
MICROPROCESSOR
 (
(BSC ELECTRONICS

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

MICROPROCESSOR
(DSEL32)

ELECTRONICS

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

MICROPROCESSOR

ELECTRONICS-IV)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

 Micro Processors

 NOTES

1

UNIT – I

1. INTRODUCTION
Structure

1.0 Introduction
1-2 History of computers
1-3 Generations of computers

1-3-1 First generation
1-3-2 Second Generation
1-3-3 Third generation
1-3-4 Fourth generation
1-3-5 Fifth generation

1-4 Classification of computers
 1-4-1 Super Computers

1-4-2 Main Frames
1-4-3 Mini Computers
1-4-4 Micro Computers

1-5 Evaluation of microprocessors
1-5-1 History of microprocessors

 1-5-2 Organization of micro computer
1-6 8085 Pin configuration and architecture

1-6-1 Features of 8085
 1-6-2 Architecture of 8085

1-6-3 Registers
1-6-4 Special Purpose Registers
1-6-5 ALU
1-6-6 Timing and Control Unit
1-6-7Stack

1-7 Pin configurations of 8085
1-7-1 Address Group
1-7-2 Data Group
1-7-3 Control Group

 1-7-4 Interrupt & externally initiated Signals
1-7-5 Serial I/O Ports Signals

 1-7-6 Power Supply & Clock Signals

Objectives

 Discuss history of computers

 Discuss evaluation of microprocessors

 Discuss about 8085 Pin configuration and architecture

 Micro Processors

 NOTES

2

1.0 Introduction

Computers and computer systems are a pervasive part of the
modern world. Aside from just the common desktop PC, there are a
number of other types of specialized computer systems that pop up in
many different places. The central component of these computers and
computer systems is the microprocessor, or the CPU. The CPU (short for
"Central Processing Unit") is essentially the brains behind the computer
system; it is the component that "computes".

1-2 History of computers

 In 16th century, Blaise Pascal introduced first mechanical adding and
subtracting machine.

 In 17th century Gottfried Leibriz developed a machine which can
perform both multiplication and division.

 In 1822 Charles Babbage introduced a multi step computer which can
store data.

 In 1887 Herman Hollerith invented a device for automatic census
tabulation.

 In 1945 J.Presper Eckert and J.W.Mauchly developed first electronic
digital computer ENIAC.

 An improved version of electronic computer was given by von
Neumann.

 In 1949 Electronic Delay Storage Automatic Calculator (EDSAC) was
developed at Cambridge University.

 In 1951 Universal Automatic Computer was built.

 In 1952 Electronic Discrete Variable Automatic Computer(EDVAC)
was developed by J. Presper Echkert and J.W.Mauchly.

 In 1960 using solid state technology IBM developed IBM 7090
scientific computer.

1-3 Generations of computers

 Computer generation is used to distinguish the computers on the
basis of varying hardware and software configurations. As on today there
are five generations of computers.

 Micro Processors

 NOTES

3

1-3-1 First generation:

 These computers came into existence in between 1946-54. In 1943,
john W.Mauchly designed ENIAC (Electronic Numerical Integrator and
Calculator). In 1949, EDSAC (Electronic Delay Storage Automatic
Computer) and in 1952, EDVAC (Electronic Discrete Variable Automatic
Computer) was developed.

Example: EDVAC, IBM 701, IBM704, UNIVAC etc.

 1) Vaccume tubes are used to develop these computers.

2) Magnetic drums are used for internal storage.

 3) These computers used assembly language programming.

 4) Their processing speed is very less and they occupy large space.

 5) These are mainly used for scientific applications only.

1-3-2 Second Generation:

 The development of solid state technology in 1950’s (junction
transistor in 1948) had made drastic changes in second generation of
computers. In addition to main memory, auxiliary memory had been used
in these computers. Input and output processors are introduced in them to
perform I/O operations. It can perform floating-point operations also.

Example: IBM 1620, IBM 7090, CDC 1604, PDP5 etc.

 1) Transistors are used instead of vacuum tubes.

 2) Auxiliary memory came into existence.

 3) High level languages such as COBOL, FORTRAN are used for
programming.

 4) Processing speed has been increased rapidly and size of the
computer was reduced.

 5) I/O processors are included.

 6) Batch processing made possible

1-3-3 Third generation:

 In these computers IC technology was used. They came into
existence in 1960’s. IC’s are used in developing CPU and memory. Thus
the size is reduced and reliability had been increased.

 Micro Processors

 NOTES

4

Ex: IBM370, CDC7600, PDP11, CYBER175, STAR100 etc.

 1) Integrated circuits are used and hence size is very small.

 2) Multiprocessing, multiprogramming and pipelining techniques
were introduced.

 3) Virtual memory concept has been introduced.

 4) They have high processing speed and high storage capacity.

 5) They can handle both scientific and commercial applications.

1-3-4 Fourth generation:

 Development of microprocessors in 1970’s is a milestone in
computer industry. Very large scale integration and high density and high-
speed logic circuits are used to develop computers. The most popularly
used microprocessors in computers are Intel 8008, 8085, 8086, zilog80
etc.

Example: INTEL 8748, IBM 3081, CRAYX-MP etc.

 1) VLSI technology has been used in these computers.

 2) Their storage capacity and speed is high.

 3) Microprocessors are used to develop CPU.

 4) Computer graphics has been introduced.

 5) These are used for mathematical modeling, simulation and
computer aided design.

1-3-5 Fifth generation:

 In 1981, Institute of New Generation Computer Technology, Japan
has developed a project known as Fifth Generation Computer Systems
Project. These systems include artificial intelligence, expert systems and
knowledge based systems. PROLOG and LISP are popular languages
used in these systems.

 Micro Processors

 NOTES

5

1-4 Classification of computers

 Computers are classified mainly into four categories, on the basis of
their speed (number of operations per sec.), Memory size (bytes) and
number of input and output devices it can support. They are

 i) Super Computers

 ii) Main Frames

 iii) Mini Computers

 iv) Micro Computers

1-4-1 Super Computers

 These computers are most powerful and are mainly used for
scientific applications. They have large speed and large memory. They
can perform 20 million operations per second.

Example: CRAY 2, PARAM 9000. ETA 10.

1-4-2 Main Frames:

Their capacity and aped distinguish these computers. They have large
memory such as 256 MB and have a speed to process 10 million
operations per second. These computers will support many users in real
time. Their word length is in the order of 64 bits.

Example: VAX 8000, IBM 4300, CYBEK 180.

1-4-3 Mini Computers:

It is also known as stand alone system, which can process information
The speed of the CPU is around 1 million operations per second. Their
memory size ranges from 256 Kbytes to a few mega bytes. The word
length of these computers is 32 bits.

Example: PDP11, HP3000 and SUPER 16.

1-4-4 Micro Computers:

 These are also referred as desk top computers or personal
computers. They consist a microprocessor as a central processing unit.
LSI is used to develop the CPU. Their memory is in the rage of 1 MB and
speed is in the rage of few hundred operations per second. Their word
size is 8 to 16 bits.

 Micro Processors

 NOTES

6

Example: IBM PC, APPLE, SICLAIR.

1-5 Evaluation of microprocessors

 Thus we can see microprocessor in micro computers that are
developed in 1970’s. A microprocessor is nothing but the CPU of a
computer but only difference is, the discrete components present in CPU
are integrated into a single chip known as integrated Circuit by the help of
VLSI technology.

1-5-1 HISTORY OF MICROPORCESSORS

 In 1971 first 4-bit microprocessor was introduced by Intel Corporation.
Later its enhanced version Intel 4040 was introduced. At the same
time Rockwell International Produced PPS-4, Toshiba produced T3472
microprocessor.

 In 1972 Intel produced 8-bit microprocessor, 8008 with PMOS
technology. This was very slow. The more powerful 8-bit
microprocessor, 8080 was introduced, in 1973 with NMOS technology.
This requires 3 power supplies. In 1975 enhanced version of 8085
which requires only one power supply was produced. At the same time
Motorola produced MC6800, Zilog produced Z80 and National
Semiconductor produced NSC 800.

 In 1978 – Intel produced 16 bit microprocessor 8086. At the same time
Motorola 68000, Fairchild 9440, Zilog Z8000 National Semiconductors
PACE, Texas Instruments TMS 9900 are produced.

 In 1985 Intel introduced first powerful 32-bit processor, Intel 80386,
Some other 32-bit processors are Intel 486, Pentium Pro, Pentium II,
III, IV, Advance Micro devices K5, K6, K7, Cyrix 586, 686, Motorola
68020, National Semi conductors 32032, Zilogs Z80000 etc.

1-5-2 ORGANIZATION OF MICRO COMPUTER

 A micro computer is a computer in which its central processor unit is
a microprocessor. A microprocessor is nothing but the central processing
unit of a computer built into single chip with the help of IC technology. The
important components of micro computer are Central Processing Unit,
input/output units, Memory and Buses.

 Micro Processors

 NOTES

7

Fig 1.1

1) Central Processing Unit (Microprocessor)

 It brings the instructions (commands) form memory, translates them,
performs arithmetic and logical operations and stores the results
temporarily. A typical microprocessor has three important parts. They are

1) Arithmetic and Logical Unit.

2) Timing & Control Unit.

3) Registers

2) Arithmetical and Logical Unit

 This unit carries arithmetic operations such as addition, subtraction
etc. and logical operations like less than, greater than etc. on input data in
the form of binary numbers.

3) Timing and Control Unit

 It provides timing and control signals to different units in the
computer. It routes the instructions and data that are to be transferred
from one unit to other.

4) Registers

 These are memory elements to store data in the form of binary bits.
A register is a group of 8-bits to store memory words.

 Micro Processors

 NOTES

8

5) Memory

 It is a device to store data, instructions and results in the form of
binary bits. Again memory can be classified into registers known as
memory locations. Each location has an address to identify it by CPU.
Memories can be classified into two categories. They are Prime memory
and Secondary memory.

 Prime memories are the memories, which can be accessed directly
by CPU. These are mainly developed by semiconductor materials and
hence known as semiconductor memories. The speed of these memories
is high but cost is also high.

 These are two types:

(1) RAM used to store user programs

(2) ROM used store system programs.

 Secondary memories are memories, which cannot be accessed
directly by CPU. These are made up of magnetic materials. Their speed is
low and their cost is low. Floppies compact disks, magnetic tapes etc.
come under this category.

6) Input device
 An input device is used to provide information needed for CPU to
perform an operation. It converts instructions; data and other information
into binary form suitable for CPU.

Example: Key board, mouse etc.

7) Output Device

 An output device is used to store or retrieve the results from CPU
and to convert it into usable format for a particular application.

Example: Printers, CRT, D/A converters etc.

8) Buses

 These are group of wires (conducting lines) used to transfer data or
control information in the form of electric signals from one device to
another:

1-6 8085 PIN CONFIGURATION AND ARCHITECTURE

1-6-1 Features of 8085

The important features of 8085 microprocessor are

 1) Number of pins : 40

 Micro Processors

 NOTES

9

 2) Technology : N-MOS

 3) Package : DIP (dual line in package).

 4) Speed (clock frequency) : 3.125 MHz.

 5) Power Supply : + 5V DC.

 6) Address Lines : 16

 7) Data lines : 8

 8) Control Lines: 3

 9) Status lines : 3

 10) Address Space : 16K (65, 536).

 11) Word Size : 8 bits.

1-6-2 Architecture of 8085

The block diagram of 8085 microprocessor is shown in figure. The
important units are

 Micro Processors

 NOTES

10

Fig 1.2 Block Diagram of 8085

1-6-3 Registers

 It has both 8-bit registers and 16-bit registers. There are 8
addressable registers of 8-bit length and 3 sixteen bit registers. These
registers are again classified into general purpose registers and special
purpose registers.

General Purpose Registers:

 These are also known as scratch pads. These are 6 registers
namely B, C, D, E, H, L of 8 bit length and are paired so that we can store
data in register pairs BC, DE, HL. These registers are used for only
temporary storage of data. When these registers are used in register pair

 Micro Processors

 NOTES

11

mode the higher order bits are stored in first register and lower order bits
are stored in second register. Among these HL pair has a significant
advantage. The 16 bit data stored in HL pair is assumed as address so
that it can be used as memory pointer. It is used to hold the address of
memory in indirect addressing mode.

 Data can be transferred from one register to other register. If the
data is transferred from a source register to destination register, the data
in the destination register gets erased and the data in the source gets
copied into destination. There is no possibility of performing arithmetic and
logical operations between these registers.

1-6-4 Special Purpose Registers

Accumulator:

 This is an 8 bit register used for temporary storage of data during
execution of a program. It holds one operand during arithmetic operations
and serves as one input of ALU. The size of this register, determines word
length of microprocessor. After every operation result is stored in
accumulator since 8085 is accumulator based processor.

Program Counter:

 This is also known as instruction pointer or location counter or
memory pointer. Program counter holds the address of next instruction to
be executed by the processor. Thus the length of the program counter is
16 bits.

 The set of instructions are stored serially in memory. The address of
first instruction in memory is stored into program counter. During normal
execution, after every instruction, program counter is incremented by the
length of previous instruction and execution is transferred to the next
instruction. This process continues until it encounters a pseudo instruction
HLT (Halt). The program counter will increment one by one in normal
execution when an interrupt or jump instruction or a CALL is encountered
the contents of program counter are suddenly changed to specified
memory location. When reset is activated during normal execution the
contents of program counter gets erased and it is stored by 0000.

Flag or Status Register:

 It is an 8 bit register which is used to resemble the status of ALU. In
8 bits, 5 bits carry significant information in the form of electrical signals
known as flags. These flags are affected by arithmetic and logical

 Micro Processors

 NOTES

12

operations that are performed in ALU. These flags reflect the status or
conditions that occur in ALU.

1) Carry Flag: It is set when ever a carry/barrow occurs during
arithmetic operations such as addition or subtraction. Otherwise it is
reset.

2) Auxiliary Carry Flag: It is set whenever there occurs a carry at the 4th
bit during an 8 bit operation, otherwise it is reset.

3) Parity Flag: It is set when there is even number of ones in the final
result after an arithmetic/logical operation. If there is odd number of
ones it is reset.

4) Sign Flag: It is set if the result is negativeve after an arithmetic
operation, otherwise it is reset.

5) Zero Flag: It is set if the result after an operation is zero, otherwise it
is reset.

Instruction Register:

 After fetching an instruction from the memory the corresponding
machine code is entered into instruction register in the form of BCD. This
BCD code is decoded into respective parallel signals and they are given to
the timing and control unit. During the execution of an instruction
processor fetches instructions byte by byte from memory. In the
instructions there may be opcode and operands (data or address). Data is
transferred to the registers and opcode is loaded into instruction register.
Hence its length is 8 bit.

Temporary Register:

 It is used to hold the one of the two operands during and arithmetic
or logical operation and is given as second input to ALU. Hence its length
is 8 bits.

Address Latch:

 It is a 16 bit register to hold the address of operands when AD bus is
converted from address but to data bus during the third clock cycle.

1-6-5 ALU (Arithmetic and Logical Unit):

 An ALU is a multi operational, combinational digital circuit. It has
two important units. They are arithmetic unit and logical unit. One of these
two units is enabled by the help of a control signal known as mode select,
(M) and a particular function is selected in respective units by the help of

 Micro Processors

 NOTES

13

function select signals S0 and S1. Both the inputs A and B are given to
two units and the output is taken only from the selected unit.

Fig 1.3

Arithmetic Unit: This unit consists of a parallel adder which can perform
addition, subtraction, increment and decrement.
Logical Unit: This unit has four basic gates to perform logical operations like
AND, OR, NOT and EXOR.

1-6-6 Timing and Control Unit:

Fig 1.4

All operations that are performed by the processor must be synchronized
with the clock. To sequence the operations in different steps certain

 Micro Processors

 NOTES

14

timing signals are needed. These are generated by system clock. Both
timing signals from system clock and controls signals from the instruction
decoder are given to a logic circuit so that the respective operation is
enabled.

1-6-7Stack

 Stack is a group of memory locations or an array of registers used to
store information temporarily on the basis of FILO(first in last out) or LIFO
(last in first out). Entering the data into stack is known as PUSH operation.
Retrieving the data from stack is known as POP operation.

 The first byte that is entered into the stack will be stored at the
bottom of the stack. The last byte that is stored in the stack will appear at
the top of the stack. Always the address of the element at the top of the
stack is represented by a 16 bit register known as stack pointer.

 During push operation stack pointer contents are incremented and
during pop operation its contents are decremented.

 Pop and push operations are similar to a manner of filling a stack of
papers in a file. Always the page number of the page which is at the top is
represented by stack pointer. The major applications of stack are – it is
used in recursive process and used to store the information regarding sub
programs.

 In addition to these, address/data buffers, buses and different logic
circuits are included to fulfill the requirements.

1-7 PIN CONFIGURATIONS OF 8085

The pins and signals of 8085 are classified into 6 groups. They are

 1) Address Group

 2) Control Group

 3) Data Group

 4) Interrupt and externally initiated signals

 5) Serial I/O ports and signals

 6) Power supply and frequency signals.

 Micro Processors

 NOTES

15

Fig 1.5 Pin Diagrams of 8085

1-7-1 Address Group (Pin No: 22-19 and 21-28: AD0-7 and A8-15):

 These 16 lines are divided into two sets, carrying address of memory
/ peripherals that are accessed by processor. AD0-7 is known as lower
order address bus and A8-15 is known as higher order address bus. The
lower order bus is a multiplexed bus (if a bus carries different types of
signals during different times then it is known as multiplexed bus). During
first clock cycle lower order address bus acts as address bus and in
remaining cycles it acts as data bus.

1-7-2 Data Group (Pin No: 12-19: AD0-7):

 These 8 lines are used to carry 8 bit data. It is a bi-directional bus
carrying data from processor to peripherals and vice versa.

1-7-3 Control Group

ALE (Address Latch Enable Pin No: 30):

 This signal is used to latch the address on AD bus during the second
clock cycle when it is changing from address bus to data bus.

WR (Pin No: 31):

 A low voltage on this pin enables to store data into the memory or
peripherals by the processor.

RD (Pin No: 32):

 A low voltage on this pin enables to read from the memory of
peripherals by the processor.

 Micro Processors

 NOTES

16

IO/M (Pin No: 34):

 A low voltage on this pin selects memory otherwise it selects
peripherals.

READY (Pin No: 35):

 This is a request signal by the memory so that process goes into
waiting state for a short interval, so that the speed of the processor is
synchronized with memory.

S1 & S2 (Pin No: 29, 33):

 These are status signals used to represent status of processor. By
changing the signals on these two pins different operations are performed.

IO/M S1 S2 Operation

0 1 1 Op-code fetch

0 1 0 Memory Read

0 0 1 Memory Write

1 1 0 Input Read

1 0 1 Output Write

1 1 1 INTA

1-7-4 Interrupt & externally initiated Signals

TRAP (Pin No: 6): It is non maskable interrupt and also it is vectored
interrupt.

RST 5.5, 6.5, 7.5 (Restart Interrupts Pin No: 7, 8, 9): These are vectored
interrupts and are maskable

INTR (Interrupt Request Pin No: 10): This is an un-vectored interrupt.
When a high voltage on this pin arrives, processor suspends its normal
operation and transfers the execution to the service routine.

INTA (Interrupt Acknowledge Pin No: 11):A low voltage on this pin
represents that processor is acknowledging an interrupt request.

 Micro Processors

 NOTES

17

RESET IN/OUT: (Pin No: 36, 3): When the signal on the reset is low,
processor suspends its current execution, buses are tri stated and it goes
to first location or starting point. When reset-out is made high processor
resets all other devices such as memory and peripherals.

HOLD (Pin No: 38): This signal is a hold request by the memory so that to
operate in DMA mode

HLDA (Hold Acknowledge Pin No.: 39): A high voltage on this pin
makes to suspend the normal operation of processor and it allows memory
to deal with I/O devices in DMA mode.

1-7-5 Serial I/O Ports Signals: These signals are used to transfer serially.
Data is generally transferred in parallel mode by the help of data bus. If we
want to transfer serially we can use these pins.

SID (Serial Input Data Pin No: 5): When the data is given on this line it is
loaded serially into the processor.

SOD (Serial Output Data Pin No.: 4): Serial data from the processor can
be received on this pin.

1-7-6 Power Supply & Clock Signals

Vcc(Pin No: 40): Positive terminal of DC power supply + 5V is connected.

Vss (Pin No: 20): Ground terminal of DC power supply.

X1 & X2 (Pin No: 1, 2): Quartz crystal oscillator is connected
between these two pins to produce a frequency of 6.25 MHz clock signal.

CLK (Pin No: 37): This is used a system clock for memory devices.

 Micro Processors

 NOTES

18

2. 8086 MICROPROCESSOR

Structure

2-1 Introduction
2-2 8086 Microprocessor
2-3 8086 Architecture

2-3-1General purpose registers
2-3-2 Pointers
2-3-3 Index registers

 2-3-4 Segment Registers
 2-3-5 Status Register
 2-3-6 Functional Units of 8086
2-4 Memory segmentation
2-5 Addressing modes of 8086

Objectives
After going through this unit you will be able to:

 Detailed description of pins of 8086

 Learn detailed architecture of 8086

 Details of internal elements of 8086

 Come across addressing modes of 8086

 Familiar with Instructions of 8086

2-1 Introduction
 Intel 8086 microprocessor is a first member of x 86 families of
processors. Advertised as a "source-code compatible" with Intel 8080 and
Intel 8085 processors, the 8086 was not object code compatible with
them. The 8086 has complete 16-bit architecture 16-bit internal registers,
16-bit data bus, and 20-bit address bus (1 MB of physical memory).
Because the processor has 16-bit index registers and memory pointers, it
can effectively address only 64 KB of memory. To address memory
beyond 64 KB the CPU uses segment registers - these registers specify
memory locations for code, stack, data and extra data 64 KB segments.

2-2 8086 Microprocessor

Features of 8086

 1) Number of pints : 40
 2) Technology : H-MOS
 3) Package : DIP (dual line in package).
 4) Number of transistors : 29000
 5) Speed (clock frequency) : 5 MHz.

 Micro Processors

 NOTES

19

 6) Number of versions : 3(8086, 8086-1, 8086-2)
 7) Power Supply : + 5V DC.
 8) Address Lines : 20
 9) Data lines : 16
 10) Address Space : 1 MB
 11) Word Size : 16 bits.
 12) Number of Modes : 2(Minimum/Maximum)

2-3 8086 Architecture

Register organization of 8086: Before going to the architecture of 8086,
let us discuss about the register organization of 8086. The 8086 contains
fourteen 16 bit registers. They are grouped into

 1) General purpose registers

 2) Pointers

 3) Index registers

 4) Segment registers

 5) Instruction pointer and status register.

 15 8 7 0

AH(8) AL(8)

BH(8) BL(8)

CH(8) CL(8)

DH(8) DL(8)

Stack Pointer(16)

Base Pointer(16)

Source Index(16)

Destination Index(16)

Code Segment(16)

Data Segment(16)

Stack Segment(16)

Extra Segment(16)

Instruction Pointer(16)

Flags(16)

 Micro Processors

 NOTES

20

2-3-1 General purpose registers:

 There are 4-16 bit registers AX, BX, CX, DX. They can be used to
store either 16-bit data or 8-bit data. Each 16 bit register can be viewed as
two 8-bit registers, one is lower order and another is higher order as
shown in the table.

16-bit register
Higher order
8-bit register

Lower order 8-
bit register

AX AH AL

BX BH BL

CX CH CL

DX DH DL

A part from storing the operands

AX: This register serves as accumulator.

BX: This is used as base register for memory address calculations.

CX: This register is used as a counter for loop and string instructions.

DX: It is used to hold I/O address during I/O instructions. If the result is
more than 16-bits, the lower order 16-bits are stored in accumulator
and higher order 16-bits are stored in DX register.

2-3-2 Pointers:

 There are two pointers and SP and BP. SP is used as stack pointer
to represent the stack top address. It contains offset address. BP is the
base register for accessing stack. Within stack several data areas may
exist. BP is used to hold the offset of the base of a data area in stack
segment. It is also can be used as general purpose register.

2-3-3 Index registers:

 SI and DI are index registers. In the case of string instructions, SI
is used to indicate source index and DI destination index. The contents of
SI are added to the contents of DS to get the actual source address of the
data. The contents of DI are added to the contents of ES to get the actual
destination address of the data. They are also can be used in memory or
stack address computation.

 Micro Processors

 NOTES

21

2-3-4 Segment Registers:

 The memory used with an 8086 based system is divided into the
four types of segments, each segment of size 64 K bytes. They are

1) Code segment: It contains instruction codes of a program.

2) Data segment: It contains variables and constants of the program.

3) Stack segment: Is used to store the addresses and data of a subroutine.

4) Extra segment: Contains the destination of some data of certain string
instructions.

 Since the size of each segment is 64KB, 16-bit address is sufficient
to access it. The starting address of each segment is stored in segment
registers. There are four segment registers Code segment register (CS),
data segment register (DS), stack segment register (SS), extra segment
register (ES).

 The address of memory that is accessed by 8086 has 20 bits
(Physical address); Segment register contains the upper 16-bits of starting
address of a memory segment. CPU inserts four zeros for the lower 4 bits
of 20 bit address.

Example:

 If the contents of CS are 2000H, then the code segment begins
from 20000H address.

 The 64KB memory segment can reside anywhere in the 1MB
memory space but its starting address is always divisible by 16(10h). How
far a memory location is within memory segment from the starting address
is called offset or effective address. The contents of a segment register
are shifted left by 4 bits and then an offset is added to it to compute the
required 20 bit physical address.

2-3-5 Status Register

 It is a 16 bit register called as flag register or program status word.
It has nine flags out of which 6 are conditional flags and remaining 3 are
status flags.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0

X X X X
O
F

D
F

IF
T
F

S
F

Z
F

X
A
F

X
P
F

X
C
F

 Micro Processors

 NOTES

22

1. Carry Flag: It is set when ever a carry/barrow occurs during
arithmetic operations such as addition or subtraction. Otherwise it is
reset.

2. Auxiliary Carry Flag: It is set whenever there occurs a carry at the
BCD arithmetic operations, otherwise it is reset.

3. Parity Flag: It is set when there is even number of ones in the final
result after an arithmetic/logical operation. If there is odd number of
ones it is reset.

4. Sign Flag: It is set if the result is negative after an arithmetic
operation, other wise it is reset.

5. Zero Flag: It is set if the result after an operation is zero, other wise
it is reset.

6. Overflow flag: It is set when ever a carry/barrow occurs during sign-
arithmetic operations such as addition or subtraction. Otherwise it is
reset.

7. Trap flag: It is used for single step control. When it is set to 1, a
program can run on single step mode. When an interrupt is
recognized it is automatically cleared.

8. Interrupt flag: If it is set to 1 the maskable interrupt INTR of 8086 is
enabled and if it is 0 the interrupt is disabled.

9. Directional flag: It is used in string operations. If it is set to 1 string
bytes are accessed from high memory address to low memory
address. When it is 0 they are accessed from low memory address
to high memory address.

 Micro Processors

 NOTES

23

2-3-6 Functional Units of 8086

The architecture of 8086 is divided into two parts that are Bus Interfacing
Unit (BIU) and Execution Unit (EU).

Fig 1.6 Block Diagram of 8086

BIU (Bus interfacing unit): BIU reads data from memory or ports and
writes into memory of ports. It handles all interfaces with the external bus
and generates external memory and I/O addresses.

 It fetches instruction codes from the memory and keeps them into 6
bytes instruction queue. It fills up the queue whenever the bus is idle and
there is space in queue.

 The complete physical address of 20 bits length is generated using
segment registers and offset register of each length 16 bit. Segment
address is shifted left bit wise 4 times and the result is added to the offset
address.

 Micro Processors

 NOTES

24

Example:

Segment address = 1005h

Offset address = 5555h

Physical address = 10050 + 5555 = 155A5h

Thus the segment value 1005 can have offset values from 0000 to FFFF.

