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LESSON -1
RINGS AND INTEGRAL DOMAINS
1.1 Objectives of the Lesson:

To learn the difinitions of algebraic structures such as a ring, a field and an integral domain
and to study some examples of these structures and thier basic properties.

1.2 Structure
1.3 Introduction
14 Definition and basic properties of a ring
15 Divisors of zero and cancellation laws
1.6 Integral domain ; Division Ring and field
1.7 The characteristic of a ring
1.8 Subrings and subfields
1.9 Summary
1.10 Technical terms
1.11 Model exam guestions
1.12 Exercises
1.3 Introduction:

In this lesson we define an algebraic structure called aring. We also derive the concepts of
a field and an internal domain. We learn some basic properties of a ring. Using the basic
properties, we prove some theorems on rings and fields.

1.4.1 Definition of a Ring :

A ring is a nonempty set R together with two binary operations + and . called addition and
multiplication respectively such that

i) a,beR=a+beR
i) (a+b)+c=a+(b+c),~a,b,ceR
i) 3 pe R suchthat a+o=0+a=a,w+aeR

V)acR=3-acR suchthat a+(-a)=0=(-a)+a
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viat+b=b+a,~a,beR.
viia,be R=abeR
viiy(ab).c=a.(bc),~ab,ceR
vii)a.(b+c)=ab+ac and (b+c)a=ba+cavabceR
Note:
141
1) In a Ring R the binary operation ‘+’ is called addition and *." is called multiplication.
2) We usually write a b instead of a. b
3)Risaringif i) (R,+) isan abelian group
i) (R, .) is a semigroup
i) Multiplication is both left and right distributive over addition.
4) The element O in R is called the zero element of R

5) Sometimes ring R is denoted by (R, +, .) The additive inverse of an element ‘a’ is denoted
by ‘-a'.
1.4.2 Examples

1) Let R={0} and +, . be the operations definedby O +0=0and0.0=0, then (R, +,.)
isaring. Thisring is called zero Ring or Null Ring .

2) Zisthe set of all integers and + and . are usual addition and multiplication respec-
tively. Then (Q, +,.) isaring.

3) Qisthe set of all rational numbers and + and . are usual addition and multiplication
respectively. Then (Q, +, .) is a ring.

4) The set of all real numbers R is a ring w.r.t usual addition and multiplication.

5) The set of all complex numbers C is a ring w.r.t usual addition and multiplication.

6) Let n> QO be aninteger. If a,be Z and n/(a-b) (i.e., n divides (a-b)) then a is said to be
congruent to b modulo n. This is denoted by g=p(mod n). Congruence modulo n is an equiva-
lence relation on Z. Denote the equivalence class of an integer a by 3. Note that g =p iff
a=b(modn). Given g ¢ Z , there are integers q and r, with o<r <n, such thata=nq +r.
Hence a - r = ng and a=r(modn). Therefore g =7 . Since a was arbitrary and o<r <n, it

follows that every equivalence class must be one of O, 1, 2,..(n—1) . However these n equivalence
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classes are distinct. Forif O<j<F<n,then O<F—i<n and nX(r—i). Thus i = r(modn)
and hence | = r. Therefore, there are exactly n equivalence classes. Let Z, denote the set of all

equivalence classes. Then Z, :{G,E,Z..(n—l)}_ Define addition and multiplication by

F+b=a+band 3p = ap- Then Z, together with these operations is aring. Z, is called the ring
of integers modulo n. It is customary to denote the elements in Z, as 0,1,.,...,n—1 rather than
O,1,...,n—1. This notation will be used whenever convenient. Addition and multiplicationin Z_ are

sometimes written as +, and x_ respectively.

1.4.3 Ring with Unity: Aring (R,+,.) is said to be a ring with unity if there exists 1< R such that
al=la=awvaeR

1.4.4 Thering of intiger (Z,+,.) is a ring with unity.

1.4.5 Note: If Ris a ring with unity 1, then 1 is called unity or multiplicative identity or smply an
identity element.

1.4.6. commutative Ring: Aring (R,+,.) is said to be a commutative ring if a.b = b.a, ~+abeR,
i.e. Multiplication is commntative in R.

1.4.7 Example : The ring of integer (Z,+,.) is a commntative ring.

1.4.8 Note:
i. If a Ring R has no multiplicative identity then the ring R is said to be a ring without unity.
ii. A Ring R is said to be non-commutative ring if R is not commutative.

1.4.9 Example:

i. The set of all Even intigers is a commutative ring without unity under usual addition and
multiplication.

i

1.4.10 Note: If (R,+,.) isring then (R,+) is an abelian group. Therefore we have.
i) The zero element (additive identity) of R is unique and a+0=a,~+aeR
ii) For a ¢ Rthe additive inverse -ais unique anda + (-a) =0
i) For geR,-(-a)=a

iv) For OcR, -0=0
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v) For a,be R,—(a+b)=-a-b
vi) For a,b,ce R,a+b=a+c=b=c
and b+a=c+a=b=c

vii) The unity element 1 is unique, if R has unity element 1.

1.4.11 Elementary Properties of Rings:
Theorem: If Ris aringthen for a,b,ce R
i) oa=ao=0
) a(-b) = (-a)b=—(ab)
ii) (-a)(-b) =ab

iv) a(b—c)=ab-ac

Proof: i) oa=(0+0)a 0+0=0
=0a+o0a By right distributive law
= oa+0=o0a+o0a Since ‘0’ is the additive Indentity
= 0 = 0a By Left cancellation Law.
11 ao=a(0+0) “*0+0=0
= a0+ ao By left distributive law
= ao+0=ao+ao -+ 0 Is the additive identity
= 0= ao By left cancellation law.
s.oa=a0=0

i) To show that a(-b) = —(ab) =(-a)b
We have a(-b)+ab=a(-b+b) by left distributive law
=ao
=0 by (i)
sa(-b)+ab=o0=a(-b)=-ab
Y (-a)b+ab=(-a+a)b by right distributive law

= ob
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=0 by
~.(-a)b+ab=0=(-a)b=—(ab)

iii) (—a)(-b)=—((-a)b) by (ii)

=—(—(ab)) byi
=ab
iv) a(b—c) =a[b+(-c)]

ab+a(—c) by left distributive law.

ab+(—ac) by (i)
= ab-ac
1.1.12 Note: If Ris a ring with unity element and g < R, then
i) (-Da=-a=a(-1)
i) (-D(-1=1

1.1.13 Definition: Idempotent Element :- Let R be a ring. An element g ¢ Ris said to be an
idempotent element if g2 = 5.

1.4.14 Example:

1) In the ring of Integers (Z, +, .), 0 and 1 are idempotent elements.
2) Inthering (Z4,+4,%¢),0,1,3,4 are idempotent elements.

1.4.15 Boolean Ring: Aring R is said to be a Boolean ring if every element of R is an idempotent

elementi.e., a’> =a,~+acR.
1.4.16 Theorem: If R is a Boolean ring then
i) ata=0,~acR
i) a+b=0=a=b
i) R is commutative i.e. ab=ba,~a,be R.
Proof: Given that R is a Boolean Ring

i)Let acR=a+acR -+ Ris closed w.r.t '+’



(Centre for Distance Education ) C16) ( Acharya Nagarjuna University )

= (a+a)’=a+a Since a’=a,~acR
(a+a)(a+a)=a+a
(a+a)a+(a+a)a=a+a by left distributive law

(aa+aa)+(aa+aa)=a+a by right distributive law

u Ul

(a®+a’)+(a*+a’)=a+a

= (a+a)+(a+a)=a+a Since a’=a,~aeR

= (a+a)+(a+a)=(a+a)+0 Since O is the zero element of R.
= a+a=0 by left cancellation law.

ii)Let a,be R and a+b=0

= a+b=b+b byib+b=0

= a=b by right cancellation law
ijLet a,beR = a+beR -+ Ris closed under ‘+'

= (a+b)*=a+b -+ Ris Boolean Ring

= (a+b)(a+b)=a+b

= (a+b)a+(a+b)pb=a+b by left distributive law

= (a®+ba)+(ab+b*)=a+b by right distributive law

= a+ba+ab+b=a+b -+ Ris a Boolean Ring

= ba+ab=0 by left and right cancellation laws
= ba=ab by ii.

-. Ris a commutative ring.

1.4.17 Definition : Nilpotent Element : Let R be a ring. An element ¢ R is said to be
nilpotent element if there exists a positive integer ‘n’ such that 3" = Q.

1.4.18 Example: Inthering (Z,,+4,%,), 3 is a nilpotent element.
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1.5 Zero Divisors of a Ring:

LetRbe aring. Anelement 0« a < R is saidto be a zero divisor if there existsa b 0e R
such that ab = 0.

1.5.1 Note: 1) Aring R is said to have zero divisors if there exist a,be R,a= 0,b#0 but gh=0.

2) Aring R is said to have no zero divisors if a,be R and gh=0—=a=0 or b=0.

1.5.2 Examples: i) Thering (Z;,+4,%) has zero divisors 2, 3 and 4. For 2x,3=0,3x,4=0.

i) The set R of all 2 x 2 matrices with real numbers as entries is a ring with zero divisors w.r. to
addition and multiplication of matrices.

10 00
For A= (O Oj and B= (1 Oj are two non-zero elements of R but AB = O.

i) The ring of integers Z is without zero divisors for a,beZ andab=0 = a=00rb=0.

1.5.3 Cancellation Laws in a Ring: We say that cancellation Laws hold in a ring R if
az0,ab=ac=>b=cand a=#0ba=ca=b=c for a,b,ce R.

1.5.4 Theorem: Aring R is without zero divisors if and only if the cancellation laws hold in R.
Proof: Suppose R is a ring without zero divisors.
i.,e. a,beRand gh=0=a=00rp=0
To prove that cancellation laws hold in R.
Let a= 0,b,ce Rand gbh=ac
Now ab=ac—=ab-ac=0
= a(b-¢c)=0
=bhb-c=0 -~ a =0 and R is without zero divisors
=b=c
Similarly we can show that hpa=ca=b=c
- cancellation laws hold in R.

Suppose cancellation laws hold in R.

To prove that R has no zero divisors.

Let a,be Rand gh=0
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If possible suppose a=0
Now ab=0=ab=a0
=b=0 by cancellation law.
Similarly if h# 0, then
ab=0=ab=0b
—=a=0 by cancellation law
s.ab=0=either a=0 0or b=0
Hence R has no zero devisors.

1.6.1 Definition: Integral Domain : Aring (R,+,.) is said to be an integral domain if i) R is a
commutative Ring with unity 1 =« Q, ii) R is without zero divisors.

1.6.2. Example: The ring of integers (Z,+,x) is an integral domain.

1.6.3 Theorem: A commutative ring R with unity 1« Q is an Integral domain if and only if cancel-
lation laws hold in R.

Proof of this theorem follows from the previous theorem.

1.6.4 Definition: Invertible element (or) Unit: Let R be a ring with unity 1. A non zero element
a e Ris said to be inversible if there exists h ¢ R such that gb =pa =1. Here bis called multiplica-

tive inverse of a and is denoted by 1.

1.6.5 Division Ring: Aring (R,+,.) is said to be a division ring if i) R has unity 1= Q, ii) Every
non zero element has multiplicative inverse.

1.6.6. Example: The ring of rational numbers (Q,+,x) is a division ring.

1.6.7 Theorem: A division ring has no zero divisors.

Proof: Let R be a division ring.
Let a,be R and gh=0
If possible let g «0
= 3 aleRsuchthat ggt=g'a=1 (- R is adivision ring)
Now abh=0

= a'(ab)=a'0
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= (a'a)b=0

= b=0

= b=0

Similarly if p Qwe can prove that =0
s.ab=0= either g=0 or b=0.
Hence R has no zero divisors.

1.6.8 Definition: Field : Aring R with atleast two elements is called a field if i) R is commuta-
tive, ii) R has unity, iii) Every non-zero element of R has multiplicative inverse.

1.6.9 Example: The rings of rational numbers, real numbers and complex numbers are fields.
1.6.10 Note: 1. Aring R is a field if (R—{0},.) is an abelian group.

2. A Commutative division ring is a field.

1.6.11 Theorem: Afield has no zero divisors.

Proof: A field is a commutative devision ring. Hence from 1.6.7 it follows that a field has no
zero divisors.

1.6.12 Theorem: Every field is an integral domain.
Proof: Suppose (F,+,.) is afield.

= F is a commutative ring.

To show that F is an integral domain, it is enough to show that F has no zero divisors.
Let a,be Fand gh=0
If possible let 30
=3 glecF suchthat ggl=gta=1 -+ F is afield
Now gb=0 = a*(ab)=a’0
= (a'a)b=0
= 1b=0
= b=0

Similarly if h= 0 we can show that g=0
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Hence gb = 0 — either g=Q or p=0
-+ F has no zero divisors
Now F is a commutative ring without zero divisors.
i.e. Fis an integral domain.

1.6.13 Note: The converse of the above theorem is not true. i.e. an integral domain need not be
afield.

Example: Ring of integers is an integral domain, but not a field.
Theorem: A finite integral domain is a field.

Proof: Let R be a finite integral domain with n elements. Now R is a commutative ring without zero
divisors. To prove that R is a field it is enough to prove that R has i) Unity element, ii) Every non zero
element of R has multiplicative inverse.

Let R={a,,a,,...a,} where a’s are n distinct elements let 0 ae R
Now the n products aa,,aa,......aa, € R
If possible let aa =aa; for 1<i<nl<j<nandi# ]

— aa —-aa; =0

= a(a1 _aj) =0
= a-3=0 -+ a= 0 and R is integral domain.
= a = aj

This is a contradiction to the fact that g ’s are distinct.

.. The nproducts aa,, aa,...... aa, are distinct elements of R.

Existence of Identity:

Since ae R={aa,aa,,...aa,} it follows that a=aa for some a € R.
We claim that g is the identity element of R.
Let be R=b=aa, for some g € R

Now ba =(aa)a



[ Rings and Linear Algebra ] (1_11) ( Rings and Integral Domains )

= a(aq)

= a(aq)) - R is commutative.
= (aa)a,

= aa S.ooag =a

=b

a is the identity element of R.
Existence of Inverse: Since the identity 1 c Rwe have 1= aa, for some a, € R.

For 0 ae Rthere exists g, € R such that aa, =1.
= Every non zero element of R is inversible. Hence R is a field.

1.7.1 Integral Multiples: Inaring R we define 0a = 0, where left hand zero is integer O and right
hand side zero is the zero element of the ring R, where ge R.

We define na=a+a+...+a, ntimes where n is a positive integer.
(-n)a=(-a)+(-a)+...+(-a), ntimes
note that (—n)a=n(-a) =—(na)

1.7.2. Note: If m, n are integers and a,b are elements of a ring R then

i) (m+n)a=ma+na
i) m(na) = (mn)a
i) m(a+b) = ma+mb

iv) m(ab) = (ma)b = a(mb)
V) (ma)(nb) = mn(ab)
1.7.3 Integral Powers : If m, n are positive integers and a, b are elements of a ring R then

i) a™ =aa...a,m times

III) (am)n —agm™
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1.7.4 Charecteristic of a Ring: The characteristic of a ring R is said to be ‘n’ if there is a
positive integer n such that na=0,~+aecR.

If there is no such positive integer ‘n’ then we say that the characteristic of the ring R is zero
or infinite.

1.7.5 Example: 1. The characteristic of the ring (Z;,+5,%5) iS5

2. The characteristic of the ring (Z, +,.) is zero.

1.7.6 Theorem: The characteristic of a ring with unity is zero or n > 0, according as the order of
the unity element is zero or n > 0 respectively regarded as member of the additive group of the ring.

Proof: Suppose R is a ring with unity element 1. Suppose order of 1 is zero, regarded as element
of the group (R, +)

= There is no positive integer n suchthat n.1=0
= There is no positive integer n such that na=0~acR

— Charecteristic of R is zero.

Suppose order of 1 = n > 0 regarded as element of the group (R, +)
= n s the least positive integer such that n.1=0

Let aeR

Now na=a+a+..+a ntimes

=a(l+1+..+1) ntimes

=a(n.l)

s.ha=0,~+aeR

Further n is the least positive integer such that na=0,~+ae R. Since if m < n then
m.1= Q. Hence charecteristic of a ring R is n.
1.7.7. Theorem: The characteristic of an integral domain is either zero or prime.
Proof: Suppose R is an Integral domain
Let P be the charecteristic of R

If P = 0 there is nothing to prove.
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Suppose P=0.

We claim that P is a prime number.

If possible assume that P is not a prime number.
= P=mn wherel<m,n<P.

Let 0xaeR.

= pa=0 -+ P is the charecteristic of R.
= pa®=0

= mna® =0

= (ma)(na)=0

= ma=00r na=0 --R hasno zero divisors
Suppose ma=0

Let beR

Now ma=0=(ma)b=0

= (mb)a=0
=mb=0 -~a=0 and R is without zero divisors.

*mb=0,~beR
A contradiction since m < p and Ch of Ris P.
Similarly we can arrive at a contradiction if ng =0
-, our assumption that P is not a prime is wrong
Hence P is a prime number.
1.7.8 Corollary : The charecteristic of a field is either zero or Prime.

Proof: Every field is an Integral domain.

.. By theorem: 1.7.7. it follows that the charecteristic of a field is either zero or prime.

1.8.1 Definition: Subring: Let R be aring. A non-empty subset S of R is said to be a subring of
R if S it self is a ring relative to the same operations in R.
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1.8.2 Example: 1. (z+,x) is a subring (Q,+,x)

1.8.3 Note: IfRisaring then S= {O} where 0 is the zero element of R and S= R are subrings of

R. These subrings are called trivial or improper subrings of R. A subring other than the above two
is called a non-trivial or proper subring of R.

1.8.4 Theorem: LetR be aring. Anon-empty subset S ofaring Risasubringiff a,be S=a-beS
and gheS.

Proof: Suppose R is a ring and S a non-empty subset of R. Suppose S is a subring of R.
Let abeS
beS—=-beS - additive inverse exists.
Now a,-be S= a-be S by closure law for addition. Also S is closed w.r. to multiplication.
sabeS=abeS.
Hence a,be S=a-beSand abeS

Conversily suppose S is a non-empty subset of R such that abeS=i)a-beS and
iyabe S
To show that S is a subring.

Existence of zero element: Since S is non-empty S has atleast one element say geS.

aec S= a-ac S bythe given condition.

=0eS

Existence of additive inverse:

OcSand aeS=0-aeS

= —-aeS

Closure w.r. to addition:

Let a,beS
beS=-beS
Now a,-be S= a—(-b) € S by cndition (i).

=a+beS
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Since elements of S are elements of R, associative law for addition and multiplication,
commutative law for addition and distributive law holds good in S.

Also by condition (ii) S is closed w.r.to multiplication
.. Sis aring and hence a subring of R.

1.8.5 Theorem: The intersection of two subrings of a ring R is a subring of R.

Proof: Let R be aring and §,S, be two subrings of R.
Let S=§NS,. To show that S is a subring of R.
Since every subring contains the zero element we have 0§ and O€S,.
=0e§nNS§ =S
-. S is a non-empty subset of R.

Let a,beS=abe§nS
=a,be§ and a,be S
abeS=a-be§ and abe§ " §is a subring
abeS =a-beS and abeS, - Sisasubring
na-be§nS, and abe§nS

i.e. a-beS and abeS
Hence S is a subring of R by Theorem 1.8.4.
1.8.6 Note: 1. The intersection of an arbitrary family of subrings is a subring.

2. Union of two subrings need not be a subring.

Let S={2n/nezjand S,={3n/nez}
SandS, are two subrings of the ring of integers (z,+,><) .

SUS,={-6,-4,-3-2,0,234,6839,......]
Clearly 2,3e SUS,

But 3-2=1¢ S US,
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Hence S US is not a subring.

1.8.7 Theorem: Let §,S, be two subrings of aring R.

then SUS isasubringiff ScS or Sc§
(OR)

Union of two subrings of a ring R is again a subring iff one is contained in the other.

Proof: LetRbearingand S, S, be two subrings of aring R.
Suppose §S<S or S<§
If possible assume that S £ S,orS, £ §
S £S = thereisanelement ac§ and a¢S, 1
S £§ = thereisanelement be Sand bg§ 2
ae§=>ae§us
beS =be§US
Now a,be §US, and SUS is a subring
=a+be§uUS
=a+be§or a+be§
If a+be§ then a+b-ae§ Since ae§ and § is a subring.

=be§
A contradiction to (2).
If a+beS, then a+b-beS Since be S, and § is a subring.
=aesS
A contradiction to (1)

sat+bg§and a+beS
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=a+beSuUS

~.§US, is not a subring.
Which is a contradiction to the hypothesis.
- OurassumptionS, £ S, and S £§ is wrong.
Hence either S £S, orS £§
Conversily suppose §£S, or§£§
Suppose § £S,=§US =S, which is a subring.
If S £§=§uUS =§ which is a subring.
-.either §<S or S <§ we have §US, is a subring.

1.8.8 Definition: Subfield: Let (F,+,.) be a field. A non-empty subset K of F is said to be a
subfield of F if K itself is a field w.r.to the same operations in F.

1.8.9 Example: The set of all rational numbers (Q,+,.) is a subfield of (R, +,.)

1.8.10 Theorem: Let (F,+,.) be a field. A non-empty subset K of F is a subfield of F iff
abeK =>a-bekK

iilaeK,0zbeK=ab*eK and

i) 1eK

Proof: Let F be a field and

K be a non-empty subset of F.

Suppose K is a subfield of F.
Let a,beK
be K = -he K since additive inverse exists in a field.

Now a,-be K = a+(—b) e K by closure axiom for addition.

=a-beK
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Let a,0zbeK

0xbeK =Db'eK since multiplicative inverse exists in a field.
Now a,b?eK = ab™ e K by closure axiom for multiplication.

Clearly 1eK
-, conditions (i), (ii) and (iii) hold good.

Suppose the condition (i) a,be K = a-beK

(i) a,0xbe K = ght < K hold good.

From condition (i) it follows that (K,+) is a sub group of (F,+) from (ii) and (iii) it follows
that (K—{O} ) is a sub group of (F —{0} )
Since K& F, commutative law for addition and multiplication and distributive laws hold for ele-

ments of K.

Hence k is a subfield of F.

1.9. Summary :

In this lesson we learnt the definitions of Ring, Integral domain, Field, Subring and Subfield.
We proved some theorems on Rings, Integral domains and fields.

1.10 Technical Terms:
1) Ring

i) Commutative Ring

i) Ring with Unity

iv) Idempotent Element

v) Boolean Ring

vi) Nilpotent Element

vii) Zero Divisors

viii) Integral Domain

ix) Unit or Invertible Element.
x) Division Ring or Skew Field
xi) Field

xii) Subring
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xiii) Subfield

Xiv) Charecteristic of a Ring.
1.11 Model Questions:

1.11.1 The set M of all n X n matrices with entries as real numbers is a non-commutative ring with
unity with respect to addition and multiplicatin of matrices.

Solution: Let M be the set of all n x n matrices with entries as real numbers.

i) We know that sum of the n x n matrices and product of two n X n matrices is again a n x n matrix.

