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Solid Geometry 0.1 Preliminaries - I

Euclid of Alexandria:

Born: about 325 BC - Died: about 265 BC in Alexandria, Egypt.

Euclid (also referred to as Euclid of Alexandria) (c. 325-c. 265 BC) a Greek mathematician,
who lived in Alexandria, Hellenistic Egypt, almost certainly during the reign of Ptolemy I (323 BC -
283 BC), is often considered to be the "father of geometry". His most popular work, Elements, is
thought to be one of the most successful textbooks in the history of mathematics. Within it, the
properties of geometrical objects are deduced from a small set of axioms, thereby founding the
axiomatic method of mathematics.

Euclid also wrote works on perspective, conic sections, spherical geometry and possibly
quadric surfaces. Neither the year nor place of his birth have been established, nor the circumstances
of his death.

Although many of the results in Elements originated with earlier mathematicians, one of
Euclid's accomplishments was to present them in a single, logically coherent framework. In addition
to providing some missing proofs, Euclid's text also includes sections on number theory and three
- dimensional geometry. In particular, Euclid's proof of the infinitude of prime numbers is in Book IX,
Proposition 20.

The geometrical system described in Elements was long known simply as "the" geometry.
Today, however, it is often referred to as Euclidean geometry to distinguish it from other so-called
non-Euclidean geometries which were discovered in the 19th century. These new geometries
grew out of more than two millennia of investigation into Euclid's fifth postulate, one of the most-
studied axioms in all of mathematics. Most of these investigations involved attempts to prove the
relatively complex and presumably non-intuitive fifth postulate using the other four (a feat which, if
successful, would have shown the postulate to be in fact a theorem).
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Lesson - 0

PRELIMINARIES

Three Dimensional Geometry:

Lesson zero is divided in to two parts, the first part contains some basic information required
for three dimentional coordinate geometry and the second part which goes with analysis contains
some fundamental concepts required for analysis.

1. Axioms and Definitions:

Enclidean geometry begins with a set, called the space. The elements of this set are called
points. Some special subsets of the space are lines, planes and so on. If P, Q are points, L, M are
lines and  is a plane. We say that

(i) P lies on L or L passes through P if P L .

(ii) L is in  or  contains L if L E

(iii) P, Q are collinear if there is a line passing through P and Q.

(iv) Lines L, M are coplanar if there is a plane either containing L and M or parallel to L
and M.

Euclidean geometry is based on the following axioms.

Axiom 1: One and only one line passes through two distinct points.

Axiom 2: One and only one plane passes through three non collinear points.

Axiom 3: If a plane contains two distinct points P, Q then

the line PQ


determined by P, Q is contained in the plane.

Axiom 4: The intersection of two planes is either empty or else a line.

Axiom 5: Every line has at least two points and every plane has at least three non collinear
points.

Axiom 6 : The space contains at least four noncoplanar points.

Axiom 7: Associated with every pair of points in a set S there is a real number called the

distance between P and Q. and is denoted by  d P,Q and also by PQ.

The distance function defined on S S satisfies:
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(1)  d P,Q P, Q  in S and  d P, Q 0

(2)  d P, Q 0 if and only if P Q .

(3)    d P, Q d Q, P

Definition 8: If L is line and f : L   is a one - one map then      d P, Q f P f Q  defined a

distance funtion on L and is called a coordinate system on L.

 x f P is called the coordinate of P.w.r.t.f.

Axiom 9: Every line has a coordinate system. This axiom is called the Ruler Postulate.

Some Consequences:

Every line has infinitely many coordinate systems. For any points P Q on a line L there

corresponds a coordinate system such that the coordinate of P is zero and of Q is positive.

Definition 10: Two lines in a plane are parallel if either they are disjoint or equal. If 1 2L , L are

parallel we write 1 2L || L .

Axiom 11: A line has one and only one parallel line through a point.

Based on these axioms and definitions and other definitions such as betweenness, line
segment, congruence of segments convexity, ray, angle, angle measurement pastulate and so on
geometry is developed in a rigourous way. We assume validity of these concepts without attempting
to prove here.

2. Basic Results:

We now present a few results without proof that are necessary for solid analytical geometry.

1. Two distinct lines do not intersect in more than a point.

2. If L is a line and  is a plane then either L   or L  has atmost one point.

3. A line and a point not on it are contained in a unique plane.

4. Two intersecting lines are contained in a unique plane.

Definition: Suppose a line L intersects a plane E in a point P. If L is perpendicular
to every line in E passing thorugh P we say that L is perpendicular to E at P and call
P the foot of the perpendicular L. L is also called the normal to E at P.

5. If a line L contains the mid point of the segment PQ and any point on L is equidistant

from P and Q then L PQ .

6. If a line L is perpendicular to two intersecting lines at the point of intersection then L
is perpendicular to the plane containing the lines.
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7. If L is a line and P is a point on L then there is one and only one plane perpendicular
to L at P.

8. Any two perpendiculars of a plane are (coplanar and) parallel.

9. A plane  has one and only one perpendicular through a point P. If M is the foot of
the perpendicular PM is called the perpendicular distance from P to  .

10. Any two planes perpendicular to a line are parallel.

In the sequel we may use some other results that are not stated above, as well.

Definitions: 1L and 2L are said to be skew lines if they are not parallel and not

intersecting.

11. If 1L and 2L are skew lines then there is one and only one plane containing 1L and

parallel to 2L and vice versa.

12. The feet of the perpendiculars from the points on a line L to a plane  form a line.

13. There is one and only one line perpendicular to each one of a pair of skew lines. The
length of the segment on this line joining the feet of the perpendiculars is the shortest
distance between the skew lines.

14. There exists a unique plane containing two distinct points (i.e., a line) and
perpendicular to a given plane.

15. There exists a unique plane containing a point and perpendiuclar to two given planes.

3. Vectors:

Just as some complicated problems in two dimensional coordinate geometry are better
handled and solved by vector methods, these methods help getting better insight in three dimensional
problems and as equally useful in solving problems in three dimenssional coordinate geometry .
As such we will have a brief account of vectors in the three dimensional Euclidean space.

An "Ordered triad" of real numbers is called a three dimensional real vector or simply a

vector. If  P x, y,z is a three dimensional real vector we call x, y,z as the first (or x), the second

(or y) and the third (or z) component respectively. A vector is usually denoted by a pair of letters

with a bar (or arrow) on them. The vector  0,0,0 is called the null (zero) vector and is denoted by

0 . Two vector are said to be equal iff the cooresponding components are equal. Addition,

subtraction, multiplication by a scalar, dot product, length and cross product of vectors are defined
in the usual way (parallel to the two dimensional case). A unit vector is a vector of length one.

The angles between the non zero vectors P and Q is defined by

P Q
cos

P P Q Q


  

 



Solid Geometry 0.5 Preliminaries - I

P and Q are perpendicular if P Q 0  and are parallel or collinear if P Q P P Q Q   

The scalar triple product of P, Q, R denoted by

P Q R 
  and is defined to be

 P Q R P Q R     

If    1 1 1 2 2 2P x , y ,z , Q x , y ,z  and  3 3 3R x , y ,z

1 1 1

2 2 2

3 3 3

x y z

P Q R x y z

x y z

   

We have mentioned above some frequently used concepts only. We will use other results
as well when needed.

4. Coordinate Systems:

We fix a point 'O' in the three dimensional space and call O, the origin of the system. We

then fix two mutually perpendicular lines 1X OX and 1Y OY through O. These lines determine a

plane XY. We then consider the perpendicular 1Z OZ at O to the plane XY. The planes XOY, YOZ

and ZOX are called the XY plane, YZ plane and ZX plane respectively. We fix points I, J, K on

OX


OX , OY , OZ
  

respectively such that OI OJ OK  . The origin O and these points I, J, K

determine coordinate systems on the lines 1 1X OX, Y OY and 1Z OZ respectively such that

OI OJ OK 1   . The coordinate of a point on
1X OX is called the x coordinate, of a point on

1Y OY is called the y coordinate and of a point on 1Z OZ is called the Z coordinate of the

corresponding point. We call 1XOX the x axis, 1YOY the y axis and 1ZOZ the Z axis respectively..
The planes XY, YZ, ZX are called the coordinate planes and the axes x, y, z are called the coordinate
axes. The frame work OXYZ is called the frame of reference or the coordinate system.

If P is any point in the space and L, M, N are the feet of the perpendiculars from P to the
coordinate axes x, y, z respectively and if the x coordinate of L is x, y coordinate of M is y and z

coordinate of N is z we call x, y, z as the x, y, z a coordinates of P respectively and write  P x, y,z .

Thus with reference to the coordinate system OXYZ any point P in the space can be uniquely

associate with an ordered triad  x, y,z of numbers.



Centre for Distance Education 0.6 Acharya Nagarjuna University

Conversely given any ordered triad of numbers  x, y,z we fix L, M, N on the coordinate

axes such that OL x, OM y  and ON Z . The planes perpendicular to the x axis at L,

perpendicular to the y axis at M and to the z axis at N meet at a unique point P and the coordinates

of P are respectively x, y, z so that  P x, y,z .

Thus corresponding to every ordered triad  x, y,z of real numbers there is a unique point

P in the space such that  P x, y,z .

Suppose a point P has coordinates x, y,z with respect to a frame work OX YZ in the

space, The planes through P parallel to the coordinate planes form a rectangular parallelopiped.

1 1PM LN is parallel to YZ plane, hence perpendicualr to x axis. L is the foot of the perpendicular

from P to the x axis thus

OL x

Similarly OM y and ON z

The coordinates of 1N are  x, y,0 .

Since 1 1 1PN XOY, PN N L 
22 1 1 2 2 2 2 2PL PN N L y z PL y z       

 The distance from P to the x axis is
2 2y z

Similarly the distance from P to the Y axis is
2 2z x and the distance from P to the Z

axies is
2 2x y

Also
2 2 2 2 2 2OP OL PL x y z     so 2 2 2OP x y z  

Thus the distance from the origin to P is

2 2 2OP x y z  

4. Position Vector:

We have seen that there is a one one correspondence between points in the space and
ordered triads of numbers with respect to a fixed frame work. We also defined any ordered triad a
position vector. Thus with respect to a given coordinate system every point in the space is associated
with a unique position vector. We call this position vector, the postiiton vector of the point with
respect to the fixed coordinate system. Thus the position vectors of
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O is (0, 0, 0)

I is (1, 0, 0)

J is (0, 1, 0)

K is (0, 0, 1)

If P = (x, y, z) then      P x 1,0,0 y 0,1,0 z 0,0,1  

xI yJ zK  

So that OP xI yJ zK  

5. Translation of Axes:

If OA, 1 1O A are parallel lines, 1 1OA O A and 1 1OO A A is a parallelogram then we say

that 1 1OA, O A are in the same direction. Let 1 1 1 1OXYZ, O X Y Z be coordinate systems. We say

that 1 1 1 1O X Y Z is a translation of OXYZ if the coordinate axis OX is parallel to 1 1O X OY is parallel

to 1 1O Y and OZ is parallel to 1 1O Z and 1 1OX, O X are in the same direction, OY and 1 1O Y are in the

same direction and OZ and 1 1O Z are in the same direction. If the coordinates of a point P with

respect to the system OXYZ are x, y, z and with respect to 1 1 1 1O X Y Z are X,Y,Z and if the

coordinates of 1O w.r.t. OXYZ are  , ,   then

X x , Y y     and Z z  

i.e., x X , Y y      and Z Z  

6. Rotation of Axes:

If the axes of a coordinate system OXYZ are changed without shifting the origin then the

transformation of axes is said to be by rotation. If the new axes 1 1 1OX , OY , OZ are muttually

perpendicular and have direction consines 1 1 1 2 2 2, m , n ; , m , n  and 3 3 3,m , n respectively with

respect to the system OXYZ then the relations between the coordinates  x, y,z of a point w.r.t.

the OXYZ system and  X,Y,Z of the same point w.r.t. 1 1 1OX Y Z are given by

1 2 3x X Y Z     and 1 1 1X x m y n z  

1 2 3y Xm Ym Zm   2 2 2Y x m y n z  

1 2 3z Xn Yn Zn   3 3 3Z x m y n z  
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The matrix

1 1 1

2 2 2

3 3 3

m n

A m n

m n

 
   
  







is called the transformation matrix.

We state the following theorems without proof:

Theorem:

If   2 2 2f x, y,z ax by cz 2fyz 2gzx 2hxy      is transformed to

  1 2 1 2 1 2 1 1 1g X,Y, Z a X b Y c Z 2f YZ 2g ZX 2h XY     

by transformation of axes v to 1 1 1OX Y Z then

(1) 1 1 1a b c a b c    

(2)
2 2 22 2 2 1 1 1 1 1 1 1 1 1ab bc ca f g h a b b c c a f g h          

and (3)

1 1 1

1 1 1

1 1 1

a h ba h g

h b f h b f

g f c g f c



Theorem:

If   2 2 2f x, y,z ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d          is transformed to

  1 2 1 2 1 2 1 1 1 1 1 1 1g X,Y, Z a X b Y c Z 2f YZ 2g ZX 2h XY 2h X 2v Y 2w Z d          .

Under a transformation of axes OXYZ to 1 1 1OX Y Z by rotation then

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

a h g ua h g u

h b f v h b f v

g f c w g f c w
u v w d

y v w d



1 1 1

2 2 2

3 3 3

x y z

X m n

Y m n

Z m n
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7 Direction Ratios and Direction Cosines:

The direction cosines of a line L are defined to be the cosines of the angles made by the line
with the coordinate axes.

Let L be a line and 1L be the line parallel to L passing through the origin. The coordinates

x, y,z of any point P 0 on 1L are called the direction ratios of L. Since the coordinates of  P x, y,z

and  1 1 1 1P x , y ,z on 1L where
1P 0 P  satisfy

1 1 1

x y z

x y z
  . Any pair of direction ratios

   1 1 1x, y,z , x , y , z of L satisfies
1 1 1x x , y y , z z      for some 0  in  .

Therefore the line 1L has only two pairs    ,m,n , , m, n    on it so that 2 2 2m n 1   .

These directionratios are called the direction cosines of L. Geometrically this is interpreted as

follows. If L makes the angles , ,   with the x axis, y axis and z axis respectively measured from

the axes to the line in the anticlock wise direction, then cos , cos , cos   are the direction cosines

of L. It can be proved that 2 2 2m n 1   .

8 Algebraic Surfaces:

Let 3F : R be a function. For every point  P x, y,z there corresponds a real number

 F x, y,z . Let S be the set of all points in 3 satisfying the equation  F x, y,z 0 ,

    S P P x, y,z ; F x, y,z 0   . S is called a surface and the equation  F x, y,z 0 represents

S. Also we say that  F x, y,z 0 is an equation of S. If  F x, y,z is a non - zero polynomial in x, y,,

z then F is a finite sum of the terms of the form ax y z   where a 0, 0, 0     and 0  . The

largest sum     is called the degree of  F x, y,z . The surface represented by  F x, y,z 0 is

called an algebraic surface and the degree of  F x, y,z is called the degreee of the surface. A first

degree equation in x, y, z is said to be a linear equation and a second degree surface is called a
quadric.

Lesson Writer

Prof.I. RAMABHADRA SARMA
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Rene Descartes (1595 - 1650):

"I am thinking therefore I exist.":

Rene Descartes (1595 - 1650):

"I am thinking therefore I exist.":

Rene Descartes (March 31, 1596 - February 11, 1650) also known as Cartesius, was a noted
French philosopher, mathematician and scientist. Dubbed the "Founder of Modern Philosophy"
and the "Father of Modern Mathematics", he ranks as one of the most important and influential
thinkers of modern times. Descartes was one of the key thinkers of the Scientific Revolution in the
Western World. He is also honoured by having the Cartesian coordinate system used in plane
geometry and algebra named after him.

As the inventor of the Cartesian coordinate system, Descartes founded analytic geometry,
that bridge between algebra and geometry crucial to the invention of the calculus and analysis. His
most famous statement is Cogito ergo sum (French: Je pense, donc je suis or in English: I think,

therefore I am), found in  of Principles of Philosophy (Latin) and part IV of Discourse on Method

(French).

Mathematical legacy:

Descartes's theory provided the basis for the calculus of Newton and Leibniz, by applying
infinitesimal calculus to the tangent problem, thus permitting the evolution of that branch of modern
mathematics. Descartes' rule of signs is also a commonly used method in modern mathematics
to determine possible quantities of positive and negative zeros of a function.

Descartes also made contributions in the field of optics;



1.1 PLANESSolid GeometryLesson - 1

PLANES

1.1 Objective of the lesson:

In this lesson the student is introduced to various aspects of the plane such as, the equation
of a plane, angles between planes, distance from a plane, distance between planes and systems
of planes.

1.2 Structure:

This lesson contains the following components:

1.3 Introduction

1.4 Equations of a plane

1.5 Angles between two planes

1.6 Distance of a point from a plane

1.7 Systems of planes

1.8 Projections on a plane and volume of tetrahedron

1.9 Answers to S.A.Q.

1.10 Summary

1.11 Technical Terms

1.12 Model Examination questions

1.13 Exercises

1.14 Model Practical Problem with Solution

1.3 Introduction:

As mentioned in the preliminaries (2.7), a plane is uniquely determined as the perpendicular
to a line at a point (foot of the perpendicular) on it. Using this result we obtain the equation of a
plane in the normal form from which we derive several types of equations to the plane. We also
observe that the equation of a plane is a first degree (linear) equation in x,y,z.

1.4 Equations of a Plane:

1.4.1 Theorem: The equation of a plane is of first degree. More precisely a plane is the locus
of points (x, y, z) satisfying a first degree equation.

Proof: We first derive the vector form of the equation of a plane. If a point lies outside a plane, then
there is a unique line through the point that is perpendicular to every line in the plane.
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X

Y

Z

P

M

P( r )

n

Let  be the given plane, M the foot of the perpendicular from the origin to  and

 p OM p 0  .

Let n be the unit vector along this perpendicular OM

If P n PM 0  

Since OM OP PM, PM OM OP   

So  n OM OP 0  

n OM n OP   

Let OP r then n r OM p  

Thus the position vector r of a point P satisfies the equation r n p  .

Conversely suppose r n p r OP    is the position. Vector of a point P in the space.

We show that P

Then  n PM n PO OM    where M is as above.

n r n OM    

n r p 0    

PM is perpendicular to 
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PM OM 

P  (by 2.7 in lesson zero)

Hence P iff r n p 

Hence the vector form of the equation of the plane  is

r n p 

Using this vector equation we show that the equation of a plane is of first degree.

If r xi y j zk   and n i m j nk   , then the equation r n p  becomes

x my nz p   .

This is the cartesian form of the equations of the plane.

Since ,m,n are the direction ratios of n atleast one of ,m,n is non-zero.

Thus the equation of the plane is a first degree equation.

1.4.2 Definition:

Normal form of the equation of a plane: The equation x my nz p   where p is the

length of perpendicular from the origin to the plane and ,m,n are the d.cs. of the normal to

the plane is called the normal form of the equation of the plane.

1.4.3 Corollary: Every equation of first degree in x, y,z represents a plane.

Proof: Consider the equation  ax by cz d 0................. 1   

where one of a, b, c is non-zero

We have
2 2 2a b c 0   . We can take d 0 i.e. d 0 

ax by cz d 0   

ax by cz d    

2 2 2 2 2 2 2 2 2 2 2 2

a b c d
x y z

a b c a b c a b c a b c


   

       

 
2 2 2 2 2 2 2 2 2 2 2 2

da b c
x, y,z , ,

a b c a b c a b c a b c
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 r n p ................. 2   where  r x, y,z

2 2 2 2 2 2 2 2 2

a b c
n , ,

a b c a b c a b c

 
 
 

      
and 2 2 2

d
p

a b c


 

Thus (2) holds  (1) holds.

Since equation (2) is the equation of a plane, (1) represents the equation of a plane

1.4.4 Condition for two linear equations to represent the same plane:

Theorem: The equations  1 1 1 1a x b y c z d 0..................... 1   

 2 2 2 2a x b y c z d 0..................... 2   

represent the same plane iff  1 1 1 1 2 2 2 2a : b : c : d a : b : c : d .............. 3

Proof: The normal form of (1) is 1 1r n d   where  1 1 1 1n a , b , c and of (2) is 2 2r n d  

where  2 2 2 2n a , b , c .

Since 1
n and 2

n are normals to the planes (1) and (2), If the equations represent the

same plane, 1 2n kn for some k , so that 1 2 1 2a ka , b kb  and  1 2c kc ........ 4

Moreover for any x, y,z in the plane

2 2 2 2 1 1 1 10 d a x b y c z d a x b y c z       

 1 2 2 2d k a x b y c z   

1 2d kd 

1 2d kd 

Thus 1 2 1 2 1 2 1 2a : a b : b c : c d : d k :1   

Conversely if 1 2 1 2 1 2 1 2a : a b : b c : c d : d k :1    , then

1 2 1 2 1 2 1 2a ka , b kb , c kc , d kd   

so 1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d 0        

i.e. the two equations represent the same plane.
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1.4.5 Note:

1. r m q  and m 0 . The equation r m q  represents a plane which is at a distance

q

m
from the origin in the direction of m .

2. The equation of a plane through the origin is a first degree homogeneous equation of

the form x my nz 0   .

3. Direction ratios of a normal to the plane ax by cz d 0    are a, b, c.

4. The distance of the origin from the plane ax by cz d 0    is
2 2 2

d

a b c 
.

5. The normal form of the plane ax by cz d 0    is

2 2 2 2 2 2 2 2 2 2 2 2

da b c
x y z

a b c a b c a b c a b c
  

       

Intercepts:

1.4.6 Definition: If a plane cuts the x-axis at A (a, 0, 0), y- axis at B(0, b, 0) and z - axis at
C(0,0, c) then a, b, c are called x intercept, y intercept and z intercept of the plane respectively.

Intercept form of a plane:

1.4.7 Theorem: The equation of the plane making intercepts a, b, c on the x, y, z coordinate

axes respectively is
x y z

1
a b c
   .

Proof:

Let x my nz d   be the equation of the plane  making intercepts a, b, c with the

axes.

Then as (a, 0, 0), (0, b, 0) and (0, 0, c) are on the plane,

a mb nc d  

Since a 0 b 0 c 0     ,

d d d
, m , n

a b c
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The equation representing the given plane becomes

dx dy dz
d

a b c
  

Since one of ,m,n is non-zero, d 0 .

This equation is equivalent to

x y z
1

a b c
  

1.4.8 (a) Planes parallel to the axes:

If the plane ax by cz d 0    is parallel to the x - axis, then the normal to the plane

is perpendicular to the x-axis, hence

     a 1 b 0 c 0 0  

a 0  (since d.cs. of x - axis are 1, 0, 0)

Therefore the equation of the plane is

by cz d 0  

Similarly equations of the planes parallel to y-axis and z - axis can be written as

ax cz d 0   and ax by d 0   respectively..

(b) Planes parallel to coordinate planes:

Theorem: The equation of xy- plane is z 0, yz plane is x = 0 and zx - plane is y = 0.

Proof: Clearly the origin lies in xy - plane and z - zxis is a normal to xy - plane

d.cs. of z- axis are 0, 0, 1.

So, the equation of xy - plane is x = 0 and the equation of zx plane is y = 0.

1.4.9 Corollary: The equation of any plane parallel to yz - plane is of the form ax d 0  , parallel

to zx - plane is by d 0  and parallel to xy - plane is cz d 0  .

Equation of the plane through the non collinear points:

1.4.10 Theorem: The vector equation of the plane passing through three non collinear points

   1 1 1 2 2 2A x , y ,z , B x , y ,z and  3 3 3C x , y ,z is      r a b a c a 0    
 

where a, b, c are the position vectors of A, B, C respectively..



1.7 PLANESSolid Geometry

The cartesian equation of this plane is

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

x x y y z z

x x y y z z 0

x x y y z z

  

   

  

Proof: Let  be the plane containing A, B, C and  P x, y,z be any point with position

vector r . Then P lies in  if and only if AB, AC, AP lie in 

i.e. AB, AC, AP are coplanar

The condition for coplanarity of these lines is that

AP AB AC 0   

i.e.  r a, r b, r c 0......... 1     

Thus the vector equation of  is given by (1)

Since  1 1 1r a x x , y y , z z    

 2 1 2 1 2 1b a x x , y y ,z z    

 3 1 3 1 3 1c a x x , y y , z z    

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

x x y y z z

r a b a c a x x y y z z

x x y y z z

  

         
  

Thus the cartesian equation of  is

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

x x y y z z

x x y y z z 0

x x y y z z

  

   

  

1.4.11 Corollary: If      1 1 1 2 2 2 3 3 3A x , y ,z , B x , y ,z and C x , y , z  are non collinear then the

equation of the plane  containing A, B, C is

1 1 1

2 2 2

3 3 3

x y z 1

x y z 1
0

x y z 1

x y z 1
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Proof: The above determinant reduces to  in 1.4.10 when we subtract the second row
from every row and expand in terms of the last column.

Plane through a point and perpendicular to a line:

1.4.12 Theorem: The vector equation to the plane  through a point  A x, y,z with position

vector a and perpendicular to line (L) with d.r.s a, b, c is  r a n 0   where n is the unit

vector along L.

The cartesian equation of this plane is given by

     1 1 1a x x b y y c z z 0     

Proof:

P r=

( )1 1 1A a x , y ,z= =

( )n a,b,c=

L

Let  P r x, y,z  be any point

Then AP r a   1 1 1x x , y y , z z   

P iff AP lies in  AP n   r a n 0   

Then P iff  r a n 0  

 r a n 0   is the vector equation of  .

Since      1 1 1r a n x x , y y , z z a,b,c      

     1 1 1a x x b y y c z z 0      is the cartesian form of  .
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Parametric form of the equation of a plane through three non collinear points:

1.4.13 Theorem: The equation to the plane passing through three non-collinear points

     A a , B b , C c is  r 1 s t a sb tc     where s, t are scalars.

Proof: A point P with position vector r lies in the plane of A, B, C iff AP, AB, AC are

coplanar.

iff r a , b a , c a   are coplanar

 each one of AP, AB, AC is a linear combination of the other two vectors.

   r a s b a t c a      where s, t are scalars

 r 1 s t a sb tc     

Examples:

1.4.14 Find the intercepts of the plane 2x 3y 4z 12  

Solution: Method 1:

Given equation of the plane is 2x 3y 4z 12  

Intercept form of the plane is
2x 3y 4z

1
12 12 12

  

i.e.
x y z

1
6 4 3
  

Hence x - intercept is 6, y - intercept is - 4, z - intercept is 3.

Method 2:

If the plane meets the axes in    0 0x ,0,0 , 0, y ,0 and  00,0, z then

0 02x 12 x 6   and similarly 0 0y 4, z 3   .

Therefore x - intercept is 6, y - intercept is -4, z - intercept is 3.

1.4.15 What are the d.rs. of a normal to the plane 2x 2y z 5   . Express equation of the plane in

its normal form.

Solution:

By definition d.rs. of normal to the plane are coefficients of x, y,z in the given

equation.
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So the d.rs. of normal to the plane 2x 2y z 5 0    are 2, -2, 1.

Normal form of the plane ax by cz d 0    is

2 2 2 2 2 2 2 2 2 2 2 2

da b c
x y z

a b c a b c a b c a b c
  

       

The normal form of the given plane is
2 2 1 5

x y z
3 3 3 3

  

1.4.16 Find the equation of the plane through the points (2, 2, -1), (3, 4, 2), (7, 0, 6).

Solution: Let  be the plane through the given points

     A a 2,2, 1 , B b 3,4,2 , C c 7,0,6      

Let  P r x, y,z  be any point on the plane  .

Hence AP, AB, AC are coplanar..

AP, AB, AC 0   

     AP x 2, y 2, z 1 , AB 1,2,3 , AC 5, 2,7      

x 2 y 2 z 1

AP , AB, AC 1 2 3

5 2 7

  

   


     20 x 2 8 y 2 12 z 1      20x 8y 12z 68   

Hence the equation of  is 20x 8y 12z 68 0   

i.e. 5x 2y 3z 17 0   

1.4.17 The foot of the perpendicular from the origin to a plane is  2, 3,4 . Find the equation

of the plane.

Solution: The point of intersection of the plane and the perpendicular line from the given point to
the plane is called the foot of the perpendicular of the given point.

Since the foot of the perpendicular from the origin 0 to a plane is  A 2, 3,4  .

Then OA is normal to the required plane, A is a point on the plane and the d.rs. of OA

are 2, -3, 4.
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Hence the equation of the plane is

     2 x 2 3 y 3 4 z 4 0     

i.e. 2x 3y 4z 29 0   

1.4.18 A plane meets the coordinate axes in A, B, C. If the centroid of ABC is  a,b,c show

that the equation to the plane is
x y z

3
a b c
   .

Solution: Let      1 1 1A x ,0,0 , B 0, y ,0 , C 0,0,z   be the points on x, y,z axes respectively..

Centroid of ABC is
1 1 1x y z

, ,
3 3 3

 
 
 

But given centroid is  a,b,c

1 1 1x y z
a , b , c

3 3 3
   1 1 1x 3a, y 3b, z 3c   

Hence      A 3a,0,0 B 0,3b,0 C 0, 0, 3c  

Equation to the plane ABC is
x y z

1
3a 3b 3c

  
x y z

3
a b c

   

1.4.19 S.A.Q: Show that the line joining the points    6, 4,4 , 0,0, 4  intersects the line joining

the points    1, 2, 3 , 1,2, 5    .

1.4.20 Obtain the equation of the plane containing  0,4,3 and the line through the points

   1, 5, 3 , 2, 2,1     . Hence show that      0,4,3 , 1, 5, 3 , 2, 2,1     and  1,1, 1 are

coplanar.

1.5 Angles between two planes:

For any pair of planes 1 2,  two angles are formed between their normals drawn from an

arbitrary point P in the space. These angles are supplementary and are independent of the choice
of P.

1.5.1 Definition: An angle between two planes is an angle between their corresponding normals.

1.5.1A Angular bisector of two planes: Angular bisector of two planes is the plane through
the line of intersection of the planes that makes equal angles with the planes.
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1.5.2 Theorem: If  is an angle between the planes 1 2,  represented by

1 1 1 1 1a x b y c z d 0      and 2 2 2 2 2a x b y c z d 0      .

Then 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c
cos

a b c a b c

 


   

Proof: Since 1 1 1a ,b , c are the direction ratios of the normal to the plane 1 , the normal

vector to 1 is  1 1 1 1m a ,b , c

Similarly the normal vector to 2 is  2 2 2 2m a ,b ,c .

If  is an angle between 1 2
m , m then

1 2

1 2

1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

m m a a b b c c
cos

m m a b c a b c

  
    

   

1.5.3 Corollaries:

(i) The planes 1 1 1 1a x b y c z d 0    and 2 2 2 2a x b y c z d 0    are parallel iff

1 1 1 2 2 2a : b : c a : b : c and are perpendicular iff 1 2 1 2 1 2a a b b c c 0   .

(ii) The equation of any plane parallel to the plane ax by cz d 0    is of the form

 ax by cz k 0 k     .

(iii) The equation of the plane passing through  0 0 0 0r x , y , z and parallel to

ax by cz d 0    is

 0
r r n 0   where  n a,b,c

i.e.      0 0 0a a x b b y c c z 0     

(iv) The equation of the plane passing through  0 0 0 0r x , y , z and perpendicular to the

line whose direction ratios are a,b,c is  0
r r n 0   where  n a,b,c

i.e.      0 0 0a x x b y y c z z 0     

Proof: (i) and (ii) follow from 1.4.2

(iii) and (iv) are equivalent.

Thus it is enough if we prove (iv)
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Proof: Let  0 0 0A x , y ,z be the given point in the plane  with position vector 0
r and  P x, y,z

be any point in  with position vector r .

 0 0 0 0AP r r x x , y y , z z     

Let L be a line perpendicular to the plane  with d.rs. a,b,c

Let  n a,b,c be the vector along L.

 L is perpendicular to every line in 

 L is perpendicular to AP

 n is perpendicular to AP

  0
r r n 0  

   0 0 0x x , y y , z z a,b,c 0     

     0 0 0a x x b y y c z z 0       is the equation of  through A and

perpendicular to n .

1.5.4 Examples:

Find the equation of the plane through the point  4,0,1 and parallel to the plane

4x 3y 12z 8 0    .

Solution: The equation of the plane parallel to 4x 3y 12z 8 0    is of the form

4x 3y 12z k 0   

This passes through the point  4,0,1

     4 4 3 0 12 1 k 0   

k 4  

 equation of the plane is 4x 3y 12z 4 0   

1.5.5 Find the equation of the plane  through the points  2,2,1 ,  9,3,6 and perpendicular

to the plane 2x 6y 6z 9   .

Solution: Let A = (2,2,1) and B=(9,3,6) and a, b, c be d.rs. of normal to the plane.



Centre for Distance Education 1.14 Acharya Nagarjuna University

d.rs. of AB are 7, 1, 5

Since AB is perpendicular to the normal of the plane.

 7a b 5c 0 1                 

The plane  is perpendicular to the plane 2x 6y 6z 9   .

 Then corresponding normals are perpendicular to each other..

i.e.  2a 6b 6c 0 2             

Solving (1) and (2)

a b c

1 5 7 1

6 6 2 6

a b c

6 30 10 42 42 2
 

  

a b c

24 32 40
  

 

a b c

3 4 5
  

 

Hence -3, -4, -5 are d.rs. of  .

The equation of  is therefore

     3 x 2 4 y 2 5 z 1 0      

3x 4y 5z 9 0    .

1.5.6 Show that the equation of the plane passing through the points    A 1, 2,4 , B 3, 4,5 

and perpendicular to x y plane is x y 1 0   .

Solution: Let    A 1, 2,4 , B 3, 4,5   

d.rs. of AB are 2, -2, 1

Let ax by cz d 0    be the equation of the required plane.

Then the normal L to the plane has d.rs. a,b,c .
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Since AB lies in the plane, AB and L are perpendicular.

 2a 2b c 0 1               

Since the plane is perpendicular to xy - plane

L is perpendicular to Z - axis

Since d.cs. of Z axis are 0, 0, 1.

   a 0 b 0 c 0  

c 0 

2a 2b 0  

a b c
a b

1 1 0
    

Hence d.rs. of L are 1, 1, 0

Equation of the required plane is

     1 x 1 1 y 2 0 z 4 0     

x y 1 0  

1.5.7 Find the equation of the plane through the point (-1, 3, 2) and perpendicular to the

planes x 2y 2z 5   and 3x 3y 2z 8   .

Solution: Let  A 1,3,2 

and ax by cz d 0      be the required plane

Then d.rs. of normal to  are a,b,c

Given planes are  x 2y 2z 5 1               

and  3x 3y 2z 8 2              

 is perpendicular to the plane (1)  a 2b 2c 0 3               

Plane  is perpendicular to the plane (2)  3a 3b 2c 8 4                

From (3) and (4)
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a b c

2 2 1 2

3 2 3 3

a b c

4 6 6 2 3 6
 

  

i.e.
a b c

2 4 3
 

 

Hence d.rs. of the normal to the plane  are 2,4, 3  the required equation is

     2 x 1 4 y 3 3 z 2 0       2x 4y 3z 8 0    

1.5.8 Find the equation of the plane through the point  2, 3,1 and perpendicular to the line

through the points  3,4, 1 and  2, 1,5 .

Solution: Let    A 2, 3,1 , P 3,4, 1    and  Q 2, 1,5 

d.rs. of PQ are 1, 5, -6.

Let  be the plane with given conditions.

The plane  is perpendicular to PQ.

Then the normal to  is parallel to PQ.

Therefore d.rs. of the normal to the plane  are 1, 5, -6.

Hence the equation of the plane  is

     1 x 2 5 y 3 6 z 1 0     

i.e. x 5y 6z 19 0   

1.5.9 Show that the points      6,3,2 , 13,17, 1 , 3, 2,4    and  5,7,3 are coplanar..

Solution: Let      A 6,3,2 , B 13,17, 1 , C 3, 2,4       and  D 5,7,3 .

Let  P x, y,z be any point on the plane containing A, B and C.

Equation of the plane through A, B, C is
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x 6 y 3 z 2

13 6 17 3 1 2 0

3 6 2 3 4 2

  

     

   

x 6 y 3 z 2

7 14 3 0

9 5 2

  

   



      13 x 6 13 y 3 91 z 2 0        x 6 y 3 7z 14 0      

 x y 7z 23 0.................... 1   

consider x y 7z 23   5 7 21 23 0    

The point  D 5,7,3 lies on the plane (1)

Hence the given points A, B, C, D are coplanar.

1.5.10 Find the angles between the planes x 2y 3z 5, 3x 3y z 9      .

Solution: Let  be the angle between the planes

 x 2y 3z 5 1              

 3x 3y z 9 2                 

1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c
cos

a b c a b c

 


   

        1 3 2 3 3 1 3 6 3

1 4 9 9 9 1 14 19

   
   

   

12
cos

14 19
  

1 112 12
cos or cos

14 19 14 19

    
         

   

1.5.11 Find the angle between the planes 2x y z 0, x y 2z 7      .

Solution: Let  be the angle between the planes

 2x y z 0 1                x y 2z 7 2            
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        1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

2 1 1 1 1 2a a b b c c
cos

4 1 1 1 1 4a b c a b c

  
    

      

3 3 1

6 26 6
      1 1 2

cos or
2 3 3

   
    

 

1.5.12 S.A.Q.: Prove that the equation of the plane through the points  1, 2,4 and  3, 4,5

and parallel to x - axis is y 2z 6  .

1.5.13 S.A.Q.: Find the equation of the plane bisecting the line segment joining  2,0,6 and

 6,2,4 and perpendicular to the line segment.

1.5.14 S.A.Q.: Find the angles between the planes 2x y 4z 11 0, 3x 2y 3z 27 0        .

1.6 Distance of a point from a plane:

1.6.1 Definition: 1. Two points A, B are on the same side of a plane  if the segment AB
doesn't intersects  .

2. Two points A, B are on the opposite sides of a plane  if the segment AB intersects  .

1.6.2 Theorem:    1 1 1 2 2 2A x , y ,z , B x , y ,z  lie on the same side or opposite side of a

plane ax by cz d 0      iff 1 1 1ax by cz d   and 2 2 2ax by cz d   have same sign

or opposite signs.

Proof: If a point  1 1 1A x , y ,z doesn't lie in ax by cz d 0      then 1 1 1ax by cz d 0    or

1 1 1ax by cz d 0    .

Any point P on the segment AB other than A and B is represented by

      1 2 1 2 1 2P x 1 x , y 1 y , z 1 z            

where 0 1   .

This point lies on  iff

        1 2 1 2 1 20 a x 1 x b y 1 y c z 1 z d               

     1 1 1 2 2 2ax by cz d 1 ax by cz d          

 
 2 2 2

1 1 1

ax by cz d
0 0 1

1 ax by cz d

   
     

    


The segment AB meets  if and only if
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1 1 1ax by cz d   and 2 2 2ax by cz d   have opposite signs. Consequently

AB does not meet  if and only 1 1 1ax by cz d   and 2 2 2ax by cz d   have same

signs. This completes the proof of the theorem.

Definitions: If  is a plane and P is a point it can be proved that there is one and only
one line L through P such that if M is the point of intersection of  and L then PM is
perpendicular to every line in  passing through M. The line L is called the perpendicular
to  through P, M the foot of the perpendicular and the length PM is called the perpendicular
distance (simply the distance) from  to P. This distance is also called the distance from
P to  .

1.6.3 Theorem: The distance of  1 1 1A x , y ,z from the plane  represented by the linear

equation ax by cz d 0    is
1 1 1

2 2 2

ax by cz d

a b c

  

 

Proof:

Let  1 1 1A a x , y ,z  .

The vector equation of  is r m q 

where    r x, y,z , m a,b,c  and q d 

Clearly 2 2 2m a b c  

Let AM be the perpendicular from A to  and M be the foot of the perpendicular..

Let B b on  so that b m q  where AM m

AM = Projection of AB along AM
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 b a mAB AM

AM m

 
 

b m a m a m b m a m q

m m m

       
  

   1 1 1 1 1 1

2 2 2 2 2 2

x , y ,z a,b,c d ax by cz d

a b c a b c

    
 

   

AM is the distance of the point  1 1 1x , y ,z from the plane  .

Note: The distance of origin from the plane ax by cz d 0    is
2 2 2

d

a b c 

Examples:

1.6.4 Show that the distance of the point  P 1, 2,1 from the plane ABC where

     A 2,4,1 , B 1,0,1 , C 1,4,2     is
14

13
without finding the equation to the plane

ABC .

Solution: AB AC is a vector perpendicular to the plane ABC .

M B

P(1,-2,1)

A
C
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i j k

AB AC 3 4 0

3 0 1

   



4i 3j 12k   

Let n be the unit vector along AB AC

   4,3, 12 4,3, 12
n

1316 9 144

   
 

 

Also  PB 2,2,0 

Perpendicular distance of P from ABC PM = Projection of PB along PM

   4,3, 12 2,2,0 8 6 0
n PB

13 13

     
   

14

13


1.6.5. Two systems 1 2S , S of rectangular axes have the same origin. If a plane intersects the

x, y,z axes in 1S at distances 1 1 1a ,b ,c and those in 2S at 2 2 2a ,b ,c respectively from

the origin prove that
2 2 2 2 2 2

1 1 1 2 2 2a b c a b c          .

Solution: Let the systems be i i iOX , OY , OZ for i 1,2 .

Let the equation of the plane with respect to one set of rectangular axes

1 1 1OX , OY , OZ be

 
1 1 1

x y z
1.................... 1

a b c
  

The equation of the given plane with respect to the system 2S a set of rectangular

axes 2 2 2OX , OY , OZ is

 
2 2 2

x y z
1................ 2

a b c
  

Since both the systems have the same origin O, the length of perpendicular from
the origin to the plane in both the cases is the same.
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Therefore

2 2 2 2 2 2
1 1 1 2 2 2

1 1

1 1 1 1 1 1

a b c a b c



   
2 2 2 2 2 2
1 1 1 2 2 2

1 1 1 1 1 1

a b c a b c
     

2 2 2 2 2 2
1 1 1 2 2 2a b c a b c          

1.6.6. A variable plane is at a constant distance 3p from the origin and meets the axes

OX,OY,OZ in A,B,C respectively. Show that the locus of the centroid of the ABC

satisfies 2 2 2 2x y z P      .

Solution: If      A a,0,0 , B 0,b,0 , C 0,0,c  

then the equation of the variable plane is  
x y z

1 1
a b c
             

Let  1 1 1G x , y ,z be the centroid of ABC .

Then 1 1 1
a b c

x , y , z
3 3 3

   1 1 1a 3x , b 3y , c 3z   

Substituting in (1)  
1 1 1

x y z
1 2

3x 3y 3z
            

Distance of the origin from the plane (2) is

2 2 2
1 1 1

1
3p

1 1 1

9x 9y 9z



 
2 2 2 2
1 1 1

1 1 1 1

9x 9y 9z 9p
    2 2 2 2

1 1 1x y z p       .

 1 1 1G x , y ,z satisfies 2 2 2 2x y z p      .

Conversely suppose  1 1 1G x , y ,z satisfies
2 2 2 2x y z p      .

There are many triangles having G as centroid.

But there is a unique triangle with centroid G and vertices on the coordinate axes.

Let the triangle be ABC where A,B,C are on X,Y,Z axes respectively..

Then      1 1 1A 3x ,0,0 , B 0,3y , 0 , C 0,0,3z  

Equation to the plane containing ABC is
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1 1 1

x y z
1

3x 3y 3z
    

1 1 1

x y z
3 3

x y z
             

Distance of origin from the plane (3) is

2 2 2 2
1 1 1

2 2 2
1 1 1

3 3 3

1 1 1 x y z p

x y z

   


 

  
1

3
3P

p
 

Hence the problem.

1.6.7. P is a point such that the sum of the squares of its distances from the planes

x y z 0, x y 2z 0, x y 0        is 5. Show that the locus of P satisfies

2 2 2x y z 5   .

Solution: The distance from an arbitrary point  1 1 1P x , y ,z to

(i) the plane x y z 0   is 1 1 1x y z

3

 

(ii) the plane x y 2z 0   is
1 1 1x y 2z

6

 

(iii) the plane x y 0  is
1 1x y

2



Now
     2 2 2

1 1 1 1 1 1 1 1x y z x y 2z x y
5

3 6 2

    
  

     2 2 2
1 1 1 1 1 1 1 12 x y z x y 2z 3 x y 30        

2 2 2
1 1 16x 6y 6z 30    2 2 2

1 1 1x y z 5   

Hence  1 1 1P x , y ,z satisfies 2 2 2x y z 5  

1.6.8. S.A.Q.: Prove that the distance from P to the plane  is the shortest distance.

1.6.9. S.A.Q.: Find the locus of the point whose distance from the origin is three times it's

distance from the plane 2x y 2z 3   .

1.6.10. S.A.Q: A variable plane is at a constant distance p from the origin and meets the axes in

A,B,C . Show that the locus of the centroid of the tetrahedron OABC is

2 2 2 2x y z 16p      .
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Distance Between Parallel Planes:

We know that the two planes are parallel when the d.rs. of their normals are in

proportion and they do not have common points. If 1 and 2 are parallel planes, any

line L is perpendicular to 1 iff L is perpendicular to 2 .

1.6.11. Theorem: If two intersecting lines in one plane are respectively parallel to two
intersecting lines in another plane then the two planes are parallel.

Proof: Let the two intersecting lines be AB, AC in a plane 1 which are parallel to PQ, PR

respectively in a plane 2 .

A

B C

1

P

Q R

2

AB || PQ 2AB || 

Suppose the plane 1 through AB intersects 2 in a line  .

Now AB and  are in 1 .

Since 2AB ||  and 2 , AB doesn't intersect 

Thus AB and  lie in the plane 1 and they don't intersect.

Hence AB and  are parallel.



1.25 PLANESSolid Geometry

Similarly AC and  are parallel.

Which is contradiction

Hence 1 and 2 don't intersect.

1 and 2 are parallel planes.

1.6.12. Definition: If 1 and 2 are parallel planes, then the perpendicular distance of any

point in 1 from 2 (or viceversa) is called the distance between 1 2and  .

1.6.13. Remark: If 1 2,  are parallel planes and 1 1 1A , B   and 2 2 2 1 2A , B , A A  is

perpendicular to 1 and 1 2B B is perpendicular to 2 , then 1 1 2 2A B B A is a rectangle so

that 1 2 1 2A A B B d  say. Then 1 2A A is independent of the choice of 1A and is called

the distance from 1 to 2 . It is also true that d is the distance from 2 to 1 .

1

2

1B1A

2A
2B

1.6.14. Theorem: The distance between the parallel planes 1ax by cz d 0,   

2ax by cz d 0    is
1 2

2 2 2

d d

a b c



 

Proof: Let the given planes be 1 1ax by cz d 0      and 2 2ax by cz d 0      .

Let  1 1 1P x , y ,z be a point in the plane 2ax by cz d 0   

1 1 1 2 2 1 1 1ax by cz d 0 d ax by cz         
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Distance between the parallel planes = perpendicular distance from P to 1

1 1 1 1

2 2 2

ax by cz d

a b c

  


 

2 1

2 2 2

d d

a b c




 

1.6.15. Example: Prove that the distance between the parallel planes  2x 2y z 3 0 1        

and  4x 4y 2z 5 0 2           is
1

6
.

Solution: (1) and 4x 4y 2z 6 0    represent the parallel planes.

From theorem 1.5.10 the distance between (1) and (2)

1 2

2 2 2 2 2 2

d d 6 5 1 1

636a b c 4 4 2

 
   

   

1.7 Systems of Planes:

The general equation of a plane is ax by cz d 0    . Since one of a, b, c is not zero we

may assume without loss of generality that a 0 . Therefore
d b c

, ,
a a a

uniquely determine the plane.

Three ratios are usually determined by three conditions on the plane.

For example:

(i) Three non collinear points in the plane.

(ii) Two distinct points in the plane and a plane perpendicular to the plane.

(iii) A point in the plane and two planes perpendicular to the plane.

With less than three conditions the ratios
d b c

, ,
a a a

may be determined in several ways

yielding systems of planes. Finding the equation of the plane under the condition (i) is discussed
in 1.4.10. Conditions (ii) and (iii) yield the ratios uniquely (Ref 2.15 of preliminaries).

We know that there is one and only are plane passing through three non collinear points.

For example x y z 1 0    represents the plane passing through      1,0,0 , 0,1,0 and 0,0,1 .

There are infinitely many planes that contain  1,0,0 and  0,1,0 . In fact any equation of the type

 x y kz 1 0 1           represents a plane that contains these points. Also if ax by cz d 0   

contains these two points then a d 0  and b d 0  so that a b d   . This gives the general

form of the equation of a plane that contains  1,0,0 and  0,1,0 namely  x y cz 1 0 2              
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We thus come across with equations representing a family of planes rather than a single
plane. Such equations contain "arbitrary" coefficients (as k and c in the above (1) and (2)) called
parameters.

1.7.1. Definition: The equation of a plane satisfying two conditions will involve one arbitrary
constant which can be chosen in an infinite number of ways, thus giving rise to an
infinite collection of planes, called a system of planes. Infinite number of ways, thus
giving rise to an infinite collection.

The arbitrary constant which is different for different members of the system is
called a parameter.

Similarly the equation of a plane satisfying one condition will involve two parameters.

The following are the equations of a few systems of planes involving one or two
parameters.

1. The equation ax by cz k 0    represents the system of planes parallel to a given

plane ax by cz d 0,    k being the parameter..

2. Given a, b, c not all zero, the equation ax by cz d 0    represents the system of

planes perpendicular to given line with direction ratios a, b, c; d being the parameter.

3. The equation      1 1 1 1ax by cz d k a x b y c z d 0 1               represents the

system of planes through the line of intersection of the planes

 ax by cz d 0 2               

 1 1 1 1a x b y c z d 0 3              

k being the parameter.

for the equation (1), being of the first degree in x, y,z represents a plane.

1.7.2. Theorem: 1 1 1 1 1a x b y c z d 0     

2 2 2 2 2a x b y c z d 0      represent two intersecting planes.

(i) If  1 2, 0   then 1 1 2 2S 0       represents a plane passing through the

line L of intersection of 1 and 2 .

(ii) Any plane through the line L of intersection of 1 and 2 is given by

1 1 2 2S 0       for  1 2, 0   .
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Proof: (i) Since 1 2,  are not parallel,  1 1 1a ,b ,c 0 ,  2 2 2a ,b ,c 0 and  1 2, 0   .

1 1 2 2S 0       is a first degree equation in x, y,z .

Hence S represents a plane.

Let P be any point on the line L.

1P and 2P P S   .

S contains all the common points of 1 2and  .

Since 1 2,  are intersecting planes, all the common points lie on L

L S

The plane S contains L.

2 1 1 20 S , 0 S          .

If  1 2, 0   , S represents a plane passing through the line of intersection of 1

and 2 and different from 1 2and  .

(ii) Let S x my nz t 0     be a plane containing the line

Let    1 1 1 1 2 2 2 2n a ,b ,c , n a ,b ,c 

1 2L n , L n  1 2L|| n n 

 d.rs. of L are 1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

Since at least one of them is not zero, without loss of generality we may suppose

1 2 2 1a b a b 0 

1 1

2 2

a b
0

a b
  1 2,    such that 1 1 2 2a a     and 1 1 2 2b b m   

Then x my nz t      1 1 2 2 1 1 2 2a a x b b y nz t         

   1 1 1 1 1 2 2 2 2 2a x b y c z d a x b y c z d             1 1 2 2 1 1 2 2n c c z t d d         

Let 1 1 2 2 1 1 2 2n c c ; t d d          
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 1 1 2 2x my nz t z 1                          

Let    1 1 1 2 2 2P x , y ,z , Q x , y ,z be any two points on the line L. Since the planes

1 2,  and S contain the line L, the points P, Q on L belong to the three planes 1 2, 

and S.

from (1) 1 1 1 1 1 2 2 1x my nz t z            

2 2 2 1 1 2 2 2x my nz t z           

1 2 10 0 0 z          and 1 2 20 0 0 z         

1 2z 0; z 0         1 2z z 0   

Since L is not parallel to the XY - plane, 1 2z z

Therefore 0  and so 0 

Then 1 1 2 2x my nz t        

x my nz t 0   

   1 1 1 1 1 2 2 2 2 2a x b y c z d a x b y c z d 0          

Thus the equation of every plane containing the line L is of the form

1 1 2 2 0     

1.7.3. Theorem: If two intersecting planes 1 2,  are represented by

1 1 1 1 1 2 2 2 2 2S a x b y c z d 0, S a x b y c z d 0          respectively where

1 2d d 0 then the equations of the planes bisecting the angles between two given

planes 1 2,  are

(i) 1 2

2 2 2 2 2 2
1 1 1 2 2 2

S S

a b c a b c


   

(ii) 1 2

2 2 2 2 2 2
1 1 1 2 2 2

S S

a b c a b c
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Proof: If  1 1 1P x , y ,z is a point on any one of the angle bisector then the distance from P to the

planes

1 1 1 1 1 2 2 2 2 2S a x b y c z d 0, S a x b y c z d 0          are equal.

1 1 1 1 1 1 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a x b y c z d a x b y c z d

a b c a b c

     


   

1 1 1 1 1 1 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a x b y c z d a x b y c z d

a b c a b c

     
  

   

 the equation of the locus of P is
1 2

2 2 2 2 2 2
1 1 1 2 2 2

S S

a b c a b c
 

   

Examples:

1.7.4. Find the equation of the plane through the line of intersection of the planes

x 3y 2z 3 0    and 3x y 2z 5 0    and through the origin.

Solution: Let the equation of the plane through the line of intersection of the planes

x 3y 2z 3 0    and 3x y 2z 5 0    be

     x 3y 2z 3 3x y 2z 5 0 1           for any  .

(1) Passes through origin  0,0,0 Therefore
3

3 5 0
5

     

Therefore the equation to the required plane is    
3

x 3y 2z 3 3x y 2z 5 0
5

       

14x 18y 4z 0   7x 9y 2z 0  

1.7.5. Find the equation of the plane through the line of intersection of the planes x y z 1  

and 2x 3y z 4    and parallel to x - axis.

Solution: Let the equation of the plane through the line of intersection of the planes x y z 1  

and 2x 3y z 4    be

     x y z 1 2x 3y z 4 0 1                   for any  .

(1) is parallel to x - axis  normal of (1) is perpendicular to x - axis
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Let a, 0, 0 be d.rs. of x- axis.

     1 2 a 1 3 0 1 0 0          1 2 a 0 1 2 0 a 0        

1

2
   

Equation to the required plane is    
1

x y z 1 2x 3y z 4 0
2

       

 y 3z 6 0 y 3z 6 0       

1.7.6. Find the equation of the plane through the intersection of the planes

x y z 1, 2x 3y 4z 5      and perpendicular to the plane x y z 0   .

Solution: Let the equation of the plane through the intersection of the planes x y z 1   and

2x 3y 4z 5   be

     x y z 1 2x 3y 4z 5 0 1                       for any  .

Plane (1) is perpendicular to the plane  x y z 0 2              

d.rs. of normal to the plane (1) are 1 2 , 1 3 , 1 4     

d.rs. of normal to the plane (2) are 1, 1, 1 .

     1 1 2 1 3 1 4 0        
1

3 1 0
3

      

Equation of the plane is

   
1

x y z 1 2x 3y 4z 5 0
3

         x z 2 0  

1.7.7. Find the equations of the planes bisecting the angles between the planes

x 2y 2z 19, 4x 3y 12z 3 0       .

Solution: Equations to the bisecting planes between the planes (1) and (2) are

x 2y 2z 19 4x 3y 12z 3

1 4 4 16 9 144

     
 

   

x 2y 2z 19 4x 3y 12z 3

3 13

     
 

   13 x 2y 2z 19 3 4x 3y 12z 3       
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 13x 26y 26z 247 12x 9y 36z 9       

 x 35y 10z 256 0 3                  

 25x 17y 62z 238 0 4              

Let  be the acute angle between (1) and (3)

1 70 20 51
cos

1 4 4 1 1225 100 3 1326

 
  

   

17 17 17

1326 17 78 78
  

61
tan 1

17
   Therefore

4


 



78
61

17

Hence, 2 , the angle between the planes (1) and (2) is greater than
2


.

Therefore equation (3) represents to the plane bisecting the obtuse angle between
(1) and (2).

Equation (4) represents the plane bisecting the acute angle between (1) and (2).

1.7.8. A variable plane passes through a fixed point  a,b,c . It meets the axes of reference in

A, B and C. Show that the locus of the point of intersection of the planes through (i) A
and parallel to YOZ plane, (ii) through B and parallel to ZOX plane, (iii) through C and

parallel to XOY plane is
1 1 1ax by cz 1     .

Solution: Let the variable plane meeting the coordinate axies in A, B, C be

 
1 1 1

x y z
1 1

x y z
           

Therefore      1 1 1A x ,0,0 , B 0, y ,0 , C 0,0,z  
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Also (1) passes through the fixed point  a,b,c

 
1 1 1

a b c
1 2

x y z
              

But equation of the plane through A, B, C and parallel to the coordinate planes,
YOZ plane, ZOX plane and XOY plane respectively are

1 1 1x x , y y , z z   .

Clearly they intersect at  1 1 1P x , y , z

from (2) P satisfies
a b c

1
x y z
   i.e. 1 1 1ax by cz 1    

conversely (2) holds for  1 1 1P x , y ,z

Then P is the intersection of the planes.

1 1 1x x , y y , z z   .

1.7.9. S.A.Q.: Find the equation of the plane through the intersection of the planes

x 2y 3z 4 0    and 4x 3y 3z 1 0    and perpendicular to the plane

x y z 9 0    .

1.7.10 S.A.Q.: Find the equation of the plane bisecting the acute angle between the planes

3x 2y 6z 2 0    , 2x y 2z 2 0     .

Pair of planes:

Consider the equations

 1 1 1 1a x b y c z d 0 1                ,  2 2 2 2a x b y c z d 0 2             .

These equations represent two planes. If a point P lies either in plane (1) or in
plane (2), then P satisfies the equation.

    1 1 1 1 2 2 2 2a x b y c z d a x b y c z d 0 3               

Conversely if P is a point satisfying the equation (3) then P satisfies either (1) or
(2) and hence P lies in (1) or (2). Thus equation (3) represents the pair of the planes (1)
and (2). On multiplication, (3) takes the form.

2 2 2ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0         
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It is a second degree equation in x, y and z.

We state the following theorem without proof.

1.7.11. Theorem: The necessary and sufficient condition for

2 2 2H ax by cz 2fyz 2gzx 2hxy d 0        to represent a pair of planes

passing through the origin is
2 2 2 2abc 2fgh af bg ch 0, f bc,     

2g ac, 2h ab

and d 0 .

We give the following theorem without proof.

1.7.12. Theorem: If  is an angle between the pair of planes.

2 2 2H ax by cz 2fyz 2gzx 2hxy 0       then

   2 2 2 2

a b c
cos

a b c 4 f g h ab bc ca

 
 

       

1.7.13. Corollary:

(1) The two planes are perpendicular
2


  

cos 0, a b c 0     

2 2 2coeff of x coeff of y coeff of z 0      

2. The planes are identical (Coincident) 00  

2 2 2f bc, g ac, h ab    .

3. If  is an angle between the pair of planes

2 2 2H ax by cz 2fyz 2gzx 2hxy 0,       then

2 2 22 f g h ab bc ca
tan

a b c

    
 

 
, if a b c 0   .

4. Direction ratios of the line of intersection of the planes represented by

2 2 2H ax by cz 2fyz 2gzx 2hxy 0       are 2 2 2f bc , g ac, h ab   .
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Proof: Let H 0 represent the planes 1 1 1 2 2 2x m y n z 0, x m y n z 0       .

    2 2 2
1 1 1 2 2 2x m y n z x m y n z ax by cz 2fyz 2gzx 2hxy          

l 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1a, m m b, n n c, m m 2h, n n 2g, m n m n 2f              

Let  ,m,n be the d.cs. of the line of intersection of H 0 .

Then 1 1 1 2 2 2mm nn 0, mm nn 0      

1 2 2 1 1 2 2 1 1 2 2 1

m n

m n m n n n m m
 

  



   

2 2 2

m n

4f 4bc 4g 4ac 4h 4ab
  

  



2 2 2

m n

f bc g ac h ab
  

  



d.rs. of the line of intersection of the planes are 2 2 2f bc, g ac, h ab  

Examples:

1.7.14. Prove that the equation
2 2 22x 6y 12z 18yz 2zx xy 0      represents a pair of planes,

and find the acute angle between them.

Solution: The given equation is  2 2 22x 6y 12z 18yz 2zx xy 0 1            

Comparing the equation with  2 2 2ax by cz 2fyz 2gzx 2hxy 0 2            

1
a 2, b 6, c 12, f 9, g 1, h

2
       

1
2 1

a h g 2

h b f 1
6 9

2g f c
1 9 12






   
1 9

2 72 81 6 9 1 6
2 2

 
       

 

15 21
18 0

2 2
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2 2f 81, bc 72 f bc   

2 2g 1, ac 24 g ac    

2 21
h , ab 12 h ab

4
    

Given equation represents a pair of planes through the origin.

Let  be the acute angle between the planes.

   2 2 2 2

a b c
cos

a b c 4 f g h ab bc ca

 
 

       

 2

2 6 12

1
16 4 81 1 12 72 24

4

 


  
        

  

16

21


1 16
cos

21
  

   
 

1.7.15. Show that the equation
2 2 2x 4y 9z 12yz 6zx 4xy 5x 10y 15z 6 0         

represents a pair of parallel planes and find the distance between them.

Solution:  22 2 2x 4y 9z 12yz 6zx 4xy x 2y 3z       

Therefore if 2 2 2x 4y 9z 12yz 6zx 4xy 5x 10y 15z 6        

   x 2y 3z k x 2y 3z       

6
k 5, k 6 k 5

k
       2k 5k 6 0 k 3, 2      

Given equation represents the pair of planes x 2y 3z 3 0, x 2y 3z 2 0        which

are parallel.

The distance between the parallel planes
3 2 1

1 4 9 14
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1.7.16. If
2 2 2a b c 2bc 2ca 2ab 0      then show that the equation

a b c
0

y z z x x y
  

  

represents a pair of planes.

Solution: Given equation is
a b c

0
y z z x x y

  
  

         a z x x y b y z x y c y z z x 0         

     2 2 2a xz x yz xy b xy zx y yz c yz z xy zx 0            

     2 2 2ax by cz b c a yz c a b zx a b c xy 0            

From (1) the conditions for the equation

2 2 2Ax By Cz 2Fyz 2Gzx 2Hxy 0      to represent a pair of parallel planes are (1),

(2), (3) and (4).

Here      
1 1 1

A a, B b, C c, F b c a , G c a b , H a b c
2 2 2

              

(1) Clearly

   

   

   

1 1
a a b c c a b

2 2

1 1
a b c b b c a

2 2

1 1
c a b b c a c

2 2

     

     

     

   

   

1 1 2 3

0 0 0

1 1
by R R R R a b c b b c a 0

2 2

1 1
c a b b c a c

2 2

          

     

(2) Also    22 2 2 21 1
F BC b c a bc b c a 2bc 2ca 2ab bc

4 4
           

 2 2 21
a b c 2ab 2bc 2ca 0

4
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2F BC 

Similarly (3)  2 2G AC ; 4 H AB  .

Hence given equation represents a pair of planes.

d.rs. of the line of intersection are
2 2 2F BC, G AC, H AB     

1, 1, 1   

1.8 Projections on a plane and volume of Tetrahedron:

Orthogonal Projection on a Plane: Corresponding to the notion of projection on a line, we also
have that of projection on a plane.

1.8.1. Definition: Orthogonal projection on a plane.

1. The foot of the perpendicular from a point to a given plane is called the orthogonal
projection of the point on the plane.

2. The projection of a curve on a plane is the locus of the projections on the plane of
points on the curve.

3. The projection on a given plane of the region enclosed by a curve in a plane is the
region enclosed by the projection of the curve on the plane.

The following simple results in solid Geometry are assumed without proof:-

1. If a line segment AB in a plane 1 perpendicular to the line L of intersection of this

plane 1 with the plane of projection 2 , then the length of its projection on 2 is

AB cos  ;  being an angle between the two planes.

1Plane 

L

A 

B

AB cos 

2Plane of Pr ojection, 



1.39 PLANESSolid Geometry

2. The area of the projection of a region with area A, enclosed by a curve in a plane is

A cos  ;  being an angle between the plane of the curve containing the given

region and the plane of projection.

1.8.2. Theorem: If x y zA , A , A are the areas of the projections on the coordinate planes

z 0, y 0  and x 0 of a region in a plane  with area A respectively then

2 2 2 2
x y zA A A A   .

Proof: Let , m, n be the direction cosienes of the plane  . Then by (2)

xA A 

yA A m and zA A n

Hence  2 2 2 2 2 2 2 2
x y zA A A A m n A     

1.8.3. Volume of Tetrahedron:

We are familiar with the formula for the volume V of a tetrahedron as
1

V a b c
6
   

where a , b, c are co-terminus vectors. We present a description of a tetrahedron in

terms of planes.

A

B C

D

Given three non collinear points A, B, C, there is a unique plane  containing A, B,

C. If D is any point not in  then a plane 1 is uniquely determined that contains D and the

line AB. Similarly let 2 be the plane containing D and BC and 3 be the plane containing

D and AC. Then the triangles DAB, DBC, DCA and ABC form a non coplanar geometric
figure in the 3D space called the TETRAHEDRON. D, A, B, C are called the vertices of
the tetrahedron.
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By definition, the volume V of the tetrahedron ABCD is
1

V
3

 height X area of the

base triangle.

So
1

V AB , AC, AD
3
   

If      1 1 1 2 2 2 3 3 3A x , y ,z , B x , y ,z , C x , y ,z   and  4 4 4D x , y ,z

 2 1 2 1 2 1AB OB OA x x , y y , z z      and similarly

 3 1 3 1 3 1AC OC OA x x , y y , z z      and

 4 1 4 1 4 1AD OD OA x x , y y , z z      so that

1
V

6
 absolute value of AB, AC, AD 

 

2 1 2 1 2 1

3 1 3 1 3 1

4 1 4 1 4 1

x x y y z z
1

absolute value of x x y y z z
6

x x y y z z

  

   

  

1 1 l

2 2 2

3 3 3

4 4 4

x y z 1

x y z 11
absolute value of

x y z 16

x y z 1



1.8.4. Find the areas of the projection of the region bounded by the triangle whose vertices are

the points      P 1,2,3 , Q 2,1, 4 , R 3,4, 2   on the co-ordinate planes.

Solution: Let A be the area of the triangle P Q R.

Let x y zA , A , A be the areas of the projection of the area of P Q R on YZ, ZX, XY

planes respectively.

   PQ 3,1,7 PR 2, 2,5   

i j k

PQ PR 3 1 7 19i 29 j 4k

2 2 5
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Area of PQ R ,
2 2 21 1

A PQ PR 19 29 4
2 2

    
1

1218
2



d.rs. of the normal to the plane containing the triangle with area A are 19, -29, -4.

d.cs. ,m,n are
19 29 4

, ,
1218 1218 1218

 

x
19 1218 19

A A
2 21218

   

y
29 1218 29

A mA
2 21218

 
   

z
4 1218

A nA 2
21218


    

1.9 Answers to S.A.Q.:

1.4.19. S.A.Q.: Let  A 6, 4,4   B 0,0, 4 

 C 1, 2, 3     D 1,2, 5 

 AB 6, 4, 8    and  CD 2,4, 2 

Since AB CD 12 16 16 20 0      

and AB CD  for any 

AB is neither perpendicular nor parallel to CD .

If we prove that A, B, C, D are coplanar, then that AB intersects CD.

Equation to the plane ABC is

x 6 y 4 z 4

6 4 8 0

7 2 7

  

  

 

     12 x 6 14 y 4 16 z 4 0       

     6 x 6 7 y 4 8 z 4 0      
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 6x 7y 8z 32 0 1             

Substituting  D 1,2, 5 in L.H.S. of (1) we get

6 14 40 32 0   

D  ABC

AB and CD intersect.

1.4.20. S.A.Q.: Let  be the required plane and a, b, c be d.rs. of normal to the plane.

Let      A 0,4,3 , B 1, 5, 3 , C 2, 2,1       

d.rs. of AB are 1, 9, 6 and d.rs. of AC are 2, 6, 2

Since  contains A, B, C the lines AB, AC lie in the plane 

 a 9b 6c 0 1           

 2a 6b 2c 0 2         

Solving (1) and (2)

a b c

9 6 1 9

6 2 2 6







a b c

18 36 12 2 6 18
 

  

i.e.
a b c

9 5 6
 


So the equation to the plane  is      9 x 0 5 y 4 6 z 3 0     

i.e. 9x 5y 6z 2 0   

Clearly  1,1, 1 lies in this plane.

Points are coplanar.

1.5.12. S.A.Q.: Let the points on the plane be    A 1, 2,4 , B 3, 4,5   

Let d.rs. of normal to the plane be a, b, c
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d.rs. of AB are 2, -2, 1

 2a 2b c 0 1         

Since the d.cs. of the x - axis are 1, 0, 0 and the plane is parallel to the x-axis

 its normal is perpendicular to x-axis,

     a 1 b 0 c 0 0   i.e. a = 0 2b c 0   
b c

2b c
1 2

   

0,1,2 are d.rs. of normal to the required plane

 Equation of the required plane is      0 x 1 1 y 2 2 z 4 0     

i.e. y 2 2z 8 0    i.e. y 2z 6 0  

1.5.13. S.A.Q.: Let the given points be    A 2,0,6 , B 6,2,4  

Let P be the mid point of AB

 
2 6 0 2 6 4

P , , 2,1,5
2 2 2

   
   
 

d.rs. of AB are 8, -2, 2.

So the equation of the plane through the point P and perpendicular
to the line joining A and B is

     8 x 2 2 y 1 2 z 5 0     

i.e. 8x 2y 2z 8 0   

i.e. 4x y z 4 0   

1.5.14. S.A.Q.: If  is an angle between the given planes

 2x 3y 4z 11 0 1         ,  3x 2y 3z 27 0 2               

Then
       1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

2 3 3 2 4 3a a b b c c
cos

4 9 16 9 4 9a b c a b c

     
  

      

6 6 12
0

29 22

 
  

2
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1.6.8. S.A.Q.: Let M be the foot of the perpendicular and A be any point other than M in  .

PM is the perpendicular distance to  .

M A

P

In PMA, AP is hypotenuese.

PM PA 

PM PA A   

Hence the distance from P to  is the shortest distance.

1.6.9. S.A.Q.: Let O be the origin and P be the point  1 1 1x , y ,z such that OP is equal to 3

times its distance from the plane

2x y 2z 3  

 21 1 12 2x y 2z 3
OP 9

4 1 4

  
 

 

2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1x y z 4x 4y 4z 9 4x y 4y z 8x z 12x 6y 12            

2 2
1 1 1 1 1 1 1 1 1 1 13x 3z 4x y 4y z 8x z 12x 6y 12z 9 0         

 P satisfies

2 23x 3z 4xy 4yz 8xy 12x 6y 12z 9 0        

1.6.10. S.A.Q.: Let the variable plane that meets the axes in A, B, C be

 
x y z

1 1
a b c
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where      A a,0,0 , B 0,b,0 , C 0,0,c   and a, b, c not zero.

Let  1 1 1P x , y ,z be the centroid of tetrahedron OABC.

 1 1 1
a b c

, , x , y ,z
4 4 4

 
 

 
1 1 1a 4x , b 4y , c 4z   

substituting in (1)  
1 1 1

x y z
1 2

4x 4y 4z
        

 the distance of the origin O from the plane (2) is

2 2 2 2
1 1 1

2 2 2
1 1 1

1 1 1 1 16
p

1 1 1 x y z p

16x 16y 16z

    

 

Conversely suppose the tetrahedron be OABC where A, B, C are on
X, Y, Z axes respectively.

Then      1 1 1A 4x ,0,0 , B 0,4y ,0 , C 0,0,4z  

Equation of the plane containing ABC is

1 1 1

x y z
1

4x 4y 4y
    

1 1 1

x y z
4 3

x y z
                

Distance of origin from the plane (3) is

2 2 2 2
1 1 1

2 2 2
1 1 1

4 4 4
4p

1 1 1 x y z p
x y z

   


  

  

Hence the locus of P is given by the equation

2 2 2 2x y z 16p     

1.7.9. S.A.Q.: Let the plane through the intersection of the planes

x 2y 3z 4 0, 4x 3y 3z 1 0        be    x 2y 3z 4 4x 3y 3z 1 0        

         1 4 x 2 3 y 3 3 z 4 0 1                    
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If (1) is perpendicular to x y z 9 0    , then

     1 4 1 2 3 1 3 3 1 0           

i.e.
3

10 6
5


     

Required plane is 7x 7y 6z 17 0   

1.7.10. S.A.Q.: Given planes are  3x 2y 6z 2 0 1                 and

 2x y 2z 2 0 2             

Equations to the bisecting planes between the given planes are

 2x y 2z 23x 2y 6z 2

9 4 36 4 1 4

     
 

   

 2x y 2z 23x 2y 6z 2

7 3

     
 

   3 3x 2y 6z 2 7 2x y 2z 2        

 5x y 4z 8 0 3          

 23x 13y 32z 20 0 4                   



42

41

1

Let  be the acute angle between (2) and (3)

10 1 8 1
cos

9 42 42
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tan 41 1
4


     

Hence 2 , the angle between the planes (1) and (2) is greater than
2


i.e. obtuse.

Equation (3) is the plane bisecting the obtuse angle between (1) and (2). Equation
(4) is the plane bisecting the acute angle between (1) and (2).

1.10 Summary:

After completing this lesson the student shall be able to find equations of the plane in
various forms, angles between two planes, distance of a point from the plane, equations for
systems of planes and volume of a tetrahedron using both vector methods and cartesian methods.

1.11 Technical Terms:

1. Plane

2. Intercept

3. Parametric Equation

4. Projection of a Vector

5. Orthogonal Projection

6. Perpendicular distance

7. Parallel Planes

8. Tetrahedron

1.12 Model Examination Questions:

1. Show that the equation of the plane through the points      2,2, 1 , 3,4,2 , 7,0,6 is

5x 2y 3z 17 0    .

2. Find the equation of the plane through the points    2,2,1 , 9,3,6 and perpendicular

to the plane 2x 6y 6z 9   .

3. Show that the points      6,3,2 , 13,17, 1 , 3, 2,4    and  5,7,3 are coplouar..

4. Find the angle between the planes 2x y z 0, x y 2z 7      .

5. Two systems ofrectangular axes have the same origin. If a plane intersects them

at distances a, b, c and 1 1 1a ,b ,c respectively from the origin, prove that

2 2 2 2 2 2
1 1 1a b c a b c          .
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6. Find the equation of the plane through the line of intersection of the planes x y z 1  

and 2x 3y z 4    and is parallel to x - axis.

7. Find the equations of the planes bisecting the angles between planes

x 2y 2z 19, 4x 3y 12z 3 0       .

8. Prove that the equation 2 2 22x 6y 12z 18yz 2zx xy 0      represents a pair of

planes and find the angle between them.

9. Find the areas of the projection of the area of the triangle whose vertices are the

points      1,2,3 , 2,1, 4 , 3,4, 2   on the co-ordinate planes.

1.13 Exercises:

1. Find the equation of the plane in which the foot of the perpendicular from origin is

 3,5, 8  .

Ans: 3x 5y 8z 98 0    .

2. Find the perpendicular distance from  2,3,4 to the plane 3x 6y 2z 11 0    .

Ans:
16

7

3. Find the angles between the planes 3x 4y 5z 0   , 2x y 2z 5   .

Ans:
2



4. Find the equation of the plane passing through the point  2, 1,3 and parallel to the

plane 3x 4y 7z 5 0    .

Ans: 3x 4y 7z 19 0    .

5. Find the distance between the parallel planes 3x y 2z 4 0, 6x 2y 4z 5 0        .

Ans: 3 56 unit.

6. Find the equation ofthe plane passing through the points      a,0,0 , 0,b,0 , 0,0,c .

Ans:
x y z

1
a b c
  

7. Show that the four points        0,4,3 , 1, 5, 3 , 2, 2,1 , 1,1, 1      are coplanar..



1.49 PLANESSolid Geometry

8. Find the equation of the plane through the points    1, 2,4 , 3, 4,5  and perpendicular

to XY - plane.

Ans: x y 1 0  

9. Find the equation of the plane through the point  4,4,0 and perpendicular to each

of the planes x 2y 2z 5 0    and 3x 3y 2z 8 0    .

Ans: 2x 4y 3z 8 0   

10. Find the locus of the point, the sum of the squares of whose distances from the

planes x y z 0, x z 0, x 2y z 0        is 9.

Ans: 2 2 2x y z 9  

11. Find the equation of the plane through the line of intersection of the planes

2x 7y 4z 3 0    , 3x 5y 4z 11 0    and the point  2,1,3 .

Ans: 15x 47y 28z 7 0   

12. Find the equation of the plane through the line of intersection of the planes

x 2y 3z 4 0,    4x 3y 3z 1 0    and perpendicular to the plane

x y z 9 0    .

Ans: 7x y 6z 17 0   

13. Find the equations to the planes through the line of intersection of

2x y 3z 2 0,    x y z 4 0    such that each plane is at a distance of 2 unit

from the origin.

Ans: 15x 12y 16z 50 0, x 2y 2z 6 0       

14. Show that the equation
2 2 22x 6y 12z 18yz 2zx xy 0      represents pair of

planes find the angle between them.

Ans: 1 16
cos

21
  
 
 

15. Show that 2 2 2x 4y 9z 12yz 6zx 4xy 5x 10y 15z 6 0          represents a pair

of parallel planes and find the distance between them.

1.14 Model Practical Problem with solution:

Problem: Find the equations of the bisecting planes of the angles between the planes

1S 3x 2y 6z 2 0     and 2S 2x y 2z 2 0      . Find the obtuse angular bisector..
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Definitions:

1. An angle between two planes is an angle between their corresponding normals.

2. An angular bisector of two planes is the plane through the line of intersection of the planes
that makes equal angles with the planes.

Results Used:

1. If  is an angle between the planes 1 2,  represented by 1 1 1 1 1a x b y c z d 0      and

2 2 2 2 2a x b y c z d 0      then 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c
Cos

a b c a b c

 
  

   

.

2. If two intersecting planes 1 2,  are represented by 1 1 1 1 1S a x b y c z d 0,    

2 2 2 2 2S a x b y c z d 0     respectively where 1 2d d 0 then the equations of the

planes bisecting the angles between 1 2,  are

(i) 1 2

2 2 2 2 2 2
1 1 1 2 2 2

S S

a b c a b c


   

(ii) 1 2

2 2 2 2 2 2
1 1 1 2 2 2

S S

a b c a b c
 

   

Stepwise division of the problem:

Step 1: To find the equations of the bisecting planes between the given planes 1 2S , S .

Step 2: To find Cos  and tan  where  is an angle between bisecting plane and one of 1S and

2S .

Step 3: To determine whether  is acute or obtuse.

Step 4: To distinguish the acute angular bisector and obtuse angular bisector.

Stepwise Solution:

Step 1: Equations of the given planes are

 1S 3x 2y 6z 2 0 1           

 2S 2x y 2z 2 0 2               

Equations of the planes bisecting the angles between the given planes are

1 2S S

9 4 36 4 1 4


   
and 1 2S S

49 9
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   3x 2y 6z 2 3 2x y 2z 2 7       

and    3x 2y 6z 2 3 2x y 2z 2 7       

 5x y 32z 8 0 3               

 23x 13y 4z 20 0 4              

Step 2: Let 2  be an angle between given planes containing angular bisector (3) and  be an

angle between the planes (2) and (3).

10 1 64
Cos

4 1 4 25 1 1024

 
 

   

75 5

3 1050 42
 

From figure
17

tan 1
5

  

Step 3: Since
17

tan 1
5

   tan tan
4


  

4


   2

2


  

Hence the angle between the given planes containing angular bisector (3) is an acute
angle.

Step 4: Equation of the plane bisecting acute angle between the planes (1) and (2) is

5x y 32z 8 0   

Equation fo the plane bisecting obtuse angle between the planes (1) and (2) is

23x 13y 4z 20 0   

Lesson Writer

S.V.S. GIRIJA

17

42
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2.1 LINES - 1Solid GeometryLesson - 2

LINES - I

2.1 Objective of the lesson:

In this lesson the student is introduced to various aspects of the line such as, the equation
of a line, angles between lines and planes, projection of a point or line in a plane or line and distance
of a point from a line.

2.2 Structure:

This lesson contains the following components:

2.3 Introduction

2.4 Equations of a line

2.5 Angles between lines and planes

2.6 Foot of the perpendicular of a point

2.7 Answers to SAQ

2.8 Summary

2.9 Technical Terms

2.10 Model Examination Questions

2.11 Exercises

2.12 Model Practical Problem with solution

2.3 Introduction:

A line is uniquely determined by a point on it and a line parallel to it. Equivalently a point
and the angles with the coordinate axes determine a line uniquely. A line is also the intersection of
two planes. These facts enable us to derive the equations of a line in various forms. We also
obtain expression for the angle between lines and planes using vector methods. Conditions for
perpendicularity and parallelism are also obtained in this lesson. Finally coordinates of the foot of
the perpendicular of a point and the perpendicular distance are obtained.

2.4 Equations of a line:

Vector Form:

2.4.1. Theorem: The vector equation of a line parallel to a vector b 0 and passing through

the point  A a is

 r a tb t  
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Proof: Let L be the line passing through A and parallel to b .

For any point  P r , r OP OA AP a AP    

So AP r a 

b

A a P r

Now P lies on L AP || b

r a || b 

r a tb   for some t

r a tb   for some t

Thus P lies on L iff there exists a scalar t such that r a t b 

So the vector equation r a t b  with scalar parameter t represents the line L.

2.4.2. Corollary: The parametric form of the vector equation of a line passing through the distinct

points  A a and  B b is  r tb 1 t a, t   being a scalar..

Proof: Let L be the line AB

AB OB OA b a 0    

So L is parallel to b a .

Since L passes through a and is parallel to b a the vector equations of L (by 2.3.1) is

 r a t b a  

 r tb 1 t a  
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2.4.3. Corollary: Equations of a line passing through  1 1 1A x , y ,z and having direction ratios

,m,n are

 1 1 1x x t, y y mt, z z nt t       

Proof: Let L be the line through A, 1 1 1a x i y j z k   and b i m j nk   .

Then L is the line through a and parallel to b .

So the vector equation of L is  r a tb t  

(by 2.4.1)......................... (1)

If  r xi y j zk, 1   can be written as

 1 1 1x x t, y y mt, z z nt t       

These are the parameteric equations of the line L.

2.4.4. Symmetric form of the equations of a line L passing through  1 1 1A x , y ,z and having

direction cosines ,m,n is

1 1 1x x y y z z

m n

  
 



By 2.3.3 the cartesian equations of L are given by

   1 1 1x x t, y y mt, z z nt t 1                 

Since ,m,n are the direction cosines of L, 2 2 2m n 1   and hence one of ,m,n is
non zero.

(1) can be expressed as

1 1 1x x : y y : m z z : n    

equivalently 1 1 1x x y y z z

m n

  
 



These are called the symmetric form of the equations of the line L.

2.4.5. Note:(i) If one of ,m,n say 0 , we get 1x x

0


in the symmetric equations. This does

not mean that 1x x is divided by 0. 1x x
t

0


 means that 1x x .
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For example consider the equations

x 1 y 2 z 0

1 10
2 2

  
 

These equations represent the line consisting of the points  x, y,z where

1
x 1 0t, y 2 t

2
    and

1
z 0 t

2
 

i.e.  
1 1

x, y,z 1,2 t, t
2 2

 
  
 

(ii) If  P x, y,z is a point on the line L through  1 1 1A x , y ,z with d.c.s. ,m,n then

t  

1 1 1x x t, y y mt, z z nt     

So that        2 2 2 2 2 2 2 2
1 1 1x x y y z z t m n t        

Thus      2 2 2
1 1 1t x x y y z z AP       .

2.4.6. Corollary: If a line L passes through  1 1 1A x , y ,z and has direction ratios ,m,n then the

equations of the line L are 1 1 1x x y y z z

m n

  
 


.

Proof: If 2 2 2k m n , k 0    and
m n

, ,
k k k


are the direction cosines of the line L. Hence

the equations of L are

 1 1 1x x y y z z
r. r

m n

k k k

  
   

     
     
     




i.e. 1 1 1
r r r r

x x , y y m , z z n ,
k k k k

     
           

     
 

Since
r

k
is arbitrary we replace

r

k
by the parameter t and get

1 1 1x x t, y y mt, z z nt      , so that the symmetric form reduces to
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1 1 1x x y y z z

m n

  
 



2.4.7. Corollary: The parametric equations of the Line L passing through two distinct points

 1 1 1A x , y ,z and  2 2 2B x , y ,z are

 2 1x t x 1 t x  

 2 1y t y 1 t y    t

 2 1z t z 1 t z  

Proof: If the position vectors of A and B are respectively a , b then 1 1 1a x i y j z k   and

2 2 2b x i y j z k   and      2 1 2 1 2 1b a x x i y y j z z k       .

Hence the vector equation of L is

 r ta 1 t b, t   

If r x i y j zk   , the vector equation is

        1 2 1 2 1 2x i y j z k t x 1 t x i ty 1 t y j tz 1 t z k          

This is equivalent to

 1 2x t x 1 t x  

 1 2y t y 1 t y  

 1 2z t z 1 t z  

2.4.8. Corollary: The equations of the line passing through two distinct points  1 1 1A x , y ,z

and  2 2 2B x , y ,z is

1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

  
 

  

Proof: If 1 1 1a x i y j z k   and 2 2 2b x i y j z k   then

     2 1 2 1 2 1b a x x i y y j z z k      
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Since if r x i y j zk   , then equation of L is

 r a t b a   

i.e.  1 2 1x x t x x  

 1 2 1y y t y y  

 1 2 1z z t z z  

So that
1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

  
 

  

These are the equations of L.

2.4.9. Equations of a line in terms of planes (Unsymmetric form):

Theorem: The direction ratios of the line of intersection of two intersecting planes

1 1 1 1 1: a x b y c z d 0    

and 2 2 2 2 2: a x b y c z d 0    

are 1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

Proof: If  1 1 1 1n a , b , c and  2 2 2 2n a , b , c then 1
n , is perpendicular to 1 and 2

n to 2 .

Hence L is perpendicular to 1n and 2n .

So L is parallel to 1 2n n

   1 2 1 1 1 2 2 2n n a ,b ,c a ,b ,c  

1 1 1

2 2 2

i j k

a b c

a b c



     1 2 2 1 1 2 2 1 1 2 2 1b c b c i c a c a j a b a b k     

 1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b   

Thus the direction ratios of 1 2n n are
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1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

Since L and 1 2n n are parallel these are the direction ratios of L as well.

2.4.10. Lines as intersection of planes: Unsymmetric form:

Since the intersection of two planes is either the empty set or a line, the equations
for a line may be described in terms of those of planes.

If a line L is the intersection of the planes

 1 1 1 1 1: a x b y c z d 0 1                      

and  2 2 2 2 2: a x b y c z d 0 2                     

 x, y, z lies on L iff  x, y, z satisfies (1) and (2).

i.e.,  1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d 3                   

Since L is the locus of  x, y, z satisfying (3), the equations of L are

1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d       

These are called the unsymmetric form of the equations of L.

2.4.11 Theorem: If L is the intersection of the planes 1 and 2

1 1 1 1 1: a x b y c z d 0    

2 2 2 2 2: a x b y c z d 0    

then the direction ratios of L are

1 2 2 1 1 2 2 1b c b c , c a c a  and 1 2 2 1a b a b

Hence the symmetric equations of L are

 
1 2 2 1 1 2 2 1 1 2 2 1

x y z
1

b c b c c a c a a b a b

   
            

  

where  , ,   is any point on L.

Proof: Let L be the line of intersection of the planes 1 and 2 .

Since L is the line of intersection of the planes 1 and 2 , from Theorem 2.3.9 the

direction ratios of the line L are
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1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

If we fix a point on L say  , ,   the equations of L are given by (1). This completes

the proof.

Note: Since the line L can't be parallel to all the coordinate planes at a time, line L should
intersect one of the three coordinate planes.

Suppose the line L intersects XY - plane at  1 1P x , y , 0

1 1 1 1a x b y d 0  

2 1 2 1 2a x b y d 0  

Solving these two equations for 1 1x , y

1 2 2 1 1 2 2 1
1 1

1 2 2 1 1 2 2 1

b d b d d a d a
x , y

a b a b a b a b

 
 

 

Hence a point on line L is

  1 2 2 1 1 2 2 1
1 1

1 2 2 1 1 2 2 1

b d b d d a d a
P x , y , 0 , , 0

a b a b a b a b

  
   

  

The equations of the line L in symmetric form is

1 1

1 2 2 1 1 2 2 1 1 2 2 1

x x y y z 0

b c b c c a c a a b a b

  
 

  

2.4.12 Symmetric equations into unsymmetric form :

Theorem: The line represented by the equations

 1 1 1x x y y z z
1

m n

  
        


is the intersection of two planes.

Proof: Since ,m,n are the direction ratios of the given line at least one of , m, n is not zero. We

assume that 0 .

Any point  x, y, z on the given line satisfies

       1 1 1 1m x x y y 0 z z n x x        

i.e.,  1 1mx ly mx y 2              
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and  1 1z nx z nx 3               

Since 0 the equations (2) and (3) represent planes and any  x, y,z on L lies on

the planes (2) and (3).

Since the intersection of two planes is either the empty set or a line it follows that
the line (1) is the intersection of the planes (2) and (3).

the proof is similar if m 0 or if n 0 .

Examples:

2.4.13 Find the point of intersection of the line
x 1 y 3 z 2

L
1 3 2

  
 


with the plane

3x 4y 5z 5 0      .

Solution: Given equation of the line L is  
x 1 y 3 z 2

t say
1 3 2

  
  

 t 1, 3t 3, 2t 2     is any point on L

Let  P t 1, 3t 3, 2t 2    

If P lies on the plane  then

     3 t 1 4 3t 3 5 2t 2 5 0       

5t 30 0 t 6    

The point of intersection of L and  is

 P 5,15, 14  .

2.4.14 Find the point of intersection of the line L,  x 2y 4z 4 0 1         ,

 x y z 8 0 2          with the plane x y 2z 1 0     .

Solution: Let 1 2n , n be the unit vectors along the normals of (1) and (2) respectively..

   1 2n 1, 2, 4 n 1, 1, 1  

Then d.rs. of the line L are -6, 3, 3.

Putting z 0 in (1) and (2) we get

x 2y 4 0  
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x y 8 0  

Solving these two equations we get x 4, y 4 

The point on the line L is  P 4,4,0

The equations of L in symmetric form is

 
x 4 y 4 z

t say
6 3 3

 
  



Any point on the line  Q 6t 4, 3t 4, 3t   

If Q lies on  then 6t 4 3t 4 6t 1 0      

1
t

3
 

The point of intersection of L and  is  Q 2,5,1 .

2.4.15 Find the point of intersection of the line L through    A 2,3,4 , B 1,2,3 with xz plane .

Solution: D.rs. of the line L through A, B are 3, 1, 1  .

Equation of the line L is  
x 2 y 3 z 4

t say
3 1 1

  
  

 

Any point on L is  P 3t 2, t 3, t 4     

Equation of xz  plane is y 0 .

If P lies on y 0 then t 3 0 t 3    

point of intersection of L and xz  plane is  P 7,0,1 .

2.4.16 Find the symmetric form the equation of the line

x y z 1 0 4x y 2z 2        .

Solution: Let 1 x y z 1 0     

2 4x y 2z 2 0      and L be the line of intersection of 1 2and  .

Let 1 2
n and n be the unit vectors along the normals of 1 2and  . respectively..
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 1
n 1,1,1  2

n 4,1, 2 

1 2n n is a vector along L.

d.rs. of L are 2 1, 4 2, 1 4 i.e. 3,6, 3     

 d.rs. of L are 1, 2, 1

Putting z 0 in 1 and 2 we get

x y 1 0  

4x y 2 0  

Solving these two equations
1

3x 1 0 x
3

   

1
x

3
  and

2
y

3
 

 the point
1 2

, , 0
3 3

  
 
 

is on L.

Equations of L in symmetric form are

1 2
x y

z3 3
1 2 1

 
 



Note: We use the following result with which we are already familiar.

If 1 1 1,m , n and 2 2 2, m , n are the d.cs. of two lines 1L and 2L respectively then

the d.rs. of the lines bisecting the angles between the lines 1L and 2L are

1 2 1 2 1 2, m m , n n    and they pass through the point of intersection of 1L and 2L .

1L 2L

1 2 1 2 1 2, m m , n n   

1 2 1 2 1 2, m m , n n   
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2.4.17 Find the equations of the lines bisecting the angles between the line

 
x 1 y 4 z 5

1
1 2 2

  
                



and  
x 1 y 4 z 5

2
4 3 12

  
             

Solution: The d.c.s. of the line (1) are
1 2 2

, ,
3 3 3



The d.c.s of the line (2) are
4 3 12

, ,
13 13 13

Then the d.rs. of the lines bisecting the angles between (1) and (2) are

1 4 2 3 2 12
, ,

3 13 3 13 3 13


   (see the note)

i.e.,
1 4 2 3 2 12 1 4 2 3 2 13

, , ; , ,
3 13 3 13 3 13 3 13 3 13 3 13

 
     

i.e.,
25 35 10 1 17 62

, , ; , ,
39 39 39 39 39 39



i.e., 25, 35, 10, ; 1, 17, 62

i.e., 5, 7, 2 ; 1, 17, 62

So the equations of the angular bisectors of (1) and (2) are

x 1 y 4 z 5

5 7 2

  
  ;

x 1 y 4 z 5

1 17 62

  
 



2.5 Angles between lines and planes:

We assume the knowledge of the following:

(a) If a , b are any two non zero vectors and  is an angle between a and b then

a b
Cos

a b
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(b) If 1 1 1, m , n and 2 2 2, m , n are d.rs. of the lines 1L and 2L respectively and  is an

angle between 1L and 2L then

1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

m m n n
Cos

m n m n

 
  

   

 

 

2.5.1 Theorem: An angle between the lines 1L and 2L represented by 1 1 1L : r a t b  and

2 2 2L : r a t b  is given by 1 2

1 2

b b
cos

b b


  

If the symmetric equations for 1L and 2L are given by

 

1 1 1
1

1 1 1

2 2 2
2

2 2 2

x x y y z z
L :

m n
A

x x y y z z
L :

m n

   
  




    






Then
 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

m m n n
cos

m n m n

 
  

   

 

 

Proof: Since 1L is parallel to 1b and 2L is parallel to 2b , angles between 1 2L , L and 1 2b , b

are the same. But we know that the angles between 1b and 2b are given by

1 2

1 2

b b
cos

b b


  

From (A) it is clear that

1L has direction ratios 1 1 1, m , n and

2L has direction ratios 2 2 2, m , n .

Since 1b is parallel to 1L , there exists a scalar 1k such that

 1 1 1 1 1b k i m j n k  

Similarly there exists a scalar 2k such that
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 2 2 2 2 2b k i m j n k  

Hence 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 1 1 2 2 2

b b m m n n
cos

b b m n m n

  
    

   

 

 

2.5.2 Conditions for perpendicularity and parallelism:

Corollary: The lines 1 2L , L with vector equations

1 1 1L : r a t b  and 2 2 2L : r a t b 

are perpendicular iff 1 2b b 0  .

If the d.r.s. of 1 2L ,L are 1 1 1, m ,n and 2 2 2, m , n respectively the condition for

perpendicularity is

1 2 1 2 1 2m m n n 0   

Proof: If  is an angle between the lines 1 2L ,L then,

1 2L ,L are perpendicular iff
2


  i.e. cos 0 

Since 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 1 1 2 2 2

b b m m n n
cos

b b m n m n

  
    

   

 

 

1 2L ,L are perpendicular iff 1 2b b 0 

iff 1 2 1 2 1 2m m n n 0   

2.5.3 Corollary: Under the above hypothesis, 1 2L ,L are parallel

iff 1 2b k b for some k 

iff 1 2 1 2 1 2: m : m n : n  

Proof: 1 2L ,L are parallel iff 1 2b , b are parallel

iff for some 1 2k , b k b 

Since 1 1 1 1b i m j n k   and 2 2 2 2b i m j n k   ,
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1 2 1 2 1 2 1 2b kb k , m km , n kn     

1 2 1 2 1 2: m : m n : n   

Now we consider angles between a line and a plane

Angles between a line and a plane:

2.5.4 Definition: Let L be a line and  be a plane and n be a normal to the plane  . If  is an

angle between n and L such that 0
2


   then

2

 
  

 
is known as the angle between

L and  .

2


 

n

L

Note: 1. Since all the normals are parallel, we may choose any n .

2. If 0  then L is normal to the plane. The angle between the line and

the plane is
2


.

3. If
2


  then L is parallel to the plane. The angle between the line and

the plane is 0.

2.5.6 Corollary: The line 1 1 1x x y y z z
L :

m n

  
 


is parallel to the plane

 : ax by cz d 0    iff a bm cn 0   .

Proof: The direction ratios of the normal to  are  a,b,c .

Since the normal is perpendicular to L, a bm cn 0  
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Conversely if a bm cn 0   , the line L and the vector  n a,b,c are perpendicular..

Hence L is parallel to the plane whose normal has direction ratios a, b, c.

Since the normal to  has direction ratios a, b, c, L is parallel to  .

2.5.7 Corollary: The line
1 1 1x x y y z z

m n

  
 


lies in the plane

1 1 1ax by cz d 0 ax by cz d 0,         a bm cn 0  

Proof: The line lies in the plane

 the point  1 1 1x , y , z lies in the plane and the line is parallel to the plane.

 1 1 1ax by cz d 0    and a bm cn 0   .

2.5.8 Corollary: If a, b, c are chosen such that a bm cn 0   then there exists a unique

plane containing the line 1 1 1x x y y z z

m n

  
 


and its equation is

       1 1 1a x x b y y c z z 0 1              

Proof: Since a bm cn 0   , any line with direction ratios ,m,n is perpendicular to the vector

 a,b,c .

Hence the normal to any plane containing the given line must have d.rs.  a,b,c .

Thus the equation of any such plane is of the form ax by cz d 0   

Since the point  1 1 1x , y , z lies in the plane ax by cz d 0    , we have

1 1 1ax by cz d 0    .

Hence the equation of the plane is      1 1 1a x x b y y c z z 0      .

2.5.9 Theorem: If  is an angle between a line L : r a t b  and a plane : r n q   then

b n
Sin

b n


  

.

Proof: The line L is parallel to b and  is the plane with normal n .
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If  is an angle between b and n then
2


  

Therefore Cos Sin   

But
b n

Cos
b n


 

b n
Sin

b n


   

If    1 1 1a x , y , z b ,m,n   and  n a,b,c then the line is

1 1 1x x y y z z

m n

  
 


and the plane is ax by cz d 0    where d q  .

Now
 

2 2 2 2 2 2

a bm cn
Sin

a b c m n

 
  

   





Examples:

2.5.10 Show that the line
x 3 y 4 z 4

L:
2 3 5

  
 


is perpendicular to the plane 2x 3y 5z 0    .

Solution: Since d.rs. of normal to the plane  are 2, 3, 5 and d.rs. of the line L are 2, 3, 5 .

Hence L is parallel to normal of  .

L is perpendicular to  .

2.5.11 Find the acute angle between the lines  
x 2 y 4 z 5

1
1 0 1

  
       



 
x y z

2
3 4 5
         .

Solution: d.rs of the line (1) are 1, 0, -1

d.rs. of the line (2) are 3, 4, 5

If  is the acute angle between the lines (1) and (2) then

        1 3 4 0 5 1 2 1
Cos

51 1 9 16 25 2 50

    
   

  

1 1
Cos

5
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2.5.12 Find the value of k if the lines  
x 1 y 2 z 3

1
3 2k 2

  
          



x 1 y 5 z 6

3k 1 5

  
 


are perpendicular..

Solution: d.rs. of the line (1) are 3, 2k, 2

d.rs. of the line (2) are 3k, 1, 5

The lines (1) and (2) are perpendicular

     3 3k 2k 1 2 5 0      9k 2k 10 0     7k 10 0   
10

k
7

  

2.5.13 Find two points on the line  
x z y 3 z 5

1
1 2 2

  
              


on either side of  2, 3, 5 

and at a distance 3 from it.

Solution: Given point on the line
x 2 y 3 z 5

t
1 2 2

  
  


(say) is  A 2, 3, 5  .

Any point on the line (1) is  P t 2, 2t 3, 2t 5    

If the distance between A and P is 3 units then

2 2 2 2AP 3 AP 9 t 4t 4t 9 t 1         

The two points are  3, 5, 3  and  1, 1, 7 

2.5.14 Find the condition that the two lines  x az b, y cz d 1            

 1 1 1 1x a z b , y c z d 2              are perpendicular..

Given lines are  x az b 0 y cz d 1                  

 1 1 1 1x a z b 0 0 y c z d 2             

d.rs. of the line (1) are

         0 c 1 a , a 0 c 1, 1 0 0     

i.e., a, c, 1
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Similarly d.rs. of the line (2) are 1 1a , c , 1

The two lines (1) and (2) are perpendicular

 1 1aa cc 1 1 0   

1 1aa cc 1 0   

2.6 Foot of the perpendicular of a point:

A

M L

We recall that if L be a line and A be any point, the point of intersection M of the perpendicular
line through A to L is called the foot of the perpendicular from A to L and A M is called the perpendicular
distance from A to L.

2.6.1 Theorem:

(i) The foot of the perpendicular from  A , ,   to the line

1 1 1x x y y z z
L :

m n

  
 


is  1 1 1 1 1 1Q x t , y mt , z nt    .

Where
     1 1 1

1 2 2 2

x m y n z
t

m n

       


 





(ii) The equation of the perpendicular line AQ is

1 1 1 1 1 1

x y z

x t y mt z nt

   
 

      

(iii) and the length AQ is

     2 2 2
1 1 1 1 1 1AQ x t y mt z nt          
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Proof: If a line through A has d.rs. 1 1 1, m , n and is perpendicular to L then its equation is

1 1 1

x y z

m n

   
 



If the point of intersection of these lines is Q, Q lies on L, so then for some 1t ,

 1 1 1 1 1 1Q x t , y mt , z nt   

So the line AQ has d.rs.

1 1 1 1 1 1x t , y mt , z nt        

and these are proportional to 1 1 1, m , n .

If condition for perpendicularity becomes

     1 1 1 1 1 1x t m y mt n z nt 0            

       2 2 2
1 1 1 1x m y n z m n t 0             

     1 1 1
1 2 2 2

x m y n z
t

m n

       
 

 





If 2 1 1 2 1 1 2 1 1x x t , y y mt , z z nt      then the direction ratios of the perpendicular AQ

to L are

1 2 1 1x x x t   

1 2 1 1y y y mt  

and 1 2 1 1z z z nt    

Hence the equations of the line AQ are

1 1 1

1 2 1 2 1 2

x x y y z z

x x y y z z

  
 

  

Also      2 2 2
2 1 2 1 2 1AQ x x y y z z     

     2 2 2
1 1 1 1 1 1x t y mt z nt          
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2.6.2 Theorem: Let  1 1 1P x , y ,z be a point and : ax by cz d 0     be a plane, M the

foot of the perpendicular to  through P..

Then

(i) The equations of the perpendicular line from P to  are

1 1 1x x y y z z

a b c

  
 

(ii) The coordinates of M are  1 1 1x at, y bt, z ct  

where
 1 1 1

2 2 2

ax by cz d
t

a b c

   


 

'P

 1 1 1P x , y , z

M

(iii) 1 1 1

2 2 2

ax by cz d
PM

a b c

  


 

Proof: If the perpendicular line through P to the plane meets at M then M is the foot of perpendicular
from P in the plane  .

Let P P  be the point on PM such that PM MP

and  2 2 2P x , y , z  and  M , ,    .

Since PM MP then M is the mid point of the line PP .

  1 2 1 2 1 2x x y y z z
, , , ,

2 2 2
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2 1 2 1 2 1x 2 x , y 2 y , z 2 z        

Since PM is the normal to the plane  , direction ratios of the normal PM are a, b, c.

(i) Equations to the line PM are

 1 1 1x x y y z z
1

a b c

  
           

 1 1 1x x at, y y bt, z z ct, t       

(ii) Since M lies on PM there is a real no. t such that

 1 1 1M x at, y bt, z ct   

M lies in the plane       1 1 1a x at b y bt c c ct d 0       

 1 1 1
2 2 2

ax by cz d
t

a b c

   
 

 

and the coordinates of M are

   1 1 1x at, y bt, z ct 2            

(iii)      2 2 22
1 1 1PM x y z            2 2 2

at bt ct       2 2 2 2a b c t  

   

 

2
1 1 12 2 2

22 2 2

ax by cz d
a b c

a b c

  
  

 

1 1 1

2 2 2

ax by cz d
PM

a b c

  
 

 

The perpendicular distance from P to the plane is

 1 1 1

2 2 2

ax by cz d
PM 3

a b c

  
          

 

2.6.3 Theorem: Equations of the projection of a line

1 1 1x x y y z z
L :

m n

  
 


in the plane
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ax by cz d 0      when

(i) L is parallel to  are
x y z r

m n

  
 



where 1 0 1 0 1 0x at , y bt , z ct        

and
 1 1 1

0 2 2 2

ax by cz d
t

a b c

   


 

(ii) L is not parallel to  are
1 1 1

x y z   
 

      

where 1 1 1 1 1 1x at, y bt, z ct        

and
 1 1 1ax by cz d

t
a bm cn

   


 

Proof: Let  1 1 1A x , y ,z

Any point on the line L is  1 1 1P x t , y mt, z nt , t     

Let M be the foot of the perpendicular of A on  and  M , ,    .

By theorem 2.4.11; M is given by    1 0 1 0 1 0M , , x at , y bt , z ct       

where
 1 1 1 1

0 2 2 2

ax by cz d
t

a b c

   


 

(i) If L is parallel to 

P A L

M

d.rs. of the projection of L on  are , m, n and M lies on this line.

Hence equation of the projection of the line L on  is
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x y z

m n

   
 



(ii) If L is not parallel to 

P

A

L

M

and P is the point of intersection of L and  , then P lies on  .

If  1 1 1P x t, y mt,z nt   

     1 1 1a x t b y mt c z nt d 0      

 1 1 1ax by cz d
t

a bm cn

   
 

 

Let  1 1 1P , ,   

Hence the projection of L on  is the line passing through M and P..

Therefore the equations of MP are

1 1 1

x y z   
 

      

Length of the perpendicular From a point to a line:

We derive a formula for the perpendicular distance from a point to the given line.

2.6.4 Theorem: In vector form the perpendicular distance from a point with position vector

 to the line r a t b  is
 a b

b

  

Proof: Let L be the given line. L passes through  A a and parallel to the vector b .
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Let M be the foot of perpendicular of  P  on L.

A a b
M L

 P 



Let PAM  

L is parallel to b then the angle between AP and b is  .

AP b AP b Sin    AP Sin b  PM b

AP b
PM

b


 

 a b

b

  


2.6.5 Theorem: The perpendicular distance from  1 1 1x , y , z to the line

x y z

m n

    
 


is

    2
1 1

2 2 2

y n z m

m n

   

 




Proof: Let      1 1 1x , y , z a , , , b , m, n       

Then      1 1 1 1 1 1

i j k

a b x , y , z , m, n x y z

m n

              



               1 1 1 1 1 1y n x m , z x n , x m y             

      2
1 1a b y n z m       
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2 2 2b m n  

Perpendicular distance from a point to the given line

 a b

b

  


    2
1 1

2 2 2

y n z m

m n

   


 




Examples:

2.6.6 Find the distance of the point  P 1, 2,3 from the plane x y z 5    measured parallel

to the line  
x y z

1
2 3 6
           


.

Solution: D.rs. of the line parallel to the line (1) are 2, 3, -6.

Equation of the line through  P 1, 2,3 and having d.rs. 2, 3, -6 is

 
x 1 y 2 z 3

t say
2 3 6

  
  



Any point on the line  Q 2t 1, 3t 2, 6t 3    

If Q lies on the plane  then 2t 1 3t 2 6t 3 5 0      
1

7t 1 0 t
7

     

9 11 15
Q , ,

7 7 7

 
  
 

The distance
2 2 2

9 11 15
PQ 1 2 3

7 7 7

     
          

     

49
1

49
 

2.6.7 Find the foot of the perpendicular and perpendicular distance from the point  1,3,9 to

the line  
x 13 y 8 z 31

1
5 8 1

  
             



Solution: Any point on the line (1) is  P 5t 13, 8t 8, t 31    

If P is the foot of the perpendicular from  A 1,3,9 to the line (1) then P lies on the line (1)

d.rs. of AP are 5t 14, 8t 11, t 22   
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d.rs. of the line (1) are 5, -8, 1

Thus AP is perpendicular to the line (1)

     5 5t 14 8 8t 11 1 t 22 0        25t 70 64t 88 t 22 0      

90t 180 0   t 2 

 The foot of perpendicular from A to the line (1) is

 P 10 13, 16 8, 2 31       3, 8, 29

The perependicular distance from A to the line (1)

     2 2 2
AP 3 1 8 3 29 9      16 25 400 441 21     units.

2.6.8 Find the equations of the line through  A 1,3,2 and perpendicular to the plane

: x 2y 2z 3    .

Solution: d.rs. of the normal to  are 1, 2, 2

A line through A line through A and r to  is parallel to the normal of  .

d.rs. of the required line are 1, 2, 2

Equations of the required line is

x 1 y 3 z 2

1 2 2

  
 

2.6.9 Find the equations of the line through the point  3, 2,5 and parallel to the line

2x 3y 4z 0 3x 4y z      .

Solution: Let 1 2x 3y 4z 0    

2 3x 4y z 0     represent a line L.

Let 1n and 2n be the unit vectors along the normals of 1 and 2 respectively..

1 2n n is a vector along L

   1 2n 2,3, 4 n 3, 4,1   

d.rs. of L are 3 - 16, -12 - 2, -8 - 9
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ie., -13, -14, -17

Equations of L are
x 3 y 2 z 5

13 14 17

  
 

2.6.10 Find the angle between the lines
x 1 y 2 z

x 2y 2z 0, x 2y z 7;
1 2 2

 
       



Solution: We recall the formula for the angle between the lines when d.rs. of the lines are
given.

Let 1 x 2y 2z 0    

2 x 2y z 7 0      represent the line L,

Given the line 2
x 1 y 2 z

L :
1 2 2

 
 



Let 1n and 2n be the unit vectors along the normals of 1 and 2 respectively..

   1 2n 1,2, 2 n 1, 2,1   

1 2n n is a vector along the line 1L

d.rs. of 1L are 2 - 4, -2 - 1, -2 - 2

ie., -2, -3, -4 i.e., 2, 3, 4

d.rs. of 2L are 1, -2, 2

If  is the angle between the lines 1L and 2L then

      2 1 3 2 4 2
cos

4 9 16 1 4 4

  
 

   

4 4

29 3 3 29
 



1 4
cos

3 29

  
   

 
.

2.6.11.: Find the an angle between the lines in which the planes

3x 7y 5z 1, 5x 13y 3z 2 0       cut the plane 8x 11y 2z 0   .
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Solution: Let 1 3x 7y 5z 1 0     

2 5x 13y 3z 2 0     

and 3 8x 11y 2z 0     be the given planes

and 1 and 3 represent the line 1L and 2 and 3 represent the line 2L .

Let 1 2n , n and 3n be the unit vectors along the normals of 1 2,  and 3

respectively.

1 2 3n 3, 7, 5, n 5, 13, 3 8, 11, 2       

1 3n n and 2 3n n are the vectros along 1L and 2L respectively..

d.rs. of 1L are 14 55, 40 6, 33 56      .

i.e., 69, 46, 23 

i.e., 3, 2, 1

d.rs. of 2L are 26 33, 24 10, 55 104    

i.e., 7, 14, 49 i.e, 1, 2, 7

If  is the angle between 1L and 2L then

   1 3 2 2 7
Cos 0

9 4 1 1 4 49

 
  

   

2


  

2.6.12 Show that the line L,  
x 1 y 2 z 5

1
1 3 5

  
             


lies in the plane

 x 2y z 0 2                  

Solution: Let  A 1, 2, 5   

d.rs. of L are -1, 3, 5.

d.rs. of the normal to  are 1, 2, -1

Since    1 2 2 1 5 0     
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A lies in the plane

Since        1 1 3 2 5 1 0     

Line L lies int he plane  .

2.6.13 Show that the line L,
x 2 y 3 z 4

1 2 5

  
 


is parallel to

3x 4y z 4 0     

Solution: d.rs. of L are 1, -2, 5

d.rs. of normal to  are 3, 4, 1

Since (1) (3) - 2(4) + 5(1) = 0

L is perpendicular to the normal of 

 L is parallel to 

2.6.14 Show that the line L :
x 3 y 4 z 4

2 3 5

  
 


is perpendicular to 2x 3y 5z 0      .

Solution: d.rs. of L are -2, 3, 5

d.rs. of normal to  are -2, 3, 5

 L is parallel to normal to 

 L is perpendicular to 

2.6.15 Find the angle between the line L:
x 1 y z 3

2 3 6

 
  and the plane 3x y z 7 0      .

Solution: d.rs. of L are 2,3,6

d.rs. of the normal to  are 3, 1, 1

If  is an angle between L and  then

     
2 2 2 2 2 2

2 3 3 1 6 1a bm cn
Sin

4 9 36 9 1 1a b c m n

  
    

      





15

7 11
 

1 15
Sin

7 11
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2.6.16 Find the equations of the line through the point  1, 2, 3 and parallel to the line

x y 2z 5, 3x y z 6      .

Solution: Let 1 x y 2z 5    

2 3x y z 6    

1 2 0    represents a line

If  1n 1, 1, 2  and  2n 3,1,1 are the unit vectors along the normals of

1 2,  respectively then 1 2n n is the unit vector along the line L.

Also  1 2n n 3, 5, 4  

 Equations of line through  1, 2, 3 and parallel to L having d.rs. 3, 5, 4 are

x 1 y 2 z 3

3 5 4

  
 



2.6.17 Find the equation of the plane containing the line x y 3z 5 0 2x y 2z 6        and

passing through the point  3,1,1 .

Solution: 1 x y 3z 5 0     

2 2x y 2z 6 0      represent the line L.

Plane through the line L is same as the plane through intersection of 1

and 2 which is in the form 3 1 1 2 2 0,        for    1 2, 0, 0  

The plane 3 passes through the point  3, 1,1

Hence    1 23 1 3 5 6 1 2 6 0        

 1 210 11 0   

1

2

11

10

 




Equation of the plane 3 is
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   11 x y 3z 5 10 2x y 2z 6 0        

9x 21y 53z 5 0   

2.6.18 Find the equations of the plane containing the parallel lines

 
x 4 y 3 z 2

1
1 4 5

  
         


,  

x 3 y 2 z
2

1 4 5

 
      



Solution: d.rs. of the given parallel lines are 1, -4, 5

Let a, b, c be d.rs. of normal to the required plane 

Since the plane  contains the lines (1) and (2)

     a 1 b 4 c 5 0   

 a 4b 5c 0 3                 

Points on the plane are    A 4,3,2 , B 3, 2,0 

d.rs. of the line AB on the plane  are 1, 5, 2

Then  a 5b 2c 0 4             

Solving (3) and (4)

a b c

8 25 5 2 5 4
 

   

i.e.,
a b c

33 3 9
 



i.e.,
a b c

11 1 3
 
 

Equation of  is

     11 x 3 1 y 2 3 z 0    

11x y 3z 35 0   

2.6.19 Find the equation of the plane containing the line

 
x 1 y 1 z 3

1
2 1 4

  
            



and perpendicular to the plane x 2y z 12 0    .
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solution: Let  be the required plane and a, b, c be d.rs. of the normal to 

Since line (1) lies on 

 2a b 4c 0 2         

Since  is perpendicular to 1 x 2y z 12 0     

 a 2b c 0 3          

From (2) and (3)

a b c a b c

1 8 4 2 4 1 9 2 5
    

    

 A 1, 1, 3 lies in  .

Hence equation of  is

     9 x 1 2 y 1 5 z 3 0      

9x y 5z 4 0   

2.6.20 Find the perpendicular distance of a point  1, 6, 3 to the line
x y 1 z 2

1 2 3

 
  .

Solution: Let  A 0,1,2 ,  P 1, 6, 3 ,  b 1, 2, 3

 AP 1, 5, 1

i j k

AP b 1 5 1 13 i 2 j 3k

1 2 3

    

 13, 2, 3  

Required perpendicular distance
2AP b 13 4 9

1 4 9b

  
 

 

182
13

14
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2.6.21 Find the perpendicular distance from the point 3i 2 j k  on the line joining the points

i 3j 5k , 2i j 4k    .

Solution: Let OP 3i 2j k , OA i 3j 5k, OB 2i j 4k        

AP OP OA 2i j 4k     , AB OB OA i 4j 9k    

i j k

AP AB 2 1 4 7i 14 j 7k

1 4 9

     



AP AB 7 6 , AB 1 16 81 98 7 2      

Perpendicular distance from P to
AP AB 7 6

AB 3
7 2AB


  

2.6.22 Find the perpendicular distance of the origin from the line L.

   2x 3y 4z 5 0 1 , x 2y 3z 4 0 2                    

Solution: Put z 0 in the equations of planes that intersect in L.

 2x 3y 5 0 3          

 x 2y 4 0 4         

From (3) and (4) x 2 , y 3  

Hence a point on L is  A 2, 3,0 

From (1) and (2) d.rs. of L are

a b c

3 4 2 3

2 3 1 2

a b c

1 2 1
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The equations of L are
x 2 y 3 z

1 2 1

 
 



 B t 2, 2t 3, t    is any point on L

d.rs. of OB are t 2, 2t 3, t  

If OB is perpendicular to L, then

   
4

1 t 2 2 2t 3 t 0 t
3


       

2 1 4
B , ,

3 3 3

  
  
 

Perpendicular distance of the origin from L is

4 1 16 7
OB

9 9 9 3
    units

2.6.23 S.A.Q.: Find the equation of the plane through the points    1,0, 1 , 3,2,2 and parallel

to the line
x 1 y 1 z 2

1 2 3

  
 


.

2.6.24 S.A.Q.: Find the equation of the plane through the line 1 1 1

1 1 1

x x y y z z

m n

  
 


and

parallel to another line with d.cs. 2 2 2, m , n .

2.6.25 S.A.Q.: Find the equation of the plane through the line
2 2 2x x y y z z

m n

  
 


and

through the point  1 1 1x , y , z .

2.6.26 S.A.Q.: Find the equation of the plane which passes through the line

1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        and is parallel to the line
x y z

m n
 


.

2.6.27 S.A.Q.: Find the equation of the plane through the point  , ,   and perpendicular to

the straight line 1 1 1x x y y z z
L :

m n

  
 


.
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2.6.28 S.A.Q.: If 1 1 1 2 2 2, m , n ; , m , n  are direction cosines, show that the equations to the

planes through the lines which bisect the angle between the lines

1 1 1 2 2 2

x y z x y z
;

m n m n
   

  and at right angles to the plane containing them

are      1 2 1 2 1 2x m m y n n z 0       .

2.6.29 S.A.Q.: A variable plane makes intercepts on the coordinate axes, the sum of whose

squares is 2k (a constant). Show that the locus of the foot of the perpendicular

from the origin to the plane is    
22 2 2 2 2 2 2x y z x y z k       .

2.6.30 S.A.Q.: The plane 2 2 2x my nz p, m n 1, p 0        meets the axes in P, Q, R

and G is the centroid of PQR . If the perpendicular line to the plane at G

meets the coordinate planes in A, B, C then prove that
1 1 1 3

GA GB GC p
   .

2.6.31 S.A.Q.: Find the equations of the projection of the line
x 1 y 1 z 3

2 1 4

  
 


on the plane

x 2y z 6   .

2.7 Answers to S.A.Q.'s:

2.6.23 Let  be the required plane and a, b, c be d.rs. of the normal to the plane  .

   A 1,0, 1 , B 3,2,2   are the points on  .

The line
x 1 y 1 z 2

1 2 3

  
 


is parallel to 

 a 2b 3c 0 1         

d.rs. of AB are 2, 2, 3

Since AB lies in  ,  2a 2b 3c 0 2       

From (1) and (2)

a b c

6 6 6 3 2 4
 

   
i.e.,

a b c

12 3 6
 


i.e.,

a b c

4 1 2
 

  

 Equation of  is      4 x 1 1 y 0 2 z 1 0     

i.e., 4x y 2z 6 0   
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2.6.24 Let  be the required plane and a, b, c be the d.rs. of the normal to  .

 contains the line
1 1 1

1 1 1

x x y y z z

m n

  
 

 and passes through the point

 1 1 1A x , y , z .

 1 1 1a m b n c 0 1                 

 is parallel to the line L with d.cs. 2 2 2, m , n

L is perpendicular to the normal of 

 2 2 2a m b n c 0 2         

From (1) and (2)

1 2 2 1 1 2 2 1 1 2 2 1

a b c

m n m n n n m m
 

     

 Equation of  is

         1 2 2 1 1 1 2 2 1 1 1 2 2 1 1m n m n x x n n y y m m z z 0           

1 1 1

1 l 1

2 2 2

x x y y z z

i.e. m n 0

m n

  





2.6.25 Let  be the required plane and a, b, c be the d.rs. of normal to  .

 contains the line
2 2 2x x y y z z

m n

  
 


and passes through the points

 2 2 2A ,x , y , z  1 1 1B x , y ,z .

 a mb nc 0 1              

Since d.rs. of the line AB are 1 2 1 2 1 2x x , y y , z z  

       1 2 1 2 1 2x x a y y b z z c 0 2               

Equation of  through A is

       2 2 2a x x b y y c z z 0 3             
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Eliminating a, b, c from (1), (2) and (3) equation of the plane  is

2 2 2

1 2 1 2 1 2

x x y y z z

x x y y z z 0

m n

  

   



2.6.26 Let 1 1 1 1 1a x b y c z d 0     

2 2 2 2 2a x b y c z d 0      together represent a line 1L . Let  be the required

plane through 1L and parallel to the line 2
x y z

L ,
m n

 


.