 While the processor internally executes an instruction fetched, the
external bus remains free. This free time slot is utilized to overlap fetch
and execute cycles. This concept is known as pipe lining. Now the
external bus is used to fetch the machine code of next instruction and
arrange it in a queue called as pre decoded instruction byte queue.

Instruction Queue:

 It is of length 6 bytes and works on FIFO. The instructions from the
queue are taken for decoding sequentially. Once a byte is decoded the
queue is rearranged by pushing it out and the queue status is checked for
the next opcode fetch cycle.

EU (Execution Unit):

 The execution unit contains the register set of 8086 except segment
registers and IP. It has 16 bit ALU to perform arithmetic and logical
operations. A 16 bit flag register to reflect the status of operations
performed by ALU. The decoding unit decodes the opcode byte issued
from the instruction byte queue. The timing and control unit derives the
necessary control signals to execute the instruction opcode received from
the queue. By the help of these signals execution is performed. EU also
informs BIU where to fetch instructions or read data from.

2-4 Memory segmentation

 The memory in 8086 is divided into a number of logical segments.
Each segment is of size 64KB and is addressed by one of the segment
register. The complete 1MB physical memory is divided into 16 segments
each of 64KB. The addresses of segments may be assigned as hexa
decimal form 0000 to F000. The offset addresses range from 0000 to
FFFF.

 Segments may be overlapped or non-overlapped. If a segment starts
at a particular address and its maximum size can be of 64KB. Another
segment may start before these 64KB locations of the first segment. Then
they are said to be overlapped.

The main advantage of segmented memory scheme is

1) Allows the memory capacity to be 1MB although the actual
addresses to be handled are of 16 bits size.

 Micro Processors

 NOTES

25

2) Allows the placing of code, data and stack portions of the same
program in different parts of memory.

3) Permits a program or data to be fit into different areas of memory
each time program is executed.

Physical memory organization:

 The 1MB physical memory is organized as odd bank and even
banks, each of 512KB. Byte data with even address is transferred on D7-
D0, while byte data with odd address is transferred on D15-D8 bus lines.

 By the help of BHE and A0 we can select either even or odd or both
the banks. If the processor fetches a word there are different possibilities
like

 1) Both the bytes may be data operands

 2) Both the bytes may contain opcode bits.

 3) One of the bytes may be opcode while the other may be data.

 In referring word data BIU requires one or two memory cycles
depending upon whether the starting byte is located at an even or odd
address. It is always better to locate the word data at an even address. To
read or write a complete word if it is located at an even address it requires
only one cycle.

 The locations from FFFF0 to FFFFF are reserved for operations
including jump to initialization program and I/O processor initialization. The
locations 00000 to 003FF are reserved for interrupt vector table.

2-5 Addressing modes of 8086

 The way by which an operand is specified in an instruction is called
addressing mode. An addressing mode specifies where the operand is
available for current instruction to be executed.

 There are total eight addressing modes for 8086 instructions to
specify operands.

Register Addressing Modes:

 In this mode data is stored in a register and it is referred using
particular register. All registers except IP can be used in this mode.

Example: MOV AX, BX

 Instruction Register

 Micro Processors

 NOTES

26

Immediate Addressing Mode:

In this mode immediate data given by programmer which is a part of
instruction is used as operand. This data is available in successive bytes
of instruction code.

Example: MOV AX, 0005

Instruction

Direct addressing Mode:

The operands will reside in memory and the address of memory is
specified in the instruction as a part of it in successive bytes.

Example: MOV AX, (5000)

 Instruction Memory

Register indirect addressing mode:

The operands will reside in memory and its address is specified indirectly
by using offset registers. The offset address may be in either BX or SI or
DI registers. The default segment is either DS or ES. The data is
supposed to be present at the address pointed by above registers in the
default segment

Example: MOV AX, (BX)

 Instruction Register Memory

Indexed addressing Mode:

This is same as register indirect, but the offset of the operand is stored in
one of the index registers. DS and ES are default segments and SI and DI
are used for index registers.

Register Datum

Datum

EA* Datum

Register Datum Register

 Micro Processors

 NOTES

27

Example: MOV AX, (SI)

 Instruction Register Memory

Based indexed addressing mode:

 This is same as register indirect, but the effective address of the
operand is formed by adding contents of base register to the index
registers. DS and ES are default segments, SI and DI are used for index
registers and BX or BP is used as base registers.

Example: MOV AX, (BX) (SI)

Register relative addressing mode:

The address of the operands is formed by adding 8-bit or 16 bit
displacement with the content of any one of the registers BX, BP, SI, DI in
the default segments.

Example: MOV AX, 50(BX)

Relative Based Indexed Addressing Mode:

 The address of the operands is formed by adding 8-bit or 16-bit
displacement with the contents of any one of the base registers BX, BP
and index register SI, DI in the default segments.

Example: MOV AX, 50[BX] [SI]

BASE INDEX INDEX

 INSTRUCTION REGISTER

BASE ADD

 REGISTER

+ DATUM

 THEORY
EA*

REG DISP

 INSTRUCTION

ADDR

 REGISTER

+ DATUM

 THEORY
EA

Register Datum

 Micro Processors

 NOTES

28

Intra segment/inter segment addressing modes:

 If the location to which the control is to be transferred lies in a
different segment other than the current one the mode is called inter
segment mode. If the destination location lies in the same segment the
mode is called intra segment mode.

Intra segment Direct Mode:

 The address to which the control is to be transferred lies in the same
segment in which the control transfer instruction lies and appears directly
in the instruction as an immediate displacement value. The displacement
is computed relative to the content of the instruction pointer IP. The
effective address is the sum of 8 bit or 16 bit displacement and current
content of IP.

Intra segment Indirect Mode:

 The displacement to which the control is to be transferred is in the
same segment in which the control transfer instruction lies but it is passed
to the instruction directly. The addressing mode can be used in
unconditional branch instructions. The branch address is found as the
content of a register.

BASE INDEX DISP

 INSTRUCTION

BASE

 REGISTER

+ DATUM

 THEORY
EA

INDEX

 REGISTER

DISPP

IP

+
EA

INSTRUCTION

EFF BRANCH ADDR

 REGISTER

EA
COMPUTER ADD MODE

INSTRUCTION

EFF BRANCH ADDR

MEMORY

 Micro Processors

 NOTES

29

Example: The effective address in different addressing modes is
calculated as shown below

Let displacement (offset) = 5000h

[AX] = 1000H [BX] = 2000H [SI] = 3000H [DI] = 4000H [BP] =
5000H [SP] = 6000H [CS] = 0000H [DS] = 1000H [SS] = 2000H
[IP] = 7000H

1. Direct addressing mode:

 DS: OFFSET = 1000: 5000

 SHIFTING DS BY 4 BITS LEFT= 10000

 OFFSET = 5000

 EFFECTIVE ADDRESS = 15000h

2. Register Indirect:

 DS: BX = 1000 : 2000

 SHIFTING DS = 10000

 [BX] = 2000

 EFFECTIVE ADDRESS = 12000h

3. Register relative

 DS: [5000 + BX) = 10000

 SHIFTING DS = 5000

 OFFSET = 2000

 [BX] = 2000

 EFFECTIVE ADDRESS = 17000h

4. Based Indexed

 MOV AX, [BX] [SI]

 DS: [BX + SI]

 SHIFTING DS = 10000

 [BX] = 2000

 [SI] = 3000

 EFFECTIVE ADDRESS = 15000h

5. Relative based indexed

 DS: [BX + SI + 5000] = 10000

 SHIFTING DS = 2000

 [SI] = 3000

 OFFSET = 5000

 EFFECTIVE ADDRESS = 1A000h

 Micro Processors

 NOTES

30

3. INSTRUCTION SET OF 8086

Structure

3-1Introduction

3-2 Types of instructions

3-3 Data copy/transfer instructions

3-4 Arithmetic instructions

3-5 Logical Instructions

3-6 String Manipulation Instructions

3-7 Control Transfer or Branching Instructions

3-7-1 Unconditional Branch Instructions

 3-7-2 Conditional Branch Instructions

Objectives

 Discuss varies types of instructions

3-1Introduction

 Instruction: An instruction is a command given to processor to
perform a specific operation, in binary form. Generally these instructions
are written in mnemonics. The program that is written in the form of
mnemonics is known as Assembly language program. This assembly
language program is converted into machine language by the help of an
assembler. If the assembler is not present, the user himself must convert
the mnemonics in the ALP into respective operation codes.

 Every instructions has two fields, they are op-code and operands.
Op-code specifies what type operation must be performed. Where as
operands, are the data elements on which the operation is carried out.
Operands may be registers in CPU, memory locations or immediate data
given by the programmer.

 The instructions of a microprocessor, has one or more fields with in
them. The first field is called opcode field which indicates the type if
operation to be performed by CPU. The other fields are operand fields.

 Micro Processors

 NOTES

31

The CPU executes the instruction using the information which resides in
these fields.

3-2 Types of instructions

 There are six general formats of instructions in 8086. The length of
instruction may vary from 1 byte to 6 bytes.

3-2-1 One byte instruction: The length of the instruction is 1 byte and
may have the implied data or register operands. The least 3-bits of opcode
are used to specify the register operands, otherwise 8-bits form opcode
and the operands are implied.

3-2-2 Register to Register: The format is 2 bytes long. First byte is
opcode and width of the operand specified by w bit. The second byte of
the code contains register and R/M (register or memory) fields.

3-2-3 Register to/from Memory with no Displacement: The length of
instruction is 2 bytes and similar to register to register format except for
the MOD field. The MOD field shows the mode of addressing.

3-2-4 Register to/from Memory with Displacement: This instruction
contains one or two additional bytes for displacement along with 2 byte
format of register to/from memory without displacement.

3-2-5 immediate operand to register: The first byte and 3 bits from the
second byte which are used for REG field in case of register to register
format are used for opcode. It also contains 1 or 2 bytes of immediate
data.

3-2-6 immediate operand to Memory with 16 bit displacement: It
requires 5 to 6 bytes length. The firs 2 bytes contain the information
regarding opcode, mode and R/M fields. The remaining 2 bytes of
displacement and 2 bytes of data.The opcodes have the single bit
indicators. Their definitions are given below.

OPCODE OPCODE REG

7 3 2 0 7 0

OPCODE w 1 1 REG R/M

7 6 5 3 2 0 15 8

OPCODE w MOD REG R/M

7 6 5 2 0 15 8

OPCODE

7 0

 MOD REG R/M

7 0

LOW BYTE DISP

7 0

HIGH BYTE DISP

7 0

OPCODE

7 0

 11 OPCODE R/M

7 0

LOW BYTE DISP

7 0

HIGH BYTE DISP

7 0

 Micro Processors

 NOTES

32

W-bit: Indicates, whether the instruction is to operate over an 8 bit or 16
bit data/operands. If it is 0 the operand is 8 bits long and if it is a 1 it is 16
bit long.

D-bit: It is valid in the case of double operand instructions. One of the
operands must be a register specified by REG field. The register specified
by REG is source operand if D = 0 else it is a destination operand.

Register Address
(code)

Registers

W=0 W=1

Segment

code

Segment

Register

000

001

010

011

100

101

110

111

AL

CL

DL

BL

AH

CH

DH

BH

AX

CX

DX

BX

SP

BP

SI

DI

00

01

10

11

ES

CS

SS

DS

Table: 3.1 Assignment of Codes with different registers

R/M

Memory operands With displacement Register
operands 0 bit 8-bit 16-bit

MOD :00 01 10
11

W=0
W=1

000 (BX) + (SI) (BX) + (SI) + D8 (BX) + (SI) + D16 AL AX

001 (BX) + (DI) (BX) + (DI) + D8 (BX) + (DI) + D16 CL CX

010 (BP) + (SI) (BP) + (SI) + D8 (BP) + (SI) + D16 DL DX

011 (BP) + (DI) (BP) + (DI) + D8 (BP) + (DI) + D16 BL BX

100 (SI) (SI) + D8 (SI) + D16 AH SP

101 (DI) (DI) + D8 (DI) + D16 CH BP

110 D16 (BP) + D8 (BP) + D16 DH SI

111 (BX) (BX) + D8 (BX) + D16 BH DI

Table: 3.2 Addressing Modes and the Corresponding MOD, REG and R/M
fields

 Micro Processors

 NOTES

33

S-bit: It is called as sign extension bit. The S bit is used along with W bit
to show the type of the operation.

 S W operation

 0 0 8-bit operation with 8 bit immediate operand

 0 1 16-bit operation with 16-bit immediate operand

 1 1 16-bit operation with a sign extended immediate
data

V-bit: This is used in the case of shift and rotates instructions. This bit is
set to 0 if shift counts 1 and is set to 1, if CL contains the shift count.

Z-bit: This is used by REP instruction to control the loop. If Z bit is equal to
1 the instruction with REP prefix is executed until the zero flag matches
the Z bit.

 Segment registers are only 4 hence 2 bits are needed for them,
other registers are 8 hence they need 3 bits for coding. To allow the use of
16 bit registers as two 8 bit registers they are code with W bit.

 To find out MOD and R/M field of an instruction we must know
addressing mode which specifies how the effective address may be
computed

 The 8086 instructions are categorized into the following types.

(i) Data Copy/ Transfer Instructions:

 This type of instructions is used to transfer data from source operand
to destination operand. All the store, move, load, exchange, input and
output instructions belong to this category.

(ii) Arithmetic and Logical Instructions:

 All the instructions performing arithmetic, logical increment, decrement,
compare and scan instructions belong to this category.

(iii) Branch Instructions:

 These instructions transfer control of execution to the specified
address. All the call, compare and scan instructions being to this class.

 Micro Processors

 NOTES

34

(iv) Loop Instructions:

 If these instructions have REP prefix with CX used as count register,
they can be used to implement unconditional and conditional loops. The
LOOP, LOOPNZ and LOOPZ instructions belong to this category.
These are useful to implement different loop structures.

(v) Machine Control Instructions:

 These instructions control the machine status. NOP, HLT, WAIT and
LOCK instructions belong t o this class.

(iv) Flag Manipulation Instructions:

 All the instructions which directly affect the flag register, come under this
group of instructions. Instructions like CLD, STD, CLI, STI, etc. belong to
this category of instructions.

(vii) Shift and Rotate Instructions:

 These instructions involve the bitwise shifting or rotation in either
direction with or without a count in CX.

(viii) String Instructions:

 These instructions involve various string manipulation operations like
load, move, scan, compare, store, etc. These instructions are only to
be operated upon the strings.

3-3 Data copy/Transfer instructions

MOV: Move

 This data transfer instruction transfers data from one
register/memory location to another register/memory location. The source
may be any one of the segment registers other general or special purpose
registers or a memory location and, another register or memory location
may act as destination.

 However, in the case of immediate addressing mode a segment
register cannot be a destination register. In other words, direct loading of
the segment registers with immediate data is not permitted. To load the
segment registers with immediate data, one will have to load any general
purpose register with the data and then it will have to be moved to that
particular segment register.

Example: Load DS with 5000H.

 Micro Processors

 NOTES

35

1. MOV DS, 5000H; Not permitted (invalid)
 Thus to transfer an immediate data into the segment register, the

correct procedure is given below.
2. MOV AX, 5000H
 MOV DS, AX
 It may be noted, here, that both the source and destination operands

cannot be memory locations (Except for string instructions). Other
MOV instruction examples are given below with the corresponding
addressing modes.

3. MOV AX; 5000H ; Immediate
4. MOV Ax, BX ; Register
5. MOV AX, [SI] ; Indirect
6. MOV AX, [2000H] ; Direct
7. MOV AX, 50H[BX] ; Based relative, 50H displacement

PUSH: Push to Stack

 This instruction pushes the contents of the specified register/memory
location on the stack. The stack pointer is decremented by 2, after each
execution of the instruction. The actual current stack top is always
occupied by the previously pushed data. Hence, the push operation
decrements SP by two and then stores the two byte contents of the
operand onto the stack. The higher byte is pushed first and then the lower
byte. Thus out of the two decremented stack addresses the higher byte
occupies the higher address and the lower byte occupies the lower
address. The examples of these instructions are as follows:

Example:
1. PUSH AX
2. PUSH DS
3. PUSH [5000H] ; Contents of location 5000h and 5001h in DS

are pushed onto the stack.

POP: Pop from Stack

 This instruction when executed, loads the specified register/memory
location with the contents of the memory location of which the address is
formed using the current stack segment and stack pointer as usual. The
stack pointer is incremented by 3.

Example

1. POP AX
2. POP DS
3. POP [500H]

ECHG: Exchange

 This instruction exchanges the contents of the specified source and
destination operands, which may be registers or one of them may be a

 Micro Processors

 NOTES

36

memory location. However, exchange of data contents of two memory
locations is not permitted.

Example:

1. XCHG [5000H], AX ; This instruction exchanges data between

AX and a memory location [5000H] in the
data segment.

2. XCHG BX ; This instruction exchanges data between
AX and BX.

In: Input the port

 This instruction is used for reading an input port. The address of the
input port may be specified in the instruction directly or indirectly. AL and
AX are the allowed destinations for 8 and 16-bit input operations. DX is
only register (implicit) which is allowed to carry the port address.

Example:

1. IN AL, 0300H ; This instruction reads data from an 8-bit

pot whose address is 03000 H and stores
it in AL.

2. IN AX ; This instruction reads data from a 16-bit
port whose address is in DX (implicit) and
stores it in AX.

Out: Output to the Port

 This instruction is used for writing to an output port. The address of
the output port may be specified in the instruction directly or implicitly in
DX. Contents of AX or AL are transferred to a directly or indirectly
addressed port after execution of this instruction. The data to an odd
addressed port is transferred on D8 D15 while that to an even addressed
port is transferred on D0 – D7. The registers AL and AX are the allowed
source operands for 8-bit and 16-bit operations respectively.

Example:

1. OUT 0300H, Al ; This sends data available in AL to a

whose address is 0300H.
2. OUT AX ; This sends data available in AX to a port

whose address is specified implicitly in
DX.

 Micro Processors

 NOTES

37

XLAT: Translate

 The translate instruction is used for finding out the codes in case of
code conversion problems, using look up table technique. We will explain
this instruction with the aid of the following example.

 A hexadecimal key pad having 16 keys from 0 to F is interfaced with
8086 using 8255. Whenever a key is pressed, the code of that key (0 to F)
is returned AL. For displaying the number corresponding to the pressed
key on the 7-segment display device, it is required that the 7-segment
code corresponding to the key pressed is found out and sent to the display
port. This translation from the code of the key pressed to the
corresponding 7-segment code is performed using XLAT instruction.

 For this purpose, one is required to prepare a look up table of codes,
starting from an offset say 2000H, and store the 7-segment codes for 0 to
F at the locations 2000H to 200FH sequentially. For executing the XLAT
instruction, the code of the pressed key obtained from the keyboard (i.e.
the code to be translated) is moved in AL and the base address of the look
up table containing the 7-segment codes is kept in BX. After execution of
the XLAT instruction, the 7-segment code corresponding to the pressed
key is returned AL, replacing the key code which was in AL prior to the
execution of the XLAT instruction. To find out the exact address of the 7-
segment code from the base address of look up table, the content of AL is
added to BX internally, and the contents of the address pointed to by this
new content of BX in DS are transferred to AL.

Example

MOV AX, SEG TABLE ; Address of the segment
 containing look-up table
MOV DS, AX is transferred in DS.
MOV AL, CODE ; Code of the pressed key
 is transferred in AL.
MOV BX, OFFSET TABLE ;Offset of the code look-up-table
 in BX
XLAT ; Find the equivalent code
 and store in AL

LEA: Load Effective Address:

 The load effective address instruction loads the offset of an operand
in the specified register. This instruction is more useful for assembly
language rather than for machine language. Suppose, in an assembly
language program, a label ADR is used. The instruction LEA BX, ADR
loads the offset of the label ADR in BX.

 Micro Processors

 NOTES

38

LDS/LES: Load Pointer to DS/ES

The instruction, Load DS/ES with pointer, loads the DS or ES register and
the specified destination register in the instruction with the content of
memory location specified as source in the instruction.

LAHF: Load AH from Lower Byte of Flag

This instruction loads the AH register with the lower byte of the flag
register. This instruction may be used to observe the status of all the
condition code flags (except over flow) at a time.

SAHF: Store AH to Lower Byte of Flag Register:

 This instruction sets or resets the condition code flags (except
overflow) in the lower byte of the flag register depending upon the
corresponding bit positions in AH. If a bit in AH is 1, the flag corresponding
to the bit position is set, else it is reset.

PUSHF: Push Flags to Stack

 The push flag instruction pushes the flag register on to the stack;
first the upper byte and then the lower byte will be pushed on to the stack.
The SP is decremented by 2, for each push operation. The general
operation of this instruction is similar to the PUSH operation.

POPF: Pop Flags from Stack

 The pop flags instruction loads the flag register completely (both
bytes) from the word contents of the memory location currently addressed
by SP and SS. The SP is incremented by 2 for each pop operation.

3-4 Arithmetic instructions

 These instructions usually perform the arithmetic operations, like
addition subtraction, multiplication and division along with the respective
ASCII and decimal adjust instructions. The increment and decrement
operations also belong to this type of instructions. Arithmetic instructions
affect all the condition code flags. The operands are either the contents of

YY XX

nn mm

BX

DS/ES

XX

YY

mm

nn

5000

5001

5002

5003

15 8 7 0 7 0

 Micro Processors

 NOTES

39

registers or memory locations or immediate data depending upon the
addressing mode.

ADD: Add

 This instruction adds an immediate data or contents of a memory
location specified in the instruction or a register (source) to the contents of
another register or memory location. The result is in the destination
operand. However, both destination operands cannot be memory
operands. That means memory to memory is not possible. Also the
contents of the segment registers cannot be added using this instruction.
All condition code flags are affected, depending upon the result.

Example:

1. ADD AX, 0100H ; Immediate
2. ADD AX, BX ; Register
3. ADD AX, [SI] ; Register indirect
4. ADD AX, [5000 H] ; Direct
5. ADD [5000H], 0100H ; Immediate
6. ADD 0100H ; Destination AX (Implicit)

ADC: Add with Carry

 This instruction performs the same operation as ADD instruction but
adds the carry flag bit (which may be set as a result of the previous
calculations to the result. All the condition code flags are affected by this
instruction.

Example:

1. ADC 0100 H ; Immediate (AX implicit)
2. ADC AX, BX ; Register
3. ADC AX, [SI] ; Register Indirect
4. ADC AX, [5000H] ; Direct
5. ADC [5000H], 0100 H ; Immediate

INC: Increment

 These instruction increments the contents of the specified register or
memory location by 1. All condition code flags are affected except
the carry flag CF. Instruction adds 1 to the contents of the operand.
Immediate data cannot be operand of this instruction.

Example:

1) INC AX ; Register
2) INC [BX] ; Register indirect
3) INC [5000H] ; Direct

 Micro Processors

 NOTES

40

DEC: Decrement

 The decrement instruction subtracts 1 from the contents of the
specified register or memory location. All condition code flags except carry
flag are affected depending upon the result. Immediate date cannot be
operand of the instruction.

Example:

1. DEC AX ; Register
2) DEC [5000H] ; Direct

SUB: Subtract

 The subtract instruction subtracts the source operand from the
destination operand and the result is left in the destination operand.
Source operand may be a register, memory location or immediate data
and the destination operand may be a register or a memory location, but
source and destination operands both must not be memory operands.
Destination operand cannot be an immediate data. All the condition code
flags are affected by this instruction.

Example:
1) SUB 0100H ; Immediate [destination AX]
2) SUB AX, BX ; Register
3) SUB AX, [5000H] ; Direct
4) SUB [5000H], 0100 ; Immediate

SBB: Subtract with Borrow

 Subtract with borrow instruction subtracts the source operand and
the borrow flag (CF) which may reflect the result of the previous
calculations, from the destination operand. Subtraction with borrow, here
means subtracting 1 from the subtraction obtained by SUB, if carry
(borrow) flag is set.

 The result is stored in the destination operand. All the flags are
affected (condition code) by this instruction.

Examples:

1) SBB 0100H ; Immediate [destination AX]
2) SBB AX, BX ; Register
3) SBB AX, [5000H] ; Direct
4) SBB [5000H], 0100 ; Immediate.

 Micro Processors

 NOTES

41

CMP: Compare

 This instruction compares the source operand, which may be a
register or an immediate data or a memory location, with a destination
operand that may be a register or a memory location. For comparison, it
subtracts the source operand from the destination operand but does not
store the result anywhere. The flags are affected depending upon the
result of the subtraction. If both of the operands are equal, zero flag is set.
If the source operand is greater than the destination operand, carry flag is
set or else, carry flag is reset.

Example:

1) CMP BX, 0100H ; Immediate
2) CMP 0100 ; Immediate [AX implicit]
3) CMP [5000H], 0100H ; Direct
4) CMP BX, [SI] ; Register indirect
5) CMP BX, CX ; Register

AAA: ASCII Adjust After Addition

 The AAA instruction is executed after an ADD instruction that adds
two ASCII coded operands to give a byte of result in AL. The AAA
instruction converts the resulting contents of AL to unpacked decimal
digits. After the addition, the AAA instruction examines the lower 4 bits of
AL to check whether it contains a valid BCD number in the range 0 to 9. If
it is between 0 to 9 and AF is zero, AAA sets the 4 high order bits of AL to
0. The AH must be cleared before addition. If the lower digit of AL is
between 0 to 9 and AF is set, 06 are add to AL. The upper 4 bits of AL are
cleared and AH is incremented by one. If the value in the lower nibble of
AL is greater than 9 than 9 then the AL is incremented by 06, AH is
incremented by 1, the AF and CF flags are set to 1, and the higher 4 bits
of AL are cleared to 0. The remaining flags are unaffected. The AH is
modified as sum of previous contents (usually 00) and the carry from the
adjustment. This instruction does not give exact ASCII codes of the sum,
but they can be obtained by adding 3030 H to AX.

1.AL 5 7 Before to AAA

 AL 0 7 After AAA Execution

2.AL 5 A

 AH 0 0
Previous to AAA

 A > 9, hence A + 6 = 1010 + 0110
=10000 B
= 10 H

0 1 0 0 - After AAA execution

0 0 5 A - Previous to AAA

AX

AX

 Micro Processors

 NOTES

42

AAS: ASCII Adjust AL After Subtraction:

 AAS instruction corrects the result in AL register after subtracting
two unpacked ASCII operands. The result is in unpacked decimal format.
If the lower 4 bits of AL register are greater than 9 or if the AF flag is 1, the
AL is decremented by 6 and AH register is decremented by 1, the CF and
AF are set to 1. Other wise, the CF and AF are set to 0, the result needs
no correction. As a result, the upper nibble of AL is 00 and the lower nibble
may be any number from 0 to 9. The procedure is similar to the AAA
instruction. AH is modified as difference of the previous contents (usually
zero) of AH and borrow for adjustment.

AAM: ASCII Adjust for Multiplication:

 This instruction, after execution, converts the product available in AL
into unpacked BCD format. This follows a multiplication instruction. The
lower byte of result (unpacked) remains in AL and the higher byte of result
remains in AH. The example given below explains execution of the
instruction. Suppose, a product is available in AL, say AL = 5D. AAM
instruction will form unpacked BCD result in AX. DH is greater than 9, so
add 6(0110) to it D + 6 = 13 H. LSD of 13H is the lower unpacked byte for
the result. Increment AH by 1, 5 + 1 = 6 will be the upper unpacked byte of
the result. Thus after the execution, AH = 06 and AL = 03.