-. Mis closed w.r. to addition and multiplication of matrics. i.e. ABeM = A+BeM
and ABe M -

i) We know that addition of matrices is associative and commutative.
~.(A+B)+C=A+(B+C),»AB,CeM
A+B=B+A~+AB,eM

iii) The null matrix O, , €M and A+0=A~+AecM

iv) Toeach A ¢ M thereis — AcM and A+(-A)=Q

v) Multiplication of matrices is Associative.
(AB)C = A(BC)A,L AB,CeM
vi) We know that multiplication of matrices is distributive over addition.

. A(B+C)=AB+AC

(B+C)A= BA+CA~+AB,CeM
- M is aring.
The unitmatrix |, € M and [A= Al = A~+AeM

- M Iisaring with unity I.
But we know that multiplication of matrices is not commutative.

Hence M is a non-commutative ring with unity.

1.11.2 Theset z(i)={x+iy/ X,y € z} of Gaussian integers is a commutative ring with unity
w.r. to addition and multiplication of complex numbers.
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Solution: Given z(i) = {x+iy/x,y € z}
Let a=x +iy, and b =X, +iy, € z(i)
=X, Y% Y, €2

Now a+b=(x +iy,)+ (X, +iy,)

= (% +%)+i(y,+y,)

~atbez(i) since x+x and y,+Y,eZ
ab=(x +iy,)(x, +iy,)

= (X% = Y1Y,)+i (XY, +%Y,)
- abe z(i)

i.e. z(i)is closed under addition and multiplication. We know that addition of complex
numbers is associative and commutative.

.. Associative law and commutative law for addition hold good in z(i) since z(i) is a sub-
set of the set of complex humbers C.

Clearly 0=0+i0e z(i) and
a+0=(X+iy)+(0+i0)=x +iy,=a
~.Qis the zero element of Zz(i)

aez(i)=>-a=-x—ly, € (i) and

a+(—a)=(x +iy)+(=x —iy;)=0
.. —ais the additive inverse of a.

We know that multiplication of complex numbers is associative and commutative.

-.a(bc) =(ab)c and ab=ba ~a,b,ce z(i) since Z(i)cC

Also multiplication of complex numbers is distributive over addition.
s.a(b+c) =ab+ac ~a,b,ce z(i)since Z(1)cC

clearly 1=1+0i € z(i) and al=(x +iy,)(1+0i)=a
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. Z(i) is a commutative ring with unity.

1.11.31f Q(v2) = {a+ bv2:abe Q} Then Q(+/2) is afield with respect to addition and multipli-

cation of real numbers.
Solution: Q(\/E) = {a+ bv2:a,be Q}
Let x=a+by2 and y=c+dv2eQ(/2)
=a,b,c,deQ
Now x+y:a+b«/§+c+d«/§
=(a+c)+(b+d)v2
. X+yeQH2) wa+cb+deQ
xy = (a+bv2)(c+d/2)
= (ac+2bd) + (ad +bc)+/2
- xyeQ(/2) ~ac+2bd,ad +bceQ
Q(\/E) is closed under addition and multiplication.

We know that addition of real numbers is associative and commutative. Since Q(+/2) c R.

We have (X+Y)+z=X+(y+2) and x+y=y+2z+X, y,ZEQ(\/E)
clearly 0=0+0v2 e Q(v/2)and x+0=x,+xeQ(/2)
xeQ(2) = —-x=-a-bJ2 e Q(/2) and x+(-x)=0

.. —Xis the additive invirse of x.

Also multiplication of real numbers is associative, commutative and is distributive over addition.
X(y2) = (X)z,xy = yz,X(y +2) = xy + xz, forall x,y,ze Q(~/2) since Q(+/2) c R

clearly 1=1+0v2 € Q(+/2) and x.1=(a+ib)(1+0v2) = x

. 1lis the multiplicative identity.
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Let 0= x=a+bv2 e Q(/2)

=a=00rp=0.

1 1 a—b/2 a b
Now = 2 bJ2 a?-2b> a*-2b* a?-2p? V2eQv2)

Since a,beQ and 32_2p2 +¢
{a2—2b2:0<:> a’=2" < a=V2b but aeQ..a?~2b* =0« a=0 and b=0}

", every non-zero element of Q(\/Z_) has multiplicative inverse. Hence Q(\/Z_) is a field.

1114 Z, = {O,:L 2,3 p—l} where Pis a prime. Z, is a field w.r.t the addition modulo P
and multiplication modulo P.

Solution: Z, ={0,1,2,3,........... p-1

Let a,beZ;

a®b= remainder, where g+bis divided by P.

a® b= remainder, where gh is divided by P.
Clearly a®b and aGb € z,
- Z, is closed under addition and multiplication modulo P.
Let a,b,ce z,
(a®b)®c=r,®c where a+b=qp+r,0<r<p

=1, where ,+Cc=0q,p+r,,0<r,<p
Now a+b+c=qp+n+c=qp+09,p+r,=(q+0,)p+r,
.. I, is the remainder where g+ b+ cis divided by P
ad®(bdc)=a®s where b+c=mp+s,0<s<p

=s, where a+s =m,p+s,,0<s,<p
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Now a+b+c=a+mp+s=mp+a+s=mp+mp+s,
=(Mm+m)p+s,
.S, is the remainder when g+ b+ c is divided by P.
h=s=>(@a®b)®c=a®(bdc)
ie addition modulo P is associative.
Clearly Oe z,
a®0=a
.0 is the zero element of Z,
Let ae z,
if a=0then additive inverse of ais itself.
If axz0then0<a<p=0=-a=>-p
= pzp-azp-p=>pzp-ax0
S p-aez,
Now a® (p-—a) =Remainder when a+(p—a) is divided by P.
=0
.. P—a is the additive inverse of g =0
Clearly a@ b =remainder when g +b is divided by P.
= remainder when p+ g is divided by P. p{ a+b=b+ a}

=b®a
.. Addition modulo P is commutative.
(a0Gb)oc=r,0cCc where ab=q,p+r, 0<r<p

=r, where rc=q,p+r, 0<r,<p

Now abc=(q,p+1)C=0gpC+rC=qpPC+q,p+r,
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= (q1c+ Q2) p+r,

r, is the remainder when abc is divided by P.

a0O(boc)=ads where bc=mp+s 0<s<p

=S, where as =m,p+s, 0<s,<p

Now abc=a(mp+s =amp+as =amp+mp+s,

=(am+m,)p+s,

.. S, Is the remainder when abc is divided by P.

( Acharya Nagarjuna University )

=5, = (@0b)Oc=a0(boc) ie., multiplication modulo P is associative.

clearly 1€ z, and a©1l=10a=a,~ac z,

. 1is the multiplicative identity.

Clearly aOb=b0a,~+a,bez, since ah=ba
. Multiplication modulo P is commutative.

Hence Z,is a commutative ring with unity.

Suppose a©b=0 where a,bez,
— Qis the remainder when ab is divided by P.

= pdivides ab

since P is prime.

o o
o
=

olo

—a=00rp=0since 0<a<pand 0<b<p
. Z, has no zero divisors.
. Z, is anintegral domain.

Since z, is afinite integral domain z, is a field.
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Remark: the ring Z, described above is the same as the ring defined at 1 & 2 exampled. (upto
isomorphism).
1.11.5 Give example of a division ring which is not a field.
a+ib c+id
ion: A= /a,b,c,deR

Solution: Let {—cﬂd a—idJ }

We know that the set M of all matrices with complex numbers as entries is a non-commu-
tative ring with unity.

Clearly A is a non-empty subset of M.

. id
Let X,Ye A= X :(aiﬂbl A 1] and

—c+id, a —ib

Vo a,+ib, c,+id,
| -c,+id, a,-ib,

Now x—Y=[ (&-a)+i(h-b) (q—cq)+i(d1—dz)J€A

(¢ -¢)+i(d,-d) (&-3a)-i(h-b)

Y = a+ib ¢ +id \( a,+ib, c¢c,+id,
—-c,+id, a —ib J{—c,+id, a,-ib,

:( aa,~hb, —C, —dd, +i(ab, +ab, +Gd, -c,d) alcz—hdz+azq+bzd1+i(aldz+hq+dlaz—Qq)j
—Ga,-db, -ac, +hd, +i(-gh +a,d +ad, +hG) —q¢-dd, +aa -hb, +i(qd, +c,d —ab -ah)

XY € A
Hence X,YeA=X+Y and XY e A

- A is asubring of M and hence aring.

10
Since M is a non commutative ring with unity | = (O 1]
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a+ib c+idJ

For 0= X € A Where X = ) .
—-c+id a-ib

X 0= one of a,b,c,d must be not equal to zero

~.|X|=a®+b® +c? +d? =0 and hence X is invertible.

Hence every non-zero element of A has a multiplicative inverse.
- A is adivision ring.

Since A is non-commutative it is not a field.

1.11.6 Show that the charecteristic of a Boolean ring R is 2.

Solution: Let R be a Boolean ring
—a’=a,vacR
LetacR=a+aeR
= (a+a)’=a+a Since Ris a Boolean ring
= (a+a)(a+a)=a+a
S a’+a’+a’+a°=a+a
= at+a+at+a=a+a
=a+a=0

=2a=0

. Charecteristics of a Boolean ring is 2.
1.11.7 If the charecteristic of aring Ris 2and a,be R commute then (a+b)* =a*+b*.
Solution: Let R be a ring with charecteristic 2.
Let a,be R such that gh=ba
Now (a+b)? = (a+b)(a+b)
=a’+ab+ba+b’
=a’+ab+ab+b’

=a’+2ab+b?
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—a?+0+b? Sincech.ofRis2,2a=0 xraeR

=a’+b?

Q.27)

( Rings and Integral Domains )

1.11.8 If Risaring and C(R) ={Xe R:ax=xa~ae R} then show that C(R) is a subring of R.

C(R) is called the centre of R.

Solution: Let R be aring.
C(R)={xeR/ax=xa+aeR}
clearly 0e R and agp=0a=awacR
-.0eC(R)
..C(R) is a non-empty subset of R.
Let x,yeC(R)
— ax=Xxa and ay=ya~aeR
Now a(x—y)=ax—ay
=Xa-ya
=(x-y)a vaeR
a(xy) = (ax)y = (xa)y = x(ay) = x(ya)
=(xy)a,~aeR
S X=y,xyeC(R)

Hence C(R) is a subring of R. by 1.8.4.

1.11.9 The set of all those integers which are multiples of a given integer say m is a subring of

the ring of integers.

Solution: Let S={mMx/x e z} where m is a given integer.

Cleary 0e Z=mM0O=0¢€S

- S isanon-empty subset of Z.

Let a,beS

=a=mx and b=my for X,yez
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Now a—b=mx-my

=m(x-y)
sa-beswx-yez
also ab=mx.my
= m.mxy
~abessince mxye z
Hence S is a subring of Z by 1.8.4.

1.11.10 Show that 0 and 1 are the only idempotent elements of an integral domain.

Solution: Let R be an integral domain.

Suppose ae R is anidempotent element.

=a’=a

=a’-a=0

=a(a-1)=0

—=a=00r ga-1=0 since R is an Integral domain.

=a=00ra=1
-.0and 1 are the only idempotent elements of an integral domain.
2. Exercise:
1. Prove that the set of even integer is a ring with respect to usual addition and multiplication.

2. In the set of integers addition @, multiplication ® are defined as a®b=a+b-1 and
a®b=a+b-ab -abez. Provethat (z,®,®)is a commutative ring.

3.1s R= {ax/ilae Q} a ring under ordinary addition and multiplication of real numbers?

4. Is the set of all pure imaginary numbers {iy/ye R} a ring with respect to addition and
multiplication of complex numbers?

5. Let Q={ao+ali_+a2T+a3l?/ao,al,a2,a3e R} where 7,7,k are the quoternion units
(i2: j2:k2 =ijk=-1ij=—ji =k, jk=—K =i,ki =—ik=j). Show that Q is a division ring with

respect to addition and multiplication defined as follows. For X,YeQ where
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X =a,+a, +a,] +ak, Y=PB,+Bi+B,]+BK.

X+Y =(ag+ o) +(a, + ﬁ1)i_+ (o + ﬂz)T"‘ (a5 + ﬁ3)|Z

XY = (aoﬂo _alﬂl _azﬂz _aaﬂa) + (aoﬁl —061,30 _azﬁ:s' _aaﬁz)T + (aoﬁl ‘szﬂo +0‘3ﬁ1 _(71:83)T + (050:83 +0{1ﬁ2 +a_l_182 _052ﬁ1)R
This ring is called ring of quaternions. This ring is hot commutative.

6. Find the Zero divisors of the ring (Z,,,+,,%;,)

7. Prove that +1,+i are the only four units of the ring of Gaussian Integers z(i) .

ab
8. Show that the set of matrices [0 Cj where a,b,c e z is a subring of the ring of 2 X 2 matri-

ces whose elements are integers.

9. If R is a division ring show that C(R) = {Xe R/ xa=ax,~ae R} is a field.

10.Is S= {l3,5} a subring of the ring z; of resedue classes modulo 6 under addition and multipli-

cation of resedue classes.
11. Find the centre of the ring of 3 X 3 matrices M,(R), where R is the field of reals.

- Smt. K. Ruth



LESSON - 2

IDEALS AND HOMOMORPHISM OF RINGS

2.1 Objective of the Lesson:

To learn the definition of ideals, types of ideals, homomorphism of rings and theorems
related to them.

2.2 Structure
2.3 Introduction
2.4 Definition of Ideal and Ideal generated by a subset
25 Principal ideal and Principal ideal ring.
2.6 Prime ideal and maximal ideal
2.7 Quotient ring
2.8 Homomorphism of rings
29 Kernal of ahomomorphism
2.10 Isomorphism of rings and Fundamental theorem.
211 Summary
2.12 Technical Terms
2.13 Model Questions
2.14 Exercises
2.3 Introduction:

In this lesson we define Right Ideal, Left Ideal Ideal, Principal Ideal, Prime Ideal, Maximal
Ideal and Quotient rings. We also define homomorphism of rings and Kernal of a homomorphism.

2.4.1 Right Ideal: Let R be aring. A nonempty subset | of R is said to be a right ideal of R if
i) a,bel =>a-bel
ii) acel,reR=arel

2.4.2 Left Ideal: Let R be aring : A nonempty subset | of R is said to be a left ideal of R if

i) a,bel =a-bel
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i) ael,reR=rael

0 a
2.4.3 Example: 1. The set | = {{0 b}/a’ be Z} is a left ideal of the ring of 2 x 2 matrices with

integers as entries but not a right ideal.

2. Theset | = {Z g}/a, be Z} is a right ideal of the ring of 2 x 2 matrices with integers as entries
but not a left ideal.
2.4.4 1deal: Let R be aring. A non-empty subset | of R is said to be an ideal of R if

i) a,bel =>a-bel

ii) ael,reR=ar and rael
2.4.5 Example: 1. LetRbe aring. Then | = {0} where 0 is the zero element of the ring R is an
ideal of R.

For 0-0el and Or =r.0=0€el ., ~~r eR
This ideal is called the Null ideal or zero ideal.

2. The ring R itself is an ideal of R.

Forabe R=>a-beR and acRreR=ar and rgeR.

This ideal is called the unit ideal.

The above two ideals are called trivial or improper ideals of R.

3. The set of even integers | = {2n/n € Z} is an ideal of the ring of integers.
2.4.6 Note: 1. Everyideal of aring is a subring of the ring.

Let | be anideal of aring R.

Let a,bel =a-bel sincelis anideal.

bel =beR

sael,beRandlisanideal = abe| .

Hence by 1.8.4 | is a subring.

2. The converse of the above note is note true. i.e. every subring of a ring need not be an ideal of
the ring.
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We know that (z,+,x) is subring of (Q,+,x) .....

1
We have 2 ¢ 7 and ZEQ

1 1
2x—=—¢Z
But 1 2

- 7 isnot an ideal of Q.
2.4.7 Corollary: Let | be anideal of a ring R with unity element 1. If 1| then | =R.
Proof: Let | be an ideal of a ring R with unity element 1. Suppose 1€ .
Cleary |l cR .. (1)
Let xe R
Now 1lel,xe R andlis an ideal.
=1xel
= xel
..Rel 00000l (2)
From (1) and (2) | =R
2.4.8 Theorem: A field has no proper ideals.
(OR)
The only ideals of a field are {0} and itself

Proof: Let F be a field.

We know that | ={0} and | =F are ideals of F by 2.4.5
Let | #{0} be anideal of F.

Since | #{0} thereis 0= ac |

—=acF since | c F
— 3 aleF suchthat gg1=a13=1 since Fis a field.

Now acl,a*eF andlisanideal
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—aalel

=1lel
Nowby24.7 | =F

. Every non-zero ideal of F is equal to F itself.
Hence the only ideals of a field are {0} and itself.

2.4.9 Algebra of Ideals:

Theorem: The intersection of two ideals of a ring R is an ideal of R.
Proof: Let Rbe aring and |,,|, be two ideals of R

Take | =1, N1,

Clearly Oel, and Oel,=0el, NI, =1

= | is a non-empty subset of R.

Let a,bel and r ¢ R.
a,bel =abel nl,

=a,bel, and a,bel,
=a-bel,, raand ar €l since |, is an ideal of R and
a—bel,, ra and ar €1, since |, is an ideal of R.

Now a-bel,, a-be |, rael, rael,, arel, arel,

~a-bel,nl,=1,rael,nl,=1,arel,nl,=1I.

Hence | is an ideal of R,

2.4.10. Note: Union of two ideals need not be an ideal.

2.4.11 Theorem: Union of two ideals of aring R is an ideal if and only if one is contained in the
other.

Proof: LetRbe aringand |, |, be two ideals of a ring R.

Suppose |, U1, is anideal of R.
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Toprovethat I, cl,or I, ;.
If possible assume that |, ¢ 1, or |, £ |,
|, &1, = Thereis ael, and agl, ... (1)
|,&l,= Thereis bel,and be |, ... 2)
ael,=>ael Ul,
bel,=bel,Ul,
Now a,bel,Ul,=a-bel, Ul, since |, Ul, is anideal.
a-bel,ul,=a-bel ora-bel,
If a—bel, Then a—(a-b)el, since ael,and l,is an ideal
=bel,;
A contradictionto (2) > a-bel, ... (€))
If a—bel, Then b+a-bel, sincebel,andl, is an ideal
=ael,
Acontradictionto (1) . a—-bel, ... 4)
~a-bel, Ul, from (3) and (4)

= |, Ul, is not an ideal.

This is a contradiction.

Hence our assumption is wrong.

-.eitherl, cl,orl, c

Conversily suppose |, c l,orl, c |,
If I, cl,Thenl, Ul, =1, which is an ideal

If I,cl,Thenl, Ul, =1, which is an ideal
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- Eitherl, c l,orl,cl,,= 1, Ul, isanideal

2.4.12 Theorem: If I, and |, are two ideals of aring Rthen |,+1,={a+b/ael, and bel,}
is an ideal of R.

Proof: LetRbe aringand 1,,1, be two ideals of R.

Suppose |, +1,={a+b/ael, and bel,}

Clearly Oe |, and O€el,

~0=0+0€el,+1,

= |, +1, is a non-empty subset of R.

Let X,yel,+I,and reR

Then x=a,+b where & €l, and b €1,

y=a,+b, where a,€l,and b, €1,

Now x—y=(a+h)~- (& +b,)
=(@-a)+h-b)

Since a,a,€1,,b,b,el, and 1,1, are ideals

We have a,—a,€l,and b -b,el,

xr=(@+b)r=ar+brel +1,
Now rx=r(a +b)=ra +rbel, +1, since a €l,,bel,,reR andl,,|, are ideals.
srxand xrel +1, ... (2)
From (1) and (2) I, +1, is an ideal.
2.4.13 Note: |, +1, is anideal containing both |,and [,.

By the above theroem |, + 1, is an ideal.
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Clearly xel = x+0el, +1, since Oel,
=>xel +1,
R Pl PR S
yel,=0+yel, +1, since Oel,
=vyel +1,
A Pl S

Lch+l,,cl+L,=1Lul,cl +l,
2.4.14 Definition: Ideal Generated by a subset:

Let R be aring and S a subset of R. Anideal | of R is said to be generated by S.

Ifi) Sc| i) |tisanidealof Rand ScI'=|c !

Ideal generated by S is denoted by <S>
2.4.15 Note: Ideal generated by S is the smallest ideal containing S.

2.4.16 Theorem: If |, and |, are twoideals of ring Rthen |, + |, is the ideal generated by |, U1,

e l+1,=(l,Ul,)
Proof: Let R be aring and 1,1, be two ideals of a ring R.
By 2.4.12 I, +1, is anideal of R.
By 2.4.13 Lul,cl +1, ... (1)
Let |2 be anidealof Rand I, Ul, c I
Toprovethat I, +1,c I

Let xel, +1,

= x=a+b where ael, and bel,

ael,=>ael,ul,=ael' since I,Ul,cI*
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bel,=bel,ul,=bel®
~abelland |tisanideal

—=a+bel?
=xelt

Hence I, +1,c 1" ........ (2

From (1) and (2) |, +1,=(l,Ul,)

2.5.1 Definition: Principal Ideal : Let Rbe aring. Anideal | of R is said to be Principal ideal of

Rif | is generated by a single element of R. i.e. | =(a) where aec R.

2.5.2 Example: (1) The null ideal {0} of a ring R is a principal ideal.

(2) In aring R with unity element, R itself is a principal ideal.

Definition: If a and b are nonzero elements of a ring R such that ab = 0, then a and b are called
divisors of zero (or zero divisors)

Definition: A commutative ring R with identity 1 = 0 and no zero divisors is called an integral do-
main.

2.5.3 Principal Ideal Domain: An integral domain R with unity is said to be a principal ideal
domain if every ideal of R is a principal ideal.

2.5.4 Note: Every field is a principal ideal domain. We know that a field has only two ideal {O} and
itself by 2.4.8.

Clearly {0} is generated by O i.e. {0} =(0)

and Fis generated by 1i.e. F =(1)

. The ideals of a field are principal ideals and hence a field is a principal ideal domain.

2.5.5. Theorem: The ring of integers is a principal ideal domain

Proof: Let (z,+,.) be the ring of integers and | be an ideal of Z.
If | ={0} then | is a principal ideal.

Suppose | = {0}
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= 0= ael

— _ae| sincel is an ideal.

Since a,—ae |, | contains atleast one postive integer.
Let |+ be the set of all positive integers of | .
Then |+ is non-empty.

.. By well ordering principal |+ has a least element say “b”.

We claim that | =(b)

Let xe

Now X,b are integersand h=0.

By division algorithm there exists qQ,r €
Such that x=bqg+r where 0<r <b.
Now bel,qez and | isanideal.
=bgel
.. X—=bgel since xel
=rel
Since b is the least positive integer in | and Q < r < b. r can not be positive.
~r=0
= Xx=bqg,qez
.1 ={bg/qez} =(b)
Hence Z is a principal ideal domain.

2.6.1 Definition: Prime ideal: A proper ideal | of a commutative ring R is said to be a prime ideal
if a,beR and abel =ael orbel

2.6.2 Example : In an integral domain, null ideal is prime.

Let R be an integral domain.

Suppose a,be R and abe {0}
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=ab=0

—=a=0 orp=0 -+ R has no zero divisors
= ae{0}or be{0}

{0} is a prime ideal.

2.6.3 Definition: Maximal ideal: Let R be aring and M is an ideal of R such that pj - R. Mis
said to be a maximal ideal of R if for any ideal | of R suchthat M cl cRthen | =M oOr | = R.

