues are given by the relation

E = Em =
I

m

2

22
; m = 0, 1, 2,…. (1.5.18)

1.5.4 Hydrogen Atom

The problem of hydrogen atom, is a two-body problem (namely of the electron of mass ‘m’ and proton of

mass ’M’). Since, we are not interested in translational motion of the atom as a whole, the centre of mass of

the system is taken as the origin of the coordinate system. Since the system is centro-symmetric, it is most

convenient to use spherical polar coordinates. The problem can be treated (as in the case of rigid rotator) as a

single particle problem of reduced mass  =
Mm

mM


, with the radial coordinate ‘r’ which is equal to the

distance between the electron and the nucleus. Potential energy of attraction between the electron and the

nucleus is
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V =
r

Ze2
(1.5.19)

(Here Z = 1 for H-atom. But for generality ‘Z’ is retained. The treatment, then, remains same for H-like ions

He+, Li++ etc. with appropriate )

Schrodinger’s equation for H-atom is

2 ψ + 
2

2




(E +

r

Ze2

) ψ = 0       (1.5.20) 

where 2 =
2

1

r r


(r2

r


) +

sin

1
2r 


(sin 




) +

22 sin

1

r 2

2




(1.5. 21)

It is well known that the operator for the square of the orbital angular momentum


2L = -ħ2 (1.5.22 )

Using this in equation-1.5.21, we have 




























2

2

2sin

1
sin

sin

1






2 =
2

1

r r


(r2

r


) -

22

2

r

L





(1.5.23)


2L has eigenfunctions Yℓ.m(,) and eigenvalues ℓ (ℓ+1) ħ2

where ℓ= 0,1,2,….and ℓ   m .



2L   ,m

lY  =  ℓ (ℓ+1) ħ2   ,m
lY ; ℓ = 0,1,2,….; ℓ    m  (1.5..24)

From equations 1.5.20 and 1.5.23,

2

1

r r


(r2

r


) -

22

1

r


2L ψ + 

2

2




(E +

r

Ze2

) ψ = 0    (1.5.25) 

Using separable variable technique with ψ (r, ,) = N R ( r ) Y (,) (1.5.26)

R

1

dr

d
(r2

dr

dR
) +

2

22



r
(E +

r

Ze2

) =
Y2

1


(


2L Y) (1.5.27)
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The LHS is dependent only on ‘r’ whereas the RHS is dependent only on  and . But they are equal to each

other. Therefore they must be independent of r,  and ; and each must be equal to a constant, say ‘’.


Y2

1


(


2L Y) =  


2L Y(,) =  ħ2 Y(,)

We know already (equation-1.5.24) that  = ℓ (ℓ+1) with ℓ = 0,1,2,…. 

Therefore equation-1.5.27 becomes

2

1

r dr

d
(r2

dr

dR
) +

2

2




[ (E +

r

Ze2

) -
2

2

2

)1(

r

ll




] R = 0 (1.5.28)

The term
2

2

2

)1(

r

ll




appears as an addition to the potential and can be considered as centrifugal potential

since its negative gradient is equal to the centrifugal force experienced by a particle moving in an orbit of

radius ‘r’ with angular momentum 2)1( ll . Alternatively, it may be looked upon as the K.E associated

with the rotary part of the motion (

2L / 2 I ) where I = r2 is the moment of inertia.

Equation-1.5.28 can also be written as

2

2

dr

Rd
+

r

2

dr

dR
+

2

2




[ (E +

r

Ze2

) -
2

2

2

)1(

r

ll




] R = 0 (1.5.29)

With the change of the variable as  = r, the above equation becomes

2

2

d

Rd
+

r

2

d

dR
+ [ (

22

2



E
+

2

2







2Ze
) -

2

)1(



ll
] R = 0 (1.5.30)

For bound states (E<0)

Let us introduce a new parameter n and also write ‘’ in terms of other known constants as

 =


2
E2 and n =




2

22



Ze
(1.5.31)

With these parameters, equation-1.5.30 can be written as
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2

2

d

Rd
+


2

d

dR
+ [

4

1
+


n
-

2

)1(



ll
] R = 0 (1.5.32A)

(or)
2

2

d

d
(  R) + [

4

1
+


n
-

2

)1(



ll
] (  R) = 0 (1.5.32B)

The asymptotic solution (for ) can be obtained using equation – 1.5.32(A):

2

2

d

Rd
=

4

R
 R (  )  e -  /2 (1.5.33)

The asymptotic solution (for  0) can be obtained using equation1.5.-32(B):

2

2

d

d
(  R) -

2

)1(



ll
(  R) = 0  R (  )   ℓ (1.5.34)

The correctness can be checked by back substitution

Therefore, the actual solutions for all values of  (or) r may be of the form

R (  )  f (  )  ℓ e -  / 2 (1.5.35)

With this substitution in equation 1.5.32(A) or 1.5.32(B), we have


2

2

d

fd
 + (2ℓ + 2-  )

d

df
 + (n – ℓ -1) f = 0     (1.5.36) 

This equation is similar to the Associated Laguere Differential Equation

 L" + (p + 1 -  ) L' + (q – p) L = 0 (1.5.37)

if q = n + ℓ  and p = 2ℓ + 1  

(or)    (q – p) = (n - ℓ - 1) and     (p + 1 -  )  = (2ℓ + 2 -  ) (1.5.38)

This differential equation has a polynomial solution when q – p = +ve integer.

n - ℓ - 1  =  +ve integer       (1.5.39) 

Since ℓ = 0, 1, 2,…., from equation-1.5.39 we have n = ℓ + 1 = 1,2,3,….  (1.5.40) 

From equation-1.5.31
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En =

2

2

2222 2

88












n

Ze



 





22

4222

hn

eZ
En


 ; n = 1,2,3…. (1.5.41)

These bound state energies are in accordance with those obtained from Bohr’s theory. The wave functions are

Ψn,ℓ,m (r, , ) = R n,ℓ ( r )   ,m
lY

where R n,ℓ ( r ) are radial function and Y ℓ,m (, ) are spherical harmonics involving angular functions.

Note: The normalised radial wave functions are as follows:

R n,ℓ ( r ) = - 


























 





o

l

ln

naZr

l

oo na

Zr
e

na

Zr

lnn

ln

na

Z
Lo

22

])![(2

)!1(2 12)/(

3

3

where
)!12()!1(

])![()1(
)(

211

0

12

klkln

ln kkln

k

l

lnL 










 


 and

ao = e2/ ħ2 = Bohr’s first orbit radius.

Degeneracy of eigenvalues

The energy levels (eigenvalues)

22

4222

hn

eZ
En


 ; n = 1,2,3….

For a particular value of n, there is only one specific eigenvalue as is predicted by Bohr theory. But there will

be a number of eigenfunctions ψ n,ℓ, m. For a particular value of principal quantum number n, the orbital

angular momentum quantum number ℓ takes the values  ℓ = 0,1,2….n-1 and for each value of ℓ  there are (2 ℓ 

+1) magnetic quantum numbers m from -ℓ  to +ℓ.  Therefore, the total number of eigenfunctions (ψ n,ℓ , m) for a

particular eigenvalue

En is 
1

0

n

(2 ℓ + 1) = n2. Accordingly, degeneracy of each level is n2.
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Spin of the electron is not considered in the present case. If the spin is also taken into consideration, the

degeneracy doubles (2n2) because every s = ½ level has two sub levels depicted by ms =  ½. From this

quantum mechanical theory of Hydrogen atom, intensities of spectral lines, selection rules, polarisation rules

and other physical parameters are correctly predicted in addition to the positions of the energy levels (spectral

lines).

Wave functions

 Wave functions of hydrogen atom are Ψn,ℓ,m(r, , ) = R n,ℓ ( r )   ,m
lY , where R n,ℓ ( r ) are radial

function and Y ℓ,m (, ) are spherical harmonics involving angular functions. To distinguish the three

dimensional distribution Ψ*Ψ, from the Bohr-Sommerfeld concept of an electron moving in a circular or 

elliptic orbit, the 3D distributions are called orbitals.

The orbitals are designated by the principal quantum number ‘n’ followed by a symbol signifying

azimuthal quantum number ℓ (ℓ = 0,1, 2, 3,…→ s, p, d, f..).  The value of the magnetic quantum number ‘m’ 

is added as a subscript to the symbol.  For example the orbitals with n = 2, ℓ = 1 and m = +1, 0, -1 are denoted 

by 2p+, 2po and 2p-1.

Sometimes the orbitals (wavefunctions) are expressed in terms of Cartesian coordinates and these are

expressed as subscripts instead of the values of ‘m’.  For example, since  Ψn,1,0  r cos  = z (except for a

numerical constant), po  pz. It is difficult to pictorially represent the 3D probability densities in 2D figures.

Therefore it is convenient to study separately the radial part

Rn,ℓ (r ) and the angular part   ,m
lY .

Radial functions [Rnℓ ( r )]

All Rnℓ ( r ) contain a factor rℓ.  So they are all zero at the origin except for states for which ℓ = 0 (s-

state). This leads to an important fact that s-states interact with the nuclear moments more strongly than other

states. We know that R*R = R2 is the probability density of the electron at a particular r along a particular
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direction.  More important is the radial probability density. D( r ) = 4πr2R2 of an electron to be somewhere at a

distance r, irrespective of the direction. D ( r ) (vs) r graphs for a few states are shown in figure-2.

The curves for 1s, 2p and 3d orbitals have one maximum only and it is interesting to note that these

are at distances equal to the radii of the corresponding Bohr orbits (r = n2ao). Other curves have more than one

maxima but it is evident that the electron spends most of its time in the outermost zone. For a particular n, the

maximum corresponding to a greater ℓ  is closer to the nucleus. 

Angular Functions [   ,m
lY ]

It is evident that the size of the orbital is determined by the radial function. The shape of it is

determined by the angular function. Hence the angular function is of great importance in understanding the

geometrical and other related properties of molecules. Y*Y is the angular probability density which is

positive everywhere. However the angular function Y =  will have different signs in different regions of

space. The sign of the wave function is useful in discussing symmetry. Therefore we will depict, in figure-3

the diagrams of both the angular probability and angular probability density. In this diagram  and ||2

values are shown by solid and dotted lines respectively.

s – orbitals

For s-orbitals, Yoo =
4

1
and hence it is spherically symmetrical. This is represented by a sphere in 3D and

in 2D by its cross-section, the circle.

p-orbitals

For the po (or pz) orbital Y1,0 =
4

3
cos . This function will be maximum at  = 0 and  = π and 

vanishes at  = π/2.  On one side of the xy plane, it is +ve and on the other it is –ve.  Such an orbital is said to 

be anti-symmetric with reference to reflection in the ‘xy’ plane.
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the

sin

py

ax

d-

Th

ax

the

d

d

wi
For p±1 orbital, Y1, ±1  sin  e ± i  except for a constant. For convenience a linear combination of

se degenerate eigenfunctions, (p1 ± p-1) are used to construct new orbitals designated as px and py (px  r

 cos = x and

 r (sin sin = y). They have the same shape as pz orbitals except that the maxima are along the x and y

es respectively.

orbitals

Similar procedures may be used for representing the d-orbitals.

e do  (3cos2 -1) orbitals are designated as 22222 32 rzyxz
dd


 . This orbital has two large lobes along z

is and a small “smoke-ring” about the xy plane. Other four independent orthogonal orbitals are given by

linear combinations of d±2  sin2 e ±2 i  and d±1  sin cos e± i  orbitals. They are dxz, dxy , dyz and

22 yx 
. Each of these orbitals has four equivalent lobes with two nodal planes separating them. The orbital

22 yx 
differs from dxy in that its lobes lie along the Cartesian axis x and y instead of making an angle of 45

th them.
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Summary of lesson

The Schrodinger equation for rigid rotator with free axis has been formulated and solved. The

resulting eigenvalues have been used to explain the rotational spectrum of diatomic molecules. Schrodinger

equation of Plane rigid rotator has been solved. Schrodinger’s analysis of the hydrogen atom has been

presented. The degeneracy of the hydrogen energy levels has also been discussed.

Key terminology

Central force – Associated Legendre Polynomial – Spherical Harmonics – Plane Rigid Rotator –

Rotational Spectrum – Hydrogen Atom – Associated Legendre Differential Equation – Asymptotic Solution –

Degeneracy of Hydrogen Eigenvalues.

Self-assessment questions

(i) What is central potential? Write the Schrodinger equation for such a problem in spherical polar

coordinates.

(ii) Explain rigid rotator model. Derive its eigenvalues and explain the rotational spectrum of a diatomic

molecule.

(iii) Solve the Schrodinger equation of a rigid rotator with fixed axis.

(iv) Formulate the Schrodinger equation for hydrogen atom and separate the angular and radial parts.

(v) Solve the Schrodinger equation of H – atom and derive the eigenvalues.

(vi) Write the eigenvalues and eigenfunctions of hydrogen atom. Hence explain the degeneracy.

Reference books

1. A Textbook of Quantum Mechanics – Mathews P M and Venkatesan K (Tata Mc Graw Hill Publication

Co. Ltd., N. Delhi).

2. Advanced Quantum Mechanics – Rajput B S (Pragati Prakashan, Meerut).

3. Quantum Mechanics – Chatwal G R and Anand S K (Himalaya Pub. House, Bombay).
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UNIT – 2

Lesson-VI - Time Independent Perturbation Theory

(For non-degenerate systems)

Objective of the lesson

In this section, the theory of time-independent perturbation is discussed. We consider the corresponding

Schrodinger time -independent wave equation and obtain the expressions for 1st order and 2nd order energy

and wave functions. The theory will be applied to some physical examples and evaluate the energy and wave

function.

2.1.1Introduction

In the development of quantum mechanics, only very simple physical situations have been treated using

schrodinger wave equation for which exact analytic solutions can be (found).In majority situations of physical

interest, the exact solution of the schrodinger equation may have a quite complicated, rendering an analytic

solution of the corresponding eigen value problem too difficult to obtain if not altogether impossible. In

quantum mechanics, perturbation theory is an approximation scheme for describing such a complicated

quantum system in terms of a simpler one. The main idea here is to start with a simple system and gradually

turn on an additional perturbing Hamiltonian representing a weak disturbance to the system. As such

Hamiltonian can be split into several terms, some of which may play by far the most significant role than

others and such terms can be treated exactly to obtain analytic solution to the eigen value problem, and the

effect of the rest of the terms can be estimated in an approximate way. Here are three important

approximation methods, which are (i) perturbation method (ii) variation method (iii) the WKB method.

In order to develop the wave mechanical perturbation theory the basic idea is taken from the

perturbation theory in classical mechanics, which is explained as follows. The motion of a planet in the solar

system is essentially determined from the gravitational force of the sun. Of course the gravitational force of

attraction of the other planets, though small still influences the motion of the planets in their orbits and as a
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result the orbit instead of being a closed ellipse is a slowly processing ellipse. The perturbation theory enables

us to calculate these small changes. Similarly quantum mechanical systems can be treated with perturbation

methods.

In the case of perturbation theory, these are two cases which can treated separately as (i) Time-

dependent perturbation theory (ii) Time-independent perturbation theory. Further Time-independent

perturbation theory is applied to degenerate and non-degenerate system separately.

The stationary perturbation theory concerns with finding the changes in energy levels and eigen

functions of a system when a small disturbance is applied. In such cases, the Hamiltonian may be considered

as spilt into two parts, one of them is a major part, which characterizes the system for which exact solution is

obtained for the wave equation; while the second part is small and treated as perturbation.

2.1.2 Theory

Now, In this section we study the time-independent perturbation theory applied to a non-degenerate

system. If one energy value or energy level is corresponding to only one wave function, then such a system is

called as non-degenerate system.

We start with the schrodinger wave equation, which basically describes a single particle, for obtaining the

energy values and eigen functions for the 1st order and 2nd order perturbations.

We begin with an unperturbed Hamiltonian H(0) which is also assumed to have no time dependence. It has

known eigen functions arising from the time independent schrodinger equation which is written as.

     o
n

o
n

v
n

o EH 
  -- ------------(2.1.1)

Where o
nE is the energy of the nth level of the system and corresponding eigen function is  o

n . This means

eigen values and eigen /functions of the unperturbed problem is oE1 ,E2
(1),E3

(0)…..En
(0) and 1

(0), 2
(0),

3
(0)…m

(0) respectively.

For the perturbed system, the eigen function n satisfies the equation.

Hn=Enn …………..(2.1.2)
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Where En are the energy values of the modified Hamiltonian; representing the operator
















v
m

h
H 2

2

2
……..(2.1.3)

Let us assume that it is possible to expand H interms of some parameter, giving the expression.

H=H0 + H(1)+ 2H(2)+ ………….(2.1.4)

Where H0 is the unperturbed Hamiltonian and is large compared with H(1) (i.e.) the energy associated with

H(0) is large when compared with the energy associated with H(1).

Further it is also assumed that it is possible to expand eigen function n, and eigen value En of the total

Hamiltonian of equation (2.1.2) in terms of  as .

En=En
(0)+En

(1)+2En
(2)+---------------(2.1.5)

n=n
(0)+n

(1)+2n
(2)+ -----------(2.1.6)

in which the quantities En
(1), En

(2) …. and n
(1), n

(2) …is to be found.

Equations (2.1.4), (2.1.5) and (2.1.6) and now substituted in eq.(2.1.3), yielding.

[H(0)+H(1)] [n
(0)+n

(1)+2n
(2)+-----] = [En

(0)+En
(1)+2En

(2)----] [n
(0)+n

(1)+2n
(2)+……]

Which in turn gives

H(0)n
(0)+(H0n

(1)+H(0)n
(0)) + 2(H(0)n

(2)+H(1)n
(1)) +--------

=En
(0)n

(0)+(En
(0)n

(1)+En
(1)n

(0))2(En
(1)n

(1)+En
(1)n

(1)+En
(2)n

(0))+------(2.1.7)

The above equation is satisfied for all powers of , only if the equal powers of  on either side are equal. On

comparing equal powers of 0,1, 2. -----we get.

For 0, H0n
(0)=En

(0)n0 --------------------------------------------------(2.1.8)

For 1, H0n
(1)+H(1)n

(0) = En
(0)n

(1)+En
(0)n

(1)+En
(1)n

(0) ---------…(2.1.9)

For 2, H(0)m
(2)+H(1)m

(1) = Em
(1)m

(1)+Em
(2)m

(0) --------.-(2.1.10)

Equations(2.1.8),(2.1.9),(2.1.10) corresponds to unperturbed, first order perturbation and second order

perturbation equation respectively, we can also obtain higher order terms to get more and more accurate
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corrections to exact solution. Using the equation (2.1.9) and (2.1.10) we calculate the 1st order and 2nd order

energy values and eigen functions respectively.

First Order correction to the energy value En
(1)

Taking the eq.(2.1.9) we now obtain the first order corrections to the energy value En
(1).

(i.e) H0n
(1)+H(1)n

(0)=En
(0)n

(1)+En
(1)n

(0) ------------(2.1.9).

Using the expansion theorem, the perturbed eigen function n
(1) can be expanded interms of the unperturbed

eigen function as

   





0

01

n
mmn  --------------(2.1.11)

Substituting this equation (2.1.11) in eq.(2.1.9), we determine the first order correction, we have.

               
m m

nmmnmnmm EEHH 01000100  ---------------(2.1.12)

From the unperturbed system for mth level, we know

       0000
mmn EH   -------------------(2.1.13)

so that (2.1.12) now rewritten as.

             01000100
nnm

m m
nmnmmm EEHE   

(OR)

            0001000
nnnm

m
nnm EHEE   ----------(2.1.14)

On multiplying both sides with  *0
n from left side and integrating over the space integral, we get

                    dEdHdEE nnnnnmn
m

nmm 


 0000100000 --------(2.1.15)

Making use of the orthonormal condition of the wave function
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(i.e.)    
ijnn d  

00 *

where 0ij if i j ---------(2.1.16)

= 1 if ij

The equation (2..1.15) below:

       1010
nnn EdH  

OR        
  10101 *

nnnnn HdHE  -----------(2.1.17)

=      1010 || nnnn HH  -----------(2.1.17a)

which is first order perturbation of the energy value.