The plane  through 1L is the plane through the intersection of 1 and 2 which is of

the form 1 1 2 2 0      , for    1 2, 0,0   .

   1 1 1 1 1 2 2 2 2 2a x b y c z d a x b y c z d 0         

       1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2a a x b b y c c z d d 0                

This plane is parallel to the line 2L

     1 1 2 2 1 1 2 2 1 1 2 2a a m b b n c c 0            

 2 2 21

2 1 1 1

a mb nc

a mb nc

  
 

  





Equation of the required plane is

       2 2 2 1 1 1 1 1 1 1 2 2 2 2a mb nc a x b y c z d a mb nc a x b y c z d 0            

2.6.27 Find the equation of the plane through the point  , ,   and perpendicular to the

straight line L :
1 1 1x x y y z z

m n

  
 


.

Solution: Let  be the required plane through the point  A , ,  

Given line L is 1 1 1x x y y z z

m n

  
 



d.rs. of L are , m, n
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 is perpendicular to L

 normal of  is parallel to L

 d.rs. of normal of  and L are proportional.

d.rs. of normal to  are , m, n

Equation of the plane  is

     x m y n z 0      

2.6.28 Let 1L represent the line
1 1 1

x y z

m n
 



and 2L represent the line
2 2 2

x y z

m n
 



where 1 1 1 2 2 2, m , n ; , m , n  and d.cs. of 1 2L , L respectively..

Then d.rs. of the lines 3 4L , L bisecting the angles between 1 2L , L are

1 2 1 2 1 2, m m ,n n    ; 1 2 1 2 1 2, m m , n n    .

We known that 3 4L , L are perpendicular to each other..

Let 1 2,  be the required planes through 3 4L , L respectively and are

perpendicular to 4 3L , L respectively..

1 2,  pass through origin.

Equation of 1 is      1 2 1 2 1 2x m m y n n z 0      

Equation of 2 is      1 2 1 2 1 2x m m y n n z 0      

Hence Equations of the required planes are

     1 2 1 2 1 2x m m y n n z 0       .

2.6.29 Let the equation of the variable plane  that have x intercept a, y intercept b, z
intercept c respectively be

 
x y z

1 1
a b c
        

It is given that
2 2 2 2a b c k  
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d.rs. of the normal to the plane  are
1 1 1

, ,
a b c

Equation of the line passing through the origin and perpendicular to the plane

is    
x 0 y 0 z 0

t say 2
1 1 1

a b c

  
         

Any point on the line (2) is
t t t

Q , ,
a b c

 
  
 

If Q lies in the plane  , then
2 2 2

t t t
1

a b c
  

2 2 2

1
t

a b c  
 

 

Let  1 1 1P x , y ,z be the foot of the perpendicular of the origin to  . Then

 1 1 1
t t t

x , y , z , ,
a b c

 
  
 

 
 

2 2 2
2 2 2 2 2 2 2
1 1 1 22 2 2

a b c
x y z t a b c t

a b c

  
  

  

 
      

 

2 2 2 2

2 2 2 2 2
1 1 1

1 1 1 a b c k

x y z t t

 
   

   
222 2 2 2 2 2 2 2

1 1 1 1 1 1 2

k
x y z x y z t k

t

        

 1 1 1P x , y , z satisfies

   
22 2 2 2 2 2 2x y z x y z k      

Conversely suppose that  1 1 1P x , y ,z satisfies the equation

   2 2 2 2 2 2 2x y z x y z k      
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     2 2 2 2 2 2 2
1 1 1 1 1 1x y z x y z k 1                

If P is the foot of the perpendicular from the origin to the plane, then equation

of that plane through P and having 1 1 1x 0, y 0, z 0   as d.rs. of the normal is

     1 1 1 1 1 1x x x y y y z z z 0     

i.e., 2 2 2
1 1 1 1 1 1x x y y z z x y z    

i.e.,
2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

1 1 1

x y z
1

x y z x y z x y z

x y z

  
          
     
     
     

1 1x 0, y 0  and 1z 0

The sum of the squares of the intercepts

2 2 22 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

1 1 1

x y z x y z x y z

x y z

          
       
     
     

 
22 2 2

1 1 1 2 2 2
1 1 1

1 1 1
x y z

x y z

 
     

 
 

   
22 2 2 2 2 2 2

1 1 1 1 1 1x y z x y z k       

2.6.30 Let  be the plane 2 2 2x my nz p, m n 1, p 0        .  meets X - axis, Y -

axis and Z - axis in P, Q and R respectively and G be the centroid of PQR .

p p p
P , 0, 0 , Q 0, ,0 , R 0, 0,

m n

     
       
     

p p p
G , ,

3 3m 3n

 
  

 

Let L be the line perpendicular to  at G.

The equation of L is  

p p p
x y z

3 3m 3n t say
m n
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L meets the YZ - plane i.e. x = 0 in A.

Hence
2

p0 p3GA
3

 
 

 

 
21 3

, p 0
GA p

  


Similarly
2 21 3m 1 3n

,
GB p GC p

 

Hence
2 2 21 1 1 3 3m 3n 3

GA GB GC p p

 
   



2.6.31 The equation of the given plane is  x 2y z 6 1        

The equation of the given line L is  
x 1 y 1 z 3

t say
2 1 4

  
  



The equation of any plane through the line L is

       a x 1 b y 1 c z 3 0 2            where a, b, c are d.rs. of normal to the plane.

Since L lies i n (2)  2a b 4c 0 3            

If the plane (2) is perpendicular to the plane (1) then

 a 2b c 0 4               

Solving (3) and (4)

a b c

1 8 4 2 4 1
 

   

i.e.
a b c

9 2 5
 



From (2) we get

     9 x 1 2 y 1 5 z 3 0      

i.e.  9x 2y 5z 4 0 5            

Hence (1) and (5) together represent the line of projection of L on (1).
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2.8 Summary:

After reading the lesson and working out the examples and exercises the student should
get working knowledge on finding the equation of a line in various forms, angles between lines and
planes and perpendicular distance from a point to a line.

2.9 Technical Terms:

(i) Symmetric form

(ii) Foot of the perpendicular

(iii) Projection

2.10 Model Examination Questions:

1. Show that the line joining    2, 3,1 , 3, 4, 5   intersects the plane 2x y z 7  

in the points  1, 2, 7 .

2. Show that the line
x 3 2 y z 1

3 4 1

  
  intersects the line

2x 4y 3z 3 0, x 2y 3z 0       in the point  9, 6, 1 .

3. Find the distance of the point  3, 4,5 from the plane 2x 5y 6z 16   measured

along a line with d.cs. proportional to  2,1, 2 .

4. Find the equation to the plane through  1 1 1x , y , z and parallel to the lines

1 1 1

x y z

m n
 


and

2 2 2

x y z

m n
 


.

5. Show that the equations of the perpendicular from the point  1,6,3 to the line

x y 1 z 2

1 2 3

 
  are

y 6 z 3
x 1 0,

3 2

 
  


and the foot of the perpendicular is

 1, 3,5 and the length of the perpendicular is  13 .

6. Find the equation of the line of projection of the line.

x 1 y z 2

2 1 1

 
 


in the plane 2x y 3z 4 0    .

7. Show that the line
x 1 y 2 z 5

1 3 5

  
 


lies in the plane x 2y z 0   .
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8. Show that the line
x 3 y 4 z 4

2 3 5

  
 


is perpendicular to the plane

2x 3y 5z 0    .

9. Find the equation of the plane containing the parallel lines

x 3 y 2 z 4

4 5 1

  
 

 
and

x 2 y z 3

4 5 1

 
 



10. Find the perpendicular distance of the point  2, 4, 1 from the line through the

points  5, 3,6  whose d.rs. are 1, 4, 9.

2.11 Exercise:

1. Find the point of intersection of the line
x 2 y 2 z 3

1 1 4

  
 


and the plane

x y z 3 0    .

Ans: (1, 1, 1)

2. Find the point of intersection of the line through    2, 3, 1 , 3, 4, 5  with the plane

2x y z 7   .

Ans: (3, -4, 5)

3. Find the distance of the point  1, 3, 4 from the plane 2x y z 3   measured parallel

to the line
x y z

2 1 1
 
 

.

Ans: 0

4. Find the distance of the point  1, 5, 10   and the point of intersection of the line

x 2 y 1 z 2

2 4 12

  
  and the plane x y z 5   .

Ans: 13

5. Find the foot of the perpendicular and perpendicular distance from  3, 1, 11 to

the join of the points    0, 2, 3 , 4, 8, 11 .

Ans:  2, 5, 7 , 53 .
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6. Find in symmetric form the equations of the line 3x 2y z 4 0,   

4x y 2z 3 0    .

Ans:
x 2 y 5 z

3 2 5

 
 

 

7. Find the equation of the plane through the point  1, 1, 1 and perpendicular to the

line x y z 2, 4x 3y z 1 0       .

Ans: x 5y 11z 15 0    .

8. Find the foot and equation of the perpendicular from  2, 4, 1 to

x 5 y 3 z 6

1 4 9

  
 


.

Ans:  
x 2 y 4 z 1

4, 1, 3 ,
6 3 2

  
    .

9. Find the angle between the lines x 2y z 0 x y z 3       ;

x 2y z 5 0 8x 12y 5z       .

Ans: 1 8
Cos

406

  
 
 

10. Show that the lines 2x 3y 4z 0 3x 4y z 7;      

5x y 3z 12 0 x 7y 5z 6        are parallel.

11. Show that the line
x 2 y 2 z 1

1 2 3

  
  lies in the plane 5x 2y 3z 17 0    .

12. Show that the line
x 1 y 2 z 3

1 4 3

  
 


is parallel to 6x 3y 2z 6 0    .

13. Show that the line
x 2 y 2 z 3

1 2 1

  
 


is perpendicular to x 2y z 5 0    .

14. Find the equations of the line through the point  1 1 1x , y , z and parallel to the line

1 1 1 1 2 2 2 2x m y n z p , x m y n z p       .

Ans:
1 1 1

1 2 2 1 1 2 2 1 1 2 2 1

x x y y z z

m n m n n n m m
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15. Find the equation of the plane containing the line 4x 3y 5 0 y 2z 5      through

the point  2, 1,1 .

Ans: 4x y 4z 0   .

16. Find the equation of the plane containing the parallel lines

x 3 y 2 z 4
;

4 5 1

  
 

 

x 2 y z 3

4 5 1

 
 


.

Ans: x 3y 11z 35 0    .

17. Find the equations of the plane through the points    1,0, 1 , 0, 8, 1  and parallel to

the line  6 x 1 3 3y 2z 4     .

Ans: 4x y 2z 6 0    .

2.12 Model Practical Problem with Solution:

Problem: Find the foot of the perpendicular and perpendicular distance from the point  1, 3, 9

to the line
x 13 y 8 z 31

5 8 1

  
 


.

Definitions:

1. Foot of the perpendicular of a point:

A

M L

If L is a line and A is any point, the point of intersection, M of the perpendicular line
through A to L is called the foot of the perpendicular from A to L and AM is called the
perpendicular distance from A to L.
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Results Used:

1. (i) The foot of the perpendicular from  A , ,   to the line

1 1 1x x y y z z
L :

m n

  
 


is

 1 1 1 1 1 1Q x t , y mt , z nt   

where
     1 1 1

1 2 2 2

x m y n z
t

m n

       


 





(ii) The equation of the perpendicular line AQ is

1 1 1 1 1 1

x y z

x t y m t z n t

   
 

       

(iii) and the length AQ is

     2 2 2
1 1 1 1 1 1AQ x t y mt z nt         

Solution:

Given line is    
x 13 y 8 z 31

t say 1
5 8 1

  
                 



Any point on line (1) is  P 5t 13, 8t 8, t 31    

If P is the foot of the perpendicular from  A 1,3, 9 to the line (1), then P lies on

the line (1).

d.rs. of AP are 5t 14, 8t 11, t 22   

d.rs. of the line (1) are 5, 8, 1 .

Thus AP is perpendicular to the line (1).

     5 5t 14 8 8t 11 1 t 22 0       

25t 70 64t 88 t 22 0       90t 180 0   t 2  

Hence the foot of the perpendicular from A to the line (1) is

 P 10 13, 16 8, 2 31       3, 8, 29

The perpendicular distance from A to the line (1) is

     2 2 2
AP 3 1 8 3 29 9      16 25 400 441 21     units.

Lesson Writer

S.V.S. GIRIJA



3.1Solid Geometry Lines - IILesson - 3

LINES - II

3.1 Objective of the lesson:

In this lesson the student is introduced to find a image of a point and a line with respect to a
plane, and derive the conditions for coplanarity of lines. The expressions for the shortest distance
and the equations of the line of the shortest distance and the nature of intersections of three planes
are studied.

3.2 Structure:

This lesson contains the following components:

3.3 Introduction

3.4 Images

3.5 Coplanar Lines

3.6 Shortest Distance Between Two Skew Lines

3.7 Intersection of Three Planes

3.8 Answers to SAQ

3.9 Summary

3.10 Technical Terms

3.11 Model Examination Questions

3.12 Exercises

3.13 Model Practical Problem with Solution

3.3 Introduction:

The concepts of the foot of the perpendicular from a point enable us to find out a image of
a point and a line with respect to a plane. We then study the nature of the lines in space and derive
the conditions for coplanarity of lines. Using these facts and conditions we find out the expression
for the shortest distance between any two lines. Finally making use of the concepts and conditions
from Lesson 1 and Lesson 2 we study the nature of the intersection of the planes which enables us
to obtain characterizations for intersections of three planes.

3.4 Images:

We define the image of a point in a line and also in a plane.
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3.4.1 Definition: Image of a point in a plane (Line) :

Let W be a line or a plane and P be a point not in W and S the foot of perpendicular

of P in W. If Q is the point on the line joining P and S such that P Q and PS SQ , then Q

is called the image of P in W.

Note: If P belongs to W then P S so Q S P  . Hence the image of P is itself. Moreover if the

image of P is Q, then the image Q is P.

3.4.2 Theorem: If  2 2 2Q x , y , z is the image of the point  1 1 1P x , y ,z with respect to the

plane ax by cz d 0      , then

 1 1 12 1 2 1 2 1
2 2 2

2 ax by cz dx x y y z z

a b c a b c

     
  

 

Proof: Since the d.rs. of the line PQ are 2 1 2 1 2 1x x , y y , z z   and PQ is parallel to the normal

of the plane  .

P

S

Q

 2 1 2 1 2 1x x y y z z
t say

a b c

  
  

2 1 2 1 2 1x x at, y y bt, z z ct      

The mid point of PQ say 1 2 1 2 1 2x x y y z z
S , ,

2 2 2

   
  
 

S lies on 1 2 1 2 1 2x x y y z z
a b c d 0

2 2 2

       
          

     

1 1 1 2 2 2ax by cz ax by cz 2d 0       



3.3Solid Geometry Lines - II

     1 1 1 1 1 1ax by cz a x at b y bt c z ct 2d 0          

   2 2 2
1 1 12 ax by cz d t a b c 0       

 1 1 1
2 2 2

2 ax by cz d
t

a b c

   
 

 

 1 1 12 1 2 1 2 1
2 2 2

2 ax by cz dx x y y z z

a b c a b c

     
  

 

The point  1 1 1x at, y bt, z ct   where

 1 1 1
2 2 2

2 ax by cz d
t

a b c

   


 

is the image of  1 1 1P x , y ,z with respect to the plane  .

3.4.3 Theorem: If  2 2 2Q x , y ,z is the image of the point  1 1 1P x , y ,z with respect to the line

L :
x y z r

m n

  
 


, then      2 1 2 1 2 1x 2 t x , y 2 mt y , z 2 r nt z           .

Where
     1 1 1

2 2 2

x m y n z
t

m n

         
   

  





Proof:

P

S

Q

L

 
x y z

t say
m n

   
  





Centre for Distance Education 3.4 Acharya Nagarjuna University

 any point on the line L is given by

 t, mt, nt      where t

If  S t, mt, nt       is mid point of PQ, then

1 2 1 2 1 2x x y y z z
t , mt , nt

2 2 2

  
        

     2 1 2 1 2 1x 2 t x , y 2 mt y , z 2 nt z            

d.rs. of PQ are      1 1 12 t x , 2 mt y , 2 nt z        

Since PQ is perpendicular to L,

     1 1 12 t x 2m mt y 2n nt z 0           

       2 2 2
1 1 1x m y n z t m n 0             

     1 1 1
2 2 2

x m y n z
t

m n

       
 

 





for this value of t the point

      1 1 12 t x , 2 mt y , 2 nt z       

is the image of P with respect of L.

Image of a line in a plane  :

3.4.4 Definition: The locus of the images of the points on L with respect to the plane  is
called the image of the line L in a plane  .

3.4.5 Theorem: the image of the line 1 1 1x x y y z z
L :

m n

  
 


with respect to the plane

ax by cz d 0      .

(i) is
x y z

m n

   
 


when L is parallel to  .

where 1 0 1 0 1 0x at , y bt , z ct       

and
 1 1 1

0 2 2 2

2 ax by cz d
t

a b c
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(ii) and when L is not parallel to  , then the image is
1 1 1

x y z   
 

      

where 1 1 1 1 1 1x t, y mt, z nt        

 1 1 1ax by cz d
t

a bm cn

   


 
and , ,   are same as in (i)

Proof: Case (i): Let  Q , ,    be the image of P with respect to  , where  1 1 1P x , y ,z

A L P

Q
1L

From theorem image of P on L with respect to  ,

 1 0 1 0 1 0Q x at , y bt , z ct   

where
 1 1 1

0 2 2 2

2 ax by cz d
t

a b c

   


 

Let 1L be the image of L with respect to  .

L is parallel to 1L

 d.rs. of 1L are , m,n .

Equation of the line 1L is

x y z

m n
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Case (ii): Assume that a bm cn 0   and L intersects  at A.

   1 1 1 1 1 1A x t, y mt, z nt , ,        (say)

1L

A

L

P

Q

Since A lies in  , then

     1 0 1 0 1 0a x t b y mt c z nt d 0      

 1 1 1
1

ax by cz d
t

a bm cn

   
 

 

The image of the point P is Q  , ,   as in case (i)

Hence AQ is the image of AP with respect to the plane  .

If  1 1 1A , ,    and  Q , ,    , then the equation of the line AQ is

1 1 1

x y z   
 

      

Examples:

3.4.6 Find the image of the point  A 2, 1,3 in the plane 3x 2y z 9     .

Solution: D.rs. of the normal to the plane  are 3, -2, -1.

The equations of the line perpendicular to  and passing through A is



3.7Solid Geometry Lines - II

 
x 2 y 1 z 3

t 1
3 2 1

  
         

 

Any point on the line (1) is    P 3t 2, 2t 1, t 3 t      

If P is the foot of the perpendicular from A to  , then P lies on  .

     3 3t 2 2 2t 1 1 t 3 9       

P

A (2,-1,3)

 1 1 1Q x , y , z

9t 6 4t 2 t 3 9 0       
2

t
7

 

6 4 2
P 2, 1, 3

7 7 7

  
    
 

20 11 19
, ,

7 7 7

 
  
 

Let Q be the image of A in  .

40 22 38
Q 2, 1, 3

7 7 7

 
    
 

26 15 17
, ,

7 7 7

 
  
 

3.4.7 Find the image of the point  A 1,6,3 in the line

 
x y 1 z 2

L : 1
1 2 3

 
            

Solution:

Any point on the line (1) is of the form

   P t, 2t 1, 3t 2 t   
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P

A (1, 6, 3)

Q (0, 1, 2)

1 1 1B x , y , z

If P is the foot of the perpendicular from A (1, 6, 3) in the line (1), then P lies in (1).
AP is perpendicular to L.

Since d.rs. of AP are t 1, 2t 5, 3t 1   and

d.rs. of (1) are 1, 2, 3.

and AP is perpendicular to L

     1 t 1 2 2t 5 3 3t 1 0      14t 14 0   t 1   P 1,3,5  .

Let  1 1 1B x , y ,z be the image of A in (1)

 P is mid point of AB.

        B 2 1 1, 2 3 6, 2 5 3 1,0,7     

3.4.8 Find the image of the line

x 1 y 2 z 3
L :

2 3 4

  
  in the plane x y z 1 0     

Solution:  A 1,2,3 lies on L. Let B be the image of A in  and Q be the mid point of AB.

 0 0 0B 1 t , 2 t , 3 t   
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A

L

P Q

B

where
 

0
2 1 2 3 1 10

t
1 1 1 3

    
 

 
,

7 4 1
B , ,

3 3 3

   
  
 

 P 1 2t, 2 3t, 3 4t   

where
 1 2 3 1 5

t
2 3 4 9

    
 

 
,

1 1 7
P , ,

9 3 9

 
  
 

PB is the image of PA in 

Also d.rs. of PB are
1 7 1 4 7 1

, ,
9 3 3 3 9 3

    i.e.
20 15 10

, ,
9 9 9

These are proportional to 4, 3, 2.  equations of B are

7 4 1
x y z

3 3 3
4 3 2

  
 

3.5 Coplanar Lines:

Two lines are either in a plane i.e. coplanar or not in the same plane. If the lines are
coplanar they are either intersecting or parallel. If they do not intersect and are not parallel they are

not coplanar. Let us recall that three vectors a, b, c are coplanar if and only if a b c 0    . Wee

use this fact to derive conditions for coplanarity of two lines.

3.5.1 Theorem: Let 1 2L , L be two lines whose equations are respectively

1 1 1

1 1 1

x x y y z z

m n

  
 


and 2 2 2

2 2 2

x x y y z z

m n

  
 


then
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1 2L , L are coplanar iff

1 2 1 2 1 2

1 1 1

2 2 2

x x y y z z

m n 0

m n

  





Proof: Let  1 1 1A x , y ,z and  2 2 2B x , y , z . Then A lies in 1L and B lies in 2L and

 1 2 1 2 1 2BA x x , y y , z z   

Let  1 1 1 1n ,m ,n  ,  2 2 2 2n , m , n  . Then 1n is parallel to 1L and 2n is parallel to

2L .

1 2L , L are coplanar 1 2BA, n , n are coplanar 1 2BA n n 0   

1 2 1 2 1 2

1 1 1

2 2 2

x x y y z z

m n 0

m n

  

 



3.5.2 Corollary: The lines r a tb  and r c td  are coplanar

a c, b, d  are coplanar a c b d 0     a b d c b d       

3.5.3 Theorem: If 1L and 2L are the two lines whose equations are respectively

1 1 1

1 1 1

x x y y z z

m n

  
 


and

2 2 2

2 2 2

x x y y z z

m n

  
 


, then the equations of the plane

containing 1L and parallel to 2L are

1 1 1

1 1 1

2 2 2

x x y y z z

m n 0

m n

  





Proof: Let      1 1 1 1 1 1 1 2 2 2 2A x , y ,z n , m , n , n , m , n   

Let  be the required plane containing 1L and parallel to 2L .

Let  P x, y,z be any point in the plane  .

A lies in the plane  and 1 2n , n are parallel to the lines 1 2L , L respectively..
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1 2AP , n , n are coplanar 1 2AP n n 0   

1 1 1

1 1 1

2 2 2

x x y y z z

m n 0

m n

  

 



is the equation of  .

3.5.4 Corollary: If 1L and 2L are two coplanar lines whose equations are respectively

1 1 1

1 1 1

x x y y z z

m n

  
 


and 2 2 2

2 2 2

x x y y z z

m n

  
 


then the equation of the plane

containing 1 2L , L is
1 1 1

1 1 1

2 2 2

x x y y z z

m n 0

m n

  





3.5.5 Theorem: The lines 1 1 1

1 1 1

x x y y z z

m n

  
 



and 1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        are coplanar if and only if

1 1 1 1 1 1 1 2 1 2 1 2 1 2

1 1 1 2 2 2

a x b y c z d a x b y c z d

a b m c n a b m c n

     


    

Proof: Equation of any plane passing through the line,

1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        is

 1 1 1 1 2 2 2 2a x b y c z d a x b y c z d 0        

i.e.,        1 2 1 2 1 2 1 2a a x b b y c c z d d 0 1                     

The line 1 1 1x x y y z z

m n

  
 


lies in the plane (1)

     1 2 1 2 1 2a a b b m c c n 0        

and      1 2 1 1 2 1 1 2 1 1 2a a x b b y c c z d d 0           

   1 1 1 2 2 2a b m c n a b m c n 0        

and    1 1 1 1 1 1 1 2 1 2 1 2 1 2a x b y c z d a x b y c z d 0        
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Taking the ratio :1 from both the equations

   1 1 1 1 1 1 1 1 1 1

2 2 2 2 1 2 1 2 1 2

a b m c n a x b y c z d

a b m c n a x b y c z d

      


    





1 1 1 1 1 1 1 2 1 2 1 2 1 2

1 1 1 2 2 2

a x b y c z d a x b y c z d

a b m c n a b m c n

     


    

3.5.6 Theorem: The lines 1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        and

3 3 3 3 4 4 4 4a x b y c z d 0 a x b y c z d        are coplanar iff

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

a b c d

a b c d
0

a b c d

a b c d

  

Proof: Let 1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        represent a line 1L and

3 3 3 3 4 4 4 4a x b y c z d 0 a x b y c z d        represent a line 2L .

Equation of the plane passing through the line 1L is

 1 1 1 1 1 2 2 2 2a x b y c z d a x b y c z d 0        

       1 1 2 1 1 2 1 1 2 1 1 2a a x b b y c c z d d 0 1                   

Equation of the plane passing through the line 2L is

 3 3 3 3 2 4 4 4 4a x b y c z d a x b y c z d 0        

         3 2 4 3 2 4 3 2 4 3 2 4a a x b b y c c z d d 0 2                       

Given lines are coplanar

   1 1 2 3 2 4 1 1 2 3 2 4a a a a , b b b b           

   1 1 2 3 2 4 1 1 2 3 2 4c c c c , d d d d            for some 0 

 The system of equations

1 1 2 3 2 4 1 1 2 3 2 4a a a a 0, b b b b 0             
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1 1 2 3 2 4 1 1 2 3 2 4c c c c 0, d d d d 0             

has non zero solution

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

a b c d

a b c d
0

a b c d

a b c d

   

3.5.7 Determination of lines satisfuing given conditions:

The general equations of a line are

 1 1x x y y
1

m

 
         


,  1 1y y z z

2
m n

 
            .

Since one of , m in (1) and m, n in (2) is not zero we may assume without loss of

generality that m 0 in (1) and n 0 in (2). The equations (1) and (2) are equivalent to

   1 1 1 1mx y ny mzm
x y ; y z

m m n n

 
   



respectively so that 1 1 1 1mx y ny mzm
, , ,

m n m n

 
are

the four arbitary constants or parameters. These four ratios are usually determined
by various sets of conditions.

For Example:

(1) Passing through a given point and intersecting two given lines.

(2) Intersecting two given lines and having a given direction.

(3) Intersecting a given line at right angles and passing through a given point.

(4) Intersecting two given lines at right angles.

Examples:

3.5.8 Show that the lines
x 1 y 2 z 3 x 2 y 3 z 4

;
2 3 4 3 4 5

     
    are coplanar. Find the point

of intersection and the plane containing the lines.
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Solution: Let the line 1L be    
x 1 y 2 z 3

r say 1
2 3 4

  
             

and the line 2L be    
x 2 y 3 z 4

s say 2
3 4 5

  
           

Any point on 1L is  P 2r 1, 3r 2, 4r 3   

Any point on 2L is  Q 3s 2, 4s 3, 5s 4   

If P = Q then  2r 1 3s 2 2r 3s 1 3              

 3r 2 4s 3 3r 4s 1 4                 

 4r 3 5s 4 4r 5s 1 5                

Solving (3) and (4) we get r s 1  

These values satisfy theequation (5)

Hence the lines 1L and 2L are intersecting 1L and 2L are coplanar..

The point of intersection of 1L and 2L is  1, 1, 1  

Let  be the plane containing the lines 1 2L & L and a, b, c be d.rs. of normal to  .

d.rs. of 1L are 2,3,4  2a 3b 4c 0 6             

d.rs. of 2L are 3, 4, 5  3a 4b 5c 0 7              

From (6) and (7)
a b c a b c

i.e.
1 2 1 1 2 1
   

  

Hence the equation of  is      1 x 1 2 y 1 1 z 1 0      i.e. x 2y z 0   .

3.5.9 Show that the lines
x 4 y 6 z 1

3 5 2

  
 


; 3x 2y z 5 0 2x 3y 4z 4        are coplanar..

Find the point of intersection and the plane containing the lines.

Solution: Let the equations
x 4 y 6 z 1

3 5 2

  
 


represent the line 1L .

Any point on 1L is  P 3t 4, 5t 6, 2t 1     where t



3.15Solid Geometry Lines - II

Let 1 be the plane 3x 2y z 5 0    and

2 be the plane 2x 3y 4z 4 0    and 1 2  be the line 2L .

If P lies in 1 then      3 3t 4 2 5t 6 2t 1 5 0       

9t 12 10t 12 2t 6 0      

3t 6 0 t 2     

 P 2, 4, 3   . This satisfies the equation of the plane 2 .

The general equation of any plane  through the intersection of 1 and 2 is

1 2 0    .

   3x 2y z 5 2x 3y 4z 4 0        

i.e.        3 2 x 2 3 y 1 4 z 5 4 0            

 contains the line 1L

     3 2 3 2 3 5 1 4 2 0           

13 3 0   

3

13
  

Thus the equation of the plane  is

45x 17y 25z 53 0   

3.5.10 Show that the lines  x y z 3 0 2x 3y 4z 5 1                 

 4x y 5z 7 0 2x 5y z 3 2              

are coplanar. Find the plane in which they lie.

Solution:

1 1 1 3

2 3 4 5

4 1 5 7

2 5 1 3
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Apply 2 2 1 2 3 1 4 4 1c c c , c c c , c c 3c     

1 0 0 0

2 1 2 1

4 5 1 5

2 7 3 3




 

1 2 1

5 1 5

7 3 3

 

 

Apply 2 2 1 3 3 1c c 2c , c c c   

1 0 0

5 11 10 0

7 11 10

  



Hence the given lines are coplanar.

Equation of any plane through the line (1) is

     x y z 3 2x 3y 4z 5 0 3               

Equation of any plane through the line (2) is

     4x y 5z 7 2x 5y z 3 0 4               

If the equations (3) and (4) represent the same plane, then

   1 2 k 4 2 5 1 2 4k 2 k                         

   1 3 k 1 5 6 1 3 k 5 k                        

   1 4 k 5 7 1 4 5k k                  

   3 5 k 7 3 8 3 5 7k 3 k                       

Eliminating k from (5), (7) and (5), (8) we get

 14k 10 3 0 9                ,  2k 4 3 0 10            

From (9) and (10)
1

k , 1
2

    

Substituting these values in (7) we get 1  

The values of k, ,  satisfy the equation (6).
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Hence the equation of the required plane is

x 2y 3z 2 0     x 2y 3z 2 0    

3.5.11 S.A.Q.: Find the equations of the line intersecting the lines.

x 5 y z 5 x 5 y z 5
,

1 1 1 1 1 2

   
    and parallel to the line

x 5 y 5 z 10

2 1 3

  
  .

3.5.12 S.A.Q.: Find the equations of the line intersecting the lines

2x y 1 0 x 2y 3z ; 3x y z 2 0 4x 5y 2z 3              and parallel to the

line
x 1 y 2 z 3

1 2 3

  
  .

3.5.13 S.A.Q.: Prove that the lines
x y z x y z

,
a b c

   
     

,

x y z

m n
 


will lie in one plane if      

m n
b c c a a b 0

    
         

       



3.5.14 S.A.Q.: Find the equations of the line which passes through the point  2, 1, 1 and

intersects the lines 2x y 4 0 y 2z ; x 3z 4, 2x 5z 8         .

3.6 Shortest Distance Between Two Skew Lines:

3.6.1 Skew Lines:

Definition: Any two lines which are non-parallel and non-intersecting (i.e. non-coplanar)
are called skew lines.

Let us find out the shortest distance between two lines. The shortest distance
between two lines is the perpendicular distance between the given lines. If the two lines
are

(i) intersecting, then the shortest distance (perpendicular distance) between them is
zero.

(ii) skew lines, then the shortest distance between them lies along the line meeting
both of them at right angles.

(iii) parallel, then the shortest distance between them is the perpendicular distance
from any point on one line to the other line.
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2



2



E

B

G

D

A

FC

O

Q

P

From the figure OA, CE are non - coplanar lines. OC is perpendicular to both OA
and CE. Consider a point P on OA and Q on CE. If the length of PQ is changed such that
PQ = OC then the length PQ is the shortest. Let us prove the following theorem.

3.6.2 Theorem: Given 1 2L , L are non - coplanar lines. Another line L intersects 1 2L , L at G, H

respectively and L is perpendicular to both 1 2L , L . Then the length of GH is the shortest

distance between 1L and 2L .

Proof: Let P, Q be any two points on 1 2L , L respectively..

090

090

1L

2L
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Let the line L meet 1 2L , L at G, H respectively..

1GH L and 2GH L

If  is the angle between PQ and GH then the length of GH is the length of projection of

PQ along GH .

Hence
 PQ GH Cos PQ, GHPQ GH

GH
GH GH


 

GH PQ Cos PQ Cos PQ      Cos 1 

The shortest distance between 1L and 2L is GH.

3.6.3 Theorem: Given two skew lines 1 2L , L there exist uniquely determined parallel planes

1 2,  such that 1 contains 1L and 2 contains 2L .

Proof: Let the equations of 1L be
1 1 1

1 1 1

x x y y z z

m n

  
 


and the equations of 2L be

2 2 2

2 2 2

x x y y z z

m n

  
 

 .

If such planes 1 2,  exist then their normals have the same d.cs.

We may assume that the equations of 1 2,  are respectively

1 1ax by cz d 0     

2 2ax by cz d 0     

The condition that 1L lies in 1 is

1 1 1a bm cn 0   and 1 1 1 1ax by cz d 0   

Similarly 2 2 2a bm cn 0   and 2 2 2 2ax by cz d 0   

These conditions hold good iff

1 2 2 1 1 2 2 1 1 2 2 1

a b c

m n m n n n m m
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Let 1 2 2 1 1 2 2 1 1 2 2 1m n m n , n n , m m           

Since 1 2L , L are skew lines 1 1 1 2 2 2: m : n : m : n 

so that at least one of , ,   is non zero.

Thus the planes exist and are given by

1 1x y z d 0       

2 2x y z d 0        

where 1 2d , d are uniquely fixed by fixing the point  1 1 1x , y ,z on 1L and the point

 2 2 2x , y ,z on 2L .

3.6.4 Theorem: If the equations of two skew lines are

   r a tb 1 ; r c sd 2                           . The distance (shortest distance) between

them is
   a c b d

b d

  


and the equation of the line which isthe common perpendicular is

r a b b d 0 r c d b d           

Proof: Let 1 2L , L be the lines represented by the given equations

r a t b , r c sd    respectively..

Let L be the line of shortest distance which is perpendicular to 1L and 2L and

meet 1L and 2L at G and H respectively..

A a
b

G

1L

P r

2L

d
C c
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L is perpendicular to both 1L and 2L .

Therefore  GH b d  for some scalar u.

Shortest distance between 1L and 2L = Length of projection of AC along GH .

AC GH

GH




   
 

c a u b d

u b d

   




   a c b d

b d

  




a c b d

b d

  




Let  be the plane containing 1L & GH and  be the plane containing 2L & GH .

,   intersect in GH .

Equation of GH is 0    

Let P be any point with position vector r on the plane  .

P AP, b, GH  are coplanar..

AP b GH 0    r a b b d 0     

Equation of  is r a b b d 0    

Similarly equation of  is r c d b d 0    

Therefore equation of GH is r a b b d 0 r c d b d           

3.6.5 Theorem: Given the lines 1L is 1 1 1

1 1 1

x x y y z z

m n

  
 


and 2L is

2 2 2

2 2 2

x x y y z z

m n

  
 


. The shortest distance between 1 2L , L is the absolute value of

 
 

1 2 1 2 1 2

1 1 1

2 2 2

2
1 2 2 1

x x y y z z

m n

m n
1

m n m n

  

               






and equation of the line of shortest distance
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is  
1 1 1 2 2 2

1 1 1 2 2 2

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

x x y y z z x x y y z z

m n 0 m n 2

m n m n n n m m m n m n n n m m

     

     

     

 

       

Proof: In the Theorem 3.6.4 put    1 1 1 1 1 1a x , y ,z , b , m , n  

   2 2 2 2 2 2c x , y ,z , d , m , n  

and  r x, y,z

 1 2 2 1 1 2 2 1 1 2 2 1b d m n m n , n n , m m       

 21 2 2 1b d m n m n  

 1 2 1 2 1 2a c x x , y y , z z    

 1 1 1r a x x , y y , z z    

 2 2 2r b x x , y y , z z    

From theorem 3.6.4 we get the required formulae for shortest distance between 1L and

2L is (1) and the equations of the line of shortest distance is (2).

Examples:

3.5.6 If        A 1, 2, 1 , B 4,0, 3 , C 1,2, 1 , D 2, 4, 5          , then find the distance between

AB and CD.

Solution: Equation of AB is r a tb  where  a OA 1, 2, 1    and

 b AB OB OA 3,2, 2    

Equation of CD is r c sd  where  c OC 1,2, 1   and  d CD 1, 6, 4   

 a c OA OC 0, 4,0    

 
0 4 0

a c b d 3 2 2 4 12 2 40

1 6 4
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i j k

b d 3 2 2 8 12 i 12 2 j 18 2 k

1 6 4

           

 

20i 10j 20k   

b d 400 100 400 900 30     

Shortest distance between AB and CD is

a c b d 40 4

30 3b d

  
 


unit

3.6.7 Find the shortest distance and the equations of the line of shortest distance line between

the lines    
x y z x 2 y 1 z 2

1 , 2
2 3 1 3 5 2

  
               
 

Solution: A point on the line (1) is  O 0,0,0

A point on the line (2) is  A 2,1, 2 

d.rs. of the line (1) are 2, 3,1  vector along (1) is  a 2, 3,1 

d.rs. of the line (2) are 3, 5,2  vector along (2) is  b 3, 5,2 

 OA 2,1, 2 

Let PQ be the shortest distance between the lines (1) and (2)

so that P is a point on (1) and Q is a point on (2)

Now PQ is perpendicular to both (1) and (2).

 PQ is parallel to a b

i j k

a b 2 3 1 i j k

3 5 2

      



a b 1 1 1 3    
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A unit vector along PQ is
i j k

3

  

So the shortest distance = PQ = Projection of OA on PQ

 OA Unit vector along PQ 

   OA PQ 2,1, 2 1, 1, 1

3PQ

     
  2 1 2 1

3 3

  
 

The equation of the plane containing the line (1) and the line PQ is

x y z

2 3 1 0 4x y 5z 0

1 1 1

     

  

Similarly the equation of the plane containing the line (2) and the line PQ is

x 2 y 1 z 2

3 5 2 0 7x y 8z 31 0

1 1 1

  

      

  

Equations of the line of shortest distance is 4x y 5z 0 7x y 8z 31      

We solve this type of problems in the following method as well

3.6.8 Find the length and equations of the shortest distance line between the lines

x 2 y 3 z 1 x 4 y 5 z 2
;

3 4 2 4 5 3

     
   

Solution: Given lines are  1
x 2 y 3 z 1

L : t say
3 4 2

  
  

and  2
x 4 y 5 z 2

L : s say
4 5 3

  
  

Any point on 1L is  3t 2, 4t 3, 2t 1  

Any point on 2L is  4s 4, 5s 5, 3s 2  

If  G 3t 2, 4t 3, 2t 1    and  H 4s 4, 5s 5, 3s 2   
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and GH is perpendicular to both 1L and 2L then

d.rs. of GH are 3t 4s 2, 4t 5s 2, 2t 3s 1     

     1GH L 3 3t 4s 2 4 4t 5s 2 2 2t 3s 1 0          

     2GH L 4 3t 4s 2 5 4t 5s 2 3 2t 3s 1 0          

Then 29t 38s 16 0   and 38t 50s 21 0  

Solving these two equations

                 
t s 1

38 21 50 16 16 38 21 29 29 50 38 38
 

          

i.e.
t s 1 1 1

t , s
2 1 6 3 6


    

 

13 5 10 25 3
G 3, , H , ,

3 3 3 6 2

   
     

   

2 2 2
10 13 25 5 3 1 1 1 1

GH 3
3 3 6 3 2 9 36 36 6

     
               

     

 d.rs. of GH are
1 1 1

, ,
3 6 6

i.e. 2, 1, 1

Equations of the line GH in shortest distance are

13 5
y z

x 3 3 3
2 1 1

 


 

i.e.
x 3 3y 13 3z 5

2 3 3

  
 

3.6.9 Find the shortest distance between the lines
x y z

1 2 1
  and

x y 2z 3 0 2x 3y 3z 4        and the equations for the line of shortest distance.

Solution: Given lines are    
x y z

t say 1
1 2 1
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and  x y 2z 3 0 2x 3y 3z 4 2                  

Equation of any plane through (2) is

 x y 2z 3 2x 3y 3z 4 0        

         1 2 x 1 3 y 2 3 z 3 4 0 3                             

If the plane (3) is parallel to the line (1) then

     1 1 2 2 1 3 1 2 3 0        

5
11 5 0

11


     

Equation of the plane (3) is

1 4 7 13
x y z 0

11 11 11 11
    

 x 4y 7z 13 0 4          

Length of the shortest distance between the lines (1) and (2)

= Length of perpendicular from the point  0,0,0 of the line (1) to the plane (4)

13 13

1 9 49 59


 

 
units

To find the equation of the line of the shortest distance:

Equation of the plane through the line (1) and perpendicular to the plane (4) is

x y z

1 2 1 0 18x 6y 6z 0

1 4 7

    



 3x y z 0 5       

If the equation (3) represents a plane perpendicular to (4) then

     1 1 2 4 1 3 7 2 3 0        

11 11 0 1       
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Equation of the plane through the line (2) and perpendicular to the plane (4) is

x 2y z 1 0    

 x 2y z 1 0 6           

Equations of the line of the shortest distance is

3x y z 0 x 2y z 1 0       

3.6.10 Find the shortest distance and the equations of the line of shortest distance between the

lines 3x 9y 5z 0 x y z      ; 6x 8y 3z 10 0 x 2y z 3        .

Solution: Given lines are  3x 9y 5z 0 x y z 1            

and  6x 8y 3z 10 0 x 2y z 3 2               

Any plane through (1) is

   3x 9y 5z x y z 0      

       3 x 9 y 5 z 0 3                  

Any plane through (2) is

   6x 8y 3z 10 x 2y z 3 0        

         6 x 8 2 y 3 z 10 3 0 4                  

If (3) and (4) are parallel then    3 k 6 6k k 3 5                       

   9 8 2 8k 2k 9 6                 

   5 k 3 3k k 5 7                 

From (5) and (7) 2 3k 2  

From (5) & (6) 4k 15   

Solving
32

5k 32 k
5

  
53

5
 

then  
1

3 6
k

    
5 53

3 6
32 5

 
   

 

31

8




Equations to the planes through (1) and (2) and parallel to each other from (3) and

(4) are  17x 2y 7z 0 8              ,  17x 2y 7z 13 0 9           

A point on (8) is  0,0,0
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Shortest distance between (1) and (2) = Distance of  0,0,0 from (9)

13 13

289 4 49 3 38


 

 

If (3) is perpendicular to (8) then      17 3 2 9 7 5 0         
1

13
  

Similarly
97

14


 

 Equation of the plane through (1) and perpendicular to (8) is

   
1

3x 9y 5z x y z 0 10x 29y 16z 0 10
13

              

Also equation to the plane through (2) and perpendicular to (8) is

 13x 82y 55z 151 0 11               

Hence the equations of the line of the shortest distance are

10x 29y 16z 0 13x 82y 55z 151 0       

S.A.Q.s:

3.6.11 S.A.Q.: Show that the equation to the plane containing the line
y z

1, x 0
b c
   and

parallel to the line
x z

1, y 0
a c
   is x y z

1 0
a b c
    and if 2d is the shortest distance

prove that 2 2 2 2

1 1 1 1

d a b c
   .

3.6.12 S.A.Q.: Planes through OX, OY include an angle  . Show that their lines of intersection

lies on the cone  2 2 2 2 2 2 2Z x y z x y t an    .

3.6.13 S.A.Q.: Show that the shortest distance between the diagonals of a rectangular

parallelopiped and the edges not meeting it are
2 2 2 2 2 2

bc ca ab
, ,

b c c a a b  
where

a, b, c are the lengths of the edges.

3.7 Intersection of Three Planes:

We know that any two different planes in space are either parallel or intersect in a line. Let
us discuss the intersection of three planes.

Given three distinct planes such that no two of them are parallel. We have the following
three possibilities in respect of their intersection.
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The three planes may

(i) have only one point in common

(ii) have a line in common so that the three planes are coaxial.

(iii) form a triangular prism, where (i) and (ii) do not hold and the triangular prism is
defined as

3.7.1 Definition: The region formed by three planes no two of which are parallel and which are
neither concurrent at a point nor pass through a line is called a triangular prism.

3.7.2 Theorem: If three planes intersect in pairs, their three lines of intersection are either
coincident, concurrent or parallel.

Proof: Let 1 2 3, ,   be three planes, each of which meets the other two.

Case (i): If the plane 1 intersects the planes 2 and 3 along the same line L, then L

lies in the planes 1 2,  and 3 .

L

1

2

3

 It is the intersection of 1 2,  and 3 .

Hence L is the coincident line of intersection of three planes.

Case (ii): Let the plane 1 intersect 2 and 3 along the two intersecting straight lines

2L and 3L respectively..

Let the planes 2 and 3 intersect along the line 1L

Let the point of intersection of 2L and 3L be P..

 P lies on 2L and P lies on 3L

 P lies on 2 and P lies on 3 .

 P lies in the line of intersection of 2 and 3

 P lies on 1L
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Thus the three lines 1 2L , L and 3L are concurrent at P..

P
2L

23L

3

1

1L

Case (iii): Let the plane 1 intersect 2 and 3 along the two parallel straight lines 2L

and 3L respectively..

1L

2L

3L

3

2

1

Let the planes 2 and 3 intersect in a line 1L .

Here 2L and 3L are two parallel lines each on two intersecting planes. Then by

theorem 1.6.11 in planes we say that 2L and 3L are parallel to 1L the line of intersection

of the planes 2 3&  containing them respectively. Hence 1 2L , L and 3L are parallel to

each other.
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For our convenience we make use of the following notations:

Let

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2 3 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

a b c d b c a d c a b d

a b c , d b c , a d c , a b d

a b c d b c a d c a b d

       

3.7.3 Theorem: Suppose  1 1 1 1 1a x b y c z d 0 1              

 2 2 2 2 2a x b y c z d 0 2            

 3 3 3 3 3a x b y c z d 0 3            

are planes no two of which are parallel. The planes (1), (2) and (3)

(i) intersect in a unique point iff 0 

(ii) intersect in a line iff 1 2 30, 0, 0, 0       

(iii) form a triangular prism iff 0  and 1 0  or 2 0  or 3 0  .

Proof: We assume that the planes 1 and 2 are not parallel.

Hence the equations 1 20, 0    together represent a line.

Equations of the line of intersection of 1 and 2 (by taking Z = 0) is

       
 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1

x b d b d a b a b y a d a d a b a b z
4

b c b c c a c a a b a b

     
         

  

(i) The planes 1 2,  and 3 intersect in a unique point

 line (4) is not parallel to 3

 The normal of 3 is not perpendicular to the line (4)

  3 3 3a , b , c is not perpendicular to  1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

      3 1 2 2 1 3 1 2 2 1 3 1 2 2 1a b c b c b c a c a c a b a b 0     

1 1 1

2 2 2

3 3 3

a b c

a b c 0

a b c
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(ii) The planes 1 2,  and 3 intersect in a line

 line (4) lies in the plane 3

 line (4) is parallel to the plane 3 and 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

b d b d d a d a
P , , 0

a b a b a b a b

  
  

  

lies in the plane 3 .

 The normal of 3 is perpendicular to the line (4) and P lies in 3 .

 3 3 3a , b , c is perpendicular to  1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b  

and  1 2 2 1 1 2 2 1
3 3 3 3

1 2 2 1 1 2 2 1

b d b d d a d a
a b d 0 d 0

a b a b a b a b

    
      

    

     3 1 2 2 1 3 1 2 2 1 3 1 2 2 1a b c b c b c a c a d a b a b 0      

and      3 1 2 2 1 3 1 2 2 1 3 1 2 2 1a b d b d d d a d a d a b a b 0     

0   and 3 0 

Similarly when x 0 and y 0 we get 1 0  and 2 0  respectively..

(iii) The three planes 1 2,  and 3 form a triangular prism

 the line (4) is parallel to the plane 3 without lying in the same.

 the normal of the plane 3 is perpendicular to the line (4) and P doesn't lie in 3 .

 3 3 3a ,b ,c is perpendicular to  1 2 2 1 1 2 2 1 1 2 2 1b c b c , c a c a , a b a b   and

 1 2 2 1 2 1 1 2
3 3 3 3

1 2 2 1 1 2 2 1

b d b d a d a d
a b c 0 d 0

a b a b a b a b

    
      

    

     3 2 1 1 2 3 1 2 2 1 3 1 2 2 1a b c b c b c a c a c a b a b 0      

and      3 1 2 2 1 3 2 1 1 2 3 1 2 2 1a b d b d b a d a d d a b a b 0     

0  and 3 0 

Similarly in the cases of x 0 and y 0 we get 1 0  and 2 0  respectively..

Hence the three planes 1 2,  and 3 form a triangular prism
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0  and

1 0  or 2 0  or 3 0 

3.7.4 Note: It can be proved that if the three planes intersect in a unique point then the point is

31 2, ,
  

    
.

Examples:

3.7.5 Examine the nature of intersection of the planes 1 2x y z 0, 2x 5y 3z 0,         

3 3x 2y 6z 1 0      .

Solution: Given 1 1 1a 1, b 1, c 1   

2 2 2a 2, b 5, c 3  

3 3 3a 3, b 2, c 6    

Let
1 1 1

2 2 2

3 3 3

a b c 1 1 1

a b c 2 5 3

a b c 3 2 6



  

 

     1 30 6 1 12 9 1 4 15        

24 21 19 64 0      

So given planes intersect in a point.

3.7.6 Examine the nature of intersection of the planes 1 x y z 4 0      ,

2 2x y z 4 0      , 3 x y 5z 14 0      .

Solution: Given 1 1 1 1a 1 b 1 c 1 d 4      

2 2 2 2a 2 b 1 c 1 d 4     

3 3 3 3a 1 b 1 c 5 d 14    

Let      
1 1 1

2 2 2

3 3 3

a b c 1 1 1

a b c 2 1 1 1 5 1 1 10 1 1 2 1

a b c 1 1 5



           



6 9 3 0   
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Let      
1 1 1

1 2 2 2

3 3 3

a b d 1 1 4

a b d 2 1 4 1 14 4 1 28 4 4 2 1

a b d 1 1 14

 

          

18 24 12 6 0      

So given planes form a prism.

3.7.7 Examine the nature of intersection of the planes 1 2x y z 4 0,     

2 5x 7y 2z 0     , 3 3x 4y 2z 3 0      .

Solution: Given 1 1 1 1

2 2 2 2

3 3 3 3

a 2, b 1 c 1, d 4

a 5, b 7, c 2, d 0

a 3, b 4, c 2, d 3

     

   

    

Let      
1 1 1

2 2 2

3 3 3

a b c 2 1 1

a b c 5 7 2 2 14 8 1 10 6 1 20 21

a b c 3 4 2



          



44 16 1 61 0     

 Three planes intersect at a point.

3.7.8 Examine the nature of intersection of the planes 1 x y z 6 0      ,

2 x 2y 2z 6 0      , 3 x 3y 3z 6 0      .

Solution: Let
1 1 1

2 2 2

3 3 3

a b c 1 1 1

a b c 1 2 2 0

a b c 1 3 3

   

1 1 1

1 2 2 2

3 3 3

a b d 1 1 6

a b d 1 2 6 0

a b d 1 3 6

   

Three planes have a common line.

3.7.9 For what values of  do the planes 1 x y z 1 0,      2 x 3y 2z 3 0,      

3 3x y z 2 0       . (i) intersect at a point, (ii) form a triangular prism.



3.35Solid Geometry Lines - II

Solution: Let

1 1 1

2 2 2

3 3 3

a b c 1 1 1

a b c 3 2

a b c 3 1



   

 

(i) planes intersect at a point

0     23 2 6 9 0           2 3 18 0     

for 3   and 6, 0 

 planes intersect at a point for all real values of  other than -3 and 6.

(ii) For 3   and 6, 0 

 planes form a triangular prism.

3.7.10 Prove that the planes 1 x cy bz 0,     2 az cx y 0     , 3 bx ay z 0     pass

through one line if 2 2 2a b c 2abc 1,    and show that the line of intersection then has

the equations

2 2 2

x y z

1 a 1 b 1 c
 

  

Solution: Given

1 1 1 1

2 2 2 2

3 3 3 3

a 1, b c, c b, d 0

a c, b 1, c a, d 0

a b, b a, c 1, d 0

     

     

     

Given planes have a common line

10, 0    

   2

1 c b

c 1 a 0 1 a c c ab b ac b 0

b a 1

 

           

 

2 2 21 a b c 2abc 0      2 2 2a b c 2abc 1    

Since three planes pass through origin, the common line L, also passes through
origin.
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Let , m, n be the d.rs. of common line L.

1 2 3L , L , L   

 mc bn 0 1               ,  c m an 0 2              ,

 b am n 0 3              

Solving (1) and (2) we get

 
2

m n
4

ac b bc a 1 c
           

  



Solving (2) and (3) we get

 
2

m n
5

ab c ca b1 a
          

 



Solving (3) & (1) we get

 
2

m n
6

ab c bc a1 b
         

 



taking first two terms of (5) & (6) and multiplying we get

     
2 2 2 2

2 22 2

m m

1 a 1 bab c 1 a ab c 1 b
  

    

 

Similarly we get
2 2

2 2

m n

1 b 1 c


 

2 2 2

2 2 2 2 2 2

m n m n

1 a 1 b 1 c 1 a 1 b 1 c
    

     

 

Equation of the line L is

2 2 2

x y z

1 a 1 b 1 c
 

  

3.7.11 Show that the planes bx ay n, cy bz , az cx m      intersect in a line if a bm cn 0   .

Solution: Given the planes are 1 bx ay oz n 0     
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2 cy bz 0    

3 cx oy az m 0      

If 1 2 3, &   intersect in a line then

10, 0   

b a 0

0 c b 0

c 0 a



  



and

b a n

0 c 0

c 0 m

 

 

 



     2b mc a c n c 0      2cbm ca c n 0     a bm cn 0   

3.8 Answers S.A.Q.:

3.5.11 S.A.Q.: Let the line 1L be  
x 5 y z 5

r say
1 1 1

 
  

& the line 2L be  
x 5 y z 5

s say
1 1 2

 
  

Any point on 1L is  P r 5, r, r 5  

Any point on 2L is  Q s 5, s, 2s 5  

D.rs of PQ are r s 10, r s, r 2s 10     .

If PQ is parallel to the line 3
x 5 y 5 z 10

L ,
2 1 3

  
 

then  
r s 10 r s r 2s 10

say
2 1 3

    
   

 10 r s 2 1           r s 2           r 2s 10 3 3          

(1) - (2) 10   , (1) - (3) s 10   , r 0

   P 5,0,5 , Q 15, 10, 25     

PQ is parallel to 3L  d.rs. of PQ are 2, 1, 3
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 Equation of the line through P, Q and parallel to 3L is

x 5 y z 5

2 1 3

 
 

3.5.12 S.A.Q.: Let the planes 1 2x y 1 0     , 2 x 2y 3z 0     together represent a line

1L and the planes 3 3x y z 2 0      , 4 4x 5y 2z 3 0      together represent a

line 2L .

Equation of any plane through 1L is 1 2 0   

   2x y 1 x 2y 3z 0      

       2 x 1 2 y 3 z 1 0 1               

Equation of any plane through 2L is 3 4 0   

   3x y z 2 4x 5y 2z 3 0        

         3 4 x 1 5 y 1 2 z 2 3 0 2                  

If the equations (1) and (2) repersent the required line, then  is parallel to the line L,

x 1 y 2 z 3

1 2 3

  
  .

 L is parallel to the plane (1) & L is parallel to the plane (2)

           1 2 2 1 2 3 3 0 & 3 4 1 1 5 2 1 2 3 0                 

2

3
    and

1

2
  

Hence the equations of the required line are

4x 7y 6z 3, 2x 7y 4z 7       .

3.5.13 S.A.Q.: Assume 0 

Given the lines 1
x y z

L ,  
  

line 2
x y z

L ,
a b c
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line 3
x y z

L ,
m n

 


The lines 1 2 3L , L , L are concurrent at the origin  0, 0, 0 .

Vectors along 1 2L , L and 3L are    , , , a , b , c      and  , m, n respectively..

1 2L , L and 3L are coplanar

     , , , a ,b ,c , ,m,n 0           a b c 0

m n

  

    



     c b m c a n b a 0         

     
m n

b c c a a b 0      
  



3.5.14 S.A.Q.: The line  12x y 4 y 2z 0,       2x 3z 4 2x 5z 8 0      

intersects the two given lines for all values of 1 2, 

This line will pass through  2, 1, 1 , if

11 0    and 21 0  

1 1   and 2 1  

Here equations of the required line

x y z 2   and x 2z 4 

3.6.11 S.A.Q.: Given lines are  
y z

1 0, x 0 1
b c
             

and  
x z

1 0, y 0 2
a c
            

x a z
, y 0

a c


  

Equation of any plane through the line (1) is
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y z

1 x 0 3
b c
           

If this plane is parallel to line (2) then

 
1 1 1

a 0 c 0 a 1 0
b c a


           

Equation to the plane containing line (1) and parallel to (2) is

 
y z x x y z

1 0 1 0 4
b c a a b c
                   

A point on line (2) is  a, 0, 0 .

Since 2d is the shortest distance between (1) and (2).

2d = distance of (a, 0, 0) from the plane (4)

2 2 2 2

2 2 2

a 0 0
1

1 1 1 1a b c2d
1 1 1 d a b c

a b c

  
     

 

3.6.12 S.A.Q.: The equations of the line OX are y 0, z 0  .

The equation of any plane through OX is  1y z 0 1        

Similarly the equation of any plane through OY is  2x z 0 2        

Since  is an angle between the planes (1) & (2)

  2 2 2 2 21 2
1 2 1 2

2 2
1 2

0 0
Cos 1 1 Sec

1 1

   
          

   

   2 2 2 2 2 2 2 2
1 2 1 2 1 21 Sec 1 Tan 3                      

from (1) and (2) 1 2
y x

,
z z

 
   

Substituting these values in (3)
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2 2 2 2
2

2 2 4

y x y x
1 tan

z z z
   

 2 2 2 2 2 2 2z x y z x y tan     .

3.6.13 S.A.Q.: Take the three coterminous edges of the rectangular parallelopiped as the

coordinate axes. Let OA a, OB b  and OC c .

Then the coordinates of different vertices are as follows:

Y

C

D

b

B

Z

O

c

a

F

A
X

P

E

     O 0,0,0 , A a,0,0 , B 0,b,0

     C 0,0,c , D 0,b,c , E a,0,c

   F a,b,0 , P a,b,c

AD is a diagonal of the parallelopiped and OB is the edge not meeting AD.

We shall find the shortest distance between AD and OB.

Equation of AD is
x a y z

0 a b 0 c 0


 

  
 

x a y z
1

a b c


       



The equation of OB is  
x y b z

2
0 1 0


         

A vector along the line (1) is  a,b,c
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A vector along the line (2) is  0,1,0

Let the line of shortest distance between the lines (1) and (2) be L.

Since L is perpendicular to both the lines (1) and (2), a vector along L is

   0,1,0 a,b,c 

   
i j k

0,1,0 a,b,c 0 1 0

a b c

  



 ci o j ak c,0,a   

unit vector along
 

2 2

c,0,a
L

c a




Now the length of L between AD and OB

= the projection of the join of  a,0,0 and  0,b,0 along L.

       
2 2 2 2

a 0, 0 b, 0 c,0,a ac b 0 0 a

c a c a

    
 

 
2 2

ac

c a




Similarly the shortest distance between the other pairs of lines can be obtained as

2 2 2 2

ab bc
,

a b b c 

3.9 Summary:

After studying this lesson the student should get knowledge on finding a image of a point
and a line in a plane, the shortest distance between two lines and the characterizations for
intersections of three planes.

3.10 Technical Terms:

(i) Image

(ii) Coplanarity

(iii) Skew lines

(iv) Shortest Distance

(v) Triangular Prism
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3.11 Model Examination Questions:

1. Find the image of the point  A 2, 1,3 in the plane 3x 2y z 9     .

2. Find the image of the point  A 1,6,3 in the line
x y 1 z 2

L :
1 2 3

 
  .

3. Find the image of the line
x 1 y 2 z 3

L :
2 3 4

  
  in the plane x y z 1 0      .

4. Show that the lines
x 5 y 4 z 7

; 3x 2y z 2 0
3 1 2

  
     


, x 3y 2z 13 0    are

coplanar. Find the equation of the plane in which they lie.

5. Find the shortest distance and the equations of the line of the shortest distance

between the lines
x y z

;
2 3 1
 


x 2 y 1 z 2

3 5 2

  
 


.

6. Find the shortest distance and the equations of the line of the shortest distance

between the lines
x y 1 z 2

4 3 2

 
  ; 5x 2y 3z 6 0 x 3y 2z 3        .

7. Find the shortest distance between Z - axis and the line

1 1 1 1 2 2 2 2a x b y c z d 0 a x b y c z d        .

8. Find the area and the length of the edges of a normal section of the prism

2x y z 3 0,    x y 2z 4 0, x z 2 0       .

9. Show that the planes 2x 3y 7z 0, 3x 14y 13z 0,      8x 31y 33z 0   pass

through one line and find its equations.

10. Examine the nature of intersection of the set of planes

x y z 3 0, 3x y 2z 2 0, 2x 4y 7z 7 0           

3.12 Exercises:

1. Find the image of the point  1,3,4 in the plane 2x y z 3 0    .

Ans:  3, 5, 2

2. Find the image of the point  2, 1, 3 in the line
x 2 y 2 z 6

2 3 2

  
  .

Ans:  2, 3, 5
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3. Find the image of the line in the plane 3x 3y 10z 26 0    .

Ans:
x 4 y 1 z 7

9 1 3

  
 

 

4. Show that the lines
y 2 z 3 x 2 y 6 z 3

x ;
2 3 2 3 4

    
    are coplanar. Find the

point of intersection and the plane containing the lines.

Ans:  2,6,3 , x 2y z 7 0   

5. Find the equations of the line passing through the point  1,0, 1 and intersecting the

lines x 2y 2z  and 3x 4y 1, 4x 5z 2    .

Ans: x 3y z 0 16x 12y 11z 5       .

6. Find the length and equations of the S.D. line between the lines

x 1 y 2 z 3 x 2 y 4 z 5
;

2 3 4 3 4 5

     
   

Ans:
1

, 11x 2y 7z 6 0 7x y 5z 7
6

       

7. Find the length and equations of the S.D. between the lines

2x 3y 4z 0 x y z ; x y 2z 3 0 2x 3y 3z 4              .

Ans:
13

, 3x y z 0 x 2y z 1
66

      

8. Show that the shortest distance between a diagonal and an edge not meeting it in a

cube of edge a is a 2

9. Find the point on the line through the points  6,1, 10  ,  3,7, 13  which is nearest

to the line 3x 2y 15z 8 0,    3x y 3z 32 0    .

Ans:
3433 2113 1693

, ,
321 321 321

   
 
 

10. Examine the nature of intersection of the set of planes 2x 5y z 3,  

x y 4z 5, x 3y 6z 1      .

Ans: The planes form a prism.
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11. Show that the planes 2x 3y 7z 0, 3x 14y 13z 0,      8x 31y 33z 0   pass

through one line and find its equations.

Ans:
x y 3

59 5 19
 


3.13 Model Practical Problem with Solution:
Problem: Find the length and equations of the shortest distance line between the lines

x 2 y 3 z 1

3 4 2

  
  ;

x 4 y 5 z 2

4 5 3

  
  .

Definitions:

1. Skew lines: Any two lines which are non - parallel and non - intersecting are called
skew lines.

2. Shortest distance: The shortest distance between two lines is the perpendicular distance
between the given lines.

Results Used:

1. Given 1 2L , L are non - coplanar lines. Another line L intersects 1 2L , L at G, H respectively

and L is perpendicular to both 1 2L , L . Then the length of GH is the shortest distance

between 1L and 2L .

2. Given the lines 1L is 1 1 1

1 1 1

x x y y z z

m n

  
 


and 2L is 2 2 2

2 2 2

x x y y z z

m n

  
 


. The

shortest distance between 1 2L , L is the absolute value of

 

1 2 1 2 1 2

1 1 1
2

1 2 2 1 2 2 2

x x y y z z
1

m n

m n m n m n

  







Stepwise Division of Problem:

Given lines are in symmetric form:

Step (1): To find the points G, H on the given lines respectively such that the line joining of the
two points is perpendicular to both the given lines.

Step (2): To find the distance between G and H which is the shortest distance between two
lines.

Step (3): To find theequation of the line joining G and H.
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Solution:

Step (1): Given lines are 1
x 2 y 3 z 1

L : t
3 4 2

  
   (say)

2
x 4 y 5 z 2

L : s
4 5 3

  
   (say)

Any point on 1L is    3t 2, 4t 3, 2t 1 t   

Any point on 2L is    4s 4, 5s 5, 3s 2 s   

If  G 3t 2, 4t 3, 2t 1    and  H 4s 4, 5s 5, 3s 2   

and GH is perpendicular to both 1L and 2L then

d.rs. of GH are 3t 4s 2, 4t 5s 2, 2t 3s 1     

     1GH L 3 3t 4s 2 4 4t 5s 2 2 2t 3s 1 0          

     2GH L 4 3t 4s 2 5 4t 5s 2 3 2t 3s 1 0          

Then 29t 38s 16 0  

38t 50s 21 0  

Solving these two equations

t s 1 1 1
t , s

2 1 6 3 6
     

 

13 5 10 25 3
G 3, , , H , ,

3 3 3 6 2

   
    
   

Step (2):

2 2 2
10 13 25 5 3

GH 3
3 3 6 3 2

     
          

     

1 1 1 1

9 36 36 6
   

Step (3): d.rs. of GH are
1 1 1

, ,
3 6 6

i.e. 2,1, 1.

Equations of the line GH in shortest distance are

13 5
y z

x 3 3 3
2 1 1

 


  ;
x 3 3y 13 3z 5

2 3 3

  
 

Lesson Writer

S.V.S. GIRIJA



4.1 SPHERE...Solid GeometryLesson - 4

SPHERE 1 - EQUATIONS OF A SPHERE

4.1 Objective of the lesson:

After studying this lesson, the student should be able to

• Find the equation of a sphere with given radius and centre

• Know some characterizations that a second degree equation is x, y, z represents a sphere

• Find the equation of a sphere through four noncoplanar points the equation of a sphere
that contains a circle on it.

4.2 Structure:

This lesson contains the following components:

4.3 Introduction

4.4 Equation of Sphere

4.5 Examples

4.6 Plane section of a sphere

4.7 Intersection of two spheres

4.8 Examples

4.9 Summary

4.10 Technical Terms

4.11 Exercise

4.12 Model Examination Questions

4.13 Model Practical Problem with Solution

4.3 Introduction:

The locus of the points in a plane at a given distance from a fixed point in the plane is a
circle and is represented by the quadratic equation.

   2 2 2
1 1x x y y r   

It is natural to consider this locus in the three dimensional space also. The locus of a point
in t he three dimensional space at a distance from a fixed point in the space is called a sphere. In
this lesson we investigate various types of representations for a sphere. The equation of the
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sphere, as defined above, the equation of the sphere through four non coplanar points, section of a
sphere and a plane as well of two spheres are discussed in this lesson.

4.4 Equations of a sphere:

4.4.1 Def: A sphere is the locus of a point which is at a constant distance from a fixed point.
The constant distance is called the radius and the fixed point the centre of the sphere.

4.4.2 Def: A sphere of radius zero is called a point sphere.

4.4.3 Theorem: The vector equation of the sphere with centre  1 1 1A x y z having position

vector d and radius a is
2 2r d a  and the cartesian form is

     2 2 2 2
1 1 1x x y y z z a     

Proof: Let  1 1 1P x y z be any point with position vector r then

O

P ( r )

OA d, OP r  and AP OP OA r d    .

P lies on the sphere AP a 

AP a  r d a  
2 2r d a  

2 2 2r 2 r d d a 0     

Thus the vector equation of a sphere with centre  A d and radius a is

2 2r d a 
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and the cartesian equation is

     2 2 2 2
1 1 1x x y y z z a     

4.4.4 Corollary: The vector equation of the sphere with centre at the origin and radius a is

2 2r a . Its cartesian form is 2 2 2 2x y z a   .

4.4.5 Note: It can be observed that

(i) The equation of a sphere is a second degree equation in x, y, z.

(ii) The coefficients of 2 2 2x , y ,z in the equation of a sphere are equal.

(iii) The equation of a sphere is of the form

2 2 2x y z 2ux 2vy 2wz d 0      

More precisely we have the following.

4.4.6 Theorem: If
2 2 2u v w d 0    then the equation

2 2 2x y z 2ux 2vy 2wz d 0      

represents a sphere with centre  u, v, w   and radius 2 2 2u v w d   .

Proof: Given equation is 2 2 2x y z 2ux 2vy 2wz d 0      

2 2 2 2 2 2 2 2 2x 2ux u y 2uy v z 2wz w u v w d            

     
2

2 22 2 2 2x u y v z w u v w d           
 

     
2

2 2 2 2 2 2x u y v z w u v w d                           

which represents a sphere with centre  u, v, w   and radius

2 2 2u v w d   .
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4.4.7 Theorem: The necessary and sufficient conditions that a general second degree
equation in x, y, z.

 2 2 2S ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0 1                 

represents a sphere are

(i) a b c 0   (ii) f g h 0   (iii) 2 2 2u v w d ad   

Proof: Necessity:

Let S 0 be a sphere, with radius  r 0 and centre  A , ,    . Shift the origin to A. If

 1 1 1x , y , z are the new coordinates of the point  x, y,z then

1 1 1x x , y y , z z        

Now, S becomes

  2 2 21 1 1 1 1 1 1 1 1 1 1 1S x y z ax by cz 2fy z 2gz x 2hx y         12x a h g u     

 12y h b f v     

     12z g f e w S , , 0 1                  

For every  , the distance between two points  r Cos , r Sin ,0  and  0,0,0 is r..

The points  r Cos , r Sin , 0 ,    lie one the sphere S 0

Write 1 a h g u      

1 h b f v       

1 f f e w     

 1d S , ,   

and
1 1 1x r Cos , y r Sin , z 0     in (1) we get

   2 2 2
1 1 1r a cos b sin 24 sin cos 2r cos sin d 0              ..........(2)

Similarly, substitue    1 1 1x r cos , y r sin , z 0         in (1) we get
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     2 2 2
1 1 1r a cos b sin 2h sin cos 2r cos sin d 0 3                    

From (2) and (3) we get  1 1cos sin 0 4                  

Then (2) becomes

   2 2 2
1r a cos b sin 2h sin cos d 0 , 5                   

For 0  and
2


  equation (5) becomes

2 2
1 1ar d 0, br d 0 a b     

If a 0 then  1d 0 S , , 0       the centre  , ,   lies on the sphere

S 0 . i.e. radius of the sphere r is zero. Which contradicts our assumption that r 0 .

So a 0 .

For
4


  and

4


  , (5) becomes

2 2
1 1

a b a b
r h d 0, r h d 0 h 0

2 2

    
          

   

Thus we prove that the point  r cos , sin , 0  lies on the sphere whose centre is

origin and radius r, then we get a b 0  and h 0 .

Similarly by considering the points  0, r cos , r sin  and  r cos ,0, r sin  on

the sphere S 0 we get,

b e 0 , f 0   and c a 0, g 0  

Then, S 0 becomes

 2 2 2S a x y z 2ux 2vy 2wz d      

 
2 2 2 2 2 2

2

u v w u v w ad
a x y x 6

a a a a
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2 2 2
2

2

u v w ad
r 0

a

  
  

2 2 2u v w ad 0    

Sufficiency:

If a b e 0, f g h 0      then S 0 becomes

2 2 2 2u 2v 2w d
S x y z x y z 0

a a a a
       

Since
2 2 2 2 2 2

2 2 2
2 2 2 2

u v w d u v w ad
u v w ad, 0

aa a a a

  
       

S = 0 becomes

2 2 2 2 2 2

2 2 2

u v w u v w d
S x y z

a a a aa a a

     
              
     

2 2 2

2

u v w ad
0

a

  
 

2
2 2 2 2 2 2

2

u v w u v w ad
S x y z

a a a a

                                                 

Which represents a sphere with centre
u v w

, ,
a a a

   
 
 

and radius
2 2 2u v w ad

a

  
 .

4.4.8 Example: Find the centre and raius of the following spheres:

(i) 2 2 2x y z 6x 8y 10z 1 0      

(ii) 2 2 2x y z 2x 2y 6z 5 0      

(iii)  2 2 22 x y z 2x 4y 2z 3 0      

Solution:

(i) centre  3, 4, 5  and radius  22 23 4 5 1 7     
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(ii) centre  1, 2, 3  and radius =  2 2 21 2 3 5 3    

(iii) Given equation can be written as

2 2 2 3
x y z x 2y z 0

2
      

centre
1 1

, 1,
2 2

 
  
 

, radius  
2 2

21 1 3
1 0

2 2 2

   
        

   

4.4.9 Example: A point moves so that the sum of the squares of its distances from the six
faces of a cube is constant. Show that its locus is a sphere.

Solution: Take the centre of the cube as the origin and the planes through the centre parallel
to its faces as coordinate planes.

Let each of the edge of the cube be equal to 2a.

Then the equations of the faces of the cube are

x a, x a, y a, y a, z a, z a        

 P f , g,h be a point of the locus.

         2 2 2 2 2 2f a f a g a h a h a k           (k constant)

 2 2 2 2 22 f g h 3a k    

The locus of P is  2 2 2 2 22 x y z 3a k   

which is a sphere.

4.4.10 Example: A plane passes through a fixed point (a, b, c). Show that the locus of the
foot of the perpendicular drawn to it from the origin is the sphere

2 2 2x y z ax by cz 0      .

Solution: Let  A a,b,c be a fixed point on the plane  .  1 1 1M x , y ,z is the foot of the

perpendicular from origin to the plane  .

d.rs. of 1 1 1OM x , y ,z

d.rs. of 1 1 1MA a x , b y , c z   
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OM MA

     1 1 1 1 1 1x a x y b y z c z 0      

2 2 2
1 1 1 1 1 1x y z ax by cz 0      

 1 1 1M x , y ,z lies on the sphere

2 2 2x y z ax by cz 0     

Note: The above example can also be stated as follows:

The equation of the sphere through origin and making intercepts a, b, c on the

axes is 2 2 2x y z ax by cz 0      .

4.4.11 Example: Through a point P three mutually perpendicualr straight lines are drawn;
one passes through a fixed point C on the z - axis; while the others intersect the x - axis
and y - axis respectively, show that the locus of P is a sphere of which C is the centre.

Solution: Let  1 1 1P x , y ,z be any point on the space.

Let PA, PB, PC be three mutually perpendicular straight lines through P satisfying

the hypothesis.

Let the lines PA, PB, PC be meet the X, Y, Z axes at the points

     A a,0,0 , B 0,b,0 , C 0,0,c respectively..

D.r's of PA are  1 1 1x a, y , z

D.r's of PB are  1 1 1x , y b, z

D.r's of PC are  1 1 1x , y , z c

P lies on the locus  PA, PB, PC are three mutually perpendicular line

PA PB, PB PC and PC PA   

    2
1 1 1 1 1x a x y y b z 0      ,

   2
1 1 1 1 1x y y b z z c 0     and

   2
1 1 1 1 1x x a y z z c 0    

(or)  2 2 2
1 1 1 1 1x y z ax by 0 1            ,
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 2 2 2
1 1 1 1 1x y z by cz 0 2            and

 2 2 2
1 1 1 1 1x y z ax cz 0 3          

      2 2 2
1 1 1 12 3 1 x y z 2cz 0       

 The point P  1 1 1x , y ,z lies on the sphere

2 2 2x y z 2cz 0    with centre  C 0,0,c .

4.4.12 Definition: Let A, B be any two points on the sphere. The segment AB is called a
diameter of the sphere it contains the centre of the sphere.

4.4.13 Definition: Spheres with the same centre are called concentric spheres.

4.4.14 Example: Find the equation of the sphere of radius 4, concentric with the sphere

2 2 2x y z 2x 2y 2z 1 0      

Solution: Centre of the given sphere is  1,1,1 .

The equation of the required sphere is

     2 2 2 2x 1 y 1 z 1 4     

2 2 2x y z 2x 2y 2z 13 0       

4.4.15 Theorem: One sphere and only one can pass through any four points not in the same
plane.

Proof:

A

B

C

D

F

K

H
G

E

0
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Let A, B, C, D be four points not in the same plane; and let F and G be the circum -
centres of the triangles ABC, ADC.

Let FH, GK be the perpendiculars to the planes ABC, ADC through F and G
respectively.

Then every point in FH is equidistant from A, B, C; and every point in GK is equidistant
from A, D, C; hence every point in FH and in GK is equidistant from A nd C.

But the locus of points equidistante from A and C is the plane which bisects AC at
right angles.

So FH and GK both lie in this plane, and since they cannot be perpendicular (being
perpendiculars to intersecting pianes) they must meet at some point O.

Then 0, the only point common to FH and GK is equidistant from A, B, C and D.

A sphere having its centre at 0 and radius OA, will pass through A, B, C and D; and
this is the only sphere that can pass through the four given points.

4.4.16 Thorem: The equation of a sphere passing through four non - coplanar points

     1 1 1 2 2 2 3 3 3A x , y ,z , B x , y ,z , C x , y ,z and  4 4 4D x , y ,z is

 

2 2 2

2 2 2
1 1 1 1 1 1

2 2 2
2 2 2 2 2 2

2 2 2
3 3 3 3 3 3

2 2 2
4 4 4 4 4 4

x y z x y z 1

x y z x y z 1

0 Ix y z x y z 1

x y x x y z 1

x y z x y z 1

 

 

           

 

 

Proof: Let  2 2 2x y z 2ux 2vy 2wz d 0 1           

be the general equation of the sphere.

The sphere (1) passes through the given four point A, B, C, D iff

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

2x u 2y v 2z w 1 d S

2x u 2y v 2z w 1 d S
II

2x u 2y v 2z w 1 d S

2x u 2y v 2z w 1 d S

     
     
            

     
     

where 2 2 2
i i i iS x y z ; i 1,2,3,4.    
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This system has a unique solution iff

1 1 1

2 2 2

3 3 3

4 4 4

x y z 1

x y z 1
0

x y z 1

x y z 1

  

This is true because A, B, C, D are non coplanar.

If  u, v,w, d is the unique solution of  II and

31 2 4u , v , w , d
  

   
   

.

Where i is obtained by replacing the thi column of  by the column vector

 1 2 3 4S , S , S , S .

Replacing u, v, w and d by 31 2, ,
 

  
and 4


respectively in (1) we get on

simplification  I .

4.5 Examples:

4.5.1 Example: Find the equation of the sphere through the four points

       4, 1,2 , 0, 2,3 , 1, 5, 1 , 2,0,1   

Solution: If the given points lie on the sphere

2 2 2S x y z 2ux 2vy 2wz d 0       

we get on substitution,

 8u 2v 4w d 21 1               

 4v 6w d 13 2               

 2u 10v 2w d 27 3            

 4u 2w d 5 4           

Solving (1),(2),(3) and  4 we get u 2, v 3, w 1, d 5     

 The required sphere equation is

2 2 2x y z 4x 6y 2z 5 0      
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4.5.2 Example: Find the equation of the sphere through the four points    0,0,0, , a,b,c ,

   a, b,.c , a,b, c  and determine its radius.

Solution: If the given points lie on the sphere.

2 2 2S x y z 2ux 2vy 2wz d 0       

we get on substitution,

 d 0 1             

   2 2 22au 2bv 2wc a b c 2               

   2 2 22au 2bv 2wc a b c 3             

   2 2 22au 2bv 2wc a b c 4             

By solving (2), (3), (4) we get

     2 2 2 2 2 2 2 2 2a b c a b c a b c
u , v , w

2a 2b 2c

        
  

Thus the required sphere equation is

 2 2 2 2 2 2 x y z
x y z a b c 0

a b c

 
        

 

radius =
     

2 22 2 2 2 2 2 2 2 2

2 2 2
2 2 2

a b c a b c a b c
u v w d 0

4a 4b 4c

     
      

 2 2 2

2 2 2

a b c 1 1 1

2 a b c

   
   

 

4.5.3 Example: Obtain the equation of the sphere circumscribing the tetrahedron whose

faces are  
x y z

x 0, y 0, z 0, 1 1
a b c

            

Solution: Solving the equation in (1) we get the vetices of the tertrahidron. They are

       0,0,0 , a,0,0 , 0,b,0 , 0,0,c
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If the equation of the sphere

2 2 2S x y z 2ux 2vy 2wz d 0       

passes through the vertices of tetrahedron then we get

d 0 ,
2 a2au a u

2
   

similarly bv
2

 , cw
2



Thus, the required sphere equation is

2 2 2x y z ax by cz 0     

4.5.4 Example: Show that the equation of the sphere passing through the three points

     3,0,2 , 1,1,1, , 2, 5,4  and having its centre on the plane 2x 3y 4z 6   is

2 2 2x y z 4x 6z 1 0      .

Solution: Let the equation of the sphere be

 2 2 2x y z 2ux 2uy 2wz d 0 1                

If the sphere (1) passes through      3,0,2 , 1,1,1 , 2, 5,4  , we get

 6u 4w d 13 2        

 2u 2v 2w d 3 3                 

 4u 10v 8w d 45 4              

If the centre  u, v, w   lies on the plane 2x 3y 4z 6   , we get

 2u 3v 4w 6 5           

Solving (2), (3), (4) and (5) we get

u 0,v 2, w 3, d 1     

Thus the equation of the required sphere is

2 2 2x y z 4y 6z 1 0     

4.5.5 Example: Obtain the equation of the sphere which passes through three points

     1,0,0 , 0,1,0 , 0,0,1 and has its radius, as small as possible.
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Solution: Let the required equation of the sphere be

 2 2 2S x y z 2ux 2vy 2wz d 0 1            

If the sphere (1) passes through      1,0,0 , 0,1,0 , 0,0,1 , we get

 d 1
1 2u d 0 u

2

 
     ,

 d 1
1 2v d 0 v

2

 
     ,

 d 1
1 2w d 0 w

2

 
     .

 d 1
u v w

2

 
   

Let 2 2 2r u v w d    be the radius of the sphere.

     
2 2 2

2 2 2 2 d 1 d 1 d 1
r u v w d d

2 2 2

           
             

     

 2
3

d 1 d
4

   .

Let    2
3

f d d 1 d
4

   .

If r is least then 2r is least i.e. f is the least. So  1f d 0

 
3 1

2 d 1 1 0 d
4 3


      .

This value of d makes  11f d positive and hence f is the least and here r is the

least when d 1 3  .

Thus

1
1

13
u v w

2 3
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The equation of the required sphere is

 2 2 2 2 1
x y z x y z 0

3 3
      

i.e.,    2 2 23 x y z 2 x y z 1 0      

4.5.6 Example: Obtain the sphere having its centre on the line 5y 2z 0 2x 3y    and

passing through the two points    0, 2, 4 , 2, 1, 1    .

Solution: Let the equation of the sphere be

 2 2 2x y z 2ux 2vy 2wz d 0 1                     

Its centre  u, v, w   lies in the given line then

 5v 2w 0 2            

 2u 3v 0 3            

If the sphere passes through the points    0, 2, 4 , 2, 1, 1    .

Then  4v 8w d 20 4                 

 4u 2v 2w d 6 5                 

Solving (2), (3), (4) and (5) we get

u 3, v 2, w 5, d 12     

Thus the required sphere equation is

2 2 2x y z 6x 4y 10z 12 0      

4.5.7 Example: A sphere whose centre lies in the positive octant passes through the origin

and cuts the planes x 0 y 0, z 0   in circles of radii a 2, b 2, c 2 respectively; show

that its equation is

     2 2 2 2 2 2 2 2 2 2 2 2x y z 2 b c a x 2 c a b y 2 a b c z 0           

Solution: Since the sphere passes through origin so its equation may be taken as

 2 2 2x y z 2ux 2vy 2wz 0 1             
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Its centre is  u, v, w   which lies in the positive octant and hence each

coordinate will be positive, so that each of u, v, w be chosen as negative.

The sphere (1) cuts the plane z 0 in the circle.

2 2x y 2ux 2vy 0    whose radius is c 2

 2 2 2 2 2u v c 2 u v 2c 2              

Similarly we have  2 2 2v w 2a 3            

 2 2 2u w 2b 4          

adding (2), (3) and (4) we get  2 2 2 2 2 2u v w a b c 5           

Subtracting each of the equations (2), (3), (4) from (5) we get

2 2 2 2 2 2 2 2 2 2 2 2u b c a , v c a b , w a b c        

Since u,v,w are negative.

2 2 2 2 2 2 2 2 2u b c a , v c a b , w a b c           

Hence, the equation of the sphere is

     2 2 2 2 2 2 2 2 2 2 2 2x y z 2 b c a x 2 c a b y 2 a b c z 0           

4.5.8 Example: A variable plane passes through a fixed point  a,b,c and cuts the axes in

A,B,C . Show that the locus of the centre of the sphere OABC is
a b c

2
x y z
   .

Solution: Since such a plane cannot be any of the coordinate planes, we may take the
equation of the plane to be

 
x y z

1 1            
  

The plane (1) meets the coordinate axes in    A , 0, 0 , B 0, , 0  and  c 0,0, .

Equation of the sphere OABC is

 2 2 2x y z x y z 0 2                 
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Let  1 1 1P x , y ,z be any point in the space.

 1 1 1P x , y ,z is the centre of the sphere (2)

 1 1 1x , y ,z , ,
2 2 2

   
   

 

1 1 12x , 2y , 2z      

The equation of the plane (1) becomes

1 1 1

x y z
1

2x 2y 2z
  

This plane passes through a fixed point  a,b,c then

1 1 1

a b c
1

2x 2y 2z
  

or
1 1 1

a b c
2

x y z
  

 The point  1 1 1P x , y ,z lies on the plane.

a b c
2

x y z
  

Which is the required locus.

4.5.9 Example: A sphere of constant radius r passes through the origin o and cuts the axes
in A, B, C. Find the locus of the foot of the perpendicular from 0 to the plane ABC.

Solution: Let the plane ABC be

 
x y z

1 1
a b c
          

     A a,0,0 , B 0,b,0 , C 0,0,c   

Equation of the sphere through O,A,B,C is

 2 2 2x y z ax by cz 0 2              
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Its radius is
2 2 2

2 a b c
r

4 4 4
  

 2 2 2 2a b c 4r 3            

Equations to the line 0 and perpendicular to the plane (1) are

 
x 0 y 0 z 0

(say) 4
1 a 1 b 1 e

  
           

Any point on the line (4) is , ,
a b c

   
 
 

.

 1 1 1P x , y ,z is the foot of the perpendicular from '0' to the plane ABC


.

 P lies on the line (4) and is of the form , ,
a b c

   
 
 

1 1 1x , y , z
a b c

  
   

 
1 1 1

a , b , c 5
x y z

  
             

from (3) and (5)
2 2 2

2
2 2 2
1 1 1

4r
x y z

  
  

 2 2
2 2 2
1 1 1

1 1 1
4r 6

x y z

 
              

  

i.e.
2 2 2 2 2

1 1 1x y z 4r      
 

P lies on plane (1) 1 1 1x y z
1

a b c
   

2 2 2
1 1 1x y z

1   
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   2 2 2
1 1 1

1
x y z 1 7              



from (6) and (7)    2 2 2 2 2 2 2
1 1 1 1 1 1x y z x y z 4r      

Foot of the perpendicular from 0 to the plane ABC


lies on

   2 2 2 2 2 2 2x y z x y z 4r      

4.5.10 Example: If O be the centre of a sphere of radius unity and A, B be two points in a line

with O such that OA OB 1  and if P be a variable point on the sphere, show that

PA PB Cons tan t  .

Solution: Let    1 1 1 2 2 2A x , y ,z , B x , y ,z be given points.

O A B

P (x, y, z)

Let  P x, y,z be any point on the sphere with centre origin O and radius unity. Then

2 2 2x y z 1   .

DR's of 1 1 1 1 1 1OA x 0, y 0, z 0 x , y ,z     .

DR's of 2 2 2 2 2 2OB x 0, y 0, z 0 x , y ,z     .

Since O, A, B are collinear,  2 2 2

1 1 1

x y z
k say

x y z
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2 1 2 1 2 1x kx , y ky , z kz   

 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 1 1 1OA x y z , OB x y z k x y z k OA         

Given that 2 2OA OB 1 OA OB 1    

2 2 2OA K OA 1  

2 1
OA

k
  and 2OB k .

Now,

     

     

2 2 22
1 1 1

2 2 2
2 2 2

x x y y z zPA

PB x x y y z z

    


    

 

 

2 2 2 2 2 2
1 1 1 1 1 1

2 2 2 2 2 2
2 2 2 2 2 2

x y z x y z 2 xx yy zz

x y z x y z 2 xx yy zz

       


       

 

 

2
1 1 1

2
1 1 1

1 OA 2 xx yy zz

1 OB 2 xkx yky zkz

   


   

 

 

1 1 1

1 1 1

1
1 2 xx yy zz

k
1 k 2k xx yy zz

   


   

 

 

1 1 1

1 1 1

1
1 2 xx yy zz

1k
1 k

k 1 2 xx yy zz
k

   
 

 
     

2

2

PA 1

kPB
   Constant

PA 1

PB k
   Constant

PA : PB  Constant

4.5.11 Example: A sphere of constant radius 2k passes through the origin and meets the
axes in A, B, C. Show that the locus of the centroid of the tetrahedron OABC is the sphere

2 2 2 2x y z 4k   .

Solution: Let      A a,0,0 , B 0,b,0 , C 0,0,c
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The centroid of the tetrahedron OABC is
a b c

, ,
4 4 4

 
 
 

.

The sphere through O, A, B, C is

2 2 2x y z ax by cz 0     

i.e.,  2 2 2x y z ax by cz 0     

o

c

Z

A

B

X

Y

Now radius 2 2 2u v w d   

2 2 2a b c
2k

4 4 4
   

2 2 2
2 a b c

4k
4 4 4

   

The centroid
a b c

, ,
4 4 4

 
 
 

lies on the sphere

2 2 2 2x y z k  

4.6 Plane Section of a Sphere:

4.6.1 Definition: The inter section of a sphere and a plane is called the plane section of
the sphere.
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4.6.2 Theorem: Any plane section of a sphere is either circle or the empty set.

Proof: Let  be a sphere with centre 'O' and radius  r 0 and  be a plane.

If r 0 then the plane section of  and  is either the empty or single point

We may assume that    

P

N

O

Let r 0 and P be a point on the plane section of  and  .

Draw ON perpendicular to the plane  from the origin.

(i) If N P then the point N lies on the sphere.

So ON OP r   radius of the sphere.

Let Q be any point on the plane section of  and  other than P..

Then ON NQ

2 2 2 2 2NQ OQ ON r r 0      which is impossible.

Hence, The common point of  and  is unique.

i.e. the plane section of  and  is point circle.

(ii) If N P ; then ON is perpendiculat to  .

Since NP is any line in  .

 Every line in  is perpendicular to ON.

2 2 2ON NP OP ON NP    

2 2 2 2NP OP ON r ON    
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Since O and N are fixws points and OP is the radius of the sphere, PN is constant.

Hence locus of P is a circle whose centre is N and radius is 2 2NP r ON  .

The plane section of  and  is a circle.

4.6.3 Definition: Great Circle: The section of a sphere by a plane through the centre of
the sphere is called a great circle. Its centre and radius are the same as those of the
given sphere.

4.6.4 Definition: Small Circle: If a plane does not pass through the centre of the sphere
and intersects the sphere, then the plane section is called a small circle.

4.6.5 Note: A plane and a sphere intersect iff the distance of the centre of the sphere from
the plane is less than or equal to the radius of the sphere. Thus the sphere

2 2 2x y z 2ux 2vy 2wz d 0       will intersect the plane

x my nz p 0    iff

      2 2 2
2 2 2

u m v n w P
u v w d

m n

     
   

 





4.6.6 Equation of the plane sections of a sphere: The equation of a sphere and plane
together represent the equation of the circle which is the intersection of the sphere and
the plane.

4.7 Intersection of Two Spheres:

4.7.1 Theorem: The intersection of two distinct spheres is either empty or a circle.

Proof: The set of common points of the spheres 1S 0, S 0  is either empty or a plane

1S S 0  .

       1 1x, y,z S 0, S 0 x, y,z S 0, S S 0 1                

But, the set of common points of the sphere and the plane  is a circle (by 4.6.2)

Thus from (1) the common points of the spheres 1S 0, S 0  form a circle.

4.7.2 Theorem: If a circle 'C' passes three points A, B, C then it lies on any sphere S
through them.

Proof: Since the circle passes through the points A, B, C. The points A, B, C are non collinear.

Let  be the plane through A, B, C. If a sphere S passes through A, B, C then by 4.6.2
the plane section of the sphere S and plane  is a circle. Clearly C is the only circle
through A, B, C. Hence the sphere S contains the circle.
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4.7.3 Theorem: The equation of the sphere drawn on the join of  1 1 1A x , y ,z ,  2 2 2B x , y ,z

as diameter is

        1 2 1 2 1 2x x x x y y y y z z z z 0         .

Proof: Let  be the sphere such that AB as diameter..

 P x, y,z   either P = A or P = B or

P lies on a circle with AB as diameter.

PA PB 

PA PB 0  

         1 2 1 2 1 2x x x x y y y y z z z z 0         

This is the equation of the sphere with AB as diameter.

C

 P x, y, z

 2 2 2B x , y , z 1 1 1A x , y , z

4.7.4 Theorem: The equation of any sphere through a given circle which is the
intersection of the sphere.

 2 2 2S x y z 2ux 2vy 2wz d 0 1             

and the plane

 x my nz p 0 2                

is of the form S L 0   where  is any constant.

Proof: Let us consider the equation S 0  
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 2 2 2S x y z 2ux 2vy 2wz d x my nz p             

     2 2 2x y z 2u x 2v m y 2w n z d P              

The equation S 0,    is satisfied by the coordinates of the points which

satisfy both S 0 and 0  . That is any point on the circle formed by S=0, 0  must

satisfy the equation 0S    .

But S 0   is a second degree in x, y,z in which the coefficients of
2 2 2x ,y ,z

are all equal and there are no terms of xy, yz and zx .

S 0    represents a sphere through the circle given by S 0, 0   together..

Note (1): Suppose two spheres 1S 0, S 0  intersect. Then the parametirc equation

1S S 0   can be shown to represent all spheres passing through the circle 1S 0 S  .

Note (2): Where 1   , the equation 1S S 0   becomes 1S S 0  which is a plane and
is common to the spheres.

1S 0, S 0  are two spheres intersecting in a circle. Then the equations to the

circle are 1S 0, S S 0   as well as
1 1S 0, S S 0   .

4.8 Examples:

4.8.1 Example: Find the equation of the sphere through the circle

2 2 2x y z 2x 3y 6 0, x 2y 4z 9 0          and the centre of the sphere

2 2 2x y z 2x 4y 6z 5 0       .

Solution: The equation of the sphere passing through the given circle is

   2 2 2x y z 2x 3y 6 x 2y 4z 9 0 1              

The center of the sphere 2 2 2 2 4 6 5 0x y z x y z       is  1 2 3, ,

Gvien that the sphere (1) passes through  1, 2,3 . Then

 1 4 9 2 6 6 1 4 12 9 0           16 8 0 2       

 The required sphere is

  2 2 2x y z 2x 3y 6 2 x 2y 4z 9 0          
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i.e. 2 2 2x y z 2x 3y 6 2x 4y 8z 18 0         

2 2 2x y z 7y 8z 24 0      

4.8.2 Example: Show that the equation of the sphere having its centre on the plane

4x 5y z 3  

and pass through the circle with equation

2 2 2 2 2 2x y z 2x 3y 4z 8 0, x y z 4x 5y 6z 2 0             

is 2 2 2x y z 7x 9y 11z 1 0       .

Solution: The given plane is  4x 5y z 3 1         

Given spheres

 2 2 2S x y z 2x 3y 4z 8 0 2                  

 1 2 2 2S x y z 4x 5y 6z 2 0 3                

the plane section of the spheres 1S 0, S 0  is 1S S 0 

i.e. 6x 8y 10z 6 0    

 3x 4y 5z 3 0 4                

The equation of the sphere through the given circle is same as the equation of
the sphere passing through the circle whose equations (2) and (4).

 Equation of the required sphere equation is  1S S S 0    .

i.e.,  2 2 2x y z 2x 3y 4z 8 3x 4y 5z 3 0           

i.e.      2 2 2x y z 2 3 x 3 4 y 4 5 z 8 3 0                

Its centre
   3 4 4 52 3

, ,
2 2 2

           
  
  

But this centre lies on the plane (1).



4.27 SPHERE...Solid Geometry

2 3 3 4 4 5
4 5 3

2 2 2

            
        

     

8 12 15 20 4 5 6         

3 9 3     

Required sphere equation is

 2 2 2x y z 2x 3y 4z 8 3 3x 4y 5z 3 0          

2 2 2x y z 7x 9y 11z 1 0        .

4.8.3 Example: Obtain the equation of the sphere having the circle

2 2 2x y z 10y 4z 8 0, x y z 3         as the great circle.

Solution: The equation of the sphere through the given circle is

 2 2 2x y z 10y 4z 8 x y z 3 0           .

i.e.      2 2 2x y z x 10 y 4 z 8 3 0 1                      

Centre
   10 4

, ,
2 2 2

        
  
 

If the plane section of a given circle is a great circle

The centre of the sphere (1) lies on the plane x y z 3 0   

i.e.
   10 4

3 0
2 2 2

    
   

10 4 6 0          3 12 0 4        

Required equation of the sphere is

       2 2 2x y z 4 x 10 4 y 4 4 z 8 3 4 0            

i.e. 2 2 2x y z 4x 6y 8z 4 0      
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4.8.4 Example: A sphere S has points    A 0,1,0 , B 3, 5,2 at opposite ends of a diameter..

Find the equation of the sphere having the intersection of the sphere S with the plane

 5x 2y 4z 7 0 1           

as a great circle.

Solution: The equation of the sphere S with the AB as a diameter is

         S x 0 x 3 y 1 y 5 z 0 z 2 0         

 2 2 2S x y z 3x 4y 2z 5 0 2              

The equation of the sphere through the circle given by the equation (2) and (1) is

   2 2 2x y z 3x 4y 2z 5 5x 2y 4z 7 0            

i.e.        2 2 2x y z 3 5 x 4 2 y 2 4 z 5 7 0 3                

Its centre
     3 5 4 2 2 4

, ,
2 2 2

           
  
 

Since the plane section is a great circle, the centre lies on the plane (1).

3 5 4 2 2 4
5 2 4 7 0

2 2 2

            
         

     

45 45 0 1       

The required sphere is

2 2 2x y z 2x 2y 2z 2 0      

4.8.5 Example: Obtain the equation of the sphere which passes through the circle

2 2x y 4, z 0   and is cut by the plane x 2y 2z 0   in a circle of radius 3.

Solution: The equation of a sphere through the given circle is

   2 2 2x y z z 4 0 1              
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d

C

R

0,0,
2

 
 
 

r

Its centre 0,0,
2

 
  
 

and radius
2

4
4


  

Given plane  x 2y 2z 0 2            

The sphere cuts the plane (2)

d  perpendicular distance from center C 0,0,
2

 
 
 

to the plane (2)

31 4 4

 
 

 

Since the radius of the circle = 3.

We know that
2 2 2R d 3 

2 2

4 9
4 9

 
   

21 1
5

4 9

 
    

 

2
25

5 36 6
36


        

The equations of the required sphere is
2 2 2x y z 6z 4 0     .
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4.8.6 Example: Show that the two circles

 2 2 22 x y z 8x 13y 17z 17 0, 2x y 3z 1 0;          

2 2 2x y z 3x 4y 3z 0, x y 2z 4 0         

lie on the same sphere and find its equation.

Solution: Equation of any sphere through the circle

2 2 2 13 17 17
x y z 4x y z 0, 2x y 3z 1 0

2 2 2
           is

   2 2 2
1

13 17 17
x y z 4x y z 2x y 3z 1 0 1

2 2 2

 
                  

 

Equation of the sphere through the circle

2 2 2x y z 3x 4y 3z 0, x y 2z 4 0          is

   2 2 2
2x y z 3x 4y 3z x y 2z 4 0 2                    

If the given circles lie on the same sphere, then (1) and (2) for some values

of 1 and 2 must represent the same sphere.

By comparing the coefficients of x, y,z and constant terms in (1) and (2) we get

 1 24 2 3 3            

 1 2
13

4 4
2


          

 2
17

3 3 2 5
2
          

 1 2
17

4 6
2


         

By solving

(3) + (4) 1 1
5 1

3 1
2 2


      

(3) 2 24 1 3 2       
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Clearly 1 2
1

, 2
2

    satisfy (5) and (6).

Given circles lie on the same sphere for 1 2
1

, 2
2

    .

The equations of the sphere passing through the given circle is

 2 2 2x y z 3x 4y 3z 2 x y 2z 4 0         

i.e., 2 2 2x y z 5x 6y 7z 8 0      

4.9 Summary:

After going through this lesson the student is expected to have a clear idea about the
notions of sphere, equation of a sphere, plane section of a sphere, intersection of two sphers and
others. The student shall also be able to appreciate the behaviour of the intersection of a sphere by
a plane at a single point and in move than one point.

4.10 Technical Terms:

Plane section of a sphere

Great Circle

Small Circle

Diameter of a sphere

Radius of a sphere

Center of a sphere

4.11 Exercise:

1. Find the equation of the sphere through the points

(i)        0,0,0 , 0,1, 1 , 1,2,0 , 1,2,3 

(ii)        4, 1,2 , 0, 2,3 , 1,5, 1, , 2,0,1  

(iii)        0,0,0 , a,b,c , a, b,c , a,b, c  

2. Find the equation of the sphere through the points

(i)      1, 4,3 , 1, 5,2 , 1, 3,0   and whose centre lies on the piane x y z 0   .

(ii)      1,0,0 , 0,1,0 , 0,0,1 and having least radius.

(iii)    0, 2, 4 , 2, 1, 1    and whose centre lies on the line 2x 3y 0 5y 2z    .
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3. Find the equation of the sphere on line joining the points

(i)    2,3, 1 , 1, 2, 1   as a diameter..

(ii)    1,2,3 , 2,3,4 as a diameter..

(iii)    1, 2,3 , 2,3, 1   as a diameter..

4. Find the equation of the sphere through the circle
2 2 2x y z 9, 2x 3y 4z 5     

and the point  1,2,3 .

5. Find the centre and radius of the circle

(i) 2 2 2x y z 25, 2x y 2z 9     

(ii) 2 2 2x y z 2x 2y 4z 19 0, x 2y 2z 7 0          

6. Find the equation of the sphere for which the circle

(i) 2 2 2x y z 4x 16y 8z 4 0, x y z 3          as a great circle.

(ii) 2 2 2x y z 10y 4z 8, x y z 3        as a great circle.

7. Prove that the plane x 2y 2z 15   cuts the sphere 2 2 2x y z 2y 4z 11 0      is

a circle find center and radius of the circle. Also find the equation of the sphere
which has the circle for one of the great circles.

8. Variable plane is parallel to the given plane x y z
0

a b c
   and meets the axes in A, B,

C respectively. Prove that the circle A, B, C lies on the cone

b c a c a b
yz zx xy 0

c b c a b a

     
          

     

9. Prove that the two circles

2 2 2x y z y 2z 0, x y z 2 0         and

2 2 2x y z x 3y z 5 0, 2x y 4z 1 0          

lie on the same sphere and find its equation.

10. P is a variable point on a given line and A, B, C are its projections on the axis. Show
that the sphere OABC passes through a fixed circle.
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Answers to Exercise:

1. (i)  2 2 27 x y z 15x 25y 11z 0     

(ii) 2 2 2x y z 4x 14y 22z 25 0      

(iii)  2 2 2
2 2 2

1 x y z
x y z 0

a b ca b c
     

 

2. (i) 2 2 2x y z 4x 7y 3z 15 0      

(ii)    2 2 23 x y z 2 x y z 1     

(iii) 2 2 2x y z 6x 4y 10z 12 0      

3. (i) 2 2 2x y z 3x y 2z 3 0      

(ii) 2 2 2x y z 3x 5y 7z 20 0      

(iii) 2 2 2x y z x y 2z 11 0      

4.  2 2 23 x y z 2x 3y 4z 22 0      

5. (i)  2,1,2 , 4

(ii)
7 5 2

, , , 3
3 3 3

   
 
 

6. (i) 2 2 2x y z 4x 6y 8z 4 0      

(ii)

7.   2 2 21,3,4 , 7, x y z 2x 6y 8z 19 0      

4.13 Model Examination Questions:

1. Define a sphere, center and radius.

2. Prove that the equation of a sphere with centre  1 1 1x , y ,z and radius a > 0 is

     2 2 2 2
1 1 1x x y y z z a      .
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3. Find the equation of the sphere through the four points

       0,0,0 , a,b,c , a, b,c , a,b, c  

4. Any plane section of a sphere is either circle or the emptyset.

5. P.T. The equation of the sphere on the join of    1 1 1 2 2 2A x , y ,z , B x , y ,z as

diameter is         1 2 1 2 1 2x x x x y y y y z z z z 0         .

4.13 Model Practical Problem With Solution:

Problem: Show that the two circles

 2 2 2 2 0 2 1x y z y z , x y z                     

and  2 2 2 3 5 0 2 4 1 0 2x y z x y z , x y z                        

lie on the same sphere and find its equation.

AIM: To show that the given two circles lie on the same sphere and to find its equation.

Definitions and results used:

(1) The intersection of a sphere and a plane is called the plane section of the sphere.

(2) Any plane section of a sphere is either circle or the empty set.

(3) The equation of any sphere through a given circle which is the intersection of the

sphere 0S , the plane 0U  is of the form 0S U   .

Solution:

A sphere through the circle (1) is

 2 2 2 2 2 0x y z y z x y z         

i.e.,      2 2 2 1 2 2 0 3x y z x y z                        

A sphere through the circle (2) is

 2 2 2 3 5 2 4 1 0x y z x y z x y z           

i.e.,        2 2 2 2 1 3 4 1 5 0 4x y z x y z                             

But if the circles (1) and (2) lie on the same sphere then (3) and (4) represent the same
sphere.
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,   must satisfy the following equations.

 2 1 2 1 0i.e. i                    

 1 3 2 0i.e. ii                     

 2 4 1 4 1 0                     i.e. iii

 2 5 2 5 0i.e. iv                     

from (iii) and (iv) 3 1,   

(i) and (ii) are satisfied by 3 1,   

 (3) and (4) represent the same sphere.

Equation to the required sphere is

2 2 2 3 4 5 6 0x y z x y z      

Lesson Writer

Dr. B. RAMI REDDY



5.1 Sphere 2...Solid GeometryLesson - 5

SPHERE 2 - TANGENCY AND CONJUGANCY

5.1 Objective of the lesson:

After studying this lesson the student should be able to understand.

• Position of a point with respect to the sphere

• Tangent line and plane of a sphere

• Power of a point with respect to the sphere

5.2 Structure:

This lesson has the following components:

5.3 Introduction

5.4 Intersection of a sphere and a line

5.5 Tangent plane of a sphere

5.6 Touching spheres

5.7 Examples

5.8 Plane of contact

5.9 Pole and polar plane

5.10 Examples

5.11 Answers to SAQ

5.12 Summary

5.13 Technical Terms

5.14 Exercise

5.15 Answers to Exercise

5.16 Model Examination Questions

5.17 Model Practical Problem with Solution

5.3 Introduction:

In this lesson we continue our discussion on sphere, initiated in lesson 4. We concentrate
here on tangent lines, tangent planes, planes of contract pole and polar. We also discuss about
the conditions required for two spheres to "touch" each other.
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5.3.1 Notations: We use the following no tations in this lesson.

  2 2 2S S x, y,z x y z 2ux 2vy 2wz d       

     i i i i 1 1 1S xx yy zz zu x x 2v y y 2w z z d         

  2 2 2
11 1 1 1 1 1 1 1 1 1S S x , y ,z x y z 2ux 2vy 2wz d       

     ij i j i j i j i j i j i jS x x y y z z 2u x x 2v y y 2w z z d         

If      r x, y,z , F r S S x, y,z  

   
2 2 22 2F r r c a r 2 r c c a       

where  c u v w

5.4 Intersection of a sphere and a line:

5.4.1 Theorem: Let S be a sphere with centre  C c represented by the equation  F r 0 and

L be a line passing through a fixed point  D d and parallel to a unit vector b then.

(i) L intersects S in two distinct points if    b c d F d 

(ii) L touches the sphere S if    b c d F d  

(iii) L does not have a common points with S if    b c d F d  

Proof: Let  a 0 be the radius of S. Then the vector equation of the sphere S is

   
2 2 2F r r 2r c c a 0 1                    

Let  r d tb 2             

be the straight line passing through a point  D d and parallel to unit vector b .

(1) and (2) intersect at  r d tb 
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2 2 2d tb 2 d tb c c a 0       

     2t 2t b c d F d 0 3                  
 

Equation (3) is a quadratic in t. Therefore it has two roots say 1 2t , t .

Since the discriminent of (3) is    
2

b c d F d  

Case (i): 1 2t , t are real if      
2

b c d F d 4             

In this case the line intersects the sphere in two points say P, Q. Where

1 2P d t d, Q d t b    . Then 1 2DP t , DQ t  .

From (3),    1 2DP DQ t t F d 5              

Thus the product DP DQ is independent of the line i.e. b , but depends on  D d

only.

Case (ii): If    
2

b c d F d   then 1 2t t and 1d t b is the only point of intersection

of the sphere and the line.

From (3)    2 2
1 2 1DP t t F d t F d   

 1 2DP t t F d   

Moreover    
2

b c d F d   .

Case (iii): If    
2

b c d F d   then 1 2t , t are complex numbers. In this case L does

not have a common point with S.

5.4.2 Remark:

(1) If the point D lies on the sphere then  F d 0 and  b. c d 0  i.e. CD is perpendicular

to the given line.
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(2) Any line through  D d meets the sphere in two points P and Q not necessarly distinct

and  DP DQ F d  which is independent of the line.

5.4.3 Definition: If  1 1 1D x , y ,z is any point in the space and DPQ is a line intersecting the

sphere  S F r 0  in P and Q, then the power of the point D with respect the sphere

S 0 is   11DP DQ F d S   .

5.4.4 Tangent Line: Let S 0 be a given sphere and  D d be any point. If a line through

D has only one common point T with a given sphere, then  L DT is called a tangent line

to the sphere from D. T is called the point of contact of the tangent line BT with the
sphere.

5.4.5 Note: If the line DT touches the sphere with centre C at T then

(i) CT DT

(ii) If another line through D intersects, the sphere at P and Q then 2DT DP DQ  .

5.4.6 Definition: Let S be a sphere having centre C and radius  a 0 then

(i) If DC a then D is called external point of the sphere S.

(ii) If DC a then D is called internal point of the sphere S.

5.4.7 S.A.Q.: If P, Q are points on a sphere then prove that any point on the line segment PQ
is an internal point of the sphere.

5.4.8 Note: Let  F r 0 be the equation of a sphere with centre  C c and radius  a 0 . Let

 D d be any point. Then

(i) D is an external point of the sphere DC a c d a    

 
2 2d c a 0 F d 0     

 Power of D is positive.
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0DTC 90

(ii) D is an internal point of the sphere  F d 0  or 11S 0

 Power of D is negative.

 Power of D is zero.

(iii) D lies on the sphere  F d 0   Power of D is zero.

(2) If    2 2 2
1 1 1e u, v, w , a u v w d, d x , y ,z         then

  2 2 2F d S x y z 2ux 2vy 2wz d 0        

(i) D is an external point   11F d 0 S 0     power of D is positive

(ii) D is an internal point   11F d 0 S 0     power of D is negative

(iii) D lies on the sphere   11F d 0 S 0     power of D is zero

5.4.9 S.A.Q.: Show that there exists a tangent line to the sphere from any external point.

5.4.10 S.A.Q.: From an internal point there exists no tangent line to the sphere.

Theorem: The length of the tangent from an external point  D d to the sphere

 
2 2F r r c a 0    is  F d .

Proof: Since the centre is  C c and radius is a,

C( c )D( d )

a

T

[DT is called length of the tangent to the sphere]
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If DT is a tangent line from D tothe sphere, then
0DTC 90 and

 
22 2 2 2DT DC CT d a a F d 0      

 The length of the tangent from  D d to the sphere is

 DT F d

Note: Let  1 1 1D d x , y ,z  and the equation of the sphere be

  2 2 2f r S x y z 2ux 2vy 2wz d 0         then its centre  C c u, v, w     and

radius 2 2 2a u v w    

Let  r x, y,z then length of the tangent

   1 1 1 11DT F r S x , y ,z S  

5.5 Tangent Plane of a Sphere:

5.5.1 Theorem: The locus of the tangent line at a point on a sphere of non zero radius is
a plane.

Proof: Let the equation of the sphere with centre  C c and radius a 0 be

 
2 2 2F r r 2r c c a 0     

D

C

r

P ( r )
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Let D d be any point on the sphere. Then    F d 0 1           

Let d t b be any point on the line L through an external point D and parallel to a

unit vector b .

This point d t b lies on the sphere

 
2 2 2d t b 2 d t b c c a 0       

   2t 2t b c d F d 0      
 

 2t 2t b c d 0     
  (using (1))

2t 0  (since  b CD b c d 0     )

t 0 

d is the only point common to the line L and the sphere

 The line L touches the sphere at D

Thus L is a tangent line to the sphere

 L passes through D and L CD

Therefore, all the tangent lines at D passes through D and form a plane having CD
as its normal.

5.5.2 Def: The locus of the tangent lines at a point D on a sphere S 0 of non zero radius is

a plane called the tangent plane to the sphere S 0 at D. The point D is called the point of

contact of the plane with the sphere S 0 .

5.5.3 Note:

(1) The tangent plane at a point D on the sphere is perpendicular to the diameter
through D.

(2) The normal to the tangent plane of a sphere through the point of contact D passes
through the centre of the sphere.

5.5.4 S.A.Q.: All points in the tangent plane of sphere expect the point of contact are external
points of the sphere.
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5.5.5 Theorem: The equation of the tangent plane at the point  1 1 1D x , y ,z of the sphere

2 2 2S x y z 2ux 2vy 2wz d 0       

is 1S 0

Proof: Let  C c be the centre of the sphere S 0 with radius a 0 then

D

C

n

P ( r )

 C c u, v, w    

Let n be the unit vector in the direction of CD . Then

1 1 1x u y v z wCD
n , ,

e e eCD

   
   

 
where

     2 2 2
1 1 1e CD x u y v z w      

A point  r x, y,z lies on the tangent plane

 r d n 0   

  1 1 1
1 1 1

x u y v z w
x x , y y , z z , , 0

e e e

   
      

 

        1 1 1 1 1 1x x x u y y y v z z z w 0         

       2 2 2
1 1 1 1 1 1 1 1 1 1 1 1xx yy zz u x x v y y z z z d x y z 2ux 2vy 2wz d 0                
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1 11S S 0  

1S 0  (Since the point  1 1 1D x , y ,z lies on the sphere)

Conditions For Tangency:

5.5.6 Theorem: A necessary and sufficient condition that the plane

 x my nz p 1            

is a tangent plane to the sphere

 2 2 2x y z 2ux 2vy 2wz d 0 2           

is that

    2 2 2 2 2 2 2u mv nw p m n u v w d         

Proof: Center of the sphere (2) is  u, v, w   and radius 2 2 2r u v w d    . If the plane (1)

touches the sphere (2) then the perpendicular from the centre on the plane is equal to
radius.

2 2 2

2 2 2

u mv nw p
u v w d

m n

   
    

 





i.e.,     2 2 2 2 2 2 2u mv nw p m n u v w d         

which is the required condition.

5.6 Touching Spheres:

5.6.1 Def: Two spheres
1S 0, S 0  are said to touch each other if 1S 0, S 0  have onle one

common point P. The common point P is called point of contact of the spheres
1S 0, S 0  .

5.6.2 Theorem: Two spheres 1S 0, S 0  touch each other at a point P
1S S 0   is the

common tangent plane at P of the spheres S 0 and
1S 0 .

Proof: Let 2 2 2S x y z 2ux 2vy 2wz d 0       

1 2 2 2 1 1 1 1S x y z 2u x 2v y 2w z d 0       
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be two spheres touch each other at P.

Since 1 1 1u u or v v or w w  

     1 1 1 1 1S S 2 u u x 2 v v y 2 w w z d d 0         

represents a plane, say  .

       1 1P q q S S q q S, q q q S , q       

 The plane  touches the sphere S 0 at P and also 1S 0 at P..

  is the common tangent plane to the given two spheres at P..

5.6.3 Def: Let 1S 0, S 0  be two spheres with centres 1C, C and radii 1r, r respectively and let

 be the common tangent plane at P then

(i) If 1C, C lie in the same side of the plane  then the two sphers 1S 0, S 0  touch

cach other internally.

C

C

P

1

(ii) If
1C, C lie in the opposite side of the plane  , then the two spheres 1S 0, S 0 

touch each other externally.
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C C

P
1

Conditions for two spheres to touch:

5.6.4 Theorem: Let 1S 0, S 0  be two spheres with centres 1C,C and radii 1r, r then the

two spheres touch each other

(i) internally 1 1CC r r  

(ii) externally 1 1CC r r   .

Proof: (i) Let the two spheres touch each other internally at a point P.

Let  be the common tangent plane for the spheres at P..

 The points 1C,C lie on same side of the plane 

1C,P,C are collinear and
1C,C lie in same side of P..

1 1
1 2CC CP C P r r    

C C P
1

Conversely, suppose 1r r and 1 1 1CC r r r r    then there exist a point P on

the line 1CC such that 1 1CP r, C P r  .

Hence
1C lies between C and P

Since 1 1CP r, C P r , P  is a common point of the two spheres.

Let  be the plane through the point P and perpendicular to
1CC
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CP     is a tangent plane of the sphere S 0

1C P     is a tangent plane of the sphere 1S 0

  is a common tangent plane of the sphers
1S 0, S 0  . Also 1C,C lie on the

same side of the plane  .

 The two spheres 1S 0, S 0  touch each other internally..

(ii) Similarly we can prove that the spheres
1S 0, S 0  touch each other externally

1 1CC r r   .

5.6.5 Note:

(i) If 1
1 2CC r r  then the two spheres touch each other externally the point of contact

P divides 1CC in the ratio r : r1 internally

C P C

r r:
1

1

(ii) If 1 1CC r r  then the two spheres touch each other internally. The point of

contact P divides 1CC in the ratio r : r1 externally

C C
1

P

r r: 1

5.7 Examples:

5.7.1 Example: Find the equation of the tangent plane to the sphere

 2 2 23 x y z 2x 3y 4z 22 0       at the point  1,2,3 .

Solution: Equation of the tangent plane at  1 1 1x , y ,z is 1S 0

     1 1 1 1 1 1xx yy zz u x x v y y w z z d 0          .

Here    1 1 1x , y ,z 1,2,3

Equation of the tangent plane is
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       1 1 1 1 1 1
3

3 xx yy zz x x y y 2 z z 22 0
2

         

i.e.,        
3

3 x 2y 3z x 1 y 2 2 z 3 22 0
2

         

4x 9y 14z 64 0    

5.7.2 Example: Find the equation of the tangent line to the circle

2 2 2x y z 5x 7y 2z 8 0, 3x 2y 4z 3 0           at the point  3,5,4 .

Solution: The tangent line to a circle is the line of intersection of the tangent plane to the
sphere at the given point and the plane of the circle.

Given sphere  2 2 2x y z 5x 7y 2z 8 0 1                

Plane of the circle is  3x 2y 4z 3 0 2          

Equation of the tangent plane to (1) at  3,5,4 is 1S 0

i.e.,            
5 7

x 3 y 5 z 4 x 3 y 5 z 4 8 0
2 2

          

 x 3y 10z 58 0 3            

Equations of the tangent line to the circle at  3,5,4 is are (2) and (3)

Symmetric form of the tangent line: Let a, b, c be the dr's of the line. Then

3a 2b 4c 0  

a 3b 10c 0  

Solving
a b c

32 34 7
 



The equation of the tangent line to the circle at  3, 5, 4 is
x 3 y 5 z 4

32 34 7

  
 



5.7.3 Example: Find the value of a for which the plane x y z a 3   touches the sphere

2 2 2x y z 2x 2y 2z 6 0       .