2.6.4 Theroem: Anideal M of the ring of integers Z is maximal iff M is generated by some prime
number.

Proof: Let Z be the ring of integers.

We know that Z is a principal ideal domain (by 2.5.5)

Suppose M is a maximal ideal of Z. Then M = <n>,where n>0.

To prove that n is a prime number.

If possible assume that n is not prime.
= N= pg where p and g are integers such that 1< p<n and 1<qg<n.
Now | =(p) isanidealof Zand M c | = Z
Mis maximal = | =M or | =Z
If | =M then (p)=(n)
= p=nm forsome mez
= p=pgm,since N=pg.
=>mg=1

—=m=1and q=1

This is a contradiction.
If | =z then (p)=(1)

= p=1. Again this is a contradiction.

. Our assumption that n is not prime is wrong.
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Hence M =(n) where n is a prime number.

Conversely suppose M is generated by a prime number

i.e. M =(n), where n is a prime number.
To prove that M is a maximal ideal of Z.

Let | be anideal of Zsuchthat M c 1 c Z .

| is anideal of Z = | :<m> for since m> 0.

Mclcz =>{(nc(mcZ
= ne(m
=Nn=mg,gez
= m=1 or g=1, since nis prime.
Ifm=1then (M)=(1)=2
=1=Z
If g=1then n=m
=(n)=(m)

=M=

- Either | =pm or | =Z

. Mis amaximal ideal of Z.

(Ideals and Homomarphism of Rings)

2.6.5 Note: In the ring of integers an ideal generated by a composite number is not maximal.

Eq: Let M =(6)
Clearly (6) = (3)c Z and (3)#(6) and (3)= Z

- M is not maximal.
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2.7.1 Quotient Rings:

Coset: Let R be aring and | an ideal of R. Then r+1 ={r +a/ae} is called a coset of
| generated by r.

Since (R,+) is an abelian group r+1 =1+r,~»reR, yr4+| is also called the resedue class
containing r.

2.7.2 Theorem: Let R be aring and | an ideal of R.

Then 5{ = {r +1/re R} is a ring with respect to the addition and multiplication of cosets

defined by (a+1)+(b+1)=(a+b)+1

(@a+1)(b+1)=ab+! for a+l,b+1eR/I

Proof: Let R be aring and | an ideal of R.

'%z{wl/reR}
Addition of resedue classes is well defined:
Suppose a,+1 =a,+1 and b+1=h +I
=a-a,€|l and b-b,el. Sincefromgroups H+a=H +b<a-beH.
=a-a,+b—-b el . Sincelisanideal.
= (a+b)-(a,+b) <l
= (& +0)+1=(a+0)+]
=@+)+lB+H)=@+1)+(b,+1)

~. Addition is well defined.

Multiplication is well defined:
Suppose a+1=a,+1 and b+1=Db, +I
=>aea,+| and beb +I
=a=a,+U and b=b,+u, forsome u,u,c<el

Now ab = (a, +u)(b, +u,)



( Rings and Linear Algebra ] (2.13) [Ideals and Homomarphism of Rings]

=a,b, +au, +ub, +uu,

= ab -a,b =a,u, +uu,

= ab -ab, el since wu,u,el,a,b eR andlisanideal
=ab+1=ab +I

=@+ )0 +1)=(a+1)b+1)

. Multiplication is well defined.

Closure Law : Let a+1,b+1 eR/I
=abeR
—a+beR
= (a+b)+1 eR/I
= (@+1)+(b+1)eR/

Associative law : Let a+1,b+1,c+1 e R/I

Now [(a+1)+(b+1)]+(c+1)=((a+b)+1)+(c+1)

[(@a+b)+c]+I

[(@+(b+0)]+I since a,b,c,eR

=(a+1)+[(b+c)+1]

=(a+1)+[(b+1)+(c+1)]
Existence of Identity:
Now (O+1)+(a+1)=(0+a)+! =a+l,~a+1 eR/I

s.a+1 =1 isthe zero element of R/I

Existence of Inverse:
Let a+l eRl = aeR

=-aeR
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—-a+| eR/I
Now (a+1)+(-a+1)=a+(-a)+|
=0+
. —a+| isthe additive inverse of a+ |
Commutative Law : Let a+1,b+1 e R/I
@+1)+(Mb+1)=(@+b)+1 =(b+a)+1 since a,beR
=(b+1)+(@+1)
Closure with respect to multiplication:
Leta+1,b+1eR/l =>abeR
= abe R since Ris aring.

—ab+1 eR/I

= (a+1)(b+1)eR/I
Associative Law for multiplication.

Let a+1,b+1,c+leR/I
[(@+1)(b+1)(c+1]=(@b+1)(c+])
= (ab)c+|
—a(bc)+1 since a,b,ceR
= (a+1)(bc+1)
= (a+1)[(b+1)(c+1)]
Distributive Law:
Let a+1,b+1,c+1 Rl
(@+1)[(b+1)+(c+1)]=(@+1)[(b+0)+1]
=a(b+c)+!

=(ab+ac)+1 since ab,ceR
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= (ab+1)+(ac+1)
= (a+1)(b+1)+(@+1)(c+1)
Similarly [(b+1)+(c+1)](a+1)=(b+1)@+1)+(c+1)(@+l)
- R/l isaring.
The ring R/I is called the quotient ring of R modulo |.

2.7.3 Note: If R is a commutative ring and | is an ideal of R then the Quotient ring R/l is also
commutative.

Proof: Let R be a commutative ring and | an ideal of R.
Let a+1,b+1 eR/I
(@+1)(b+1)=ab+1
=ba+ | Since R is commutative.
=(b+1)(a+l)
. R/l is commutative.
2. If Ris aring with unity then the Quotient ring R/I is also a ring with unity.
Proof: Let R be a ring with unity and | an ideal of R.
leR=1+1eR/I
Now (1+1)(a+1)=la+I| =a+|
(a+1)A+1)=al+1 =a+l
-1+ isthe unity element of R/
Hence R/l is aring with unity.

2.7.4 Theorem: Anideal | of a commutative ring R with unity is prime iff the Quotient ring R/I
is an integral domain.

Proof: Let R be a commutative ring with unity and | an ideal of R
= The quotientring R/I is a commutative ring with unity.

Suppose | is a prime ideal.
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To show that the Quotient ring R/I is an integral domain.
Since R/I is a commutative ring it is enough to show that R/I has no zero divisors.
Let a+1,b+1 eR/I and
@+1)(b+1)=0+1
=ab+I =1

=abel

—ael or pel| . Since |l is prime.

=a+l=1 orp+l|=I

~.R/1 has no zero divisors.

Hence R/l is an integral domain.

Conversily suppose R/I is an integral domain.
To prove that | is a prime ideal.

Let a,be R and ghe|l
= ab+1 =1
= (a+!1)(b+1)=1
—=a+l=1o0rp+| =] Since R/I is an integral domain.
—ael or bel

- | isaprimeideal.

2.7.5 Theorem: Anideal | of a commutative ring R with unity is maximal iff the quotient ring R/I
is a field.

Proof: Let R be a commutative ring with unity and | an ideal of R.
= The Quotientring R/1 is a commutative ring with unity.
Suppose | is a maximal ideal of R.

To prove that R/I is afield.

Since R/| is a commutative ring with unity it is enough to prove every non-zero element of

R/1 has multiplicative inverse.
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Let 0+1 za+1 eR/I
a+l z0+1 = agl

We have (a) is a principal ideal of R.

~(a)+| isanidealof Rand | c(a)+| =R Since ag |
Since | is a maximal ideal either (a)+1 =1 or (a)+1 =R

But agl =(a)+| =1 since ae(a)+|

~(a)+1 =R

leR=1e(a)+|

—1=ar+x forsome r ¢ R and xel

=>1-ar=xel

=1+l =ar+| since a+H=b+H < a-beH

=1+l =(@+1)(r+1)
S0+l #a+leR/I=3 r+1eR/l suchthat (a+I1)(r+1)=1+1I
Hence every non zero element of R/I has multiplicative inverse.
- R/l is afield.
Conversely suppose R/| is a field.
To prove that | is a maximal ideal.
Let |1 be anideal of Rsuchthat | — |'c R.
If possible assume that |1 4 |
= thereis ge|! and agl

=a+l =l

i.e. a+| is anon-zero element of R/I .
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= There exists b+1 eR/I suchthat (a+1)(b+1)=1+1 since R/| is a field.
=ab+I| =1+1

=1l-abel

=1l-abelt -~ IclIt

Now ge|'and be R, 1" isanideal — ape|®

~l-ab+abel?!

=1lell
— |!= R bycorollary 2.4.7

- | isamaximal ideal of R.

2.7.6 Note: (1) If R is a commutative ring with unity, then every maximal ideal is a prime ideal.

Let M be a maximal ideal of R.

= R/M s afield by theorem 2.7.5
= R/M is an integral domain

— M is a prime ideal by theorem 2.7.4

2. The converse of the above need not be true i.e., every prime ideal of a commutative ring with
unity need not be a maximal ideal.

For example in the ring of integers null ideal is prime but not maximal
For {0} =(2)c Z and (2)# {0} and (2)# Z
2.8.1 Homomorphism of rings:
Definition: Let R and R' be two rings. A mapping f : R— R' is said to be a homomorphism
ifi) f(a+b)=f(a)+ f(b) i) f(ab)=f(a)f(b) forall a,beR
2.8.2 Definition: Let R and R’ be two rings. A mapping f :R— R is said to be

i) Monomorphism if f is a homomorphism and one-one
i) Epimorphism if f is a homomorphism and onto

iif) Isomorphism if f is a homomorphism one-one and onto.
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2.8.3 Definition: A homomorphism f : R— R of aring R into itself is called an endomorphism.

2.8.4 Definition: Anisomorphism f :R— R of aring R into itself is called an automorphism.

2.8.5Example: 1. LetRand R betworings f :R— R definedby f(x)=0"~xe R where o
is the zero element of R is a homomorphism.

Solution: Let a,be R.
f(a+b)=0'=0'+0'= f(a)+ f(b)
f(ab)=0'=0.0'= f(a)f (b)

. f is a homomorphism.

This homomorphism is called Zero homomaorphism.

2. Let R be aring. Then the identity mapping | : R — R is an automorphism.
Solution: Let a,be R

I(a+b)=a+b=1(a)+1(b)

| (ab) =ab=1(a).l (b)
- | is a homomorphism.

We know that identity mapping is a bijection.

-] is an automorphism.

This is called identity homomorphism.

2.8.6 Note: If f:R— R' is an isomorphism then we say R is isomorphic to Rt and we write
R=R"

2.8.7 Elementary Properties of Homomorphism:

Theorem: Let f : R— R' be ahomorphism of aring Rinto aring gt and 0,0" be the zero

elements of R and R' respectively then for a,be R.
) f(0)=0" i) f(-a)=—f(a)iii) f(a—b)="f(a)- f(b)
Proof: f:R— R'is a homomorphism.

) 0eR= f(O)R
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f(0)= f(0+0) since 0+0=0
= f(0)= f(0)+ f(0) since fis a homomorphism.
= f(0)+0"'= f (0)+ f (0) since o' is the zero element of RL.
= 0' = f (0) by left cancellation law.
i) acR=3-acR suchthat a+(-a)=0
- fla+(-a)]=f(0)

= f(a)+ f(-a)=0" by (i) and f is a homomorphism.
= f(-a)=-1(a)
ii) Let a,be R

f(a—b) = f [a+(-b)]= f(a) + f (-b)

= f(a)+[-f ()]

=f(a)- f(b)
2.8.8 Homomorphic Image: Let f:R— R' be a homomorphism of a ring R into a ring R.
Then the image set { f (X)/x e R} is called the homomorphic image of R and is denoted by f (R).

2.8.9 Theorem: A homomorphic image of a ring is a ring.

Proof: Let f:R— R' be a homomorphism and f(R)={ f(x)/ xe R} be the homomorphic
image of R.

To prove that f(R) isaring.
Clearly f(R)c R*and f(0)=0"e f(R)
. f(R) is a non-empty subset of RL.
Let a,be f(R)
= a=f(x) and b= f(y),where x,ye R

X, ye R=> x-yeRand xye R
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= f(x—y)e f(R) and f(xy)e f(R)
= f(X)-f(y)e f(R) and f(xy)e f(R
—a-be f(R) and abe f (R)
- T(R) is a subring of Rt
Hence f(R) isaring.
2.8.10 Note: A homomorphic image of a commutative ring is commutative.
Proof: Let f;R— R' be a homomorphism from a commutative ring R into arring R!.
f(R) :{ f(x)) xe R} is the homomorphic image of R.
Let a,be f(R)= a= f(x),b= f(y) where x,yeR.
Now ab= f(x)f(y)
= f (xy) since f is a homomorphism.
= f (yx) since R is commutative.
= (Y
=ba
- f(R) is commutative.
From 2.8.9 f(R) isaring = f(R) is a commutative ring.

2.9.1 Kernal of ahomomorphism:

Let f : R— R' be ahomomorphism from aring Rinto aring Rt. Then {Xe R/ f(X)= Ol}

is called Kernel of f and is denoted by ker f . (' is the zero element of R!.

2.9.2Theorem: If f : R— R' isahomomorphism of aring Rinto aring Rt then ker f is anideal
of R.

Proof: Let f : R— R' be a homomorphism of aring R into aring R!.

ker f = {Xe R/ f(X)= 01} where o is the zero element of RL.



(Centre for Distance Education ) (222) ( Acharya Nagarjuna University )

Clearly e R and f(0)=0"

=0ckerf

-, ker f is a nonempty subset of R.
Let a,be ker f and reR
abekerf = f(a)=0'and f(b)=0"
= f(a)- f(b)=0-0'=0'
= f(a—b)=0"
a-bekerf L 1)
f(ar)=f(a)f(r)=0"f(r)=0"
f(ra)=f(r)f(a)= f(r)0'=0"
carekerf and raekerf ... 2

From (1) and (2) ker f is an ideal of R.

2.9.3 Theorem: A homomorphism f from a ring R into a ring R' is a monomorphism iff
ker f ={0}.

Proof: Let f:R— R' be a homomorphism from a ring R into aring R.

Suppose f is a homomorphism.

To prove that ker f ={0}

Let ae ker f = f(a)=0"
= f(a)=f(0)
—a=0 since fis one-one

. ker f ={0}.

Suppose ker f ={0}.

To prove that f is one - one.
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Suppose a,be R and f(a)= f(b)
= f(a)- f(b)=0"
= f(a-b)=0"
—a-bekerf
—a-b=0since ker f ={0}.

=a=b
.. f isone-one.

Hence f is a monomorphism.

2.9.4 Theorem: If | is an ideal of a ring R then there is an epimorphism f from R onto R/I such
that ker f =1

Proof: Let R be aring and | am ideal of R.
Define f :R—R/I as f(a)=a+I,+aeR
fis well defined : Suppose a,be R and g=b
=a+! =b+l
= f(a)= f(b)
. T is well defined.
f(a+b)=(a+b)+1 =(a+1)+({b+1)=f(a)+(b)
f(ab)=ab+I1 =(a+1)(b+1)= f(a)(b),+abeR
-. f is a homomorphism.
fisonto:Let x+1 € R/I
= xeR
Now f(X)=x+I

X+l eR/l =3 x e R suchthat f(x)=x+l

Hence f is onto.
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- f :R—> R/l is an epimorphism.
kerf={acR/f(a)=0+1}={acR/f(a)=1]
—{aeR/a+l =1}
_{acR/acl)

=
2.9.5 Note: The above epimorphism is called canonical mapping or natural mapping.

2.10.1 Fundamental Theorem of Homomorphism:
If f-R_ R isan epimorphism from a ring R into a ring R then R/ker f=2R

(OR)

Every homomorphic image of a ring is isomorphic to some quotient ring.
Proof: Suppose f :R— R' is an epimorphism from a ring R into a ring R.
Let ker f =1
We know that ker f is an ideal of R.
. R/ker f is a quotient ring.
Define ¢ : R/I — R" by
p(a+1)=f(a)~a+l eR/I
¢ is well defined and one - one :
Leta+1,b+1 e R/I
a+l=b+l
< a-bel
< f(a—b)=0"since | =ker f .
< f(a)-f(b)=0"

o f(a) = f(b)
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S da+)=¢+1)

.. ¢ is well defined and one - one.
¢ isonto:
Let ye R
since f:R—> R! is onto there is x e R such that
f(x)=y
xe R= x+1 eR/I
yeR = thereis x+ 1 e R/l and ¢(x+1)=f(x)=y
.. @ is onto.
¢ is a homomorphism:

Leta+1,b+1 eR/I
p[(a+1)+(b+1)]=0[(a+b)+1]= f(a+b)
= f(a)+(b)
=o[(a+1)+o(b+1)]
p[(a+1)(b+1)]=0[ab+1]= f(ab)
= f(a)f (b)

=¢(a+1)p(b+1)

. ¢ is a homomorphism which is one-one and onto i.e. ¢ is an isomorphism from R/I
to RL.
~RI=R.

2.10.2 Definition: Aring R is said to be embedded in a ring R* if there exists a monomorphism
from R into R

2.10.3 Example: A subring S of aring R can be embedded in ring R.

For | : S— R defined by | (a) =a,~ae s is a monomorphism from S into R.
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2.10.4 Theorem: Every integral domain can be embedded in a field.

Proof: Let D be an integral domain.
Let R={(a,b)/a,be D,b= 0}

Define ~ onRas (a,b) ~(c,d) < ad =bc
We claim that ~ is an equivalence relation on R.
Let (a,b)e R=a,beD and b=0
—ab=ba Since D is commutative
= (a,b) ~ (a,b)
-~ is reflexive.
Let (a,b),(c,d)eR
Suppose (a,b) ~ (c,d) = ad =bc

= da=cbhb Since D is commutative

=cb=da
= (c,d) ~ (a,b)
..~ IS symmetric.

Let (a,b),(c,d),(e, f)eR

Suppose (a,b) ~ (c,d) and (c,d) ~ (e, f)

= ad=Db and cf =de

= (ad) f = (bo) f

= (ad) f = b(cf)

— (ad)f =b(de)  Since cf =de

— (da)f = (bd)e  since D is commutative
= d(af ) = d(be)

= af = be by left cancellation law.
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= (a,b)~ (e 1)
.~ Is transitive.

Hence ~ is an equivalence relation on R.

a
Let b be the equivalence class containing (a,b) with respect to the equivalence relation ~ .

a
Let F = {b/a’ beD,a= 0} the set of all equivalence classes under ~.

a

C
We define addition + and multiplication . as b +H =

To show that + and . are well defined.

a_a c_¢
Suppose B:E and H:d_
1

= (a,b)~(a,b)and (c,d)~(c,,d,)
[x]=[y] iff x~y
= ab, =ba, and cd, =dc
Now (ad + bc)b,d, = adb,d, + beh,d,
= abdd, +bhcd,
= ba,dd, +bbdc,
= a,d,bd +bc,dd
= (a,d, + b,c,)bd
~.(ad +bc,bd) ~ (a,d, + b, bd,)

N ad+bc _ad +bg

bd bd,
_,a.c.a ¢
b d b d
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. +is well defined.
Also achd, = abcd,
=Dba,dc, Since ab =ba, and cd, =dc,
= bda,c,
. (ac,bd) ~ (ac,,bd,)

_a_ag
bd  bd,
_ac_ag
bd b d,

- . is well defined.

-, +and . are binary operations on F.

We prove that (F,+,.) is afield.

First that if th a_x d

irst we prove that if x 0 the | "=~ an

. °_o0 X_Y¥
|fx¢0,y;t0thex yandx y

We have a(bx) = (ab)x = (ba)x = b(ax)

= (a,b) ~ (ax, bx)

( Acharya Nagarjuna University )
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Addition is associative:

EEF
f

ac
Let b'd’

—+
b d

a c +E_ad+bc e
f bd f

_ (ad+Dbc) f +bde
baf

_adf +bcf +bde
baf

_ adf +b(cf +de)
b(df)

cf +de
df

a (c e
= —+|—+—
b [d fj

- addition is associative.

a
~b

Existance of additive identity:

0
If x =0 then ;EF

a o _ ax+bo ax a

Now E+;= bx &: b from (1)
0 a bo+rax ax a a
—+—= =—=— ~w—cfF
X b xb bx b b

o]
X is the additive identity of F.

Existance of Inverse:

a
LetBeF:a,beD and h=0

(Ideals and Homomarphism of Rings)
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= -abeDand p=0
:>_—aeF
b

a (-a) ab+b(-a) ab-ba ab-ab o o

Now 17 bb bb bb  bb x om®
—_a+§_(—a)b+ab_—ab+ab_£_9
b b bb bb bb x
'_—a'th dditive i fi
. b IS the aaditive Inverse o b .
Addition is commutative:
ac
— —€eF
Letb de
§+£_ad+bc_bc+ad_cb+dc_£+g
b d bd do  db

.+ Is commutative.
. (F,+) is an abelian group.

Multiplication is associative:

Let eF

i
f

oo

a
b

(X -G

. Multiplication is assocative in F.

Existance of Multiplicative Identity:

X
Let 0= xe D then v F

a_r (3)(1)_%_3
Forb ) b % —bx—band
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x)(a)_xa_ax_a
x)\b) xb bx b om()

X
; when x # Q is the multiplicative identity of F.

Existance of Multiplicative ldentity:

Lta;toeF
ot — # —
b b

= a#o0

:>EEF
a

aj(b)j_ab_ab_x

Now b/\a) ba ab  x from (1)
EX%_@_@_Z
a)\b) ab ab x

b a
5 is the multiplicative inverse of b in F.

Multiplication is commutative:

a c
——eF
Letb d

Be) @G

- . IS commutative.

[0}
(F _{;},) is an abelion group.

Distributive Law:

a Cc e
R F
Let b'd’ f €

(Ideals and Homomarphism of Rings)
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(aj_c e}zg[cf +dej: a(cf +de) _ acf +ade

'd f| bl df bdf bdf

ayey . (aye _E+§_acbf+bdae_(acf+ade)b_acf+ade
bJUf) bd bf  bdbf bdfb  bdf

sman 55 [SHEIHE I

- (F,+,.) is afield.

_ ax
Define f :D — F by f(a)=? where 0= xe D

Clearly f is a mapping.
To show that f is a monomorphism.

f is a homomorphism:

Let a,be D

2
Now f(a+b) = (a+Xb)x _ (a+xt;)x

_ad +bx?
T

X
_ (ax)x+ (bx)x
B XX

_ax  bx

X X

= f(a)+ f (b)

abx abx* axbx ax bx
fla)="—=" =222
X X XX X X
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= f(a).f(b)

. fis a homomorphism.

fis one-one:

Let a,be D and f(a)= f(b)

ax bx
= —=—
X X

= (ax, x) ~ (bx, x)
= axx = xbx
= ax® = bx®
= (a-b)x*=0
=a-b=o0
—a=b
. f is one - one and hence a monomorphism.

. Every integral domain can be embedded in a field.

2.11.11 Summary:

In this lesson we defined ideal, principal ideal, prime ideal, maximal ideal, quotient ring
homomorphism of rings, kernal of a homomorphism. We learnt algebra of ideals. Theorems on
ideals, quotient rings homomorphism of rings, kernel of a homomorphism, fundamental theorem
and embedding of rings.