First order correction for wave function n
(1)

For obtaining the first order wave function n
(1), we once again consider the eq.(2.1.9) and multiplying on

both sides with m
(0)* from left side and then integrate over the space integral, we get the situation as

              
   dHdEE nmmn

m
nnm

0100000 **

=
     

  dE nmn
001 *

----------(2.1.18)

Using the condition as per eq. (2.1.16), we have

           001000 *
   dHEE nmnmm

(i.e.)

     

    nm
EE

dH

nm

nm

m 






,

10

010 *




= -

 

   

 

   00

1

00

010 ||

nm

nm

nm

nm

EE

H

EE

H







------(2.1.19)



Quantum Mechanics 1.6 Time Independent Perturbation Theory

so that n
(1) =

     

   
 0

0
00

0101
*

m
m mm

nn

EE

dH







 
















 -------(2.1.19a)

Now after the first order corrections to energy value and eigen function, we get.

   10
nnn EEE 

=
           

  100100 *
nnnnnn HEdHE  -----(2.1.20)

n =    10
nn  

=  
     

   
 0

1

0
00

010

0
n

m nn

nn

n
EE

dH










 
















(1 is written omitting m=n)

=  
 

 0

0
00

1
0

1

m
m nm

nn
n

EE

H

















 ------------------(2.1.21)

Second order correction for energy value En
(2)

We consider the eq. (2.1.10) for evaluation a2 En(2). Again the function n
(2) is expressed as a linear

combination of known function m
(0), as

   02
m

m
mn   ----------------------(2.1.22)

On substituting eqs. (2.1.22) and (2.1.11) in eq.(2.1.10), we get

                   0201000100
nnmn

m
m

m
mmmm

m
mm

m
m EEEHH    ---------(2.1.23)

on using eq.(2.1.13), we have

                  020101000
nnm

m
mm

m
nmmnm

m
m EHEEE   

=           02011
nnm

m
nm EHE   --------(2.1.24)
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Now multiplying both sides of eq. (2.1.24) with n
(0)* from left side, and integrating over the space integrals,

we get.

                     
 dnnnEdm

m
HnEmmdmnnEnEm

0*02011*00*000
  







   






  -------(2.1.25)

Applying condition (1.1.16) to eq. (2.1.25) we get.

         dHE n
m

nmm
0102 *

 

=         
m

nnm
m

nnm HH 1010 (||  -------------(2.1.26)

Substituting the value of m from eq. (2.1.19), we have

 
           

   
 




1

00

010010
2

**
.

m nn

nnnm
n

EE

dHdH
E



or  
   

   



1

00

11
2 .

m nn

nnn
n

EE

HH
E ----------------(2.1.27)

Second order correction to eigen function n
(2)

For obtaining n
(2), multiply eq.(2.1.24) with n

(0)* on both sides from left; and integrating over the space

integral, we get.

       
 dmm

m
nEmEm

0*000
  







 

=
             .0020110 **

 dEdHE nmnm
m

nnmm   ---------(2.1.28)

on using condition (2.1.16) again here also, the above equation is reduced to .

          






   dEEE mmn

m
mnmm

00100 *
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or    
       










  


 dHE

EE
mmn

m nm

m
m

0101
00

*
---------(2.1.29)

and
 

     

   

       

   
 0

00

0101

00

010
2

*

n
m nm

nmn

nm

nm
n

EE

dHE

EE

H



 
























 --------(2.1.30)

(1 is used to omit m=n)

In order to get the energy values and eigen functions, the values of En
(1), En

(2) and n
(1),n

(2) are substituted

from the equation (2.1.17), (2.1.27) and (2.1.19a), (2.1.30) in the following equation.

       22100
nnnn EEEE  

     2210
nnnn  

Using the above theoretical considerations, the corresponding 1st order and 2nd corrections to the perturbed

system can be calculated.

Proceeding in the above manner, we can evaluate higher order corrections for the perturbed systems to more

and more accuracy.

2.1.3 Application of the time dependent perturbation on theory for Non-

degenerate system

In this we take up the following examples and evaluate the perturbed energy and eigen function.

(i) The perturbed Harmonic oscillator.

(ii) The Normal Helium atom.

i The Perturbed Harmonic Oscillator

Let us consider the wave equation for the perturbed Harmonic oscillator in one dimensions as.

0
2

12 43

2

2

22

2









 







 ba

x

k
E

x

m

dx

d
-------------(2.1.31)
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This equation reduces to Harmonic oscillator wave equation if the constants a and b are zero. Assuming a

and b are small, we treat these terms as perturbation.

(i.e.) H(1) = ax3 + bx4 …………(2.1.32)

Let us calculate the first order correction to the energy En(1) given by eq.(2.1.17)

(i.e.).         


dHE nnn 
0101 *

    








dbxdax nnmn
0400

3
0 *




 -----(2.1.33)

Since the first integral on the right side is an odd function as x3 is odd and    00 *

nn  is even function, over a

symmetrical limits whose value is zero. As such the value of the first integral is zero (i.e.) first order

perturbation due to ax3 is zero.

Hence       




dxbE nnn
0401 *




 ………(2.1.34)

From the knowledge of the linear Harmonic oscillator, whose wave function is given by .

   2/exp)()( 20 *

  nnn HNx ……..(.2.1.35)

Where . 22
4

1

2
&  mandh

x

mk
x 










Substituting (2.2.5) in eq. (2.2.4) we get.

 
















 


 






 





d
eHNbE nnn ..)(.

4

4
221 2

= 





deH

N
b

p

n
n ..)(. 42

5

2 2

 …….(2.1.36)

For evaluating this integral, consider the following recurrence relations from Hermite polynomials.

)(1)(1
2

1
)(   nnn nHHH ………………(2.1.37)
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or )(1)(1(
2

1
)(2   nnn HnHH ………….(2.1.38)

Replaying n=n+1 and n=n-1 in eq.(2.1.38), we have

)()1()(2
2

1
)(1  nnn HnHH  …………..(2.1.39)

)(2)1()(1
2

1
)(1   nnn HnHH ………(2.1.40)

Now Substituting eqs. (2.1.39) and (.2.1.40) in eq. (2.1.38), we get.

)()1()()
2

1
()(

2

1
)( 22

2    nnnn HnnHnHH ……2.1.41.

Squaring and substituting in eq. (2.1.36), we have

  








dHnnnHe
N

bE nn
n

n

2

225

2
1

5

2

)()1()
2

1
()(

4

1
.  








 



……(2.1.42)

From Hermite polynomials, we know that

0)()(
2













dHHe mn if mm

!2 n if m=n……..….(2.1.42)

Using those result in eq.(2.1.42), it becomes

 














  )!2(2)1(2!)
2

1
(2)!2

16

1
. 2222

5

2
1 nnnnn

N
bE nnnn

n 


= |})2(2)1(2)!)(
2

1
(2)2(

16

11

!2

222
2

5

2

1



























nnnnnn

n

nn
n

n






Where we used the normalized function of Harmonic oscillator.
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Nn value as















!22

1

n

N
n

n





On simplification, we get

  )122(
4

3
. 2

4

1  nnbEn


Now the total energy to first order becomes.

    )122(
4

3
)

2

1
( 2

22
10  nn

mK

b
nEEE cnnn







ii The Normal Helium atom:

Helium atom consists of a nucleus of charge Ze at the origin and two electrons with radius vectors r1 and r2

as shown in Fig. (2.1.1)

Neglecting the motion of the nucleus, the Hamiltonian of

2

2
2
2

2

1

2
2
1

2
1

2

2

*

2

*

r

ze

mr

ze

m
H 























in which 1 and 2 represent the coordinates of electrons

Now, the wave equation for the two electrons is written as

0
2

12

2

2

2

1

2

2

2
2

2
1 








 

r

e

r

ze

r

ze
E

m


….

The term
12

2

r

e
is considered as the perturbed term, since o

solved. Hence, the perturbed Hamiltonian is written as.

e1

e2

r12
 - N

r1
the system is written as.

12

2

r

e





……..(2.1.43)

1 and 2 respectively.

.(2.1.44)

mitting this term, the above equation can be exactly

r2

Fig. 2.1.1
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 

12

2
1

r

e
H  …………(2.1.45)

Separately writing the unperturbed wave equation into two equation by substituting.

)()(),( 222
0
2111

0
1222111

0 zyxuzyxzyxzyx   …….(2.1.46)

In polar coordinates r1, 1,1, and r2,2, 2 to the normal state, the wave function is:

    )()( 222
0

100111
0
100

0
100,100  rr ……(2.1..47)

=   )()( 222
0

2111
0
1  ruru

and the corresponding energy value is:

     
 EZEEE 20

2
0

1
0

100,100 2 …..(2.1. 48)

Where EH is the energy corresponding to one electron = eu
me

6.13
2 2

4




The first order perturbed energy function E(1) is the average value of the perturbation function H(1) over the

unperturbed state of the system. Hence, First order correction to the ground state energy is

            d
r

e
dHE nn

20
100,100

12

2
0101 *

  ……….(2.1.49)

=
       

21
0

2
0

1
12

2*0
2

*0
1  dduu

r

e
uu 

We know that

   
)

2
(2

1

3
0

3
0

100
0

1

p

e
a

Z
u
















 …….(2.1.50)

in which 1=
0

12

a

Zr
and radius

22

2

0
4 me

r





so that   22

3
0

3
0

100,100

21 pa

pe
a

Z





 ……(2.1.51)
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and space integral d is

2222
2

21111
2

121  ddSindrrddSindrrddd 

on substituting (2.1.51) in energy equation (2.1.50), we get

 
2121

012
6
0

2

26
1 )(

2
exp

1



ddrr

a

Z

ra

eZ
E 








   ……(2.1.52)

Evaluation of the integral in eq.(2.1.52.) may be done by expanding
12

1

r
in terms of legendre polynomials and

hence the value of the integral leads to a value of
4

5 HZE
for the first order correction to the ground state.

The energy corrected to first order is then given by :

HHH EZZEZEZE 









4

5
2.

4

5
2 22

It may be noted that E(1) is about 31% of E(0), since

 

ZEZ

ZE

E

E

H

H

8

5

2

5
2

4/

0

1



The correction is subtractive which is understandable since the effect of the electron-electron contraction is to

reduce the electron nucleus attraction. Then the result holds good for two electron atoms like Li+, Be
++, B3+

etc., ….with Z= 3,4,5 …….

Summary of the Lesson

Perturbation theory is an extremely important tool for describing real quantum systems, as it turns out to be

very difficult to find exact solutions to the Schrodinger equation for Hamiltonians of even moderate

complexity, most of the Hamiltonians to which we know exact solutions, such as the hydrogen atom, the

quantum harmonic oscillator and the particle in a box, are too idealized to adequately describe most systems.

Using perturbation theory, we can use the known solutions of these simple Hamiltonians to generate solutions

for a wide range of more complicated systems.
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Self-assessment questions

1) Calculate the second order energy for the above example.

2) The unperturbed wave function of a particle trapped on an infinite potential well of

bottom a  

a

xa
Sin

a
n


 .)

2
( 2

1
0 

If the system is perturbed by raising the floor of the well by a constant amount V0,

calculate first order and second order corrections to the energy of the nth state.

3) Calculate the first order and second order energy correction in the case of the plane

rotator under the influence of the electric field E1, described by the wave equation .

  0cos
2 1

22

2

 



EE

I

d

d



Where I is the moment of inertia and , the electric moment.
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UNIT – 2

LESSON -VII The time Independent perturbation
theory – Degenerate case

Objective of the Lesson

In the discussion of perturbation theory for non-degenerate states of a system, we assumed that a given

eigen value is associated with a single eigen function representing a single state of the systems. If a given

eigen value is associated with several functions, which represent a multiplicity of state of equal (same) energy,

then we say that this eigen state is degenerate.

2.2.1Theory

An energy level is called -fold degenerate when these exist  linearly independent wave functions such as

k1, k2…….k satisfying the wave equation.

Clearly, we can explain this if we have  eigen function        0
........

0
3

0
2

,
0
1 


kkkk

corresponding to the

eigen state
 0
k

E . Such that there is no relation of the form.

     
0

0
1

0
22

0
11 




k
C

k
C

k
C ……(2.2.1)

connecting them, then we say that the  eigen functions are linearly independent and this eigen state  0
kE is 

fold degenerate.

We have shown earlier that eigen functions belonging to different eigen values are orthogonal, however eigen

functions belonging to the same eigen value need not be orthogonal.

Let, in the perturbed state, the Schrodinger wave equation be given by

H=E ……… ….(2.2.2)

Where H is the perturbed Hamiltonian, E the perturbed energy and  the perturbed wave function.
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Now, the perturbed Hamiltonian can be expressed interms of unperturbed Hamiltonian H(0) as.

    2210 HHHH   …………….(2.2.3)

Let us assume      00
2

0
1 .......,  kkk

are not orthogonal. We have,

                 0000.....
0
2

00
2

0,
0
1

00
1

0






kk

E
k

H
kk

E
k

H
kk

E
k

H 

Consider the linear combination 0
kX

       
......

00
........

0
22

0
11 k

X
k

C
k

C
k

C 


 ………(2. 2.4)

so that we have

             00
2

......0
2

020
1

0
1

00


kk
EC

kk
EC

kk
EC

k
XH  …… (2.2.5)

= 00

kk XE

which proves that the linear combination 0
kX is also an eigen function corresponding to the same degenerate

energy value.

We can choose the constants in eq.(2.2.4) in an infinite number of ways, we can construct infinite number of

such linear combinations, all of them being eigen function of the same eigen value. There is nothing unique

about any set of eigen functions for a degenerate level.

For instance, we can select the following  linear combination:

       0
1

0
212

0
111

0
1 ........  kkkk CCCX 

       0
2

0
222

0
121

0
2 ........  kkkk CCCX  ……..2.2.6.

       00
22

0
11

0 ........   kkkk CCCX 

which may be represented as :

   







1

0
11

0

l klll
CklX (l=1,2,3,……) ……..2.2.7.
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These combinations are entirely equivalent to the original set      00
2

0
1 ......,  kkk

. The transformation

expressed by eq. (2.2.7) is known as linear transformation with constant coefficients. With this background

about degenerate states, we now discuss the perturbation for such states.

The wave equation for unperturbed system is:

     0000  EH  ……………………2.2.8.

There are severed eigen states for this unperturbed system, each of them corresponding to several degenerate

eigen function as

Energy value eigen functions.

 0
0E        0

0
0

03
0

02
0

01 ...........,, 

 0
1E      0

0
0

12
0

01 ..,........., 

 0
kE      0

0
0
2

0
1 ..,.........,  kk

We can assume the linear combination of eq.(2.2.7), provided the function kl is:

   221
klklklkl   …………. (2.2.9)

and      2210
kl

E
kl

E
k

EklE   …………….(2.2.10)

Now substitute the values of H, kl, Ekl from equation (2.2.3), (2.2.9) and (2.2.10) the perturbed equation

given by

0 klklkl EH  ………………(2.2.11)

We have

           ........... 22102210  klklklXHHH 

-          
0....2210.....2210 







 






  klklklXklEklEkE 

Rewriting the above.

                    0....011001100000  klklklkklklklkkl XEEHHXEXH  …….(2.2.12)
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We now take up the first order perturbation equation, which can be obtained by equating coefficient of  equal

to zero.

(i.e.)             001000110  klklklkklkl XEEHH  ……………..(2.2.13)

Let us expand  1
kl as.

   01
11

11

11 lk
lk

lklkkl C   ………………….(.2.2.14.)

On substituting equation (2.2.14) and 2.2.7 in equation (2.2.13)

We get

           0001

1

00
11

11

1111111 lkk

lk
lklkkl

l
kllklklk

ECHCHC 


 


-    0
1

1

1'
1.

kl
klE

l
ll

C 





=0

Since        0000
11111 lkklk

EH   we have after recommendation.

           1
11

11

11
1

0
11

00
111

11
lk

H
kl

E

l
ll

C
lk

k
E

k
E

lk
lklk

C 


 






 













 …………(2.2.15)

Multiplying both sides with  *0
kj

 from left, and integrating over configuration space

       d
lk

kjlk
E

k
E

lk
lklk

C 0
11

*000
111

11 











=            











 






d
kl

Hkjd
kl

kjklE

l
ll

C
1
1

1*01
1

*01

1'
1 …………..(2.2.16)

when k1k,     00
11

0   d
lk

kj
and when k=k1,     00

'
0
'


k

E
k

E L.H.S. reduces to zero.

So that eq.2.2.17.

We use the notation

        


d
kl

H
kl

l
H 1101

'  …………..(2.2.18)

and since      00
2

0 ......,  kkkl are non-orthogonal.

we introduce the symbol      d
kl

kjjl
0
1

0
1  ……….(2.2.19)
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Using the above symbols, eq. 2.2.17 becomes

  0)1
11

1(

1'
1 

 jl
H

jl
kl

E

l
ll

C


or     0)1
11

1
(

1'
1 


jlkl

E
jl

H

l
ll

C


…………(2.2.20)

As there are  eigen functions      00
2

1
1 ,......,  kkk we can similarly get  equations like eq.(2.2.20) for

j=0,1,2,3….. Eq.(2.2.20) represents a system of  homogeneous linear simultaneous equation in 

unknown quantities

In the expanded from, these  equations are.

          0)(......)()( 11
11

11212
11

121111
11

11   CEHCEHCEH klklkl

         
02)2

1
1

1
2(......22)22

11
22(21)21

11
21(   ClEHCklEHCklEH …….(2.2.21)

- - - - - - - - - - - - - - - - - - -

          0)(......)()( 11
22

11
211

11
1   CEHCEHCEH klklkl

To understand how this set of equations is solved, a knowledge of determinations and their use in solving such

equations is necessary, if such a set of homogeneous linear equations is to have non-zero solutions is that the

determinant of the coefficients of the unknown quantities vanish.

(i.e)    
11

11
11  klEH        

 1
11

12
11

12 ..........  klkl EHEH

   
12

11
21  klEH        

 2
11

222
11

22 ..........  klkl EHEH

- - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - = 0 (2.2.22)

- - - - - - - - - - - - - - - - - - - - - - - - - -

   
1

11
1   klEH        

  11
2

11
2 ......... klkl EHEH
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Using the condition jl
1=0 if jl1

= 1 if j=jl
’.

We have

  )( 11
11 klEH     1

1
1

12 .............. HH

 1
21H     )( 11

22 klEH  …………  1
2H

- - - - - - - - - - - - - - - - - - - - - - - - = 0 ………(2.2.23)

- - - - - - - - - - - - - - - - - - - - - - -

 1
1H  1

2H ………………    11
klEH 

equation (2.2.22) and (2.2.23) are known as secular equation.

If the secular equation is in diagonal form that is all the elements except on the principal diagonal are

zero, then the initially assumed eigen functions      0
,.......

0
2,

0
1  kkk are themselves the correct zeroth order wave

functions.

The secular equation in which all the elements on the principal diagonal is in the form.

   11
11 klEH  0 0 ……………..0

0    21
22 klEH  0 --- -------- 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - =0 …….(2.2.24)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 0- - - - - - -    11
klEH 

then its expansion is

           1111
22

11
11 ())(( klklkl EHEHEH   ) =0

The roots of the equation are:



Acharya Nagarjuna University 1.7 Centre for Distance Education

       11
22

1
11

1 ,, HHHEkl 

In such a case, all the coefficients Cl1, Cl2……..Cl turn out to the zero.

Equation (2.2.23) may be written in another useful from by making use of the substitution .

   10
ijijij HHH  or  

 



0

1 ijij

ij

HH
H




and    10
klkkl EEE  or  



0
1 kkl

kl

EE
E




After taking t 1/ and using.

 0
jl

H =0 if jl

=  0
kE if j=l.

With the above eq.(2.2.23) becomes

H11-Ekl H12 ---------------------H1

H21 H22-Ekl ------------------H2

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - = 0 …..(2.2.25)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

H1 H2 ----------------- H-Ekl

Observing the equations (2.2.22) and (2.2.23), we note that if a perturbation has non-vanishing matrix

elements Hij among a set of degenerate states, then it will change the wave function in the zeroth order. If the

set of wave functions is non-degenerate on the other hand. The perturbation effect the wave functions only in

the first and second orders.
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2.2.2 Stark effect of Hydrogen atom

When an atom is placed in a uniform electric field, the energy levels are shifted. The shifting of energy levels

produce a splitting of spectral line, called stark effect which was first observed in 1913 by stark in hydrogen

atom.