Solution: For the given sphere,  1, 1, 1 is the centre and radius r 1 1 1 6 3     .
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If the given plane touches the sphere then the distance from the centre of the sphere to
the plane is equal to the radius of the sphere

1 1 1 a 3
3 3 a 3 3 3

1 1 1

  
     

 
a 3 3   .

5.7.4 Example: Show that the plane 2x 2y z 12 0    touches the sphere

2 2 2x y z 2x 4y 2z 3      and find the point of contact.

Solution: Given sphere equation is  2 2 2x y z 2x 4y 2z 3 0 1           

Its centre C  1, 2, 1  , radius r 1 4 1 3 3    

Given plane is  2x 2y z 12 0 2        

ler distance from  1, 2, 1 to the plane (2)
     2 1 2 2 1 12

4 4 1

   


 

9
3 radius

3
  

The plane (2) touches the sphere (1).

The line through the centre and ler to the plane (2) is

x 1 y 2 z 1
r

2 2 1

  
  


(say)

C

M
Plane
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Any point on this line is  2r 1, 2r 2, r 1   

If M  2r 1, 2r 2, r 1    is the point of contact of (2) with (1). Then this point lies in the

plane (2).

   2 2r 1 2 2r 2 r 1 12 0       

9r 9 0 r 1     

Thus, the point of contact     2 1 1, 2 1 2, 1 1         1, 4, 2  

5.7.5 Example: Find the coordinates of the points on the sphere

2 2 2x y z 4x 2y 4     ................... (1)

the tangent planes at which are parallel to the plane is

2x y 2z 1   ................... (2)

Solution: The centre of the sphere (1)  C 2, 1,0  . Radius r 4 1 4 3   

Let the equation of the tangent plane parallel to (2) be

 2x y 2z k 0 3            

The plane (3) is tangent to the sphere (1)   distance from center of the
sphere to the plane (3) is equal to the radius of the sphere.

     2 2 1 2 0 k
3 k 9 5 4, 14

4 1 4

   
       

 

The equation of the line through the centre  2, 1,0 and perpendicular to the plane

(3) is

 
x 2 y 1 z

s say
2 1 2

 
  



Any point on this line is  2r 2, r 1, 2r  

If this point is the point of contact of (3) with (1) then the point  2r 2, r 1, 2r  

lies on the plane (3).

i.e.,      2 2r 2 2r 1 2 2r k 0      
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5 k 5 4 5 14

r , K 4, 14
9 9 9

     
    

1, 1 

The coordinates of the points of contact of the plane (3) with the (1) are

           2 1 2, 1 1, 1 , 2 1 2, 1 1, 2 1        

   0,0, 2 , 4, 2,2  

5.7.6 Example: Show that the equation of the sphere which touches the sphere

   2 2 24 x y z 10x 25y 2z 0 1            

at the point  1,2, 2 and passes through the point  1, 0, 0 is

2 2 2x y z 2x 6y 1 0     

Proof:

Let the required equation of the sphere be

 2 2 2x y z 2ux 2vy 2wz d 0 2             .

It passes through  1, 0, 0 so 1 2u d 0 d 2u 1     

The equation of the tangent plane at  1,2, 2 of the sphere (2) is

S = 0

(1, 2, -2)

(-1, 0, 0)

     x 2y 2z u x 1 v y 2 w z 2 d 0         
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       1 u x 2 v y 2 w z 3u 2v 2w 1 0 3                    

 d 2u 1 

The equation of the tangent plane at  1,2, 2 of the sphere (1) is

       
25

4 x 2y 2z 5 x 1 y 2 z 2 0
2

        

 2x y 2z 4 0 4           

Since the two spheres touch each other at  1,2, 2

Equations (3) and (4) represent the same plane.

 
1 u 2 v 2 w 3u 2v 2w 1

r say
2 1 2 4

      
   

  

u 2r 1, v r 2, w 2r 2         and

3u 2v 2w 1 4r    

     3 2r 1 2 r 2 2 2r 2 1 4r          

12r 12 0 r 1    

u 1, v 3, w 0, d 1     

Hence required equation is 2 2 2x y z 2x 6y 1 0     

II Method: Given sphere quation is

   2 2 2S 4 x y z 10x 25y 2z 0 1            

Equation of the tangent plane at  1,2, 2 is 1S 0

       
25

4 x 2y 2z 5 x 1 y 2 z 2 0
2

        

 U 2x y 2z 4 0 2            

Equation of the sphere which touches the given sphere (1) at  1,2, 2 is of the

form
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S U 0  

   2 2 24 x y z 10x 25y 2z 2x y 2z 4 0           

But this sphere passes through  1,0,0

4 10 2 4 0 1          

Requirede sphere equation is

   2 2 24 x y z 10x 25y 2z 1 2x y 2z 4 0         

2 2 2x y z 2x 6y 1 0      

S = 0

Tangent Plane
S = 01

5.7.7 Example: Obtain the equation of the tangent planes to the sphere

 2 2 2x y z 6x 2z 1 0 1           

Which pass through the line

   3 16 x 3z 2y 30 2              

Solution: The centre of (1)  3,0,1  and radius r 9 1 1 3   

The equation of the line (2) is general form can be put as

 1 1U 3 16 x 3z U x z 16 0       
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2 2U 3z 2y 30 U 3z 2y 30 0       

The equation of any plane through the line (2) given by

1 2U 0, U 0  is

1 2U U 0  

i.e.,  x z 16 3z 2y 30 0      

i.e.,    x 2 y 1 3 z 16 30 0 3                

If the plane (3) is a tangent plane to the sphere (1), then the perpendicular distance

from centre  3,0,1 should be equal to radius 3

i.e.,
   

 22

3 2 0 1 3 1 16 30
3

1 4 1 3

        


    

 2

3 2
9 3

3 6 2

 
 

   

 2 29 3 2 13 6 2       

2 268 102 34 0 2 3 1 0           

  
1

2 1 1 0 1,
2

 
         

 

Thus the equations to ther equired planes are

x 2y 2z 14 0    and 2x 2y z 2 0   

5.7.8 Example: Obtain the equations of the spheres which passes through the circle

2 2 2x y z 2x 2y 4z 3 0, 2x y z 4          and touch the plane

3x 4y 14  .

Solution: Any sphere through the given circle is represented by S U 0   .  



Centre for Distance Education 5.20 Acharya Nagarjuna University

i.e.,  2 2 2x y z 2x 2y 4z 3 2x y z 4 0           

i.e.,        2 2 2x y z 2 2 x 2 y 4 z 3 4 0 1                        

 Its centre is
     2 2 2 4

, ,
2 2 2

           
 
 

and radius is
2 2 2

2 2 2 4
3 4

2 2 2

           
         

     

26 20 36

4

   


If 3x 4y 14 0   is a tangent plane to the sphere (1) then the perpendicular from

centre is equal to radius.

i.e.,

 
2

4 22 2
3 14

6 20 362 2

49 16

     
         



25 15 6 20 36

5 4

      
 

Squaring

 2 24 9 6 6 20 36         

   22 4 0 2 2 0 0,2           

Putting the values of  in (1) we get equation to the spheres as

2 2 2x y z 2x 2y 4z 3 0       for 0 

and 2 2 2x y z 2x 4y 6z 11 0       for 2 

5.7.9 Example: Find the equation of the sphere which has its centre at the origin and which
touches the line

 2 x 1 2 y x 3    



5.21 Sphere 2...Solid Geometry

Solution: The radius r of the sphere is the distance of the centre from the given line L

 
x 1 y 2 x 3

r 1
1 2 2

  
       



N L

C

Let N be the point where the line L touches the sphere.

Then CN L

Any point on the line L is  N r 1, 2r 2, 2r 3    

Since Dr's of CN are r 1, 2r 2, 2r 3    and DR's of L are 1, 2,2

     CN L 1 r 1 2 2r 2 2 2r 3 0        

11
9r 11 r

9
   

11 22 22 2 4 5
N 1, 2, 3 , ,

9 9 9 9 9 9

     
        

   

2
2 2 2

4 16 25 45 5
r CN

9.9 99 9 9
      

Equation of the sphere with centre  0,0,0 and radius
5

r
9

 is

2 2 2 5
x y z

9
  

i.e.,  2 2 29 x y z 5  
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5.7.10 Example: Find the equation of the sphere of radius r which touches the three coordinate
axes. How many such spheres are there?

Solution: Let the sphere be

2 2 2x y z 2ux 2vy 2wz d 0      

If the sphere touches x-axis at  1x ,0,0 . The 1x must be a double root of

2x 2ux d 0  

This happens 24u 4d  i.e. 2u d

The Y - axis and Z - axis touch the sphere 2 2v d, w d  

In this case 2 2 2 2r u v w d   

2
2 r

r d d d d 2d d
2

       

Thus the condiiton is

2
2 2 2 r

u v w d
2

   

r
u v w

2
    

So the equations of the sphere are

2
2 2 2 r r r r

x y z 2 x 2 y 2 z 0
22 2 2

     
              

     

i.e.,    2 2 2 22 x y z 2 2r x y z r 0       

If r is fixed then only eight such spheres exist.

5.7.11 Example:

(a) Prove that the equation of the sphere which lies in the octant OXYZ and touches

the coordinate planes is of the form

 2 2 2 2x y z 2 x y z 2 0        
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(b) Show that in general two spheres can be drawn through a given point to touch the
coordinate planes and find what position of the point the spheres are (i) real, (ii)
coincident.

Solution: (a) Let the radius of the sphere be  , then the distance of its centre from

coordinate planes is equal to radius  .

The centre of the sphere lies in octant OXYZ . Hence center  , ,    .

So the equation of the sphere is

     2 2 2 2x y z         

 2 2 2 2x y z 2 x y z 2 0          . This proves (a)

(b) Let P  , ,   be the given point.

If the sphere passes through P then

     2 2 2 22 2 0 1                     

This is a quadratic equation in  .

Hence the discriminant of (1) is

   2 2 2 24 8         

Equation (1) has distinct roots if

   2 2 22 2                    

and the roots are equal if

     2 2 22 3                

So, (i) there are two spheres if (2) holds and (ii) there is one sphere if (3) holds.

5.7.12 Example: Show that the spheres

 2 2 2x y z 25 1          

 2 2 2x y z 24x 4oy 18z 225 0 2           

touch externally and find the point of contact.
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C C
1 2

r r
1 2

P

Solution: For the sphere (1), centre  1C 0,0,0 and radius 1r 5

For the sphere (2), centre  2C 12,20,9 radius 2r 144 400 81 225 20    

Now 2 2 2
1 2 1 2C C 12 20 9 25 20 5 r r       

Thus the two spheres touch each other externally.

Let P be the point of contanct. Then P divides 1 2C C in the ratio 1 2r : r 5 : 20 1 : 4 

internally.

Then
60 100 45 12 20 9

P , , , ,
25 25 25 5 5 5

   
    
   

5.7.13 Example : Find the centres of the two spheres which touch the plane

4x 3y 47 

at the point  8,5,4 and the sphere

2 2 2x y z 1  

Solution: Given tangent plane for the sphere is

4x 3y 47 

Dr's of the normal are  4,3,0 DC's of the normal are
4 3

, , 0
5 5

 
 
 

Let  P 8,5,4 . Then P is the point of contact.

Equations of the line through P and having DC's
4 3

, , 0
5 5

 
 
 

are
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 1
x 8 y 5 z 4

r say
4 5 3 5 0

  
  

If 1r is the radius of one sphere. Then the centre of the sphere is of the form

 1 1
1

4r 3r
C 8, 5, 4 1

5 5

 
          
 

As second sphere is
2 2 2x y z 1  

has centre  2C 0,0,0 and radius 2r 1 .

The two spheres are touching  distance between centres 1 2 1r r r 1   

 
2 2

2
1 1 1

4 3
r 8 r 5 16 r 1

5 5

   
         

   

     2 2 2
1 1 14r 40 3r 25 400 25 r 1      

2 2 2
1 1 1 1 1 116r 1600 320r 9r 625 150r 400 25r 25 50r         

1 1470r 2600 50r   

1 1470 r 2600 50r   or 1 1470r 2600 50r  

1 2
2600 2600

r or r
420 520

 
  

1
130

r
21


  or 1r 5 

The coordinates of the centres are

4 130 3 130
8, 5, 4

5 21 5 5

     
     

    
and    

4 3
5 8, 5 5, 4

5 5

 
    

 

i.e.,
64 27

, , 4
21 21

 
 
 

and  4,2,4

5.7.14 Example: Find the equations to the spheres through the points      4,1,0 , 2, 3,4 , 1,0,0

and touching the plane 2x 2y z 11   .
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Solution: Let the sphere equation be

 2 2 2x y z 2ux 2vy 2wz d 0 1               

The sphere (1) passes through      4,1,0 , 2, 3,4 , 1,0,0 then

 16 1 0 84 2v d 0 8u 2v a 17 2                     

 4 9 16 44 6v 8w d 0 4u 6v 8w d 29 3                  

The centre of the sphere  4, u, w   , 2 2 2radius u v w d   

Since, the sphere tocuhes the plane 2x 2y 3 11   .

2 2 22u 2v w 11
u v w d

4 4 1

   
   

 

     2 2 2 22u 2v w 11 9 u v w d 5               

Now,  4 d 1 2u   

   2 8u 2v d 17 2v 8u 1 2u 17 16 6v              

v 8 3u   

   
19 5u

3 4u 6 8 3u 8w 1 2u 29 w
2

 
          

     
2 2

2219 5u 19 5u
5 2u 2 8 3u 11 9 u 8 3u 1 2u

2 2

      
                 

     

 2 23u 9 9 65u 39ou 621      
 

264u 396u 612 0   

  216u 99u 153 0 u 3 16v 51 0       

51
u 3,

16


  



5.27 Sphere 2...Solid Geometry

If u 3  , then v 1,w 2, d 5   

If
51

u
16


 , then

25 49 43
v , w , d

16 32 8


  

So the equation of required spheres are

2 2 2x y z 6x 2y 4z 5 0       and

 2 2 216 x y z 102x 50y 49z 86 0      

5.7.15 Examples: Find the equation of the sphere inscribed in the tetrahedron whose faces

are x 0, y 0, z 0, x 2y 2z 1      .

Solution: Let the equation of the required sphere be

 2 2 2x y z 2ux 2vy 2wz d 0 1             

Center  C u, v, w    , radius 2 2 2r u v w d   

Intercept form of the plane x 2y 2z 1   is

x y z
1

1 1 2 1 2
  

Since the sphere lies in side the tertrahedran,

 
1 1

0 u 1, 0 v , 0 w 2
2 2

              

Since the plane x 0 touches the sphere (1)

u r r u   

similarly the planes y 0, z 0  are touching the sphere (1) then r v, r w   

Since 2 2 2 2r u v w d   

2 2 2 2 2r r r r d d 2r      

2 2u v w r, d 2r 2u      
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Since x 2y 2z 1   touches the sphere (1)

u 2v 2w 1
r

1 4 4

   


 
54 1 3r     2 254 1 3r  

 2 25u 1 3u   216 u 10u 1 0   

216u 10u 1 0      8u 1 2u 1 0   

1 1
u ,

2 8

 
 

From (2)
1 1 1

u v w , d 2
8 64 32


    

Required equation of the sphere is

 2 2 2 1 1
x y z x y z 0

8 32
      

or    2 2 232 x y z x y z 1 0      

5.8 Plane of Contact:

5.8.1 Theorem: The set of points of contact of the tangent planes to the sphere. Which pass
through an external point T is the empty set or a circle.

Proof: Let  be a given sphere.

If  is a point sphere then we know that the set of points of contact of the tangent
planes to the sphere is a point circle.

Let the radius of the sphere  be positive. Then P is a point of contact of the

tangent plane through T 0CPT 90  .

P

C

T
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P lies on the sphere 1 with diameter CT..

P  and 1 1P P   

But 1  is a circle.

5.8.2 Note: If T is an internal point of the sphere  , then there is no tangent plane through T. So
the set of points of contact of the tangent planes is empty.

If T lies on the sphere, then the set of points of contact of the tangent planes is  T .

5.8.3 Def: The plane containing the locus (which is a circle) of the points of contact of the
tangent planes to the sphere  which as through and external point T is called the plane
of contact of the point T with respect the sphere  .

5.8.4 Theorem: The equation of the plane of contact of an external point  1 1 1T x , y ,z with

respect to the sphere S 0 is 1S 0 .

Proof: Let 2 2 2S x y z 2ux 2vy 2wz d       .

Let  1 1 1x , y ,z be the point of contact of a tangent plane to the sphere which passes

through the point  1 1 1x , y ,z .

The equation ofthe tangent plane at  1 1 1x , y ,z is

       1 1 1 1 1 1xx yy zz u x x v y y w z z d 0 1                 

 1 1 1x , y ,z lies in the plane of contact

 The plane (1) passes through T..

     1 1 1 1 1 1
1 1 1 1 1 1x x y y z z u x x v y y w z z d 0          

Thus  1 1 1x , y ,z satisifes the equation.

     1 1 1 1 1 1xx yy zz u x x v y y w z z d 0         

i.e.  1S 0 2      



Centre for Distance Education 5.30 Acharya Nagarjuna University

Since  u, v, w   is the centre of the sphere and T is an external point of the sphere,

   1 1 1x , y ,z u, v, w   

Hence 1S 0 represents a plane and  1 1 1x , y ,z belongs to this plane

Hence the plane of contact of T is 1S 0

5.8.5 Note:

(1) The plane of contact is perpendicular to the line joining the given point with the
centre of the sphere.

(2) The locus of the point of contact at any point with respect the sphere does not
contain the centre of the sphere, hence the plane of contact does not pass through
the centre of the sphere.

5.9 Pole and Polar Plane:

5.9.1 Def (1): The Polar Plane:

If a line drawn through a fixed point A meets a given sphere in points P, Q and a
point R is taken on this line such that the segment AR is divided internally and externally by
the points P, Q in the same ratio, then the locus of R is a plane called the polar plane of
A w.r.t. the sphere. The fixed point A is called pole.

A

P R Q

5.9.2 Def (2): If through a given point A, any transversal be drawn to meet the given sphere
in P and Q and if R be a point on this line such that

1 1 2

AP AQ AR
  , Then the locus of R,

is a plane, called the polar plane of A w.r.t the sphere.

5.9.3 Theorem: The above two definitions are equivalent.



5.31 Sphere 2...Solid Geometry

Proof: Def (1) holds
PR PA

RQ AQ
 

PR QR

AP AQ

 
 

AP AR AR AQ

AP AR AQ AR

 
 

 

1 1 1 1

AR AP AQ AR
   

1 1 2

AP AQ AR
  

 def 2 holds

5.9.4 Theorem: The polar plane of the point  1 1 1A x , y , z w.r.t.the sphere

2 2 2S x y z 2ux 2vy 2wz d 0       

is 1S 0

Proof: Equations of any line through  1 1 1A x , y ,z are

 1 1 1x x y y z z
r 1

m n

  
           



Any point on the line is  1 1 1x r, y mr, z nr  

This point is on the sphere 

           2 2 2
1 1 1 1 1 1x r y mr z nr 2u x r 2v y mr 2w z nr d 0             

i.e.      2
1 1 1 11r 2r u x m v y n w z s 0          

This is a quadratic equation in r. This has two roots 1 2r , r say..

If the line through A meets the sphere in P and Q then

1 2AP r , AQ r 

     1 1 1AP AQ 2 u x m v y n w z          
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 1 2AP AQ r r sum of the roots   

11AP AQ S   1 2AP AQ r r Pr oduct of the roots  

Let  R , ,   be a point on PQ such that

1 1 2 2 AP AQ

AP AQ AR AR AP AQ


   



     
 11

1 1 1

2S2AP AQ
AR 2

AP AQ 2 u x m v y n w z


           

         

Since R lies on line (1)  1 1 1x y z
AR 3

m n

     
           



Eliminating ,m,n from (2) & (3) we get

         1 1 1 1 1 1 11x u x y v y z w z S            

     1 1 1 1 1 1x y z u x v y w z d 0               

locus of  R , ,   is

     1 1 1 1 1 1xx yy zz u x x v y y w z z d 0         

i.e., 1S 0

 The polar of  1 1 1x , y ,z w.r.t the sphere S 0 is 1S 0 .

5.9.5 S.A.Q.: If O is centre of the sphere of radius a then

(i) the polar plane of the point P w.r.t. the sphere is perpendicular to OP.

(ii) 2OP OQ a  where Q is the intersection of the polar plane with OP..

5.9.6 Note:

(i) When P lies out side the sphere OP 0 and hence OQ a i.e. Q lies with in the

sphere. The polar of P is the plane of contact of P.

(ii) When P lies on the sphere, OP OQ a  .

Then P and Q are coincide and the polar plane of P is the tangent plane at P.
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(iii) When P lies inside the sphere, OP a, OQ a  . Then polar plane of P is simply a

plane perpendicular to OP at Q which does not intersect the sphere.

5.9.7 Def: If  be the polar plane of a point P, Then P is called a pole of the plane  .

Pole of a plane:

5.9.8 Theorem: If P 0 , The plane  x my nz p 1            has a unique pole

2 2 2a a m a n
, ,

P P P

 
 
 
 


with respect to the sphere  2 2 2 2x y z a 2         .

Proof:  1 1 1T x , y ,z is a pole of the plane (1)

 The polar plane of T w.r.t. the sphere (2)

i.e.,  2
1 1 1xx yy zz a 3       

respresents the plane (1)

2
1 1 1x y z a

m n P
   



i.e.,
2 2 2

1 1 1
a a m a n

x , y , z
P P P

  


Thus the plane (1) has a unique pole and the pole is

2 2 2a a m a n
, ,

P P P

 
 
 
 



Using the translation of axis (shiffting of the origin) we have the following.

5.9.9 Corollary: If S 0 is a sphere and x my nz p, p 0    is not passing through the

centre of the sphere, then the pole of the plane is  1 1 1x , y ,z where

1 1 1x u t, y v mt, z w nt         and

2 2 2u v w d
t

u mv nw P

   
  
    

5.9.10 Theorem: The polar plane of a point P w.r.t. a sphere passes through another point Q,
then the polar plane of Q w.r.t. the sphere pass through P.
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Proof: Let the sphere be
2 2 2 2x y z a  

Let    1 1 1 2 2 2P x , y ,z , Q x , y ,z be the given points

The polar plane of P is

2
1 1 1xx yy zz a  

If this plane passes through Q then

2
2 1 2 1 2 1x x y y z z a  

This is also the condition for the polar plane of Q to pass through P.

Hence the polar plane of Q passes through Q.

5.9.11 Def: Conjugate Points: A point P is said to be a conjugate of Q w.r.t. a sphere S 0 ifff

the polar plane of Q w.r.t. the sphere S 0 passes through P..

5.9.12 Note:

(i) From the above theorem (5.9.10), it is clear that if P is a cojugate of Q then Q is a
conjugate of P. Thus we may as well say that P and Q are conjugate w.r.t. a sphere

S 0 if the polar plane of either passes through the other. We may also note that P

and Q are not necessarly distinct. Infact P is always conjugate to itself with respect
to the sphere.

(2) From the definition of conjugate points, conjugate to the centre of the sphere is not
define.

5.9.13 Theorem: If the pole of a plane w.r.t. a sphere lies in another plane and the planes do
not pass through the centre then the pole of the second plane lies on the first plane.

Proof: Since the sphere is invariant under shifiting of origin, we may assume that the sphere is

2 2 2 2x y z a  

and the planes 1 and 2 are

1 1 1 1 1x m y n z P 0     

2 2 2 2 2x m y n z P 0     

The pole of the plane 1 w.r.t. the sphere is

2 2 2
1 1 1

1 1 1

a a m a n
, ,

P P P

 
 
 
 


(by theorem 5.9.8)
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If this point lies on the second plane 2 then

2 2 2
1 1 1

2 2 2 2
1 1 1

a a m a n
m n P

P P P

     
       

     
     



i.e.,  2
1 2 1 2 1 2 1 2a m m n n P P   

2 2 2
2 2 2

2 2 2

a a m a n
, ,

P P P

 
  

 
 


lies on the plane 1 .

 The pole of the second plane 2 to lie on the first plane 1 .

Hence the result.

5.9.14 Def: Conjugate Planes: Two planes none containing of the centre of the sphere such
that the pole of either plane w.r.t. the sphere lies on the other plane are called conjugate
planes.

5.9.15 Theorem: The polar planes of all points on a line L not passing through the centre of
the sphere w.r.t. a sphere pass through line L.

Proof: Let the equation of the sphere be

2 2 2 2S x y z r 0    

Let the line be
x y z

L k
m n

   
   


(say)

Any point on this line is  P k, mk, mk     

Polar plane of this point P w.r.t. the sphere is

      2x k y mk z nk r        

i.e.      2x y z r k x my nz 0 1                 

Since ,m,n are DR's of the line L and    , , 0,0,0   

The equation x my nz 0   and 2x y z r 0      

represent planes say  and
1 respectively. Since : m : n : :    ,  and

1 intersect

in a line 1L (say) and the general form of all planes passing through 1L is (1).

The polar planes of all points on L w.r.t. a sphere pass through the line 1L .
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5.9.16 Definition:

Conjugate lines or polar lines: Two lines, such that the polar plane of either line w.r.t.
a sphere passes through the other line are called conjugate lines or polar lines.

5.10 Examples:

5.10.1 Example: Find the plane of contact of the point  3, 1,5 in the respect to the sphere

2 2 2x y z 2x 4y 6z 11 0       .

Solution: The plane of contact of  1 1 1x , y ,z w.r.t the sphere S 0 is 1S 0

   1 1 1x , y ,z 3, 1,5 

So the required plane is

     3x y 5z x 3 2 y 1 3 z 5 11 0         

i.e., 3x y 5z x 3 2y 2 3z 15 11 0         

i.e., 3x y 2z 1 0   

5.10.2 Example: Find the polar plane of the point  1,3,4 w.r.t. the sphere

2 2 2x y z 6x 2z 5 0     

Solution: The polar plane of the point  1 1 1x , y ,z w.r.t. sphere S 0 is 1S 0

Required polar plane is

       x 1 y 3 z 4 3 x 1 z 4 5 0        

2x 3y 3z 2 0    

i.e. 2x 3y 3z 2 0   

5.10.3 S.A.Q.: Find the pole of the plane x y 5z 3 0    w.r.t. the sphere

2 2 2x y z 9   .

5.10.4 Example: Find the pole of the plane x y z 9 0    w.r.t. the sphere

2 2 2x y z 2x 4y 6z 5 0       .
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solution: Given sphere is      2 2 2
x 1 y 2 z 3 9     

Shift the origin to the point  1, 2,3 then

 2 2 2X Y Z 9 1                 

Equation to the plane in the new system of axes is

     X 1 Y 2 Z 3 9 0      

i.e.,  X Y Z 9 0 2          

Let  1 1 1X , Y ,Z be the pole, then the polar plane is

 1 1 1XX YY ZZ 9 0 3         

(2) & (3) represent the same plane.

1 1 1
1 1 1

X Y Z 9
X 1, Y 1, Z 1

1 1 1 9
        

  

Pole in the original system is  0, 1,4

II method:

Given plane is  x y z 9 0 1              

Let  1 1 1P x , y ,z be the pole of the plane (1) w.r.t. the sphere

 2 2 2S x y z 2x 4y 6z 5 0 2            

Polar plane of P w.r.t. (2) is 1S 0

i.e.,      1 1 1 1 1 1xx yy zz x x 2 y y 3 z z 5 0         

       1 1 1 1 1 1x 1 x y 2 y z 3 z x 2y 3z 5 0 3                

(1) & (3) represent the same plane

1 1 1 1 1 1x 1 y 2 z 3 x 2y 3z 5
r

1 1 1 9

      
   

 
(say)
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1 1 1x r 1, y r 2, z r 3        and

1 1 1x 2y 3z 5 9r    

     r 1 2 r 2 3 r 3 5 9r 0           

9r 9 0 r 1      

The pole is    1 1 1x , y ,z r 1, r 2, r 3     

   1 1, 1 2, 1 3 0, 1,4        

5.10.5 Example: Show that polar line of

 
x 1 y 2 z 3

r 1
2 3 1

  
        

w.r.t. the sphere

 2 2 2x y z 1 2         

is the line

7x 3 2 7y z

11 5 1

 
 



Solution: Any point on the line (1)  P 2r 1, 3r 2, r 3  

The polar plane of P w.r.t the sphere (2) is

     x 2r 1 y 3r 2 z 2r 3 1 0      

     r 2x 3y 2z x 2y 3z 1 0 3                

For all values of r this plane (4) passes through the line

2x 3y 2z 0  

x 2y 3z 1 0   

Symmetric form of the above line:

To get a point on the line, put z 0 then

2x 3y 0

x 2y 1

  


   
by solving y 2 7, x 3 7  
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 3 7, 2 7, 0 is a point on the line

Let ,m,n be the DC's of the line then

2 3m 2n 0  

2m 3n 0  

   
m n

,m,n 11, 5, 7
11 5 7

      
 




Equation to the line are

3 2
x y

z 07 7

11 5 7

   
         

 

or
7x 3 2 7y z

11 5 1

 
 



5.10.6 Example: If PA and QB be drawn perpendicular to the polars of Q and P respectively,,
with respect a sphere, with centre 0,

Then
PA OP

QB OQ


Solution: Let the equation of the sphere be

2 2 2 2x y z a , a 0    with centre  0,0,0

Let    1 1 1 2 2 2P x , y ,z , Q x , y ,z 

Polar planes of P, Q w.r.t. the sphere are

 2
1 1 1xx yy zz a 0 1        

 2
2 2 2xx yy zz a 0 2          

lerPA   distance from P to the polar plane of Q (2)

2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2 2
2 2 2

x x y y z z a x x y y z z a

OQx y z
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lerPB  distance from Q to the polar plane of P (1)

2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2 2
1 1 1

x x y y z z a x x y y z z a

OPx y z

     
 

 

2 2
1 2 1 2 1 2 1 2 1 2 1 2PA OPx x y y z z a x x y y z z a

OQ OPPB OQ

     
 

5.11 Answers to S.A.Q.'s:

5.11.1 Solution of 5.4.7:

Let S be a sphere having centre origin 'o' and radius a.

Let    1 2P r , Q r be any two points on the sphere S. Then

R

O

P ( r )
1

 2Q r

1 2OP r , OQ r 

and 1 2OP r a, OQ r a   

Let  R r be any point on the line segment PQ.

Let R divides PQ in the ratio :1 then

2 1r r
OR r

1

 
 

 

2 1r r
OR r

1
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 2 1
1

r r
1

  
 

 
1

a a a
1

   
 

r a R   is an internal point of the sphere

5.11.2 Solution of 5.9.5:

(i) Equations the sphere is

 2 2 2 2x y z a 1            

OQP (x ,y , z )
1 1 1

Let  1 1 1P x , y ,z be any point.

The polar plane of P w.r.t to the sphere (1) is

 2
1 1 1xx yy zz a 0 2             

Dr's of OP are 1 1 1x , y ,z  Dr's of the normal to the polar plane (2)

 The polar plane of P is perpendicular to OP..

(ii) OQ  Perpendicular distance of the centre 0 form the polar plane (2)

2 2

2 2 2
1 1 1

a a

OPx y z
 

 

2OP OQ a  
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5.12 Summary:

After going to this lesson the student is expected to have a clear idea about the notions of
tangency, pole, polar plane, conjugacy and others. The student shall also be able to appriciate the
behaviour of spheres intersecting in a single point and in more than one point.

5.13 Technical Terms:

Tangent line

Tangent Plane

Plane of Contact

Pole

Polar Plane

Conjugate Points

Conjugate lines or Polar lines

5.14 Exercise:

1. Find points of intersection of the line

x 8 y z 1

4 1 1

 
 



and the sphere

2 2 2x y z 4x 6y 2z 5 0      

2. Find the length of the tangent line from the point  3,1, 1 to the sphere

2 2 2x y z 3x 5y 7 0      .

3. Find the equation of the tangent plane to the sphere

2 2 2x y z 2x 4y 2z 3 0       at  1,4, 2  .

4. show that the plane 2x 2y z 12 0    touches the sphere

2 2 2x y z 2x 4y 2z 3 0       and find the point of contact.

5. Find the equation of the sphere which touches the sphere

2 2 2x y z 2x 6y 1 0      at the point  1,2, 2 and pass through the origin.

6. Find the tangent planes to the sphere
2 2 2x y z 4x 2y 6z 5 0       which are

parallel to 2x 2y z 0   .
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7. Find the equations of the spheres which pass through the circle.

(i) 2 2 2x y z 5, x 2y 3z 3 0       and touch the plane 4x 3y 15 0   .

(ii) 2 2 2x y z 6x 2z 5 0, y 0       and touch the plane 3y 4z 5 0   .

(iii) 2 2 2x y z 1, 2x 4y 5z 6      and touching the plane z 0 .

(iv) 2 2 2x y z 2x 2y 4z 3 0, 2x y z 4          and touch the plane

3x 4y 14 0   .

8. Find the equation of the sphere which has its centre at the origin and touches the
line

x 1 y 2 z 3

1 2 2

  
 



9. Show that the locus of the centres of spheres which pass through the fixed point

 0,0,0 and touch the plane z 0 is
2 2 2x y 2az a 0    .

10. Show that the spheres

(i) 2 2 2 2 2 2x y z 2x 4y 6z 10 0, x y z 6x 4y 12z 40 0              touch

each other externally.

(ii) 2 2 2 2 2 2x y z 25, x y z 24x 40y 18z 225 0          touch externally..

Find the point of contact.

(iii) 2 2 2 2 2 2x y z 64, x y z 12x 4y 6z 48 0          touch internally. Find the

point of contact.

11. Find the pole of the plane 10x 2y 5z 2 0    w.r.t. the sphere

2 2 2x y z 6x 2y 3z 1 0       .

12. Prove that the polar plane of any point on the line
x y 1 z 3

2 3 4

 
  .

with respect to the sphere 2 2 2x y z 1   passes through the line

2x 3 y 1 z

13 3 1
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13. Show that the planes 5x y 6z 25 0, x 2y 3z 25 0        are conjugate w.r.t. the

sphere 2 2 2x y z 25   .

14. Find the polar line of

x 1 y 2 z 3

2 3 4

  
  w.r.t. the sphere

2 2 2x y z 16   .

15. Findthe locus of the points whose polar planes w.r.t. the sphere
2 2 2 2x y z a  

touch the sphere    2 2 2 2x y z r    

5.15 Answers to Exercise:

1.    4, 1,2 , 0, 2,3 

2. 14

3. 2x 2y z 12 0   

4.  1,4, 2 

5.  2 2 24 x y z 10x 25y 2z 0     

6. 2x 2y z 10 0, 2x 2y z 8 0       

7. (i)  2 2 2 2 2 2x y z 2x 4y 6z 11 0, 5 x y z 4x 8y 12z 13 0             

(ii)  2 2 2 2 2 2x y z 6x 4y 2z 5 0, 4 x y z 24x 11y 8z 20 0             

(iii)  2 2 2 2 2 2x y z 2x 4y 5z 5 0, 5 x y z 2x 4y 5z 1 0             

(iv) 2 2 2 2 2 2x y z 2x 4y 6z 11 0, x y z 2x 2y 4z 3 0             

8.  2 2 29 x y z 5  

10. (i)
12 9

, 4,
5 5

 
 
 

(ii)
48 16 24

, ,
7 7 7

 
 
 



5.45 Sphere 2...Solid Geometry

11.  2,0,4

14. 2x 3y 4z 0 x 2y 3z 16      

15.    
22 2 2 2 2x y a r x y z     

5.16 Model Examination Questions:

1. Prove that the locus of the tangent line at a point on a sphere of non zero radius is
a plane.

2. Find the equation of the tangent plane to the sphere

 2 2 23 x y z 2x 3y 4z 22 0       at the point  1,2,3 .

3. Find the equation of the sphere incribed in the tetrahedran whose faces are

x 0, y 0, z 0, x 2y 2z 1     

5.17 Model Practical Problem with Solution:

Problem: Find the equation of the spheres which pass through the circle

2 2 2x y z 5, x 2y 3z 3 0       and touch the plane 4x 3y 15 0   .

AIM: To find the equation of the spheres which pass through the given circle and touch the
given plane.

Definitions and results used:

(1) The equation of any sphere through a given circle which is the intersection of the sphere

S 0 , the plane U 0 is of the form S U 0   .

(2) The locus of the tangent lines at a point D on a sphere S 0 of non zero radius is a plane

called the tangent plane to the sphere S 0 at D. The point D is called the point of contact

of the plane with the sphere S 0 .

(3) The equation of the tangent plane at the point  1 1 1x , y , z of the sphere

2 2 2S x y z 2ux 2vy 2wz d 0        is 1S 0

i.e.,      1 1 1 1 1 1xx yy zz u x x v y y w z z d 0         

Solution: Given circle is

2 2 2x y z 5, x 2y 3z 3 0      
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Any sphere through the given circle is of the form

   2 2 2x y z 5 x 2y 3z 3 0 1                 

centre
3

, ,
2 2

   
  

 
and

radius
2 2 2

2 9 7
5 3 3 5

4 4 2

  
          

The sphere (1) touches the plane 4x 3y 15 0   then the perpendicular distance from

centre of the sphere to the plane is equal to radius of the sphere.

  24 3 15
7 6 102

216 9

 
         



4
2 or

5


    

substitute 2  in (1) we get

 2 2 2x y z 5 2 x 2y 3z 3 0       

2 2 2x y z 2x 4y 6z 11 0       

substitute
4

5


  in (1) we get

 2 2 2 4
x y z 5 x 2y 3z 3 0

5
       

 2 2 25 x y z 4x 8y 12z 13 0       

 The required spheres are

2 2 2x y z 2x 4y 6z 11 0       and

 2 2 25 x y z 4x 8y 12z 13 0      

Lesson Writer

Dr. B. RAMI REDDY
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SPHERE 3 - SYSTEM OF SPHERES

6.1 Objective of the lesson:

After studying this lesson the student should be a able to gain working knowledge on

• Radical plane of two spheres

• Radical line of three spheres

• Radical centre of four spheres

• Coaxial system of spheres

• Limiting points of the coaxial system of spheres

6.2 Structure:

This lesson contains the following components:

6.3 Introduction

6.4 Angle between spheres

6.5 Radical Plane and Line

6.6 Coaxial System of Spheres

6.7 Parametric forms of some Coaxial system of spheres

6.8 Limiting Points

6.9 Answers to S.A.Q.

6.10 Summary

6.11 Technical Terms

6.12 Exercise

6.13 Answers to Exercise

6.14 Model Examination Questions

6.15 Model Practical Problem with Solution

6.3 Introduction:

In this last lesson on sphere we discuss about some deeper notions related to spheres
such as Radical Planes, Radical lines, Coaxial systems and their limiting points.
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6.4 Angles between Spheres:

6.4.1 Definition: An angle of intersection of two spheres is an angle between the tangent
planes to them at a common point of intersection.

If  is one angle then   is another..

6.4.2 Theorem: If two spheres of radii 1r and 2r intersect an angle  , then

2 2 2
1 2

1 2

r r d
Cos

2r r

 
   where d is the distance between the centres.

Proof:

Let A and B be the centres of the spheres of radii 1r and 2r .

Let P be a point on the section

(i.e., P is a common point of two spheres),

Let  be an angle between two spheres at P..

Clearly 1 2AP r , BP r 

A B

P

r1 r
2

Since PA and PB are the normals to the tangent planes at P.

  angle between the tangent planes at P..

= angle between the normals to the tangent planes at P.

= angle between PA


and PB


.

So APB  or 0180 APB . If P does not lie on AB

From the 2 2 2APB, AB PA PB 2PA PB cos APB     .
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2 2 2
1 2 1 2d r r 2r r cos   

2 2 2
1 2

1 2

r r d
cos

2r r

 
   

If P lies on AB, 2 2 2AB AP PB AB AP PB 2AP PB      

2 2 2
1 2 1 2d r r 2r r   

In this case 0  so cos 1  and we have

2 2 2
1 2

1 2

r r d
cos 1

2r r

 
  

6.4.3 Note:
2 2 2

1 2

1 2

r r d
cos 1 1

2r r

 
   

2 2 2
1 2

1 2

r r d
1 1

2r r

 
   

 2 2
1 2r r d   and  2 2

1 2r r d 

1 2r r d   and 1 2r r d 

 there exist a point P such that
1OPO is a triangle with

1OP r and 1
2O P r

 Given spheres are intersecting.

6.4.4 Definition: Two intersecting spheres are said to be orthogonal or cut orthogonally if the

angle of intersection of the spheres is
2


.

The condition for two spheres to cut orthogonally is that the sum of the squares on
the radii is equal to the square on the distance between their centres.

i.e., 2 2 2
1 2r r d 

6.4.5 Theorem: The intersecting spheres

2 2 2S x y z 2ux 2vy 2wz d 0       
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1 2 2 2 1 1 1 1S x y z 2u x 2v y 2w z d 0       

Cut orthogonally

1 1 1 12uu 2vv 2ww d d    

Proof: Let A, B be the centres and 1 2r , r be the radii of the spheres 1S 0, S 0  then

   1 1 1A u, v, w , B u , v , w        and

2 2 22 2 2 1 1 1 1
1 2r u v w d, r u v w d       

Spheres
1S 0, S 0  cut orthogonally

 Given spheres 1S 0, S 0  are intersecting and angle between them is 090 .

a  point P such that 2PA r, PB r  and
0APB 90

2 2 2
1 2AB r r  

     
2 2 22 2 21 1 1 2 2 2 1 1 1u u v v w w u v w d u v w d             

1 1 1 12uu 2vv 2ww d d    

6.4.6 Theorem: If 1 2r , r are the radii pf two orthogonal spheres, then the radius of the circle

of their intersection is 1 2

2 2
1 2

r r

r r
.

Proof: Let A, B be the centres of two orithogonal spheres and P be a common point.

Let 1 2PA r , PB r  and AB d

Let the centre and radius of circle of intersection of spheres be C and a respectively.

A B

P

C

r1 r
2
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Given two spheres cut orthogonally

 2 2 2
1 2r r d 1             

 CP a 2        

 CP AB 3         

AC CB d 

2 2 2 2
1 2r a r a d    

Squaring on both sides

  2 2 2 2 2 2 2 2 2
1 2 1 2r a r a 2 r a r a d      

    2 2 2 2 2 2 2 2
1 2 1 22 r a r a 2a r r d     

   2 2 2 2 4
1 2r a r a a   

 2 2 2 2 2 4 4
1 2 1 2r r r r a a a   

1 2

2 2
1 2

r r
a

r r




6.4.7 Example: Find the equation of the sphere that passes through the circle.

2 2 2x y z 2x 3y 4z 6 0, 3x 4y 5z 15 0          

and cuts the sphere

2 2 2x y z 2x 4y 6z 11 0      

Orthogonally

Solution: The general form of the equation of the sphere through the given circle is

   2 2 2x y z 2x 3y 4z 6 3x 4y 5z 15 0           

i.e.,        2 2 2x y z 3 2 x 3 4 y 5 4 z 6 15 0 1                      
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The condition that (1) cuts the sphere  2 2 2x y z 2x 4y 6z 4 0 2               

orthogonally is

     
 

3 2 3 4 5 4
2 1 2 2 2 3 6 15 11

2 2 2

     
          

i.e., 3 2 6 8 15 12 17 15          

i.e., 5 1  

i.e,
1

5


 

Putting
1

5


for  in (1) the equation to sphere becomes

2 2 2 13 19
x y z x y 5z 9 0

5 5
      

i.e.,

 2 2 25 x y z 13x 19y 25z 45 0      

6.4.8 Example: Find the equation of the sphere that passes through the two points

   0,3,0 , 2, 1, 4   and cuts, orthogonally the two spheres

 2 2 2 2 2 2x y z x 3z 2 0, 2 x y z x 3y 4 0           

Solution: Let the equation of the required sphere be

 2 2 2x y z 2ux 2vy 2wz d 0 1            

Since it passes through  0,3,0 and  2, 1, 4   we get

 9 6v d 0 2         

and 4 1 16 4u 2v 8w d 0      

i.e.,  4u 2v 8w d 21 0 3             

Sphere (1) is orthogonal to 2 2 2x y z x 3z 2 0     
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1 3

2u 2v 0 2w d 2 u 3w d 2 0 4
2 2

 
                 

 

Sphere (1) is orthogonal to 2 2 2 x 3
x y z y 2 0

2 2
     

 
1 3

2u 2v 2w 0 d 2
4 4

    

 u 3v 2d 4 0 5           

From (2)
9 d

v
6

 


From (5) u 3
9 d

6

 

2

2d 4 0 2u 9 d 4d 8 0
 
          
 
 

5d 17
u

2


 

From (4)
5d 17

3w d 2 0 5d 17 6w 2d 4 0
2


         

3d 21 d 7
w

6 2

 
  

From (3)
5d 17 9 d d 7

4 2 8 d 21 0
2 6 2

        
         

     

114
38d 114 0 d 3

38


      

u 1, v 1, w 2    

 The required, equation is

2 2 2x y z 2x 2y 4z 3 0      
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6.4.9 Example: Find the equation of the sphere which touches the plane 3x 2y z 2 0    at

the point  1, 2,1 and cuts orthogonally the sphere

2 2 2x y z 4x 6y 4 0     

Solution: Let centre of the required sphere be 1C and radius be 1r .

Given sphere is  2 2 2x y z 4x 6y 4 0 1            

with centre  2C 2, 3,0 ,  and radius 2r 4 9 4 3   

Required sphere touches the plane

 3x 2y z 2 0 2           

at the point  1, 2,1 .

Hence centre 1C lies on the line through  1, 2,1 and perpendicular to the plane (2),

its equation is

 
x 1 y 2 z 1

r say
3 2 1

  
  



1C can be taken as  1C 3r 1, 2r 2, r 1     and radius 1r is the distance of the

centre 1C from the point of contact  1, 2,1 .

     2 2 22
1r 3r 1 1 2r 2 2 r 1 1         

2 2 2 29r 4r r 14r   

1r 14 r 14 r  

Since the required sphere and the sphere (1) cut orthogonally

2 2
1 2 1 2C C r r  

     2 2 2 23r 1 2r 1 r 1 14r 9        

2 2 2 29r 1 6r 4r 1 4r r 1 2r 14r 9 0           

1
3

4r 6 0 r 3 2 r 14
2

        



6.9 Sphere 3...Solid Geometry

 Centre of therequired sphere 1
3 3 3

C 3 1, 2 2, 1
2 2 2

     
       

    

7
, 5, 5 2

2

 
  
 

and radius 1
3

r 14
2



Required equation of the sphere is

 
2 2 2

27 5 3
x y 5 z 14

2 2 2

     
          

     

2 2 249 25 63
x 7x y 25 10y z 5z

4 4 2
         

2 2 2x y z 7x 10y 5z 12 0       

6.4.10 Example: Show that every sphere through the circle

2 2 2x y 2ax r 0, z 0    

cuts orthogonally every sphere through the circle

2 2 2x z r , y 0  

Solution: The two spheres through the given circles are

2 2 2 2x y z 2ax r 2 z 0       for some 

and 2 2 2 2x y z r 2 y 0      for some 

These can be re-written as

2 2 2 2x y z 2ax 2 z r 0      

2 2 2 2x y z 2 y r 0     

The condition of orthogonal intersection is of the 6.4.5 holds

Since     2 22 a 0 2 0 2 0 r r or 0 0         

Hence the two spheres intersect orthogonally.
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6.4.11 S.A.Q.: If two points P and Q are conjugate with respect to a sphere S. Prove that the
sphere with diameter PQ cuts S orthogonally.

6.4.12 S.A.Q.: Two spheres 1S 0 and 2S 0 are orthogonal show that the polar plane of

any point P on 1S with respect to 2S , passes through the other end of the diameter of 1S

through P.

6.5 Radical Plane and Line:

Let S be a sphere with centre    C c u, v, w    and radius a. The vector equation of

the sphere is given by

 
2 2F r r c a 0   

and cartician form of the equation is

  2 2 2S x, y,z x y z 2ux 2vy 2wz d      

where 2 2 2 2u v w d a   

For any  1 1 1D x , y ,z , The power of D is defined to be 11S from def (5.4.3). If a line

through D meets the sphere S in P and Q then 11DP DQ S  is independent of the line.

6.5.1 Theorem: The locus of points of whose powers w.r.t. two non-concentric spheres are
equal is the plane perpendicular to the line of centeres of the two spheres.

Proof: Let the equations of two spheres be

2 22 2
1 1 2 2r c a , r c a   

 P r lies on the locus  powers of the point  P r w.r.t. two spheres are equal

2 2

2 22 2
1 2r c a r c a     

 
2 2 2 2

1 2 2 1 2 12r c c c c a a 0       

This is of the form r n p  .

Hence the above equation represents the plane perpendicular to  1 2c c i.e., the

line of centres of the given two spheres.
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6.5.2 Def: The locus of points each of whose powers w.r.t. two non - concentric spheres are
equal, is a plane called the radical plane of the two spheres.

6.5.3 Theorem: The equation of the radical plane of the spheres

1S 0, S 0  is 1S S 0 

Proof: Let 2 2 2S x y z 2ux 2vy 2wz d 0       

1 2 2 2 1 1 1 1S x y z 2u x 2v y 2w z d 0       

 1 1 1P x , y ,z is a point on the radical plane of 1S 0, S 0 

1
11 11S S 

2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1 1x y z 2ux 2vy 2wz d x y z 2u x 2v y 2w z d 0              

     1 1 1 1
1 1 12 u u x 2 v v y 2 w w z d d 0        

The locus of P is

     1 1 1 12 u u x 2 v v y 2 w w z d d 0       

1S S 0   Since at least one of 1 1 1u u , v v , w w   is non zero this represents

a plane.

6.5.4 Note:

1) If two spheres intersect then their radical plane is the plane of their circle of
intersection.

2) If two spheres touch, their radical plane is the common tangent plane at the point of
contact.

3) The radical plane of two spheres is perpendicular to their line of centres.

6.5.5 Theorem: If 1 2 3S 0, S 0, S 0   are three spheres whose centres are non - collinear,,

then the three radical planes of the spheres taken in pairs pass through a line.

Proof: Let A, B, C be the centres of the spheres 1 2 3S 0, S 0, S 0   .

The radical plane  1 of 2 3S 0, S 0  is 2 3S S 0  and 1 is perpendicular to

 BC 6.5.1 .
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A B

C

The radical plane  2 of 3 1S 0, S 0  is 3 1S S 0  and 2 is perpendicular to

AC.

The radical plane  3 of 1 2S 0,S 0  is 1 2S S 0  and 3 is perpendicular to AB.

Since AB, BC are intersecting lines, the planes 3 1,  have a common line L (say)

(Ref - )

Since the general equation of the plane passing through the intersection of 1 2S S 0 

and 2 3S S 0  is

   1 2 2 3S S S S 0    

It follows by taking 1  , that the plane 1 3S S 0  that is 2 passes through L.

So 1 2 3, ,   pass through the common line L.

6.5.6 Def: It 1 2 3S 0, S 0, S 0   a three spheres whose centres are non - collinear then the

common line of the three radical planes of the spheres taken in pairs is called radical line

of the spheres 1 2 3S 0, S 0, S 0   .

6.5.7 Theorem: If 1 11 111S 0, S 0, S 0, S 0    are four spheres whose centres are non -

coplanar, then the four radical lines of these four spheres taken three by three intersect at
a unique point.

Proof: Let 2 2 2
1 1 1 1S x y z 2u x 2v y 2w z d 0       

1 2 2 2
2 2 2 2S x y z 2u x 2v y 2w z d 0       

11 2 2 2
3 3 3 3S x y z 2u x 2v y 2w z d 0       

111 2 2 2
4 4 4 4S x y z 2u x 2v y 2w z d 0       

be the equations of the given four spheres.
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The radical plane of 1S 0, S 0  is 1S S 0 

       1 2 1 2 1 2 1 22 u u x 2 v v y 2 w w z d d 0 1                

The radical plane of 11S 0, S 0  is 11S S 0 

       1 3 1 3 1 3 1 32 u u x 2 v v y 2 w w z d d 0 2                  

The radical plane of 111S 0, S 0  is 111S S 0 

       1 4 1 4 1 4 1 42 u u x 2 v v y 2 w w z d d 0 3              

Since the centres    1 1 1 2 2 2u , v , w , u , v , w ,       3 3 3u , v , w ,  

 4 4 4u , v , w   are non coplanar.

1 1 1

2 2 2

3 3 3

4 4 4

u v w 1

u v w 1
0

u v w 1

u v w 1

  

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

4 1 4 1 4 1

u v w 1

u u v v w w 0
0

u u v v w w 0

u u v v w w 0

  
 

  

  

1 2 1 2 1 2

1 3 1 3 1 3

1 4 1 4 1 4

u u v v w w

u u v v w w 0

u u v v w w

  

    

  

 The radical planes (1), (2), (3) pass through a unique point P..

Since P lies on the radical plane of 1 1 11S 0, S 0 ; S 0, S 0 ;   

 P lies on the radical line of
1 11S 0, S 0, S 0  

Similarly, P lies on the radical line of 1 111S 0, S 0, S 0  
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P lies on the radical line of
11 111S 0, S 0, S 0  

P lies on the radical line of 1 11 111S 0, S 0, S 0  

 The four radical lines of the four spheres taken three by three intersect
at a unique point.

6.5.8 Definition: The four radical lines of four spheres with non - coplanar centres taken
three by three intersect at a unique point, called the radical centre of the spheres.

6.5.9 Theorem: The centre of a sphere S = 0 which intersects two spheres
1 11S 0, S 0 

orthogonally lies on the radical plane of the spheres 1 11S 0, S 0  .

Proof: Let he centres of the spheres 1 11S 0, S 0, S 0   be A, B, C respectively..

A
B

C

D
E

S=0

S =0S = 0
1

11

Let D be the common point of the spheres 1S 0, S 0  and E be the common point

of the spheres 11S 0, S 0  .

Since S 0 intersects the two spheres 1 11S 0, S 0  orthogonally, CD, CE are

tangent lines of the spheres 1 11S 0, S 0  respectively. (by theorem)

2 2CD , CE are powers ofthe point C with respect the spheres
1 11S 0, S 0  .

Since CD CE (because radius of the spheres S 0 )
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The power of C w.r.t. to the spheres 1 11S 0, S 0  are equal.

 C lies on the radical plane of 1 11S 0, S 0 

6.6 Coaxal System of Spheres:

6.6.1 Def: A system of spheres is said to be a coaxal system of spheres if any two spheres of
the system have the same radical plane.

6.6.2 Theorem: If S 0 is a sphere and U 0 is a plane then the equation.

S U 0   ,  being the positive constatnt, represents a coaxal system of spheres

with radical plane U 0 .

Proof: Let 1 2S U 0, S U 0      be two distinct spheres of the system of spheres

S U 0   . Then 1 2   .

Radical plane of these two spheres is

   1 2S U S U 0     

i.e.,  1 2 U 0   

i.e., U 0

Therefore every two spheres of the system S U 0   have the same radical plane

U 0 .

The system of spheres S U 0   represents a coaxal system of spheres with

radical plane U 0 .

6.6.3 Corollary: If
1S 0, S 0  are two non-concentric spheres then

1
1 2S S 0    where

1 2 0    represents a coaxal system with the same radical plane as that of S 0 and

1S 0 .

6.6.4 Theorem: The centres of the spheres of a coaxal system of spheres are collinear and
the line of centres is perpendicular to the radical plane.

Proof: Let 1 2 3C , C , C be the centres of three spheres 1 2 3S 0, S 0, S 0   of coaxal system of

spheres with radical plane U 0 .

Since the radical plane of two spheres is  to the line of their centres, the radical

plane of any two spheres is U 0 .

1 2C C and 2 3C C are perpendicular to the plane U 0
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1 2 3C , C , C are collinear..

Since 1 2C C and 2 3C C are not parallel.

The centres of the spheres of a coaxal system of spheres are collinear and clearly

their line is lar to U 0 .

6.7 Parametric Forms of Some Coaxal System of Spheres:

6.7.1 Theorem: The parametric equation fo a coaxal system K of spheres with YOZ as
radical plane and x axis as the line of centres, is of the form

2 2 2x y z 2 x d 0     

where d is a fixed number and  is the parametric constant.

Proof: If the sphere represented by 2 2 2S x y z 2ux 2vy 2wz d 0       

belongs to K then

The centre  u, v, w   lies on X - axis

v w 0  

Then the equation of the sphere becomes

 2 2 2x y z 2ux d 0 1                  

Since the origin lies on the radical plane YOZ  i.e., x 0

The power of the point 'O' w.r.t. (1) is d.

The power of the point O w.r.t. the coaxal system of spheres is same

Therefore d is fixed constant.

 The equation to the coaxal system of spheres in its simplest form is

2 2 2x y z 2 x d 0      where u  is a parametric constant and d is a fixed

number.

6.7.2 Nature of the coaxal system of spheres of the form 2 2 2x y z 2 x d 0      :

The radical plane of the coaxal system of spheres

 2 2 2x y z 2 x d 0 1            



6.17 Sphere 3...Solid Geometry

where  is a parametric constant and d is a fixed constant is the YZ plane

 i.e., x 0 2         

The points of intersection of the sphere (1) and the plane (2) must satisfy the
equations

2 2x 0, y z d 0   

or  
22 2x 0, y z d   

Case (1): If d < 0 then the poitns of intersection lie on the circle  
22 2x 0, y z d   

and every sphere of the system passes through the circle.

Case (2): If d 0 then
2 2x 0, y z 0 x 0, y z 0       and hence  0,0,0 is the only

point common to (1) and (2).

Case (3): If d 0 then there exits no points common to both (1) & (2) and hence no two

spheres of the system have common points.

6.8 Limiting Points:

6.8.1 Def: The point spheres in a coaxal system of spheres are called limiting points of the
coaxal system.

6.8.2 Example: Find the limiting points of the coaxal system of spheres.

2 2 2S : x y z 2 x d 0       (d is fixed) .................. (1).

The centre of S is  ,0,0 and radius
2r d  

Clearly S is a point sphere iff 2 2d 0 d      .

(i) If d 0 then, any two spheres in the coaxal system does not intersect and this

system (1) has two limiting points    d, 0, 0 , d, 0, 0

(ii) If d 0 then the coaxal system is a touching coaxal system of spheres at origin;

and origin is the only limiting point of the system.

(iii) If d 0 then the coaxal system of spheres has no limiting points. The system has

intersecting spheres.
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6.8.3 Example:

(i) Show that the sphere if d 0

 2 2 2x y z 2vy 2wz d 0 1             

pases through the limiting points of the coaxal system

 2 2 2x y z 2kx d 0 2          

and cuts every member the system orthoganally,

whatever be the values of v and w.

(ii) Hence deduce that every sphere that passes through the limiting points of the coaxal
system (2) cuts every sphere of the system orthogonally.

Proof:

(i) From the sphere (2), centre  k, 0,0  , radius 2r k d 

If r 0 then 2k d 0 k d    

 The limiting points of (2) are  d, 0,0 and  d, 0,0 substituting these values

is (1) we get

d 0 0 0 0 d 0      and d 0 0 0 0 d 0     

 The sphere (1) passes through the limiting points of the system (2)

Now, Apply orthogonality condition 1 1 1 12uu 2vv 2ww d d    on the sphere (1),
(2) we get

     2 0 k 2v 0 2w 0 d d    

0 0 

The sphere (1) cuts every member of the system (2) orthogonally.

(ii) Let the coaxal system of spheres be

 2 2 2x y z 2 x d 0 3            

Limiting points of the system are  d, 0, 0 and  d, 0, 0

Let the equation of the sphere passing through these limiting points be
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 2 2 2x y z 2ux 2vy 2wz c 0 4            

d 2u d c 0    and d 2u d c 0  

 By solving u 0 and c d 

So the sphere (4) raduces to  2 2 2x y z 2vy 2wz d 0 5          

Clearly the spheres (3) and (5) are orthogonal.

Hence every sphere passes through the limiting points of coaxal system of spheres
cuts every sphere of the system orthogonally.

6.8.4 Example: Show that the locus of the point spheres of the system

 2 2 2S x y z 2vy 2wz d 0 1           

is the common circle of the system

 1 2 2 2S x y z 2ux d 0 2           

u, v, w being the parameters and d a constant.

Solution: Limiting points of the system (1) are

 0, v, w  with radius 2 2r v w d 0   

 2 2v w d 0 3          

The common circle of (1) and (2) lies on the radical plane 1S S 0 

i.e., 2ux 2vy 2wz 2d 0    

i.e.,  ux vy wz d 0 4             

The limiting points lie on the common circle of (1) and (2)

 0, v, w   lies on the plane (4)

2 2v w d 0    

i.e., 2 2v w d 0  

This is same as equation (3)
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6.8.5 Example: Find the liminting points of the coaxzal system of spheres

 2 2 2x y z 20x 30y 40z 29 2x 3y 4z 0          

Solution: The equation of coaxal system of spheres is

       2 2 2x y z 20 2 x 30 3 y 40 4 z 29 0 1                      

centre =
3 30

10 , , 20 2
2

  
    

 

Radius =    
2

2 23 30
10 20 2 29

2

  
       

 

If (1) is a point sphere, then radius is zero

   
2

2 23 30
10 20 2 29 0

2

  
        

 

2
2 29 900 180

100 20 400 4 80 29 0
4

   
            

229 580 2784 0     

2 20 96 0     

   8 12 0     

8,12  

Limiting points are
 

 
3 8 30

10 8, , 20 2 8
2

  
  

 
and

 
 

3 12 30
10 12, , 20 2 12

2

  
  

 

i.e.,    2, 3,4 , 2,3, 4  

6.8.6 Example: Find the equation to radical line of three spheres

 2 2 2
1S x y z 2x 2y 2z 2 0 1                  
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 2 2 2
2S x y z 4y 0 2                

 2 2 2
3S x y z 3x 2y 8z 6 0 3                   

Solution: Radical plane of (1) and (2) is 1 2S S 0  i.e., 2x 2y 2z 2 0    or

x y z 1 0    .

Radical plane of (2) and (3) is 2 3S S 0  i.e., 3x 6y 8z 6 0   

Radical line is x y z 1 0 3x 6y 8z 6        .

6.8.7 Example: Find the equation to radical centre of the three spheres

 2 2 2
1S x y z 2x 2y 2z 2 0 1              

 2 2 2
2S x y z 4y 0 2           

 2 2 2
3S x y z 3x 2y 8z 6 0 3             

 2 2 2
4S x y z x 4y 6z 2 0 4               

Solution:

Radical plane of (1) & (2) is 1 2S S 0 x y z 1 0      

Radical plane of (1)& (3) is 1 3S S 0 3x 6y 8z 6 0      

 Radical line of (1), (2), (3) is

 x y z 1 0 3x 6y 8z 6 5                      

Radical plane of (3) & (4) is 3 4S S 0 4x 6y 14z 8 0      

2x 3y 7z 4 0    

Radical line of (1), (3), (4) is

 3x 6y 8z 6 0 2x 3y 7z 4 0 6                  

The point of intersection of (5) & (6) is given by

x y z 1 0   

3x 6y 8z 6 0   

2x 3y 7z 4 0   



Centre for Distance Education 6.22 Acharya Nagarjuna University

Solving these quation we get
1 1 3

x , y , z
5 2 10


  

 Radical centre is
1 1 3

, ,
5 2 10

 
 
 

6.8.8 Example: Three spheres of radii 1 2 3r , r , r have their centres at

     A a,0,0 , B 0,b,0 , C 0,0,c and

 2 2 2 2 2 2
1 2 3r r r a b c *                      

A fourth sphere passes through the origin and the points A, B, C. Show that the

radical centre of the four spheres lie on the plane ax by cz 0   .

Proof: The three given spheres are

 2 2 2 2 2
1 1S x y z 2ax a r 0 1             

 2 2 2 2 2
2 2S x y z 2by b r 0 2             

 2 2 2 2 2
3 3S x y z 2cz c r 0 3             

Sphere of OABC is

 2 2 2
4S x y z ax by cz 0 4             

Radical plane of (1) and (2) is 1 2S S 0 

i.e.,  2 2 2 2
2 12ax 2by a b r r 0 5             

Radical plane of (1) and (3) is 1 3S S 0 

 2 2 2 2
3 12ax 2cz a c r r 0 6            

Radical plane of (1) and (4) is 1 4S S 0 

i.e., 2 2
1ax by cz a r 0     

or  2 2
12ax 2by 2cz 2a 2r 0 7           
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By solving (5), (6) and (7) we get radical centre

(7) - (5) gives 2 2 2 2
1 22cz a b r r 0     ...................... (8)

Similarly (7) - (6) gives 2 2 2 2
1 32by a c r r 0     ........................ (9)

(7) - [(5) + (6)] gives 2 2 2 2
2 32ax b c r r 0     ......................... (10)

(8) + (9) + (10)    2 2 2 2 2 2
1 2 32ax 2by 2cz 2 a b c 2 r r r 0        

2ax 2by 2cz 0    (using (*))

ax by cz 0   

 The radical centre of the four spheres lies on the plane ax by cz 0   .

6.8.9 Example: Show that the locus of a point from which equal tangents may be drawn to the
three spheres

 2 2 2
1S x y z 2x 2y 2z 2 0 1             

 2 2 2
2S x y z 4x 4z 4 0 2             

 2 2 2
3S x y z x 6y 4z 2 0 3              

is the straight line
x y 1 z

2 5 3


 

solution: The required locus is the radical line of the given spheres.

The radical plane of (1) & (2) is 1 2S S 0 2x 2y 2z 2 0      

x y z 1 0    

Theradical plane of (1) and (3) is 1 3S S 0 x 4y 6z 4 0      

The equation of the radical line is

 x y z 1 0 x 4y 6z 4 4                       

Let , m, n be the D.C's of the line (4). Then the line (4) is lar to both the normals

of the planes in (4).

m n 0   and 4m 6n 0  
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Solving
m n

2 5 3
 


m n

1 1 1 1

4 6 1 4

 

 

l

Putting z 0 in (4) we get

x y 1 0  

x 4y 4 0  

By solving x 0, y 1 

 0,1,0 lies on the line (4).

The equation of the radical line (4) in symmetric form is

x 0 y 1 z 0

2 5 3

  
 

or
x y 1 z

2 5 3


 

Which is the required locus.

6.9 Answers to S.A.Q.:

6.9.1 Solution of 6.4.11:

Let  2 2 2S x y z 2ux 2vy 2wz d 0 1             

Let  1 1 1P x , y ,z ,  2 2 2Q x , y ,z

Polar plane of P w.r.t. the sphere (1) is

       1 1 1 1 1 1xx yy zz u x x v y y w z z d 0 2                

Since P, Q are conjugate Q lies on the plane (2) we have

       1 2 1 2 1 2 1 2 1 2 1 2x x y y z z u x x v y y w z z d 0 3                 

Sphere on PQ as diameter is

        1 2 1 2 1 2x x x x y y y y z z z z 0        

or

       2 2 2
1 2 1 2 1 2 1 2 1 2 1 2x y z x x x y y y z z z x x y y z z 0 4                       
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Spheres (1) & (3) cut orthogonall

     1 2 1 2 1 2x x y y z z
2u 2v 2w

2 2 2

  
   

1 2 1 2 1 2d x x y y z z   

     1 2 1 2 1 2 1 2 1 2 1 2x x y y z z u x x v y y w z z d 0          

Which is true by (3)

Hence the result.

6.9.2 Solution of 6.4.12:

Let    1 1 1 2 2 2P x , y ,z , Q x , y ,z  be two points on the sphere 1S 0 such that PQ

as diaimeter.

 Equation of the sphere with PQ as diameter is

        1 1 2 1 2 1 2S x x x x y y y y z z z z 0         

       2 2 2
1 1 2 1 2 1 2 1 2 1 2 1 2S x y z x x x y y y z z z x x y y z z 0 1                   

Let  2 2 2 1 1 1 1
2S x y z 2u x 2v y 2w z d 0 2             

Given that 1 2S 0, S 0  are orthogonal.

1 1 1 11 2 1 1 1 2
1 2 1 2 1 2

x x y y z z
2u 2v 2w d x x y y z z

2 2 2

       
           

     

       1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2x x y y z z u x x v y y w z z d 0 3                   

The polar of P w.r.t. the sphere 2S 0 is

     1 1 1 1
1 1 1 1 1 1xx yy zz u x x v y y w z z d 0         

This plane passes through Q

     1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2x x y y z z u x x v y y w z z d 0          

This is true by (3)

 The polar plane of P on 1S 0 w.r.t. the sphere 2S 0 pass through the other end Q of

the diameter of S 0 through P..
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6.10 Summary:

After going to this lesson the student is expected to have a clear idea about the notion of
angle between two spheres, orthogonal spheres, Radical plane, Radical line, Radical centre, coaxial
system of spheres and limiting points.

6.11 Technical Terms:

Orthogonal

Radical Plane and Line

Radical Centre

Coaxial System of Spheres

Limiting Points

6.12 Exercise:
1. Find the angle of intersection of the spheres

2 2 2x y z 4 0   

and
2 2 2x y z 2x 2y 0    

2. Prove that the spheres

2 2 2x y z 6y 2z 8 0     

2 2 2x y z 6x 8y 4z 20 0       are orthogonal

3. Find the equation to the sphere which cuts orthogonally each of the spheres.

2 2 2x y z 14 0   

2 2 2x y z 4y 4 0    

2 2 2x y z 6z 9 0    

4. Find the equation to the sphere which touches the plane

3x 2y z 2 0   

at the point  1, 2,1 and cuts orthogonally the sphere

2 2 2x y z 4x 6y 4 0     

5. Find the equation to radical line of the three spheres

2 2 2x y z 2x 2y 2z 2 0      
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2 2 2x y z 4y 0   

2 2 2x y z 3x 2y 8z 6 0      

6. Find the radical line of the spheres

2 2 2x y z 2x 2y 2z 2 0      

2 2 2x y z 4x 4z 4 0     

2 2 2x y z x 6y 4z 2 0      

in symmetric form

7. If A and B are two fixed points and P moves so that PA nPB . Show that the locus

of P is a sphere. Show also that all such spheres, for different values of n have a
common radical plane.

8. Show that the spheres which cut two given spheres along great circle, all pass
through two fixed points

9. Show that the spheres

2 2 2x y z 4x 8y 12z 22 0      

2 2 2x y z 3x 6y 9z 18 0      

2 2 2x y z 5x 10y 15z 26 0       are coaxial

10. Find the equation ofthe sphere through the point  0,1,2 and belonging to the co

axial system defined by

2 2 2x y z 3x 3y 2z 0     

2 2 2x y z 2x y z 10 0      

11. Find the limiting points of coaxial system of spheres determined by

(i) 2 2 2x y z 3x 3y 6 0     

2 2 2x y z 6y 6z 6 0     

(ii) 2 2 2x y z 3x 3y 6 0     

2 2 2x y z 4x 2y 2z 6 0      

(iii) 2 2 2x y z 8x 2y 2z 32 0      

2 2 2x y z 7x z 23 0     
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12. Find the equation of the coaxial system of spheres whose limiting points are

   1,2,1 , 2,1, 1   and also find the equation of the common radical plane.

13.  2,1, 1  is a limiting point of a coaxial systems for which  x y 2z 0   is the

radical plane. Find the other limiting point.

14. Find the equations of the spheres of the coaxial system

   2 2 2x y z 5 2x y 3z 3 0         which touch the plane 3x 4y 15  .

15. Show that the radical planes of the spheres of a coaxial system and of a given
sphere pass through a line.

6.13 Answers to Exercise:

1)
4



3)  2 2 23 x y z 39x 15y 5z 4z 0      

4) 2 2 2x y z 7x 10y 5z 12 0      

5) x y z 1 0 3x 6y 8z 2       

6)
x y 1 3

2 5 5


 

10) (i) 2 2 2x y z 4x 5y 5z 10 0      

11) (i)    1,2,1 , 2,1,1 

(ii)    1,2,1 , 1,1, 1  

(iii)    3,1, 2 , 5,3,4

12)  2 2 2x y z 2x 4y 2z 6 x y 2z 0, x y 2z 0             

13)  1,2,1

14)  2 2 25 x y z 8x 4y 12z 13 0      

6.14 Model Examination Questions:

1. If 1 2r , r are the radii of two orthogonal spheres then the radius of the circle of their

intersection is 1 2

2 2
1 2

r r

r r
.
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2. The centre of a sphere S 0 which intersects two spheres 1 11S 0, S 0 

orthogonally lies on the radical plans of the spheres 1 11S 0, S 0  .

3. Find the limiting point of Coaxial system of spheres determined by

2 2 2x y z 3x 3y 6 0     

2 2 2x y z 6y 6z 6 0     

6.17 Model Practical Problem with Solution:
Problem: Find the limiting points of coaxial system of spheres determined by

 2 2 2x y z 3x 3y 6 0 1                      

 2 2 2x y z 6y 6z 6 0 2                       

Aim: To find the limiting points of coaxial system of spheres determined by given spheres (1) & (2).

Definitions and Results used:

(1) A system of spheres is said to be a coaxal system of spheres if any two spheres of the
system have the same radical plane.

(2) The locus of points each of whose powers w.r.t. two non - concentric spheres are equal, is a
plane called the radical plane of the two spheres.

(3) The point spheres in a coaxal system system of spheres are called limiting points of the
coaxal system.

Solution: Radical plane of (1) and (2) is

 3x 3y 6z 0 x y 2z 0 3             

The equation of coaxal system of spheres is

 2 2 2x y z 3x 3y 6 x y 2z 0,           is a parameter

     2 2 2x y z 3 x 3 y 2 z 6 0 4                       

center of   3 3
4 , ,

2 2

       
        

    

Radius
2 2

23 3
6

2 2
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If (4) is a point sphere then radius is zero.

2 2
23 3

6 0
2 2

      
        
   

2 2 29 6 9 6 4 24 0             

2 26 6 0 1 1          

Substitute the value of  in the center of the sphere (4)

We get

 3 1 1 3 3 1 1 3
, , 1 , , , 1

2 2 2 2

       
         
   

i.e.,    2, 1, 1 , 1, 2, 1  

 The required limiting points are

   2, 1, 1 , 1, 2, 1   .

Lesson Writer

Dr. B. RAMI REDDY



7.1 Cone - ISolid GeometryLesson - 7

CONE - I

7.1 Objective of the lesson:

In this lesson the student is introduced to various aspects of the cone such as equation of
a cone, vertex, generator, quadratic cones, tangent lines and tangent planes, reciprocal cones.

7.2 Structure:

This lesson contains the following components:

7.3 Introduction

7.4 Definition and Examples

7.5 Some special types of cones

7.6 General Second Degree Equation

7.7 Tangent Lines and Tangent Planes

7.8 Reciprocal Cones

7.9 Summary

7.10 Technical Terms

7.11 Exercise

7.12 Answers to Exercise

7.13 Model Examination Questions

7.14 Model Practical Problem with Solution

7.3 Introduction:

In this lesson we define a second degree cone and concentrate on derivation of the
equations that represent certain types of cones including those passing through the origin and the
general equation of the cone, cones with a guiding curve, and we also derive equations for the
tangent lines and tangent planes of a cone. The reciprocal cone of a cone is defined and its
equation in term of the coefficients of the equation of the cone is obtained. The properties of the
right circular cone is also studied.

7.4 Definitions and Examples:

7.4.1 Definition: Let S be a set of points in the space. It there existes a point V S , such that

P S VP S   . Then the surface S is called a cone, V is said to be the vertex of the

cone, VP is called the generator of the cone.
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7.4.2 Examples of a Cone:

P
S

V

(1) Any straight line is a cone with every point on it as a vertex.

(2) A pair of intersecting lines is a cone, with the point of intersection as the vertex.

(3) A plane is a cone with every point on it as a vertex.

(4) If 1 2,  are two intersecting planes, they together represent a cone with every

point on their line of intersection as a vertex.

7.4.3 Def: A cone represented by a second degree polymonnial  f x, y,z 0 is called a Quadric

cone. Here f is of the form.

  2 2 2f x, y,z ax by cz 2fyz 2gzx 2hxy 2cone 2y 2wz d         

where at least one of the constants a,b,c,f ,g,h is non zero.

All the cones having more than one vertex are called degeneratege cones.

7.4.4 Non Degenerate Cone: A cone which has only one vertex is called a non - degenerate
cone.

In this lesson we deal with non - degenerate cones only.

7.5 Some Special Types of Cones:

7.5.1 Theorem: If 3f : R R is a homogeneous Polynomial of degree two, then the surface

    S x, y,z f x, y,z 0  is a cone with vertex at the origin. conversely, a cone with vertex

at the origin, is represented by an equation  f x, y,z 0 , where f is a homogeneous

polynomial of degree 2.
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Proof: The if part is valid for any homogeneous polynomial of degree 2 let  f x, y,z be a

homogeneous polynomial of degree 2 in x, y, z. Then for R

     2f x, y, z f x, y,z 1                

Suppose that  f x, y,z 0 represents a surface S.

Clearly origin O S .

If  P x, y,z S then    f x, y,z 0 2       

The d.r's of the line OP are  1 1 1x , y ,z

Equations to OP are  
1 1 1

x y z
3

x y z
        

If Q is any point on the line OP, then it is of the form  1 1 1x , y , z  

Now    2
1 1 1 1 1 1f x , y , z f x , y , z    by (1)

2 0   by (2)

0

Hence every point Q on the line OP lies on S. Hence by definition of a cone the

surface S represented by the equation  f x, y,z 0 is a cone with the vertex at '0'.

Converse: We prove the converse for a second degree polynomial. Let

2 2 2S ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0           represent a cone with

vertex at 0. Let P S , where  P x, y,z . Then  S x, y,z 0 .

Since OP S , any Pt on  OP S. i.e. x, y, z S, R       

If 1   then we have    1 1 1 1 1 1S x , y , z S x , y , z   

   1 1 1 1 1 1 1 1 1S x , y ,z S x , y , z ux vy wz 0        

The point P lies on the plane  ux uy wz 0 5            

Also    d 0 O S 6          
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We show that u v w 0   .

All the points on S satisfy the equation (5)

If    u,v, w 0,0,0 then (5) represents a plane through 'O' so that S   . But S

is a non degenerate cone.

S   . which is a contradiction.

Hence u v w 0  

Hence 2 2 2S ax by cz 2fyz 2fzx 2hxy      , which is homogeneous polynomial

of degree 2.

7.5.2 Cor: If  
x y z

1
m n

       


is a generator of a cone  f x, y,z 0 with vertex at the

origin then  f ,m,n 0 .

Proof: Any point on the line (1) is  , m, n  

x y z

m n
 


is generator of    f x, y,z 0 , m, n     satisfies  f x, y,z 0

   2f , m, n 0 f ,m,n 0          f ,m,n 0 

7.5.3 Theorem: Given a conic C in the plane z 0 and a point V not in the plane of the

conic, then there is a unique cone S with vertex at V such that a line L through V is a
generator for 'S' iff L touches C.

V

L

C

Cone S
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Proof: Let the equation to the curve C in the plane z 0 . be    f x, y 0 1       

Let V be the point  1 1 1x , y ,z Any line L through V may be given by

   1 1 1x x y y z z
r say 2

m n

  
          



The set of common points of (2) and (3) is given by

  1
1 1 1

z
f r x , mr y 0, nr z 0 r

n


       and

 1 1 1 1
m

f x z , y z 0 3
n n

 
              

 



   1 1

1 1

x x y ym
2 , 4

n z z n z z

 
        

 



Let S be the cone, with vetex at V. Let P  x, y,z be any point Q C and V P V  is a

generator of S.

VP is a line which intersects XY plane and P lies on C.

1z z  and
1 1

1 1 1 1
1 1

x x y y
x z , y z C

z z z z

  
     

  

1z z  and 1 1
1 1 1 1

1 1

x x y y
f x z , y z 0

z z z z

  
     

  

On expansion, we get a second degree polynormial in  1 1 1x x , y y , z z  

satisfying  1 1 1x , y ,z .

So it represents a cone with vertex at  1 1 1x , y , z

7.5.4 Guiding Curve (or) Base Curve: Let  1 1 1V x , y ,z be a point. Let C be a plane not

containing V. If there is a cone with vertex at V, whose generators intersect the curve C,
then C is called a guiding curve to the cone S.

7.5.5 Procedure for problems with vertex at 'O': Since the equation of a cone curve is

second degree homogeneous in  x, y,z homogenize the given cone as in the chapter

"pair of lines" of Intermediate course.
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7.5.6 Examples: Find the equation to the cone with the vertex at the origin and with the following
curve as a base curve.

(1)   2 2f x, y ax 2hxy by 2gn 2fy c 0, z k       

(2) 2 2x y 4, z 2  

(3) 2 2 2ax by cz 1, x my nz p     

(4) 2 2 2 2 2 2x y z x 2y 3z 4, x y z 2x 3y 4z 5           

Solution:

(1) Since 'O' is the vertex the required cone eqation is obtained by homogenizing the
base curve equations. (Common for all 4 examples.)

Given curve is  2 2ax by 24xy 2gx 2fy c 0 1           

 z k 2     

 
z

2 1
k

  rewrite (1)

     22 2ax 2hxy by 2gx 2fy 1 c 1 0     

Substitute
z

1
k

 in above equation. The required cone equation is given by

 
2

2 2
2

z z
ax 2bxy by 2 gx fy x 0

k k
     

i.e., 2 2 2 2 2 2ak 2hk xy bk y 2gkxz kyz cz 0      

or
x y

f k, k 0
z z

 
 

 

Solution for (2): given curve is  2 2x y 4 1           ,  z 2 2       

  22 z 4 

Substisting in (1) the revised cone is 2 2 2x y z 
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Solution for (3): such that the given base curve is

 2 2 2ax by cz 1 1           

 x my nz p 2         

   
x my nz

2 1 3
p

 
            



Rewriting (1) 2 2 2 2ax by cz 1  

Substituting (3) the revised cone is

 22 2 2
2

x my nz
ax by cz

P

 
  



i.e.    22 2 2 2P ax by cz x my nz    

Solutin for (4): Given surfaces are

 2 2 2x y z x 2y 3z 4 0 1            

 2 2 2x y z 2x 3y 4z 5 0 2            

Common plane of the two surfaces is obtained by

     1 2 0 x y z 1 3             

Rewriting (1)      22 2 2x y z x 2y 3z 1 4 1      

 The required cone curve is

    22 2 2x y z x 2y 3z x y z 4 x y z         

7.5.7 Show that the general equation of the cone which passes through the coordinate axes is
given by

fyz gzx hxy 0,   where    f ,g,h 0,0,0

Solution: Since the generators intersect at the vertex and the axes intersect at 'O', origin is
the vertex. Equation to the cone may be written as

 2 2 2ax by cz 2fyz 2fzx 2fxy 0 1            
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X axis is a genertor  1,0,0 lies on (1) a 0 

Similarly Y axis is a generator b 0  Z axis is a generator c 0 

The required cone equation is given by fyz fzx hxy 0  

7.5.8 The plane
x y z

1
a b c
   meets the axes in A, B, C. Prove that the equation to the cone

generated by the lines joining the origin to the circle ABC is given by

a b b c c a
xy yz zx 0

b a c b a c

     
          

     

Solution: Equation to the given plane in  
x y z

1 1
a b c
         

It meets the X axis in
x

y 0, z 0 1 x a
a

     

 A is a, 0, 0

Similarly B is    0,b,0 , C 0,0,c

The circle through A, B, C is P the plane of intersection of the sphere OABC and
the plane of ABC. Equation of the sphere through the points O, A, B, C is given by

 2 2 2x y z ax by cz 0 2                    

The circle ABC is the section of the sphere (2) and the plane (1).

Making (2) homogeneous with the help of (1), the required equation of the cone
whose vertex is at the origin and whose generators meet the circle ABC is given by

 2 2 2 x y z
x y z ax by cz 0

a b c

 
        

 

i.e.,
b c c a a b

yz zx xy 0
c a a c b a

     
          

     

7.5.9 Find the equation of the cone with vetex at  1 1 1x , y ,z 1z 0 and base curve in the xy plane

given by    2 2f x, y ax 2hxy by 2gx 2fy c 0, z 0 1                  
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Solution: As in the theorem 7.5.3 the cone equation in given by

 
       2 1 1 1 1 1 1

1
1 1

x z z x x x y z z y y y
z z f , 0

z z z z

       
   

  

i.e,         2 2
1 1 1 1 1 1 1 1 1 1a x z z x 2h x z z x y z yz b y z yz 2g x z xz       

        2
1 1 1 1 1z z 2f y z yz y y c z z 0 2                 

Conversely if  0 0 0P x , y , z is a point and  1 1 1V x , y ,z is the vertex then the line VP in

given by

1 1 1

0 1 0 1 0 1

x x y y z z
r

x x y y z z

  
  

  
. if this line meets the xy plane in  Q x, y,0 then

   1 0 1 1 0 1
1 1

0 1 0 1

z x x z y y
x x , y y

z z z z

 
   

 
.

This point satisfies
2 2ax 2hxy by 2gx 2fy c 0     

 The generator through VQ meeets the curve in P. Hence the cone with vertex at V and

base curve C is given by (2).

7.5.10 Find the equation of the cone with vertex at  1 1 1x , y ,z and the base curve satisfying.

  2 2f x, y ax 2hxy by 2gx 2fy c 0, L px qy rz s 0           

where  1 1 1x , y ,z does not lie in the plane L.

Solution: The given vertex is  V x, y,z

The base curve is  2 2ax 2hxy by 2gx 2fy c 0 1              

 px qy rz s 0 2                         

Shift the origin to the point  1 1 1x , y ,z we have

1 1x X x , y Y y , z Z z     

Now (1) vertex is the origin

(2) Base curve is  1 1f X x , Y y 
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    2 2
1 1 1 1 1 1ax 2hxy by 2x ax by 2y hx by f f x y 0         

11L px qy rz L   

Let 1 1 1L s px qy r z px qy r z        

The equation to the required cone in given by

     2 2 2 2
11 11 1 1 1 1 1 1L : ax 2hxy by 2L ax hy f X hx hy f Y f x , y 0               

Again shift the origin to the original point. Equation to the cone is given by

     2 2 22
11 1 1 1L a x x b y y c z z     

  

        2
11 1 1 1 1 1 1 1 12L ax hy f x x hx by f y y f x , y 0,               

Where 1 1 1px qy r z px qy rz      

7.5.11 Find the equation of the cone with vertex at  1,2,3 , and whose guiding curve is represented

by the equations, 2 2 2x y z 4, x y z 1     

Solution: The given vertex is  1,2,3 . Any line through it is

 
x 1 y 2 z 3 x y z 6

1
m n m n

     
                    

  

The given curve is  2 2 2x y z 4, x y z 1 2                  

Substitue (2) in (1) we have

x 1 y 2 z 3 1 6 5

m n m n m n

    
   

     

5 5m 5n
x 1 , y 2 , z 3

m n m n m n

  
      

     



  

m n 4 2 2n 3m 3 3m 2n
x , y , z

m n m n m n

     
   

     

  

  

Substituting in 2 2 2x y z 4  
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         2 2 2 2
m n 4 2 2n 3m 3 3m 2n 4 m n 3                           

The required cone curve is obtained by writting

     K x 1 , m K y 2 , n K z 3      in (3)

 The required cone equation is

       2 2 2 2
y z 4x 1 2x 2z 3y 2 3x 3y 2z 3 4 x y z 6              

2 2 25x 3y z 6yz 4zx 2xy 6x 8y 10z 26 0          

7.5.12 Find the equation of the cone with vertex at  2, ,  and base curve, 2 2ax by 1, z 0   .

Solution: Given vertex is  , ,   Any line through  , ,   is  
x y z

1
m n

   
         



Any point on (1) is  r , mr , nr     The base curve is  2 2ax by 1, z 0 2          

(1) will be a generator of the required curve if it cuts the curve (2)

i.e.,    2 2
a r b mr 1,    

r
nr 0, i.e.

n


   

 
2 2

m
a b 1 3

n n

   
                      

   



 
x m y

1 ,
m z n z

 
  

   



Substituting in (3), the required cone equation is

2 2
x y

a b 1
z z

     
            

      

     2 2 2
i.e. z x b z y z         
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7.6 Second Degree Equation x, y, z:

If a, b, c, f , g, h are not zero simultaneously, then the equation

2 2 2ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0          , is called second degree general

equation in x, y, z .

7.6.1 We use the following notation:

2 2 2S ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d         

2 2 2E ax by cz 2fyz 2gzx 2hxy     

U ax hy gz u   

V hx by fz v   

W gx fy cz w   

D ux vy wz d   

1 1 1 1U ax hy gz u   

1 1 1 1V hx by fz v   

1 1 1 1W gx fy cz w   

1 1 1 1D ux vy cz d   

1 1 1 1S ux vy wz D   

11 1 1 1 1 1 1 1S u x v y w z D   

a h g u

h b f v

g f c w

u v w d

 

7.6.2 We have the following consequences:

(1) 12 21S S

(2)  11 1 1 1S S x , y ,z

(3) S Ux Vy Wz D   
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7.6.3 Condition for second degree equation to represent a cone: The conditions for the

equation  S x, y,z 0 to represent a cone with vertex at  1 1 1x , y ,z are

1 1 1U 0, V 0, W 0   and 0 

Proof: Assume that 2 2 2S ax by cz 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0          

represents a cone with vetex at  1 1 1x , y ,z . We shift the origin to the point P by translation

of axes. the cone now has the vertex at the origin. The equation S 0 becomes

           

        

2 2 2
1 1 1 1 1 1 1

1 1 1 1 1

S a x x b y y c z z 2f y y z z 2g z z x x

2h x x y y 2u x x 2v y y 2w z z d 0

            

         

i.e.  

   

2 2 2
1 1 1

2 2 2
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

S ax by cz 2fyz 2gzx 2hxy 2 ax hy gz u x

2 hx by fz v y 2 gx fy cz w z ax by cz

2fy z 2gz x 2hx y 2ux 2vy 2wz d 0

          

          

      

i.e.   1 1 1 11S E x, y, z 2U x 2V y 2W z S 0     

  1 1 1 1 1 1 1 1 1 1E x, y, z 2U x 2V y 2w z U x V y W z D 0        

This cone is having vertex at 0. It is homogeneous in x, y, z.

 

1

1

1

1

Coeff of x 0 U 0

Coeff of y 0 V 0
A

Coeff of z 0 W 0

and Cons tan t term 0 D 0

    
   


   
   

hence 0 

7.6.4 Procedure to find the vertex of the cone S 0

Introduce the fourth variable 't' and write

  2 2 2 2F x, y,z, t ax by cz 2fyz 2fzx 2hxy 2uxt 2vyt 2wtz dt         

Find
dF dF dF dF

U , V , W , D
du dv dw dt

   

Put t 1 and solve the above equation to get x, y,z . Substitute in the fourth equation.

If it is satisfied then S 0 represents a cone with vetex at  1 1 1x , y ,z .
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7.6.5 Find the vertex of the cone 2 2 24x y 2z 2xy 3yz 12x 11y 6z 4 0        

write   2 2 2 2F x, y,z, t 4x y 2z 2xy 3yz 12xt 11yt 6zt 4t 0         

1
F

U 8x 2y 12t
x


   


1
F

V 2x 2y 3z 11t
y


    


1
F

W 4z 3y 6t
z


   


1
F

D 12x 11y 6z 8t
t


    


Put t 1 and solve 1 1 1 1U 0, V 0, W 0, D 0   

 4x y 6 0 1          

 2x 2y 3z 11 0 2              

 3y 4z 6 0 3              

 12x 11y 6z 8 0 4                 

solving (1), (2) and (3)

     2 2 1 5y 6z 28 0 5            

   3 3 5 2 19y 38 0      y 2  

 3 6 4z 6 0 4z 12 z 3          

 1 4x 2 6 0 4x 4 x 1         

Substituting the values x 1, y 2, z 3      in (4)

     12 1 11 2 6 3 8 30 30 0         

 The given equation represents a cone with vertex at  1, 2, 3   .

7.6.6 Find the vertex of the cone

22y 8yz 4zx 8xy 6x 4y 2z 5 0       

Solution: Write   2 2F x, y,z, t 2y 8yz 4zx 8xy 6xt 4yt 2zt 5t       
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Consider dF
U 4z 8y 6t 0

dx
    

dF
V 4y 8z 8x 4t 0

dy
     

df
W 8y 4x 2t 0

dz
     

dF
D 6x 4y 2z 10t 0

dt
     

When t 1 these equations become

 4y 2z 3 0 1            

 2x y 2z 1 0 2             

 2x 4y 1 0 3            

 3x 2y z 5 0 4                 

Solving for  x, y, z

     2 1 2x 5y 4 0 5             

 3 2x 4y 1 0   

 
1

9y 3 0 y
3

     

 
4 7 7

3 2x 1 0 2x x
3 3 6

 
       

 
4 5 5

6 2z 3 0 2x z
3 3 6

       

Substituting the values of  x, y, z in (4)
7 1 5

3 2 5
6 3 6

   
     

   

21 4 5 30
0

6

   
 

The required vertex is
7 1 5

, ,
6 3 6
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7.7 Tangent Lines and Tangent Planes:

7.7.1 Theorem: A line  1 1 1x x y y z z
1

m n

  
               



meets the cone  S x, y,z 0 at  1 1 1x t, y mt, z nt   iff  2At Bt C 0 2        

where   1 1 1 11A E , m, n , B U mV nW , C S     

Proof: For any t R  1 1 1S x t, y mt, z nt  

        2 2 2
1 1 1 1 1a x t b y mt c z nt 2f y mt z nt        

        1 1 1 1 12g z nt x t 2h x t y mt 2u x t         

   1 12v y mt 2w z nt d    

 2 2 2 2a bm cn 2fmn 2g n 2h m t        

 1 1 1 1 1 1 1 1 12 a x bmy cnz fmz fny gnx g z h y hmx u m vmn w n t              

2 2 2
1 1 1 1 1 1 1 1 1 1 1 1ax by cz 2fy z 2gz x 2hx y 2ux 2vy 2wz d         

2At 2Bt C   where   1 1 1 11A E , m, n , B U mV nW , C S     

Since the general point on the line (1) is of the form  1 1 1x t, y mt, z nt   , It

follows that points of intersection of (1) and the cone S. Correspond precisely to t satisfying

2At Bt C 0   . Thus the line (1) meets the curve at  1 1 1x t, y mt, z nt   iff

2At Bt C 0   .

7.7.2 Consequences:

(1) If      2
1 1 1 11E ,m,n 0, u mv nw S E ,m,n       then the equation (2) has

different roots say 1 2t , t we get two points 1 2P , P . The line 1 2P P is called a chord

to the cone.

(2) If      2
1 1 1 11E ,m,n 0, u mv nw S E ,m,n       the equation (2) has no real

roots. the line (1) does not intersect the cone.
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(3) If  E ,m,n 0 and    2
1 1 1 11LU mV nW S E ,m,n     then cone and line

intersect at only one point since (1) has double root. We say that the line is a
tangent line at that point, which is called the point of contact.

(4) If A B C 0   then the line becomes a generator to the cone.

7.7.3 Example: Find whether the line
x 1 y z

1 0 1


  is a tangent to the cone

2 2 2x y z  .

Solution: The given cone is .....  2 2 2x y z 1      

The given line is      
x 1 y z

r say 2
1 0 1


          

Any point on (2) is  r 1, 0, r . If (1) and (2) intersect then

 2 2 2r 1 0 r 2r 1 0     
1

r
2

  

The only common point is
1 1

, 0,
2 2

 
 
 

. But the line is not a tangent line.

Since  A E ,m,n 0  , 11S 0 in this case line is a parellel line to a generator..

7.7.4 Tangent Plane: Definition: If  1 1 1P x , y ,z is a point on the cone S 0 and atleast one of

1 1 1U , V , W is non zero, then the locus of all tangent lines at P is called the tangent plane

at P for the cone S 0 , If 1 1 1U V W 0   then P is called a singular point of the cone.

7.7.5 Theorem: The tangent plane of the cone  E x, y,z 0 at  1 1 1P x , y ,z on it which is

not a singular point is the plane represented by 1 1 1U x V y W z 0   .

Proof: Let  1 1 1x x y y z z
1

m n

  
             


be a line through a point  1 1 1x , y ,z on the

cone    E x, y,z 0 2       

   1 1 1E x , y ,z 0 3          

2At Bt 0   (7.6.2) and (7.7.1) ....................(4)
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(1) Will be tangent line at P it the roots of (4) are equal for which the condition is

 1 1 1U mV nW 0 5          .

The locus of the tangent lines at  1 1 1P x , y ,z is the tangent plane, obtained from (1)

and (5)

       1 1 11 x x K, m y y K, n z z K      

Substiing in (5) we have

     1 1 1 1 1 1x x U y y V z z W 0     

1 1 1 1 1 1 1 1 1U x V y W z U x V y W z 0       by (3)

 The tangent plane at  1 1 1P x , y ,z on the cone  E x, y,z may be represented by

1 1 1U x V y W z 0   .

i.e.,      1 1 1 1 1 1 1 1 1ax hy gz x hx by fz y gx fy cz z 0        

7.7.6 Theorem: (Conditions for tangency of a plane.) A necessary and sufficient condition

for a plane    x my nz 0 1                  to be a tangent plane to the cone

   E x, y,z 0 2              is

a h g

h b f m
K 0

g f c n

m n o

 





Proof:

Necessity: Equation to the tangent plane at a point  1 1 1x , y ,z on the cone  E x, y,z 0

 1 1 1U x V y W z 0 3                 . since (1) is also a tangent is given by plane at

 1 1 1x , y ,z . (1) and (3) represents the same plane by comparing coefficients of x,

y, z in (1) and (3).

 1 1 1U V W
say

m n
   



1 1 1U , V m, w n       
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1 1 1

1 1 1

1 1 1

1 1 1

ax hy gz 0

hx by fz m 0
A

gx fy cz n 0

Also x my nz 0 0

      
     
         

     
      





Since the system (A) possesses a non zero solution  x, y,z, t

a h g

h b t m
K 0

g t c n

m n 0

 





Sufficiency: If K = 0 then the system (A) possess non - zero solution. If 0  , then

   1 1 1x , y ,z 0,0,0 and 1 1 1U 0, V 0, W 0   which is a contradiction to "  0,0,0 is the

only vertex" . Set  x, y,z, be a non zero solution for the system (A) We have

1 1 1U , V m, W n      and 1 1 1x my nz 0   .

Also  1 1 1 1 1 1 1 1 1E x , y ,z U x V y W z    1 1 1x my nz 0     

 1 1 1x , y ,z lies on the cone  E x, y,z

and 1 1 1U x V y W z x my nz 0     

x my nz 0    is a tangent plane to  E x, y,z

Note: If A, , B, C, F, G, H are the cofactors of a, b, c, f, g, h in

a h g

D h b f

g f c



then the required condition becomes

2 2 2A Bm Cn 2Fmn 2Gn 2H m 0       

7.7.7 Example: Are the lines x 0, y 1  and x 1, y 0  tangents to the cone
2 2 2x y z  ?

Solution: The given cone is  2 2 2x y z 1          
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The given line is  
x 1 y z

2
0 0 1


              x 1, y 0 

Any point on (2) is  1,0, r Replace by : This lies on (1) if

21 0 r r 1     So the points of intersection are  1,0, 1

 The given line is not a tangent line. Similarly the second line is not a tangent line
to the given cone.

7.7.8 Example: Show that the line
x y z

m n
 


is the line of intersection of the tangent planes to

the cone  E x, y,z 0 along the line which is cut by the plane

     a hm gn x h bm fn y g fm cn z 0          

Solution: The given cone is    E x, y,z 0 1        

given line is  
x y z

2
m n

       


any point on (2) is  r, mr, nr .

The tangent plane at the point  1 1 1x , y , z on (1) is given by 1 1 1U x V y W z 0   ........(3)

The line (2) lies on (3) iff 1 1 1U r V mr W nr 0  

     1 1 1 1 1 1 1 1 1ax hy gz m hx by fz n gx fy cz 0         

     1 1 1a hm gn x h bm fn y g fm cn z 0           

Thus the point  1 1 1x , y ,z lies on the plane

     a hm gn x h bm fn y g fm cn z 0          

7.7.9 Example: Show that the locus of intersection of the tangent planes to the cone

2 2 2ax by cz 0   which touch along the perpendicular generators is the cone

     2 2 2 2 2 2a b c x b c a y c a b z 0     
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Solution: The given cone is  2 2 2ax by cz 0 1           

Let the tangent plane along two perpendicular generaters of the cone meet in the

line  
x y z

2
m n

            


Then the equation to the plane containing two perpendicular generators is given by

 a x bmy cnz 0 3            .

The condition for a plane x my nz 0   to intersect the cone  E x, y,z 0 in two

perpendicular generators is

    2 2 2a b c m n E u,v,w    

Here (1) and (3) intersect in two perpendicular generators

        2 2 22 2 2 2 2 2a b c a b m c n a a b bm c cn        

     2 2 2 2 2 2 2 2 2 2 2 2a a b c a b b m c a b m c c n a b c n            

2 2 2 2 2 2a a b b m c c n     

     2 2 2 2 2 2a b c b c a m c a b n 0      

locus of the tangent line (2) is

     2 2 2 2 2 2a b c x b c a y c a b z 0     

Note: Equation to the pair of planes normal to the generator of the cone  E x, y,z 0 , which

are intersected by the plane x my nz 0   is given by

a h g x

h b f m y

0g f c n z

m n o o

x y z o o







i.e.  E yn zm, z xn, mx y 0    
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If  is the angle between the normals of the planes then we have

      2 2 2 2 2 2

cos sin

a b c m n E ,m,n 2 P m n

 


        

where

a h g

h b f m
P

g f c n

m n o







7.7.10 Example: If the lines of intersection of ax by cz 0   and the cone xy yz zx 0   are

at right angles show that ab bc ca 0   or
1 1 1

0
a b c
   .

The condition for the plane x my nz 0   to cut the cone  E x, y,z 0 in two

perpendicular generators is      2 2 2a b c m n E ,m,n     

Here
1

a b c 0, f g h
2

      a, m b, n c  

 The required condition is  o E ,m,n ab bc ca   

i.e.,
1 1 1

0
a b c
  

7.8 Reciprocal Cones:

7.8.1 Theorem: If  E x, y,z 0 is a cone then the locus of the normals to the tangent planes at

the vertex is the cone given by

 *

a h g x

h b f y
E x, y,z 0

g f c z

x y z o

 

Also: (i) The locus of the normals to the tangent planes of

 *E x, y,z 0 is the cone  E x, y,z 0

(ii) If  E x, y,z 0 is the point  0,0,0 then  *E x, y,z 0 is also the point  0,0,0 .
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Proof: Let  
x y z

1
m n

         


be a normal to the cone  E x, y,z 0 . Then we have the condition

2 2 2A Bm Cn 2fmn 2g n 2H m 0        ................ (7.7.6)

The locus of the line (1) is given by 2 2 2Ax By Cz 2H y 2Fyz 2Gzx 0     

i.e.,  *

a h g x

h b f y
E x, y,z 0

g f c z

x y z o

 

7.8.2 Reciprocal Cones:

Definition: If two cones are such that the locus of the normals drawn through vertex to
the tangent plane of one is the other then they are called reciprocal cones.

7.8.3 Example: Show that the equation of the cone which touches the co-ordinate planes is

given by fx gy hz 0, f ,g,h   being parameters

Solution: If a cone has three coordinate axes as genarators then its reciprocal cone touches
the three coordinate planes.

We know that the cone which is having the axes as genarators is given by

 2hxy 2fyz 2gzx 0 1          we determine its reciprocal cone, which is given by

 2 2 2Ax By Cz 2Fyz 2Gzx 2Hxy 0 2            .

Here

o h g

h o f

g f o

 

2 2 2A f F hg B g G fh C h H fg        

The required cone is given by

2 2 2 2 2 2f x g y h z 2ghyz 2fhzx 2fgxy 0     

2 2 2 2 2 2i.e. f x g y h z 2ghyz 2fhzx 2fgxy 4fgxy     

   
22

i.e. fx gy hz 2 fgxy  
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i.e. fx gy hz 2 fgxy   

i.e. fx gy 2 fgxy hz  

   
2 2

i.e. fx gy hz 

 i.e. fx gy hz  

i.e. fx gh hz 0  

7.8.4 Example: Show that the cones fyz fzx hxy 0   and fx gy hz 0   are

reciprocal.

solution: If a cone has three coordinate axes of the genarators then its reciprocal cone touches
the three coordinate planes.

We know that the cone which is having the axes any genarators is given by

 2hxy 2fyz 2gzx 0 1          we determine its reciprocal cone, which is given by

 2 2 2Ax By Cz 2Fyz 2Gzx 2Hxy 0 2            .

Here

o h g

h o f

g f o

 

2

2

2

A f F hg

B g G fh

C h H fg

  

  

  

Substistuting in (2), required cone is given by

2 2 2 2 2 2f x f y h z 2ghyz 2fhzx 2fgxy 0     

2 2 2 2 2 2f x g y h z 2ghyz 2fhzx 2fgxy 4fgxy      

   
22

fx gy hz 2 fgxy   

fx gy hz 2 fgxy    
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fx gy 2 fgxy hz   

   
2 2

fx gy hz  

 fx gy hz   

fx gh hz 0   

7.8.5 Example: Show that the cones 2 2 2ax by cz 0   and
2 2 2x y z

0
a b c
   are reciprocal.

solution: The given cones are represented by

 2 2 2ax by cz 0 1         

 
2 2 2x y z

0 2
a b c
           , we show that reciprocal cone of (1) is (2)

Reciprocal cone of (1) is given by

2 2 2Ax By Cz 2Fyz 2Gzx 2Hxy 0     

where

a o o

o b o

o o c

 

A bc F 0 B ca G 0 C ab H 0     

 reciprocal cone is 2 2 2bcx cay abz 0  

2 2 2x y z
i.e. 0

a b c
  

7.8.6 Example: Show that the locus of the line of intersection of the perpendicular tangent

planes to the cone 2 2 2ax by cz 0   is the cone given by

     2 2 2a b c x b c a y c a b z 0     



Centre for Distance Education 7.26 Acharya Nagarjuna University

Solution: If two tangents planes of a cone are perpendiculars then their normals are
perpendicular generators to its reciprocal cone. We find the locus of the normals through
the origin, to the planes which cut the reciprocal cone along perpendicular genatators.

The given cone is  2 2 2ax by cz 0 1                  .

Its reciprocal cone is  2 2bcx cay abz2 0 2            

Let the plane  x my nz 0 3                   cut the cone (2) in two perpendicular

generators. For that the condition is        2 2 2a b c b c a m c a b n 0 4              

Equations to the normal to the plane (3) through the origin are  
x y z

5
m n

          


To find the locus of the normal (5), we eliminate ,m,n from (4) and (5) and get

     2 2 2a b c x b c a y c a b z 0      which is the required locus.

7.9 Summary:

After reading this lesson the student should be able to gain working knowledge on various
types of equations of cone, equations of generators, whether the second degree equation in x, y,z

represents a cone and the equation of a cone with a given guiding curve. The student should also
have thorough understanding of tangent lines and planes, condition for tangency.

7.10 Technical Terms:

Cone

Vertex

Generator

Guiding curve

Receprocal cone.

7.11 Exercise:

1. Find the equation to the cone whose generators passes through the point  , ,  

and have their directional cosines satisfying 2 2 2a bm cn 0   .

2. Find the equation of the cone whose vertex is  1,1,0 and whose guiding curve is

2 2y 0, x z 4   .
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3. Find the equation to the cone with vertex at 'O' and directional cosines of the

generators satisfying 2 2 23 4m 5n 0   .

4. Find the equation to the cone with vertex at 'O' and passing through the curves

given by 2 2ax by 2z, x my nz p    

5. Find the equation to the lines of intersection of the planes 3x 4y z 0   and the

cone 2 2 215x 32y 7z 0   .

6. Find the angle of intersection of the cone 2 2 220x 7y 108z 0   and the plane

10x 7y 6z 0   .

7. Find the condition that the plane x my nz 0   may touch the cone

2 2 24x y 3z 0   .

8. Show that the equation fx gy hz 0   represents a cone touching the

coordinate planes. Find the equation to its reciprocal cone.

7.11.1 Answers to Exercise:

1.      2 2 2
a x b y c z 0        2. 2 2x 3y 2xy 8y 4 0    

3. 2 2 23x 4y 5z 0   4.    2 2P ax by 2z x my nz   

5.
x y z x y z

;
3 2 1 2 1 2
   

  
6.

1 16
cos

21
  

 
 

7. 2 2 23 12m 4n 0   8. fyz gzx hxy 0  

7.12 Model Examination Questions:

1. a) Write the definition of a cone and give an example.

b) The plane
x y z

1
a b c
   meet the axes in A, B, C. Prove that the equation to

the cone generated by the line joining the origin to the circle ABC is given by

a b b c c a
xy yz zx 0

b a c a a c

     
          

     
.



Centre for Distance Education 7.28 Acharya Nagarjuna University

c) Find the equation of the cone with vertex at  1,2,3 and whose guiding curve

is represented by the equations

2 2 2x y z 4, x y z 1      .

2. a) Define tangent line and tangent plaens of a cone.

b) The tangent plane of the cone  E x, y,z 0 at  1 1 1P x , y ,z on it which is not a

singular point in the plane represented by 1 1 1U x V y W z 0   .

c) Are the line x 0, y 1  and x 1, y 0  are tangents to the cone 2 2 2x y z  ?.

7.14 Model Practical Problem With Solution:

Problem: Show that the equation   2 2 2F x, y,z x 2y 2z 10zx 10xy 26x 2y 2z 17 0         

represents a cone with vertex  1, 2, 2 .

Definitions: Let S be a set of points in the space. If there exists a point V S , such that

P S VP S   . Then the surface S is called a cone. V is said to be the vertex of

the cone, VP is called a generator of the cone.

Result:   2 2F x, y, z ax by 2fyz 2gzx 2hxy 2ux 2vy 2wz d 0          represents a

cone with vertex  1 1 1x , y , z if

a h b u
a h b

h b f v
h b f 0 and 0

g f c w
g f c

n b e 1

 

1 1 1

F F F
0

x y z

  
  

  
and 1 1 1ux vy wz d 0   

Stepwise division of the solution

Step 1: Introduce a new variable t to make F homogeneous:

i.e. consider

  2 2 2 2F x, y, z, t ax by cz 2gzx 2fyz hxy zuxt 2vyt 2wzt dt 0          
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Step 2: Compute and simplify equations
F F F F

0, 0, 0, 0
x y z t

   
   

   
.

Step 3: Put t 1 in the above equations and first solve for 1 1 1x x , y y , z z   from the first

three equations.

Step 4: Verify  1 1 1x , y , z satisfies
F

0
t






Conclusion: The given equation represents a cone with vertex  1 1 1x , y , z .

Solution of the given problem:

Introduce new variable t and write

Step 1:   2 2 2 2F x, y, z, t 7x 2y 2z 10zx 10xy 26xt 2yt 2zt 17t 0         

Step 2:
F

14x 10z 10y 26t
x


   



F
10x 4y 2t

y


  



F
4z 10x 2t

z


  



F
26x 2y 2z 34t

t


   



Step 3: put t 1 and solve for x, y, z from the first three equations: namely

 7x 5y 5z 13 1   

 5x 2y 1 2  

 5x 2z 1 3  

   3 5 1 3   gives 11x 10y 31 0  

 2 1 gives 5x 2y 1 

x y 1

10 31 11 10

2 1 5 2

  



From these we solve for x & y in the routine way

1 1x 1, y 2  substituting 1x 1 in (3) we get 1z 2
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So the solution of (1), (2) and 3 is  1, 2, 2

Substituting these values for x, y, z respectively and putting t 1 in

F
0

t





we get        26 1 2 2 2 2 34 1 0      

Conclusion: Hence the given equation represents a cone with vertex  1, 2, 2

Lesson Writer

G. NARAYANA



8.1 Cone - IISolid GeometryLesson - 8

CONE - II

8.1 Objective of the lesson:

In this lesson the student is introduced to various types of cones such as envoloping cone
and right circular cone and some of their properties.

8.2 Structure:

This lesson contains the following components:

8.3 Introduction

8.4 Enveloping cone

8.5 Three Mutually Perpendicular Generators

8.6 Right Circular Cone

8.7 Summary

8.8 Technical Terms

8.9 Exercise

8.10 Answers to Exercise

8.11 Model Examination Questions

8.12 Model Practical Problem With Solution

8.3 Introduction:

In this lesson we continue the study of the cone. The tangents from an external point of a
sphere form a cone called envoloping cone of the sphere. We study some interesting properties of
the envoloping cone of a sphere and extend these ideas for a general surface. It is not necessary
that the generators of a cone must have perpendiculars among themselves. It is interesting to note
that in certain types of cones every generator has a perpendicular generator. We prove in this

lesson that the necessary and sufficient condition for a cone  f x, y,z 0 to have three mutually

perpendicular generators is that the sum of the coefficients of
2 2x , y and 2z is zero. We then

concentrate on cones whose guiding curve is a circle and the vertex is on the normal at the centre
to the circle, such cones are called right circular cones and possess some nice geometric properties
we present a few of them.
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8.4 Enveloping Cone:

8.4.1 Def: Tangent line to a surface from a point  1 1 1x , y ,z : Let 1 1 1x x y y z z

m n

  
 


be a

line through  1 1 1x , y ,z . It is said to be a tangent line to the surface  S x, y, z 0 if and

only if, the line meets the surface at one and only one point.

8.4.2 Theorem: The locus of the tangent lines through the point  1 1 1x , y ,z to the sphere

2 2 2 2x y z p   is a cone represented by

    
22 2 2 2 2 2 2 2 2

1 1 1 1 1 1x x y y z z p x y z p x y z p            

Proof: The given sphere is  2 2 2 2x y z p 1           

Let  1 1 1P x , y ,z be a point not on (1) and PQ be a tangent line to (1) and  Q x, y, z

Let R be the point of contact. Suppose R divides PQ in theratio K :1 . Then R is given by

 1 1 1P x , y ,z

R

Q
(x, y,

z)

Enveloping Cone

1 1 1Kx x Ky y Kz z
R , ,

K 1 K 1 K 1

   
  

   
R lies on (1) 

2 2 2
21 1 1Kx x Ky y Kz z

P
K 1 K 1 K 1
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       2 2 2 2 2
1 1 1Kx x Ky y Kz z K 1 P       

     2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1K x y z P 2K x x y y z z P x y z P 0               

 2
1 11K S 2K S S 0 2               

Since PQ is a tangent line the roots of (2) are equal 0  

2b 4ac 0  
2
1 114 S 4S S 0      2

1 11S S S 3            

Consequently any point R satisfying (3) lies on the tangent line PQ.

By the definition of the cone the equation 2
1 11S S S  i.e.,

    2 2 2 2 2 2 2 2 2
1 1 1 1 1 1x x y y z z P x y z P x y z P             represent a cone.

8.4.3 The locus of the tangent line through the point  1 1 1P x , y ,z to the surface  S x, y,z 0

is a cone represented by 2
1 11S S S  .

Proof: The given surface is    S x, y,z 0 1          Let a line through  1 1 1x , y ,z be L given by

 1 1 1x x y y z z
2

m n

  
         



If (2) is a tangent line or to (1) then we have

     2
11U mV nW S E ,m,n 3                

Conversely if (3) is true and  H 0, m, n  . Then L is tangent to (1).

   2
11U mV nW S E ,m,n      (see 7.6.1 for notation)

          
2

1 1 1 11 1 1 1x x U y y V z z W S E x x , y y , z z A               

L is generator to the cone represented by (A) Cone (A) is given by

     2
1 11 11 1 1 11S S S S S S S       

 11 11 1S S S 2S  
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2 2 2
1 1 11 11 11 11 1 11i.e. S 2S S S S S S 2S S       

2
1 11i.e. S S S 

8.4.4 Def: enveloping cone: Let S be a surface in the space. Let P be a point not on 'S'.
The locus of tangent lines through the point P to the surface S is a cone, which is called
the enveloping cone of 'S', with the vertex at 'P'.

P

S

8.4.5 Example: Find the enveloping cone of the sphere
2 2 2x y z 11   with vertex at  2,4,1 .

Solution: Equation to the given surface is  2 2 2x y z 11 1          

The given point is  P 2,4,1 Equation to the enveloping cone is given by

2
11 1S S S  . Here 2 2 2S x y z 11   

2 2 2
1 11S 2x 2y z 11, S 2 4 1 11 21 11 10          

 Enveloping cone is    22 2 210 x y z 11 2x 4y z 11      

8.4.6 Example: Prove that the lines drawn from the origin so as to touch the sphere

2 2 2x y z 2ux 2vy 2wz d 0       lie on the cone    22 2 2d x y z ux vy wz    

Solution: The given sphere is  2 2 2x y z 2ux 2vy 2wz d 0 1             
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The locus of the tangent lines to (1), through 'O' is the enveloping cone of (1),

given by 2
11 1S S S  .

Since 11 1S d, S ux vy wz d     the required equation is

   22 2 2d x y z 2ux 2vy 2wz d ux vy wz d         

       22 2 2 2 2d x y z 2d ux vy wz d ux vy wz 2d ux vy wz d             

   22 2 2d x y z ux vy wz     

8.5 Three Mutually Perpendicular Generators:

8.5.1 Theorem: A necessary and sufficient condition for a cone  E x, y,z 0 to have three

mutually perpendicular generators is a b c 0   .

Proof: Nessary Condittion: The given cone equation is  E x, y,z 0 i.e.

 2 2 2ax by cz 2fyz 2gzx 2hxy 0 1               

Let it have three mutually perpendicular generators say
1 1 1ox ,oy , oz . Rotate the

coordinate axes ox,oy,oz to the generators 1 1 1ox , oy , oz . Then the equation (1) changes

to form  1 2 1 2 1 2 1 1 1a x b y c z 2f yz 2g zx 2h xy 0 2              .

1ox is a generator at (2)  1E x,0,0 0  1 2 1a x 0 a 0   

Similarly 1 1 1 1 1b 0, c 0 a b c 0      we know that for rotation of axes

1 1 1a b c a b c     a b c 0    .

Sufficient Condition: Let us suppose that a b c 0   , we show that the cone has

three mutually perpendicular generators.

Let us rotate the axes, so that one generator is x axis then a 0 since a b c  is

unaltered by rotation of axes a b c 0 b c 0 b c         .

Then the equation (1) becomes    2 2b y z 2fyz 2gzx 2hxy 0 2             
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If the plane section of the cone with yz plane's the entire yz plane, then any two
perpendicular lines through 'o' on yz plane are two generators which are perpedncicular.
Thus the cone has three mutually perpendicular generators.

If the plane section is not the entire YZ plane, then the cone (2) becomes

   2 2b y z 2fyz 0, x 0 3            

In (3) coeff of 2 2x coeff of y 0  and
2

2f b  (3) represents two perpendicular

lines. Since 1XOX is a generator, the given cone has three muchually perpendicular

generators.

Note: (1) If a b c 0   and L is a generator of the cone  E x, y,z 0 , then there exist two more

lines M, N such that L, M, N are three mutually perpendicular generators.

(2) The same condition for the general cone S 0 is applied.

8.5.2 Example: Prove that the cone xy yz zx 0   and the plane ax by cz 0   cut in two

perpendicular generators if
1 1 1

0
a b c
  

Solution: The given cone is  xy yz zx 0 1         

Comparing with 2 2 2ax by cz 2fyz 2gzx 2hxy 0     

a 0, b 0, c 0 a b c 0        The cone has three mutually perpendicular

generators.

The given plane is  ax by cz 0 2            

(1) and (2) intersect in two perpendicular lines if the normal to the plane (2) is a
generator of (1)

i.e.
x y z

a b c
  is a generator  ar,br,cr lies on (1)

  2ab bc ca r 0   
1 1 1

0
c a b

   

The given cone (1) and the plane (2) intersect in two perpendicular lines if
1 1 1

0
a b c
   .
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8.5.3 Example: Prove that the plane x my nz 0   cuts the cone

     2 2 2b c x c a y a b z 2fyz 2gzx 2hxy 0         in two perpendicular lines if

     2 2 2b c c a m a b n 2fmn 2gn 2h m 0          

Solution: Given cone is

       2 2b c x c a y a b z 2fyz 2gzx 2hxy 0 1               

Comparing with 2 2 2Ax By Cz 2Fyz 2Gzx 2Hxy 0     

A b c, B c a, C a b, F f , G g, H h        

A B C b c c a a b 0         .

 Cone (1) has three mutually perpendicular generators

The given plane  x my nz 0 2          

(1) and (2) intersect in two perpendicular lines if the normal to (2) is a generator of
(1)

i.e.,
x y z

m n
 


is a generator

 r, mr, nr  lies on (1)

     2 2 2b c c a m a b n 2 mn 2gn 2h m 0            

8.5.4 Example:
x y z

1 2 3
  represents one of the three mutually perpenducular generators of

the cone 5yz 8zx 3xy 0   find the other two generators.

Solution: The given line is  
x y z

1
1 2 3
           

given cone is  5yz 8zx 3xy 0 2            

If (1) is of the three mutually perpendicular generators of (2), the other two are,
perpendicular lines of intersection of (2) and the normal plane to (1) whose d.r.s are (1,2,3).
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The plane is given by  x 2y 3z 0 3           

If (2) and (3) intersect in the line  
x y z

4
m n

        


Since line (4) lies on (2) and (3), we have  2m 3n 0 5          

i.e.  5mn 8 n 3 m 0 6           

(5)  2m 3n    , substituting in (6)

  5mn 8n 3m 2m 3n 0   

2 25mn 16mn 24n 6m 9mn 0     

2 26m 30mn 24n 0   

 2 26 m 4mn mn 4n 0    

   m m 4n n m 4n 0    

  m n m 4n 0   

D.r's of the lines of intersection of (2) and (3) are given by

(1) 2m 3n 0 2 3 1 2

0 1 m 1 n 0 1 4 0 1

  

     





m n

8 3 0 4 1 0
  

  


(By cross multiplicative method)

m n

5 4 1
  





(2) 2m 3n 0 2 3 1 2

0. 1 m 1 n 0 1 1 0 1

  

    





m n

2 3 0 1 1
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m n

1 1 1
  





 The other two genrators are
x y 3

5 4 1
 


and
x y z

1 1 1
 



8.6 Right Circular Cone:

8.6.1 Theorem: Given a line L, a point O on L and angle  in 0,
2

 
 
 

. The locus of the point

'P' such that OP makes an angle  with L is a non degenerate cone with vertex at '0'.