2.12 Technical Terms:
i) Ideal
i) Ideal generated by a subset
iii) Principal ideal
iv) Prime ideal
v) Maximal ideal
vi) Quotient ring
vii) Homomorphism of rings
viii) Kernal of a homomorphism

iv) Embedding of rings
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2.13.1 Model Questions:

0 a
2.4.3 The set | :{0 bJ/a,be z} is a left ideal of the ring of 2 x 2 matrices with integers as

entries but not a right ideal.

Solution: Clearly | is a non-empty subset of the ring M of 2 x 2 matrices with integers as entries.

0 a 0 c Xy
LetA:0 b andB:o d EIandC:r SEM

= a,b,c,d,x,y,r,sez

0 a-c
A-B= €l Since a—c,b-dez

0 b-d
X y)(0 a) (0 ax+hy
CA= r s)\o b) |0 ar+bs €l since ax+by,ar +bsez
- lis aleftideal.

0 a)(x vy ar as
But AC = = ¢ |

0O b){r s br bs
Hence | is not a right ideal.

2.13.2 If Ris a commutative ring and a e R then Ra={ra/r e R} is an ideal of R.

Solution: Let Ra={ra/r e R}

Clearly poc R= 0ac Ra
..oXx=0eRa

-. Ra is a non-empty subset of R.

Let x,ye Ra and yr ¢ R
= x=rna and y=r,a where r,r,e R
Now X—y=ra-ra=(r,—r,)acRa

rx=r(na)=rracRa



( Rings and Linear Algebra ] (2.35) [Ideals and Homomarphism of Rings]

xr=(rayr=r(na)=rr,eRa Since R is commutative.
~X,yeRaand r e R= Xx—-y,rx,xr e Ra

. Ra is anideal of R.

2.13.3 IfRisaringand ae R then Rais aleftideal and aR = {ar/r € R} is anideal of the
ring of integers z.

2.13.4 If mis afixed integer. Then | ={mx/xe Z} is anideal of the ring of integers Z.

Solution: Let z be the ring of integers and me z.

We know that z is a commutative ring and me z.

sl ={mx/xez} isanidealofz  by2.13.2.

2.13.5 Union of two ideals need not be an ideal (2.4.10)
Solution: Let |, ={2x/xe z} and |, ={3x/xe z}

Thenby 2.13.4 |, and |, are ideals of the ring of integers Z.
Lul, = {...—4,—3,—2,0, 2,3,4, 6,8,9...}

32el,Ul, but 3-2=1¢1,Ul,

-1, Ul is not an ideal.

2.13.6 A commutative ring R with unity element 1« Q is a field if R has no proper ideals.
Solution: Let R be a commutative ring with unity element 1.
Suppose R has no proper ideals.

To prove that R is a field.

let0 - ae R

= Ra={ra/r eR} isanideal of R by2.13.2.

Since R has no proper ideals either Ra={0} or Ra=R

But 0xaeRa since g=1a and 1R

.. Ra={0}
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= Ra=R

Butile R= 1< Ra

—1=ba forsome peR
. bis the multiplicative inverse of a.

. Every non zero element of the commutative ring R with unity element has multiplicative inverse.
— R is afield.
2.13.7 Iflisanideal of aring Rand rl ={xe R/xa=0 forall ac |}

then r| is anideal of R.

Solution: Let R be aring and | an ideal of R.
Let rl ={xe R/xa=0 forall acl}
We know that g R and oa=a forall g¢ |

soerl

= r| is anon-empty subset of R.

Let Xx,yerl and y ¢ R.

X,yerl = xa=0 and ya=0 forall g¢ |
= xa-ya=0
= (x—-y)a=0forall gel

L X—=yerl.

Xerl =>xa=0 -~acel
=r(xa)=0 wael
= (rx)a=0 wacl
=rxer(l)

Further | isanideal = rae| forall ge|

Xxerl = xa=0forall ael
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= X(ra)=0 since rae| forall ael
= (xr)a=0forall gel
= xrer(l)

~.r(l) isanideal of R.

2.13.8 If nis a fixed positive integer then the mapping f : z— nz defined by f (Xx) = nx isnota
homomorphism .

Solution: Z is the set of integers.

f :z— nz defined by f(x)=nx where nis a fixed postive integer.
For X, Ye Z
f(X+y)=n(x+Yy)
=NX+ny
= f(x)+ f(y)
F(xy) =nxy
f(x).(y) = nxny = n*xy
S Ey) = F(X) ()
. f is not a homomorphism.

2.13.9 If Ris a ring with unity element 1 and f is an epimorphism from R onto a ring R* then f (1)
is the unity element of R™.

Solution: Let R be a ring with unity element 1.
Suppose f : R— R is an epimorphism.
leR= f(DeR
To show that f (1) is the unity element of R!.
Let be R*
f :R—> R isonto = thereis ge R suchthat f(a)=b

aeR=al=a=la
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Now f (1)b = f (1).f (a)
= f(La)
= f(a)
=b
Also bf (1) = f (a).f (1)
= f(al)
= f(a)
=b
~. £ (1) is the unity element of RL.

2.13.10 The mapping f :C—C defined by f(x+iy)=x—iy is an isomorphism on the set of
complex numbers C.

Solution: We know that the set of complex numbers C is a ring.
f:C—C defined by f(x+iy)=x-iy
Let a+ib,c+ideC
f[(a+ib)+(c+id)]= f[(a+c)+i(b+d)]
= (a+c)—i(b+d)
=a+c—ib-id
=a—ib+c—ib
= f(a+ib)+ f(c+id)
f[(a+ib)(c+id)]= f [(ac—bd) +i(ad +bc)]
=(ac—bd)—i(ad + bc)
= (a—ib)(c—id)
= f(a+ib)f(c+id)

. f is a homomorphism.
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fis one - one:

Suppose f(a+ib)= f(c+id)
=a-ib=c-id
—a=cand p=d
=a+ib=c+id

. f isone - one.

fis onto:

Let X+iy e C

= x—iyec and f(x—iy)=x+iy

. f is onto.

Hence f is an isomorphism.

(Ideals and Homomarphism of Rings)

2.13.11 IfFisafieldand f:F — F is a homomorphism then f is an isomorphism or zero

homomorphism.

Solution: Suppose Fis a field and f :F — F is a homomorphism.

Then ker f is anideal of F.

But we know that {0} and F are the only ideals of F

~.ker f ={0} or ker f =F

Suppose ker f = {0}

We know that a homomorphism f is a monomorphism

Iff ker f ={0} by 2.9.3

-. f:F — F is a monomorphism.
Hence f is an isomorphism.

Suppose ker f =F

By definition of ker f we have f(x)=0"~xeF.

by 2.4.8.
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Where (' is the zero element of F.

= fis zero homomorphism.

2.14 Exercises:

ab
1. Show that the set | ={(0 Oj/a,be Z} is a right ideal but not a left ideal of the ring of 2 x 2
matrices M over integers.

2. Show that if R is a commutative ring with unity element and g < R then Ra= {ra/r € R} isa
principal ideal generated by a.

3. Find all the principal ideals of the ring (z,+, X;) -

4. If R is a commutative ring with unity and a,b e R then show that {ax+ by/x,y e R} is the ideal
generated by a, b.

5.1flisanideal of Rand [R:1]={xe R/rxe| forevery r € R} then [R:1] is an ideal of R and

Ig[R:I].

ao
6. Let Rlz{o Oj/ae R} where R is the ring of real numbers. Prove that f : R' — R defined

a 0 a 0
by f =a for all eR is an isomorphism.

7. Show that every homomorphic image of a commutative ring is commutative.

8. Give an example to show that a homomorphic image of an integral domain may not be an
integral domain.

9. Let R be a ring with unity. For each inversible element g < R, the mapping f : R— R defined

by f(x)=axa,~xe R is an automorphism.

10. Let R be the ring of all real valued continuous functions defined on [0] and

1
M = { f(x)e R/ f (:J = 0} . Show that M is maxmimal ideal of R.

- Smt. K. Ruth



LESSON - 3

RINGS OF POLYNOMIALS

3.1 Objective of the Lesson:

To learn the definition of a Polynomial over a ring, polynomial ring, degree of a polynomial
and evaluation homomorphism.

3.2 Structure
3.3 Introduction
3.4 Definition of a Polynomial over a ring.
35 Algebra of Polynomials
3.6 Degree of a Polynomial
3.7 Polynomial Ring
3.8 Evaluation Homomorphism
3.9 Summary
3.10 Technical terms
3.11 Model Examination Questions
3.12 Exercises
3.3 Introduction:

In this lesson we will introduce the notion of a polynomial ring over a ring, over an integral
domain and over a field. We also introduce evaluation homomorphism.

3.4.1 Definition of a Polynomial over aring:
Let R be aring and x an indeterminate. If a,,a,,a,...€ R and a =0 for all except a finite
number of values of i then a formal sum f (x) = a, + 3 X+ a,x* +...... is called a polynomial over R.

if f(x)=a,+ax+..+..aXx"+.. has =0 for all i > n, then we donate f(x) by
a,+axX+..+a,Xx" .

3.4.2 Example: 1. f(x) =3+ x+4x*-5x* is a polynomial over z.
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1 3
2. f(x)= > 2x° - X is a polynomial over Q.

3. f(X) =1+ x*+4x® is a polynomial over Z;.
3.4.3 Note : 1. The set of all polynomials over a ring R with intdeterminate x is denoted by R[X].

2. We omit altogether from the formal sum any term of the form Qx' .
3.4.4 Note: 1. Let R be a ring. A polynomial over R can also be defined as a sequence
(8y,&,a..4,,....) of elements of R, where all but a finite number of & s are zero.

~. Apolynomial f(xX)=g,+ax+a,X +... can also be denoted by (a,,a,...a,,...) .

2.1f f(X)=g,+aXx+ax +..+a x"+... isapolynomial overaring Rthen a,, a,, a,... are called

coefficients of f(x). a,,a,x,a, x?... are called constant term, x term, x* term ........ X
, ,a, X ...
term... of f(X).

3.4.4. Zero Polynomial: If 0 is the zero element of a ring R then
f(X) =0+0x+ 0X%+0X" +....= (0,0,0,...0...) is called the zero polynomial. It is denoted by Q or
0(x) .

3.4.5 Constant Polynomial: Let R be a ring. Then any element a of the ring is a constant
polynomial f(x)=a+0x+0x*+.... Itis usually writtenas f(x)=a.

3.5.1 Algebra of Polynomials:

Equity of Polynomials: Two polynomials (a,,a,...a,...) and g=(b,,b,....b,....) overa
ring R are said to be equal if a =b forall j > Q.

If f and g are equal polynomials we write f =g.
3.5.2 Addition of Polynomials:

Let f =(a,,a&,8,..4,...) and g=(b,,b,b,..h,...) be two polynomials over a ring R. the

sumof f and g is denoted by f+9=(g,C,C,..G..) where ¢ =a +b fori=0,12,.....

3.5.3 Example: If f=(2,3-4,0,0,..) and g=(3,-2,0,-3,0,0...)are two polynomials over the
ring of integers zthen f + g =(5,-1,-4,-3,0,0...) =5+ x—4x* - 3%°
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3.5.4 Multiplication of Polynomials:

Let f =(a,,,a,...4,..) and g = (b,,b,,b,...b,...) be two polynomials. Overaring R. The
product of f and g is denoted by fg and fg =(c,,¢;,C,..C,...) where ¢ =ah +ab_,+...+ah, ie.
c=2ab,;=> ab.

j=0 jrk=i
3.5.5. Example: If f =(1,3,4,0,0...) and g=(2,2,0,5,0,0,....) over z find fg.
f =1+3x+4x° g =2+ 2X+0x* +5x°
fg =1xg 2+ (Lxg 2+ 3xg 2)X+ (Lxg O+ 3xg 2+ 4, 2)X°
+(Lxg 5+ 3% 0+, 4%, 2)X°

=24+ 2X+2X> + X

3.6.1 Degree of a Polynomial:

Let f :(an,al,__az___) be a non-zero polynomial over aring R. The largest integer i for which

a # 0 is called the degree of the polynomial f. It is denoted by deg f (x) or deg f .

3.6.2 Note: 1. The degree of a non zero polynomial f=(g,a,.-a..) is nif a #0 and
a=0 wi>n.
2. The degree of a hon zero constant polynomial is zero

3. The degree of the zero polynomial is not defined.

3.6.3 Definition: Leading Coefficient: If the degree of the polynomial f(X) =g, +ax+..+aXx"

is nthen a, #0 is called leading coefficientin f(x).

3.6.4 Example: 1. The degree of the polynomial f (x) =3-2x+ x* + x° over the ring of integers
is 6.

7
2. The degree of the polynomial f(X) = 1 over the ring of rational numbers is zero.

3.6.5 Theorem: Let f(x),g(x) be two non zero polynomials over a ring R the

i) deg( f(X)+g(x))<max{deg f(x),degg(x)} if f(x)+g(x)=0(X).
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i) deg( f(x)g(x))<deg f(x)+degg(x) if f(x)g(x)=0(x) where 0(x) is the zero polynomial.

Proof: Let f(X)=a,+aXx+aX +..+a X" and g(x) =k, +bx+b,x*+...+b x" be two polynomials
over aring R with deg f (x) =m and degg(x) =n.

na,#0and 3 =0 j>m and
b,#0and b =0 «i>n

Case i): Suppose m>n then max{m,n} =m

f(X)+g(X)=(a,+b,)+(a +b)x+(a,+b)x*+..+(a, +b )x"+a, X" +...+a x"
. deg[ f (X)+g(x)] = m=max {deg f (x),deg g(x)}

n

Case ii) Suppose m<n then max{m,n}
f(X)+g(x)=(a,+by)+(a,+b)x+...+(a,+b)x"+b, x""+...+bx"
. deg[ f (X) + g(x)] = n=max {deg f (x),deg g(x)}

Case iii) Suppose m =n
f(xX)+9(x)=(a,+by)+(a,+b)x+...+(a, +b,)x"
~.deg[ f (X)+9g(x)] < m=max{deg f (x),deg g(x)}

i) f(x).9(x) = a5, +(ah, +ab)x....

2
=d, + dX+d, X" +...

Where d, = Y. &b, from the definition.

i+j=k
Suppose K>m+n=i+j>m+n
=i>mor j>n.

Buti>m=a =0and j>n=Db =0
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=ab, =0ifi>mor j>n
:>a1.bj:0ifi+j>m+n
=d, =0if k>m+n

~.deg( f(x)g(x))<m+n=deg f (x)+degg(x)

3.6.6 Corollary: If f(x) and g(x) are two nonzero polynomials over an integral domain R then

deg[ f (x).g(x)] =deg f (x) +degg(x).

Proof: Let f(x)=a,+aXx+..+a,Xx" and g(x)=Db, +bXx+...+ b x" be two polynomials

over an integral domain R with deg f (x) =m and degg(x)=n.
sa,#0and 3 =0 ~i>m
b,#0and b =0 ~ji>n
a, #0,b,#0 = ah, #0 since Ris an integral domain.
Now f(X).g(X)=d,+d,x+d,x*+...+d, X™"+...
Where d..,, =a,b,.,+ab,..,+..+ab,+a, b, +..+a,.0
=ab, since a =0 forj>m and
b=0fori>n
#0
~.deg[ f (x).9(x)]=m+n
By 3.6.5 deg|[ f (x).g(x)]<m+n
Hence deg| f (x).g(x)] =deg f (x) +degg(x).
3.6.7 Corollary: If f(x) and g(x) are non zero polynomials over an integral domain or field then
deg f (x) < deg[ f (X).9(X)].

Proof: Let f(x) and g(x) be two polynomials over an integral domain or field.
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We always have deg f (x) <deg f (x) +degg(x) since degg(x)=>0.

= deg f (x) <[deg f (x).deg g(x)] by 3.6.6.

3.7.1 Theorem: The set of all polynomials over a ring R is a ring with respect to addition and
multiplication of polynomials.

Proof: Let R[X] be the set of all polynomials over a ring R with indeterminate x.
Let f(X)=a,+aX+..., g(X) =k, +bx+bx*+..., h(X)=c+Ccx+C,X +.....e R[X]
f(X)+9g(x)=(a,+by)+(a,+b)x+...+(a, +b,)x".....
=Cy + C X+ CyX% + ...

f(x).g(X) = d, + d,x+ d,x? +..... where d, = D ab,

i+]=k
a,beR=a+hand ab eR ~i,]j
=¢c and d . eR i,k
S~ () +g(x) and f(X)g(x) e R[x].

-+ and . are binary operations on R[X].

Commutative w.r. to +

f(9+909=Y ax + Y hx

o0

Z:(a1 +h)x

o0

=2 (0 +a)X  since a +h =h+a,va,h eR
i=0

8

=2 (b ax)
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:iblxi +iqx‘
i=0

i=0

=g(x)+ f(x)
. Addition is commutative.

Associative Law w.r.to +.

[f(X)+g(x¥)]+h(x) = {Zax +be}+ic‘x‘

i=0 i=0

i(a1 +h)X +Zcx

Ms

> [(a+h)+c)]x

Iy
o

Ms

> [a+{®+C)]X  since (a+h)+c =a+(+G) inR.

N
o

i[qx +(+6)X |

= f(X)+[g(¥)+h(x)]
. addition is associative.

Existance of zero element:

The zero polynomial 0(X) = 0+ 0x+0x*+...= > 0X e R[X]

£ (x)+0(X) :iqxi +iOx‘
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o0

=Z(a +0)X

8

=2.aX  since a+0=a+vacecR.
i=0

. 0(x) is the zero element of R[X].

Existance of Additive inverse:

f(x):iaﬁ'xi eR[x]=a e Rwi
= -a e R suchthat a +(-a)=0
= i(—q)xi e R[x]

= (-9 =Y (-a)X <R[x]

Now :»f(x)+(—f)(x)=§qxi+§(_q)xi

= [a+a)K

=0(x)

-. Every element of R[X] has additive inverse.

Associative Law w.r.to multiplication:

[f(x>.g(x)]h(x):(gaXiJ@qungxi

( Acharya Nagarjuna University )
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[s 2] se

k=0 i+j=k i=0

I
el

> (ah)cs}X“

Li+j+s=n

T
=

Il
i NgE

T
O

[

S [FO)g()]h(x) = F(x)[g(x)h(x)]
Multiplication is associative.

Distributive Law:

F(0[g()+h(¥)]=3 ax {ib]x 3 }

(

Rings of Polynomials
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= > {Z (aib].draicl.)}xn

i+]j=n

-3 Lt eS| T

= f(X).g(x) + f(x).h(x)

Similarly we can prove the other distributive law.
[9(x) +h(X)]F (x) = g(x). f () +h(x).f (x)
Hence R[x] isaring.

Definition: Let R be aring. Then R [x] is called the ring of polynomials in the inderminate x
with coefficiants in R.

Theorem: Thering R [x] of polynomials over an integral domain R is an integral domain.

Proof: Let R be an integral domain and R [x] be the ring of polynomials over R with indetermi-
nate Xx.

To prove R[x] is anintegral domain we have to prove R[x] is commutative and without
zero divisors.

o0

Let f(x):a0+a1x+a2X2+...:Za1.xi and

i=0

g(x) =by +bx+b,x* +...= > BX pe two polynomials in R[X].
i=0

f(x)g(x):(f ax‘j[ibjxjj

j=0

=> (Z bjaijxn since R is commutative.
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Ly

=9() f(x).

. R[X] is commutative.
Suppose f(x)=0,g(x) =0 anddeg f(x)=m,deg g(x)=n
=a,#0 and =Db,#0
= a b, #0 Since R is an integral domain.
.. Atleast one coefficientin f(x)g(x) is non-zero.
= f(xX)g(x)=0
. R[X] has no zero divisors.

Hence R[X] is an integral domain.

3.7.3 Note: If Ris a ring with unity then the ring of polynomials R[X] over R is also ring with unity.

Suppose R is a ring with unity 1.

Then f(X) =1+ 0x+0x° +...€ R[X]
i.e. |(X)=ijxj where by=1 and b, =0 +j>1
j=0

Let f(X)=a,+ax+a,x"+...e R[X]

F ()1 (%) =(§@Xij(ib"ij

j=0
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:i a, X" = f(x)

n=0
Similarly 1(x) f (x)= f(x).
~ 1(x) is the identity element of R[X].

3.7.4 Corollary: If Ris afield then R[X] is an integral domain but not a field.

Proof: Suppose R is a field

— R is anintegral domain
= R[X] is an integral domain by 3.7.2.
Let 0= f(X) e R[X]
Suppose deg f(x)>0
If g(x) is the multiplicative inverse of f(X) in R[x]
Then f(xX)g(x)=1(X)
= deg[ f (x)g(x)]=0
= deg f(x)+deg g(x)=0 by 3.6.6.

= deg f(x)=0
A contradiction.

.. £(x) has no multiplicative inverse.

Hence R[X] need not be a field.

3.8.1 The Evaluation:

Theorem: Let F be a subfield of a field E and F [X] be the ring of polynomials over the field F. If

a € E then the mappying ¢, : F [x] > E defined by

¢, (8, +ax+ax’+..+ax")=a +aa+aa’+..+aa"

forall a,+ax+a,x" +..+a,x" € F[x] is a homomorphism.
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Proof: Let F be a subfield of afield E and F[X] be the ring of polynomials over the field F. For ¢ ¢ E
¢, : F[x]—> E isdefined by
¢, (8, +ax+ax’+..+ax")=a +aa+aa’+..+aa"
forall a,+ax+a,x’+..+aX" e F[x] is a homomorphism.
Cleary ¢_ is well defined.
Let f(x)=a,+aXx+..+a,Xx" and g(x)=b,+bx+..+b X"
= f(X)+9(X) =G, +CX+..+C X where ¢,=a,+h,
c=a+h.g =a+bh and k=max{mn}
6. [F(0+9(9]=4,[ G +ex+.. 46X ]
=c,+Cca+ca’+..+ca
= (ay+by) +(a +B)a + (&, +b,)a” +...+ (8 +b,)a"
=(a, +by) + (aa +ba) + (a,a’ +ba?) +...+ (aa* +ba*)
=(a,+aa+aa’+..+aa") +(b, +ba+ba’+..+ba")

Since g 's, b’sand a are elements of a field = ¢, [ f (X)]+¢, [9(X)]

F(090) = dy + dx+ A3 +...+d xP where &, =D &b,

i+j=n
9, [F(X)a(x)] =4, [do +d X+ d, X% + ..+ dpxp]

_ 2 p
=d, +da+d,a”+..+d

=8y, + (ayby +aly)ar + (ah, +ab +ah)a’ +..+ 3 aba”

i+i=p

=(a,+aa+aa’+..+aa™ (b,+ba+..+ba")
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=4, [F(X]e, [900] oeoev. 2)
From (1) and (2) ¢, is a homomorphism.
3.8.2 Note:

(1) The homomorphism ¢, defined in 3.8.1 is called the evaluation homorphism at ¢ .

() 1f ¢, : F[x]—> E isan evaluation homorphism at ¢ < E and
f(X)=a,+ax+ax*+..+a X" e F(x)
then ¢, [ f (X)]=a, +aa +a,0”+...+a,a™ is denoted by f(a).