Let us consider the first order change in energy levels of a hydrogen atom due to an external electric field of

strength, E, along the positive Z-axis which is polar axis whose coordinates are Z= rCos.

For the hydrogen atom, the unperturbed Hamiltonian is given as

 
r

e
H

2
2

2

2
0 






 ………………(2.2.26)

Where  is the reduced mass.

Now considering the perturbation H(1) is taken as

  eErCoseEzH 1 …………(2.2.27)

in which e is electric charge and the external electric field E.

In case of hydrogen atom, potential energy and wave function are spherically symmetric. Now, the parity of

the spherical harmonics depends on the azimuthal quantum number
l

1 as (-1)l, which gives odd parity, if
l

1 is

odd and even parity when l is even. Further, even if parities were different, matrix elements connecting states

with different m values also vanish, making the interaction impotent to split m-degeneracy.

For the ground state of the hydrogen atom(n=1,l=0,m=0), the wave function is spherically symmetric and has

the same form for all orientation, there is no degeneracy.

The ground state wave function for hydrogen atom is

),(00)(10100  YrR

=
4

1
)(10 rR ………………..(2.2.28)
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The perturbation H(1) has the odd parity according the eq. (2.2.29)

    0100
1

100
1

100,100   dHH

In order to understand the above, we have

H(1) = +eErCos

The first order perturbation energy in the ground state of Hydrogen atom is.

   drddSinrrCoseEH 2
100)(100

1
100,100   

where 100=R10 Y00 (,)

and Y00(,)=N00P0
0(Cos) 0()=

4

1

0() =
2

1
1.)(0

0 Cosp

N00=
2

1

R10(r ) = )exp(.
2

0

2
1

0

2

a

r

a











so that 100=
4

1
).exp(..

2

0

2
1

0

2

a

r

a











Now   



  

ddrdSinre
a

rCoseEH
a

r

2

0

2

0 0
3
0

1
100,100 ..

1 0

2

   = 0 …….2.2.30

Thus we observe that there is no first order stark effect to the ground state of the hydrogen atom.

The first excited state (n=R) of hydrogen atom is four-fold degenerate since it has the (l,m) values (0,0),

(1,0),(1,1) and (1,-1). Let the electric field E is applied along the positive Z-axis which interacts with the

electric dipole moment giving the perturbing Hamiltonian, H(1)=eEZ=erECos.

with the help of the quantum number (n l m), the four-fold degenerates states are specified as
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  121,211,210,200:  nlm

As the degeneracy is four-fold. We have to evaluate sixteen matrix elements of H(1) in the perturbation theory

for degenerate states.

Clearly, we write the above four wave function as .

)(
4

1
),()( 200020200 rRYrR


  ……………(2.2.31)




 CosrRYrR )(
4

3
),()( 211021210  ………(2.2.32.)




 ieSinrRYR )(
8

3
211121211  …………..(2.2.32)

)(21
8

3
1,1211,1,2 rR

i
eSinYR






 …………(2.2.33)

In these 200 has even parity and 210, 211, and 2.1.-1 have odd parity.

Writing down the secular equation with the sixteen matrix elements, we have.

  EH 1
200,200

 1
211,200H  1

211,200H
 1

1,21,200 H

 1
200,211H

  EH 1
211,211

 1
210,211H  1

1,21,211 H

 1
200,210H

 1
211,210H   EH 1

211,210
 1

1,21,210 H …..2.2.34

H21,-1,200
 1

211,1,21 H  1
210,1,21 H    11

1,21,1,21 EH 

Since 200 and 200 have even parity. He element of the secular determinant.
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    0200
1

200
1

200,200  







dHH …………..2.2.35

Similar to the equation (2.2.4)

In a similar way,      1
1,21,1,21

1
210,210

1
211,211 ,, HHH are Zero

That means the four diagonal elements of matrix are Zero since they correspond to same parity.

Now the off-diagonal elements between states of different in values (i.e.)

                 
200,1,21

1
1,21,200

1
200,211

1
211,200

1
210,1,21

1
211,1,21

1
1,21,210

1
211,210

1
1,21,211

1
210,211 ;;;;;;;;;  andHHHHHHHHHH

are also Zero since.

   0exp
2

0

1 

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Hence, out of the sixteen matrix elements, the only two matrix elements remains non-Zero are

  1
200,210

1
210,200 andHH These two are again symmetrical, it is enough if we valuate one element out of the two.

Let us consider.
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R is taken up from the radial part of the hydrogen atom wave function.
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In a similar way
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Where a0 is the radius of the first Bohr orbit

Substituting the values of (2.2.38) and 2.2.39in eq.(2.2.37) gives.
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eFa03 , Now, the secular equation becomes

(nlm) 200 210 211 21,-1

200 -E -3a0eE -0 0

210 -3a0eE -E(1) 0 0 =0

211 0 0 -E(1) 0

21,1 0 0 0 -E(1)

It can be observed that the states 200,210 are effected by the electric field and the sates 211, 21-1

remain unchanged.

The eigen states corresponding to the eigen value 3eEa0 is (200-210)/2 and the eigen state for –3eEa0 is

(200+210)/2 . The energy along with the eigen states of the n=2 state of hydrogen atom in an electric field

E along the Z-direction is illustrated in Fig.2.1.

0
0
1 3eEaE  2

1

210200 )(  

E1
(0) (210,21-1)

E1
(0) –3eEa0

2

1

210200 )(  

Fig. 2.2.1 Energies and wave functions of the first excited state of hydrogen atom in an electric field E.
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This means that the hydrogen atom in the first excited state behaves as though it has a permanent dipole

moment of magnitude 3a0eE with three different orientations – one state parallel to the external electric field,

one state anti-parallel to the field and two states with Zero component along the field. The states 211 and

21-1 do not posses dipole moments and therefore do not have a first order interaction with the field. Since the

ground state of all atoms and nuclei are very likely to be non-degenerate, it is expected that an atom or nucleus

in the ground state do not possess a permanent electric dipole moment. This means, atoms and nuclei in the

ground state can possess electric charge, electric quadrupole moment, magnetic dipole moment etc., but not

magnetic pole, electric dipole moment, magnetic quadrupole moment etc.,

Self Assessment Questions

1. Give the theory of time-independent perturbation theory for degenerate case.

2. Why do we say that the hydrogen atom in the first excited state possesses a permanent dipole-

moment?

3. Why the hydrogen atom in the ground state does not show a first-order stark effect?
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UNIT – II

LESSON –VIII - The Variation method
and W.K.B method

Objective of the lesson

Under some circumstances, perturbation theory is an invalid approach to take. This happens when the system

we wish to describe cannot be described by a small perturbation imposed on simple system .in quantum

electrodynamics, for instance, the interaction of quarks with the gluon field cannot be treated perturbatively at

low energy because the interaction energy becomes too large. When faced with such systems, one usually

turns into other approximation schemes, such as the variation methods and W.K.B approximation.

In the variation method, one has to make some guess of the wave function, they apply the variation

principle to improve the guess of the wave function and obtain the upper bound for the ground state energy.

Here we do not try to find a correction to already known unperturbed eigen value and eigenfunction, but

determine the total eigen values and eigen functions as close to the experimental values as possible through a

variation calculation.

2.3.1 The Variation method

(a) the variation principle and theory.

(b) application to ground state of helium atom.

The variation principle

The essential idea of the method is to evaluate the expectation value H of the Hamiltonian

operator H of the system with respect to a trial wave function . In order to explain the principle involved

to evaluate the energy of the ground state , let us consider the wave equation as

 EH  ………(2.3.1)
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Where the Hamiltonian operator H =  2
2

2m


V ( r ) and E is the energy value.

Multiplying eq.(2.3.1) with and integrating over all variables

 dEdEdH   ***

…………(2.3.2)

if  is normalized wave function

the equations give the expectation value of the energy of the system in the state represented by the wave

function  .

The approximate wave function  can be obtained by variation principle. In this approach, we guess a wave

function and calculate the energy value .The energy of the system is correct , if the trial wave function is

correct. In accordance with principle of variation, if the true energy is E0 and the correct wave function 0 ,

then any other acceptable wave function i ,indicates which trial wave functions is close to the true wave

function to give the best energy value. For a proof of the theorem , express the trial wave function as a linear

combination of the true (but unknown) wave functions
......,, 321 

of H0

………(2.3.4)

where 1 , 2 , 3 , ……… n are the arbitrary parameters that can be varied to minimum in the

energy .for our convenience, let us take









d

dH
E

*

*

)3.3.2.....(*  dHE 

nn .......
332211 
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=11+22……….(2.3.5)

substitute this in equation (2.3.2), we get

(i.e)
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as we require the minimum value of E, it is necessary to minimize the energy E

with respect to the parameter 1 and 2

differentiating with respect to 1 , we get.
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in a similar way, differentiating with respect to 2 , we get

)8.3.2..(].........22]

2[]22[

2
*
222

*
112

*
2

2

2

2
*

1211
*

1

2

1

2

2

*

222
*
11








dHdHd

dd
E

ddE













in order to minimize E with respect to 1 , and 2 , then

and using the symbols

 dHH jiij 
*

………………(2.3.10)
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applying the equation (2.3.9) and (2.3.10)to(2.3.7) we get

)11.3.2.....(..........0)()( 2121211111   EHEH

similarly, from the equation(2.3.8), we get after minor rearrangements for H12=H21and 12= 12 for

convenience and symmetry.

)12.3.2.....(..........0)()( 2222212121   EHEH

equation(2.3.11)and(2.3.12) together are called secular equations.

In our case , we consider only the first two terms of the variation function , we can generalize to other term

also.

Equation 2.3.11 and 2. 3.12 can be solved for ad provided the determinant for trivial solution is

1212  EH

= 0 ……………(2.3.13)

2121  EH 2222  EH

in a more general way, for n independent functions the secular equation in the form of determinant is

nn EHEH 111212 ............. 
..

nn EHEH 222222 ............. 

…………………………………………… = 0

……………………………………………

……………………………………………..

nnnnnn EHEH  .............22

1111  EH

1111  EH

2121  EH

11 nn EH 
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2.3.2 Application of Variation Method

Application to the ground (normal) state of the Helium atom

As an example, we take up to obtain the energy of Helium atom in the ground state.

Helium atoms consist of electrons of charge ‘-e’, and nucleus ‘+Ze’.

The total potential is

V=V1+V2+V3……………(2.3.14)

Where the potential energies are given as :

Neglecting the nuclear motion, the Hamiltonian is represented as

In atomic units, representing the Bohr radius

The Hamiltonian becomes.

Here e2/a0 is the atomic unit of energy.

In atomic units H takes the form

For the case of Helium, suppose one of the electrons is labeled 1, in the ground states, and the other labeled 2

is in the exited state 2.The ground state electron experiences the full attractive force of charge ‘+2e’ .
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The wave function is represented as

Even though the electron 2 does not experience attractive force from nuclear, in choosing the trial wave

function for electron 2 is taken as

These considerations show that good trial wave function must be of the form.

Where Z1 is between 1 and 2.

Since 1
(0), 2

(0) are normalized wave functions for hydrogen like atoms,  must be a normalized wave

function.

The expression for H given in eq.(2.3.18) is now modified by adding and subtracting (Z'/R1+ Z'/R2)becomes

Since  is assumed a normalized function, the variational energy E is given as
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Which is similar to two individual hydrogen-like atom wave function; whose energy is

Now eq 2.3.25 becomes

Now the variational energy E of eq (2.3.23) becomes.

Since  is normalized.
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And we write other integrals as.

The first of the integral in the integral I, is

Using the knowledge of gamma functions and other simple integrals.
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Similarly, the second integral in I, becomes.

Inserting these values of integral in eq2.3.29
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The above integral can be evaluated using the knowledge of Legender polynomial and electrodynamics which

yields the value.

Using the results of 2.3.32 and 2.3.34 in eq.2.3.27 We get

to minimise E with respect to variational parameter Z1, we set dE/dZ1=0.

This gives

Thus Z1 is taken as the effective nuclear charge of helium. The factor 5/16 is called the screening factor.
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Substituting the Z1 in the energy equation 2.3.35

E = (Z1)2 – 2Z1 (Z1 +
16

5
) +

8

5
Z1 .a.u.

= - (Z1)2 a.u……………………………(2.3.37)

=2 (Z1) 2 E1s (H)  2/1)(11  HorEE s which is ground state

energy of hydrogen atom in the 1s orbital

=2(Z-5/16)2E1s (Ђ) 

=2 (
16

27
)2E1sH (Z =2 for Helium atom )

=2 (
16

27
)2 (-13.60 eV) (E1= -13.60 eV)

= -77.45 eV

Which is the approximate ground state energy of helium atom. Further, the energy of the ground state He+ ion

is 4E1s (H) = -54.40 eV.

Hence the ionization potential of helium is (-54.40) – (-77.45) = 23 eV.

The experimental value is 24.58 eV.

By introducing more parameters in the trial function, the accuracy may be improved further.

2.3.3 The WKB Method

(a) Validity of the Method

(b) Principle of the Method

(c) Connection formula for penetration of a barrier.
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Introduction

Wentzel-Kramers-Brillouin (WKB) approximation is a final type of time independent approximate

calculations. It applies to only situations in which the potential energy is slowly varying function of position.

Problems of one dimension and also of three dimensions reducible in one dimension (radial) are solved by this

method.

A slowly changing potential means the variation of potential energy V( r ) slightly over several

wavelengths ( De Broglie waves ) of the particles

The De Broglie wavelength associated with a particle moving with energy E in a region of potential

V is

 =
p

h
=

 2
1

)(2 VEm 


………(2.3.38)

Since
2

1
mv2= E - V

m2v2= 2 m (E-V)

p = mv =  )(2 VEm 

The propagation constant

k =


2
=(2m/ ) [E-V(x)]1/2

P =  k 


p
=



2
…………(2.3.39)

Mathematically slowly varying potential can be expressed by the conditions

d

dk
2

1


<< 1
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substituting value of k from ( 2.3.39 ), we get

  2/3
)(2 VEm

x

V
m








<< 1 or
 )(4 VE

x

V










<< 1 …………..(2.3.40)

This equation gives the validity of W.K.B approximation.

Principle of the method

W.K.B. method consists of in introducing an expression in the powers of . Thus Schrodinger equation ( at

least in some regions of space ) is reduced in its classical limit. However, the method has wider range of

applicability than the classical approximation, because this procedure can be carried out even in regions of

space where classical interpretation is meaningless ( region E < V is inaccessible to classical particle )

Let  (x) be the wave function satisfying Schrodinger’s equation.

  0)(
2

22

2








xVE

m

x 
………(2.3.41)

Let the solution of eqn. (2.3.41 ) be of the form

/)( xiCe   …………(2.3.42)

Where C is constant,  (x) is yet, an undetermined function of x, we have

x


= /)( xiCe  .

x



2

2

x

 
= 


/)( xie

C  . 











2

x

 


/)( xie

C  . 2

2

x

 
…………..(2.3.43)

now substituting
x


=  ’ and

x

 '
=  ’’ equation (2.3.43) takes the form

2

2

x

 
= 



/)(

2

xie
C  .  2' + 


/)( xie

i
C  . '' ………..(2.3.44)
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Substituting values of  and
2

2

x

 
from( 2.3.42) and (2.3.44) in (2.3.41), we get





/)(

2

xie
C  .  2' + 


/)( xie

i
C  . '' +  )(

2
2

xVE
m




/)( xiCe  = 0

or 



/)(

2

xie
C   )(2'''2 VEmi    =0

As  0/)( xiCe  ,therefore above equation gives

)(2''' 2 VEmi  =0 ……….(2.3.45)

To get an approximate solution of (4.8), we apply W.K.B. method and hence expand

 (x) in powers of  i.e.,

 )(
2

)()()( '
2

2

10 xxxx 


 (2.3.46)

where the subscripts  ’s are independent of  . Let us assume that on account of the smallness of  , the

first two terms in equation (2.3.46) give a sufficiently good approximation to  .

Differentiating equation (2.3.43), we get

 )('
2

)()()(' 2

2
'

1
'
0 xxxx 




 )('
2

)('')('' 2

2
'
1

''
0 xxx 




Substituting values of ' and '' from (2.3.47) in equation (2.3.45), we get

i [  )('
2

)('' 2

2
'
1

''
0 xx 


 ]- [  )('

2
)()( 2

2
'

1
'
0 xxx 


 ]2+ )(2 VEm  =0….(2.3.48)

collecting coefficients of various powers of  , we see that up to second order in

 , we see the result is

[ )(2 VEm  -     0]''''''['2"]' 20
2
11

2
1

2'
200

2
0   iii  ….(2.3.49)

(2.3.47)
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in order to that equation (2.3.49) may hold identically in  , the coefficients of each power of

must vanish separately. This requirement leads to the following leads series of equations.

)(2 VEm  - 2
0' =0 (a)

'
200 '2"  i =0 (b) …..

20
2
11 ''''''  i =0 ( c )

and so on..

These equations may be solved successively. That is the first equation , 0 in terms of (E-V),the second

equation defines 1,the third defines  2 in terms of  1 and  0 etc..

From equation (2.3.50a), we obtain,

0' = )(2 VEm  ………(2.3.51)

integration of above eq. gives,

dxVEm
x

x

 
0

)(20 ……..(2.3.52)

where x0 is an arbitrary fixed value of x.

From equation(2.3.50b) we obtain

'
0

''
0

1
2




i


integration of above equation yields

1
'

1 0
log

2
C

i
  ………….(2.3.53)

where C1 is a constant integration. This result is inconvenient if '

0
 is negative. Therefore keeping in mind the

log of negative of function differs only by an imaginary constant from the logarithm of absolute value of the

function. We replace eqn.2.3.53 by

2.3.50
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2
'

1 0
log

2
C

i
  …………(2.3.54)

Where C2 is an arbitrary constant.

Similarly

     
dx

VEm

x

V
m

VEm

x

V
m x

x



































0 2

3

2

2

32

24

1

22

1
 ………..(2.3.55)

From equation 2.3.54 we see that 2 is represented as logarithm of '0 ,therefore it is not, in general, small

compared with 2 . Consequently 2 and 2 both must be retained. On the other hand from eqn.(2.3.55) we

see that 2 will be small whenever dv/dx is small and(E-V) is not too close to zero. Further it can be seen

easily that the smallness of the higher approximations ( 2 , 2 ….etc) requires the smallness of all derivatives

of V. Thus the W.K.B. approximation will be suitable in cases where V is a sufficiently smooth and slowly

varying function of position.

Thus the approximate W.K.B. solution of eqn. (2.3.45) may be expressed in the form









 '

0 0
log

2

1
 ix ……..(2.3.56)

assuming constant C2 is absorbed in )(0 x

Substituting value of )(x from (2.3.6) in equation (2.3.42) and rearranging the result, we finally obtain the

approximate solution app of equation (2.3.44) in the form

     




















 


x

x

app dxVEm
i

AVEmC
0

2exp2 4

1


 ………..(2.3.57)

Where C remains arbitrary. The two solutions contained in (2.3.57) and differing in sign of the exponent are

linearly independent, and hence the approximate general solution, according to W.K.B. approximation is
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        



























































 


x

x

x

x

app dxVEm
i

BdxVEm
i

AVEmC
00

2exp2exp2 4

1


 ….. (2.3.58)

where A and B are arbitrary constants. The positive exponential corresponds to a wave moving in the

positive direction and the negative exponential corresponds to a wave moving in the negative direction. For

the special case when V(x) is a constant, these reduce respectively to the plane waves.



ipx

e and 

ipx

e


The alternative from of equation (2.3.58) may be expressed as

        


x

x

app dxVEmVEmC
0

2cos2 4

1

Where C and are arbitrary constants.

The approximate solutions (2.3.57) and (2.3.58) of the Schrodinger equation are usually called W.K.B.  -

functions.