AAD: ASCII Adjust for Division:

 Though the names of these two instructions (AAM and AAD) appear
to be similar, there is a lot of difference between their functions. The AAD
instruction converts two unpacked BCD digits in AH and AL to the
equivalent binary number in AL. This adjustment must be made before
dividing the two unpacked BCD byte. PF, SF, ZF are modified while AF,
CF, OF are undefined, after the execution of the instruction AAD. The
example explains the execution of the instruction. In the instruction
sequence, this instruction appears before DIV instruction unlike AAM
appears after MUL. Let AX contain 0508 unpacked BCD for 58 decimal,
and DH contain 02 H.

Example:

AX 5 8

AAD result in AL 0 3A 58d = 3Ah in AL

 The result of AAD execution will give the hexadecimal number 3 A in
AL and 00 in AH. Note that 3A is the hexadecimal equivalent of
58(decimal). Now, instruction DIV DH may be executed. So rather than
ASCII adjust for division, it is ASCII adjust before division. All the ASCII
adjust instructions are also called as unpacked BCD arithmetic

 Micro Processors

 NOTES

43

instructions. Now, we will consider the two instructions related to packed
BCD arithmetic.

DAA: Decimal Adjust Accumulator

 This instruction is used to convert the result of the addition of two
packed BCD numbers to a valid BCD number. The result has to be only in
AL. If the lower nibble is greater than 9, after addition or if AF is set, it will
add 06 to the lower nibble in AL. After adding 06 in the lower nibble of AL,
if the upper nibble of AL is greater than 9 or if carry flag is set, DAA
instruction adds 60 H to AL. The examples given below explain the
instruction.

Example:

(i) AL = 53, Cl = 29
 ADD Al, Cl ; AL  (AL) + (CL)
 ; AL  53 + 29
 ; AL 7C
 DAA ; AL  7C + 06 (as C > 9)
 ; AL  82
(ii) AL = 73 ; CL = 29
 ADD AL, CL ; AL  AL + CL
 ; AL  73 + 29
 ; AL  9C
 DAA ; AL 02 and CF = 1
 AL = 7 3
 +
 CL = 2 9
 9 C
 + 6
 A 2
 + 6 0
 CF = 1 0 2 in AL

The instruction DAA affects AF, CF, PF and ZF flags. The OF is
undefined.

DAS: Decimal Adjust After Subtraction

 This instruction converts the result of subtraction of two packed BCD
numbers to a valid BCD number. The subtraction has to be in AL only if
the lower nibble of AL is greater than 9, this instruction will subtract 06
from lower nibble of AL. If the result of subtraction sets the carry flag or if
upper nibble is greater than 9, this will subtracts 60 H from AL. This
instruction modifies the AF, CF, SF, PF and ZF flags. The OF is undefined
after DAS instruction. The examples are as follows:

 Micro Processors

 NOTES

44

Example

(i) AL = 75 BH – 46
 SUB AL, BH ; AL  2 F = (AL) – (BH)
 ; AF = 1
 DAS ; Al  2 9 (as F > 9, F – 6 = 9)
ii) AL = 38 CH = 6 1
 SUB AL, CH ; AL  D 7 CF = 1 (borrow)
 DAS ; AL  7 7 (as D > 9, D – 6 = 7)
 ; CF = 1 (borrow)

NEG: Negate

 The negate instruction forms 2’s complement of the specified
destination in the instruction. For obtaining 2’s complement, it subtracts
the contents of destination from zero. The result is stored back in the
destination operand which may be a register or memory location. If OF is
set, it indicates that the operation could not be completed successfully.
This instruction affects all the condition code flags.

MUL: Unsigned Multiplication Byte or Word

 This instruction multiplies an unsigned byte or word by the contents
of AL. The unsigned byte or word may be in any one of the general
purpose registers or memory locations. The most significant word of the
result is stored in DX, while the least significant word of the result is stored
in AX. All the flags are modified depending upon the result. The example
instructions are as shown. Immediate operand is not allowed in this
instruction. If the most significant byte or word of the result is 0 CF and QF
both will be set.

Example

1) MUL BH ; (AX)  (AL)  (BH)
2) MUL CX ; (DX) (AX)  (AX)  (CX)
3) MUL WORD PTR [SI] ; (DX) (AX)  (AX)  ([SI])

IMUL: Signed Multiplication

 This instruction multiplies a signed byte in source operand by a
signed byte in AL or signed word in source operand by signed word in AX.
The source can be a general purpose register, memory operand, index
register or base register, but it cannot be an immediate data. In case of
32-bit results, the higher order word (MSW) is stored in DX and the lower
order word is stored in AX. The AF, PF, SF and ZF flags are undefined
after IMUL. If AH and DX contain parts of 16 and 32-bit result respectively.
CF and OF both will be set. The AL and AX are the implicit operands in

 Micro Processors

 NOTES

45

case of 8 bits and 16 bits multiplications respectively. The unused higher
bits of the result are filled by sign bit and CF, AF are cleared.

Example

1) IMUL BH
2) IMUL CX
3) IMUL [SI]

CBW: Convert Signed Byte to Word

 This instruction converts a signed byte to a signed word. In other
words, it copies the sign bit of a byte to be converted to all the bits in the
higher byte of the result word. The byte to be converted must be in AL.
The result will be in AX. It does not affect any flag.

CWD: Convert Signed Word to Double Word

 This instruction copies the sign bit of AX to all the bits of the DX
register. This operation is to be converted to all the bits in the higher byte
of the result word. The byte to be converted must be in AL. The result will
be in AX. It does not affect any flag.

DIV: Unsigned Division

 This instruction performs unsigned division. It divides an unsigned
word or doubled word by a 16 bit or 8 bit operand. The dividend must be in
AX for 16-bit operation and divisor may be specified using any one of the
addressing modes except immediate. The result will be in AL (quotient)
while AH will contain the remainder. If the result is too big to fit in AL, type
0 (divide by zero) interrupt is generated. In case of a double word dividend
(32 bit), the higher word should be in DX and lower word should be in AX.
The divisor may be specified as already explained. The quotient and the
remainder in this case, will be in AX and DX respectively. This instruction
does not affect any flag.

IDIV: Signed Division

 This instruction performs the same operation as the DIV instruction,
but with signed operands. The results are stored similarly as in case of
DIV instruction in both cases of word and double word divisions. The
results will also be signed numbers. The operands are also specified in the
same way as DIV instruction. Divide by 0 interrupt is generated, if the
result is too big to fit in AX(16-bit dividend operation) or AX and DX (32-bit
dividend operation). All the flags are undefined after IDIV instruction.

 Micro Processors

 NOTES

46

3-5 Logical Instructions:

 These type of instructions are used for carrying out the bit by bit
shift, rotate, or basic logical operations. All the condition code flags are
affected depending upon the result. Basic logical operations available with
8086 instruction set are AND, OR, NOT and XOR.

AND: Logical AND

 This instruction bit by bit ANDs the source operand that may be an
immediate, a register or a memory location to the destination operand that
may be a register or a memory location. The result is stored in the
destination operand. At least one of the operands should be a register or a
memory operand. Both the operands cannot be memory locations or
immediate operands. An immediate operand cannot be a destination
operand.

Example:

1) AND AX, 0008H
2) AND AX, BX
3) AND AX, [5000H]
4) AND [5000H], DX

If the content of AX is 3F0FH, the first example instruction will carry out
the operation as given below. The result 3F9FH will be stored in the AX
register:

0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 = 3FOF H[AX]
                AND
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 = 0008H

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 = 0008 H [AX]
The result 008H will be in AX.

OR: Logical OR

 The OR instruction carries out the OR operation in the same way as
described in case of the AND operation. The limitations on source and
destination operands are also the same as in case of AND operation. The
examples are as follows:

Example:

1) OR AX, 0098H
2) OR AX, BX
3) OR AX, [5000H]
4) OR [5000H], 0008H

 Micro Processors

 NOTES

47

 The contents of AX are say 3FOFH, then the first example
instruction will be carried out as given below.

0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 = 3F0F H
                OR
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 = 0098H

0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 = 3F9F H

Thus the result 3F9FH will be stored in the AX register.

NOT: Logical Invert

 The NOT instruction complements (inverts) the contents of an
operand register or a memory location, bit by bit. The examples are as
follows:

Example

NOT AX

NOT [5000H]

In the content of AX is 200FH, the first example instruction will be
executed as shown.

AX = 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1
Invert                
 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
Result
In AX = D F F 0
The result DFFOH will be stored in the destination register AX.

XOR: Logical Exclusive OR

 The XOR operation is again carried out in a similar way to the
AND and OR operation. The constraints on the operands are also similar.
The XOR operation gives a high output, when the 2 input bits are
dissimilar. Otherwise, the output is zero.

Example:
1) XOR AX, 0098H
2) XOR AX, BX
3) XOR AX, [5000H]
 If the content of AX is 3F0FH, then the first example instruction
will be executed as explained. The result 3F97H will be stored in AX.

AX = 3F0FH = 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1
 XOR                
 0098H = 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
AX = Result = 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1
 = 3 F 9 7

 Micro Processors

 NOTES

48

TEST: Logical Compare Instruction

 The TEST instruction performs a bit by bit logical AND operation on
the two operands. Each bit of the result is then set to 1, if the
corresponding bits of both operands are 1, else the result bit is reset to 0.
The result of this anding operation is not available for further use, but flags
are affected. The affected flags are OF, CF, SF, ZF and PF.

SHL: Shift logical Left

This instruction performs bit-wise left shifts on the operand word or byte
that may reside in a register or a memory location, by the specified count
in the instruction and inserts zeros in the shifted positions. The result is
stored in the destination operand. This instruction shifts the operand
through carry flag.

SHR: Shift Logical Right

This instruction performs bit-wise right shifts on the operand word or byte
that may reside in a register or a memory location, by the specified count
in the instruction and inserts zeros in the shifted positions. The result is
stored in the destination operand. This instruction shifts the operand
through carry flag.

SAR: Shift Arithmetic Right

This instruction performs right shifts on the operand word or byte that may
be a register or a memory location by the specified count in the instruction
and inserts the most significant bit of the operand in the newly inserted
positions. The result is stored in the destination operand. All the condition
code flags are affected. This shift operation shifts the operand through
carry flag. Immediate operand is not allowed in any of the shift
instructions.

 Micro Processors

 NOTES

49

ROR: Rotate Right without Carry:

 This instruction rotates the contents of the destination operand to the
right (bit-wise) either by one or by the count specified in CL, excluding
carry. The least significant bit is pushed into the carry flag and
simultaneously it is transferred into the most significant bit position at each
operation. The remaining bits are shifted right by the specified positions.

The PF, SF, and ZF flags are left unchanged by the rotate operation. The
operand may be a register or a memory location but it cannot be an
immediate operand. The destination operand may be a register (except a
segment register) or a memory location.

ROL: Rotate Left without Carry

This instruction rotates the content of the destination operand to the left by
the specified count (bit-wise) excluding carry. The most significant bit is
pushed into the carry flag as well as the least significant bit position at
each operation. The remaining bits are shifted left subsequently by the
specified count positions. The PF, SF, and ZF flags are left unchanged by
this rotate operation. The operand may be a register or a memory location.

RCR: Rotate Right through Carry

 This instruction rotates the contents (bit-wise) of the destination
operand right by the specified right by the specified count through carry
flag (CF). For each operation, the carry flag is pushed into the MSB of the
operand, and the LSB is pushed into carry flag. The remaining bits are
shifted right by the specified count positions. The SF, PF, ZF are left
unchanged. The operand may be a register or a memory location.

 Micro Processors

 NOTES

50

RCL: Rotate Left through Carry

 This instruction rotates (bit-wise) the contents of the destination
operand left by the specified count through the carry flag (CF). For each
operation, the carry flag is pushed into LSB, and the MSB of the operand
is pushed into carry flag. The remaining bits are shifted left by the
specified positions. The SF, PF, ZF are left unchanged. The operand may
be a register or a memory location.

 The count for rotation of shifting is either 1 or number of times
specified using register CL, in case of the shift and rotate instructions.

3-6 String Manipulation Instructions

 A series of data bytes or words available in memory at consecutive
locations, to be referred to collectively or individually, are called as byte
strings or word strings.

For example, a string of characters may be located in consecutive memory
locations, where each character may be represented by its ASCII
equivalent.

 For referring to a string, two parameters are required, (a) starting or
end address of the string and (b) length of the string.

 The length of a string is usually stored as count in CX register. In
case of 8085, similar structures can be set up by the pointer and counter
arrangements. The pointers and counters may be modified at each
iteration, till the required condition for proceeding further is satisfied. On
the other hand, the 8086 supports a set of more powerful instructions for
string manipulations. The incrementing or decrementing of the pointer, in
case of 8086 string instructions, depends upon the direction flag (DF)
status. If it is a byte string operation, the index registers are updated by
one. On the other hand, if it is a word string operation, the index registers
are updated by two. The counter in both the cases is decremented by one.

 Micro Processors

 NOTES

51

REP: Repeat Instruction Prefix:

 This instruction is used as a prefix to other instructions. The
instruction to which the REP prefix is provided, is executed repeatedly until
the CX register becomes zero (at each iteration CX is automatically
decremented by one). When CX becomes zero, the execution proceeds to
the next instruction in seque4nce. There are two more options of the REP
instruction. The first is REPE/REPZ, i.e. repeat operation while equal/zero.
These options are used for CMPS, SCAS instructions only, as instruction
prefixes.

MOVSB/MOVSW: Move String Byte or String Word

 Suppose a string of bytes, stored in a set of consecutive memory
locations is to be moved to another set of destination locations. The
starting byte of the source string is located in the memory location whose
address may be computed using SI (Source Index) and DS (data
segment) contents. The starting address of the destination locations where
this string has to be relocated is given by DI (destination index) and ES
(extra segment) contents. The starting address of the source string is
10H*DS + (SI), while the starting address of the destination string is
10H*ES + [DI]. The MOVSB/MOVSW instruction thus, moves a string of
bytes/ words pointed to by DS: S1 pair (source) to the memory location
pointed by ES: DI pair(destination). The REP instruction prefix is used with
MOVS instruction to repeat it by a value given in the counter (CX). The
length of the byte string or word string must be stored in CX register. No
flags are affected by this instruction.

 After the MOVES instruction is executed once, the index registers
are automatically updated and CX is decremented. The incrementing or
decrementing of the pointers, i.e. SI and DI depend upon the direction flag
DF. If DF is 0, the index registers are incremented, otherwise, they are
decremented, in case of all the string manipulation instructions. The
following string of instructions explain the execution of the MOVES
instruction

Example:

MOV AX, 5000H ; Source segment address is 5000H.

MOV DS, AX ; Load it to DS

MOV AX, 6000H ; Destination segment address is 6000h.

MOV ES, AX ; Load it to ES.

MOV CX, 0FFH ; Move length of the string to counter register CX.

MOV SI, 1000H ; Source index address 1000H is moved to SI.

 Micro Processors

 NOTES

52

CLD ; Clear DF, i.e. set auto increment mode.

REP MOVSB ; Move 0FFH string bytes from source address to
destination.

CMPS: Compare String Byte or String Word

 The CMPS instruction can be used to compare two strings of bytes
or words. The length of the string must be stored in the register CX. If both
the byte or word strings are equal, zero flag is set. The flags are affected
in the same way as CMP instruction. The DS: SI and ES: DI point to the
two strings. The REP instruction prefix is used to repeat the operation till
CX(counter) becomes zero or the condition specified by the REP prefix is
false.

 The comparison of the string starts from initial byte or word of the
string, after each comparison the index registers are updated depending
upon the direction flag and the counter id decremented. This byte by byte
or word by word comparison continues till a mismatch is found. When, a
mismatch is found, the carry and zero flags are modified appropriately and
the execution proceeds further.

Example:

MOV AX, SEG1 ; Segment address of STRING1, i.e. SEG1 is
moved to AX.

MOV DS, AX ; Load it to DS.

MOV AX, SEG2 ; Segment address of STRING2, i.e. SEG2 is
moved to AX.

MOV ES, AX ; Load it to ES

MOV SI, OFFSET STRING1; Offset of STRING1 is moved to SI.

MOV DI, OFFSET STRING2; Offset of STRING2 is moved to DI

MOV CX, 010H ; Length of the string is moved to CX.

CLD ; Clear DF, i.e. set auto increment mode.

REPE CMPSW ; Compare 010H words of STRING1 and STRING2,
while they are equal, If a mismatch is
found, modify the flags and proceed with further
execution.

 Micro Processors

 NOTES

53

 If both strings are completely equal, i.e. CX becomes zero, the ZF is
set and otherwise ZF is reset.

SCAS: Scan String Byte or String Word

 This instruction scans a string of bytes or words for an operand byte
or word specified in the register AL or AX. The string is pointed to by ES:
DI register pair. The length of the string is stored in CX. The DF controls
the mode for scanning of the string as stated in case of MOVSB
instruction. Whenever a match to the specified operand is found in the
string, execution stops and the zero flag is set. If no match is found, the
zero flag is reset. The REPNE prefix is used with the SCAS instruction.
The pointers and counters are updated automatically, till a match is found.

Example:

MOV AX, SEG ; Segment address of the string, i.e. SEG is
 moved to AX.

MOV ES, AX ; Load it to ES

MOV DI, OFFSET ; String offset, i.e. OFFSET is moved to DI.

MOV CX, 010H ; Length of the string is moved to CX.

MOV AX, WORD ; The word to be scanned for, i.e. WORD is in AL.

CLD ; Clear DF.

REPNE SCASW ; Scan the 010H bytes of the string, till a match to

 WORD is found.

 This string of instructions finds out, if it contains WORD. If the
WORD is found in the word string, before CX becomes zero, the ZF is set,
otherwise the ZF is reset. The scanning will continue till a match is found.
Once match is found the execution of the program proceeds further.

LODS: Load String Byte or String Word

 The LODS instruction loads the AL/AX register by the content of a
string pointed to by DS: SI register pair. The SI is modified automatically
depending upon DF. If it is a byte transfer (LODSB), the SI is modified by
one and if it is a word transfer (LODSW), the SI is modified by two. No
other flags are affected by this instruction.

 Micro Processors

 NOTES

54

STOS: Store String Byte or String Word

 The STOS instruction stores the AL/LX register contents to a
location in the string pointed by ES: DI register pair . The DI is modified
accordingly. No flags are affected by this instruction.

 The direction flag controls the string instruction execution. The
source index SI and destination index DI are modified after each iteration
automatically. If DF = 1, then the execution follows auto decrement mode.
In this mode, SI and DI are decremented automatically after each iteration
(by 1 or 2 depending upon byte or word operations). Hence, in auto
decrementing mode, the strings are referred to by their ending addresses.
If DF = 0, then the execution follows auto increment mode. In this mode SI
and DI are incremented automatically (by 1 or 2 depending upon byte or
word operation) after each iteration, hence the strings, in this case, are
referred to by their starting addresses.

3-7 Control Transfer or Branching Instructions

 The control transfer instructions transfer the flow of execution of the
program to a new address specified in the instruction directly or indirectly.
When this type of instruction is executed, the CS and IP registers get
loaded with new values of CS and IP corresponding to the location where
the flow of execution is going to be transferred. Depending upon the
addressing modes specified in Chap. 1, the CS may or may not be
modified.

These types of instructions are classified in two types:

Unconditional Control Transfer (Branch) Instructions

 In case of unconditional control transfer instructions, the execution
control is transferred to the specified location independent of any status or
condition. The CS and IP are unconditionally modified to the new CS and
IP.

Conditional Control Transfer (Branch) Instructions

 In the conditional control transfer instructions, the control is
transferred to the specified location provided the result of the previous
operation satisfies a particular condition, otherwise, the execution
continues in normal flow sequence. The results of the previous operations
are replicated by condition code flags.

 In other words, using this type of instruction the control will be
transferred to a particular specified location, if a particular flag satisfies the
condition.

 Micro Processors

 NOTES

55

3-7-1 Unconditional Branch Instructions

CALL: Unconditional Call

 This instruction is used to call a subroutine from a main program. In
case of assembly language programming, the term procedure is used
interchangeable with subroutine. The address of the procedure may be
specified directly or indirectly depending upon the addressing mode. There
are again two types of procedures depending upon whether it is available
in the same segment (Near CALL, i.e.  32K displacement) or in another
segment (Far CALL, i.e. anywhere outside the segment). The modes for
them are respectively called as intra-segment and intersegment
addressing modes. This instruction comes under unconditional branch
instructions and can be described as shown with the coding formats. On
execution, this instruction stores the incremented IP (i.e. address of the
next instruction) and CS onto the stack along with the flags and loads the
CS and IP registers, respectively, with the segment and offset addresses
of the procedure to be called.

RET: Return from the Procedure:

 At each CALL instruction, the IP and CS of the next instruction are
pushed onto stack, before the control is transferred to the procedure. At
the end of the procedure, the RET instruction must be executed. When it
is executed, the previously stored content of IP and CS along with flags
are retrieved into the CS, IP and flag registers from the stack and the
execution of the main program continues further. The procedure may be a
near or a far procedure. In case of a FAR procedure, the current contents
of SP points to IP and CS at the time of return. While in case of a NEAR
procedure, it points to only IP. Depending upon the type of procedure and
the SP contents, the RET instruction is of four types.

 1) return within segment

 Micro Processors

 NOTES

56

2) return within segment adding 16-bit immediate displacement to the
SP contents.

3) return intersegment

4) return intersegment adding 16-bit immediate displacement to the SP
contents.

INT N: Interrupt Type N

 In the interrupt structure of 8086/8088, 256 interrupts are defined
corresponding to the types from 00H to FFH. When an INT N instruction is
executed, the TYPE byte N is multiplied by 4 and the contents of IP and
CS of the interrupt service routine will be taken from the hexadecimal
multiplication (N  4) as offset address and 0000 as segment address. In
other words, the multiplication of type N by 4(offset) points to a memory
block in 0000 segment, which contains the IP and CS values of the
interrupt service routine. For the execution of this instruction, the IF must
be enabled.

Example:

 Thus the instruction INT 20H will find out the address of the interrupt
service routine as follows:

INT 20H

Type * 4 = 20 * 4 = 80H

Pointer to IP and CS of the ISR is 0000: 0080 H

Figure shows the arrangement of CS and IP addresses of the ISR in the
interrupt vector table.

INTO: Interrupt on Overflow

 Micro Processors

 NOTES

57

 This is executed, when the overflow flag OF is set. The new contents
of IP and CS are taken from the address 0000 : 0000 as explained in INT
type instruction. This is equivalent to a type 4 interrupt instruction.

JMP: Unconditional Jump

 This instruction unconditionally transfers the control of execution to
the specified address using an 8-bit or 16-bit displacement (intrasegment
relative, short or long) or CS: IP (intersegment direct far). No flags are
affected by this instruction. Corresponding to the three methods of
specifying jump addresses, the JUMP instruction has the following three
formats.

JUMP DISP 8-bit ;Intrasegment, relative, near jump

JUMP DISP. 16-bit ;Intrasegment, relative, Far jump

JUMP CS:IP Intersegment, direct, jump

IRET: Return from ISR

 When an interrupt service routine is to be called, before transferring
control to it, the IP, CS and flag register are stored on to the stack to
indicate the location from where the execution is to be continued, after the
ISR is executed. So, at the end of each ISR, when IRET is executed, the
values of IP, CS and flags are retrieved from the stack to continue the
execution of the main program. The stack is modified accordingly.

LOOP: Loop Unconditionally

 This instruction executes the part of the program from the label or
address specified in the instruction up to the loop instruction, CX number
of times. The following sequence explains the execution. At each iteration,
CX is decremented automatically. In other words, this instruction
implements DECREMENT COUNTER and JUMP IF NOT ZERO structure.

Example:

 MOV CX, 0005 ; Number of times in CX

 MOV BX, 0ff7H ; Data to BX

Label: MOV AX, CODE1

 OR BX, AX

 AND DX, AX

 Micro Processors

 NOTES

58

 Loop Label

 The execution proceeds in sequence, after the loop is executed, CX
number of times. If CX is already 00H, the execution continues
sequentially. No flags are affected by this instruction.

3-7-2 Conditional Branch Instructions

 When these instructions are executed, they transfer execution
control to the address specified relatively in the instruction, provided the
condition implicit in the opcode is satisfied, otherwise, the execution
continues sequentially. The conditions, here, means the status of condition
code flags. These type of instructions do not affect any flag. The address
has to be specified in the instruction relatively in terms of displacement
which must lie with in – 80H to 7FH (or – 128 to 127) bytes from the
address of the branch instruction. In other words, only short jumps can be
implemented using conditional branch instructions. A label may represent
the displacement, if it lies wihtin the above specified range. The different
8086/8088 conditional branch instructions and their operations are listed in
Table.

Conditional Branch Instructions

 Mnemonic
Displace

ment
Operation

1 JZ/JE Label
Transfer execution control to address

‘Label’, if ZF = 1

2 JNZ/JNE Label
Transfer execution control to address

‘Label’, if ZF = 0

3 JS Label
Transfer execution control to address

‘Label’, if SF = 1

4 JNS Label
Transfer execution control to address

‘Label’, if SF = 0

5 JO Label
Transfer execution control to address

‘Label’, if OF = 1

6 JNO Label
Transfer execution control to address

‘Label’, if OF = 0

7 JP/JPE Label
Transfer execution control to address

‘Label’, if PF = 1

8 JNP Label
Transfer execution control to address

‘Label’, if PF = 0

9
JB/JNAE/J

C
Label

Transfer execution control to address
‘Label’, if CF = 1

10 JNB/JAE/J Label Transfer execution control to address

 Micro Processors

 NOTES

59

NC ‘Label’, if CF = 0

11 JBE/JNA Label
Transfer execution control to address

‘Label’, if CF = 1 or ZF = 1

12 JNBE/JA Label
Transfer execution control to address

‘Label’, if CF = 1 or ZF = 0

13 JL/JNGE Label
Transfer execution control to address

‘Label’, if SF = 1 nor OF = 1

14 JNL/JGE Label
Transfer execution control to address

‘Label’, if SF = 0 nor OF = 0

15 JNE/JNC Label
Transfer execution control to address
‘Label’, if ZF = 1 or neither SF nor OF

is 1.

16 JNLE/JE Label

Transfer execution control to address
‘Label’, if ZF = 0 or atleast any one of
SF and OF is 1(Both SF & OF are not

0)

The last four instructions are used in case of decisions based on signed
binary number operations, while the remaining instructions can be used for
unsigned binary operations. The terms above and below are generally
used for unsigned numbers, while the terms less and greater are used for
signed numbers. A conditional jump instruction, that does not check status
flags for condition testing, is given as follows:

JCXZ Label; Transfer execution control to address Label, if CX = 0

 The conditional LOOP instructions are given in Table with their
meanings. These instructions many be used for implementing structures
like DO_WHILE, REPEAT_UNTIL, etc.

Conditional Loop Instructions

Mnemonic Displacement Operation

LOOPZ/
LOOPE

Label
Loop through a sequence of

instructions from ‘Label’ while ZF
= 1 and CX  0.

LOOPNZ/
LOOPENE

Label
Loop through a sequence of

instructions from ‘Label’ while ZF
= 0 and CX  0.

 Micro Processors

 NOTES

60

 The ideas about all these instructions control the functioning of the
available hardware inside the processor chip. These are categorized into
two types:

(a) Flag manipulation instructions and

(b) Machine control instructions.

 The flag manipulation instructions directly modify some of the flags
of 8086. The machine control instructions control the bus usage and
execution. The flag manipulation instructions and their functions are as
follows:

 CLC - Clear carry flag

 CMC – Complement carry flag

 STC – Set carry flag

 CLD – Clear direction flag

 STD – Set direction flag

 CLI – Clear interrupt flag

 STI – Set interrupt flag

 There instructions modify the carry (CF), direction (DF) and interrupt
(IF) flags directly. The DF and IF, which may be modified using the flag
manipulation instructions, further control the processor operation; like
interrupt responses and auto increment or auto decrement modes. Thus
the respective instructions may also be called as machine or processor
control instructions. The other flags can be modified using POPF and
SAHF instructions, which are termed as data transfer instructions, in this
text. No direct instructions are available for modifying the status flags
except carry flag.