3.8.3 Definition: Zero of a Polynomial: Let F be a subfield of a field E and o c E. Let

¢, :F[i]> E be an evaluation homorphism. For f(X)=a,+aX+..+a.a"aeF[x] if
f(a)=9¢,[f(X)]=a,+ax+..+aa"=0 then ¢¢E iscalled azero of the polynomial f (x) or

o € E is a solution of the equation f(x)=0.

3.8.4 Note: Let f(x) be apolynomial over a subfield F of a field E. Then ¢ < E is called a zero of

the polynomial f(x)if f(c)=0.

3.8.5 Example: The zeros of f(x)=x*+4 in z[x]| are 1,2,3,4
z,={0,1,234}
f(X)=x"+4
f(x)=0 if x=1,2,34

-, zeros of f(x) are 1,2,3,4

3.8.6 Kernal of Evaluation Homomorphism : Let F be a subfield of a field E. For o € E, we

have an evaluation homomorphism ¢, : F[X] — E defined as ¢a[f(x)]= f(a). Then the set

{ f(x) e F[xl/¢,[f(X)]=f(a)= O} where 0 is the zero element of E is called kernal of ¢, .

It is denoted by ker¢, .
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3.9 Summary:

In this lesson we defined polynomial over a ring. We proved set of all polynomials over a
ring is a ring. Set of all polynomials over a field is an integral domain. We defined Evaluation
homorphism, zero of a polynomial and Kernal of evaluation homomorphism.

3.10 Technical Terms:

i) Polynomial over a ring

ii) Degree of a polynomial

iii) Leading coefficient

iv) Evaluation homomorphism
v) Zero of a polynomial

vi) Kernal of Evaluation Homomorphism.

3.11 Model Examination Questions:

1. Find the sum and product of the polynomials f (x) =2+ 3x+5x* and g(x) =1+ 2x+3x* over

Z..
Solution: Z; ={0,1,2,3 4,5}

f(X) =2+3x+5x? and g(x) =1+ 2x+3x>

f(X)+9(X) = (2+5D) + (3+4 2) X+ (5+4 X

=3+5x+2x°
f (X)g(X) = (2+ 3x+5x?)(1+ 2x+ 3x?)
= (2%5 D) + (2% 2+ 3xg DX+ (2% +43%4 2+ 5x D)X + (3% 3+ 5xg 2)X° + (5%, X
=2+ X+5x°+ x> +3x*

2.1f f(X) =5+3x+2x2and g(x) =1+ 3x+4x’ € Z, find deg [ f (x)+ g(x)]and deg [ f (x).9(¥)].
Solution: Given f (x) =5+ 3x+2x* and g(x) =1+3x+4x’

deg f(X)=2 deg g(x)=3

We have deg [ f (X)+ g(x)] = max { f (x), g(x)}
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=max {2,3}
-3

f(X).g(X) = (5+ 3%+ 2x*)(1+ 3x + 4x°%)
=5+[(5%5 3) +5 (3% D] X+[ (34 3) +5 (2x5 D] X* +[5xq 4+ (2% )X + (3% 4)X* + (2%, 4)X°
=5+5x" +2x> + 2%
deg f(x).g(x)=5
3. If ¢5:Z,[x]>Z,is an evaluation homomorphism find ¢,(2+x%),¢,(3+4x*) and
gs[ (2+X°)(3+4x7) ].
Solution: ¢ : Z,[X] = Z, is an evaluation homomorphism.

¢ (2+x’)=2+5"=2+6=1

¢s(3+4x°)=3+45 =5

g5 (2+5°)(3+4x°) | = §s(2+ X°) s (3+ 4X°)

=15=5

4. Find the zeros of f(x) =1+ x+x? in Z,[X].
Solution: We have Z, ={0,1,2,3,4,5,6}

f(0)=1+0+0°=1%0

f()=1+1+1°=3=0

f(2)=1+2+2°=0

f(3)=1+3+3=6=0

f(4)=1+4+4=0

f(5)=1+5+5 =30
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f(6)=1+6+6"=1+0.
-, Zeros of f(x)=1+x+x?in Z,[X] are 2 and 4.
3.12 Exercises:

1. 1f f(x)=5-x% and g(x) =3+ 2x+x* are polynomials in Z;[X] find the sum and product of
f(x) and g(x).

2. If f(X)=3+2x+ X and g(x) =4+ x* € Zs[ ] then  prove  that
deg] f (x).g(x)] # deg f (x) +deg 9(x)

3. If f(X)=2+5x+3x%, g(x)=1+4x+2x* find the sum product, deg[f(x)+g(x)] and
deg[ f (x).9(X)] in Z,[x].

4. Find the zeros of f(x)=1+x2in Zs[X].

5. Let F be a field. Prove that a polynomial f(x)e F[x] is a unit if and only if it is a nonzero
constant polynomial.

6. Let F be afield and let F [X] be the ring of polynomials over F. Let f(x) and g(x) be nonzero

polynomials in F[X]. We say that f(x) divides g(x) if there exists a polynomial h(X) e F[X].
Such that g(x) = f (x).h(x).

Prove that f(x) divides g(x) and g(x) divides f(x) if and onlyif g(x) =h(x) f (x), where h(x)

is a nonzero constant polynomial in F[Xx].

- Smt. K. Ruth



LESSON - 4

FACTORIZATION OF POLYNOMIALS OVER A
FIELD

4.1 Objectives of the Lesson:

To acquain the student with the division algorithm of polynomials, irreducible polynomials,

the famous Eisenstein criteria for irreducibility of polynomials, ideals in F[X] and the unique

factorization of a nonconstant polynomial as a product of a finite number of irredducible
polynomials.

4.2 Structure:
This lesson contains the following components:

4.3 Introduction

4.4  The Division Algorithm in F[x]

4.5 Irreducible Polynomials

4.6 Ideal Structurein F[x]

4.7  Summary

4.8 Technical Terms

49 Exercises

4.10 Model Examination Questions

4.11 Model Practical Problem with Solution

4.12 Problems for Practicals

4.3 Introduction:

Throughout the lesson, we assume that F is a field and F [X] is the ring of polynomials over
F. In this lesson, similar to the division algorithm of integers, we prove the division algorithm for

F[X]. Some important corollaries are proved. The concept of irreducibility of polynomials is

introduced and some criteria for determining irreducibility of quadratic and cubic polynomials is
obtained. The famous eisenstein’s irreducibility criterion is discussed. Suitable examples are

given. We also prove that every ideal in F [X] is a principal ideal. Finally, we prove that every

nonconstant polynomial in F[X] can be written uniquely as a product of a finite number of



(Centre for Distance Education ) C42) ( Acharya Nagarjuna University )

irreducible polynomials in F [X] .

Throughout the lesson we use the following notation.
Z : The ring of integers

: The field of rational numbers

Q

R : The field of real numbers

C : The field of complex numbers
Zn

: The ring of integers modulo n.

Z,[x] : The ring of polynomials over Z,.
4.4 The Division Algorithm in F[x]:

In order for F[X] to be an Enclidean ring we need to prove the division algorithm in F[X].
This is provided by the following.
4.4.1 Theorem: (The division algorithm) let
f(x)=a,+ax+..+a,x",g(x) =, +bx+...+b X" € F[x] be polynomials such that a, = 0 and
b, # 0. Then there exist unique polynomials q(X),r(x) € F[x] such that f(x) = g(x)g(x) +r(x)
where r(x) =0 or degr(x) <degg(x) . (q(x) is called the quotient and r(x) the remainder).
Proof: If degg(x) >deg f(x), let q(x)=0 and r(x) = f(x). Assume that degg(x) <deg f (X),
i.e. m<n. Proofisbyinductiononn. If n=0 then m=0, f (x) =4, and g(x) =h,. Let q(x) = a,;*
and r(x)=0. Then q(X)g(x)+r(x) = (aobgl)b0 =a,= f(X). Assume that the existence part of
the theorem is true for polynomials of degree less than n where n>0. Now

(anbﬁqlxnfm) g(x) = (qunﬁlxnfm)(bo +hX+..+ bmxm) =a b, b, X" +a b, X" +...+a,x". Hence

f () - (b X" ™) g(x) = (a8 +ax+...+ a,x")—(a,b,p,x""...+a,X") is a polynomial of degree
less than n. By induction hypothesis there are polynomials p(x) and q(x) such that
f (%) - (a0, X"™) g(x) = P(X)g(x) +1(X) where r(x)=0 or degr(x)<degg(x). Therefore if
a(x) =a b’ x"™+P(x), then f(x)=q(x)g(x)+r(x)

For uniqueness, suppose f(X)=0,(X)g(x)+r,(x) and f(x)=q,(x)g(x)+r,(x),where

r,(x) =0,r,(x) =0 ofdegr,(x) <degg(x) and degr,(x) < degg(X) . Assume that r,(X) #)r,(X).
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Since (0(X) —6,(X)) g(¥) =r,(X) —1r,(X), we get that g,(X) # q,(X). Thus

deg (,(X) - 0,(x)) +degg(x) = deg(c(x) — 0, (x)) g(x) = deg(r,(x) —r,(x) . But

deg(q,(x) - g,(x)) +deg g(x) > deg g(x) and

deg(r,(X) —1,(X) < max {degr,(x),degr,(x)} <degg(x) . Thisis a contradiction. Therefore
n(x)=r,(x) andso @,(x)=0,(X).

We compute the polynomials q(x) and r(x) of theorem 4.4.1 by long division.

4.4.2. Example: For polynomials f(x)=x°+3x> +4x* —3x+2 and g(x) = x* +2x—3 in Q[x],

find q(x) and r(x) as described by the division algorithm so that f (x) = g(x)q(x)+r(x) with
r(x)=0 or degr(x) <degg(x)

X+ +x+x+5

X*+2x-3  xX*+3x°+ 4x? —3x+2
X2+ 2x° —3x*

X° + 3x*

X+ 2x* —3x3

X'+ 3 +4x°

x* +2x° -3x°
x* +7x* —3x
x® +2x* —3x
5x> +2
5x* +10x—15

-10x+17

Thus g(x) = x*+X*+Xx* +x+5 and

r(x)=-10x+7

4.4.3 Corollary: (Remainder theorem) Let f(x)=a,+ax+..+a,x" € F[x]. Forany acF,
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there exists a unique polynomial q(x) € F [X] such that f(x) =q(x)(x—a)+ f(a).

Proof: If f(xX)=0,let q(x)=0. Then f(x)=q(x)(x—a)+ f(a). suppose that f(x)+0. By
theorem 4.4.1 there exist unique polynomials ¢(X),r(X) € F[x] suchthat f(x) = g(x)(x—a)+r(X)

where r(x)=0 or degr(x)<1l. Thus we have that r(x)=c for some ceF . So,
f(X)=q(x)(x—a)+c. Then f(a)=q(a)(a—a)+c=c. Thus f(x)=q(x)(x—a)+ f(a).

4.4.4 Corollary (Factor Theorem): An element ae F is a zero of f(x)eF[X] if and only if
X—a is a factor of f(X).

Proof: If a is a zero of f(x), then f(a)=0. By corollary 4.4.3, f(x)=q(x)(x—a)+ f(a), for
some q(X) € F[x]. since f(a)=0,we getthat (x—a) isafactor of f(x).Converselyif (x—a)

is a factor of f(x), then f(x)=q(x)(x—a) for some q(x) e F[x]. Then f(a)=q(a)(a—a)=0.

Thus ais a zero of f(Xx).

4.4.5 Example: Let X’ +4x® +4x+1e Z;[x] . We divide this polynomial by x—1 and get

X*+4

x—1 X2+ 4x% + 4x+1

—X

0+4x+1
4x—-4

0

Therefore x°+4x* +4x+1=(x-1)(x*+4) and so, (x—1) is a factor of x34x2+4x+1. By

corollary 4.4.4, we getthat 1 is a zero of x® + 4x% + 4x+1-
4.4.6 corollary. Anonzero polynomial f(x) e F[X] of degree n has at most n zeros in F.

Proof: If f(X)has no root in F then the corollary is true. So, suppose that f(x) has at least one

rootin F. Proofis by inductiononn. If n=1, then f(x)=ax+b and _% is the only root of f (x)

in F. In this case, the corollary is true. Assume that the corollary is true for all polynomials of degree

n-1.Let acF be arootof f(x). Then f(x)=(x-a)q(x), where q(x)eF[X]. Therefore
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degq(x) =n-1. By induction hypothesis, gq(x) has atmost n—1rootsinF. If peF andbis a
zero of f(x) otherthan a, then 0= f(b) =q(b)(b—a). since b= a, we getthat q(b)=0.Sobisa

zero of g(Xx). Thus every zero of f(x) other than ais a zero of g(x). Hence f(x) has atmostn
roots in F.

4.4.7 Example: Let f(X) =X +Xx*+6x+6e Z,[X]. Note that 1 is a zero of f(x). By corollary

4.4.4,( x-1)isafactorof f(x). Letus find the quotient by long division.

X2+ 2x+1

X=1| X*+x*+6x+6

Thus  f(x)=(X=D(X*+2x+1) . Obviously  x*+2x+1=(x+1)*. Therefore

X + X2 +6X+ 6= (Xx—1)(x+1)? in Z,[X]

4.4.8 Example: For polynomials f () = x* +5x>—3x? and g(X) =5x*—x+2 in Z,[X], find the

quotient and remainder when f (x) is divided by g(x) .

Solution: Ox% +5x—1

5x% — X+ 2 x* +5x3 — 3x°

Xt =03 + 7x°
3% —10x?

3x® —5x% +10x

—5x? -10x
—5X*+x-2

2
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Thus f(X)=(9%* +5x-1)(5x* — X+ 2) + 2
-, quotient g(x) = 9x* +5x—1) and remainder r(x) =2.
4.5 Irreducible Polynomials:

We start with the following important definition.

4.5.1 Definition: A nonconstant polynomial f(x) e F [X] is called irreducible over F (or an irre-
ducible polynomial in F [X] ,if f(x) cannot be expressed as a product g(x)h(x) of two polynomi-
als g(x) and h(x)in F[x] such that degg(x) < deg f (x) and degh(x) < deg f (x).

If f(x)eF [X] is a nonconstant polynomial that is not irreducible over F, then f (x) is said
to be reducible over F.

4.5.2. Examples: 1. Every first degree polynomial in F [X] is irreducible over F. In particular,

2x+2e Q[x] is irreducible over Q.

2. Since X2 +1=(x—i)(x+i) in C[X],x*+1 is reducible over C.

Irreducible polynomials play an important role in the study of field theory. The problem of

determining whether a given f(X)eF [X] is irreducible over F is difficult. We now give some
criteria for determining irreducibility of quadratic and cubic polynomials.

4.5.3 Theorem: Let f(X) e F[x] bea polynomial of degree 2 or 3. Then f(x) is reducible over
Fif and only if it has a zero in F.

Proof: It f(x) isreducible over F, then f(x) = f (x)f,(X) where f,(X) and f,(X) are polynomials
in  F[x] such that degf(X)<degf(x) and degf,(x)<degf(x). But
deg f (x) =deg f,(x)+deg f,(x). If deg f,(X)>1 and deg f,(X) >1 then deg f (x) > 4, a contra-
diction. Therefore either f (X) or f,(X) is of degree 1. If, say, f,(X) is of degree 1, then
f.(X) =ax+b, where a,be F. Then f,(—ba™)=0 and hence f(-ba™)=0, which proves that
—batisazeroof f(X)in F.

Conversely, if f(a)=0 for ge F , then x—a is afactor of f(x),so f(x)=(x-a)q(x),

where q(x) € F[x]. Since deg(x—a)<deg f(x) and degq(x) <deg f (x), we get that f(x) is
reducible over F .
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4.5.4 Examples: 1. Since the polynomial x*—2eQ[x| has no zeros in Q, by theorem 4.5.3,

x? — 2 isirreducible over Q.

2. Note that \/E is a zero of x2 _2 inR, by theorem 4.5.3, we get that x* — 2 is ireducible over R.

From examples (1) and (2), we observe that irreducibility depends on fields.

3. Since X’ +3x+2¢ Z5[X] has no zeros in Z, by theorem 4.5.3, x® 4 3x+ 2 is irreducible over
Z..

We now state a theorem which is useful in proving some interesting theorems and whose
proof is beyond the scope of this book.

4.5.5. Theorem: If f(X)eZ[x] then f(x) factors into a product g(x)h(x) of two polynomials
g(x) and h(x) in Q[x] such that degg(x) =r < deg f (x) and degh(x) =s<deg f (x) if and only if
f(x) factors into a product u(x) v(x) of two polynomials u(x)and v(x)in Z[X] such that

degk(x) =r <deg f (x) and degv(x) =s<deg f (x) .

4.5.6 Example: Let f(X) =X +x+1e Z,[x]. Itcan be checked that none of the elements of Z,

isazeroof f(x). So, f(x) hasnozeroin Z, and by theorem4.5.3, f(x) isirreducible over Z,.

4.5.7 Corollary: Let f(X)=a,+aX+..+a, X" +x"eZ[x] with a, 0. If f(x) has a zero

acQ,then gez and a divides a,.

o
Proof: Since q (), we can write aas &= E , where o, B € Z and their gcd («, 8) =1. Then

ao+a1(gj+ +a, [£j+a—n:0
ﬁ -1 'Bn—l ﬁn

. _ _ a
Multiply the above equation by " to obtain af " +aaf" +..+a, 0" = —?. Because

n

a
o, € Z itfollows that _F € Z since (¢", ) =1 and S divides ", we havethat g =+1. There

a=+tqa e Z - The last equation shows that %0 and hence %o .
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4.5.8 Example: Letus showthat f(x) = X° —x—1eQ[x] is irreducible over Q. If f(x) is reduc-

ible over Q, then f(x) has a zero ain Q. By corollary 4.5.7 3 Z and a/-1..a=+1. But
f()=1-1-1=-1+#0and f(-1)=-1+1-1=-1+0. So a is not a zero of f(x), a contradic-

tion. Hence f(x) isirreducible over Q.

The question of deciding whether a given polynomial is irreducible or not can be a difficult
and laborious one. Few criteria exist which declare that a given polynomial is or is not irreducible.
One of these few is the following.

4.5.9 Theorem: (Eisenstein Criterion) Let f(X)=a,+ax+..+a,x"eZ[x],n>1. If there is a

prime number p such that p>Xa,,pXa, pXa, , and pxa,,then f(x) isirreducible over Q.

Proof: Assume that f (x) is reducible over Q then f(x) factors into a product of two polynomials

in Q[X] of lower degrees r and s. By theorem 4.5.5, f(x) has such a factorization with polynomi-

als of the same degreesrandsin Z[x]. Accordingly f (x) = (b, +BX+...+b,X?)(C, + C X+ ...+ C.X°)

with ,¢ € Z,b, #0,c, #0,r <n and s<n. Then a,=b,c, and a, =b.c,. Clearly r + s=n. Since
%0 and p*Xa,, either %O and pXc, or %0 and p X b,. Consider the case %0 and
V

b()'

Because % , it follows that % and % Let ¢, be the first coefficient in ¢, + ¢, X+...+ ¢ X*
r

suchthat p X C,, - Observe that a, =h,c, +...+b,c, from this we get that pX a,.since pXbyC,
and %blc +.tb ) By hypothesis, m=n. Thus n=m< s< n, which isimpossible. Simi-

larly if %O and P X C, , We arrive at a contradiction. Therefore our assumption is wrong and f (x)

is irreducible over Q.

4.5.10 Examples: 1. Consider the polynomial X’ —5x+10€ Z[x]. 5is a prime number such that

5Xl7_5,%0 and éXlO . By theorem 4.5.9, we get that x® _5x+10 is irreducible over Q.

2. Similarly, by using the prime number 3, we get, by theorem 4.5.9, that 25x°> —3x* —3x%? 12 IS
irreducible over Q.
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3. The polynomial gbp(x) =1+ X+....+ X" is irreducible over Q. Where p is any prime number.

Solution: Note that ¢, (X)— R . Let
(x+1P -1 1.1 P
g(x)=¢p(x+1) (xiD) 1 ( +....+(p—1jxj

= Xpl+(a XP? +....+( pp—lJ
P

Note that (?j,for r=1..,p-4 le and P’ X[ IOJ . By theorem 4.5.9, g(X) is irrudible over
o

Q. But if ¢,(x)=f(X)h(x) were a nontrivial factorization of ¢,(x) in Z[x], then

¢,(x+1) = f(x+1)h(x+1) would give a nontrivial factorization of g(x) in Z[X]. By theorem 4.5.5.,
g(x) is a product of two nonconstant polynomials in Q[x]. This a contradiction, since g(x) is

irreducible over QJ. Thus ¢,(X) must also be irreducible over Q.
4. Prove that x3 4+ 3x? —8 is irreducible over Q.

Solution: Let f(x) =x>+3x*—8. If f(x) is reducible over Q, by theorem 4.5.3, f(x) has a zero

ain Q. Bycorollary4.5.7, ac Z and % . Therefore a=t1,+,+4,1+8. But none of these are zeros

of f(x). This is a contradiction.

. T(X) is irreducible over Q.

4.6 ldeal Structure in F[x]:

We now introduce the notation <a>= {r re R} to represent the ideal of all multiples of a.

4.6.1 Definition: Let R be a commutative ring with unity. An ideal | of R is called a principal ideal
if | =<a> forsome geR.

4.6.2 Examples: 1. Every ideal of Z is a principal ideal.
Solution: Let | be an idea of Z. If | :{O}, then clearly | =<(Q>. So, assume that | ;t{O}.

Choose the least positive integer min l. clearly <m>= {k% c Z} <|. Conversely, if he| ,then



(Centre for Distance Education ) (4.10) ( Acharya Nagarjuna University )

h=gm+r where q,r € Z with 0<r <m. Since h—gme | , we getthat y ¢ z . The minimality of
mimplies r =0 and h=gm, i.e. he<m>. Thus

| c<m>. Therefore | =< m> and hence | is a principal ideal.

2. We know that F[X] is a commutative ring with unity. Clearly Xxe F[x]. Then the principal

ideal < x> is the set {Xf ()%(x) eF [X]}

. the ideal < x> consists of all polynomials in F [X] having zero constant term.
The next theorem is an application of the division algorithm for F [X] .
4.6.3 Theorem: Every ideal in F[X] is a principal ideal.

Proof: Let M be an ideal of F[x]. If M ={0}, then M =<0>. Assume that M #{0}. Choose a
nonzero polynomial g(x) in M of minimal degree. If the degree of g(x) is 0, then g(Xx) isaunitin
F[X]. Therefore M =< g(x) >=F[X]. If the degree of g(x)>1, we claim that M =< g(x) >. If
f(X)eM, then f(X)=q(X)g(x)+r(x), where r(x)=0 or deg r(x)<degg(x). Since
f(x),g(x)e M , we get that r(x) = f(x)—q(x)g(x) e M . Since g(x) is a nonzero element of
minimal degree in M, we have that r(x)=0. Thus f(x)=q(x)g(x)e<g(x)>. Hence
M =< g(x)>.

We now characterize the maximal ideals of F[Xx].

4.6.4 Theorem: Let p(x) be anonzero polynomialin F[X]. The p(x) isirreducible over F if and

only if < p(x) > is a maximal ideal of F[x].

Proof: If < p(x) > isamaximal ideal of F [x],then <p(xX)>=F [X] Therefore p(x) is nonconstant

polynomial. Let p(x) = u(x)v(x) where u(x),v(x) € F[x]. Then < p(x) >c<u(x) >.