Connection Formulas for penetration of a barrier

W.K.B. method is applicable to the problems only where the potential function does not change too rapidly,

because in the regions approximation considered do not apply. In the problems where the potential function

vary slowly in some regions, so that W.K.B. method is inapplicable; we find the solution in the regions of

inapplicability of W.K.B. method by some other methods and carry it to the regions where W.K.B. method is

applicable. In order to connect these two solutions: we need for the connection formulas.

To treat the problem of barrier penetration where W.K.B approximation is valid, we must find how to connect

solutions in the region where V>E with those where



Fig 2.3.2

E > V.
V > E.

V(x)

X = a (E-V)

II I
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Consider the potential barrier shown in Fig. 2.3.2 Suppose the energy of particle is such that E = V at point

x = a..

Classically, the particle should slow down to zero velocity at this point and then turn back. Quantum

mechanically we know that the wave penetrates some distance further into the barrier. Obviously we cannot

use the W.K.B. approximation in the region near x=a because when E=V, the condition for its applicability

breaks down.

Thus if we start with a given solution at some distance to the right of x = a ( in I region) say,

 ~ 
x

a

dxP

p 
1

1

exp
1

(2.3.59)

where P1 =  EVm 2

From W.K.B. approximation method, we know that a sufficient distance to left of x =a ( in region II), the

approximate solution will be

 ~ 





















x

a

x

a

dxP
i

p

BdxP
i

p

A


2

2

1

1

expexp ……..(2.3.60)

 where P2 =  VEm 2 and A and B are unknown constants . The values of A and B can not be found By

W.K.B. method alone, because they are determined by the nature of the solution in the region of

inapplicability of W.K.B. method. To obtain the values of A and B we need an exact solution near x = a ; but

it is too complex problem to be solved. If the W.K.B. method is applicable at small enough region x = a; then

the potential function can be represented approximately by a straight line with in region, with slope equal to

that of potential curve at the classical turning point x = a. as E = V, we can write,

V- E = C (x-a),

Where C is a constant equal to
axx

V















. Thus in the region x = a , the Schrodinger equation reduces

approximately to
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0)(
2

22

2








axC

m

x 
……..(2.3.61)

This difficult equation can be solved by Bessel’s function The solution of the equation (2.3.61) is carried far

enough from x = a, so that W.K.B. approximation becomes applicable. In this way, we may determine the

constants A and B. Here we shall simply results without going through the complex procedure.

Case (A) Barrier to the right

Let V>E, to the right of x = a and P1 =  EVm 2 ; P2 =  VEm 2

Let us consider that far to the right of x= a, the W.K.B. approximate solution, which is exponential, Viz.,











 

x

a

dxP
i

p

B


1

1 exp
1

 ………(2.3.61)

for to the left to x= a , the connection formula states this solution approaches,











 

x

a

dxP
i

p

B

4
cos 2

2

2





………..(2.3.62)

Thus the connection formula may be expressed as











 

x

a

dxP
i

p 
1exp

1

1
= 










 

x

a

dxP
i

p 4
cos

2 2

2




…….(2.3.63)

similarly, if the approximate solution is an increasing exponential to the right of x= a, the following

connection hold.











 

x

a

dxP
i

p 4
sin

1 2

1



 










x

a

dxP
i

p 
2

2

exp
1

……..(2.3.64)
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Case (B) Barrier to the left

For the solution which decays exponentially to the left of x=a, we obtain the connection formula.











 

x

a

dxP
i

p 
2

2

exp
1













x

a

dxP
i

p 4
cos

2 2

2




………..(2.3.65)

If the solution increases exponentially to the left, we obtain the following connection formula.











 

x

a

dxP
i

p 4
sin

1 2

1



 










x

a

dxP
i

p 
2

2

exp
1

Conclusion and summary

It may be noted that the connection formulas enable us only to obtain the relation between the solutions in a

region at some distance to the right of the turning point x=a, with those in a region some distance to the left.

In order to obtain the form of the wave function in the intermediate region, we have should consider the exact

solution, which involves Bessel functions of order
3

1
.

For applying W.K.B. approximation, the following requirements must be satisfied.

1. On either side of the turning point, there exist regions when the potential functions changes slowly so

that W.K.B. approximation is applicable.

2. In the region near the turning point x=a where W.K.B. method becomes inapplicable, the kinetic

energy can be represented approximately by a straight line (E-V) = C(x-a). In order other words the

potential should not undergo a large fractional change in slope within this region. Inside the barrier

W.K.B. approximation begins to hold after.

/)(2
0

dxVEm
x

 

becomes appreciably greater than unity.
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In this lesson, we develop another approximate method, which gives a direct solution of Schrodinger equation.

This method, which is usually referred to as W.K.B. method is applicable to potentials which are such that the

Schrodinger equation is separable to one dimensional equation,

further, the potential should be slowly varying we obtain the W.K.B. solution of the one dimensional

schrodinger equation. Those solutions are used to describe the quantization condition which determiner the

energy values corresponding to bound state problem.

Conclusion We have shown that the quantization condition is closely related to the Bohr-Sommerfield

quantization condition of the old quantum theory.

Self assessment questions

1 Apply the W.K.B. method to evaluate the energy eigen value corresponding to the

Harmonic oscillator potential.   







 22

2

1
 mV

2 Show that the W.K.B. energy levels corresponding to the free fall of a particle in

earth’s gravitational field is given by

3
1

222

2

4

3
9

2

1




















 mgnEn 

3 Use the variation method to estimate the ground state energy of a particle in the

potation. V=  < 0

V=K  > 0

Choose  e as the trial wave function.

4. A particle of mass m is bound by a potential V(r)=-V0e
-r/a where 75.02

0/2 aVm

Use variation method with the trial wave function e-r/a to get a good limit on the

lowest energy eigen values.

5. Calculate the transmission probability of a particle through a potential well with the
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Help of W.K.B. method.

6. Evaluate the energy values of a) normal state of hydrogen, b) normal state of helium

using variation method.
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UNIT – 2

LESSON – IX - Time-dependent perturbation theory

Objective of the Lesson

Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a time-dependent

perturbation v(.t.) applied to a time independent Hamiltonian H0. The eigen functions and eigen state of this

perturbed Hamiltonian is also time-dependent.

We are interested in the following quantities:

(i) Time-dependent expected value of some observable, with a specified initial state.

(ii) The time-dependent amplitudes of those quantum states that are energy eigen kets in the

unperturbed systems.

The first quantity is important because it gives rise to the classical result of a measurement performed on a

macroscopic number of copies of the perturbed system. The second quantity looks at the time-dependent

probability of occupation for each eigen state, which is particularly useful in laser physics, where one is

interested in the populations of different atomic states in a gas where a time-dependent electric field is

applied.

2.4.1. The method of variation of constants

Consider the time-dependent schrodinger wave equation of an unperturbed system.

   
 

t
n

i
nH






0

2

00 



…………………….(2.4.1)

If the unperturbed system is conservative, then the Hamiltonian H(0) depends only on the space variable r

but not on time t. Now, for such a case, the total wave function  trn ,0 including time is

        
 



dtiE

nn

n

ertr
02

00 .,






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=  

 



tniE

en

0

0 
 ……………………(2.4. 2.)

Where  0
nE is the energy of the stationary states and   rn

0 are eigen functions of the time-independent wave

equation.

         rnnErnH
0000   ………….(2.4. 3).

The general solution of eq. (2.4.1) is a linear combination of solutions representing different stationary states.

(i.e.)      trn
n

natr ,
0

,0   …………………(2.4. 4.)

If   rn
0 is normalized like the functions   trn ,

0
 forming an orthonormal set, then for each n value, |an|

2

represents the probability of the system in that particular stationary state. The sum of the squares of the

mixing Coefficients an is represented as.

|an|
2=1 ………………………(.2..4. 5.)

since 12||** 
n

nana
n

nad

Further |an|
2=1, an=1, when the unperturbed system is in the stationary state   trn ,

0
 , then all the

coefficients ak(kn) in eq. (2.4..4) are zero.

Now, consider the wave equation of a perturbed system.

      tr
ti

trtrH ,
*

,, 



 …………(2.4. 6.)

As the Hamiltonian depends on space variables r as well as on time t, the energy cannot be conserved and there

can be no stationary states. For solving eq.(2.4.6) by perturbation theory, let us

take the Hamiltonian H(r,t) as sum of two terms, the time-independent Hamiltonian H0(r) of the unperturbed

system and a small perturbation H1(r,t) which depends on space variables r and time t.
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Now, the perturbed wave equation is.

    
ti

HH










2
10 

………………(2.4. 7)

Whose general solution is of the form.

     txxntnatxx .......2,1
0

)(,..........2,1  …….(2.4. 8)

The Coefficients an(t) being functions of time t.

Substituting eq. (2.4.8) in eq. (2.4.6) gives

         0100
nHnanHtna  

=-    
 

 

t
ta

it

ta

i
n

n
n

n










0
0

22









………………(2.4. 9)

Again  
 

ti
H n

n





0
00

2








Hence, we get from (2.4..8)

     

t

ta

i
Hta n

nnn



 

)(

2
)( 001 





…………….(2.4. 10)

multiply eq.(2.4.10) by  *0
m and integrating over the configuration space. We have

          


 d
t

ta

i
dHta nm

n

n
n

n
mn

00010 ** )(
..

2
)(   





      


dHta
h

i
ta

t

ta
nm

n
nm

m 010 *

)(
2

)(
)(





 …………2..4.11.

with m=0,1,2,3,…………..

Thus we obtained a set of first-order differential equations involving the functions am(t). At the time t=0 a

measurement of energy will lead to a particular value corresponding to one of the stationary states of an
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unperturbed system because it is only for stationary states that the energy has a definite value. Let this be

denoted as  0
lE .

This means at time t=0, the wave equation is represented by  0
l

 but not by eq. (2.4. 4)

Hence, at time t=0,

al(0)=1, n=l=m.

an(0)=0, nl. ……(2.4. 12. .)

or an(0)= mn

Therefore, we can find solution of eq.(2.4. 11) numerically but physically it cannot be done, as there are

infinite equations.

If H(1)(r,t) is small, the rate of change of the Coefficients
dt

da is small in the time interval t=0 to t in which it

acts and the relation (2.4. 12) is valid throughout this interval. We now solve the equation (2.4.11) by

neglecting all terms except with n=l, retaining )(1 t
l

a on the right hand side, we have.

 1)(
2)(

lll
l Hta

i

dt

tda




 …………………(2.4. 13)

Where        
 d

l
H

lll
H

01*01


Rewriting equation 2.4.13 as

 dtH
i

ta

tda
ll

l

l 1.
2

)(

)(






Integrating

 
 
t

ll

t
l dtH

i

dt

tda

0

0

0

2)(





(i.e.)    tH
i

ta lll
12

)(log




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or  








 tH

i
ta lln

12
exp)(




……………….(2.4.14).

From eq.(4.1.14), we can understand how the Coefficient al changes during the time when the perturbation is

acting, during the time, the wave function is

     010 2
exp)( lllln tH

i
ta 


 











(from eq. 2.4.8)

=        







 100 2

exp llll HE
h

i
 (using eq. 2.4.2) ……(2.4.15)

Now, our aim is to consider the remaining set of equation in (2.4. 11) and find the behaviour of the

Coefficients am(t) with ml.

Using the initial value of al(0)=1, on the R.H.S. of eq.2.4. 11. and neglecting all other an’s we obtain.

      


dH
h

i

dt

tda
lm

m 010 *2)(

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h

i
H

h

i

dt

tda
mlml

m 001 2
exp

2)( 
………(2.4. 16)

With        
 d

l
Hmml

H
01*01



Let the field act during the time interval t=0 to t in which perturbation H(1) remains constant and it is zero

before and after the field applied.

Now, we integrate eq.(2.4. 16) during the interval t from 0 to t.

We have

       dtEEeH
h

i
ta ml

h

it

mlm 



00

2

0

02
)(




for ml.
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 111
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………………(2.4.17.)

Which is the first order perturbation theory.

Now, we calculate the probability of the particle in the mth state in the following procedure:

Probability =
2/)(/)()(* tmatmatma  ……………(2.4. 18.)

=   2|
1

|
2

1
11

2

1
ml

HXtmlietmlie
ml 







 






  



 
 2/2.

2

2|
1

|

2

42|)(| tmlSinml
H

ml

tma 
 

 ……………(.2.4. 19)

Let us plot y against x=ml as shown in Fig. 2.4.1. It can be observed that the most important contributions to

the transition probability come from those final states with energy Em which are very close to and centered

around the initial state of energy El. The full width of the curve at half maximum





~

2

E
(2.4.20)
 

ml

mltSin
y

2

2/2




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Fig. 2.4.1

If we interpret E as the uncertain by in energy and t() is the certainty in time ‘t’, the equation (2.4.20) then

implies that

E t ~ 2ħ 

This can be explained more clearly as below: for maximum value of Y we get.
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


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


neglecting higher powers of t.

4

2t


The highest peak value is
4

2t
, which can be easily observed from the Fig. (2.4.1).

The peak values we get, when Y is zero.

(ie.)
 

0
2

2
2



ml

t
mlSin





(ie.)
t

n
ml




2
 where n=0, 1,2,3,---------
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This means the height of the peak values is proportional to t2 and its width decreases inversely as t. Since the

area under the curve is proportional to t, the probability of time during the system in one or another states is

proportional to t, which implies the probability per unit time.

Transition to the Continuum

We have so far considered transition between states and m and l. We shall now consider transitions from a

discrete state m to a continuum of states around El, where the densities of state are (m). When the final

states are densely packed forming a continuum, we can replace the summation by an integral. In order to

obtain the explicit expression for transition probability, let us assume that the system is enclosed in a cubical

box. The stationary states of the system are discrete, but separated in energy by an interval, which is inversely

proportional to the volume of the box.

If we consider a box of infinite size, the levels with in the energy interval increases and merge into a

continuum.

Now the transition probability for mth state is given as.

   

ml

tmlSin
ml

HtmaT
22

2/2.42|
1

|2|)(|







In this, the probability is largest for the states whose unperturbed energy  0
mE is close to  0

lE . As the levels

are closer, they form a cluster around    00
lEmE  and all the levels in the cluster nearly represent the same

physical properties. Summing all levels in the cluster and we get the total transition.

Probability (i.e.) |am(t)|2

(i.e.) dEmtmatma )(|)(|2|)(| 

Where (m) is the density of final states and (m)dE is the number of such states in the range dE.
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Instead of considering transition to a particular state, we may consider transition to group of states of nearly

equal energies. The probability of transition per unit time is now obtained, by considering the central peak of

 

ml

tlmSin

2

2/24




as the domain of integration in the interval (-,)

   
dE

ml

tmlSin
m

ml
HtP 




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2

2/2.4
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1
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2

1
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






 ddEE   ,

p(t)=    





 d

ml

tmlSin
mml

H 



2

2/242|
1

|
1



on integration, we get.

P(t)=   tmH ml  2).(||
1 21



Transition per unit time is

  )(||
2 21 mH ml 





Which has wide application in quantum mechanics.

This is known as Fermi’s Golden Rule. It may be concluded that the transition probability per unit time(i)

i) is proportional to   2|
1

|
ml

H .

ii) Is proportional to (m) density states.

iii) Is non-zero only between continuum states of the equal energy.

Einstein transition probabilities

Spontaneous emission, absorption and induced emission of radiation were satisfactorily given by Direc. In

this we discuss the Einstein Coefficients of emission and absorption of radiation.
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The transition taking place from a non-degenerate stationary state of energy Ek to another degenerate

stationary state El(Ek>El) causing an emission or absorption of radiation of frequency, is given, according to

Bohr’s frequency rules, as


lEkE

kl


 ……………………(2.4.20)

The probability that a system in the lower energy state absorb a quantum of radiation energy and goes to the

higher state in unit time is.

 klklB 

Bnm is known as Einstein’s Coefficient of absorption . Let Nl atoms are present in a state at any instant of

time then number of transition per second is

 klpklBlN 

The probability of emission consists of two parts (i.e.) one part independent of the radiation density and the

other proportional to the density.

Since the transition from the upper state to lower state energy causes emission of radiation of energy is.

 lkplkBlkA 

in which Ak->l is the Einstein Coefficient of spontaneous emission BK->l is the Einstein Coefficient of induced

emission.

Now, let the number of atoms in this state is denoted by Nk then the number of reverse transition is.

 klplkBlkAkN (

The emission and absorption must be equal at the thermal equilibrium.

    klplkBlkAkN
klkplBlN  

or
 

 klklB
kllkBlkA

kN
lN







 ( 2.4.21)

From quantum statistical mechanics.
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  KTklheKTkElE
kN
lN ||  ( 2.4.22)

Equating ( 2.4.21) and ( 2.4.22), we get

  
 KlpklB

klplkBlkAKTklhe






|

or     lKAklplKBKTKleKlpklB   /
2

or  
lKBKtkleklB

lkA
kl




|



The radiation energy, according to Planck’s law, is

 
  1/

1
.

3

38






KthexC

h






Hence Einstein Coefficients are related by

Bn->m=Bm->n

and Alk= kl
kl B

C

h
....

8
3

3

Adiabatic Approximation

In the adiabatic case, we expect on physical grounds that solutions of the Schrodinger equation can be

approximated by means of stationary eigenfunctions of the instantaneous Hamiltonian, so that a particular

eigenfunction at one time goes over continuously into corresponding eigenfunction at a later time.

If the equation

)()()()( ttEttH nnn  

can be solved at any time we assume that a system that is discrete non-degenerate state  0
m with energy  0

mE

at t=(0) is likely to be in the state  t
n with energy  t

nE at time t, provided that H(t) varies very slowly with

time.
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The wave function  obeys the time-dependent schrodinger equation.
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i 
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
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l
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

 

Multiplying by  we has

  0)()(
1

exp||
0

''' 


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
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

or












 




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


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a
0

'
'1

' )(
1
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To evaluate <n|l>, we have

llllll EEH
t

H
 





or lnllnllnnln EEE
t

H
 ||||| 





or

nl

ln

ln
EE

t

H













||

|

To find <n|n>, on differentiating <n|n>=1 w.r.t. time.

A Charged Particle in an Electromagnetic Field

In order to apply the time-dependent perturbation theory to the charged particle, the effect of electric and

magnetic fields on the particle must be investigated.
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The electromagnetic force on a particle of charge e, and mass m moving with velocity v in an

electromagnetic field characterised by electric field E and magnetic field B (or scalar potential  and vector

potential A) is

c

vxB
ecEF 

c being speed of electromagnetic waves.

<n|n>+<n|n>=0

<n|n>=i(t), real.

For new eigen function
(.)' tr

nn e  .

We have <n
’|n>=I(+).

Choosing  suitably, we can make this vanish. Hence




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




 
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'
)(exp|| dtli

t
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nn

l
n 



Let the System be initially at state m and the time variation is small: thus

mne
t

tmn
i

mn

nn

n 



 ;||

1 









  .||
1

le
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t
tmn

i

mn

nn

n 















With the above approximation this equation shows that the probability amplitude for a state other than the

initial states oscillates in time and show no steady increase over long periods of time even though H changes

by a finite amount.
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Sudden Approximation

The sudden approximation consists of the change in Hamiltonian discontinuous on different times.

Suppose that H=H0 for t < 0

and H=H1 for t > 0

Then nnn EuH 00  for t < 0

nnn EuH 0 for t > 0


1niE

n
e

n eua 

and


1niE
t

e
t eua 



Equating the two solutions at t(0)=0.

  ne
e

nt uuab |

The sudden approximation consists in using above equation when the change in the Hamiltonian occupies a

very short finite interval of time t0. Suppose that

H=H0 for t < 0,

H=H1 for t > 0

and H=H1 for 0 < t < t0.

The intermediate Hamiltonian Hl which is taken constant in time, has a complete set of energy eigen

functions:

Hl Wk = Ek Wk

The exact solution can be expanded in terms of the u’s with constant coefficients.

  00;exp ttfortiEWC kk
k

k  




Application of the continuity condition at t=0 gives
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  
n

nknnk
n

nk aWWaC ||

and at t=t0 gives

  /exp|  tEEikCb k
k

kt  

    nktEEika tk
n

n |exp| /0 

When t0=0, the exponential is equal to unity and be is given by (1).