Proof: Case I: Assume that 0 is the origin. Let ,m,n be the d.c's of L so that 2 2 2m n 1  

and L be represented by  
x y z

1
m n

        


Let S be the required locus. For any point  p x, y,z different from 'o' the d.rs. of

OP are  x, y,z . Thus p S iff OP makes an angle  , with L

2 2 2 2 2 2

x my nz
Cos

x y z m n

 
  

    





O (0, 0, 0)

P (x, y, z)
L



 22
2 2 2

x my nz
Cos

x y z

 
  

 


 2 2 2m n 1   
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   22 2 2 2x y z Cos x my nz      

       2 2 2 2 2 2 2 2 2Cos x m Cos y n Cos z 2 mxy 2mnyz 2 nzx 0 2                       

Now (2) is a homogeneous equation of degree (2) with    a,b,c 0,0,0 other wise

2 2 2 2m n Cos 0    then m,mn, n  are non zero and (2) represents a cone.

Also

2 2 2

2 2 2 2

2 2 2

Cos m n m n 1 0 0

m m Cos mn m m mn Cos 0 1 0

0 0 1n mn n Cos n mn n

 

      

 

     

 

 

 2 2 2

1 1 1

mn 1 1 1 Cos 1 Cos 0

1 1 1

       

 Locus of P is a non degenerating cone with vertex at '0'.

Case - II : Let L be any line and  , ,   be any point on L. Shifting the origin to the point

 , ,   we have X x , Y y , Z z      

As above we have the locus as

   22 2 2 2x y z Cos x my nz     

           
22 2 2 2i.e. x y z Cos x m y n z                     



which represents a non degenerate cone with vertex at  , ,   .

8.6.2 Definition: The cone which is the locus of 'P' such that the line OP makes an angle

0,
2

 
 

 
with a fixed line L, passing through 0 is called a right circular cone with vertex at

'0'. L is called the axis of the cone and  is called the semi vertical angle.

8.6.3 Theorem: Any section of a right circular cone by a plane perpendicular to the axis is a
circle.
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Proof: Let 'o' be the vertex of the cone, L the axis of the cone and  be the semivertical angle. If

C is the section of the cone with a plane  , perpendicular to the axis, let P be any point an
C and N be the point of intersection of  and L. Then ON is perpendicular to  . We have

O

FN

L



PN
tan

ON
 

2 2 2NP ON tan   

Thus locus of P represents a circle with centre at N and radius ON tan  .

8.6.4 Theorem: The equation to the right circular cone with vertex at 'o', with semivertical

angle ' ' and the axis being the Z axis is

2 2 2 2x y z tan  

Proof: We know that the equation to the cone with vertex at 'o' and the axis as
x y z

m n
 


, with

semi veertical angle  is given by    22 2 2 2x y z Cos x my nz     

Here    ,m,n 0,0,1 ( z axis is the axis)

The cone is  2 2 2 2 2x y z z Sec   
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 2 2 2 2x y z Sec 1    

2 2 2 2x y z tan   

8.6.5 The semi vertical angle of a right circular cone admitting three mutually perpedndicular

generators is 1tan 2 .

Proof: We know that the equation to the right circular cone with semivertical angle  is given by

   2 2 2 2 2 2 2 2x my nz x y z Cos , m n 1         

If the cone admits three mutually perpendicular generators then a b c 0  

 2 2 2 2m n 1 1 1 Cos       21 Sec 1 2     2tan 2   tan 2  

1tan 2  

8.6.6 The semi vertical angle of a right circular cone having a set of three mutually perpendicular

tangent planes is 1 1
tan

2

  
 
 

.

Proof: Without loss of generality, let the vertex be 0 and the axis be z axis. Then the cone

equation is given by  2 2 2 2x y z tan 1        

If this posses three mutually perpendicular tangent planes, then its reciprocal cone
will have three mutually perpendicular generators

Reciprocal cone of (1) is given by

2 2 2

2

x y z
0

1 1 tan
  



 2 2 2 2x y z cot 0 2                

(2) is having three mutually perpendicular generators

a b c 0   

2 21 1 Cot 0 Cot 2       

1 1
tan

2
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8.6.7 Example: Find the equation to the right circular cone which has the coordinate axes as
generators.

Solution: Since the generators are the co ordinate axes and they intersect at 0. 0 is the
vertex. Let the axis be given by

x y z

m n
 


where 2 2 2m n 1   .

since the axis makes equal angle with the generators  OX, OY, OZ

2 1
m n 3 1 Cos

3
          

Equations to the axes are

x y z

1 1 1
 

Cone equation is given by

    2 2 2 2 2 2 2 2x my nz m n x y z Cos        

 
2

2 2 2x y z 1
1 x y z

33

  
     

 

 2 2 2 2 2 2x y z 2 xy yz zx x y z        

xy yz zx 0    .

8.6.8 Example: if  is the semivertical angle of the cone which passes through OX, OY

and
x y z

1 1 1
  show that  

1

2
1Cos 9 4 3



  

Solution: Since the generators OX, OY, x y z  meet at 'o' os is the vertex and d.c's of

the generators are    1,0,0 0,1,0 and
1 1 1

, ,
3 3 3

 
 
 

Let the equation to the axis be  2 2 2x y z
, m n 1 1

m n
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Since  is the semivertical angle

    0x, (1) oy, 1  

  
2 2 2 2

1 0 m 0 n
ox, 1 Cos

1 0 0 m n

    
      

    






  
2 2 2

0 1 m 0.1
ox, 1 Cos m

m n 0 1 0

   
     

    





Also

2 2 2

1 1 m 1 n m n
Cos

31 1 1 m n

      
  

    

 



We have  2 2 2m n 1 3            

Cos , m Cos , m n 3 Cos        

 n 3 2 Cos   

(3)  
22 2 2Cos Cos 3 2 Cos 1         2Cos 1 1 4 3 4 3 1      

 2Cos 9 4 3 1     
12Cos 9 4 3


   

 
1

2

Cos 9 4 3



     
1

2
1Cos 9 4 3



   

8.7 Summary:

After reading this lesson the student should be able to gain knowledge on envoloping
cones of a sphere and a given surface. The student gains knowledge for a cone to have three
mutually perpendicular generators. The student gains knowledge about a right circular cones.

8.8 Technical Terms:

Enveloping Cone

Right Circular Cone
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8.9 Exercises:

1. Find the enveloping cone of the sphere

2 2 2x y z 2x 2y 2     with vertex at  1,1,1

2. Prove that the locus of tangent lines from the origin to the sphere

     2 22 2x a y b z c k      (lie. on the cone given by the equation

    22 2 2 2 2 2 2a b c k x y z ax by cz       

3. Find the locus of the point from which three mutually perpendicular generators

(tangent lines) can be drawn to the surface 2 2ax by 2cz 0   .

4. Find the enveloping cone of the sphere

2 2 2x y z 2x 4z 1     with vertex at  1,1,1 .

5. If
y

x z
2

  represents of the three mutually perpendicular generators of the cone

11yz 6zx 14xy 0   . Find the other two generators.

6. If
z

x y
2

  is one of the three muctually perpendicular generators of the cone

3yz 2zx 2xy 0   , find the other two.

7. Find the locus of the points from which three muctually perpendicular generators

can be drawn to intersect the conic 2 2z 0, ax by 1   .

8. Find the equation to the right circular cone whose vertex is  P 2, 3,5 axis PQ,

which makes equal angles with the axes and semivertical angle
6


.

9. Prove that
2 2 2x y z 2x 4y 6z 6 0       represents a right circular cone, whose

vertex is  1,2, 3 and axis parallel to OY, semivertical angle
4


.

10. Find the equation to the right circular cone. Whose vertex is  2, 3,5 axis PQ,

which makes equal angles with the axes and passes through the point  1, 2,3 .
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11. The axis of a right cone, vertex at 0, makes equal angles with the coordinate axes,

the cone passes through the line drawn from 0 with d.rs. proportional to  1, 2,2 .

Find the equation of the cone.

12. Find the equation to the right cone, which passes through  1,1,2 , has vertex at

 0,0,0 with axis
x y z

2 4 3
 


.

8.10 Answers:

1. 2 23x y 4zx 10x 2y 4z 6 0      

3.    2 2 2ab x y 2c a b z c 0    

4. 2 2 24x 3y 5z 6yz 8x 16z 4 0      

5.
x y z x y z

;
2 3 4 11 2 7
   
 

6.
x y z x y z

;
2 4 1 3 1 2
   
 

7.  2 2 2ax by a b z 1   

8.    2 2 25 x y z 8 xy yz zx 4x 86y 58z 278 0         

10.    2 2 2x y z 6 xy yz zx 4 4x 9y z 7 0         

11.    2 2 24 x y z 9 xy yz zx 0     

12.  2 2 24x 40y 19z 12 4xy 6yz 3zx 0     

8.11 Model Exam Questions:
1. (a) Define enveloping cone

(b) Prove that the locus of the tangent line through the point  1 1 1V x , y ,z to the

surface  S x, y,z 0 is a cone represented by 2
1 11S SS .

(c) Find the envoloping cone of the sphere

2 2 2x y z 11  
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with vertex at  2,4,1 . Show that the plane z 0 cuts it in a rectangular

hyperbola.

2. (a) Define right circular cone

(b) Prove that every section of a right circular cone by a plane perpendicular to
the axis is a circle.

(c) If X is the semi vertical angle of the cone which passes through Ox, OY and

x y z

1 1 1
  . Show that  

1
1 2Cos 9 4 3

   .

8.12 Model Practical Problem with Solution:

Lines are drawn from the origin with direction cosines propogitional to    1,2,2 , 2,3,6

and  3, 4, 12 . Find the direction cosines of the axes of the right circular cone through them and

prove that the semivertical angle of the cone is 1 1
Cos

3

 .

Definitions:

A right circular cone is a surface generated by a straight line which passes through a fixed
point and makes a constant angle with a fixed line through the fixed point.

The fixed point is called the vertex, the fixed line is called the axis and the fixed angle is
called the semivertical angle.

Note:

(1) If the vertex is the horizon then the right circular cone is given by

   2 2 2 2 2x my nz x y z cos      .

Fig - A

A M B

l , m, n

P (x, y, z)
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Solution:

Let , m, n be the d.c.'s of the axis of the right circular cone through three lines say OA,

OB, OC whose d.c.'s are propotional to    1,2, 2 , 2,3,6 and  3, 4, 12 respectively..

Since the axis makes the same angle (say  ) with the genarators OA, OB, OC.

                 1 m 2 n 2 2 m 3 n 6 3 m 4 n 12
cos

1 4 4 4 9 36 9 16 144

     
    

     

  

 2m 2n 2 3m 6n 3 4m 12n
cos 1

3 7 13

     
                 
  

From first and second members of (1)

 7 14m 14n 6 9m 18n 5m 4n 0 2                     

From (1)  26 39m 78n 21 28m 84n 5 11m 6n 0 3                     

Solving (2) and (3) by cross multiplication,

m n

5 4 1 5

11 6 5 11







we have
m n

30 44 20 6 11 25
 

    



m n

1 1 1
  

  



Hence d.c.'s of axes are propotional to -1, 1, 1. Directional cosines are
1 1 1

, ,
3 3 3


.

1 2 2 3

2m 2n 13 3 3 3Cos
3 3 3 3


 

 
     

 1 1
Cos

3

  

Conclusion: The semivertical angle of the cone whose generators have d.c.'s propotional to

   1,2, 2 , 2, 3, 6 and  3, 11, 12 is
1

Cos
3

. The d.c.'s are proportional to -1, 1, 1.

Lesson Writer

G. NARAYANA



9.1 CylinderSolid GeometryLesson - 9

CYLINDER

9.1 Objective of the lesson:

We start with the geometric definition of a cylinder and concentrate on cylinders being
represented by a quadratic equation. We study about cylinders with guiding curve enveloping
cylinders and also right circular cylinders.

9.2 Structure:

This lesson contains the following components:

9.3 Definitions and Examples

9.4 Equations of Some Cylinders

9.5 Enveloping Cylinders of a Sphere

9.6 Right Circular Cylinder

9.7 Summary

9.8 Technical terms

9.9 Exercises

9.10 Answers to Exercises

9.11 Model Exam Questions

9.12 Model Practical Problem With Solution

9.3 Definitions and Examples:

9.3.1 Definition: A subset 'S' of the three dimensional Euclidean space 3R is a cylinder, if

there exists a line L such that if P S then the line through P and parallel to L is contained

in 'S'. Equivalently, there exists ,m,n not all zero such that

   x, y,z S x r, y mr, z nr S      for all r S . Any such line L is called an axis of

the cylinder and any line in the cylinder is called a generator of it.

9.3.2 Examples: We mention a few examples of cylinders and their axes.

Cylinder Axis

(a) Empty set Any line

(b) Line L Any line parallel to L
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(c) A collection 'C' of lines Any line parallel to a line in C

(d) A plane  Any line parallel to 

(e) A collection 'P' of parallel planes Any line parallel to any plane of 'P'

(f) A collection 'P' of planes containing Any line parallel to 'L'

a line 'L'

9.3.3 Remark: As in the case of cones we may call a cylinder of one of the above types as
a degenerate cylinder and the others as non degenerate cylinders, that are quadratic
surfaces. We use the same notation of in the case of cones.

9.4 Equations of Some Cylinders:

9.4.1 Theorem: Condition for a second degree surface to represent a cylinder:

The equation    f x, y,z E x, y,z 2ux 2vy 2wz d 0      where

  2 2 2E x, y,z ax by cz 2fyz 2gzx 2hxy      represents a cylinder iff there exist

,m,n not all zero such that (1)  E ,m,n 0 (2) U mV nW 0   whenever

 f x, y,z 0 where U, V, W are as in 7.6.1.

Proof: By definition  f x, y,z 0 represents cylinder S iff, there exists a line with directional ratios,

say ,m,n such that    x, y,z S x r, y mr, z nr S      . This is equivalent to the

condition that there exists (1)  E ,m,n 0 and (2) whenever  f x, y,z 0

U mV nW 0   .

9.4.2 Find the equation to the cylinder, whose generators are parallel to X - axis and cut the

curve  2 2 2ax by cz 1 1                and  x my nz p 2                  .

Solution: If  1 1 1P x , y ,z is a point on the cylinder, then the equations to the generators through

P are given by

 1 1 1x x y y z z
r, r R 3

1 0 0

  
                

The coordinates of the any point on the cylinder are  1 1 1x r, y , z

P lies on the cylinder iff

 2 2 2
1 1 1a x r dy cz 1    and  1 1 1x r my nz p   
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posseses a unique solution for r

 1 1 1x my nz p
r

   
 




and  2 2 2

1 1 1a x r by cz 1   

 21 1 2 2
1 12

my nz p
a by cz 1

 
   



The locus of the point P is the equation of the required cylinder, which is given by

   2 2 2 2 2 2 2 2am b y an c z 2amnyz 2ampy 2anpz ap 0          

9.4.3 The equation to the cylinder whose axis is the line
x y z

m n
 


where x 0 , and whose

generators touch the conic  f x, y 0, z 0  is
z mz

f x , y 0
n n

 
   

 



Proof: The given axis is  
x y z

1
m n

          


The given conic is    f x, y 0, z 0 2                

Let  1 1 1P x , y ,z be a point on the cylinder

Equation to the line throught P, parallel to (1) is given by  1 1 1x x y y z z
3

m n

  
         



P lies on S  every point on (3) lies on S

 1 1 1x lr, y mr, z nr    lies on (2)

 1 1 1f x r, y mr 0, z nr 0     

1z
r

n
   and 1 1 1

m
f x z , y 0

n n

 
  

 



Hence the equation to the cylinder is given by

1
m

f x z , y z 0
n n
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9.4.4 Find the cylinder whose generators are parallel to the line
x y z

m n
 


and touch the plane

curve.  f x, y,z 0 and ax by cz d 0    , where a bm cn 0   .

Solution: The given line is  
x y z

1
m n

       


The given curve is    f x, y,z 0, ax by cz d 0 2             

Let  1 1 1P x , y ,z be any point in the space. The line through P and parallel to (1) is

 1 1 1x x y y z z
r 3

m n

  
              



So that a point on it is    1 1 1r x , mr y , nr z , r R 4                

The line (3) touches (2) iff there exists a unique 'r', such that

       1 1 1a r x b mr y c nr z d 0 5                

and    1 1 1f r x , mr y , nr z 0 6                  

  1 1 1ax by cz d
5 r

a bm cn

   
     

substituting in (6)

     1 1 1 1 1 1 1 1 1
1 1 1

ax by cz d m ax by cz d n ax by cz d
f x , y , z 0

a bm cn a bm cn a bm cn

          
    

      



  

 The equation to the cylinder is given by

   
 

   
 

   
 

bm cn x by cz d a cn y m ax cz d a bm z n ax by d
f , , 0

a bm cn a bm cn a bm cn

            
 

       

  

  

9.4.5 Find the equation to the cylinder whose generators are parallel to z - axis and are tangents

to the curve  2 2ax by 2z 1             and  x my nz p 2            where

2 2a b 0  , n 0 .
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Solution: Since the generators are parallel to z - axis equation of a generator of cylinder is
given by

 1 1 1x x y y z z
r, r R 3

0 0 1

  
              

where  1 1 1x , y ,z is any point on the cylinder. Thus  1 1 1x , y ,z lie on the cylinder ifff

(1) 1 1 1x x , y y , z z r   

(2)  2 2
1 1 1ax by 2 z r  

(3) 1 1 1x my nz nr p   

 1 1 1x my nz p
r

n

  
  



and
 1 1 12 2

1 1 1 1
x my nz p

ax by 2z 2r 2z 2
n

  
    



 The locus of the point  1 1 1x , y ,z is the cylinder equation which is given by

   2 2ax by n 2 x my p 0    

9.4.6 Find the equation to the cylinder, having generators parallel to the line with directional

ratios  1,1,1 and touch the curve xy 1 and  z 1 1       

Solution: For any point  1 1 1P x , y ,z on the cylinder, equations to the generator are given by

 1 1 1x x y y z z
r, r R 2

1 1 1

  
                

The points on the cylinder, lying on the generator are given by

   1 1 1x r, y r, z r 3             

In order that (2) is a tangent line to (1), the equations   1 1x r y r 1   and 1z r 1  have

a unique solution for r.

  2
1 1 1 1 1x y r x y r z r      have a unique solution

 2
1 1 1 1 1r x y 1 r x y z 0       has a unique solution
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   2
1 1 1 1 1x y 1 4 x y z    

The locus of the point  1 1 1x , y ,z is the equation to the cylinder, which is given by

2 2x y 2xy 2x 2y 4z 1 0      

9.4.7 find the cylinder whose genarators are parallel to the line
x y z

1 2 3
 


and which touches

the curve  2 2x 2y 1, z 0 1          

Solution: For any point  1 1 1P x , y ,z on the cylinder, the equations to the generator through P

are given by

 1 1 1x x y y z z
r r R 2

1 2 3

  
             



Any point on the cylinder and also on (2) is

 1 1 1x r, y 2r, z 3r  

 1 1 1x , y ,z lies on the cylinder iff

   2 2
1 1x r 2 y 2r 1    ...............(3) and  1z 3r 0 4                 have a unique

solution for r

2 2
1 1

1 1
z 2z

x 2 y 1
3 3

   
       

   

   2 2
1 1 1 13x z 2 3y 2z

1
9 9

 
  

The locus of the point  1 1 1P x , y ,z is the equation to the cylinder, which is given by

2 2 2 29x z 6xz 18y 8z 24zy 9     

i.e.,    2 2 23 x 2y z 2 zx 4zy 3    
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9.5 The Enveloping Cylinder of a Sphere:

9.5.1 Theorem: The locus of the lines touching the sphere  2 2 2 2x y z a 1             and

parallel to the line  
x y z

2
m n

       


is the cylinder representes by

    22 2 2 2 2 2 2m n x y z a x my nz        

Proof: We first notice that the locus is a cylinder since it contains a point iff it containing the line
through the point which is parallel to the line.

 x y z
L

m n
                  



For any point  1 1 1P x , y ,z equation of the line through P, parallel to the line (2) are

 1 1 1x x y y z z
r, r R 3

m n

  
             



any point P lies on the line (3)

If 1 1 1x x r, y y mr, z z nr      for then the line touches the sphere iff the equation.

     2 2 2 2
1 1 1x r y mr z nr a      has a unique solution for r

   2 2 2 2 2 2 2 2
1 1 1 1 1 1r m n 2r x my nz x y z a 0            has equal roots

    2 2 2 2 2 2 2 2
1 1 1 1 1 14 x my nz 4 m n x y z a         

The locus of the point  1 1 1x , y ,z is the cylinder equation which is given by

      22 2 2 2 2 2 2m n x y z a x my nz A                 

9.5.2 Definition: The cylinder formed by the tangent lines to the sphere 2 2 2 2x y z a   ,

that are parallel to the line
x y z

m n
 


, is called the enveloping cylinder of the sphere with

axis
x y z

m n
 


.
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9.5.3 find the enveloping cylinder of the sphere  2 2 2x y z 2x 4y 1 1            with axis

 
x y z

2
1 1 1
        

Solution: Let  1 1 1P x , y ,z be any point on the sphere. Since the axis is
x y z

1 1 1
  , equation

to the generator through P is  1 1 1x x y y z z
r, r R 3

1 1 1

  
             

Any arbitrary point on (3) is  1 1 1x r, y r, z r  

Thus a point lies on the enveloping cylinder, iff (3) is a tangent line to (1)

         2 2 2
1 1 1 1 1x r y r z r 2 x r 4 y r 1           has a unique solution for r

 2 2 2 2
1 1 1 1 1 1 13r 2r x y z 1 x y z 2x 4y 1 0            has a unique solution for r

     2 2 2 2 2
1 1 1 1 1 1 1 14 x y z 1 4 3 x y z 2x 4y 1 B 4AC            

2 2 2
1 1 1 1 1 1 1 1 1 1 1 1x y z 2x y 2y z 2z x 2x 2y 2z 1         

2 2 2
1 1 1 1 13x 3y 3z 6x 12y 3     

2 2 2
1 1 1 1 1 1 1 1 1 1 1 12x 2y 2z 2x y 2z y 2x z 8x 10y 2z 4 0          

The locus of the point  1 1 1P x , y ,z is the equation to the enveloping cylinder, which

is given by

2 2 2x y z xy yz zx 4x 5y z 2 0         

9.6 The Right Circular Cylinder:

9.6.1 Definition: A right circular cylinder is a cylinder whose generators are parallel to the
normal of a circle at its centre. equivalently, a right circular cylinder whose generators are
tangents to a fixed circle.

9.6.2 Theorem: The equation of a right circular cylinder whose axis is the line

 1 1 1x x y y z z
1

m n

  
        


and guideing circle has the centre at  1 1 1x , y ,z with radius

'r' is

            
22 22 2 2 2

1 1 1 1 1m n x x y y r x x m y y n z z               
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Proof: The axis of the cylinder is  1 1 1x x y y z z
1

m n

  
           



The guiding curve is a circle with centre at  1 1 1x , y ,z , and radius r lies in the

plane, normal to (1)

Its equations are given by

     2 2 2 2
1 1 1x x y y z z r     

and      1 1 1x x m y y n z z 0     

The required cylinder is the enveloping cylinder is the enveloping cylinder of the
sphere

     2 2 2 2
1 1 1x x y y z z r      with axis parallel to the line

1 1 1x x y y z z

m n

  
 


, which is given by 9.5.1.

i.e.,

              
22 2 22 2 2 2

1 1 1 1 1 1m n x x y y z z r x x m y y n z z                 

9.6.3 Example: Find the equation to the right circular cylinder whose axis is

x 1 y 2 z 3

2 1 2

  
  , having the radius '2' units.

Solution: Here the axis is the line

 
x 1 y 2 z 3

1
2 1 2

  
         

Radius of the cylinder is '2' units

Equation to the right circular cylinder with radius r and axis as 1 1 1x x y y z z

m n

  
 



is given by

             
22 2 22 2 2 2

1 1 1 1 1 1m n x x y y z z r x x m y y n z z                   
 

Hence the required cylinder is
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               22 2 22 2 22 1 2 x 1 y 2 z 3 4 2 x 1 1 y 2 2 z 3             

   22 2 29 x y z 2x 4y 6z 10 2x y 2z 10          

2 2 29x 9y 9z 18x 36y 54z 90      

2 2 24x y 4z 100 4xy 4yz 8xz 40x 20y 40z         

2 2 25x 8y 5z 4yz 8zx 4xy 22x 16y 14z 10 0          

9.6.4 Example: find the equation to the circular cylinder whose axis is
x 1 y z 3

2 3 1

 
  with

radius 2 units.

solution: The axis of the circular cylinder is

 
x 1 y z 3

1
2 3 1

 
          

radius is 2 units

We know that the equation to the circular cylinder whose axis is

1 1 1x x y y z z

m n

  
 


, with radius 2 units is

             
22 2 22 2 2 2

1 1 1 1 1 1m n x x y y z z r x x m y y n z z                   
 

 Required cylinder's equation is

           22 22 2 2 2 22 1 3 x 1 y z 3 2 2 x 1 3y 1 z 3           

   
22 2 214 x y z 2x 6z 1 9 4 2x 3y z 5           

 2 2 2 2 2 214x 14y 14z 28x 84z 84 4x 9y z 12xy 6yz 4zx 25 10 2x 3y z               

2 2 210x 5y 13z 12xy 6yz 4zx 8x 30y 74z 59 0          

This is the equation to circular cylinder.
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9.6.5 Example: Find the equation to the circular cylinder whose guiding circle is

2 2 2x y z 9, x y z 3     

Solution: We find the (1) radius of the circle (2) axis of the cylinder and apply the formula.

Here the circle is  2 2 2x y z 9 1            and

 x y z 3 2          

centre of (1) is  0,0,0 , r 3

The distance from 0 to (2) is
3

3
3

 

 Radius of the circle 2 2R d 9 3 6    

Equation to the axis : Axis the line through 0 and normal to the plane (2) i.e., it given by

 
x y z

3
1 1 1
            


Hence the circular cylinder is

              
22 2 22 2 2 2

1 1 1 1 1 1m n x x y y z z r x x m y y n z z                 

     22 2 21 1 1 x y z 6 x y z        

2 2 2 2 2 23x 3y 3z 18 x y z 2xy 2yz 2zx         

 2 2 22 x y z xy yz zx 9 0       

 Equation to the circular cylinder is

2 2 2x y z xy yz zx 9 0      

9.6.6 Example: Find the equation to the right circular cylinder whose guiding curve passes

through the points      1,0,0 , 0,1,0 , 0,0,1 .
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Solution: Let the given points be      A 1,0,0 , B 0,1,0 , C 0,1,0 and 0 is  0,0,0 .

(1) We find a circle through A, B, C axis of the cylinder

(2) Its radius and apply the standard formula

(1) Sphere through O, A, B, C is given by

 2 2 2x y z x y z 0 1           

Plane ABC in the intercept from is

 
x y z

1 x y z 1 2
1 1 1
            

centre of (1) is
1 1 1

, ,
2 2 2

 
 
 

 Axis is gieven by

  

1 1 1
x y z

2 2 2 it is normal to 2
1 1 1

  
  

(2) radius of the circle

ABC is equilateral, centre = G  centre is P
1 1 1

, ,
3 3 3

 
 
 

radius is
2 2 2

1 1 1 4 1 1 2
PA 1 0 0

3 3 3 9 3

      
            

     

Equation to the circular cylinder is given by

              
22 2 22 2 2 2

1 1 1 1 1 1m n x x y y z z r x x m y y n z z                 

 
2 2 2 2

1 1 1 2 1 1 1
1 1 1 x y z x y z

2 2 2 3 2 2 2

                                       

2 2 2 3 2
3 x y z x y z

4 3
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2
3

x y z
2

 
    
 

2 2 23x 3y 3z 3x 3y 3z     
9

2
4

 

   2
x y z 3 x y z     

9

4


2 2 22x 2y 2z 2xy 2yz 2zx 2 0       

The equation to the circular cylinder is

2 2 2x y z xy yz zx 1     

9.7 Summary:

Starting with the generator definition of a cylinder we have observed conditions for second
degree equation to represent a cylinder; we derived equations for all types of cylinders such as
those with guiding curves, enveloping cylinder for a sphere and right circular cylinder.

We may note that, we have not gone deeper in the topic when compared to the sphere
and cone.

9.8 Technical Terms:

Cylinder

Axis

Generator

Guiding curve

Enveloping cylinder

Right Circular Cylinder

9.9 Exercises:

1. Find the equation of the cylinder whose generators are parallel to the line
x y z

1 2 3
 

and passes through the curve
2 2x y 16, z 0   .
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2. A cylinder cuts the plane z 0 in the curve
2

2 y 1
x

4 4
  and has its axis parallel to

3x 6y 2z   . Find its equation.

3. Find the equation of the quadratic cylinder whose generators intersect the curve

2 2ax by 2z  and x my nz P   and parallel to the z - axis.

4. Find the equation fo the cylinder whose generators are parallel to the x - axis and

pass through the curve 2 2 2x y 2z 1, x 3y z 4      .

5. Find the equation of the right circular cylinder whose axis is
x 1 y z 3

2 3 2

 
  and

radius 2.

6. Find the equation to the right circular cylinder whose guiding circle is

2 2 2x y z 9, x y z 3      .

7. A right circular cylinder is such that its section by the plane x y z 0   is a circle of

radius 3 and centre  1,2,3 . Find its equation.

8. Find the equation of the cylinder whose generators are parallel to the line
y z

x
2 3


 

and whose guiding curve is the ellipse 2 2x 2y 1  and z 3.

9. Find the cartesian equation of the right circular cylinder whose axis is the z - axis
and radius a.

9.10 Answers:

1. 2 2 29x 9y 5z 6zx 12yz 144 0     

2. 2 2 236x 9y 17z 6yz 48zx 9    

3.  2 2n ax by 2 x 2my 2p 0    

4. 2 210y 6yz 3z 24y 8z 15 0     

5. 2 2 210x 5y 13z 6yz 4zx 12xy 8x 30y 74z 59 0         

6. 2 2 2x y z xy yz zx 9 0      



9.15 CylinderSolid Geometry

7.  2 2 22 x y z xy yz zx 6x 12y 18z 15 0         

8. 2 2 23x 6y 3z 8yz 2zx 6x 24y 18z 24 0        

9. 2 2 2x y a , z 0  

9.11 Model Examination Questions:

1. (a) Definition of cylinder, generator and axis

(b) Find the equation of the cylinder whose generators are parallel to X - axis and

cut the curve 2 2 2ax by cz 1   and x my nz p   .

(c) Find the equation to the cylinder, having generators parallel to the line with

directional ratios  1,1,1 and touch the curve xy 1 and z 1 .

2. (a) Define enveloping cylinder of a sphere.

(b) The locus of the lines touching the sphere
2 2 2 2x y z a   and parallel to the

line
x y z

m n
 


is the cylinder represented by

     22 2 2 2 2 2 2m n x y z a x my nz        

(c) Find the equation to the right circular cylinder whose axis is
x 1 y 2 z 3

2 1 2

  
 

having the radius 2 units.

9.12 Model Practical Problem With Solution:

Find the equation of the right circular cylinder whose axis is the line
x 1 y z 3

2 3 1

 
  and

radius is 2.

Definition:

Let C be a circle of radius r in a plane  and L be the normal to the plane  through the
centre of C. The surface Y consisting of lines parallel to L equivalently  to  and intersecting 

on C is called right circular cylinder with centre 0 and radius r.

S = { L | L is perpendicular to  and L intersects  on C}
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Result:

The equation to the right circular cylinder whose radius is the line
x y z

m n

   
 


is

given by      
      2

22 2 2
2 2 2

x m y n z
x y z r

m n

     
       

 




.

M

P (x, y, z)

r

 A , ,  

2 2 2 2 2AP AM MP AM r   

Solution:

Let AB be the axis of the cylinder,

 A 1, 0, 3 then the equations of AB are

x 1 y z 3

2 3 1

 
 

So that the direction ratio's of AB are 2, 3, 1.

Dividing each by 2 214 2 3 12   gives the d.c.'s of AB to be
2 3 1

, ,
14 14 14

.

Let  P x, y, z be any point on the cylinder. Join PA and draw PM  on the axis so that

PM = radius of cylinder = 2.

Then in rt d AMP

 2 2 2 2AP AM MP AM 4 1 MP 2                
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Now      22 22AP x 1 y 0 z 3     

and AM = projection of AP on the line AB whose actual d.c.'s are
2 3 1

, ,
14 14 14

     2 3 1
x 1 y 0 z 3

14 14 14
     

2x 3y z 5

14

  


Putting these values of 2AP and 2AM in (1) we have

   
 22 22 2x 3y z 5

x 1 y z 3 4
14

  
     

     22 2214 x 1 y z 3 2x 3y z 5 56           

   2
2x 3y z 25 10 2x 3y z 56       

 2 2 214 x 2x 1 y z 9 6z      

2 2 24x 9y z 12xy 6yz 4zx 25 20x 30y 10z 56          

2 2 210x 5y 13z 6yz 4zx 12xy 8x 30y 74z 59 0          

which is the required equation.

Lesson Writer

G. NARAYANA



10.1 Central ConicoidsSolid GeometryLesson - 10

CENTRAL CONICOIDS

10.1 Objective of the lesson:

In this lesson the student is introduced to the concept of a central conicoid, some special
types of conicoids and a few basic properties of a central conicoid.

10.2 Structure:

This lesson contains the following components:

10.3 Definitions and Examples of a Conicoid

10.4 The Ellipsoid

10.5 The Hyperboliod of One Sheet

10.6 The Hyperboloid of Two Sheets

10.7 Central Conicoid

10.8 The Enveloping Cone

10.9 The Enveloping Cylinder

10.10 Summary

10.11 Technical Terms

10.12 Exercises

10.13 Answers

10.14 Model Examination Questions

10.3 Definitions and Examples:

Let us recall that if 3f : R R is a polynomial of degree n 0 then the set

    S x, y,z f x, y,z 0  is a surface of degree 'n'.

Examples of first degree surfaces are planes a second degree surface is called a quadric,
some examples of quadrics are pair of lines, pair of planes, cones, cylinders spheres and so on.

A quadric is said to be degenarate if it reduces to one of the following (1) the empty set

 ; (2) a single point set; (3) a line; (4) a pair of lines in a plane; (5) a plane.
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10.3.1 Definition: A non degenerate quadric is called a conicoid.

10.3.2 Definition: A quadric is called a central conicoid if its defining equation is of the form

2 2 2ax by cz 1   , where a, b, c are real numbers.

10.3.3 Definition: Centre: A point  V , ,   is said to be the centre of a conicoid 'S' if

   x, y,z S 2 x, 2 y, 2 z S        .

i.e., The point which bisectes all the chords through it is called the centre of the conicoid.

10.3.4 Definition: Principle Planes: A plane through the centre of a conicoid is called a
principle plane if it bisects all the chords of the conicoid, perpendicular to it.

10.3.5 Definition: Principle Axes: The lines of intersections of the principle planes taken in
pairs are called the principle axes:

10.4 The Ellipsoid:

10.4.1 The surface represented by the equation

2 2 2

2 2 2

x y z
1, a, b, c R

a b c
    is called an ellipsoid

10.4.2 Properties of ellipsoid
2 2 2

2 2 2

x y z
1

a b c
  

z

xo

y

 A a,0,0 1A a,0,0

 1C 0,0, c

 C 0,0,c

 

B

0,b,0



10.3 Central ConicoidsSolid Geometry

(a) The points      a, 0, 0 , 0, b, 0 , 0, 0 c   lie on 'S' and also on the principle axes.

These are called the vertices of S. Also  x, y,z S x a , y b , z c     .

Thus the surface S is a closed surface.

(b) Origin is the centre of the ellipsoid 'S' since    x, y,z S 0 x, 0 y, 0 z S     

(c) Ellipsoid is symmytrical about the co ordinate planes. Also every co ordinate plane
bisects the chords of S, perpendicular to the plane, for example

   x, y,z S x, y, z S    . So xy plane bisects all the chords perpendicular to it

So the co ordinate planes are principle planes of 'S'.

(d) The co ordinate axes are the principle axes, since they are the lines of intersection
of the principle planes.

(e) The sections of the coordinate planes with S are ellipses,

(1) Section with XOY plane is
2 2

2 2

x y
1, z 0

a b
  

(2) Section with YOZ plane is
2 2

2 2

y z
1, x 0

b c
  

(3) Section with XOZ plane is
2 2

2 2

x z
1, y 0

a c
  

(f) For any curve z k, k c  the plane section of the ellipsoid 'S' is the ellipse kS

given by
2 2 2

k 2 2 2

x y k
S : 1 , z k

a b c
    . Thus k

k c
S U S




(g) Length of the principle axes: AA 2a, BB 2b, CC 2c    

10.4.3 Note (1): The equation
2 2 2

2 2 2

x y z
1

a b c
    , represents a vacuous ellipsoid. Here S   .

Note (2): If in the equation
2 2 2

2 2 2

x y z
1

a b c
  

2 2a b or 2 2b c or 2 2c a then it is called ellipsoid of revolution.
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10.5 The Hyperboloid of One Sheet:

10.5.1 Definition: The hyperboloid of one sheet is the surface 'S' represented by the equation

 
2 2 2

2 2 2

x y z
1 5

a b c
               

z

x

y

o  A a,0,0

B
(0,b,0)

 C 0,0,c

(a) Origin is the centre, since it bisects all chords through it.

(b) Symmetry: Since    x, y,z S x, y, z S      . Hence S is symmetric about

the coordinate planes.

Also the coordinate planes bisects all chords perpendicular to it. Hence they are
the principle planes of S.

The lines of intersection of the principle planes are the coordinate axes therefore
coordinate axes are the principle axes.

(c) Intercepts on axes: The surface S meets X axis in

y 0, z 0  i.e.
2

2

x
1 x a

a
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   1A a,0,0 , A a, 0, 0  are the points of intersection on X axis

If
2 2x 0, z 0 y b       1B 0,b,0 B 0, b,0  are the points of

intersection on y axis.

2 2x 0, y 0 z c      The surface S does not meet the z axis at all.

(d) Section by the coordinate planes

(1) with XY plane in
2 2

2 2

x y
1

a b
  is an ellipse in XY plane

(2) with YZ plane is
2 2

2 2

y z
1

b c
  is a hyperbola in YZ plane

(3) with ZX plane is
2 2

2 2

x z
1

a c
  is a hyperbola in ZX plane

(e) Sections by the planes

(1) with the plane  z k, k R  is given by

2 2 2

2 2 2

x y k
1

a b c
  

2 2

2 2
k k

x y
i.e. 1

a b
 

where
2

2 2
k 2

k
a 1 a

c

 
  
 
 

and
2

2 2
k 2

k
b 1 b

c

 
  
 
 

(2) These are ellipses. With the plane x k, k a  are hyperbolas

2 2

k 2 2
k k

y z
S : 1

b c
  ,

where
2

2 2
k 2

k
b 1 b

a

 
  
 
 

,
2

2 2
k 2

k
c 1 c

a
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(3) With plane y k, k b  , are hyperbolas

2 2

k 2 2
k k

x z
T : 1

a c
  , where

2
2 2
k 2

k
a 1 a

b

 
  
 
 

2
2 2
k 2

k
c 1 c

b

 
  
 
 

Also

k k
k a k b

S U S U T
 

 

10.6 Hyperbolid of Two Sheets:

10.6.1 Def: A hyperboloid of two sheets is the surface S represented by the equation

2 2 2

2 2 2

x y z
1

a b c
   where a 0, b 0, c 0  

y

z

o xhA1A
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10.6.2 Properties of Hyperboloid of two sheets:

(i) The surface intersects the x-axis is  a,0,0 and  a,0,0 but does not meet the

y and z - axes.

   x, y,z S x, y, z S      , hence S is symmetric about the origin as

well as coordinate planes.

(ii) It can be shown that if b c then there are no other planes of symmetry except the

coordinate planes. While when b c , in addition to the coordinate planes all other

planes of symmetry are the planes passing through the x axis are planes of symmetry.

(iii) The plane x k does not cut S if k a . If k a the plane x k cuts the surface

in the ellipse

2 2 2

2 2 2

y z k
1, x k

b c a
   

Thus the hyperboloid of two sheets is the surface generated by the ellipses

 
2 2 2

2 2 2

x z k
1, x k k a

b c a
    

(iv) The plane sections corresponding to y k are the hyperbolas

2 2 2

2 2 2

x z k
1 , y k

a c b
   

and those corresponding to z k are

2 2 2

2 2 2

x y k
1 , z k

a b c
   

10.7 Cental Conicoids:

We now discuss some properties of central conicoids. Let us write S for the central
conicoid defined by the equation.

   2 2 2S x, y,z ax by cz 1 0 1           

We know that when at the three coefficients a,b,c are +ve, S is an ellipsoid.

(1) a 0, b 0, c 0 S    is hyperboliod of one sheet with X axis as axis
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(2) a 0, b 0,c 0 S    is hyperboliod of one sheet with Y axis as axis.

(3) a 0, b 0, c 0 S    is hyperboliod of one sheet with Z axis as axis

If two of the three coefficients are -ve then S represents hyperboloid of two sheets.

In in all these cases

(1) 0 is the centre

(2) Coordinate planes are the planes of symmetry

(3) Coordinate axes are the principle axes

Notation: We use the following notation in this lesson

2 2 2S ax by cz 1   

1 1 1 1S ax x by y cz z 1      

2 2 2
11 1 1 1S ax by cz 1   

  3
ij i j i j i j i j jS ax x by y cz z 1, x , y , z R    

Definitions: As in the case of sphere, we define the following with respect to a central conical
conicoid S.

(1) Tangent planes - Tangent Line (2) Polar Plane of a point

(3) The pole of a plane (4) Conjugate lines

(5) Conjugate planes (6) Conjugate points etc.

One can prove the following results for a central conicoid in the lines of their anologues for
sphere.

As the proofs are completely similar, we merely state the results, without proofs.

(1) Equation to the tangent plane at  1 1 1x , y ,z on S is 1S 0

(2) A necessary and sufficient condition for a plane x my nz p   to be a tangent

plane is

2 2 2
2m n

p
a b c
  



Also the point of contact is
m n

, ,
ap bp cp
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(3) The polar plane of the point  1 1 1x , y ,z with respect to S is 1S 0

(4) The pole of the plane x my nz p   with respect to S is
m n

, ,
ap bp cp

 
 
 


.

(5) The plane of contact of the point  1 1 1x , y ,z with respect to S is 1S 0

(6) A necessary and sufficient condition for two points    1 1 1 2 2 2A x , y ,z , B x , y ,z to

be congugate with repect to S is 12S 0 .

10.8 Enveloping Cone:

10.8.1 Theorem: The locus of a tangent line to a central conicoid
2 2 2ax by cz 1   from a

point  1 1 1x , y ,z is a cone.

Proof: The given central conicoid is  2 2 2ax by cz 1 0 1                .

A line through the given point  1 1 1x , y ,z is of the form

 1 1 1x x y y z z
r, r R 2

m n

  
           



Any point on this line is of the form

   1 1 1r x , mr y , nr z 3           

Thus the line (2) is a tangent to (1) iff the quadratic in r

     2 2 2
1 1 1a r x b mr y c nr z 1      , has a unique root.

     2 2 2 2 2 2 2
1 1 1 1 1 1a bm cn r 2 a x bmy cnz r ax by cz 1 0           

has a double root, and 2 2 2a bm cn 0  

       2 2 2 2 2 2 2
1 1 1 1 1 1a x bmy cnz a bm cn ax by cz 1 4                         

form (2) and (4)

We have the revised condition as
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2 2 2 2

1 1 1 1 1 1 1 1 1ax x x by y y cz z z a x x b y y c z z                 

 2 2 2
1 1 1ax by cz 1 5               

 

Shifting the origin to the point  1 1 1x , y ,z the above condition becomes

     2 2 2 2 2 2 2
1 1 1 1 1 1axx byy czz ax by cz 1 ax by cz       

Which is homogenous in x, y,z hence represents a cone with vertex at  1 1 1x , y ,z .

Hence the locus of the tangent line is a cone.

10.8.2 Definition: Enveloping Cone: The locus of the tangent lines to quadric through any
point is a cone, which is called on enveloping cone to the central conicoid.

10.8.3 Note: Notation for enveloping Cone:

The above equation (5) may be written as

   2
1 11 1 11 11S S S 2S S S    

2 2 2
1 1 11 11 11 1 11 11i.e. S 2S S S S S 2S S S       

2
1 11i.e. S S S 

Thus the equation to the enveloping cone to the conicoid S 0 is given by 2
11 1S S S 

for which the vertex is  1 1 1x , y ,z .

10.8.4 Example: A point P moves so that the section of the enveloping cone of the ellipsiod

2 2 2

2 2 2

x y z
1

a b c
   with P as the vertex, by the plane z 0 is a circle. Find the locus of 'P'.

Solution: The given conicoid is  
2 2 2

2 2 2

x y z
1 1

a b c
           

Let the given point be  1 1 1P x , y ,z . Then the equation to the enveloping cone of (1),

with vertex at P is given by 2
11 1S S S  .
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22 2 22 2 2

1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

x y z x x y y z zx y z
1 1 1 2

a b c a b c a b c

      
                              

It meets the plane z 0 in

 
22 2 22 2

1 1 1 1 1
2 2 2 2 2 2 2

x y z x x y yx y
1 1 1 , z 0 3

a b a b c a b

     
                            

The curve (3) represents a circle if

(1) Coefficient of
2a = Coefficient of

2y

(2) Coefficient of xy 0

i.e., if  
2 2 2 2
1 1 1 1

2 2 2 2 2 2

y z x z1 1
1 1 4

a b c b a c

   
              

   
   

and  1 1
2 2

2x y
0 5

a b
         

  1 15 x 0 or y 0  

Case (1) 1x 0 and
2 2 2 2
1 1 1 1

2 2 2 2 2 2

y z x z1 1
1 1

a b c b a c

   
       

   
   

2 2
1 1

2 2 2 2 2 2 2

y z 1 1 1 1

a b c a b a b

 
     

 

2 2
1 1

2 2 2

y z
1

a b c
  



 locus of  1 1 1P x , y ,z is given by

2 2

2 2 2

y z
1, x 0

b a c
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Case (2) 1y 0 and
2 2 2 2
1 1 1 1

2 2 2 2 2 2

y z x z1 1
1 1

a b c b a c

   
       

   
   

2 2
1 1
2 2 2 2 2 2 2

z x1 1 1 1

c b a a b b a

 
     

 

2 2
1 1
2 2 2

z x
1

c a b
  


,

 locus of  1 1 1P x , y ,z is given by

2 2

2 2 2

x z
1, y 0

a b c
  



10.8.5 Example: The section of the enveloping cone of the ellipsoid
2 2 2

2 2 2

x y z
1

a b c
   , with

vertex at P by the plane z 0 is (1) a parabola (2) a rectangular hyperbola, find the locus
of P.

solution: Given ellipsoid is  
2 2 2

2 2 2

x y z
1 1

a b c
               

Given point is  1 1 1P x , y ,z

Equation to the enveloping cone of (1) with vertex at P is given by 2
11 1S S S 

 
22 2 22 2 2

1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

x y z x x y y z zx y z
1 1 1 2

a b c a b c a b c

      
                                  

This meets the plane z 0 in

 
22 2 22 2

1 1 1 1 1
2 2 2 2 2 2 2

x y z x x y yx y
1 1 1 3

a b a b c a b

     
                               

2 2 2 22 2
1 1 1 1

2 2 2 2 2 2

y z x zx y
1 1 ..................

a b c b a c
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1 1
2 2

2xy x y

a b

 
                



(Remaining terms are lefttout as they do not occur in our computation)

Comparing with 2 2Ax By 2Hxy 2Gx 2Fy C    

We have

2 2 2 2
1 1 1 1

2 2 2 2 2 2

x z x z1 1
A 1 , B 1 ,

a b c b a c

   
        

   
   

1 1
2 2

x y
H

a b


Case (1), (3) represents a parabola if 2H AB

i.e.,
2 2

1

a b

2 2 2 2 2 2
1 1 1 1 1 1
2 2 2 2 2 2

y z x z x y
1 1

b c a c a b

    
       

   
   

2 2a b

2 2
1 1

2 2

x y

a b




2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

z x y z x y z x y
1 1 1

c a b c a b c a b

   
           

   
   

2 2 2 2
1 1 1 1
2 2 2 2

z x y z
1 1 0

c a b c

   
        

   
   

11S 0 , the locus is given by 2 2z c , a pair of planes

Case (2) If (3) represents a rectangular hyperbola in XY palne then

2 2 2 2
1 1 1 1

2 2 2 2 2 2

y z x z1 1
A B 0 1 1 0

a b c b a c

   
           

   
   

2 2 2
1 1 1

2 2 2 2 2 2 2

x y z 1 1 1 1

a b c a b a b

  
     

 

 
2

2 2 2 2 2 21
1 1 2

z
x y a b a b

c
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2 2 2
1 1 1
2 2 2

x y z
1

a b c


  



Locus of the point  1 1 1P x , y ,z is

2 2 2

2 2 2

x y z
1

a b c


 



10.8.6 find the locus of the point P from which three mutually perpendicular tangents can be

drawn to the conicoid
2 2 2ax by cz 1   .

Solution: The given conicoid is  2 2 2ax by cz 1 1        

Let  1 1 1P x , y ,z be eny point from which three mutually perpendicular tangents can

be drawn to (1). Then the enveloping cone is given by 2
11 1S S S  .

i.e.,        22 2 2 2 2 2
1 1 1 1 1 1ax by cz 1 ax by cz 1 axx byy czz 1 2                  

(2) posseses three muctually perpendicular generators if A B C 0  

i.e., coeff of 2 2 2x coeff or y coeff of z 0  

   2 2 2 2 2 2 2 2 2
1 1 1 1 1 1a b c ax by cz 1 a x b y c z        

     2 2 2 2 2 2
1 1 1 1 1 1a by cz 1 b zx cz 1 c ax by 1 0         

     2 2 2
1 1 1ab ac x bc ba y ca cb z a b c        

locus of the point  1 1 1x , y ,z is

     2 2 2a b c x b c a y c a b z a b c       

10.9 Enveloping Cylinder:

10.9.1 Theorem: The locus of the tangent line to a central conicoid and parallel to a given line
is a cylinder.
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Proof: Let  2 2 2S ax by cz 1 0 1               represents a central conicoid and  ,m,n be the

directional ratios of a line L and   3
1 1 1P x , y ,z R . Then equation of any line through P

which is parallel to L are

 1 1 1x x y y z z
r, r R 2

m n

  
         



The line (2) is a tangent to (1) if there is a unique r R such that

     2 2 2
1 1 1a r x b mr y c nr z 1     

i.e.,      2 2 2 2 2 2 2
1 1 1a bm cn r 2 a x bmy cnz r ax by cz 1 0           has a

double root.

i.e.,     2 2 2 2 2 2 2
1 1 1 1 1 1if a x bmy cnz a bm cn ax by cz 1        

The locus of P is

      2 2 2 2 2 2 2a x bmy cnz a bm cn ax by cz 1 3                

By the definition of a cylinder (3) is a cylinder whose generators are parallel to the

line with d.rs.  ,m,n .

Hence the theorem.

10.9.2 Definition: Given a central conicoid S and a line L. The locus of the tangent line to S,
parallel to L is a cylinder, which is called the enveloping cylinder of the quadric S.

10.9.3 Example: Prove that the enveloping cylinder of the ellipsoid
2 2 2

2 2 2

x y z
1

a b c
   , whose

generators are parellel to the lines
2 2

x y z

0 ca b
 
 

, meet the plane z 0 in circles.

Solution: The given ellipsoid is

 
2 2 2

2 2 2

x y z
1 1

a b c
          

The given lines are
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2 2

x y z
2

0 ca b
               
 

We know that the enveloping cylinder of
2 2 2ax by cz 1  

Whose generators are parallel to the line with d.rs. ,m,n is given by

     2 2 2 2 2 2 2a x bmy cnz a bm cn ax by cz 1        

Here   2 2,m,n 0, a b , c    
 



 
2 2 2

1 1 1
a,b,c , ,

a b c

 
  
 

 Enveloping Cylinder is given by

2
2 2 2 2 2 2 2

2
2 2 2 2 2 2 2

a b y cz a b 1 x y z
0 0 c 1

b c b c a b c

      
            

         

2
2 2 2 2

2

z a b y a b

c b

  
   
 
 

2b
 

2 2 2

2 2 2 2

x y z
1 3

b a b c

   
             

     

(3) meet the plane z 0 is

 

2 2 2

22

a b y

b

 2

2

a

b


2 2

2 2

x y
1

a b

 
  

 
 

2
2

2

a
y

b


2
2 2 2

2

a
y x y

b
   2a

2 2 2z 0 , x y a    which is a circle.

10.9.4 Example: Find the locus where the enveloping cylinder of
2 2 2ax by cz 1 0    with

generators perpendicular to z -axis meet the plane z 0 .
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Solution: The given conicoid is  2 2 2ax by cz 1 0 2            

The enveloping cylinder in generated by the lines perpendicular to the z axis.

Therefore its drs are  1,1,0 equation to the enveloping cylinder is given by

i.e.      2 2 2 2 2 2 2a x bmy cnz a bm cn ax by cz 1        

Here    ,m,n 1,1,0

 Enveloping cylinder meet z = 0 in

     2 2 2ax by a b ax by 1    

2 2a x 2 2b y 2 22abxy a x  2 2b y    2 2ab x y a b   

 2 2ab x y 2x y a b     

 
 2 a b

x y
ab


   , which is the required locus.

10.10 Summary:

In this lesson we learnt how to draw a rough sketch of the ellipsoid, hyperboloids of one
sheet as well as of two sheets using some of their salient features. We also learnt some properties
of a centrel conicoid, its enveloping cone and enveloping cylinder.

10.11 Technical Terms:

Central Conicoid

Ellipsoid

Hyperboloids of one and two sheets

10.12 Exercise:

1. Find the equations to the tangent planes to the conicoid
2 2 23x 6y 9z 17   parallel

to the plane x 4y 2z 8   .

2. Show that the plane 3x 12y 6z 17 0    touches the conicoid

2 2 23x 6y 9z 17 0    . Find the point of contact.
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3. Find the equations to the tangent planes which pass through the line

x y 3 z

3 3 1


 


and touching

2 2 2x y z
1

6 3 2
  

4. A tangent plane to the surface
2 2 2

2 2 2

x y z
1

a b c
   makes equal angles with the

coordinate planes. Show that it forms with them a tetrahedron of volume

 
3 22 2 21

a b c
6

  .

5. Prove that the enveloping cylinder of the ellipsoid
2 2 2

2 2 2

x y z
1

a b c
   , whose generators

are parallel to the line
2 2

x y z

0 ca b
 


meets the plane z 0 in a circle.

6. Find the enveloping cylinder of the sphere
2 2 2x y z 2x 4y 1 0      having its

generators parallel to the line x y z  .

7. Find the locus of the feet of the perpendiculars from the origin to the tangent planes

to the surface
2 2 2

2 2 2

x y z
1

a b c
   which cut off from the axis, intercepts the sum of

whose reciprocals is equal to
1

k
.

8. Show that the plane x 2y 3z 2   touches the conicoid 2 2 2x 2y 3z 2   and

find the point of contact.

10.13 Answers:

1. 3x 12y 6z 17   

2.
2

1, 2,
3

 
 
 

3. x y 3, x 2y 3z 6    

6. 2 2 2x y z yz zx 4x 5y z 2 0        

8.  1, 1, 1
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10.14 Model Examination Questions:

1. (a) Define ellipsoid, hyperboloid of one sheet and hyperboloid of two sheets.

(b) A point P moves so that the section of the enveloping cone of the ellipsoid

2 2 2

2 2 2

x y z
1

a b c
   with P as the vertex by the plane z 0 in a circle. find the

locus of P.

(c) Find the locus of the point P from which three mutually perpendicular tangents

can be drawn to the conicoid
2 2 2ax by cz 1   .

2. (a) Define hyperboloid of one sheet

(b) The section of the enveloping cone of the ellipsoid
2 2 2

2 2 2

x y z
1

a b c
   with vertex

at P by the plane z 0 in a parabola. Find the locus of P..

(c) Find the locus where the enveloping cylinder 2 2 2ax by cz 1   with generators

perpendicular to Z - axis meet the plane z 0 .

Lesson Writer

G. NARAYANA



11.1 Sequences - IReal Analysis

Bolzano (1781 - 1848)

Bolzano successfully freed calculus from the concept of the infinitesimal. He also gave
examples of 1 - 1 correspondences between the elements of an infinite set and the elements
of a proper subset.

Lesson - 11

SEQUENCES - I

11.1 Objective of the lesson:

The objective of the lesson is to acquaint the student with sequences, limits of sequences
and some properties of the limits.

11.2 Structure:

This lesson contains the following components:

11.3 Introduction

11.4 Sequences

11.5 The limit of a Sequence

11.6 Limit Theorems

11.7 Answers to SAQ's

11.8 Summary

11.9 Technical Terms

11.10 Exercises
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11.11 Answers

11.12 Model Examination Questions

11.13 Model Practical Problem with Solution

11.3 Introduction:

The analysis of a real valued function of real variable is based on continuity, differentiation,
integration and so on. All these notions, even though involve the continuous real variable, can be
explained better in terms of a positive integer variable. The irrational numbers which encounter
very frequently are usually approximated by rational numbers with which one is more comfortable.
Several considerations, including those mentioned above prompt the beginner to gain acquaintance
with sequences.

This section is an introduction to sequences, their limits and properties of the limits.

11.4 Sequences:

11.4.1 Functions whose domain is the set of natural numbers are of significant importance. If A

is any set, by a sequence in A we mean a function f : A . The value of a natural

number n under f is denoted by  f n or nf . The sequence f itself is denoted by

     n n 1 2 nf f ; f n or f , f , ,f ,                     . nf is called the
thn term of the

sequence f . We mostly use capital letters A,B,C, X,Y,Z                  and so on for

sequences.

A sequence, being a function has range, the collection of all the values. This range

may be finite or infinite. For example the range of the sequence f defined by    nf n 1 

is the set  1, 1 . However we specify a sequence by its terms but not by the range. We

arrange the terms in the order of the natural numbers and represent the sequence  na

by the arrangement  1 2 nA a , a , ,a                 .

We donot ignore any term even if it is repeated several times. Thus for a sequence
the function or its range are not important but the placement of the values is significant.

11.4.2 Example:

List the first four terms of the sequence  nX x when

1x 2 and n 1 n
n

1 2
x x

2 x


 
  

 



11.3 Sequences - IReal Analysis

 2 1
1

1 2 1 3
n 1 : x x 2 1

2 x 2 2

 
      

 

3 2
2

1 2 1 3 2 17
n 2 : x x 2

2 x 2 2 3 2

   
         

  

4
1 17 2 577

n 3 : x 2
2 12 17 408

 
     

 

Inductive (recursive) definition: A sequence may be defined by specifying a finite
number of terms and expressing the general term, in terms of the preceding terms. This
definition is called the inductive or recursive definition of the sequence.

Example: The famous Fibonacci sequence is inductively defined as follows:

1 2F 1, F 2  and n n 1 n 2F F F    n 2

From this definition the first few terms can be seen to be 1, 2, 3, 5, 8, 13, 21, 34 and so on.

Caution: It is in bad taste to just specify a few terms of a sequence and leave with
dots without specifying the general terms.

For example 1, 2, 3, 5, 8 could be the first five terms of the sequence  nx defined

by 1 2x 1, x 2  and  n 1 nx x n 1    for n 2 . These terms are the first five terms of

the Fibonacci sequence  nF as well.

However 6 5x x 4 12   while 6F 13

Example: Assuming natural pattern indicated by the terms provided, find the general
term of the following sequences.

(a) 5, 7, 9, 11, ...............

Here starting with the first term 5 we are adding 2 successively. Thus

1 2 3 4x 5, x 5 2, x 5 2 2, x 5 2 2 2         

Thus 3 4x 5 2.2, x 5 3.2    and so on that n 1x 5 2n  

We may also describe the sequence inductively by setting 1x 5 and n 1 nx x 2   .

(b)
1 1 1 1

, , ,
2 4 8 16
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Here 1 2 3 4
1 1 1 1

x , x , x , x
2 4 8 16

      and so on.

Since 2 1 3 2 4 3
1 1 1

x x , x x , x x
2 2 4

      we may define n 1 n
1

x x
2

  

We may also define  
n

n 1
n 1

1
x 1

2




 
    

 
for n 1 .

11.4.3 Defintion: Let  nX x be a sequence in  . We say that

(i) X is monotonically increasing or simply increasing if n mx x whenever

n m, n  and m .

i.e., 1 2 3x x x             

(ii) X is monotonically decreasing or simply decreasing if n mx x whenever

n m, m  and m .

i.e., 1 2 3 nx x x x                           

(iii) X is stritly (monotonically) increasing if n mx x whenever n , m and n m .

(iv) X is strictly (monotonically) decreasing if n mx x whenever n and m .

(v) X is monotone if X is either monotonically increasing or X is monotonically decreasing.

11.4.4 Example: Any constant sequence, i.e., for any k the sequence  nx defined by

nx k for all n , is monotonic.

Reason: If k the sequence  k, k, ,k                         is monotonically increasing as

well as decreasing because for any n,m in 

n mx x k  and hence n mx x if m n as well as n mx x if n m .

11.4.5 Definition: Let  nX x be a sequence of real numbers and

1 2 3 kn n n n                be a strictly increasing sequence of natural numbers. The

sequence  kY y : k  where
kk ny x k   is called a subsequence of X.

Sequence X : 1 2 3 nx , x , x , , x ,                    



11.5 Sequences - IReal Analysis

Strictly increasing sequence in  1 2 3 k1 n n n n                           

Subsequence y: x x x x
1 2 3 kn , n , n n                    

1 2 2 ky y y y                     

11.4.6 Example: If  nX x is any sequence in  and  nY y ,  nZ z are defined by

n 2ny x and n 2n 1z x n   then Y and Z are subsequences of X, Y is the sub-

sequence of even terms in X and Z is the subsequence of odd terms in X.

1 2 3 4 n

2 4 6 zn

1 3 5 7 zn 1

X x x x x x

Y x x x x

Z x x x x x 

                 

                

              

11.4.7 S.A.Q.: Show that if 1 2 kn n n                 is a strictly increasing sequence of

natural numbers then kn k k   .

Definition: If  nX x is a sequence of real numbers and m is any natural number then the

m - tail of X is the sequence  m m nX x n N  .

Then if  1 mX x , ,x ,                   ,  m m 1 m 2X x , x ,           

Note: Any m - tail of a sequence  nX x is a subsequence of X.

11.4.8 S.A.Q.: Show that  nx is monotonically increasing in  iff  nx is monotonically

decreasing.

11.4.9 S.A.Q.: Let  nx be a decreasing sequence of positive terms and

 n 1
n 1 2 3 ns x x x 1 x


            

Show that for every n (1) 2n 1 2ns s 0   , (2) 2n 2 2n 2n 1 10 s s s x    

11.4.10 Bounded Sequence: Definition: Let  nX x be a sequence of real numbers. X is

said to be bounded iff there exists a real number M such that nx M for all n .

Note:  nX x is bounded nM x M n       

nM M x M n           The set  nx n is bounded.
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11.4.11 S.A.Q.:

a) Show that  nX x is bounded iff ,   in nx     for every n .

b) Show that if X is increasing, then 1 nx x n  

c) Show that if X is decreasing then 1 nx x n  

11.4.12 Algebraic Operations of Sequences:

Let  nX : x and  nY y be sequences of real numbers

(i) The sequence Z X Y  is defined by  nZ X Y z   where n n nz x y  for

every n .

(ii) The sequence Z XY is defined by  nZ XY z  where n n nz x y .

(iii) If c the sequence cX is defined by  ncX z where n nz cx

(iv) If ny 0 n  , the sequence  n
X

z
Y
 is defined by n

n
n

x
z

y


11.4.13 S.A.Q.: Show that if X and Y are increasing sequences in  so are X Y and

cX where c 0 .

11.4.14 S.A.Q.: If X and Y are increasing sequences in  does it follow that XY is

monotonically increasing? Justify.

11.4.15 S.A.Q.: If X and Y are monotone, does it follow that X Y, X Y  and cX where

c are monotone? Justify..

11.4.16 S.A.Q.: Show that if X and Y are bounded sequences in  so are X Y, X Y, cX 

where c .

11.4.17 S.A.Q.: If X, Y are bounded sequences in  does it imply that XY is bounded? Justify..

11.4.18 Examples:

If b then  nB b , is the sequence

 2 3 nB b, b ,b , b ,                          

 2 3 4bB b , b , b ,                
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bB is the 1 tail of B.

 2 3 4 5b B b , b , b ,             is the 2 tail of B.

For any m ,

 m m 1 m 2b B b , b ,             is the m- tail of B.

If b 1 , for every n 1 , n 1 n n
b b b b


  

Hence if
n n 1 n

b 1, b b 1


  

Thus by induction if b 1 B is bounded. The inductive definition of B is given by 1b b

and n 1 nb b b  Also if 0 b 1, b b   and since n 1 n
b b


 , n 1 nb b 1   .

Thus the sequence B is monotonically decreasing.

11.4.19 Let  nnx 1 1   and  nX x . The terms of X are

 1 1, 1 1, 1 1, 1 1, 1 1, 1 1,                 i.e.,  0,2,0,2,0,2          

If n is odd  n1 1   so nx 0 and if n is even  n1 1  so nx 2

Thus X is neither monotonically increasing nor decreasing. However X is bounded.

11.5 The Limit of a Sequence:

11.5.1 Definition: A sequence  nX : x in  is said to converge to x in  and x is said to be

a limit of  nX x if for every 0  there corresponds a natural number  k  such that

for all    n k n   the terms nx satisfy nx x .

If a sequence has a limit we say that the sequence is convergent. If a sequence

has no limit we say that the sequence is divergent. When  nx has limit x we use the

notation  nim X x, im x  or nx x (reading tends to for " " ).

Note: the notation  k  is used to emphasize that the choice of k depends upon .

However it is customary to write k instead of  k  .
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11.5.2 Search for  k  : To show that  nim x x we have to prove existence of a natural

number  k  corresponding to every 0  such that for all   nn k , x x     .

Naturally  k  depends upon .

(i) It is clear that once we are able to find one such  k  then every  k k  also

serves the purpose since  n k n k    .

(ii) Moreover in our attempt to find a natural number  k  such that nx x  holds

for all  n k  we may end up with a positive real number A instead of a natural

number  k  with the above property. This is enough for us because we may use

Archemedian principle and choose any natural number greater than A as our  k  .

(iii) We may restrict  it self to the open interval  0,1 and find  k  easily. This  k 

works out for all 0  as well because nx x 1  implies that '
nx x 

whenever ' 1   .

11.5.3 S.A.Q.: Show that  nim x x iff for every 0 there is a natural number  k 

such that if  n k  nx x  .

Uniqueness of limits:

11.5.4 Theorem: A sequence in  can have atmost one limit.

Proof: Let  nx be a sequence in  and
1x, x be limits of  nx . We show that 1x x by

proving that for every 0 ,  10 x x *  

If 0  so is
2


. Since lim  nx x there is a natural number 1k corresponding to

2


such that if 1n k ,  nx x 1

2


          

Since   1
nim x x , there is a natural number 2k such that if 2n k ,  1

nx x , 2
2


 

If  1 2 1m max k , k , m k  as well as 2m k so that both the inequalities (1) and

(2) hold for n m .
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Now 10 x x  1
n mx x x x    1

m mx x x x   
2 2

 
  

Thus  * holds good for every 0  . This inplies that 1x x

11.5.5 Thumb Rule - I for non existence of imit: From theorem 11.5.4  nim x  

and  nim x   implies that   . This implication helps us more in establishing non

convergence (i.e. divergence) of a sequence. For example consider.

(i)  nX x where  n 1
nx 1


 

Suppose X converges and  im x   . Then for every 0 there

corresponds a natural number  k  such that  n k 

  nnx 1     

If we choose  n 2k 1, n   is odd so n 1 is even,

nx 1, hence 1    .

Since 0  is arbitrary and 0 1   , it follows that 1 .

If we take  n 2k , n 1   is odd so nx 1  and we get

0 1 1       for every 0  . Thus as above 1  .

Thus lim X 1 and im X 1  . This cannot happen. Hence  nx does not

converge.

(ii) Let  n n
n

x sin X x
2


   does not converge.

Suppose  nim x   . Then for every 0 there is a natural number  k 

such that if  n k 
n

0 sin
2


  

If  n 2 k   
n

sin sin k 0
2


    so 0  
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If    
n n

n 4 k 1 2k sin 1 1
2 2 2

  
          

0 0 0      . 0 1 0 1       

Hence the limit of  nx does not exist.

11.5.6 Equivalent Forms:

Theorem: Let  nX x be a sequence in  and Let x . the following statements

are equivalent.

(a) X converges to x.

(b) For every 0  there exists a natural number  k  such that for all  n k  the

terms nx satisfy nx x .

(c) For every 0  there exists a natural number  k  such that for all  n k  the

terms  nx V x where  V x is the neighbourhood.

   V x y y x    

Proof:    a b by definition

For any real numbers u, v. u v u v    and  u v   

u v   and u v  

u v    v u v    

Thus n nx x x x x     

Now (b) holds 0    there exists a natural number k such that for all natural

numbers n k nx x  i.e., nx x x      (c) holds. Hence    b c .

Since  n nx V x x x   

 b 0  there exists a natural number K

such that  nx V x for all natural numbers n K .

 d holds Hence    b d
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Thus    

 

a b c

d

 



Hence (a), (b), (c) and (d) are equivalent.

11.5.7 Theorem: Let  nx x be a sequence of real numbers and x be a real number. Then

the following are equivalent.

(i) The sequence  nX x does not converge to x in  .

(ii) There exists an 0 0  such that for any k there exists kn k in  such that

kn 0x x  .

(iii) There exists an 0 0  and a subsequence  k

'
nX x of X such that

kn 0x x 

for all k .

Proof:    i ii : Suppose (i) holds. Then for some 0 0  there does not exist  0k  in 

satisfying n 0x x  for all    0n k A                  

If k is a natural number, k cannot be  0k  . This means that this k does not satisfy

(A). This implies that for atleast one n k the first part of (A) does not hold

i.e., n 0x x  for atleast one n k . Thus there exists 0 0  such that for any k

there exists at least one kn in  such that kn k and
kn 0x x   . Thus (ii) holds.

Hence    i ii

   ii iii : Suppose (ii) holds. For k 1 there is 1n  such that 1n 1 and

1n 0x x  . Since  2 1 2 1n k max 2 , n 1 , n n    .

Assuming that n1 k1 n                  are such that kn k and
kn 0x x 

Let  1
kk max n 1 and k 1   as (ii) there is a natural number

'
k 1n k  such

that
k 1n 0x x

  . Clearly k 1 k kn n 1 n    and k 1n k 1   . Thus by induction for

every k there is a natural number k k k 1n k n n   
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kn 0x x  for all k

The subsequence  knx satisfies the condition (iii). Then    ii iii

   iii i : Suppose (iii) holds but (i) does not. Then lim  nx x

Then for the 0 in (iii) there corresponds  k  in  such that n 0x x  for all  n k 

Since  kn is a strictly increasing subsequence of  1,2,3,...............,n........... there

is a
0kn such that  

0kn k  . So for  
0k k kn n , n k   hence

kn 0x x  for all

0k kn n .

But this contradicts (iii)

Hence (i) must hold if (iii) holds    iii i

11.5.8 Thumb rule - 2 for nonexistence of limit:

From theorem 11.5.7 it is clear that to prove that lim  nx x it is enough to find a sub

sequence  knx of  nx and 0 0  such that
kn 0x x  for all kn .

11.5.9 Example: Let
 n

n 2

1 2n
x

n 1





show that lim  nx 1

If n is even n n 2

2n
x 1 x 1 1

n 1
    



   2 2

2 2

n 1 n 1

n 1 n 1

 
 

 

2

2

1
1

n
1

1
n

 
 

 



If
2

1 1 1 1 1 1
n 2 0 1 1 1

n 2 n 2 n 4

 
          

 

Also if
2 2

2

1 1 1 1 1 1
n 2 1 1 2

14 4 2n n 1
n
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n
1 1 1

x 1
4 2 8

     if n is even

Thus the subsequence  2nx satisfies 2n
1

x 1
8

  for all n. Hence lim 2nx 1 .

11.5.10 Theorem:

(a) If  nim x x then nim x x

(b)  nim x 0 if and only if  nim x 0

(c) If  nim x 0 then there exists N such that nx 0 if n  

Proof: (a) We use the in equality  a b a b 1         

Since nim x x , given 0 there exists N such that nx x  if n

and n N . From (1) n nx x x x    if n and n N . This is true for every

0 , hence nim x x .

(b) We use the equality  a a 2           

 nim x 0 0    there corresponds N  such that nx  whenever

n and n N

0  there corresponds N  such that nx  whenever n and

n N  nim x 0 

(c) Let  nx im x  and assume that x 0 .

Taking x , there exists N such that nx x x  if n and n N .

n0 x x x x x      if n and n N nx 0  if n N

Example: That the converse of 11.5.10 (a) is false is evident from the following example.

Let  nn nx 1 x 1    for even n . Hence  nim x 1 . But  nx is not

convergent.
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11.5.11 Theorem: Let  nx be a sequence of real numbers and let x . If  na is a sequence

of positive real numbers such that  nim a 0 and if for some constant C and some

m , n nx x a  for n m then  nim x x .

Proof: We are given  nx , x in  ,  na in na 0 n   and nim a 0 . We are also given

c and n nm x x x a    for n m . We prove that  nim x  

Let 0 . Since  nim a 0 , there exists a natural number k such that

na
c


 for n k . Since n na 0, a

c


  for n k

If    k max k , m  ,  n k n k    and n m , na
c


  and n nx x ca  ,

n nx x c a c
c


     for  n k  .

Since this holds forevery 0 ,  nim x x .

11.5.12 Theorem: If  nX x is a sequence and  kY y is any subsequence of X and

 im X x then  im Y x

Proof: Since nim x x , if 0 there is a natural number  k 

such that if   nn k x x   

Since Y is a subsequence of X; there is a strictly increasing subsequence

1 k1 n n                        such that
kk ny x for every k, from S.A.Q. 11.4.8 kn k

for every k. Thus if  k k  ,  kn k k   .

Hence
kk ny x x x    if  k k  . Since 0  is arbitrary kim y x .

11.5.13 Theorem: Let  nX x , im X x iff for some natural number m, mim X x 

where mX is the m - tail of X. In this case mim X x for every m.

Proof: Since mX is a subsequence of X. mim X x im X x   
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Conversely suppose mim X x . Since    n m nX x , X y  where n m nY x  for

n .

If 0 there is a natural number k such that if n k , ny x 

m nx x if n k    . n k m n m k     Thus m nx x   if

m n m k   i.e. rx x  if r m k  we choose  k m k   and get rx x  if

 r k  . Since 0 is albitrary im X x .

11.5.14 S.A.Q.: Let  nX x be a sequence.  1 2n 1X x  the subsequence of odd terms

and  2 2nX x the subsequence of even terms of X. Show that the sequence X

converges if and only if the subsequences 1X and 2X converge and have the same

Limit. In this case show that      1 2im X im X im X    .

11.5.15 S.A.Q.: Let  nX x be a sequence in  and nx 0 for every n Show that if

  n
nim 1 x exists then im X exists and im X 0 .

11.5.16 S.A.Q.: Suppose    n nx y are sequences such that (i)  nim x x and

(ii) for every 0 there is a  k  such that n nx y  if  n k  show that

 nim y x .

11.5.17 S.A.Q.: Let  nX x bea sequence in  and   . Show that lim X   if and

only if every subsequence of X has a subsequence whose limit is  .

11.5.18 Examples: 1.
1

im 0
n

 
 

 


Solution: Let 0 . We have to find a natural number  k  such that

1 1
0

n n
   if  n k 

1 1
n 1 n

n
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So if  k  is any natural number such that  
1

k  


and n is a natural number such

that  n k  then
 

1 1

n k
 


. Since 0 is arbitary

1
im 0

n

 
 

 


2.
3n 2

im 3
n 1

 
 

 
 .

Solution:
3n 2 3n 2 3n 3 1

3
n 1 n 1 n 1

   
  

  

If 0  as in example 1 above we choose  k  in  such that  
1

k  


If    
1

n k , n 1 n k
n 1

       


Hence
3n 2

3
n 1


 


if  n k  . Since 0 is arbitary

3n 2
im 3

n 1







3. If 0 b 1  then  nim b 0

Solution: We have to show that for every 0 there exists k such that for n k

nb 0  . It is enough if we find k k 0   corresponding to  when 0 1 .

So we choose 0 1 . Then log 0 and also log b 0 . Hence
1

log 0


and

1
log 0

b


Further n nb 0 b 

Now
n

n 1 1
b

b

 
   

 

1 1
n log log

b
 



1
log

log 1
n 0 log 0

1 log b blog
b
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We thus choose
log

k
log b


 . g for n k . Then from the above it is clear that

nb 0   if n k . Hence nim b 0 .

4. If a 0 ,
1

im 0
1 na

 
 

 


Solution: We consider 0 1    .
1 1

0
1 na 1 na

  
 

 1 1 na  
1

1 na  


1
na 1  



1 1
n 1

a

 
   

 

Hence
1

im 0
1 na






5. If k and nx k n  then  nim x k .

Solution: nx k k k 0 n    

 If 0 , nx k 0 n 1   

 nim x k 

6. If c 0  1 nim c 1

Solution: If c 0 by definition

1

nc is the unique nb 0 c b  

Case (i): If c 1

1

nc 1 n  By (5)  1

n
im 1

c


Case (ii): If c 1 and

1

nc b then nb c 1  so b 1 .
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This implies that

1

nc 1 . Let

1

nh c 1 

Then h 0 and

1

n1 h c  so that  n1 h c  .

By the Binomial Theorem

   
n n

1
c 1 h 1 n h .................. h       1

n1 h 1 nh   

c 1 nh   c 1 nh  
c 1

h
n


 

Thus
1

n

c 1
h h

c 1 n


  



If  
c 1

0, c 1 n
n


      

c 1
n


 



So that
1

n

c 1
n

c 1


 

 

Hence in this case  1 nim n 1 .

Case (iii) If 0 c 1  then
1

1
c
 . We write

1

n1
1 h

c

 
  

 

Then h 0 and
1 n

1
1 h

c
  .

1

n 1
c

1 h
 

  n
1

c
1 h

 


Since      n 2 2

1 2
n n1 h 1 h h ............. h     
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 1
n1 h 1 nh nh    

 
1 1 1

c h
1 h n nh nc

     


If 0  ,
1

c nc 1
n

  
1

n
c

 


and this implies that if 0 
1

n

1
h

c 1 nc
  


when ever

1
n

c




This implies that  1

n
im 1

c
 if 0 c 1  .

7.  1

n
im 1

n


Solution: We adopt the method of example (6).

For

1

nn 1 n 1  write

1

nh n 1  . Then h 0 .

     n 2 n

1 2
n nn 1 h 1 h h .............. h       (by Binomial Theorem)

   2 2

2

n n 1
nn 4 h 1 h

1 2


   



  2n n 1
n 1 h

2


  

2n
1 h

2
  i.e.

2 2
h

n
 i.e.,

2
h

n


2

n
 if 22

n
 i.e.,

2

2
n 


. Then if 2

2 2
n , 0 h

n
   


So that
1

n0
n 1
 

   
for

2

2
n 



Hence  1
nim 1n 
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8.
2

2

n 1 1
im

22n 3







Solution:
 

2 2 2

2 2

n 1 1 2n 2 2n 3

22n 3 2 2n 3

   
 

   2

5

2 2n 3




  2

5

2 2n 3




If 0 
 

   2

2

5
2 2n 3 5

2 2n 3
   



2 5
2n 3

2
  



2 1 5
n 3

2 2

 
   

 

1 5
n 3

2 2

 
   

 

5
if 3 0

2

 
  

 

5
3 0

2
 



5
3

2
 


i.e., 5 6  i.e.,

5
0

6


Thus if
5

0
6

 and
1 5

n 3
2 2

 
  

 

Then
2

2

n 1 1

22n 3


  



If
5

6
 the above inequality holds good for all n because

5
3 0

2
 


and so

for all n , 2 1 5
n 3

2 2

 
  

 
from which the required inequality follows

Thus
2

2

n 1 1
im

22n 3
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11.6 Limit Theorems:

11.6.1 Theorem: A convergent sequence of real numbers is bounded.

Proof: Let  nx be a converegent sequence of real numbers and

 nim x x . Then corresponding to 1 there is a natural number k,

such that nx x 1  for n k . Since n nx x x x   for all n,

nx x 1  for n k n1 x x 1 x     for n k

If  1 k 1M max x , ............, x , 1 x  nx M for 1 n k  and nx 1 x M   for

n k

so that nx M for all n , hence  nx is bounded.

Divergence criterian I: If  nx is unbounded, then  nx is divergent.

Remark: It is not true that a bounded sequence is convergent. For example the

sequence   n 1
1


 is bounded but not convergent (see 11.5.5(i)).

11.6.2 Theorem: If nim x x and nm x M  for all n then m x M  .

Proof: Suppose m x . Then by taking m x 0    we get a natural number k

such that nx x m x   for n k .

nm x x x m x x m x         for n k .

nx m  for n k , contrary to the hypothesis m x 

For the second part of the inequality i.e., to prove that M x , we assume the

contrary, i.e. M x and take x M  . As above, there exists a natural number 1k ,

such that if 1n k

nx x x M   from which it would follow that nx M for 1n k which is a

contradiction. Thus x M and hence m x M  .
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11.6.3 Corollary: (i) If  nim x x and nx 0 if n then x 0 .

(ii) If nim x x and na x b  for all n m

where m is a fixed natural number then a x b  .

11.6.4 Theorem: Suppose n nx y for n N .  nim x x and  nim y y . Then x y .

Proof: Suppose on the contrary that x y . Corresponding to
x y

2


  there is a natural number

k such that n
x y

x x
2


  for n k

   
n

x y x y
y x x x

2 2

 
      for n k

n
x y

x
2


  for n k

n n
x y

y x
2


   for n k .

From the first part of the inequality in 11.6.2 it follows that  n
x y

y im y
2


 

2y x y 0   

y x 0  

y x, a  contradiction.

Hence our assumption tht x y is false and so x y .

11.6.5 Theorem: Let    n nX x , Y y  be sequences in  .

 im X x and  im Y y . Then

(a)  im X Y x y   ,

(b)  im X y x y   and

(c) for any c im cX cx
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Proof: (a) Let 0  since  im X x and  im Y y , there exist natural numbers 1 2k , k

such that nx x
2


  if  1n k 1     

and ny y
2


  if  2n k 2           

Let    1 2k max k , k  . If  n k  then (1) and (2) hold.

So that for  n k         n n n nx y x y x x y y      

n nx x y y   

2 2

 
  

Hence  im X Y x y  

(b) Also        n n n nx y x y x x y y      

n nx x y y   

2 2

 
  for  n k 

Hence  im X Y x y  

(c) If  c 0 cX 0  and cx 0 . Since  im 0 0, im cX 0 0    im x c im x  .

Suppose c 0 and 0 . Since nim x x

There corresponds  k   such that for  n k  nx x
c


 

Hence for  n k  n ncx cx c x x c
c


    

Hence  ncx converges to cx .
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11.6.6 Corollary: If A,B, ,Z         are any finite number of sequences in  each one of which

converges in  , then the sequence A B .......... Z   is convergent in  and

 im A B C ................ Z im A im B ......... im Z          

Proof: The proof is by induction on the number of sequences when n 2 and A,B

are sequences such that im A a and im B b

By theorem 11.6.5. A+B converges and  im A B a b   .

Assume that the statement is true for any n sequences.

Let 1 n 1A , A            be any  n 1 sequences each of which converges and

i iim A a for 1 i n 1   .

By induction hypothesis 1 2 nA A A         converges and

   1 n 1 n 1 nim A A im A im A a a 1                                        

Let 1 nB A A          . Then B converges.

Again n 1A  is a sequence with n 1 n 1im A a 

Hence n 1B A  converges and  n 1 n 1im B A im B im A     

By (1) 1 nim B im A im A             

Hence  1 n 1 nim A A im A im A                       

Hence 1 n 1 n 1A A B A          converges and

   1 n 1 n 1 n 1im A A im B A im B im A                

1 n n 1im A im A im A              

Hence the statement holds for all n.

11.6.7 Theorem: If  nX x converges to x and  nY y converges to y then XY converges

to xy.

Proof: Since a convergent sequence in  is bounded and X is convergent there exists

a M  such that nx M for all n and 1k  such that
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 nx x
2 1 y


 

 if  1n k 2             

Since  nim y y there exists 2k  such that

ny y
2M


  if  2n k 3          

Let    1 2k max k , k  and  n k 

Then n n n n n nx y xy x y x y x y xy    

   n n nx y y x x y   

   n n nx y y x x y   

n n nx y y x x y   

 
M y

2M 2 1 y

 
 


by (1) (2) and (3)

2 2

 
  

Hence XY converges and im XY xy .

11.6.8 Corollary: Let 1, 2 kX X , ,X         be a finite number of convergent sequences and X be

the "product" sequence whose thn term is the product of the thn terms of the sequences

1 2 kX , X , ,X         . Then X is convergent and

       1 2 kim X im X im X im X                 

Proof: We prove that statement by induction on k.

When 1 2k 2, X X , X  from 11.6.7. 1 2X X is convergent and

     1 2im X im X im X   . Assume that the statement holds for any k sequences

and X be the product of  k 1 sequences say 1 k k 1X , ,X , X         . Let Y be the product

of the k sequences 2 k 1X , ,X              . Then 1 2 k 1 1X X X X X Y           . Since Y is
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the product of k convergent sequences, by induction hypothesis Y is convergent and

       2 3 k 1im Y im X im X im X                .

Since 1X and Y are convergent, by 11.6.7 1X X Y is convergent and

   1im X im X Y 

   1im X im Y  

     1 2 k 1im X im X im X          

As the statement holds for k 2 and for k 1 whenever it holds for k, the statement
holds good for all k.

11.6.9 Theorem: If Z =  mz is a sequence of non zero real numbers. Z converges to z 0

then the sequence
n

1 1

Z z

 
  
 

converges to
1

z
.

Proof: Let
z

2
  . Then 0  . Since nim Z z there exists 1k in 

such that n
z

z z
2

  for  1n k 1       

n n
z

z z z z
2

     for
1

n k

n
z z

z z z |
2 2

    for
1

n k

n
z

z
2

  for  1n k 2            

Hence for
1

n k ,  n
n

n n

z z1 1 2
z z 3

z z z z z z


             



Since nim z z if 20 k    such that

2

n
z

z z
2


  for 2n k Let    1 2k max k , k 
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by (3)

2
n

2
n

zz z1 1

z z z


  

2
2 z

 for n k
2


   

Thus
1

n

 
 
 

converges and
n

1 1
im

z z

 
 

 


11.6.10 Corollary: If  nX x converges to  nx, Y y is a convergent sequence of non zero

terms converging to anon zero number y then n

n

xX

Y y

 
  
 

converges to
x

y
.

Proof: The corollary follows from theorems 11.6.7 and 11.6.9.

Since im X x and
1 1

im
Y y

 ,

X 1 1 x
im im X im X im

Y Y Y y

   
      

   
   

11.6.11 S.A.Q.: If  nim x   are  r r
nr 0 im x  

11.6.12 S.A.Q.: If 0b 0 and n
r r 1

0 1 r 0
r r 1

00 1 r

a n a n a a
im

bb n b n b





          
 

             
 whenever r .

11.6.13 S.A.Q.: If r and s and r s and 0b 0 .

r
0 r

s
0 s

a n a
im 0

b n b

          
 

          


Let us recall that if a,b are real numbers  a b max a, b  and  a b min a, b 

11.6.14 Theorem: If  nX and  ny are convergent sequences of real numbers then the

sequence   n nmax x , y converges and        n n n nim max x , y max im x , im y  

Proof: Given 0 there exist natural numbers 1 2K , K such that
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nx x x    for  1n K 1        

and ny y y    for  2n K 2         

If  1 2K max k , K then (1) and (2) hold good for n K . Without loss of generality

suppose x y x  . From (1) and (2) we have for n k  nx x x y   

 n n nx y x x y      for  n K 3        

Also  nx x x y     for n K and  ny y x y    for n k

so that  n nx y x y    for  n k 4       

From (3) and (4) it follows that

  n nx y x y x y       for n k

Since 0 is arbitrary it follows that

 n nim x y x x y   

11.6.15 Theorem: Squeeze (Sandwich) Theorem: Suppose that  nX x ,  nY y and

 nZ Z are sequences of real numbers such that n n nx y z  for all n and that

   n nim x im z  .

Then the sequence Y is convergent and      n n nim im imx y z    .

Proof: Let n nw im x im z   . If 0 then since  nim x w there exists

1K  such that for all 1n K , nx w 

and since nim z 0 there exists 2k  such that for all 2n k nz w 

Let    1 2k max k , k  . Then for all  n k 

nx w  and nz w 

nw x w    and nw z w    for  n k 

n n nw x y z w       for  n k 
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nw y w    for  n k 

ny w   for  n k 

Since 0 is arbitrary, it follows that  nim y w .

11.6.16 Corollary: Let      n n nX x , Y y , Z z   be sequences of real numbers such that

for some m .

n n nx y z  for all n m

If    n nim x im z  then the sequence y converges and

     n n nim x im y im z   

Proof: From hypothesis it follows that the m - tails m, m, mX Y Z satisfy

m n m n m nx y z    for all n .

Also m mim X im Z  . Hence by the squeeze theorem the sequence mY

converges and      m m mim X im Y im Z    .

Since        m mim X im X , im Y im Y     and    mim Z im Z  .

     im X im Y im Z   

11.6.17 Example: Use squeeze theorem to determine the limit of the sequence 2

1

nn

 
 
 

.

Solution: Since
2

2

1 1
n n 1, 1

nn
    Hence

2

1 1

n n1 n n n   

Since    1

n
im 1 im 1

n
   it follows by the squeeze theorem that 2

1

n
im 1

n

   
 

 .

11.6.18 Example: Show that if 0 a b  and  
1

n n n
nZ a b  then  nim Z b .

Solution: since n n0 a b, 0 a b    for n
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n n n nb a b 2b for n    

 
11

n n nnb a b 2 b    for n

The constant sequence (b) converges to b and the sequence  1

n2
converges to 1

so that the sequence
1

n2 b
 
 
 

converges to b.

Hence by the squeeze theorem, the sequence  
1

n n na b
 
 
 

converges to b.

11.6.19 Examples:

(a) Show that nim x 0 when
   2 2

1 1

n 1 n n
           

 

   2 2 2

1 1 1

n2n n k
 


for 1 k n  .

 
n2 2

n n
x

n2n
  

Since
1 1

im im 0
4n n

   , it follows by the squeere theorem that nim x 0

(b) Use the squeeze theorem to prove that  im n 1 n 0  

  n 1 n n 1 n 1
n 1 n

n 1 n n 1 n

   
   

   

Since n n 1, n n n 1 n n 1 n 1         

1 1
n 1 n

2 n 1 2 n
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Since
1 1

im im 0
n 1 n

 


  it follows by the squeeze theorem that

im n 1 n 0   .

(c) Show that  nim x 1 when n
2 2

1 1
x

n 1 n n
           

 

Since  2n n k n 1    if 1 k n  ,
2

1 1 1
if 1 k n

n 1 nn k
   

 

 n
n n

x 1
n 1 n

  


Since
n

im 1
n 1




 , by the squeeze theorem it follows that mim x 1 .

11.6.20 Theorem: Let  nX x be a sequence of real numbers that converges to x and suppose

nx 0 . Then the sequence  nx of positive square roots converges and

nim x x .

Proof: Since nx 0 for every n, by 11.6.3. x 0 .

Case (i): If x 0 , nim x 0 so if 0 there is a natural number k such that

2
n n0 x x 0    if n k

Therefore n0 x   if n k . Since 0 arbitary it follows that  nim x 0

Case (ii): If x 0 then there is a natural number 1k such that

nx x x  for 1n k

nx x x x x     for 1n k

nx 0  for 1n k

If 0 there is natural number 2k such that for all 2n k

 nx x x 1                If    1 2k max k , k  and  n k 
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   n n
n

n

x x x x
x x

x x

 
 



n

n

x x

x x






Hence
n

n
n

x x x
x x t

x x x

 
   


by (1) (since nx x x  )

Hence nx x  if  n k  Since 0 is arbitary it follows that nim x x

11.6.21 Ratio Test: Let  nx be a sequence of positive real numbers and n 1

n

x
im L

x
 

 
 

 , If

 nL 1, x converges and  nim x 0 .

Proof: Since n 1

n

x
0

x
  for every natural number n, L 0 . Let L r 1  and r L  

There exists a natural number k such that for n k

 n 1

n

x
L 1

x
            

n 1

n

x
L L

x
     for n k

n 1

n

x
2L r r

x
    for n k

 n kk 1 k 2 n

k k 1 n

x x x
0 r

x x x

 



                if n k

n
n

k
k

x r
0

x r
   if n k

nk
n k

x
0 x r

r

 
    

 
if n k

Since nim r 0 , by the corollary 11.6.16 to squeeze theorem

 nim x 0 . This completes the proof.
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11.6.22 S.A.Q.: Show that if  nx is a sequence of positive real numbers such that

n 1

n

x
im L 1

x
 

  
 

 then  nx is unbounded and hence  nx does not converge.

11.6.23 Theorem: If  nim s   then 1 ns s
im

n

          
 

 
 

Proof: Write n nx s   . Then  nim x 0 .

Since 1 n 1 nx x s s

n n

                   
  

it suffices to shows that 1 nx x
im 0

n

        
 

 
 when nim x 0

Let 0 . Since  nim x 0 there is a natural number k such that if n k ,
nx

2


 .

Also since  nx is convergent,  nx is bounded. So there is a positive real number A

such that nx A for all n .

If
   1 k 1 k n1 n x x x xx x

n k,
n n n

                           
  

1 k 1 k nx x x x

n n

                 
 

   
A

k 1 n k 1
n 2n


    

Let  k  be a natural number k and also  
A

2 k 1


. If  n k  then

 
 2 k 1 A

n k


   


 
A

k 1
n 2


  . Also

n k 1
1

n

 
 so that

n k 1

n 2 2

    
 

 

Hence 1 nx x

n 2 2

         
   if  n k 
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Since 0 is arbitrary 1 nx x
im 0

n

      
 

 


Note:This theorem is referred to as Cauchy's first theorem.

11.6.24 Theorem: If nx 0 for all n and  nim x   then  
1

n1 nim x x r
 

          
 

 .

Proof: Clearly 0 . We use the A M, GM inequality: (10A. 11)1)

If 1 na , ,a           are any positive numbers,

 
1

1 n
n1 n

a a
a a

n

         
            AM GM

Case (i): If 0 then 1 nx x
im 0

n

        
 

 


we apply squeeze theorem to the AM GM inequality..

 
1 1 nn1 n

x x
0 x x

n

        
         and get  

1

n1 nim x .x 0
 

         
 



Case (ii): If 0 by 11.6.9. 1 n
n

1 1
1 1 1

im im x x
x

n

 
           

 
 

 
 

(by 11.6.23.)

1 n

n
1

1 1im
1

x x

 
   

              
   

 

 



(by 11.6.9.)

Since

1

n1 n

1 n

1 1

1 1x x
,

x xn

           
 

             
 

 
1

n1 2 n

1 n

n
x x x

1 1

x x
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1

1 n
n1 n

1 n

x xn
x x

1 1 n

x x

         
         

          

By Cauchy's first theorem 1 nx x
im

x

        
 

 
 

and

1 n

n

1 1im

x x

 
 

            
 

  Hence by squeeze theorem   1

n1 n
im x x        

11.6.25 Example: If  nb is a bounded sequence and nim a 0 show that n nim a b 0,

Explain why theorem 11.6.7 cannot be used.

Solution: We cannot apply theorem 11.6.7 as it requires convergence of both  na

and  nb . However in the present case  nb is given to be bounded. As boundedness

of a sequence does not guarantee convergence, theorem 11.6.7 cannot be applied. Since

 nb is bounded there exists M in  such that nb M for all n. since  na converges

to zero, if 0 there exists a natural number k such that na
M


 for n k .

For n k n n n n na b a b M a M
M


   

Since this holds for all n k and 0 is arbitrary and k depends on  it follows

that  n nim a b 0 .

11.6.26 Example: Let ny n 1 n   . Show that  ny and
1

n
n

n
y

y
 

  
 

converge. Find

their limits.

Solution: (i)
   

n

n 1 n n 1 n 1
y n 1 n

n 1 n n 1 n

   
    

   

Since n 1 n , n 1 n 2 n    

Therefore n
1

0 y
2 n

  for every n
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Since the constant sequence  0 and the sequence
1

2 n

 
 
 

both converge to zero

it follows by the squeere theorem that  ny converges and  nim y 0 .

(ii) 1
n

n 1 1
n y

n 1 n n 1 1
1 1 1

n n

   
  

  

1 1 1
im 0 im 1 1 im 1 1

n n n

  
             

  

So  
1 1

im 1 1 im 1 im 1 1 1 2
n n

   
             

   
  

11.6.27 Example: Show that  im sin n does not exist in  .

Solution: Suppose  im sin n exists and  im sin n  

   sin 2n 2 sin 2 2n 2cos 2n sin 2   

Since

      im sin 1 n im sin n 1 im sin n 1        

we get by taking limits 2 sin 2 Lim cos 2n 0 Lim cos 2n 0  

III  im cos 2n 1 0 

Hence im cos n 0

Since sin 2n 2 sin n cos n, we get im sin n im sin 2n 0    

Since 2 21 sin n cos n n,   we get

     2 2 2 21 im sin n cos n im sin n im cos n     

    22
im sin n im cos n  

0 0  , a contradiction

Hence im sin n does not exist.
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11.6.28 Example: Suppose that  nx is a bounded sequence of real numbers. Write

 n ks sup x : k n  and  nS inf s : n 

Show that there is a subsequence of  nx that converges to S.

Solution: Since  1 kS 1 S s Sup x :k 1     there is a 1n 1 such that
1nS 1 x 

since  
1n 1 k 1

1
S S s sup x : k n 1

2
     

there is a 2 1 1n n 1 n   such that
2n

1
S x

2
 

Continuing this proces it follows that there is a subsequence  knx of nx such that

kn
1

S x
k

  for very k in  .

If 0 S is not a lower bound of  ns : n

if h m  there is a natural number m such that ms S  .

Since kn k,
kn k

1
S x s S

k
    

Choose  k  to be any natural number > m and
1


. For  

1
k k , k  


so that

1

k


kn k
1

S S x s S
k

      
knx S   for  k k   knim x S 

11.7 Solutions to Short Answer Questions:

11.4.8 Show that if 1 2 kn n n                 is a strictly increasing sequence of natural

numbers then kn k k   .

solution: We prove this statement by induction.

When k 1 1n 1 since 1n  assume that k and kn k . Then

k 1 k k 1n n n k    . Since k 1n   , k 1n  is a natural number k so that k 1n k 1  

Thus 1n 1 and k k 1n k n k 1    . So by induction kn k k   .
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11.4.9 Show that  nx is monotonically increasing iff  nx is monotonically decreasing.

Solution:

 nx is monotonically increasing n mx x  whenever n m

n mx x    whenever n m  nx  ismonotonically decreasing.

11.4.10 S.A.Q.: Let  nx be a decreasing sequence of positive terms and

 n 1
n 1 2 3 ns x x x 1 x


           .

Solution: (i) 2n 1 2ns s 0   for every n

   2n 1 2 2n 1 2ns x x x x            
n

2i 1 2i
i 1

x x


 

Since  nx is decreasing , n 1 nx x  for every n . So 2ns 0

2n 1 2n 2n 1 2ns s x s    since 2n 1x 0 

(ii) 2n 1 2n 2n 1 2n 1 10 s s s s x       for n

 
n

2n 2i 1 2i
i 1

s x x


 

   
n 1

2i 1 2i 2n 1 2n
i 1

x x x x


 


   

  2n 1 2n2 n 1s x x 

That 2n 2n 1s s  follows from (i) above

2n 1 1 2 3 4 2n 1 2n 2n 1s x x x x x x x               

 1 2 3 4 2n 1 2n 2n 1x x x x x x x               

 2n 1 2n 2n 1 2n 1s x x s      since 2n 2n 1x x 

2n 1 2n 1s s   for n
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Hence 2n 1 1s s  for n . Since 1 1s x , 2n 1 1s x  for n N

The inequality is proved.

11.4.11(a): By definition  nX x is bounded if and only if there exists M such that

nx M n N   iff nM M x M n N       .

Thus if X is bounded and nx M for all n

We may choose M   and M 

Conversely if nx    for all n

We choose M  M M      i.e.,  M max and  

Then nM x M       for all n

i.e., nx M for all n This implies that X is bounded.

(b) If  nX x is increasing, n mx x whenever m n put n 1 .

(c) If  nX x is decreasing n mx x whenever m n put n 1 .

11.4.13 Let    n nX x , Y y  . By hypothesis n mx x if n m and n my y if n m . Hence if

n m , n n m mx y x y   Hence X Y is increasing

If c 0 and n mn m cx cx  . Hence cx is monotonically increasing

11.4.14 Let nx n and  nX x

Since n mx x whenever n m, X is monotonically (strictly) increasing.

Let ny 1  for all n, and  nY y . Then Y is monotonically increasing.

   n nXY x y n   clearly XY is not monotonically increasing.

11.4.15 Let nx n for n and  nX x Then X is monotonically increasing

Let ny 1  if n 3

4  if n 3

and  nY y



Centre for Distance Education 11.40 Acharya Nagarjuna University

Then Y is monotonically decreasing

 X Y 1 1, 2 1, 3 4, 4 4, 5 4,              

 0,1, 1,0,1,2,           

Clearly 1 2x x and 3 2x x

Thus X Y is neither increasing nor decreasing.

Let  '
nY Y y    . Then 'Y is increasing since Y is decreasing

Hence X and 'Y are monotone. However 1X Y X Y   is not monotone, as seen

above.

If X is increasing and  nX x then n mx x if n m

If n mC 0, Cx Cx  if n m

So if C 0 CX is increasing, hence monotone

If n mc 0, cx cx  if n m

So if C 0 CX is decreasing, hence monotone.

In either case if X is increasing CX is monotone.

Similarly if X is decreasing CX is monotone.

Then if X is monotone CX is monotone.

11.4.16 Let      n n nX x , Y y , Z X Y Z     so that n n nZ x y  .

Since X and Y are bounded there are 1M and 2M in the such that n 1x M and n 2y M

for n . If n n n n n 1 2n Z z y x y M M       . Since n 1 2Z M M  for

every n Z is bounded. In a similar way we can prove that X - Y is bounded. If

n n 1c cx c x c M   for every n so that cx is bounded.

11.4.17 Let X, Y, 1 2M , M be as in 11.3.16 above and  nZ XY Z  where n n nZ x y .

Then n n n n n 1 2Z x y x y M M   for n

Since this holds for all n it follows that XY is bounded.
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11.5.3 S.A.Q.: Show that  nim x x if an only if for every 0 there corresponds

 k   such that for all  k  nx x .

Solution: If  nLim x x then for every 0 there corresponds  k   such that

for all  n k  nx x 

Since n nx x x x    it follows that for every 0 there corresponds

 k   such that for  n k  nx x .

If for every 0 there corresponds  k  in  such that for  n k  nx x 

starting with 0 we apply the above condition for
2


so that there exists a natural

number 1k k
2

 
  

 
satisfying

nx x
2


  for 1n k

Then for  1 n nn k , x x im x X
2


     

Thus for every 0 there corresponds a natural number 1k such that for all

1 nn k x x   if and only if  nim x x

11.5.14 S.A.Q.: Suppose  nx is a sequence such that    2n 2n 1im x im x   show that

 nim x exists and    n 2nim x im x  .

Let    2n 2n 1im x im x    . If 0 there exist natural numbers v such that

2nx   if  12n k 1       

and 2n 1x    if  22n 1 k 2              

Let    1 2k max k , k  . If   1n k , n k   as well as 2k .

If n is even nx    by (1)
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and if n is odd nx    by (2)

Hence nx    for all  n k 

Since 0 is arbitary,  nLim x exists and  nim x   converse is trivial.

11.5.15 S.A.Q.: Suppose that nx 0 for all n and  n nim 1 x exists. Show that nim x

exists and nim x 0 .

Let  n nim 1 x   . Then   n
n

im 1 1 x  

Since nx 0 for all n, nim x  

Since  2n
2n 2n1 x x  and  2n 1

2n 1 2n 11 x x


    for n

 2nx and  2n 1x  are subsequences of the sequence   n
n1 x

Hence    2n 2n 1im x im x         2n 2n 1im x im x      

Since  2nx 0 n, 0 1              

Since 2n 1x 0  2n 1x 0 n      2n 1im x 0 2                

From (1) and (2) it follows that 0 , hence nim x 0    

11.5.16 S.A.Q.: Suppose  nx converges and  nim x x . If for every 0 there

corresponds natural number  k  such that n nx y  for  n k  show that  ny

converges and nim y x .

solution: For any n n n n ny x y x x x    
n n ny x x x   

If 0 there exist natural numbers 1 2k , k such that

n ny x
2


  for 1n k and nx x

2


  for 2n k

If    1 2k max k , k  and  n k  then 1n k and 2n k



11.43 Sequences - IReal Analysis

so that n n n ny x y x x x
2 2

 
       

Since 0 is arbitrary it follows that  ny converges and  nim y X

11.5.17 S.A.Q.: Show that  nim x L if and only if every subsequence of  nx has a

subsequence that covnerges to L.

Suppose nim x L by 11.5.12 every subsequence of  nx converges to L . Hence

every subsequence of  nx has a convergent subsequence (it self) that converges to L.

Conversely suppose  nim x L . Then there exists 0 0  such that for every natural

number k there is a natural number kn such that k k 1n n k  and
kn 0x  

If some subsequence of  knx converges to L

It must hold that
kn 0x   for infinitely many k. This is a contradiction.

11.6.11 S.A.Q.: Let  n 1 rX x , X X X              and r
1 rX X X          .

Then  r r
nX x . Since      1 2 rim X im X im X im X x               from

11.6.8 it follows that

          rr r r
n 1 2 rim x im X im X im X im X im X x                  

11.6.12 S.A.Q.: If r is a natural number and 0b 0

1 r
r 0 r

0 r
r 1 r0 r 0 r

a a
a

a n a n n
b bb n b b
n n

          
        


                    

Since
k

1 1
im 0, im 0

n n
   for every k (by 11.6.8)

Hence  1 r 1 r
0 0r r

a a a a
im a im a im im

n nn n
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0 1 r r

1 1
a a im a im

n n

  
              

   
 

0a

Similarly 1 r
0 0r

b b
im b b

n n

 
             

 


Hence
r

0 r 0
r

00 r

a n a a
im

bb n b

         


         


11.6.13 S.A.Q.: r r 1 r
0 r 0 r

a a
a n a n a

n n

 
                          

 

s s s1
0 s 0 s

bb
b n b n b

n n

 
                        

 

1 r
r 0 r

0 r
s s r s10 s 0 s

a a
a

a n a 1 n n
bbb n b n b

n n



 
                    

   
                         
 

1
r 0 r

0 r
s s r

10 s
0 s s

a 1
a a

a n a 1 n n
im im im

b 1b n b n b b
n n



  
                             

                         
  

  

s r

1
im 0

n 
 and

1 r
0 r

0

s1 0
0 s

a a
a

an nim
bb b

b
n n

 
          

  
          
 



Hence
r

0 r 0
s

00 s

a n a a
im 0 0

bb n b
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11.6.22 S.A.Q.: Show that if  nx is a sequence of posotive real numbers such that

n 1

n

x
im L 1

x
 

  
 

 then  nx is not bounded hence not convergent.

Solution: Since n 1

n

x
im L 1

x
   we can choose 'L 

Such that 'L L 1  . Corresponding to 'L L 0   there exists a natural number

k such that for n k .

n 1

n

x
L

x
   for n k

n 1

n

x
L L

x
    for n k

'n 1

n

x
L

x
  for n k

If n k then n n 1 k 1
n k

n 1 n 2 k

x x x
x x

x x x
 

 

            

   
 

n k 1 n' ' k
k k 1'

x
L x L

L

 


 

Since  
n' 'L 1, L

 
  

 
is unbounded and

 
k
k 1'

x

L


is a positive constant. Hence

 nx is unbounded, hence not convergent.

11.8 Summary:

After carefully working on this lesson the student should get familiarity with convergence
and divergence of sequences including working knowledge on convergence or otherwise of numerical
sequences.
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11.9 Technical Terms:

Sequence

Convergence

Convergent Sequence

Limit of a Sequence

Divergence

11.10 Exercises:

1. Write the first five terms of the sequence  nX x where

(a)  n
1

x
n n 1


 (b) n 2

1
x

n 1



(c) n 2

1
x

n n 1


 

(d)
n 1

1 n
n

x
x 1, x n

x
   (e) n 2 n n 1 1 2x x x , x x 1   

(f) 1 n 1 ny 1, y 3, y 1   (g)
n 1 n

1 2 n 2
n 1 n

z Z
Z 1, Z 2, Z

Z Z






  



(h) 1 2t 3, t 5  and n 2 n n 1t t t  

2. Which of the following sequences are monotone? Which of them are bounded?

(a) n
n

x
n 1




(b)
 n

n
1 n

x
n 1






(c)
2

n
n

x
n 1




(d)
 n

n
1

x
n 1






3. (a) Define the sequence of even numbers in  inductively..

(b) Define the sequence of odd numbers in v inductively.

4. Arrange the set of integers in a sequence.

5. Find a formula for the general term of the sequence

(a) 0, 4, 0, 8, 0, 12, ....................

(b) 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, .............
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6. Let  nf be the Fibonacci sequence and  be the "Golden number"
1 5

2


 

Show that (1) 1.5 2   (2) 2 1   (3) n
n 1f n   

7. If b show that
b

im 0
n

 
 

 


8. Prove the following using definition of a Limit.

(a) 2

n
im 0

n 1



 (b)

2n
im 2

n 1





(c)
n

im 0
n 1




 (d)
2n

im 2
n 2






(e)  n
2

n
im 1 0

n 1
 


 (f)

1
im 0

n 5





9. Let
 n

1
x

1n n 1



show that  nim x 0 . Find  a k  for

1

2
  such that nx 

for  n k  . (Ans: n > 8)

10. Show that  n nim x im x     

11. Show that  n
n

1im  does not exist.

12. Show that if nx 0 and    n nim x 0 im x 0   

13. Show that    2
n nim x 0 im x 0   

14. Show that
n

1
im 0

3

 
 

 


15. Show that
1 1

im 0
n n 1
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16. If  nim a   and n n n 1b a a   showthat  nim b 0

17. Find  
1

n
n

2nim

18. Find  2 n

n
im , 0 a 1n a  

19. Show that
2n

im 0
n!



20. Determine the smallest natural number n such that

(a) 2

n
0 01

n 1
 


(Hint:  2 2n 50 50  )

(b)
 n

2

11
0001

n n


   (c)  n2n 1 n 1000   

21. If  nx is a sequence such that  n 1 nim x x    show that nx
im

n
 

22. Let   n
n

1
x 1 1

2
   show that 1 nx x 1

im
n 2

      


23. (a) If a, b are real numbers show that

 a b a v b    

(b) If  nim x x and  nim y y Prove that  n nim x y x y  

24. Establish the convergence or divergence of  nx where nx 

(i) 2

n

n n
(ii)

 n 21 n

n 1




(iii)

2

2

n

n n
(iv)

2

2

2n 3

n 1





25. Let nx n for n and    n nX x , Y x  

Show that X and Y are divergent but x y is convergent
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26. Let
 n

n n
1

x y
n


  for  nn 1, X x  and  nY y

Show that  nx x and  ny y are divergent.

Determine the convergence or divergence of XY.

27. Show that if X and X Y are convergent sequences then so is Y..

28. Show that if the sequences X, Y are such that X and XY are convergent and if

 im 0X  then Y is convergent.

29. Show that (a)  n2 is not bounded hence not convergent

and (b)   n 21 n is not convergent.

30. Find the limits of the following sequences.

(a)
2

1
2

n

 
 

 
(b)

 n1

n 2




(c)

n 1

n 1




(d)

n 1

n n



31. (a) Show that  
1

2nim 3 n 1 Hint:      
1

11
1 2

nn
n33 n

n
 

(b) Show that    1 1n n 1
im n 1 e


  (Hint:   nn xn 1  )

32. If 0 a 1  and find n 1

n

x
im

x
 

 
 

 and deduce that  nim a 0 .

33. Find the limits of the following sequences when 1 b

(a)
n

n

b

2
(b) n

n

b
(c)

3n

2n

2

3

34. If n
1

x
n

 find n 1

n

x
im

x
 

 
 

 and  nim x .

35. If nx n find m 1

n

x
im

x
 

 
 

 and  nim x .
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36. (a) If  nim x L 1  show that there exists a k such that nx 1 for n k .

(b) If 0 r 1  and
1

n
n

im L 1
x
 

  
 

 where nx 0 for all n show that there exists

a natural number k such that n
n0 x r  for n k .

(c) Deduce that if  nx is a sequence of positive real numbers such that

n

n

1
im L 1

x

 
  

 
 then nim x 0 .

37. Show that in 13(c) above if L 1 it cannot be concluded that  nim x 0 by

considering the following.

(a) If  
n

n n
n

1
x n im 1 but divergesx

x

 
  

 


(b) If
1

n n
n

1
x im 1

xn

 
  

 
 but  nim x 0

38. Prove that
   r r

n

1 1
0im

n 1 n n

 
                    

 when r 0 .

(Hint: Try squeeze theorem.)

39. If  P x is a polynomial and n
1

s P
n

 
  

 
show that  nim s 0

11.11 Answers:

1. (a)
1 1 1 1 1 1 1 1 1 1

, , , , i.e. , , , ,
1 2 2 3 3 4 4 5 5 6 2 6 12 20 30    

(b)
1 1 1 1 1

, , , ,
2 5 10 17 26

(c)
1 1 1 1 1

, , , ,
3 7 13 21 31
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(d) 2
n 1 n 1 2 3 4 5x x x x 1, x 1, x 1, x 1       

(e) 3 4 5x 1 , x 1, x 1  

(f) 1 2 3 4 5y 1, y 4, y 13, y 40, y 2    

(g) 3 4 5
1 2 3 2 5 3

Z 3, Z 5, Z 4.
2 1 3 2 5 3

  
     

  

(h) 3 4 5t 8, t 13, t 21.  

2. (a) monotonically increasing

(b) not monotonic

(c) monotonically increasing n 1

n

x
1

x
 

 
 

(d) not monotonic

3. (a) 1 n 1 nx 2, x x 2   for n

(b) 1 n 1 nx 1, x x 2   for n

4.  0, 1, 1, 2, 2, 3, 3,           

1 2nx 0; x n  for n

2n 1 2nx x  

5. (a) 2n 2n 1x 4n ; x 0 

(b) 3n 1x 1  for nn 0 or n , x 0   otherwise

17 1

20 (a) 100 (b) 1 (c) 32

24 (i) 0 (ii) diverges (iii) 1 (iv) 2

26 converges to zero

30 (a) 2 (b) 0 (c) 1 (d) 0

32 a

33 (a) 0 (b) 0 (c) 0
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34 1,000

35 1,000

11.12 Model Examnination Questions:

1. Let  nx be a sequence of real number and let x . If  na is a sequence of

positive real numbers with  nim a 0 and if for some constant C 0 and some

m N we have

n nx x Ca  for all n m

Then show that  nim x x

2. Show that  2im n n! 0

3. Suppose that    n nX x , Y y  and  nZ z are sequences of real numbers

such that n n nx y z  for all n N , and that    n nim x im Z  . Then show that

 nY y is convergent and      n n nim x im y im z    .

4. Show that
sin n

im 0
n

 
 

 


5. Let  nx be a sequence of positive real numbers such that n 1

n

x
L im

x
   

 
 exists.

If L 1 , then show that  nx converges and  nim x 0 .

6. If a 0, b 0  show that       a b
im n a n b n

2


   

7. Show that if  
1

n n n
nZ a b  where 0 a b,  then  nim Z b .

11.13 Model Practical Problem with Solution:

Problem: Let     n
n

1
x 1 1 n

2
    and

1 n
n

x x
s

n
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(i) Does Limit  2nx exist?

(ii) Does Limit  2n 1x  exist?

(iii) Does Limit  nx exist?

(iv) Does Limit  ns exist?

Aim: To determine existence of the above limits.

Definition: We say that a sequence  na converges in  if there exists a such that for

every positive number  there corresponds N in  satisfying.

na a   if n and n   .

In this case we say that  na converges to a call a the limit of  na and write  nim a a .

Thus if there exists a such that  nim a a we say that nim a exists.

Result: (i) If  na is a seuence in  such that  nim a a then for every sub sequence  nb

of  na  nim b exists and  nim b 0 .

(ii) If na k for all n where nk , im a k   .

(iii)
1

im 0
n


(iv) If    2n 2n 1im a im a a   then  nim a a

Solution:

(i)   2n
2n

1 1 1
x 1 1

2 2


    for n

(ii)   2n 1
2n 1

1 1 1
x 1 1 0

2 2





     for n

From result (ii)  2nim 1x  and  2n 1im 0x  

(iii) From result (i)  nim x does not exist.

1 2 2n
2n

x x x 0 1 0 1 0 1 n 1
s

2n 2n 2n 2
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1 2 2n 1
2n 1

x x x 0 1 0 1 0 n 1 1 1
s

2n 1 2n 1 2n 2 2n



                     

    
 

From (ii) 2n
1

im s
2



From (i) and (iii)
1

im 0
2n

 so 2n 1
1

im s
2

 

From result (iv) n
1

im s
2

 .

To show that n
1

im s
2



Let 0 . There exists 1 2n
1

N s
2

   if 1n N .

There exists 2 2n 1
1

N s
2

   if 2n N

Let     1 2N max 2 and 2N N

If n N then 1n 2N and 2n 2N

If n is even 1 n
n 1

N s
2 2
  

If n is odd 8n 2m 1  then 22m 1, m N  so n
1

s
2


n
1

s
2

  if n N

Hence n
1

im s
2
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12.1 Sequences - IIReal Analysis

Augusting Louis Cauchy (1789 - 1857)

Cauchy pioneered the study of analysis, both real and complex and the theory of permutation
groups. He also researched in convergence and divergence of infinite series, differential

equations, determinants, probability and mathematical physics.

Lesson - 12

SEQUENCES - II

12.1 Objective of the lesson:

To introduce the student some important classes of sequences such as monotone
sequences, bounded sequences and the notion of Cauchy convergence and proper divergence.
Bolzano weierstrass property is also studied.

12.2 Structure:

This lesson contains the following components:

12.3 Introduction

12.4 Monotone Sequences

12.5 Bolzano Weierstrass Property

12.6 Cauchy Convergence

12.7 Proper Divergence

12.8 Solutions to S.A.Q.'s

12.9 Summary

12.10 Technical Terms
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12.11 Exercises

12.12 Model Examination Questions

12.13 Model Practical Problem with Solution

12.3 Introduction:

In this lesson we initiate our study with properties of a simple but powerful type of
sequences - namely monotone sequences and characterize them into two classes convergent
and property divergent.

Monotonicity is a very restrictive condition. Sequences of this type form a very small
class of all sequences. But we come across several sequences whose convergence is to be
decided if not the limit be found. Cauchy's criterion becomes handy in such cases. We make
study of Cauchy convergence. We also establish Bolzano Weierstrass property for bounded
sequences which helps in finding a convergent subsequence of a bounded sequence. After citing
the example of contractive sequences which make effective use of Cauchy's criterion, we discuss
divergence properties of sequences.

12.4 Monotone Sequences:

We recall the definition of monotone sequences. A sequence  nX x is said to be

increasing if n mx x whenever n m . X is said to be decreasing if n mx x whenever n m .

X is monotone if X is either increasing or decreasing.

12.4.1 Monotone Convergence Theorem: A monotone sequence of real numbers

 nX x is convergent if and only if it is bounded. Further if

(a)  nX x is bounded and increasing,    n nim X sup x : n  

(b)  nX x is bounded and decreasing    n nim x inf x n  

Proof: Let  nX x be a monotone sequence of real numbers. If X is convergent then X is

bounded. Conversely suppose that X is monotone and bounded

(a) We first consider the case where X is increasing. Since X is bounded there exists

a positive real number M such that 1 nx x M  for all n. sine the set  nE x n 1  is

bounded above, E has supremum. Let *x sup E . We show that X is convergent and

  *
nim x x . If

*0, x  is not an upper bound of E. So there exists a natural

number k such that
*

kx x  . Since X is increasing, k nx x if n k
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Hence
*

nx x   if n k . This implies that * *
nx x x    for n k . Since

this holds for every
*

n0, im x x  .