Hence < p(x) =<u(x)> or <u(x)>=F[x]. If <u(x)>=F[x], then u(x) is a unit, i.e.
degu(x)=0. If <u(x) >=< p(x) >, then u(x) = p(x)g(x) and hence
p(x) = u(X)V(x) = p(X)g(X)V(x) . since F[x] is an integral domain 1= g(x)v(x) . Hence v(x) is

aunit, i.e. degv(x) =0. Therefore p(x) is irreducible over F.
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Conversely if p(x) is irreducible over F, then < p(x)># F{x}. If <p(x)>c!|cF{x},
where | is an ideal of F[x]. By theorem 4.6.3, | =< f(x)> for some f(x)eF[x]. Since
< p(x) >c< f(x) >, we getthe p(x) = f (X)h(X), for some h(x) € F[x]. Since p(x) isirreducible,
either f(X) is a constant polynomial (whence < f(X) >= F[x]) or h(x) is a constant polynomial
(whence < p(x) >=< f(x) >). Thus we have thateither < p(x) >=< f(x) > or < f (x) >= F [x].
Hence < p(x) > is a maximal ideal of F[x].

We now prove an useful theorem.

4.6.5 Theorem: Let p(x) be an irreducible polynomial in F[X]. If p(x) divides g(x)h(x), for
some g(x), h(x) e F[x], then either p(x) divides g(x) or p(x) divides h(x).

Proof: If p(x) divides g(x)h(x),then g(x)h(x) e< p(x) >. Since p(x) isirreducible, by theorem
4.6.4, < p(x)> is a maximal ideal of F[X]. Every maximal ideal is a prime ideal. Therefore
< p(x)> is a prime ideal. Since g(x)h(x)e< p(X)>, it follows that either g(x) e< p(x)> or
h(x) e< p(x) >, i.e. either p(x) divides g(x) or p(x)divides h(x) .

4.6.6 Corollary: If p(x)eF[x] is irreducible over F and p(x) divides the product
[LOQT,(X)......r, (X) , where I, € F[X] for i =1,..,n, then p(x) divides r,(x) for at least one;

Proof: We prove the corollary by induction on n. By theorem 4.6.5, the result is true for n=2.

Assume that the result is true for n—1. Let r(X)=r,(X).....r, ,(X) then p(x) divides r(x)r,(X).
X
Again by theorem 4.6.5, either p()%(x) or p(%(x). If po%(x),then by induction hypothesis
pP(X) . L p(X) .
A(X) for some 1< <n-1. thus in either case we get that r.(x) for some i.

4.6.7 Theorem: If Fis a field, then every nonconstant polynomial f(x) e F [X] can be factored in

F[X] uniquely (up to order and units) as a product of a finite number of polynomials in F[x].

Proof: Let f(X)eF [X] be a nonconstant polynomial. We first prove that f (Xx) can be written as

the product of a finite number of irreducible polynomials in F [x] The proof is by induction on

deg f (X). ifdeg f(x)=1,then f(X) isirreducible and the resultis true in this case. We assume
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that the result is true for all polynomials g(x) in F [X] such that deg g(x) < deg f (x) . Onthe basis

of this assumption we aim to prove the result for f(x). If f(x) isirreducible, then there is nothing
to prove. If f(x) is not irreducible, then f(x)=g(x)h(x), where degg(x)<deg f(x) and
degh(x) < deg f (x). Then by our induction hypothesis g(x) and h(x) can be written as a prod-

uct of a finite number of irreducible polynomials in F[X]; g(x) =r,(x)....r,(x) and
h(x) =t,(X)....t,,(X) where r,(X) and r,(x) are irreducible polynomials in F[x]. Consequently

f(x) = g(X)h(x) = r,(X).....r, (Xt (X)....1,(X) andin thisway f(x) has been factored as a product
of a finite number of irreducible polynomials.

It remains for us to prove uniqueness. Suppose that
f(X) = p(X) P, (X).....p, (X) = ¢ (X).....q,(X) are two factorizations of f(x) into irreducible polyno-

mials. By corollary 4.6.6., p,(x) divides ¢ (x) for somei; since p,(X) and g (X) are both irreduc-

ible polynomialsin F[x] and pl()%(x) , we have that ¢ (X) = U, p,(X) , where u, is aunitin F[x].

Thus p,(X) P,(X).....p, (X) =u, p,(X)q, (X)...q ,(X)d ,....0;(X) ; cancel off p,(X) and we are left with
P, (X).....p, (X) =u,q,(X)....q_,(X)q,....0,(X) . Repeat the argument on this relation with p,(X) . After
r steps the left side becomes 1, the right side is a product of a certain number of g(x) s (the excess

of s over r). This would force r < s since the p(x)’s are not units. Similarly s<r, sothat r =s.

In the process we have also showed that every p.(X)=u.q, (X), where u, is a unit; for some .

4.7 Summary:

In this lesson you have learnt the division algorithm of F[X], irreducible polynomials,
Eisenstein’s irreducibility criterion, ideals in F[X] and factorization of polynomials over F[x].
4.8 Technical terms/Named theorems:

Irreducible polynomial
Principal ideal
Division algorithm of F[X]

Remainder theorem
Factor Theorem

Eisenstein’s irreducibility criterion
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Factorization of Polynomials over F[X]

4.9 Model Examination Questions:

1. State and prove the division algorithm in F[x].

2. Define an irreducible polynomial. Give an example of an irreducible polynomial.

3. Prove that a nonzero polynomial p(x) in F[X] is irreducible if and only it < p(x) > is a maximal
ideal.

4. State and prove Eisensteins irreducibility criterian.

5. For any prime number p, prove that the polynomial (bp(x) =1+ X+...+ X" is irreducible over Q.
6. Prove that every ideal in F [x] is a principal ideal.

7. Prove that every nonconstant polynomial in F[x] can be factored in F[x] uniquely (upto order

and units) as a product of a finite number of irreducible polynomials in F [X] .

8. Find all prime numbers p such that x+ 2 is a factor of X*+X*+X* —x+1e Z (X)

9. Let f(x) e F[x] be apolynomial of degree 2 or 3. Prove that f(X) is reducible over F if and only
if it has a zeroin F.

10. Let f(X) =8, +aX+...+a,, X" +X" € Z[x] with a, = 0. If f(x) hasazero aeQ then prove

that g e Z and %0

4.10 Exercises:

1. Determine which of the following are irreducible over Q.
a) 2x° -6x° +9x* -15
b) x*-3x*+9

C) 3 -7x*+7

2. Prove that

a) x? 41 isirreducible over Z,.

b) x?+ x+1 is irreducible over Z,
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C) x?+ x+4 isirreducible over Z,;

3. Find all prime numbers p such that x+ 2 is a factor of x*+x°+x*—x+1e Z [X]

4. Show that x? + 8x— 2 is irreducible over Q.

5. For polynomials f(x) = x® +3x° + 4x? —3x+2 and g(x) =3x?+2x—3 in Z,[X], find the

quotient g(x) and remainder r(X) .

6. For polynomials 2x7 + x® —3x® + 4x® — x+5 and x2 —2x+4 in Q[X], find the quotient q(x)

and remainder r(X) .

7. If pis a prime number, prove that the polynomial x" — p is irreducible over Q.

8. Determine whether the following polynomials in Z[X] satisfies an Eisenstein criterion for
irreducibility over Q.

a) x*-12

b) 8x° — 6x* —9x + 24

C) 4x°-6x°+24x-18
d) 2x*° - 25x® +10x* -30

4.11 Model Practical Problems with Solution:

Problem: The polynomial 2x3 4+ 3x? — 7x—5 can be factored into linear factorsin Z,; [X] . Find this
factorization.

AIM: To find factorization of the polynomial 2x3 + 3x%2 — 7x—§5 into linear factors in le[x] :
Hypothesis : The polynomial 2x3 + 3x? — 7x—5 can be factored into linear factors in Zﬂ[x] .

Solution: By Corollary 4.4.4., a linear polynomial (x—a) is a factor of a polynomial f(x)in F [x]
if and only if a is a zero of f(x) in F. So, by hypothesis, all the zeros of 2x% 1 3x? —7x—5 are in
Z,, . On verification, we get that 3 is a zero of the given polynomial, since 2.3* 1332 -7.3-5=0 in

Z,,. Therefore x—3 divides 2x® + 3x> —7x-5

Let us find the factorization by long division.
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2x% +9x—2

X=3 | 2xX*+3x*-7x-5
2x° —6x°
9x* - 7x
—2X-5

—2X+6
0

S 2X8 43X —TX=5=(x=3)(2x* +9x-2)
Since - 3 is a zero of 2x? + 9x— 2, we can divide this polynomial by x+3

2X+3

X+3 2x> +9x—2
2x% + 6X
3xX-2

3X+9
0

Conclusion: 2x® +3x? — 7x—5= (x—3)(x+ 3)(2x + 3) is the required factorization.

4.12 Problems for Practicals:

1. Find the remainder and quotient, when the polynomial

X8 4+ 5X7 +3x5 — 2% + x* — 8% + 6x% — 2x +1 is divided by x* _ x3 4 3x? 1 over Q[x].

2. Find the remainder and quotient when the polynomial x7 — 2x8 4+ 4x° + x + 2x% — x+ 3 is divided
by 3x* + 2x% + 4x? —1 over Q[X].

3.0f f(x) = x*+5x° +3x2 + 2x+1 and q(x) = x* + x—1 are polynomials in Z;[X] then find the quo-

tient and remainder when f (x) is divided by g(X).
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4. Show that the polynomial x2 11 is irreducible over the field of real numbers and reducible over
the field of complex numbers.

5. Show that the polynomial X* +x—4e Z,,[X] is irreducible over Z,, .
6. Resolve x* 1 4 into linear factorsin Z;.

7. Show that f (x) = x* +8x— 2 is irreducible over the field of rational numbers. s it irreducible
over the field of real numbers? Give reasons for your answer.

8.1f f(X)=1+x+x*+x +x*, prove that f(x) is irreducible over Q.

9. The polynomial x3 + 2x2 + 2x+1 can be factored into linear factorsin Z, [X] . Find this factoriza-
tion.

10. (a) Let F be a field and f(x),g(X) e F[x]. Show that f(x) divides g(x)if and only if
g(x) e< f(x) >

(b) Show that the polynomial x* + 2 is irreducible over Q.

- Prof. Y. Venkateswara Reddy



LESSON - 5
VECTOR SPACES
5.1 Objective of the Lesson:

To learn the definition of vector space, subspace, some examples of vector spaces,
algebra of subspaces and related theorems.

5.2 Structure
5.3 Introduction
5.4 Definition and Properties of a vector space
55 Vector Subspaces
5.6 Linear sum of subspaces and Linear span of a set.
5.7 Linear dependence and Independence of Vectors
5.8 Summary
5.9 Technical Terms
5.10 Model Questions
5.11 Exercises
5.3 Introduction:

In this lesson we introduce vector space, subspace, linear sum of subspaces, linear span
of a set, linear combination of vectors, linearly dependent and independent vectors.

5.4 Vector Spaces:

Let F be afield. A vector space over Fis an additive abelian group V together with a function
FxV ->V((a,a) > aa) such that

i) ala+ B)=aa+bp

i) (a+B)a =ax +ba

iii) a(Ba) = (ab)a

ivV) 1o = ¢ forall a, 8 ev;a,be F and 1 is the unity element of F.

5.4.4 Note: 1) If V is a vector space over F we write V(F) is a vector space. If the field is under-
stood we simply say V is a vector space.
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2. Elements of V are called vectors and elements of F are called scalars.

3. The internal composition + in V is called addition and the external composition . is called scalar
multiplication.

5.4.5 Example: 1. Let F be a field and K be a subfield of F then F is a vector space over K.

Solution: Suppose F is a field and K a subfield of F.

Fis afield = (F,+) is an abelian group.

Let acKand g c F =>acF and g cF Since K c F
= a.x € F Since Fis afield.

... Is an external composition in F over K.

Let a,beKand a,f e F=>abeF and a,f e F
a(a+ p)=ac+bp by distributive law

(a+b)a =ac+ba by distributive law

a(ba) = (ab)a by associative law

1l = Since 1 is the unity element of F.

- F s avector space over the subfield K.

5.4.6 Note: Every field F is a subfield of itself

. Every field is a vector space over itself.

5.4.7 Example: LetF be afield V, ={(a,,,..8,)/a € Fforl<i <n} isthe setof n-tuples. V, is a
vector space over F with respect to addition ‘+’ and scalar multiplication ‘.’ defined by

(a,,8,...a,)+ (b,b,..b))=(a +b,...a, +b,)

a(a,a,..a,) = (aa, aa,,...aa,) for (a,,a,..a,),(b,b,..b) eV, and aec F .
Solution: Let F be a field and V, ={(a,8,...a,)/a € F,1<i<n}

Let a=(a,a,..a,),=(b,b,..b),r=(c,c,..c,)eV, =a’s,b’'sand c’s cF
a+f=(a+b,a,+b,..a,+b)eV, since g +b e Ffor 1<i<n

.V, is closed w.r.to ‘+'.
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(a+p)+y =[(a,8--a,) +(b,b,b)]+(c.c,0.C.)
=(a,+b,8,+b,..a,+b)+(c,c,..C,)
=[(a+h)+G(a,+b)+C, (8, +b,) +C)]
=[a+(b+0).a,+(5+c),..a,+(0,+c,)]

=(a,a,..a,)+ (B +¢,0,+C,, .0, +¢)

=a+(B+y)

. Addition is associative.
a+f=(a,a..a)+(b,b,..b)
=(a,+b,a, +b,..a,+D0,)
=(b+a,b,+a,.b +a) since ashseF
= (bb,..h))+(a,2,.2,)

= B+a
-, Addition is commutative.

We have Qe F

~0=(0,0..0)eV,

Now a + 0= (a,a,..a,)+(0,0...0)
=(a+0,a,+0...a,+0)
=(a,a,..a,)
=a

-, 0 Is the additive identity of V, .

o=(8,8,.8,)eV,=a,a,..a,¢cF

=-a,-a,.—-a,¢€F

= (-8,-8,..-8,) €V,

Vector Spaces
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Now (8,,8,..2,) + (-8, ~8,..~3,)

=(a+-(a) 8, +(-3,),..a,+(-a,)
=(0,0...0)
=0
- (-a,—a,..a,) =—a isthe inverse of ¢ .
Hence (V,,+) is an abelian group.
aa =a(a,a,..a,) =(aa,aa,...aa,) €V,, Since aa,,aa,...aa, € F
.V, is closed under scalar multiplication.
Let a,be Fand a=(a,a,..3,),5=(b,b,..b) eV,
aa+p)=a(@ +b,a +b,..a,+b,)
=(a(a +b),a(a, +b,)..a(a, +h)))
=(aa, +ab,,aa, +ab,...aa, +ab,)
=(aa,,aa,...aa,) + (ab;, ab,...ab, )

- a(a,,a,.a,) +a(b,b,..b)

= ao +ap
(a+b)a = (a+b)(a,,.a,)
= ((a+b)a, (a+b)a,..(a+b)a,))
— (aa, +ba,,aa, +ba,,..aa, +ba,)
- (aa,,aa,..aa, ) +(ba,, ba,..ba, )

=a(a,8,..8,)+b(a,a,..a,)

= an +ba
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a(bor) = a(ba,,ba,..ba,)

= (a(ba),a(ba,),...a(ba,))
=((ab)a,, (ah)a,,...(ab)a,)
=ab(a,a,.a,)
= aba
1o =1(a;,a,..4,)
- (1a,1a,..1a,)
=(a,8,-a,)
—a
V. (F) is a vector space.

5.4.8 Elementary Properties of a vector space:

Theorem : Let V(F) be a vector space then

vi) ala— f)=ac—ap
vii) (a—b)a = aa —ba
Vii) g =0=a=0 O g=0 ~oa,eV and acF
Let V(F)be a vector space and a.f ev,acF
i) a0=a(0+0)=a0+a0

—a0+0=a0+a0
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— 0 = a0 by left cancellation law.
ii) Oc = (0+0)a since O is the zero element of F.
= Oa + Oc
— 0q+0=0a+0g Since G is the identity in V.
— 0= 0g by left cancellation law.
i) a(—a) +ax =a(-a +a)
=a0
_0 byi.
ca(-a) =-an
V) (-a)a +ac = (—a+a)a
=0ax
_0 byii.
s (Fa)a =-an
v) (-a)(—a) =—[(-a)a] by iii.
=—[-(aa)] by iv.
=an
vi) a(a - B) =ala+(-pB)]
=ao +a(-p)
=aa+(-ap)
=aa —ap
vii) (a—b)a =[a+(-b)]a = ac + (-b)ax
— act +(~ba)

=ao —bo

( Acharya Nagarjuna University )




( Rings and Linear Algebra ] (5.7) [ Vector Spaces ]

Suppose gag =0-
If a=0 thenthereexists g1 ¢ F suchthat gg'1=gq'a=1.
~an=0 and a=z0
= a'(aa)=a'0
= (a'a)a=0
=1a=0
=a=0
san=0= either a=00r o = 0.
5.4.9 Note: Let V(F) be a vector space. For a,be F and a, €V
) aa =ba @and o = 0 then a=b
i) axd =ap and a#0then a =f
5.5. Vector Subspaces:

5.5.1 Definition: Let V(F) be a vector spaceand ¢ #W c V .

W is said to be a subspace of V if W is an additive subgroup of Vand a eW ,forallae F, eW.

5.5.2 Example: (i) Let V (F) be a vector space then W={6}

where ( is the additive identity of V is a subspace of V.

2. The vector space V itself is a subspace of V.
These two subspaces are called trivial subspaces of V.

5.5.3 Theorem: A necessary and sufficient conditions for a non-empty subset W of a vector
space V (F) to be a subspace are

)a,feo=>a-Pew
ilaeF,aoew=ancw

Proof: Let V(F) be a vector space and W a non-empty subset of V.

Suppose W is a subspace of V.
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= W itself is a vector space.

=W IS agroup w.r.to +
sa,peW=a—LeW.
Clearly ae F and geW= aa eW
. The conditions i and ii are hecessary.
Now suppose i) o, eW =a - €W and
i) acFand ¢ eW = ax eW

W is a non-empty subset of the abelion group (V,+) and o, eW =>a—-W.
.. From group theory we know that (W, +) is a subgroup of (V,+).
From condition (i) we get than W is a vector space by itself.
Hence W is a subspace of V(F).

5.5.4 Theorem: A necessary and sufficient condition for a non-empty subset W of a vector
space V(F) to be a subspace of V(F) is a,beF and a,fcW=aa+bfcW.

Proof: Let V(F) be a vector space and W is a non-empty subset of V.

Suppose W is a subspace of V(F).

— W itself is a vector space over F.

— W is closed under addition ‘+’ and scalar multiplication . ‘.
sabeFand a,feW=aacW,bpecW

S ax+bpfeW
. The condition is necessary.

Suppose the condition a,be F and a,f eW = aa+bp eW.
To prove that W is a subspace of V(F).

Let a, B eW
Since Fisafield1and _1¢F

.. By the condition 1o +(-1) 8 eW

a-peW
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~.(W,+) is a sub group of (V,+) from group theory
-.(W,+) is a group.

All elements of W are elements of V.

. (W,+) is an abelion group.

Let ac F and g W

.. By the condition gg+0a W since QeF

= aacW
- W is closed under scalar multiplication.

Since elements of W are elements of V, we have
ala+ p)=ac+ap
(a+b)a =ax +ba
a(ba) = (ab)a
la=q foral abeFand a,feW
- W Is a vector space over F.

Hence W is a subspace of V(F).

. The condition is sufficient.

5.5.4 Algebra of Subspaces:

Vector Spaces

Theorem: The intersection of any two subspaces of a vector space is a subspace.

Proof: Let V(F) be a vector space and W,,W, be two subspaces of V.

To prove that W "W, is a subspace.

Take W =W "W,

clearly 0eW, and 0 e W, = 0eW W, =W
W is a non-empty subset of V.

Let a,be F and a,BeW

o,peW=a,feW and a,feW,
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abeF,a,feW, and W is asubspace of V.

=ax+bpeW, ... (1)
a,beF,a,p W, and W, is a subspace of V.

=ao+bpeW, ... (2)
From (1) and (2) aa+bp eW, "W, =W

sabeF,a,feW=ax+bpeW

- W is a subspace of V. by 5.5.4.

5.5.6 Note: 1. Intersection of any family of subspaces of a vector space is a subspace.
2. Union of two subspaces of a vector space need not be a subspace.

Example: We know that set of real numbers R is a field.
LR =V,(R) ={(a,a,,a)/a,8,,a € R} is avector space by 5.4.7.
Let ~W={(0,x,0)/xeR} and W,={(0,0,y)/yeR}
Clearly W, and W, are non-empty subsets of V,(R)
Let a,be R and a=(0,%,0)8=(0,x,,0)eW;
Then ao +bpg =a(0, x,0) +b(0, x,,0)
=(0,ax,0)+(0,bx;,0)
=(0,ax, +bx,,0)
~ax+bpeW, since ab,x,x,e R=>ax+bx,eR
Similarly a,be R and y =(0,0,y;) 6=(0,0,y,)eW,
ay +bs =a(0,0,y,) +b(0,0,y,)
=(0,0,ay,)+(0,0,by,)
=(0,0,ay, +by,)

ay +bo eW, since a,beRy,,y, e R=ay, +by,eR
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Hence W and W, are subspaces of V,(R)
Now a =(0,2,00eW, and S =(0,0,3)eW,
a+p=(023) W UuW,

~.\W, UW, need not be a subspace.

5.5.7 Theorem: Union of two subspaces of a vector space is a subspace iff one is contained in
the other.

Proof: Let W and W, be two subspaces of a vector space V (F).
Suppose W, UW, is a subspace of the vector space V(F).
To prove that either W, cW, or W, cW,
If possible assume that W, W, or W, ¢ W,
W W, = thereisan o eW, and o ¢ W, ... (1)
W, W = thereisa g e W, and f¢W ... (2)
aeW = aeWUW,
BeW,= BeW UW,
so+ B eW oW, since W UW, is a subspace.
=a+pfeW or a+peW,
If a+peW, then a+p-aeW, since aeW,

= peW

A contradiction to (2)

If a+peW, then a+ B - W, since B eW,

=>aeW,

A contradiction to (1)
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soa+pBeWand a+ S ¢W,

=a+p ¢W UW, A contradictionto a+ f eW UW,.

Hence either W cW, or W, cW,

Now suppose either W, cW, or W, cW,
It W cW, then W UW, =W,

If W, cW, then W UW, =W,

~ W, UW, is a subspace.

5.6.1 Linear sum of two subspaces:

( Acharya Nagarjuna University )

Definition: Let V(F) be a vector space and W,,W, be two subspaces of V(F). The set

{a1+a2/a,e\/\4,a2 eVVZ} is called linear sum of W, and W, and is denoted by W +W,.

5.6.2 Theorem: If W and W, are two subspaces of a vector space V(F) then W +W, is a

subspace of V. Also W UW, cW, +W,.

Proof: Let V(F) be a vector space and W,,W, be two subspaces of V.