The sudden approximation will be best only when t2 is small. So on expansion exponential term in above

equation.

  nkEE
it

kaa tk
n

n |1| 0






 




or   nHH
it

aa llnt || 0














Thus error in sudden approximation is proportional to t0 for small t0. If H1 depends upon time, then

dtf H
0

0 1 can be taken in place of H1t0 .

If H1=H0 then

mHHk
it

b ikmt || 0
0 


This can be used even when (h-H0) is not small as compared to H0 taking t0 small.

Self Assessment Questions

1. Outline the theory of time-dependent perturbation theory.

2. State and probe Fermi-Goden rule for the rate of transitions induced by a constant
Perturbation.

3. Calculate the transition probability per unit time and per unit of radiation. Evaluate
the Einstein’s Coefficients for spontaneous emission.

4. Write notes on (i) Adiabatic approximation. (ii) Sudden approximation.
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UNIT – 3

LESSON -X - Algebra of Angular Momentum

Objective of the Lesson

In this lesson, the quantum mechanical definition of the angular momentum., its operator form is given in

the beginning. The components of angular momentum and the commutation relations between

[Li, ri], [Li, pi], [Li, Lj] have been worked out.

3.1.1 Introduction

Angular momentum ( which is described as an operator) plays a much importance role in quantum mechanics

than in classical mechanics ( where it is described as a dynamical variable). This is probably due to greater

importance of periodic motions in quantum mechanics. A periodic motion can be understood as a motion in a

closed orbit, which involves angular momentum. The existence of the intrinsic angular momentum (spin

angular momentum) could also be another reason and another most importance reason is that the angular

momentum is quantized which is not the case with the linear momentum.

Whenever a conservation law holds good for a physical quantum system, the Hamiltonian of the

system is invariant under the corresponding group of transformations. The converse of this statement is not

true as even if the system has a Hamiltonian, which is invariant under a group of transformations, there may

nor be a corresponding conservation law. Wigner showed that all symmetry transformations of quantum

mechanical states can be chosen so as to correspond to either unitary orantiunitary operators. It is unitary

transformations, it has other consequences which may be tested by the experiments.

The present chapter is devoted to symmetries with respect to rotations , which is reflected in the angular

momentum vector operator ( not an ordinary vector as in classical mechanics ) has been defined by the

commutation rules for its components, the orbital angular momentum and spin angular momentum of particle
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have been constructed , their eigen values and eigen functions have been obtained and the connection between

rotations and angular momentum has been established.

This entire unit is divided in to five parts: i) Deals with the preliminaries of the angular momentum,

commutator algebra etc.; ii) The eigen value problem of orbital angular momentum is described in detail; iii)

In this the spin angular momentum, the pauli spin matrices and their properties have been discussed; .iv) In

this lesson the emphasize is given to the eigen value problem of total angular momentum J. v) The last part of

the unit consist of the addition of angular momenta associated with different physical systems and related

numerical problems

3.1.2Angular Momentum operator

Central forces are derivable from a potential that depends only on the distance r of the moving particle from a

fixed point, usually the coordinate origin. The Hamiltonian operator is

)(
2

)(
2

2
22

rV
m

rV
m

P
H 



Since central forces produce no torque about the origin, the orbital angular momentum

L = r x p

Is conserved. In classical mechanics this is the statement of Keplar’s second law.

According to the correspondence principle, we must expect angular momentum to play an equally

essential role in quantum mechanics. The operator that represents angular momentum in the coordinate

representation is obtained from L = r x p by replacing p by ( /i)  :

L= r x ( /i) 

Where r = kzjyix ˆˆˆ 

and p, the linear momentum operator = kpjpip zyx
ˆˆˆ  =
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Hence L =

zyx ppp

zyx

kji

= i( ypz-zpy)+j(zpx-xpz)+k(xpy-ypx)

The three components of operator L, can therefore be written as,

Lx = ( ypz-zpy)

= 


















y
z

x
yi

Ly = (zpx-xpz)

= 


















z
x

x
zi

Lz = (xpy-ypx)

= 


















x
y

y
xi

x = rsin cos  ;

y= rsinsin;

z = rcos

Fig. 3.1.1 the axes along which three components of the angular momentum are resolved





x

y

z
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3.1.2 The three components of orbital angular momentum in spherical polar

coordinates

Lx = 






















 cotcossini

Ly = 






















 cotsincosi

Lz =



 i

And
2L =

222
zyx LLL 

On substituting the values of Lx , Ly and Lz

= 





























2

2

2

2

sin

1
sin

sin

1







3.1.3 Commutation algebra of the angular momentum operator

a) with position operators

(i) [Lx, x] = [( ypz-zpy),x] =0;

[Lx, y] = [ ( ypz-zpy), y]

= [ypz ,y] –[zpy,y] = iђz 
and

[Lx, z]       = -iђy 

Similarly

ii) [ Ly, x] = [(zpx-xpz), x]

= z(px, x) = -iђz;  [Ly, y] = 0

and

[Ly,  z]   = iђx 
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iii) [Lz, x]     = iђy;     

[Lz, y]     = -iђx ;  

[Lz, z]=0

in these equations the value of the Heisenberg commutator

[ ri, pj ] = 0 if i j

   = iђ if i = j 

has been used

b) with linear momentum operators

i) [Lx, Px] =0;

[Lx, Py] =[ ( ypz-zpy), py ]

= (ypz, py)- (zpy, py)

=[y, py] pz

                    = iђpx

and [Lx, pz] = [ypz, pz] –[zpy, pz]

                             = -iђpy

ii) [Ly ,Px]  =  -iђpz ;

[Ly, Py] =0

and [Ly, pz] = iђpx ,

iii) [Lz,Px] = iђpy ,

[Lz, Py]  =  -iђpx

and [Lz, Pz] = 0;

c) with angular momentum operators

i)[Lx, Ly] =[( ypz-zpy) , (zpx-xpz) ]

=( ypz, zpx) - (zpy, xpz)
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= y(pz,z) py –x(z,pz) py

                  = -iђypx+ iђxpy

                  = iђ(xpy –ypx)

                   =iђLz

Similarly
[Ly, Lz] = iђLx

and [Lz, Lx]   = iђLy

combining the three relations we have

 =>    LXL       =   iђL     

i j k

= Lx Ly Lz

Lx Ly Lz

= i[Ly,Lz]+ j[Lz,Lx]+k[Lx,Ly] =  iђL      

(d) [L2, Li] = [L2
x+L2

y+L2
z, Lx]

=[L2
x, Lx]+[L2

y ,Ly]+[L2
z,Lz]

= [LyLy, Lx]+ [LzLz, Lx] (Since [L2
x, Lx] =0)

=Ly[Ly, Lx]+[Ly, Lx]Ly+Lz[Lz, Lx]+[Lz, Lx]Lz

= Ly[iђLz]+(-iђLzLy)+Lz(iђLy) +iђLyLz

= 0

Thus the components of the angular momentum operator do not commute among themselves through they

commute with the square of the angular momentum operator. As will be shown, the commutation relations,

[Li, Lj]= iђ ijk Lk., determine the quantal properties of the angular momentum . That is the eigen values and
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the eigen vectors of the angular momentum operator are completely determined by above commutator and the

general properties of the Hilbert space. Therefore, the commutation relations themselves are taken for the

definition of the angular momentum operator in quantum mechanics.

3.1.4 The angular momentum operator commutes with Hamiltonian
operator( H)

H = K.E+ P.E

= T+V

T=
m

P

2

2

=
2

2

2mr

L



















r
r

r
prL 22222 

Hence T =
2

2

2mr

L


















r
r

rmr

2

2

2

2



Or [L, T] = 0 since [L2, L] = 0

And [L, V] = 0

Hence [L, T+V] = [L, H] = 0

Thus the operator L commutes with H. For this reason the operator L is also known as constant of motion

Summary of the lesson

The angular momentum definition and its three components are given in detail. The three components

of angular momenta are also described in spherical polar coordinates. The commutation relations of angular

momentum with the position operators, with the components of the linear momentum are worked out. The

values of the commutator between angular momenta components in pairs have also been obtained and it is

also shown that the commutator [ L2, Li]=0 for any value of i.

Key terminology

Angular momentum, Components of the angular momentum, commutation relations,
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Self Assessment questions

1. Define the angular momentum operator

2. Write the three components of the angular momentum operator in Cartesian and spherical polar

coordinates

3. Obtain the commutation relations

a) the components of the angular momentum. and position coordinates

b) components of the angular momentum and the components of linear momentum

c) between the components of the angular momentum in pairs

     4. Show that LXL       =   iђL     

5. Prove that the operator L2 commutes with any component of the angular
momentum operator

6. Show that the orbital angular momentum operator is a constant of motion.

Reference books

1. A Textbook of Quantum Mechanics – Mathews P M and Venkatesan K (Tata Mc Graw Hill
Publication Co. Ltd., N. Delhi)

2. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York)

3. Introduction to Quantum Mechanics – Mathews P T (Mc Graw Hill Book Co.,
New York).

4. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986
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UNIT – 3

LESSON – XI - Eigen Value Problem Of Orbital
Angular Momentum

Objective of the lesson

In this lesson the eigen value problem of the operators Lz and L2 are discussed. The problem consist of writing

the two operators in spherical polar coordinates, their eigen functions and evaluation of their eigen values

3.2.1 Problem of L z

Consider

Lz= xpy-ypx

= 


















x
y

y
xi ------------(3.2.1)

yyy

r

ry 




























 






... ------------------(3.2.2)

Similarly

xxx

r

rx 




























 






... --------------------(3.2.3)

In spherical polar coordinates

x = r sin cos  ;

y = r sinsin ;

z = r cos

r= 222 zyx  ;

Tan = y/x ;
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2

Tan= 22 yx  /z

r

y

y

r





;

22

2

2

2
sec.

yxz

y

y 









Tan = y/x

222sec yxz

y

y 









-----(3.2.4)




2sec

1

xy






Similarly

222 .sec yxz

x

x 









;




22 secx

y

x







;

r

x

x

r





;------------(3.2.5)

Substituting (3.2.4) in (3.2.2), we get

x
y


=

 














.

sec
.

..sec
.

2222 x

x

yxz

xy

r

xy

r
------------ (3.2.6)

and

y.
 



















.

2sec2

2

222sec
.

x

y

yxz

xy

rr

xy

x
------- -(3.2.7)

then eqn (3.2.1) becomes

Lz= -iħ 

















x
y

y
x

    = -iħ 









 22

2

2 secsec

1

x

y




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= -i ħ 









2

2

1
x

y

 


.

sec

1
2

     = -iħ













2

2
2 1sec

x

y


 Lz= -iħ





Eigen value and Eigen function of Lz

Let the operator Lz acts on the  , gives the eigen value m.

Lz  m

 -iħ 







 d
m

 

i
m

 = o exp 







m

i


 is the eigen function of Lz

In one complete rotation  changes to ( +2) or n complete revolutions. It will be ( n 2 ). During

this process, the wave function remains unchanged.

i.e.,     n
im

n  2exp(2 0 


From this


mn
is an integer, if n=1,



mmn
 in one revolution; So on can take only inter times  values.

3.2.2 Problem of L2

L2 =L2
x+L2

y+L2
z

Consider Lx = y pz - z p y
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4

= -i 
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

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
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
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2
2

2

2
2 2

Similarly

L2
y = - 2











































z
z

x
x

xz
zx

z
x

x
z

2

2

2
2

2

2
2 2

L2
z = - 2 

































x
x

y
y

yx
xy

y
x

x
y

2

2

2
2

2

2
2 2

Then

L2 = 222
zyx LLL 

=       





















































xz
zx

zy
yz

yx
xy

z
z

y
y

x
x

z
yx

y
zx

x
zy

222

2

2
22

2

2
22

2

2
22 222222

= - 2 

























r
r

r
rr 22

= - 2 


















r
r

r
rr 2

2

2
222

but the value of Laplacian operator 2 in terms of spherical polar coordinates is given by

2

2

2222

2

2

2

sin

1
sin

sin

11




 





































rrr
r

rr
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or r2

2

2

222222

2
2

sin

1
sin

sin

1
.

2




 






























rrrr

r

rr

r

Hence, L2 = 





























2

2

2

2

sin

1
sin

sin

1







Let Y m
l   , is the eigen function for the operator L 2 then L 2 Y=c Y is the eigen value equation. Then





























2

2

2

2

sin

1
sin

sin

1






YY
 +c Y=0

Let Y l
m   , =    

is the solution of the above equation . By applying variable and separable method, the

above equation can be divided in two separate equations

Multiplying with sin2 on both sides, the above equation becomes ,

2

2
2sin)(sinsin





















 Y
Yc

Y
=0

Separating the two variables

)(sin)(sinsin 2

2

2
2 saym

Y
Yc

Y
























02

2

2








m

Y

0)
sin

()(sin
sin

1
2

2









Y

m
c

Y






then solution of the I of above two equations is

   


 imexp
2

1

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The second is associated Legendre polynomial if C= (+1)

And hence its solution is

    cos
|)(2

|)(12(
l

mP
ml

mll






Therefore eigen value equation for L2 is

L2 l
mY   , = l(+1) 2 l

mY   ,   ,

The eigen value of the operator L2 is  (+1) and the eigen function for L2 is

l
mY   , =   )exp(cos

)(4

))(12(



imP

ml

mll
m

l




thus from the above equation the eigen value equations for the two operators are represented by

m
l

m
lm

lz ym
Y

i
yL 











m
l

m
lm

l yll
Y

i
yL 22 )1( 











The first few spherical harmonics are listed below:

4

10
0 Y

r

z
Y




 4

3
cos

4

30
1 

r

iyx
eY i 

 







8

3
sin

8

31
1 

2

222
20

2

2

16

5
)1cos3(

16

5

r

yxz
Y









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2

1
2

)(

8

15
sincos

8

15

r

ziyx
eY i 

 





 

2

2
222

2

)(

32

15
sin

32

15

r

iyx
eY i 

 





 

Under a coordinate reflection, or inversion, through the origin, which is realized by the

transformation  +   -, the azimuthal wave function ime is multiplied by

(-1)m, and )(cosm
lP by (-1)l+m, hence , ),( l

mY is multiplied by(-1) l , when r is changed to –r.

The spherical harmonics are thus eigen functions of the parity operator Up which changes r in to –r.

Up (r )=  (-r )

Up ),()1(),(  m
l

lm
l YY 

i.e., m
lY has definite parity in consonance with the parity of angular momentum quantum number .

The spherical harmonics form an orthonormal set since

  




2

0
0

mm

l

m

l
m ddsin),(Y*),(Y ll

i

l 

We may now define two new operators:

L+= Lx+iLy,

L_ = Lx- iLy

Which can be written in terms of spherical polar coordinates as

L+ = 





















 cotie i

L- = - 





















 cotie i

The eigen value equations for these two operators are
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L+ ),()1)((),( 1   m
l

m
l YmmY 

L_ ),()1)((),( 1   m
l

m
l YmmY 

The operators L+ and L_ are in fact raising and lowering operators for the magnetic quantum number.

Summary of the Lesson

The summary of the problem of the orbital angular momentum can be written as follows:

Quantity Operator form Eigen function Eigen
value

Lz -iħ


    


 imexp
2

1
 m

L2






























2

2

2

2

sin

1
sin

sin

1





     cos

|)(2

|)(12(
l

mP
ml

mll






2)1( ll

Further the two new angular momentum operators L+ and L- (which are identified as raising and lowering

operators ) are defined and their eigen value equations also given

Key terminology

The operators L2, Lz, raising and lowering operators, orthogonality of spherical harmonics

Self assessment questions

Derive the eigen value and eigen function of the operator Lz

1. Derive the eigen value and eigen function of the operator L2

2. Derive the expression for the kinetic energy in terms of the operator L2

3. Define the operators and write down its eigen value equation

Reference books

1. Advanced Quantum Mechanics – B. S. Rajput (Pragati Prakasan, Meerut 1990)

2. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York)

3. Introduction to Quantum Mechanics – Mathews P T (Mc Graw Hill Book Co., New York).
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4. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986
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UNIT - 3

LESSON – XII - The Spin Angular Momentum

Objective of the lesson

In this lesson the intrinsic angular momentum or spin angular momentum of the particles is discussed. The

components of the spin angular momentum along the three coordinate axes are defined in terms of Pauli’s spin

operator. The matrix form of the operators are derived and their properties are discussed in detail

3.3.1 The Spin Angular Momentum

Definition In 1920, it was found that orbital quantum properties are unable to explain some

observed troubled features, which were observed in the spectra of alkali halides. The spectral lines of

alkali like atoms appears doublets which could not be explained by the wave function which is a

function of orbital angular momentum alone. The true explanation of the doublet structure of the

terms of alkali halides is explained by introducing the concept of electron spin. Spin (S) is a vector

quantity, with the dimensions of angular momentum. Stern and Gerlach experiment later verified its

existence experimentally. The total angular momentum is a sum of orbital angular momentum and

the spin of electron.

i.e.


 SLJ

The characteristic values of the component of the spin in any prescribed direction are
2

&
2


 . The

spin is measured in the units of  and the characteristic values are reformed to as 1/2 and –1/2 . Now we

will see the interpretation of the theory of spin of the electron given by Pauli.

As we have said already, the spin of the electron is represented by the


S and besides this let us

introduce an operator  (known as Pauli’s spin operator) such that
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
2






S -------------(3.3.1)

Spin of the electron is also angular momentum as mentioned before. Therefore, it should satisfy the angular

momentum commutation relations.

iSSXS 


In the units of 

[S x S y-S y S x] = i S z-------------- (3.3.2)

Now introducing (1) and (2), we get

zxyyx i 2

xyzzy i 2 ---------------------(3.3.3)

yzxxz i 2

all in the units of 

The eigen values of S2 are S (S+1) = 1/2(1/2+1)= 1/4 --------------(3.3.4)

 S2 =  2222
2

4

1

2
zyx  


--------------------(3.3.5)

From the equations (4) and (5) the condition that gives the expectation value of 1/4 is

1222  zyx 

The spin operators are anti commute in pairs

i.e. 0 xyyx 

Consider 2i [ ]xyyx   = xzxzzzxxzx  ][][ 

= xzxxzzxxzx   22 =0

0][  xyyx 
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i.e. [ x  y]+ =0

Similarly [ y  z]+ =0

and [ z x]+ =0

In view of this equation,

 x y  y x =2i z

becomes

2i x y=2i z

 x y= i z ;

 y z= i x

and  z x= i y

3.3.2 spin matrices  x , y , z

Let the operator  z be operated on the ket k giving the eigen value a

i.e. kakz 

kakz
22 

 a= 1

Therefore, there are two eigen values corresponding to in operator  z which are 1 .

The matrix representation of these eigen values is a 2X2 matrix.

 z = 








10

01

 x :- Since  z is a 2 x 2 matrix , yx and should also be 2 x 2 matrices since this has two anti

commute.

Let  x = 








43

21

aa

aa
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Consider x  z+ z x= 0

i.e.





































































































0

0

0
00

00

20

02

00

00

0
10

01

10

01

3

2

41

4

1

43

21

43

21

43

21

43

21

a

a

aa
a

a

aa

aa

aa

aa

aa

aa

aa

aa

x

and

 +
x= 














0

0

2

:
3

a

a

 2a =
:
3a and :

3a = :
2a






























































10

01

0

0

0

0

0

0

0

0

22

22

2

2

2

22

2

2

aa

aa

a

a

a

a

a

a

x

x





1
2

2  a

We may take a2= exp( )i



Acharya Nagarjuna University 1.5 Centre for Distance Education

























0

0

0

0













i

i

y

i

i

x

e

e
Similarly

e

e

 x  z+ z x= 0




































































































































00

00

)cos(0

0)cos(

00

00

))(exp())(exp(0

0))(exp())(exp(

00

00

))(exp(0

0))(exp(

))(exp(0

0))(exp(

00

00

0

0

0

0

0

0

0

0

































ii

ii

i

i

i

i

e

e

e

e

e

e

e

e
i

i

i

i

i

i

i

i











01

10
x

setting
2

;0







These matrices are known as Pauli’s spin matrices.