 The machine control instructions supported by 8086 and 8088 are
listed as follows along with their functions. There machine control
instructions do not require any operand.

 WAIT - Wait for Test input pin to go low

 HLT - Halt the processor

 NOP - No operation

 ESC - Escape to external device like NDP

 (Numeric co-processor)

 Micro Processors

 NOTES

61

 LOCK - Bus lock instruction prefix.

 After executing the HLT instruction, the processor enters the half
state, as explained in Chapter 1. The two ways to pull it out of the half
state are to reset the processor or to interrupt in when NOP instruction is
executed, the processor does not perform any operation till 4 clock cycles,
except incrementing the IP by one. It then continues with further execution
after 4 clock cycles. ESC instruction when executed, frees the bus for an
external master like a coprocessor or peripheral devices. The LOCK prefix
may appear with another instruction. When it is executed, the bus access
is not allowed for another master till the lock prefixed instruction is
executed completely. This instruction is used in case of programming for
multiprocessor systems. The WAIT instruction when executed, holds the
operation of processor with the current status till the logic level on the

TEST pin goes low. The processor goes on inserting WAIT states in the

instruction cycle, till the TEST pin goes low. Once the TEST pin goes low,
it continues further execution.

4. Summary

In this unit, we have studied one of the most popular series of
microprocessors, viz., Intel 8086. It serves as a base to all its successors,
8088, 80186, 80286, 80486, and Pentium. The successors of 8086 can be
directly run on any one of it successors. Therefore, though, 8086 has
become obsolete from the market point of view, it is still needed to
understand advanced microprocessors.

 To summarize the features of 8086, we can say 8086 has:
- a 16-bit data bus
- a 20-bit address bus
- CPU is divided into Bus Interface Unit and Execution Unit
- 6-byte instruction prefetch queue
- segmented memory
- 4 general purpose registers (each of 16 bits)
- instruction pointer and a stack pointer
- set of index registers
- powerful instruction set
- powerful addressing modes
- designed for multiprocessor environment
- available in versions of 5Mhz and 8Mhz clock speed.

5. Test yourself

1. If AX contains 1234H, what is the result of ADD AL,AH?

2. What is the state of each flag after ADD AL, AH in the previous
question?

 Micro Processors

 NOTES

62

3. Memory location 2000H has the word 5000H stored in it. What does
each location contain after INC BYTE PTR [2000H]?

 4. Repeat Question 3 for DEC WORD PTR [2000H].

 5. What is the state of the zero flag after CMP CL.30H if CL does not
contain 30H?

 6. What instruction is needed to check whether the upper bytes of AX and
BX are equal?

 7. Show the instructions needed to multiply AX by 25. Assume the results
are unsigned.

 8. If DX contains OOEEH and AX contains 0980, what is the result of:
 MOV BX, 0F0H

DIV BX

 9. If DX contains 7C9AH, what is the result of NOT DX?

10. Write assembly language program to evaluate the expression
a = b + c –d * e considering 16 bit. Take the input in consecutive
memory locations and results also.

 Micro Processors

 NOTES

63

UNIT – II

1. MACHINE LEVEL PROGRAMS

Structure

1.1 Addition of two data bytes located in same segment

1-2 Addition of two data bytes located in different segments

1-3 Block transfer

1-4 Sum of an array

1-5 Sum of 16-bit array and result is 32-bit

1- 6 Largest number

1- 7 Smallest number

1- 8 Descending order

Objectives

After going through this unit you should be able to:

• define the need and importance of an assembly program;

• define the various directives used in assembly program;

• write a very simple assembly program with simple input – output services;

1.1 Addition of two data bytes located in same segment

Machine level programs are written in the form of mnemonics, hand coded
by programmer and entered byte by byte and executed on 8086 based kit.
But this procedure is tedious due to complex instruction set.

Analysis:

 Let us assume the two data bytes are present in DS(data
segment) starting from 2000H in memory

 Let the offset of first byte is 0500H and second byte is 600H and
result is stored in 0700H.

 Therefore an effective address of first byte is 20500H and that of
second byte is 20600H and that of second byte is 20700H.

 Micro Processors

 NOTES

64

Algorithm:

 Initialize data segment.

 Read first byte from memory to any one of registers.

 Add the second byte in memory to that register.

 Move the result in the register to memory.

 Program:

 Mnemonics Comments

 MOV AX, 2000 ; Data segment register is loaded

 ; with 200H i.e.,

 MOV DS, AX ; data segment is initialized to 2000H

 MOV AX, [05000] ;First byte is moved from memory to AX.

 ADD AX, [0600] ; Second byte is added to AX.

 MOV [0700], AX ; Result in AX is stored in 2000 :

 ; 0700H location

 HLT ; Stop

 Note: We cannot load segment registers direction, they must be
loaded indirectly.

1-2 Addition of two data bytes located in different
segment

Analysis:

 Let us assume the two date bytes are present in different
segments starting from 2000H and 3000H in memory.

 Let the offset of first byte is 0500H and second byte is 0600H and
result is stored in 0700H.

 Therefore effective addresses of first byte is 20500H and that of
second byte is 30600H

 Result is also stored in other segment starting from 5000H and
having an offset of 0700H.

 Algorithm:

 Initialize data segment for first byte.

 Micro Processors

 NOTES

65

 Read first byte from memory to any one of registers.

 Initialize data segment for second byte.

 Read the second byte from memory to any one of registers.

 Add the second byte in memory to first byte.

 Initialize data segment for result.

 Move the result to memory.

 Program:

 Mnemonics Comments

 MOV CX, 2000 ; Data segment register is loaded

 with 200H i.e.,

 MOV DS, CX ; data segment is initialized to 2000H

 MOV AX, [0500] ;First byte is moved from memory to AX.

 MOV CX, 3000 ; Data segment register is loaded

 with 3000H i.e.,

 MOV DS, CX ; data segment is initialized to 3000H

 MOV BX, [600] ; Second byte is moved to BX.

 ADD AX, BX ; Add contents of BX to AX.

 MOV CX, 500 ; Data segment register is loaded

 with 5000H i.e.,

 MOV DS, CX ; data segment is initialized to 5000H.

 MOV [0700], AX ; Result in AX is stored in 5000 :

 0700H location

 HLT ; Stop

 Note: Where segment changes it must be initialized.

1-3 Block transfer

 To move 16 bytes long byte string from a memory location 0200H to
0300H in same segment

Analysis:

 Let us assume the 16 date bytes are present in Data segment
starting from 2000H in memory.

 Let the offset of source is 0200H and destination is 0300H. These
are loaded into index registers SI and DI.

 Micro Processors

 NOTES

66

 The length of the string is loaded into CX register

 Algorithm:

 Initialize data segment.

 Initialize index registers.

 Read first byte form source.

 Move it into a register.

 Move the contents of register to destination.

 Increment index registers for next byte and decrement the count.

 Repeat the process until all the bytes are moved from source to
destination.

 Program:

 Mnemonics Comments

 MOV AX, 2000 ; Data segment register is loaded

 with 200H i.e.,

 MOV DS, AX ; data segment is initialized to 2000H

 MOV SI, 0200H ; Initialize index registers with offsets.

 MOV DI, 0300H ;

 MOV CX, 0010H ; Initialize count.

Back: MOV AX, [SI] ; First byte is moved from source to AX

 MOV [DI], AX ; First byte in AX is moved to destination.

 INC SI ; Increment index registers.

 INC DI

 DEC CX ; Decrement counter

 JNZ Back ; Jump to back if count is not 0.

 HLT ; Stop

 Note: 1) Index registers must be used whenever we are dealing
with strings.

 2) When jump instruction is used, number of bytes to be
moved forward or backward must be given in the place of
label.

 Micro Processors

 NOTES

67

1-4 Sum of array

 To find the 16-bit sum of data array containing 16-bit numbers.

Analysis:

 Let us assume the 16-bit numbers are present in Data segment
starting from 2000H in memory.

 Let the offset of source is 0200H and loaded into index registers
SI.

 The length of the string is loaded into CX register.

 Algorithm:

 Initialize data segment.

 Initialize index registers and count register.

 Read first byte form source.

 Add it to a register.

 Increment index registers for next byte and decrement the count.

 Repeat the process until all the bytes are added.

 Program:

 Mnemonics Comments

 MOV AX, 2000 ; Data segment register is loaded

 with 200H i.e.,

 MOV DS, AX ; data segment is initialized to 2000H

 MOV SI, 0200H ; Initialize index registers with offsets.

 MOV CX, 0010H ; Initialize count.

 MOV AX, 0000H ; Initialize AX to 0000

Back: ADD AX, [SI] ; First byte is added from to AX

 INC SI ; Increment index registers.

 INC SI ;

 LOOP Back ; Jump to back if count is not 0.

 MOV [0500], AX ; Store the sum in memory

 HLT ; Stop

 Micro Processors

 NOTES

68

1-5 Sum of 16-bit array and result is 32-bit

 To find the 32-bit sum of data array containing 16-bit numbers.

Analysis:

 Let us assume the 16, 16-bit numbers are present in Data
segment starting from 2000H in memory.

 Let the offset of source is 0200H and loaded into index registers
SI.

 The length of the string is loaded into CX register

 Algorithm:

 Initialize data segment.

 Initialize index registers and count register.

 Read first byte form source.

 Add it to a register.

 If the sum is greater than 16 bit add carry flag to another register.

 Increment index registers for next byte and decrement the count.

 Repeat the process until all the bytes are added.

 Program:

 Mnemonics Comments

 MOV AX, 2000 ; Data segment register is loaded

 ; with 200H i.e.,

 MOV DS, AX ; data segment is initialized to 2000H

 MOV SI, 0200H ; Initialize index registers with offsets.

 MOV CX, 0010H ; Initialize count.

 MOV AX, 0000H ; Initialize AX to 0000

 MOV BX, 000H ; Initialize BX to 0000

Back : ADD AX, [SI] ; First is moved from source to AX

 JAE Go ; Jump to label go if there is not carry

 INC BX ; Increment BX if there is carry

Go: INC SI ; Increment index registers.

 INC SI

 Micro Processors

 NOTES

69

 LOOP Back ; Jump to back if count is not 0.

 MOV [0500], AX ; Store the lower order sum in memory

 MOV [0501], BX ; Store the higher order sum in memory

 HLT ; Stop

 Note: Since the sum is greater than 16-bit data, whenever there
is a carry flag it is added to BX register and answer is
available in both BX : AX registers.

1- 6 Largest number

 To find the largest number in a given 9-bit data array

Analysis:

 Let us assume the 16 date bytes are present in Data segment
starting from 2000H in memory.

 Let the offset of source is 0300H is loaded in SI.

 The length of the string 0010H is loaded into CX register

 Algorithm:

 Initialize data segment.

 Initialize index registers.

 Initialize CX with count and AL with 00.

 Compare the first byte with AL and if it is greater than the
contents in AL, move it into AL.

 Increment index registers for next byte and decrement the count.

 Repeat the process until all the bytes are compared.

 Store the largest number in memory.

 Program:

 Mnemonics Comments

 MOV AX, 2000H ; Initialize DS register with 2000H

 MOV DS, AX

 MOV SI, 02FFH ; Initialize SI with offset

 MOV CX, 0010H ; Initialize CX with count.

 MOV AL, 00H ; Initialize AL with 00

 Micro Processors

 NOTES

70

Back:INC SI ; Increment SI.

CMP AL, [SI] ; Compare AL with next number.

 JAE Go ; If the number in AL is greater, jump

 ; to label go.

 MOV Al, [SI] ; Otherwise move the number to AL.

Go: LOOP Back ; Repeat if CX is not 0

 MOV [0351], AL ; Store largest number in memory

 HLT ; Stop

 Note: 1) Loop instruction includes both decrementing count CX
and jump to label if count is not zero.

 2) The label at the loop is number of bytes to go back.

1- 7 Smallest number

 To find the smallest number in a given 16-bit data array.

Analysis:

 Let us assume the 5, 16-bit elements are present in Data
segment starting from 2000H in memory.

 Let the offset of source is 0300H is loaded in SI.

 The length of the string 0005H is loaded into CX register

 Algorithm:

 Initialize data segment.

 Initialize index registers.

 Initialize CX with count and AX and if it is smaller than the
contents in AX, move it into AX.

 Increment index register for next element and decrement count.

 Repeat the process until all the bytes are compared.

 Store the largest number in memory.

 Micro Processors

 NOTES

71

 Program:

 Mnemonics Comments

 MOV AX, 2000H ; Initialize DS register with 2000H

 MOV DS, AX ;

 MOV SI, 02FFH ; Initialize SI with offset.

 MOV CX, 0005H ; Initialize CX with count.

 MOV Ax, FFFFH ; Initialize AX with FFFF

Back:INC SI ; Increment SI.

 INC SI ;

 CMP AX, [SI] ; Compare AX with next number

 JBE Go ; If the number in AX is really, jump

 to label to.

 MOV AX, [SI] ; Otherwise move the number to AX.

Go: LOOP Back ; Repeat if CX is not 0
 MOV [0351], AX ; Store largest number in memory
 HLT ; Stop
 Note: 1) SI is incremented two times since the length of each

element is 16 bits.

1- 8 Descending order

 To arrange the given 16-bit data array in descending order.

Analysis:

 Let us assume there are 16-bit elements are present in Data
segment starting from 2000H in memory.

 Let the offset of source is 0300H is loaded in SI and offset of
destination 0500H is loaded in DI.

 The length of the string 005H is loaded into CX and DX register

Algorithm:

 Initialize data segment.

 Initialize index registers.

 Initialize CX and DX with count and AX with 0000.

 Compare the first element with AX and if it is greater than the
contents in AX, go to next number.

 Otherwise save the address of largest number in BX.

 Increment source index registers for next element and decrement
count CX.

 Repeat the process until all the bytes are compared.

 Store the largest number in destination.

 Micro Processors

 NOTES

72

 Increment destination register DI and decrement count DX.

 Repeat the process until the DX becomes 0.

 Program:

 Mnemonics Comments

 MOV AX, 2000 ; Initialize the data segment register

 with 2000H

 MOV DS, AX ;

 MOV DI, 03FFFH ; Initialize DI with destination offset

 MOV DX, 0005H ; Initialize counter DX

Bounds: MOV SI, 02FFFH ; Initialize SI with source offset.

 MOV CX, 0005H ; Initialize counter CX.

 MOV AX, 0000H ; Initialize AX with 0000H.

Back: INC SI ; Increment SI.

 INC SI ;

 CMP AX, [SI] ; Compare previous largest number

 with next number

 JAE Go ; Jump if there is no carry flag

 MOV AX, [SI] ; Largest number is moved to AX

 MOV BX, SI ; The address of largest number is

 moved to BX.

Go: LOOP Back ; Repeat until CX becomes 0.

 MOV [DI], AX ; Save the largest number

 MOV SI, BX ; Save the memory address of largest in SI

 MOV [SI], 0000H ; Insert 0 in the memory containing

 ; largest number

 INC DI ; Increment DI

 INC DI ;

 DEC DX ; Decrement DX register

 JNZ Bounds ; Jump if count is not 0

 HLT ; Stop

 Note: 1) Two index registers are used to initiate two vectors one
containing input data and other to store result

 2) Each time largest number is found it is moved to
destination and it is made 00.

 Micro Processors

 NOTES

73

2. PROGRAMMING WITH ASSEMBLER

Structure

2-1 Disadvantages of machine level programming
2-2 Programming with assembler
2-3 Types of assemblers:
2-4 Writing Assembly language Program
2-5 Executing an Assembly Language Program
2-6 Assembler directives
2-7 Assembly language programs

Objectives
 Discuss about Programming with assembler

 Discuss Types of assemblers

 write a very simple assembly program with simple input – output
services

2-1 Disadvantages of machine level programming:

 In machine level programming programmer must prepare the correct
listing of machine codes (hex code) for the instructions written in the
program. Such a programming procedure has following disadvantages.

1) It is time consuming

2) Errors are more while hand coding and entering program byte by
byte.

3) Debugging is very difficult at machine level.

4) Programs are difficult to understand and the results are not present in
user friendly form.

2-2 Programming with assembler

 To overcome the above disadvantages of a program assembler is
used to convert the mnemonics of instructions along with data into
equivalent object code modules. These object code modules are further
converted into executable format using linker and loaders. Advantages of
assembly language over machine language are

 Micro Processors

 NOTES

74

1) Coding is performed by assembler rather than by programmer

2) Errors are less since we enter mnemonics instead of opcode

3) Constants, address locations etc can be labeled so that program
becomes more user friendly.

4) It provides advanced features like macros, dynamic allocation etc.

2-3 Types of assemblers:

 There are number of assemblers available such as MASM, TASM
and DOS assembler.

 Operations performed while executing an assembly level program
using MASAM

1) Using text editors such as Norton’s editor or Turbo C or EDLIN etc.,
type the program listing prepared by you. Start the procedure with
following command.

C > NE

 The following display appears of the screen

Enter File Name:

Press any key to continue

2) Enter the file name ESR.ASM, for every assembly language program

extension is ASM. Now a new file ESR.ASM is opene and enters the
program.

3) Next step is assembling the program using MASM. MASM accepts
source file ESR.ASM and creates object file with .OBJ extension
containing coded object modules of the program assembled.

4) In addition to object file, listing files with extension .LST containing
labels, offset address, opcode, memory allotment for different labels,
relocation information etc.

5) Cross reference file is also created with extension. CRF containing
statistical information such as size of the source file, number of
labels, routines called etc.

 Micro Processors

 NOTES

75

A > MASM ESR

Object filename [.OBJ]:

List filename[NUL.LST]:

Cross Reference [NUL.CRF]:

6) Further executable file is generated by the help of linker. DOS linking
program LINK.EXE links the different object modules of a source
program and function library routines to generate executable code of
the source program. Input for the linker is .OBJ file.

A > LINK

Object Module [.OBJ]:

Run file [.EXE]

List filename [NUL.LST]:

Libraries [LIB]:

2-4 Writing Assembly language Program

 An assembly language program needs a logical space called DATA
segment to store data and CODE segment containing actual instructions to
be executed. Some programs may need stack segment.

Skeleton of typical Assembly Language Program

DATA SEGMENT

 Operands and results

DATA ENDS

CODE SEGMENT

 ASSUME CS: CODE, DS : DATA

 Instruction sequence

CODE ENDS

 Micro Processors

 NOTES

76

1) ASSUME is directive to declare the label CODE is used as a logical
name for CODE segment and label DATA is to be used for DATA
segment. Labels CODE and DATA are reserved by MASM for these
purpose only.

2) DATA SEGMENT is the starting address of a logical space DATA.
CODE SEGMENT is the starting address of a logical space CODE.

3) DATA ENDS and CODE ENDS are to indicate end of data segment
and code segment.

2-5 Executing an Assembly Language Program

1) Enter assembly language program using in built MASM text editor.

2) Select Built ALL function in PWB. If there is no error it will ask
different options RUN, DEBUG, CANCE, and VIEW RESULT etc.

3) Select Run to execute program

4) If there is an error goes to step 1 by selecting view result and see the
error and correct the ALP.

2-6 Assembler directives

 An assembler directive is pseudo instruction used to give direction to
the assembler to perform a specific task by assembly process. The
assembler supports directives for data definition, Segment organization
procedure and macro definitions etc.

Description of Some Directives:

DB: Define Byte is used define a byte type variable. It reserves one byte
memory.

DW: Define word is used to define a word type variable. It reserves two
bytes of memory

DD: Defines double word is used to define a 4 words type variable. It
reserves 8 bytes of memory.

DQ: Define quad word is used to define a 4 words type variable. It reserves
8 bytes of memory.

DT: Define Ten Bytes is used to define a ten bytes type variable. It
reserves 10 bytes of memory

DUP: It is used duplicate the given data element.

 Micro Processors

 NOTES

77

Example:

 1) ARRAY DB 54, 39, 50, 80, 25

 2) NAMES DB 100 DUP (?)

 3) PRODUCT DW 1354, 2563

EXTERN: This is used tell the assembler that the labels following the
directive are in some other module.

Example:

EXTERN MULTIPLIER: WORD The variable multiplier is external

GLOBAL: The variable declared as global can be accessed from other
program modules.

SEGMENT: The directive SEGMENT indicates the beginning of a logical
segment

General form: Name of the segment is SEGMENT

ENDS: It informs the assembler the end of the segment.

ENDP: It informs the assembler the end of the procedure.

END: It informs the end of program module.

ASSUME: It tells the assembler the name of the logical segment used for a
specified segment.

EQU: This directive is used to assign name to some value.

ORG: This is used to assign address to data items or instructions in a
program.

STRUCT: It is used to create a structure which is a collection of primary
data types such As DB, DW etc.

RECORD: It is used to define bit pattern within a byte or word.

OFFSET: It is an operator which tells the assembler to determine the offset
of a variable from starting address of a segment.

SIZE: It gives length of a data item in bytes.

LENGTH: It gives the number of elements in a data item.

 Micro Processors

 NOTES

78

2-7 Assembly language programs

Problem: 1

 Write a program for addition of two numbers.

Analysis:

The two operands are defined in data segment and instruction sequence is
given in code segment.

Program:

 DATA SEGMENT

 OPR1 DW 1234H ; First operand

 OPR2 DW 00002 ; Second operand

 RESULT DW DUP (?) ; One word memory is reserved
for result

 DATA ENDS

 CODE SEGMENT

 ASSUME CS: CODE, DS: DATA

 START: MOV AX, DATA ; Initialize data segment

 MOV DS, AX ;

 MOVAX, OPRI ; Move first operand into AX

 MOV BX, OPR2 ;Move second operand to BX

 CLC ; Clear carry

 ADD AX, BX ; Add BX to AX

 MOV RESULT, AX ; Store the result in memory

 MOV AH, 4CH ; Return to DOS prompt

 INT 21H ; Break point

 Micro Processors

 NOTES

79

 CODE ENDS ; End code segment

 END START

Problem: 2

Program for the addition 8-bit number series, the series contains 100
(numbers).

Analysis:

Initially, the resulting sum of the first two numbers will be stored.

To this sum, the third number will be added.

This procedure will be repeated till all the numbers in the series are added.

A conditional jump instruction will be used to implement the counter
checking logic.

Program:

DATA SEGMENT ; Data segments starts

 NUMLIST DB 52H, 23H ; List of byte numbers

 COUNT EQU 100D ; Number of bytes to be added

 RESULT DW DUP (?) ; Word is reserved for result.

DATA ENDS ; Data segment ends

ORG 200H ; Address 0200h in code segment

CODE SEGMENTS ; Code segment starts at relative

 ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA ; Initialize data segment.

 MOV DS, AX

 MOV CX, COUNT ; Number of bytes to be added in CX.

 XOR AX, AX ;Clear AX and CF.

 XOR BX, BX ; Clear BH for converting the byte to word

 LEA SI, NUMLIST ; Point to the first number in the list.

 Micro Processors

 NOTES

80

AGAIN: MOV BL, [SI] ;Take the first number in the list.

 ADD AX, BX ;Add AX with BX.

 INC SI ; Increment pointer to the byte list.

 DEC CX ;If all numbers are added, point to result

 JNZ AGAIN ; Decrement counter.

 MOV RESULT, AX ;Destination and store it.

 MOV AH, 4CH : Return to DOS.

 INT 21H

CODE ENDS

 END START

Problem: 3

To find largest number for a given un-ordered array of 8-bit numbers and
store in the location starting from known address.

Analysis:

Compare ith number of the series with the (i +1)th number using CMP
instruction.

It will set the flags appropriately, depending up on whether the ith number or
the (i + 1)th number is greater.

 If the ith number is greater than (i + 1)th, leave it in AX (any register may be
used).

Otherwise, load the (i + 1)th number in AX, replacing the ith number in AX.

The procedure is repeated till all the members in the array have been
compared.

Program:

DATA SEGMENT ; Data segments starts

 LIST DB 52H, 23H, 56H, 45H ;List of byte numbers

 COUNT EQU 0FH ; Number of bytes in the list

 Micro Processors

 NOTES

81

 LARGEST DB DUP (?) ; One byte is reserved for result

DATA ENDS ;Data segment ends

CODE SEGMENTS ;Code segment starts

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA ; Initialize data segment.

 MOV DS, AX

 LEA SI, LIST

 MOV CL, COUNT ; Number of bytes in CL.

 MOV AL, [SI] ;Take the first number in AL

AGAIN: CMP AL, [SI + 1) ; and compare it with the next number

 JNL NEXT

 MOV Al, [SI + 1]

NEXT: INC SI ; Increment pointer to the byte list.

 DEC CL ; Decrement counter.

 JNZ AGAIN ;If all numbers are compared, point to result

 MOV LARGEST, AL ; destination and store it.

 MOV AH, 4CH ;Return to DOS.

 INT 21H

CODE ENDS

 END START

Problem: 4

Program to find out the number of even and odd numbers from a given
series of 16-bit hexadecimal numbers.

Analysis:

The simplest logic to decide whether a binary number is even or odd, is to
check the least significant bit of the number.

 Micro Processors

 NOTES

82

 If the bit is zero, the number is even, otherwise it is odd.

 Check the LSB by rotating the number through carry flag, and increment
even or odd number counter.

Program:

DATA SEGMENT

 LIST DW 2357H, 0A579H, 0C322H, 0C91EH, 0C00H, 0957H

 COUNT EQU 006H

DATA ENDS

CODE SEGMENTS

 ASSUME CS : CODE, DS : DATA

START: XOR BX, BX

 XOR DX, DX

 MOV AX, DATA

 MOV DS, AX

 MOV CL, COUNT

 LEA SI, LIST

AGAIN: MOV AX, [SI]

 ROR AX, 01

 JC ODD

 INC BX

 JMP NEXT

ODD: INC DX

NEXT: ADD SI, 02

 DEC CL

 Micro Processors

 NOTES

83

 JNZ AGAIN

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 5

Program to find out the number of positive numbers and negative numbers
from a given series of signed numbers.

Analysis:

Take the ith number in any of the registers. Rotate it left through carry. The
status of carry flag, i.e. the most significant bit of the number will give the
information about the sign of the number.

If CF is 1, the number is negative; otherwise, it is positive.

Program:

DATA SEGMENT

 LIST DW 2357H, 0A500H, 0C009H, 0159H, 0B900H

 COUNT EQU 05H

DATA ENDS

CODE SEGMENTS

 ASSUME CS : CODE, DS : DATA

START: XOR BX, BX

 XOR DX, DX

 MOV AX, DATA

 MOV DS, AX

 MOV CL, COUNT

 MOV SI, OFFSET LIST or LEA SI,LIST

 Micro Processors

 NOTES

84

AGAIN: MOV AX, [SI]

 SHL AX, 01

 JC NEG

 INC BX

 JMP NEXT

NEG: INC DX

NEXT: ADD SI, 02

 DEC CL

 JNZ AGAIN

 MOV AH, 4CH

 INT 21H

 CODE ENDS

 END START

Problem: 7

Write an assembly language program to arrange a given series of
hexadecimal bytes in ascending order.

Analysis:

The first number of the series compared with the second one.

If the first number is greater than second, exchange their positions in the
series. Otherwise leave the positions unchanged.

Then compare the second number in recent form of the series with third
and repeat the exchange part that you have carried out for the first and the
second number, and for all the remaining numbers of the series.

Program:

DATA SEGMENT

 LIST DW 53H, 25H, 19H, 02H

 COUNT EQU 04

 Micro Processors

 NOTES

85

DATA ENDS

CODE SEGMENT

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV DX, COUNT – 1

AGAIN0: MOV CX, DX

 MOV SI, OFFSET LIST

AGAIN1: MOV AX, [SI]

 CMP AX, [SI]

 CMP AX, [SI + 2]

 JL PRI

 XCHG [SI], AX

PR1: ADD SI, 02

 LOOP AGAIN1

 DEC DX

 JNZ AGAIN0

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 8

To perform one byte BCD addition.