W+W, ={a, +a,/a, eW,,c, eW, |
Clearly 0eW, and W,
0=0+0eW +W,
=W, +W, is a non-empty subset of V.
Suppose a,be F and «,f eW +W,
o eW+W, = a =, +a, where oy eW and o, eW,
BeW+W, = =0+, where g, eW, and B,eW,
Now ac +bf = a(a, +a,) +b(p, + B,)

= (aa1+ aaz) + (bﬂl + ﬂz)
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= (ao, +bp,) + (ac, +bp,)
a,beF and oy, B, €W, = ao, + b, €W, since W, is a subspace.
a,beFand a,, B, eW, = aa, +bpf, €W, since W, is a subspace.
sao+bp =(ao, +bp) + (aa, +bp,) e W, +W,
Hence W +W, is a subspace of V.
Let o, eW, = o, + 0 e W, +W,
=ao, W +W,
W eWHW, (1)
o, eW, = 0+a, eW, +W,
=a,eW +W,
W, eW AW, (2)
From (1) and (2) W, UW, W, +W,

5.6.3 Linear Combination : Let V(F) be avector space and o, 0,..x, €V if a,8a,..a,€F.

then the vector ao, +a,a, +...a,¢, is called linear combination of a,,a, [+a,|.....a, .

5.6.4 Linear Span of a set: Let V(F) be a vector space and S a non-empty subset of V. The set
of all linear combinations of elements of all possible finite subsets of S is said to be linear span of
S.

Itis denoted by L (S).

5.6.5 Note: 1. If Sis a non-empty subset of a vector space V then
L(S) ={aa, +a,0, +..+a,a,/a €F and o; € S for 1<i<n|

2. Sis a subset of L (S).
5.6.6. Theorem: The linear span L (S) of any subset S of a vector space V is a subspace of V.

Proof: Let V(F) be a vector space and S a non-empty subset of V.

L(S) is the linear spance of S.
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Clearly by the defintion of linear spance L(S) is a non-empty subset of V.
Let ¢, eL(S)and a,be F
ael(S)=>a=aaq +a,a,+..+a,a, where a’s ¢ F and ¢;'se S
BelL(S=p=bp +bp,+..+b,B, where b’'s cF and B;’s €S.
Now aa +bp =(ao, +a,a, +...+a.a,,)+ b0 L, +b,B6, +...+b.5,)
= (8)ay + (88, )at, +...+ (a8, Jor, + (b) B, + (Bb,) B, +.+ (bhy)

i.e. aa +bp is alinear combination of elements of S.

~aa+bp e L(S)

Hence L (S) is a subspace of V.

5.6.7 Theorem: If Sis a non-empty sub-set of a vector space V(F) then linear span of S is the
intersection of all sub-spaces of V which contain S.

Proof: Let V(F) be a vector space and S a non-empty sub-set of V.
Suppose \W is a sub-space of Vand ScW .

Let a € L(S)

= oa=aq, +aa,+..+a.0, where a’'scF and a;'se S.

0y,0,,...0, € S=ay,0,,..o, €W

= aa, +a,a,+..+aa, €W Since W is a subspace it is closed under addition and
scalar multiplication.

Lael(S)=>aeW
i.e. L(S)cW
. L(S) is a subset of every subspace which contains S
= L(S) ¢ Inter section of all subspaces of V. Which contains S .......... (1)
We know that L(S) is a subspace and Sc L(S) by theorem 5.6.6 and 5.6.5.

. Intersection of all subspaces of V which contains Sc L(S)  ........ (2)
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From (1) and (2) L(S) = Intersection of all subspaces of V.

Which contain S.

5.6.8 Note: If S is a non-empty sub-set of a vector space V (F) then L(S) is the smallest
subspace of V containing S.

5.6.9 Theorem: If Sis a non-empty subset of a vector space V(F) then
i) Sis a subspace of V < L(S)=S
i) L(L(S))=L(S)
Proof: Let V(F) be a vector space and S be a non-empty subset of V.
i) Suppose S is a subspace of V.
Let a € L(S)
=a=aa, +a,0a,+..+a0, where a,’'seF and ¢;'se S.
Sis a subspace = Itis closed under addition and scalar multiplication.
SaeS
Lael(S)=aeS
LSS (1)
Let e S=1.8eL(S)
= B elL(S)
nScLl(s) 0 2)
Hence L(S)=S. From (1) and (2)
Now suppose L(S)=S
By theorem 5.6.6 L(S) is a subspace of V.
. S is a subspace of V.

i) We know that L(S) is a subspace of V by 5.6.6.

. By (1) L(L(S)) = L(S)
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5.6.10 Theorem: If S and T are two subsets of a vector space V (F) then
(i) ScT=L(Sc L)
(ii) L(SUT)=L(S)+L(T)
Proof: Let V(F) be a vector space and S, T be two subsets of V.
I) Suppose ScT
Let @ € L(S)
= oa=aa +aa,+..+a0, where a’'seF and a;’'se S.
l.e. a is linear combination of finite subset of S.

= a is linear combination of finite subset of T. Since Sc T
= ael(T)
Lael(S)=ael(T)

S L(S) < L(T)

iy)leta € L(SUT)
> a=aq+a,a,+..+aa,+bpf +b,6,+..+b,0,,

where a,,a,,....,a,,0,b,,....,0, € F and ¢;’'se S, B;'seT.
— a = L.C of elements of S+ |LC of elements of T.

= o =An element of L(S) + an element of L(T)
= oael(S)+L(T) .. (1)

Now suppose « € L(S) + L(T)
=a=L+y where BeL(S) and y € L(T)

B e L(S)= B =L.C offinite elements of S.
y € L(T) = y = L.C of finite elements of T.

- o = L.C offinite elements of SUT .

~ael(SuUT)
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SLS)+L(M) c L(SUT) v (2)

From (1) and (2) L(SUT)=L(S)+L(T)

5.6.11 Theorem: If W, and W, are two subspaces of a vectorspace V(F) then
LW, UW,) =W, +W,.

Proof: Let V(F) be a vector space and W,,W, be two subspaces of V.
We know that W, +W, is a subspace of V containing W, UW, by theorem 5.6.2.
Also L(W, UW,) is the smallest subspace of V containing W, UW, .
SLWOUW,) W +W, L (1)
Let a eW, +W,
=oa=p+y where BeW, and y eW,
i.e. o is L.C. of finite elements of W, UW,
soae LW UW,)
W AW, c LW UW,) (2)
From (1) and (2) L(W, UW,) =W, +W,.
5.7 Linearly dependent and independent vectors :

5.7.1 Definition: Linearly dependent vectors: A finite subset {¢,o,.....ct, | of vectors of a vector
space V(F) is said to be linearly dependent if there exists scalars a,,a,......a, € F not all zero

such that a,or, +a,0, +....+a,0, = 0.

5.7.2 Linearly Independent Vectors: Afinite subset {c;,,.....at, } of vectors of a vector space

V (F) is said to be linearly independent if it is not linearly dependent.

5.7.3 Note: A finite subset {al,az ...... an} of vectors of a vector space V(F) is linearly indepen-

dent if every relation of the form a,a, + a,a, +....+ a,, = 0 where 3 'se F > a =a, =....=a, =0.
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5.7.4 Note: A set of vectors which contains the zero vector is linearly dependent (L.D.)

Solution: Let {ocl,oc2 ...... an} be a finite set of vectors of a vector space V (F).
Suppose a, =0 and a,,q,....., are non zero
Then 1o, + Oct, +Octy +...+ 0o, = 0

~. We have scalars a,a,,...,a, not all zero such that aa, +a,a, +....+ a,a, =0 {Since 1 0}
~Aag,a,.....a,} islinearly dependent.

i.e. a set of vectors containing atleast one zero vector is L.D.

5.7.5 Note: A single non-zero vector forms a L.I. set.
Solution: Suppose {a;} where a, = 0 is a subset of a vector space V (F).
If acr, =0 where ac F then =0 since o, # 0

sao,=0=>a=0
. A single non-zero vector forms a L.I. Set.

5.7.6 Theorem: Every super set of a linearly dependent set is linearly dependent.

Proof: Let V(F) be a vector space and S= {al,a2 ...... an} be a linearly dependent set.
-. There exists scalars a,,a,,...,a, € F not all zero such that aa, +a,a, +...+aa, =0 ....(1)
Let S'={a,,0,.....t,, By, By B} bE @ SUPETSEL O S (6. SC SP)

Now a, +a,0, +....+ 8,0, +0B, +0B, +...+ 0B, =0 .ccceuecce. (2) from (1)
In the above relation (2) all scalars are not zero.
- StisL.D.
5.7.7 Theorem: Every non-empty subset of a linearly independent set is linearly independent.

Proof: Let V(F) be a vector space and S= {ozl,oz2 ...... ocn} be a linearly independent set.
Let S'={oy,a,....., }1<Kk <N be a subset of S.

Suppose aa, +a,a, +....+aa, =0 where a,,a,...a, €F
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= a0, +a,a,+...+aa0, +0a, ,+0a, ,+..+00, =0

—>a=a=..=3 =0since Sis L.l

5.7.8 Theorem: Let V(F)be a vector space. A finite subset of non-zero vectors

S= {al,az ...... an} of V(F) is linearly dependent iff some vector ¢, ,2 <K < n can be expressed as
linear combination of the vectors which preced it.

Proof: Let V(F) be a vector space and S= {ocl,oc2 ...... an} be a finite subset of non-zero vectors of
V(F).

Suppose S is linearly dependent.

— there exists scalars &,a,....8, € F not all zero such that a,o, +a,a, +...+a,0c, =0 ....... (1)
Suppose k is the greatest suffix such that a, # 0.

If k=1then aa, =0

=a,=0 since 3 #0
A contradiction since S is a subset of nonzero vectors.
~.2<k<n
From (1) aa, +a,a, +...+aa,=0
= aaq, +a,a,+...+aa, =0 since a =0 for j > k
= akak = —3.106l — a2a2 — e ak_lak_l
= oy =—~(a )y = (8 2,) = (B B )y
~.a, is L.C of its preceding vectors.
Now suppose some vector ¢, ,2<k <n isaL.C of its preceding vectors.
~a.=bo, +ba,+...+0 o, where b,b,,....b , eF

=ba, +ba,+..+b 0, ,+(-Da, = 0
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= bo, +ba, +...+b_a, , + (-, +0a, ,+...+0a, =0
Since -1 is a non zero scalar we have S={o,,,.....a,} is L.D.

5.7.9 Theorem: Let V(F) be a vector space and S={a,,q,.....a,} be asubset of V. If o; € S'is

a linear combination of its preceding vectors then L(S)=L(S') where

Proof: Let V (F) be a vector space and S= {al,az ...... an} be a subset of V.
suppose ¢; € S is a linear combination of its preceding vectors.
i.e. o =, +a,a,+3 40, Where a,,a,...8 € F
To prove that L(S) = L(S})
Clearly S'c S= L(S") € L(S) --eevrveveen (1)
Let @ € L(S)
=a=ba +ba,+..+b o +ba, +h o, , +...+ba, where b,b,,....,b, € F
But o, =ao, +a,a, +...+a 0, ;
La=ba +ba,+...+b o, +b (8, +a0, +....+8 40, ;) +0 00, A D
= +ba)xy, +(b,+ba)a, +...+(0O ,+ba Do ,+b . , +aa, +...+8 0 ) +b 0, +...+h o,
=L.C. of elements of g!.
nael(Sh)
acl(S)=aclL(S)
S L(S) c L(SY) e (2)
Hence L(S)=L(S") from (1) and (2).

5.8 Summary:

In this lesson we learnt definitions of vector space, subspace, linear sum, linear span,
linearly dependent and linearly independent vectors. We proved theorems relating to Algebra of
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subspaces. Linear sum of subspaces, linear span of a set. We discussed the concepts linear
combination, linear dependence and independance of vectors.

5.9. Technical Terms:
i) Internal composition

i) External composition

iii) Vector space

iv) Vector subspace

v) Linear sum of subspaces

vi) Linear combination

vii) Linear span

viii) Linearly dependent vectors
ix) Linearly independent vectors.
5.10 Model Examination Questions:

1. The set of all m x n matrices with real entries is a vector space over the real field with respect to
addition of matrices and scalar multiplication of a matrix.

Solution: Let M = Set of all m x n matrices with elements as real numbers.

i) We know that addition of two m x n matrices is again an m x n matrix.

~ABeM=A+BeM

M is closed w.r. to addition +.

i) We know that addition of matrices is associative.
~(A+B)+C=A+(B+C),»+AB,CeM

Clearly the null matric O, , e M and A+O=0+ A=A AcM.

.. The null matrix O is the additive identity.

V) AeM =—-AeM and A+(-A)=(-A)+A=0

- —A is the additive inverse of A.

v) Addition of matrices is commutative.
~A+B=B+A~+ABeM

..(M,+) is an abelian group.
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vijLet ac R and Ae M
—aAeM ,where a(r;) = (ar;) if A=(r,).
- M is closed w.r.to scalar multiplication.
vii) a(A+ B)=aA+aB forall ge Rand A Be M
viii) (a+b)A=aA+DbA forall a,be Rand Ac M
ix) a(bA) = (ab)A forall a,be Rand Ac M
X) 1A= A.
.M (R) is a vector space.

2. The set of all real valued continuous functions defined in the open internal (0,1) is a vector space
over the field of real numbers with respect to addition and scalar multiplication defined by

(f+9)(X)=f(X)+g(x) and (af )(x) = af (x) where ge Rand Q< x<1.
Solution: Let S= { f/f:(00)— R} is continuous}
i). We know that sum of two continuous functions is continuous
o f,0eS=f+9geS
. S is closed w.r.to addition of functions.

iiy Let f,g,heS

[(f+9)+N]() =(f +9)(x) +h(x) = f () +g(x)]+h(x)
= £ () +[g()+h(x)]
= f(x)+(g+h)(x)

=[f +(g+M](X)
.. Addition of functions is associative.
iii) 0:(0,2) > R defined by 0(x) =0~ x € (0,1) is a constanst function and is continuous.
~.0eS
(F+0)(X)=f(X)+0(x)=f(x)+0= f(X)

.. 0 is the additive identity.
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iv) :(0,) > R=-f:(0,) >R

fis continuous = —f is continuous.
=-feS
f+(-f)=0
-.—f isthe additive inverse of f.
v) For f,geS we have (f +g)(x) = f(X)+ g(X)
=g(x)+ f(x)
=(g+)(x)

.. Addition is commutative.

Hence (S,+) is an abelian group.

vii feSand geR=af €S

. S is closed under scalar multiplication.
vii) f,geS and aecR=>
[a(f +9)](x) =a(f +g)(x) =a[ f (x) +g(X)]
= af (X) + ag(x)
= (af )(x) +(ag)(x)
= (af +ag)(x)
sa(f+g)=af +ag
viii) [(a+ b) f ](x) =(a+b) f (x) = af (x) + bf (x)
= (af )(x) + (bf )(x)
= (af +bf )(X)
~.(a+b)f =af +bf ~a,beRand f €S

For 1e R, [1f () =1f (X) = f (%)

Vector Spaces
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sAf=f

[(ab) f ] () = (ab)  (x) = a[bf ()] = a[ (bf )(¥)]

=[a(bf )(x)]
- (ab) f =a(bf)
. S is a vector space.
3. Let V,(F) be a vector space. Then W ={(x,y,0)/x,y € F}is a subspace of V,(F).

Solution: Let F be a field and V,(F) = {(a, b,c)/a,b,ce F} the vector space of ordered triads.

W ={(x,y,0)/x,yeF}

Clearly W is a non-empty subset of V,(F).
Let o, eWand a,beF
a,BeW=a=(x,Y,,0) and B =(X,,Y,,0) where x,¥;,%,Y,€F
aa+bf =a(x, 1,0 +b(x, ¥,,0)

= (ax,ay;,0) + (bx,, by,, 0)

= (ax, +bx,,ay, + by,,0+0)

= (ax, +bx,,ay, +by,,0)
aa+bp eW since ax +bx,,ay, +by, e F
-.W is a subspace of V,(F).
4. Let W = {(x, 3X,3x+2)/x e ]R} show that W is not a subspace of V,(R).
Solution : Clearly a = (X,3%,3x+2), 8 =(y,3y,3y+2) eW
But o+ B =(X+Y,3(X+Y),3(X+Yy)+4) ¢ W

~.W is not a subspace of V;(R).
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5. Express the vector a=(,-2,5 as a linear combination of the vectors

6 =(L1D.e = (123,68 =(2-L))

Solution: Suppose « = ag, +be, + ce, where a,b,ce R

Then (1,-2,5) =a(1,1,1) +b(1,2,3) +c(2,-11)
=(a,a,a) + (b, 2b,3b) + (2c,—c,c)

=(a+b+2c,a+2b-c,a+3b+c)

sLa+b-2c=1 ... (1)
a—|—2b—c:—2 .......... (2)
a+3h+c=5 ... 3

Solving (1), (2) and (3)

(1) +2x(2) a+b+2c=1
2a+4b-2c=-4
3a+5b=-3 ... (4)
2+ (3) 2a+50=3 e (5)
4)-©) a=-6
From (5) b=3
From (1) c=2

- (L-2,5) = -6(1L11) +3(L2,3) + 2(2,~-11)

6. Show that the vector (1,2,3),(1,0,0),(0,1,0) and (0,0,1) from a linearly dependent subset of
V,(R).

Solution: Suppose .. (1,—2,5) = a(1, 2,3) + b(1,0,0) +¢(0,1,0) + d(0,0,1) = 0
= (a,2a,3a) + (b,0,0) + (0,c,0) + (0,0,d) = (0,0,0)

= (a+b,2a+c,3a+d)=(0,0,0)

=a+b=0-(1) 2a+c=0-(2) 3a+d=0-(3

=b=-a c=-2a d=-3a
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If a=K then K(1,2,3)-K(1,0,0)-2K(0,1,0)-3K(0,0,1) =0

= (1,2,3)- (1,0,0)— 2(0,1,0)-3(0,0,1) = 0

. There exist scalars not all zero such that the linear combination of the give n vectors is
zero. Hence the given vectors are linearly dependent.

7. Show that the vectors (1,0,-1)(1,2,1)(0,—-3,2) are linearly independent in V,(R).

Solution: Suppose a(1,0,-1) +b(1,2,1) +¢(0,-3,2) = 0
= (a,0,-a) + (b, 2b, b) + (0,-3c, 2¢) = (0,0, 0)

= (a+b,2b-3c,-a+b+2c)=(0,0,0)
=a+b=0->(@1) 2-X=0->(2) -a+b+2c=0
(1)+(3) gives 2b+2c=0— (3)

(2)-(3)given —5c=0=1c¢c=0

From (3) b=0

From (1) a=0

~a(L0,-1)+b12,1)+c(0,-3,2) =0

a=b=c=0
. The given vectors are linearly independent.

8. If a, B,y are linearly independent vectors in V(R) show that a + 8, +y,y + « are also lin-
early independent.

Solution: Suppose a(c + B)+b(B+y)+c(y +a) =0
= ac+af+bp+by+cy+ca=0
= (a+C)a+(a+b)g+(b+c)y=0

o, [,y arelinearly independent.
= a+c=a+b=b+c=0

Solving a=b=c=0

~a+pB,B+y,y +a arealso linearly independent.
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5.11 Exercises:

(1) Prove that the set of all polynomials in an indeterminate x over a field F is a vector space.

(2) Show that {(a,b,c)/a,b,ceR and a+b+2c=0} is a subspace of V,(R).

(3) Show that {(a, b,c)/a,b,ce Q} is not a subspace of V,(R).

(4) Write the vector A= E } in the vector space of all 2 x 2 matrices as the linear combina-

tion of the vectors.

1 1 1 1 1 -1

0 -1|-1 o] @9 |0 o
(5) Show that the subspace spanned by S={a, 8} and T ={a,f,7} are the same in the
vector space V,(R) if a=(121), g=(315) andy =(3,-4,7)
(6) Show that (1,2,1)(3,1,5) in 3 are linearly independent.

(7) Show that (1,3,2)(1,—-7,-8)(2,1,-1) in R3 are linearly dependent.

(8) Prove that the set {l X, X(1- X)} is linearly independent set of vectors in the space of all polyno-
mials over the real field.

- Smt. K. Ruth



LESSON - 6
BASES AND DIMENSION
6.1 Objective of the Lesson:

To learn the definition of vector space. subspace, some examples of vector spaces,
algebra of subspaces and related theorems.

6.2 Structure
6.3 Introduction
6.4 Definition of basis of a vector space and its properties
6.5 Dimension of a vector space
6.6 Quotient space
6.7 Summary
6.8 Technical Terms
6.9 Model Examination Questions
6.10 Exercises
6.3 Introduction:

In this lesson we define basis and dimension of a vector space, Quotient space. We prove
some important theorems relating to dimension.

6.4.1 Definition: Basis of a vector space : A subset S of a vector space V(F) is said to be a
basis of V, if

i) Sis linearly independent

i) Sspans Vie. L(S)=V
6.4.2 Example: The set S={g,e.8} where e =(10,0,..0),
e, =(0,10,...0),e,=(0,010...0)e, =(0,0...0,1) is a basis of the vector space V,(F).
Solution: V,(F) ={(a,,a,..,)/a,,8,..8, € F} where Fis a field.
First we show that Sis L.I.

Suppose be +be +...+be =0

= b (10,...0)+b,(0,1,0..0) +b, (0,0...0,1) = 0
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= (b,0,...0)+(0,b,,0,...0) +...+(0,0..0,b ) = 0

= (b,b,..b)=0=(0,0..0,b)=0
=b=b=.0b=0

- SisL.l
Let ¢ €V, (F)

= a=(a,8,.a,)
Now o = a,€ + a,e, +...+ a,€,
~.SspansVie. L(S)=V,(F)
Hence S is a basis of V, (F)

6.4.3 Note: The basis S={g,€,...&,} is called standard basis of V, (F).

6.4.4 Definition: Finite Dimensional Vector Space: A vector space V(F) is said to be finite
dimensional vector space if there is a finite subset S of V which spans V. i.e. L(S)=V .

6.4.5 Existance of basis theorem:

Every finite dimensional vector space has a basis.

Proof: Let V(F) be a finite dimensional vector space.
= There is a finite subset S of V such that L(S)=V .
Let S={oy, .01,

We may assume that 0 ¢ S.

If Sis linearly independent then S itself is a basis of V.

If Sis linearly independent then there exists a vector ¢, , 2 < K < n which is a linear combination of
its preceding vectors. by 5.7.8.

Take S = {0y, 0ty 0y, Oty }
Now ScS and L(S)=L(S) by5.7.9.

= L(§)=V since L(S)=V
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If § is linearly independent then § is a bais of V.
Suppose S, is linearly dependent.

Proceeding as above we get a subset S; of S with n—2 elements and L(S;) =V .

Continuing the above process, after finite no. of steps we get a subset which is linearly indepen-
dent and spans V.

.. We get a basis of V.

Hence every finite dimentional vector space has a basis.

6.4.6 Invariance Theorem: Let V(F) be a finite dimensional vector space, then any two basis
will have the same number of elements.

Proof: Let V (F) be a finite dimensional vector space.

Then V(F) has a basis by 6.4.5.

Let S ={a,,a,..,} and S, ={B,,B,...8,} be two bases of V (F).
=S§is LI,L(§)=Vand S, is LI,L(S,)=V

B, €V = B, is linear combination of § .

-8, ={B.a,a,..a,} islinearly dependent.

Also L(S,)) =V

.. There exists avector ; € S; which is a linear combination of the preceding vectors and o; # f3,
by 5.7.8.