2

2
)(










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

















 


















 








































10

01

0

0
;

01

10

0

0

0
2

sin

2
sin0

0
2

exp(

)
2

exp(0

zyx

y

and
i

i

i

i

i

i

i

i













3.3.3 Eigen functions for z

let 








2

1

c

c
is the eigen function of z and a its eigen value. Then the eigen value equation of z is































































2

1

2

1

21
2

21

22

11

2

1

2

1

10

01

1

1

10

01

c

c

c

c

ifa

accaccor

acc

acc
c

c
a

c

c

If a =1, c1=1,c2 = 0

If a= -1, c1= 0, c2=1

The two wave functions are 
















1

0

0

1
and .

 = 








0

1
; and  = 









1

0

 and  represent , what is called , pure states.. In an ensemble of spin
2

1
particles, it is unlikely that all

the particles are spin-up or all and spin down. It is more likely that some of the particles are spin-up and

the others are spin –down. The spin-wave front, or spinor, corresponding to an ensemble is, therefore, a

linear superposition of  and :
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 =c1+ c2 = 








2

1

c

c

=+ +-,

where
2

2

2

1 cc  = 1

The first one is known as spin up function denoted by the symbol (↑) and the second one is known as spin 

down function. denoted by the symbol (↓) 

Spin multiplets

Consider the system consisting of two spins, the total value of spin s= 1 then the ways of arranging these

three spins is given by

 ;  
2

1
; 

these are called triplet states. In this case the spins are parallel for s=0 the state is called singlet state, the

spins are anti parallel and it is represented by

 
2

1

3.3.4 Properties of the Pauli’s Spin Matrices

These matrices are 2x2 matrices

i) Hermitian matrices

i.e. x = x
† ; y = y

† z = z
†

for example 






 


0

0

i

i
y
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and 






 


0

0
†

i

i
y ; hence y = y †

similarly we can prove y = y
† and z = z

†

ii) Trace less matrices

That means the sum of the diagonal elements of all the three matrices is zero











01

10
x 0 iia and similarly for y and z the trace is zero

iii) Anticommute in pairs

xy + yx=0 and cyclic










01

10







 

0

0

i

i
+ 









01

10







 

0

0

i

i
= 0

iv) xy = iz and cyclic










01

10







 

0

0

i

i
=i 









10

01

and v) x
2 = y

2 =z
2 =1










01

10









01

10
= 









10

01








 

0

0

i

i







 

0

0

i

i
= 









10

01










10

01









10

01
= 









10

01

Summary of the lesson

The three components of the spin operator are derived in the form of matrices known as Pauli’s spin

matrices. The properties of these spin matrices are discussed in depth. The wave function associated with

the Z component of the spin angular momentum is also derived.
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Self assessment - questions

1. Derive Pauli spin matrices.

2. State and prove the properties of the Pauli spin matrices.

3. Write down the eigen function of the operator z

Reference books

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York)

2. Introduction to Quantum Mechanics – Mathews P T (Mc Graw Hill Book Co., New York).

3. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986

4. Quantum Mechanics – Gupta , Kumar , Sarma (Pragati Prakasanm, Meerut 1990
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UNIT - 3

LESSON - XIII THE TOTAL ANGULAR
MOMENTUM OPERATOR J

Objective of the lesson

This lesson is devoted to understand the algebra of total angular momentum operator J, which is defined

as J = L S. It is further planned to derive the commutation relations of the three resolved components of J

and the operator J2.

3.4.1 Introduction

The total angular momentum is defined as J = L S and J x, J y, J z are the components of J. In analogy

with the orbital angular momentum operators, we have the relations,

[J x, J y]=i J z[J y, J z]=i J x

and [J z, J x]= i  J y-----------(3.4.1)

J X J= i J---------------------(3.4.2)

And [J2,J]=0-----------(3.4.3)

J2= J2
x+ J 2

y + J2
z

Let us now consider the Eigen value problem of J z and J2.

Let 2 and m are the eigen values of J2 and Jz respectively. To find out the relation

between  and m, let us construct new the operators:

3.4.2 Definitions of J+ and J- operators

J+ =J x+ iJ y

and J- =J x- iJ y -----------------------(3.4.4)
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Then [J2, J  ] = [J2, J x iJ y]

= [J2, Jx] ± i [J2, Jy]

 [J2, J  ]= 0 -------------(3.4.5)

similarly, Jz J+ - J+ Jz =  J+ (

J- Jz - Jz J- =  J-

[Jz, J+] = [Jz, Jx+iJy]

= [Jz, Jx]+ i[Jz., Jy]

= i  [Jz+iJy]

=  J+

Similarly [Jz, J-] = - J-

    JJJ z , -----------------(3.4.7)

[J+, J-] =[(Jx+iJy), (Jx+iJy) ]

= [J x, J x] –i[[J x, J y]+i[J y, J x]+ [J y, J y]

 















JJ
i

i

JJ
J

JJ

y
22

2
J(3.4.4)equationFrom x
(3.4.6)
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=-i[i ][] zz JiiJ  

[ J+, J-] =2 Jz ----------------------(3.4.8)

or   zJJJ  2, 

similarly

Now, the eigen value equations of Jz and J2 are

)013.4.(

)93.4.(

22 



mmJ

mmmJ z









J2 and Jz can have the simultaneous eigen function m since they commute.

To show  m2

Consider the expectation value of ( J2-J2
z)

i.e. J2 - J2
z =J2

x+J2
y=1/2[J+J-+J-J+]=1/2[J+J

†
++J†

+J+]

Since, 0†  JJ

J2 - J2
z , has only non-negative expectation values.

)11.4.3(

0

0..

2

2

2

22

















m

m

m

mJJmei z
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 m lies in between -  and 

To show J+ and J- are rising and lowering operators

Next we develop again a ladder procedure similar to the method employed for the harmonic oscillator. If we

act on Eq. 3.4.7 with J+ and J- and apply 3.4.9 and 3.4.10. We obtain the following equations

[Jz, J  ]=  J JzJ   JJJ z 

JzJ  = )(    zz JJJJJ

.1)(meseigen valuwithfunctioneigenanis

)1(}{

)1(

)(

)(































mJ

mJmmJJ

mJm

mmJ

mJJmJJ

z

zz











mJ

mJmmJJ z











 )1(}{

is an eigen function with eigen values (m-1)  .

If the successive operations are performed like this we found J+ is a raising operator and J- is a lowering

operator but the minimum value can never be less than - and the maximum value can never be greater than

+  .Let m1 and m2 are the upper and lower limits of m. ThenJ+ 01 m
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and J- 02 m

J+J- = (Jx -iJy) (Jx +iJy)

=J2
x+J2

y+I[Jx, Jy]

=J2
x+J2

y-  Jz

0

0)(

0)J-J-(J

1
2
1

1
2

1
2
1

1z
2
z2







mm

mmm

m









Hence,

The second possibility is ruled out since the lowest value m2 can never be more than highest value m1of m.

We therefore have m2 = -m1

0

0JJ

2
2
2

22
2
22-





mm

mmmm





.1

0)1)((

0)())((

0)(

1212

1212

121221

12
2
1

2
2

2
2
21

2
1











mandmmm

mmmm

mmmmmm

mmmm

mmmm 
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m1= - m2 = j (say)

=>The eigen value of Jz lies between –j to +j.

Then

)1()1(

0

11

1
2
1





jjmm

mm





m= .-j, -j+1---------------j-1, j (3.4.11)

thus, for a given value of J , the eigen values of Jz are m = J , (j-1)  ,(j-2) ,--------,- (j-I)  ,-j

 ,These are 2j+1 in number, and there are thus 2j+1 orthogonal eigen vectors for every value of j. Since 2j+1

can be any positive number, we see that for every dimension it is possible to construct a vector space that is

closed under operations of the algebra of the three operators Jx , Jy, Jz that are constrained by the commutation

relations .

Since the value of j, the maximum value of the projection of the angular momentum vector on the z-axis, fixes

the length of the angular momentum vector uniquely, the latter is usually specified by its j value. Thus the

statement: the angular momentum of the particle is 3/2, means that the

angular momentum vector is of length 
2

5
.

2

3
. This length can, however, never be observed directly

For a given value of j, there are (2j+1) linearly independent vectors jm , corresponding to the (2j+1)

different values of m given by (11), which are common eigen vectors J2 and zJ . If

one of these vectors is given, the others can be generated from it by the repeated application of J + and J-.
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let (2j+1) =M (say) an integer .

j = 


2

3
,

2

2
,

2

1
,0

2

1M

= 
2

3
,1,

2

1
,0

and 
4

5
,2,

4

3
,0)1( jj

Now consider, the eigen value equations of J+ and J- operators ,

J 1)(   mmcm  

J 1)(   mmcm  

1m)1mj)(mj(mandJ

!m1mj)(mj(mJ

)1mJ)(mj(cSimilarly

)1mj)(mj(c

)mj()mj)(mj(

mmjj

mm)1j(j

mmc

)mm(

mJJJm

1m1mcmJJm

22

2

222

22

z
2
z

2

22
















































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3.4.2 Matrices for J2 and Jz

Matrix element (J+)m
1

m =
1

1
1)1)((

 
mmj mJmjmJm 

Consider j=1/2 then J2 eigen values are j(j+1) 22 4/3  

Jz eigen values = +1/2 and –1/2 (since (2j+1)=(2*1/2+1=2)

Therefore











00

10
J

and 









 01

00
J

xJ
2

1
( J +


J ) =

2











00

10

yJ =
2

i









 01

10
=

2









 

0

0

i

i

zJ
2











10

01




























































10

01

2
2

0

0
2

10

01

4

3

4

3
0

0
4

3
2

2

2

2











zJ

similarly

J
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Summary of the lesson

The total angular momentum operator J is defined. The commutation relations between the three

components J and the operator J2 are derived. The operators J+ and J- are also defined and their commutation

for a given value of J , the eigen values of Jz are m = J  , (j-1)  ,(j-2) ,--------,- (j-I)  ,-j  ,These are

2j+1 in number, and there are thus 2j+1 orthogonal eigen vectors

for every value of j. Since 2j+1 can be any positive number, we see that for every dimension it is

possible to construct a vector space that is closed under operations of the algebra of the three operators Jx , Jy,

Jz which are constrained by the commutation relations n relations with operators J and J2 are also derived.

The eigen value equations of the operators J+ and J- have been obtained. The matrix representation of

operators Jx, Jy, Jz, J+, J-, J2 has also been presented.

Key terminology

Total angular momentum operator J-The operators J+ and J-, the operator J2-Eigen value equations of

the operators J+ and J--The matrix representation of operators Jx, Jy, Jz, J+, J-, J2

Self assessment questions

1. Define the operators J+ and J- and show that these two operators commute with the operator J2

2. Obtain the commutation relations between the operators Jz and J±

3. Obtain the eigen value equations for the operators J+ and

4. Give the matrix representation of the operators Jx, Jy, Jz, J+, J-, J2 by taking J=1/2

Reference Books

1. Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986

2. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York)

3. Introduction to Quantum Mechanics – Mathews P T (Mc Graw Hill Book Co., New York).

4. Advanced Quantum Mechanics – B. S. Rajput (Pragati Prakasan, Meerut 1990)

5. Quantum Mechanics L. I. Schiff (Mc Graw Hill, Tokyo 1968)
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UNIT - 3

LESSON - XIV The Addition of Angular Momentum

Objective of the lesson

In this lesson the problems related to the addition of angular momenta associated with different

systems have been discussed. The Clebsch -Gordon Coefficients also known as Wigner coefficients have

been evaluated for different values of J. Wigner- Ecart Theorem which is most widely used in the evaluation

of transition probabilities in the radiation emission problems has also been included

3.5.1The Addition of Angular Momentum

If two distinct physical systems or two distinct sets of dynamical variables of one system ,which are described

in two different vector spaces, are merged ,the states of the composite system are , vectors in the direct

product space of the two previously separate vector spaces. If J1 and J2 are the angular momentum of the two

physical systems , Then

J= J1 + J2 is the total angular momentum of the entire system. J1x , J1y, J1z are the components of J1, J2x,

J2y, J2z components of J2.

Jx = J1x + J2x and so on

Each component of J1 commutes with each component. The total component of J satisfies the angular

momentum commutation relations:

[Jx,Jy]= i Jz ; [Jy, Jz] = i Jx ; [Jz, Jx]= i Jy (3.5.1)

Now, the problem of addition of two angular moment consists of obtaining the eigen values of Jz and J2 and

their eigen vectors in terms of the direct products of the eigen vectors of J1z and J1
2 and of J2z and J2

2 . The
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normalized simultaneous eigen vectors of the four operators J1
2, J2

2, J1z , J2z can be symbolized by the direct

product kets.

22112121 mjmjmmjj  ------------------------- (3.5.2)

These constitute a basis in the direct product space . These form a basis in the product space . From this basis

, it is desire to construct a new basis with the eigen vectors of Jz and J2 .

Corresponding to three angular momentum vectors J1,J2 ,J we have six hermitian operators . J2
1, J2

2, J1z ,

J2z ,J2 and Jz out of these J2
1 and J2

2 commute with every component of J and J2 also .

i.e. [J2, J2
1] =[ J2, J2

2] = [J2,J2
1] = [J2, J2

2] =0----------------------------(3.5.3)

But J2 does not commute with J1z and J2z we therefore have two sets of simultaneous eigen functions

.They are

1. J2
1, J2

2, J1z , J2z.

2. J2
1, J2

2, J2 , Jz

3.5.2 Clebsch-Gordon coefficients

3. The basis vectors corresponding to first set of vectors, J2
1, J2

2, J1z , J2z.

is denoted by

22112121 mjmjmmjj  ----------------------(3.5.4)

or briefly with 21mm

4. and corresponding to the second set, J2
1, J2

2, J2 , Jz

it is given by

jmjj 21 are briefly by jm
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We thus have

  2121
2

112121
2

1 1 mmjjjjmmjjJ 

2121121211 mmjjmmmjjJ z  ---------------(3.5.5)

  2121
2

222121
2
2 1 mmjjjjmmjjJ 

2121121212 mmjjmmmjjJ z 

  jmjjjjjmjjJ 21
2

21
2 1 

jmjjmjmjjJ z 2121  -----------------(3.5.6)

  jmjjjjjmjjJ 21
2

1121
2

1 1 

  jmjjjjjmjjJ 21
2

2221
2
2 1 

We shall now write the transformation equation between jmjj 21 and 2121 mmjj as

jmjj 21 = 
21

2121212121
mm

jmjjmmjjmmjj ---------------(3.5.7)

Here j1, j2 can be assumed to have fixed values and m1,m2 are variables.

In the above equation, the transformation coefficient

jmjjmmjj 212121 =
jjj
mmmC 11

21
-----------(3.5.8)

is also called Clebsch-Gordon coefficient or Wigner coefficient. The problem of addition of angular

momentum now consists of founding the above coefficients. Occasionally the above coefficients can also

written as

jmjjmmjj 212121 = jmmm 21

With j1 and j2 are the maximum values of m1 and m2.
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Now let us apply the operator jz= j1z +j2z on the two kets, then we have

jmjjmjmjjJ z 2121  = m 
21

2121212121
mm

jmjjmmjjmmjj

Similarly     212121212121 mmjjmmJJmmjj zz 

Or jmjjmmjjmjmjjjmmjj z 212121212121 

And jmjjmmjjmmjmjjJJmmjj zz 2121212121212121 )( 

jmjjmmjj 212121 =0 unless m = m1 + m2 -----(3.5.10)

Now apply J- on jm , we have  jmJmm 21 jmJJmm   2121

i.e.  1)1)(( 21 jmmmmjmj  jmmmmjmj 211111 1)1)((

jmmmmjmj 1)1)(( 212222 

Similarly operating J+ we get

 1)1)(( 21 jmmmmjmj jmmmmjmj 21111 1)1)((  +

jmmmmjmj 1)1)(( 212222  ---------------(3.5.12)

Now in the first of the above two equations, if we let m=j, m1=j1 then

m1+1+m2= m=> m2= j-j1-1

Then, the first equation given

jjjjjjjjjjjjjjjjj 11121211 ))(1()1()1(2  ----------(3.5.13)

And let in the second equation m= j-1,m1 =j1 ; m2+m1 –1=m =>m2= j-j1

With this, we have,(from the second equation)

1))(1(211)1)(()(2 1111121211  jjjjjjjjjjjjjjjjjjjjjjj ---- (3.5.14)

These equations are known as recursion relations.
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According to condition (3.5.13) )1()1( 11  jjjjj can be determined if jjjjj 11 1  is known

then jjjjj 11  can be determined of both of them are known. Continuing in this manner, for fixed values

j1,j2,j we can determine all the C.G coefficients in terms of just one of them.

i.e. jjjjj 11  or ))( 211121 jjjjjjjjj 

The above coefficient is different from zero only if -j2 21 jjj  i.e. the range of m2

Or 2121 jjjjj  ( 3.5.15)

The coefficients can equally be expressed as terms jjjjj 21 )(  or )212221 jjjjjjjjj 

With –j1 22 jjj  or 2112 jjjjj  -------(3.5.16)

From (!5)and (16) the three angular momentum quantum numbers must satisfy the condition.

2112 jjjjj  ---------------(3.5.17)

=> 1, 2121  JJjjj -------------------- 21 jj 

i.e. for the fixed values of j1,j2 the equation

jmjj 21 = 
21

2121212121
mm

jmjjmmjjmmjj

gives a new basis in the (2j1+1)(2j2+1) dim space.

3.5.3 C.G coefficients j1=1 ,j2=1/2.

The total number of C.G coefficients are (2j1+1)(2j2+1)=6 .The C.G coefficient matrix is a 6X6 matrix. m1

takes the values 1 0-1 and m2 takes 1/2, -1/2 and m takes the values j1+j2 to 21 jj  i.e. 3/2, 1/2, -1/2, -3/2
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j values corresponding to j1=1, j2=1/2.are given by

m m1 m2 j

j1+j2=3/2 j1=1 j2=1/2 m=3/2

j1+j2-1=1/2 j1=1 j2-1= -1/2 j1+j2=3/2
j1-1 =1 j2 = ½ j1+j2-1=1/2

j1-1=0 j2-1= -1/2 j1+j2=3/2
j1+j2-2= -1/2

j1-2 = -1 j2 = ½ j1+j2-1=1/2

j1+j2-3=-3/2 j1-2= -1 j2-1= -1/2 j1+j2=3/2

j 3/2 3/2 1/2 3/2 1/2 3/2

m3/2 1/2 1/2 1/2 1/2 3/2



































66

5554

4544

3332

2322

11

21

00000

0000

0000

0000

0000

00000

2/11

2/11

2/10

2/10

2/11

2/11

c

cc

cc

cc

cc

c
mm

Now consider

jm 21mm


































































































































2

1
1

2

1
1

2

1
0

2

1
0

2

1
1

2

1
1

00000

0000

0000

0000

0000

00000

2

3

2

3
2

1

2

1
2

1

2

3
2

1

2

1
2

1

2

3
2

3

2

3

66

5554

4544

3332

2322

11

c

cc

cc

cc

cc

c
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11
2

1
1

2

3

2

3

2

1
1

2

1
1

2

1
1

2

3

2

3

2

1
1

2

3

2

3

2

1
1

2

3

2

3

11
2

11

11

1111







cc

cc

cc

)18.5.3(1

2

1
1

2

1
1

2

3

2

3

2

1
1

2

1
1

2

3

2

3

11

11

11







c

c

c

Now to find the other coefficients let us apply J- on
2

3

2

3
, then we have

J-
2

3

2

3
= (J1-+J2-)

2

1
1

i.e.         111(1̀1 212222211111  mmmjmjmmmjmjjmmjmj

i.e.  
2

1
11

2

1
011

2

1

2

3
3




2

1
1

3

1

2

1
0

0

2

2

1

2

3 
 -------------(3.5.19)

From the matrix, we have

2

1
0

2

1
1

2

1

2

1
3332 cc 



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Multiplying the above two equations , we get

2

1
1

2

1
1

3

1

2

1
0

2

1
0

3

2
0

2

1

2

3

2

1
1 *

32
*

33





cc

= *
32

*
33

3

1

3

2
cc 

32

33

*
32

*
33

3

2

3

1

c

c

c

c







because they are real coefficients.