 Micro Processors

 NOTES

86

Analysis:

It is assumed that the operands are in BCD form, but the CPU considers it
hexadecimal and accordingly performs addition. Consider the following
example for addition. Carry is set to be zero.

 9 2

 + 5 9

 E B actual result after addition considering hex. Operands

 1 0 1 1

 + 0 1 1 0 As 0BH(LSD of addition) > 09, add 06 to it.

 1 0 0 0 1 Least significant nibble of result (neglect the auxiliary
carry)

  AF is set to 1

0110 is added to most significant nibble of the result if it is greater than 9 or
AF is set.

 1 carry from previous digit (AF)

 E  1 1 1 0

 + 0 1 1 0

CF is set to 1 0 1 0 1 next significant nibble of result

Result CF Most significant Least significant digit

Program:

DATA SEGMENT

 QPR1 EQU 92H

 QPR2 EQU 52H

 RESULT DB 02 DUP(00)

DATA ENDS

CODE SEGMENT

 Micro Processors

 NOTES

87

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV BL, OPR1

 XOR AL, AL

 MOV AL, OPR2

 ADD AL, BL

 DAA

 MOV RESULT, AL

 JNC MSB0

 INC [RESULT + 1]

MSB0: MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

In this program, the instruction DAA is used after ADD. Similarly, DAS can
be used after Sub instruction.

Problem: 9

Program that performs addition, subtraction, multiplication and division of
the given operands. Perform BCD operation for addition and subtraction.

Program:

DATA SEGMENT

 OPR1 EQU 98H

 OPR2 EQU 49H

 SUM DW 01 DUP(00)

 SUBT DW 01 DUP(00)

 Micro Processors

 NOTES

88

 PROD DW 01 DUP(00)

 DIVS DW 01 DUP(00)

DATA ENDS

CODE SEGMENT

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV BL, OPR2

 XOR AL, AL

 MOV AL, OPR1

 ADD AL, BL

 DAA

 MOV BYTE PTR SUM, AL

 JNC MSB0

 INC [SUM + 1]

MSB0: XOR AL, AL

 MOV AL, OPR1

 SUB AL, BL

 DAS

 MOV BYTE PTR SUBT, AL

 JNB MSB1

 INC [SUBT + 1]

MSB1: XOR AL, AL

 MOV AL, OPR1

 MUL BL

 Micro Processors

 NOTES

89

 MOV WORD PRT PROD, AX

 XOR AH, AH

 MOV AL, OPR1

 DIV BL

 MOV WORD PTR DIVS, AX

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 10

Program to find out whether a given byte is in the string or not. If it is in the
string, find out the relative address of the byte from the starting location of
the string.

Analysis:

The given string is scanned for the given byte.

If it is found in the string, the zero flag is set; else, it is reset.

A count should be maintained to find out the relative address of the byte
found out.

Program:

CODE SEGMENT

 ASSUME CS : CODE, DS:DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV ES, AX

 MOV CX, COUNT

 MOV DI, OFFSET STRING

 Micro Processors

 NOTES

90

 MOV BL, 00H

 MOV AL, BYTE1

SCAN1: NOP

 SCASB [DI]

 JZ XXX

 INC BL

 LOOP SCAN1

XXX: MOV AH, 4CH

 INT 21H

CODE ENDS

DATA SEGMENT

 BYTE1 EQU 25H

 COUNT EQU 06H

 STRING DB 12H, 13H, 20H, 20H, 25H, 21H

DATA ENDS

 END START

Problem: 11

Program to convert the BCD numbers 0 to 9 to their equivalent sever
segment codes using the look-up table technique. Assume the codes (7-
seg) are stored sequentially in CODELIST at the relative addresses from 0
to 9. The BCD number (CHAR) is taken in AL.

Analysis:

Refer to the explanation of the XLAT instruction. The statement of the
program itself given the explanation about the logic of the program.

Program:

DATA SEGMENT

 Micro Processors

 NOTES

91

 CODELIST DB 34, 45, 56, 45, 23, 12, 19, 24, 21, 00

 CHAR EQU 05

 CODEC DB 01H DUP(?)

DATA ENDS

CODE SEGMENT

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV BX, OFFSET CODELIST

 MOV AL, CHAR

 XLAT

 MOV BYTE PTR CODEC, AL

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 12

To check whether the parity of a given number is even or odd. If parity is
even set DL to 00; else, set DL to 01. The given number may be a multi
byte number.

Analysis:

The simplest algorithm to check the parity of a multi byte number is to go
on adding the parity byte by byte with 00H. The result of the addition
reflects the parity of that byte of the multi byte number. Adding the parities
of all the bytes of the number, one will obtain the over all parity of the
number.

 Micro Processors

 NOTES

92

Program:

DATA SEGMENT

 NUM DD 335A379BH

 BYTE_COUNT EQU 04

DATA ENDS

CODE SEGMENT

 ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV DH, BYTE_COUNT

 XOR AL, AL

 MOV CL, 00

 MOV SI, OFFSET NUM

NEXT_BYTE: ADD AL, [SI]

 JP EVENP

 INC CL

EVENP: INC SI

 MOV AL, 00

 DEC DH

 JNZ NEXT_BYTE

 MOV DL, 00

 RCR CL, 1

 JNC DL

CLEAR: MOV AH, 4CH

 INT 21H

 Micro Processors

 NOTES

93

CODE ENDS

 END START

The contents of CL are incremented depending upon either the parity for
that byte is even or odd. If LSB of CL is 1, after testing for all bytes, it
means the parity of the multi-byte number is odd otherwise it is even and
DL is modified correspondingly

Problem : 13

Program for the addition of two 3  3 matrices. The matrices are stored in
the form of lists (row wise). Store the result of addition in the third matrix.

Analysis:

In the addition of two matrices, the corresponding elements are added to
form the corresponding elements of the result matrix as shown.















333231

232221

131211

aaa
aaa
aaa

 +














333231

232221

131211

bbb
bbb
bbb

 =


















333332323131

232322222121

131312121111

bababa
bababa
bababa

 [A] + [B] = [A + B]

The matrix A is stored in the memory at an offset MAT1, as given:

a11, a12, a13, a21, a22, a23, a31, a32, a33 etc.

A total of 3  3 = 9 additions are to be done. The assembly language
program is written as shown.

Program:

DATA SEGMENT

 DIM EQU 09H

 MAT1 DB 01, 02, 03, 04, 05, 06, 07, 08, 09

 MAT2 DB 01, 02, 03, 04, 05, 06, 07, 08, 09

 RMT3 DW 09H DUP(?)

DATA ENDS

CODE SEGMENT

 Micro Processors

 NOTES

94

 ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV CX, DIM

 MOV SI, OFFSET MAT1

 MOV DI, OFFSET MAT2

 MOV BX, OFFSET RMAT3

NEXT: XOR AX, AX

 MOV AL, [SI]

 ADD AL, [DI]

 MOV WORD PRT [BX], AX

 INC SI

 INC DI

 ADD BX, 02

 LOOP NEXT

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 14

Program to find out the product of two matrices. Store the result in the third
matrix.

Analysis:

The multiplication of matrices is carried out as shown

 Micro Processors

 NOTES

95















333231

232221

131211

aaa
aaa
aaa

 














333231

232221

131211

bbb
bbb
bbb

=



















333323321331323322321231313321321131

232323221321322322221221312321221121

231312121313321312221212311221121111

bababababababababa
bababababababababa
bababababababababa

Program:

DATA SEGMENT

 ROCOL EQU 03H

 MAT1 DB 05H, 09H, 0AH, 03H, 02H, 07H, 03H, 00H, 09H

 MAT2 DB 09H, 07H, 02H, 01H, 0H 0DH, 7H, 06H, 02H

 PMAT3 DW 09H DUP(?)

DATA ENDS

CODE SEGMENT

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV CH, ROCOL

 MOV BX, OFFSET PMAT3

 MOV SI, OFFSET MAT1

NEXTROW: MOV DI, OFFSET MAT2

 MOV CL, ROCOL

NEXTCOL: MOV DL, ROCOL

 MOV BP, 0000H

 MOV AX, 0000H

 SAHF

 Micro Processors

 NOTES

96

NEXT_ELE: MOV AL, [SI]

 MUL BYTE PTR[DI]

 ADD BP, AX

 INC SI

 ADD DI, 03

 DEC DL

 JNZ NEXT_ELE

 SUB DI, 08

 SUB SI, 03

 MOV [BX], BP

 ADD BX, 02

 DEC CL

 JNZ NEXTCOL

 ADD SI, 03

 DEC CH

 JNZ NEXTROW

 MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

Problem: 15

Write a program to add two multi byte numbers and store the result as a
third number. The numbers are stored in the form of the byte lists stored
with the lowest byte first.

 Micro Processors

 NOTES

97

Analysis:

This program is similar to the program written for the addition of two
matrices except for the addition instruction.

Program:

DATA SEGMENT

 BYTES EQU 08H

 NUM1 DB 05H, 5AH, 6CH, 55H, 66H, 77H, 34H, 12H

 NUM2 DB 04H, 56H, 04H, 57H, 32H, 12H, 19H, 13H

 NUM3 DB 0AH DUP(00)

DATA ENDS

CODE SEGMENT

 ASSUME CS : CODE, DS : DATA

START: MOV AX, DATA

 MOV DS, AX

 MOV CX, BYTES

 MOV SI, OFFSET NUM1

 MOV DI, OFFSET NUM2

 MOV BX, OFFSET NUM3

 XOR AX, AX

NEXTBYTE: MOV AL, [SI]

 ADC AL, [DI]

 MOV BYTE PRT[BX], AL

 INC SI

 INC DI

 INC BX

 Micro Processors

 NOTES

98

 DEC CX

 JNZ NEXTBYTE

 JNC NCARRY

 MOV BYTE PTR [BX], 01

NCARRY: MOV AH, 4CH

 INT 21H

CODE ENDS

 END START

 Micro Processors

 NOTES

99

3. MODULAR PROGRAMMING

Structure

3-1 Introduction
3-2 THE STACK
3.3 Far and Near Procedures

3-3-1 Calls, Returns, and Procedures definitions in 8086
3.4 Parameter Passing in Procedures
3.5 External Procedures

Objectives

 Discuss about internal and external programming procedure

3-1 Introduction

Modular programming refers to the practice of writing a program as a series
of independently assembled source files. each source file is a modular
program designed to be assembled into a separate object file. Each object
file constitutes a module. The linker collects the modules of a program into
a coherent whole.

There are several reasons a programmer might choose to modularize a
program.

1. Modular programming permits breaking a large program into a number
of smaller modules each of more manageable size.

2. Modular programming makes it possible to link source code written in
two separate languages. a hybrid program written partly in assembly
language and partly in higher level language necessarily involves at least
one module for each language involved.

3. Modular programming allows for the creation, maintenance and reuse of
a library of commonly used modules.

4. Modules are easy to comprehend.

5. Different modules can be assigned to different programs.

6. Debugging and testing can be done in a more orderly fashion.

7. Document action can be easily understood.

 Micro Processors

 NOTES

100

8. Modifications may be localized to a module.

 A modular program can be represented using hierarchical diagram:

The advantages of modular programming are:

1. Smaller, easier modules to manage

2. Code repetition may be avoided by reusing modules.

You can divide a program into subroutines or procedures. you need to call
the procedure whenever needed. a subroutine call transfers the control to
subroutine instructions and brings the control back to calling program.

3-2 THE STACK

A procedure call is supported by a stack. So let us discuss stack in
assembly. Stacks are last in first out data structures, and are used for
storing the return Addresses of the procedures and for parameter passing
and saving the return value.

 In 8086 microprocessor a stack is created in the stack segment. The ss
register stores the offset of stack segment and sp register stores the top of
the stack. A value is Pushed in to top of the stack or taken out (poped) from
the top of the stack. The stack Segment can be initialized as follows:

STACK_ SEG SEGMENT STACK

 DW 100 DUP (0)

 TOS LABEL WORD

STACK_SEG ENDS

 CODE SEGMENT

 Micro Processors

 NOTES

101

ASSUME CS: CODE, SS: STACK_SEG

MOV AX, STACK_SEG

MOV SS,AX ; initialise stack segment

LEA SP,TOP ; initialise stack pointer

CODE ENDS

END

The directive stack_seg segment stack declares the logical segment for the
Stack segment. DW 100 DUP(0) assigns actual size of the stack to 100
words. All Locations of this stack are initialized to zero. The stacks are
identified by the stack top And that is why the label top of stack (TOS) has
been selected. Please note that the Stack in 8086 is a WORD stack. Stack
facilities involve the use of indirect addressing Through a special register,
the stack pointer (SP). Sp is automatically decremented as Items are put
on the stack and incremented as they are retrieved. Putting something on
to stack is called a push and taking it off is called a pop. The address of the
last Element pushed on to the stack is known as the top of the stack (TOS).

3.3 Far and Near Procedures

Procedure provides the primary means of breaking the code in a program
into modules. Procedures have one major disadvantage, that is, they
require extra code to join them together in such a way that they can
communicate with each other. This extra code is sometimes referred to as
linkage overhead.

A procedure call involves:

1. Unlike other branch instructions, a procedure call must save the
address of the next instruction so that the return will be able to branch back
to the proper place in the calling program.

2. The registers used by the procedures need to be stored before their
contents are changed and then restored just before the procedure is
finished.

 Micro Processors

 NOTES

102

3. A procedure must have a means of communicating or sharing data with
the procedures that call it, which is parameter passing.

3-3-1 Calls, Returns, and Procedures definitions in 8086

The 8086 microprocessor supports CALL and RET instructions for
procedure call. The CALL instruction not only branches to the indicated
address, but also pushes the return address onto the stack. In addition, it
also initialized IP with the address of the procedure. The RET instructions
simply pops the return address from the stack. 8086 supports two kinds of
procedure call. These are FAR and NEAR calls.

 The NEAR procedure call is also known as Intrasegment call as the called
procedure is in the same segment from which call has been made. Thus,
only IP is stored as the return address. The IP can be stored on the stack
as:

Please note the growth of stack is towards stack segment base. So stack
becomes full on an offset 0000h. Also for push operation we decrement SP
by 2 as stack is a word stack (word size in 8086 = 16 bits) while memory is
byte organized memory.

FAR procedure call, also known as intersegment call, is a call made to
separate code segment. Thus, the control will be transferred outside the
current segment. Therefore, both CS and IP need to be stored as the return
address. These values on the stack after the calls look like:

When the 8086 executes the FAR call, it first stores the contents of the
code segment register followed by the contents of IP on to the stack. A

 Micro Processors

 NOTES

103

RET from the NEAR procedure. Pops the two bytes into IP. The RET from
the FAR procedure pops four bytes from the stack.

Procedure is defined within the source code by placing a directive of the
form:

<Procedure name> PROC <Attribute>

 A procedure is terminated using:

<Procedure name> ENDP

 The <procedure name> is the identifier used for calling the procedure and
the <attribute> is either NEAR or FAR. A procedure can be defined in:

1. The same code segment as the statement that calls it.

2. A code segment that is different from the one containing the statement
that calls it, but in the same source module as the calling statement.

3. A different source module and segment from the calling statement.

 In the first case the <attribute> code NEAR should be used as the
procedure and code are in the same segment. For the latter two cases the
<attribute> must be FAR.

 Let us describe an example of procedure call using NEAR procedure,
which contains a call to a procedure in the same segment.

PROGRAM 1:

Write a program that collects in data samples from a port at 1 ms interval.
The upper 4 bits collected data same as mastered and stored in an array in
successive locations.

; REGISTERS :Uses CS, SS, DS, AX, BX, CX, DX, SI, SP

; PROCEDURES : Uses WAIT

 DATA_SEG SEGMENT

 PRESSURE DW 100 DUP(0) ; Set up array of 100 words

 NBR_OF_SAMPLES EQU 100

 PRESSURE_PORT EQU 0FFF8h ; hypothetical input port

 Micro Processors

 NOTES

104

DATA_SEG ENDS

 STACK_SEG SEGMENT STACK

 DW 40 DUP(0) ; set stack of 40 words

STACK_TOP LABEL WORD

STACK_SEG ENDS

 CODE_SEG SEGMENT

 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: MOV AX, DATA_SEG ; Initialise data segment register

 MOV DS, AX

 MOV AX, STACK_SEG ; Initialise stack segment register

 MOV SS, AX

 MOV SP, OFFSET STACK – TOP ; initialise stack pointer top of

 ; stack

 LEA SI, PRESSURE ; SI points to start of array PRESSURE

 MOV BX, NBR_OF_SAMPLES ; Load BX with number of samples

 MOV DX, PRESSURE_PORT ; Point DX at input port

 ; it can be any A/D converter or data port.

 READ_NEXT: IN AX, DX ; Read data from port

 ; please note use of IN instruction

 AND AX, 0FFFH ; Mask upper 4 bits of AX

 MOV [SI], AX ; Store data word in array

 CALL WAIT ; call procedures wait for delay

 INC SI ; Increment SI by two as dealing with

 INC SI ; 16 bit words and not bytes

 DEC BX ; Decrement sample counter

 Micro Processors

 NOTES

105

 JNZ READ_NEXT ; Repeat till 100 samples are collected

STOP: NOP

WAIT PROC NEAR

 MOV CX, 2000H ; Load delay value into CX

HERE: LOOP HERE ; Loop until CX = 0

 RET

WAIT ENDP

CODE_SEG ENDS

 END

 Discussion:

Please note that the CALL to the procedure as above does not indicate
whether the call is to a NEAR procedure or a FAR procedure. This
distinction is made at the time of defining the procedure.

 The procedure above can also be made a FAR procedure by changing the
definition of the procedure as:

WAIT PROC FAR

 .

 .

WAIT ENDS

 The procedure can now be defined in another segment if the need so be,
in the same assembly language file.

3.4 Parameter Passing in Procedures

Parameter passing is a very important concept in assembly language. It
makes the assembly procedures more general. Parameter can be passed
to and from to the main procedures. The parameters can be passed in the
following ways to a procedure:

 Micro Processors

 NOTES

106

1. Parameters passing through registers

2. Parameters passing through dedicated memory location accessed by
name

3. Parameters passing through pointers passed in registers

4. Parameters passing using stack.

 Let us discuss a program that uses a procedure for converting a BCD
number to binary number.

 PROGRAM 2:

Conversion of BCD number to binary using a procedure.

Algorithm for conversion procedure:

Take a packed BCD digit and separate the two digits of BCD.

Multiply the upper digit by 10 (0Ah)

Add the lower digit to the result of multiplication

The implementation of the procedure will be dependent on the parameter-
passing scheme. Let us demonstrate this with the help of three programs.

Program 2 (a): Use of registers for parameter passing: This program uses
AH register for passing the parameter. We are assuming that data is
available in memory location. BCD and the result is stored in BIN

;REGISTERS : Uses CS, DS, SS, SP, AX

;PROCEDURES : BCD-BINARY

 DATA_SEG SEGMENT

 BCD DB 25h ; storage for BCD value

 BIN DB ? ; storage for binary value

DATA_SEG ENDS

STACK_SEG SEGMENT STACK

 DW 200 DUP(0) ; stack of 200 words

 Micro Processors

 NOTES

107

 TOP_STACK LABEL WORD

STACK_SEG ENDS

 CODE_SEG SEGMENT

 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: MOV AX, DATA_SEG ; Initialise data segment

 MOV DS, AX ; Using AX register

 MOV AX, STACK_SEG ; Initialise stack

 MOV SS, AX ; Segment register. Why stack?

 MOV SP, OFFSET TOP_STACK ; Initialise stack pointer

 MOV AH, BCD

 CALL BCD_BINARY ; Do the conversion

 MOV BIN, AH ; Store the result in the memory

 :

 :

; Remaining program can be put here

;PROCEDURE : BCD_BINARY - Converts BCD numbers to binary.

;INPUT : AH with BCD value

;OUTPUT : AH with binary value

;DESTROYS : AX

 BCD_BINARY PROC NEAR

 PUSHF ; Save flags

PUSH BX ; and registers used in procedure

PUSH CX ; before starting the conversion Do the conversion

MOV BH, AH ; Save copy of BCD in BH

AND BH, 0Fh ; and mask the higher bits. The lower digit is in BH

 Micro Processors

 NOTES

108

AND AH, 0F0h ; mask the lower bits. The higher digit is in AH

 ; but in upper 4 bits.

MOV CH, 04 ; so move upper BCD digit to lower

ROR AH, CH ; four bits in AH

MOV AL, AH ; move the digit in AL for multiplication

MOV BH, 0Ah ; put 10 in BH

MUL BH ;Multiply upper BCD digit in AL by 0Ah in BH, the result is in AL

MOV AH, AL ; the maximum/ minimum number would not

 ; exceed 8 bits so move AL to AH

ADD AH, BH ; Add lower BCD digit to MUL result

; End of conversion, binary result in AH

 POP CX ; Restore registers

 POP BX

 POPF

 RET ; and return to calling program

BCD_BINARY ENDP

CODE_SEG ENDS

 END START

 Discussion:

The above program is not an optimum program, as it does not use registers
minimally. By now you should be able to understand this module. The
program copies the BCD number from the memory to the AH register. The
AH register is used as it is in the procedure. Thus, the contents of AH
register are used in calling program as well as procedure; or in other words
have been passed from main to procedure. The result of the subroutine is
also passed back to AH register as returned value. Thus, the calling
program can find the result in AH register.

The advantage of using the registers for passing the parameters is the
ease with which they can be handled. The disadvantage, however, is the

 Micro Processors

 NOTES

109

limit of parameters that can be passed. For example, one cannot pass an
array of 100 elements to a procedure using registers.

Passing Parameters in General Memory the parameters can also be
passed in the memory. In such a scheme, the name of the memory location
is used as a parameter. The results can also be returned in the same
variables. This approach has a severe limitation. It is that you will be forced
to use the same memory variable with that procedure. What are the
implications of this bound? Well in the example above we will be bound that
variable BCD must contain the input. This procedure cannot be used for a
value stored in any other location. Thus, it is a very restrictive method of
procedural call. Passing Parameters Using Pointers This method
overcomes the disadvantage of using variable names directly in the
procedure. It uses registers to pass the procedure pointers to the desired
data. Let us explain it further with the help of a newer version of the last
program.

Program 2 (c) version 2:

DATA_SEG SEGMENT

 BCD DB 25h ; Storage for BCD test value

 BIN DB ? ; Storage for binary value

DATA_SEG ENDS

 STACK_SEG SEGMENT STACK

 DW 100 DUP(0) ; Stack of 100 words

TOP_STACK LABEL WORD

STACK_SEG ENDS

 CODE_SEG SEGMENT

 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: MOV AX, DATA_SEG ; Initialize data

 MOV DS, AX ; segment using AX register

 MOV AX, STACK_SEG ; initialize stack

 MOV SS, AX ; segment. Why stack?

 MOV SP, OFFSET TOP_STACK ; initialize stack pointer

 Micro Processors

 NOTES

110

; Put pointer to BCD storage in SI and DI prior to procedure call.

 MOV SI, OFFSET BCD ; SI now points to BCD_IN

 MOV DI, OFFSET BIN ; DI points BIN_VAL (returned value)

 CALL BCD_BINARY ; Call the conversion procedure

 NOP ; Continue with program here

 ; PROCEDURE : BCD_BINARY Converts BCD numbers to binary.

; INPUT : SI points to location in memory of data

; OUTPUT : DI points to location in memory for result

; DESTROYS : Nothing

 BCD_BINARY PROC NEAR

 PUSHF ; Save flag register

 PUSH AX ; and AX registers

 PUSH BX ; BX

 PUSH CX ; and CX

 MOV AL, [SI] ; Get BCD value from memory for conversion

 MOV BL, AL ; copy it in BL also

 AND BL, 0Fh ; and mask to get lower 4 digits

 AND AL, 0F0h ; Separate upper 4 bits in AL

 MOV CL, 04 ; initialize counter CL so that upper digit

 ROR AL, CL ; in AL can be brought to lower 4 bit positions in AL

 MOV BH, 0Ah ; Load 10 in BH

 MUL BH ; Multiply upper digit in AL by 10 The result is stored in AL

 ADD AL, BL ; Add lower BCD digit in BL to result of multiplication

; End of conversion, now restore the original values prior to call. All calls
will be in

 Micro Processors

 NOTES

111

; reverse order to save above. The result is in AL register.

 MOV [DI], AL ; Store binary value to memory

 POP CX ; Restore flags and

 POP BX ; registers

 POP AX

 POPF

 RET

BCD_BINARY ENDP

CODE_SEG ENDS

 END START

 Discussion:

In the program above, SI points to the BCD and the DI points to the BIN.
The instruction MOV AL,[SI] copies the byte pointed by SI to the AL
register. Likewise, MOV [DI], AL transfers the result back to memory
location pointed by DI. This scheme allows you to pass the procedure
pointers to data anywhere in memory. You can pass pointer to individual
data element or a group of data elements like arrays and strings. This
approach is used for parameters passing to BIOS procedures.

Passing Parameters through Stack The best technique for parameter
passing is through stack. It is also a standard technique for passing
parameters when the assembly language is interfaced with any high level
language. Parameters are pushed on the stack and are referenced using
BP register in the called procedure. One important issue for parameter
passing through stack is to keep track of the stack overflow and underflow
to keep a check on errors.

Let us revisit the same example, but using stack for parameter passing.

PROGRAM 2: Version 3

DATA_SEG SEGMENT

 BCD DB 25h ; Storage for BCD test value

 BIN DB ? ; Storage for binary value

DATA_SEG ENDS

 Micro Processors

 NOTES

112

 STACK_SEG SEGMENT STACK

 DW 100 DUP(0) ; Stack of 100 words

 TOP_STACK LABEL WORD

STACK_SEG ENDS

CODE_SEG SEGMENT

 ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

START: MOV AX, DATA ; Initialise data segment

 MOV DS, AX ; using AX register

 MOV AX, STACK-SEG . ; initialise stack segment

 MOV SS, AX ; using AX register

 MOV SP, OFFSET TOP_STACK ; initialise stack pointer

 MOV AL, BCD ; Move BCD value into AL

 PUSH AX ; and push it onto word stack

 CALL BCD_BINARY ; Do the conversion

 POP AX ; Get the binary value

 MOV BIN, AL ; and save it

 NOP ; Continue with program

; PROCEDURE : BCD_BINARY Converts BCD numbers to binary.

; INPUT : None - BCD value assumed to be on stack before call

; OUTPUT : None - Binary value on top of stack after return

; DESTROYS : Nothing

 BCD_BINARY PROC NEAR

 PUSHF ; Save flags

 PUSH AX ; and registers : AX

 Micro Processors

 NOTES

113

 PUSH BX ; BX

 PUSH CX ; CX

 PUSH BP ; BP. Why BP?

 MOV BP, SP ; Make a copy of the stack pointer in BP

 MOV AX, [BP+ 12] ; Get BCD number from stack. But why it is on

; BP+12 location? Please note 5 PUSH statements + 1 call which is intra-
segment (so

; just IP is stored) so total 6 words are pushed after AX has been pushed
and since it is

; a word stack so the BCD value is stored on 6 × 2 = 12 locations under
stack. Hence

; [BP + 12] (refer to the figure given on next page).

 MOV BL, AL ; Save copy of BCD in BL

 AND BL, 0Fh ; mask lower 4 bits

 AND AL, F0H ; Separate upper 4 bits

 MOV CL, 04 ; Move upper BCD digit to low

 ROR AL, CL ; position BCD digit for multiply location

 MOV BH, 0Ah ; Load 10 in BH

 MUL BH ; Multiply upper BCD digit in AL by 10 the result is in AL

 ADD AL, BL ; Add lower BCD digit to result.