(b) If X is a bounded and decreasing sequence there exists a real number 1M such

that 1
n 1M x x  for all n. The set  1

nE x n  is bounded below and hence has

infimum, Let 1inf E .

We show that the sequence X is convergent and  nim x   . If 0,  is not

a lower bound of 1E , so there is a natural number 1k such that 1k
x   

Since X is decreasing 1n k
x x if 1n k . So 1n k

x x       if 1n k

nx     if 1n k

Since 0 is arbitrary it follows that X is convergent and  nim x   .

12.4.2 Examples:

(1)
1

im 0
n


This can be proved directly follows:

If
1 1

0,
n n

   
21

n
  2

1
n 



Thus if k is a positive integer
2

1



, for
1

n k
n

 

Since  is arbitrary &
1

0, im 0
n

 
  

 


How ever we can use monotone convergence theorem as well.

If n 1, n 1 n 1    , so
1 1

0 1
n 1 n

  


. Thus
1

n

 
 
 

is monotonically

decreasing and bounded. Hence
1

n

 
 
 

converges and
1 1

im inf n
nn

 
  

 
  . We
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now show that inf
1

n 0
n

 
  

 
 . Clearly

1
0 n

n
  

If 0 0 0    . If
2

2

1 1 1
n ,

n n
     


This shows that  is not a lower bound of E and hence inf E   .

We can also prove that 0 as follows.

Since
1 1 1 1 1 1

im , m im im im
nn n n n n

        
          

        
      2    

But
1

im 0
n
 . Hence 21

0 im 0
n

 
    

 
  

12.4.3 Example: Let n
1 1 1

x 1
2 3 n

             . The sequence  nX x is monotonically

increasing and unbounded.

Solution: Clearly n 1 n n
1

x x x
n 1

   


. Hence  nx is increasing. To prove that  nx is

unbounded we consider n2
x .

n2 n 1 n
1

1 1 1 1 1 1 1
x 1

2 3 4 5 8 z 2


    
                                                 

0 1 2 ns s s s                 

n

j
j 0

s


 

where 0 1
1

s 1, s
2

  and  j j 1 j
1

1 1
s 2 j n

22 


                  

For
j 12

j j 1
k 1

1
2 j n, s

2 k






   


(since j j 1 j 1z 2 2   )

Since j 1 j 1 j 1 j2 k 2 2 2      for j 1
j 1 j

1 1
1 k 2 ,

2 k 2
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so

j 12
j 1

j j 3
x 1

1 1 1
s 2

22 2





   

This is true for 2 j n  and 2
1

s
2

 so

n

n

j2
j 2

1
x 1 s

2 
   

n n

j 2 j 1

1 1 1 n n
1 1 1

2 2 2 2 2 
        

Hence for every n2

n
n 1, x

2
 

Since the sequece
n

2

 
 
 

is unbounded above, it follows that  n2
x is unbounded above.

Since  n2
x is an unbounded sequence in  nx

The sequence  nx is not bounded.

Hence  nx is not convergent.

12.4.4 Example: Let n
1 1

x
n 1 n n

             
 

Show that  nx is increasing and bounded and hence convergent.

n 1 n
1 1 1 1 1

x x
n 2 2n 2 2n 2 2n 1 n 1

                  
    

n 1 n
1 1

x x 0
2n 1 2n 2

    
 

Hence  nx is increasing

Also
1 1

n k n



for 1 k n  ; n

n
0 x 1

n
   

Hence  nx is bounded. Since  nx is increasing and bounded  nx is convergent.
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12.4.5 S.A.Q.: Show that the sequence  nx defined by

n n

n!
x

n
 is monotonically decreasing and n

1
0 x

n
  for all n.

Find nim x .

12.4.6 Example: If 0 b 1  show that  nim b 0

By induction n 1 n0 b b 1   . Hence  nb is decreasing and bounded.

By monotone convergence theorem  nb is convergent. Let nim b  .

The sequence  2nb is a subsequence of the sequence  nb .

Hence  2nim b 

     
2 22n n 2n nb b im b im b         n rim b im b   2 

 1 0    0  or 1

1 cannot happen since by the monotone convergence theorem

 ninf b n 1 1   . Hence 0

12.4.7 Example: The sequence  ne where
n

n
1

e 1
n

 
  
 

is increasing.

solution: We compare the terms in the binomial expansion of ne and n 1e 

   
   

n 1 n n 11 r

1 1 1n 1 n 1e 1
n 1 n 1 n 1

 
                           

  
and

   n r n1 r

1 1 1n ne 1
n n n

                            

The  r 1 th terms in the r.h.s. are respectively
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 nr

1n 1

n 1




and   rr

1n ;
n

for 0 r n 

n 1e  has an extra term
 n 1

1

n 1




For 1 r n     
r rr

n r 1 !1 1n
r!n n

 


   
r

n n 1 n r 11

r! n

             


1 1 2 r 1
1 1 1

r! n n n

     
                   

     

1 1 2 2 r 1
1 1 1 1

r! n 1 n 1 n 1 n 1

     
                   

        

(since
k k

n 1 n,
n 1 n

  


and
k k

1
n n 1

   
    

   

 
 rr

1n 1

n 1




(as bove)

Thus for r n  the  r 1 term in the expansion of n 1e  is greater than the

corresponding term for ne . Further n 1 has an extra term.

Hence n 1 ne e  for n

12.4.8 S.A.Q.: Show that n2 e 3  for n using n 1
12 n  for n 2

12.4.9 S.A.Q.: If a 0 and 1s 0 define n 1 n
n

1 a
s s

2 s


 
  

 

show that n 1 ns s  for n 2 and  ns converges to s 0

where 2s a
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12.4.10 Example: Let  1 n 1 n
1

y 1, y 2y 3
4

   for n 1 . Show that  ny is strictly

monotonically increasing and bounded.

Solution: Clearly 2
5

y
4

 . Then 1 2y y 2  . and ny 0 for all n

(i) We show by induction that k0 y 2  for all k Assume that n0 y 2 

Then n0 2y 4  n0 2y 3 7     n
1 7

0 2y 3 2
4 4

     n 10 y 2  

Since 10 y 2  and n 10 y 2  whenever n0 y 2  ,

It follows by mathematical induction that n0 y 2  for all n.

(ii) We show by induction that n n 1y y  for all n.

Clearly 1 20 y y  . Assume that n n 10 y y   Then n n 10 2y 3 2y 3   

   n n 1
1 1

0 2y 3 2y 3
4 4

    
n 1 n 20 y y   

Thus assuming that n n 10 y y   we have proved that n 1 n 20 y y  

Thus by mathematical induction

n n 10 y y   for all n

 nHence y is strictly monotonically increasing.

12.4.11 Example: Let  nZ z where 1z 1 and n 1 nz 2z  show that  nx is strictly

monotonically increasing and bounded.

Solution: We prove strictly monotonic increasing property and boundedness by using
mathematical induction.

(a) n n 11 z z   for all n

Clearly 11 z and 2 1 1z 2z 2 1 z    so 1 21 z z 

Assume that k k 1b z z  

k k 12 2z 2z   
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k k 11 2 2z 2z    

k 1 k 21 z z   

Hence k 1 k 21 z z   whenever k k 11 z z  

Thus by mathematical induction n n 11 z z   for all n

(b) We show that n1 z 2  for all n. Then clearly holds when n 1

Assume that k1 z 2  2 2z 4   k1 2 2z 2   

 0 a b 0 a b    
k 11 z 2  

Thus k k 11 z 2 1 z 2    

Hence by mathematical induction n1 z 2  for all n .

12.4.12 Example: Let n 1 n
1

x x 2
2

   for n and 1x 8 Show that  nx is bounded and

monotone 2 1 1 1 2
1 8

x x 2 2 6 x x x 0
2 2

         Since n 1 n
1

x x 2
2

   and

n 2 n 1
1

x x 2
2

      n 1 n 2 n n 1
1

x x x x 1
2

           

We show by induction on n that    n 1 n 2 1 2n n 1

1 1
x x x x 2

2 2
  

           

Replacing n by n 1 in (1) we get  n 2 n 3 n 1 n 2
1

x x x x
2

     

If we assume (2) for n we get    n 2 n 3 1 2 1 2n n 1

1 1 1
x x x x x x

2 2 2
  

     

Since  2 3
1

x x 6 2 6 3 2 1
2

        1 2
1

x x
2

   It follows by mathematical induction

that
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 n 1 n 2 1 2n n 1

1 1
x x x x 0

2 2
  
     for all n

Hence n 1 n 2x x  for n i.e.,  nx is monotonically decreasing.

Since n
n 1 1

x
x 2 and x 2

2
    It follows that n 1x 2 n  

Hence  nx is bounded below by 2. Also n 1x x 8 n   , so nx 8 n 

Hence  nx is bounded.

12.4.13 Example: Let 1x 1 and n 1
n

1
x 2

x
   for n

Showthat  nx is bounded and monotone

2 2 1 1
1 1

1 1
x 2 x x 2 x

x x
       1

1

1
x 2

x

 
    

 

2

1
1

1
x 0

x

 
    

 
 

2 1x x 

We show by induction that n 1 nx x  for all n . When n 1 we have proved above

that 2 1x x .

Assume that k 1 kk & x x  , so that
k k 1

1 1

x x 



k 2 k 1
k 1 k k k 1

1 1 1 1
x x 2 2 0

x x x x
 

 

   
          

   
k 2 k 1x x  

Thus k 2 k 1x x  whenever k 1 kx x  . Since 2 1x x it follows by induction that n 1 nx x 

for n . Hence  nx is monotonically decreasing. To show that  nx is bounded we

show that kx 1 n  . Since 1 nx x for all n it follows that 1 nx x 1 n    and hence

 nx is bounded. Clearly 2
1

1
x 2 2 1 1

x
    

Assume that kx 1 then
k

1
1

x
 so

k

1
2 1

x
  i.e. k 1x 1  . Thus by induction

nx 1 n   Hence n 11 x x n     nx is bounded.
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12.4.14 Example: Let a be an infinite set in  which is bounded above and u sup A . Show

that there is an increasing sequence  nx in A such that  nim x u .

If u A we choose nx u for all n . Clearly  nx is increasing and  nim x u .

Assume that u A . Since 1 1y u 1 u, y   is not an upper bound of A so that

there is 1x in A such that 1 1y x u  . Since u A and 1x A , 1 1y x u  . Let

2 1
1

y max u , x
2

 
  

 
. Then 2y u . So there is 2x A such that 2 2y x u  . Repeating

this process we define n n 1
1

y max u , x
n


 

  
 

where 1 n 1x , x       are chosen as above.

Since n 1 n
1

u u & x u, y u
n

    . So as above, there is nx A such that

n ny x u  . Since A is infinite this process does not stop yielding an infinite sequence

 nx in n nA y x u   .

Since n n
1 1

u y , u x u
n n

     for all n n
1

0 u x
n

   for all n. Since

1
im 0,

n

 
 

 
 by Squeeze theorem  nim u x 0  . Hence  nim x u .

12.4.15 Limit Superior and Limt Inferior of a Sequence:

Let  nx be a bounded sequence. For each n let  n ks sup x k n  and

 n kt inf x k n  . (1) Then  nt is increasing

Proof: By definition  n kt inf x k n  m kt x  if k n n kt x  if k n 1 

This is true for every k n 1 

nt is lower bounded for  kx k n 1 

Since  n 1 k n n 1t g b x k n 1 , t t     . Thus  nt is increasing.

(2)  ns is decreasing:
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Proof: By definition  n ks sup x k n  n ks x  if k n n ks x  if k n 1 

ns is an upper bound of  kx k n 1 

Since  n 1 ks sup x k n 1   

n 1 ns s  for all n

Then  ns is increasing.

(3)  ns and  nt are convergent and    n nim t im s  :

Proof: Since  nx is bounded there are m and M such that

nm x M  for all n

nm x M   for all n k and k

k km t s M    for all k     n nSince inf x sup x

 ns is bounded and increasing and  nt is bounded and decreasing

 ns and  nt are convergent. Since n nt s for all n nn , im t im s   

(4) If n nim s im t    , then  nt is convergent and nim x  

Proof: Let  knx be any subsequence of  nx . We show that  knim x d .

Let 0  since nim s   there is a natural number 1N such that

1Ns   . Since  ns is decreasing ns  for 1n N .

Since nim t   , there is a natural number 2N such that
2Nt 

Since  nt is increasing,
2N nt t   for 2n N

Let    1 2N max N , N  . Then
   2N N Nt t s
 

      

n n nt x s         for  n N 

n k Nt x s        for  n N 
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kc x       for k N  

This is true for every  k N  , hence

knx     for    kk N N k  

Hence
x

kn    for k N   x
kim n  

The number  nim s is called that limit superior of  nx and  nim t is called the

limit inferior of  nx .

12.5 Bolzano - Weiestrass' Theorem:

We say that a sequence  nI of intervals is nested if n n 1I I  for every natural number n.

i.e., 1 2 3 n n 1I I I I I                                   

12.5.1 Theorem: If  nI is a sequence of nested intervals and each nI is closed and bounded

then there exists a real number  such that nI  for every n.

Proof: Let  n n nI a , b . Since n n 1I I  for every n We have n n 1 n 1 na a b b    .

na n 1a  n 1b  nb

Also if n nm n I I   so that  n m m na a b b 1             

Hence  na is increasing and  nb is decreasing .................. (2)

Further if  m n n mm n a a b b 3              

Thus from (1) & (2) it follows that m na b for all m and n ............(4)

From (4) we conclude that every nb is an upper bound for  na and every na is

a lower bound for  nb .

Consequently if  na sup a and nb inf a n na a b b   for every n.

If a b   then n na a b b n    

So that  n na , b for every n.



Centre for Distance Education 12.14 Acharya Nagarjuna University

12.5.2 Theorem: If  n n nI a ,b , n  is a nested sequence of closed bounded intervals and

the lengths n nb a of nI satisfy  n ninf b a n 0   then the number  such that

nI  for all n, is unique.

Proof: Since the sequence  na is increasing,  nb is decreasing and every nb is an upper

bound of  na and every na is a lower bound of  nb it follows as in the above theorem

that if  na sup a n  and  nb inf b n  , n na a b b   for all n .

n n0 b a b a     for all n  n n0 b a inf b a n 0      

b a 0 i.e., b a    a b a b       

Also if n n nI , a b    for all n

  is an upper bound of  na and a lowe r bound of  nb a b    a b   

Thus the number  such that nI  for every n, is unique.

12.5.3 Monotone Subsequence Theorem:

If  nX x is a sequence of real numbers then X has a subsequence that is

monotone.

Proof: We call a term mx a peak of the sequence  nx if m nx x for all n m .

Case (1): If X does not have peaks, 1x is not a peak of X. So there is natural number

1n 1 such that
11 nx x . Again

1nx is not peak of X, so there is 2 1n n such that

1 2n nx x . We repeat this process. Assuming that 1 2 k1 n n n                  are

already chosen such that
1 2 k1 n n nx x x x                , we use the fact that

knx is a
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peak of X and choose k 1 kn n  such that
k 1 kn nx x

 . By induction we get a sub-

sequence  knx of  nx such that
1 2 k1 n n nx x x x                      

This is a monotonically increasing subsequence of X.

Case (ii): If X has a finite number of peaks, say
1 2 rn n nx x x                        and

1 rm n 1  . Since 1 rm n , 1mx is not a speak, so there is 2 1m m such that
1 2m mx x

is not a peak, so there is 2 1m m such that
1 2m mx x . Again 2 1 rm m n  imples that

2mx is not a peak, so there is 3 2m m such that
3 2m mx x . We repeat the argument

of case (i) and get an increasing sequence.
1 2 km m mx x x                            

which is a subequence of X.

Case (iii): If X has infinitely many peaks, Let  mP m , x is a peak of X  . P is an

infinite subset of  . So P has a first element, say 1m . Then mx , is the "first" peak.

Remove 1m from P,  1P m is infinite, so as above has first element say 2m . then

1 2m m and since
1mx is a peak

1 2m mx x . Since P is infinite  1 2P m , m is infinite.

We choose the first element, say 3m of  1 2P m , m .

Since 1 2 3m m m  and
2mx is apeak so

2 3m mx x .

This implies that
1 m m2 3

m x xx   and each
1mx is a peak. We repeat this process

and at the  k 1 th stage we pick up the first element k 1m  of  1 kP m , ,m        so that

as above k 1 km m  and being a peak
k k 1m mx x


 .

Since the set P does not exharust at any stage we get a decreasing sequence of
peaks.

1 2 3 km m m mx x x x                            

which form a subsequence of X.

12.5.4 Bolzano - Weirestrass Theorem: A bounded sequence of real numbers has a
convergent subsequence.

We present two proofs of this theorem. The first is based on monotone subsequence
theorem and the second proof makes use of the theorem on nested intervals.
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First Proof: Let  nX x be a bounded sequence of real numbers. By the Monotone

subsequence theorem X has a monotone sub sequence  knY x . Since X is bounded

so is y. Since Y is bounded and monotone, Y is convergent.

Second Proof: Since X is bounded there exist a, b in  such that na x b  for

all n. We obtain a sequence of nested intervals 1 2 kI I I                          

such that length k k

b a
I

2


 for every k and a sub sequence  knx of X such that

kn kx I k  . First Let 1n 1 Let  I a, b ,    ' ''I a, c , I c, b  where
a b

c
2


 is the

midpoint of I . Thus ' "I , I are obtained by bisecting I into equal parts. Since I contains

nx for all n, "
nx I for every n.

Let    ' "
1 1 n 1 1 nA n : n n 1 x I B n n n 1 & x I          

Clearly either 1A or 1B is an infinite set.

If 1A is infinite we write 1
1I I ., 1A has the first element, say 2n .

If 1A is finite the 1B must be infinite. In this case we write "
1I I and choose 2n to

be the first element in 1B . We now bisect 1I isnto two equal parts ' "
1 1I , I as above

Write  '2 2 n 1A n : n , x I     and  "2 2 n 1B n : n n , x I   

and obtain 2n as the first element of 2A if 2A is infinite and as the first element of 2B , if

2A is finite. We continue this process to obtain a sequence  nI of nested intervals

such that length of n
1

I
2

 length n 1I  and a sub sequence

1 2 kn n n                       in  such that
kn kx I for every k.

By the theorem on nested intervals, there is a unique  such that kI  for all k.

Since
kn kx I it follows that
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kn k k

b a
0 x length I

2


    

Since im
k

1
0

2

 
 

 
it follows by the squeze theorem that

knim x 0  

This implies that
knim x   .

12.5.5 Example: Apply the second proof of Bolzano weierestarss theorem to the sequence

 nX x where
 n

n
1

x
n


 and  1I 1, 1  2n

1
x

2n
 and 2n 1

1
x

2n 1
 


for n .

Step 1:   ' "
1 1 1 1I I 1, 1 Bisec t I I I     

1n 1

01
'
1I

''
1I 1

 1 n 1A n n 1, x I '   

   nn 1 x 0 1, 3, 5, 7, 9,             

   "
1 1B n n 1 x I 2, 4, 6, 8,                

  ' "
2 2 2 2 2n 3, I 1, 0 I I I    

01 '
2I 2I "

2I

1

2



 '
2 2 n

1
A n n 3 x I n 3 x

2

 
         

 


   "
2 n 2 n

1
B n x 3, x I n 3 0 x 5, 7, 9,

2
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' "
3 3 3 3

1
n 5 I , 0 I I

2

 
   

 


1

2

 1

4



3I
''
3I

0

 1
3 n 3A n 5 x I    

   "
3 n 3B n 5 x I 5, 7, 9,               

Repeating this process we get

 k k kn 2k 1, A , B 2k 1, 2k 3                 

and
 k k

1
I , 0 n 2k 1

2 k 1

 
   

  

kn k
1

x I
2k 1


 



kn
1

im x im 0
2k 1


 


 

12.5.6 Example: Let  nx be a bounded sequence and  ns sup x n  .

If  ns x n  show that there is a sub sequence  knx of  nx such that
knim x s .

Solution: Since s is the least upper bound and 1y s 1 s   there is a smallest natural number

1n such that
11 ny x s  clearly 1s x so

11 ny x s 

Let
12 n

1
y max s , x

2

 
  

 
. Then 2y s . So as above there is 2 1n n such that and 2n

is the smallest natural number such that 22 ny x s 

Repeating this process we get a sub sequence
knx of X and a sequence  ky

such that
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k 1k n
1

y max s , x
k 

 
  

 
and

kk ny x s 

kn
1

s x s
k

   
kn

1
0 s x

k
   

By Squeeze theorem  knim s x 0  so that  knim x s .

12.6 Cauchy Convergence:

The applicability of monotone convergence theorem is restricted to monotone sequences
alone which are considerably very small in the set of all sequences. The Cauchy criterion, which
we discuss now covers the entire class of sequences without any restriction.

Definition: A sequence  nX x is said to be a Cauchy sequence if for every 0 there is a

natural number  H  such that for all natural numbers  n H  and  m H  the terms n mx , x

satisfy n mx x  .

(Here after we write this condition as   n m" x x for n, m H "   

Our goal is to show that in  Cauchy sequences are precisely convergent sequences.
We first present a couple of examples.

12.6.1 Examples: (a) The sequence
1

n

 
 
 

is a Cauchy sequence.

If 0  we choose using Archemedian principle a natural number  
2

H  


. If

m, n are natural numbers such that  m H  and  n H  .

1

m 2


 and

1

n 2


 so

1 1 1 1

m n m n 2 2

 
     

This implies that
1

n

 
 
 

is a Cauchy sequence.
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Example: (b) The sequence   n
1 is not a Cauchy sequence.

If this were a Cauchy sequence, for
1

2
 t here would exist a natural number H

such that

   n m 1
1 1

2
    for m H and n H .

In particular it would follow that    2H 2H 1 1
1 1

2


   

i.e.,
1

2
2

 which is absend

So our assumption is false. Hence   n
1 is not a Cauchy sequence.

12.6.2 Lemma: If  nX x is a convergent sequence of real numbers then X is a Cauchy

sequence.

Proof: Let im X x . Given 0 there is a natural number  K  that corresponds to
2


so

that for all  n K  nx x
2


  For  n K  and  m K 

   n m n mx x x x x x     n mx x x x   
2 2

 
  

This is true for every 0  . So  nx is a Cauchy sequence.

12.6.3 Lemma: A Cauchy sequence of real numbers is bounded.

Proof: Let  nX x be a Cauchy sequence of real numbers. For 1 there corresponds a

natural number k such that n mx x 1  if n k and m k

In particular n kx x 1  if n k , so that n k n kx x x x 1 if n k    

n kx 1 x if n k    If  1 k 1 kM max x , x and 1 x            

then nx M if 1 n k 1   k1 x M   if n k

so that nx M for all n. Hence  nX x is bounded.
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12.6.4 Example: A bounded sequence is not necessarily a Cauchy sequence.

Let nx 1  for all n, ny 1  for all n

and    n 1 1 2 2 3 3Z Z x , y , x , y , x , y ,            1, 1, 1,1, 1,1, 1,             

so that  nnZ 1 

It is clear that Z is not a Cauchy sequence but range  Z 1, 1  is bounded so Z is

bounded.

12.6.5 Lemma: If a Cauchy sequence  nX x contains a subsequence  k

'
nX x that is

convergent then X is convergent, hence
1im X im X  .

Proof: Since  nx is a Cauchy sequence, gvien 0 there is a natural number 1k such that for

1n k and 1m k n mx x
2


 

Since  knx converges, corresponding to the above 0 there is a natural number 2k .

such that
knx x

2


  for all k 2n k where  knx im x  Let    1 2k max k , k 

Since 1 2 k1 n n n                             

is a strictly increasing sub sequence of  1, 2, 3,           

kn k for every k so that

if  0k k  , and  
00 k k 0k k , n n k k     so that

knx x
2


 

If    k k0 n n n nn k x x x x x x     
k kn n nx x x x   

2 2

 
 

Since 0 is arbitrary

   kn nim x x im x  

i.e., 1im X im X 
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12.6.6 Cauchy Convergence Criterion: A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof: Let  nX x be any sequence of real numbers.

If X is convergent then X is a Cauchy sequence (by 12.6.2) conversely suppose X is a
Cauchy sequence. By lemma 12.6.3 X is bounded

By Bolzano weierestrass theorem X has a covnergent sub sequence say  k

1
nX x

By lemma 12.6.5 the sequence X is convergent and

1im X im X 

12.6.7 Application to contractive sequences:

Definition: A sequence  nx of real numbers is said to be contractive if there is a real

number C such that 0 C 1  and

n 2 n 1 n 1 nx x C x x     for all n

Any such C is called a constant of the contractive sequence  nx or simply a

contractive constant.

12.6.8 Theorem: Every contractive sequence is a Cauchy sequence and hence is covergent.

Proof: Let  nx be a contractive sequence with contraction constant C. Then

n 2 n 1 n 1 nx x C x x     for all n. This implies that
n

n 2 n 1 2 1x x C x x    for all

n. because this holds for n 1 .

3 2 2 1x x C x x  

when this inequality holds for n,

n 3 n 2 n 2 n 1x x C x x      n n 1
2 1 2 1C C x x C x x    

so that the inequality holds for n+1.

Consequently n
n 2 n 1 2 1x x C x x    for all n .

We now show that  nx is a Cauchy sequence.

If m n
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m n m m 1 m 2 n 1 nx x x x x x x             

m m 1 m 1 m 2 m 1 nx x x x x x                

 m 2 m 3 n 1
2 1C C C x x             

 n 1 m n 1
2 1C 1 C C x x                

m n
n 1

2 1
1 C

C x x
1 C



 

  
  

 
n 1

m n
2 1

C
x x Since 0 C 1

1 C


    



Since n0 C 1, im C 0   so given 0  there is a natural number  k 

such that
 n 1

2 1

1 C
X

1 x x
  


 
for  n k 

 n 1
2 12 1 n 1 1 x xc x x

C
1 C 1 C


   

  
 

for  n k 

Hence if  m n k   m nx x 

Hence if  m k  and  n k  m nx x 

This implies that  nx is a Cauchy sequence, hence convergent.

12.6.9 Corollary: If  nx is a contractive sequence of real numbers with contractive constant

C and  *
nx im x  then

(i)
n 1

*
n 2 1

C
x x x x

1 C



  


and (ii)
*

n n n 1
C

x x x x
1 C
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Proof: (i) From 12.6.8,
n 1

m n 2 1
C

x x x x
1 C



  


if  m n A              

Since
*

m
m

x xim  , for any fixed n   *
m n nim x x x x  

*
m n nim x x x x    Since (A) holds for m n ,

n
*

n m n 2 1
m

C
x x x x x xim

1 C
    




(ii) If m n m m 1 n 1 nm n, x x x x x x                  

Also for all k ,

k
n k n k 1 n n 1x x C x x     

Hence  m n m n 1 2
m n n n 1x x C C C C x x  

            

 m n 1
n n 1C 1 C C x x 

              

 m n

n n 1

1 C
C x x

1 C






 



n n 1
C

x x
1 C

 


12.6.10 Example: Define the sequence  nx by 1 2x 1, x 2  and  n 1 n n 1
1

x x x
2

   .

(i) Show that n1 x 2  for all n .

The proof is by induction. The inequality holds good when n 1 and n 2 . Assuming

that k1 x 2  for 1 k n  we get that n 1x  , being the arithmetic mean of nx and n 1x 

lies between n 1x  and nx . Since n 11 x 2  and n1 x 2  it follows that n 11 x 2  .

Hence by induction the inequality holds for all n .
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(ii) 2n 1 2n 1 2n 2 2n1 x x x x 2       fro all  n 2           

The proof is induction. The inequality holds when n 1 since

1 2 3
3

x 1, x 2, x
2

   and 4
1 3 7

x 2
2 2 4

 
   

 

Assume that (2) holds for n k 

2k 1 2k 2
2k 3 2k 1 2k 3 2k 2

x x
x x x x

2
 

   


   

2k 3 2k 2
2k 4 2k 3 2k 4 2k 2

x x
x x x x

2
 

   


   

2k 1 2k 3 2k 4 2k 2x x x x       so that (2) holds for K k 1 

By induction (2) holds for all n

(iii)  2n 1x  is increasing and  2nx is decreasing. Moreover

   2n 1 2n 2n 1 2n 2x , x x , x   so that 2n 1 2mx x  for all n, m in  . Follows

from (ii)

(iv) n 1 n n 1

1
x x

2
 

  for  n 3         

When 2 1
1

n 1, x x 2 1 1
20

      so (3) holds when n 1

Assume that (3) holds for k

 k 1 k k k 1 k
1

x x x x x
2

     k k 1 k 2 k 1

1 1 1 1
x x

2 2 2 2
  

    

So (3) holds for k 1 when it holds for k. By induction (3) holds for all n.

(v) 2n 1 3 2n 1

1 1 1
x 1

2 2 2
 

            for  n 4            

   3 2 1
1 1

x x x 1 4
2 2

     holds when n 1 assume that (4) holds for k. From

(iv) 2k 2 2k 1 2k

1
x x

2
   and 2k 3 2k 2 2k 1

1
x x

2
  

  .
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From (ii) 2k 1 2k 3 2k 2 2kx x x x    
2k 2 2k 1 2k 2 2k 1 2k

1
0 x x x x

2
        

and similarly 2k 2 2k 3 2k 3 2k 2 2k 1

1
0 x x x x

2
    

     2k 3 2k 2 2k 1

1
x x

2
  

  

2k 1 2k 2k 1

1 1
x

2 2
 

   2k 1 2k

1 1
x 1

22


 
   

 
2k 1 2k 1

1
x

2
 

 

3 2k 1

1 1 1
1

2 2 2 
               

By induction (4) holds for all n.

(vi)  nx is Cauchy sequence and hence converges.

For m n      m n m m 1 m 1 m 2 n 1 nx x x x x x x x                  

m m 1 m 1 m 2 n 1 nx x x x x x                        

m 2 m 3 n 1

1 1 1

2 2 2  
                 

n 1 m n 1

1 1 1
1

22 2  

 
            

 

m n

n 1

1
1

1 2
12 1
2





 
 

 
  
 

n 2 m n n 2

1 1 1
1

2 2 2  

 
   

 

Since
n 2

1
im 0

2 
 , given 0 there is a  k   such that

2

1

2 
 


for

 n k  so for  m n k   , m nx x  this implies that  nx is a Cauchy sequence.

By Cauchy's criterion,  nx converges.
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(vii) n
5

im x
3



By step 5 2n 1 3 2n 1

1 1 1
x 1

2 2 2
 

              

2 4 2n

1 1 1 1
1 1

2 2 2 2

 
            

 

2 n
1 1 1 1

1 1
2 4 4 4

                         

n 1
1

1
1 4

1
12 1
4


 

  
   



n 1
2 1

1 1
3 4

          

Since
1

0 1
4

 
n 1

1
im 0

4


 

 
 



 Hence  2n 1
2 5

im x 1
3 3

   

Since  nx is a Cauchy sequence with convergent subsequence  2n 1x  it follows

that    n 2n 1
5

im x im x
3

   .

12.6.11 Example: Consider the cubic equation
2x 7x 2 0   . It is given that this equation

has a root between 0 and 1. We find out an approximation for this root. Towords this end
we make use of contractive sequences.

Write
3x 2

x
7
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Choose any 1x such that 10 x 1  Define
3
n

n 1
x 2

x
7






Clearly
3
1

2
x 2 1 2

0 x 1
7 7

 
   

Assuming that n0 x 1  we get
3
n

n 1
x 2 1 2

0 x 1
7 7


 

   

so that by induction it follows that n0 x 1  for all n. Moreover for n

    3 3
n 2 n 1 n 1 n

1
x x x 2 x 2

7
        3 3

n 1 n
1

x x
7

 

2 2
n 1 n n 1 n 1 n n

1
x x x x x x

7
     

 2 2
n 1 n n 1 n 1 n n

1
x x x x x x

7
       

 n 1 n n
3

x x Since x 1 for all n
7

   

Thus  nx is a contractive sequence with
3

7
as constatnt of contrction. By 12.6.8

there is r such that  nim x r . From the equation  3
n 1 n

1
x x 2

7
   we have

   3 3
n 1 n

1 1
r im x im x 2 r 2

7 7
     

so that 3r 7r 2 0   . Also 0 r 1 

Since r 0 and n 1 , r is the solution of the given equation in  0, 1 .

12.7 Proper Divergence:

Earlier we defined a sequence  nx of real numbers to be divergent if the sequence is

not convergent. A divergent sequence may be bounded or unbounded - unbounded above or
unbounded below or both. We now concentrate on unbounded divergent sequences.
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12.7.1 Defintion: Let  nx be a sequence of real numbers. We say that  nx tends to  

and write  nim x   if for every  there exists a natural number  k  such that

  nif n k , x    .

Definition: We say that  nx tends to   and write  nim x    if for every 

there exists a natural number  k  such that if   nn k x    .

We say that  nx is properly divergent if nim x   

From the definitions it is clear that  nim x    if and only if for every  at most

a finite number of the points  nn, x lie with in the region   x, y y   of the plane.

Likewise  nim x    if and only y for every  atmost a finite number of the points

 nn, x lie in the region   x, y y  

12.7.2 Theorem: Let  nx and  ny be two sequences of real numbers and suppose that

n nx y for all n

(a) If nim x    then nim y   

(b) If nim y    then nim x   

Proof: (a) Suppose nim x    . If  there is a natural number  k  such that if

  nn k , x    since n ny x for every n it follows that if  n k 

n ny x   so that ny   if  n k 

Hence nim y  

(b) Suppose nim y    then if  there is a natural number  k  such that ny  

if  n k  . Since n nx y for all n, n nx y   if  n k  . Since nx   for every

 and  n k  it follows that  nim x    .

12.7.3 S.A.Q.: Show that if nx 0 for every n,  nim x 0 iff and only if
n

1
im

x
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12.7.4 S.A.Q.: Show that if (x) and  ny are properly divergent and    n nim x im y 

there  n nx y is properly divergent and      n n n nim x y im x im y     .

12.7.5 Theorem: A monotone sequence of real numbers is properly divergent if and only if it is
unbounded.

(a) If  nx is an unbounded increasing sequence then  nim x  

(b) If  nx is an unbounded decreasing sequence then  nim x   

Proof: (a) Let  nx be a monotonically increasing sequence. Then  nx is bounded below

and 1x is a lower bound. If  nx is bounded above then  nx is convergent and

   n nim x sup x n   If  nx is unbounded above, for every  there is a natural

number such that  kx    . Since  nx is increasing.

If  k k  ,  k kx x    This implies that nim x    so that  nx is properly

divergent.

12.7.6 Theorem: Let  nx and  ny be sequences of positive real numbers and suppose

n
n

n

x
im x 0

y

 
  

 
 Then  nim x    if and only if  nim y   

Proof: Let n

n

x
im L

y

 
 

 
 . Since L 0 there is a natural number k such that if n k

n

n

x L
L

y 2
 

This implies that n

n

xL L
L L if n k

2 y 2
    

n

n

x3L L
if n k

2 y 2
   

 n n
L

x y if n k
2

   and n n
3L

x y if n k
2
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Suppose nim y    . If  is any real number there is a natural number 1k such that

if 1 n
2

n k ; x
3L

   . If    1k max k, k  and  n k  then n k as well as

1n k so that

n n
2

y x
3L

  

n n
3L 3L 2

x y
2 2 3L

      

nim x   

Suppose nim x If     there is natural number 2k such that n
3L

x
2

  if

2n k

If    2k max k, k  and  n k  then n n
3L

n k y x
2

   2 n
3L

n k x
2

   

So if  n k  , ny 

This implies that  nim y   

12.8 Solutions to S.A.Q.'s:

12.4.5 S.A.Q.:

n n

n!
x

n


 

 

n
n 1

n 1
n

n 1 !x n

x n!n 1





  



n
n

1
n 1

 
  

 

n 1 n0 x x   for all n

Also n
1 2 n 1

x
n n n n

               Hence n
1

0 x
n

 

Since n
1

im 0 im x 0,
n
   by Squeeze theorem

Remark: For convergence, monotonicity is not required! Squeeze theorem is enough.
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12.4.8 S.A.Q.: For n 1n 2 2 n! 

when 2n 3, hs 2 and rhs 3! 6    so that the inequality holds good when n 3 .

Assume that
n 1Z n!  where n 2 . Then    n n 12 2 2 n! n 1 n 1 !     

 2 n n 1   . By induction it follows that n 12 n!  for all n

Since
n

n
1

e 1
n

 
  
 

     2 n1 2 n

1 1 1n n n1
n n n

             

n

1 1 1 1 2 1
1 1 1 1 1

2! n 3! n n n

    
                    

    

and
n

1 1 1 2 n 1
1 1 1

n! n n nn

     
                

     

We have for 1 r n  the r-th term in the rhs

1 1 r 1
1 1

r! r n

   
      

   

r 1

1 1

r! 2 
 

Hence n n 1

1 1
e 1 1

2 2 
             

n

n

1
1

121 1 2 1 3
1 21
2


 

      
 

It is clear that ne 2

Hence n2 e 3 
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12.4.9 S.A.Q.: Given 1a 0, s 0  and n 1 n
n

1 a
s s

2 s


 
  

 

we show that  ns is decreasing for sufficiently large n and nim s 2

Step (1): ns 0 for n

Proof: By hypothesis 1s 0 . If we assume that ns 0 then n 1 n
n

1 a
s s 0

2 s


 
   

 

Hence by induction, ns 0 for all n

Step (2): 2
n 1s a  for all n

from n 1 n
n

1 a
s s

2 s


 
  

 
it follows that

2
n n n 1s 2s s a 0  

so that ns is a root of the quadratic equation 2
n 1x 2s x a 0   since this equation

has real root, the discriminant is non negative.

Hence 2
n 1s a 0   so that

2
n 1s a  for n

Step (3): n 1 ns s  for n 2

Since 2
n 1s a  and n 1s 0  n 1

n 1

a
s

s




 for n

n 1 n 1
n 1 n 1

1 a a
s s

2 s s
 

 

 
    

 

n 1 n 2s s   for n

n 1 ns s  for n 2

Step (4): By monotone convergence theorem  ns is convergent

If nim s s then n 1im s s  and s 0 so that n 1 n
n

1 a
s im s im s

2 s


 
   

 
 

r a s a
s

2 2s 2 s
     2s a 
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12.7.3 S.A.Q.: Assume that nx 0 for every n and nim x   then,

If 0 there is a natural number  k  such that

n
1

x 


for  n k  . Then if  
n

1
n k ,

x
  

Since
n

1
0

x
  for  n k  and  is arbitrary it follows that

n

1
im 0

x


Conversely suppose
n

1
im 0

x
 . Given 0 there is a positive integer  k  such

that
n

1 1

x



if  n k 

Then if   nn k x  . Hence nim x   

12.7.4 S.A.Q.: (a) Assume that    n nim x im y    

(The proof for the case   is similar)

If 0 there are natural numbers 1 2k , k such that if 1 nn k , x
2


  and if 2 nn k , y

2


 

If    1 2k max k , k  and  n k  then nx
2


 and ny

2


 so that n nx y 

(b) Since n nim x im y     there are natural numbers 1 2k , k such that

nx 0 if 1n k and 2y 0 if 2n k

If 0 there are natural numbers 1k and 2k such that

nx 0   if 1n k and ny 0   if 2n k

If    1 2k max k ,k  and  n k 

and 1 2 n nn k , n k x 0, y 0         n nx y  if  n k 

Hence  n nim x y   
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12.9 Summary:

A careful study of this lesson should enable the student to realize the importance of
monotone sequences and their applications and limitations, the role of sub sequences in determining
the nature of the sequence, the importance of Bolzano Weierstrass theorem on sequences and
finally the utitlity of the Cauchy criterion for convergence. The student should also notice that
contractive sequences are very useful in locating the real roots of polynomial equations with real
coefficients and approximating them within the desired error.

12.10 Technical Terms:

Monotone Sequence

Peak

Subsequence

Bounded Sequence

Contractive Sequence

12.11 Exercises:

1. If  na increases show that 1 na a

n

        
 
 

increases.

2. If  na decreases show that
1 na a

n

        
 
 

decreases.

3. If  na increases and na 0 show that  nlog a increases.

4. Show that if na 0 for every n and  na increases  
1

n1 2 na a a
 

           
increases.

5. Do exercise 4 when  na decreases

6. Let 1x 0 and n 1
n

2
x

1 x
 


. Show that one of the sequences  2n 1x  and  2nx

is increasing and the other one is decreasing. Show also that the two sequences

are convergent and have the same limit. Deduce that  nx converges.
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7. Let k 0 and 1x 0 . Define n 1 nx k x  

Show that  nx is monotone and bounded

Show that nim x a where a 0 and 2a a k 

8. Let 1x 2 and n 1
n

x
x

x
  for n . Prove

(a) nx 0 for n

(b)  n 1 nx x  and n n 1x x  have same sign

(c)  2n 1x  is increasing and bounded

(d)  2nx is decreasing and bounded

9. Let c 1 and

1

n
nx c

(a) Show that n 1 n1 x x c   for n

(b) Show that nim x 1

10. Let 1x 1 and n 1
n

1
x 2

x
   . Show that nk x 2  and  nx is decreasing.

Find nim x . (Ans: 1)

11. Let 1x 2 and n 1 nx 1 x 1    for n Show that  nx is monotonically

decreasing and n 12 x k  for all find nim x . (Ans: 1)

12. Let 1x 2 and n 1 nx 2 x   for n show that  nx converges.

Find limit  nx . (Ans: 2)

13. Let 1P 0, y P  and n 1 ny P y   for n . Show that  ny converges and

find  nim y (See Ex.7)
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14. Let  na be an increasing sequence,  nb be decreasing and n na b for all n .

(a) Show that n n 1 n 1 na a b b    for all n

(Hint: obtain a contradiction if m mb a for some m)

(b) Deduce that    n nim a im b 

(c) Show that if n n
n 1 n 1

b a
b a

2
 


  for all n    n nim b im a  .

15. Deduce from (14) above that if  n n n n 1I a, b , I I   for all n , then there is

nI  for all n . If n n
n 1 n 1

b a
b a

2
 


  for all n. Show that there is a unique 

which belongs to every nI .

12.11.B Exercise:

1. Let n
1

I 0,
n

 
  
 

. Show that n n 1I I  for every n . Find n
n 1

I



 (Ans: {0})

2. Let n
1

I 0,
n

 
  
 

show that n n 1I I  for every n and n
n 1

I



 

3. Let    nk n, x x and x n    

show that n n 1k k  for n and n
n 1

k



 

4. Give an example of an unbounded sequence which contains a convergent sub
sequence.

5. Show that if  nx x is unbounded there is a sub sequence  knx of X such that

kn

1
im 0

x

 
  
 
 

 . (Hint: Find kn k such that
kn kx  ).

6. If every term in  nx is a peak of  nx showthat  nx is decreasing.

7. Find all peaks of the sequence   n
1 (Ans:  )
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8. Call nx a foot of  nx if and only if nx is a peak of  nx .

Imitate the proof of monotone sub sequence theorem to show that a monotone sub
sequence of a given sequence can be picked by using "feet".

9. Apply the procedure in method of Bolzano - Weierestrass theorem for the sequences

1

n

 
 
 

and
n

n 1

 
 

 
.

12.11.C Exercise:

1. Give an example of a bounded sequence that is not a Cauchy sequence.

2. Show directly from the definition that the following are Cauchy sequences.

(a)
n 1

n

 
 
 

(b)
1 1 1

1
1! 2! n!

 
           

 

3. Show directly from the definition that the following are not Cauchy sequences.

(a)   n
1 (b)

 n1
n

n

 
 
 
 

(c)  n n

4. Show directly from the definition that if  nx and  ny are Cauchy sequences then

so are  n nx y and  n nx y

5. If  nx is a sequence of integers, show that n mx x 0  or n mx x 1 

Deduce that if  nx is Cauchy sequence of integers then there is an integer k such

that nx k for sufficiently large n.

6. Let P be any natural number and nx n showthat n p n
P

x x
2 n

   deduce

that n p nim x x 0   Is  nx a Cauchy sequence? Find  n 1 nim x x 

7. Establish the convergence of the following sequences.

(a)

2n

2

1
1

n

 
 

 
(b)

n
1

1
2n

 
 

 
(c)

22n

2

1
1

n

 
 

 
(d)

3n
1

1
2n
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Hint: Let

n

n
1

e 1
n

 
  
 

express the general term in each case in terms of the

elements of ne . For example in (a) The general term is 2n
e and in (b), 1 2

2ne

8. Find (a)
n

2
im 1

n

 
 

 
 , (b)  

1

2n
im 3n

9. Let  nx be a bounded sequence and  ns sup x : n  . If ns x for any n show

that for every k , there is kn  such that k k 1n n k  and
kn

1
x x

k
  .

Deduce that  knim x s .

10. If 1 2x , x are real numbers and 1 2x x show that the sequence  nx defined by

 n 1 n n 1
1

x x x
2

   is conergent. Find  nim x (Hint: 12.6.11 may be helpful)

11. If 1 2x , x are real numbers and 1 2x x define n 1 n n 1
1 2

x x x
3 3

   show that  nx

is a contractive sequence and hence converges. Find  nim x .

12. Let 1x 0 and n 1
n

1
x

2 x
 


for n

Show that n
1

x 0
2
  for all n and n 2 n n 1 n

1
x x x x

4
   

Deduce that  nx is a contractive sequence find  nim x . (Ans:
1 2

2

 
)

13. Let 1x 2 and n 1
n

1
x 2

x
   . Show that n 1x 2  for all n and

n 2 n 1 n 1 n
1

x x x x
4

    

Deduce that  nx is a contractive sequence. Find  nim x (Ans:
1 2

2


)
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14. Let 10 x 1  and  3
n 1 n

1
x x 1

5
  

Show that n 2 n 1 n 1 m
3

x x x x
5

    

Deduce that  nx converges to a solution of the cubic equation 3x 5x 1 0  

If 1
1

x
2

 find 2 3 4x , x , x and 5x .

12.11.D Exercise:

1. Showthat if  nx is unbounded there exists a properly divergent subsequence.

Hint: If  nx is unbounded above there exists  kn k 1x n k  and
kn kx  .

2. Let  nx n . (a) Showthat    2
n nx & x are properly divergent

(b) Show that n
2

nn

x 1

xx

   
       

is convergent and
2
n

n

x

x

 
 
 
 

is properly divergent.

3. Show that if  nx is properly divergent so is  2
nx .

4. If  nx and  n nx y are properly divergent, does it follow that

(a)  ny is properly divergent? (Hint: Let ny n for every n)

(b)  ny is convergent ? (Hint: ny 1 for every n)

5. Establish proper divergence of

(a) n (b) n 1 (c) n 1 (d)
n

n 1

6. If  nx is properly divergent and  n nim x y exists in  , show that  nim y 0

7. Given that nx 0 and ny 0 for every natural number n

show that if n

n

x
im 0

y
 and
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(a) If nim x    then nim y  

(b) If  ny is bounded nim x 0

8. Showthat if    n nx , y are positive sequences such that n

n

x
im

y
  

(a) n nim x if im y      

(b)  n nim y 0 if im x  is bounded

9. Show that if na 0 and na
im L 0

n
  then nim a   

10. Give an example of an unbounded sequence that has convergent sub sequence.

Show that if 0 C 1  Limit 1 nC 1

11. Let  nn
1

x 1 1
n

    for n

Show that  2nim x and  2n 1im x  exist Does  nim x exist? why?

12. Let n
n

x sin
4




Find  4nim x and  8n 2im x  , Does  nim x exist? why?

13. (a) Show that    
11

n n 1 nn 1n 1 n n 1 n
    

(b) Show that for

n
1

n 3 1 3 n
n

 
    

 

(c) Deduce that the sequence  1

nn
satisfies

1 1

m n1 m n  if m n 3 

and hence conclude that  1

n
im

n
 exists.
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(d) If  1

n
im

n
  , by considering the subsequence of even terms, show that

  . Deduce that 1 .

15. Let    n nim x im y    and

n 1

2
n

n

2

x if n is odd

Z
y if n is even




 



Show that  nim Z   .

12.12 Model Examination Questions:

1. Show that a monotone sequence of real numbers is convergent if and only if it is
bounded. Further

(a) If  nX x is a bounded increasing sequence, then show that

   n nim x Sup x : n N 

(b) If  nY y is a bounded decreasing sequence, then show that

   n nim y inf y : n N 

2. Let a 0 ; construct a sequence  ns of real numbers that converges to a and

n n 1s s  for every n.

3. Let

n

n
1

e 1
n

 
  
 

for n N . Show that the sequence  nE e is bounded and

increasing and hence is convergent. Show that the limit of this sequence is Euler
number e.

4. Let 1x a 0  and n 1 n
n

1
x x

x
   for n . Determine if  nx coverges or

diverges.

5. Establish the convergeence or divergence of the sequence  ny , where

n
1 1 1

y
n 1 n 2 2n

            
 

for n .
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6. If  nX x is a sequence of real numbers, then show that there is a sub sequence

of X that is monotone.

7. State and prove Bolzano - Weierstass theorem on sequences.

8. Let  nX x be a bounded sequence of real numbers and Let x have the

property that every convergent subsequence of X converges to x. Then show that
the sequence X converges to x.

9. Let  nX x be defined by

1 2x 1, x 2  and  n n 2 n 1
1

x x x
2

   for n 2 .

It can be shown by Induction that n1 x 2  for all n .

Some calcultaion shows that the sequence X is not monotone

since the terms are formed by averaging, show that

n n 1 n 1

1
x x

2
 

  for n N

10. Show that every contractive sequence is a Cauchy sequence and that it is
convergent.

12.13 Model Practical Problem:

Given 10 x 1  show that the sequence  nx defined by n 1 nx 1 x   converges to

the positive root of the equation 2x x 1 0   .

Definition:  nx converges to x in  if for every 0  here corresponds N  such that if

n and n N nx x  .

Results:

1. If  nx is monotonically increasing and bounded then  nx converges.

2. If  nx converges to x, every subsequence of  nx converges to x.

3. Principle of mathematical induction: If a property  P n is such that  P 1 is true and

 P n 1 is true whenever  P 1 is true then  P n is true for all n .

4 If nx 0 for all n and nim x x then nim x x .
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Division into steps: (a) n0 x 2  for all n

(b)  nx is monotonically increasing

(c) If
2 2

nx im x , x x x  

Step wise solution:

(a) Proof by induction (1) clearly 10 x 1 2   . Moreover n 1 nx 1 x 0    for all n

If n n 1 n0 x 2, 0 x 1 x 2 1 2 2 2          Hence bu induction n0 x 2 

for all n

(b) 2 2 2
n 1 n n 1 n n n 1x 1 x x x x x        since n 1 n n 1 nx x 0, x x 0     or < 0

according as n n 1x x 0  or < 0 2 1 1 1 1 1x x 1 x x 1 1 x 1 x 0         

since 2 1 n n 1x x 0, x x 0    for all n . Hence  nx is increasing.

(c) Since  nx is increasing and bounded (by (a))  nx converges by (by result 1) If

n n 1im x x, im x x   (by result 2) and nim 1 x 1 x   . Hence

n 1 nx im x im 1 x 1 x      2x x 1   . Since nx 0 for all n,

nim x x 0  . Since 2x x 1, x 0  

Hence nim x is the positive root of the equation
2x x 1 0   .

Lesson Writer

I. RAMABHADRA SARMA



13.1 Infinite SeriesReal AnalysisLesson - 13

INFINITE SERIES

13.1 Objective of the lesson:

Here our aim is to provide working knowledge to the student problems connected with
infinite series. To this end a few characterization theorems and some important convergence
tests are discussed.

13.2 Structure:

This lesson contains the following components:

13.3 Introduction

13.4 Definition and Some Elementary Results

13.5 Comparison Tests

13.6 Applications

13.7 Solutions to S.A.Q.'s

13.8 Summary

13.9 Technical Terms

13.10 Exercises

13.11 Model Examination Questions

13.12 Model Practical Problem with Solution

13.3 Introduction:

This lesson on infinite series is merely a brief introduction to a vast theory which is useful in
Real Analysis. However because of our limitations and compulsions we have to be content with a
very short discussion of the topic.

A few important results such as the Cauchy criterion, convergence or divergence criteria
are discussed first and some useful tests including comparision test, limit comparision test,
condenation test and so on are presented.

13.4 Definition and Some Elementary Results:

13.4.1 Definition: If  nX x is a sequence of real numbers, the infinite series generated by X

is the sequence  nS s define inductively by

1 1s x and for n n 1 nn 1, s s x  
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The thn term nx of the sequence is called the thn term of the series and ns is

called the thn partial sum of the series. If the sequence S converges we say that the

series converges and call lim (s), the sum of the series generated by X. If  Lim S does

not exist we say that the series diverges.

Notation: If  nX x is a sequence in  n, S s is the sequence of series generated

by X , we use any one of the following symbols to denote both the series generated by X

and the sum:  n n n
n 1

x ; x , x



   . It is easy to show by induction on n that

n

n 1 n i
i 1

s x x x


             . If the terms of the sequence  nX x start with 0x we

write n
n 0

x



 for n

n 1
x




 . We also use the symbols.

n
n k

x



 and n

n k
x


 when  k k 1X x , x ,             

13.4.2 Example: The series
n

n 0
r




 associated with the sequence  n 1X r  where r is

called a geometric series. We discuss the convergence of the geometric series without

any restriction on r . The sequence  ns of partial sums ns is defined by

n 1
ns 1 r r              

 n 1 n
nrs r r r                      n

ns 1 r 1 r    . If
n

n
1 r

r 1, s
1 r


 


.

Case (1): If r 1 ,  nim r 0 so that  
n n

n
1 r 1 im r 1

im s im
1 r 1 r 1 r

  
   

    


 

Thus if r 1 the series n

n 0
r




 converges to

1

1 r
.

Case (2): If nr 1, s n  and  nim s    . In this case the series diverges to  

Case (3): If 2nr 1, s 0   and 2n 1s 1  for n . So  ns does not converge
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Hence the geometric series diverges if r 1  . We discuss the case r 1 at a

latter stage.

13.4.3 Example: The series
 n 1

1
1

n n 1








 n
1 1 1

x
n n 1 n n 1

  
 

n 1 ns x x     
1 1 1 1 1

1
2 2 3 n n 1

     
                           

     

1
1

n 1
 



 n
1 1

im s im 1 1 im 1 0 1
n 1 n 1

   
         

    
   . Hence

 n 1

1
1

n n 1








We now prove a simple result, called the n-th term test which is more useful in
proving non - convergence of a series.

13.4.4 Theorem: If the series nx converges then  nim x 0 .

Proof: Let  ns be the sequence of partial sums of nx so that n 1 2 ns x x x            .

Clearly n 1 n n 1s s x   for n 1 . Since nx converges,  nim s exists.

Since  n 1s  is a subsequence of  ns ; n 1 nim s im s  

Hence n 1 nim s im s 0    . Thus  n 1 n 1 nim x im s s 0    

Since the sequence  nx has just one additional term 1x in the first place, it follows

that nim x 0 .

Remark: The thn term test gives only a necessary condition for convergence. This

is not a sufficient condition as is evident from the following example 13.4.5 (iii).

13.4.5 Examples: (i) n
n

x
n 1




,  n
1

im x im 1
n 1

 
  

 
 

1
1 im 1

n 1
  




Hence
n 1

n

n 1







does not converge.
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Example: (ii) Consider the geometric series
n

n 0
r




 . We proved earlier that the

series converges if r 1 and diverges when r 1  . Also if r 1 ,

   nnim r im r     .

Since n
im r 0 it follows that

n

n 0
r




 does not converge when r 1 i.e., when

r 1 or r 1   .

Example: (iii) The harmonic series
n 1

1

n




 satisfies the condition nim x 0 we

have already proved that the sequence  ns of partial sums of the series diverges. (see

12.4.3, 12.6.2 and 12.6.3) if nim x 0 it does not necessarily hold that n
n 1

x



 is

convergent.

Example: (iv) Another equally interesting example is the alternating harmonic series

1 1 1
1

2 3 4
              

in which the general term is given by
 n 1

n
1

x
n




 . As in the case of the harmonic

series, here also  nim x 0 since n
1

x
n

 for every n and
1

im 0
n

 
 

 
 . If  ns is the

sequence of partial sums,

2n
1 1 1 1 1

s 1
2 3 4 2n 1 2n

     
                  

     

and 2n 1
1 1 1 1 1 1

s 1
2 3 4 5 2n 2n 1


     

                     
     

1 1 1 1 1 1
1

2 3 4 2n 1 2n 2n 1

     
                     

      

2n
1

s
2n 1
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Clearly
2n 2n 2n 1

1
0 s s s 1

2n 1
    



Moreover 2n 2 2n 2n
1 1

s s s
2n 1 2n 2


 

    
  

and 2n 3
1 1 1 1 1 1

s 1
2 3 2n 2n 1 2n 2 2n 3


     

                       
       

2n 1s 

Thus 2n 2n 2 2n 3 2n 10 s s 1, 0 s s 1       

Thus  2ns is increasing and bounded and  2n 1s  is decreasing and bounded.

Hence  2ns and  2n 1s  converge.

Since 2n 1 2n
1

s s
2n 1

  


     2n 1 2n 2n
1

im s im s im im s
2n 1


 

   
 

   

Hence  ns converges and n0 im s 1 

Thus the series
 n 1

11 1
1 converges

2 3 n




                         

13.4.6 The p - series: If p the infinite series
p

n 1

1

n




 is called the p - series. We prove

that if p , the p - series converges if p 1 and diverges if p 1 .

We write n p

1
x

n
 and n p p

1 1
s 1

2 n
                .

Proof:

(i) When p 0 the p - series diverges properly to  because nx 1 for every n and

ns n so that nim s    .

(ii) When p
np 0 x n 1   for every n , hence ns n so that nim s    .

Thus the p - series diverges properly to  .
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(iii) When p 1 the 1 - series is the harmonic series
n 1

1

n




 which properly diverges

to   .

(iv) when p 2 the 2 - series converges: For every p , n p

1
x 0

n
 

n 1 n n ns s x s   

Thus  ns is increasing

We prove convergence of 2
n 1

1

n




 by showing that the sequence  ns is bounded

For each j let j
jk 2 1  we have

1k 1 and
1 1k x 1s  

2k 3 and
2k 2 2 2 2 2

1 1 1 1 2 1
s 1 1 1 1

22 3 2 2 2

 
          

 

3k 7 and
3 2k k 2 2 2 2

1 1 1 1
s s

4 5 6 7

 
     

 

2k 2 2

4 1 1
s 1

24 2
    

Assuming that
j 1k j 2

1 1
s 1

2 2 
               

we show that
jk j 1

1 1
s 1

2 2 
               

 
j

jk 2 1 2j

1 1
s s 1

2
2 1


                   



   

j

j 1 j 1

2 1

k2 2 2 2j 1 j k 2

1 1 1 1
1 s

2 k2 2 1
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By induction assumption
j 1k 2 j 2

1 1 1
s 1

2 2 2 
              

Each of the terms      
2 2 2j 1 j 1 j2 , 2 1 , 2                         is greater than

 
2j 12  hence

   
2 2j 1 j 1

1 1

2 k 2 




for j 10 k 2 1  

 

j

j 1

j 12 1

2 2 j 1j 1k 2

1 2 1

k 22






  

Hence
jk 2 j 2 j 1

1 1 1 1
s 1

2 2 2 2 
                 

Further the geometric series
2

1 1
1

2 2
                is convergent and has sum 2,

this sum being the supremum of the sequence of partial sums  jt where

j j 1

1 1
t 1

2 2 
               so that jt 2 for all j. Hence

jks 2 for all j. Since  ns is

monotonically increasing, if n and
jn 2 , jn k so taht

jn ks s 2  for all n. The

sequence  ns being increasing and bounded  ns is convergent. thus the 2 - series

2
n 1

1

n




 is convergent.

(v) The p - series
p

n 1

1

n




 converges when p 1

The proof is similar to the case p 2 . The sequence  ns of partial sums is

increasing. For each j we write j
jk 2 1  and show by induction that

j

2 j 1
k

1
s 1 r r r

1 r
            


where

p 1

1
r

2 


When 1j 1, k 1  and 1
1

s 1
1 r
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We assume that
j 1

2 j 2
ks 1 r r r


               and as in the case p 2 , write

j

j 1
j j 1

2 1

k k 2 k
k 0

s s x 







   where k p

1
x

k


j 1

j 1 2 j 1
ks r 1 r r r


               

Since 0 r 1  the geometric series j
j 0

1

r




 converges.

Using increasing property of  ns we get convergence of the p - series.

(vi) The p - series diverges if 0 p 1  . As the case p 1 is already considered, we

consider the case 0 p 1  . Then 1 p 0  so 1 p p
p

1 1
n 1 n n

nn

      .

If n
1

t 1
n

              it follows that n ns t

Since the harmonic series is divergent,  nt is unbounded hence  ns is unbounded.

Hence
p

n 1

1

n




 diverges properly to   .

13.4.7 S.A.Q.: Let n
n 1

a



 be a convergent series of real numbers show that given 0 

there is a N  such that n
n k 1

a


 
 whenever n N .

13.4.8 Algebraic Properties: Suppose n
n 1

x



 and n

n 1
y




 are convergent. Then

(i) n n
n 1

x y



 converges and  n n n n

n 1 n 1 n 1
x y x y

  

  
     .

(ii) For any n
n 1

C , Cx



  converges and n n

n 1 n 1
Cx C x

 

 
 

Proof: (i) Let n n n 1 2 n
n 1 n 1

x x , y y , s x x x
 

 
                  and

n 1 2 nt y y y               . Then      n n n nim s t im s im t    

x y 
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Further if the sequence of partial sums for  n n
n 1

x y



 is nu then

       
nn 1 1 n n 1 n 1 n n tu x y x y x x y y s                                             .

Thus the sequence  nu converges and      n n nim u im s im t x y      .

Hence n n
n 1

x y



 converges and  n n n n

n 1 n 1 n 1
x y x y

  

  
     .

(ii) If  nv is the sequence of partial sums of n
n 1

Cx



 then

 n 1 n 1 n nv Cx Cx C x x Cs                            

Since  nim s x it follows that  nv converges and

     n n nim v im Cs C im s Cx    

Thus n
n 1

Cx



 converges and n n

n 1 n 1
Cx Cx C x

 

 
  

13.4.9 Cauchy Criterion for Series:

Theorem: The series n
n 1

x



 converges if and only if for every 0  there is a natural

number  M  such that if  m n M   , then m n n 1 ms s x x              where

 ns is the sequence of partial sums of the series.

Proof: The series nx converges if and only if  ns converges in  iff the Cauchy criterion

holds good for  ns . Thus nx converges  for every positive real number  there

exists a natural number  M  such that if  m M  and   m nn M , s s    .

Thus nx converges if and only if for every 0 there is a natural number  M 

such that if   m n n 1 mm n N , s s x x                 .

Remark: The importance of Cauchy criterion in infinite series lies in its application to
convergence by comparision, one of the most fundamental techniques in the theory of
infinite series.
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We first prove a simple but important lemma. When each nx 0 we call the series

nx , a series of postive terms. When each nx 0 . We call nx a series of non

negative terms.

13.4.10 Lemma: A series nx of positive (non negative) terms either converges or diverges

properly to   .

Proof: Let  ns be the sequence of partial sums of n n 1 nx , s x x                . Clearly

n 1 n n 1 ns s x s    for every n . Moreover ns 0 for all n.

Thus  ns is monotonically increasing sequence in  . Hence n
n 1

x



 converges if

and only if  ns converges if and only if  ns is bounded. If  ns is unbounded then

nim s    and in this case nx diverges properly to   .

13.4.11 Absolute Convergence: A series n
n 1

a



 is said to be absolutely convergent if the series

n
n 1

a



 is convergent.

Theorem: If n
n 1

a



 is absolutely convergent then n

n 1
a




 is convergent.

Proof: Let n 1 2 ns a a a               and n 1 nt a a               since n
n 1

a



 is convergent,

given 0  there is N  such that
m

k
k n 1

a
 

 for m n N  .

 m n m nt t t t     for m n N 

For such m n n 1 mm, n, s s a a         n 1 ma a            m nt t   

n 1
an




  is convergent.

Remark: The converse of 13.4.10 is false.

The alternating harmonic series
1 1 1

1
2 3 4

            converges by  13.4.5 v but

the harmonic series
1 1 1

1
2 3 4

               diverges by 13.4.5 (iv)
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13.4.12 Alternating Series - Leibnitz's Theorem:

Theorem: Let  nx be a decreasing sequence of positive terms such that  nim x 0 .

Then the series (called alternating series)  n 1
n

n 1
1 x

 


 converges.

Proof: Write    
n n 1 n 1

n n 1 2 n
i 1

s 1 x x x 1 x
 


             

n 10 s x  for n N and  2n 1 2n 2n 1s s x 1             

Also  2ns is increasing,  2n 1s  is decreasing and in fact

2n 2 2n 2n 1 2n 1 10 s s s s x       for n .

Hence  2nim s and  2n 1im s  exists. Since nim x 0 , 2n 1im x 0  by (1)

 2n 2n 1im s im s   n 2n 2n 1im s im s im s     

Hence the series  n 1
n

n 1
1 x

 


 converges.

Remark: Compare with 13.4.5 (iii) and (iv)

13.5 Comparison Tests:

13.5.1 Let  nX x and  nY y be real sequences and suppose that for some natural number

n nk, 0 x y  for n k . Then (a) the convergence of ny implies the convergence of

nx and (b) the divergence of nx implies the divergence of ny .

Proof: Let n 1 2 ns x x x              and n 1 nt y y           for n .

If  m n n 1 m n 1 m m nm n, s s x x y y t t 1                                   

(a) Suppose ny converges and 0  . By Cauchy's criterion there is a natural number

 M  such that if  m n M   , m n m nt t t t   .

From (1), for   m n m n m nm n N , s s s s t t         

Again by Cauchy's criterion nx converges.
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(b) We prove this part by contrapositive. That is we analyse the situation when nx

diverges but ny does not diverge. Since ny is a series of positive terms either ny

converges or properly dvierges to  . If we assume that ny does not diverge the

series must converge and hence by (a) nx must converge. Thus under the assumption

that nx diverges it must necessarily happen that ny diverges.

13.5.2 S.A.Q.: Show that if n
n 1

a



 is a convergent series of positive terms then

2
n

n 1
a




 is

convergent.

13.5.3 S.A.Q.: If na 0 show that for every 1 2 n
n

a a a
n & b

n

         
 then n

n 1
b




 is

divergent.

13.5.4 S.A.Q. (Ratio test): Let  nx be a sequence in  , r 0, k  . If 0 r 1  and

n 1

n

x
r

x
  for n k, n  . Then the series n

x 1
x




 converges absolutely. If n 1

n

x
r

x
 

for infinitely many n, n
n 1

x



 diverges.

13.5.5 S.A.Q. (Root Test): Let  nx be a sequence in  , r 0 and k . Show that

(i) If r 1 and
1 n

nx r for all n k, n  then the series n
n 1

x



 converges

absolutely.

(ii) If
1

nnx 1 for infinitely many n show that n
n 1

x



 diverges.

13.5.6 Limit Comparison Test:

Let  nx and  ny be strictly positive sequences i.e., nx 0 and ny 0 and

suppose that n

n

x
im r

y

 
  

 
 

(a) If r 0 nx converges if and only if ny converges.

(b) If r 0 and ny converges then nx converges.
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Proof: (a) Asume that r 0 . Since n
n n

n

x
x 0, y 0, 0

y
   for every n. Since r 0

n

n

x
r im 0

y

 
  

 
 . For

r

2
  there corresponds a natural number K such that

n

n

x r
r

y 2
 

if n k

n

n

xr r 3r
r

2 2 y 2
     if n k n n n

r 3r
y x y

2 2
   if n k

By comparision test, ny converges n
2

x
3r

  converges and hence nx

converges. Similarly if nx converges, ny converges.

(b) If r 0 corresponding to 1  there is a natural number k such that n n

n n

x x
0 1

y y
  

if n k .

n nx y  if n k

Hence if ny converges, nx converges.

13.5.7 Cauchy's Condensation Test: Let  a n be a strictly decreasing sequence of positive

terms and  s n be the sequence of partial sums of the series  
n 1

a n



 . Then

(i)               n n n n 1 n 1 n
1

1
a 1 2 a 2 2 a 2 s 2 a 2a 2 2 a 2 a 2

2
                   for n

(ii) The series  
n 1

a n



 converges if any only if the series  n n

n 1
2 a 2




 converges.

Proof: We write       n 1 n 1
nt a 1 2 a 2 2 a 2             

Then  nt is the sequence of partial sums of the series  n n

n 1
2 a 2




 and the inequality (i)

becomes    n n
n 1 n

1
t s 2 t a 2

2
    . Since    a n a n 1  for every n.



Centre for Distance Education 13.14 Acharya Nagarjuna University

           22 a 2 2a 4 a 4 a 4 a 3 a 4    

                  2 32 a 2 4 a 8 a 8 a 8 a 8 a 5 a 6 a 7 a 8       

Similarly for n and    n 1 n n 11 k 2 , a 2 a 2 k    

so that        n 1 n n 1 n 1 n2 a 2 a 2 1 a 2 2 a 2                             

Adding the terms on both sides we get

           2 2 3 n 1 n n2a 2 2 a 2 2 a 2 a 3 a 4 a 2                      

 
           2 n 1 n na 1

a 2 2a 2 2 a 2 a 1 a 2 a 2
2

                     

              2 2 n n n1
a 1 2a 2 2 a 2 2 a 2 a 1 a 2 a 2

2
                        

 n
n 1

1
t s 2

2
 

Since          a 3 a 2 , a 2 a 3 2a 2  

Since each of      a 5 , a 6 , a 7 is less than  a 4

         a 4 a 5 a 6 a 7 4a 4   

Similarly for any n and k such that n 10 k 2  

   n 1 n 1a 2 k a 2   hence

       n 1 n 1 n n 1 n 1a 2 a 2 1 a 2 1 2 a 2                       

Hence            n n 1 n 1a 2 a 3 a 2 1 2a 2 4a 4 2 a 2                       

           n n ns 2 a 1 a 2 a 3 a 2 1 a 2                  
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       n 1 n 1 na 1 2a 2 2 a 2 a 2              

 n
nt a 2 

Thus    n n
n 1 n

1
t s 2 t a 2

2
   

This complete the proof of (i)

To prove (ii), it is enough to prove that ns and  nt both converge or both diverge

together. Since the series under consideration have positive terms the sequences

   n ns , t of partial sums are increasing. Hence convergence of  ns and  nt holds iff

 ns and  nt are bounded, infact, bounded above. Since  ns is increasing it is true

that  ns is bounded if and only if   ns 2 is bounded.

Now suppose   s n is bounded. Then   ns 2 is bounded. Hence there is M 0

such that  ns 2 M for n N . Since  n
n 1

1
t s 2 M

2
   for every n it follows that

 n 1t  , hence  nt is bounded.

Conversely suppose  nt is bounded. Then there is 1M 0 . Such that 1
nt M for every

n . Since    na 2 a 1 . Since      n n
n ns 2 t a 2 t a 1    for every n;   ns 2 is

bounded. Hence   s n is bounded. This completes the proof.

13.5.8 Cauchy's Integral Test: This test for convergence of infinite series is linked with the
notion of convergence of infinite (improper) integrals. The student is familiar with the
notion of the Riemann integral of a bounded function defined on a closed and bounded
interval and will be exposed to a detailed account of this theory in lessons 18, 19 and 20.

If f : [a, )   satisfies (i) f is Riemann integrable on  a, b for every b , b a 

and (ii) for some
b

b a

A , im f A


   then we say that the infinite integral
a

fdx


 converges

and write x
a

A fd


  .
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Theorem: Let  f : 1,   be a positive decreasing function such that  
x

im f 0x
 

 . Then

the infinite series  
n 1

f n



 converges if and only if the infinite integral x

a

fd


 converges.

Proof: For r write      
n

n
k 1

s f f fk 1 n


               and  
n 1

n
1

t f dtt


  . Since  f 0x 

for    nx , s1,  is monotonically increasing and ns 0 and nt 0 for all n.

If

n
b n 1

0 0
1

n b n 1, 0 fd tdt fdt






      . Hence

b

b 1

im fdt


 exists in  if and only if  nt

converges. Again if k and k x k 1   ,      f f fk 1 x k  .

     
k 1 k 1 k 1

k k k

f dx f dx f dxk 1 x k
  

    

   
k 1

k

f fdx fk 1 k


   

Taking the summation from k 1 to n we get

       
n 1

1

f f fdx f f2 n 1 1 n


                          

n 1 1 n n0 s s t s    

If  ns is convergent,  ns is bounded hence  nt is bounded, hence convergent.

Conversely if  nt is convergent  nt is bounded, hence  ns is bounded and hence

convergent.

13.6 Applications:

13.6.1 Discuss the convergence of the p - series
p

n 1

1

n




 using Cauchy's condensation test.

Let  
p

1
a n

n
 .   a n decreases strictly if p 1 . By the condensation test

 
n 1

a n



 converges if and only if  n n

n 1
2 a 2




 converges.
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n

n n n
np p 1n

1 1
a 2 b 2 a 2

22


 
     

 

If  n np 1, 2 a 2 1   n
n 1

b



 diverges.

If p 1, n
nb r where

p 1

1
r

2 
 satisfies 0 r 1 

As the geometric series converges nb converges  
n 1

a n



 converges if p 1 .

If
p 1

1
0 p 1, r 1

2 
    . The geometric series n

n 0
r




 is divergent. Hence  n

n 1
a 2




 is

divergent.

13.6.2 Discuss the convergence of the series
n 2

1

n log n






Solution: The sequence  nx where  n
1

x n 1
n log n

  is strictly decreasing sequence of

positive terms because  log n log n 1  and hence

   n log n n log n 1 n 1 log n 1    

 
 

n
n n

n n n

2 1 1
2 x 2

n log 22 log 2 log 2
  

The series
n 2

1

n




 is divergent hence  n n

n 2
2 x 2




 is divergent hence  

n 2
x n






diverges by Cauchy's condensation test.

13.6.3 Discuss the convergence of n
n 2

x



 where n

1
x

n log n log log n


Solution: Clearly nx 0 and since  log n 1 log n  ,  log log n 1 log log n,  hence

n 1 nx x  for every n. Thus nx is strictly decreasing and positive
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 n2

n
x

1
2

n log 2 log n log 2


If  n 2, log n log 2 log n log 2 log n log 2 2 log n     

 
n

n
2

1 1
2 x

n log 2 2 log n 2 log 2 n log n
  



The series
n 2

1

n log n




 diverges by 13.6.2

Hence  n n

n 2
2 x 2




 diverges.

Hence by Cauchy's condensation test n
n 2

x



 diverges.

13.7 Answers To S.A.Q.'s:

13.4.7 S.A.Q.: Let n
n 1

a



 be a convergent series of real numbers with sum s. Then for

every k the series n
n k 1

a


 
 converges and has sum ks s where 1 ka a           .

Let n k 1 k nt a a               . Then  nt is the sequence of partial sums for j
j k 1

a


 


and n k n kt S s  . Since  nim ss  and  k ns  is a subsequence of  ns .

     n k n k k n k
n n n

t s s s s sim im im       

Hence j n k
nj k 1

a im t s s


 
    since kim s s,  k

k
im 0s s 

Hence given 0  there exists N in  such that k for n Ns s  

k
n k 1

a


 
  for k N
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13.5.2 Since na is convergent, nim a 0

Hence for 1 there is a natural number N such that n na a 1  if n N . Since

n1 a 0  it follows that 2
n na a for n N .

Hence by comparision test
2
n

n N
a




 and hence

2
n

n 1
a




 are convergent.

Converse is false: for example the 2 - series 2
n 1

1

n




 is convergent but

n 1

1

n




 is

divergent.

13.5.3 Since 1 2 n
n

a a a
b

n

        
 and ka 0 for all k,

1
n

a
b

n
 for all n. The series

1

n
 is

divergent. Hence by comparision test nb is divergent.

13.5.4 Ratio Test: Let  nx be a sequence of real numbers 0 r 1  and there is a natural

number N such that for n 1

n

x
n k n

x
  for n k . Then the series n

n 1
x




 is convergent.

If n 1

n

x
1

x
  for infinitely many n then the series n

n 1
x




 diverges.

Proof: (1) If n 1

n

x
r

x
  for n k then for n k ,

n n 1 k 1
n k

n 1 n 2 k

x x x
x x

x x x
 

 

                

n k nk
n k k

x
x r x r

r

  

Since 0 r 1  the series 21 r r                is convergent

k k 1r r                is convergent

k 1k rk k
k k

x x
r

r r



           is convergent.
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Hence by comparision test k k 1x x               is convergent.

Thus n
n 1

x



 is absolutely convergent.

(ii) If 1 2 kn n n                               be an infinite sequence in  such that

k 1

k

n

n

x
1

x
  for all kn then

k 1n nx x 0  for all kn .

 either
knim x does not exist or

knim x 0

Hence nim x 0 if the limit exists.

so the series n
n 1

x



 diverges by 13.4.4

13.5.5 Root Test:

Let  nx be a sequence in  .

(i) If there exists a real number r and N N such that 0 r 1  and
1

nnx r for

n N then the series n
n 1

x



 converges absolutely..

(ii) If
1

nnx 1 for infinitely many n then the series diverges.

Proof: If (i) holds then n
n| x r for n N ,

Since 0 r 1  the geometric series
n

n 1
r




 converges, n

n 1
x




 converges hence n

n 1
x






converges absolutely.

If (ii) holds, nx 1 for infinitely many n hence either  nx many not converge even

if  nx converges  nim x 0 . Hence the series n
n 1

x



 diverges.
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13.8 Summary:

After a brief introduction on infinite series Cauchy's criterion for convergence of an infinite
series is established. A few important tests such as the comparison test, limit comparision test,
condensation test and Leibnitz's result on convergence of alternating series are established. A
good number of examples and applications are also presented for the benefit of the student.

13.9 Technical Terms:

Infinite Series

Sequence of Partial Sums

Convergence and divergence of infinite series

Comparision Test

Condensation Test

Alternating series and

Absolute Convergence of Series

13.10 Exercises:

1. Let  na be a sequence of real numbers and na 0 if and only if kn n where

1 2 k1 n n n                           Let  nb be the subsequene of  na obtained

by removing the subsequence  kna from  na .

Compare the sequence of partial sums of na and nb and prove that na

converges if and only if nb converges.

2. Show that if  na is a sequence of real numbers N  and n nb a for n N

then na converges iff nb converges.

3. Using partial fractions show that

(i)
   n 0

1 1

n n 1






     
if 0  , (ii)    n 1

1 1

n n 1 n 2 4






 

4. Show by means of an example that if nx and ny are divergent  n nx y is

not necessarily divergent n n
1

x y
n

 
   

 

5. Show that cos n is divergent (Hint: im cos n does not exist)
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6. Show that
2

cos n

n
 is convergent (compare with

2

1

n
 )

7. Show that
 n1

n


 is convergent (alternating Series)

8. Show that if na 0 and na is convergent then
na

n
 is conergent

(Hint:

2

n
1

a 0
n

 
  

 
)

9. (a) Determine convergence of

1 1 1 1 1 1 1 1
1

2 3 4 5 6 3n 1 3n 2 3n 3
                        

  

Hint  3s n is unbounded

(b) Show that
1 1 1 1 1

1
2 3 4 5 6

                is convergent.

(c) Show that if  na and  nb are decreasing sequence of positive terms and

   n nim a im b 0   then

 n1 2 1 3 4 2 5 6 3 2n 1 2n 2 na a b a a b a a b a a b1                           

is convergent.

Hint 1 2 3 4a a a a ..................   converges and

1 2 3 4b b b b ......................   converges

11. Show that if na 0 and na is convergent then n n 1a a  is convergent

(Hint  
2

n n 1a a 0  )

12. Given an example to show that if
2
na is convergent, na may be convergent but

not necessarily absolutely.

 n
n

1
a

n

 
 
 
 

13. If na 0 for n and

1

21 n
n

a a
b

n

          
  
 

show that nb is divergent.

(Hint: 1
n

a
b

n
 for n )
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14. Apply Cauchy's condensation test to the series nx where

(a)
 

 n
1

x n 1
n log n c

  and c 1 (Ans: convergent)

(b)    n
1

x
n log n log log n log log log n

 (Ans: convergent)

15. Discuss te convergence of the series

(a)  
 

n
n

n 1

n
1

n 1





(convergent)

(b)
 

n

n 1

n

n 1



(diverges)

(c)  
 nn

n

n 1
1

n


 (diverges)

(d)
 n

n 1

n 1

n 


(converges)

16. Apply the limit comparison test and show that

(a) 2
n 1

n

n 1







diverges (Hint: Consider  1

n )

(b)  
1

n n 1


 converges (Hint: Consider 2
1

n
)

17. Apply Leibnitz's theorem and discuss the convergence of the following alternating
series.

(a)
1 1 1 1

1
1! 2! 3! 4!

                      (Converges)

(b)
1 1 1

1
2 2 3 3 4 4

                 (Converges)

(c)
3 4 5

1
2 3 4

              (Diverges)

(d)
2 3 4

1
3 5 7

              (Diverges)
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18. (a) Show that if n
n 1

a



 is absolutely convergent and  nb is a bounded sequence

then n n
n 1

a b



 is absolutely convergent .

(b) Deduce that if n
n 1

a



 and n

n 1
b




 are absolutely convergent then n n

n 1
a b




 is

absolutely convergent.

(c) Show by means of an example that the converse of 18(a) does not hold if
absolute convergence is replaced by convergence.

19. Prove Abel's lemma: Let    n nx , y be sequences in  , 0s 0 and

n 1 2 ns x x x                for n show that if

   
m m

k k m m n 1 n k k 1 k
k n 1 k n 1

m n x y x s x s x x s 
   

     

20. Prove Dirichlet's Test. If  nx is a decreasing sequence of positive terms,

nim x 0 and  ny is such that the sequence  ns is bounded then n n
n 1

x y



 is

convergent.

Hint: Apply Abel's lemma and derive
m

k k n 1
k n 1

x y 2x B
 

 where ns B for

all n.

21. Let  nx be a sequence of positive real numbers and n 1

n

x
im r

x
 

 
 



(a) If r 1 show that n
n 1

x



 converges and

(b) If r 1 show that n
n 1

x



 diverges

22. Show by means of examples that the ratio test and the root test fail to determine the

convergence of the series if r 1 .
2 3 2 3 2 3

1 1 1 1 1 1
Try :

1 2 3 4 5 6
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23. Let  nx be a sequence of positive real numbers and
1

n
nim x r show that

(a) If r 1 n
n 1

x



 converges and (b) If n

n 1
r 1 x




  diverges

24. Show that root test and ratio test fail so determine convergence of the p - series

 
p

n 1

1
P 0

n




 .

25. Show that root test and ratio test fail so determine the convergence of

2 3 4 5

1 1 1 1

1 2 3 4
                 which is infact convergent.

26. Show that
 pn 1

1

an b







converges if p 1 (where a 0 , b 0  ) and diverges if

0 p 1  .

27. Let 0 a 1  and consider the series

2 4 3 2n 2n 1a a a a a a                           

(a) Show directly that the series converges by considering the series of odd
terms and the series of even terme separatily.

(b) Show that convergence can be established by using root test.

(c) show that ratio test fails to establish convergence.

28. Examine the convergence of the series nx where nx 

(a) n

1

2
(Geometric Series, Converges)

(b)  
n 1

n 1
n 1





( nim x 0 , diverges)

(c)

n

n
1

1 ( im x 0,
n

 
  

 
 diverges)

(d) 2

1

2n 1
(Compare with 2

1
n

)
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(e)  
1

log n n ;diverges
log n



(f)
n n

n

1
(n 2 for n 2

n
  , converges)

(g) n2 3
2

n 1
(x

n 1 n


 , converges)

(h) sin n ( im sin n 0, diverges)

(i) 1 1sin ( im n sin 1,
n n

 diverges)

(j) nn n n 1

1 1
(x ,

2 3 2 



converges)

(k)    nn n 1 a n
1log 1 x a where a log n

n    

(l)
1

n!

(m)
n

n

3 n!

n
((n) and (0) converge)

(n)  4 4n 1 n 1 n 1    (Rationalise 4 2n 1 n converges   )

29. Test the series n
n 1

a



 for convergence and absolute convergence where na is

given below.

(a)
 n 1

2

1

n 1





(Absolutely Convergent)

(b)
 n1 n

n 2




(Diverges)

(c)
 n 1

1

n 1





(Converges but not absolutely.)

(d)
 

 
n 1

1
1n n

n




(Converges but not absolutely)
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13.11 Model Examination Questions:

1. Show that if  n
n 1

a



 is convergent then  n

n
a 0im  . Is the converse true? Justify..

2. Show that
p

n 1

1

n




 converges if p 1 .

3. Discuss the convergence of the series

 n 1

2 3 n 1

11 1 1
1

3 3 3 3






                           

4. If n
n 1

a



 converges show that n n 1

n 1
a a





 and

2
n

n 1
a




 are convergent.

5. (a) Show that
2

n 1

1

n n







converges

(b) Discuss the convergence of
2n 1

1

n n








6. Show that
n 2

1

n log n




 diverges.

7. Find the sum of the series
1 1 1

1.2 2.3 3.4
            

8. State and prove limit comparison test.

13.12 Model Practical Problem with solution:

Examine the convergence of the infinite series
p p p p

2 3 4 5

1 2 3 4
         

Aim: To examine the convergence or divergence of the above series.

Definition: If  nX x is a sequence of real numbers the sequence  ks defined by

 1 1 k k 1 ks x , s s x k 1    is called the infinite series generated by  nx and is denoted by

n
n 1

x



 or 1 2 3 n nx x x x s                 is called te thn partial sum and nx the thn term of the

infinite series. If  n
n
im s exists in  we say that the infinite series converges and otherwise we

say that the series diverges.
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Results used:

(i) Limit comparison test: If n
n 1

x



 and n

n 1
y




 are infinite series of positive terms and

n

n

x
im r

y

 
  

 
  then

(a) if n
n 1

r 0 x



  converges n

n 1
y




  converges and

(b) if n
n 1

r 0 y



  converges n

n 1
x




  converges

(ii) The infinite series p
n 1

1

n






(i) Converges if p 1 and (ii) diverges if p 1 .

Solution: The thn term of the given series is n p

n 1
x

n


 .

n p p p 1

1 1n 1 1
n 1 n nx
n n n 

 
       . If

n
n p 1

n

x1 1
y im im 11

y nn 

       
  

  . Since

n

n

x
im 0

y

 
 

 
 the series n

n 1
x




 and n

n 1
y




 behave in the same way. By result (ii) n

n 1
y




 diverges

if p 1 1  and converges if p 1 1  . Hence n
n 1

x



 diverges if p 2 and converges if p 2 .

(Method II: Hint n p 1 p

1 1
x

n n
  )

Lesson Writer

C. SANDHYA



Real Analysis 14.1 Limits of Functions

LESSON –14

LIMITS OF FUNCTIONS

14.1 Objective

This lesson is introduced to introduce the concept of a limit of a function at a cluster

point of the domain and study various properties of limits. The notions of one sided

limits, infinite limits and limits at infinity are also introduced.

14.2 Structure:

14.3 Introduction

14.4 Cluster points and limits

14.5 Limit theorems

14.6 Extension of limit concept

14.7 Infinite limits and limits at infinity

14.8 Solutions to SAQs

14.9 Summary

14.10 Technical terms

14.11 Exercises

14.12 Model Examination Questions

14.13 Model practical problem with solution

Gottfried Wilhelm von Leibniz 1646 – 1716

Gottfried Leibniz was a German mathematician who
developed the present day notation for the differential and
integral calculus though he never thought of the derivative as
a limit. His philosophy is also important and he invented an
early calculating machine.
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14.3 Introduction:

In this lesson the student is introduced to the notions of the limit of a function of a real

variable, extending earlier notions of limit of a sequence – i.e., a function of integer

variable. In section 4, the limit of a function :  is considered at a “cluster point” c

of A which is close to A, though not in A in the sense that every neighborhood of c

contains infinitely many points of A. The , definition for the limit is shown to be

equivalent to the sequential approach. Section 5 is devoted to derive results that are

useful in calculating limits of functions. Our basic tool is the sequential approach which

simplifies the arguments when compared with , arguments. In section 6 we discuss a

few important features of one sided limits. Finally in section 7 we discuss the notion of

infinite limits and limits of infinity.

14.4 Limits:

14.4.1 We recall the definitions  - neighborhood. If c is a real number and   0 the  -

neighborhood (hereafter abrivated  - nbd) of c is the set.

V (c) = (c - , c + ) = {x/x   and | x –c | < }

14.4.2 Remark: (1) If c  c1 there is a  - nbd of c not containing c1. Any  such that

0 <  < | c – c1| satisfies V (c)  {c1 } = . Further if 0 <    1V


(c)  V (c1):

c- c c+ c when c < c c c- c c+ when c <c

a c- c c+  c+

v  (c)  v (c)

(2) If F = {d1, d2 -------- dn} is a finite set and c  

we can choose a small  - nbd of c that does not contain any points of F, other than c.
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(3) If c  (a,b) there is a  > 0 such that V (c)  (a,b) this holds for all  such that

0 <  < min






 

2
,

2

accb

a c- c c+ b

14.4.3 Definition: cluster point:

If A is a subset of  and c   . c is called a cluster point of A if for every  > 0 there

exists at least one x in A such that x  c and | x – c | < 

Equivalently c is a cluster point of A if and only if every  nbd of c contains a point of A

other than c. i.e for every  > o V (c)  (A – {c})  

14.4.4 Notes:

1. The point c may or may not be a member of A. Even if c  A the definition is not

influenced by he fact that c  A as c is excluded from consideration, the requirement

being V (c)  A – {c} is non-empty. Thus c is a cluster point of A if and only if c is

a cluster point of A – {c}

2. To show that c is a cluster point of A it may be useful to exhibit one δ0 > 0, such that

0
V (c)  (A – {c} )  

14.4.5 Examples:

(a) Every point of [0,1] is a cluster point of (0,1). If 0 < c < 1 we can choose δ0 > 0 such

that 0 < c - δ0 < c < c + δ0 < 1 so
0

V (c)  (0,1). From remark (1) above c is a cluster

point of (0,1)

If c = 0 and δ > 0, Vδ (c)  (0,1) = (0, δ)  (0,1) =
(0, ) if 1

(0,1) if 1

  


 
0  1

So 0 is a cluster point of (0,1) 0 1 
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If c = 1 and δ > 0, Vδ (1)  (0,1) =
(1 - ,1) if 0 < < 1

(0,1) if 1

 


 
0 1 -  1

So 1 is a cluster point of (0,1) 1- 0 1 1+

(b) Let A =
1

| n
n

 
 

 
 0 1- 1 1+

Zero is a cluster point of A. If c  0, c is not a cluster point of A.

Solution: If δ > 0, there is a natural number K such that K > 


1

Since 0 <
K

1
 < δ, 

K

1
 A  (0, δ)  A  (-δ, δ) Since every  nbd (-δ, δ) of 0 contains 

some member
K

1
of A which is clearly  0, so 0 is a cluster point of A.

(c) The set  of natural numbers does not have cluster points.

Solution: From note 2 it sufficis to show that if c   there is a 0 > 0 such that

(c - 0, c + 0)  N =  or {c}

If c < 0, let 0 = - c/2, Then (c - 0, c + 0) = 








2

c
,

2

c3
. Since

2

c
< 0, 









2

c
,

2

c3
  = 

If c = 0 let 0 =
2

1
and (-

2

1
,
2

1
)   = 

If c > 0 but c  N there is a natural number K such that K – c < K. If 0 < 0 < (c-K+1,

K–c) then K – 1 < c - 0 < c < c + 0 < K. So that (c - 0, c + 0) does not contain any

element of 

 (c - 0, c + 0)  = .

If c  N and 0 =
2

1
then (c - 0, c + 0) contains one and only one natural number

namely c so that (c - 0, c + 0)  N = {c}. Since (c - 0, c + 0) has no element of 

other than c, c is not a cluster point of N. Thus N does not have a cluster point.
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14.4.6 SAQ:

If c  0, show that c is not a cluster point of the set A = {1, ½, 1/3, ….. 1/n ……..}

14.4.7 Theorem: If A is a set of real numbers and c   , c is a cluster point of A if and

only if there is a sequence (an) in A such that an  c for every n and lim (an) = c

Proof: If c is a cluster point of A then for every natural number n, V1/n (c)  A–{c}.

Choose an  V1/n (c)  A – {c}. Clearly 0 < |an – c| <
n

1
so that an  c for every n since

lim (
n

1
) = 0, by squeeze theorem lim (an) = 0

Conversely suppose that there is a sequence (an) in A such that an  c for every n and

lim (an) = c. If  > 0 there is a k  N such that 0 < |an – c| <  for n  k.

 an  V (c)  A for n  k clearly an  c for each n.

since  > 0 is arbitary and V (c)  (A – {c})  ; it follows that c is a cluster point of A.

14.4.8 SAQ:

(a) If c is a cluster point of A  B there c is a cluster point of either A or B.

(b) c is a cluster point of A if and only if for every open interval (a, b) containing c,

(a, b)  A – {c}  

(c) A finite set has no cluster points

(d) Let f:    , c   and g(x) = f(x +c) for x   . Show that
cx

lim f(x) = l if and

only if
0

lim
x

g(x) = l.

(e) Suppose f:    has limit l at 0. let a > 0. If g:    is defined by

g(x) = f(ax) show that
0

lim
x

g(x) = l.

(f) If f:    1 is defined by f(x) = x if x is rational, 0 if x is irrational show that

(a)
0

lim
x

f(x) = 0 and (b)
cx

lim f(x) does not exist if c  0

(g) Let f:    I be any open interval in  . If f1 is the restriction of f to I and c  I.

Show that f1 has a limit at c if and only if f has a limit at c. show also that if the

limits exist,
cx

lim f(x) =
cx

lim f1 (x)
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c



These exists v (c)

14.4.9 Theorem: C is a cluster point of A if and only if every neighbourhood of c

contains infinitely many points of A.

Proof: Suppose c is a cluster points of A and  > 0. If V (c)  A is a finite set say

F = {a1, a2 …. An} then there is a 1 > 0 such that
1

V (c)  F = . If 2 = min {1, },

2
V (c) 

1
V (c) as well as V (c) so that

2
V (c)  V (c)


2

V (c)  A  V (c)  A = F 
2

V (c)  A  V (c)  F = 

This would imply that the 2 – nbd of c does not contain points of A so that c cannot be a

cluster point of A, which is a contradiction. Hence every nbd of c contains infinitely

many points of A.

Conversely, suppose that every nbd of c contains infinitely many points of A. even if this

infinite set in A includes c we can choose a point c1  c in A in the nbd. So every nbd of c

contains atleast one point of A other than c. so c is a cluster point of A.

Corallary: A finite set has no cluster points.

14.4.10 Definition of the limit:

Let A   and let c be a cluster point of A For a function f : A   , a real number l

is said to be a limit, of f at c if given  > 0, there is a positive real number () such that

if x  A and 0 < |x – c| <  () then |f(x) – l | < .

X

Y

Given v ()
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If l is a limit of f at c, then we also say that (1) f converges to l at c (ii) f (x) approaches

l as x approaches c. We express this in symbols by (1)
cx

lim f(x)= l and (ii) f(x) l as

x c.

If the limit of f at c does not exist, we say that f diverges at c.

14.4.11 Why cluster points?

Why should c be a cluster point of A rather than a point of A.

Consider A = {1,2}, 1  A but 1 is not a cluster point of A. Let f: A   .

As per the definition of limit (not necessarily at a cluster point), the limit l must satisfy

|f(x) – l | <  if 0 < |x – 1| <  and x  A for given  > 0 and suitable  > 0.

What ever  be and what so ever l be the inequality |f(x) – l | <  holds vacuously for

every  > 0 and  > 0 such that there is no x in A satisfying 0 < |x – d| < . This leads to

the unwanted conclusion that every l,   is limit of every function f: A   .





 
1- 1 1- 2

14.4.12 Theorem: If f: A   and c is a cluster point of A, then f can have only one

limit at c.

Proof: Suppose that l and l 1 are limits of f at c. Corresponding to any  > 0, there

exists (
2


) > 0 such that if x  A and 0 < |x – c| <  (

2


), then |f(x) – l | <

2


------- (1)

No. other points of A

(1,f(1)

(2,f(2)
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Also there exists 1 (
2


) > 0 such that if xA and 0< |x-c| < 1(

2


), then |f(x)-l| <

2


--- (2)

Now let  = min {, 1}. If x  A and 0 < |x – c| < , then x satisfies (1) and (2)

So 0  | l – l 1| = | l – f(x) + f(x) – l 1|

 | l – f(x)| + |f(x) – l 1| <
2


+

2


= 

Since  > 0 is arbitary, we conclude that l – l 1 = 0 so that l = l 1.

Thus f can have only one limit at c.

14.4.13 Theorem: Let f : A   and let c be a cluster point of A. Then the following

statements are equivalent.

(1)
cx

lim f(x) = l

(2) Given any  - nbd V (l) of l, there is a  - nbd V (c) of c such that if x  c is any

point in V (c)  A then f(x) belongs V (l).

Proof: Assume (1). To prove (2) let  > 0. By (1) there is  > 0 such that 0 < | x - c| < 

and x  A  |f(x) – l | < .

If x  c and x  V (c)  A then 0 < |x – c| <  and x  A so |f(x) – l | <  i.e.

f(x)V(l) This proves (2).

Assume (2) To prove (1) let  > 0

By (2) there is  > 0 such that x  c, x  V (c)  A  f(x)  V (c)

LHS means that 0 < |x – c| < 

RHS means that |f(x) – l | < 

Since LHS  RHS, we get that 0 < |x-c| <  and x  A  |f(x) – l| < 

Since this is true for every  > 0,
cx

lim f(x) = l.

14.4.14 Examples: (a)
cx

lim b = b

Solution: Let f(x) = b for all x   (Here A =  ). Let  > 0 and take  = 1

Then if 0 < |x-c| < 1, we have |f(x) – b| = |b-b| = 0 < . Since  > 0 is arbitary we

conclude that
cx

lim f(x) = b.
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(b) x
cx

lim = c

Let g(x) = x for all x   . If  > 0 we choose  () = . Then if 0 < |x – c| <  () we

have |g(x) – c| = |x – c| <  () = . Since  > 0 is arbitary, we get
cx

lim g(x) = c.

(c)
cx

lim x2 = c2

Let h(x) = x2 for all x  

If 0 <|x – c| < 1 we have |x| = |x – c + c|  |x – c| + |c| < 1 + |c|

 |x+c|  |x| + |c| < 1 + |c| + |c| = 1 + 2 |c|

Now |h(x) – c2| = |x2 – c2| = |x-c| |x+c|  (2|c| + 1) |x – c| ----------- (1)

If  > 0 we choosse  () = min {1,
1||2 



c
}If 0 < |x – c| <  () then from (1)

|x2 – c2| < (2 |c| + 1) |x – c| < 

since this holds for any arbitary choice of  > 0, we infer that
cx

lim h(x) = c2

(d)
cx

lim
x

1
=

c

1
if c  0

Solution: The function (x) =
x

1
has domain  – {0}. We consider the case c > 0. The

proof, when c < 0 is similar. As we consider the limit as x  c we may restrict to x in a

small neighborhood of c, say
2

cV (c).

x 
2

cV (c)  |x – c | <
2

c


2

c
< x <

2

3c

For x 
2

cV (c), (x) (c)   =
1 1

x c
 =

x c

cx


<

x c 2
.

c c

 c
x

2

 
 

 


|(x) - (c) | <  if |x – c| <
2

2c
.

As we are considering x 
2

cV (c) i.e. {x} |x – c| <
2

c
}

We will have | (x) - (c)| <  if 0 < |x – c| <  where  = min








2
,

2

2 cc
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As this holds for all  > 0, it follows that
cx

lim
x

1
=

c

1
when c > 0.

(e)
2x

Limit
1

4
2

3





x

x
=

5

4

Solution: Even though the function (x) =
1

4
2

3





x

x
is defined for all x   we may

restrict x to a small neighborhood around 2 at which the limit is under consideration, say

Va (2) where we fix a soon.

|(x) -
5

4
| =

)1(5

|2445|
2

23





x

xx
=

)1x(5

)12x6x5()2x(
2

2





We have to ultimately find  > 0 and consider x in V (2) only.

If 0 < a < 2 and |x – 2| < a then 0 < 2 – a < x < 2 + a)

For convenience we choose a = 1 so that 1 < x < 3 and hence 5x2 + 6x+12 < 5(3)2 + 6(3)

+ 12 = 75.

So if 0 < |x – 2| < 1, |(x) -
5

4
| <

)1x(5

75|2x|
2 


If  > 0, 15 |x-2| <  if |x-2| <

15



So we choose () = min








1,
15

If 0 < |x-2| <  (), |(x) -
5

4
| < 75 |x-2| < 

Hence
2x

Lim  (x) =
5

4

(f) Let I be an interval in  , let f: I   and let c  I. Suppose there exist constants K

and L such that |f(x) – L|  K |x-c| for x  I. Show that
cx

lim f(x) = L.

Fig. 14.4.14(d) Graph of g(x) = 1/x (x  0)
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Solution: For given  > 0, choose () =
K


.

If 0 < |x-c| < () then |f(x) – L|  K |x-c| < . Since  > 0 is arbitary the
cx

lim f(x) = L

14.4.14 – A. SAQ’s

(a) Let f:    , c   and g(x) = f(x+c) for x   .

show that
cx

lim f(x) = l if and only if
cx

lim g(x) = l.

(b) Suppose f:    has limit l at 0. If g:    is defined by g(x) = f(ax)

show that
0x

lim


g(x) = l.

(c) If f:    is defined by f(x) = x if x is rational and 0 if x is irrational show that

0x
lim


f(x) = 0 and
cx

lim f(x) does not exist if c  0.

(d) Let f:    and I be any open internal. If the restriction of f to I is f1 and c  I

show that f1 has limit at c if and only if f has limit at c. show also tha if the limits

exist then
cx

lim f1(x) =
cx

lim f(x).

14.4.15 Theorem: (Sequential criterion)

Let f : A   and let c be an cluster print of A. Then the following are equivalent.

(1)
cx

lim f(x) = l

(2) For any sequence (xn) in A that converges to c, such that xn  c for all n  N, the

sequence (f(xn) converges to l.

Proof: (1)  (2) Assume that
cx

lim f(x) = l and suppose (xn) is a sequence in A with

n
lim (xn) = c and xn  c for all n. Let  > 0 be given. Then there exists  > 0 such that if x

 A, and 0 < |x – c| < , then f(x) satisfies |f(x) – l | < . Since (xn) is a convergent

sequence and  > 0 there is a natural number K() such that if and n  K() then |xn-c|< .

Since each such xn  A, we have |f(xn)- l | <  Thus if n  K () then |f(xn) – l | < .

Hence the sequence (f(xn)) converges to l.
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(2)  (1) The proof is a contrapositive argument. Suppose (I) is not true. Then there is 0

> 0 such that for every  > 0 the  - nbd of c contains atleast one number x in AV(c)

with x  c and f(x) 
0

V ( l).

For every n  N, we take  =
n

1
so that

n

1
nbd of c contains atleast one xn in A such that

0 < |xn – c| <
n

1
and |f(xn) – l|  0. As this is true for every n  N, we conclude that the

sequence (xn)  A – {c} and the sequence (f(xn) ) does not converge to l.

Therefore we have shown that if (1) is not true then (ii) is not true. Hence (2)  (1).

14.4.16 Examples: Use sequence criterion to establish that

(i)
2

lim
x 1

4
2

3





x

x
=

5

4
(ii)

2
lim
x x1

1
= - 1 (iii)

0
lim
x ||

2

x

x
= 0

(i) Solution:(1) Let (xn) be any sequence in  – {2} such that lim (xn)= 2 lim( 2
nx )= 4

and lim ( 3
nx ) = 8  lim ( 2

nx +1) = lim ( 2
nx ) + 1 = 4 + 1 = 5 and lim ( 3

nx -4) = lim ( 3
nx ) – 4

= 8 – 4 = 4.

Hence, lim
1

4
2

3





n

n

x

x
=

4

5
.

(ii)
2

lim
x x1

1
= - 1

Solution: Domain of
x1

1
is R – {1}

Let (xn) be a sequence in R – {1} such that lim xn = 2. Then lim (1 – xn) = 1 – lim (xn) =

1 – 2 = - 1

lim 








 nx1

1
=

1

1


= - 1. Hence

2
lim
x x1

1
= - 1.

(iii) Solution: Domain of
||

2

x

x
is R – {0}

If (xn) is any sequence in R – {0} such that lim (xn) = 0 then lim |xn| = 0
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n
lim Since

||

2

n

n

x

x
=

||

|| 2

n

n

x

x
= |xn|, it follows that lim

||

|| 2

n

n

x

x
= 0. Hence

0
lim
x ||

2

x

x
= 0

14.4.17 Divergence Criterion: Let A   , c cluster point of A, f : A   , l  R. We

derive criterion for (1)
cx

lim f(x)  l and (2)
cx

lim f(x) does not exist.

Theorem: If A   , c is a cluster point of A, f: A  R and l  R the following are

equivalent.

A – 1 :
cx

lim f(x)  l

A – 2 : There is a sequence (xn) in A – {c} such that lim (xn) = c and lim f(xn) )  l.

Proof: Suppose A – 1 does not hold. Then
cx

lim f(x) = l. For every (xn) in A – {c} such

that lim (xn) = c, lim (f(xn) ) = l. So A – 2 does not hold.

Hence A – 2  A – 1.

Conversely suppose that A-2 does not hold. Then for every (xn) in A-{c} with lim(xn)= c,

lim f(xn) = l. 
cx

lim f(x) = l. So A – 1 does not hold. Hence A – 1  A – 2.

14.4.18 Theorem: If A  R, c is a cluster point of A and f : A  !R, the following are

equivalent.

B – 1 : f(x) does not converge at c.

B – 2: There is a sequence (xn) in A – {c} such that lim (xn) = c and {f(xn)} does not

converge.

2x

x
(x  0)
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Proof: Suppose B – 1 does not hold. Then f(x) converges at c. Let
cx

lim f(x) = l

Then for every sequence (xn) in A – {c} such that lim (xn) = c and lim f(xn) = l. So B – 2

does not hold.

Thus B – 2  B – 1.

Conversely suppose that B – 2 does not hold, then for every (xn) in A – {c} such that lim

(xn) = c; (f(xn)) converges.

We show that B – 1 does not hold. For this it is enough to show that there is l   such

that
cx

lim f(x) = l. Equivalently it is enough to show that there is l in  such that

whenever (xn) in A – {c} converges to c, (f(xn) ) converges to l.

By assumption for any such (xn), lim f(xn) exists any way. All that we have to show is

that lim f(xn) is the same for all such (xn). On the contrary, if lim (xn) = lim (yn) = c,

where (xn  A – {c} and (yn)  A – {c} and lim f(xn)  lim f(yn). We form a new

sequence z = (zn) in A – {c} by defining 1n2Z  = xn and Z 2n = yn for all n  N.

Since lim xn = c. Since lim xn = c = lim yn then lim Z2n-1 = lim Z2n = c hence Z n = c. Also

lim f( 1n2Z  ) = lim f(xn) and lim f( Z 2n) = lim f(yn).

 lim f ( Z 2n-1)  lim f( Z 2n)  lim f(Zn) does not exist.

This contradicts our assumption that B – 2 does not hold. Thus when B – 2 does not hold,

cx
lim f(x) exists; i.e. B – 1 does not hold. Hence B – 1  B – 2.



Real Analysis 14.15 Limits of Functions

0

-1

14.4.19 Examples:

a)
0

lim
x x

1
does not exist in R.

Solution: Let f(x) =
x

1
for x > 0. 0 is cluster point of A = {x / x   , x > 0}. If we take

the sequence (xn) with xn =
n

1
for n  N, then lim (xn) = 0, But f(xn) =  . We know that

the sequence (f(xn) ) = (n) is not convergent in R. Hence
0

lim
x x

1
does not exist.

(b) The sigmum function (sgn) is defined by

sgn (n) =














01

00

01

xfor

xfor

xfor

Note that sgn (x) =
|| x

x
for x  0.

We show that
0

lim
x

sign (x) does not exist.

Let xn =
n

n)1(
for n  N so that lim (xn) = 0.

But sgn (xn) = (-1)n for n  N.

 The sequence (sgn (xn)) = ((-1)n) is not convergent. Hence
0

lim
x

sgn (x) does not exist.

(c)
0

lim
x

sin 








x

1
does not exist in  . (see ex. 14.4.14 (b) )

Solution: Let g(x) = sin 








x

1
for x  0. (0 is a cluster point of  – {0}). We exhibit

sequences (xn) and (yn) in R – {0} such that lim (xn) = lim (yn) = 0, but lim g(xn)  lim

g(yn).

1

Graph of sgn
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Let xn =
n

1
for n  . Then lim (xn) = 0 and g (xn) = sin (n) = 0 for all n   ; so that

lim g(xn) = 0 can the other hand, let yn =
1

n2
2














for n  N then lim (yn) = 0 and

g(yn) = sin ( 










n2

2
= 1 for all n  N so that lim g(yn) = 1.  lim g(xn)  lim g(yn).

Hence
0

lim
x

g(x) does not exist.

14.5 Limit Theorems:

14.5.1 Theorem: Let A   , f : A   , g : A   , c a cluster point of A

cx
lim f(x) = l and

cx
lim g(x) = m. Then

(i)
cx

lim (f + g) (x) = l + m =
cx

lim f(x) +
cx

lim g(x) and

(ii)
cx

lim (f – g) (x) = l – m =
cx

lim f(x) -
cx

lim g(x)

Proof: Let (xn) be a sequence in A – {c} such that lim (xn) = c.

 lim f(xn) = l and lim g(xn) = m

 lim (f+g) (xn) = lim (f(xn) + g(xn) ) = l + m = lim f(xn) + lim g(xn)
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This is true for every sequence (xn) in A – {c} with lim xn = c; hence
cx

lim (f + g) (x) =

cx
lim f(x) +

cx
lim g(x) = l + m.

Also lim (f – g) (xn) = lim (f(xn) – g(xn) = l – m

Hence
cx

lim (f – g) (x) = l – m =
cx

lim f(x) -
cx

lim g(x).

14.5.2 Theorem: Let A   , c cluster point of A, f : A   and g : A   be such

that
cx

lim f(x) = l and
cx

lim g(x) = m. Then

(i)
cx

lim (af) (x) = a l, for a  and
cx

lim (fg) (x) = lm

Proof: Let (xn) be any sequence in A – {c} such that lim (xn) = c. Then lim f(xn) = l and

lim g(xn) = m.

Hence lim f(xn) g(xn) = l m and for every a   lim a f(xn) = a l. Since this holds for

every (xn) in A-{c} with lim(xn) = c, it follows that lim (fg) (x) =
cx

lim


f(x)
cx

lim


g(x) and a

f(x) = a
cx

lim


f(x).

14.5.3 Corollary : Under the above hypothesis on A and c if 1 i  n, fc; : A  is such

fi that lim fi (x) = li and b1, br1 - - - - bn all real members then.

(i)
cx

lim


(b1 f1 + b2 f2 - - -+ bn fn ) (x) = b1 l 1 + b2 l 2 + - - -+ bnl n

(ii)
cx

lim


(f1+ f2 - - - fn) (x) = l 1 + l 2 - - - l n

(iii)
cx

lim


(f1 + f2 + …… + fn) (x) = l 1 + l + …… + l n

Proof: by induction

14.5.4 SAQ: Prove that
cx

lim


(f1+ f2) (x) =
cx

lim


f(x) +
cx

lim


f2(x) by using ,  definition.

14.5.5 Theorem : Let A  IR, it f and g functions on A to IR and let c  IR be a cluster

point of A. If g (x)  0 for all x  A and lim g(x) = m  0, the lim 








g

f
(x) = 









m

1
.

Proof :- Let (xn) be a sequence in A such that xn  c for n  N and lim (xn) = c.
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 lim f(xn) = l and lim g(xn) = m

 lim 








g

f
(xn) = lim

)x(g

)x(f

n

n =
m

l

Hence
cx

lim
 









g

f
(x) =

m

l
.

14.5.6 Examples :

(a)
cx

lim


xk = ck for K  N and if c >0

then
cx

lim
 x

1
=

c

1

(b)
cx

lim


(x2+1) (x3-4) = 20

solution :
2x

lim


(x2+1) (x3-4) =
2x

lim


((x2+1)
2x

lim


(x3-4)

= (22+1) (22-4) = 5 . 4 = 20

(c)
2x

lim


3

2

x 4

x 1




=

5

4

By theorem 14.5.5
2x

lim


3

2

x 4

x 1




=

3

x 2
2

x 2

lim(x 4)

lim(x 1)







=

5

4

(d)
2x

lim


2x 4

3x 6




=

3

4
.

Let f(x) = x2 –4 , g(x) = 3x-6 for x – {2}.

We cannot use 14.5.5 because lim g(x) = 0 .

However if x2, then
6x3

4x 2




=

)2(3

)2)(2(





x

xx

3

2x
. Hence

2x
lim
 6x3

4x 2




=

3

4

14.5.7 Example: Let A  IR , f : A  IR and let c R be a cluster point of A. suppose

f(x)  0 for x  A. defines f : A  IR by ( f ) (x) = )(xf for x . if lim f(x) =

 , show that lim ( f ) (x) =  .

Solution : Case (1) :  = 0 If  > 0, there is  > 0 such that f(x) = |f(x) | < 2
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If 0 < |x – c| <  and x  A.

 )(xf = = | )(xf | <  if 0 < |x – c| <  and x  A. Since this holds for all  > 0,

lim )(xf = l .

Case (ii): l > 0 There is 1 > 0 such that |f(x) – l | < l/2 if x  A and 0 < |x – c| < 1.

 | l | - |f(x)| < l /2 if x  A and 0< |x – c| < 1.

 l/2 < f(x) if x  A and 0 < |x – c| < 1.

 )(xf > 2/l if x  A and 0 < | x – c| < 1.

Also if  > 0 there is 2 > 0 such that if 0  A and 0 < | x – c| < 2, |f(x) – l | <

 ll 2/ 

Let () = min {1, 2}. Now if 0 < |x – c| <  () and x  A, Then

lxf )( =
lxf

lxf





)(

|)(|
<

ll

lxf





2/

|)(|
<

2/

2/

ll

ll




 = 

Hence
cx

lim


)(xf = l

14.5.8 SAQ: Find
0

lim
x 2

3121

xx

xx





14.5.9 SAQ: (a) If P is a polynomial function then show that
cx

lim p(x) = p(c).

(b) If p and q are polynomial functions on  and if q (c)  0 then show that

cx
lim

)(

)(

xq

xp
=

)(

)(

cq

cp

14.5.10 Theorem: Let A   , let f : A   and let c   be a cluster point of A. If a

 f(x)  b for all x  A, x  c and if
cx

lim f(x) exists, then a 
cx

lim f(x)  b.

Proof: If
cx

lim f(x) = l, then if (xn) is any sequence of real numbers such that c  xn  A

for all n  N and if (xn) converges to c, then the sequence (f(xn)) converges to l.

Since a  f (xn)  b for all x  b, then a  lim f(xn)  b  a  l  b.
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14.5.11 Squeeze theorem for functions: Let A   , let f, g, h : A   and let c be a

cluster point of A. If f(x)  g(x)  h(x) for all x  A, x  c and if
cx

lim f(x) = l =
cx

lim h(x)

then
cx

lim g(x) = l.

Proof: First proof: To show that
cx

lim g(x) = l, let (xn) be a sequence in A – {c} such that

lim xn = 0 since
cx

lim f(x) =
cx

lim h(x) = l, then
cx

lim f(xn) = l =
cx

lim h(xn).

Since f(xn)  g(xn)  h(xn) for every n, it follows by the squeeze theorem for sequences

that lim g(xn) = l. Since this holds for every seqeunce (xn) in A – {c} such that lim xn =

c, it follows that
cx

lim g(x) = l.

Second proof: Given  > 0, there exist 1, 2 > 0 such that |f(x) – l|< for (0<|x – c| < 1

and |h(x) – l | <  for 0 < |x – c| < 2 and x  A

 l -  < f(x) < l +  for 0 < |x – c| < 2 and x  A and

l -  < h(x) < l +  for 0 < |x – c| < 2 and x  A

Let  = min {1, 2}, then |x – c| < . x  A, x  c

 l -  < f(x) < l +  and l -  < h(x) < l + 

For 0 < |x – c| < 

Thus l -  < f(x)  g(x)  h(x) < l + 

 l -  < g(x) < l + 

 |g(x) – l | <  for 0 < |x – c| <  and x  A. Hence
cx

lim g(x) = l.

14.5.12 Examples:

a)
0

lim
x

x3/2 = 0

Domain of the function x3/2 is (0, )

If 0 < x < 1 then x < x1/2 < 1  x2 < x3/2 < x for 0 < x < 1

But
0

lim
x

x2 = 0 =
0

lim
x

x

Hence by squeeze theorem
0

lim
x

x3/2 = 0

(b)
0

lim
x

sin x = 0
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We use the fact, - x  sin x  x for all x > 0 since
0

lim
x

x = 0 =
0

lim
x

(- x), by squeeze

theorem
0

lim
x

sin x = 0.

(c)
0

lim
x

cos x = 1

We use the fact that 1 -
2

1
x2  cos x  1 for all x   . Since

0
lim
x

(1-
2

1
x2) = 1 =

0
lim
x

1,

by squeeze theorem
0

lim
x

cos x = 1.

(d)
0

lim
x








 

x

x 1cos
= 0

We use the fact that 1 -
2

1
x2  cos x  1 for all x  R= -

2

1
x2 < cos x-1 < 0 for x  

 -
2

1
x 

x

x 1cos 
 0 for x > 0 and 0 

x

x 1cos 
 -

2

1
x for x < 0.

0 
x

x 1cos 
 -

2

1
|x| for x   .

Now let f(x) = -x/2 for x  0

= 0 for x < 0

let h(x) = 0 for x  0

= x/2 for x < 0

Then f(x) 
x

1xcos 
 h(x) for x  0 and

0
lim
x

f(x) = 0 =
0

lim
x

h(x)

Hence by squeeze theorem
0

lim
x x

1xcos 
= 0, hence

0
lim
x x

1xcos 
= 0.

(e)
0

lim
x x

xsin
= 1

We use the fact: x -
6

1
x3  sin x  x for x  0 and x  sin x  x -

6

1
x3 for x < 0.

 1 -
6

1
x2 

x

xsin
 1 for all x  0. But

0
lim
x

(1 -
6

1
x2) = 1 =

0
lim
x

1

Hence
0

lim
x x

xsin
= 1

(f)
0

lim
x

x sin
x

1
= 0
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Let f(x) = x sin (1/x) for x  0

Since –1  sin   1 for all    , we have - |x|  x. sin (1/x)  |x| for all x  0. Since

0
lim
x

|x| = 0, squeeze theorem
0

lim
x

x. sin (1/x) = 0.

14.5.13 Theorem: Let A   , let f : A   and let c   be a cluster point of A. If

cx
lim f(x) > 0 (

cx
lim f(x) < 0) then there exists a nbd V (c) of c such that f(x) > 0 (f(x) < 0)

for all x  V (c)  A – {c}.

Proof: Let
cx

lim f(x) = l and suppose that l > 0. Corresponding to  =
2

l
there is  > 0

such that if 0 < |x – c| <  and x  A then |f(x) – l | <
2

l
so x  V (c) and x  c 

2

l
=

l -
2

l
< f(x) < l +

2

l
. Hence if x  V (c) and x  C, f(x) >

2

l
> 0.

14.5.14 SAQ: If f :    satisfies f(x+y) = f(x) + f(y) for all x, y in  , show that f(x)

= x.f(1) for all rational numbers x.

14.5.15 SAQ: If f :    satisfies f(x+y) = f(x) + f(y) for all x,y in  and

0
lim
x

f(x) = L then

(i) L = 0 (ii)
cx

lim f(x) = f(c) for all c and (iii) f(x) = x.f (1) for all x

14.6 Extensions of limit concept

We begin with an example. Consider the signnun function defined on  by
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g(x) =
|x|

x
if x  0 and of g(0) = 1 equivalently g(x) =















0xif1

0xif0

0xif1

Let A1 = {x/x>0} = (0, ) and A2 = {x/x < 0} = (-, 0) clearly A1  A2 =  – {0} and 0

is a cluster point of A1 as well as A2.

We consider the restrictions g1, g2 of g on each of A1 and A2. g1 = A1   is defined by

g1 (x) = -1 for x  A1 and g2 : A2   is defined by g2(x) = 1 for x  A2

If  > 0, A1  V (0) = (0, ) and A2  V (0) = (-, 0) So if x  A1  V (0), g1(x) = 1 so

that |g1(x) – 1| = 0 <  for every  >0. Thus
0x

lim


g(x) = 1. Similarly
0x

lim


g2 (x) = -1

However
0x

lim


g(x) does not exist.

This example places before us a situation where a function defined on a set A has no limit

at a cluster point c while its restriction to A  (c, ) and A  (- , c) do have limits.

We are thus head to define the concept of one sided limits at a cluster point.

14.6 One sided limits

14.6.1 Definitions:

Let A   and let f: A 

(i) If c   is a cluster point of the set A  (c, ) = {x  A/a > c} then we say

that l   is a right hand limit of f at c and we write
cx

lim f(x) = l.

i e, if given  > 0 then exists () > 0 such that for all x  A with

0 < |x-c| < (), |f(x) – l| < 

(ii) If c   is a cluster point of the set A  (- , c) = {x  A / x < c} then we

say that l   is a left hand limit of f at c and we write
cx

lim f(x) = l.

if given  > 0 then exists () > 0 such that for all x  A with

0 < c – x <  (), |f(x) – l| < .