Now consider equation (3.5.19) and apply J- on both sides, we get

J-    
2

1
1

3

1

2

1
0

3

2

2

1

2

3
2121


  JJJJ

L.H.S

2

1

2

3
2.2



R.H.S(1) :  
2

1
01

3

2

2

1
110101

3

2 


2

1
0

3

2

2

1
12

3

2 


R.H.S(2): i.e   0
2

1
02

3

1

2

1
1

3

1
21 





  JJ

2

1
0

3

2
.2

2

1
1

3

2

2

1

2

3
2







2

1
0

3

2

2

1
1

3

1

2

1

2

3 






Acharya Nagarjuna University 1.9 Centre for Distance Education

Again from the matrix

2

1
1

2

1
0

2

1

2

1
5554 





cc

Multiplying the above two equations, we have

2

1
1

2

1
1

3

1

2

1
0

2

1
0

3

2

2

1

2

3

2

1

2

1 *
55

*
54 





cc

C66=1,

With this the CG coefficient matrix for J1=1 and J2 = 1/2 are






















































































































































2

1
1

2

1
1

2

1
0

2

1
0

2

1
1

2

1
1

100000

0
3

2

3

1
000

0
3

1

3

2
000

000
3

1

3

2
0

000
3

2

3

1
0

000001

2

3

2

3
2

1

2

1
2

1

2

3
2

1

2

1
2

1

2

3
2

3

2

3

and
c

c

c

c

cc

55

54
*
55

*
54

*
55

*
54

3

2

3

1

3

1

3

2








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3.5.3 The Wigner- Eckart theorem

The Wigner- Eckart Theorem is in general used in calculating the transition probabilities of laser emission

transitions. Before going to the proof of the theorem first let us get acquainted with some of the preliminaries

used in the theorem

Euler angles

The operator J can be expressed as a unitary operator as a rotation at operator as

)
).(

exp()(





Jni
Rn 

R 






 









 



zyz

zy

Ji
Exp

Ji
Exp

Ji
ExpRRR


 )()()()()(

Rotation Matrix

Consider R jmRjmjmjm
m

)(11

1

 

jm
JiJiJi

jmjmRjm zyz 






 









 







 





 expexpexp)( 11

= Exp 






 









 







 



mi
jm

Ji
jm

im y 
expexp1

1

= Exp )(exp 11

1


 j

mm

j

mm
D

mi
d

im








 







 



Where
j

mm
d 1 = jm

Ji
jm

y










 




exp1

Therefore 



j

jm

j

mm
jmDjmR

1

1

1)()( 

)exp()exp()(
1

11

1  imdimD j

mm

j

mm
 is called rotation matrix.
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Some properties of the Rotation matrix

1. Unitary

 


1

111111

m
mm

j

mm

J

mm
DD 

 


m
mm

j

mm

J

mm
DD 1111111 

2.Symmetry

)()1()( 111

111

1   j

mm

mmj

mm
dd

= )(1 j

mm
d =(-1)2j )2(  

3.In the case of a system consists of two particles with angular momenta j1 and j2 , we have

jmCmmjjmjmj
j

jjj

mmm 21

2121212211

of the system is not rotated through ( ) ,we have





j

jm

jjj

mmm jmRCmjmjR
1

21

21
)()( 2211 

 
1

1
21

11

2

2
1
2

1
2

1
1

1

1
1
1

11
22

1
11

jm

j

mm

jjj

mmm

j

mm
mm

j

mm
jmDCmjmjDD

 
1

1
21

21
1

21
11

2
2
1

2

2
1
2

1
2

1
1

1

1
1
1

11

jm

j

mm

jjj

mmm

jm

jjj

mmm

j

mm
mm

j

mm
jmDCjmCDD

Equating the coefficients of 1jm on both sides we have

i.e. 2

2
1
2

1

1
1
1

11

11
1
2

1
1

21
11

2
1
1

1

j

mm

j

mm

jjj

mmm

mm

jjj

mmm

j

mm
DDCCD 

11
1

11

11

21
11

2
1
1

2

2
1
2

1

1
1
1

jmDCCDD j

mm

jjj

mmm
j

jjj

mmm

j

mm

j

mm 

with m= m1 + m2 and m 1 =m1
1+m1

2

jjj

mmm

mm

jjj

mmm

j

mm

j

mm

j

mm
CCDDD

11

11
1
2

1
1

21
11

2
1
1

2

2
1
2

1

1
1
1

1 
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These equations are known as Clebsch-Gordon series .

4.   281 dD j

mm

where   
 


0

2

0

2
2

0

8sin dddd

5.
12

8
)()()(

1

2

2

2
1
2

1

1
1
1 




j
dDD j

mm

j

mm



321

321

321
1
3

1
2

1
1

1
1
1

2

2
1
2

3

3
1
3 12

8
)()()(

1

2
jjj

mmm

jjj

mmm

j

mm

j

mm

j

mm
CC

j
dDDD

z


 

III. Spherical Tensor

The (2k+1) operators k
qT for q= -k, -k…… k are said to form the components of a spherical tensor of rank k

of they transform under rotations.

i.e. )()()( 1

1

11 rTDrTrT k

q
q

k

qq

k
q

k
q 

where r1 and r are the positions of a point in the rotated and original systems.

Some properties of spherical tensor k
qT

(a) The matrix element of k
qT

jmTmj k
q  111 vanishes unless k=m1-m and 11 jjqjj 

jj’ mm1 are angular momentum quantum numbers 1and represent the totality of all quantum numbers

needed to specify eigen states of system completely.

2) commutation relations of k
qT are

[Jz Tk
q] = k k

qT

[J+T
k
q]=    11  k

qTkqkq 

[J-Tk
q]=    11  k

qTkqkq 

3) R  )()( 11 rTDT k

q

k

qq

k
q



Acharya Nagarjuna University 1.13 Centre for Distance Education

The statement of Wignar-Eckart theorem
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Integrating on both sides, we have
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Summary of the lesson

The eigen value problem of the resultant operators J2 and Jz has been discussed in depth. The values of the

C.G coefficients have been determined for J1=1 and J2= 1/2 . The rotational operators and spherical symmetric

tensor have been explained and using these quantities the Wigner- Ecart theorem has been proved.

Self assessment questions

1. Derive the recursion relations for the total angular momentum operator for a system of
two particles

2. What are C. G. Coefficients. Evaluate the C.G. coefficients for J1=1 and J2= ½

3. State and Prove Wigner- Ecart theorem
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Key terminology

Recursion relations- C. G. Coefficients- Spherical tensor- Wigner- Ecart theorem
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UNIT - 4

LEESON - XV - Equations of motion
in Schrodinger and in Heisenberg Pictures

OBJECTIVES OF THE LESSON

1. To learn the equations of motion in the Schrodinger and Heisenberg representations

2. To study the correspondence between these two representations.

3. Study on the similarity between Heisenberg equation of motion and corresponding classical equation.

4.1.1 Introduction

The dynamics of a system can be studied with the help of equation of motion. If the state of the system is

known at a particular time, one can find the state at a previous/future time. As the state of physical system is

described by a state vector in the vector space, the equation of motion could be equation for the state vector.

A state vector or a dynamical variable as such is not observable. But the expectation value of the dynamical

variable is an observable quantity. Therefore, the variation of expectation value of dynamical variable with

time can be considered as an equation of motion.

The time dependence can be viewed as a change in the state vector or in the dynamical variable, or in both.

When the state vector changes with time by keeping operator constant, then the resulting equation of motion

represents the Schrodinger picture. In the Heisenberg picture, the operator changes with time while the state

vector remains constant, however in the interaction picture, both the state vector and the operator change

with time. Here, we discuss Schrodinger and Heisenberg pictures only.

4.1.2 Schrodinger Picture

In this picture the state vectors are time dependent kets and the operators are constant in time. So, the

equation of motion  is the equation for Ψ: 
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The subscript   s   indicates Schrodinger picture.   One can express the time dependence of Ψs(r,t), in the

Schrodinger picture, by unitary transformation

Ψs(r,t) = U(t) Ψs(r) (4.1.2)

with the condition that U(0)=1, then one can write

Ψs(r) = Ψs (r,0). (4.1.3)

Now,

which would imply that if Ψs(r) is normalized, Ψs(r, t)remains normalized at all time ,t, only when U(t) is

unitary. From eqans (4.1.1) and (4.1.2), we have

The corresponding operator equation is

If H does not depend on time, t, then above equation has a solution of the form

Therefore from eqn (4.1.2), we obtain

† †1 if ( ) ( ) 1s s s s s s s sU U U U U t U t            

( )
( ) ( ) 0s

U t
i HU t r

t

 
    



( )
( )

U t
i HU t

t







/ /( ) (0) (4.1.4)iHt iHtU t U e e   

 
  (4.1.1)

s

s

t
i H t

t









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From eqn (4.1.1) and eqn (4.1.5), the time rate of change of the matrix element of an observable As, with

time is given by

If As does not depend explicitly on time, first term of the right side of eqn (4.1.6) reduces to zero. Then

eqn (4.1.6) becomes

Comparing this equation with the equation of motion for the dynamical variables A in classical mechanics,

we see that the expectation values of operators obey the same equation of motion in quantum mechanics

(Ehrenfest's theorem), provided we identify the commutatory bracket divided by iħ with the quantum 

mechanical Poisson Bracket.

4.1.3 The Heisenberg Picture

In this representation, the wave function ψH(r) does not change with time while the operators change with

time.  The subscript H stands for Heisenberg picture.  The time-independent state ψH(r) is obtained from

ψs(r,t) by the unitary transformation  (U(t)=exp(-iHt/ħ)) i.e.,  

/( , ) ( ) (4.1.5)iHt
sr t e r  

 

=

=

= , (4.1.6)

s s s s

S
s S s s s s S s

S
s s s s s s

S
s s s s s

d d
A A

dt dt

Ad d
A A

dt t dt

A
i A H HA

t

A
i A H

t

  

   
             


     




    







 i , (4.1.7)s s s s

d
A A H

dt
  

1( ) ( ) ( , ) (4.1.8)H sr U t r t  
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where ψs(r,t)  is the state vector in Schrodinger picture, and ψH(r) is in the Heisenberg picture and is

independent of time.

The operator in the Heisenberg picture can be written as

Differentiating this equation with respect to time, we get

The eqn (9) represents the variation of dynamical variables with time in the Heisenberg picture.

In the interaction Picture the state vector and operators can be represented as

So that the interaction and Heisenberg pictures are the same when H' = 0 ( H' represents the explicit time

dependence of Hamiltonian). In this case Hos = HoI .

1 / /( ) ( ) ( ) iHt iHt
s sA t U t A U t e A e 

    

 

   

/ /

/ / / / †=

iHt iHt
H s

iHt iHt iHt iHt s
s s

d d
A e A e

dt dt

Ai i
e HA e e A He U U

t



 




 



 

   

 

= ,

1
= , (9)

H
H H

H
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H
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A H

t

A
A H

i t


     


    


    
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



   

 
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4.1.4 Correspondence between Schrodinger Picture and Heisenberg Pictures

In quantum mechanics, we have two fundamental entities, one is the state vector, representing state

of a the physical system and the other is dynamical operator. We are interested in knowing the time

development of these quantities i.e., their equations of motion.  In Schrodinger picture, the state vector ψs(t),

depends on time while operator, say As, is time independent. Whereas, in Heisenberg representation the

operator change with time while the state vector remains constant. As the physical process cannot depend

on a particular choice of representation, there must exit some relation between them.

At t = 0, state vector and operator are to be identical in both representations, i.e.,

   

       

The Schrodinger state vector at time t, , is related to ,0 by unitary operator as

, , ,0 ,0 due to conservation of probility.

s s

s s s s

r t r

r t r t r r

 

   

   ,0 (0).s H s Hr r and A A  

   

 

, ( ) ,0

( ) ,0 (4.1.10)

s r t U t r

U t r

 







 

Since does not depend on time, the time differential of the above equation gives

(4.1.11)

H

s

H

t U
i i

t t






 


 
 
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The solution of eqn (12) is

U(t) = exp( -iHst/ђ)                                                                      (4.1.13)         

Where Hs is assumed to be time-independent.

For conservative systems, the Hamiltonian gives the energy of the system. Therefore, in

any representation H does not depend on time, so that HH = Hs = H. Hence

Since the expectation value of an operator is the same, irrespective of its representation, so

 Further, satisfies the Schrodinger time dependent equation (eqn.1),

so the above equation can be written as

s t

   

   

,

( ) ,0

s s H

s s H

U
H r t i r

t

U
or H U t r i r

t

 

 















   

 

,0 ,

( ) (4.1.12)

H s

s

Since r r the aboveequation reduces to

U t
H U t i

t

 







  / (4.114)iHt
s H Ht e U   
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Therefore,
AH(t) = U† As U (4.1.15)

This gives us the relation between any Heisenberg and Schrodinger operators, defining observables.

We will now show that the eigenvalues of operators, being the results of physical measurements, must be

same in both the representations.

Let the state vector in Schrodinger representation be

Multiplying both sides by U† with U U† = 1, the above equation becomes

Eqn (17) shows that λi
' s are also the eigenvalues of the operator AH . Hence the eigenvalues of the

operators are the same in Schrodinger and Heisenberg representations.

†( ) ( ) ( )H H H s s s H s HA t t A t U A U      

(4.1.16)s
s i ic u  

( 1, 2,3,...)

, . .,

s
i s

i

where u are eigenstates i on which A is measured

to yield eigenvalues i e



s s
s i i iA u u

† † †

(4.1.17)

s s
s i i

H H
H i i i i

U A U U u U u

or A u u









† s H
s H i iwhere U A U A and u U u 
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Now, let us show that the probabilities of finding the system in corresponding eigenstates are same in both

representations. For that, consider the eqn (4.1.16),

Multiplying both sides by U† , we obtain

or

In eqn (16), ci 's give the probabilities of finding the system in the ith eigenstate and the same ci 's occur as

coefficients in eqn (18) also. Therefore, the probabilities of finding the system in the corresponding

eigenstates are same in both representations, i.e.,

Since two pictures are equivalent, in principle, we can do our calculations using either one of them.

However, for a general operator equations of motions in Heisenberg picture is difficult to solve for most

systems (there are exceptions) and therefore, we use the Schrodinger picture in which we deal with the more

familiar linear differential equations.

Summarising with the help of metaphor, we can say that the Schrodinger picture rotates the dance floor with

the dancers remaining still, while the Heisenberg picture leaves the dance floor alone and lets the dancers

rotate.

s
s i i

i

c u  

† † s
s i i

i

U c U u  

(4.1.18)H
H i i

i

c u  

2 22 s H
i i s i Hc u u  
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SUMMARY OF THE LESSON

The equations of motion in Schrodinger and Heisenberg pictures are discussed. The correspondences

between these two pictures are explained in detail

KEY TERMINOLOGY

Schrodinger Picture, Heisenberg Picture, Dynamical variable, Unitary operator, Poisson bracket,

Commutator.

SELF ASSESSMENT QUESTIONS

1. State and explain the equations of motion in the Schrodinger and Heisenberg pictures.

2. Show that the probabilities of finding the system in the corresponding eigenstates are same in

Schrodinger and Heisenberg representations.

3. What is unitary transformation ? Show that the operator equations remain unchanged in a unitary

transformation.

REFERENCE BOOKS

1. Quantum Mechanics by S.N. Biswas (Books and Allied (P) Ltd), India, 1998.

2. Quantum Mechanics by L.I. Schiff (McGraw-Hill Kogakusha, Ltd.), 1968.

3. Quantum Mechanics by G.Aruldhas (Prentice-Hall of India Private Ltd), N.Delhi, 2002.

4. Quantum Mechanics by Thankappan
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UNIT - 4

LESSON - XVI Heisenberg equation:
Correspondence with Classical equation and

Application to Harmonic Oscillator

OBJECTIVES OF THE LESSON:

1. To learn the correspondence between Heisenberg equation with Classical Mechanics.

2. To study the Application of Heisenberg equation to the Harmonic oscillator.

4.2.1 correspondence between Heisenberg equation with Classical Mechanics.

In order to get the similarity between Heisenberg equation of motion and corresponding classical

equation, we review briefly the structure of classical hamiltonian theory. Let the hamiltonian is a function of

coordinates and momenta, i.e., H = H (q1, q2, . . .; p1, p2, . . .), and writing a relation between hamiltonian and

Lagrangian as

The variation of Hamiltonian, H, lead to the Hamilton's equations of motion

The time dependence of any function of the coordinates, momenta, and the time, calculated along a moving

phase point, is

.

1 2 1 2( , ,...; , ,...; ) i iH q q p p t p q L 

. .

1, 2,3,...
i i

H H
q and p i

p q

 
   
 

 
. .

, ,i i i i

i i

i i i i

d F F F
F q p t q p

dt t q p

F F H H F

t q p q p

   
   

   

     
   

     




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Here the Hamilton's equations have been used to get the above equation. The Poisson bracket {A, B} of any

two functions of the coordinates and momenta is defined as

In terms of Poisson bracket, the equation of motion for the function F of the dynamical variables becomes

The resemblance between the above equation and Heisenberg equation, suggests that quantum analogs of the

classical equations of motion can be found by substituting the commutator bracket divided by  i ħ  for the 

Poisson bracket,

and working with the Heisenberg picture.

4.2.2 Application of Heisenberg equation to Harmonic Oscillator

In the Heisenberg representation the time dependence is assigned to operators leaving the state vector time

independent. The Heisenberg equation of motion for an operator is given by

  iħ dA/dt  =  [ A, H ] 

where A is an operator. He has used this equation of motion to Harmonic oscillator.

Let us consider a linear harmonic oscillator having the Hamiltonian

H = p2/(2m) + (1/2) k x2

= p2/(2m)  +  (1/2) mω2 x2 (4.2.1)

where p and x are time dependent operators with infinite Hermitian matrices satisfying the commutation

relation

{ , }
i i i i

A B B A
A B

q p q p

    
  

    


{ , }
dF F

F H
dt t


 



1
{ , } [ , ]A B A B

i


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The equation of motion for the operator x in the Heisenberg picture is

In the similar way we can write that

Differentiating eqn (4.2.2) with respect to t and combining it with eqn (4.2.3), we have

This equation can be written in the matrix form as

The solution of this equation is

Differentiating the eqn (4.2.6) twice with respect to time, we get

, xx p i    

 

    

2 2 2

.

,

1 1
, ,

2 2

1
, ,

2

or (4.2.2)

dx
i x H

dt

x p m x x
m

p x p x p p
m

i p

m

p
x

m





       

 









 ( ) 0 exp( ) (4.2.6)

where ( )

kn kn kn

kn k n

x t x i t

E E







  

2 (4.2.3)p m x 

2 0 (4.2.4)x x 

  2 0 (4.2.5)knkn
x x 
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Substituting eqn (4.2.7) in eqn (4.2.5), we obtain

It is convenient to derive the relations for the matrix elements, which are independent of time. Generalization

is not different as similar relations hold for matrices that depend on time. In view of eqn (4.2.8), all matrix

elements xkn(0) vanish except those for which the transition frequency ωkn = ± ω.    Therefore 

That is, for a given value of k only two xkn elements are non-vanishing and those are n=k+1 and n=k-1:

The structure of x matrix would then be

     2 2 2 2( ) 0 or 0 0 (4.2.8)kn kn kn knx t x      
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  

  

1
, 1 , 1

1
, 1 , 1
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k k
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k k k k
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 
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 
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

 
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x x

x x
x

x

 
 
 
 

  
 
 
 
  

   
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 

    
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Similar way the elements of the p matrix can be obtained as

In view of eqns (4.2.9) and (4.2.10), the non-vanishing elements of the p matrix are

pk,k-1= imωxk,k-1 and pk,k+1=-imωxk,k+1 (4.2.11)

The structure of p matrix is

The Heisenberg equation of motion of an operator allows us to get the structure of the x and p matrices. To

get the elements of the x and p matrices, we have to use the fundamental equation of Heisenberg method. The

diagonal (k,k) elements of the fundamental commutation relation is

Substituting the matrices for x and p and using matrix multiplication procedures, we get

where δkn is the unit matrix. Equating the elements on both sides, we have

(0) (0)kn kn knp im x
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10 12

21 23

32
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( )
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p x im

x
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 
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 
 
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 
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Solving this system of equations, Since x is Hermitian, we can write

and

From eqns. (4.2.11), (4.2.12), and (4.2.13), we have

and
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Now

(x2)nn = (xx)nn    =   Σ xni xin = xn,n+1 xn+1,n + xn,n-1 xn-1,n

     =   (n+1) ħ / (2m ω)  +  nħ / (2m ω) 

 =   (2n+1) ħ / (2m ω) 

and

(p2)nn   =   m ω (n+1) ħ / 2  + m ω n ħ / 2   = m ω (2n+1) ħ / 2      

Then the Hamiltonian matrix is

Hnn =   (1/2m) m ω (2n+1) ħ / 2  + m ω2 (2n+1) ħ / (4 m ω) 

 =   (2n+1)ħ ω / 2 

The eigenvalues En of the Hamiltonian are given by

En   =   ( n + ½) ħ ω,                n  =  0,1,2,3, . . .                (4.2.14) 

This is the same as the usual way one can obtain.