 MOV [BP + 12], AX ; Put binary result on stack

 ; Restore flags and registers

 POP BP

 POP CX

 POP BX

 POP AX

 Micro Processors

 NOTES

114

 POPF

 RET

BCD_BINARY ENDP

CODE_SEG ENDS

END START

 Discussion:

The parameter is pushed on the stack before the procedure call. The
procedure call causes the current instruction pointer to be pushed on to the
stack. In the procedure flags, AX, BX, CX and BP registers are also pushed
in that order. Thus, the stack looks to be:

The instruction MOV BP, SP transfers the contents of the SP to the BP
register. Now BP is used to access any location in the stack, by adding
appropriate offset to it. For example, MOV AX, [BP + 12] instruction
transfers the word beginning at the 12th byte from the top of the stack to
AX register. It does not change the contents of the BP register or the top of
the stack. It copies the pushed value of AH and AL at offset 008Eh into the
AX register. This instruction is not equivalent to POP instruction.

 Micro Processors

 NOTES

115

Stacks are useful for writing procedures for multi-user system programs or
recursive procedures. It is a good practice to make a stack diagram as
above while using procedure call through stacks. This helps in reducing
errors in programming.

3.5 External Procedures

These procedures are written and assembled in separate assembly
modules, and later are linked together with the main program to form a
bigger module. Since the addresses of the variables are defined in another
module, we need segment combination and global identifier directives. Let
us discuss them briefly.

Segment Combinations

In 8086 assembler provides a means for combining the segments declared
in different modules. Some typical combine types are:

1. PUBLIC: This combine directive combines all the segments having the
same names and class (in different modules) as a single combined
segment.

2. COMMON: If the segments in different object modules have the same
name and the COMMON combine type then they have the same beginning
address. During execution these segments overlay each other.

3. STACK: If the segments in different object modules have the same
name and the combine type is STACK, then they become one segment,
with the length the sum of the lengths of individual segments.

 These details will be more clear after you go through program 4 and
further readings.

 Identifiers

a) Access to External Identifiers: An external identifier is one that is
referred in one module but defined in another. You can declare an identifier
to be external by including it on as EXTRN in the modules in which it is to
be referred. This tells the assembler to leave the address of the variable
unresolved. The linker looks for the address of this variable in the module
where it is defined to be PUBLIC.

b) Public Identifiers: A public identifier is one that is defined within one
module of a program but potentially accessible by all of the other modules
in that program. You can declare an identifier to be public by including it on
a PUBLIC directive in the module in which it is defined.

 Micro Processors

 NOTES

116

 Let us explain all the above with the help of the following example:

PROGRAM 3:

Write a procedure that divides a 32-bit number by a 16-bit number. The
procedure should be general, that is, it is defined in one module, and can
be called from another assembly module.

 ; REGISTERS :Uses CS, DS, SS, AX, SP, BX, CX

; PROCEDURES : Far Procedure SMART_DIV

DATA_SEG SEGMENT WORD PUBLIC

 DIVIDEND DW 2345h, 89AB ; Dividend = 89AB2345H

 DIVISOR DW 5678H ; 16-bit divisor

 MESSAGE DB ‘INVALID DIVIDE’, ‘$’

DATA_SEG ENDS

 MORE_DATA SEGMENT WORD

QUOTIENT DW 2 DUP(0)

REMAINDER DW 0

MORE_DATA ENDS

 STACK_SEG SEGMENT STACK

 DW 100 DUP(0) ; Stack of 100 words

 TOP – STACK LABEL WORD ; top of stack pointer

STACK_SEG ENDS

 PUBLIC DIVISOR

 PROCEDURES SEGMENT PUBLIC ; SMART_DIVis declared as an

 EXTRN SMART_DIV: FAR ; external label in procedure

 ; segment of type FAR

PROCEDURES ENDS

 Micro Processors

 NOTES

117

; declare the code segment as PUBLIC so that it can be merged with other
PUBLIC segments

CODE_SEG SEGMENT WORD PUBLIC

 ASSUME CS:CODE, DS:DATA_SEG, SS:STACK SEG

START: MOV AX, DATA_SEG ; Initialize data segment

 MOV DS, AX ; using AX register

 MOV AX, STACK_SEG ; Initialize stack segment

 MOV SS, AX ; using AX register

 MOV SP, OFFSET TOP_STACK ; Initialize stack pointer

 MOV AX, DIVIDEND ; Load low word of dividend

 MOV DX DIVIDEND + 2 ; Load high word of dividend

 MOV CX, DIVISOR ; Load divisor

 CALL SMART_DIV

; This procedure returns Quotient in the DX:AX pair and Remainder in CX
register. Carry bit is set if result is invalid.

 JNC SAVE_ALL ; IF carry = 0, result valid

 JMP STOP ; ELSE carry set, don’t save result

 ASSUME DS:MORE_DATA ; Change data segment

SAVE_ALL: PUSH DS ; Save old DS

 MOV BX, MORE_DATA ; Load new data segment

 MOV DS, BX ; register

 MOV QUOTIENT, AX ; Store low word of quotient

 MOV QUOTIENT + 2, DX ; Store high word of quotient

 MOV REMAINDER, CX ; Store remainder

 ASSUME DS:DATA_SEG

 Micro Processors

 NOTES

118

 POP DS ; Restore initial DS

 JMP ENDING

STOP: MOV DL, OFFSET MESSAGE

 MOV AX, AH 09H

 INT 21H

ENDING: NOP

CODE_SEG ENDS

 END START

 Discussion:

The linker appends all the segments having the same name and PUBLIC
directive with segment name into one segment. Their contents are pulled
together into consecutive memory locations.

The next statement to be noted is PUBLIC DIVISOR. It tells the assembler
and the linker that this variable can be legally accessed by other assembly
modules. On the other hand EXTRN SMART_DIV:FAR tells the assembler
that this module will access a label or a procedure of type FAR in some
assembly module. Please also note that the EXTRN definition is enclosed
within the PROCEDURES SEGMENT PUBLIC and PROCEDURES ENDS,
to tell the assembler and linker that the procedure SMART_DIV is located
within the segment PROCEDURES and all such PROCEDURES segments
need to be combined in one. Let us now define the

PROCEDURE module:

; PROGRAM MODULE PROCEDURES

 ; INPUT : Dividend - low word in AX, high word in DX, Divisor in CX

; OUTPUT : Quotient - low word in AX, high word in DX. Remainder in CX
Carry - carry flag is set if try to divide by zero

; DESTROYS : AX, BX, CX, DX, BP, FLAGS

DATA_SEG SEGMENT PUBLIC ; This block tells the assembler that

EXTRN DIVISOR:WORD ; the divisor is a word variable and is

DATA_SEG ENDS ; external to this procedure. It would be

 Micro Processors

 NOTES

119

 ; found in segment named DATA_SEG

PUBLIC SMART_DIV ; SMART_DIV is available to

 ; other modules. It is now being defined

 ; in PROCEDURES SEGMENT.

PROCEDURES SEGMENT PUBLIC

SMART_DIV PROC FAR

 ASSUME CS:PROCEDURES, DS:DATA_SEG

 CMP DIVISOR, 0 ; This is just to demonstrate the use of

 ; external variable, otherwise we can

 ; check it through CX register which contains the divisor.

 JE ERROR_EXIT ; IF divisor = 0, exit procedure

 MOV BX, AX ; Save low order of dividend

 MOV AX, DX ; Position high word for lst divide

 MOV DX, 0000h ; Zero DX

 DIV CX ; DX:AX/CX, quotient in AX, remainder in DX

 MOV BP, AX ; transfer high order of final result to BP

 MOV AX, BX ; Get back low order of dividend. Note

 ; DX contains remainder so DX : AX is the actual number

 DIV CX ; DX:AX/CX, quotient in AX, 2nd remainder that is final
;remainder in DX

 MOV CX, DX ; Pass final remainder in CX

 MOV DX, BP ; Pass high order of quotient in DX

 ; AX contains lower word of quotient

 CLC ; Clear carry to indicate valid result

 JMP EXIT ; Finished

 Micro Processors

 NOTES

120

ERROR_EXIT: STC ; Set carry to indicate divide by zero

EXIT: RET

SMART_DIV ENDP

PROCEDURES ENDS

 END

Discussion:

The procedure accesses the data item named DIVISOR, which is defined
in the main, therefore the statement EXTRN DIVISOR:WORD is necessary
for informing assembler that this data name is found in some other
segment. The data type is defined to be of word type. Please not that the
DIVISOR is enclosed in the same segment name as that of main that is
DATA_SEG and the procedure is in a PUBLIC segment.

4. Summary

In this unit, we studied some programming techniques, starting from arrays,
to interrupts. Arrays can be of byte type or word type, but the addressing of
the arrays is always done with respect to bytes. For a word array, the
address will be incremented by two for the next access.

 As the programs become larger and larger, it becomes necessary to divide
them into smaller modules called procedures. The procedures can be
NEAR or FAR depending upon where they are being defined and from
where they are being called. The parameters to the procedures can be
passed through registers, or through memory or stack. Passing parameters
into registers is easier, but limits the total number of variables that can be
passed. In memory locations it is straight forward, but limits the use of the
procedure. Passing parameters through stack is most complex out of all,
but is a standard way to do it. Even when the assembly language programs
are interfaced to high level languages, the parameters are passed on stack.

 Interrupt Service Routines are used to service the interrupts that could
have arisen because of some exceptional condition. The interrupt service
routines can be modified- by rewriting them, and overwriting their entry in
the interrupt vector table.

 Micro Processors

 NOTES

121

This completes the discussion on microprocessors and assembly language
programming. The above programming was done for 8086 microprocessor,
but can be tried on 80286 or 80386 processors also, with some
modification in the assembler directives. The assembler used here is
MASM, Microsoft assembler. The assembly language instructions remain
the same for all assemblers, though the directives vary from one assembler
to another. For further details on the assembler, you can refer to their
respective manuals. You must refer to further readings for topics such as
Interrupts, device drivers, procedures etc.

5. Test yourself

1. Write an ALP of 8086 to take N numbers.

2. Write an ALP of 8086 to take N numbers as input. And Find maximum.

3. Write an ALP of 8086 to take N numbers as input. And Find average.

4. Write an ALP of 8086 to take a string of as input and find the length.

5. Write an ALP of 8086 to take a string of as input and find it is Palindrome
or not.

6. We will give you an algorithm using XLAT instruction. Please code and
run the program yourself.

 • Take a sentence in upper case for example 'TO BE CONVERTED
TO LOWER CASE' create a table for lower case elements.

• Check that the present ASCII character is an alphabet in upper case.
It implies that ASCII character should be greater than 40h and less than
58h.

• If it is upper case then subtract 41h from the ASCII value of the
character. Put the resultant in AL register.

• Set BX register to the offset of lower case table.

• Use XLAT instruction to get the required lower case value.

• Store the results in another string.

 Micro Processors

 NOTES

122

UNIT – III

1. Interrupt Processing

Structure

1.1 INTRODUCTIQN
1.2 Hardware and software Interrupts
1.3 The interrupt vector table
1.4 The interrupt processing sequence

1-4-1Get Vector Number
1-4-2 Save Processor Information
1-4-3 Fetch New Instruction Pointer

1.5 Multiple interrupts
1.6 Special interrupts

1-6-1 Divide-Error
1-6-2 Single –step
1-6-3 NMI
1-6-4 Breakpoint
1-6-5 Overflow
1-6-6 INTR

1.7 Interrupt service routines
1-8 Interrupt procedure of 8086
1-9 8259 programmable interrupt controller

1-9-1 Command words of 8259

OBJECTIVES

In this unit you will learn about:

• The differences between hardware and software interrupts
• The differences between maskable and non-maskable interrupts
• Interrupt processing procedures
• The vector address table
• Multiple interrupts and interrupts priorities
• Special function interrupts
• The general requirements of all interrupt handlers

 1.1 INTRODUCTIQN

The 8086 provides a very flexible method for recovering from what are
known as catastrophic system faults. Through the same mechanism,

 Micro Processors

 NOTES

123

external and internal interrupts may be handled and other events not
normally associated with program execution may be taken care of. The
method that does all of this for us is the 8086 interrupt handler. In this
chapter we will see that there are many kinds of interrupts. Some of these
deal with issues that have always plagued programmers (such as the
divide-by-zero operation), while still others may be defined by the
programmer. The emphasis in this chapter is on the definition of the
numerous interrupts available.

1.2 Hardware and software Interrupts

An interrupt is an event that causes the processor to stop its current
program execution and perform a specific task to service the interrupt.
We are all interrupted many times during the day. A ringing telephone or
doorbell, a knock on the door, or a question from a friend all indicate the
need to communicate with you. The situation is much the same with the
microprocessor. The interrupt is used to get the processor’s attention.
Interrupts may be used to inform the processor in an alarm system that a
fire has started or a window has been opened. In a personal computer,
interrupts are used to keep accurate time, read the keyboard. Operate
the disk drives, and access the power of the disk operating system.
Two kinds of interrupts are available: hardware and software interrupts.
Hardware interrupts are generated by changing the logic levels on either
of the processor’s hardware interrupt inputs. These inputs are NMI (non-
maskable interrupt) and INTR (Interrupt request). INTR can be enabled
and disabled by the state of the interrupt-enable flag (IF). The CLI (clear
interrupt-enable flag) instruction clears W, which disables INTR. The STI
(set interrupt-enable flag) instruction sets IF, allowing INTR. to respond to
requests. This means that INTR can be masked (disabled). NMI gets its
name from the fact that its operation cannot be disabled. NMI always
causes an interrupt sequence when it is activated. A rising edge is
needed on NMI to trigger the interrupt mechanism, and that ENTR is level
sensitive, requiring a high logic level to interrupt the processor.

Software interrupts are generated directly by an executing program.
These types of interrupts are also called exceptions some instructions like
INT and INTO initiate interrupt processing when they are executed. Other
instructions are capable of generating an interrupt when a certain
condition is met. DIV and DIV. for example, cause a type-O interrupt
(divide error) whenever division by 0 is attempted.

 What happens when a software and hardware interrupt occur at the
same time? The processor has a technique for handling this situation; it
requires that the interrupts be prioritized. Table shows the interrupt
priority scheme used by the 8086.

 Micro Processors

 NOTES

124

 Interrupts with the highest priority are divide-error, INT, and INTO. NMI
and INTR have lower priorities, with single-step having the lowest. If both
hardware interrupts are activated simultaneously. NMJ will be serviced
first, with INTR pending until it gets its chance to be recognized by the
processor. If a divide-error and NMI occur simultaneously, divide-error will
be recognized first, followed by NMI.

Interrupt Priority

Divide-error Highest

INT. INTO

NM I

INTR

Single-step Lowest

1.3 The interrupt vector table

All types of interrupts, whether hardware or software generated,
point to a single entry in the processor’s interrupt vector table. This table
is a collection of 4-byte addresses (two for CS and two for IP) that
indicate where the processor should jump to execute the associated
interrupt service routine, the code designed to handle the specific
interrupt. Because 256 interrupts are available, the interrupt vector table
is 1,024 bytes long. The 1KB block of memory reserved for the table is
located in the address range 00000 to 003FFH. Some earlier processors
automatically loaded their first instruction from address 0000 after a reset.
The 80xS6 fetches its first address from location FFPF0H. This indicates
that we are able to begin program execution without first having to place
values into the interrupt vector table. If we plan on using any interrupts, it
will be necessary to initialize the required vectors within the table. This
can be done easily with a few MOV instructions.

Figure 1.1 shows the organization of the interrupt vector table. Each 4-
byte entry consists of a 2-byte IP register value followed by a 2-byte CS
register value. This indicates that interrupt service routines are
considered far routines. Notice that some of the vectors are predefined.
Vector 0 (the same as type-0) has been chosen to handle division-by-
zero errors. Vector 1 (type-i) helps to implement single-step operation.
Vector 2 is used when NMI is activated. Vector 3 (breakpoint) is normally
used when troubleshooting a new program Vector 4 is associated with

 Micro Processors

 NOTES

125

the INTO instruction Vectors is used when the BOUND instruction reports
n out-of-range index. Vectors 6 through 18 perform various housekeeping
duties. Some of these vectors (10, 11, 14) are operational only in
protected or virtual- 8086 mode. Table shows the associated vector
assignments. Vectors 19 through 31 are reserved by Intel for use in their
products. This does not mean that these interrupt vectors are unavailable
to us, but that we should refrain from using them In an Intel machine
unless we know how they have been assigned. Vectors 32 through 255
are unassigned and free for us to use. To initialize an interrupt vector, we
must write the 4 bytes of the interrupt service routine address into the
table locations reserved for the interrupt. A short example shows one way
this can be done.

• EXAMPLE 1.1

The interrupt service routine for a type-40 interrupt is located at address
28000H how is the interrupt vector table set up to handle this interrupt?
Solution: An easy way to determine the address within the interrupt
vector table that is used by an interrupt is to multiply the interrupt number
by 4. Multiplying 40 by 4 and converting into hexadecimal gives 000A0H
as the starting address of the vector for INT 40. The interrupt service
routine address 28000H can be generated by many different
combinations of CS and IP values. If CS is loaded with 28000H and U’
with 0000, we get the correct address of 28000W Thus, it is necessary to
write these two address values into memory starting at 000A0H. The
short section of code shown here is one way to do this:

TABLE: Interrupt/exception vectors

Vector Description

0 Divide error

I Debugger call (single-step)

2 NMI

3 Breakpoint

4 INTO

5 SOUND range exceeded

6 invalid opcode

7 Device not available

 Micro Processors

 NOTES

126

8 Double fault

9 Reserved

10 Invalid task state segment

11 Segment not present

12 Stack exception

13 General protection

14 Page fault

15 Reserved

16 Floating-point error

17 Alignment check

18 Machine check

19—31 Reserved

32—255 Maskable Interrupts (non-reserved)

 Micro Processors

 NOTES

127

FIGURE 1.1 Interrupt vector table

The PUSH DS instruction is used to save the current value of the DS
register on the stack, Because we need to access memory in the 00000
to 003FFFI range, it is convenient to load 1)8 with 0000 and use DI as the
offset into the vector table. Notice that the first word written is 0000, which

 Micro Processors

 NOTES

128

goes into locations 000A0H and 000A1H. Then the CS value 2800H is
written into locations 000A2H and 000A3H. Figure 1.2 provides a
snapshot of memory after these instructions execute. Now, when INT 40
executes, it will cause a jump to the interrupt service routine located at
address 28000H. The POP DS instruction restores the old value of the
DS register.

 Figure 1.2 also shows the contents of memory for the vector associated
with INT 41. What is the address of the TSR? As usual, the two words
have been byte-swapped. The word at address 000A4H is IFOOH. The
word at address 000A6H is 3400H. The effective address created by the
addition of these two words is 35F00H, which is the address of the ISR
for INT 41.

The machine code for INT 40 is CD 28 (note that 28H equals 40
decimal). The machine code for INT 41 is CD 29. All INT instructions
begin with CI) as their first byte and have the interrupt number as the
second byte. The only exception to this rule is INT 3, breakpoint, which
has only the byte CC as its opcode.

FIGURE 1.2 ISR address for INT 40H and INT 41 H

 Micro Processors

 NOTES

129

1.4 The interrupt processing sequence

Interrupt processing coverage of the INT and INTO instructions. These
software interrupts initiate a sequence of steps in which the flags and
return address are saved prior to loading CS and IP with the ISR
address. The same process is followed for hardware interrupt NMI, which
automatically generates a type-2 interrupt. The sequence initiated by
INTR (when interrupts are enabled) is slightly different, because the
processor must first read the interrupt number from the data bus. When
interrupts are enabled, INTR causes the processor to perform two
interrupt acknowledge cycles. In the 8086, external devices recognize
these cycles by examining the state of the output, which goes low
during each cycle, the first low-going pulse on is used to indicate to
other devices on the system bus that the processor is beginning an
interrupt acknowledge cycle. In minimum mode this indicates that the
processor will riot acknowledge a hold request until the interrupt
acknowledge cycle completes. In maximum mode the processor activates
its LOCK output to prevent system bus takeovers during the interrupt
acknowledge cycle.

The second low pulse on indicates that the interrupt number should
be placed onto the lower byte of the processor’s data bus. A special
peripheral designed to respond to the 8086’s interrupt acknowledge cycle
is the 8259A programmable interrupt controller.

Once the interrupt number is read from the data bus, the processor
performs all of the steps that we are familiar with. Let us review the
overall process once more.

1-4-1Get Vector Number

The processor obtains the interrupt number in one of three ways. First,
the interrupt type number may be specified directly using one of the INT
instructions. Second, the processor may automatically generate the
interrupt type number, as it does for INTO, NMI, and divide-error. Third it
may have to read the interrupt type number from the data bus (after
receiving INTR).

Once the interrupt number is obtained, it is used to form the location
within the interrupt vector table that contains the requested ISR address.

1-4-2 Save Processor Information

Once the interrupt vector is known, the processor pushes the flag register
onto the stack. This is done to preserve some of the processor’s internal
state at the time of the interrupt (a very necessary step if we are to
resume normal execution later). Once the flags are pushed, the

 Micro Processors

 NOTES

130

processor cigars the interrupt enable and trace flags to disable INTR
while interrupt processing is taking place. Next, the Wand CS values at
the time of the interrupt are pushed onto the stack. Figure 1.3 shows how
the stack is used when an interrupt occurs. The contents of the flag
register at the time of the interrupt were 00C2H, the address of the
instruction that was about to be fetched when the interrupt occurred was
1109:3C00 (in CS: IP format).

1-4-3 Fetch New Instruction Pointer

Once the return address has been pushed, the processor can fetch the
new values of IP and CS out of the interrupt vector table and begin
execution of the interrupt service routine. The address generated by the
interrupt number is used to read the two ISR address words out of the
table.

One word of caution: Because the stack contains the information needed
to return to the interrupt point, we must be careful not to change the
contents of stack memory or alter the stack pointer in any way that would
prevent the correct information from being popped off. The processor will
not remember anything about the interrupt and relies only on the data
popped off the stack for a proper return.

FIGURE 1.3 Stack contents during an interrupt

 Micro Processors

 NOTES

131

1.5 Multiple interrupts

 In the course of program execution, chances are good that eventually
two interrupts might request the processor’s attention at the same time,
For example, just as division-by-zero is attempted in an executing
program, NMI is also activated. The processor needs to “break the tie”
when this happens and recognize one of the two interrupts first. When we
examined priority table, we saw that divide-error has a higher priority than
NMI. So, in our current example, divide-error will be recognized first, and
the following sequence of steps will occur:

1. Divide-error is recognized.

2. The flags are pushed.

3 The return address (CS and IP) is pushed.

4. The interrupt-enable and trace flags are cleared.

5. NMI is recognized.

6. The new flags are pushed.

7. The new return address is pushed.

8. The interrupt-enable and trace flags are cleared.

9. The NMI ISR is executed.

10. The second return address is popped.

11. The second set of flags is popped.

12. The divide-error ISR is executed.

13. The first return address is popped.

14. The first set of flags is popped.

15. Execution resumes at the instruction following the one that initiated
the divide-error.

It is easy to see that the stack plays an important role during this process.

A more common occurrence of a multiple interrupt is seen when the
processor’s trace flag is set. The trace flag, when set, puts the processor
into single-step mode, where a type-1 interrupt is generated after
completion of every instruction. If the current instruction is INT or INTO.
You can see that two interrupts will need servicing: the INT or INTO
interrupt and the single-step interrupt. Single-step has the lowest priority
of all interrupts and thus gets recognized last. We will see how single-
stepping with the trace flag can be a useful tool when debugging a
program.

 Micro Processors

 NOTES

132

1.6 Special interrupts

We will now examine the specific operation of a few selected interrupts.
Some may be very useful to implement while others may never be
needed in a program for proper operation. Even so, you are better off
knowing how each one works and when to use it.

1-6-1 Divide-Error

Figure 1.4 shows the contents of four memory locations that contain the
code for these two instructions:

B3 00 MOV BL,0
F6 F3 DIV BL

The first instruction is located at address 05100H. The second instruction
is located at address 05102H, Because DIV BL is a 2-byte instruction, the
instruction must he located at address 05104W this address becomes the
return when DIV BL generates a divide-error interrupt.

The interrupt service routine for divide-error can do anything the user
wishes to recover from the error. One programmer may wish simply to
load the accumulator with 0 or some other number, while another may
want to display an error message on the user’s display screen.

Because divide error is a type-O interrupt its address vector is stored in
memory locations 00000 through 00003.

FIGURE 1.4 Instruction sequences causing a divide-error interrupt

 Micro Processors

 NOTES

133

1-6-2 Single –step

This interrupt relies on the setting of the trace flag in the flag register.
When the trace flag is set, the processor will generate a type-i interrupt
after each instruction executes. Remember from the interrupt processing
sequence that after the flags are pushed the processor clears the trace
flag, disabling single-stepping while it executes the trace ISR, An
extremely useful debugging tool can be written and used within the trace
ISR. This single- step debugger may be programmed to display the
contents of each processor register, the state of the flags, and other
useful information after execution of each instruction in a user program.
Because the trace flag is cleared before the ISR is called, we need not
worry about single-stepping through the trace ISR.

There are no instructions available that directly affect the state of the
trace flag. There are other techniques that can be used to do this. For
instance, a copy of the flags can be leaded into AX by first pushing a
copy of the flag register onto the stack and then popping them into AX.
Then an OR instruction can be used to set the trace flag. Once this is
done, the flags are restored by pushing AX back onto the stack and then
popping the flags. The instructions needed to accomplish this are:

PUSH F

POP AX

OR AX, 100H

PUSH AX

POPF

Once this is done, the processor will enter and remain in single-step
mode until the trace flag is cleared. This can be done with the same set
of instructions, replacing the OR with AND AX, 0FEFFH.

The ISR address vector for single-step must be stored in memory
locations 00004 through 00007.

• EXAMPLE 1.2

 Assume that the trace flag is set and that the trace [SR displays the
contents of AX on the screen after each instruction executes. What do we
expect to see when this group of instructions executes?

MOV AX, 1234H

 Micro Processors

 NOTES

134

INC AL

DEC AH

NOT AX

Solution: Because the trace flag is set, a single-step interrupt will be
generated after each of the four instructions. When the first instruction
completes, the trace ISR will display AX= 1234. The second instruction
will increase AL to 35, causing the ISR to display AX= 1235 next. The
third instruction will decrease AH to 11. The trace ISR will then display
AX= 1135. Finally, after all bits in AX are inverted, the trace ISR will
display AX=EECA. We will see that the personal computer has built-in
routines capable of displaying messages and data on the screen, so
writing a trace ISR is not as complicated a task as it appears.

1-6-3 NMI

Because NMI (non maskable interrupt) can never be ignored by the
processor, it finds useful application in events that the computer
absolutely must respond to. One such event is the disastrous power-fail.
The processor unfortunately forgets the contents of its registers and flags
when power is turned off and thus has no chance of getting back to the
correct place in a program if its power is interrupted. One way to prevent
this from happening and provide a way for the processor to resume
execution is to use NMI to interrupt the processor at the beginning of a
power-fail. Because the computer’s power supply will continue to supply
a stable voltage for a few milliseconds after it loses AC, the processor
has plenty of time to execute the necessary instructions. Suppose that a
certain system contains a small amount of non-volatile memory. This type
of memory retains its data after it loses power and acts like RAM when
power is applied. So, in the event of a power-fail, the NMI ISR should
store the contents of each processor register in the NVM. These values
can then be reloaded when power comes back up. In this fashion we can
recover from a power-fail without loss of intelligence.

 The ISR address vector for NMI is stored in memory locations 00002
through 0000BH.

1-6-4 Breakpoint

This interrupt is a type-3 interrupt but is coded as a single byte for
reasons of efficiency. Breakpoint aids in debugging in the following way:
a program being debugged will have the first byte of one of its
instructions replaced by the code for breakpoint (CC). When the
processor gets to this instruction, it will generate a type-3 interrupt. The
[SR associated with breakpoint is similar to the trace ISR and should be

 Micro Processors

 NOTES

135

capable of displaying the processor register contents and also the
address at which the breakpoint occurred. Before the ISR exits, it will
replace the breakpoint byte with the original first byte of the instruction.
Figure 1.5 shows how the breakpoint routine makes a copy of the first
byte in the NOT AL instruction stored at location 06200H. The first byte of
the instruction (F6H) is copied into a temporary location and then
replaced by the breakpoint instruction code CC. Some people like to refer
to this as setting the breakpoint. Once the breakpoint is set, a fetch from
address 06200H will initiate a breakpoint interrupt.