14.6.2 Note: 1. The limits
cx

lim f(x) and
cx

lim f(x) are called one sided limits of f at c.
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n c c+1

c -  c + 

c - 1

c - 1

(x) = c – 1

0

c
c+1

2. It is possible that neither one sided limit may exist Also one of them may exist without

the other existing. Similarly as in the case g(x) = sgn (x) at c = 0, they may both exist and

be different.

3. If A is an interval with left end point c, then it is seen that f: A   has a limit at c if

and only if it has a right hand limit at c. Moreover, in this case
cx

lim


f(x) and
cx

lim f(x) are

equal. (A similar situation occurs for the left hand limit when A is an interval with right

end point c.)

14.6.3 SAQ: For f; (a, b)   ,
ax

lim


f(x) exists if and only if
ax

lim f(x) exists. In this case

the two limits are equal.

14.6.4 Example: (a) The greatest integer function [x] : Let  (x) = [x] = n where n is an

integer and n  x < n + 1 We show that

(i) if c is not an integer
cx

lim


(x) =  (c) (ii) if c is an integer
cx

lim (x)=c and
cx

lim (x)= c-1

Case (i): When c is not an integer, there is a integer n such that n < c < n + 1

(x) = n in (n, n+1) so if 0 <  < min {c-n, n+1-c}

and 0 < |x-c| < , n < c -  < x < c +  < n + 1 so that

 (x) = n and hence if  > 0, |(x) – n| = 0 < .

This shows that
cx

lim (x) = n = (c)

Case (ii): If c is an integer, (x) = c-1 if c-1 < x < c.

c <  < c – n, 0 <  < x + 1 - c
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c - 1 c+1

(x) = c
0

If 0 <  < 1, c – 1 < c -  < c so that if c -  < x < c

(x) = c – 1 if  > 0, |(x) - (c)| = 0 < 

This shows that
cx

lim (x) = c – 1

Case (iii): If c is an integer and c < x < c + 1, (x) = c

As above we se that if 0 <  < 1 and c < x < c +  < c + 1

(x) = c so that for any  > 0, |(x) – c| = 0 < 

This shows that
cx

lim (x) = c

However
cx

lim


(x) does not exist when c is an integer as (c +
n

1
) = c for n  N and

 ( c -
n

1
) = c – 1 and hence

n
lim ( ( c +

n

1
) 

n
lim ( (c -

n

1
)).

(b) Let f (x) = sgn (x) we know that sgn does not have a limit at 0. It is clear that

0x
lim sgn (x) = 1 and

0x
lim sgn (x) = -1

Since these one sided limits are different, it follows that sgn (x) does not have a limit at 0.

(c) Let g(x) = e1/x for x  0.

We first show that does not have a finite right hand limit at c = 0, since it is not bounded

on any right nbd (0, ) of 0. We make use of the inequality 0 <
x

1
< e1/x for x > 0.

If we take xn =
n

1
then g(xn) > n for all n   . Therefore

0x
lim


e1/x does not exist in  .

However
0x

lim


e1/x = 0. Indeed if x < 0 then 0 < -
x

1
< e-1/x so 0< e1/x < - x for all x < 0.

0x
lim e1/x = 0  1/ x

x 0
lim e

 
Hence lim e1/x does not exist.
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(d) Let h(x) =
1e

1
x/1 

for x  0.

If 0 < x 0 <
1

x
< 1/ xc

then 0 <
1e

1
x/1 

<
xe

1
< x which implies that

0x
lim h(x) = 0. From (c) above

0x
lim e1/x = 0. So

0x
lim h(x) =

0x
lim (

1e

1
x/1 

) =
10

1


= 1

Here both one sided limits exists  but they are different and hence
0x

lim


h(x) does not

exist.
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14.6.5 Theorem:

Let A   , f: A  R and c be a cluster point of A  (c, ). Then the following are

equivalent.

(i)
cx

lim f(x) = l

(ii) For every sequence (xn) that converges to c such that xn > c for all n  N; the

sequence (f (xn) converges to l.

Proof: Suppose
cx

lim f(x) = l. Given  > 0 there is  () > 0 such that 0 < x – c < ()

and x  A, (f(x) – l | < . Let (xn) be any sequence such that xn > c and lim (xn) = c.

Since  > 0, there is a natural number K() such that |xn – c| = xn – c <  for n  K ()

So if n  K (), |f(x) – l| < . Since  > 0 is arbitary, lim f(xn) = l whenever xn > 0,

xnA and lim xn = C. Conversely suppose
cx

lim f(x)  l. Then there is 0 > 0 such that

for every  > 0 then exists x depending on  such that x  A, 0 < x – c <  and |f(x)–l | >

0.

In particular if xN and  =
n

1
, there is xn  A such that 0 < xn – c<

n

1
and |f(xn) – l|

>0. Clearly lim xn = c but lim f(xn)  l.

14.6.6 SAQ: Show that c is a cluster point of A if and only if c is a cluster point of

A  (C, ) or A  (-, C).

14.6.7 Example: Consider the Euler function  defined on  by

(x) =




irrationalisxif1

rationalisxif0

We show that
cx

lim (x) and
cx

lim (x) do not exist for every c

Solution: Let c be any rational number. Then for x   , c +
n

1
> c, c +

n

1
is a rational

number and  (c +
n

1
) = 0 ,

n
lim (c+

n

1
) = C and

n
lim  (c +

n

1
) = 0



Real Analysis 14.28 Limits of Functions

Also c +
n

2
> c and c +

n

2
is an irrational number for n   and

n
lim ( c +

n

2
) = c.

 (c +
n

2
) = 1 for every n, so

n
lim  ( c +

n

2
) = 1. Hence

cx
lim (x) does not exist.

In a similar way we can show that
cx

lim (x) does not exist when c  Q. The proof when c

is an irrational number is similar.

14.6.8 Example:

Define  :    by

 (x) = 0 if x < 0

= 0 if x  0 and x is rational

= 1 if x  0 and x is irrational

we show that
0x

lim  (x) = 0 and
0x

lim (x) does not exist.

Solution:

If x  (-, 0),  (x) = 0 so if  > 0 and  > 0 for x  -  < x < 0, |(x) – 0| = 0 < .

Hence
0x

lim (x) = 0. lim (
n

1
) = 0 = lim (

n

2
) So lim (

n

1
) = 0  1 = lim  (

n

2
)`

Hence
0x

lim (x) does not exist.

14.6.9 Theorem: Let A   , f: A   , c   be a cluster point of both the sets

A  (c, ,) and A  (-,c). Then
cx

lim


f(x) = l if and only if
cx

lim f(x) = l =
cx

lim f(x)

Proof: If c is a cluster point of A  (c, )  A, c is a cluster point of A.

Assume that lim
cx

lim


f(x) = l. Given  > 0 there is  () > 0 such that if 0 < |x-c| < ()

and x  A, |f(x) – l| < .

If 0 < x-c < () and x  A then 0 < |x-c| < ()  |f(x) – l| <  
cx

lim f(x) = l. Also

since c is a cluster point of A  (-, c). 0 < c – x < () and x  A  0 < |x-c| < ()
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and x  A  |f(x) – l | < . 
cx

lim f(x) = l.

Conversely suppose that
cx

lim f(x) = l. =
cx

lim f(x). If  > 0 there exists 1 > 0 and 2 > 0

such that |f(x) – l| <  for all x  A with 0 < x-c < 1 and for all x  A with 0 < c-x < 2.

Let  = min {1, 2}. Let x  A and o < |x-c| < , then either 0 < x-c <  or 0 < c-x < .

If 0 < x-c <  then 0 < x - c < 1 so that |f(x) – l| <  If 0 < x-c <  then 0 < c - x < 1 so

that |f(x) – l | <  Thus if x  A and 0 < |x – c| < , |f(x) – l | <  Since  > 0 is

arbitary,
cx

lim


f(x) = l.

14.7 Infinite limits and limits at infinity

14.7.1 Infinite limits:

Let A   , f: A   and c   , be a cluster point of A

(i) We say that f tends to  as x  c and write
cx

lim


f(x) =  if for every    there

exists () > 0 Such that for all x  A with 0 < |x – c| < (), f(x) > 

(ii) We say that f tends to -  as x  c and write
cx

lim


f(x) = - , if for every    there

exists  () > 0 such that for all x  A with 0 < |x-c| < (), f(x)> .

14.7.2: Let A   and let f: A   . If c   is a cluster point of the set

A  (c, ) = {x  A / x > c}. Then we say that f tends to  (respectively - ) as x  c+

and write
cx

lim f(x) =  (respectively
cx

lim f(x) = -) if for every    , there exists  ()

> 0 such that for all x  A with 0 < x – c <  then f(x) >  (respectively f(x) < ).

14.7.3 Examples:

(a)
0x

lim
 2x

1
=  For if  > 0 is given, let  =



1
. If follows that if 0 < |x| <  then x2<



1

so that
2x

1
> . Hence

0x
lim
 2x

1
= .



Real Analysis 14.30 Limits of Functions

(b) Let g(x) =
x

1
for x  0.

0x
lim g(x) = +  and

0x
lim g(x) = - 

If x > 0 and  > 0 |g(x)| > 
x

1
> .  0 < x <



1
. So

0x
lim g(x) = . x < 0 and  ,

 < 0 g(x) =
x

1
< 0 so g(x) <  

x

1
<   -

x

1
> -  > 0  -x <



1




1
< x < 0

If  > 0, g(x) <  for all x < 0 
0x

lim g(x) = -.

However
0x

lim


g(x) does not exist in  as well as
0x

lim


g(x)   and
0x

lim


g(x)  - .

(c)
1x

lim
1x

x



If  > 1 and 1 < x <
1


then  <

1x

x


hence we have

1x
lim

1x

x


= .

(d)
0x

lim
x

2x 
= 

Let g(x)=
x

2x 
(x >0) Since x >0 then

x

2x 
>

x

2
If  > 0 then

x

2x 
>  if

2

4


> x >0

So 0 < x <
2

4


 g(x) >  since  > 0 is arbitary

0x
lim g(x) = .

14.7.4 Limits at infinity:

Let A   , f: A   . Suppose that (a, )  A for some a   . We say that l  is

a limit of f as x   and write
x

lim f(x) = l if given  > 0 there exists  () > 0 such

that for any x > (), |f(x) – l| < .

14.7.5 Theorem:

Let a   , A   , (a, )  A and f: A   . The following are equivalent.

(i)
x

lim f (x) = l

(ii) for every sequence (xn) in A  (a, ) such that lim xn = , lim f(xn) = l.

Proof: (i)  (ii): Assume (i) Let  > 0, there is  > 0 such that if x  A  (a, ), x > 

then |f(x) – l| < .
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If (xn) is a sequence in A  (a, ) and lim (xn) = , corresponding to  > 0 there is a

natural number K() such that if n  k (), xn >  so that |f(xn) – l | <  if n  k (). Since

 > 0 is arbitary, lim f(xn) = l Hence (ii) holds.

(ii)  (i)

Assume (ii): Suppose (i) is false, then there is  > 0 such that if  > 0 there corresponds

atleast one x in A  (a, ) such that |f(xn) – l |  . By choosing  =
n

1
where n  N,

we get xn  A  (a, ) such that lim xn = .

But lim f(xn)  l. So (ii) does not hold: Thus if (i) is false then (ii) is false. Hence (ii)

(i)

14.7.6 Examples:

(a) Let f(x) =
x

1
for x  0

f(x) =
x

1
(x > 0)

From the graph
x

lim
x

1
= 0 and

x
lim

x

1
= 0

Further if  > 0 then 0 -
1

| x |
<  whenever



1
< |x| i.e. x >



1
and x < -



1
.

(b) Let g(x) =
2x

1
for x  0

|g(x)| = |
2x

1
| =

2x

1
< 



1
< x2  |x| >



1
i.e. x >



1
or -x < -



1

From the graph
x

lim
2x

1
= 0 =

x
lim

2x

1
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14.7.7 Let A   , f : A   . Suppose that (a, )  A for some a   . We say that f

trends to  (respectively - ) as x   and write
x

lim f(x) =  (respectively

x
lim f(x) = - ) if given any    there exists K () > 0 such that for any x > k() for

k. f(x) >  (respectively f(x) < )

14.7.8 Theorem: Let A   , f: A   and suppose that (a, )  A for some a   .

then the following statements are equivalent.

(i)
x

lim f(x) =  (respectively
x

lim f(x) = - )

(ii) for every sequence (xn) in (a, ) such that lim (xn) =  lim f(xn) = . (respectly lim

f(xn) = - ).

Proof: Assume. Given  > 0 there is  > 0 such that f(x) >  for x  .

If (xn) is any sequence such that lim (xn) = , then corresponding to the above , there is

a natural number k such that xn >  if n  k. Hence if n  k, xn >  and so f(xn) > . Since

 > 0 if arbitary, lim f(xn) = .

Conversely suppose that
x

lim f(x)  . Then there is 0 > 0 such that for every positive

number , there corresponds atleast one x depending to  such that x >  but f(x) > 0.

In particular if xN and  = n there is xn corresponding to n such that xn>n but f(xn)  0.

Clearly lim (xn) =  but lim f(xn)   so that (ii) does not hold.

14.7.9 Examples:

(1)
x

lim xn =  for n  .

Let g(x) = xn for x  (0, ). Given   R, let k = sup {1, } then for all x > k, we have xn

 n >  g(x) > . Since    is arbitary,
x

lim g(x) = .
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(2) Let f be defined on (0, ) to  . Prove that
x

lim f(x) = l if and only if
0x

lim f 








x

1
= l.

Solution:
x

lim f(x) = l  for given  > 0 there is K > 0 such that |f(x) – l| <  for x > K.

 |f 








z

1
- l| <  for 0 < Z <

K

1
.

 |f 








n

1
- l} <  for 0 < x <

K

1


0x

lim f 








x

1
= l.

(3) Show that f: (a, )   is such that
x

lim x.f(x) = l where l   then
x

lim f(x) = 0

Solution:
x

lim xf(x) = l  for given  > 0 there is  > 0 such that |x.f(x) – l| < 

whenever x > .

 |x.f(x)| - |l| <  is x > 

 |x.f(x)| <  + | l |

+f(x)| <
x

|l|
<  for x >



 |l|

Hence
x

lim f(x) = 0

(4) Let f and g be defined on (a, ) and suppose
x

lim f(x) = l and
x

lim g(x) = . Prove

that
x

lim (f o g) (x) = l.

Solution:
x

lim f(x) = l  for given  > 0 there is K > 0 such that |f(x) – l| <  for x >

K.

x
lim g(x) =  and K > 0 there is H > 0 such that g(y) > K for y > H. If y > H, g(y) > K so

|(fog) (y)- l | = |f(g(y) ) – l| <  if g(y) > k and hence y >H.  | (fog)(y) - l|< for y

>H.

Hence
x

lim (fog) (x) = l.
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(5) Let A   , c a cluster point of A, f : A   , g : A   be such that
cx

lim


f(x) = l

where l > 0 and
cx

lim


g(x) = . Show that
cx

lim


f(x) . g(x) = .

If l = 0, show by example that this conclusion may fail.

Since
cx

lim


f(x) = l > 0 (for  =
2

l
) there is 1 > 0 such that if x  A and 0 < |x – c| < 1,

2


< f(x) <

2

3
. Since

cx
lim


g(x) =  if  > 0 there is 2 > 0 such that if x  A and

0 < |x – c| < 2, g(x) >
2


.

If  = min {1, 2} and x  A, 0 < |x – c| < , f(x) >
2


and g(x) >

2


 ; so that

f(x). g(x) > . Since  > 0 is arbitary it follows that
cx

lim


f(x) . g(x) = .

Example:
x

lim x =  ,
x

lim
x

1
= 0.

But
0x

lim


(x .
x

1
) = 1. So the statement is false when l = 0.

6) (i) Find functions f and g defined on (0, ) such that
x

lim f(x) = ,
x

lim g(x) =  and

x
lim (f – g) (x) = 0. (ii) Can you find such functions with g(x) > 0 for all x  (0, ) such

that
x

lim 








g

f
(x) = 0?

(i) Let f be any function defined on (0, ) such that
x

lim f(x) =  and g(x) = f(x).

Then
x

lim f(x) =
x

lim g(x) =  but f – g = 0 so
x

lim (f – g) (x) = 0.

(ii) f(x) = x and g(x) = x2

Then
x

lim f(x) = ,
x

lim g(x) = 

)x(g

)x(f
=

x

1
so that

x
lim 









g

f
(x) = 0.
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14.7.10 Theorem: Let A   , f,g : A   and c be a cluster point of A. Suppose

f(x)  g(x) for all x  A, x  c.

(a) If
cx

lim


f(x) =  then
cx

lim


g(x) = 

(b) If
cx

lim


g(x) = -  then
cx

lim


f(x) = - 

Proof: Suppose
cx

lim


f(x) =  and    . Then there is  > 0 such that if x  A and

0 < |x – c| <  then f(x) > .

As g(x)  f(x), we get g(x) >  if x  A and 0 < |x – c| <  so
cx

lim


g(x) = .

Suppose
x

lim g(x) = - . Then if    there is  > 0 such that g(x) <  if x  A and

0 < |x – c| < . As f(x)  g(x),

Hence f(x) <  if x  A and 0 < |x – c| <  So
cx

lim


f(x) = - .

14.7.11 Theorem: Let A   , f, g: A   and suppose (a, )  A for some a   .

Suppose further that g(x) > 0 for x  A and that for some L   , L  0 we have

x
lim

)x(g

)x(f
= L

(1) If L > 0,
x

lim f(x) =  if and only if
x

lim g(x) = .

(2) If L < 0,
x

lim f(x) = -  if and only if
x

lim g(x) = - .

Proof: If L < 0, - L is positive so we get (ii) from (i) by considering –f instead of f, we

thus prove (i) only. Suppose L > 0. Since
x

lim
)x(g

)x(f
= L there is a1 > a such that

0 <
2

L
<

)x(g

)x(f
<

3L

2
: g(x) for x > a1 ------ (1)

since g(x) > 0,
L

2
g(x) < f(x) <

3L

2
g(x) for x > a1

Hence if
x

lim f(x) =  and  > 0 there is  > 0 such that f(x) >
2

L3
 for x > .
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So that if x > max { and a1} g(x) >
L3

2
f(x) > . Hence

x
lim g(x) = 

Conversely suppose
x

lim g(x) = . If  > 0 there is  > 0 such that g(x) >
L

2
 if x > 1.

If x > max {1, a1}, f(x) >
2

L
.

L

2
 = . Hence

x
lim f(x) = .

14.8 Solutions SAQ’s

14.4.6 (i) If c < 0, -c > 0 and the nbd V-c/2 (c) = (
2

c
,

2

c3
)  A – {c} = , since

x  (
2

c
,

2

c3
)  x <

2

c
< 0 so x   = A – {c} so c is not a cluster of A.

(ii) If c > 1, choose  > 0 such that (c - , c + ) does not contain 1. Then (c - , c+) does

not contains any point of A. So c is not a cluster point of A.

(iii) If 0 < c < 1, by Archimedean principle, there is n  N such that n <
c

1
< n + 1.

Since
1n

1


< c <

n

1
we can choose  > o such that V (c)  (

1n

1


,

n

1
) = . As there

are no other elements of A in V (c), V (c)  A = . So c is not a cluster point of A if c 

A but 0 < c  1.

(iv) If c =
n

1
for some n >1, choose  > 0 such that (c - , c + )  (

1n

1


,

1n

1


) = {

n

1
}

clearly V (c)  A = {
n

1
} so V (c)  A – {c} = . So

n

1
is not a cluster point of A if n 

 and n > 1.

(v) If c = 1, 








4

5
,

4

3
is

4

1
- nbd of 1 and 









4

5
,

4

3
 A – {1} = . So 1 is not a cluster

point of A.

Thus the only cluster point of A is 0.
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14.4.8 (a) Suppose c is not a cluster point of A as well as B.

Then there exist 1 > 0 and 2 > 0 such that

1
V (c)  A – {c} =  and

2
V (c)  B – {c} = 

If 0 <  < min {1, 2}, V (c) 
1

V (c) and V (c) 
2

V (c)

Hence V (c)  (A – {c}) =  and V (c)  (B – {c}) = 

 V (c)  (A  B – {c}) = (V (c)  (A – {c}))  (V (c)  (B – {c})) = .

As there is a nbd of c which has no common points with A  B – {c}, c is not a cluster

point of A  B.

14.4.8 (b): If c is a cluster point of A and c  (a, b) choose  > 0 so that a < c -  < c < c

+  < b. This is possible when 0 <  < min {c – a, b – c}.

By definition there is x  (c - , c + )  ( A – {c})  (a, b)  A – {c}

The converse is clear since for every  > 0, (c - , c + )  (A – {c})  .

14.4.8 (c) Let F be a finite set. We may assume that F  

If c  F, by 14.4.2 (2) there exists  > 0 V (c)  F = . If c  F there exists  > 0 such

V (c)  F = {c}

So c is not a cluster point of F.

(d) Let f:    , c   and g(x) = f(x + c) show that
cx

lim


f(x) = l if and only if

0x
lim


g(x) = l.

SAQ 14.4 A

Solution: (a) Suppose
cx

lim


f(x) = l.

If  > 0 there is  > 0 such that |f(x) – l| <  if 0 < |x – c| < . If 0 < |y| <  and x = y + c

then 0 < |y| = |x – c| < ,

So that |g(y) – l| = |f(y + c) – l| = |f(x) – l | < .

Thus 0 < |y| <   |g(y) – l | < 

This is true for every  > 0 so
cx

lim


f(x) = l
0x

lim


g(x) = l
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Proof of the converse part is similar.

If  > 0 there is 1 > 0 such that |f(x) ; - l | < 

If 0 < |x| <
a


, 0 < |a x | <  so |f (ax) – l | < 

i e |g(x) – l | < . Thus |g(x) – l | < if 0 < |x| <
a



Since  > 0 is arbitary
0x

lim


g(x) = l.

Solution (c): (a) For x   , |f(x)| is either 0 or |x| so that if  > 0, |f(x) – 0| = |f(x)|  |x|

<  if 0 < |x| <  so (a) holds.

(b) Suppose c  0. By the “Density theorem”, for every natural number n, there are xn, yn

such that xn is rational number and yn is an irrational number,

c < xn < c +
n

1
and c < yn < c +

n

1
 lim xn = lim yn = c

Since f (xn) = xn and f(yn) = 0, lim f(xn) = lim (xn) = c and lim f(yn) = 0.

Since c  0, by the Divergence cisteria,
cx

lim


f(x) does not exist.

(d) Solution: Since I is open and c  I, we can find a 0 such that (c - 0, c + 0)  I

Suppose
cx

lim


f1(x) = l. Given  > 0 there is 1 > 0 such that |f1 (x) – l| <  if

0 < | x – c| < 1 and x  I. If  () = min {0, 1},  ()  0 and 1 so (c - (), c + ())

 (c - 0, c + 0)  I and (c - 0, c + 0)  (c - 0, c + 0). So if 0 < |x – c| < (), x  I,

we get |f(x) – l | = |f1 (x) – l | < 

Thus for every  > 0 there is () > 0 such that if 0 < |x – c| < (), |f(x) – l | < 

Hence
cx

lim


f(x) = l

Conversely suppose that
cx

lim


f(x) = l

If  > 0 there is 1 > 0, such that if 0 < |x – c| < 1, |f(x) – l | < 

Again let () = min{1, 0} where 0 is chosen as above. If 0 < |x – c| < (), then x  I

and 0 < |x – c| < 1 so that |f1 (x) – l | = |f(x) – l | <  Hence
cx

lim


f1(x) = l.

14.5.4 SAQ
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Let  > 0. Since
cx

lim


f(x) = l, there is 1 > 0 such that 0 < |x – c| < 1 and x  A 

|f(x) – l| <
2


_______ (1)

Similarly there is 2 > 0 such that 0 < |x – c| < 2 and x  A  |g(x) – m| <
2


____ (2)

Let () = min {1, 2}. If 0 < |x – c| < () and x  A, x satisfies the conditions in (1)

and (2) so that |f(x) – l| <
2


and |g(x) – m| <

2


. Thus if 0 < |x – c| < () and x  A,

|(f +g) (x) - (l+ m)| = |f(x) – l + g(x) – m|  |f(x) – l| + |g(x) – m| <
2


+

2


=  ______

(3)

This is true for every  > 0, so
cx

lim


(f + g) (x) =
cx

lim


f(x) +
cx

lim


g(x) = l – m, we need

only to replace (3) by |(f-g) (x) – (l – m)| = |(f(x) – l) – (g(x) – m)|  |f(x) – l | + |g(x) –

m| <
2


+

2


= .

14.5.8 SAQ:

If f(x) = x21 - x31 and g(x) = x + x2; then
0x

lim


f(x) = 0,
0x

lim


g(x) = 0. So the

quotient formula does not work here.

However for x > 0,
)x(g

)x(f
=

 2

(1 2x) (1 3x)

(x x ) 1 2x 1 3x

  

   

=
}x31x21{)x1(

1





0x
lim
 )x(g

)x(f
=

0x
lim
  

1

(1 x) 1 2x 1 3x



   

=
)11()01(

1




=

2

1



Real Analysis 14.40 Limits of Functions

14.5.9 (a) Let p(x) = a0 + a1x + …………… + an xn

We know that
cx

lim


xk = ck if 1  k  n.

Hence
cx

lim


p(x) = a0 + a1
cx

lim


x + …….. + an
cx

lim


xn

= a0 + a1c +…………..+an cn

(b) By SAQ 14.5.9 (a)
cx

lim


p(x) = p(c) and
cx

lim


q(x) = q(c)

since q(c)  0,
cx

lim
 )x(q

)x(p
=

)c(q

)c(p

(Here we note that there is a nbd V (c) of such that for x  V (c) and x  c, q(x)  0 so

that both p(x) and q(x) are defined and q(x)  0 in V (c).)

14.5.14 (i) f(0) = f(0 + 0) = f(0) + f(0)  f(0) = 0

(ii) 0 = f(0) = f(x + (-x)) = f(x) + f(-x)  f(-x) = -f(x) for x   .

(iii) If x   and n   , f(nx) = n. f(x)

Reason f(1. x) = f(x) = 1. f(x)

f(2. x) = f(x + x) = f(x) + f(x) = 2. f(x)

If K  N and f (Kx) = K. f(x) then

f((K + 1) x) = f(Kx + x) = f(Kx) + f(x) = K. f(x) + f(0) = (K + 1) f(x).

Since the required holds for K + 1 whenever it holds for K, by mathematical introduction,

equality holds for all n  N.

If n is a negative integer f(nx) = f(-(-n)x) = f(-nx) = -(-n) f(x) = nf(x) (since- nN).

So that f(nx) = n. f(x) if n is any integer.

14.5.15 By 14.5.4 f(x) = x. f(1) for every rational number x.

(i) If (xn) is a sequence of rational numbers such that lim xn = 0.

L =
0x

lim


f(x) = lim f(xn) = lim xn f(1)

= f(1). lim xn = f(1) . 0 = 0.

(ii) if c   , f(x) = f(x – c) + f(c)  |f(x) – f(c)| = |f(x – c)|

Since
0x

lim


f(x) = 0, given  > 0 there is  > 0 such that |f(t)| <  if 0 < |t| < .

Hence if 0 < |x-c| < , |f(x) – f(c)| = |f(x-c)| < .
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This implies that
cx

lim


f(x) = f(c) for every c   .

(iii) If x is any real number, choose a sequence of rational numbers (xn) such that

lim xn = x and xn = x and xn  x for n  . Since
xt

lim


f(t) = f(x), lim f(xn) = f(x) So f(x)

=lim f (xn) = lim xn f(1) = f(1) lim xn. = f(1) . x  f(x) = x . f(1).

14.5.16: Since
cx

lim


f(x) = l, given  > 0 there is  > 0 such that |f(x) – l | < 

if 0 < |x-c| <  and x  A.

If 0 < |x-c| < , | |f| (x) - | l | | = | |f(x)| - | l | |  | f(x) – l | < . Hence lim |f(x)| = | l |.

14.5.17: f is bounded  there is 1 > 0 and M > 0 such that |f(x)|  M if x  A and

0 < |x-c| < 1. If >0 there is 2 >0 such that |g(x)|<
M


such that if x  A and 0<|x-c|< 2.

Let  = min {1, 2} If x  A and 0 < |x-c| <  then 0 < |x-c| < 1 and 0 < |x-c| < 2 

|f(x)|  M and |g(x)| <
M


|(f g) (x)  0| = |f(x) . g(x)| = |f(x) . |g(x)|. < M.

M


= . Hence

cx
lim


(f g) (x) = 0.

14.6.3 Consider f : (a, b)   ,
ax

lim


f (x) = l.

 for every  > 0 there is a  > 0 such that whenever 0 < |x – a| <  and x  (a, b),

|f(x) – l | < .

 for every  > 0 there is a  > 0 such that 0 <  < b – a and whenever a < x < a +  < b,

|f(x) – l| < .


ax

lim f(x) = l.

SAQ 14.6.6: c is a cluster point of A iff c is a cluster point of A  (c, ) or c is a cluster

point of A  (-a, c).

If c is not a cluster point of A  (c, ) there exist 1 > 0 and 2 > 0 such that
1

V  A 

(c, ) =  =
2

V  A  (-, c). If  = min {1, 2}V  A  (c, ) =
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V  A  (-, c) = , so that V  A – {c} = V  {A  (c, )  A  (-, c)} = .

Conversely if c is a cluster point of one of A  (-, c) and A  (c, ) then V is a cluster

point of A since A  (-, c) as well as A  (c, ) is a subset of A – {c}.

14.9 Summary

In this lesson the notions of cluster point of a set, limit of a real valued function at a

cluster point of the domain are introduced and the equivalence of “, ” definition and

sequential approach is established. Discussion on onesided limits, limits

at  and infinite limits is made in some detail.

14.10 Technical Terms:

Cluster point, limit of a function, right limit and left limit, infinite limit, limit at infinity

14.11 Exercise

1. Determine a condition on |x-1| that will assure that

(a) |x2 – 1| <
2

1
(b) |x2 – 1| <

310

1


(c) |x2 – 1| <
n

1
for given n  N

2. Determine a condition on |x–4| that will assure that (a) | x -2|<
2

1
(b) | x -2|<10-2

3. If c is a cluster point of A then show that c is a cluster point of A – {c}.

4. If
n

lim (an) = a and the set A = {an / n   } is infinite; then prove that a is the

only cluster point of A.

5. If A  B and c is a cluster point of A, show that c is a cluster point of B.

6. Find the cluster points of the set { 1 +
n

1
/ n   }.

7. Show that any cluster point c of A is a cluster point of A  {x / x < c} or of

A  {x / x > c}.
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8. Let c be a cluster point of A   and f : A   prove that
cx

lim


f(x) = l if and

only if
cx

lim


|f(x) – l | = 0.

9. Let f:    and let c   . Show that
cx

lim


f(x) = L. if and only if
0x

lim


f(x + c) = L.

10. Determine the following limits:

(a)
1x

lim


(x+1) (x+20)

(b)
1x

lim
 2x

2x
2

2




(x > 0)

(c)
2x

lim












 x2

1

1x

1
(x>0)

(d)
0x

lim
 2x

1x
2 



11. Show that

(a)
2x

lim
 3x

1x2




=

5

7

(b)
2x

lim
 2x

4x 2




= 4

(c)
1x

lim
 1x

1x




=

2

1

(d)
0x

lim
 x

1)x1( 2 
= 2

12.
0x

lim


sin
2x

1
does not exist (let xn =

2x

1
and yn =

2
)1n4(

1



13.
0x

lim


x . sin (
2x

1
) = 0 (Hint : |sin t|  1)

14.
0x

lim


sgn (sin
x

1
) does not exist (Hint : xn

2
)1n4(

1


, yn =

2
)1n4(

1


)

15.
0x

lim


x sin (
2x

1
) = 0 (x > 0)
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16.
0x

lim


cos
x

1
does not exist (xn =

n2

1
, yn =

 )1n2(

1

17.
0x

lim


x. cos (
x

1
) = 0

18. Suppose f(x) = f(-x) for x  0, show that
0x

lim f(x) = l. If and only if
0x

lim f(x) = l.

19. Suppose f(x) = - f(-x) for x  0, show that if
0x

lim


f(x) = l then l = 0.

20. Find
1x

lim [2x] and
1x

lim [2x].

Answers: (1) |x-1| <  where  is on Rhs of a, b, c; for (d) |x-1| <
n10

1

(2) (a) |x-4| < 1 (b) |x-4| < 0.001

(6) {-1, 1}

(10) (a) 0, (b) -3 (c)
12

1
(d)

2

1

(20) 2, 1

14.12 Model Examination Questions

1. Find the cluster points of {
n

1
/ n  N}

2. If C is a cluster point of A  B show that c is cluster point of either A or B.

3. State and prove squeeze theorem for functions

4. Find
0x

lim


x sin (
2x

1
)

5. Find
1x

lim [2x] and
1x

lim [2x]

6. If f(x) = f(-x) for x  0, x   show that
0x

lim f(x) = l if and only if
0x

lim f(x) = l.

14.13 Model Practical Problem with solution:

Discuss the existence of
0x

lim


f(x) where f(x) = |x| (sgn x) sin
x

1
if x  0 and f(0) = 0.

Aim: To decide whether
0x

lim


f(x) exists or not and find the limit if it exists.
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Definitions:

(1) The function sgn    is defined by sgn x =














0xif1

0xif0

0xif1

(2) If E   , c is a cluster point of E, f: E   and l   , we say that f(x) converges

to l as x  c, in symbols
cx

lim


f(x) = l if for every  > 0 there corresponds  () > 0 such

that if x  E and 0 < |x-c| < (), |f(x) – l | < .

Results used: |sin  |  1 for    .

Solution: Clearly 0 is a cluster point of the domain  of f.

If x  0 |f(x) = | |x| | |sgn x| |sin
x

1
|

 | |x| . 1. 11 = | |x|

also |f(0)| = |0| = 0.

If  > 0 and 0 < |x| < 2, |f(x) – 0| = |f(x)|  | |x| < .

Hence by definition |f(x) – 0| = |f(x)|  | |x| <  if 0 < |x| < 2

Then
0x

lim


f(x) exists and
0x

lim


f(x) = 0.

K. SAMBASIVA RAO
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LESSON – 15

CONTINUOUS FUNCTIONS

15.1 Objective:

To obtain the student to get familiarity with the notion of jcontinuity – especially some

properties of the range of a continuous function on a closed and bounded interval.

15.2. Structure:

15.3 Introduction

15.4 Continuous functions

15.5 Combinations of continuous functions

15.6 Continuous functions on an interval

15.7 Uniform continuity

15.8 Solutions to SAQ’s

15.9 Summary

15.10 Technical terms

15.11 Exercises

15.12 Model examination Questions

15.13 Model practical problem with solution

15.3 Introduction:

In this lesson the student is introduced to the most important notion in analysis – namely

continuity motivated by the most natural description of a curve as any unbroken paths.

Karl Theodor Wilhelm Weierstrass (1815-1897)

Weierstrass is best known for his construction of the
theory of complex functions by means of power series.
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Beginning with the notion continuity of a function at a point of the domain we define

continuity on a set and define conditions for continuity as well as discontinuity. Various

theorems concerning the algebraic properties and order properties will be established. We

then study properties of a continuous function on a closed and bounded interval including

boundedness, attaining the maximum and minimum values, intermediate value property

and so on.

The notion of uniform continuity is also introduced and its equivalence with continuity

when the domain is closed and bounded interval are desired.

This is the most appropriate time that the student comes to know that though Sir Issac

Newton used the notion of continuity to explain the motion of bodies, it was Bolzano and

Cauchy who had identified continuity as an important concept in analysis while Karl

Weierstress was responsible for making a careful study of this topic.

15.4 Continuous functions:

15.4.1 Definition: Let A   and c  A. A function f : A   is said to be continuous

at ‘c’ if given  > 0 there is a  > 0 depending on  such that

x  A, |x – c | <   |f (x) – f(c) | < 

If f is not continuous at c, we say that f is discontinuous at c. If f I continuous at every

point of A, we that f is continuous on A.

Example: (1) The constant function f(x) = K is continuous on  .

Sol: Let  > 0 and take  =  and let n, c   , |x – c| < . Now |f (x) – f(c) | = |K–K| =0

if 0 < |x – c| <  = .  f is continuous at c, where c   . Hence f is continuous on  .

(2) The function f(x) = x for all x   is continuous on  .

Sol: Let  > 0 and take  =  and let c   , |n – c| < . Now |f (x) – f(c) | = |x–c|<=

 f is continuous at c whenever c   . Hence f is continuous on 
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15.4.2 Remark: Given f: A   , last us compare continuity and existence of the limit

of f(x) at c

1. For continuity at c, c must be a point

of A

1. For
cx

lim


f (x) = , to exist c need not

be in A, but c must be a cluster point

of A.

2. For  > 0 there exist  > 0 such that

|f (x) – f(c) | <  if x  A and

|x – c| <  (includes x = c as well)

2. For  > 0 there is  > 0 such that

|f(x) – | <  if, x  A and 0<|x–c|<

The value x = c is ignored and  is not

necessarily equal to f(c).

3. If c  A but not a cluster point f is

trivially continuous at c as there is >0

such that V(c)  A = {c} and so

|f(x) – f(c) | = 0 if x  V(c)(  A

3. If c  A but c is not a cluster point of

A. The, question of existence of

im f(x) does not arise x  c

We have the following theorem when c  A and c is a cluster point of A.

15.4.3 Theorem: If c  A and c is a cluster point of A then f : A is continuous at c if

and only if
cx

lim


f(x) exists and the limit is f(c).

Proof: f is continuous at c  for every  > 0, there is  > 0 such that |f(x) – f(c) | <  if

x  A and |x – c| < .

 for every  > 0 there is  > 0 such that |f(x) – f(c) | <  if x  A and 0 < |x – c| < 

(as when x = c, f(x) = f(c) )


cx

lim


f(x) exists and is equal to f(c).

A condition for continuity of a function at any given point of A in terms of

neighbourhoods is explained in the following result.
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0 c- c+c x

f(c)+

f(c)

f(c) - 

y

15.4.4. Theorem: Let f: A   and c  A. then f is continuous at c iff for every  > 0

there is a  > 0 such that for all x  A  V (c), f(x)  V (f(c) )

Proof: f is continuous at c  for every  > 0, there

is  > 0 such that |f(x)–f (c) | <  if x  A  V (c).

Since |f (x) – f(c) | <   f(x)  V (f (c) ); f is

continuous at c.

 for every  > 0 there is  > 0 such that for every

x  V (c)  A, f (x)  V (f (c) ).

15.4.5 Theorem: Let A   and f : A   be continuous at a point c  A. Then for

any  > 0, there exists a neighbourhood V (c) of c such that if x,y  A  V (c) then

|f (x) – f(y) | < .

Proof: f : A   is continuous at c f:A   is continuous at c  given  > 0 there

exists  > 0 such that x  A  v (c)  f(x)  V (f(c)). i.e. if x  A  V (c) then

|f (x) – f(c) | < /2.

Let x, y  A  V (c)  |f (x) – f(c) | < /2 and |f(y) – f(c) | < /2 

|f(x) – f(y) | = |f(x) – f(c) + f(c) – f(y) |

 |f(x) – f(c) | + |f(c) – f(y) |

< /2 + /2 = 

Hence if x, y  A  V (c) then |f (x) – f(y) | < .

Sequential criterion for continuity:

15.4.6 Theorem: A function f : A   is continuous at the point c  A if and only if

for every sequence (xn) in A that converges to c, the sequence (f (xn)) converges to f (c).

Proof: Let f be continuous at c and let (xn) be a sequence in A such that lim (xn) = c.

f is continuous at c  for given  > 0 there is  > 0 depending on  such that |f(x)–

f(c)|< whenever |x – c| <  and x  A.

7 = f(x)
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Since (xn) converges to c, corresponding to , there is a positive integer m such that

|xn–c| <  whenever n > m.

So when n > m, |xn – c| < , hence |f (xn) – f(c) | < 

Since  > 0 is arbitary, lim f(xn) = f(c).

 (f (xn) ) converges to f (c).

Conversely suppose that for every sequence (xn) in A that converges to c, (f(xn))

converges to f(c).

Suppose, if possible f is not continuous at c.

 there is 0 > 0 such that for every  > 0, there corresponds x  A such that |x – c| < ,

but |f(x) – f(c) |  0.

If n   and  =
n

1
, there is xn  A such that |xn – c| <

n

1
, but |f (xn) – f(c) |  0.

Then (xn) converges to c, but (f(xm)) does not converge to f(c), which is a contradiction.

Hence f is continuous at c.

15.4.7 Corollary (Discontinuity Criterion):

f : A   is discontinuous at c  A iff there is a sequence (xn) in A such that lim(xn)=c,

but lim (f(xn))  f(c).

15.4.8 SAQ: (Extension of a continuous function) Let A   , c cluster point of A, cA

f: A  be continuous    ,
cx

lim


f(x) = . Show that f can be extended to A  {c} by

defining F(x) = f(x) if x  A and,  if x = c and the function F defined as above is

continuous on A  {c}.

15.4.9. Remarks: If f : A   is continuous on A, c a cluster point of A but
cx

lim


f(x)

does not exist, then it is possible to extend f to a continuous function F on A  {c},

because for any such F, it must hold that
cx

lim


F(x) = F(c). Since F(x) = f(x) for x  A and

cx
lim


f(x) does not exist, the above requirement does not hold good.
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15.4.10 Examples:

(a) The function f(x) defined on (0, ) by f(x) = sin
x

1
is continuous.

If xn =
1

n
, lim (xn) = 0 but lim f(xn) = lim sin n  = 0

If xn =
1

(4n 1)
2




, lim (xn) = 0 and f(xn) = 1 for every n.

So lim f(xn) = 1; existence of two such sequences implies that
0x

lim


sin
x

1
does not

exist. Hence by the above remark, there is no number  such that the function F

defined by

F(x) =
sin 1/ x if x 0

if x 0





is continuous.

(b) The constant function defined by f(x) = a (when a   ) for all x is continuous on

every subset A of  .

Reason: If  > 0 and  > 0 then for c  A and x  A is such that |x – c| < ,

|f(x) – f(c) | = |a – a| = 0 < 

So f is continuous at c for every c  A.

(c) The function of defined on  by of g(x) = x in continuous on  .

Reason: If c   and  > 0, let  = 

If |x – c| < , then |g(x) – g (c) | = |x – c| <  = 

So g is continuous at c for every c   .

(d) For any k   , the function g:    defined by g(x) = xk is continuous on  .

Reason: If c   , |xk – ck| = | (x – c) (xk-1 + nk-2 c + …… + ck-1]

 |x – c| (|x|k-1 + |x|k-2 |c| + ………….. + |c|k-1)

If |x – c| < 1, (|x| - |c|)  |x – c| < 1  |x| < 1 + |c|

 |x|r < (1+|c|)r for 1  r  k.

 |x|k-1 + |xk-2| |c| + …………….+ |c|k-1
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-1

1

-1

0 1 2

 (1+|c|)k-1 + (1+|c|)k-2 |c| + …. + |c|k-1 = M (say)

 |g(x) – g(c) |  |x – c| M if |x – c| < 1.

If  > 0 and |x – c | <  = min {1,
M


), |g (x) – g(c) | < M |x – c| < 

Hence g is continuous at c. This is true for every c   . So g is continuous on  .

Note: this can be proved by sequential method also.

(e) Define g : (0, )   by g(x) =
n

1
if x  (0, )

if 0 < c <  and
c

2
< x <

3c

2


2

3c
<

1

x
<

2

c

|g (x) – g (c) | =
c

1

x

1
 =

xc

cx 
<

2c

cx2 

If  > 0 and
2

c
< x <

2

c3
, choose  > 0 such that  < min

2c c
,

2 2

 
 
 

.

If |x–c|< then |x–c| < c/2 i.e.
c

2
< x<

3c

2
and |x–c| <

2c

2


 |g (x)–g(c) |<

2c

2
|x – c|<

Hence g s continuous at c.

(f) The greatest integer function defined on  by g(x) = [x] = n where n is the

integer and n  x < (n+1) is discontinuous at every integer values of x and

continuous otherwise.

Reason: Let n be any integer and xk = n -
1k

1


, xk 

n for every n.
k

lim (xk) = n, since lim 








k

1
= 0. Since

n – 1 < xk < n for k  N g(xk) = n – 1 so that

lim g(xk) = n – 1. Thus we have a sequence, (xk) such

that xk  n for every n, lim xk = n, but lim of

(xk)g(n). Hence g is discontinuous at n. If x is not an

integer there is a unique integer n such that n–1<x<n.

For y in this interval of g(y) = n – 1

y

x

Graph of [x] function
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Hence of g(y) – g (x) = 0

Thus if  > 0 and  is any positive number such that n – 1 < n –  < x < n +  < n,

(0 <  < min { n – 1 - 1 n - } for every y is (x - , x + ), |g(y) – g(x)| = 0 < .

This shows that g is continuous at x if x is not an integer.

(g) Let g = [0, )   defined by g(x) =
x

1
if x > 0, g(0)

= K where K   . Then g is not continuous at 0.

Let xn =
n

1
for x  N, lim (xn) = 0 and

lim (g(xn) ) = lim (n) = 

Since K < , lim (xn)  K. thus there is a sequence (xn)

in [0, ) such that lim (xn) = 0 but lim g(xn)  K.

This implies that g is discontinuous at 0.

(h) The Dirichlet’s function is defined by f(x) =
1 if x is rational,

0 if n is an irrational





This function was introduced by P.G.L. Dirichlet in 1829. this is also called the

ruler function. We show that f is discontinuous at every point of  .

If c is any number, we choose sequence (xn) and (yn)such that each xn is a rational

number and each yn is an irrational number.

c -
n

1
< xn < c and c -

n

1
< yn < c

So 0 < | xn – c | <
n

1
and 0 < |yn – c| <

n

1
, by squeeze theorem lim (xn)= c = lim (yn).

However for every n, f (xn) = 1 and f(yn) = 0 so that lim f(xn)=1 while lim f(yn)=0

Hence by 14.4.7 f is not continuous at c.

(i) The function f defined on  by

f(x) =

0 if x 0

1
x sin if x 0, is contunous at 0

x
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Reason: For all x   , |f(x) | 
1

x sin
x

 |x| If  > 0 and |x | <  = ,

|f (x) – f(0) | = |x sin yn|  |x| <  Hence f is continuous at 0.

(j) Thomae’s function: Define h : (0 )  (0, ) as follows

If x is irrational h(x) = 0, h(0) = 1 and if x  0 and is x is rational and x =
q

p

where p, q are natural numbers without common factors other than  1, define

h(x) =
q

1
. The function h is called Thomae function.

We show that h is continuous at c if c is any irrational and discontinuous at c, if c

is any rational number.

Case (i) Let c be any irrational number and  > 0. The number q  N such that

q

1
<  is finite. For each such q the number of rational numbers in (c – 1, c + 1)

is finite. Then the interval (c – 1, c + 1) contains atmost a finite number of

rationals
q

p
in their simplist from with

q

1
< .
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We may arrange them in an increasing order r1 < r2 < ………… < ri-1 < c < ri.

c-1 r1 r2 ri-1 c ri c+1

Choose  > 0 so that (c - , c + )  (ri-1, ri) It is clear that for any rational number

q

p
(in the simplest form) in (c - , c + ),

q

1
< ; so that |f (

q

p
) – f(c) | = |

q

1
- 0|

=
q

1
< . Thus h is continuous at the irrational number c.

Also for any irrational number x in (c - , c + ), f(x)=f(c)=0 so |f(x)–f(c)| = 0 < 

This gives  > 0 there is  > 0 such that if c -  < x < c + , |f(x) – f(c) | < 

This implies that f is continuous at c.

(ii) Let c be any rational number, c =
q

p
, p, q natural numbers without common

factors others than  1. We consider  satisfying 0 <  <
q

1
. For any  > 0, for

any irrational number x such that |x -
q

p
| < , f(x) = 0, f(

q

p
) =

q

1
so that |f (x) –

f(
q

p
) | = |0 -

q

1
| =

q

1
> 

Thus there is  > 0 for which we cannot find  satisfying the condition in the

definition of continuity so f is not continuous at c.

(k) Define g:    by g(x) =
2x if x is rational

x 3 if x is irrational






Final all x at which g is continuous.

Let c be a rational number. Then g (c) = 2c.

Choose sequence (xn) of irrational numbers such that c -
n

1
< xn < c.

Clearly c – xn <
n

1
and so lim (c – xn) = 0, So that lim (xn) = c

Since each xn is irrational, g (xn) = xn + 3.
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 lim g (xn) = liom (xn + 3) = lim (xn) + 3 = c + 3

 2 c = c + 3  c = 3.

Thus if g is continuous at c and c is rational thus c must be 3.

If c is irrational, choose again (xn) to be a sequence of rational numbers such that

lim (xn)=0.

If g is continuous at c, lim g (xn) = g(c)

 2c = c + 3  c = 3, this is impossible, since c is assumed to be irrational number.

Thus g is not continuous at any number, rational or irrational different from 3.

When c = 3, g (c) = 6. So |g(x) – g(3) | = | 2 x - 6| or |x + 3 – 6|

= 2 | x – 3| or |x – 3| according as x is rational or irrational.

In either case, |g (x) – g(3) |  2 | x – 3|. If  > 0, |g (x) – g(3) | <  if | x – 3| < /2

Thus g is continuous at 3 and at no other value.

15.4.11 SAQs

(a) If f :    is continuous at c and f(c) > 0 then show that there is  > 0 such

that f(x) > 0 whenever x  V (c).

(b) If f :    is continuous, Z (f) = {x   / f(x) = 0}, (xn) is a sequence in Z(f)

and lim (xn) = x, then show that x  Z (f).

(c) If f :    satisfies |f(x) – f(y) |  k |x – y| for all x, y and some k > 0. Show

that f is continuous on  .

(d) Define f(x) =
2x

4x 2




for x  2. Does there exist L   such that if we set f(2)=L,

f becomes a continuous function?

(e) Suppose f :    is continuous and f(r) = r if r is rational. Show that f(x) = x if

x   .

(f) Let c  A, c be a cluster point of A, f : A   ,
Cx

lim


f(x) =  .

Define F : A {c}   by F(x) = f(x) if x  A, F(c) = . Show that F is

continuous at c.
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15.5. Combinations of continuous functions:

Analogons to limits of functions and sequences we consider continuity of the sum,

difference, product and multiple by a number as well.

We fix A   , b   , c  A, f, g : A   .

15.5.1 Theorem: If f and g are continuous at c, then (a) f + g is continuous at c (b) f–g is

continuous at c (c) b f is continuous at c for b   .

Proof: If c is not a cluster point of A, (a), (b), (c) are trivially valid.

If c is a cluster point of A, then
cx

lim


f(x) = f(c) and
cx

lim


g(x) = g(c).

There by 14.4.5,
cx

lim


(f + g) (x) =
cx

lim


f(x) +
cx

lim


g(x) = f(c) + g(c) = (f + g) (c), hence (a) holds.

cx
lim


(f – g) (x) =
cx

lim


f(x) -
cx

lim


g(x) = f(c) – g(c) = (f – g) (c), hence (b) holds.

cx
lim


(bf) (x) =
cx

lim


b . f(x) = b
cx

lim


f(x) = b.f(c) = (bf) (c), hence (c) holds.

SAQ 15.5.2 Prove theorem 15.5.1 directly from the definition.

15.5.3 Theorem: If f and g are defined on A, c  A and f, g are continuous at c then

(a) f g is continuous at c.

(b) If g(x)  0 for x  A then
g

f
is continuous at c.

Proof: If c is not a cluster point of A then the conclusion holds trivially.

Assume that c is a cluster point of A. From the hypothesis
cx

lim


f(x) = f(c) and

cx
lim


g(x) = g(c).

By theorem 14
cx

lim


(f g) (x) =
cx

lim


f(x)
cx

lim


g (x) = f(c) g(c) = (fg) (c) hence (a) holds.

When g(x)  0 for x  A, by theorem 14.

cx
lim
 









q

f
(x) =

)x(glim

)x(flim

cx

cx



 =
)c(g

)c(f
= 









g

f
(c) , hence (b) holds.
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15.5.4 Corollary: Let A   , c  A, fi : A   be continuous at C for 1  I  n. Then

(a) f1 + f2 + … + fn is continuous at c. (b) f1 . f2 … fn is continuous at c.

Proof: Use induction.

15.5.5 Corollary: (a) If f is a polynominal then f is continuous on  .

(b) if f and g are polynomials and z (g) = { 1, 2 …. n} is the set of roots of g() = 0,

then
g

f
is continuous an  – Z (g).

Proof: (a) Let f(x) = a0 + a1 x + … + an xn when an  0 and n  0 then  f = a0 + a1 f1 + a2

f 2
1 + …. + an f n

1 where f1 (x) = x for all x.

Since the function f1 is continuous on  , by 15.5.2 f1, f1
2, … f n

1 is continuous.

(b) f and g are continuous on  – z (g) = {x / g(x)  0} g(x)  0 on  – Z (g). So by

15.5.3,
g

f
is continuous on  – Z (g).

15.5.6 The sine function ‘sin’ is continuous on  we use the following facts : For all

n, y, z in 

(1) | sin z |  1 (ii) | cos z |  1 and (iii) sin x – sin y = 2 cos 






 

2

yx
sin 







 

2

yx

If c   then we have |sin x – sin c | = | 2 cos 






 

2

cx
sin 







 

2

cx
|

= 2 | sin 






 

2

cx
| . | cos 







 

2

cx
|

 2
2

|cx| 
. 1 = | x – c |.

For given  > 0, we choose  = . If |x – c| <  then |sin x – sin c|  | x–c| <  = 

 sin is continuous at c. Since c   is arbitary, it follows that sin is continuous on  .

15.5.7 Theorem: Let A   , and f : A   .

(a) If f is continuous at a point c  A, then |f| is continuous at c.

(b) If f is continuous on A, then |f| is continuous on A.
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h = gof

Proof: (a) If f is continuous at c, given  > 0 there is  > 0 such that |f (x) – f(c) | < 

if x  A and | x – c| <  since | |a| - |b| |  | a – b| for any real numbers a,b. We get

|1f(k) | - |f(c) | |  |f(x) – f(c) | <  if x  A and |x – c| < .

Since  > 0 is arbitrary, it follows that |f| is continuous at c.

(b) If f is continuous on A, f is continuous at every c. .A.

 |f| is continuous at every c  A

 |f| is continuous on A.

15.5.8 Corollary: Let f, g : A   , c  A and f, g be continuous at c. Then

H(x) = max {f(x), g(x) } for x  A and h(x) = min {f(x), g(x) } for x  A. Then H and h

are continuous at c.

Proof: For any a, b in  .

max (a, b) =
(a b) a b

2

  
and min (a,b) =

(a b) | a b |

2

  

Hence for x  A, H(x) =
2

|)x(g)x(f|)x(g)x(f 

=
2

|gf|)gf( 
(x)

Since f and g are continuous at c, f + g, f – g hence |f – g|, and hence
2

|gf|)gf( 
are

continuous at c. So H is continuous at c. Similarly h is continuous at c.

15.5.9 Theorem: Let f : A   be continuous at c  A, f(A)  B and g : B   be

continuous at f(c), Then the composite function h : A   defined by h(x) = (gof) (x) =

g(f(x)) for x  A is continuous at c.

Proof: Since f(A)  B, f(c)  B. Let  > 0.

Since g is continuous at f(c), there is  > 0 such that Y  B  V (f(c))

 |g(y) – g(f(c) ) | < .

A
f

F(A) B

g
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Since f is continuous at c, corresponding to  > 0, there is  > 0 such that x  A  V(c)

 |f(x) – f(c) | < 

 f(x)  V (f(c) )  |g (f(x)) – g (f (c) ) | < 

 |h(x) – h(c) | < 

Since  corresponds to  and  > 0 depends on   corresponds to . Since  > 0 is

arbitrary, it follows that h is continuous at c.

15.5.10 Corollary: If f : A   is continuous, g : B   is continuous and f(A)  B

then the composite function h = g o f is continuous on A.

Proof: If c  A, f is continuous at c and g is continuous at f(c), hence by theorem 15.5.9

h is continuous at c. This holds for every c  A, so h is continuous on A.

15.5.11. Examples:

(i) If f: A   , f (x)  0 for x  A and c is a cluster point of A then
cx

lim


f(x) = 
cx

lim


 f (x) =  . Consequently it follows that if f : A   is continuous at c  A, then

f is continuous at c.

We can prove this result from 15.5.8 as follows. We make use of the fact that the function

g (x)= x is continuous on  . We know that if :A  (0,) is continuous at c and

g : (0, )  (0, ) is continuous at f(c) then gof is continuous.

Since (gof) (x) = g(f(x)) = )x(f it follows that f is continuous at c.

(ii) The function g : [0,)  defined by

g(x) = sin
x

1
if x  0 and g(0) = 0 is proved to be discontinuous at 0. we show that g is

continuous on (0,). (0,) 

The function f(x) =
x

1
is continuous on  – {0}.


f h

g=hof
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The function h(x) = sin x is continuous on  . Also f(0,)   . Hence h of is

continuous on (0,). For x  (0,), (h o f) (x) = h ( f(x)) = sin
x

1
= g(x). so g is

continuous on (0,)

(iii)Define F:    by f(x) = x + 1 and g:    by g(1) = 0 and g(x) = 2 if x  1.

f(x) = 1 if x = 0 so (gof) (0) = g(f(0)) = g(1) = 0.

If x  0, (gof) (x) = g(f(x)) = g(x+1) = 2

So (gof) (x) = 0 if x = 0 and 2 if x  0.


0x

lim


(gof) (x) = 2
x 0
lim


(gof) (x) = (gof) (0) Hence gof is continuous at 0.

15.5.12 Examples: We call a function F:    additive if f(x+y) = f(x) + f(y) for all

x,y in  . We proved in 14.5.14 that if x if rational, then f(x) = x.f(1) and that if
0x

lim


f(x)

= L then L = 0

(a) We show that if f is continuous at some x0 then f is continuous on  .

If f is continuous at x0, given  > 0, there is  >0 such that |f(x) – f(x0)| <  if |x – x0| < 

 |f(x- x0)| = |f(x) – f(x0)| <  if |x – x0| < 

 | f(y) | <  if |y| < .  f is continuous at 0, since f(0) = 0.

Let x   and lim (xn) = x, then lim (xn – x) = 0. Since f is continuous at 0, then

lim f(xn – x) = 0.

 lim (f(xn) – f (x)) = 0  lim f(xn) = f (x)

Hence f is continuous at 0.

(b) We show that if f is continuous on  and f is additive then f(x) = x. f(1) for all x .

We know that f(x) = x f(1) if x is rational.

If x is any irrational number, we choose a sequence (xn) of rational numbers such that

lim (xn) = x . Since f is continuous at x, it follows that

f(x) = lim ( f(xn) ) = lim xn f(1) lim (xn) = f(1).x.
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15.5.13 SAQ Determine the points of continuity of

(i) f(x) =
1x

1x2x
2

2




( x   ) (ii) g(x) = cos 2x1 ( x   )

15.5.14 SAQ Show that the function f defined on  by

f(x) =
1 if x is irrational

1 if x is rational





is discontinuous while |f| is continuous at every point of  .

15.5.15 SAQ Show that if f and g are continuous on  and f(r) = g(r) for every rational

number ‘r’ then f = g.

15.5.16 SAQ Show that if f is continuous on  and f 







n2

m
= 0 for every integer m and

natural number n then f = 0.

15.6. Continuous functions on an interval :

In this section we concentrate on the properties of the range of a continuous function on

an interval. We derive the famous boundedness theorem, the maximum minimum

theorem the intermediate value theorem and finally end up with the presentation of

intervals theorem. We recall the following definitions.

15.6.1 Definition: f: A   is said to be bounded on A if there is M   such that 0

 |f(x)|  M for all x  A.

15.6.2. Remark: (1) f: A   is unbounded on A if for no M in  satisfies |f(x)|  M

for all x  A.

This happens if and only if for any M > 0 there is at least one x depending on M so that

|f(x)| > M.

(2) A continuous function is not necessarily bounded. For example if A is any

unbounded interval say [0,) and f(x) = x for x  [0,), then f is not bounded on

[0, ) because if M > 0, M + 1  [0, ) and f (M + 1) = M + 1 > M.

(3) The function f(x) =
x

1
is continuous on (0,1] but not bounded.
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(4) The function f(x) =
x

1
if x > 0, f (0) = 0 is defined on [0, 1] but unbounded. Also f

is not continuous at 0.

(5) Boundedness of f on A is graphically explained in an equivalent way as follows.

f: A is bounded iff the graph of f lies in the horizontal strip bounded by the

horizontal line y =  M for some M > 0.

15.6.3. Boundednesss Theorem: Let I = [a, b] be a closed and bounded interval and

f: I   be continuous on I. Then f is bounded on I.

Proof: The proof is by contradiction. Suppose f : I   is continuous but not bounded

on I. if n  N then there is xn  I such that | f(xn) |  n. The sequence (xn) is choosen from

I which is a bounded set, so (xn) is bounded. By Bolzano – weierstrass theorem there is a

convergent sub sequence (
knx )

Let x1 = lim
knx . Since a 

knx  b for every nk, it follows that a  = lim
knx  b

Hence a  x1  b. Since f is continuous at x1  I., it follows that lim f(
knx ) = f(x1)

   
knf x must be bounded. But this is a contradiction. Since  

knf x >nk> k for k .

Since | f(
knx ) |  k, it follows that |f(x1)| = lim | f(

knx ) |  k for every k  N. This is

impossible since k   , |f (x1)|  k. Therefore f is bounded on I.

Remark: The boundedness of the interval I and the inclusion of the end points as

members in I are essential as is evident from the examples 15.6.2(2) and (3).

Example; f(x) =
2

1

x 1
for x   . clearly f is continuous on  . it is easy to see that if

I1 = (-1, 1) the f(I1) = (½ , 1], which is not open interval.

Also if I2 = [0, ) then f (I2) = (0,1] which is not a closed interval.
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15.6.4 Maximum – Minimum Theorem:

Definition: Let A   and let F: A   . We say that f has an absolute maximum on A

if there is a point x
0
 A such that f (x

0
)  f (x) for all x in A.

We say that f has an absolute minimum on A. if there is a point x0  A such that

f(x0)  f(x) for all x  A. We say that x
0

is an absolute maximum point for f on A and

that x0 is an absolute minimum point for f on A.

15.6.5. Remarks: (i) The geometrical interpretation is that at an absolute maximum x
0

of

the graph of f lies below the horizontal line y = f(x
0

)

(ii) A function may attain absolute maximum or minimum at several values of x.

For example we consider the sine function and the parabola y = x2 defined on  .

y = sin x absolute maximum = 1, attained at

2


,

2

5
, ….

Absolute minimum = -1, attained at
2

3
,

2

7
….

y = x2, absolute maximum in

[-1,1] attained at -1,1.

Warning: Theorem 15.6.4 guarantees that if f: [a, b]   is continuous then

f ( [a, b] ) = { f(x) / a  x  b} is bounded and there exists c, d in [a, b] such that

f(c)  f(x)  f(d) for all x in [a, b]. There is no guarantee that c < d or a = c and b = d.

However f(c)  f(a)  f(d) and f(c)  f(b)  f(d)
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We will prove soon that for every y such that f(c)  y  f(d) there is x in [a, b] such that

f(x) = y.

Thus [f(c), f(d)]  f ([a,b])  [f(c), f(d)] so that f([a,b]) = [f(c), f(d)].

There is no guarantee that f(a) = inf f[a,b] or f(b) = sup f[a,b].

(iii) We note that a continuous function on a set A does not necessarily have an absolute

maximum or an absolute minimum on the set. For example f(x) =
x

1
has neither an

absolute maximum nor an absolute minimum on the set A = (0, ) There can be no

absolute maximum for f on A, since f is not bounded on A and there is no point at which

f attains the value = inf { f(x) / x  A}

The same function has neither absolute maximum nor absolute minimum when it is

restricted to the set (0, 1) while it has both an absolute maximum at x = 1 and an absolute

minimum at x = 2 when it is restricted to the set [1, 2].

In addition f(x) =
x

1
has an absolute maximum at x = 1 but no absolute minimum when

restricted to the set [1, ).

15.6.6 Maximum – Minimum Theorem:

Let I = [a, b] be a closed bounded interval and f: I   be continuous on I. Then f has

an absolute maximum and an absolute minimum on I.

Proof: Consider the range of f, f(I) = { f(x) / x  I}.

By the boundedness theorem, f (I) is a bounded subset of  , hence f has supremum and

infimum.

Let s* = sup f(I) and s* = inf f(I). We claim that there are points x* and x* in I such that s*

= f(x*) and s* = f(x*) Since s* = sup f(I), if n  N s* -
n

1
is not an upper bound of the set

f(I). Consequently there is a number xn  I such that s* -
n

1
< f (xn)  s*  n   .
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Since I is bounded, the sequence (xn) is bounded. Therefore, by Bolzano – wirestress

theorem, there is a sub sequence (
rnx ) of (xn) that converges to some number x*. since

a  (
rnx )  b for every nr

a  x*  b if x*  I. Since f is continuous at x* and lim
rnx = x*, lim f(

rnx ) = f(x*)

Since s* -
rn

1
< f(

rnx )  s* for all r  

We conclude from sequeze theorem for sequences that
rn

lim f(
rnx ) = s* . Therefore we

have f(x*) = lim (f(
rnx )) = s* = sup f(I). Hence x* is an absolute maximum point of f in I.

The proof for absolute minimum is similar.

15.6.7 Location of roots:

It is of importance to find the points of intersection of the graph of a continuous function
f with the x – axis. Any such x is a solution of f(x) = 0. Thus the question before us is
“when does a function f become zero?”. We prove here a fundamental theorem called the
intermediate value (also called location of roots) theorem. Our proof is by he method of
bisection in Numerical Analysis.

15.6.9 Location of roots theorem:

Let I = [a, b] and let f: I   be continuous on I. if f(a) < 0 < f(b) or f(a) > 0 > f(b), then

there exist a member c  (a, b) such that f(c) = 0.

Proof: Assume that f(a) < 0 < f(b)

We will generate a sequence of intervals by successive bisections.

Let I1 = [a1, b1] where a1 = a1, b1 = b and let P1 be the mid point, P1 = (½) (a1+b1). If f(P1)=0

we take c = P1 and we are done. If f (P1)  0 then either f(P1) > 0 or f(P1) < 0

If f (P1) > 0, f(a1) < 0 < f(P1). We set a2 = a1, b2 = P1, while if f(P1) < 0, f (P1) < 0 < f(b1)

so we set a2 = P1, b2 = b1. In wither case, the interval I2 = [a2, b2] satisfies

(i) I2  I1 and (ii) f (a2) < 0 < f (b2). Also b2 – a2 = (½) (b1 – a1).

We continue the bisection process. Suppose that the intervals I1, I2 ………. Ik have been

obtained by successive bisection in the same manner. Then we have f(ak) < 0 and f(bk)>0

and we set Pk = (½) (ak + bk)
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If f (Pk) = 0 we take c = Pk and we are done. If f ( Pk) > 0 the f (ak) < 0 < f (Pk). we set

ak+1 = ak, bk+1 = bk.

While if f(Pk) < 0 we set ak+1 = pk, bk+1 = bk.

we write Ik+1 = [ak+1 bk+1] then Ik+1  Ik and f( ak+1) < 0, f (bk+1) > 0. Also

(bk+1 – ak+1) = ½ (bk – ak).

If this process terminates by locating a point pn such that f (Pn) = 0 then we are done. If the

process does not terminate, then we obtain a nested sequence of closed bounded intervals In

= [an , bn] such that for any n  , we have f (an) < 0 < f (bn) and bn – an =
1n2

ab



. If

follows from the nested interval property that there is a point c  In for all n   .

Since an  c  bn for all n   , we have 0  c – an  bn – an =
1n2

ab



and

0  bn – c  bn – an =
1n2

ab




By squeeze theorem it follows that lim an = c = lim bn

Since f is continuous at c we have lim f (an) = f(c) = lim f (bn)

Since f (an) < 0 for all n   , f (c) = lim f( an)  0

Since f (bn)  0 for all n   , f (c) = lim f(bn)  0.

Thus we conclude that f (c) = 0. Consequently c is a root of f in [a, b].

Since f (a) < 0 = f(c), a  c. similarly c  b so c  (a, b).

So far we have considered the domain of a continuous function to be a closed and

bounded interval. There are other types of intervals not necessarily closed nor bounded.

And interval may be unbounded, where one of the end points is +  or -  an open

interval or half open and bounded where one of the end points is excluded from the

interval. Let us remember here that a sub set I of  with at least two elements is an

interval whenever   I,   I and  <   [ , ]  I.

15.6.9 Bolzano’s Intermediate value Theorem: Let I be an interval and let f: I   be

continuous on I. if a, b  I and if k  satisfied f (a) < k < f (b), them there exist a

points c  I between a and b such that f (c) = k.
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Proof: Here I is an interval, not necessarily closed and bounded. We may assume that

a < b and let g(x) = f(x)- k, then g(a) < 0 < g(b) Location of roots theorem is applied to

[a, b] and g, there is a point c with a < c < b such that g (c) = 0  f(c) – k = 0  f (c) = k.

If b < a we apply the above technique to h (x) on [b, a] where h (x) = k – f(x). Clearly

h (b) < 0 < h(a)

 There is a point c with b < c < a such that h (c) = 0  k – f (c) = 0  f (c) = k.

15.6.10 Corollary: Let I = [a, b] be a closed, bounded interval and let f: I   be

continuous on I. If k   is any number satisfying inf f (I)  k  sup f(I); then there is a

c  I such that f (c) = k.

Proof: From the Maximum – Minimum theorem there are points c* and c
*

in I such that

inf f(I) = f(c
*
)  k  f(c*) = sup f(I). Then by Bolzano’s Theorem there is c  I such that

f(c) = k.

15.6.11 Application: Suppose f: [0,1]  [0,1] is continuous. Then there is a x in [0,1]

such that f(x) = x.

write g(x) = x – f(x) g is continuous on [0,1] since 0  f(0)  1 and o  f(1)  1,

g(0) = 0  f(0)  0 and g(1) = – f (1)  0. Thus g(0)  0  g(1). If g(o) = 0, f (0) = 0.

If g(1) = 0, f(1) = 0

If g(0) < 0 < g(1), by location of roots theorem, there is a c in (0,1) such that g(c) = 0.

For this c, f(c) =c.

15.6.12 Application of Bisection Theorem:

The equation f(x) = xex - 2 = 0 has a root c in [0,1], because f is continuous on this

internal and f(0) = -2 < 0 and f(1) = e – 2 > 0. We construct the following table, where the

sign of f(Pn) determines the internal at the next step. The far right column is an upper

bound on the error when Pn is used to appropriate the root c, because we have

|Pn – c| 
1

2
(bn – an) =

n2

1
.
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We will find an approximation Pn with error less the 10-2

n an bn Pn f(Pn) ½ (bn-an)

1 0 1 0.5 -1.176 0.5

2 0.5 1 0.75 -0.412 0.25

3 0.75 1 0.875 +0.099 0.125

4 0.75 0.875 0.8125 -0.169 0.0625

5 0.8125 0.875 0.84375 -0.0382 0.03125

6 0.84375 0.875 0.859375 +0.0296 0.015620

7 0.84375 0.859375 0.8515625 - 0.0078125

We have stopped at n = 7, obtaining c = P7 = 0.8515625 with error less than 0.0078125.

Thus is the first step in which the error is less than 10-2. The decimal places values of P7

past the second place cannot be taken seriously, but we can conclude that

0.843 < c < 0.860.

Let us examine how the change of sign takes place

Internal Sign position

[P2 P3] f(P2) < 0 < f(P3)

[P3 P4] f(P3) > 0 > f(P4)

[P5 P6] f(P5) < 0 < f(P6)

[P6 P7] f(P6) < 0 < f(P7)

15.6.13 Theorem: Let I be a closed bounded interval and let f: I   be continuous.

Then the set f(I) = {f(x)/xI} is a closed bounded interval.

Proof: Let m = inf f(I) and M = sup f(I), then from the Maximum – minimum Theorem,

m and M belong to f(I). Moreover we have f(I) [m.M]. If k is any element of [m, M]

then by 15.6.10 there is a point c  I such that f(c) = k. Hence k  f(I) and we conclude

that [m, M]  f(I)  f(I) = [m, M] which is closed and bounded interval.

15.6.14. Preservation of Intervals Theorem:

Let I be an interval and let f: I   be continuous. Then the set f(I) is an interval.
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Proof: Here I could be any interval, not necessarily of the form [a, b]. To show that f (I)

is an interval, it is enough to prove that either f(I) is a singletion set or   f (I),   f(I),

 <   [ , ]  f(I).

If f (I) has only one element say k then f(I) = {k} = [k, k].

Assume that f(I) has at least two elements.

Let ,   f(I) with <  then there exists a, b in I such that == f(a) and  = f(b).

Further it follows from 15.6.9 that if k  [, ] then there is c  I such that

f(c) = k  f(I). There fore [, ]  f(I), showing f(I) is an interval.

15.6.15 Example: Let I = [a, b], f: I   be continuous on I. If for every x  I there is a

y  I such that |f(y)|  ½ |f(x)| ; show that there is c in I such that f(c) = 0.

Solution: Choose x0  I. There is (xn)  I such that |f(xn)|  n

1

2
|f(x0)| for every n. Since

a  xn  b for every n, (xn) is bounded. By Bolzano – Weierstross theorem there is a

convergent sub sequence (
knx ) of (xn). If x = lim

knx , a 
knr  b for every nk  ax  b.

Since f is continuous and lim
knx = x, lim f (

knx ) = f(x). Hence | f(x)| = lim |f(
knx )|.

Since |f(
knx )|  lim

kn

1

2
| f(x0)|  k2

1
| f(x0)| for every k.

|f(x)| = lim |f(
knx )|  lim

k2

1
| f(x0)| = 0.

Since 0  |f(x)|  0. it follows that f(x) = 0.

15.6.16 Short answer questions:

a) If f: [a, b]  (0, ) is continuous, show that there is  > 0 such that f(x)  .

 x  [a,b]

b) Let I = [a, b], f: I   , g: I   be continuous on I. show that the set

E = {x I / f(x) = g(x)} has the property that (xn)  E and xn  x0  x0  E.
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c) Show that the polynomial P(x) = x4 + 7x3 – 9 has at least tow real roots. Locate

them.

d) Show that a polynomial with real coefficients and odd degree has a real root.

e) Let f: [a, b]   be continuous f(a) < 0 < f(b) and W = { x  [a, b] / f(x) < 0}.

If w = sup W, show that f(w) = 0.

f) Examine which open (closed) intervals are mapped by f(x) = x2 (x   ) onto

open (closed) intervals.

g) If f: [0,1]   is continuous and has only rational values, show that f must be a

constant function.

15.7 Uniform continuity

15.7.1 Example: we know that the function g defined on (0, ) by g(x) =
x

1
is

continuous,
0x

lim


g(x) =  and
0x

lim


g(x) = 0.

If u  (0,), g(x) – g(u) =
x

1
-

u

1
=

ux

xu 
If |x – u| <

2

u
, u -

2

u
< x < u +

2

u


2

u
< x <

2

u3


u3

2
<

x

1
<

u

2
.  | g(x) – g(u)| 

u

|ux| 

u

2
=

2

2

u
|x – u|

if  > o,
2

2

u
|x–u| <  if |x–u| <

2u

2
Thus if |x–u| < min

2u u
, and

2 2

 
 
 

, | g(x)–g(u) | < 

We choose () = min
2u u

,
2 2

 
 
 

. Thus when u =
2

1
,  (

2

1
) = min







 

8
,

u

1

while when u = 2, (2) = min {1, 2} We observe that the  changes with , u.

Infact it is impossible to find  > 0 which does not depend upon u but depends only on .

This is clear from the figures.
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15.7.2 Definition: Let A   and let f: A   . We say that f is uniformly continuous

on A if for each  > 0 there is a () > 0 such that if x, y  A are numbers satisfying

|x – y| < () then | f(x) – f(y)| < 

15.7.3. Example: If f:    defined by f(x) = x for all x in  is uniformly

continuous on  .

For given  > 0, choose  =  such that for x1, x2   and |x1 – x2| < ,

| f(x1) – f (x2)| = |x1 – x2| <  = .

Since x1, x2   are arbitrary, it follows that f is uniformly continuous on  .

15.7.4 Theorem: It f : A   is uniformly continuous on A then it is continuous on A.

Proof: Let  > 0 be given.

f is uniformly continuous on A  there is  > 0 such that x1, x2  A and |x1 – x2| < ,

|f(x2) – f(x1)| < . Let a  A. If x  A and |x – a| <  then |f(x) – f(a)| <   f is

continuous at a  A.

since a  A is arbitrary. f is continuous on A.

Note: As is evident from 15.7.1, the converse of the above theorem is not true. i.e. if f is

continuous on A then f need not be uniformly continuous on A.

15.7.5. We consider yet another example: Let f :    be defined by f(x) = x2 for

all x  A. f is continuous but not uniformly continuous on  .

That f is continuous on  is proved in 15.4.10 (d). If f were uniformly continuous on 

and  > 0 there must exist  > 0 such that if x1, x2   , |x1 – x2| <  then |f(x1 – f(x2)| < 

Let x1 > 0 and x2 = x1 +
2


  . Then | x1 – x2| =

2


< .

|f(x1) – f(x2)| = |x1
2 – x2

2| = |x1 – x2| |x1 + x2|

=
2


(2x1 +

2


) = x1 +

4

2

 x1 +
4

2
<   x1 < . This must happen for all x1 > 0. since  > 0, by

Archimedean property there is n   such that n  > .
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Therefore take x1 = n and x2 = x1 +
2


, |f (x1) – f(x2)| > 

This implies that no  > 0 exists such that x1,x2  A |x1 – x2| <   |f(x1) – f(x2)| < .

Hence f is not uniformly continuous on  .

15.7.6 Non-uniform continuity criteria:

Let A   and let f: A   . Then the following statements are equivalent.

(i) f is not uniformly continuous on A.

(ii) There exist 0 > 0 such that for every  > 0, there are points x, u in A such

| x - u| <  and |f(x) – f(u)|  0

(iii) There is 0> 0 and two sequences (xn) and (un) in A such that lim (xn – un) = 0

and |f(xn) – f(un)|  0 for all n   .

Example: We consider the function of g(x) =
x

1
with domain A = {x/x   and x > 0}.

Let xn =
n

1
and xn =

n2

1
, then lim (xn – yn) = lim (

n

1
-

n2

1
) = lim (

n2

1
) = 0 and

|g(xn) – g(yn)| = |n – 2n| = n for all n   .

Hence lim g(xn) does not exist.

 g is not uniformly continuous an A.

15.7.7 Uniform continuity Theorem: Let I be a closed and bounded interval and let

f: I   be continuous an I. Then f is uniformly continuous on I.

Proof: Suppose f is not uniformly continuous on I.

 There is 0 > 0 and the sequences (xn) and (yn) in I such that |xn – yn| <
n

1
and

|f(xn) – f(yn)|  0 for all n  N.

Since I is bounded, the sequence (xn) is bounded. By Bolzam welirtross There is a sub

sequence (
knx ) of (xn) that converges to an element z  I.
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Since |
knx -

kny | 
kn

1


k

1
and lim

k

1
= 0, lim (

knx -
kny ) = 0. Since lim

knx = z, lim

knu = lim (
knu -

knx +
knx ) = lim (

knu -
knx ) + lim (

knx ) = 0 + z = z  (
knu ) also

converges to z. Since f is continuous at z, thus both the sequences (f(
knx )) and (f(

kny ))

must converge to f(z).

But this is not possible since |f(xn) – f(xn)|  0 for all n  N.  f is not continuous at the

point z  I. which is a contradiction. Hence f is uniformly continuous on I.

15.7.8. Theorem: If f and g are uniformly continuous on a sub set A of  . then f + g.

f – g and c f are uniformly continuous on A where c is any real number.

Proof: Let  > 0 since f, g are uniformly continuous on  there exist 1 >0 and 2 > 0

such that

|f(x) – f(y)| <
2


if x, y belong to A and |x – y| < 1 and |g(x) – g(y)| <

2


if x, y belong to

A and |x – y| < 2.

If () = min {1,2} then both the above inequalities hold good and hence if xA, yA

and |x – y| < ,

|(f + g) (x) – (f +g)(y)| = |f(x) + g(x) – f(y) – g(y)|

= |f(x) – f(y) + g(x) – g(y)|  |f(x) - f(y)| + |g(x) – g(y)| <
2


+

2


= .

Hence f + g is uniformly continuous on A.

Uniform continuity of f – g can be proved similarly.

If c = 0, c f = 0 and the zero function is clearly uniformly continuous.

If c  0 and  > 0 there is  > 0 such that for x  A y A and |x – y| < ,

|f(x) – f(y)| <
|c|


= .

Hence c f is uniformly continuous.

15.7.9 Theorem: If f and g are uniformly continuous on A and are both bounded on A

then f . g is uniformly continuous on A.
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Proof: Since f and g are both bounded on A, there is M > o such that |f(x)| < M and

|g(x)| < M for x  A.

Also for any x, y in A, |(fg)(x) – (fg) (y)| = |f(x). g(x) – f(y). g(y)|

= |f(x) (g(x) – g(y)) + g(y) (f(x) – f(y))|

 |f(x| |g(x) – g(y)| + |g(y)| |f(x) – f(y)|  (1)

Now if  > 0 there exist 1, 2 > 0 such that |f(x) – f(y)| <
2M


if x, y  A and |x-y| < 1

and | g(x) – g(y)| <
2M


if x, y  A and |x-y| < 2

Let () = min { 1, 2}.

From (i) for x, y in A with |x – y| < ().

|(fg) (x) – (fg) (y)| < M.
2M


+ M.

2M


= .

Hence f g is uniformly continuous on A.

Remark: If f is uniformly continuous on a set A, there is no guarantee that f is bounded

on A. The simplest example is the identity function f(x) = x on  However if A = [a, b]

and f is uniformly continuous on A then f is continuous an [a, b] hence bounded.

15.7.11. Examples:

1. f(x) =
x

1
is uniformly continuous on [a,) where a > 0.

If x  a, y  a, |f(x) – f(y)| = |
x

1
-

y

1
| =

|y||x|

|yx| 
=

xy

|yx| 


2a

|yx| 
.

So if  > o, | f(x) – f(y)| <  if
2a

|yx| 
< , |x – y| <  a2.

Since this holds for all x, y in [ a,) with |x – y| <  a2, |f(x) – f(y)| < .

Hence f is uniformly continuous on [a, ).

2. f(x) =
2x

1
is uniformly continuous on [a, ) if a > o but not an (0, ).

Let x  a, y  a and  > 0.
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|f(x) – f(y)| =|
2x

1
-

2y

1
| = |

y

1

x

1
 | |

y

1

x

1
 |

=
xy

|yx| 










y

1

x

1


a

2
2a

|yx| 
<  if | x –y| <

2

a 3

.

Hence f is uniformly continuous on [a, ) if a > 0.

If  > 0 and n >
2

1
,

nn 2

11
 =

n2

1
< . 









n
f

1
= |n2 – 4n2| = 3n2 > 6 whenever

0 <  < 1. So f is not uniformly continuous on (0, )

3. f(x) =
2x1

1


is uniformly continuous on  .

Let x, y be real numbers and  > 0.

|f(x) – f(y) =
)y1()x1(

|yx|
22

22




=

)y1()x1(

|yx||yx|
22 



 | x – y|
22 y1

|y|
.

x1

|x|


 | x – y| <  if | x – y| < 

Hence f is uniformly continuous on  .

15.8 Solution to SAQ’s

15.4.11 (a) Let  = f(c). There is  > 0 such that |f(x) – f(c) <  if | x – c| < .

 f(c) – f(c) < f(x) < f(c) + f(c) if x  V (c)  f(x) > 0 if x  V (c).

(b) Let (xn) be a sequence in Z(f)  f(xn) = 0

Since lim (xn) = x and f is continuous at x, then lim f(xn) = f(x).

since f(xn) = 0 for every n, it follows that f(x) = lim f (xn) = 0  x  z(f).

(c) Since |f(x) – f(y)| < k |x – y| for all x, y, if  > o and |x – y| <
k


,

|f(x) – f(y)|< k .
k


= . Hence f is continuous at every y in  . Follows that

f is continuous on  .
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(d) F(x) =
2x

)2x()2x(

2x

4x 2









= x + 2 for x  2.

2 is a cluster point of  – {2}.

Also
2x

lim


f(x) =
2x

lim


(x+2) = 4.

Hence if we define F(2) = 4 and F(x) = f(x) for x  2 the function F is

continuous at 2.

(e) Given f(r) = r if r is rational and f is continuous on  .

If c is a rational, choose (rn) such that rn is rational and c -
n

1
< rn < c. Then

lim rn=c. By continuity of f at c it follows that f(c)=lim f(rn)=lim rn=c. Hence

f(x) = x if x   .

(f) We are given f: A   , c  A, c is a cluster point of A and
cx

lim


f(x) =  .

Then the function F: A  {c}   is defined by F(x) = f(x) if x  A.

=  if x = c.

We prove continuity of F on A  {c} If a  A then since f is continuous at

a, given >0 there is  > 0 such that |f(x) – f(a)| <  if x  A and |x-a| < .

This is true for every  > 0 so F is continuous at a. Since
cx

lim


f(x)=  ,

given  > 0 there is  > 0 such that 0 < |x-c|< and xA

 |f(x) –  | < .

If x  A  {c} |F(x) – F(l)| =
0 if x c

| f (x) | if x c




  

So that if |x – c| <  and x  A then

|F(x) – F(  )|  |f(x) –  | < 

 F is continuous at c.

15.5.2: Let  > 0.

Since f is continuous at c, there is 1 > 0 such that x  A, |x – c| < 1, then

|f(x) – f(c)| <
2


.
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Since g is continuous at c, there is 2 >0 such that x  A, |x – c| < 2, then |g(x)–g(c)|<
2


.

Let  = min {1, 2} and |x – c| < , x  A. Then

|(f + g) (x) – (f + g) (c)| = |f(x) – f(c) + g(x) – g(c)|

 |f(x) – f(c)| + |g(x) – g(c)| <
2


+

2


= .

Hence f + g is continuous at c. Similarly f – g is continuous at c. We now prove that b f is

continuous at c.

Let  > 0 since f is continuous at c corresponding to
|b|1 


there is b > 0 such that

if x  A and |x – c| < , then |f(x) – f(c)| <
1|b| 



Let x  A and |x – c| < .

|(bf(x) – (bf) (c)| = |b(f(x) – f(c)| = |b| |f(x) – f(c)| < |b|
1|b| 


< .

Hence bf is continuous at c.

15.5.13

(i) f(x) =
1

12
2

2





x

xx
(x   )

Let f1 (x) = 1, f2 (x) = x then f1, f2 are continuous on  .

f(x) =
)x)(ff(

)x()ff(
2
21

2
21





Since f1, f2 are continuous on  , f + f2 (f1 + f2)
2, 2

2f , f1 + 2
2f are continuous on  .

Also (f1 + f2
2) (x)  0 for all x   and hence f is continuous on  .

(ii) g(x) = cos 2x1 (x   ).

f1 (x) = 1 is continuous on  .

f2 (x) = x is continuous on  .

So f1 + 2
2f is continuous on  . Also (f1 + 2

2f ) (x)  0  x  

So h(x) = )ff( 2
21  (x) is continuous on  .
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Also k(y) = cos y is continuous on  .

Hence g(x) = cos 2x1 = (koh) (x) is continuous on  .

15.5.14: Suppose c is rational and xn = c+
n

2
. Then xn is irrational and |xn – c|=

n

2

 lim |xn–c| = 0.  lim xn = c. But lim f(xn) = -1 while f(c) = 1. So lim f(xn)  f(c).

Hence f is not continuous at c.

Suppose c is irrational. For each n   , choose a rational number yn such that

c < yn < c +
n

1
. Then lim yn = c. f(yn) = 1 for every n  lim f(yn) = 1, while f(c) = -1

So lim f(yn)  f(c). Hence f is not continuous at c.

This shows that f is not continuous at any point.

However |f(x)| = 1 for all x.

So |f| is continuous on  .

15.5.15: Let x be any irrational number.

For n   choose a rational number xn such that |x – xn| <
n

1
. Then lim xn = x and

f(xn) = g(xn) for every n   . Since f is continuous at x and g is continuous at x, f(x) =

lim f(xn) = lim g (xn) = g(n). Hence f(x) = g(x) for all x in  .

15.5.16: Let f be continuous on  and f 







n2

m
= 0 for m  Z and n   .

Then f(x) = 0 for every x   .

Clearly f(0) = 0

Assume that x > 0. There is m   such that 0 <
x

m
< 1. There is n   such that

n2

1
<

m

x
<

n 1

1

2 


n

0

2

m
< x <

n

0

2

1m 
. This is true for every m > m0. Thus for every

m > m0, m  N there is xm  N such that
xm

m

2
< x <

xm

m 1

2


 0  x -

xm

m

2
<

xm

1

2
.

Hence lim
xm

m

2
= x. Since f is continuous, f(x) = lim f

xm

m

2

 
 
 

= 0. The proof is similar

when x < 0. Hence f(x) = 0  x   .
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SAQ 15.6.16

a) Since f: [a, b]  (0, ) is continuous, f([a,b]) is a closed and bounded interval

[, ] where  = inf {f(x) / a  x  b} and  = sup {f(x) / a  x  b}. The infimum

is also attained so that there is x0  [a, b] such that f(x0) = . Since f(x0)  (0, ),

 = f(x0) > 0. Since f(x0) = inf {f(x) / a  x  b}, it follows that f(x) > f(x0) =  >

0 for x  [a,b].

b) Let h(x) = f(x) – g(x) for x  I. h is continuous on I and

E = Z(h) = {x  I / h(x) = 0}. (xn)  E  I and xn  x0.

 a  x0  b, since a  xn  b for every n, so x0  I. Since h is continuous on E

and lim xn = x0, h(x0) = lim h(xn) = 0 since for every n , h(xn) = f(xn)–g(xn) =

0, hence x0  E.

c) P(x) = x4 + 7x3 – 9 = x3 (x + 7) – 9 > 0 if x < 0 and x + 7 < 0 then x3 (x + 7) > 9 or

x > 0, x + 7 > 0 and x3 (x + 7) > 9

If x < -7, x3 and x + 7 are both < 0. So try x = -8, P (-8) = 83 – 9 > 0, P (-7) = -9<0

So one root lies in (-8, -7)

P(1) < 0, P(2) > 0  one root his in (1,2).

d) Let P(x) = a0 + a1 x + a2 x2 + … + a2n-1, x
2n-1-, where a2n – 1 > 0.

Then
1n2x

)x(P


=
1n2

0

x

a


+
n2

1

x

a
+ … + a2n-1.


x

lim
1n2x

)x(P


= a2n-1 > 0 Similarly,
x

lim P(x) = - 

Hence there exist 1 > 0 > 2 such that P(x) > 1 > -1 > P(y) if x > 1 > 0 > 2  y.

Since P is continuous on [2, 1] and P(1) > 0 > P(2) there is c  [2, 1] such

that P(c) = 0. The proof is similar when a2n-1 < 0.

e) x  W  f(x) < 0. If n  N. w -
n

1
is not an upper bound, hence there is xn  W

such that w -
n

1
 xn  W  f(xn) < 0 and 0 < w – xn <

n

1
for every n  
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 lim xn = w  lim f(xn) = f(w). Since f(xn) < 0 for every n, f(w)  0. If f(w) < 0

then f(b) > 0 > f(w). So there is x0  [w, b] such that f(x0) = 0

 x0  W  x0  w but x0 > w. This is a contradiction. Hence f(w) = 0.

(f) Let f(x) = x2

If a > b > 0 and f(x) = x2 then f((b,a)) = (b2, a2) and f([a,b]) = [b2
, a2]

If a< b<0 then f((a,b)) = (b2, a2) and f([a,b]) = [b2
, a2]

If a<0<b then f((a,b)) = (0,c) and f([a,b]) = [a,c] where c = max {a2, b2}.

(g) If f : [0,1]   is continuous then the range of f namely f([0,1]) is a closed and

bounded interval. An interval contains both rationals and irrationals if it is not a

singleton. Since the hypothesis is that f(x) is rational for all x, it follows that

f([0,1]) is a singleton. In this case f(x) = K for all x  [0,1], K being a rational

number.

15.7.10

Since f is uniformly continuous on A. Corresponding to  =
2

1
there is  > 0 such that if

x  A, y  A and |x – y| < . |f(x) – f(y) | <
2

1
.

 | |f(x) - |f(y) | | <
2

1
if x  A, y  A and |x – y| < . If f is not bounded in A, then for

every n   ,. there is xn  A such that |f(xn)| > man {n, f(xn-1) + 1} ………… (1)

Since (xn)  A and A is bounded there is a convergent subsequence (
knx ) of (xn).

Write
knx = yk. Since (yk) converges, (yk) is a Cauchy sequence. So corresponding to the

 obtained above there is a K   such that |yw – ys| <  if w > s  K.

 | |f(yu) | - |f(ys) | <
2

1
for u > s  K. From (1), |f (xn) – f(xm) | > 1 if n > m.

Hence 1 < | |f(yu| | - |f (ys) | | <
2

1
. This is a contradiction. Hence f is bounded on A.
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15.9 Summary:

The definition of a continuous function, some Algebraic properties of continuous

functions and the structure of the range of a continuous function on a closed and bounded

interval are studied in detail. Some important examples such as Dirichlet function,

Thomae function are discussed. Discontinuity of a function and uniform continuity are

also studied.

15.10 Technical Terms

Continuity, Discontinuities, Uniform continuity, Intermediate value property

15.11 Exercise 15.11 A

1. Let a < b< c. Suppose that f is continuous on [a,b], that g is continuous on [b,c]

and that f(b) = g(b). Define h on [a,c] by h(x) = f(x) for x  [a,b] and h(x) = g(x)

for x  (b,c] prove that h is continuous on [a,c].

2. If x   , we define [x] to be the greatest integer n  Z such that n  x. the

function x  [x] is called the greatest integer function. Determine the points of

continuity of the following functions.

(a) g(x) = x [x] (b) h(x) = [sin x]

(c) k(x) 








x

1
, (x  0)

3. Let A   and let f: A   be continuous at a point c  A. Show that for any 

> 0, there exists a nbd V (c) of c such that if x, y  A  V 9c) then

|f(x) – f(y)| < .

4. Let f:    be continuous at c and let f(c) > o. show that there exists a nbd

V (c) of c such that of if x  V (c) then f(x) > 0.

5. Let A  B   .let f: B   and let g be the restriction of f to A (ie, g(x) = f(x)

for x  A).

(a) If f is continuous at c  A, show that g is continuous at c.

(b) Show by an example that if g is continuous at c, it need not follow that f is

continuous at c.
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6. Let A = (0, ) and f: A   defined by

f(x) =

0 if x is irrational

in its simplest formm
n if x is rational and x

n







Prove that f is unbounded in every open internal. Also prove that f is

discontinuous at every point of A.

(Hint: Given a < b, show that there are infinity may n  N such that n is the

denominator of some rational number in (a, b).)

Exercise 15.11.B

1. Determine the points of continuity of the following functions.

(a) f(x) = xx  (x  0)

(b) g(x) =
x

|xsin|1
(x  0)

2. Show that f: A   is continuous on A   and if n   then the function

defined by fn(x) = (f(x))n for x  A is continuous on A.

3. Give an example of functions f and g that are both discontinuous at a point c in 

such that (a) the sum f + g is continuous at c (ii) the product f g is continuous at c.

4. Determine the points of continuity of the function f(x) = x-[x], x  R.

5. Let g be defined on  by g(1) = 0 and g(x) = 2 if x  1; and let f(x) = x + 1 for al

x   . Show that
0x

lim


(gof) (x)  (gof) (c). why does this contradict Theorem

15.5.9 ?

6. Let f, g be defined on  and let c   . Suppose that
cx

lim


f = b and that g is

continuous at b. show that
cx

lim


(gof) (x) = g(b).

7. Given an example of a discontinuous function f on [0, 1] such that f2 is continuous

on [0, 1].

8. Let f:    be continuous on  and let P = {x   / f(x) > 0} If c  P, show

that there exists a nbd V (c)  P.



Real Analysis 15.39 Continuous Functions

9. If f and g are continuous on  , let g = {x   / f(x)  g(x)} If (sn)  S and

lim (sn) = s, show that s  S.

10. Let g:    satisfy g(x + y) = g(x) . g(y) for all x, y in  .

(a) Show that g(0) = 0 or 1 and g(0) = 0  g(x) = 0 for all x. Assume that

g(0)  0.

(b) Show that g(-x) = g 








x

1
if x  0

(c) Show that g(n) = (g(1))n if n  Z

(d) Show that g 








n

m
= (g(1))m/n if

n

m
is rational

(e) Show that if g is continuous at 0 then g is continuous at every c.

(f) Show that if g(a) = 0 for some a   show that g(x) = 0 for all x.

11. Let f, g:    be continuous at a point c, and let h(x) = sup {f(x), g(x)} for

x   show that h(x) = ½ (f(x) + g(x)) + ½ |f(x) – g(x)| for all x  . Use this to

show that h is continuous at c.

Exercise 15.11.c

1. Let f be continuous on [0, 1] to  nad such that f(0) = f(1). Prove that there exists

a point c in [0, ½ ] such that f(c) = f(c + ½ ).

[Hint: Consider g(x) = f(x) – f(x + ½ )].

2. Show that the equation x = cos x has a solution in [0, ½ ].

Use the Bisection method and a calculate to find an approximate solution of this

equation, with error less then 10 -3.

3. Show that two function f(x) = 2 log x + x -2 has root in [1, 2]. Use the Bisection

method and find the root with error less than 10-2

4. Show that the function f(x) = (x-1) (x-2) (x-3) (x-4) (x-5) has five roots in [0, 7].

If the Bisection method is applied on this interval, how many of the roots are

located in this interval.

5. Let f:  be continuous

(a) If
x

lim f(x) = 0, show that f is bounded in [0, ).
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(b) If
x

lim f(x) = 0, show that f is bounded in (-, 0].

(c) If (a) and (b) both hold show that f is bounded on  .

(d) Show that when (c) holds f attains maximum and minimum.

(e) If f(x) =
1x

1
2 

, show that f satisfies above conditions.

Find inf f(x) and sup f(x)? Does f attain infimum on  ? Does f attain

supremum on  ?

6. Show that the function f(x) =
1x

1
2 

for x   is uniformly continuous on  .

7. Use the non-uniform criterion to show that the following functions are not

uniformly continuous on the given sets.

(a) f(x) = x2, A = [0, )

(b) g(x) = sin 








x

1
, B = (0, ).

8. If f(x) = x and g(x) = sin x, show that f and g are uniformly continuous on  , but

their product f g is not uniformly continuous on  .

9. Prove that if f and g are each uniformly continuous on  then the composite

function fog is uniformly continuous on  .

10. If f is uniformly continuous on A   and |f(x)  K > 0 for all x  A, show that

f

1
is uniformly continuous on A.

Exercise 15.11.D.

(a) Using the formula cos A – cos B = 2 sin (
2

BA 
) sin (

2

AB 
) show that if

0  x < y  ½, cos y < cos x.

(b) Using the result that if f(c) < 0 and f is continuous at x0 then there is  > 0 such

that f(x) < 0 for x  V (c) prove that if 2
0x < cos x0 for some x0  (0, /2) then x2

< cos x in some nbd V (x0)  (0,
2


).

(c) If h(x) = min {x2, cos x} 0  x  /2, show that h is continuous on [0,
2


].
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(d) If h attains minimum at x0 show that 0 < x0 
2



Show that if h(x0) = min {h(x) / 0  x 
2


} and h(x0) = cos x0 then h(x) = cos x in

some nbd V (x0) in (0,
2


).

(e) Hence show that 2
0x  cos x0

(f) Prove similarly that 2
0x  cos x0.

(g) Finally conclude that if h(x0) = min {h(x) / 0  x 
2


} then 2

0x = cos x0.

(h) By applying location of roots theorem to the function f(x) = x2 – cos x on [0,
2


].

Prove that there is x0  (0,
2


) so that 2

0x = cos x0.

15.12 Model Examination Questions:

1. Let f: A   and c  A. then show that f is continuous at c iff for every  > o

there is a  > 0 such that for all x  A  V (c), f(x)  V (f(c)).

2. Show that the greatest integer function defined on  by g(x) = [x] = n where n is

an integer and n  x < n + 1 is discontinuous at every integer values of x and

continuous otherwise.

3. Let g: [0, )   defined by g(x) =
x

1
if x > 0 and g(0) = K where K   .

Then show that g is not continuous at 0.

4. Define f:    by g(x) =




 irrationalisxif3x

rationalisxifx2

Find all x at which g is continuous.

5. Define f(x) =
2x

4x 2




for x  2. Does there exist L   such that if we let

f(2) = L, f becomes a continuous function?
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6. If f and g are defined on A, c  A and f, g are continuous at c then show that (a)

f g is continuous at c. (b) If g(x)  0 for x  A then
g

f
is continuous at c.

7. Let f: A   be continuous at c  A. f(A)  B and g: B   be continuous at

f(c). Then show that the composite function h: A   defined by

g(x) = (gof) (x) = g(f(x)) for x  A is continuous at c.

8. The function g: [0, )   defined by g(x) = sin
x

1
if x  0 and g(0) = 0 is

proved to be discontinuous at 0. show that g is continuous on (0, ).

9. Define f:  by f(x) = x+1 and g:    by g(1) = 0 and g(x) = 2 if x  1.

Then show that gof is continuous at x = 0.

10. Determine the points of continuity of

(i) f(x) =
1x

1x2x
2

2




(x   ) (ii) g(x) cos 2x1 (x   )

11. Show that the function f defined on  by

f(x) =




rationalisxif1

irrationalisxif1
,

is discontinuous while |f| is continuous at every point of  .

12. Let I = [a, b] be a closed and bounded interval and f: I   be continuous on I.

Then show that f is bounded on I.

13. State and prove Bolzano’s Intermediate value theorem.

14. Suppose f: [0, 1]  [0, 1] is continuous. Then show that there is a x in [0, 1] such

that f(x) = x.

15. Let I be an interval and let f: I   be continuous. Then show that the set f(I) is

an interval.

16. Show that the polynomial P(x) = x4 + 7x3 – 9 has at least two real roots. Locate

them.

17. Examine which open intervals are mapped by f(x) = x2 (x   ) onto open

intervals.

18. If f: A  is uniformly continuous on A, then show that it is continuous on A. Is

the converse true? Justify your answer.
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19. Show that f(x) =
x

1
is uniformly continuous on [a, ) where a > 0.

20. Let I be a closed and bounded interval and let f: I   be continuous on I. Then

show f is uniformly continuous on I.

Answers

15.11.A.2 (a) Continuous at x if x is not a non zero integer

(b) Continuous at x if sin x  {0, 1}

(c) Continuous at x if x  z.

15.11.B. (1) [0, ) (2)  – {0}.

(4) {x} for x is not an integer}

(7) f(x) = 1 if x  Q, f(x) = -1 if x   .

11.11.c. 5(e) inf f(x) = 0 sup f(x) = 1, both are not attained.

15.13 Model Practical Problem with solution:

Show that
0x

lim


sin
x

1
does not exist but the function defined by g(x) = x sin

x

1
if x  0

and g(0) = 0 is continuous at 0.

To show that
0x

lim


f(x) does not exist and g is continuous at 0.

Definitions: (1) Let E   ; c a cluster point of E f: E   and l   .

We say that f(x)  l as x  c, in symbols
cx

lim


f(x) =  if for every  > 0 there

corresponds  > 0 such that if x  E and o < |x – c| <  there |f(x) –  | < .

(2) Let E   , c  E. we say that g: E   is continuous at c if for every  > 0 there

corresponds  > 0 such that if x  E and |x-c| <  hen |f(x) –f(c)| < .

Result to be used: (i) If E   , c limit point of E and f: E  
cx

lim


f(x) = l implies that

for every f(
n
x ) =  .
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(ii) Archimedis Principle: If x    nx  N  nx > x.

Stepwise division of he solution to show that
0x

lim


f(x) does not exist.

(i)
n

lim
1

n
=

n
lim

1

(4n 1)
2




= 0

(ii)
n

lim f (
1

n
) 

n
lim f

1

(4n 1)
2

 
 
 
 
 

Solution: (i) Let  > o, N be any positive integer  N >
1


.

Such n   and n  N then
n

1


N

1
< 

n

1
< .

Since o <
1

n
<  whence n  N lim

1

n
= 0.

(ii) Let  > 0, 1N be any positive integer  1N>
1

2
.

If n   and n  1N then n >
1

2

 4n + 1 > 4x >
2



 (4n+1)
2


>


1


1

(4n 1)
2




< .

Since 0 <
1

(4n 1)
2




<  if n   and n  1N ,
n

lim
1

(4n 1)
2




= 0.

Since f (
1

n
) = sin n  = 0  n   ,

|f(
1

n
) – 0| = 0 <    > 0 and n   .

Hence
n

lim f(
1

n
) = 0.
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Since f 1

(4n 1)
2

 
 
 
 
 

= sin (4n+1)
2


= 1  n   ,

| f 1

(4n 1)
2

 
 
 
 
 

- 1| = 0 <  for every  > o and  n  

Hence
n

lim f 1

(4n 1)
2

 
 
 
 
 

= 1.

By result (1)
0x

lim


f(x) does not exist.

(ii) If x   |g(x)| = |x sin
x

1
|  |x|

If  > 0 then  x  x |g(x)|  |x| <  whenever |x| < .

Hence g is continuous at 0.

K. SAMBASIVA RAO



Real Analysis 16.1 Differentiation - I

LESSON – 16

DIFFERENTIATION – I

16.1 Objective: The student is introduced to the notion of derivative, its dependence of

continuity, linearity properties, the chain rule for the derivative, connection with maxima

and minima, mean value theorems the intermediate value property for the derivative and

finally a variety of applications through illustrations.

16.2 Structure:

This lesson contains the following components.

16.3 Introduction

16.4 Definition and elementary properties.

16.5 Caratheodory theorem and chain rule.

16.6 Mean value theorems

16.7 Examples and applications

16.8 Solutions to short answer questions (SAQs)

16.9 Summary

16.10 Technical terms

16.11 Exercises & Answers

16.12 Model examination questions

16.13 Model practical problem with solution.

Sir Isaac Newton 1643-1727

Isaac Newton was the greatest English mathematician of
his generation. He laid the foundation for differential and
integral calculus. His work on optics and gravitation make
him one of the greatest scientists the world has known.
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16.3 Introduction :

A curve was generally described as locus of points satisfying some geometric condition

and a taugent line was usually obtained through some geometric construction. We

consider the “secants” i.e., chords through a point c in the domain of a function f which is

usually an interval (containing c).

The slope of a sceant at c through a point (x,f(x)) where x  I is

(x) =
cx

)c(f)x(f




( x  c, x  I) ------ (1)

If this secant converges to some    as x  c we say that f has tangent at c, namely

the line L through (c, f(c) ) with slope l. Thus a tangent to a curve at a point is the

“limiting position” of the secants through P. This intutive geometric consideration leads

one to the definition of the derivative of a function. It was Pierre de Fermat who found a

connection between the problem of finding the maxima and minima of a curve and the

deviative. Sir Issac Newton discovered in the late 1660’s a relation between the tangent

lines to a curve and the velocity of a moving particle. The most significant observation

made by Newton and Leibnitz independently was that the areas under curves could be

calculated by reversing the differentiation process. This ultimately lead to the most

coherent theory, now known as the differentiate and intyral calculus.

16.4 Definition and elementary properties:

16.4.1 Definition: Let I   be an interval, c  I and f : I   . We say that a real

number L is a derivative of f at c if for every  > 0 there is  > 0 such that if x  I and

0 < |x – c| < 

 L
cx

)c(f)x(f





< 

In this case we say that f is differentiable at c and write f1(c) for L.

In other words we say that f is differentiable at c if the function  : I – {c}   defined

by converges to a limit which we denote by f  (c)
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If f: I   is differentiable at every point of I then we say that f is differentiable on I.

In this case the function defined on I that maps x to f  (x) is called the derivative of f and

is denoted by f  .

Notation: We also use Df and
dx

df
for the derivative of f.

Thus (D f) (c) =
cxdx

df











= f  (c)

6.4.2 (a) Example: If f:    is defined by f(x) = x2 then for any c   , and x  0

x

)c(f)xc(f 
=

x

c)cx( 22 
=

x

)c2x(x 
= x + 2c

Hence
0x

lim


f (c x) f (c)

x

 
= 2c

So f is differentiable at every c   and the derivative f  =    is defined by f 

(x) = 2x (x   )

16.4.2(b) Example: If K   and f(x) = k for all x in  the constant function f is

differentiable and f  (x) = 0 for x  

If c   and x  c

cx

)c(f)x(f




= cx

kk




= 0


cx

lim
 cx

)c(f)x(f




= 0

Hence the constant function f is differentiable on  and f  (x) = 0 for x in  .

Examples:

16.4.2 (c) h(x) = x for x > 0

if c > 0
cx

)c(h)x(h




=

cx

cx





and 0 < x  c =
 

   cxcx

cx





=
cx

1
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Since
cx

lim


x = c ,

cx
lim
 cx

)c(h)x(h




=

c2

1
(c > 0)

Hence h is differentiable at c and h (c) =
c2

1

16.4.2(d) Example

h(x) =
x

1
(x > 0)

for c > 0 and x  c, x > 0

cx

)c(h)x(h




=

cx

c

1

x

1





=
 

)( cxcx

cx





As above
cx

lim
 cx

)c(h)x(h




=

cx
lim
 cx

1  
)( cx

cx





=
c

1
cx

lim
 x

1
cx

lim
 cx

1



=
c

1
.

c

1
.

c2

1

=
2

1

cc

1

16.4.3 Theorem

If I is an internal and f: I   is differentiable at c  I then f is continuous at c.

Proof: For x  I, x  c write  (x) =
cx

)c(f)x(f





Then  is defined on I – {c}, c is a cluster point of I – {c}

 (x) (x – c) = f(x) – f(c)

and
cx

lim


 (x) =
cx

lim
 cx

)c(f)x(f




= f  (c)

Also
cx

lim


(x – c) = 0

Hence
cx

lim


f(x) – f(c) =
cx

lim


(x) (x – c) =
cx

lim


 (x)
cx

lim


(x – c) = f  (c) . 0 = 0
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Hence
cx

lim


f(x) = f(c) So f is continuous at c.

16.4.4 Corollary: If f : I is differentiable on I then f is continuous on I.

Example: If f is continuous at c is not necessarily true that f

is differentiable at c. Define f (x) = |x| for x  

Continuity of f at 0:

If  > 0, |f(x) – f(0) | = |x| <  if |x| <  () where () = 

Non differentiability at 0:

For x  0  (x) =
0x

)0(f)x(f




=

x

|x|
=








0xif1

0xif1


0x

lim
0x

)0(f)x(f




= 1 and

0x
lim

0x

)0(f)x(f




= -1

Hence f is not differentiable at 0.

16.4.4. Example: Define f(x) =











0xif0

0xif
x

1
sinx

f is defined on  and for x  0
0x

)0(f)x(f




= sin

x

1

We know that the function sin
x

1
(x  0) is not convergent at 0. Hence f is not

differentiable at c. However for x   |f(x) – f(0) | = |f(x)|  |x| so that if >0 and

()=, |f(x) – f(0) |  |x| so that if  > 0 and () = , |f(x) – f(0) |  |x| <  whenever

|x – 0| <. Hence f is continuous at 0.

16.4.5 Theorem: If f: I   and g : I   are differentiable at c then f + g and f–g are

differentiable at c and (i) (f g) (c) = f  (c)+ g (c) and (ii) (f g) (c) = f  (c)– g (c)

Proof: We first prove (i). Proof of (ii) is similar. By the differentiability of f and of g at

c, We have
cx

lim
 cx

)c(f)x(f




= f  (c) and

cx
lim
 cx

)c(g)x(g




= g (c)

y = |x|

16.4.4a

graph of f(x) = |x|
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For x  c, x  I
cx

)c()gf()x()gf(




=

cx

)c(f)x(f




+

cx

)c(g)x(g





Hence
cx

lim
 cx

)c()gf()x()gf(




=

cx
lim
 cx

)c(f)x(f




+

cx
lim
 cx

)c(g)x(g





= f  (c) + g (c). (14.5.1(i))

Hence f + g is differentiable at c and (f g) (c) = f  (c) + g (c)

16.4.6 Corollary:

If n   and fi: I   is differentiable at c  I and 1  i  n then f1+….fn is

differentiable at c and 1 n 1 n(f ...f ) (c) f (c) ... f (c)   

Proof: The proof is by induction on n. The statement is true when n = 2.

Assume that the statement is true for n let f1, …. fn+1 be any (n + 1) functions on I each of

which is differentiable at c. Write g = f2 + ….. + fn+1 since fi is differentiable at c for 2  i

 n+1 by induction hypothesis g is differentiable at c and g (c) = 2 n+1(f + ..... + f ) (c) =

2f  (c) + …. + n 1f 
 (c) Since f1 and g are differentiable at c, by 16.4.5

f1 + g = f1 + ….. + fn+1, is differentiable at c and 1 n+1(f + ..... + f ) (c) = 1(f g) (c) =

1f  (c) + g(c) = 1f  (c) + 2f  (c) + ….. + n 1f 
 (c)

As the statement is valid for n+1 functions whenever it is valid for n functions the

statement is valid for all n.

16.4.7 Corollary:

If fi : I   is differentiable on I for 1  i  n then f1 + ……. + fn is differentiable on I

and 1 n(f + ..... + f ) = 1f + …. + nf  .

Proof: By the above corollary, differentiability of f1 + ….. + fn at every c in I follows

from the differentiability of each fi at c . Hence f1 + ….. fn is differentiable on I. Morever

if x  I 1 n(f + ..... f ) (x) = 1f  (x) + …. + nf  (x) = ( 1f + …. + nf  ) =(x)

Since this holds good for every x  I, follows that ( 1f + …. + nf  ) = 1f + …. + nf  .
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16.4.8 Theorem:

If f: I   is differentiable at c  I and k   then kf is differentiable at c and

(kf ) (c) = k f  (c)

Proof: Write  (x) =
cx

)c(f)x(f




for x  c.

Then
cx

lim


 (x) = f  (c)


cx

lim


k  (x) = k f  (c)


cx

lim
 cx

)c(fk)x(fk




= k f  (c)

 (k f) is differentiable at c and (k f ) (c) = k f  (c)

16.4.9 Theorem:

If f: I   and g: I   differentiable at c  I then f g is differentiable at c and

(f g ) (c) = f(c) g (c) + f  (c ) g(c)

Proof: For x  c in I

cx

)c)(gf()x)(gf(




=

cx

)c(f)x(f()c(g

cx

))c(g)x(g()x(f










since f, g are differentiable at c,

cx
lim
 cx

)c(f)x(f




= f  (c) and

cx
lim
 cx

)c(g)x(g




= g (c)

Since f is differentiable at c, f is continuous at c so

cx
lim


f(x) = f(c)

Hence
cx

lim
 cx

)c)(gf()x)(gf(




= f(c) g1(c) + g(c) f1 (c) (by theorem 14.5.2)

Hence f g is differentiable at c and (f g ) (c) = f(c) g (c) + g(c) f  (c).
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16.4.10 Corollary:

If n   and fi : I   is differentiable on I for 1  i  n then f1 f2 … fn is differentiable

at c and (f1 .… fn ) (c) =
n

`
1 2 i n

i 1

{f (c) f (c) .....f (c).....f (c)}



16.4.11 Proof: see exercise 8

Corollary: If n   and fi : I   is differentiable on I for 1  i  n then f1 f2 ….fn is

differentiable on I.

Proof: See exercise 9

16.4.12 Corollary:

If f: I   is differentiable at c  I and n  , f n is differentiable at c and

(fn ) (c) = n fn-1(c) f  (c)

Proof: Put f1 = f2 = … fn = f in corollary 16.4.10

16.4.13 Theorem:

If f: I   is differentiable at c  I and f(c)  0 then
f

1
defined by

1

f

 
 
 

(x) =
)x(f

1
is

defined in V (c)  I for some  > 0 and
f

1
is differentiable at c and

1
(c)

f

 
 
 

=
2

f (c)

(f (c))



Proof: Since f is differentiable at c f is continuous at c since f(c)  0 there is  > 0 such

that if x  V (c)  I, then f(x)  0

So
f

1
is defined in V (c)  I. If x  V (c)  I and x  c

cx

)c(
f

1
)x(

f

1





















=
)cx()c(f)x(f

)x(f)c(f





= -
cx

)c(f)x(f




.

)c(f)x(f

1
Since f is continuous at c,

cx
lim


f(x) = f(c)
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Since f(c)  0
cx

lim
 )x(f

1
=

)c(f

1
Also

cx
lim
 cx

)c(f)x(f




= f  (c)

Hence
cx

lim
 cx

)c(
f

1
)x(

f

1





















=
cx

lim


 f (x) f (c)

x c

 

 )x(f

1

)c(f

1
= -

cx
lim
 cx

)c(f)x(f




.

cx
lim
 )x(f

1

)c(f

1
= -

2

f `(c)

(f (c))

16.4.14 Theorem:

Suppose f: I   and g: I   are differentiable at c  I and g(c)  0. Then the quotient

function q =
g

f
, defined in a nbd of c is differentiable at c and

q (c) =
f

g

 
 
 

(c) =
2

f (c) g(c) f (c) g (c)

(g(c))

 

Proof: Since g(c)  0 there is a nbd V (c) such that g(x)  o if x  V (c)  I.

So that q(x) =
)x(g

)x(f
is meaningful for x  V (c)  I.

For x  V (c)  I,

cx

)c(q)x(q




=

cx

)c(
g

f
)x(

g

f





















=
f (x) g(c) f (c) g(x)

g(x) g(c) (x c)





=
f (x) (g(c) g(x)) g(x) (f (x) f (c))

g(x) g(c) (x c)

  



=
)c(g)x(g

)x(f
.

g(c) g(x)

x c




+

)c(g

1
.

cx

)c(f)x(f





since
cx

lim
 )x(g

)x(f
=

)c(g

)c(f
,

cx
lim
 cx

)c(f)x(f




= f  (c) and

x c
lim


g(x) g(c)

x c




= g (c) it follows

that
cx

lim
 cx

)c(q)x(q




=

2)c(g

)c(f
. (- g (x)) +

)c(g

1
f  (c)
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=
2

f (c) g(c) f (c) g (c)

(g(c))

 

Hence q =
g

f
is differentiable at c and

f
(c)

g

 
 
 

=
2

f (c) g(c) f (c) g (c)

(g(c))

 

16.4.15 Let s(x) = sin x and c(x) = cos x

Assume that s (x) = cos x and c= -sin x

We show that D tan x = (sec x)2

D Sec x = (sec x) (tan x) for x  (2k + 1)
2


, n  Z

and D cot x = - (cosec x)2

D cosec x = -(cosec x) cot x for x  k  , k  Z

By the quotient rule D tan x = D
xcos

xsin
=

2)x(cos

xsin)xcosD(xcos)xsinD( 

whenever cos x  0

 D tan x =
xcos

xsinxcos
2

22 
= (sec x)2 if x  (2n + 1)

2



D Sec x = D 








xcos

1
(x 

2


(2n + 1), n  Z)

=
2

0 1( sin x)

(cos x)

 

= sec x tan x for x 
2


(2n +1)

Similarly we can prove that

D cot x = -(cosec x)2

and D cosec x = -(cosec x) cot x. for x  n, n  Z.
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1-1

y=3x

y=x

16.4.16

Draw the graph of g(x) = 2x + |x| and show that g is differentiable except at 0

Find g (x) for x  0

g(x) =














0xif0

0xifx

0xifx3

observe that at 0 the turn is not “smooth”.

For x > 0
0x

)0(g)x(g




= 3

0x
lim

0x

)0(g)x(g




= 3

For x < 0
0x

)0(g)x(g




= 1

0x
lim

0x

)0(g)x(g




= 1

So g is not differentiable at 0

It is easy to show that g is differentiable at other points and g (x) = 3 if x > 0 and

1 if x < 0.
16.4.16 (b)

If r > 0 is a rational number and g:    is defined by

g(x) = xr sin
x

1
if x > 0 and

g(0) = 0

determine r for which g is differentiable at 0.

For x  o
0x

)0(g)x(g




= xr-1 sin

x

1
= 0

If r > 1
0x

lim


xr-1 = 0 so
0x

lim


xr-1 sin
x

1
= 0  g is differentiable at o and g (0) = 0 if r > 1

If r = 1
0x

lim


xr-1 sin
x

1
does not exist

 g is not differentiable at o

If 0 < r < 1,
0x

lim


xr-1 = 

So when xn =
1

(4n 1)
2




. Sin
x

1
= 1 and hence
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0x

)0(g)x(g

n

n




=

r 1
2


 
 
 

1r

)1n4(

1












=

1 r

2


 

 
 

(4n+1)1-r


0xn

lim


n

n

g(x ) g(0)

x 0




=

n
lim

(1 r)

2


 

 
 

(4n+1)1-r = 

If yn =
1

n
,

0y

)0(g)y(g

n

n




=

r 1
1

n


 
 

 
. Sin n = 0


ny 0
lim
 0y

)0(g)y(g

n

n




= 0

Thus
0x

)0(g)x(g




does not converge at the cluster point 0

Hence g is not differentiable at 0.

16.4.16 (c)

Draw the graph of h defined by

h(x) =
2

2

x if x 0

x if x 0

 

 

The seemingly problematic point is 0

At 0: For x > 0
0x

)0(h)x(h




= x

For x < 0
0x

)0(h)x(h




= - x

So for x  0
0x

)0(h)x(h




= |x|

0x
lim


|x| = 0 Hence
0x

lim
 0x

)0(h)x(h




= 0  h is differentiable at 0.