Now, one can write the explicit form of the matrices for x(0) and p(0) based on the above equations as

and

We could obtain the energy quantization of the harmonic oscillator results from the application of Heisenberg

equation of motion.
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Summary of the lesson

The Heisenberg representation in the quantum mechanics is a powerful tool in explaining physical

phenomena. A similarity between Heisenberg equation of motion and corresponding classical equation has

been shown. That is the quantum analogs of the classical equations of motion can be found by substituting the

commutator bracket divided by  i ħ  for the Poisson bracket and working with the Heisenberg picture.   An 

application of the Heisenberg picture is also discussed. Making use of the Heisenberg equation of motion the

eigenvalues of the harmonic oscillator were evaluated.

Key Terminology: Heisenberg picture, commutator bracket, harmonic oscillator, eigenvalues.

Self Assessment Questions

1. Obtain a correspondence between Heisenberg equation of motion and classical equation of Motion.

2. Derive eigenvalues of the harmonic oscillator using Heisenberg equation of motion.

Reference Books

1. Quantum Mechanics by I.L. Schiff (McGraw-Hill Kogakusha, Ltd, 1968).

2. Quantum Mechanics by G. Aruldhas (Prentice-Hall of India Private Ltd., 2002).

3. Quantum Mechanics by S.N. Biswas (Books and Allied (P) Ltd., 1998).
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UNIT - 4

LESSON – XVI RELATIVISTIC QUANTUM
MECHANICS-I : KLEIN-GORDON EQUATION

OBJECTIVES OF THE LESSON

1. To study the need of relativistic quantum mechanics

2. To learn the Klein-Gordon equation and its solutions

3. To know the difficulties with the Klein-Gordon equation

4. To study an application to Klein - Gordon equation

RELATIVISTIC QUANTUM MECHANICS

4.3.1 Introduction

The quantum mechanics studied so far is based on a non- relativistic Hamiltonian and does not satisfy the

requirements of special theory of relativity. In the non-relativistic Schrodinger wave equation, the time is in

the first order and space is in the second order derivatives. This contradicts the space-time symmetry of

relativity. In this chapter we deal with the motion of particles those with velocities close to that of light. One

of the characteristic feature of relativistic wave equations is these equations are invariant under Lorentz

transformation. In the following, two relativistic equations are considered i.e., particle with spin zero equation

due to Klein-Gordon and the spin 1/2 particle due to Dirac.

4.3.2 Klein -Gordon Relativistic Equation

Schrodinger equation for a free particle of mass m is based on the non-relativistic relation, E= p2/2m, between

the energy and momentum of a free particle and the corresponding relativistic relation is given by

E2 = c2 p2 + m2 c4 (4.3.1)

Replacing E and p by their operators
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in the eqn (4.3.1) and multiplying  with the wave function  Ψ(r,t) on both sides of the equation gives

or

This equation is also known as Schrodinger relativistic equation. Rearranging the terms,

we get

where  ڤ is a D' Alembertian operator.   The above equation is known as Klein-Gordon equation.      

4.3.3 Plane wave solution

Taking the plane wave solutions of the Klein-Gordon equation as

Ψ(r,t) = exp[ i(p.r - Et) / ћ ] 

and substituting in the Klein-Gordon equation would yield

E = ± (p2 c2 + m2 c4 )½

This means that there exist solutions of negative energy. Klein and Gordon were not able to give a proper

explanation to the negative energy states.
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4.3.4 Application of Klein-Gordon Equation to the Hydrogen atom

The Klein-Gordon equation for a free particle is give by

For charged particle in the coulomb field of potential V(r) can be obtained by E -V(r) , where the potential for

the electron is given by

Therefore, the equation of motion of the electron under the influence of coulomb filed is given by

Since the potential is independent of time, eqn (4.3.3) can be separated with respect to

variables r and t with the solution of the form

Substituting eqn (4.3.7) in eqn (4.3.6) and rearranging the terms, we get
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Since the potential is spherically symmetric, we can obtain the solutions, which are separated into radial and

angular parts

On substitution of eqn (4.3.9) in eqn (4.3.8) and making use of separation variables method, we can write the

radial parts of wave equation as

Rewriting eqn (4.3.10), with substitution =r becomes

Eqn (4.3.11) is similar to nonrelativistic hydrogen atom theory, except for the factor l(l +1)-2 in place of l (l

+1). By writing

eqn (4.3.11) takes convenient form

Well behaved solution of eqn (4.3.14) exist only if

( , , ) ( ) ( , ) ( 4 . 3 . 9 )l mr R r Y     
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and s to be non-negative to make R(r) finite at the origin. The value of s can be obtained from eqn (4.3.13) as

Substituting the positive s value from eqn (4.3.16) and λ value from eqn (4.3.12) in eqn (4.3.15), we get 

Taking squares on both sides, we get

or
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Expanding A-1 and A-2  in terms of binomial series and retaining terms up to γ4, we obtain

The first term of this equation is the rest energy and the second term -mc2γ/2n2 gives the Balmer levels of the

hydrogen atom. The third term is the relativistic correction, which removes the orbital degeneracy and gives a

fine structure to each of l levels.

Is it all well with the Klein-Gordon equation?

We expect that probability density P(r,t) and probability current density S(r,t) to satisfy a continuity equation

of the form

To obtain such an equation, we multiply Klein-Gordon equation on the left by ψ* , and its complex conjugate

equation by ψ and then subtracting one from the other, we get 
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or

This is continuity equation with

The expression for S(r, t) coincides exactly with corresponding non-relativistic case. However, the expression

for P(r, t) is completely different from the one in the non-relativistic case.  If ψ is real, P(r, t) vanishes. When

ψ is complex, eqn (19) can be written as  

It follows from this equation that P(r, t) is positive when E is positive and negative when E is negative. In

other words, the probability density takes both positive and negative values. Hence P(r, t) given by eqn (19)

can not be regarded as position probability density. This problem was resolved by Pauli and Weisskopf by

interpreting eP(r, t) as the charge density and eS(r, t) as the corresponding current density. Since charges
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can take negative and positive values, this theory is useful only a system of particles having both signs of

charges.

Summary

Since non-relativistic Schrodinger equation did not satisfy the requirements of special theory of relativity,

Klein-Gordon made an attempt to modify the non-relativistic Schrodinger equation. Though they were

successful to a limited extent but could not explain the result of negative probability density, which they

encountered. In addition they were unable to explain the negative energy solutions. But Klein-Gordon could

explain the fine structure of each l levels in the hydrogen atom spectra.

Key Terminology

Relativistic quantum mechanics, Klein-Gordon equation, hydrogen atom, probability charge density,

probability current density.

Self Assessment Questions

1. Explain necessity of relativistic quantum mechanics ?

2. Derive Klein-Gordon equation

3. Elucidate the difficulties with the Klein-Gordon equation.

4. Obtain the expression for energy of a charged particle in a coulomb potential using Klein-Gordon

equation and explain the significance of the result.

Reference Books

1. Quantum Mechanics by L. I. Schiff ( McGraw-Hill Kogakusha, Ltd, 1968).

2. Quantum Mechanics by G. Aruldhas (Prentice-Hall of India, 2002).

3. Quantum Mechanics by S. Lokanathan and A. Ghatak
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UNIT - 4

LESSON - XVIII RELATIVISTIC QUANTUM
MECHANICS-II : DIRAC EQUATION

OBJECTIVES OF THE LESSON

1. To study the Dirac equation

2. To learn the Dirac matrices

3. To study the plane wave solutions of the Dirac equation

4. To understand the results of Dirac equation

4.4.1 Dirac equation

In the previous lesson we have seen that the solution of the relativistic Klein-Gordon equation gives the

probability density as a negative instead of a positive definite. To prevent such an occurrence of negative

probability, which is unrealistic, the relativistic equation must be modified. Therefore, Dirac modified the

hamiltonian operator in order to ensure that the hamiltonian or energy should be linear in the momentum

without affecting the relativistic symmetry between energy and momentum. In addition Klein-Gordon could

not explain the negative energy states. Whereas, Dirac gave the explanation for the origin of negative states.

The Dirac proposed that Hamiltonian describing the motion of particle, let us say the electron could

be written as

Where H is linear in p;  and the coefficients x, y, z are to be determined.

With substitution of the hamiltonian from eqn (1) in the time dependent Schrodinger equation of motion

transforms to

2. (1)H c p m c  

2. ( 2 )i i c m c
t


 


    


 
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This is the Dirac equation of motion for a free particle.

Let us understand the four quantities x, y, z and  defined in equation (1). We know that the space and

time derivatives are to appear only in p and E, and not in  and , since eqn (5) is to be linear in all these

derivatives. Therefore,  and  have to be independent of p and E and commute with them. Nevertheless, x,

y, z and  may not be mere scalar numbers. If they were, the square of the energy (Hamiltonian) operator

(eqn 4) would contain terms proportional to px, py, pz, mc2 etc. But the relativistic expression (eqn 1)

contains no such term. Hence, the commutative relations to x, y, z and  were determined by requiring

that H2 should reduce to the expression E2 = p2 c2 + m2 c4. Writing H2 as HH to facilitate observance of the

non-commuting factors while multiplying, we have

Comparing the coefficients of px
2, py

2, pz
2 and m2c2, we obtain

Since the products like pxpy, pypz, pzpx and px, py, pz do not appear on the right side so the coefficients on the left

hand side must vanish, which determines the relation between x, y, z and , i.e.,

The four quantities αx, αy, αz, β are said to anti commute in pairs and square of each is unity. 
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4.4.2 Dirac Matrices

As the Dirac Hamiltonian is Hermitian therefore the αx, αy, αz and β must be Hermitian.  One of the constraints 

on the α's and β is that these are non-commuting entities.  The simplest non-commuting entities, which are 

independent of space-time variables and differential operators are matrices.  Therefore, αx, αy, αz and β are 

taken to be matrices and these matrices have to obey the eqns (3 & 4). Since the squares of all four matrices

are unity, so the eigenvalues are +1 and -1.

We can write

taking the trace ( = sum diagonal elements = sum of the eigenvalues) of the matrices on the both sides, we

have

(In the third step the cyclic property of trace of matrices i.e., tr(ABC)=tr(BCA), is used)

It is evident from (i) that tr(αx)=0 which mean that αx must have the same number of +1 eigenvalues and -1

eigenvalues. The same is true for the other matrices. This restricts the dimension of the matrices and has to

be even number. The simplest possibility is n = 2. There are already three anti-commuting 2x2 matrices

known as the Pauli's matrices, which are given by

The squares of the each of these matrices are also unity. But these are ruled out because we need four and

fourth one can not be formed with these three matrices.

0 1 0 1 0
; ;

1 0 0 0 1
x x x

i

i
  

     
            
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With the dimension n = 4, one can find four anti-commuting matrices. Arbitrarily, b matrix is taken to be

diagonal with two +1 eigenvalues and two -1 eigenvalues. Then one can find the other three 4x4 matrices

anti-commuting with β and satisfying other conditions specified by equations (3 & 4).  These are 

Obviously these matrices are Hermitian since αx, αy and αz are Hermitian and these are the Dirac matrices. We

can also abbreviate these matrices as

4.4.3 Plane Wave Solutions

Consider the Dirac equation

where αx, αy, αz and β are constant matrices.  Now we try with plane wave solutions of above equation of the 

form

Substituting eqn (2) in eqn (1) gives

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
; (6)

0 0 0 1 0 0 0

0 0 0 0 1 0 0

x

x

x

y z

y z
y z

OI O

OO I

i

O Oi

O Oi

i





 

 

   
   

                   
   

   

   
                       
   

   

a n d ( 7 )
I O O

O I O





   
         

( . ) /( , ) ( ) ( 9 )i p r E tr t U p e  

2( ) ( . ) ( ) (10)EU p c p mc U p  
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Since components of α are 4 x 4 matrices, so that ψ and U should also be 4-component objects on which these

matrices can operate. Writing the four-column vector of U as partitioned into two components such as

Then the substitution of equations of two component forms of α's and β and U in the eqn (3), we get

After multiplication of matrices on the right hand side and rearranging the terms, we have

Multiplying eqn (13) with (E+mc2) and replacing (E+mc2) by c.(σ.p)v from eqn (14), we get

For non-trivial solution, v ≠ 0.  Hence 

1

2

3

4

1 3

2 4

(1 1)

w h e re ;

u

u v
U

u w

u

u u
v w

u u

 
 

        
 
 

   
    
   

2( ) ( . ) ( 1 3 )E m c v c p w 

2 2 4

2 2

2 2

2 2 2 2 4

( ) ( . ) . ( . )

( . )

( ) 0

E m c v c p c p v

c p v

c p v

o r

E c p m c v

 



 



                     

  

2( ) ( . ) (13)E mc w c p v 
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The same result would follow if we eliminate v rather than w from eqns (13) and (14). From eqn(15) one

expect that a free particle consists of two branches of energy: one corresponding to E+ and other to E-.

4.4.4 Negative Energy States

We found that there are two solutions for the energy from previous topic and they are

When p = 0, the solutions for the energy are E+ = mc2 and E- = - mc2. So the energy spectrum of a free

electron has two branches corresponding to E+ and E-: one starting at mc2 and extending to +∞  as │p│→∞ 

and other starting at mc2 and extending to -∞ as  ∞│p│→-∞ (see Fig).  The two branches are separated by a 

forbidden gap of width 2 mc2. It is very difficult to imagine negative energy states because even a weak

electromagnetic field or a small other perturbation could cause an electron which is in a state of positive

energy to undergo a quantum transition to a state of energy E →-∞, resulting in the release of an infinite 

amount of energy. No such thing takes place in reality. To overcome this serious problem, Dirac postulated

that all the negative energy states are ordinary occupied by electrons. This sea of negative energy electrons

would have no physically observable effects. Since electrons obey Pauli exclusion principle, these occupied

states can not accommodate any more electrons. Thus transitions to negative energy states are prevented.

Further, it is assumed that, when electron occupying the negative energy state receives energy, it goes to

positive energy state and create an empty space and is designated as 'hole' in the negative energy sea. The

minimum energy required to jump electron from negative energy state to positive energy is 2mc2. The empty

space created in the negative energy states behaves as if it is a particle of positive charge. This explanation

was accepted when positron was discovered in cosmic rays by Chadwik.

 
1

2 2 2 4 2E c p m c

E 

  


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4.4.5 Position Probability Density

The other relativistic equation must yield the probability density ρ(r, t) must be positive.  This can be shown 

by considering Dirac equation

and it's conjugate

The Hermitian property of α and β and the rule that the order of factors in any matrix product reversed on 

Hermitian conjugation are used while writing eqn (2).  Multiplying eqn (1) from left by ψ† and eqn (2) by ψ 

on right and subtracting one from other, we obtain

This is a continuity equation, with P(r, t)=ψ† ψ and S(r,t)=cψ† αψ. 

Here, the quantities P(r, t), S(r,t) can be interpreted as probability density and probability current densities.

The expression for P has same form as the non-relativistic one and is positive definite and the interpretational

difficulties experienced with the Klein-Gordon equation do not arise here.

4.4.6 Electron in an Electromagnetic Field

Replacing p by p - eA/c  and  E  by  E - eφ in the Dirac equation, we get the Dirac equation for an electron in 

the electromagnetic field, i.e.,

†
† 2 † ( 1 7 )i i c m c

t


  


     


 

†
† † †

† †

( . )

( ) .( ) 0 (1 8 )

i i c
t t

o r

c
t

 



  
            

  


      



 

2. ( / ) (1 9 )i c p e A c m c e
t


     


   



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where A and φ are the vector and scalar potentials of the electromagnetic field and let these are 

time independent. There exist stationary state solutions

Substituting these solutions eqn (1), we obtain

E u ( r ) = c α . ( p - e A/c) u ( r ) + β m c2 u ( r )  + e φ u ( r ) (21)

Taking

and substituting for u, α  and  β in the modified Dirac eqn (21) and then rearranging the terms, we can write 

two equations for 2-component quantities v, w as

c σ . ( p - eA/c ) w  =  ( E - e φ  -  m c2 ) v (22)

c σ . ( p - eA/c ) v  =  ( E - e φ  +  m c2 ) w (23)

Since we are interested in the positive energy solutions, choose

E = m c2  +  ε         (24) 

We can write eqn (23) with eqn(24) as

c σ . ( p - eA/c ) v = ( 2 m c2  + ε - e φ ) w (25)

For small values of ε  and φ ,  we can write the above equation as 

w  ≈   1/(2 m c) σ . ( p - eA/c ) v (26)

Substituting this equation in eqn (23), we obtain

1/(2m) [σ . ( p - eA/c ) ]2 v  =  (ε - e φ ) v (27)

Using the vector identity ( σ . B ) ( σ . C ) = B . C + i σ . ( B x C )

We have [σ . ( p - eA/c ) ]2 = ( p - eA/c )2 + i σ . ( p - eA/c ) x ( p - eA/c )

    /, (20)iEtr t u r e  

1

2 31

3 2 4

4

;

u

u uuv
u where v and w

u w u u

u

 
 

                 
  
 
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Since p and A are an operators, the vector product in the last term does not vanish. In deed we have

( p - eA/c ) x ( p - eA/c ) = -e/c ( A x p + p x A

Thus the eqn. ( 27 ) gives

{ 1/2m ( p - eA/c )2   -   e ħ/2mc σ . H  +  e φ } v   =    ε  v (28)

This is known as the Pauli's equation for the electronwith spin 1/2.. This is very similar to non-relativistic

Schrodinger equation with one extra term. This term suggests that the electron, in a magnetic field, acquires

an extra energy, that is μ . H   =   - e ħ/2mc σ . H,  so that it behaves as if it has a magnetic moment μ

associated with its spin:

 μ =  e ħ/2mc σ

      =   μB σ                                  (29)

where μB is the Bohr magneton. Thus, the Dirac equation predicts that for a spin 1/2 particle will have the

magnetic moment.

SUMMARY OF THE LESSON

To overcome the problems of Klein-Gordon equation, Dirac modified the hamiltonian operator in order to

ensure that the hamiltonian or energy should be linear in the momentum without affecting the relativistic

symmetry between energy and momentum. The solution of the Dirac equation reveals the existence of the

negative energy states. The explanation of the negative energy states led to ' hole ' concept. The existence of

the hole was confirmed when Chadwik discovered the positron. Dirac could show that the probability charge

density is a positive definite. When an electron motion is considered in the electromagnetic field, the solution

predicts the existence of spin 1/2 for the electron.

/ /ie c A ie c H    
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KEY TERMINOLOGY

Relativistic mechanics, Dirac equation, Dirac matrices, Negative energy states, electromagnetic field,

probability density, hole.

SELF ASSESSMENT QUESTIONS

1. Obtain Dirac equation.

2. Determine the Dirac matrices and discuss their properties.

3. Elucidate the negative energy states due to solution of Dirac equation.

4. Show that charge probability density is positive definite using Dirac equation.
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