Clearing the breakpoint is accomplished by copying the instruction byte
from the temporary location back into its original location. The ISR
address vector for breakpoint is stored in memory locations 0000CH
through 0000FH.

FIGURE 1.5 Setting a breakpoint

 Micro Processors

 NOTES

136

 EXAMPLE 1.3

A programmer wishes to find out if a conditional jump takes place. Where
should the programmer place the breakpoint instruction? The code being
tested looks like this:

CMP AL,0

JNZ XYZ

NOT AL

XYZ: INC AL

Solution: The programmer has two choices for placement of the
breakpoint instruction. It could be placed in the location occupied by NOT
AL, which would cause a breakpoint when the JNZ does not jump to XYZ.
It could also be placed in the location occupied by INC AL, activating
when the JNZ does take place. Either way, the programmer will know the
results of the CMP and .JNZ instructions (by the presence or absence of
a breakpoint).

1-6-5 Overflow

This type-4 interrupt is initiated only when the INTO instruction is
executed with the overflow flag set. Its applications, like divide-error, tend
to be of a corrective nature. You may think of overflow as the watchdog
for multi-bit addition and subtraction operations, much like divide-error
watches out for division-by-zero. If the overflow flag is cleared, INTO will
not generate an interrupt (essentially operating as a NOP in this case).

The ISR address vector for overflow is stored in memory locations
00010H through 0001 3H.

EXAMPLE 1.4

Will the following sequence of code generate an overflow interrupt?

MOV AL,70H

 MOV BL,60H

ADD AL,BL

 Micro Processors

 NOTES

137

INTO

Solution: Yes. Although the numbers in AL and BL can both be
interpreted as positive signed numbers, the sum (D0H) looks like a
negative signed number. In this case the overflow flag is set and INTO
will generate an interrupt.

1-6-6 INTR

 Up to now we have only discussed the basics of this hardware interrupt
signal. Let us take a closer look. No interrupt is generated by TNTR
unless the interrupt-enable flag (IF) is set. This can easily be
accomplished with the STI (set interrupt-enable flag) instruction. INTR
must remain high until sampled by the processor, unlike NMI, which is a
rising-edge triggered input. It is therefore necessary when using INTR to
allow it to remain high only until an interrupt acknowledge cycle begins.
For 8086/8088 systems, the 8259A programmable interrupt controller,
automatically interfaces with INTR and . If the power of this
peripheral is not needed, then custom interrupt circuitry must be
designed, First, we need the INTR connection. The circuit shown in
Figure 1.6 uses a flip- flop to condition the INTR input. A D-type flip-flop is
used to convert the high-level requirement of INTR into an edge-sensitive
request A rising edge on MINT (maskable interrupt) will clock a 1 through
the flip-flop, placing a high level on INTR. When the 8086/8088
recognizes INTR and begins its interrupt acknowledge cycle, will go
low. This will clear the flip-flop and remove the INTR request. MINT must
go low and back high again for another interrupt to be recognized.

FIGURE 1.6 INTA conditioning circuitry

 Micro Processors

 NOTES

138

1.7 Interrupt service routines

The interrupt service routine referred to many times in this chapter is the
actual section of code that takes care of processing a specific interrupt.
The ISR for a divide-error is necessarily different from one designed to
handle breakpoint or NMI interrupts.

Even though these interrupt service routines are written to accomplish
different goals, there are portions of each that, for the sake of good
programming, look and operate the same. Recall that any time an
interrupt occurs, the processor pushes the flags and return address onto
the stack before vectoring to the address of the ISR. Clearly, we must see
that the ISR will change the data in various registers while it is processing
the interrupt. Because we desire to return to the same point in our
program where we left off before the interrupt occurred and resume
processing, we insist that all prior conditions exist upon return. This
means that we must return from the ISR with the state of all registers
preserved. It is now the responsibility of the ISR to preserve the state of
any registers that it alters. Figure 1.7 shows how this is done. In this
example, DIV BL causes a divide-error interrupt. The first thing the ISR
does is save the processor registers on the stack. These registers are
saved with the PUSH instruction. You will need a PUSH for each register
you need to save (or you can push all the registers with PUSHA). The
contents of all processor registers, including the flags, are often called the
environment or context of the machine. Putting a copy of everything onto
the stack saves the environment that existed at the time of the interrupt.

When the body of the ISR finishes execution, it is necessary to reload the
registers that were saved at the beginning of the routine. The POP
instruction is used for this purpose. POPs must be done in the reverse
order of the PUSHes. A ISR that uses AX, BX, and CX would look
something like this:

ANISR: PUSH AX ; save register

PUSH EX

PUSH CX

; body of ISR

POP CX ; get registers back

POP BX

POP AX

IRET ; return from interrupt

Saving all registers is preferable, and will save you much
heartache in the future, when you find that saving one or two registers

 Micro Processors

 NOTES

139

was insufficient as the needs of the routine became more complex. In this
case, use POPA to restore all registers.

FIGURE 1.7 Storing environments during interrupt processing

 Micro Processors

 NOTES

140

1-8 Interrupt procedure of 8086
An 8086 interrupt can occur because of the following reasons:

1. Hardware interrupts, caused by some external hardware device.

2. Software interrupts, which can be invoked with the help of INT
instruction.

3. Conditional interrupts, which are mainly caused due to some error
condition generated in 8086 by the execution of an instruction.

 When an interrupt can be serviced by a procedure, it is called as the
Interrupt Service Routine (ISR). The starting addresses of the interrupt
service routines are present in the first 1K addresses of the memory
(Please refer to Unit 2 of this block). This table is called the interrupt
vector table.

 How can we write an Interrupt Servicing Routine? The following are the
basic but rigid sequence of steps:

1. Save the system context (registers, flags etc. that will be modified by
the ISR).

2. Disable the interrupts that may cause interference if allowed to occur
during this ISR's processing

3. Enable those interrupts that may still be allowed to occur during this
ISR processing.

4. Determine the cause of the interrupt.

5. Take the appropriate action for the interrupt such as – receive and
store data from the serial port, set a flag to indicate the completion of
the disk sector transfer, etc.

6. Restore the system context.

7. Re-enable any interrupt levels that were blocked during this ISR
execution.

8. Resume the execution of the process that was interrupted on
occurrence of the interrupt.

MS-DOS provides you facilities that enable you to install well-behaved
interrupt

handlers such that they will not interfere with the operating system
function or other interrupt handlers. These functions are:

 Function Action

Int 21h function 25h Set interrupt vector

Int 21h function 35h Get interrupt vector

 Micro Processors

 NOTES

141

Int 21h function 31h Terminate and stay residents 97

Here are a few rules that must be kept in mind while writing down your
own Interrupt Service Routines:

1. Use Int 21h, function 35h to get the required IVT entry from the IVT.
Save this entry, for later use.

2. Use Int 21h, function 25h to modify the IVT.

3. If your program is not going to stay resident, save the contents of the
IVT, and later restore them when your program exits.

4. If your program is going to stay resident, use one of the terminate and
stay resident functions, to reserve proper amount of memory for your
handler.

Let us now write an interrupt routine to handle “division by zero”. This file
can be loaded like a COM file, but makes itself permanently resident, till
the system is running.

This ISR is divided into two major sections: the initialization and the
interrupt handler. The initialization procedure (INIT) is executed only
once, when the program is executed from the DOS level. INIT takes over
the type zero interrupt vector, it also prints a sign-on message, and then
performs terminate and “stay resident exit” to MS-DOS. This special exit
reserves the memory occupied by the program, so that it is not
overwritten by subsequent application programs. The interrupt handler
(ZDIV) receives control when a divide-by-zero interrupt occurs.

CR EQU ODH ; ASCII carriage return

LF EQU 0Ah ; ASCII line feed

BEEP EQU 07h ; ASCII beep code

BACKSP EQU 08h ; ASCII backspace code

CSEG SEGMENT PARA PUBLIC 'CODE'

ORG 100h

 ASSUME CS:CSEG,DS:CSEG,ES:CSEG,SS:CSEG

 INIT PROC NEAR

 MOV DX,OFFSET ZDIV ; reset interrupt 0 vector

 ; to address of new

 ; handler using function 25h, interrupt

 Micro Processors

 NOTES

142

 MOV AX, 2500h ; 0 handles divide-by-zero

 INT 21h

 MOV AH,09 ; print identification message

 INT 21h

 ; DX assigns paragraphs of memory

 ; to reserve

 MOV DX,((OFFSET PGM_LEN + 15)/16) + 10h

 MOV AX,3100h ; exit and stay resident

 INT 21h ; with a return code = 0

 INIT ENDP

 ZDIV PROC FAR ; this is the zero-divide

 ; hardware interrupt handler.

 STI ; enable interrupts.

 PUSH AX ; save general registers

 PUSH BX

 PUSH CX

 PUSH DX

 PUSH SI

 PUSH DI

 PUSH BP

 PUSH DS

 PUSH ES

 MOV AX,CS

 MOV DS,AX

 MOV DX,OFFSET WARN ; Print warning "divide by

 MOV AH, 9 ; zero "and" continue or

 INT 21h ; quit?"

ZDIV1: MOV AH,1 ; read keyboard

 INT 21h

 CMP AL, 'C' ; is it 'C' or 'Q'?

 Micro Processors

 NOTES

143

 JE ZDIV3 ; jump it is a 'C'.

 CMP AL, 'Q'

 JE ZDIV2 ; jump it's a'Q'

 MOV DX, OFFSET BAD ; illegal entry, send a

 MOV AH,9 ; beep, erase the bad char

 INT 21h ; and try again

 JMP ZDIV1

ZDIV2: MOV AX, 4CFFh ; user wants to abort the

 INT 21h ; program, return with

 ; return code = 255

ZDIV3: MOV DX,OFFSET CRLF ; user wishes to continue

 MOV AH,9 ; send CRLF

 INT 21h

 POP ES ; restore general registers

 POP DS ; and resume execution

 POP BP

 POP DI

 POP SI

 POP DX

 POP CX

 POP BX

 POP AX

 IRET

 ZDIV ENDP

SIGNON DB CR, LF, 'Divide by zero interrupt'

 DB 'Handler Installed’

 DB CRLF,'$'

WARN DB CR, LF, 'Divide by zero detected:'

 DB CR, LF 'Quit or Continue (C/Q) ?'

 Micro Processors

 NOTES

144

 DB '$'

BAD DB BEEP, BACKSP, ",BACKSP,'$'

CRLF DB CR,LF,$'

PGM_LEN EQU $-INIT

CSEG ENDS

 END

1-9 The 8259 programmable interrupt controller

Figure 1-8 shows a simplified block diagram of the 8259.

FIGURE 1-8 8259 block diagram

The functional units of 8259 are

Interrupt Request Register: The interrupts at IRQ input lines are
handled by interrupt Request Register internally. IRR stores all the
interrupt requests in it in order to serve them one by one on priority.

 Micro Processors

 NOTES

145

In Service Register: It stores all the interrupt requests those are being
served.

Priority Resolver: It determines the priorities of the interrupt requests
appearing simultaneously. The highest priority is selected and stored into
the corresponding bit of ISR.

Interrupt Mask Register: It stores the bits required to mask the interrupt
inputs. IMR operated on IRR at the direction of the priority resolver.

Interrupt control Logic: It manages the interrupt and interrupt
acknowledge signals to be sent to CPU for serving one of the eight
interrupt requests.

Data Bus Buffer: It is a tri-state bi-directional buffer interfaces internal
8259 bus to the microprocessor to data bus. Control words, status and
vector information passes through data buffer during read and write
operations.

Read/Write Control Logic: It accepts and decodes command from the
CPU

Cascade Buffer: It stores and compares the ID’s of all 8259 s used in the
system. The three IO pins CAS0-2 are outputs when the 8259 used as
master. The same pins acts as inputs when the 8259 is in slave mode.
The 8259 in master mode sends the ID of the interrupting slave device on
those lines. The slave thus select will send its preprogrammed vector
address on the data bus during the next INTA pulse.

 The 8086 interrupt flag is set and the INTR input receives a high
signal, then 8086 will send out interrupt acknowledge pulses on its INTA
pin to the INTA pin of an 8259A PIC. The INTA pulses tell the 8259A to
send the desired interrupt type to the 8086 on the data bus.

1) Multiply the interrupt type it receives from the 8259A by 4 to
produce an address in the interrupt vector table.

2) Push the flags on the stack.

3) Clear IF and TF

4) Push the return address on the stack.

5) Get the starting address for the interrupt procedure from the
interrupt vector table and load that address in CS and IP.

6) Execute the interrupt – service procedure.

 Micro Processors

 NOTES

146

 The data bus allows the 8086 to send control words to the
8259A and read a status word from the 8259A. The RD and WR inputs
control these transfers when the device is selected by asserting its chip
select (CS) input low. The 8-bit data bus also allows the 8259A to send
interrupt types to the 8086.

 The eight interrupt inputs labeled IRO through IR7 on the right
side of the diagram. If the 8259A is properly enabled, an interrupt signal
applied to any one of these inputs will cause the 8259A to assert its INT
output pin high. If this pin is connected to the INTR pin of an 8086 and if
the 8086 interrupt flag is set, then this high signal will cause the
previously described INTR response.

 The INTA input of the 8259A is connected to the INTA output of
the 8086. The 8259A uses the first INTA pulse from the 8086 to do some
activities that depend on the mode in which it is programmed. When it
receives the second INTA pulse from the 8086, the 8259A outputs an
interrupt type on the 8-bit data bus, as shown in figure. The interrupt type
that it sends to the 8086 is determined by the IR input that received an
interrupt signal and by a number you send the 8259A when you initialize
it.

In the block diagram note the four boxes labeled interrupt request register
(IRR), interrupt mask register(IMR), in service register (ISR) and priority
resolver.

 The interrupt mask register is used to disable (mask) or enable
(Unmask) individual interrupt inputs. Each bit in this register corresponds
to the interrupt input with the same number. You unmask an interrupt
input by sending a command word with a 0 in the bit position that
corresponds to that input.

 The interrupt request register keeps track of which interrupt inputs
are asking for service. If an interrupt input has an interrupt signals on it,
then the corresponding bit in the interrupt request register will be set.

 The priority resolver acts as a “judge” that determines if an when an
interrupt request on one of the IR inputs gets serviced.

 As an example of how this works, suppose that IR2 and IR4 are
unmasked and that an interrupt signal comes in on the IR4 in the interrupt
request on the IR4 input will set bit 4 in the interrupt request register. The
priority resolver will detect that this bit is set and check the bits in the
interrupt service register (ISR) to see if a higher priority input is being
serviced. If higher priority input is being serviced, as indicated by a bit
being set for that input in the ISR, then the priority resolver will take no
action. If no higher priority interrupt is being serviced. Then the priority
resolver will active the circuitry which sends an interrupt signals to the

 Micro Processors

 NOTES

147

8086. When the 8086 responds with INTA pulses, the 8259A will send
the interrupt type that was specified for the IR4 input when the 8259A
was initialized.

 Now, suppose that while the 8086 is executing the IR4 service
procedure, an interrupt signal arrives at the IR2 input of the 8259A. This
will set bit 2 of the interrupt request register. Since we assumed for this
example that IR2 was unmasked, the priority resolver will detect that this
bit in the IRR is set and make a decision whether to send another
interrupt signal to the 8086.

1-9-1 Command words of 8259:

The command words of 8259 are classified into two groups, they are
initialization command words (ICW) and operational command words
(OCW), ICWs are used to set 8259 into normal operation, where as
OCWs are used for selecting any one of the modes.

Modes of 8259: There are different modes of 8259, which can be
selected by the help of setting and resetting OCWs.

Fully Nested Mode: It is the default mode and when interrupt requests
will come, the higehst priority interrupt request is serviced. IR0 has
highest priority and IR7 has lowest.

Cascade mode: 8259 connected in a system has one master and 8
slaves to handle upto 64 priority levels. Master controls the slaves using
CAS0-CAS2 which act as chip select inputs for slaves.

Buffered Mode:When problem of enabling the buffer exists, 9259 buffer
enable signal on SP/EN whenever the data is placed on the bus.

 Micro Processors

 NOTES

148

2. DIGITAL INTERFACING

Structure
2.1 Introduction
2-2 Need for I/O interface
2-3 Parallel Communication
2-4 8255 Programmable Peripheral interface
2-5 Modes of 8255

2-5-1 BSR mode
2-5-2 I/O modes

2-6 Interfacing of key board

2.1 Introduction

 Interfacing: Designing logic circuits to enable them processor to
communicate with peripherals by overcoming different income due
to differences in speed, data format etc.

2-2 Need for I/O interface

 When a microprocessor is enabled to with peripherals, there arise
incompatibilities due to following reasons.

1) When the processor is working with multiple peripherals, it must
interpret the address and M/I/O select signals to a peripheral to
which it must communicate.

2) Difference in the timing according to transfer is to be taken place.
When a high speed processor synchronized with a slow peripheral,
there arises incompatibilities difference in speed.

3) Difference in format of data this is to be transferred between
processor and peripherals. Processors send/receive parallelly
where as some peripherals transmit data serially.

4) Some handshaking signals and interrupt are needed for reliable
data transfer.

 To over come all these problems circuit must include address
decoders, buffers, and handshaking devices.

The interface logic that supports system bus must include

 1) Bus drivers and receiver

 Micro Processors

 NOTES

149

 2) Logic to transfer control signals to hand shaking signals

 3) Logic to decode the address.

2-3 Parallel Communication

In parallel communication data is transferred simultaneously on several
lines to increase data transfer rate. But the cost of parallel lines increases
when it is used over long distances.

A parallel interface with handshaking lines and separate I/O connections
to I/O device are shown below figure 2-1.

1) An input is carried out by putting data on data bus and a 1 on data
in ready line.

2) Interface will latch the data into the data and putting a 1 on data in
acknowledges line.

3) The device receiver acknowledges and drop data and ready
signals.

4) After receiving data, interface sets ready bit and sends interrupt
request.

5) CPU receives data, cleans ready status puts data lines on high
impedance state.

Figure 2-1 Parallel communication

 Micro Processors

 NOTES

150

2-4 8255 Programmable Peripheral interface

 It is a programmable peripheral parallel interface device.

 It provides parallel input and output ports

 It has 24 input/output lines which my be programmed into two groups
of 12 lines or 3 groups

 It contains a control register and addressable ports A, B, C.

 These bits are divided into groups A and B.

 Group A contains port A and 4 MSB bits of port C.

 Group B contains port B and 4 LSB bits of port C

 All the above ports can be operated as input or output ports by
programming the control word register.

Figure2-2

 Micro Processors

 NOTES

151

Figure 2-3

PA0-PA7 : These are 8 port A lines acting as latched output or
buffered input.

PB0-PB7 : These are 8 port B lines acting as latched output or
buffered input.

PC0-PC3 : These are lower port C lines acting as inner output latches
or input buffers. They also act as handshake lines in mode
1 and mode 2.

RD : If it is low read operation is enabled

WR : If it is low it indicates write operation.

CS : If it goes low it enables 8255 to respond to RD and WR signals.

A1 – A0: Address lines used to address any one of the four registers
(three ports and control register).

D0-D7: Data bus lines carry data or control word.

RESET: A high on this pin clears control word registers.

 Micro Processors

 NOTES

152

The 8-bit data bus buffer is controlled by read/write logic. Read/write logic
manages all internal and external transfer of both data and control words.

The ports of the 8255 can be used as input output ports depending on
address pins A0 and A1, RD and WR signals

 A1 A0 RD WR

 0 0 0 1 Port A to data

 0 1 0 1 Port B to data

 1 0 0 1 Port C to data

 0 0 1 0 Data bus to port

 0 1 1 0 Data bus to port

 1 0 1 0 Data bus to port

The control register of 8255 is of 8-bit length and the format of control
word is given below.

0/1 D6 D5 D4 D3 D2 D1 D0

0 for Mode select Associated with Mode select Associated with BSR For
group A group A for group B group B

2-5 Modes of 8255

There are two basic modes of operation, they are I/O mode and Bit set
reset (BSR) mode. Under I/O mode of operation there are 3 modes. They
are mode 0, mode 1, mode 2.

2-5-1 BSR mode:

Any of the 8 bits of port C can be set depending on B0 of the control
word. The bit to be set or reset is select select flags B3, B2 and B1 of
CWR.

 D3 D2 D1 Selected Bits

 0 0 0 C0

 0 0 1 C1

 0 1 0 C2

 Micro Processors

 NOTES

153

 0 1 1 C3

 1 0 0 C4

 1 0 1 C5

 1 1 0 C6

 1 1 1 C7

2-5-2 I/O modes:

Mode 0:

This is called as basic input/output mode in this mode each group is
divided into two sets, they are Port A and Port C, Port B and Port C which
can be used for inputting and outputting.

Two 8 bit ports A and B, two 4 bit ports C upper and lower are available.
C lines can be combined as third 8-bit port. Any port can be used as input
or output port.

Output port is latched and input are not. A maximum of four ports are
available so that overall 16 I/O configurations are possible.

D4 Port A

D3 Port C(Upper half)

D2 Port B

D1 Port 1 (Lower half)

Mode 1:

This mode is called as strobed input/output mode. Two groups A and B
are available for strobed data transfer. Each group one 8bit I/O port
and one 4 bit control/data port.

When group A is in this mode, port A is used input and output and port
C(upper half) is used for handshaking and control signals.

For Inputting:

 Micro Processors

 NOTES

154

PC4 STB A A0 to this pin latches PA7-PA0 into port A.

PC5 IBF A If it is 1 port A is full with data that is not taken by CPU
otherwise input can send a new data

PC6, PC7 Used as output control signals to the device or input status
signals.

For outputting:

PC4, PC5 Used as output control signals to the device or input status
signals.

PC7 OBF A If it is 0 port A is sending data to output device.

PC6 ACK B Device sends a 0 on this pin when it data from port A.

When group B is in this mode, port B is used for input and output and port
C(lower half) is used for handshaking and control signals.

For Inputting:

PC2 STB B A0 to this pin latches PB7-PB0 into port B.

PC1 IBF B If it is 1 port A is full with data that is not taken by CPU
otherwise input can send a new data

For outputting:

PC4, PC5 Used as output control signals to the advice or input status
signals

PC1 OBF B If it is 0 port B is sending data to output device.

PC3 is used for INTR and associated with group PC0 is used as INTR
for group B.

MODE 2:

This mode is also called as strobe bidirectional I/O. This mode is only
applicable group A. IN this mode it acts as bidirectional port.

Only 8-bit port in group A is available. A 5-bit control port is available.

I/O lines are provided by port C, PC2-PC0.

 Micro Processors

 NOTES

155

PC4 STB A A0 to this pin latches PA7-PA0.

PC5 IBF A If it is 1 port A is full with data that by CPU otherwise input can
send a new data.

PC6 ACK A indicates that the device is ready data from PA7-PA.

PC7 OBF A It is 0 when port A is filled with new data form the CPU and is
set to 1 when data are taken by the device.

When group A is in mode 0 group B may be in mode 0 or mode 1.

2-6 Interfacing of key board

Problem: Interface 4*4 key boards with 8086 using 8255. Port A is used
for selecting rows of keys while port B is used as an input port for sensing
a closed key. The key lines are selected one by one through port A and
port B lines are polled continuously till a key closure is ensued.

The address of port A and port B will be 8000 and 8002 while the address
of CWR will be 8086. The control word of the problem is 82.

Program:

 MOV AL, 82 LOAD CWR WITH CONTROLWORD

 MOV DX.8006

 OUT DX, AL

 MOV BL, 00 INITIALIZE BL FOR KWY CODE

 XOR AX, AX CLEAR ALL FALGS

 MOV DX, 8000 ;PORT ADDRESS IN AX

 OUT DX, AL ;GROUND ALL ROWS

 ADD DX, 02, ;PORT b ADDRESS IN DX

WAIT: IN AL, DX ;READ ALL COLUMNS

 AND AL, 0F ;MASK DATA LINES D7-D4

 CMP AL, 0F ;ANY KEY CLOSED

 JZ WAIT

 Micro Processors

 NOTES

156

 CALL DEBOUNCE

 MOV AL, F7 ;LOAD DATA BYTE TO GROUND

 MOV BH, 04 ;A ROW AND SET ROW COUNTER

NXTROW: ROL AL, 01 ;ROTATE AL TO GROUND NEXT ROW

 MOV CH, AL

 SUB DX, 02

 OUT DX, AL

 ADD DX, 02

 IN AL, DX

 AND AL, 0F

 MOV CL, 04

NXTCOL: RCR

 JNC CODEKEY

 INC BL

 DCR CL

 JNZ NXTCOL

 MOV AL, CH

 DCR BH

 JNZ NXTROW

 JMP WAIT

CODEKEY: MOV AL, BL

 MOV AH, 4CH

 INT 21

 Micro Processors

 NOTES

157

3. ANALOG INTERFACING

Structure

3-1 Introduction
3-2 Interfacing with switches and 7-sigment display unit
 3-2-1 Hardware Setup
 3-2-2 Multiplexed 7-seg Displays
3-3 Interfacing analog to digital data converters
3-4 Interfacing digital to analog converter
3-5 Interfacing stepper motor
3-6 Interfacing of key board

3-1 Introduction

The data bus of microprocessor is connected to I/O port. The address of
the device is used as chip select of the device. By the help of control
signals such as IORD and IOWR device operations are carried out.

3-2 Interfacing with switches and 7-sigment display
unit

An interface is to be designed to read the status of switches SW1 to SW8
and to display the number of a key that is pressed.

Solution:

The status of the switches is first read into the register AL. The bit
corresponding to the switch is checked by rotating AL through carry and
then checking the carry flag. If the carry flag is 1 after one left rotation it
means SW1 is on. If the carry flag sets after two rotations then it is SW2
and so on. For each rotation count CL is incremented. The eight bit
contents of register CL are converted to 7 segment code.

3-2-1 Hardware Setup

An 74LS245 buffer is used as input port to read the status of switches
SW1 to SW8. An 74LS373 latch is used as output port where the 7-
segment display unit is connected.

 Micro Processors

 NOTES

158

The address of the input port is xxx8, hence only A0-A3 are used as
address lines, Similarly the address of the output port is xxxA.

Program:

 MOV BL, 00 CLEAR BL

 MOV CL, OO CLEAR CL

 XOR AX, AX CLEAR ACCUMULATOR

 IN AL, 08 READ THE STATUS OF

 INC CL INCREMENT CL FOR 1ST SWITCH

BACK: RCR AL ROTATE SWITCH STATUS

 JC XX IF CARY HALT

 INC CL ELSE INCREMENT CL FOR NEXT
SW

 JMP BACK

FRONT: MOV AL, CL READ SW NO INTO AL

 OUT OA, AL

 HLT

3-2-2 Multiplexed 7-seg Displays

To display a single digit one output port is required, if we want to display
5 digits we need 5 ports. This will increase complexity of hardware. Thus
only 2 ports are needed, one for selecting the display unit one at a time
and other to send data to it. Each of the unit is active for a short duration
and the process continues in a loop. This is repeated with high frequency
so that the complete display containing more that one 7-segment display
appears to be stationary.

Problem

Display numbers 1 to 5 continuously using 5, 7-segment displays.

Let us select the two port addresses 0004 and 0008 for the output ports.
The first port 0004 outputs 7-segments code while the second port 0008
selects the display unit by grounding the common cathode.