It is easy to verify that h (x) =
2x if x 0

2x if x 0



 

y = x2

y = - x2
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-1 0

Hence h is differentiable on  and h (x) = 2|x|.

16.4.16 (d)

Discuss the differentiability of f(x) = |x| + |x + 1|

If x  0, f(x) = 2x + 1.

If -1  x  0 f(x) = -x + x + 1 = 1 If x < -1 f(x) = -x – 1-x = -1-2x

Observe the graph of f. The turns at -1 and 0 are not “smooth” Graph of |x| + |x-1|

We show that f is not differentiable at these points and is differentiable elsewhere.

Non differentiability at 0: For x > 0,
0x

)0(f)x(f




=

x

11x2 
= 1

If – 1 < x < 0
0x

)0(f)x(f




=

1 1

x


= 0

For x  - 1 < x <  and x  0

f (x) f (0)

x 0




=

1if x 0

0 if x 0






so that
x 0
lim
  0x

)0(f)x(f




= 1

and
0x

lim
f (x) f (0)

x 0




= 0

Hence
0x

)0(f)x(f




does not converge at the cluster point 0. Hence f is not differentiable

at 0.

Non differentiability at – 1:

If – 1 < x < 0
)1(x

)1(f)x(f




=

1 1

x 1




= 0 If x < - 1

f (x) f ( 1)

x ( 1)

 

 
=

1x

1x21




= - 2

As above we can show that

 1x
lim

1x

)1(f)x(f




= 0 and

 1x
lim

1x

)1(f)x(f




= - 2

Hence f is not differentiable at – 1.

y = -1 – 2x

y = 2x + 1

1
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Differentiability of f at other points and that f  (x) =














1xif2

0x1if0

0xif2

can be proved easily

16.5 Caratheodory Theorem:

Let f be defined on an interval I containing the point c. Then f is differentiable at c if and

only if there is a function  defined on I such that

(i)  is continuous at c and

(ii)  (x) (x – c) = f(x) – f(c) for x  I

In this case  (c) = f1(c).

Proof: Suppose f is differentiable at c. Write (x) =
cx

)c(f)x(f




if x  I – {c} and  (c) =

f1(c)

Then
cx

lim


 (x) =
cx

lim
 cx

)c(f)x(f




= f  (c) =  (c)   is continuous at c

It is clear from the definition of  that (x) (x – c) = f(x) – f(c) for x  I

Conversely suppose there is a function  on I satisfying (i) and (ii).

Then by the continuity of  at c we get (c) =
cx

lim


 (x) =
cx

lim
 cx

)c(f)x(f





Hence f is differentiable at c and f  (c) =
cx

lim
 cx

)c(f)x(f




= (c)

Hence f is differentiable at c and f  (c) = (c).

16.5.2 Illustration:

f(x) = x3 (x   ) for any c   f(x) – f (c) = x3 – c3 = x2 + xc + c2

f(c) = x3- c3 = (x-c) (x2 + xc+c2)

The function :    defined by (x) = x2+xc+c2 is continuous at c and

f(x) – f(c) = (x-c) (x) (x   ) Hence f is differentiable at c and f  (c) = (c) = 3c2

16.5.3 Example:

Given f:    , c   and f is differentiable at c and f(c) = 0

Show that |f| is differentiable at c if and only if f  (c) = 0
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Solution:

Since f is differentiable at c and f(c) = 0 there is a :    such that

(i)  is continuous at c

(ii) (x) (x-c) = f(x) = f(x) – f(c) for x   and (f(c) = 0)

(iii) (c) = f  (c)

|f| is differentiable at c if and only if there is :    such that

(i)  is continuous at c

(ii)  (x) (x-c) , |f(x)| - |f(c)| = |f(x)| = (x   )

and (iii)  (c) = | f  (c)|.

Thus if f is differentiable at c, from (ii) and we must have

 (x) (x-c) = |f(x)| = |(x)| |x-c|

i.e. (x) = |(x)|
)cx(

|cx|





since  is continuous at c we have from (iii)

| f  (c)| =  (c) =
cx

lim


| (x)|
)cx(

|cx|




=

cx
lim | (x)| (x > c  x – c > 0) =

cx
lim


| (x)| = |(c)|

also | f  (c)| =  (c) =
cx

lim - | (x)| (x < c  x-c<0) = -
cx

lim


| (x)| = - |(c)|

 | f  (c)| = - |f(c)|  | f  (c)| = 0  f  (c) = 0 conversely if f  (c) = 0

Write  (x) =
cx

|)x(f|


if x  c and  (c) = 0. Then

cx
lim


 (x) =
cx

lim
 cx

|)x(f|



=
cx

lim
 cx

|)c(f)x(f|




=

cx
lim
 cx

)c(f)x(f





cx

|cx|





since
cx

|cx|




=  1 and

cx
lim
 cx

)c(f)x(f




= | f  (c)| = 0

cx
lim


 (x) = 0 =  (c)

This proves continuity of  at c. Also  (c) = 0 = - f  (c) = | f  (c)|. Hence  satisfies the

conditions (i) (ii) (iii) stated above Hence |f| is differentiable at c.
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16.5.4 Chain rule:

Let I, J be intervals in  , f: I   and g: I   be functions such that f(J)  I and

c  J. if g is differentiable at f(c) and f is differentiable at c then the composite function

gof is differentiable at c and

(gof ) (c) = g (f(c)) f  (c)

Proof: We apply Caratheodory’s theorem. Write h = gof and d = f(c). since f is

differentiable at c, there is a function  defined on J such tat

(i)  is continuous at c,

(ii)  (x) (x-c) = f(x) - f(c) and for x  J and

(iii)  (c) = f  (c)

since g is differentiable at d = f(c), there is a function  defined on I such that

(iv)  is continuous at d,

(v)  (y) (y-d) = g(y) – g(d) for y  I and

(vi)  (d) = g (d)

write  (x) =  (f(x)) . (x) for x  J Since  is continuous at d = f(c) and  is continuous

at c.  is continuous at c.

For x  J, y = f(x)  f(J)  I so  (x) (x – c) =  (f(x))  (x) (x-c) =  (f(x)) f(x) – f(c) =

 (y) (y-d) = g(y) – g(d) = g(f(x)) – g(f(c)) = h(x) – h(c).

Again by carathiodory theorem h is differentiable at c and

h (c) =  (c) =  f(c) . (c) = g (f(c) f  (c).

Notation: If g is differentiable on I, f is differentiable on J and f(I)  J then by the chain

rule, for x  I (gof ) (x) = ( g of) (x). f  (x). Thus (gof ) = ( g of) . f  .

Using the D-notation in place of “/” for derivative, we have D (gof) = ((Dg) of). (Df).

16.5.5 Applications of chain rule:

16.5.5(a) If f: I   is differentiable on I there for n   fn is differentiable and for xI.

(fn ) (x) = n f n-1(x) f  (x)
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Reason: write g(y) = yn for y   and h = gof Then h(x) = g(f(x)) = (f(x))n. By chain

rule h (x) = g (f(x)) f  (x) = n(f(x))n-1 f  (x)

16.5.5 (b) If f: I   is differentiable and f(x)  0  f  (x) for all x  I then
f

1
is

differentiable on I and

1

f

 
 
 

(x) =
2

f (x)

(f (x))


for x  I

Reason: Write h(y) =
y

1
for y   , y  0

Then h is differentiable on  – {0} and h (y) =
2y

1
for y  0

Hence by the chain rule hof is differentiable on I and (hof ) (x) = h (f(x)) f  (x)


1

f

 
 
 

(x) =
2

f (x)

f (x)



16.5.5(c)

Let f(x) = sin
x

1
for x  0 f is differentiable on  – {0} and f  (x) =

1
cos

x

 
 
 








 
2x

1
for

x  0 Write g(x) =
x

1
(x  0) and S(x) = sin x (x   ) g is differentiable at all x  0 and

g (x) =
2x

1
for x  0 and S is differentiable at all x and S (x) cos x. also f(x) = sin

x

1
=

S(g x) = (Sog) (x) By chain rule f is differentiable for all x  0 and f  (x) = S (g(x)) g (x)

=
1

cos
x

 
 
 








 
2x

1
=

2x

1
cos

x

1
.

16.5.5 (d)

Using (c) and product rule show that the function f defined on  by

f(x) =



















)0x(0

)0x(
x

1
sinx 2
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is differentiable on  and f  (x) = 2x sin
x

1
- cos

x

1
(x  0) and f  (0) = 0

We have D
1

sin
x

 
 
 

=
2x

1
cos

x

1
for x  0 from (c) above and D(x2) = 2x for all x.

So by product rule, D (x2 sin
x

1
) = (D (x2)) sin

x

1
+ x2 D(sin

x

1
) = 2x sin

x

1
- cos

x

1
(x0)

0x
lim
 0x

)0(f)x(f




=

0x
lim


x sin
x

1
= 0

 (Df) (0) = 0.

16.5.5 (e)

g(x) = x2 sin
2x

1
(x  0) and g(0) = 0

0x

)0(g)x(g




= x sin

2x

1
(x  0)


g(x) g(0)

x 0




= |x sin

2x

1
| = |x| |sin

2x

1
| |x|

Let  > 0. If 0 < |x| < ,
g(x) g(0)

0
x 0





 |x| <  Hence

0x
lim
 0x

)0(g)x(g




= 0

So g is differentiable at 0 and g (0) = 0. If x  0 the functions t2,
2t

1
and sin t are

differentiable at x so by the product and chain rules, g is differentiable at c.

Further g (x) = x2 cos
2x

1
3

2

x

 
 
 

+ 2x sin
2x

1

= 2x sin
2x

1
-

x

2
cos

2x

1

When n   and xn =
1

2n 1) 
,

2
nx

1
= (2n+1) so that sin

2
nx

1
= 0 and cos

2
nx

1
= -1

And hence g (xn) = 2 2n 1  Since lim ( g (xn)) =  / g is unbounded.

16.6 Mean value Theorems

The mean value theorem relates the values of a function to values of its derivative. This

theorem permits one to draw conclusions about the nature of a function from the
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information about its derivative. Information about relative maxima and minima from

information about vanishing of the derivative as well, is drawn using this theorem.

Geometrically the mean value theorem says that every chord of the curve y = f(x) has a

parallel tangent line. Because of its many useful consequences the mean value theorem

may be called THE FUNDAMENTAL THEOREM OF DIFFERENTIAL CALCULUS.

Let I be an interval and c an interior point of I.

Definitions: f: I   is said to have a relative maximum at c  I if there is a nbd

V = V(c) of c such that f(x)  f(c) if x  V  I.

f is said to have a relative minimum at c  I if there is a nbd V = V (c) of c such that

f(c)  f(x) if x  V  I. we say that f has a relative extremum at c  I if f has either a

relative minimum at c.

Recall that f has absolute maximum (minimum) at c if f(x)  f(c) (resply f(x)  f(c)) for

all x  I. f is said to be monotonically increasing in I if f(x)  f(y) whenever x < y and

x  I, y  I f is said to be strictly monotonically increasing in I if f(x) < f(y) whenever

x<y and x  I, y  I monotonically decreasing and strictly monotonically decreasing are

defined analogously. We usually drop “monotonically” and say f is increasing /

decreasing instead of monotonically increasing / monotonically decreasing.

Interior extension theorem:

Let c be an interior point of I at which f: I   has relative extremum. If f is

differentiable at c then f  (c) = 0

Proof: We may assume that f has relative maximum at c. In case f has relative minimum

at c, -f has relative maximum at c. Since c is an interior point there is 1 > 0 such that (c -

1, c + 1)  I. Since f has relative maximum there is 2 > 0 such that (c - 2, c + 2)

 I and f(x)  f(c) for x  (c - 2, c + ) if f  (c) > 0 there is 3 > 0 such that (c - 3, c +

3)  I and
f (x) f (c)

f ` (c)
x c





<

f (c)

2


if x  (c - 3, c + 3) and x  c



Real Analysis 16.20 Differentiation - I


cx

)c(f)x(f




>

f (c)

2


> 0 if x  (c - 3, c + 3) and x  c  (1)

If  = min {1, 2, 3}, (c - , c + )  (c - i, c + i)  I for I = 1,2,3 and so f(x)  f(c) for

x  (c - , c + ). If c < x < c + , x – c > 0 and f(x) – f(c)  0 so that
cx

)c(f)x(f




 0,

contradicting (1). Hence f  (c)  0 i.e f  (c)  0. Similarly by considering (c-, c) we can

show that f  (c)  0 . Hence f  (c) = 0.

16.6.3 Corollary: If f: I   has relative extremum at an interior point c  I then

(i) either f is not differentiable at c or (ii) f is differentiable at c and f  (c) = 0

16.6.3 Remark: Theorem 16.6.2 does not guarantee differentiability of the function at a

relative extremum but merely assures that the derivative, if exists, at a relative extremum

must vanish. For example it is clear that the absolute value function f(x) = |x| has relative,

infact absolute minimum extremum at zero but f is not differentiable at 0.

16.6.4 Rolle’s Theorem: Let I = [a, b] and suppose that f is continuous on I,

differentiable on (a,b) and that f(a) = f(b) = 0. Then thee exists at least one point c in (a,b)

such that f  (c) = 0.

Proof: If f(x) = 0 for all x  I then f  (x) = 0 for all x  (a,b).

So we may assume that f(x0)  0 for some x0. We may further assume that f(x0) > 0 as

other wise we may consider – f. Since f is continuous on [a,b] f is bounded and attains

maximum there is c in [a,b] such that f(c)  f(x) for all x  [a,b]. Since f(c)  f(x0)>0 and

f(a) = f(b) = 0 a  c  b. i.e. c  (a,b). Since f has absolute maximum at c, f has relative

maximum at c. Hence by the interior extension theorem f  (c), if exists, must be zero. It

is assumed that f is differentiable in (a,b) so f is differentiable at c. Thus f  (c) = 0
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Remark: Rolle’s theorem guarantees the existence of root of f  (x) = 0 between two

consecutive roots of f(x) = 0, when f is differentiable.

16.6.5 Application: Rolles’ theorem can be used for the location of roots of a function.

16.6.5 Example (i): The roots of sin and cos functions interlace each other: i.e. between

any two roots of sin x there is a root of cos x and vice versa. This follows from Rolle’s

theorem and the fact that D sin x = cos x and D cos x = -sin x. If sin  = sin =0 and <

then by Rolle’s theorem there exists r in (, ) such that cos r = D sin r = 0. The other

part follows from the fact that D cos x = - sin x.

16.6.5 (ii) Example: If f is a polynomial of degree n > 1 with real coefficients and , 

are real numbers such that  <  and f() = f() = 0 i.e. if ,  are roots of the

polynomial f then there is a root r in (, ) such that f  (r) = 0. In particular suppose

c0, c1, …. cn are real numbers such that 0 1 nc c c
........... 0

1 2 n 1
   



Then the polynomial f(x) = c0 + c1x + ……….. + cn xn has a root in (0,1)

To show this we consider g(x) = c0 x + c1
2

x 2

+ …… + cn
1n

x 1n
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Since g(0) = g(1) = 0 by Rolle’s theorem there is   (0,1) such that g () = 0

But g1 (x) = f(x). hence f has a root in (0,1)

16.5.5 (iii) We consider yet another example. et f(x) = (x2 – 1) (x2 – 5x + 6).

Then f1 (x) = 2x (x2 – 5x + 6) + (x2 – 1) (2x – 5) he graphs of f and f  are given in Figure

16.6.5(iii) It is evident from this figure that each one of the roots of f  (x) = 0 lies in

consecutive roots of f(x) = 0.

16.6.6 The mean value theorem (Lagrange’s Mean value theorem):

Suppose f is continuous on a closed interval I = [a,b] and that f has a derivative in the

open interval (a,b). Then there exists atleast one point c in (a,b) such that

f(b) – f(a) = f  (c) (b – a)

Proof: Define g : I by g(x) = f(x) – f(a) -
ab

)a(f)b(f




(x – a) g is continuous in [a,b].

g is differentiable in (a,b) and g (x) = f  (x) -
ab

)a(f)b(f




and g(a) = 0 = g(b)
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So by Rolle’s theorem g (c) = 0 for some c  (a,b)

Since g (x) = f  (x) -
ab

)a(f)b(f





We get f  (c) =
ab

)a(f)b(f





so that f(b) – f(a) = (b – a) f  (c)

Geometrical Interpretation:

The theorem can be interpreted geometrically as it guarantees the existence of a tangent

to the curve y = f(x) which is parallel to the chord jointing the end points (a, f(a) ),

(b, f(b) ).

16.6.7 Theorem: Suppose that f is continuous on I = [a,b], and differentiable on (a,b) and

that f  (x) = 0 for all x in (a,b). Then f is constant on I.

Proof: We show that f(x) = f(a) for all x such that a  x  b

Suppose a < x  b. Then f is continuous on [a,x] and f  (x)

differentiable on (a,b). So by the Mean value theorem there

exists c  (a,x) such that

f(x) – f(a) = (x – a) f  (c) = (x – a) . 0 = 0

Hence f(x) = f(a). This is true for all x such that a < x  b figure 16.6.7

Hence f(x) = f(a) for x  I.

16.6.8 Corollary: Suppose f and g are continuous on I = [a,b] and differentiable on (a,b)

and f  (x) = g (x) for all x  (a,b) Then there is a constant k such that

f(x) = g(x) + k for x  [a,b]

Proof: The function h : I   defined by h(x) = f(x) – g(x) is continuous on [a,b],

differentiable on (a,b) and h (x) = f  (x1 – g (x) = 0 for all x  (a,b). hence by the

above theorem there is a constant k such that h(x) = k for all x  [a,b]
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So f(x) = g(x) + k for all x  [a,b].

Hence f  (x)  0 on I. Proof of (ii) is similar or we may apply (1) for – f.

Monotonicity: Let us recall that f: I   is monotonically (strictly) increasing on I if

f(x)  f(y) (resply f(x) < f(y) ) whenever x  I, y I and x < y. f is said to be

monotonically (strictly) decreasing on I if f(y)  f(x) (resply f(y) < f(x) ) whenever x  I,

y  I and x < y.

16.6.9 Theorem: Let f : I   be differentiable on I. Then

(i) f is increasing on I if and only if f  (x)  0 for x  I

(ii) f is decreasing on I if and only if f  (x)  0 for x  I.

Proof: (i) Suppose f  (x)  0 for x  I. If x  I, y  I and x < y then f is continuous in

[x,y] and differentiable in (x,y). So by the mean value theorem there exists z  (x,y) such

that f(y) – f(x) = (y – x) f  (z). Since y – x > 0 and f1 (z)  0 (y – x) f  (z)  0 so

f(y)  f(x). This holds for every x < y in I. Hence f is monotonically increasing on I.

If x  I and x > c, x – c > 0 and f(x)  f(c) 
cx

)c(f)x(f




 0

If x < c  x – c < 0 and f(x)  f (c) 
cx

)c(f)x(f




 0

Hence for x  c and x  I
cx

)c(f)x(f




 0

Hence
cx

lim
 cx

)c(f)x(f




= f  (c)  0. This is true for every c in I.

Hence f  (x)  0 on I. Proof of (ii) is similar or we may apply (i) for f.

Remark: Call f : I   , increasing at a print c  I if there is a neighborhood

(c–, c+)  I of c such that f is increasing on (c - , c + ) We may define strictly

increasing at a point, (strictly) decreasing at a point and monotonic at a point in a similar

way. The analogue of monotonicity for differentiable functions (Theorem 16.6.9 does not

hold good for monotonicity at a point. More precisely, it is not necessarily true if f  (c) >

0 then f is strictly increasing at c.
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16.6.10 Example: Let g(x) =











0xif0

0xif
x

1
sinx2x 2

if x  0
0x

)0(g)x(g




= 1 + 2 x sin

x

1
Since

cx
lim


x sin
x

1
= 0,

g (0) =
0x

lim
 0x

)0(g)x(g




= 1 Hence g (0) > 0

We show that g is not monotonically increasing in any nbd of 0.

Let  > 0 choose n   such that 0 <
1

n
< .

Then g
1

n

 
 

 
=

1

n
+ 0 =

1

n
> 0 (since sin n  = 0) g ( -

1

n
) = -

1

n
< 0 ( -  < -

1

n
<0)

Hence g(
1

n
) > 0 > g(-

1

n
) Hence g is not increasing in any nbd of 0.

First derivative test for extrema:

Let f be continuous on [a,b], c be any point of [a,b], f: [a,b]   be such that f is

differentiable in (a,c) and in (c,b). Then

(i) If there is a neighborhood V = (c - , c + ) of c such that V  I and f  (x)  0 if

c -  < x < c and f  (x)  0 if c < x < c +  then f has relative maximum at C.

(ii) If there is a neighborhood V. (c - , c + ) of c such that VI and f  (x)  0 if

c -  < x < c and f  (x)  0 if c < x < c +  then f has relative minimum at c.

Proof: We prove (i) Proof (ii) is similar.

Assume that there is a nbd V = (c - , c + ) of c such that (i) holds. If c -  < x < c then f

is continuous in [x,c] and differentiable in (x,c). So by the mean value theorem there is

  (x,c) such that f(x) – f(c) = (x – c) f  ()

Since x < , x – c < 0 and by (i) f  ()  0 so (x – c) f  ()  0, hence f (x) – f(c)  0.

Thus if c –  < x < c, f(x)  f(c) …………………………………………. (A)

If c < x < c +  we apply the mean value theorem to f on [c,x].
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There exists  in (c,x) such that f(x) – f(c) = (x – c) f  ( )

Since x > c, x – c > 0 and f  ()  0 so f(x) – f(c)  0

Thus if c < x < c + , f (x)  f(c) …………………………………………. (B)

From (A) and (B) f(x)  f(c) if c -  < x < c + 

Hence f has relative maximum at c.

In lesson 15 on continuous functions we proved that if f is continuous on [a,b] then f is

bounded, assumes its maximum and minimum values in the interval [a,b] and possesses

intermediate value property i.e. if a  x  b, a < y  b and f (x) <  < f(y) there is a c in

between x and y such that f(c)=.

We now extend this mean value property to derivatives as well. The hypothesis in the

intermediate value theorem is that f be continuous on [a,b]. However a derivative is not

necessarily continuous as can be seen from the following.

16.6.12 Example: Let f(x) = x2 sin
x

1
if x  0 f(0) = 0

Solution: f is differentiable at x  0 and by the product and chain rules

f  (x)=2 x sin
x

1
- cos

x

1

As
x

)0(f)x(f 
= x sin

1

x
for x  0 f  (0) =

x 0
lim
 x

)0(f)x(f 
= 0

Clearly f  (x) does not converge at 0 as lim cos
nx

1
= 1 when xn =

1

2n
and

lim cos
nx

1
= 0 when xn =

1

(2n 1)
2




.

Thus it is not necessarily true that a derivative is continuous.

Before proving intermediate value property for the derivative of a function we first prove

a lemma.
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16.6.13 Lemma: Let I be an interval in  , c  I and f : I   be differentiable at c.

Then

(a) If f  (c) > 0 there is  > 0 such that f(x) > f(c) if c < x < c +  and x  I.

(b) If f  (c) < 0 there is  > 0 such that f(x) > f(c) if c –  < x < c and x  I.

Proof: Suppose f  (c) > 0 then for  = f  (c) there is  > 0 such that if

x  (c - , c + )  I and x  c

`f (x) f (c)
f (c)

x c





< f  (c)


cx

)c(f)x(f




> f  (c) – f  (c) = 0 if c -  < x < c +  and x  I.

if c < x < c +  and x  I 0 < x – c <  so f(x) – f(c) = (x – c)
cx

)c(f)x(f




> 0

 f(x) > f(c) if c < x < c +  and x  I

This proves (a)

If f  (c) < 0 we take  = - f  (c) > 0. As above there exists  > 0 such that

cx

)c(f)x(f




< 0 if c -  < x < c + , x  I and x  c

If c -  < x < c and x  I then x – c < 0 so that

f(x) – f(c) = (x – c)
cx

)c(f)x(f




> 0

 f(x) > f(c) if c -  < x < c, and x  I.

16.6.14 Darboux theorem:

If f is differentiable on [a,b] and k is a number between f  (a) and f  (b) then there is at

least one c in (a,b) such that f  (c) = k.

Proof: We may assume that f  (a) < k < f  (b) as the proof is similar when

f  (b)<k< f  (a). Define g [a,b]   by g(x) = kx – f(x). Since f is differentiable in [a,b]

so is g. and g (x) = k – f  (x). Since f  (a) < k < f  (b)

g (a) = k – f  (a) > 0 > k – f  (b) = g (b)

Hence there is a  > 0 such that g(x) > g (a) if a < x < a +  and x  [a,b].
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10-1

-1

1

Since g is continuous on [a,b], g is bounded and attains maximum in [a,b]; i.e. there is

x0  [a,b] such that g(x)  g(x0) for all x in [a,b].

Since g(x) > g(a) if x  [a,b] and a < x < a + , it follows that x0  0. ------------ (1)

Again since g1 (b) = k – f1 (b) < 0, there is  > 0 such that

if x  [a,b] and b -  < x < b g(x) > g(b) As above it follows that x0  b.

Hence a < x0 < b. Since g has maximum at x0 and is differentiable at x0, g (x0) = 0

Since g (x0) = 0, f  (x0) = k. The theorem is thus proved.

16.6.15 Example:

The function g : [-1, 1]  [-1, 1] defined by

g(x) =














1x0if1

0xif0

0x1if1

Cannot be the derivative of any function; i.e. there is no f define on [-1, 1] such that

f  (x) = g(x). Because if such a function f exists then f  must have the intermediate value

property. However g does not have this property.

16.6.16 Applications of Mean value Theorem:

(i) The mean value theorem can be applied for approximate calculations and finding

error estimates.

Suppose we have to find an approximation for 105

Write f(x) = x . (x > 0). Then f1 (x) =
x2

1

We know that 100 < 105 < 121 ie 10 < 105 < 11

But 10 and 11 are “far away” from 105

Write a = 10 and b = 105 and apply the mean value theorem for f on [a, b]. There

exists c between 100 and 105 Such that 105 - 100 = 5. f1(c) =
c2

5

Thus 10 < c < 105 < 11

f(x)
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11

1
<

c

1
<

10

1


)11(2

5
<

c2

5
<

)10(2

5


22

5
< 105 - 100 <

20

5
=

4

1
.

 10 +
22

5
< 105 < 10 +

4

1
.

 10 . 2272 < 105 < 10.25

Thus starting with (10, 11) we are able to find a smaller interval that includes

105 - namely (10.2272, 10.2500)

we further improve this interval. since 105 < 10.2500 and 10 < c < 105

we get c < 10.2500


c2

5
>

)25.10(2

5
=

50.20

5
=

41

2x5
> .2439

Thus .2439 <
c2

5
= 105 - 10  10.2439 < 105 < 10.25

Clearly the interval (10.2439, 10.25) is contained in (10.2272, 10.25)

(ii) Apply the Mean value theorem to prove that ex > 1 + x if x  

Write f(x) = ex for x   . Then f is differentiable and f  (x) = ex.

If x > 0 f is continuous on [0, x] and is differentiable; so by the mean value

theorem there exists c in (0, x) such that

0x

)0(f)x(f




= f  (c)


x

ee 0x 
= ec

since f  (x) = ex > 0 f is monotonically increasing

Hence
x

ee 0x 
= ec > e0 = 1  ex > e0 + x = 1 + x if x > 0
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If x < 0
x

ee 0x 
= ec for some c in (x, 0)


x

1e x 
= ec =

ce

1


< 1

 ex – 1 > x (since x < 0)

 ex > 1 + x if x < 0.

Clearly e0 = 1 so ex > 1 + x for all x

(iii) Show by using the mean value theorem that

x

1x 
< ln x < x – 1 for x > 1

Solution: If x > 1, f(x) = ln x is continuous in [1, x] and differentiable in (1, x).

So, by the Mean value theorem there is c  (1, x) such that

1x

)1(f)x(f




= f  (c) =

c

1
. 

1x

1lnxln




=

c

1

Since 1 < c < x,
x

1
<

c

1
< 1 

x

1
<

1x

xln


< 1 

x

1x 
< lin x < x-1

(iv) Apply mean value theorem and prove that if a > 0, b > 0 and 0 <  < 1 then

a b1-  a + (1-) b.

write g(x) =  x - x for x  0. Then g (x) =  -  x-1 =  (1 - x-1)

If 0 < x<1,
x

1
> 1 so











1

x

1
> 1  x-1 < 1  g (x) =  (1 - x-1) < 0 if 0 < x<1.

If x > 1, 0 <
x

1
< 1  0 <











1

x

1
< 1 x1- > 1  x-1 < 1  1 - x-1 > 0 if x>1

So g (x) > 0 if x > 1

Now if x > 1 by the Mean value theorem there exists c in (1, x) such that

1x

)1(g)x(g




= g (c) > 0

Since x – 1 > 0, g(x) – g(1) =
1x

)1(g)x(g




(x-1) > 0
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 g(x) > g(1) =  -1 if x > 1  x - x >  - 1 if x > 1  x < x + (1-)

If a > b > 0,











b

a
<  .

b

a
+ (1-)  a b1- < a + (1-) b.

(v) If a > 0, b > 0 and 0 <  < 1 show that a b1-  a  + b (1-)

write g(x) = x - x for x  0. g is differentiable in (0, ) and

g (x) =  (1- x-1) if 0 < x

since 0 <  < 1, g (x) < 0 if 0 < x < 1 and g (x) > 0 if x > 1

If 0 < x < y by the Mean value theorem there exists c  (x, y) such that

xy

)x(g)y(g




= g (c) so that g(y) – g(x) = (y-x) g1(c) (1)

In particular if 0 < x < 1 there exists c such that x < c < 1 and g(1) – g(x) = (1-x)

g (c) < 0 so that g(1) < g(x). Hence g(x) >  - 1 if 0 < x < 1.

If x > 1 by (1) there is c in (1, x) such that g(x) – g(1) = (x-1) g (c)

Since c > 1, g (c) > 0 and x-1 > 0 so that g(x) > g(1) = -1

Thus for all x > 0, x  1 x - x > -1 i.e x <  x + 1- if x > 0 and x  1

clearly x = 1  x = x + 1- = 1. If a > 0 b > 0 and a  b put x =
b

a

Then











b

a
<

b

a
+ (1-)  a b1- < a + (1-) b.

if a = b clearly a b1- = a  + (1-)b

(vi) Bernoulli’s inequality:

If  > 1 and x > -1 (1+x) > 1 + x

Proof: When  is a natural number,  > 1 (1+x)+1 = (1+x) (1+x)

So if we assume that (1+x) > 1 + x  we get (1+x)+1 > (1 + x ) (1+x)

= 1 + (+1) x + x2  > 1 + x(+1)

However (1+x)1 = 1 + x.1 and (1+x)2 = 1 + x2+2x > 1+2x.

So the inequality holds when  = 2 and it is true for +1 whenever it holds for .

So by induction (1+x)  (1+x) for all natural numbers  > 1
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In the general case we write h(x) = (1+x). Then h (x) = (1+x)-1

If x > 0 we apply the Mean value theorem to h on [0, x]. There exists c in (0, x)

such that h(x) – h(0) = (x-0) h (c) = x (1+c)-1 > x   -1 > 0 & 1+c >1

Hence (1+x) - 1 > x. This implies that (1+x) > 1 + x if x > 0

If -1 < x < 0 apply the Mean value theorem to h on [x,0]. There exists c in [x, 0]

such that (0-x) h (c) = h(0) – h(x).  h(x) – h(0) = x h (c)

 (1+x) - 1 = x (1+c)-1 > x   (1+x) > 1 + x

16.6.17 Examples:

(i) f(x) = x +
x

1
(x  0)

f  (x) = 1 -
2x

1
= 0 if x =  1.

f  (x) > 0 iff 1 >
2x

1
i.e |x| > 1

and f  (x) < 0 iff |x| < 1 so f is increasing (strictly) in (-, -1)  (1, )

and strictly decreasing in (-1, 1)

f(1) = 2 and f(-1) = -2

also f(-x) = - f(x) so f is an add function

(ii) g(x) = 3x – 4x2

= - (4 x2-3x)

= -
2

3
2x

4

 
 

 
+

16

9

g (x) = 3 – 8x = 0 if x =
3

8

g (x) = - 8 < 0

so g has maximum at x =
8

3

maximum value is g 








8

3
=

16

9

g (x) < 0 if x >
8

3

g is strictly increasing in (
8

3
, )

g is strictly decreasing in (-,
8

3
)

8

3

9

16
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(iii) K(x) = x4 + 2x2 - 4

K (x) = 4x3 + 4x

= 4x (x2 + 1) = 4x (x2 +1)

= 0 if x = 0

> o if x > 0

< 0 if x < 0

Hence the curve y = K(x) increases in (0, ) and decreases in (-, 0)

Also K(x) = (x2 + 1)2 – 5  1 – 5 = -4 for all x so

K(x) has minimum at x= 0.

(iv) Show that the function f(x) = x5 + 4x +3 is continuous, strictly increasing and the

inverse g is differentiable at c = 1 and show that g (8) =
9

1

Solution: f  (x) = 5x4 + 4 > 0 for all x  

So f is strictly increasing on 

Hence f is bijective

If g = f  then for x    g(f(x)) = x

f  (x) = 5x4 + 4 and

g (f(x) f  (x) = 1 g is differentiable on  .

so g (f(x)) =
4x5

1
4 

=
`

1

f (x)

When x = 1, f(x) = 8 so g (8) =
45

1


=

9

1

16.6.18 Short Answer Question:

a) If f:    is differentiable at c show that
n

lim (n (f(c +
n

1
) – f(c))) = f  (c)

b) Show that there exist functions f:    such that
n

lim (n (f(c +
n

1
) – f(c)))

exists in  but f is not differentiable at c.

c) Discuss the differentiability of f(x) = 3

1

x (x   ) at 0.
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d) Discuss the differentiability at 0 of f(x) =




irrationalisxif0

rationalisxifx 2

e) If f is differentiable on  show that |f| is differentiable at all x   for which

f(x)  0. Evaluate |f | (x) whenever it exists.

f) Differentiate (i) (sin (xk))m m   and k   (x   ) (ii) tan (x2) (|x| <
2


)

g) Assume that L : (0, )   is such that L (x) =
x

1
. Calculate the derivatives of

(i) L (2x + 3) (ii) (L(x2))3 (iii) L (a x) (a > 0, x > 0) and (iv) L (L (x))

(x > 0, L(x) > 0)

(h) Prove straddle lemma:

Let f: I  be differentiable at c  I. Given  > 0 show that there exists ()>0

such that if c - (c) < x  C   < C + ()

|f() – f(u) – (-u) f  (c)| <  ( -u).

i) Apply the Mean value theorem to show that –x  sin x  x for all x  0 and

-|x|  sin x  |x| for all x.

j) Show that |sin x – sin y|  |x -y|

k) Let f: [a, b]   be continuous on [a, b] and differentiable on (a, b)

If
ax

lim


f  (x) = A show that f is differentiable at a and f  (a) = A

l) Find the maxima and minima of x2-3x+5

and the intervals in which f increases and decreases.

m) Let h(x) = x3-3x-4. Find the maxima and minima for h and the intervals in which

h is increasing and decreasing.
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16.7 Solutions to SAQ’s

(a) If f:   is differentiable at c then lim (n (f(c +
n

1
) – f(c)) ) = f  (c)

Solution: Given  > 0 there is  > 0 such that if 0 < |x-c| < ,
f (x) f (c)

f (c)
x c





< 

If n   and n >


1
,

n

1
<  so putting x = c +

n

1

we get

1
f (c ) f (c)

n f (c)
1/ n

 
 < 

Thus if n >


1
and n  , | n (f(c +

n

1
) – f(c)) – f  (c)| < 

Hence lim {n (f(c +
n

1
) – f(c) ) } = f1(c)

Solution: (b) Define f(x) = x sin
x


if x  0; f(0) = 0

If n   n {f(0+
n

1
) – f(0)}= n {

n

1
sin n } = sin n  = 0. So lim n(f(

n

1
) – f(0) ) = 0

But, if x  0,
0x

)0(f)x(f




= sin

x

1
and sin

x

1
does not converge at the point 0.

Hence f is not differentiable at 0.

Solution (c)

f(x) = x1/3 (x   ) is not differentiable at 0.

0x

)0(f)x(f




=

x

x 3/1

=
3/2x

1

lim
n

1
= 0 but since f(

n

1
) = n2/3, lim f(

n

1
) = +  Hence f is not differentiable at 0.

Solution (d):

f(x) = x2 if x is rational and 0 if x is irrational
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f is differentiable at 0 and f  (0) = 0

for x  0
0x

)0(f)x(f




=

0x

0x 2




= x if x is rational

=
0x

00




= 0 if x is irrational

Hence |
0x

)0(f)x(f




|  |x|

If  > 0, |x| <  if 0 < |x-0| = |x| < 

Hence
0x

lim
 0x

)0(f)x(f




= 0

So f is differentiable at o and f  (0) = 0.

SAQ (e)

If f is differentiable on  then |f| is differentiable at all x   for which f(x)  0.

At such x, |f | (x) is given by

|f | (x) = (sgn f(x)) f  (x) =
f (x) if f (x) 0

f (x) if f (x) 0

 


 

The absolute value function g(x) = |x| is differentiable at all x  0 and

g (x) =












0xif1

0xif1
= sgn x

if h(x) = |f(x)| then h = gof. Since f is differentiable on  and g on  – {0}, h is

differentiable at all x for which f(x)  0 and for such x,

|f | (x) = L = g (f(x)) f  (x)

= (sgn f(x)) f  (x)

In particular let f(x) = x2 – 1 for x   .

|f(x)| = |x2 – 1| =










1|x|ifx1

1|x|if1x
2

2

f  (x) = 2x

So |f | (x) = (sgn f(x)); f  (x) =








1|x|ifx2

1|x|ifx2
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SAQ (f)

(i) (sin xk)m  , k  

Let h(x) = sin (xk). h (x) = K (sin xk) xk-1

Then (hm ) = m h(m-1)(x) h (x)

= m (sin xk)m-1 k. sin xk . xk-1

= k m (sin xk)m . xk-1

 (hm ) (x) = k m . xk-1, (sin xk)m

(ii) tan (x2) (|x| <
2


)

Let h(x) = tan (x2) |x| (<
2


)

 h (x) = sec2 x2, 2x

= 2x sec2 x2.

SAQ (g)

Assume that L (0, )   is such that L (x) =
x

1
for x > 0. Calculate the derivative of

(i) f(x) = L (2x+3) for x > 0

By chain rule f  (x) = L (2x+3) . 2 =
3x2

2



(ii) g(x) = (L(x2))3 for x > 0

g (x) = 3 (L (x2))2 L (x2) . 2x

= 3(L (x2)2 .
2x

x2
=

x

6
(L (x2))2

(iii) h(x) = L(a x) for a > 0 x > 0

h (x) = L (a x) . a =
ax

a
=

x

1
.

(iv) k(x) = L(L(x)) when L(x) > 0, x > 0

= L (L(x)) . L (x)

=
)x(L

1
.

x

1
=

)x(Lx

1
.
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SAQ (h)

Straddle lemma

Let f: I   be differentiable at c  I Given  > 0 there exists () > 0 such that if

C - () < u  c   < c + (), |f() – f(u) – ( - u) f1(c)|   ( - u)

Proof: Since f is differentiable at c, given  > 0 there exists  () > 0 such that

if 0 < |x-c|  ()

f (x) f (c)
f (c)

x c





< 

Hence if c - () < u < c

f (u) f (c)
f (c)

u c





< 

 |f(u) – f(c) – f  (c) (u-c)| <  (c-u).

if c <  < c + ()

|f() – f(c) – f1(c) (v-u)| <  (v-c)

 |f(v) – f(u) – (v-u) f  (c)|

= |f(v) – f(c) – f  (c) . (v-c) + f(c) – f(u) – f  (c) (u-c)|

 |f(v) – f(c) – f  (c) (v-c)| + |f(u) – f(c) – f  (c) (u-c)|

<  (c-u + v-c) =  (v-u)

SAQ (i)

Apply the Mean value theorem to show that

-x  sin x  x for all x  0 and - |x|  sin x  |x| for all x.

Solution:

Define g(x) = sin x. Then g (x) = cos x

If x > 0 by the Mean value theorem applied to g on [0, x]

We get c in (0, x) so that
0x

)0(g)x(g




= g (c) 

x

xsin
= cos c  -1 

x

xsin
 1

 -x  sin x  x if x > 0 If x = 0 equality occurs and the above inequality holds if x  0

If x < 0, -x > 0 so that -(-x)  - sin (-x)  (-x)
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 x  - sin x  - x  x  sin x  - x

Thus for all x   -|x|  sin x  |x|

SAQ (j)

Show that |sin x – sin y|  |x-y|

Write f(x) = sin x Then f  (x) = cos x

If x < y f is continuous in [x, y] and differentiable in (x, y) so by the Mean value

theorem there is z in (x, y) such that

yx

)y(f)x(f




= f  (z) 

yx

ysinxsin




= cos z 

|yx|

|ysinxsin|




= |cos z|  1

 |sin x – sin y|  |x - y|

SAQ (K)

Let f: [a, b]   be continuous on [a, b] and differentiable on (a, b). If
ax

lim


f  (x) = A,

then f is differentiable at a and f  (a) = A.

Solution: Since
ax

lim


f  (x) = A, given  > 0 there is  such that

0 <  < b-a and if a  x < a +  then | f  (x) – A| < 

If a < y < a + , we apply the Mean value theorem to f on [a, b], then there is x0 such that

a < x0 < y and
ay

)a(f)y(f




= f  (x0)


f (y) f (a)

A
y a





= | f  (x0) – A| < 

This is true for every  > 0 so
ay

lim
 ay

)a(f)y(f




= A  f  (a) = A

SAQ (l)

f(x) = x2-3x+5 = (x -
2

3
)2 +

4

11
f  (x) = 2(x -

2

3
)2 = 0  x =

2

3

f  (x) = 2 > 0 so f has minimum at x =
2

3
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f  (x) > 0 if x >
2

3
and f  (x) < 0 if x <

2

3

Hence f is increasing in
3

,
2

 
 

 
and decreasing in

3
,

2

 
 
 

Remark: If a  0 f has extremum value at
a2

b
f(x) = ax2 + bx + c.

If a > 0 the extremum is minimum and If a < 0 the extremum is maximum

In either case the value is f(a) =
a4

bac4 2

SAQ (m)

h(x) = x3 – 3x – 4

h (x) = 3x2 – 3 = 3 (x2-1) = 3(x-1) (x+1)

h (x) = 0 if x = -1 or x = 1

h (x) < 0 if x2 < 1 ie |x| < 1

h (x) > 0 if x2 > 1 ie |x| > 1

Hence h is increasing (strictly) in (-, -1)  (1, ) and h is strictly decreasing in

(-1, 1) h(-1) = -1 + 3 - 4 = -2 h(1) = 1 – 3 - 4 = -6 h(x) = x3 (1-
x

3
-

3x

4
)  - as x- 

h(x)   as x  + .

16.9 Summary

After introducing the notion of derivative at a point a few interesting consequences of

differentiability of a function are proved and then Caratheodory theorem and the chain

rule are established. These results are followed by the Mean value theorems and their

applications to extremum problems. Finally number of applications and examples are

provided to enable the student to gain experience in finding solutions for problems on

differentiation.

16.10 Technical terms:

Differentiable, derivative, Intermediate value, maximum, minimum and extremum
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16.11 Exercises

Use the definition to find the derivative of the following function

(i) f(x) =








0xif0

0xifx 3

(ii) h(x) =








0xif0

0xifx

(iii) g(x) =





















0xif0

0xif
x

1

0xif
x

1

2

(iv) h(x) = |x|3 (x  )

2. Is f(x) =
5x

1
(x  0), f(0) = 0 differentiable at 0?

3. f(x) =
2x if x is rational

0 if x is irrtional





show that f is differentiable at zero. Find f  (0)

4. Which of the following are true? Justify.

(a) If f is differentiable at c   , so is |f|

(b) If |f| is differentiable at c   , so is f.

5. Differentiate and simplify

(a) g(x) = 2xx25 

(b) k(x) = tan (x2) |x| <
2



6. If f(x) = f(-x) for x   , f is called an even function if f(x) = -f(-x) for x   , f is

called odd function. (a) Show that if f(x) = 0 if x is rational and f(x) = -x if x is irrational

then f is even function.

(b) if g(x) = 0 if x is rational and g(x) = x if x is irrational then g is odd function

(c) If f is odd and differentiable, show that f  is an even function
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(d) If f is even and differentiable show that f  is an odd function.

(e) Give examples of even functions and odd function which are not

differentiable.

7. Let h(x) = x3+2x+1, x   . Assume that h is invertible show that h-1 is differentiable

and find ((h-1(y))` when y = 0, and y = z

8. Prove corollary 16.4.10

9. Prove corollary 16.4.11

Answers to exercise:

1. (i) f  (x) =








0xif0

0xifx3 2

(ii) h (x) =












0xif0

0xif,
x2

1

(iii) g (x) =
















0xif
x

2

0xif
x

1

3

2

(iv) h (x) =










0xx3

0xx3
2

2

and g (0) doesn’t exist

2. f is not differentiable at x = 0

4. a. True

b. False eg: f(x) =




 irrationalisxifx

rationalisxifx

then |f| = x  x   is differentiable, but f is not differentiable

5. a.
2xx25

1x




, b. 2x Sec2 (x2)

If f(x) = sin x x ,
2 2

   
  
  

show that f is monotonically increasing and one – one.
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Let f(x) =








0xif0

0xifx n

where n is a positive integer

Show that f is differentiable when x  0. Is f differentiable at 0? For what values of

n   is f  differentiable?

Find the derivative of

(a) 2xx25  (b) (sin xk)m (m  , k  )

Find the points in  at which the following are differentiable and find the derivative at

these points

(a) |x + 1| + |x-1|

(b) 2x + |x|

(c) x |x|

(d) |sin x |

If f(x) = f(-x) for all x   and f is differentiable on  show that f  (x) = - f  (-x)

If h(x) = x3+2x+1 show that h is one-one  .

Find (h-1) (x) when x  {0, 1, -1}.

16.12 Model Examination Questions

1. State and prove chain rule for differentiation

2. Show that if f is differentiable in (a, b) then f is continuous in (a, b). Is the

converse true? Justify.

3. State and prove Rolles’ theorem

4. State and prove the mean value theorem

5. State and prove Caretheodory theorem for derivatives

6. State and prove Darboux theorem for derivatives
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7. Show that if f is differentiable (a, b) and has maximum at c  (a, b) then f  (c)=0

8. If f(x) = x3 – x in [-1, 1] find all x in (-1, 1) such that f  (x) = 0

9. If r> o is a rational number and g:    is defined by

g(x) = xr sin
x

1
if x  0 and g(0) = 0

determine r for which g is differentiable at 0.

10. Discuss the differentiability of f(x) = |x| + |x+1|

11. Apply the mean value theorem to prove ex > 1 + x if x  

16.13 Model Practical problem with solution

Let g(x) =














1x0if1

0xif0

0x1if1

Show that g is not the derivative of any function on [-1,1]

Aim: To show that there does not exist a differentiable function f on [-1, 1] such that

f  (x) = g(x) for -1  x  1.

Definition: If I   is an interval, a  I, f: I  

We say that f is differentiable at c if

ax
lim
 ax

)a(f)x(f




exists in  .

In this case we call the limit, the derivative of f at a and denote by f  (a)

If f is differentiable at every point of I we say that f is differentiable on I.

Result: Darboux theorem: If f is differentiable on [a, b] and K is any real number

between f  (a) and f  (b) then there exists c in (a, b) such that f  (x) = c
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Solution: Suppose there is a differentiable function f on [-1,1] such that f  (x) = g(x) for

all x in [-1, 1]. Then by Darboux theorem for every k between -I = g(-1) = f  (1) and

I = g(1) = f  (1) there must exist c in (-1, 1) such that g(c) = f  (c) = k.

But this does not hold good as Range g = {-1, 0, 1}.

K. SAMBASIVA RAO
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Lesson - 17

DIFFERENTIATION II - L’HOSPITAL’S RULES
AND TAYLOR’S THEOREM

17.1 Objective:

In this lesson the student will be introduced to some useful techniques for solving problems

on differential calculus based on “Indeterminate forms”. Taylor’s theorem and applications will also
be placed before the student to enable to employ these techniques wherever necessary.

17.2 Structure:

17.3 Introduction

17.4 L’Hospital’s Rules

17.5 Proofs for L’Hospital’s Rules

17.6 Higher Order Derivatives

17.7 Solutions to SAQ’s

17.8 Summary

17.9 Technical Terms

17.10 Exercises

17.11 Answers

17.12 Model Examination Questions

17.13 Model Practical Question with Solution

17.3 Introduction:

The (Lagrange’s) mean value theorem relates the slope of the chord connecting the end

points on the graph to the slope of the tangent at a point on the curve corresponding to an interior
point of the domain. Because of various important consequences and applications this fundamental
theorem has a special status in Differential Calculus. An important extension of this illustrious
theorem is Cauchy’s mean value theorem. Evaluation of the limit of a quotient is hitherto restricted
to the situation where the denominator converges to a nonzero (finite) limit and the cases where

0)(lim)(lim  xgxf
xx

. )(lim xg
x

were not discussed earlier,
g

f
is said to be an indetermi-

nate form when 0)(lim)(lim  xgxf
xx

. The symbolism
0

0
is used to refer to this situation.

Differentiation plays significant role in situations of this type. The limit theorem, known as L’Hospital’s
rule (H silent and is pronced Lopila’s Rule) first appeared in “L’Analyse dis infinement patits” written
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by Marquis Guillame Francors L’Hospital, though it was first discovered by John Bernouli from
whom L’Hospital learnt the new differential calculus. The initial theorem was refined and extended
and the various results are collectively referred to as L’Hospital’s Rules. Other indeterminate forms

are represented by the symbols



, ,0 , 00 , 1 , 0 and  . We focus our attention on

the indeterminate forms
0

0
and




. The other indeterminate forms are usually reduced to one of

the above two, by algebraic manipulations, taking logarithms and exponential.

A very useful technique in Analysis of real functions is the approximation of a function by
polynomials. Brook Tayolor is the inventor of this technique that involves higher derivatives of the
function. However a detailed discussion on the remainder which is the basis for estimation of the
error was initiated by lagrange after a long gap.

17.4 L’Hospital’s Rules:

17.4.1 Theorem: Let f, g be defined on [a, b], 0)()(  agaf and 0)( xg for bxa  . If f

and g are differentiable at a and 0)(' ag then
)('

)('

)(

)(
lim

ag

af

xg

xf
ax




.

Proof: If bxa  ,

)()(

)()(

0)(

0)(

)(

)(

agxg

afxf

xg

xf

xg

xf











)()(
.

)()(

agxg

ax

ax

afxf










Since
ax

afxf
af

ax 






)()(
lim)(' and 0)(' ag so that

)()(
lim

)('

1

agxg

ax

ag ax 






We get
)(

)(
lim

xg

xf
ax

exists and
)('

)('

ag

af


17.4.2 Example: The result fails to hold if one of f(x) and g(a) is nonzers as is evident from the
following example.

Let 4)(  xxf and 32)(  xxg for Rx .

,4)(lim
0




xf
x

3)(lim
0




xg
x

so
0

( ) 4
lim

( ) 3x

f x

g x




17.3 .Differentiation II - L’Hospital’s Rules ......Real Analysis

1)(' xf , 2)(' xg for all x so that
2

1

)0('

)0('


g

f

17.4.3 Cauchy Mean Value Theorem:

Let f and g be continuous on ],[ ba and 0)(' xg for all x in (a, b). Then there exists c in

(a, b) such that

)('

)('

)()(

)()(

cg

cf

agbg

afbf






Proof: If )()( bgag  by Roller’s theorem there is some c in (a,b) such that 0)(' cg con-

trary to the hypotheses. Hence )()( agbg  .

Define ))()(())()(()( afxfagxgAx  for bxa  where A is chosen so that

0)()(  ba  . This condition implies that
)()(

)()(

agbg

afbf
A






Clearly  is differentiable in (a, b) and continuous in [a, b] and 0)()(  ba  .

Hence by Rolle’s Theorem there is c in (a, b) such that 0)(' c .

 A 0)(')('  cfcg

 )()(

)()(

)('

)('

agbg

afbf

cg

cf






Geometric interpretation: The function 2],[: RbaH  defined by ))(),(()( tgtftH 

represents a curve in the plane. The above conclusion means that there is a point ))(),(()( cgcfcH 

on the curve so that the slope of the tangent at this point is equal to the slope of the chord jouring
H(a) and H(b).

Remark: When xxg )( Cauchy mean value theorem reduces to the mean value theorem.

17.4.4: Rule I :

Let  bca and f, g be differentiable in (a, b) and let 0)(' xg for all ),( bax .

Suppose that 0)(lim)(lim 


xgxf
axax

. Then

(a) If RL
xg

xf
ax


 )('

)('
lim then L

xg

xf
ax


 )(

)(
lim
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(b) If  


,
)('

)('
lim L

xg

xf
ax

then L
xg

xf
ax


 )(

)(
lim

 similar conclusions are valid when the left limits are taken at b and limits are taken at c.

17.4.5 Rule II:

Let  bca and f, g be differentiable in (a, b) and let 0)(' xg for all ),( bax .

Suppose that 


)(lim xg
ax

. Then

(a) If L
xg

xf
RL

xg

xf
axax


 )(

)(
lim,

)('

)('
lim

(b) If   L
xg

xf
L

xg

xf
axax


 )(

)(
lim,

)('

)('
lim

similar conclusions are valid when the left limits are taken at b and limits are taken at c.

Indeterminate forms such as , .0 , 1 , 0 . 00 , 0 can be reduced to the above

cases by algebraic multiplications and use of logarithmic and exponential functions.

Proofs of Rule I and Rule II are provided in Appendix.

17.4.6 Examples:

(i) Find
x

x
x

sin
lim

0
.

xxgxxf  )(,sin)( are defined for x in ),0( 

0limsinlim
00




xx
xx

x
xgxxf

2

1
)(',cos)('  for ),0( x

2

coscos

)('

)('
lim

2
10

xxx

xg

xf

x
x




0lim
0




x
x

and 1coslim
0




x
x

.

Hence 0cos2lim
sin

lim
00




xx
x

x
xx

.
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(ii) Find :
cos1

lim
0 x

x
x




Cos x and x are defined for ),0( x

0cos1lim
0




x
x

, 0lim
0




x
x

x
xxx

2

1
)'(,sin)'cos1( 

0sin2lim
sin

lim
0

2
10




xx
x

x
x

x

Another Method:

for ,0x x
x

x

x

x







 


 0coscoscos1
.

  
x

x
x

x

x
xx

0coscos
lim

cos1
lim

00







x
x 


0

lim .
x

x
x

0coscos
lim

0




= 0.0 = 0.

(iii) 1
1

lim
0




 x

ex

x

Method 1 : The function xexf )( . So

1)0('
0

)0()(
lim

1
lim 0

00










ef
x

fxf

x

e
x

x

x

Method 2: Let 1)(  xexf and xxg )( . Then 1)(',)('  xgexf x

0)(lim)(lim
00




xgxf
xx

and
0

0 0

'( )
lim lim 1

'( ) 1

x

x x

f x e
e

g x 
   .

Hence 1
1

lim
0




 x

ex

x
.
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(iv)
2

11
lim

20



 x

xex

x
.

Let 2)(,1)( xxgxexf x  .

0)(lim)(lim
00




xgxf
xx xxgexf x 2)(',1)('  and

0 0
lim '( ) lim '( ) 0
x x

f x g x
 

  .

''( ) ,xf x e ''( ) 2g x  .

by (iii) above,
0 0

''( ) 1
lim lim

''( ) 2 2

x

x x

f x e

g x 
 

Hence
0 0

( ) ''( ) 1
lim lim

( ) ''( ) 2x x

f x f x

g x g x 
  .

17.4.7 Examples:

(a) 0cos2lim
.

cos
lim

sin
lim

01
2
100




xx
x

x

x
x

x
xx

Here xxf sin)(  and xxg )( are defined ),0(  0)(lim)(lim
00




xgxf
xx

0
2

1
)(' 

x
xg in ),0(  Hence Rule I applies.

(b)
2

1

2

cos
lim

2

sin
lim

cos1
lim

0020





x

x

x

x

x
xxx

Here xxf cos1)(  and 2)( xxg  are derived on )0,(),,0(  ,0)(lim)(lim
00




xgxf
xx

0)(' xg in ),0(  and )0,(

Hence Rule I applies. We have to consider left limit and right limit at 0.

x

x

xg

xf

xg

xf
xxx 2

sin
lim

)('

)('
lim

)(

)(
lim

000 
 and

x

x

xg

xf

xg

xf
xxx 2

sin
lim

)('

)('
lim

)(

)(
lim

000 


The same process is to be adopted to find
x

x
x

sin
lim

0
.

Observe that we cannot consider directly the limit as 0x as 0)0(' g .
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(c) 1
1

lim
1

lim
00






x

x

x

x

e

x

e
.

Here ( ) 1, ( ) ,xf x e g x x   0)(lim)(lim
00




xgxf
xx

, 1)(' xg for all x . Hence Rule I

applies.

Observe that application of Rule I requires that the derivative of xe is xe . However this

derivative is obtained at 0 by considering the limit on l.h.s.

(d) 1
1

lim
1

ln
lim

1

11


 

x

xx x

x

Here 1)(,ln)(  xxgxxf . The functions are defined on ),0(  0)(lim)(lim
11




xgxf
xx

1)(' xg for all ),0( x and
x

xf
1

)('  .

Hence Rule I applies.

Here also
1

lim
x

ln

1

x

x 
=

1

ln ln 1
l i m ( ln ) '

1x

x
x

x





at 1x which is obtained directly..

(e)
x

x
x

ln
lim


.

Here ( ) ln , ( )f x x g x x  . are defined on ),0(  and 1)(',
1

)('  xg
x

xf . By Rule II

0
1

lim
ln

lim
1




x

xx x

x
.

(f)
2.lim xe x

x




.

xx exgxxfexgxxf  )(',2)('.)(,)( 2

By Rule II xxxxx e

x

e

x

xg

xf 2
limlim

)(

)(
lim

2


 .

We apply Rule II again to x2 and xe and get 0
2

lim
2

lim 
 xxxx ee

x
.

(g)
x

x
x ln

sinln
lim

0
.
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xxgxxf ln)(,sinln)(  on 








2
,0


.

x

x
xf

sin

cos
)(' 

x
xg

1
)('  . Rule II is applicable.

x

x
x

x

xx

x

x
xxx sin

.coslim
1

)(sin(cos
lim

ln

sinln
lim

000 


1
sin

lim.coslim
00


 x

x
x

xx
.

17.4.8 Other indeterminate forms.

Many indeterminate forms such as , 0.0, 1  , ,00 0 can be reduced to one of

the L’Hospital’s Rules stated earlier by use of algebraic manuplations and the use of logarithmic
and exponential functions. Instead of formulating these variations as theorems, we illustrate the
pertinent techniques by means of examples.

Examples:

(a) Let 









2
,0


I and consider 









 xxx sin

11
lim

0
which has the indeterminate form 











 xxx sin

11
lim

0
=

xx

xx
x sin

sin
lim

0




=
xxx

x
x sincos

1cos
lim

0 




=
xxx

x
x sincos2

sin
lim

0 




= 0
2

0


(b) Let ),0( I and consider xx
x

lnlim
0

which has the indeterminate form ).(0  we have

0 0

ln
lim( ln ) lim

1x x

x
x x

x
   


=

2
0 1

1
lim

x

x
x  = )(lim

0
x

x



= 0.

(c) )(lim
0

x

x
x


).0( x This is of the form 00 , We have xxx ex ln

Since the function yey  is continuous at 0.

Hence  ln 0

0 0
lim lim 1x x x

x x
x e e

   
   .
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(d)
1

lim 1 ,( 1)
x

x
x

x

 
  

 
. This is of the form 1 . Write

x

x










1
1 =











x
x

e
1

1(ln

x

x

x
x

xx 1

1
1ln

lim
1

1lnlim





















=

 
2

2

1
1

1

lim






 











x

x
x

x

= 1
1

1
lim

1



x

x

Since yey  is continuous at 1, we have
11

lim 1
x

x
e e

x

 
   

 
.

(e) )0(
1

1lim
0












x

x

x

x
. This is of the form 0 .

 
x

x
x 1

0
1lnlim 


=

 

x

x

x 1

1

0

1ln
lim




=
x

x 10 1

1
lim

 = 0

Thus we have 1
1

1lim 0

0












e

x

x

x
.

17.4.9 SAQ: Let f be differentiable on ),0(  and suppose that Lxfxf
x




)(')(lim .

Show that Lxf
x




)(lim and 0)('lim 


xf
x

.

17.4.10 SAQ: Let )(xf

and xxg sin)(  if Rx . Show that 0
)(

)(
lim

0


 xg

xf
x

. Explain why L’Hospital rule is not applicable.

17.5. Proofs for L’Hospital’s Rules:

17.5.1 Proof for L’ Hospital’s Rule I :-

Proof: If ba   and )()(  gg  , by the Mean Value Theorem.

There is ),( c such that 0
)()(

)(' 







 gg
cg which is a contradiction. So )()(  gg 

2x if x is rational

0 if x is irrational
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whenever   .

By the Cauchy Mean Value Theorem applied to f, g on ],[  there is ),( u such that

( ) ( ) '( )

( ) ( ) '( )

f f f u

g g g u

 

 




  (2)

(a): suppose R
xg

xf
L

ax


 )('

)('
lim . If 0 there is 0 such that baa   and if ( , )x a c

where  ac ,
2)('

)('

2





 L

xg

xf
L .  (3)

Thus any u that corresponds to ],[  satisfying (2) satisfies (3),

2)()(

)()(

2










 L

gg

ff
L





Letting 0 a we get 





 LL
g

f
LL

2)(

)(

2 


. if ca   .

  L
g

f

)(

)(




if  belongs to (a, c]

Hence
)()(

)()(
lim

)(

)(
lim

agxg

afxf
L

g

f
axa 




 




(b) If L , for every 0M there corresponds ),( bac

such that if cxa  M
xg

xf


)('

)('
.

suppose ca   . For every  in ),( a there exists u in ),(  satisfying

)('

)('

)()(

)()(

ug

uf

gg

ff










 for ever  in ),( a , M
gg

ff






)()(

)()(




.

Since
a

lim 0)(lim)( 





gf
a

, we by letting M
g

f
a 

)(

)(




 .
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This holds for every ),( ca . Hence L
xg

xf
ax


 )(

)(
lim . The proof of the following

L’Hospital’s rule for left limits is similar to the above result, hence omitted.

17.5.2 Theorem:

Let , ba f, g be differentiable on (a, b) and 0)(' xg for all x in (a, b). Suppose

further that 0)(lim0)(lim
00




xgxf
bxbx

.

Then if L
xg

xf
bx


 )('

)('
lim

0
exists in R or  


,

)('

)('
lim

0
L

xg

xf
bx

. Then L
xg

xf
bx


 )(

)(
lim

0
.

The following corollary is an immediate consequence of L’ Hospitals rules for left and right
limits.

Corollary: Let  bca ; f and g be differentiable on (a, b) and 0)(' xg for all x in (a, b).

Suppose further that 0)(lim)(lim 


xgxf
cxcx

. Then if L
xg

xf
cx


 )('

)('
lim where RL or   ,L

then
( )

lim
( )x c

f x
L

g x
 .

Proof for L’ Hospital’s Rule II:

17.5.3 : If ba   there is ),( u such that
)('

)('

)()(

)()(

tg

tf

gg

ff









.

(a) If Rl
xg

xf
ax


 )('

)('
lim and 0 there exists ),( bac such that

 l
xg

xf

)('

)('
if cxa  .  l

xg

xf
l

)('

)('
if cxa  .

 



 l

gg

ff
l

)()(

)()(




if ca    (1)

Fix  in (a, c). since 


)(lim xg
ax

there is
1c .

such that  1ca and )(1)(  gg  for ),( 1ca

 0)( g and )()(  gg  if ),( 1ca .
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 0
)(

)()(








g

gg
.

 )(

)()(
)(

)(

)()(

)(

)()(
)(













g

gg
l

g

ff

g

gg
l










 


















)(

)(
1)(

)(

)(

)(

)(

)(

)(
1)(

















g

g
l

g

f

g

f

g

g
l

Since 


)(lim xg
ax

0
)(

)(
lim 

 


 g

g
a

.

Hence for any  in (0, 1) there exists d in ),( 1ca such that

1
)(

)(
0 





g

g
and 






)(

)(

g

f
if ),( da .

Hence 



  )(

)(

)(
)1)(( l

g

f
l .

If we take the above 0 min 1, ,
1 l

 
  

    
  

then we get

 2
)(

)(
2 l

g

f
l




if da  .

i.e.
( )

2
( )

f
l

g




   if a d 

Hence l
g

f
a


 )(

)(
lim






.

(b) If l and 1M there exists ),( bac such that M
ug

uf


)('

)('
for all ),( cau .

As above if ca   , we get M
gg

ff






)()(

)()(
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Since )(xg as  ax as above we fix  in (a, c) and find
1c in ),( a such that

)(2)(  gg  and 0)( g so that
2

1

)(

)(
0 





g

g
if

1cca 

This fields
2)(

)(
1

)(

)()( M

g

g
M

g

ff




















.

So that )1(
2

1

)(

)(

2

1

)(

)(
 M

cg

cf
M

g

f




for  in ),( 1ca .

This holds for every 1M .

Hence 
 )(

)(
lim




 g

f
a

The proof similar when l .

Remark: L’Hospitals rule II holds for the left limit at b.

Corollary: Let  bca and f and g be differentiable in (a, b) and 0)(' xg for all x in

(a, b).

Further suppose that

Rl
xg

xf
cx


 )('

)('
lim or   ,l .

If 


)(lim xg
x

then

l
xg

xf
cx


 )(

)(
lim .

17.6 Higher Derivatives:

Let I be an interval and RIf : be differentiable on I . For every x in I we write )(' xf

for the derivative of f at x . Thus RIf :' defines a function on I . If 'f is differentiable at Ix

we call the derivative of 'f at x , the second derivative of f at x and denote this by ''( ).f x If 'f has

derivative on I, we call the function RIf :" , the second derivative function. We thus inductively

define )()( xf n at Ix as the derivative of )1( nf at x . In order that )(nf exists at x it is neces-

sary that )1( nf is defined in a neighborhood of I . The sequence  0/)()( nxf n where
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)()()0( xfxf  and  
1( ) ( 1)( ) ( )n nf x f x for 1n is called the sequence of successive deriva-

tives at x .

These successive derivatives play an important role in dermining the behaviour of the
function f at x .

17.6.1 Taylor’s Theorem:

Let Nn , [ , ], :I a b f I R  be such that f and its derivatives )(,........",' nfff are con-

tinuous on I and )1( nf exists on (a, b). If Ix 0 , then for any x in I there is a point c between

0x and x such that

1
1 ( ) ( 1)0 0 0

0 0 0

( ) ( ) ( )
( ) ( ) ( ) ...... ( ) ( )

1! ! ( 1)!

n n
n nx x x x x x

f x f x f x f x f c
n n


  

    


.

Proof: We apply Rolle’s theorem to the function

)()()( 0

1

0

xF
xx

tx
tFtG

n













 where

( )( )
( ) ( ) ( ) ( ) '( ) ... ( )

!

n
nx t

F t f x f t x t f t f t
n


      . for Jt

J, being be the closed interval with end prints 0x and x .

Clearly 0)()( 0  xGxG and )(
!

)(
)(' )1( tf

n

tx
tF n

n




By Rolle’s Theorem, there exists c in J with xcx 0 such that 0)(' cG .

 0)(
)(

)(
)1()(' 01

0








xF

xx

cx
ncF

n

n

 )('.
)(

)(

1

1
)(

1
0

0 cF
cx

xx

n
xF

n

n










)(.
!

)(
.

)(

)(
.

1

1 )1(
1

0 cf
n

cx

cx

xx

n
n

n

n

n


 








1
0

)1(

)(
)!1(

)( 





 n
n

xx
n

cf
.

 )(
)!1(

)(
)(

!

)(
........)(')()()( )1(

1
0

0
)(0

000 cf
n

xx
xf

n

xx
xfxxxfxf n

n
n

n
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17.6.2 Lagrange’s form of the Remainder:

We write
( )0

0 0 0 0

( )
( ) ( ) ( ) '( ) ......... ( )

!

n
n

n

x x
P x f x x x f x f x

n


    

nP is called the n-th degree Taylor Polynomial.

)1(
0

)1(

)(
)!1(

)(
)( 






 n
n

n xx
n

cf
xR

is called the Lagrange (or derivative) form of the remainder.

We then get )()()( xRxPxf nn  .

17.6.3 Remark:

The Remainder )(1 xRn after n terms in the Taylor’s theorem involves x , n and c that

depends on x. The theorem guarantees the existence of one c satisfying the condition of the theorem

but this c is not necessarily unique. As such )(xRn is not a function of x . However it is possible in

some cases that for every 0 there is NN 
such that for any fixed x and every n depending on

,x and
 Nn what ever the c be )(xRn .

In this case it is customary to say that 0)( xRn as n .

17.6.4

If xexf )( show that the remainder term in Taylor’s theorem for each 0x “Converges to

Zero” (see remark at the end).

Let xexf )( . then for Nn
xn exf )()( and 1)0()( nf .

Hence by Taylor’s theorem for ,Rx 0x and Nn there is 1nc such that

10 nc x  and

1
(1) ( ) ( 1)

1( ) (0) (0) ..... (0) ( )
! ( 1)!

n n
x n n

n

x x
e f x f xf f f c

n n




     


)(
)!1(!

.........
!2

1 1
)1(

12









 n
n

nn

cf
n

x

n

xx
x .



Centre for Distance Education Acharya Nagarjuna University17.16

So that the remainder after n terms is

11

1 .
( 1) !

ncn

n

x e
a

n



 


.

n

n

c

c

n

n

e

e

n

x

a

a 1

.
1

1





. Here xc ee n 1 and 1nce .

 1
1




n

xe

a

a x

n

n
since x is independent of n and 0

1

1
lim 

n
it follows 0lim na .

APPLICATIONS OF TAYLOR’S THEOREM:

17.6.5 Use Taylor’s Theorem with n=2 to approximate 3 1 x for 1x .

Write
1
3( ) (1 )f x x  ( 1)x  

3
2

)1(
3

1
)('



 xxf ,
3

1
)0(' f .

5
3

1 2
"( ) (1 )

3 3
f x x

 
  

  9

2
)0("


f .

By Taylor’s theorem with n = 2 and 00 x we get

2 31 2 1 1 1
( ) 1 . . . '"( )

3 3 2 3 3!
f x x x f c x    for some c between 0 and x .

8
3

10
"'( ) (1 )

27
f c c



  .

Thus
8

321 1 1 10
( ) 1 . 1

3 9 3! 27
f x x x c

 
     
 

. When 0x  , 0c  so
8

30 (1 ) 1c


   .


21 1 5

( ) 1
3 9 81

f x x x
 

    
 

.

For example when 3.0x
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1 3 1 9
(0.3) 1 . . 1.09

3 10 9 100
f     and

8
3

3

25 3 1
(1 ) 0.17 10

81 10 600
c X

  
    

 
.


23 105.09.13.1  X

(b) Approximate e with an error less than 510 .

Write xexg )( . then xk exg )()( for all x and Nk .

so that 1)0()( kg for all Nk . The Taylor Polynomial )(xPn for xexg )( is given by

2

( ) 1 ...
2! !

n

n

x x
P x x

n
    

The Remainder for 1x  is given by

(1)
( 1)!

c

n

e
R

n



for some )1,0(c .

Since 3 eec we have to find Nn such that
510

)!1(

3
)1( 




n
Rn

i.e. 5103)!1( Xn 

By Direct computation, 360,45!8  and 880,62,3!9 

so that 8! 3 x 510 9!

Thus we get 91n and hence 8n .

Thus the required approximation is

!8

1
...........

!3

1

!2

1
11)1(8  Pe 71828.2 , the error being less than 510 .

(e) Show that x
x

cos
2

1
2

 if for all x R

Let ,cos)( xxf  00 x . Taylor’s Theorem with n = 2 gives )(
2

1cos 2

2

xR
x

x  where

6
.sin

!3

)('"
)(

3
3

2

x
cx

cf
xR  .
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Since If 0 ,x   0 0c c    and 0)(0
6

2

3

 xR
x

.

If 0 x then 0 sin 0c c     and 0)(0
6

2

3

 xR
x

.

So x
x

cos
2

1
2

 for all x in ],[  .

If x then x
x

cos13
2

1
2

 .

Hence
2

1cos
2x

x  for all x R .

17.6.6 SAQ: Show that
2

11
82

1
3 x

x
xx

 if 0x . Using these in equalities find ap-

proximations for 2.1 and 2 .

17.6.7 SAQ: For any Nk and 0x show that

2 3 2 2 3 2 2 1

............. ln(1 ) ...
2 3 2 2 3 2 2 1

k k kx x x x x x x
x x x

k k k



          


17.6.8 SAQ: If 10  x and Nn show that

2 3 1
1ln(1 ) ( ... ( 1)

2 3 1

n n
nx x x x

x x
n n


       



Use this to approximate )5.1ln( with an error less than

(a) .01 (b) .001

Let us recall that if I is an interval in R and Ic , RIf : has relative maximum (mini-

mum) at c if there is a nighborhood IcV )( such that ( ) ( )f x f c ( ( ) ( ))f x f c if Ix
and that f has relative extremum at c if f has either a relative maximum or a relative minimum at c.
Applying Taylors theorem we now derive sufficient conditions for relative maximum and relative
minimum.

17.6.9 Theorem:

Let I be an interval, 0x be a point of I , 2n and suppose that the derivatives )(,.....",' nfff
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exist and are continuous in a neighborhood of 0x and ( 1)
0 0 0'( ) "( ) ..... ( ) 0,nf x f x f x   but

( )
0( ) 0nf x  .

(i) If n is even and ,0)( 0
)( xf n , f has a relative maximum at 0x .

(ii) If n is even and 0)( 0
)( xf n , f has a relative minimum at 0x .

(iii) If n is odd then f has neither relative maximum nor relative minimum at 0x .

Proof: Write )(
)!1(

)(
........)(')()()( 0

)1(
1

0
0001 xf

n

xx
xfxxxfxP n

n

n








 and

)(
!

)(
)( )(0

1 cf
n

xx
xR n

n

n


 where c is in the open interval with end points 0x and x .

If Ix , by Taylor’s Theorem we get c between 0x and x such that )()()( 11 xRxPxf nn  

where 1nR corresponds to this c.

Since )(nf is continuous in )( 0xV and 0)( 0
)( xf n there is neighborhood U centred at 0x

such that )( 0xVU  and if Ux . )()( xf n and )( 0
)( xf n have the same sign. If Ux , as c lies

in 0x and x , c belongs to U so that )()( cf n and )( 0
)( xf n will have the same sign.

(a) Suppose n is even:

Case (i): If 0)( 0
)( xf n then for Ux and c satisfying the condition of Taylor’s theorem, 0)()( cf n

and 0)( 0  nxx . so that 0)(1  xRn . Hence )()( 0xfxf  for Ux . Therefore f has relative

minimum at 0x .

Case (ii): If 0)( 0
)( xf n then as above 0)()( cf n and 0)( 0  nxx . So that 0)(1  xRn and

hence f has relative maximum at 0x .

(b) Suppose n is odd. then 0)( 0  nxx if 0x and 0)( 0  nxx if 0x x . Consequently

)(1 xR n  and )(1 yR n  have opposite signs if yxx  0 in U. Thus f cannot have relative

maximum or relative minimum at 0x .

17.6.10 Example:

Determine whether 0x is a point of relative extremum of
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(a) xx sin (b) 23 x

(a) Let xxxf  sin)( .

1cos)('  xxf 0)0(' f

1sin)(''  xxf 0)0('' f .

Since 0)0('' f f has relative maximum at 0.

(b) Let 2)( 3  xxf

23)(' 2  xxf 2)0(' f .

If f has relative extremum at 0, )0('f must be zero.

Hence f does not have relative extremum at 0.

17.6.11 Leibnitzs Rule for the nth derivative of the Product:

If f and g are differentiable in (a, b) then for Nn and Ix

( ) ( ) ( )

0

( ) ( ) ( ) ( )
n

n n k k

k

n
fg x f x g x

k




 
  

 
  (1)

Write nP for (1), ka for )()( xf k and kb for )()( xg k .

)()'( xfg = )(')()()(' xgxfxgxf 

=
(1) (0 ) (0 ) (1)1 1

( ) ( ) ( ) ( )
1 0

f x g x f x g x
   

   
   

, hence P
1
is true assume that nP holds.

Differentiating l.h.s. and r.h.s of (1).

 ( 1) ( 1) ( ) ( ) ( 1)

0

( ) ( ) ( ) ( ) ( ) ( )
n

n n k k n k k

k

n
fg n f x g x f x g x

k
    



 
  

 


 1 1
0

n

n k k n k k
k

n
a b a b

k
   



 
  

 


1 0 1 1 0 1............
0 0 1 1

n n n n

n n n n n n
a b a b ab a b

n n n
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1

1 0 1 0 1
0 1

n

n n k k n
k

n n
a b a b a b

k k



   


    
       

    


101

1

0
01

)!1()!1(

!

)!(!

!





 













  nkkn

n

k
n baba

knk

n

knk

n
ba

1011

1

0
01

)!()!1(

)1(!





 




  nkn

n

k
n baba

knk

nn
ba

10)1()1()1(

1

0
01

)!()!1(

)!1(





 




  nkkn

n

k
n baba

knk

n
ba

1

1
0

1n

n k k
k

n
a b

k



 


 
  

 


( ) 1

0

1
( ) ( )

n
n k k

k

n
f x g x

k


 



 
  

 


Hence 1nP is true. Thus nP holds for all Nn .

17.7 Solutions to SAQ’s:

17.4.9 SAQ:

Let f be differentiable on ),0(  and suppose that  lim ( ) '( )
x

f x f x L


  .

Show that Lxf
x




)(lim and 0)('lim 


xf
x

.

Solution: Write xexfxg )()(  and xexh )( . g and h are differentiable on ),0(  .




x

xx
exg lim)(lim

'( ) ( ( ) '( )) ,xg x f x f x e  xexh )('

So   Lxfxf
xh

xg
xx




)(')(lim
)('

)('
lim .
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Hence by L’Hospital’s Rule II L
xh

xg
x


 )(

)(
lim

 Lxf
x




)(lim  0)('lim 


xf
x

.

17.4.10 SAQ: Let 2)( xxf  for x rational

= 0 for x irrational,

and xxg sin)(  for Rx . Show that 0
)(

)(
lim

0


 xg

xf
x

. Explain why L’ Hospital rule cannot be used.

Solution:

)(xf

So, x
x

fxf






0

)0()(
 0

0

)0()(
lim

0





 x

fxf
x

 0)0(' f .

Suppose 0x and xy  .

x y
xy

xfyf



 )()(

rational rational xy
xy

xy




 22

rational irrational
xy

x



 2

irrational rational
xy

y



2

irrational irrational 0

So
xy

xfyf
xy 




)()(
lim doesn’t exist when 0x .

So )(' xf doesn’t exist in  0R .

2x if x is rational

0 if x is irrational
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So L’Hospital’s rule is not applicable for any g.

However when ,sin)( xxg  xxg cos)(' 


)(

)(

xg

xf

0 if x is irrational

x

x

x

x

x
x

x

x

xg

xf

sinsinsin)(

)(
0

2



0
lim 1
x

Sinx

x
 , so

2

0
lim 0
x

x

Sinx
 and '(0) 0f  , '(0) 1g  .

Hence
)0('

)0('
0

)(

)(
lim

0 g

f

xg

xf
x




.

17.6.6 SAQ:

Show that
31 1 1

1 1 1
2 2 2

x x x x      if 0x

using these inequalities find approximations for 2.1 and 2 .

Solution : Let xxf  1)( for 0x

2
1

)1(
2

1
)('



 xxf
2

1
)0(' f

1
2

1 1
''( ) . .(1 )

2 2
f x x


 

4

1
)0(''


f

2
52

5

)1(
8

3
)1(

2

3
.

2

1
.

2

1
)('''







 xxxf

If 0x by Taylor’s theorem there exist
1c and

2c in ),0( x such that

)("
!2

)0(')0(1)( 1

2

cf
x

xffxxf  and also

x

x

sin

2

if x is rational
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)('''
!3

)0("
!2

)0(')0(1)( 2

32

cf
x

f
x

xffxxf  .

Thus   2
3

1

2

1
4

1
.

22

1
11










 
 c

x
xx   2

5

2

3
2 1.

8

3
.

!38

1

2

1
1



 c
x

xx

Since ,0)1(
8

2
3

1

2




c
x

xx
2

1
11 

Since 0)1(
16

2
5

2

3




c
x 2

8

1

2

1
11 xxx 

Thus we get if 0x ,

xxxx
2

1
11

8

1

2

1
1 2 

Since 2.012.1  so we have
10

2
.

2

1
12.1

100

4
.

8

1

10

2
.

2

1
1  .

on simplification we get 1.12.1095.1 

Similarly
2

1
12

8

1

2

1
1   5.12375.1 

17.6.7 SAQ:

For any Nk and 0x show that

122
.........

32
)1ln(

2
...........

32

12232232






k

x

k

xxx
xx

k

xxx
x

kkk

Solution: For 0x
1

( (1 )) '
1

ln x
x

 


.

Hence

( )

( 1) ( 1)1
(ln(1 )) ( 1) (1 ) !

1

k

k k kx x k
x

   
     

 
.

 The Taylor’s Polynomial is given by

n

xx
xxP

n
n

n
1

2

)1(........
2

)( 
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and the remainder is given by

1
.)1()(

1
1







n

x
cxR

n
nn

n for some ),0( xc

Thus if 0x and kn 2 , 0)()( 2  xRxR kn

and if 12  kn , 0)()( 12   xRxR kn

Hence the required inequality follows.

17.6.8 :

If 10  x and Nn show that

1
)1(........

32
()1ln(

1
1

32







n

x

n

xxx
xx

nn
n

 (1)

use this to approximate 5.1ln with an error less than

(a) .01 (b) .001

Solution: Let )1ln()( xxf  for 10  x . Then for Nn

11)( )1()!1()1()(   nnn xnxf so that )!1()1()0( 1)(   nf nn

By Taylor’s theorem

)()()( xRxPxf nn 

Where )0(
!

........)0(')0()( )(n
n

n f
n

x
xffxP 

and
1

)1(

)!1(

)(
)( 




 n

n

n x
n

cf
xR for a suitable ),0( xc

So
!

)1(
)!1(

)1(..........
2

0)( 1
1

2
2

n

x

n

xx
xxP

n
n

n
n

n



 




and
11

1

)1(
1

)1(
)( 







 nn

n

n xx
n

xR


1

)(



n

x
xR

n

n
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1

)()(



n

x
xPxf

n

n

To find approximation for )5.1ln( we use the inequality (1)

Since ln(1 ) ( )
1

n

n

x
x P x

n
  


and the maximum limit for error in (a) is

100

1
01.  , we find n

so that
1

1 100

nx

n



when

2

1
x and see direct computation that

4.2

1

100

1

160

1

5.2

1
45

 .

Thus when n = 4

100

1

160

1

2

1
)5.1ln( 4 








 P .

Hence 2 3 4

1 1 1 1
0.40

2 2 .2 2 .3 2 .4
    is the r required approximation for )5.1ln( with error .01.

The maximum limit for the error in (b) is
1000

1
001.  .

As above we can show that

001.
2

1
)5.1ln( 5 








 P so that

405.0
2

1
5 








P is the required approximation in this case.

17.8 Summary:

This lesson covers several important results in differential calculus including Cauchy Mean
Value theorem, L’Hospital’s rules Taylor’s theorem sufficient conditions for relative extrema and so on
and a good number of applications such as finding n th roots and polynomial approximations
involving higher order derivatives with error estimations.

17.9 Technical Terms:

Indeterminate forms - Higher order derivatives - Local extrema error bounds.

17.10 Exercises:

1. Suppose that f and g are continous on [a, b], differentiable on (a, b) that 0)( xg for ],[ bax .



17.27 .Differentiation II - L’Hospital’s Rules ......Real Analysis

Let Axf
cx




)(lim and Bxg
cx




)(lim . If B = 0 and
)(

)(
lim

xg

xf
cx

exists in R show that A = 0.

2. In addition to the hypothesis in excercise 1 above

Let 0)( xg for ],[ bax , ,cx  show that if B = 0

(1) 
 )(

)(
lim

xg

xf
cx

if 0A and

(2) 
 )(

)(
lim

xg

xf
cx

if 0A  .

3. Evaluate the following limits where the domain of the quotient is as indicated

(a)
x

x
x sin

)1ln(
lim

0













2
,0


(b)
x

x
x

tan
lim

0









2
,0


(c)
x

x
x

cosln
lim

0









2
,0


(d) 30

tan
lim

x

xx
x













2
,0


(e)
x

xArc
x

tan
lim

0
  , (f) 20 )(ln

1
lim

xxx  1,0

(g) xx
x

lnlim 3

0
),0(  (h) xx e

x3

lim


),0( 

(i) 2

ln
lim

x

x
x 

),0(  (j)
x

x
x

ln
lim


),0( 

(k)
0

limlogsin
x

x


),0(  (l)
xx

xx
x ln

ln
lim




),0( 

4. Evaluate the follwing limits

(a)
x

x
x2

0
lim


),0(  (b)

x

x x












3
1lim

0
),0( 

(c)

x

x x












3
1lim ),0(  (d) 










 xArcxx tan

11
lim

0
),0( 
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(e) xx
x

1

lim


),0(  (f)
x

x
x)(sinlim

0
),0( 

(g)
x

x
xsin

0
lim


),0(  (h)

)tan(seclim

2

xx
x




 








2
,0


5. Let ).0.(sin)(  aaxxf Find )()( xf n for Nn and Rx .

6. If
2)()()( yxyfxf  for all yx, in R show that f is constant function.

7. If xxg sin)(  show that the remainder term in Taylor’s theorem converges to zero as n

for each fixed 0x and x .

8. Show that 5040

1

1206
sin

53











xx
xx if 1x .

9. Determine whether or not x = 0 is a point of relative extremum of

(a)
6

sin
3x

x  (b)
2

1cos
2x

x 

10. If 0x show that
)1(2

)1ln(
2

22

x

x
x

x
x


 .

11. Show that the function f defined by

xxf 1)( if 10  x

1 x if 21  x

has minimum at x = 1. Is f differentiable at x = 1?

12. Show that
242

1cos
42 xx

x  for Rx .

13. If
3)( xxf  show that f possesses the first three derivatives at all 0x and )0('"f does not

exist while 0)0('')0('  ff

(Hint: If 0x 23)(' xxf  , xxf 6)(" 

If 0x
2'( ) 3f x x , xxf 6)("  )
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17.11 Answers:

a b c d e f g h i j k l

3 1 1 0 3
1 1  0 0 0 0 0 0

4 1 1 3e 0 1 1 1 0

5 axaxf nnn sin)1()( 2)2( 

axaxf nnn cos)1()( 12)12(  

6 (a) No (b) relative minimum at 0.

17.12 Model Examination Questions:

1. State and prove Rolle’s Theorem.

2. State and prove Cauchy Mean Value Theorem.

3. Verify Lagranges Mean Value Theorem for axxf cos)(  in 








2
,0


4. Find
x

x
x

sin
lim

0
.

5. Show that 1
1

1lim
0













x

x x

6. Show that x
x

x sin
6

3

 if Rx .

7. Show that if f is differentiable in (a, b) and 0)(' xf for all ),( bax then )()( yfxf  when

yx  .

8. If
3

)( xxg  show that )(''' xg does not exist when 0x .

9. Derive Leibnitz’s rule for the n th derivative of the product

( ) ( )

0

( ) ( ) ( ) ( )
n

n n k k

k

n
fg x f x g x

k




 
  

 
 .
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10. Show that xx
x

x
2

1
11

82

1
1

2

 if 0x .

17.13 Model Practical Questions with Solution:

Question: Let
x

xxxf
1

sin2)( 44  if 0x and 0)0( f . Show that f has relative minimum at

0 but that the derivative assumes both positive and negative values in every neighborhood of 0.

1. AIM:

(i) f has absolute minimum at o, i.e. )0()( fxf  for all Rx

(ii) If 0 there exist x, y in )0(v such that )('0)(' yfxf  .

2. Definitions:

(a) Absolute minimum : If E R , REf : is said to have absolute minimum at Ra if

)()( afxf  for all Ex .

(b) Derivative at :x E R  If F R , a E and a is a limit point of E, RA is said to be a

derivative of f at a if A
h

xfhxf
h






)()(
lim

0
.

(c) Neighborhood of a point : If     axRxaVRa /)(,0, is called a neighborhood

of a.

3. Results to be used in the solution:

(i) 1sin  for all R .

(ii) Archimedis Principle.

4. Solution: (i) : If Rx , 04 x and from 3( )i , 1
1 sin 1

x
  


444 1

sin x
x

xx 


4 4 4 4 4 41

0 2 2 sin 3x x x x x x
x

     

 )0()( fxf  for all x .
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(ii)
3 3 21 1

'( ) 8 4 sin cosf x x x x
x x

  

= 









xx
xxx

1
cos

1
sin482

So 0)(' xf or 0)(' xf accordinaling as 0
1

cos
1

sin48
)('

2


xx
xx

x

xf
or < 0.

If Nn , 0sin n and nn )1(cos 

So if n even and
n

x
1



01
8)('

2


nx

xf
if 1

8


n
i.e. if



8
n and if m is odd and

1
x

m
 .

2

'( ) 8 8
( 1) 1 0

f x

x m m 
     

If 0 we choose an even inter n and an odd integer
8 1

,mn
n


 

  and
8

,
m




 .

This is possible by the Archimedis Principle.

- K. Sambasiva Rao
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18.1 .Riemann Integration - IReal Analysis

Lesson - 18

RIEMANN INTEGRATION - I

18.1 Objective:

To introduce the notion of Riemann Integral for an arbitrary function Rbaf ],[: , provides

a good number of examples and establish that Riemann integrability of f implies boundedness of f
and Riemann integral obeys linearity conditions and order property.

18.2 Structure:

18.3 Introduction

18.4 Definition and Examples

18.5 Linearity and Other Properties

18.6 Examples

18.7 Solutions to SAQ’s

18.8 Summary

18.9 Technical Terms

18.10 Exercises

18.11 Model Examination Questions

18.12 Model Practical Problem with Solutions

18.3 Introduction:

The integral, mostly known as antiderivative is very much used in finding Lengths of Curves,

Areas of plane regions and volumes etcetra. Taking inspiration from the idea that the area bounded
by a plane curve may be approximated by finding the area of the rectangular regions on the bases
obtained by partitioning the domain into successive nonoverlapping intervals, the Riemann sums
are defined without imposing boundedness of the function defining the curve. For each partition of
the domain [a, b] into nonoverlapping intervals we assign tags in the subintervals and find the sum

of the areas of the areas of the rectangles formed by the intervals 1[ , ]i ix x and having height ( )if t ,

it being the tag in 1[ , ]i ix x . This sum is the Riemann sum. If these Riemann sums approach a

“limit” when the max length of the sub intervals of P is “reduced” f is said to be Riemann integrable.
This definition has an advantage over other definitions including the one that uses upper and lower
sums as we need not assume that f is bounded.

In this lesson we present the definition of Riemann integral, show its uniqueness, derive
boundedness of a Riemann Integrable function and provide a good number of examples.

18.4 Definitions and Notation:

Let I be a closed and bounded interval in , [ , ]I a b . By partition of [a, b] we mean a

finite collection of points  bxxxaP n  ..,.........,: 10 where nxxx  ...........10 . For
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11 ,[ , ]i ii n x x  is called the i th subinterval of P. We also write   11 ],[  i
n

ii xxP . We call

1 iii xxx , the length of the i th subinterval ],[ 1 ii xx and write

P maximum  nixx ii   1/)( 1 is called the norm (also mesh) of R.

A tagged partition of [a, b] is a partition of [a, b] with a collection of points  it where it lies

in the i th subinterval of the partition i.e. 1[ , ]i i it x x . If  1 1
[ , ]

n

i i i
P x x 
 is a partition of [a, b] and

iii xtx 1 for ni .......,.........2,1 then   1 1
[ , ],

n

i i i i
P x x t 
 is a tagged partition. We define norm

P


= norm P and write P P


.

If  1 1
[ , ],

n

i i i i
P x x t 




is a tagged partition of [a, b] and :[ , ]f a b  we define the

Riemann sum of f corresponding to P


to be the number
1

( , ) ( )
n

i i
i

S f P f t x


 


; where

1 iii xxx .

If 0)( xf when bxa  then for every i )()( 1 iiii tfxxA  is the area of the

rectangle with base ],[ 1 ii xx  and height )( itf .

Further
1

( , )
n

i
i

S f P A





is the sum of the areas of the rectangles formed by the heights

)( itf . and the bases ],[ 1 ii xx  .

18.4.1 Definition:

Rbaf ],[: is said to be Riemann integrable if there exists a number A such that for

every 0 there corresponds 0  such that if P


is any tagged partition with P  


( , )S f P A 


.

Any number A satisfying the above conditon is called Riemann integeral of A and we write

0
lim ( , )

b

P
a

S f P A fdx


  


. 
b

a

fdx is also denoted by 
b

a

f .
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The set of all Riemann integrable functions over [a, b] is denoted by R[a, b].

Note: When we write
0

lim ( , )
P

S f P A





, it does not really mean that l.h.s. is a limit as we

have not so far defined limit except for functions defined on a subset of  at a limit point and for a

sequence.

18.4.2 Examples:

(i) Calculate the norm of  4,4,3,2,5.1,1,0:P

]1,0[:1I , ]5.1,1[:2I ]2,5.1[:3I ]4.3,2[:4I and ]4,4.3[:5I .

If   abbal ],[ then 1)( 1 Il , )(5.)( 32 IlIl  , 4.1)( 4 Il and 6.)( 5 Il .

So  )(),(),(),(),(max 54321 IlIlIlIlIlP    4.16.0,4.1,5.0,5.0,1max 

(ii) Find Q where  4,5.3,5.2,5,.0Q

]5,.0[1 I , ]5.2,5[.2 I , ]5.3,5.2[3 I , ]4,5.3[4 I , ),(5.)( 41 IlIl  ,2)( 2 Il

x
0 t

1 x
1 t

2
x

2 t
3

x
3 t

4 x
5 t

5
x

5 t
6

x
6

Fig. 18.2.1
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1)( 3 Il , 2Q .

(iii) Find ( , )S f P


where :[0,4]f  is given by 2)( xxf  and  
5

1 1
[ , ],i i i i

P x x t 
 , it is the left

end point of ],[ 1 ii xx  and P is the partition in (i) above

clearly 4.3,2,5.1,1,0 54321  ttttt

56.11)(4)(25.2)(1)(0)( 54321  tftftftftf

So )(56.11)(4)(25.2)(1)(0),( 4534231201 xxxxxxxxxxPfS 

161.14936.66.5125.15. 

(iv) Calculate ( , )S f P


when :[0,4]f  is given by 2)( xxf  , P is as in (i) and the tags are

right end points.

11 t , 5.12 t , 23 t , 4.34 t , 45 t , 1)(1 tf , 25.2)( 2 tf , 4)( 3 tf , 56.11)( 4 tf ,

16)( 5 tf , ( , ) 1.1 (2.25)(.5) (4)(.5) (11.56)(1.4) (16)(0.6) 29.909S f P      


18.4.3 : Every constant function f is Riemann integrable on [a, b] and  
b

a

abkfdx )(

Where kxf )( for all x in [a, b].

Let   2

11 ],,[


iiii txxP be any tagged partition





n

i
iii xxtfPfS

1
1))((),( 




n

i
ii xxk

1
1)(. )( abk  .

Hence If 0 and ( )   and
.

P is any tagged partition with P  


 0)(),( abkPfS . Hence ],[ baRf  and  
b

a

abkfdx )(

18.4.4 SAQ: If ],[ baRf  and if  nP is any sequence of tagged partitions of [a, b] such that

lim 0n
n

P 


then   
b

a

n
n

fdxPfS ,lim .
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18.4.5 SAQ:

Let )(xg

Show that there is a sequence  nP


of tagged partitions of [0, 1] such that lim ( , ) 0n
n

S g P 


.

Show also that ]1,0[Rg  .

18.4.6 SAQ: Suppose :[ , ]f a b  is bounded,
nP


and
nQ


are tagged partitions such that

lim lim 0n nP Q
   

    
   

 

but ( , ) lim ( , )n nS f P S f Q
 

. Show that [ , ]f R a b .

18.4.7 Theorem: If ],[ baRf  then the value of the integral is unique.

Proof: Suppose L and 'L are real numbers such that for every 0 there is 01  such that for

every tagged partition P


of [a, b] with 1P 


, 1( , )
2

S f P L


 


and also 02  such that for

every tagged partition Q


with 2Q 


( , ) '
2

S f Q L


 


.

Let  = minimum  21, and R


be any tagged partition with R 


. Then

( , )
2

S f R L


 


and ( , ) '
2

S f R L


 


.

 0 ' ( ( , )) ( , ) '
2

L L L S f R S f R L


      
 

.

This holds for every 0 so 'LL  .

Boundedness of ],[ baRf  :

18.4.8 Theorem: If ],[ baRf  then f is bounded.

Proof: Let 1 . There exists 0 such that if P


is any tagged partition with P 


0 if 10  x and x is rational

x
1 if 10  x and x is irrational
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( , ) 1
b

a

S f P fdx 


 1( , ) 1
b

a

S f P fdx M  


say. Fix m such that


ab
m


 and ],[ bax .

Let P


be the tagged partition of [a, b] obtained by dividing [a, b] into subintervals of equal

length
m

ab 
. Let  bxxxaP m  ...........10 and let jj xt  if 1[ , ]j jx x x and it x if

 ii xxx ,1 and  m
iiii txxP

11 ],,[


1 1( , ) ( )( ) ( )( )i i j j j
j i

S f P f x x x f x x x 


   









 









 
 m

ab
xfxf j

ij

)()(

Hence 1 ( , ) ( ) ( )j
j i

b a
M S f P f x f x

m

 
    

 





1 ( ) ( )j

j i

M m
f x f x

b a 

 


  Since a b a b  

 Mxf
ab

mM
xf

ab

mM
xf

m

j
jj

ij







 
 1

11 )()()( say

Since ],[ bax is arbitrary and R.H.S. is independent of x , it follows that f is bounded.

18.4.9 Short Answer Questions:

a) Show that Rbaf ],[: is Riemann integrable if and only if there exists L such that for

every 0 there corresponds 0 such that if P


is any tagged partition with P  


then

( , )S f P L 


.
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b) Show that the Dirichlet function Rf ]1,0[: defined by

)(xf

doesn’t belong to ]1,0[R .

c) If :[ , ]f a b  is defined by 0)( xf except for a finite number of points nxxx ,........., 11 in [a, b]

show that ],[ baRf  and  
b

a

fdx 0 .

c) Let  
1

( , )
n

j j j
P I t






be a tagged partition of [a,b] and bcca  21
. If

1U is the union of all

subintervals jI such that 21 ctc j  show that 1 ,U c P   c P 

18.5 Linearity Properties of the Integral:

18.5.1 Theorem: Suppose that ],[ baRf  and ],[ baRg  then ],[ baRgf  and

 
b

a

b

a

b

a

gdxfdxdxgf )(

Proof: Let 0 . Since ],[ baRf  there exists 1 0  such that for every partition

P of [a, b] with 1P

2
),(


 

b

a

fdxPfS  (1)

Since ],[ baRg  , there exists 02  such that for every tagged partition of P


of [a, b] with

2P 


2
),(


 

b

a

gdxPgS  (2)

1 if 10  x and x is rational

0 if 10  x and x is irrational
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Let  .,min 21   0 . If P


is any tagged partition with P 


then 1P 


as

well as 2P 


so (1) and (2) both hold.

Let   1 1
[ , ],

n

i i i i
P x x t 




. then 1
1

( , ) ( )( )
n

i i i
i

S f P f t x x 


 


1
1

( , ) ( )( )
n

i i i
i

S g P g t x x 


 


and 1
1

( , ) [ ( ) ( )]( )
n

i i i i
i

S f g P f t g t x x 


   








 
n

i
iii

n

i
iii xxtgxxtf

1
1

1
1 ))(())((

( , ) ( , )S f P S g P 
 

Hence ( , )
b b

a a

S f g P fdx gdx    


( , ) ( , ) ( , ) ( , )
2 2

b b b b

a a a a

S f P S g P fdx gdx S f P fdx S g P gdx
 

             
   

Since this holds for every tagged partition with P 


it follows that ],[ baRgf  and

 
b

a

b

a

b

a

gdxfdxdxgf )( .

18.5.2. Corollary : If n , [ , ]if R a b for 1 i n  then 1 2... [ , ]f f R a b   and

1 1( ... ) ...
b b b

n n

a a a

f f dx f dx f dx      

Proof: We prove this result by the principle of Mathematical induction. When 1n

..... 1 shrdxfshl
b

a

  Assume for 1n   and let nff ..,.........1 be n functions. Such that

],[ baRfi  for ni 1 . Write nfff  ........2 . By induction hypothesis ],[ baRf  and
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b

a

n

b

a

b

a

dxfdxffdx ......2 . By 18.5.1 ],[1 baRff  and   
b

a

b

a

b

a

fdxdxfdxff 11 )( .

Since nfffff  ...........211 it follows that ],[..........21 baRfff n  and

 
b

a

b

a

b

a

n fdxdxfdxff 11 ).........(  
b

a

n

b

a

b

a

dxfdxfdxf ..........21 .

18.5.3 Theorem:

If ],[ baRf  and K, [ , ]Kf a b and  
b

a

b

a

fdxKdxKf )( .

Proof: If ,0k 0Kf  and hence lhs = rhs = 0.

Assume that 0K  . Since ],[ baRf  , given 0 there exists 0 such that for every

tagged partition P


of [a, b] with P 


,

( , )
b

a

S f P fdx
K


 



. If P 


and   1 1
[ , ],

n

i i i i
P x x t 




,





n

i
iii xxtfPfS

1
1))((),( and hence 1

1

( , ) ( )( )
n

i i i
i

S Kf P Kf t x x 


 






n

i
iii xxtfK

1
1))(( ( , )KS f P



Hence ( , )
b

a

S Kf P K fdx 


= ( , )
b

a

KS f P K fdx 


= ( , )
b

a

K S f P fdx 






K

K

Hence ],[ baRKf  and  
b

a

b

a

fdxKKfdx .

18.5.4 Theorem: If ],[],,[ baRgbaRf  and )()( xgxf  for all x in [a, b] then

 
b

a

b

a

gdxfdx .
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Proof: Since f and g are integrable fg  is integrable. Since )()( xgxf  for all ],[ bax

0))((  xfg for all ],[ bax .

Since   
b

a

b

a

b

a

fdxgdxdxfg )( . It is enough to show that if ],[ baRg and 0)( xg for all

],[ bax then 0
b

a

gdx . To this end we show that 
b

a

gdx for every 0 .

If 0 there is 0 such that for any tagged partition P


with P 


,

( , )
b

a

S g P gdx 


i.e ( , ) ( , )
b

a

S g P gdx S g P  
 

.

If   1 1
[ , ],

m

i i i i
P x x t 




1
1

( , ) ( )( ) 0
n

i i i
i

S g P g t x x 


  


 
b

a

gdx . This is true for every 0 so  
b

a

gdx 0 .

18.5.5 Corollary : If f is bounded, ],[ baRf  and Mxfm  )( for all ],[ bax

Then  
b

a

abMfdxabm )()( .

The constant functions mxf )(1
and Mxf )(2

for ],[ bax are integrable and

)()()( 21 xfxfxf  for all x .

So   
b

a

b

a

b

a

dxffdxdxf 21 (by theorem 18.5.4)

  
b

a

abMfdxabm )()( .

18.6 Riemann Integrability Criteria:

We now state a few criteria for Riemann integrability of a function :[ , ] .f a b  The first
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two criteria will be proved in lesson 19. The third criterion will be accepted as a fact without proof as
even though the proof is well within our reach it is more technical.

Cauchy Criterion: A function :[ , ]f a b   belongs to R[a, b] if and only if for every 0 there

exists 0  such that if P


and Q


are any tagged partitions of [a, b] with P 


and Q 


,

then ( , ) ( , )S f P S f Q 
 

.

The Squeeze Theorem: A function :[ , ]f a b   belongs to R[a, b] if and only if for every 0

there exists
 and

 in R[a, b] with )()()( xxfx    for all x in [a, b] and

( )
b

a

dx    .

For Bounded Functions: Let Rbaf ],[: be bounded. Then the following are equivalent

a) ],[ baRf 

b) For every 0 there exists a partition
P such that if

1P


and
2P


are any tagged

partitions having the same subintervals as
P then

21( , ) ( , )S f P S f P 
 

.

(c) For every 0 there exists a partition

 bxxxaP n  .........10 such that

If  iii xxxxfm  1/)(inf and

 iii xxxxfM  1/)(sup then




 
n

i
iiii xxmMPfO

1
1))((),( .

18.6.1 Example: Show directly from definition that the following function  ]3,0[Rf  and find


3

d

fdx .
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( )f x 

Solution: Let  3......1..........0 10   nmm xxxxP by any partition,  iii xxt ,1 for

ni 1 .

   1
1

, ,
n

i i i
i

P x x t





,    1 1 1
, ,

n

m

i i i i
P x x t 




,    2 1
1

, ,
n

i i i
i m

P x x t
 




Clearly
1 2( , ) ( , ) ( , )S f P S f P S f P 

  

.

Also 2)( itf if mi 

= 3 if 2i m 

2)( 1 mtf if 11 1   mmm xtx

= 3 if 111   mmm xtx

 1 1 0
1

( , ) 2 2( )
m

i i n
i

S f P x x x x


   


 (1)

 2 1 1 1
2

( , ) ( )( ) 3
m

m m m i i
i m

S f P f t x x x x  
 

   


 111 33))((   mmmm xxxtf .

Now there are two possibilities :

either 11  mm tx or 111   mmm xtx

Case (i) : If 2)(1 111   mmmm tfxtx . In this case
2 1 1( , ) 2( ) 3(3 )m m mS f P x x x    


= 129  mm xx  (2)

Case (ii) : If 3)(,1 111   mmmm tfxtx so that 2 1 1( , ) 3( ) 3(3 )m m mS f P x x x    


= 19  mx in case (i) and ( , ) 2( 0) 3(3 )m mS f P x x   


= mx9 in case (ii)

2 if 0 1x 

3 if 1 2x 
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Thus

),( PfS

 8),( PfS

Since 11  mm xx it follows that 1( , ) 8 ( )m mS f P x x  


If 0 and P  


it follows that 1 ( , ) 8m mx x S f P    


whenever P  


.

Hence ]3,0[Rf  and  
3

0

8fdx .

18.6.2 Example: Show that  
1

0
2

1
xdx .

From the figure the region bounded by the function xxh )(

over [0, 1] is the triangular region bounded by the lines 0y

xy  and 1x . As the area of this region is
2

1
.

For any tagged partition    1
1

, ,
n

i i i
i

P x x t





, 1
1

( , ) ( )
n

i i i
i

S h P t x x 


 


.

Let 0P


the parition with tag
2

1
 ii

i

xx
q .

)1(8 1 mx in case (i)

)1(8 mx in case (ii)

11  mx in case (i)

mx1 in case (ii)

y = x

y = 0

x = 1

(1, 0)0

1

Fig. 18.6.2
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Thus 0 1 1
1

1
( , ) ( )( )

2

n

i i i i
i

S h P x x x x 


  






n

i
ii xx

1

2
1

2

2

1

2

1
)01(

2

1 22 


1

( , )
2

S h P 


= ),(),( 0PhSPhS  = 



n

i
iiii xxqt

1
1))(( 




n

i
iiii xxqt

1
1)( .




 
n

i
iiii xxxx

1
11 )( since iii xtx 1 and 1i i ix q x  




 
n

i
iiii xxxx

1
11 )(  1

1

n

i i
i

P x x P


  
 

Thus if 0 and P  


we get
1

( , )
2

S h P  


.

Hence ]1,0[Rh and  
1

0
2

1
hdx .

18.6.3 Example:

Let ;* bxa  Rbaf ],[: be defined by 1)( * xf and 0)( xf if *xx  .

Show that Rbaf ],[: and  
b

a

fdx 0

Let bxxxaP n  ..........10 any partition of [a, b]

],[ 1 iii xxt  jj xxx 
*

1 and    1
1

, ,
n

i i i
i

P x x t





Then 0)( itf if ,i j

)( jtf

Hence ( , )S f P 


0 if *xt j 

1 if *xt j 

0 if *xt j 

1 jj xx if *xt j 
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so that
10 ( , ) j jS f P x x P   

 

. It follows that ( , )S f P 


Hence ],[ baRf  and  
b

a

fdx 0 .

18.6.4 Example:

Define Rf ]1,0[: by

)(xf

Show that ]1,0[Rf  and  
1

0

0fdx .

Let P


be any tagged partition of [0, 1].
0P


be the part of P


, where the tags are different

from
5

3
,

5

2
,

5

1
and

5

4
and

1P


be the part with tags
5

4
,

5

3
,

5

2
,

5

1
. We also assume that these tags are

end points of the sub intervals so that each tag occurs twice-once as left end point of ],[ 1 ii xx  and

also as right end point of ],[ 1 ii xx  . Since 0)( itf if









5

4
,

5

3
,

5

2
,

5

1
it , 0( , ) 0S f P 



. So

0 1( , ) ( , ) ( , )S f P S f P S f P 
  

= 1( , )S f P


Also  
4 41

1 1 1
1 1

( , ) 1 2 8
5 5

i i i i
i i

i i
S f P x x x x P 

 

   
         

   
 



So if 0 , let
8


 , for any tagged partition having

5

4
,

5

3
,

5

2
,

5

1
as tags at end points of the

intervals we get ( , ) 8S P f P 


.

Hence ]1,0[Rf  and  
1

0

0fdx .

1 if









5

4
,

5

3
,

5

2
,

5

1
x

0 , otherwise
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18.6.5 Example:

Define RG ]1,0[: by xxG )( if
n

x
1

 for some n and 0 otherwise.

Show that ]1,0[:G and  
1

0

0Gdx

Solution: If 0 the set
1 1

/ ,E n
n n



 
   
 

 is finite and









N

E
1

.........
2

1
,1 where

1
1




 NN , Let
N2


 and P


be any tagged partition of [0, 1] with P 



.

Let
1P


be that part of P


where the tags belong to
E and

2P


be the remaining part of P


so that if

a tag t corresponds to an interval in
2P


, 0)( tG .

Hence
1( , ) ( , )S G P S G P

 
.

For every   iii txx ,,1 in
1P 1)(0  itG and  1ii xx

Hence
1( , ) ( , )S G P S G P

 

 1 1,

2
i ix x P

N 
 

  

1 1( , ) ( , ) ( )( )i i iS G P S G P G t x x   


(where Eti )

  )( 1ii xx where Eti ( 1)( itE .)

In this summation it is possible that it is the tag for two adjecent sub intervals. As the length

of each sub interval  , the above summation can atmost be 2 X the number of tags in
E . As

the maximum number of tages in
E is N the above summation is 2 N .

Thus for every 0 there is 0 such that for every P


with P 


( , )S G P 


.

Hence ]1,0[RG and  
1

0

0Gdx .
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18.6.6 Example:

Consider the Thomae function H defined on [0, 1] by

)(xH

We already proved in lesson 15 that H is continuous at every irrational number and

discontinuous at every rational number. We prove here that [0,1]H R and  
1

0

0Hdx .

Let 0 and  10/  xxE and }
2

)(


xH . If 0x and
2

)(


xH then



2

x . Hence the

number of denominators n is finite and for each n the number of 0m m n   and 1),(  nmdg

is finite,
E is a finite set.

Let N be the number of elements in
E and

N4


 .

If P


is any tagged partition with P 


we show that ( , )S H P 


.

Let P


be any such partition and
1P


be the subset of
1P having tags in

E and
2P


be the remaining

part of P


, having tags outside
E .

If [0, 1] is any interval in
1P


with tag t and t is an end point then t is an end point of the

adjacent interval as well. Thus the maximum number of intervals with tags in
E is 2N. Each such

interval has length less than  . So the total length of the intervals with tags in
E is atmost

24
22







N
NN .

Since 1)(0  tH for every tag t

 
1

1 1 1( , ) ( )( ) / [ ]i i i i i i

P

S H P H t x x t x x    












.

11 ],[

1 ),(

Pxx

ii

ii

xx
2




.

0 if x is irrational

1 if x = 0

x

1
if x0 is rational and

n

m
x  in its simplest form.
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If [a, b] is an interval in
2P


with tag t, then

2
)(0


 tH

Hence 1 2( , ) ( , ) ( , )S H P S H P S H P 
  

2 2

 
   .

Hence ]1,0[RH  and  
1

0

0Hdx .

18.6.7 Example:

Let Rbaf ],[: , Rbag ],[: be such that )()( xgxf  except at a point ],[ bac

Then ],[ baRf  if and only if ],[ baRg . In this case  
b

a

b

a

gdxfdx .

Solution:Let   1 1
[ , ],

n

i i i i
P x x t 




be any tagged partition of [a, b] and ],[ 1 ii xxc  . Then for ij 

)()( ij tgtf  and )()( ii tgtf  if cti  while )()( ii tgtf  if cti  .

Hence 1( , ) ( , ) ( ) ( ) ( ) ( ) ( )i i i iS f P S g P f t g t x x f c g c P     
  

 (1)

Now suppose ],[ baRf  and 0 . There exists 01  such that if

1P 


, ( , )
2

b

a

s f P fdx


 


 (2)

If
 

( , ) ( , )
22 ( ) ( )

P S f P S g P
f c g c

 
  



  

.

Hence if  















)()(2
,min 1

cgcf
 and  1 2minP  



.

( , ) ( , ) ( , ) ( , )
2 2

b b

a a

S g P fdx S g P S f P S f P fdx
 

        
  

Hence ],[ baRg  and  
b

a

b

a

fdxgdx .
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By symmetry if ],[ baRg , ],[ baRf  and  
b

a

b

a

gdxfdx .

18.7 Solutions to SAQ:

18.4.4 SAQ: Let 0 . Then there exists 0 such that ( , )
b

n

a

fdx S f P 


if nP 


Since lim 0n
n

P 


there exists N  such that nP 


if Nn  .

Hence if Nn  ( , )
b

n

a

fdx S f P 


.

 lim ( , )
b

n
n

a

S f P fdx 


.

18.4.5 SAQ: 0)( xg if x is rational, 10  x and
x

1
if x is irrational 10  x .

For each n let








 1......
21

0
n

n

nn
Pn and 







 


n

i

n

i
t

n

i
t ii ,

1
. and 0)( itg .

Then ( ) 0nS g P 


where it is the tag for 






 

n

i

n

i
,

1
clearly

1
nP

n




so lim 0nP 


and

lim ( , ) 0n
n

S g P 


.

18.4.6 SAQ:

Suppose ],[ baRf  . Given 0 there exists 0 such that for every tagged partition

P


with P 


, ( , )
2

b

a

S f P f


 


.

Since lim lim 0n nP Q 
 

for the above  . there corresponds N  such that
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nP 


and nQ 


if Nn  .

 ( , )
2

b

n

a

S f P f


 


and ( , )
2

b

n

a

S f Q f


 


for Nn  .

 ( , ) ( , )n nS f P S f Q 
 

for Nn  .

  lim ( , ) ( , ) 0n n
n

S f P S f Q 
 

.

This contradicts the hypothesis that lim ( , ) lim ( , )n n
n n

S f P S f Q
 

.

18.4.9 (a) SAQ:

 ],[ baRf there exists A such that for every 0 there corresponds 0 such

that for any taggled partition P


of [a, b] with P 


( , )S f P A 


.

 If
2

P





, ( , )S f P A 


,

Hence
2

P





 ( , )S f P A 


conversely if A is such that for every 0 there corresponds 0 such that for any

tagged partition P


of [a, b] with If P 


, ( , )S f P A 


there for every P


with P 


(This

implies P 


) ( , ) 2S f P A  


Since 0 is arbitrary it follows that ],[ baRf  .
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18.4.9 (b) SAQ:

)(xf

If P


is a tagged partition of [0, 1] with all tags rationals, ( , ) 1S f P 


If all the tags of P


are irrational then ( , ) 0S f P 


.

Hence there is no single A such that for
2

1
 there corresponds 0 satisfying

P  
 1

( , )
2

S f P A 


.

Hence ]1,0[Rf 

18.4.9 (c) SAQ:

Let    1
1

, ,
n

i i i
i

P y y t





be any tagged partition of [a, b].

Then 1 1
1 1 1

( , ) ( )( ) ( ) ( ) ( )
n n n

i i i i i i i
i i i

S f P f t y y f t y y f t P 
  

      
 

For every ],[ bax , )(xf

Hence rccxf  .......)( 1 .

Hence
1

( , )
r

i
i

S f P c P


 
  
 


 

.

If 0 and







n

i
ic

1

 then if P 


1 if 10  x and x is rational

0 otherwise

0

or

c
i

for some c
i
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( , )S f P  


.

Hence ],[ baRf  and  
b

a

fdx 0 .

18.4.9 (d) SAQ:

Let   
1

,
n

j j
j

P I t





be a tagged partition of [a, b] and
21 cc  .

If jIu and 21 ctc j  show that 1 2c P u c P   
 

.

Let 1[ , ]j j jI x x . Then jj xux 1 , 21 ctc j  and jjj xtx 1

Since 1j jx x P 


, 1j jx x P 


 1 1j j jc t x x P   


 1 1jc P x u  


 (1)

 1c P u 


.

Also 1 2j j jx P x t c   


 2ju x c P  


 (2)

From (1) and (2) if follows that 1 2,u c P c P
 

   
 

 

.
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18.8 Summary:

The notion of Riemann Integral is introduced via tagged partitions. Uniqueness of the
Riemann Integral, Boundedness of a Riemann integrable function, linearity properties of the
Riemann integral are established. A good number of examples with solutions are included.

18.9 Technical Terms:

Tagged partition - norm of a partition - Riemann integral.

18.10 Exercises:

1. If ]4,0[I calculate the norms of the following partitions

(a)  4,2,1,01 P (b)  4,3,2,02 P

2. If 2)( xxf  , 40  x calculate the Riemann sums for

(a)  4,2,1,01 P with tags at the left end points of the intervals.

(b)  4,2,1,01 P with tags at the left end points of the intervals.

(c)  4,3,2,02 P with tags at the left end point of intervals.

(d)  4,3,2,02 P with tags at the right end points of the intervals.

3. Let 2)( xf if 10  x and ( ) 1f x  if 21  x

Show that ]2,0[Rf  and  
2

0

3fdx .

4. Let 2)( xg if 10  x , (1) 1f  and ( ) 3f x  if 21  x

Show that ]1,0[Rg  and  
2

0

5gdx .

5. Use mathematical induction to prove that if n , ],[ baRfi  and ik  for ni 1 then

1 1 ... [ , ]n nk f k f R a b   and

.

1 1 1 1( ... ) ... .
b b b

n n n
n

a a a

k f k f dx k f dx k f dx      

6. Give examples of f and g defined on [a, b] such that ],[ baRg  , )()( xgxf  if ],[ bax but

],[ baRf  .
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7. Show that if :[ , ]f a b  satisfies 0)( xf except at a finite number of points then ],[ baRf 

and  
b

a

fdx 0 .

8. If :[ , ]f a b  and :[ , ]g a b   are such that )()( xgxf  except a finite number of points in

[a, b]. Show that ],[ baRf  if and only if ],[ baRg  and in this case  
b

a

b

a

gdxfdx .

9. Let ba 0 , 2)( xxf  if bxa  ,

   1
1

: ,
n

i i i i
i

P x q x q


 


where 2
11

2
  iiiii xxxxq prove the following

(i) iii xqx  10

(ii)
3

))((
3

1
3

1





 ii

iii

xx
xxqf

(iii)
3

),(
33. ab

PfS




(iv) Show that ],[ baRf  and )(
3

1 33 abfdx
b

a

 .

10. Let ],[ baRf  and bca  . Show that the function :[ , ]g a c b c    defined by

)()( cxfxg  belongs to ],[ cbcaR  . Also prove that 





cb

ca

b

a

gdxfdx .

11. If ],[ baRf  and Mxf )( for ],[ bax show that )()( abMdxxf
b

a

 .

12. Let P


be tagged partition of [o, 3].

(a) Show that the union
1U of all subintervals in P


with tages in [0,1] satisfies

10,1 0,1P U P
   

      
   

 

.
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(b) Show that the union
2U of all subintervals in P


with tags in [1,2] satisfies

21 , 2 1 , 2P P U P P
   
        

   

   

13. Let   
1

,
n

j j
i

P I t





be a tagged partition of [a, b] and bcca  21
.

14. If 1 2, jc P c P I
 

    
 

 

, show that ],[ 21 cct j 

Let 2)( xf if 10  x and 1)( xf if 21  x show that ]2,0[Rf  and  
2

0

3fdx .

Let 2)( xg if 10  x , (1) 3g  and 1)( xg if 21  x show that ]2,0[Rg  and

 
2

0

3gdx .

15. Let ba 0 ; 2)( xxf  ; bxxxa n  .........10 ; and )(
3

1 2
11

2
  iiiii xxxxt . Show that

(a) iii xtx 1

(b) If  1 1
[ , ],

n

i i i i
P x x t 


 3 3

( , )
3

b a
S f P





.

(c) Using an argument similar to Example 18.6.2. show that

1 3 3
2

3
a

b a
x dx


 .

18.9 Model Examination Questions:

1. Define Riemann integral and show that the integral of a function Rbaf ],[: is unique.

2. Show that if ],[ baRf  , f is bounded.

3. If 1)( 2
1 f and 0)( xf if 10  x and

2

1
x show that ]1,0[Rf  and that

1

0

0fdx  .
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4. Show that if ],[ baRf  and ],[ baRg  then ],[ baRgf  and  
b

a

b

a

b

a

gdxfdxdxgf )( .

5. Show that if ( ) 0f x  if x is rational and ( ) 1f x  is x is irrational then f is not Riemann integrable

on [0,1]

18.10 Model Practical Problem with Solution:

Let )(xf

Show that ]1,0[Rf  and

1

0

0fdx  .

Definition: Rbaf ],[: is said to be Riemann Integrable if there exists real number A with the

following property:

For every 0 , there corresponds 0 such that whenever P


is any tagged partition with P 


( , )S f P A 


. The number A is called the Riemann integral of f over [a, b] and is denoted by


b

a

fdxA or 
b

a

fA
.

.

A tagged partition is a division P


of [a, b] into subintervals  ii xx ,1 with “tags” it chosen in

 ii xx ,1 and is written   1 1
[ , ] ,

n

i i i i
P x x t 




iii xtx 1 where bxxxa n  .......10 .

1max( )i iP x x  


. ni 1 , 1
1

( , ) ( )( )
n

i i i
i

S f P f t x x 


 


Solution: Let  0 10 ........ 1nP x x x    


be any tagged partition with any tag ],[ 1 iii xxt  .

1
1

( , ) ( )( )
n

i i i
i

S f P f t x x 


 


= ))(( 1 nnn xxtf (since ( ) 0f t  if )1t

0 if x is irrational

1 if x is rational
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1n nx x   if 1nt  and 0 if 1nt  .

Hence if 0 and P 


then 1( , ) ( , ) n nS f P S f P x x P    
  

.

Thus 0V we choose  . This
 satisfies the requirement in the definition of

Riemann integral so that ]1,0[Rf  and  
1

0

0fdx .

- C. Sandhya



19.1 .Riemann Integrability

Lesson - 19

Riemann Integrability:

19.1 Objective:

We present some criteri of Riemann integrability of a function Rbaf ],[: issuing these

criteria we identify some classes of integrable functions we also study Riemann integrabili of a
function when the domain is split into subintervals.

19.2 Structure:

19.3 Introduction

19.4 Conditions for Integrability

19.5 Step Functions

19.6 Other Classes of Integrable Functions

19.7 Additivity Theorem

19.8 Answers to SAQ’s

19.9 Summary

19.10 Technical Terms

19.11 Excercises

19.12 Model Practical Problems with Solutions

19.3 Introduction:

This lesson is devoted for the study of conditions for Riemann integrability of a function. We

study in detail the cauchy criterion and the squeeze theorem which propose conditions for
integrability of a function in terms of tagged partitions. At times these techniques may be lengthy to
adopt. As such we also mention other equilent conditions without proof. We establish Integrability
of step functions, continuoues functions and monotone functions. We then proceed to establish
additivity theorems for integration. Which deal with splitting or clubbing intervals. Some useful
theorems concerning the integrability of the product, substitution theorem and so on are also pre-
sented here. Other important properties are included in short answer questions examples and
exercises.

19.4 Conditions of Intigrability:

19.4.1 Theorem (Cauchy Criterian for Riemann Integrability):

Rbaf ],[: belongs to R[a, b] iff for every 0 there corresponds 0 such that if
.

P

and
.

Q are any tagged partitions of [a, b] with 
.

P and 
.

Q then
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 ),(),(
..

QfSPfS  (1)

Proof : ( ) Suppose ],[ baRf  . Then by definition for every 0 there corresponds 0

such that for every tagged partition
.

P of [a, b] with 
.

P
2

),(
. 

 
b

a

fdxPfS .

If
.

P and
.

Q are tagged partitions of [a, b] with norm


),(),(
..

QfSPfS 

= ),(),(
..

QfSLLPfS  , where 
b

a

fdxL

),(),(
..

QfSLLPfS 








22

.

Converse: ( ) suppose that for every 0 there corresponds 0 such that for all tagged

partitions
.

P and
.

Q of [a, b] with norms
 ,  ),(),(

..

QfSPfS  (2)

Takng
n

1
 where Nn we choose 0n such that (2) holds whenever

.

P ,
.

Q are taggedagged

partitions of [a, b] with norm
 .

Let  nn  ,.........min 1 . Then in  1 for 11  ni hence nn  1 for all n.

Choose tagged partition
.

P of [a, b] such that n
.

P . If 0 and N is a natural number such that




1
N then for Nnm  , Nnm   so that Nm  

.

mP and Nnn  
.

P

Hence by (2) with N
1
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N

PfSPfS nm

1
),(),(

..

.

Therefore )),((
.

nPfS is a cauchy sequence in R.

Let ),(lim
.

n
n

PfSA  .

We show that for 0 there is 0 such that for all tagged partitions of [a, b] with


.

P  APfS ),(
.

.

So that ],[ baRf  and Afdx
b

a

 .

Let 0 : Since APfS n
n

),(lim
.

, there is NN  such that

2
),(

. 
 APfS for Nn   (3)

We may assume that



2

N .

Let N  . If
.

P is any tagged partition of [a, b] with 
.

P there NP 
.

and NP 
.

so by (2),
2

1
),(),(

.. 


N
PfSPfS N  (4)

If 
.

P , APfS ),(
.


















 APfSPfSPfS NN ),(),(),((
...

APfSPfSPfS NN  ),(),(),((
...








22

.
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19.4.2 Qqueeze Theorem:

Let Rbaf ],[: . Then ],[ baRf  if and only if for every 0 time exist
 and )(x

in such that

(i) )()()( xxfx    for ],[ bax

(ii) ],[ baR , ],[ baR and

(iii) 0)(   dx
b

a

 .

Proof: If ],[ baRf  and 0 choose f   . Then ,  satisfy (i), (ii) and (iii) con-

versely suppose that for every 0 there exist functions ,  satisfying (i) (ii) and (iii).

Since ],[ baR and 0 there exists 01 

Such that for every tagged partition
.

P of [a, b] with 1

.

P  ,

3
),(

. 
  

b

a

dxPS   (1)

Similarly 02  such that for every tagged partition
.

Q of [a, b] with 2

.

Q 

3
),(

. 
  

b

a

dxQS   (2)

From (+)

(1) implies 3
),(

3

. 



  

b

a

b

a

dxPSdx  if 1

.

P 

(2) implies 3
),(

3

. 



  

b

a

b

a

dxQSdx  if 2

.

Q 

Let  21,min  
and

.

P be any tagged partition of [a, b] with  
.

P .
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Since )()( xxf    for ],[ bax

),(),(),(
...

PSPfSPS    .

 





 

b

a

b

a

dxPSPfSPSdx
3

),(),(),(
3

...



 





 

b

a

b

a

dxPfSdx
3

),(
3

.

  (3)

IIIly if
.

Q is any tagged partition with 
.

Q .







 

b

a

b

a

dxQfSdx
3

),(
3

.

  (4)

(3)+(4)

 


 

b

a

dxPfSPfS
3

2
)(),(),(

..

 .








3

2

3
.

Thus for every 0 there is 0 such that for every
.

P and
.

Q with  
.

P and 
.

Q

 ),(),(
..

QfSPfS .

By cauchy criterion ],[ baRf  .

19.4.3 SAQ: Apply Cauchy criterion for the function

Rg ]3,0[: defined in 18.6 by

)(xg

2 if 10  x

3 if 31  x
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(b) SAQ: Apply Cauchy criterion to show that the dirichlet function is not Riemann integrable.

(c) SAQ: Show that Rbaf ],[: is not Riemann integrable if and only if there exists 0 such

that for every Nn there exist tagged partitions
nP

.
and

nQ
.

such that 0limlim
..

 nn QP but for

all Nn , 0

..

),(),(  nn QfSPfS

(d) Let )(xH

(e) Let Let )(xH

Show that ]1,0[RH  .

19.4.4 Criteria for Integrability of a bounded function:

We state without proof some criteria for integrability of a bounded function Rbaf ],[: .

Theorem: Let Rbaf ],[: be a bounded function then the following are equivalent.

(a) ],[ baRf  .

(b) For every 0 there corresponds a partition
P of [a, b] such that for every tagged partitions

1

.

P

and
2

.

P with the same subintervals as
P

 ),(),(
.

2

.

1 PfSPfS .

(c) For every 0 there corresponds a partition  n

jjIP
1 

Such that if ],[ 1 jjj xxI  ,   jjj Mxxxxf   ],[/)(sup 1 and if

1x if ]1,0[x x is rational

0 otherwise

k if
k

x
1

 , Nk and

0 if 10  x and
k

x
1

 for any Nk
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1 if Jx 

0 if Jbax \],[

0 if
2

1
0  x or 2

2

3
 x

1 if
2

3

2

1
 x

  jjj mxxxxf   ],[/)(inf 1 then the oscillatory sum  


  ),()(),(0 1
1

jj

n

j
jj xxmMPf .

19.5 Integrability of Step Functions:

19.5.1 Definition:

Rbaf ],[: is called an elementary step function if there is an interval ],[ baJ  such that

)(xf

f is denoted by J .

Note: J may include both the end points or one and only one of them or none. The case  cJ  is

also not ruled out.

Definition: Rbaf ],[: is called a step function if f has a finite number of distinct values, each

value being assumed on a finite number of intervals.

19.5.2 Examples:

(i) Define f on [0, 3] by 2)( xf if 10  x

3 if
2

3
1  x

= 2 if 3
2

3
 x

= 4 if 32  x .

f is a step function.

(ii) The function defined on [0, 2] by

)(xf

is a step function but not an elementary step function.

1

2

3

4

1 2 33
2

3
2

1
2
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Note: Where as a step function has a finete number of values true. That a function that assumes
asfinite number of values on [a. b] is necessarily a step function. For example refer f on [0, 1] by

)(xf

clearly )( xf =either 0 or 1 but neither of the sets  








 Nn
n

f /
1

01
and its complement in

[0, 1] is an internal or a finite union of intervals.

19.5.3 SAQ:

Every step function is a linear combination of elementary step functions.

19.5.4 SAQ:

If f is the step function defined on [a, b] by 1)( xf if cx  where bca  (i fixed)

= 0 otherwise

Then ],[ baRf  and  
b

a

fdx 0 .

19.5.5 Lomma:

Let ],,[],[ badc  Rbaf ],[: be defined by

)(xf

Where .0

Then ],[ baRf  and  
b

a

cdfdx )( .

Proof: Let    n

iiii txxP
11

.

,,
 be any tagged partition of [a, b]

ssrr xdxxcx   11

Clearly ))(()())((),( 111

.

  sssssrrr xxtfxxxxtfPfS  we have the following possibilities

for )( rtf and )( stf

0 if








 Nn
n

x /
1

1 otherwise

 if dxc 

= 0 otherwise

1rx c rx 1sx d sx
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)( rtf

)( stf

Hence

),(
.

PfS

Hence

),(
.

PfS


.

11

.

2)()()(),( PxxxxcdPfS rrss   

If  )(),(
.

cdPfS  if 2

. 
P .

This holds for every 0 so ],[ baRf  and  
b

a

cdfdx )(

0 if ctx rr 1

 if rr xtc 

 if dtx ss 1

0 if ss xtd 

(i)  )( rs xx  if 0)( rtf , )( stf

(iii)  )( 1 rs xx if )()( sr tftf 

(ii)  )( 1 rs xx  if 0)( rtf 0)( stf

(iii)  )( 11   rs xx if 0)(,)(  sr tftf 

(i)  )()( cxdxcd rs  

(iii) )()( 1 rs xcdxcd 

(ii) )()( 1 rs xcdxcd  

(iii) )()( 11   rs xcdxcd 
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19.5.6 Lemma: If J is a subinterval of [a, b] and has end points c,d where dc  then ],[ baRQJ 

and  
b

a

J cddxQ .

Proof: The possibilities for J are [c,d], [c, d), (c,d] and (c, d) in 19.5.5 we proved the result when

J=[c,d], write ),(0 dcJ  .

Let bxxxaP n  ..........10 , ],[ 1 iii xxt  and
.

P the corresponding Tagged Partition.

Then
..

, 0
()( PSPS JJ  

=   



n

i
iiiJiJ xxtQtQ

1
1)()(

0

 



n

i
iiiJiJ xxtQtQ

1
1)()(

0

For any x ,  )()(
0

xQxQ jj

Hence
...

, 0
()( PPSPS JJ   .

If ],[ baRQ j  then for every 0 there is 0 such that
2


  and for every tagged

partition
.

P of [a, b] with 
.

P

2
)(

.

,


 

b

a

JJ dxPS  .

For such
.

P , 
b

a

JJ dxPS  )(
.

,0 .

0 if cx 

1 if cx
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JJ fSfS  ,(),(
0




b

a

JJ dxfS  ),(








22

.

P

Hence ],[
0

baRQ j  and cddxQdxQ
b

a

J

b

a

J  0 .

19.5.7 Theorem:

If  : Rba ],[ is a step function the ],[ baR .

Proof: Since  is a step function,  can be expressed as linear combination of elementary step

functions (SAQ 19.5.3).

Write 
mJmJ KK   ........

11 , where iJ has end points say ii dc  for mi 1 .

Then ],[ baR
iJ  and  

b

a

iiJ cdx
i



],[ baR and )(
11

ii

m

i
i

b

a

m

i

b

a

Ji cdkdxkdx
i

   




19.5.8. SAQ:

If Rbaf ],[: and
.

P is a tagged partition of [a, b] then show that there is a step function

 on [a, b] such that ),(
.

PfS
b

a

 .

19.6 Other Classes of Integrable functions:

19.6.1 Theorem:

If Rbaf ],[: is continuous then ],[ baRf  .

Proof: Let 0 . Since f is uniformly continuous continuous on [a, b], there exists 0 such that

ab
yfxf




 )()( if  yx and yx, belong to [a, b]. Divide [a, b] into n equal parts to form
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a partition  bxxxaP n  ............: 10 so that i
n

ab
xx ii 


  1 . Since f is continous on

],[ 1 ii xx  f is bounded and attains bounds. So there exist iu and
i
in ],[ 1 ii xx  such that

()()( ftfuf i  i
) if ii xtx 1

Let )()( iuft  and ()( fb  i
) if ii xtx 1 and )()( nufb  and ()( fb  n

)

 and
 being step functions, are Riemann integrable and for every t in [a, b],

)()()( ttft    .

Further 


 
n

i

b

a

fdt
1

(()( 
i
) - ))(( 1 iii xxuf





 )( ab

ab
.

Hence by the squeeze theorem ],[ baRf  .

19.6.2 SAQ:

Prove theorem 19.6.1 using (c) of the criteria of integrability for bounded functions.

19.6.3 Theorem:

If f is monotonic in [a, b] then ],[ baRf 

Proof: if )()( bfaf  for all ],[ bax , hence ],[ baRf  . Assume that )()( bfaf  and f is

monotonically is [a, b].

Let 0 ,
)()( afbf 


 and  bxxxaP n  .............10 be any partition with 

.

P .

For ni 1 define )()( 1  ixft and )()( ixft  if ii xtx 1 for ni 1 and

)()( bfb  and  yxyfxf ,)()(lub 22  .

Being step functions
 and

 are Riemann integrable on [a, b] and )()()( ttft   

if bta  .

Further )))(()(() 1
1

1 


   i

b

a

n

i
iii xxxfxfdt 




 ))()((

)()(
0xfxf

afbf
n .

Hence by the squeeze theorem ],[ baRf  .
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19.6.4 SAQ: Prove theorem 19.6.2 using (c) of the criteria of integrability for bounded functions.

19.6.5 Theorem: If ],[ baRf  then ],[2 baRf  /

Proof: Since ],[ baRf  , f is bounded Let 0u be such that Mxf )( for all x in [a, b].

If yx, belong to [a, b], )()()()()()( 22 yfxfyfxfyfxf 

)()(()()( yfxfyfxf 

)()(2 yfxfk 

Since ],[ baRf  , given 0 there is a partition

 bxxxaP n  .........10 such that

k
xxmMPf

n

i
iiii

2
))((),(0

1
1





 .

Where 


 
n

i
iiii xxmMPfO

1
1))((),(

and  ],[/)(glb 1
2'

iii xxxxfm 

'
iM - '

im  yxyfxf ,)()(lub 22  belong to ],[ 1 ii xx 

 yxyfxfk ,)()(lub2  belong to ],[ 1 ii xx 

)(2 ii mMk 

Hence ))((),( 1
1

''2



  i

n

i
iii xxmMPfO

))((2 1
1




  i

n

i
iii xxmMk

 ),(2 PfkO .

This is true for every 0 so ],[2 baRf  .
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19.6.6 Theorem: If ],[ baRf  and ],[ baRg  then ],[ baRfg

Proof: ],[ baRf  and ],[ baRg 

 ],[)( baRgf  and ],[ baRgf 

 ],[)( 2 baRgf  and ],[)( 2 baRgf 

 ],[
4

)()( 22

baR
gfgf




 ],[ baRfg .

19.6.7 Theorem: If ],[ baRf  , ],[ baRf  and dxffdx
b

a

b

a
  .

Proof ; Since ],[ baRf  , there is a partition  bxxxaP n  .........10 of [a, b] such that




 
n

i
iiii xxmMPfO

1
1))((),(

Where iM  ii xxxxf  1/)(lub and

im  ii xxxxf  1/)(glb

Then iM - im  ii xyxxyfxf   ,/)()(lub 1

Let  iii xxxxfM  1
' /)(lub and

 iii xxxxfm  1
' /)(glb

Then '
iM - '

im  ii xyxxyfxf   ,/)()(lub 1

Since )()()()( yfxfyfxf 

We have '
iM - '

im  iM - im for ni 1 so

))((),( 1
1

''1



  i

n

i
iii xxmMPfO
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))(( 1
1




 i

n

i
iii xxmM

=  .

This is true for every 0 . so ],[ baRf  .

Since ],[)()()( baxxfxfxf 

We now have  
b

a

b

a

b

a

dxffdxxf )( by 18.

Hence  
b

a

b

a

dxffdx .

19.6.8 Short answer Questions:

(a) If Rbaf ],[: is continuous, 0)( xf for all x in [a, b] and 0
b

a

fdx show that 0)( xf

for all x in [a, b].

(b) Give an example of a function Rbaf ],[: such that ],[ bcRf  if bca  and

],[ baRf  .

(c) If f is bounded and the restriction cf of f to [c, b] is Riemann integrable for every c in [a, b] show

that ],[ baRf  and dxfdxf
b

c

b

c

c
ac  


lim .

(d) If f is continuous on [a, b] show that there exists c in [a, b] such that 
b

a

fdxcfab )()( .

(e) If f and g are continous on [a, b] and 0)( xg for all x in [a, b] show that there exists c in [a, b]

such that  
b

a

b

a

gdxcffgdx )( .

(f) If f and g are continous on [a, b] and if  
b

a

b

a

gdxfdx show that there exists c in [a, b] such that

)()( cgcf  .
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(g) If Rbaf ],[: is bounded and continous except at a finite number of point in [a, b] then show

that ],[ baRf  .

19.7 Additivity Theorems:

19.7.1 Additivity Theorem: Let Rbaf ],[: and ),( bac , and f, the restriction of f to [a, c] and

2f be the restriction of f to [c, b]. Then ],[ baRf  if and only if ],[1 caRf  and ],[2 bcRf  .

In this case  
b

c

c

a

b

c

fdxfdxfdx .

Proof:  suppose ],[1 caRf  , ],[2 bcRf  and write 11 Ldxf
c

a

 and 22 Ldxf
b

c

 .

Since
21, ff are integrable,

21, ff are bounded, hence there exists M > 0 such that Mxf )(

for ],[ bax .

Since ],[1 caRf  and ],[2 bcRf  , given 0 there are 01  and 02  such that for

every tagged partitions
.

1P of [a, c] and
.

2P of [c, b] with 1

.

1 P and 2

.

2 P

3
),( 11

.

1


 LPfS and

3
),( 22

.

2


 LPfS  (1)

Let






 


M6

,,min 21  and
.

P a tagged partition of [a, b] with 
.

P

and  n

iiii txxP
11

.

],,[
 so that

bxtxtxa nx  ...........2110

Then for some k where nk 1 , kx xct 1 .

Let  ctxtxxtxaP kkkko  
'

11211

.

1 ...........: and

 bktxtcP nkkk   ...............: 1
"

.

2



19.17 .Riemann Integrability

.

1P is a tagged partition of [a, c] with  
.

1P ,

.

2P is a tagged partition of [c, b] with  
.

2P ,

)()(),( 1
1

0

.




 ii

n

i
i xxtfPfS

))(()()(),( 11

1

1

1

.

1 





  kii

k

i
i xccfxxtfPfS

)()())((),( 1
1

2

.

2 


  ii

n

ki
ik xxtfcxcfPfS

 ),(),(),(
.

22

.

11

.

PfSPfSPfS 

= ))(())(())(( 11   kkkkk xccfcxcfxxtf

=   )()()( 1 kki xxcftf .

 ),(),(),(
.

22

.

11

.

PfSPfSPfS 

= )()()( 1 kkk xxcftf

 
.

)()( Pcftf k 

3
.2


 SM  (2)

Hence 21

.

),( LLPfS 

2

.

221

.

11

.

22

.

11

.

),(),(),(),(),( LPfSLPfSPfSPfSPfS 











333

(from (1) and (2))
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Hence ],[ baRf  and

 
b

c

c

a

b

a

fdxfdxLLfdx 21

( ) Conversely suppose ],[ baRf  . Then for every 0 there corresponds 0  such

that if
.

P and
.

Q are tagged partitions of [a, b] with 
.

P and 
.

Q then  ),(),(
..

QfSPfS .

Let
1

.

P ,
2

.

P be tagged partitions of [a, c] with 
.

R . Write
.

P for the tagged partition of [a, b]

obtained by clubbing
1

.

P and
1

.

R and
.

Q be the tagged partition of [a, b] obtained by clubbing
2

.

P and

1

.

R .

Then 
.

P and 
.

Q

),(),(),(
.

22

.

11

.

RfSPfSPfS  and

),(),(),(
.

12

.

21

.

RfSPfSQfS 

  ),(),(),(),(
...

21

.

11 QfSPfSPfSPfS

Hence ],[1 caRf  . Similarly ],[2 bcRf 

Hence by the first part,

 
b

c

c

a

b

a

dxfdxffdx 21 .

19.7.2 Corellary: If ],[ baRf  and [c, d]  [a, b] then the restriction of f to [c, d] is in R[c, d].

Proof: Since ],[ baRf  and ],[ bac the restriction
1f of f to [c, b] is in R[c, b]. Since ],[ bcd 

the restriction
2f of

1f to [c, d] is in R[c, d]. But
2f is the restriction of f to [c, d]. Hence the

restriction of f to [c, d] is in R[c, d].
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19.7.3 Corollary: If ],[ baRf  and bccca m  .........10 then the restriction of f to each of

the subintervals is in ],[ 1 ii ccR  and 



n

no

c

c

c

c

c

c

b

a

fdxfdxfdxfdx
1

2

1

1

............

Proof: We prove this by induction on n. When n=1 the corollary hold by 19.7.2. Assume that the

statement is valid for n - 1 Let bccca m  .........10 . Then by corollary - ],[ baRf  and

R[c, b] and  
nc

c

c

a

b

a

fdxfdxfdx
1

1

.

Applying induction hyposis for the prints bccc n ..,........., 21 , ],[ baRf  ni 2 .

We get 





bc

c

c

c

b

c

n

n

fdxfdxfdx
1

2

11

............

Hence 



b

c

c

c

b

a n

fdxfdxfdx
1

............
1

0

.

19.7.4 Defination: Suppose ],[ baRf  and ba   .

We write  








fdxfdx and 0




fdx

19.7.5 Theorem: If ],[ baRf  and  ,, are any numbers in [a, b]

 












fdxfdxfdx  (2)

in the sense that if two the three in legals in the above equality hold the theory also holds and
equality occurs.

Proof: (1) holds if 0 












fdxfdxfdx
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Write ),,( L for 0 












fdxfdxfdx

clearly ),,(),,(),,(),,(  LLLL 

It is clear that if f is into two of ],[ R , ],[ R , ],[ R then f belongs to the third class and

Then   ),,(),,(  LL  .

Moreover 0),,( L since

 
















fdxfdxfdxfdx .

The proof is similar in the remaining cases.

19.8 Answers to Short Answer Questions:

SAQ: Apply cauchy criterian for the function Rg ]3,0[: defined in example by 2)( xg if

10  x and 3 if 31  x . For 0 find 0 such that if 
.

P and 
.

Q then


..

),(),( QgSPgS .

Solution: Let
.

P be a tagged partition of [0, 3] with 
.

P where 0 ;
1

.

P be the subset of
.

P

having its tags in [0, 1] and let
2

.

P be the subset of
.

P with tags in (1, 3].

Then ),(),(),( 2

.

1

..

PgSPgSPgS   (1)

If
1U is the union of all subintervals in

1

.

P there by 18.........




















.

1

.

1,0.1,0 PUP .

Also if
2U is the union of all subintervals in

2

.

P then by 18..........
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..

2

..

2,1.2,1 PPUPP

consequently )1(2),()1(2 1

.

  PgS and

)2(3),()2(3 2

.

  PgS

Adding these in equalities and using (1) we get

 58),(58
.

 PgS  (2)

If
.

Q is any tagged partition with 
.

Q ,

 58),(58
.

 QgS  (3)

From (2) and (3) we get

10),(),(
..

 QgSPgS .

Hence If 0 
..

),(),( QgSPgS if
10




and 
.

P , 
.

Q . We thus choose
10


 .

SAQ 19.4.3 (b) : The Dorichlet function g is defined on [0, 1]

by 1)( xg if ]1,0[x and x is rational while

0)( xg if ]1,0[x and x is irrational.

This function was already shown to be not Riemann integrable.

We deduce this form cachy criterion as follows:

If
.

P is any partition of [0, 1]  1.........0 10  nxxxP let ],[ 1 iii xxt  be arational number

and ],[ 1 iii xxs  be an irrational number..

Let   n

iiii txxP
11

.

1 ],,[
 and   n

iiii sxxP
11

.

2 ],,[
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1)())((),(
1

1
1

11

.

 







n

i
ii

n

i
iii xxxxtgPgS

and 0))((),(
1

12

.

 




n

i
iii xxsgPgS .

Hence 1),(),( 2

.

1

.

 PgSPgS .

As P is arbitary
..

2

.

1 PPP  is also arbitray..

Thus cauchy critierion fails here when 10  .

SAQ 19.4.3 (c): Rbaf ],[: is not Riemann integrable if and only if there exists 00 such that

for every Nn there correspond tagged partitions
.

nP and
.

nQ with
n

Pn

1.

 ,
n

Q n

1.

 and

0

..

),(),(  nn QfSPfS

Solution: ( ): Suppose ],[ baRf  . Then by cauchy criterion, there exists 00 such that for

n

1
 where Nn , there corresponds

.

nP and
.

nQ with
n

Pn

1.

 ,
n

Q n

1.

 and

0

..

),(),(  nn QfSPfS .

( ) : Conversely suppose this condition holds. For any 0 we can choose NN such that


N

1
. The corresponding tagged partitions

.

NP and
.

NQ with 
.

NP , 
.

NQ and

0

..

),(),(  NN QfSPfS .

Hence ],[ baRf  .
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S.A.Q. 19.4.3(d) :

Let )(xH

For Nn Let

n

j

jn t
n

J

n

J
P

1

.

,,
1
























 
 and

n

j

jn s
n

J

n

J
Q

1

.

,,
1






















 


Where
n

j
t j  and 







 


n

j

n

j
s j ,

1
, js irrational n

n
QP nn 

1..

and

n

n

j

n

n

j

n
PHS

2

1

2

3
1

1
),(

1

.









 


and 0),(

.

nQHS .

Hence NnQHSPHS nn  2),(),(
..

.

Hence ]1,0[RH  .

S.A.Q. 19.4.3(e) :

Let )(xH

To show that ]1,0[RH  :

Method 1 : H is not bounded hence ]1,0[RH  .

Method 2 : Let








 1.............
21.

n

n

nn
aPn .

Let
n

a
1

0  and a be irrational number..

1x if ]1,0[x , x rational

0 if ]1,0[x , x irrational

k if Nk
k

x  ,
1

0 otherwise in ]1,0[
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Let
n

ti

1
 ,

n

j
ati

1
 for ni 1 .

Then
1t is rational while nttt .....,........., 32 are irrational numbers and

n

i
t

n

i
i 

1
for every n.

with these tages to nP , we have n
n

nPHS n  1
1

),(
.

If
nQ

.
is the partition nP with tags 







 


n

j

n

j
s j ,

1
, js being irrational, 0),(

.

nQHS .

We thus have 0
1..


n

PQP nnn as n .

While 1),(),(
..

 nn QHSPHS . for every n

Hence ]1,0[RH  .

S.A.Q. 19.5.3 : Every step function is a linear combination of elementary step functions.

Proof: Let Rbaf ],[: be a step function, with values ncc .,.........1 and for each ,i ni 1

Let iE be the subset of [a, b] such that ii cxfEx  )( .

In otherwords   ii cfE 1 . By the defintion of a step function each iE is a finite union of dispoint

intervals.

Let
iniiii JJJE ,.......

21


Then
giJ

ni

j

n

i

Qcxf 



1

1
1

)(

Illustration : Let f we defined on [0, 4] by

1)( xf if 10  x or
2

7
3  x

= 2 if
2

3
1  x or 4

2

7
 x
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= -1 if 2
2

3
 x or 3

4

9
 x

= 0
4

9
2  x

See fig 19.5.3 for graph of the above function.

    









2

7
,31,01)(/1 xfxE

  
















 4,

2

7

2

3
,12)(/2 xfxE

  















 3,

4

9
2,

2

3
1)(/3 xfxE

  









4

9
,20)(/4 xfxE

So             
2
3

4
9

2
3

4
7

2
3

2
7

2
3 ,2,4,,1,1,0 2  f

1

2

1 23
2

9
4

7
2

3 4

1

2
Fig. 19.5.3
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19.5.4 : If bca  and )(xf

Hence ],[ baRf  and  
b

a

fdx 0 .

Solution: Let  bxxcxxxaP nii   .................... 110 by any partition of [a, b] and

ii xcx 1 .

Let  jjj xxt ,1 be any tag for nj 1 .

Then 0)( jtf if  iij ,1 . There are two possibilities namely 1 ixc or 1 ixc .

Where 1 ixc the possibilities for 1it and it are as follows.

(1) ii tct 1 ( )1)()( 1  ii tftf

(2) ii tct 1 ( )0)(,1)( 1  ii tftf

(3) ii tct 1 ( )1)(,0)( 1  ii tftf

When 1 ixc two possibilities arise

(4) )1)((  ii tftc

(5) 2 ii xx

In cases (4) and (5) 0)( 1 itf

Thus )(())((),( 1211

.

  iiiiii xxtfxxtfPfS

= 2 ii xx in case (1)

= 21  ii xx in case (2)

= 1 ii xx in cases (3) and (4)

= 0 in case (5)

1 if cx 

0 if cx 
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In all these cases 0),(),(
..

 PfSPfS

=
..

2),( PPfS 

Hence if 0 for any tagged partition
.

P with
2

. 
P

 0),(
.

PfS .

Hence ],[ baRf  and  
b

a

fdx 0 .

Note: From this result if follows that Reimann integrability of a function and the value of the integral
reimann inchanged by changing the value of the function at a point.

19.5.8 : If
.

P is a tagged partition of [a, b] and Rbaf ],[: then there is a step function  on

[a, b] with  
b

a

PfS ),( .

Proof: Let   n

iiii txxP
11

.

],,[
 so that

bxtxtxtxa nn  ...............22110

Then 



n

i
iii xxtfPfS

1
1

.

))((),(

Let ],[ 1 iii xxJ  . Then ),( 1 ii

b

a

J xxdx
i  .

write 



n

i
Ji i

tf
1

)( 

Then  is a step function and

 






n

i
iii

n

i

b

a

Ji

b

a

xxtftf
i

1
1

1

))(()(   






n

i
iii

n

i

b

a

Ji

b

a

xxtftf
i

1
1

1

))(()(  =
.

( , )S f P
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19.6.2 SAQ : (Second proof of 19.6.1.)

Theorem : If f is continuous in [a, b] then [ , ]f R a b .

Proof: Since f is continuous in [a, b] f is uniformly continuous in [a, b]. So given 0 there exists

0  such that for all ,x y in [a, b] with x y   , ( ) ( )
2( )

f x f y
b a


 


.

Let n be such that
b a

n



 and  0 1 ......... nP a x x x b       where 1i i

b a
x x

n



   .

If 1 i n  let  1lub ( ) /i i iM f x x x x   and  1glb ( ) /i i im f x x x x  

Then  1lub ( ) ( ) / ,i i i iM m f x f y x x y x    

2( )b a





.

Hence 1
1

0( , ) ( )( )
n

i i i i
i

f P M m x x 


  

( )
2( )

b a
b a


 


.

=
2




This is true for every 0 . Hence [ , ]f R a b .

19.6.4 SAQ : Second Proof of 19.6.3.

Theorem: If f is monotonic in [a, b] then [ , ]f R a b .

Proof: We may assume that f is monotronically increasing in [a, b]. If ( ) ( )f a f b then f is a

constant function, hence [ , ]f R a b . Assume that ( ) ( )f a f b .

If 0 let n and
( )( ( ) ( )b a f b f a

n
 




and  0 1 ......... nP a x x x b       where

1i i

b a
x x

n



  .

Since f is monotonically increasing for each i , 1 i n  and 1ix x x  
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1( ) ( ) ( )i if x f x f x   so that

 1lub ( )/ ( )i i i iM f x x x x f x    and

 1 1glb ( ) / ( )i i i im f x x x x f x     .

Hence 1
1

0( , ) ( )( )
n

i i i i
i

f P M m x x 


   .

=  1
1

( ) ( )
n

i i
i

b a
f x f x

n







=
( )( ( ) ( )b a f b f a

n

 

=  .

This is true for every 0 . Hence [ , ]f R a b .

SAQ : 19.6.8(a): If f is continuous on [a, b] ( ) 0f x  for all x in [a, b] and 0
b

a

fdx  then ( ) 0f x 

for all x in [a, b].

Solution: If ( ) 0f c  for some c in (a, b), there exists 0  such that a c c b      and

( ) 0f x  if [ , ]x c c    since f is continuous  [ , ]u c c    such that ( ) ( )f x f u for all

x in [ , ]c c   . Hence

0 ( )2 0
b c

a c

fdx fdx f u









     .

This is a contradiction. Hence ( ) 0f x  for all x in (a, b).

since f is continous at a and b it follows that ( ) ( ) 0f a f b  .

19.6.8(b) SAQ:

Let ( )f x 

f is unbounded hence [0,1]f R .

If 0 1,a  f is continous on [a, 1], hence [ ,1]f R a

1

x
if 0 1x 

0 if 0x 
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If f is bounded on [a, b] and the restriction of f to [c, b] is Riemann integrable on [c, b] for

( , ]c a b then [ , ]f R a b and ( ) ( )
b b

c

c c

f x dx f x dx  , where [ , ]: f
c bcf

 0M  such that ( )f x M for all [ , ]x a b .

Let 0 and a c b  be such that 0 ( )
4

c a
M


   and cf be the restriction of f to [c, b]. Then

there exist functions c and c such that ( ) ( ) ( )c c cx f x x   if [ , ]x c b and ( )
2

b

c c

c

dx 


  .

(Squeeze Theorem 19.4.2)

Define ( )x 

and ( )x 

 l, ware step functions such that ( ) ( ) ( )x f x x   if [ , ]x a b and

( ) ( ) ( )
b c b

c c

a a c

dx dx dx           

2 ( )
2

M c a


  

2 2

 
  .

This is true for every 0 so [ , ]f R a b .

19.6.8 (c) SAQ :

Since f is bounded there is a real number 0M  such that ( )f x M if a x b  . Let

a c b  .

( )c x if c x b 

M if a x c 

( )c x if c x b 

M if a x c 
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Define ( )x 

and ( )x 

1( )x 

2( )x 

Then 1 2    , ( ) ( ) ( )x f x x   for [ , ]x a b .

1 [ , ]R a b  , (see note after 19.5.4 solution)

2 [ , ]R a b  (hypothesis).

Hence [ , ]R a b . Similarly [ , ]R a b 

Morever 2M   if a x c 

= 0 if c x b 

and ( ) 2 ( )
b

a

dx M c a   

Hence if 0 ( )
b

a

d x   if
2

a c a
M


  

Hence by squeeze theorem [ , ]g R a b .

Morever ( ) ( )
b b

c c

f c g a f f   

M if a x c 

( )f x if c x b 

M if a x c 

( )f x if c x b 

M if a x c 

0 if c x b 

0 if a x c 

( )f x if c x b 
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=

c

a

f

c

a

f  .

( )M c a  if a c a
M


  

Hence lim ( ) ( )
c a

g c g a
 

 .

19.6.8 (d) SAQ:

If f is continuous on [a, b] there exists [ , ]c a b such that

( ) ( )
b

a

b a f c fdx   .

Solution: Let  0( ) inf ( ) /f x f x a x b   and  1( ) sup ( ) /f x f x a x b  

Then 0 1( ) ( ) ( )f x f x f x  if a x b  .

 0 1( ) ( ) ( )
b b b

a a a

f x dx f x dx f x dx    .


0 1

( )

( ) ( )

b

a

f x dx

f x f x
b a

 




By the intermediate value theorem there exists [ , ]c a b

Such that
( )

( )

b

a

f x d x

f c
b a






19.6.8 (e) SAQ:

Let ( ) 0g x  for all x in [a, b], f, g be continous on [a, b]

To show that there exists c in [a, b] such that
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( ) ( )
b b

a a

f x dx f c gdx  ,

Let  0( ) inf ( ) /f x f x a x b   and  1( ) sup ( ) /f x f x a x b  

Then 0 1( ) ( ) ( )f x f x f x  for all x in [a, b]

 0 1( ) ( ) ( ) ( ) ( ) ( )f x g x f x g x f x g x  for all x in [a, b] (Since ( ) 0g x  )

 0 1( ) ( )
b b b

a a a

f x gdx fgdx f x gdx    .


0 1( ) ( )

b

a
b

a

fgdx

f x f x

gdx

 



( 0

b

a

gdx  )

Hence there exists c in [a, b] such that

( )

b

a
b

a

fgdx

f c

gdx





.

19.6.8 (f) SAQ:

If f and g are continous on [a, b] and

b b

a a

fdx gdx  then for some [ , ],c a b ( ) ( )f c g c .

Let ( ) ( ) ( )h x f x g x  . Then h is continiuous on [a, b] and 0
b

a

hdx  .

( 0
b b b

a a a

hdx fdx gdx     ). If for some 1,x 1( ) 0h x  and for some
2

x
, 2( ) 0h x  , by the

intermediation value property there is some c between 1 2,x x such that ( ) 0h c 

Suppose ( ) 0h x  for all [ , ]x a b then there is a 0 [ , ]x a b such that 0( ) ( ) 0h x h x  for all

[ , ]x a b .



Centre for Distance Education Acharya Nagarjuna University19.34

 0 00 ( ) ( ) ( )( ) 0
b b

a a

h x dx h x dx h x b a      (by 19.6.8(d))

This is a contradection. Hence it is not true that ( ) 0h x  for all [ , ]x a b . Similarly it is not true that

( ) 0h x  for all [ , ]x a b . Then for some x , ( ) 0h x  and some y , ( ) 0h y  . In this case the

conclusion holds, as proved above.

19.6.8 (g) SAQ:

If :[ , ]f a b   is bounded and is continous except at a finite number of points in [a, b] then

[ , ]f R a b .

Proof: Let  1,........ nE c c be the finite subset of [a, b] where 1 2 .......... na c c c b     and f is

discontinuous at each ic and continuous on [ , ]a b  . Let  lub ( ) / [ , ]M f x x a b  . If 0

choose , (1 )i iu i n  such that 1 1 1 2 2 2 ............. n n na u c u c u c b             and

for each i , 1
4

iu
nM


  .

In each of the intervals 1 1 2 1[ , ],[ , ]...........[ , ]n na u u u  and [ , ]n b

f is continuous, so f is Riemann integrable in each of these intervals. So there exist partitions

1 2 1, ,......... ,n nP P P P  of these intervals such that ( , )
2( 1)

iO f P
n





for 1 1i n   .

If s and t belong to 1[ ] ,iu ( ) ( ) ( ) / ( ) 2f s f t f s f t M   

Hence if  lub ( ) / [ , ]i i iM f s s u   and  lb ( ) / [ , ]i i im g f t t u  

lub ( ) ( ) / ,i iM m f s f t s t   belong to [ , ] 2i iu M .

Hence 
1

( )[ ] 2 .
4 2

n

i i i i
i

n
M m u M

Mn

 
     .

If P is the partition of [a, b] obtained by taking 1 1,......... nP P  together

1

1 1

( , ) 0( , ) ( )[ ]
n n

i i i i i
i i

O f P f P M m u



 

     

( 1)

2( 1 2

n

n

  
  


. Hence [ , ]f R a b .
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Summary: In this lesson Cauchy criterion for Riemann integrability, seneeze theorem are

established and integrability of continuous functions and monotone functions are deduced from the
squeeze theorem by using the integrability of step function. Another criterion for integrability involv-
ing supreme and in fima is stated without proof and a method of obtaining integrability of continuous
functions and monotone functions, which does not require integrability of step functions is de-
duced. Additivity theorems are also established.

Technical terms :

Elementary step function - functional

Exercises:

1. Let ( )x x   , ( )x x  and f be the Direct function defined by

( )f x  show that

(a) ( ) ( ) ( )x f x x   for all [0,1]x .

(b) [0,1]R  and [0,1]R 

(c) If n ,
1 2 1 1

0, , ,
1

n i

n
P t

n n n

 
  
 

and is any irrational number in
1

,
i i

n n

 
  

(1 )i n 

 
.

; ,n n i nP P t t and  
1

.

, , .......n n i nQ P s s

find
.

( , )nS f P and
.

( , )nS f Q

(d) Does [0 ,1] ?f R

2. Let [ , ]f R a b , ( ) ( )g x f x if a x b  . Show that [ , ]g R a b and

b b

a a

fdx gdx  .

3. Let [ , ]f R c d [ , ] [ , ]c d a b , ( )g x M if a x c  and 1( )g x M if d x b  while of

( ) ( )g x f x if .c x d  Show that [ , ]g R a b .

4. Show that if
.

( , )S f P is a Riemann sumthen the x is a step function  such that

.

( , )
b

a

dx S f P  .

Hint for    n

iiii txxP
11

.

,,
 , define ( ) ( )t f t  in  1,i ix x and ( ) ( )b f b  .

0 if [0,1]x and x is rational and

1 if [0,1]x and x is irrational
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5.

Let ( )f x 

show that [0,1]f R and

1

0

0fdx  .

6. Let :[ , ]f a b   ;    n

iiii txxP
11

.

,,
 be any tagged partition. Let  be the step function

given by ( ) ( )it f t  if  1,i it x x show that

.

( ) ( , )
b

a

t dt S f P  .

7. Show that if
1

( ) sing x
x

 when 0x  and (0) 1g  , then [0,1]g R , [Hint : Find the discontinoites

of g)

8. Suppose [ ,0]f R a  . (a) if f is even ( ) ( )f x g x for all x .

 
.

.

1 1 1 2 20 ........ n nP t x t x t x a         and

 
.

.

2 1 1 1............ 0n nP a t x x t          show that

. .

1 2( , ) ( , ).S f P S f P

(b) Show that if f is even
0

a a

a

fdx fdx  .

9. Suppose [ , ]f R a a  and f is .......................

Show that 0
a

a

fdx  .

10. Let [ , ]f R c d , [ , ] [ , ]c d a b and

( )g x  show that [ , ]g R a b

0 if 1
0

2
x  or

1
1

2
x 

1 if
1

2
x 

( )f x if c x d 

M if a x c 

M if d x b 
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11. Let :[ , ]f a b   ,    n

iiii txxP
11

.

,,
 and    

.

1
1

, ,
n

n i i i i
i

Q x x s t


  where 1,i i

b a
x x i

n



  .

Assume that f is monotonically increasing on [a, b).

(a) Show that
. .

( )( ) ( , ) ( , ) ( )( )n nf a b a S f P S f Q f b b a    

Hint: ( ) ( ) ( )if a f x f b i   .

(b)
. . ( )

0 ( , ) ( , ) ( ) ( )nn

b a
S f Q S f P f b f a

n


   

Hint:  1
1

( ) ( ) ( ) ( )
n

i i
i

f x f x f b f a


   .

12. If f is continous on [-a, a] show that
2 2

0

( ) 2 ( )
a a

b

f x dx f x  .

Hint: If 2( ) ( ), ( ) ( )g x f x g x g x   .

13. If f is continous on [-1, 1] show that

2

0 0 0

(cos ) (sin ) (sin )
2

l
f x dx f x dx f x dx

  

   

Hint: Examine certain Riemann sums.

14. Let :[ , ]f a b   be continuous and ( ) 0f x  for all x write

1
nb

n
n

a

M f dx
 

  
 
 for n and

 sup ( ) / 0 1M f x x   . Show that lim nM M .

- C. Sandhya

19.12 Model Practical Problems with solutions:

Let ( )f x 

If n and
1

0, ,........... 1n

n
P

n n

 
  
 

.

1 if x is rational

-1 if x is irrational
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Let

.

1

1
, ,

n

n i

i

i i
P t

n n


    
       

,

.

1

1
, ,

n

in

i

i i
Q s

n n


    
       

where
1

,i

i i
t

n n

 
   

,

1
,i

i i
s

n n

 
 
 

, it is rational and is is irrational.

Show that
.

( , ) 1nS f P  and
.

( , ) 1nS f Q  .

Deduce then [0,1]f R . Show also that [0,1]f R .

Definition: :[ , ]f a b   is said to be Riemann integrable if A  with the following property..

For every 0 0   such that for every tagged partition
.

P of [a, b] with
.

P  ,

.

( , )S f P A .

Tagged partition    n

iiii txxP
11

.

,,
 where 0 1 2 2 1............i n n na x t x t x x t x b         

 
.

1max ( ) /1i iP x x i n    .

The number A is called the Riemann integral of f over [a, b] and is denoted by

b

a

A fdx  or

b

a

A f  .

If f is Riemann integrable over [a, b] we write [ , ]f R a b .

Result used: [ , ]f R a b iff for every 0 there corresponds 0  such that for every tagged

partitions
.

P and
.

Q of [a, b] with
.

P  and
.

Q  ,
. .

( , ) ( , )S f P S f Q  .

Solution: For n and
.

nP and
.

nQ as given as in the problem .

.

1 1
1 1

( , ) ( )( ) ( ) 1
n n

n i i i i i
i i

S f P f t x x x x 
 

     and

[ 0 , 1 ]f R
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Hence
. .

( , ) ( , ) 1 ( 1) 2n nS f P S f Q     .

Moreover
. .1

2
n nP Q 

1 1i i
i

n n n


  

So for every 0  we may choose
1

n
n

   . The corresponding
.

nP ,
.

nQ satisfy

. . 1
n nP Q

n
   but

. .

( , ) ( , ) 2n nS f P S f Q   . Hence [0,1]f R . However

( ) 1f x  for all [0,1]x so [0,1]f R .



Real Analysis 20.1 The Fundamental Theorems of Calculus

LESSON 20

THE FUNDAMENTAL THEOREMS OF CALCULUS

20.1 OBJECTIVE: In this lesson we propose to establish that integration and

differentiation are inverse processes for contain classes of functions. Accordingly we

prove two theorems known as fundamental theorems of calculus. We also prove the

substitution theorem that simplifies the calculation of definite integrals.

20.1 Structure:

20.3 Introduction

20.4 Fundamental theorem of calculus (First form)

20.5 Fundamental theorem of calculus (Second form)

20.6 Some other theorems on Riemann integral

20.7 Short Answer questions

20.8 Solutions to SAQ’s

20.9 Summary

20.10 Technical terms

20.11 Exercises

20.12 Model Examination Questions

20.13 Model practical problem with solution

20.3 Introduction:

It is customary to introduce to the beginners, integral as antiderivative, there by meaning

that integration is the inverse process of differentiation. Yes! When we integrate a

function and then differentiate the resultant we arrive at the same function again.

Likewise when differentiate a function and then integrate the resultant we ultimately get

back the original function. However this holds goal for certain classes of functions only.

This lesson is devoted to a systematic study of these aspects in the form of Fundamental

theorems of calculus. The first type fundamental theorems is concerned about integrating

a derivative and that second type of fundamental theorem of calculus discusses

differentiating a primitive.
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20.4.1 The fundamental theorem of calculus (First form):

Definition: Let F, f be real functions defined on [a,b]. F is called an antiderivative or a

primitive of f on [a, b] if F1 (x) = f(x) for a  x  b.

Example: (i) sin x is a primitive of cos x and – cos x is a primitive of sin x.

(ii) ½ x2 + 3 and
2

5x 2 
are antidervatives of x

20.4.2 The Fundamental theorem (First form)

Suppose there is a finite set E in [a, b] and functions f and  form [a, b] into  such that

(a)  is continuous on [a, b]

(b) 1 (x) = f(x) for every x  [a, b] \ E and

(c) f  R [a, b].

Then 
b

a

fdx =  (b) -  (a)

Proof: Let  > 0 be given since f  R [a, b], there exists  > 0 such that if P is any

tagged partition with || P || <  |S (f, P) - 
b

a

fdx | < . We first assume that

E = {a, b} Let P = { ( [xj-1, xj], uj ) n
1j} 

Where each uj satisfies the condition in the mean valve theorem

 (xj) - (xj-1) =  (uj) (xj-xj-1) and uj  (xj-1, xj). Then

 (b) -  (a) = 



n

1j
1jj )x()x((

= 



n

1j
1jjj )xx()u((

= 



n

1j
1jjj )xx()u(f

= s ( f, P)

Hence | (b) -  (a) - 
b

a

fdx | < .
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This is true for every  > 0 so that 
b

a

fdx =  (b) -  (a)

The case when E has more points is considered in SAQ 20.4.

20.4.3 Example:

a) If F(x) = ½ x2  x  [a, b]  

then F1(x) = x  x  [a, b]  

Further F1 (x) is continuation, so it is in R [a, b]

Hence by the fundamental theorem, with E = , implies that


b

a

fdx = F (b) – F(a)

= ½ b2 – ½ a2 = ½ (b2 – a2)

b) If G(x) = tan-1 x for x  [a, b]  R then

i) G1(x) =
2x1

1


 x  [a, b]  R

ii) G1(x) is continuation in [a, b], so that G  R [a, b]

Hence by the fundamental theorem (with E = ) implies that

 

b

a

2x1

1
dx = G (b) – G(a)

= tan-1b – tan-1 a.

c) If A (x) = |x|  x  [-10, 10]

A1 (x) = + 1 if x  (0, 10]; A1 (x) = 0 if x = 0

Since the signum function, sgn be defined by sgn (x) = +1 for x > 0

= 0 for x = 0

= -1 for x < 0.

We conclude

A1 (x) = sgn (x)  x  [-10, 10] \ {0}.

Since the singum function is a step function, it belongs to R [-10, 10].

Therefore by fundamental theorem (with E = {0}) implies that
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10

10
01010

)10(A)10(Adx)x(sgn

d) If H(x) = 2 x for x  [0, b]  R H is continuation on [0, b] and H1(x) =
x

1
for

x  (0, b]

which is not bounded on (0, b]  

Hence it does not belong to R [0, b].

20.5 Fundamental theorem (2nd form)

20.5.1 Definition: If f  R [a, b], then the function defined by

F (z) = 
z

a

f for z  [a, b] is called indefinite integral of f with base point ‘a’.

20.5.2 Theorem: the indefinite integral F defined as in, is continuation on [a, b]  

infact, if |f(x)|  M,  x  [a, b], then |F(z) – F(w)|  M (z –w|  z, w  [a, b].

Proof: If the additive theorem,

If z, w  [a, b] & w  z, then

F (z) = 
z

a

f = 
w

a

f + 
z

w

f

= F(w) + 
z

w

f .

 
z

a

f = F(z) – F(w)  (1)


wz

Lt


(F(z) – f(w)) = 0.


wz

Lt


F(z) = F(w).

 The indefinite integral F is continuation on [a, b]

If |f(x)|  M  x  [a, b]

 -M  f(x)  M  x  [a, b]

If f  R [a, b], then for w  z  [a, b],
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f  R [w, z}

 -M (z-w)  
z

w

f  M (z – w)

 
z

w

f  M (z – w)

Hence form (1),

|F(z) – F(w)|  M (z-w)

20.5.4 Fundamental theorem of calculus (second form)

Let f  R [a, b] and let f be continuous at a point c  [a, b]. Then the indefinite integral as

in is differentiable at c and F1(c) = f(c)

Proof: Given that f is continuous at point c  [a, b]

 f is continuous at c  [a, b)

 for  > 0,  n > 0  if

c  x < c + n , then

f(c) -  < f(x) < f(c) +  (1)

If we consider h  (0, n) then for a, c, c + h  [a, b), by the additive theorem,

if f  R [a, b]  f  R [a, c],

f  R [c, c + h]

& f  R [a, c + h]

F (c + h) = 
hc

a

f = 
c

a

f + 
hc

c

f

= F(c) +
c h

c

f




 F (c+h) – F(c) =
c h

c

f




(1)  f(c) -  < f(x) < f(c) + 
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hc

c

))c(f( < 
hc

c

)x(f < 



hc

c

))c(f(

 h(f(c) - ) < 
hc

c

f < h (f(c) + )

 f(c) -  <
h

1

hc

c

f < f(c) + 

 f(c) -  <
h

1
[F(c+h) – F(c) } < f(c) + 

 -  < )c(f
h

)c(F)hc(F



< 

 | )c(f
h

)c(F)hc(F



|  


0h

lim
 h

)c(F)hc(F 
= f(c)

 F1 (c) = f(c)

Hence the indefinite integral is right differentiable at c  [a, b)

|||ly we can prove for c  (a, b], the indefinite integral is left differentiable.

Hence the result.

20.5.5 Theorem: If f is continuation on [a, b]. Then the indefinite integral F defined in

, is differentiable on [a, b] and F1(x) = f(x)  x  [a, b]

Proof: If f is continuous on [a, b], f  R [a, b].

By the above theorem 20.5.4 the result follows.

Aho F is continuous on [, ]

Hence by fundamental theorem,






 1)of( = 




 dx)x()x((f 1

= 




 dx)x(1

=  () -  ()
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= F( ()) – F (())

= F (b) – F(a) When b = ()

a = ()

= 
b

a

1 dx)x(F

= 




)(

)(

dx)x(f

20.5.6 Example:

a) Consider the integral
4

1

sin t

t
 dt

Put  (t) = t for t  [1, 4]

 1 (t) =
t2

1
is continuous on [1, 4]

Let f(x) = 2 sin x then integral is of the form.

(f o ) 1 and by the above theorem


2

1

dxxsin2 = [-2 cos x 2
1] = 2 (cos 1 – cos 2)

20.5.7 Examples:

(a) Let f(x) = sgn x on [-1, 1] then f  R [-1, 1]

If x  0 


x

1

dt)t(f = 



0

1

dx1 + 
x

0

dx1 = x – 1

If x < 0 


x

1

dt)t(f =
x

1

1dx


 = -x – 1

Hence the indefinite integral F(x) = |x| - 1. (with base point -1).

However |x| is not differentiable at o, hence F is not differentiable at 0. Hence f is not an

antiderivative of f on [-1, 1].

(b) Let h denote the Thomae function defined by

h(x) = 0 if x is irrational and x  [0, 1] and
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=
n

1
when x is rational, x  [0, 1] and x =

n

m
in simplest form (when x = 0 we take

h(0) = 1)

then H(x) = 
x

0

dt)t(h = 0 for x  [0, 1]

Hence H1 (x) = 0 for every x  [0, 1]

Since H1 (x)  h(x) for when x  [0, 1] and x is rational,

H is not antiderivative of h on [0, 1].

20.6 Some other theorems on Riemann integral substitution theorem:

Let J = [, ] and let  : J   have a continuation derivative on J. if f : I   is

continuation on an internal I = [a, b] containing  (J), then






 ))t((f - 1 (t) dt = 




)(

)(

dx)x(f

Proof: Since f is continuation function on the closed bounded interval [a, b], then there

exists a function F defined by

F (w) = 
w

a

dx)x(f

Which is differentiable on [a, b] and F1 (w) = f(w)  w  [a, b]

Let  (w) = F((w)) for a  w  b.

By chain rule,

1 (w) = F1 ( (w)) 1(w)

= (f o ) (w) . 1(w)

= [(f o ) 1] (w) for a <   w   < b

The continuity of  implies the continuity of . Also the continuity of f and  implies the

continuity of the composite function fo and consequently, the product is continuation on

[, ] .
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20.6.2 Integration by parts: Let F and G be differentiable on [a, b], f = F1 and g = G1

belong to R [a, b].

Then 
b

a

dxGf = F(b) G(b) – F(a) G(a) - 
b

a

dxgF

Proof: Since F and G are differentiable on [a, b]

and (F G)1 (x) = F(x) G1 (x) + F1 (x) G(x)

= F(x) g(x) + f(x) G(x) if x  [a, b]

Since F and G are continuous and f = F1, g = G1 are Riemann integrable, f G = F1 G and

Fg = FG1 are integrable on [a, b]. Therefore by the Fundamental theorem,

F (b) G(b) – F(a) G(a) = 
b

a

1 dx)FG(

= 
b

a

dx)fG( + 
b

a

dxFg

Hence 
b

a

dx)fG( = Fa (b) G(b) – F(a) G(a) - 
b

a

dxFg

20.6.3 Taylor’s theorem with the Remainder

Suppose f, f1, ….. f(n), f(n+1) exist in [a, b] and f(n+1)  R [a, b].

Then f(b) = f(a) + (b-a) f1(a) …….. + (b-a)n

!n

)a(f )n(

+ Rn

Where Rn =
!n

1
 
b

a

n)1n( dt)tb()t(f

Proof: The functions F(t) = f(n) (t) and G(t) =
!n

)tb( n
are differentiable in [a, b) F1(t) =

f(n+1) (t) and G1 (t) = -
)!1n(

)tb( 1n



 

belong to R [a, b]. Then by the theorem on integration

by p arts,

Rn = 
b

a

1 dtGF = F(b) G(b) – F(a) G(a) - 
b

a

1 dtFG
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 Rn = f(n)(b)
!n

)ab( n
- fn (a)

)!n(

)ab( n

+
)!1n(

1

 
b

a

)n( )t(f (b-t)n-1 dt

=
b(n)

n (n) n 1

c

f (a) 1
(b a) f (t) (b t) dt

n! (n 1)!


  
 

Repeating this process with the integral on the right successively we ultimately get

Rn =
!n

)a(f )n(
(b-a)n -

)!1n(

)a(f )1n(





(b-a)n-1 ………. - f(a) + f(b)

 f(b) = f(a) + (b-a) f1(a) + …….
!n

)ab( n
f(n)(a) + Rn

20.7 Short answer Questions

(a) Extend the proof the first fundamental theorem (first form) to the case of an

arbitrary finite set

(b) If n  N let F(x) =
1n

x 1n





for x  [a, b]. Apply the Fundamental theorem of

calculus (first form) to deduced that 
b

a

n dxx =
1n

ab 1n1n



 

(c) If g(x) = x for |x| 1 and –x for |x| < 1 and if G(x) =
2

1
|x2 -1| Show that G is

differentiable and G1 (x) = g(x) except at x =  1. Apply Fundamental theorem of

calculus (first form) to deduce that 
3

2
)x(g dx = G(3) – G(-2) =

2

5
.

(d) Let f: [a, b]   and c   .

(i) If  : [a, b]   is an antiderivative of f on [a, b] show that c(x)=(x)+c

is also an antiderivative of f on [a, b]

(ii) Conversely show that if 1 and 2 are antiderivative of f on [a, b] then

there is c   such 1(x) = 2(x) +c for all x  [a, b]
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(e) If f  R [a, b] and c  [a, b] show that he function Fc defined by Fc (z) =
z

c

f (t) dt

for z  [a, b] called the indefinite integral of f with base point c satisfies

Fa (z) – Fc (z) = Fa (c) for all z.

(f) Is that Fundamental theorem of calculus (first form) applicable to derive


1

0
dx)x(H = 0 where H is the thomae function?

20.4.6 Let F: [0, ]   be defined by F(x) = (n-1) x -
2

n)1n( 
if n-1 x < n and n 

N. show that F is continuous on [0, ).

Evaluate F1 (x) at points where F is differentiable and Apply the Fundamental theorem of

calculus (first form) to evaluate
b

a

[x] dx where [x] is the largest integer  x.

20.4.7 Let f: [a, b]   be continuous on [a. b]  : [c, d]  [a, b] be differentiable. If

G(x) =
(x )

a

f (t) dt


 show that G1(x) = f( (x) 1(x).

(i) Cauchy Bunyakovsky – Schwartz in equality

If f, g belong to R [a, b] show that

2b

a

dxfg  
b

a

2 dxf . 
b

a

2 dxg .

20.8 Solutions to short answer Questions

20.7. a Extend the proof of the Fundamental theorem of calculus (first form) to the case

of an arbitrary finite set.

Proof: Suppose E = {a = c0 < c1 < …. < cm = b} be the set of points of [a, b] where either

F is not differentiable or F is differentiable but F1 (x)  f(x). Then for 1  i  m f 

R [ci-1, ci] and 


i

1i

c

c

dxf = F(ci) – F (ci-1).
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Hence 
b

a
dxf = 



m

1i



i

1i

c

c

dxf = 



m

1i
1ii )c(F)c(F = F(b) – F(a)

Continuing in this process, we get

|an rn|  B for all n  w

consider |an zn| = |an zn|
n

n

r

r

= |an rn|
n

n

r

|z|

= |an rn|
n

r

|z|









 B
n

r

|z|








for all n  N.

Since
r

|z|
> 1, the series 














0n

n

r

|z|
diverges

Hence 


0n

n
n za diverges when |z| > 

 R    (2)

from (1) and (2) we get

R =  =
1n

n

n a

a
lim




Hence R =
1n

n

n a

a
lim




if it exists

Hence the power series 





0n

n
n )az(a is a power series with radius of convergence R

then R =
1n

n

n a

a
lim




if it exists.

20.7.b Verify that the Fundamental theorem of calculus (first form) can be applied to the

function F(x) =
1n

x 1n





for x in [a, b] and n  N to deduce that 
b

a

n dxx =
1n

ab 1n1n



 

.
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Verification: The function F is differentiable on [a, b], f(x) = F1(x) = xn for all x  [a, b]

(we may take E = ) and f  R [a, b].

Hence the Fundamental theorem of calculus (first form) is applicable. By this theorem


b

a

n dxx = 
b

a

dx)x(f = F(b) – F(a) =
1n

ab 1n1n



 

.

20.7.c Let G(x) = ½ |x2-1|. Find x where G is not differentiable. Show that G1(x) = g(x)

whenever G is differentiable where g(x) =








1|x|ifx

1|x|ifx

Show that 


3

2

dx)x(g = G(3) – G(-2) =
2

5
.

Solution: If |x| > 1 G1(x) = x
h

)x(G)hx(G
lim

0h





If |x| < 1 G1 (x) = x
h

)x(G)hx(G
lim

0h





h

)1(G)h1(G
lim

0h




=
h2

1
{(1+h)2 -1} = 1

Write
h

)1(G)h1(G
lim

0h




=
h2

1
{(1-h)2 -1} = -1

Hence G is not differentiable at 1. similarly G is not differentiable at -1. Hence G1(x) =

g(x) except at x =  1

Where G is not differentiable. The function g is Riemann integrable in [-2, 3]. Hence by

the Fundamental theorem of calculus (first form)




3

2

dx)x(g = G(3) – G(-2) = 5.

20.7.d Let f: [a, b]   , c   .

(i) If  : [a, b]   is an antiderivative of f on [a, b] and c (x) = (x) + c for

x[a,b] show that c is also an antiderivative of f.

(ii) conversely if 1, 2 are antiderivatives of f on [a, b] show that there is a c  

such that 1(x) = 2(x) + c for x  [a, b].
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20.7.e (i) since  is differentiable on [a, b] so is c. Also 1
c (x) = 1(x) = f(x) for x[a, b]

Hence c is an antiderivative of f on [a, b].

(ii) Since 1
1 (x) = 1

2 (x) = f(x) for al x in [a, b], (1 - 2)
1 (x) = 1

1 (x) 1
2 (x) = 0 for all

x in [a, b]. Hence there exists c   such that (1 - 2) (x) = c for all x  [a, b]. This

implies that 1(x) = 2(x) + c for x  [a, b].

20.7.f If f  R [a, b] and c  [a, b], the function Fc (z) =
z

c

f (t) dt for z  [a, b] is called

the indefinite integral of f with base point c. Find a relation between Fa and Fc.

By definition Fa (z) = 
z

c
dt)t(f for z  [a, b]

= 
c

a
dt)t(f + 

z

c
dt)t(f

= 
c

a
dt)t(f + Fc (z).

Hence Fa (z) – Fc (z) = Fa (c) for al z  [a, b].

Problem:

1. Find Radius of convergence of the series 
!n

z n

Sol: Consider the power series 
!n

z n

Here an =
!n

1

Consider the Radius of convergence

R =
1n

n

n a

a
lim




R =

)!1n(

1
!n

1

lim
n





= |1n|lim
n




R = 
Hence the series converges for all z.
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20.7.g The Thomae function H : [0, `]   defined by H(x) = 0 if x is irrational and

x[0, 1] and H(x) =
n

1
if x is rational in [0, 1] and x =

n

m
in the simplest form x  0

while H(0) = 1 then H is continuous at every irrational number and discontinuous at

every rational number, H is not differentiable at any point of [a, b]. Also we know that


1

0
dx)x(H = 0 = H(1) – H(0). This conclusion can not be derived from the fundamental

theorem of calculus (first form) since there is no h: [0, 1]   such that H1 (x) = h(x)

for all but possibly many x in [0, 1].

Introduction:

In this topic we have to discuss about definition and some properties on power series.

Power series:

The series of the form 





0n

n
n )az(a is called the power series about the point ‘a’.

Radius of convergence:

Let 





0n

n
n )az(a be a power series we define

R

1
= lim sup |an|

1/n. The number R is called

radius of convergence of the power series.

Result: If 





0n

n
n )az(a is a power series with radius of convergence R thus

R =
1n

n

n a

a
lim




if it exists

Proof: Without loss of generality we prove the result for the power series 


0n

n
n za

Suppose  =
1n

n

n a

a
lim




exists.
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20.7.h Let f(x) be defined for x  [0, ] by F(x) = (n-1) x – (n-1)
2

n
for x  [n-1, n] and

n  N.

Show that F is continuous on [0, ). Evaluate F1(x) where this derivative exists. Use this

result to evaluate
b

a

[x] dx where [x] is the integer such that [x]  x < [x] +1.

Since F(x) = (n-1) {x -
2

n
}, for n-1  x < n, F is differentiable in (n-1, n) for n  N and

F1(x) = (n-1) if n-1 < x < n.

Also
h

)n(F)hn(F
Lim

0h




= n while

h

)n(F)hn(F
Lim

0h




= n-1 for n  N

Thus F is not differentiable at n for n  N. Thus many interval [a, b] where a < b the set

of points where F is not differentiable is finite. Hence the Fundamental theorem of

calculus (first form) is applicable with f(x) = [x] and 
b

a

dx]x[ = F(b) – F(a).

For example 
3

1

dx]x[ = F(3) – F(1) = 3.


4/3

2/1

dx]x[ = F(
4

3
) – F(

2

1
) = 0.

20.7.i Let f : [a, b]   be continuous,  : [c, d]  [a, b] be differentiable and let

G(x) = 
 )x(

a

dt)t(f

Show that G1(x) = f((x) 1(x) for  [c, d].

Let H(x) = 
x

a

dt)t(f since f is continuous, H is differentiable and H1(x) = f(x) for x  [a, b]

Since G(x) = H((x)) and H &  are differentiable, it follows by chain rule that

G1(x) = H1((x)) 1(x)

= f((x)) 1(x).
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20.7.j Cauchy – Bunyakovsky – Schwarz in equality:

Let f,g  R [a, b]. Then

2 2b b b b
2 2

a a a a

fg fg f g
 

  
 

   

As the first inequality is clear we prove the second inequality.

For every t   (tf – g)2 (x) > 0 if x [a, b]

  
b

a

2 dx|)g||f|t(  0.

 t2

b

a

2f - 2t 
b

a

|fg| + 
b

a

2g  0.  t    (1)

If 
b

a

2f = 0, 0  
b

a

|fg| 
t2

1

b

a

2g

This holds for every t > 0. Letting t  +  we get 
b

a

|fg| = 0.

If 
b

a

2f > 0 put t =

b

a
b

2

a

| fg |

f




, A = 

b

a

2f , B = 
b

a

|fg| and c = 
b

a

2g in (1) we get c -
A

B2

 0

So that A C  B2

This implies that ( 
b

a

|fg| )2  ( 
b

a

2f )  ( 
b

a

2g )

20.9 Summary:

After completing this lesson the student will be able to appreciate the idea that integration

and differentiation or inverse processes for a large class of functions which is established

via the fundamental theorems of calculus.

20.10 Technical Terms: Integration by parts, indefinite integral, Anti derivative.

20.11 Exercises:

1. Let B(x) =














0xifx
2

1

0xifx
2

1

2

2

Show that B1(x) = |x| for all x.

Using Fundamental theorem if calculus first form

Show that
b

a

| x | dx = B(b) – B(a).
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2. Let f R [a, b] and define F(x) =
x

a

f (t) dt for a  x  b.

(a) Show that
x

a

f (t) dt = F(x) – F(c)

(b) Show that
bx

x

f (t) dt = F(b) – F(x)

(c) Show that
sin x

x

f (t) dt = F(sinx) – F(x) if a  sinx  b for x  [a, b]

3. Show that F1(x) = 2x (1 + x6)-1 if F(x) =

2x
3 1

0

(1 t ) dt

4. Show that F-1(x) = )x1( 2 - 2x )x1( 4 if F(x) =  
x

x

2

2

dtt1

(Hint: apply SAQ ………)

5. Let f(x) =
x if 0 x 1 or 2 x 3

1if 1 x 2

   


 

Show that F(x) =
x

0

f (t) dt






















3x2if
2

5x2x

2x1if
2

1
x

1x0if
2

x

2

2

Show that f is differentiable except at 1 and 2.

Show that F is not differentiable at 1 and 2.

6. If f:    is continuous and c > 0 show that

g(x) = 




cx

cx

dt)t(f is differentiable in  and

show that g1(x) = f(x +c) – f(x – c).

7. If f: [0, 1]   is continuous and 
x

0

dt)t(f = 
1

x

dt)t(f for all x  [0, 1] then show

that f(x) = 0 for all x [0, 1]

(Hint 
x

0

dt)t(f = ½ 
1

0

dt)t(f differentiate)
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8. Use the substitution theorem to evaluate the following integrals

(a)  
1

0

2 dtt1t (1 + t2 = u) (Ans: )12(
3

1 2/3 

(b) dt)t1(t
2

0

2/132


 (1 + t3 – u) (Ans:

3

4
)

(c) dt
t

t1
4

1




( t = u – 1) (Ans:
3

4
(33/2 – 23/2)

(d) dt
t

tcos
4

1

 ( t = u) (Ans: 2(sin2 – sin1)

20.12 Model Examination Questions

1. State and prove the fundamental theorem of calculus (first form)

2. Show that if f  R [a, b] then the indefinite integral F(z) =
z

a

f (t) dt is continuous.

3. State and prove the fundamental theorem of calculus (second form)

4. State and obtain the formula for integration by parts.

5. Find F1(x) when F(x) =

2x

3

0

dt

1 t

6. If 
x

0

dt)t(f = 
1

x

dt)t(f for all x  [0, 1] and f : [0, 1]   is continuous, show

that f(x) = 0 for all x  [0, 1].

20. Model Practical problem with solution

Let f(x) =








2x1if1

1x0if0

(a) Show that f   [0,2]

(b) If f(x) = 
x

0

dt)t(f show that F is continuous on [0, 2]

(c) Find all x for which f is differentiable at x.
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Definitions:

(1) we say that f  R [a, b] if  A   such that for every  > 0 there corresponds

 > 0 with the property that if P = { ( [xi-1, xi], ti ) n
1i}  is any tagged partition of

[a, b] i. e ti  [xi-1, xi]  i, 1  i  n with || p || = max (xi – xi-1) <  ,

| 


 
n

1i
1iii A)xx()t(f | < 

This A is called the integral of f over [a, b] and is denoted by
b

a

f

(2) we say that f: [a, b]   is differentiable at x  [a, b] and has derivative

f  (x) if   and
xy

)x(f)y(f
lim

xy 




= f1(x).

Results used:

(1) If f  R [a, b] and f(x) = g(x) for x  [a, b], x  x0

Where x0  [a, b] and f(x0)  g(x0) then g  R [a, b] and 
b

a

dxf = 
b

a

dxg

(2) If f : [a, b]   is continuous on [a, b] \ E where E is a finite subset of [a, b] then

f  R [a, b]

(3) If f  R [a, b] then the function F defined on [a, b] by F(x) = 
x

a

dt)t(f is

continuous on [a, b]. If f is continuous at x0  [a, b] there f is differentiable at x0

 [a, b] there F is differentiable at x0 and F1(x0) and F1(x0) = f(x0)

Solution: Let g(x) = if 0  x  1 Then g  R [0,1] Since g = f except at x = 1, f  R [0,1]

and 
1

0

dt)t(f = 
1

0

dt)t(g = 0. (Result 1 )

Hence F(1) = 0. Also if 0  x < 1, F(x) = 
2

0

dtf = 0.

In [0, 2] f is continuous except at x = 1. So f  R [0,2] (Result 2 )
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Also for 1  x  2 F(x) = 
x

0

dt)t(f = 
1

0

dt)t(f + 
x

1

dt)t(f

= F(1) + 
x

1

dt)t(f = 
x

1

dt)t(f

= 
x

1

dt1 = x – 1.

Since f  R [0, 2], F is continuous on [0, 2] (Result 3 )

Since f is continuous in [0, 2] except at 1, D is differentiable at x for x  1

1y

)x(F)y(F
lim

1y 




=
y 1

y 1
lim

y 1 




= 1

1y

)x(F)y(F
lim

1y 




=
1y

0


= 0

Hence F is not differentiable at 1.

Hence F is differentiable on [0, 2] – {1}.

C. SANDHYA



Real Analysis 10A.1 Real Number System

LESSON 10A :

REAL NUMBER SYSTEM

10.A:1 Objective: The aim of this lesson is to provide the student with the necessary

preliminaries on set theory and introduce the Real number system as a ‘complete ordered

field’. The most commonly used properties - The Archimedian principle and density of Q

in  are also presented for ready use of the student.

10.A.2 Structure

10.A.3 Introduction

10.A.4 Sets and functions

10.A.5 The Real number system

10.A.6 Absolute value

10.A.7 Bounded sets

10.A.8 Bounded functions

10.A.9 Intervals

10.A.10 Nested intervals

10.A.11 Some elementary inequalities

10.A.12 Solutions to SAQ’s

10.A.13 Exercises

10.A.14 Model examination questions

10.A.15 Model practical problem with solution

Richard Dedekind (1831-1916)

Dedekind’s major contribution was a redefinition of
irrational numbers in terms of Dedekind cuts. He introduced
the notion of an ideal which is fundamental to ring theory.
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10.A.3 Introduction

In this lesson we present the background needed for real analysis. We begin with the

assumption that we “know” what a “set” is and make no attempt to define set.

After a brief introduction to the elements of set theory we introduce the principle of

mathematical induction in various forms without proof. We then proceed to the definition

of finite, infinite, denumerable and uncountable sets.

The order properties of  lead to the notion of bounded and unbounded sets. The

supremum and infimum of a bounded set are defined and some important properties are

discussed in this lesson. The notions of interval, Absolute valve, and nested intervals are

also studied. We do not make any attempt to provide rigorous definitions to the

trigonometric functions, exponential functions and logarithmic functions but make use of

their properties wherever required.

10.A.4. Sets and Functions:

We assume familiarity with sets and elements and the relation “belongs to” denoted by .

If a is an element and S is a set only one of the two – “a belongs to S”, “a does not belong

to S” holds. In the first case we write a  S and in the second case we write a  S. The

word set is synonymous with the words “class” “family” and “collection”. The familiar

notations { ……… } and {x| P(x)} are used to represent a set.

 Let A and B be sets. We say that A is equal to B, in symbols A = B if x xB.

 We say that A is a subset of B, in symbols A  B or B  A if x  B whenever

x  A. if A  B and A  B we write a

 B.

 We assume that there is one and only one set denoted by  which does not have

any elements.

 The union A  B of sets A and B is defined by A  B = { x | x  A or x  B}

 The intersection A  B is defined by A  B = { x | x  A and x  B}

 and the complement of B in A is defined by A \ B = { x | x  A and x  B}
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 Let  be any set and for every   , A is a set. The collection of sets

{ A |    }is said to be “indexed” by the “index set ”

 The union of the family of sets { A |    } and the intersection are defined by

The union of { A |    }=  A = { x | x  A for some   }

and the intersection of { A |    }=  A = { x | x  A for every  }

 If a and b are elements the ordered pair with “first component” a and “second

component” b is (a,b)

 (a,b) = (c,d)if and only if a = c, b = d. Thus (a,b)  (b,a) if a  b.

 The Cartician product A x B of sets A and B is given by

A x B = { (a,b) | a  A and b B}. Any subset of A x B is called a relation.

 A relation F  A x B is a function (also called a mapping) from A into B, in

symbols F: A  B if for every a  A there is a unique b  B such that (a,b)  F.

This b corresponding to a such that (a,b)  F is called the image of a in F and is

denoted by b = F (a). A is called the domain of F and B the codomain of F.

 If C  A F (C) = { (a) | a  C}. F (A) is called the range of F. If b  B

F-1 (b) = {a | a  A and b = F (a)} and if B1  B, F-1 (B1) = {a | F (a)  B1}

 F: A  B is said to be one-one (also called injection) if x  A, y A and

F (x) = F (y)  x = y.

 F is called onto (also called surjection) if B = F (A); i.e. for every y  B there is

x  A such that F (x) = y

 F is called one-one and on to (bijection) if F is one – one and onto, i e. for every

y  A there is unique x  A such that F (x ) = y.

 We say that A is equipotent to B, in symbols A  B if there is a bijection from A

onto B.

10.A.4.1. SAQ: If F : A  B and G: B  C the composite GoF: A  C defined by

(GoF) (x) = G (F(x)) is a function.

10.A.4.2 SAQ: If F: A  B is a bijection, F-1: B  A defined by

F-1 = {(y,x) y  B, x  A and F (x) = y} is a bijection.

10.A.4.3 SAQ: The identity function I: A  A defined by I (x) = x is a bijection.
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10.A.4.4. SAQ: If F: A  B and G: B C are bijections then show that the composite

GoF : A  C is a bijection.

The restriction of a function F: A  B to a subset C  A, denoted by
c

F1 is the set

F1=F(C x B),
c

F1 : C  B defined by F1 (x) = F (x) if x  C is a function and is denoted

by F1 = F/C

We now assume the existence of the set N of natural numbers whose elements are

denoted by 1,2,3,….n….., N = {1,2,3,….n…..} and the existence of a relation called

order relation on N satisfying 1 < 2 < 3 < … n < … we also assume the existence of

arithmetic operations addition (+) and multiplication (.). We will discuss about these

properties further very soon. We now state the famous well ordering principle and the

principle of Mathematical induction .

An element n  A  N is called the first (least) element of A if m  N and m < n  m  A.

Well ordering principle: Every nonempty subset of N has first element.

Principles of mathematical induction: Let S be a subset of N that possesses the two

properties:

(1) 1  S (2) If k  N and k  S, then k+1  S. Then S = N.

10.A.4.5 SAQ: Prove the following by the principle of Mathematical induction.

(i) For each n  N, 1 +2 + …. + n =
2

)1( nn

(ii) For each n  N, 12 + 22 + ……… + n2 =
6

1
(n) (n+1) (2n+1)

10.A.4.6 Principle of Mathematical Induction – Second version:

Let P(n) be a statement for n  N. If for some no  N, P(no) is true and if P (k+1) is true

whenever k  N, K  no and P(k) is true, then P(n) is true for all n  N and n  no.
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10.A.4.7. Principles of strong (complete) induction:

Let S  N. If 1  S and n + 1  S whenever {1,2,…n}  S then S = N.

10.A.4.8. Finite and infinite sets: If n  N we write Jn = {1,2,….n}.

A set A is said to be finite if either A =  or else there is n  N such that A  Jn . A is said

to be infinite if A is not finite. A is said to be countabley infinite or denumerable if AN;

i.e. there is a bijection from A onto N.

If A is countabley infinite and x : N  A is a bijection, it is customary to write x(n)=xn

for n  N and represent A by A = {x1, x2, ….. xn ….} This represention of A is called an

enumeration of A and is also written A = {xn | n  N}

If n  N xn is called the n-th term of the enumeration. If A = , A is said to have zero

elements. If A  Jn A is said to have n elements. If A is finite or denumerable to A, then

A is said to be countable. i.e. If A =  or A  Jn for some n or A  N then A is countable.

If A is not countable, Then A is said to be uncountable and have uncountable many

elements.

We use the following theorems wherever necessary. We state the theorems without

proofs as our main interest is in analysis and not in set theory.

Uniqueness theorem: If S is a finite set then there is a unique n  N such that S has n

elements.

10.A4.9. Theorem: The set N of natural numbers is infinite.

10.A.4.10. Theorem: The set Q of rational numbers is denumerable.

Theorem: If for n  N An is countable,
11


n

An is countable

10.A.4.11 Theorem: Suppose S and T are sets and that T  S.

(a) If S is a countable set, then T is a countable set.

(b) If T is an uncountable set then S is an uncountable set.
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10.A.5. We now discuss some essential properties associated with the real number

system. As already mentioned the natural number system N, the sets Z of integers, Q of

rational numbers and the set  of real numbers are governed by the inclusions N


 Z


Q


  . These sets are equipped with two algebraic operations – addition,

denoted by + and multiplication, denoted by. Addition assigns to each ordered pair (a,b)

of real numbers, their sum, denoted by a + b and multiplication assigns a .b (also denoted

by a b) to (a, b). Each of the sets N, Z , Q and  is “closed” under ‘+’ as well as for “.”

in the sense that the sum a + b and the product a b of any pair (a, b) from each of these

sets lie in the same set.

We now list of he fundamental laws of addition and multiplication.

10.A.5.1 (A) LAWS OF ADDITION:

A1 : If a, b are in  , a + b = b + a commutative law

A2 : If a, b, c are in  (a + b)+c = a + (b + c) associative law

A3 : There is an element 0 (called zero) in  . existence of zero element

Such that a + 0 = a for every a in 

A4 : For every a in  there is an element u in existence of additive inverse

 such that a + u = 0. Any such u is denoted

by –a and is called inverse of a Existence of additive inverse.

(M) Laws of Multiplication:

M1 : If a, b are in  ab = ba (commutative law)

M2 : If a, b, c are in  (ab) c = a (bc) associative law.

M3 : There as an element of called unity in  such that 1  0 and

a1 = 1a = a for all a in  . existence of unity

M4: If a   and a  0 there a v in  such at av = va = 1. This v is called inverse of a

and is denoted by a-1 or
a

1
(existence of inverse for nonzero element)

(D) Distributive law: If a,b,c belong to  a (b+c) = ab+ac

With these axioms (R, +, .) becomes a “field”.
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Remark: The elements 0,1, -a and
a

1
are unique.

Reason: If z1 and z2 satisfy A3 then Z2 = Z2 + Z1 = Z1
. If e1 and e2 satisfy M3 then e1 = e1

e2 = e2

(O) Order properties of  : There is a nonempty subset  + of  called the set of

positive real numbers. We write a > 0 (The symbol > is said greater than) if a   +.

 + satisfies the following properties.

(i) a > 0, b > 0  a + b > 0

(ii) a > 0, b > 0  ab > 0

(ii) If a   , exactly one of the following three holds:

(a) a > 0 (b) a = 0 (c) –a > 0

The third property is called the Trichotomy property. With these axioms  becomes

ordered field. If a > 0 or a = 0 i.e. a  0, we say a is nonnegative. If –a > 0 we say a is

negative. If – a > 0 or a = 0 we say a is nonpositive. When a > 0 we also say that a is

strictly positive. “Strictly negative” is also used in a similar way. We say that a > b

(in  ) if a – b > 0. And a  b if a > b or a = b. If a > b we also write b < a and say b is

less than a. The symbol  is used to specify < or =.

The Trichotomy law yields that if a   and b   exactly one of the following three

hold: (a) a < b (b) a = b (c) b < a

Uniqueness of inverse:

If b1, b2 satisfy a + b1 = a + b2 = 0 then b1 = 0 + b1 = (a + b2) + b1 = a + (b2 + b1) =

a+(b1+b2) = (a + b1) + b2 = 0 + b2 = b2.

Finally if u1, u2 satisfy a u1 = a u2 = 1 then u1 = 1u1 = (au2) u1 = a (2 u1) = a(u1 u2) =

(au1) u2 = 1u2 = u2

The existence of –a corresponding to a   , satisfying a + (-a) = 0 and of
a

1

corresponding to 0  a   satisfying a.
a

1
= 1 allow us to define binary operations
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called subtraction on  and division on  \ {0} defined by a – b = a + (-b) and
b

a
=

a(b-1) = a (
b

1
) when b  0. If a and b are real (rational) then so is a – b. While this does

not hold for natural numbers. If a   we define a0 = 1 if a  0 and an = (an – 1) a if

n  . an is called the nth power of a. If n is a negative integer then –n   and we

define an = (a-1)-n when a  0.

10A 5.2 Theorem: There is no rational number r such that r2 = 2.

Proof: Any nonzero rational number can be uniquely written as r =
n

m
where m  Z,

n   and g.c.d. (m,n) = 1.

If r =
n

m
, m  Z, n   and g.c.d. (m, n) = 1 and r2 = 2 then m2 = 2n2 m2 is even

 m is even (why?) If m = 2k where k   , m2 = 4k2 = 2n2  n2 = 2k2  n is even (as

above) Since m and n are both even g.c.d. (m,n)  2. This is a contraditction. Hence r2  2

for any rational number r.

10.A.6 Absolute value:

10. A.6.1 Definition: If a   , we define the absolute value of a, denoted by |a|, as

follows:

|a| =








0

0

aifa

aifa

Some elementary properties of the absolute value:

10.A.6.2 If a   , b   the following hold good.

(a) |a|  0 and |a| = 0 if and only if a = 0

(b) | - a | = |a|

(c) | ab | = |a| |b|, in particular |a|2 = |-a|2 = a2
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(d) |
b

a
| =

||

||

b

a
if b  0

(e) - |a|  a  |a|

(f) |b|  a if and only if –a  b  b.

The proofs of the above statements are simple, hence we leave them as exercises.

10.A.6.3 Triangle inequality: If a   , b   , then |a + b|  |a| + |b|

Proof: If a and b have the same sign, i.e. either both a and b are positive or both of them

are negative then a + b, a and b have the same sign so that |a + b| =  (a + b) = (a +b) or

(-a - b) = |a| + |b|

If a < 0 < b then either a + b < 0 or a + b  0. If a + b < 0, |a+b| = -a –b = |a| - b  |a| + b =

|a| + |b|. If a + b > 0 |a + b| = a + b = a + |b|  |a| + |b|. If one of a,b say a = 0 then l.h.s. =

r.h.s. = |b|

10.A.6.4 Corollary: If a   and b   then

(a) | |a| - |b| |  |a – b| and (b) |a – b|  |a| + |b|

Proof: (a) |a| = | (a – b) + b|  |a – b| + |b|  |a| - |b|  |a – b|

By symmetry |b| - |a|  |b – a|. Since |a – b| = |b – a| and | |a| - |b| | =  (|a| - |b|)

We get | |a| - |b| |  |a – b|.

(ii) |a – b| = |a + (-b) |  |a| + |b| = |a| + |b|

10.A.6.5 Corollary: If n   and ai   for 1  i  n then

|a1 + ……. + an|  |a1| + ………. + |an|.

Proof: To prove this inequality we use the principle of mathematical induction.

When n = 1, then lhs = |a1| = r.h.s.

If n = 2, lhs = |a + a2|  |a1| + + a2) = rhs (by 0.6.3)

Assume that for n   , a1, ….. an    |a1 + …… + an |  |a1| + …… + |an|

Let a1, …… an+1 be real numbers. Then
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|a1 + a2 + ….. + an+1| = |a1 + (a2 +……+ an+1)|

 |a1| + |a2 + ….+an+1| by 0.6.3

 |a1| + |a2| +….+ |an+1

By induction the statement holds for all n  

10.A.6.6. Examples:

(a) Determine that set A = { x | x   and |2x+3| < 7}

x  A  |2x + 3| < 7  - 7 < 2x + 3 < 7  -5 < x < 2

Hence A = {x | x   and -5 < x < 2}

(b) Determine the set B = { x/x   and |x -1| < |x|}

Method: (i) If x 1, x – 1  0 so |x – 1| = x -1 and |x| = x

Hence x  B  x – 1 < x. Thus all x  1 belong to B.

If x  0 x – 1  -1 < 0 and hence |x – 1 | = 1 –x and |x| = -x so that |x| = -x < 1-x = |x| - 1

Hence x  0  x  B.

Finally if 0 < x < 1, x – 1 < 0 so that |x – 1| = 1-x < x = |x|  1 < 2x  ½ < x < 1.

Thus B = {x R| ½ < x}.

Method (ii): Since |x – 1|  0 and |x|  0

|x–1|  |x|  |x–1|2 < |x|2  (x–1)2 < x2 x2–2x + 1 < x2 1 < 2x  x > ½

Hence B = { x   | ½ < x}

(c) If a and b are real numbers then a  b if and only if a < b +  for every  > 0.

a  b  a – b > 0

 a – b <  for every  > 0

 a < b +  for every  > 0.

a > b  a – b > 0


2

ba 
> o

 b +
222

aababa 






= a
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In this case, when  =
2

ba 
, b +  < a

Thus a  b if and only if a < b +  for every  > 0

10.A.6.7 The Real line:

It is customary and convenient to represent the real number system on a straight line. We

first a line, point 0 on the line, call it the origin. For any points x, x1 on the line, x on the

“right side” of 0 and x1 on the left side we call the “ray” 0 x the positive half ray and the

ray o x1, the negative half ray. The line x1 0 x is called a directed line. We first a point A,

on he right half ray call the length 0A1 the unit length. The points A2, A3 … An … are

fixed on the half ray 0x represents the natural number n. like wise we fix A-1 A-2, A-3, …

on the negative half ray so that 0A1= 0A-1 = A-i-1 A -1.  i These points represent the

negative integers. If m  N, n  N and P lies on the right half ray such that n(op) =

m(oA1) = 0An then the point P represents the positive rational number
n

m
. It can be

proved that for given m, n such P is uniquely fixed. Thus points represent positive

rational numbers. Analogously the negative rational numbers are represented by points.

However the set Q of rational numbers is countable while any line has uncountably many

points. The “gaps” represent irrational numbers. As the line has uncountably many points

and the rationals are represented by countably many points the points left out are again

uncountable. Each such point represents an irrational number and every irrational number

corresponds to one and only one such point. From 0.5.2 there is a unique point in the

“gap” which represents 2 . Other irrational numbers that are frequently used are “e” and

“”.

It is interesting to establish that the points on the real line representing the rationals and

irrationals are not two “separate” subsets of  and are interlaced among them there by

substantiating the fact that between any two real numbers there are infinitely many

irrational numbers which is nothing but the denseness of rationals and irrationals in  .
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10.A.7. Bounded Sets:

10.A.7.1. Definitions: Anonempty subset A of  is said to be

(a) bounded above if there is x   such that a  x for every x  A

(b) bounded fellow if there is y   such that y  a for every a  A

(c) Bounded if A is bounded above and bounded fellow.

(d) x   is called an upper bound of A if a  x for every a  A.

(e) y   is called a lower bound of A if y  a for every a  A.

(f)    is called a supremum (also called least upper bound) of A if

(i)  is an upper bound of A and

(ii)   x if x is any upper bound of A; equivalently

(iii) if x <  then x is not an upper found of A.

 is denoted by  = sup A = sup {a | a  A} and also by  = l.u.b.A. = lub { a | a  A}

(g)    is called an infimum (also called greatest lower found)of A if

(i)  is a lower bound of A and

(ii) y   if y is any lower bound of A; equivalently

(iii) if  < y then y is not lower found of A.

 is denoted by  = inf A = inf {a | a  A}

and also by  = g.l.b.A. = glb {a | a  A}

10.A.7.2. completeness property of  :

Every nonempty subset S of  which is bounded above has supremum. This property is

also called supremum (l.u.b.) property of  . We assume this without proof which is

beyond the scope of this book. With this complete ness property,  becomes a

“complete ordered field”. The following elementary properties of bounds are stated as

short answer questions.

10.A.7.3. SAQ: Let A and B be nonempty subsets of  .

(i) If  and  are lub’s of A then  = .

(ii) If  and  are glb’s of B then  = .
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(iii) If – A = { -a | a  A } then  is an upper bound of A if and only if -  is a

lower bound of – A; hence lub (-A) = glb (A)

(iv) If a   , lub (A + a ) = (lub A) + a where A + a = { x + a | x  A}

(v) If a   glb (A + a) = (glb A ) + a

(vi) Let B be bounded below and A be the set of all lower bounds of A. Then

aA, bB  a  b.

(vii) If A and B are subsets of  such that a A, b  B  a  b then sup A  inf B.

(viii)   A   is bounded if and only if there is M > 0 such that | a |  M for

every a  A.

(ix) If M = sup A and m = inf A then M – m = sup { | x – y : 1 | x  A, y  A}

10.A.7.4. Theorem: The following are equivalent.

(a) : Every nonempty subset of  which is bounded above has l.u.b.

(b) : Every nonempty subset of  which is bounded below has g.l.b.

Proof: (a  b) : Let B be a nonempty subset of  which is bounded below and A be the

set of lower bounds of B. Then A is nonempty. a  A and b  B  a  b.

 A is bounded above  A, has l.u.b say  (by (a))    b  b  B.   is a lower

bound of B. also if a is lower bound of B,   a.   = inf B.  B has glb.

(b  a) : Let A be nonempty subset of  which is bounded above then the set B of all

upper bounds of A is nonempty and satisfies.

a  A, b  B  a  b.  B is bounded below  B has lub say  (by b)  b    bB.

  is an upper bound of B. b     =sup A.  A has l.u.b.

10.A.7.5 The Archimedean Property: If x   , there is a rational number nx such that

nx > x.

Proof: We prove this by contradiction. Suppose the assertion were false. Then if n   ,

n  x.
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  is bounded above and x is an upper bound of  .

  has l.u.b (by completeness property of  ) say u.

 u – 1, being less than u, is not an upper bound of  .

 u – 1 < m for some m   .

 u < m + 1 and m + 1   .

This contradicts the assumption that u is an upper bound of  . Thus our assumption that

there is no n in  with n < x is false and hence there exists nx   with nx > x.

Collary: If S = {
n

1
| n   } then inf S = 0

Proof: If n   ,
n

1
> 0. So 0 is a lower bound of S.

Since S is bounded below, by the completeness property of  , S has g.l.b., say w. clearly

w  0. If  > 0, by the Archimedean property, there is n such that n >


1
. This

implies that 0 <
n

1
< . Hence  is not a lower bound S. This is true for every  > 0.

So g.l.b. S = 0.

10.A7.6 SAQ: i) If t > 0 there exists n   such that 0 <
n

1
< t

ii) If y > 0 there exists n   such that n – 1  y < n.

10.A7.7 Existence of 2 in 

There is a positive real number r such that m2 = 2.

Proof: Let S = {s   | s  0 and s2 < 2}. Since 1 = 12 < 2, 1  S. Moreover s  S 

s  0 and s2 < 2 < 4 = 22 so that 0  s < 2. Thus S is a nonempty subset of  which is

bounded above. By the completeness property, S has l.u.b. Let x = sup S. Clearly x > 1.

We prove that x2 = 2 by showing that neither x2 < 2 nor x2 > 2. First assume that x2 < 2.
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We show that for some n   , (x +
n

1
)2 < 2. Since x +

n

1
 S contrary to the

assumption that x is an upper bound of S.

Since x2 < 2, 2 – x2 > 0 since x > 0,
12

2 2





x

x
>0.

By the Archimedean property there is n   such that n >
22

12

x

x





For this n,
n

1
<

12

2 2





x

x


n

x )12( 
< 2 – x2 x2 +

n

2
x +

n

1
< 2

 x2 + 2.
n

1
. x +

n

1
< 2


2

1










n
x < 2  x +

n

1
 S which is required to be shown. Hence x2 < 2 is not

possible.

Now assume that x2 > 2. we show that for some m  N, x -
m

1
is an upper bound of S

contrary to the assumption that x is sup S.

Since x2 > 2,
x

x

2

22 
> 0. By the Archimedean property there exists m  N such that

x

x

2

22 
>

m

1

Since 2x2 > x2 > x2 – 2, x >
x

x

2

22 
>

m

1
so x -

m

1
> 0. Also

2
1










m
x > 2 > s2 for

every s  S. Since s and x -
m

1
are positive we get x -

m

1
> s for every s  S. This

implies that x -
m

1
is an upper bound of S.

Note: The number 2 is irrational. A “series representation” for 2 is given by

2 = 1 + 
8765432 10

6

10

5

10

3

10

1

10

2

10

4

10

1

10

4

which is represented as an infinite decimal: 2  1.4 1 4 2 1 3 5 6 ………..



Real Analysis 10A.16 Real Number System

The series representation for  is

 = 3 + ..........
10

6

10

2

10

9

10

5

10

1

10

4

10

1
765432


 3. 1 4 1 5 9 2 6 ……..

These representations are “non terminating”.

The irrational number e has series representation given by e = 1 + .......
!3

1

!2

1

!1

1


which is non terminating. It is known that 2 < e < 3.

10A.7.8 Density of rational numbers in  :

If x and y are any real numbers with x < y then there exists a rational number r with x < r < y.

Proof: (i) Assume that x > 0. since y – x > 0 there is n  N such that

n – 1 <
xy 

1
< n so that 0 <

n

1
< y – x  1 < n (y – x)  n x + 1 < n y.

Again since n x>0. there is mN with m–1n x<m.n x<m<n yx<
n

m
<y.

we take r =
n

m

(ii) If x = 0 since 0 < y, 0 <
2

y
< y. By (i) there is a rational number r such

that
2

y
< r < y. This r satisfies 0 = x <

2

y
< r < y so that x < r < y.

(iii) If x < 0 < y, by (ii) there is a rational number r such that 0 < r < y.

This r satisfies x < r < y.

(iv) If x < y < 0 then 0 < -y < -x. By (i) there is rational number r1 such that

–y< r1 < - x.

If r = - r1, r is a rational number satisfying a < r < y.

10.A.8.1 Bounded functions:

Any function  : A   is called a real valued function defined on A. if  is a real

valued function defined on A,  is said to be bounded above or bounded below according

as the range  (A) = { (x) | x  A } is bounded above or bounded below. If  is bounded

above and bounded below then  is said to be bounded.
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We write lub , lub {(x) | x  A} or
Ax

lub  (x) for lub (A). We also sup for lub.

Similarly we write
A

glb  , glb {(x) | x A} or
Ax

glb (x) for glb (A) and also use inf for

glb. As a consequence of SAQ 07.3 (viii) we have the following.

10A.8.2 Theorem: : A   is bound if and only if there exists M > 0 such that

|(x)|  M for all x  A.

10.A.8.3. Theorem: If : A   and g: A   are such that

(i) for every x  A and y  A, (x)  g(y) then  is bounded above, g is bounded

below and
Ax

sup(x) 
Ay

inf g (y)

(ii) for every x  A  (x)  g (x) then
Ax

sup (x) 
Ax

sup g(x)

Proof: (i) is a consequence of 0.73 (vii) To prove (ii) Let
Ax

sup g(x) = . Then if x  A,

(x)  g(x)   so that  (x)  . Hence  is an upper bound of {(x) | x  A} Hence

sup {(x) | x  A}  .

10.A9. Intervals:

Extended real number system: We adjoin the two symbols -  and  to  and call the

set U (-, }, The extended real number system we write -  < x <  for all x  

x +  = , x -  = -  for all x   and x .  = -  if x > 0 and -  if x < 0

Definition: If a   , b   and a < b The open interval (a,b) = {x   | a < x < b}

The closed interval [a,b] = { x   | a  x  b}

The half open (half closed) intervals determined by a, b are

(a,b] = {x   | a < x  b} [a, b) = {x   | a  x < b}

For the above intervals a is called the left end point and b is called the right end point.

The length of an interval with end points a,b where a < b is defined to be b – a.

If a   we write

(a, ) = { x   | x > a}

(-, a) = { x  | x < a}



Real Analysis 10A.18 Real Number System

These are called infinite half open intervals.

[a, ) = { x   | x  a} and

(-, a] = {x   | x  a} are called infinite half closed intervals

We also write  = (-, )

Bounded intervals:

An interval which is a bounded set is called a bounded interval. Thus , [a,b], [a,b), (a,b),

(a,b] are bounded intervals.

An interval with   as an end point is an unbounded interval.

Example: [a, ), (a, ), (-, b], (-, b)

10.A.9.2 Characterisation Theorem for intervals:

If S is a subset of  that contains at least two elements is an interval If x  S, y  S and

x < y then [x, y] C S () then S is an interval.

Proof: There are four possibilities for S.

(i) S is bounded (ii) S is bounded above but not below. (iii) S is bounded below but not

above and (iv) S is not bounded above and not bounded below.

(i) Suppose S is bounded, a = inf S and b = sups.

In this case we show that S is an interval with left end point a and right end point

b. Clearly x  S  a  x  b  S  [a, b]. We show that (a, b)  S. Let a < c < b.

Then by the infimum property. There is x  S such that a < x < c and by the

supremum property there is y in S such that c < y < b. By (*) [x,y]  S. Since

c  [x, y], c S. This shows that (a,b)  S  [a, b]. If a  S, b  S, [a,b] = S. If

a  S, b  S [a,b] = S. If a  S, b  S (a, b] = S. and if a  S, b  S, (a,b) = S

(ii) Suppose S is bounded above but unbounded below.

We show that S = (-, b) or (-, b] where b = supS. Clearly (- b)  S because if

x < b by the supremum property x is not an upper bound of S so that there is dS

such that x<d
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Since S is unbounded below x is not a lower bound for S so that there is c  S

such that c<x. Since c  S, d  S, by (*) [c,d]  S hence x  S. Also S  (-, b]

because x  S  x  b. Thus (-, b)  S  (-, b). If b  S, S = (-, b] and if

bS, S = (-, b).

(iii) Suppose S is bounded below and unbounded above. We show that S = (a, ) or

[a, ) where a = inf S. Clearly x  S  a  x, hence S  [a, )

If x  (a, ), a < x, so x is not a lower bound of S. Hence there is c  S such that

c < x. Since S is not bounded above there is d  S such that x < d. Since c  S,

d  S and c < d, [c, d]  S by (*) This implies that x  S whenever x  (a, ).

Thus (a, )  S  [a, )

If a  S S = [a, ) and otherwise S = (a, )

(iv) The proof for S = (-, ) when S is not bounded above and not bounded below is

similar.

10.A.10 Nested Intervals:

10.A.10.1 We say that a sequence of intervals  nI is NESTED

If In  In+1 for very n   , i.e. I1  I2  I3 ………  In  In+1  …………..

10.A.10.2 Theorem: If  nI is a sequence of closed and bounded intervals which are

nested then there exists   such that  In for every n.

Proof: Let In = [an, bn]. Since In  I1 an  I1 and bn  I1 for all n   so that

a1  an  bn  b1 if n   . If k   , then In+k  In so we get as above

a1  an  an+k  bn+k  bn  b1 if n   .

The set {an|n   } is bounded above. Let  = sup {an | n   }

Clearly an   for n   . We show that every bn is an upper bound of the set

{ak | k   } so that   bn for every n.

If k < n Ik  In  ak  an  bn  bk  ak  bn

If n  k In  Ik  an  ak  bk  bn  ak  bn
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In either case ak  bn for every k. This is what we are required to prove since an    bn

for all n,   [an, bn] = In for all n   . This completes the proof.

10.A.10.3 Theorem: If {In | n   } is a nested sequence of closed and bounded

intervals, In = [an, bn] such that

inf {bn – an | n   } = 0 then the  that belongs to every In is unique.

Proof: Suppose   In for all n   and n  In for all n   .

We show that  = n by proving that  < n  <  is not possible. Suppose  < .

Then an   < m  bn for all n   .

 0 <  -   bn – an for all n   .

  -  is a lower bound of {bn – an | n   }

  -   0 = inf {bn – an | n   }

This contradicts the assumption that  < .

So  <  is not possible. Similarly  <  is not possible.

10.A.10.4 Theorem: The set  of real numbers is not countable.

Proof: Our proof is based on the fact that a subset of a countable set is countable. Thus if

 were countable then the set I = [0,1] would be countable. We can then enumerate the

set as say I = {x1, x2, … xn ….}. First, choose a closed subinterval I1 of I such that x1  I1.

Then choose a closed subinterval I2 of I1 such that x2  I2. Inductively, assuming that I1,

I2, ….. In and xr  Ir for 1  r  n choose a closed and bounded sub interval In+1 of In such

that xn+1  In+1. Thus {In} is a nested sequence of closed and bounded intervals. So there

is a   I such that   In for all n   . this implies that  = xm for some m but xmIm.

This is a contradiction. Hence I is not countable. This implies  is not countable.
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10.A.10.5 Some elementary inequalities:

If 0 < b < a, n   , n > 1 then n an – 1 (a – b) > an – bn > n bn – 1 (a – b)

If 0 M a and n   there is one and only one x > 0 Such that xn = a. this x is given by

x = l.u.b. {y   | y > 0, yn M a}

This unique x > 0 such that xn = a where a > 0 is called the nth root of a and is denoted by

x = n

1

a = n a

If a> 0,
n

m
=

q

p
where m and p are integer and n, q   then  n

1
ma =  n

1
pa

This is well defined as stated above and is also denoted by n

m

a or n ma .

If a1 …. an are positive real numbers then AM (a1,…. an)  GM (a1,…. an):

n

a......a n1 
  n

1

n1 a....a 

If a > 1 and x  

l.u.b. {ar / r  Q, r < x} = g.l.b { ar | r  Q, r > x}

This equal value is called a to the power of x and is denoted by ax.

Remark: The above two are equal when x  Q.

Bernouli’s inequality: (1 + x)n  1 + n x if x > -1 and n  N.

If a > 0, b > 0 and a  1 there is unique x such that ax = b.

This number x such that ax = b is called the logarithm of b to the base a and is written

x = loga b.

10Log b is denoted by Log b.

There is a unique real number e > 0 such that

x

1e
1

x

1e xx






 

for all x   , x > 0.

This e is called the Napier base. We use the fact that ex > x if x > 0

Logarithms with the base e are called natural logarithms we write ln x for loge x.
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10.A. 12 solutions to SAQs

10.A.4.1. (x, y)  GoF, (x, z)  GoF

 y = G (F(x) and z = G (F(x)  x = z.

x  A  (x, F(x))  F  F (x)  B  (F(x), G (F(x))  G  G (F(x)  C.

10.A.4.2. y1,  B, x1 , x2  A; (y1 x1)  F-1, (y1 x2)  F-1 (x1 y1)  F, (x2, y1)  F

 y1 = F (x1) = F (x2)  x1 = x2 (F us 1 – 1)

Also y1  B  for some x1  A, (x1 y1)  F

 (y1, x1)  F-1

since  y1  B there is a unique x1  A. such that (y1 x1)  F-1

This shows that F-1: B  A is a function. F-1 is one-one since F-1 (y1) = F-1 (y2) = x1

 (y1,x1)  F-1, (y2, x1)  F-1  (x1 y1)  F and (x1 y2)  F  y1 = y2 since F is a

function.

F-1 is on to since x  A and F(x) = y, (y,x)  F-1

 y = F-1 (x)

10.A.4.3 I = {(x, x) / x  A} = {(x, y) | x  A, y A, x = y} x  A & (x, y)  I  y = x.

Hence I is a function. (y, x) = (z, x)  I y = z so I is one- one. If x  A ( x, x)  I  I

is onto

10.A.4.4 By definition F = {x, y) | x  A, y  B and y = F(x)}

G = {y, z) | y  B, z  C and z = G(y)}

and GoF = {x, z) | x  A, z  C and y = G(F(x)}

Then x  A  (x, G( F (x)))  GoF

Moreover (x, z)  GoF, (x, z1)  GoF

 z = G (F(x)) and z1 = G (F(x))  z = z1

Thus z in C is uniquely fixed so that (x, z)  GoF. Hence GoF : A  C is a function

(GoF) (x) = (GoF) (y)  G(F(x) = G (F(y))

 F(x) = F(y) since G is one – one  x = y since F is one – one

So GoF is one.
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If z  c, there is y  B such that z = G(y) and there is x  A such that y = F(x)

so z = G (F(x). Hence GOF is onto.

10.A.4.5 (i): When n = 1, L.H.S = 1 = RHS. Suppose the statement is true for n = k. i e




k

1j

j =
2

)1k(k 






1k

1j

j = (


k

1j

j ) + (k+1) =
2

)1k(k 
+ (k+1) = (k+1) (

2

k
+1) =

2

)2k()1k( 

Since the statement is true for k+1 whenever it is true for k and also for 1. The statement

is valid for all n.

(ii) When n = 1, 


n

1k

2k = 1 =
6

)1n2)(1n(n 
=

6

3.2.1
= 1.

The result holds for n = 1.






1n

1k

2k = 


n

1k

2k + (n+1)2 =
6

)1n2)(1n(n 
+ (n+1)2

= (n+1) {
6

)1n2()n( 
+ (n+1)}

= (n+1) {
6

6n6)1n2(n 
=

6

)6n7n2()1n( 2 

=
6

)3n2()2n()1n( 

By the principle of mathematical induction the statement holds for all n. this completes

the proof.

10.A.7.3:

(i)  = lub A and  upper bound    .  = lub A and  upper bound    .

        = 

(ii) similar to (i)

(iii) If a  A a   -  -a

Hence - is a lower bound of –A if  is an upper bound of –A.

If  = glb A,  is a lower bound of A. So -  is and upper bound of - A.



Real Analysis 10A.24 Real Number System

Further if r is an upper bound of –A, -a  r  a  A  -r  a  a  A.

 -r is a lower bound of A  -r    -   r. Hence -  = lub - A

(iv)  is an upper bound of A.

 x  x  A  x + a   + + a  x  A   + a is a n upper bound of AS+a

Hence (lub A) + a is an upper bound of A + a (a)

If  is an upper bound of A+a, x+a  xA  x–a    xA  x – a  lub A

 x  (lub A) + a (b)

Hence by (a) and (b) lub (A + a) = (lub A) +a

(v) similar to (iv)

(vi) Let B be bounded below and A be the set of all lower bounds of B. Then aA,

bB.

 a  b. If a  A, a is a lower bound of B.  a  b , b  B  a  b. This is true

for every a  A. Hence a  A, b  B  a  b.

(vii) Let A and B be nonempty subjects of  such that a  A, b  B  a  b.

Then A is bounded above and every b in B is an upper bound of A. If b  B, b is

an upper bound of A. Hence   b. Thus  is a lower bound of B. Again by the

completeness axiom B has glb in  and   glb. Thus sup A  inf B.

(viii) Suppose A is nonempty, A   and A is bounded. Then there exist mo   and

M0   such that m0  a  M0 for all a  A.

Let M = + |m0 | + |M0 | Then – M = - |m0 | + |M0 |  |m0 |  m0  M0  |M0|  |M0| +

|m0| = M  - M  a  M if a  A  |a|  M if a  A.

conversely if there is M > 0 such that |a|  M for all a  A, - M  a  M for all

aA.

A is bounded above with an upper bound M and bounded below with lower

bound –M.

Hence A is bounded.

(ix) Let   A   , M = lub A and m = glb A.
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 m  x  M and m  y  M if x  A and y  B  +m – M  x – y  M – m if

xA and y  B.  m – M  y – x  M – m if x  A and y  B.  | x – y| 

M –m if x  A and y  B

If 0 <  < M – m there is x1  A such that M -
2


< x1 and there is y1  A such

that m +
2


> y1 Since x1  [m +

2


, M -

2


] and y1  [m+

2


, M -

2


] |x1-y1| 

M–m - . Hence M – m –  is not an upper bound of the set { |x – y| / x  A,

yA}

Hence lub { |x-y| / x  A, y  A} = M – m.

10.A.7.6:

(i) Solution: For every t > 0.
t

1
>0 and t.

t

1
= 1 By Archimedean property 

there is nN Such that n >
t

1
 0 <

n

1
< t

(ii) Solution: Given y >0. Lt S = {m : m  N, m > y}By Archimedean property for

y>0 there exists m N such that m > y.

Therefore s   and S is a subset of N. By Well ordering principle, S has a least member

Let n  N be the least member of S. n  S  n > y.

If n = 1 then 1 > y and y > 0  0 < y < 1 i.e. n – 1 < y < n

If n  1 then n – 1  S and n – 1  N. N – 1  S  n – 1 y  n – 1  y  n – 1  y < n

10.A.13 Exercises:

1. A  B  A  B = A  A  B = B

2. If A  x and B  x show that

(a) (x \ A)  (x \ B) = x \ (A  B) and

(b) (x \ A)  (x \ B) = x \ (A  B)

These are called De Morgan’s laws
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3. Prove the distributive laws

A  (B  C) = (A  B)  (A  C)

A  (B  C) = (A  B)  (A  C)

4. The symmetric difference of sets A and B is defined by A  B = (A – B)  B – A.

A  B = (A \ B)  (B \ A) show that

(i) A  B = (A  B) \ (A  B)

(ii) A  A = .

(iii) A  (B  C) = (A  B)  C and

(iv) A  B = B  A

5. If for each n  N An = { (n + 1) k | k  N}show that A1  A2 = A5

6. If :  \ {0}   is defined by

 (x) =
2x

1
, show that  [ -1,1] \ {0} = [1,a] = ((0,1]).

7. Let g(x) = x2 and (x) = x + 2 for x  R.

show that gof = h and if E = [0,1] then h(E) = [4, 9]

8. If : A  B, E  A, F  A, C  B and H  B then show that

(a) f (E  F)  f(E)  f(F)

(b) f (E \ F)  f(E) \ f(F)

(c) f(E  F)  f(E)  f(F)

(d) f-1 (G  H) = f-1 (G)  f-1 (H)

(e) f-1 (G  H) = f-1 (G)  f-1 (H)

9. Let f(x) = x2 (x   )

E = [-1,0], F = [0,1] show that f(E) = f(F) = [0,1] and f(E  F)  [0,1]

10. (a) Show that f(x) =
1x

x
2 

is one-one form  into 

(b) Show that f( ) = (-1,1)

11. Using the principle of mathematical induction prove the following

(a)
1n

n

)1n(n

1
....

3.2

1

2.1

1





 for n  N
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(b) 13 + 23 + ….. + n3 =
2

2

)1n(n







 
for n  N

(c) 3 = 11 + …. + (8n-5) = 4n2 – n for n  N

(d) 12 + 32 + … + (2n-1)2 =
3

nn4 3 
for n  N

(e) 3 divides 4n3- n for n  N

(f) 6 divides n3 + 5n for n  N

(g) 52n-1 is divisible by 8 for n  N

10. Using principle of Mathematical induction prove the following

(a) 2n > 3 for all n  N

(b) 2n < n! for all n  N, n  4

(c) 2n – 3  2n-2 for all n  5, n  N

11. If S is any set and P(S) stands for the power set of S consisting of all subsets of S

then show that P(S) has 2n elements whenever S has n elements

(Hint: Use principle of Mathematical induction.)

12. If S and T are denumerable then show that S  T is denumerable.

13. Using Mathematical induction prove Bernouli’s inequality: If x>-1 then

(1+x)n >1+nx

for all n N

14. If 0 < c < 1 show that for n  N cn  cn+1 < c.

15. If c > 1 show that cn  c for n N and cn+1 > c.

16. Show that if c > 1 and m  N, n  N show that cm > cn whenever m > n

17. If 0 < c < 1 and m  N, n  N show that cm < cn whenever m > n

18. Show that {x   | |2x + 3| < 7} = (-5,2)

19. Show that {x   | |x-1| < |x|} = (½ ,)

20. Show that if (x, y)  ( a, b) then y – x < b – a.

21. Show that |x – a| <  if and only if a -  < x < a + 

22. Show that {x | x   , |x +1| + |x – 2| = 7} = {13,4}

23. Show that |x-1| > |x+1| if and only if x < 0.
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24. Show that |x| + |x=1| < 2 iff -
2

3
< x<

2

1

25. Show that 4 < |x + 2| + | x – 1 < 5 if and only if

x  ( -3, -
2

5
)  (

2

3
, 2)

26. Show that Vr (a)  Vs (a) = Vt (a) where t = min {r,s}

27. If a   , b   and a  b, show that

for 0 < c <
2

|ab| 
, Vc (a)  Vc (b) = 

28. If a   , b   let max {a, b} =








a.bifa

baifb
and min {a, b} =









a.bifb

baifa

(a) Show that max {a,b} =
2

|ba|ba 

(b) Show that min {a,b} =
2

|ba|ba 

(c) Show that min { max (a, b}, max ( b, c), max {c, a}}

= mid {a b, c is the ‘middle number’ among a, b, c; which lies between the

remaining numbers.

29. Show that sup { 1 -
n

1
| n  N} = 1.

30. Show that inf {
n

1
-

m

1
| n  N, m  N} = -1.

31. Let x be a nonempty set x f: x   , g: x   be bounded

Show that
xx

inf


(f(x) + g(x) 
xx

inf


f(x) +
xx

inf


g(x)

32. If x   show that there is a unique n  Z , such that n -1  x < n.

33. If y > 0. show that there is n  N such
n2

1
< y.

34. Let In=[an, bn]. If In  In+1 for all nN show that a1  a2  …. bn  bn-1  … b1

35. If In = [0,
n

1
] show that

Nn
 In = {0}

36. If Jn = [0,
n

1
] show that

Nn
 Jn = 

37. If kn = [n, ) show that k1  k2  ….  kn ………. and
Nn
 kn = 
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10.A.14. Model Examination Questions

1. (a) Show that if a   and b   | |a| - |b||  | a – b|

(b) Show that between any two real umbers there is a rational number

2. (a). Show that l.u.b. {
n

1

m

1
 | m  N and n  N } = 2

(b) Show that there is no rational number x such that x2 = 3

3. (a). Show that for all positive integers n, n (n + 1 (n +2) is a multiple of 6

(b) Deter mine the set A = { x   \ |x – 1|  |x| }

4. Show that if 0 < b < a n  N and n > 1 then n an-1 (b – a) < bn – an < n bn-1 ( b - a)

5. Show that if A and B are bounded above sup (A + B) = sup A + sup B

6. (a) Show that max { a,b} =
2

|ba|ba 

(b) Show that 2n  n! for n  N, n  4.

10.A.15 Model practical problem with solution

Let A be the set of all rational numbers between 0 and 1 and B be the set of all irrational

numbers between 0 and 1. If C = A +B = { a + b / a  A, b  B}show that C is bounded,

sup C = 2 and inf C = 0.

Aim: (i) C is bounded (ii) sup C = 2 and (iii) inf C = 0

Definitions:

(1) E   is said to be bounded if there exist ,  in  such that   x   for all

x in E.

(2) A number l is called least upper bound or supremum of a set E, in symbols l =

lub E = sup E if

(a) l is an upper bound of E, i.e. x  l  x  E and

(b) If l 1 is any upper bound of E then l  l 1.

(3) A number m is called greatest lower bound or infimum of E, in symbols

m = glb E = inf E if (a) m is a lower bound of E, i.e. m  y  y  E and (b) if m1

is any lower bound of E then m1  m.
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A. Result used: If a and b are real numbers, a < b there is a rational number x and an

irrational number y such that a < x < b and a < y < b.

Solution:

(i) To show that C is bounded:

z  C   x  A, y  B  z = x + y.

x  A  0  x  1 y  B  0 < y < 1.

Hence 0 < x + y < 1

Hence 0 < z < 1.

This holds  z  C. Hence C is bounded.

(ii) sup C = z

From (i) z is an upper bound of C.

l is not an upper bound of C because 1 < 1 + y1  y1  B and 1 + y1  C since

1A and y1  B. Since 1 is not an upper bound of C any m < 1 is not an upper

bound of C.

If 1 < m < 2, 0 < m -1 < 1. By (A) there is an irrational number y such that m -1 <

y < 1. Then z = 1 + y  A and m < Z.

Hence if m < 2, m is not an upper bound of C. Thus sup C = 2.

(iii) To show that inf C = 0: From (i) 0 is a lower bound of C.

If 0 < m < 1, by (A) there is an irrational number y1 such that 0 < y1 < m. So m is

not a lower bound of C.  (c)

Also 1 is not a lower bound of C because every member y1 of B satisfies:

y1 = 0 + y1  A + B = C and 0 < y1 < 1.

Hence any number m > 1 is also not a lower bound of C. Thus any m > 0 is not a

lower bound of C. Then inf C = 0.

I. RAMABHADRA SARMA