In a 7-segment unit for a particular LED to be ON that particular anode
should be 1 and common cathode line should be grounded. The code to
display the numbers is given by

 Micro Processors

 NOTES

159

 NO a b c d e f g dp

 A7 A6 A5 A4 A3 A2 A1 A0

 1 1 1 0 0 0 0 0 0 = CO

 2 1 1 0 1 1 0 1 0 = DA

 3 1 1 1 1 0 0 1 0 = F2

 4 0 1 1 0 0 1 1 0 = 66

 5 1 0 1 1 0 1 1 0 = B6

These codes are stored in a lookup table starting from 2000.

Program

 MOV AX, 2000 INITIALIZE POINTER TO

 MOV DX, AX CODE TBALE DS:BX

 MOV BX, 0000

NEXT: MOV AL, 00 GET 1ST NUMBER

 MOV DHAL

 MOV CL, 05 COUNT FOR DISPLAY

 MOV DL E1 SELECTION CODE FOR 1ST
DISPLAY

AGAIN: XLAT

 OUT 04, AL SEND THE CODE FOR THE FIRST

 NUMBER TO PORT 04

 MOV AL, DL

 OUT 08, AL SELECT 1ST DISPLAY

 ROL DL DECIDE CODE FOR SLECTING
NEXT

 INC DH DISPLAY FOR NEXT NUMBER

 MOV AL, DH GET NUMBER TO BE DISPLAYED

 LOOP AGAIN

 JMP NEXT

3-3 Interfacing analog to digital data converters

An A/D converter is treated as input device. Microprocessor sends
initializing signal to the A/D converter to start the analog to digital
conversion. Microprocessor must wait until the conversion is over. After
conversion A/D converter sends end of conversion signal and the result is

 Micro Processors

 NOTES

160

send to output buffer. Time taken between start of conversion and end of
conversion is called conversion delay.

ADC0809

It is 8-bit CMOS successive approximation converter whose conversion
delay 100 microsecs at a clock frequency of 640 KHz. They have 3 :8
analog multiplexer so that at a time eight different analog inputs can be
connected to chips. Out of these 8 inputs only one can be selected for
conversion by using address lines ADD A, ADD B and ADD C.

Problem: Interface 0809 with 8089 using 8255 ports. Port A of 8255 is
used for transferring digital data output of ADC to the CPU and port C for
control signals.

The analog input I/P2 is used, its address is A, B, C equal to 010 to
select. Port C upper acts as the input port to receive the EOC signal while
port C lower acts as the output port to send SOC to ADC. Port A acts as
8-bit input data port to receive the digital data output from ADC. For this
purpose 8255 control word is 98.

Program:

 MOV AL, 98 INITIALISE 8255

 OUT CWR, AL

 MOV AL, 02 SELECT I/P2 AS ANALOG INPUT

 OUTPORTB, AL

 MOV AL, 00 START OF CONVERSION

 OUTPORT C, AL

 MOV AL, 01

 OUT PORTC, AL

 MOV AL, 00

 OUT PORT C, AL

WAIT: IN AL.PORTC CHECK FOR EOC

 RCR

 INC WAIT

 IN AL, PORTA IF EOC READ DATA IN AL

 HLT

 Micro Processors

 NOTES

161

3-4 Interfacing digital to analog converter

Problem:

Interface AD 7523 (16-bit DAC containing R-2R ladder type) for to digital
to analog conversion with 8086.

Port A is initialized as the output port for sending the digital data as input
to DAC. The ramp starts at 0 and increases to F2. The ramp period is 1
ms. The count F2 is calculated by dividing the required delay of 1 ms by
the time required.

For the execution of loop once. The ramp slope can be controlled by
calling a controllable delay after the OUT instruction.

Program:

 MOV AL,80 INTIALISE PORT A AS OUTPUT

 OUT CWR, AL

AGAIN: MOV AL, 00 START THE RAMP FROM 0

BACK: OUT PORTA, AL INPUT 00 TO DAC

 INC AL

 CMP AL, F2

 JB BACK

 JMP AGAIN

 END

3-5 Interfacing stepper motor

A stepper motor is a DC motor which rotates in steps rather than
continuously. It mainly consists two parts namely stator and rotor. Stator
is a stationary element containing four poles on which windings are
present. Rotor is a rotating shaft containing magnetic poles. To rotate the
shaft of the stepper motor a sequence of pulses are applied to the
windings of the motor.

A typical stepper motor have a torque of 3kg-cm operating at 12V 1.2A
and a step angle of 1.8 degree with 200 rotor teeth.

 Micro Processors

 NOTES

162

The four windings of stator A, B, C, D are applied with the required pulses
in cyclic fashion. By reversing the sequence of execution the direction of
rotation of the motor shaft is reversed. The excitation sequence of
windings is shown below

 Clock wise A B C D

 1 1 0 0 0

 2 0 1 0 0

 3 0 0 1 0

 4 0 0 0 1

 5 1 0 0 0

 Anticlockwise

 1 1 0 0 0

 2 0 0 0 1

 3 0 0 1 0

 4 0 1 0 0

 5 1 0 0 0

Hardware Setup:

8255 Port A is used to interface stepper motor with 8086. The port A
address is 0740. The portA bit PA0 drives winding A, PA1 drives B and
so on.

Program:

 MOV AL, 80

 OUT CWR, AL

 MOV AL, 88 ;Bit pattern 10001000 to start the

 MOV CX, 1000 ;Sequence of excitation

AGAIN 1: OUT PORTA, AL

 CALL DEALY ;Excite A, B, C, D in sequence with delay
 ROL AL, 01
 DEC CX
 JNZ AGAIN 1
 INT 21

The count for rotating the shaft of motor through a specified angle is
calculated by rotor teeth.

Count C = number of teeth* angle/360

 Micro Processors

 NOTES

163

3-6 Interfacing of key board

Problem: Interface 4*4 key board with 8086 using 8255. Port A is used for
selecting rows of keys while port B is used as an input port for sensing a
closed key. The key lines are selected one by one through port A and
port B lines are polled continuously till a key closure is ensued.

The address of port A and port B will be 8000 and 8002 while the address
of CWR will be 8086. The control word of the problem is 82.

Program:

 MOV AL, 82 ; LOAD CWR WITH CONTROLWORD

 MOV DX.8006

 OUT DX, AL

 MOV BL, 00 ; INITIALIZE BL FOR KWY CODE

 XOR AX, AX ; CLEAR ALL FALGS

 MOV DX, 8000 ; PORT ADDRESS IN AX

 OUT DX, AL ; GROUND ALL ROWS

 ADD DX, 02, ; PORT b ADDRESS IN DX

WAIT: IN AL, DX ; READ ALL COLUMNS

 AND AL, 0F ; MASK DATA LINES D7-D4

 CMP AL, 0F ;ANY KEY CLOSED

 JZ WAIT

 CALL DEBOUNCE

 MOV AL, F7 ; LOAD DATA BYTE TO GROUND

 MOV BH, 04 ;A ROW AND SET ROW COUNTER

NXTROW: ROL AL, 01 ;ROTATE AL TO GROUND NEXT ROW

 MOV CH, AL

 SUB DX, 02

 OUT DX, AL

 ADD DX, 02

 IN AL, DX

 AND AL, 0F

 MOV CL, 04

NXTCOL: RCR

 JNC CODEKEY

 INC BL

 DCR CL

 Micro Processors

 NOTES

164

 JNZ NXTCOL

 MOV AL, CH

 DCR BH

 JNZ NXTROW

 JMP WAIT

CODEKEY: MOV AL, BL

 MOV AH, 4CH

 INT 21

4. SUMMARY

We have seen that there is a fixed process used by the S0x86 to
implement and process an interrupt. The CPU, when interrupted, saves
the flag register and program counter on the stack, clears the trace and
interrupt-enable flags, and loads the interrupt service routine address
from the interrupt vector table. The interrupt vector table occupies
memory locations 00000 through 003FFH and contains pairs of words
that represent the execution addresses for each of the 256 interrupts.
These pairs correspond to IP and CS values of each ISR. The interrupt
number used to access the table may be internally generated by the
processor, or may be supplied by external hardware during an interrupt
acknowledge cycle. The processor has only two hardware interrupts: NMI
and INTR. NMI cannot be disabled, but INIR can.

 Interrupts are caused through software or by an external hardware
request. The software interrupt may be generated intentionally by the
programmer via INT and INTO, or by accident, via a run-time error such
as division-by-zero. All interrupt service routines should preserve the
state of any registers used to allow a proper return.

Three examples of actual interrupt service routines were also presented,
followed by a short set of troubleshooting tips.

Further discuss programmable peripheral interface 8255, and analog
interface have been presented in significant detail along with the
interface.

5. Test yourself

1. What is the processor’s environment? Why is it important to save the
environment during interrupt processing?

2. Explain the different ways interrupts are generated.

 Micro Processors

 NOTES

165

3. How is INTR disabled? How is it enabled?

4. What is the interrupt vector table address for an INT 21H?

5. The address of the ISR for INT 25H is 03C0:9AE2 (in CS: IP format).
Show how this address is stored within the interrupt vector table.

6. Which interrupt is recognized first, NMI or single-step?

7. What high-priority event might require the use of NMI in a computer
designed for aircraft engine control?

8. During an interrupt acknowledge cycle, 30H is placed on the data bus.
Where is the ISR address fetched from?

9. Draw and discuss internal architecture of 8255.

10. Write a program for analog inter facing.

11. Write a program for keyboard interfacing.

 Micro Processors

 NOTES

166

UNIT - IV

1. 8254 PROGRAMMABLE INTERVAL TIMER

Structure

1.1 Introduction
1-2 Interfacing the 8254
1-3 Programming the 8254

OBJECTIVES

In this section you will learn about:

• Discuss about internal architecture of 8254.
• Discuss about interface with necessary programming.

1.1 Introduction

Many applications require the processor to perform an accurate time
delay between a set of operations. For example, a microprocessor might
be dedicated to reading a custom keypad or driving a multiplexed display.
Both applications require a small time delay between it- pealed input and
output operations. A programmer may decide to use a software delay
loop, such as:

DELAY: MOV CX, 4000 ; init delay counter

WAIT: LOOP WAIT ; loop until CX=0

The total amount of delay involves 4,000 executions of the LOOP
instruction. This time can be estimated by multiplying the processor’s
clock period by the total number of states required to execute the LOOP
instructions. This type of delay loop has two main disadvantages. While
the loop is executing, the processor is not able to do anything else, such
as execute instructions pot related to the loop. Also, the time delay
becomes inaccurate if the I processor is interrupted. For these reasons
some designers (and programmers) prefer to do their timing with
hardware. Software is used to program the hardware for a specific time
delay. At the end of the time delay, the processor is interrupted. This

 Micro Processors

 NOTES

167

frees up the processor for other kinds of execution while the hardware is
performing the time delay.

A peripheral designed to implement the type of time delay just described
(and many others) is the 8254 programmable interval (liner. Figure 1.1
shows the signal groups of the 8254. The 8254 is interfaced through a
group of 110 ports. Three internal counters can be programmed in a
variety of formats, including, 4-digit BCD or 16-bit binary counting,
square-wave generation, and one-shot operation. These formats allow
the 8254 to be used for a number of different timing purposes. A short list
of these applications includes real time clocks (and/or calendars), specific
time delay generation, frequency synthesis, frequency measurement, and
pulse-width modulation.

First let us see how the 8254 is interfaced to the 8086/8088.

Figure1-1 The 8254 programmable interval timer

 Micro Processors

 NOTES

168

1-2 Interfacing the 8254

Figure 1.2 8254 Interfaced to the 8086/8088

The port-address decoder needed to connect the 8254 to the processor’s
address bus is shown in Figure 1. 2. Here, the 8254 is interfaced with an
8086/8088 operating in maximum mode (indicated by the IORC and
IOWC command signals).

 The two 8-input NAND gates in the port-address decoder map the 8254
into four I/O locations. CC8OH through CC83H. The first port (CC80H) is
used to read and write counter 0. The second two ports (CC81H and
CC82H) access counters 1 and 2, respectively.

The fourth port (CC83H) is used to control the 8254. Each counter
contains CLX and GATE inputs, and one output, OUT. Counters may be
cascaded by connecting the OUT output of one to the GATE of the other.

 Micro Processors

 NOTES

169

1-3 Programming the 8254

 Each of the 8254’s three counters can be programmed and operated
independently of the others. This discussion will concentrate on
programming and using counter 0 only.

Counter 0 is a 16-Sit synchronous down counter that can be preset to a
specific count, and decremented to 0 by pulses on the CLK0 input.
Counter 0 may operate in any of six different modes (selected with the
use of a control word). Each mode supports four-digit BCD and 16-bit
binary counting Thus, counts may range from 9999 to 0000 BCD or FFFF
to 0000 hexadecimal. Programming the counter requires outputting a
control word and an initial count to the 8254.

Figure 1.3 shows the bit assignments in the 8254’s control word. Two bits
(7 and 6) are used to select the counter being programmed. Another two
bits (Sand 4) are used to control the way the counter is loaded with a new
count. Bits 3, 2, and 1 are used to select one of six modes of operation.
The least significant bit is used to select BCD or binary counting.
To begin a counting operation, the control word must be output, followed
by the 1- or 2-byte initial count. The initial count value output to the 8254
goes into a count register The count register is cleared when the counter
is programmed (upon reception of the control word) and transferred to the
actual down counter after it gets loaded with the 1- or 2-byte initial count.
The counter may be loaded with a new count at any tints, without the
need for a new control word.

 Micro Processors

 NOTES

170

Figure 1.3 8254 control word

 Micro Processors

 NOTES

171

2. SERIAL COMMUNICATION INTERFACES

Structure

2-1 Introduction
2-2 Asynchronous communication
2-3 Synchronous Communication
2-4 USART (8251)
 2-4-1 Asynchronous mode (receive)

2-4-2 Synchronous Mode (Transmission
 2-4-3 Synchronous Mode (receiver)
 2-4-4 Control words of 8251
 2-4-5 Command Instruction control Word
2-5 RS 232 Serial data standard
 2-5-1 Voltage Levels
 2-5-2 PIN (signal) Description
2-6 IEEE 488 BUS

OBJECTIVES

In this unit you will learn about:

• The differences between Asynchronous and synchronous
communication
• Discuss internal architecture of USAR.
• Discuss internal configuration of RS 232.
• Discuss about futures of IEEE 488 bus

2-1 Introduction

Many I/O devices transmit data bit by bit i.e., one bit at a time over a
single conductor or communication channel known as serial
communication.

 Serial communication is basically divided into two types, they are
synchronous and asynchronous communication. When the speed of
transmitter and receiver are same then it is said to be synchronous
communication and if they are not same then it is said to be
asynchronous communication.

 Again these are subdivided into simplex, duplex and full duplex
modes. In simplex mode, data is transmitted only in one direction over a
single communication channel. In half duplex same communication
channel is used for sending and receiving data. Since there is only one

 Micro Processors

 NOTES

172

channel it is not possible to send and receive data at a time. If separate
lines are provided for sending and receiving data at a time then it is called
full duplex.

2-2 Asynchronous communication

Since the speed of transmitter and receiver are not same.

 Transmitter must inform receiver start of the transmission, end of
transmission etc. details for reliable transmission.

 When transmitting data, first bit is always 0 and is called start bit. It
is followed by 5 and 8 information bits. These information bits are
followed by parity bits and stop bits. The last bits are 1st called as stop
bits.

2-3 Synchronous Communication

 In this case there is no need to synchronize the transmitter and
receivers since their speeds are same.

 Rate of transmission is more in the case of synchronous
communication when compared with that of asynchronous
communication since in the later case extra bits are included for
synchronization.

2-4 USART (8251)

It is a universal synchronous and asynchronous receiver and transmitter.

It is used for serial communication interface. It converts the parallel data
into serial and serial data into parallel data.

 The internal blocks of 8251 are transmitter and receiver buffers,
transmit and receiver control units, modem control, read/write logic etc.
The read write control logic controls the operation of the peripheral
depending upon the operations initiated by CPU. This unit also selects
one of the two internal addresses those are control address and data
address at the behest of C/D signal. The modem and the USART transmit
unit transmits data byte received by the data buffer from the CPU for
further serial communication. The transmit buffer is a parallel to serial
converter that receives a parallel byte for conversion into a serial signal.
The receiver unit receives serial data and converts into parallel.

RESET: A high on this pin force 8251 into an idle state.

 Micro Processors

 NOTES

173

CLK: It is used to generate internal device timings and is connected clock
generator.

TXC : Transmitter clock input: It is used to control the rate at which the
character is to be transmitted. In synchronous mode transmission rate is
equal to TXC frequency and in asynchronous mode it is equal to 1 or 1/6
or 1/64 of the TXC frequency.

TXD: Transmitted data output: The serial data bits are transmitted
through this pin.

RXC : Receiver clock input: It is used to control the rate at which the
character is to be received. In synchronous mode transmission rate is
equal to RXC frequency and in asynchronous mode it is equal to 1 or 1/6
or 1/64 of the RXC frequency.

RXD: Receiver ready output: The serial data bits are received through
this pin.

RXRDY: Receiver ready output: This pin indicates that 8251 contains a
character to be ready by CPU.

 Micro Processors

 NOTES

174

TXRDY: Transmitter ready: This pin indicates CPU that the transmitter is
ready to accept a new character for transmission from CPU.

DSR : Data set ready: It is used to check if the data set is ready when
communicating with a modem.

DTR : Data terminal ready: A low on this pin indicates that the device is
ready to accept data when the 8251 is communicating with a modem.

RTS : Request to send data: A low on this pin indicates the modem that
the receiver is ready to receive a data byte from the modem.

CTS : Clear to send: A low on this pin enables 8251 to transmit the serial
data provided the enable bit in the command byte is set to 1.

TXE: Transmitter Empty: This pin goes high when there are no characters
to transmit.

 Micro Processors

 NOTES

175

SYNDET: This pin is used in the synchronous mode for detecting sync
characters.

When a data character is sent to 8251 by CPU is adds start bits prior to
serial data bits, followed by parity bit and stop bits using the
asynchronous mode instruction control word format.

2-4-1 Asynchronous mode (receive)

Falling edge of RXD marks as a start bit, and bit counter starts counting.
The bit counter locates data bits, parity bit and stop bit. If a low level is
detected as stop bit, the 8 bit character is located into parallel I/O buffer.
Then RXRDY is raised high to indicate to CPU that a character is ready
for it.

 Micro Processors

 NOTES

176

2-4-2 Synchronous Mode (Transmission)

TXD output is high until CPU sends a character to 8251 Which usually is
a sync character.

When CTS the first character goes low is serially transmitted out.

Data is shifted out at the rate as TXC over TXD output line.

 Micro Processors

 NOTES

177

2-4-3 Synchronous Mode (receiver)

In this mode character synchronization can be achieved internally or
externally. In external SYNC mode synchronization is achieved by
applying a high on SYNDET pin that forces 8251 out of HUNT mode. In
internal SYNC mode the content of the receiver buffer is compared with
the first SYNC character at every edge of RXC until it matches.

2-4-4 Control words of 8251

The control words of 8251 are divided into two types

Mode instruction control word

This defines general operational characteristics of 8251, when it is written
into 8251 SYNC characters or command instructions may be
programmed further as per the requirements.

 Micro Processors

 NOTES

178

2-4-5 Command Instruction control Word

Command instruction controls the actual operations of the selected format
like enable transmit/receive, error reset and modem control.

 Micro Processors

 NOTES

179

2-5 RS 232 Serial data standard

The devices such as modems used to send data serially are known as
data communication equipment DCE. The terminals that are sending or
receiving the data are called as data terminal equipment TE. DCE
connector is female and DTE connector is male. To send signals between
DTE and DCE a standard was developed by Electronics Industries
Association.

RS 232 describes 25 pins which are used to transfer signals and
handshaking between connectors. It describes voltage levels, rise and fall
times, bit rates etc.

2-5-1 Voltage Levels

The voltage levels for all RS232 signals are

A logic high is a voltage between – 3V and – 15V under load.

A logic high is a voltage between + 3V and + 15V under load.

 Micro Processors

 NOTES

180

2-5-2 PIN (signal) Description

2-6 IEEE 488 BUS

General purpose interface bus GPIB also known as Hewlett-Packard
interface bus or IEEE 488 bus.

The standard describes 3 types of devices connected on GPIB.

1) Listener: This can receive data from other instruments or controller.

 Example: Printers, display device etc.

2) Talker: This can send data to other instruments.

 Example: Tape recorder, Digital voltmeter and other measuring
equipment.

3) Controller: This determines who talks or who listens on the bus.

 Micro Processors

 NOTES

181

3. Direct Memory Access (DMA) data transfer

Structure

3-1 Introduction
3-2 DMA Block diagram
 3-2-1 Mode Set Register
 3-2-2 Status register
 3-2-3 Priority Resolver
3-3 Pin Configuration of 8257

Objectives

• Discuss advantages of DMA internal

• Discuss about internal block diagram of DMA

• Discuss pin configuration of 8257

3-1 Introduction

In this mode device may transfer data directly to/from memory without any
interference from the CPU. It is fastest among all the modes of data
transfer.

 The DMA controller temporally borrows the address bus, data bus,
and control bus from the microprocessor and transfers the data bytes
directly from the disk controller to a series of memory locations. Because
the data transfer is handled totally in hardware, it is much faster than it
would be if done by program instructions.

 A DMA controller can also transfer data from memory to a port.
Some DMA devices even can do memory-to-memory transfers to
implement fast block transfers.

 When the system is first turned on, the buses are connected from
the microprocessor to system memory and peripherals.

 We initialize all the programmable devices in the system and go on
executing our program untills we need, for example, to read a file off a
disk.

 To read a disk file we send a series of commands to the smart disk
controller device, telling it to find and read the desired block of data from
the disk.

 Micro Processors

 NOTES

182

3-2 DMA Block diagram

 When the controller needs to send the first byte of data from the
disk block, it sends a DMA request, DREQ, signal to the DMA controller. If
that input (channel) of the DMA controller is unmasked, the DMA
controller will send a hold-request, HRQ, signal to the microprocessor
HOLD input.

 The microprocessor will respond to this input by floating its buses
and sending out a hold-acknowledge signal, HLDA, to the DMA controller.
When the DMA controller receives the HLDA signal, it will send out a
control signal which throws the three bus switches down to the DMA
position. This disconnects the processor from the buses and connects the
DMA controller to the buses.

 When the DMA controller gets control of the buses, it sends out the
memory address where the first byte of data from the disk controller is to
be written. Next the DMA controller sends a DMA-acknowledge, DACKO,
signal to the disk controller device to tell it to get ready to output the byte.
Finally, the DMA controller asserts both the MEMW and the IOR lines on
the control bus.

 Asserting the MEMW signal enables the addressed memory to
accept data written to it. Asserting the IOR signal enables the disk
controller to output the byte of data from the disk controller of output the
byte of data from the disk on the data bus. The byte of data then is
transferred directly from the disk controller to the memory location without
passing through the CPU or the DMA controller.

 Micro Processors

 NOTES

183

 When the data transfer is complete, the DMA controller unasserts
its hold request signal to the processor and releases the buses block
which will be accessed by the device is the loaded in DMA address
register of the channel.

 Terminal count register: Each of the 4 DMA channels of 8257 has
one terminal count register. It is a 16-bit register used to hold the number
of DMA cycles after which data transfer stops. After each DMA cycle
count decreases by one.

3-2-1 Mode Set Register

 It is used to enable the DMA channels individually and also to set
the various modes of operation. DMA channel should not be enabled till
the DMA address register and terminal count regular contain valid

 Micro Processors

 NOTES

184

information otherwise an unwanted DMA request may initiate DMA
cycle.

The format of mode set register is given below

D7 D6 D5 D4 D3 D2 D1 D0

Auto
load

TC
Stop

Extende
d write

Rotating
Priority

Ch3 Ch2 Ch1 Ch0

 If TC STOP bit is set, the selected channel is after terminal count is
reached. It it is 0 the channel is not disabled the count reaches 0 and
further requests are allowed on the same channel.

If auto load bit is set, channel 2 is enabled for the repeat block chaining
operations without immediate software intervention between two
successive blocks.

If auto load bit is set duration of MEMW and IOW are extended.

3-2-2 Status register

The lower order 4 bits of this register contain the terminal count status for
the four individual channels. If any one these bits is set it indicates that
specific channel has reached the terminal count.

D7 D6 D5 D4 D3 D2 D1 D0

 Update
flag

TC status
of Ch3

Ch2 Ch1 Ch0

3-2-3 Priority Resolver

The priority resolver resolves the priority of the 4 DMA channels
depending upon whether normal priority or rotating priority is
programmed.

 Micro Processors

 NOTES

185

3-3 Pin Configuration of 8257

DRQ0-DRQ3: These are used by 4 peripherals to request DMA service.

DACK0-DACK3: These are DMA acknowledge lines informing the
requesting peripheral that requested has been accepted.

D0-D7: These are data lines used to interface the system bus with the
internal data bus of 8257. They carry command words to 8257 and status
word from 8257 in slave mode. In master mode they are used to send
higher byte of generated address to the latched.

 Micro Processors

 NOTES

186

IOR: This pin is active low bi-directional tristate input line. It acts as input
line used by CPU to read internal registers of 8257 in slave mode. It acts
as output line in master mode and is used to read data from peripheral.

LOW: This pin is active low bi-directional tristate input line. It acts as input
line used by CPU to load contents of data bus into internal registers of
8257 in slave mode. It acts as output line in master mode and is used to
load data to a peripheral.

CLK: Provides clock frequency for providing system timings.

RESET: It disables all DMA channels by clearing mode register and
tristates all the control lines.

A0-A3: In slave mode they act as input which selects one of the registers
to be read or write. In master mode they are 4 least significant memory
address output lines generated by 8257.

CS: This is active low chip select line that enables read and write
operations.

A4-A7: This is the higher nibble of the lower byte address generated by
8257 during master mode of DMA operation.

READY: This is active high asynchronous input used to stretch memory
read and write cycles.

HRQ: In non cascade 8257 systems this is connected with HOLD pin of
CPU. In cascade mode this pin of a slave is connected with a DRQ input
line of the master 8257 while that of the master is connected with HOLD
input of the CPU.

HLDA: CPU drives this input to DMA controller high while granting the
bus to the device. A high on this pin indicates that the bus has been
granted to the requesting peripheral by CPU.

MEMR: This active low memory read output is used to read data from the
addressed memory locations during DMA read cycles.

MEMW: This active low three state output is used to write data to the
addressed memory location during DMA write operation.

ADSTB: This output from 8257 strobes the higher byte of the memory
addressed generated by the DMA controller into the latches.

AEN: This is used to disable the system data bus and control bus driven
by the CPU.

 Micro Processors

 NOTES

187

TC: Terminal count output indicates tot he currently selected peripheral
that the present DMA cycle is the last for the previously programmed data
block.

MARK: It indicates to the selected peripheral that the current DMA cycle
is the 128th cycle since the previous mark output.

Vcc: This is +5V supply pin.

GND: This negative line for supply.

4. Summary

In this unit, we have presented a detailed account of the functioning of
some of the important Intel peripherals. With recent advances in the field,
the Intel family of the peripherals has been continuously added with a
number of new peripherals. Those, which are frequently used in the
industrial and general systems, are discussed in this unit. This unit started
with discussion on the programmable interface timer 8254. The
necessary functional details of 8254 have been discussed along with an
interfacing. Further peripheral like USART, RS232, and DMA have been
discussed along with architecture, signal descriptions, interfacing and
programming examples.

5. Test Yourself

1. Draw and discuss internal architecture of 8254.

2. Draw and discuss the different modes of operation of 8254.

3. Draw and discuss internal architecture of USART.

4. Explain the mode instruction control word format of 8251.

5. Draw and discuss the asynchronous mode transmitter and receiver
data formats of 8251.

6. Draw and discuss the status word format of 8251.

7. Draw and discuss pin configuration of RS232.

8. what is the advantage of DMA controlled data transfer over interrupt
driven or program controlled data transfer?

9. Draw and discuss internal architecture of 8257.

10. Draw and discuss the status register of 8257.