Let S, = { By, 0y, 0y 0 1, 0y, O e Ol

Now L(S,)=V by5.7.9.

.. B, is alinear combination of elements of S,.
= S ={B. B, 0 1,0y, 1, } S LD,

— There exists a vector «; €S, which is a linear combination of the preceding vectors and

a; # ﬁl,(xj =p0,.
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Now S, ={ﬁl,ﬁz,al,az---ai+1,---a,-_l,oc,-+1...ocn} generates Vi.e. V(§) =V

If we continue this process at each step one ¢ is excluded and a f is included in the set §
obviously the set § of ¢ ’s can not be exhausted before the set S, of s otherwise V (F) will

be a linear span of a proper subset of S, and thus S, will become linearly dependent.
- Wemusthave n£m

Now interchanging the roles of S and S, we shall get that m=n.
. Any two bases of a finite dimentional vector space have the same number of elements.

6.5.1 Definition: The number of elements in any basis of a finite dimensional vector space V (F)

is called the dimension of the vector space V (F) and will be denoted by dim V.
6.5.2 Example: The dimension of the vector space V. (F) is n.

6.5.3 Theorem: Every linearly independent subset of a finite dimensional vector space V (F) is
either a basis of V or can be extended to form a basis of V.

Proof: Let V(F) be a finite dimensional vector space and S= {al,az...ocm} be a linearly indepen-
dent subset of V.

Suppose dim \/ =n
=V has abasis §={p,, BB}

consider S = {a,a,..cty, By, Boe--Br}
Since B is basis of V, each ¢« can be expressed as linear combination of g's.

. § islinearly dependent.

= One of the vectors of § is a linear combination of its preceding vectors.

This vector can not be any of the ¢ ’s, since ¢ ’s are linearly independent.

. That vector is one of f’sletitbe f, .

Let S, = {0y, 0oy By Bore-Brss B as o)

Clearly L(S,)=V .
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If S, is linearly independent then S, will be a basis of V which is the extended set of S.

If S, is linearly dependent we repeat the above process a finite no. of times and we get a linearly
independent set containing S and spanning V.

This set is a basis of V which is the extention of S.

. Every linearly independent subset of finite dimensional vector space is either a basis or can
be extended to form a basis of V.

6.5.4 Corollary: Each subset of (n+1) or more vectors of an n-dimensional vector space V (F)
is linearly dependent.

Proof: Let S be a subset of an n-dimensional vector space V(F).

Suppose S has (n+1) or more vectors.

If S is linearly independent then either S is a basis of V or can be extendend to form a basis of V by
the theorem 6.5.3.

Thus a basis of V contain (n+1) or more vectors.
Which is a conradiction to the fact that dim \/ =n.

. S islinearly dependent.

6.5.5 Corollary: Any set of n linearly independent vectors of a n-dimensional vector space
V(F) forms a basis of V.

Proof: Let V(F) be a n-dimensional vector space and S be a linearly independent subset of V with
n vectors.

.S is a basis of V or can be extended to form a basis of V.
Since dim V = n, S must be a basis of V.

6.5.6 Corollary: Every set of n vectors of a n-dimensional vector space V (F), which gener-
ates V is a basis of V.

Proof: Let V (F) be a n-dimensional vector space and S be a set of n vectors which generates V.
If Sis linearly dependent then we get a proper subset of S which is a basis of V.

. We get a basis of V with less than n vectors. Itis a contradiction to the fact that dim v =n.

. S islinearly independent.

Hence S is a basis of V.

6.5.7 Theorem: If S:{al,az...an} is a basis of a finite dimensional vector space V (F) of dimen-
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sion nthen every element ¢ ¢\/ can be uniquely expressed as a = aa, + a,o, +...+ a,o, where
a,a,.a, €F.

Proof: Let V(F) be a finite dimensional vector space with dim \/ =n.
S={oy,,..0,} is abasis of V= L(S) =V

aeV =>a=aa +aa,+..+aa, where a,a,..a, € F

Suppose o = b, + b,a, + ...+ b, where b,b,..b, eF
sao+aa,+..+aa, =bo +ba, +...+ba,

= (a,-b)a, +(a,— b)), +...+ (&, —b,)a, =0

=a-b=a-b=.... =a,—b, =0 since Sis L.l

Hence every vector ¢ ¢V can be uniquely expressedas a = a,a, + a,a, + ...+ a, o

n n

where a,,a,..8,€F .

6.5.8 Note: If B:{ocl,az...an} is a basis of a finite dimensional vector space V(F) then every
vector ¢ €V is uniquely expressed as a = a,a, + a,a, + ...+ a,a, where a,a,..a, €F.

The scalars a,, a,...a, are called coordinates of ¢, relative to the basis B.

6.5.9 Theorem: If W is a subspace of a finite dimensional vector space V(F) then W is also
finite dimensional and dimW < dimV . Also VvV =W iff dimV =dimWw .

Proof: Let V(F) be a finite dimensional vector space with dim \/ = n and W be a subspace of V.
dimV = n—= Every subset of (n+1) or more vectors of W is L.D.

W is a subspace of \V = every subset of (n+1) or more vectors of W is L.D.

-. Any set of L.I. vectors in W must contain at the most n vectors.

Suppose Sz{al,az...am} be the largest L.I. subset of W.

Where m<n

Now we prove that S is a basis of W.
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Let a eW

Now S, = {al,az...am,a} is L.D. {Since S is the largest L.I. subset of W}

= There exists scalars a,,a,...a,, € F. notall zero > a«a, +a,0, +...+a,a,+ac =0

If a=0 then a,a, + 2,0, +...+ a,a,, = 0
= a4 =a, = .. =a, =0 sinceSisL.L
= S isL.l.

A contradiction.
~az0=3 a'leF suchthat aa™*=1

Laot+ao,+..+aa +an=0=

a=-a‘aq —a‘an,..—a a o

~.o is L.C. of elements of S= a € L(S)
~W=L(S)
Hence S is a basis of W = dimW =m<n

W is also a finite dimensional vector space with dimwW <dimV -

Now suppose V =W

Then every basis of V is a basis of W.

sdimV =dimwW

Conversely suppose dimV =dimW =n

Let S be a basis of \W = S contains n vectors and L(S) =W
ScW=S5cV

Now S is a linearly independent subset of a finite dimensional vector space V (F) with dimV =n
.S isabasis of V by 6.5.5.

= L(S)=V
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V=W

6.5.10 Theorem: If W, and W, are two subspace of a finite dimensional vector space V (F)
then dim(W, +W,) <dimW, + dimW, —dim(W, "W,)

Proof: Let W, and W, be two subspaces of a finite dimensional vector space V (F).

S W, +W, and W, "W, are also subspaces of V(F) and hence they are finite dimensional by
6.5.9.

Let dim (W, nW,)=k and S={y,,7,.7,} be a basis of W,nW, = S is L.I. and
W, AW, =L(S)—> (1).

Now ScW and ScW,

Since S is a linearly independent subset of W, .

S can be extended to form a basis of W, by 6.5.3.

Let S, = {y,, 7,7 @1, Q,..0 , } be abasis of W,
=dmW, =k+mand W, =L(S),§ isL.l. ........ (2)

S is also a linearly independent subset of W, .

. S can be extended to form a basis of W, by 6.5.3.

Let S, = {r1,7,--7» Bi. B,--.Bn} be abasis of W,

=dmW,=k+n and W, =L(S)), S,isL.l. ... (3)

Now we claim that B={oy, 0.0, B, By---B. 1,7} i @ basis of W, +W, .

To Prove thatBis L.I.:
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Now = b g, +b,B, +....+ b, B, +Cy, +Cy, +..... 4+ Gy €W, and ao, +a,a, +...+ a0, €W,
Lo, taa,t+...+raa, e W W, =L(S) by (1)

=aa, +a,0,+..+a.0,=dy, +dy, +...+dy, where d’s ¢ F

= aaq, +ao,+..+aa, —dy, —dy,—..—dy, =0

=>a=8=..=8,=0d=d,=....=d =0 since § isL.L

= B +0,B, D B+ Y Yy e+ Gy =0 from (4)

=b=b=..=b,=c=c,=...=¢ =0 since S,isL.l

- B islinearly independent.

B Spans (W, +W,)

Let a eW, +W,

=a=p+y where feW and y eW,

BeW = B=ao+a,a,+..+a,a,+Cy, +CY, +...+C Y,
where a,,a,,...,a,,C,C,,.....,.¢, € F. Since W, =L(S)
yeW,=y=bp +bp,+..+b,6, +dy, +d,y, +...+dy,
where b,b,,...,b,,d,,d,,....,d, € F Since W, =L(S)).

Now a=aq, +aa, +...+ 8,0, +CY, +CYy +.. ¥ Gy +R B, +B,6, +... 40, B, +dy, +dy, +.....+-d v,

= L.C of elements of B.
s.a€L(B)= B spans W, +W,
Hence B is a basis of W, +W, .

sodimW +W,) = m+n+K
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=k+m+k+n-KkK

= dimW, + dimW, — dim(W, nW,)

6.6.1 Coset: Let W be a subspace of a vector space V(F) and o<V . Then the set

{y +a:y eW} is called right coset of W in V generated by o . The set {a+y :y eW} is called left
coset of W in V generated by o .

6.6.2 Note: 1. {y +a:y eW} is denoted by W +¢ and {a+y :y €W/} is denoted by ¢ +W .
2. The right coset W + ¢ are subsets of V.
3. W+a=a+W since (V,+) is an abelian group.
-. We say W +¢ is a coset of W generated by ¢« .
6.6.3 Theorem: If W is a subspace of V (F) then
) W+0=W
if) aeWeoW+a=W
i) W+a=W+p << a-peW
Proof: 0eV ..\W+0= {a +0/a EW}
={a/a eW}
=W
i) Suppose ¢ W
TRPT. W+a<W
Let feW+a= f=y+a,yeW
Now y +W,a e W and W is a subspace
=>y+aecW

= peW

TPT WcW+a
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Let f €W

a W and \W is a subspace —g W

BeW,—aeW = f—aeW, since W is a subspace.

~p=(f-a)+tacW+a

Hence W + ¢ =W from (1) and (2)
iif) Suppose W +a =W +
Clearly g ew since W is a subspace.
0+aeW+a=aeW+a
>aeW+p
= a=y+p when y eW
>a-F=yeW
Wroa=W+p=>a-eW
Conversely suppose o — W
=>W+(a—B)=W fromii.
>W+a-p+=W+p
>W+a=W+p

6.6.4 Theorem: If W is a subspace of a vector space V (F) then the set V/W of all cosets of W
in V is a vector space over F w.r. to addition of cosets and scalar multiplication defined by

W+a)+(W+B)=W+(a+ ) and aW +a) =W +aa ,forall o,V and acF .

Proof: Let W be a subspace of a vector space V(F) and \%V = {W+a/a eV} be the set of all
cosets of Win V.

Addition is well defined:

Suppose W+a =W+y and W+ =W +6

=a-yeW and -6 €W by6.6.3
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=S a-y+-6eW since W is a subspace
=S(a+p)-(y+90)eW

=>W+(a+p)=W+(y+09) by6.6.3.
Scalar multiplication is well defined:

Suppose W+a =W +y
=a-yeW by6.6.3
= ala-y)eW for aeF
= ax—ay eW
=>W+aa =W+ay by6.6.3

S aW+a)=aW+y)
. Addition and scalar multiplication in V/W are well defined.

Addition is associative:

Let W+a,W+ B,W+y eV/W

[W+a)W +B) ]+ (W +7) =[W+(a+B)]+ (W +7)
=W[(a+B)+7]
=W +[a+(B+7)]
=W+a)+[W+(B+7)]
=W+a)+[W+B)+(W+7)]

Existance of Identity:
Clearly W+0eV/W and (W +a)+ (W +0) =W+ (o +0) =W+«
W+0)+W+a)=W+(0+a)=W+a,¥W+a eV/W

~W +0 isthe additive identity of /W .

Existance of Inverse:
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LetW+a eVW = -aeV=>W+(—a)eV/W
Now (W +a)+[(W+(-a)] =W +[a + ()| =W +0=W and
[W+(-a)]+W+a)=W+(—a+a) =W+0=W

~.W + (—a) is the additive inverse of W +¢ -

Addition is commutative:

Let W+a,W+ B eV/W

W+a)+W+8)=W+(a+p)=W+(B+a)
=W+p)+(W+a)

\%V is an abelian group w.r. to addition.
Let W+a,W+ E\%Vand abeF

i) a[(W+a)+W+ B)]=a[W+(a+B)]|=W+(ax +ap)
=W +aa)+W+ap)=aW +a)+aW + p)
i) (a+b) (W +a) =[W +(a+b)a] =W +(ac +be) = (W +aa) + (W + be)
= a(W +a) +b(W +a)
iiiy ab(W +a) =W + (ab)a =W +a(ba) = aW +ba) = a[b(W + )]
iv) AW +a) =W +1o =W +a

%V is a vector space.

6.6.5 Quotient Space: If W is a subspace of a vector space V(F). Then \%V the set of all

cosets of W in V is a vector space called quotient space.

6.6.6. Theorem: If W is a subspace of a finite dimensional vector space V(F) then
. \ T i
dim(Y(y ) =dimV - dim w.

Proof: Let W be a subspace of a finite dimensional vector space V(F).
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Suppose dimW =m and S={o,,a,..a,} be a basis of W.
-. S islinearly independentand L(S)=W ............ (1)
Now S is a linearly independent subset of V {W SV}

- S can be extended to form a basis of V.

Let S = {0y, 0.0, By, B,, By} be abasis of V.

~dimV=m+k,Sis L| and L(S)=V ... (2)

Now we claim that B={W+ B,,W+ f3,,..W+ S, | is the basis of \%V

B is Linearly Independent:

Let by (W + B,) +b,(W + B,) + ...+ b (W + B,) =W where b,b,..hh € F
= W+b)+ WHb,B,) +...t W +b5) =W

=Wt (06, +b,,...+b,f,) =W

=B, +bB,+...+0 B €W

=bB +b,B, +...+b B =aa +aa, +..+a,a, since L(S)=W by (1)
=bp +b,B,...+h f —ao —aa,—..—aa, = 0

=>b=Db..=b =a=a,=..a,=0since S, is L.l

~. B islinearly independent.
V/ .
B Spans AV

V
LetW+aeAV

=>aeV
=oa=Cca, +Ca,+..+Ca,+dS +d,6,+..+d S, where c,c,..c, and d,,d,..d, €F

"W+a=W+(ca,+Ca,+...+C.a,+dp, +d,6,+..+d.S,)
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=W+W+d,g,+d,8,+..+d,6,) when W=coa, +...+C 0,

=W+y)+(dp, +d,B,+..+d.B,)

=W+d,p,+d,B8,+...+d, [, since W+y =W

=d,W+B)+d,W+B,)+..+d W+ B,)

- B spans \%V

. . \V;
Hence B is a basis of AV

dim(%,): K=m+k-m=dimV —dimwW

6.7 Summary:

In this lesson we learnt the definitions of basis of a vector space, dimension of a vector
space and quotient space. We proved theorems relating to basis and dimension.

6.8 Technical Terms:

i) Basis

i) Finite dimensional vector space
iii) Dimension of a vector space

iv) Quotient space

6.9 Model Examination Questions:
1. Show that vectors (1,2,1)(2,1,0)(1, -1, 2) form a basis for R®.
Solution: Suppose a(1,2,1) +b(2,1,0) + c(1,-1,2) = (0,0,0) where a,b,ce R
= (a+2b+c,2a+b-c,a+2c)=(0,0,0)
= a+2b+c=0,2a+b-c=0a+2c=0
a+2c=0=>a=2c
sa+2b+c=0=>-2c=+2b+c=0=2b-c=0=2b=cC
2a+b-c=0=-4c=+b-c=0=b-5c=0
= b-10c=0= -7Tb=0=b=0
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n2b=c=>c=0and - 2b=c=c=0

~{(@22)(21,0)(1,-12)} is a basis of R3

We know that dim R3 = 3.

~{(@22)(21,0)(1,-12)} forms a basis of R? by 6.5.5.
6.9.2 Find the coordinates of the vector (2,1,-6) of R3 relative to the basis
(112310201}
Solution:

Suppose (2,1,-6) =a(1,1,2) +b(3,-1,0) +c(2,0,-1) where a,b,ce R
=(2,,-6)=(a+3b+2c,a-b,2a-c)

a+3h+2c=2 e 1)
a-b=1 ... (2)
2a—-C=—-0 e 3)

From (2) pb=a-1 from(3) c=2a+6
- From (1) a+3(a-1)+2(2a+6)=2

a+3a—-3+4a+12=2

8a=-7
a=-7/8
-7 -15 -14 34 17
b:——]_:— C:—+6:_:_
3 8 and 3 82
- (2254
. The coordinates of (2,1,—6) are 8’ 8 2

6.9.3 If Vis the vector space of ordered pairs of complex numbers over the real field R, then
show that the set S={(10)(i,0)(0,1)(0,i)} is a basis of V.

Solution: Suppose a(,0) +b(i,0) +c¢(0,1) +d(0,i) = (0,0) for a,b,c,d e R

= (a+ib,c+id) = (0,0)



( Rings and Linear Algebra ] (6.17) [ Bases and Dimension ]

—a+ib=0and c+id=0
=a=0,b=0,c=0,d=0

~. The set S={(1,0)(i,0)(0,1)(0,i)} is L.I

Let (a+ib,c+id) eV

Then (a+ib,c+id) =a(1,0) +b(i,0) +c(0,1) + d(0,i)

.. S spans
Hence S is a basis of V.

6.9.4 Let V be the vector space of 2 x 2 matrices over a field F. Show that V has dimension 4 by
exhibiting a basis for V which has four elements.

10 01 00 0 0}
el _ B= = D=
Solution: Let S={A,B,C,D} where A {O O} {o O} c L O} {O 1

Clearly ScV

Suppose aA+bB+cC+dD =0, where a,b,c,deF
1 0 01 00 0 0] |0 O
=a +b +C +d =
00 00 10 0 1] [0 O
a b| |00
- =
c d 0O

=a=b=c=d=0

. S islinearly independent.

a b Vv
o= IS
Further if c d then

a=aA+bB+cC+dD
;.S spans V.

Hence S is a basis of V.

~.dimV =4
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6.9.5 Do the vectors (1,1,0)(0,1,2) and (0,0,1) form a basis of V;(RR).
Solution: Suppose a(1,1,0)+b(0,1,2) +¢(0,0,1) =(0,0,0) when a,b,ce R
= (a,a+b,2a+c)=(0,0,0)

= a=0a+b=0;2b+c=0
=a=0b=-a=0c=-2b=0
. The vectors (1,1,0)(0,1,2) and (0,0,1) are linearly independent.

Since dimV,(R) =3 the set {(ZLZL 0)(0,1,2)(0, 0,1)} is a basis of V,(R) by 6.5.5.

6.9.6 Show that the set {(1,0,0)(1,1,0)(1,1,1)(0,1,0)} spans the vector space R® but not a
basis.

Solution: Let (a,b,c) e R®
Suppose (a,b,¢) = x(1,0,0) + y(1.1,0) + z(,1,1) +£(0,1,0)
= (a,b,c)=(X+y+z y+z+t,2)
= X+Yy+z=a,y+z+t=Db,z=c
= X+y=a-cy+t=b-c
If y=0then x=a-candt=b-c
~.(a,b,c) =(a-c)(1,0,0) +c(1,1,1) + (b—c)(0,1,0)
~.$={(1,0,0)(1,1,0)(111)(0,1,0)} spans g3

Since dimR® =3, S can not be a basis.

6.9.7 If S={a,B,7} is abasis of C3(c) showthat S'={a+f,B+y,y +a} is also a basis of
C3(c).

Solution: Suppose a(a + ) +b(B +y)+c(y +a) =0 where a,b,cec
=ax+af+bf+by)+cy+ca=0

= (a+C)a+(a+b)g+(b+c)y=0
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=a+c=0,a+b=0b+c=0
=a=0b=0,c=0
= S'={a+B,B+7,y +a} islinearly independent dimC?(c) = 3.
. St is a basis of C3(c)
6.9.8 Extend the set of linearly independent vectors {(ZL 0,1,0),(0,-11, O)} to the basis of V,.
Solution: S={(1,0,1,0),(0,~1,1,0)} is a linearly independent subset of V,.

Clearly B={(1,0,0,0),(0,1,0,0)(0,0,1,0),(0,0,0,1)} is a basis of V,.

Let S ={(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)(0,0,1,0)(0,0,0,1)} .
-.§ spans V, since Bc § and L(B)=V,.

But dimV, =4

. § cannot be a basis.

= S, islinearly dependent.

= (0,0,0,2) is a L.C. of its preceding vectors.
~.$,={(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)(0,0,1,0)} spans V,.
But S, cannot be a basis as dim V, =4

= S, is linearly dependent.

= (0,0,1,0) is L.C. of its preceding vectors.
= S,={(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)} spans V,.
Since dimV, =4 and S, has 4 elements S, must be a basis of V,.

6.9.9 Find a basis and dimension for the subspace of R*® spanned by the vectors
(2,7,3(1,-1,0)(1,2,2) and (0,3,1).
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Solution : Let W be the subspace of R?® spanned by S={(2,7,3)(1,-1,0)(1,2,1)(0,3,1)}
W is subspace of R?® = dimW <dimR®=3
.S can not be linearly independent since S has 4 vectors.

~.Sis LD=(2,7,3) is L.C. of the remaining vectors.

Now § ={(L-1,0)(1,2,1)(0,3 1} spans W,

Suppose a(1,-1,0)+b(1,2,1) +¢(0,3,2) = (0,0,0)
(a+b,—a+2b+3c,b+c)=(0,0,0)

—a+b=0 ....... (1) —a+20+3C=0 crrrrrrerren. (2) D+C=0errerrren A3)
(1) >a=-b
- From (2) b+2b+3c=0=3+3c=0=b+c=0
~.c=-b
na=lb=-1c=1
. § is linearly dependent.
= (0,3,1) is L.C. of remaining vectors and S, = {(L -1,0)(4 2,1)}
Suppose a(1,-1,0)+b(1,2,1) =(0,0,0)
(a+b,—a+2b,b) =(0,0,0)
=a+b=0 -a+2b=0 b=0
=a=0,b=0
- S isL.l.and L(S) =W
Hence S, is a basis of W.
sdimW =2
If W, and W, are subspaces of V,(R) generated by the sets {(ZLL—ZL 2)(2,1,3,0)(3,2,2, 2)} and
{(ZL -1, 0,1)(—1,1,0,—1)} respectively then find dim (W, +W,) .
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Solution:
Let S ={(11-12)(21,30)(3222)} and S, ={(1-1,0,1)(-110,-1)}
Given L(S) =W, and L(S)) =W,

We know that L(W, UW,) =W, +W,

suppose a(1,1,-1,2)+b(2,1,3,0) +¢(3,2,2,2) +d(1,-1,0,1) + &(-1,1,0,-1) = (0,0,0,0)

=a+2b+3c+d-e=0-.... (1) a+b+2c—d+e=0 e (2)
—a+3042C+=0 cerrnnnns 3) 28+204+d—€=0  crrrrrernene (4)
(2)+(4) 3a+b+4c=0 oo ®)
1)-@ —a+20+C=0 oo (6)
3 -a+3p+2c=0
(6)-(3) -b-c=0=b=-—c
From (5) a+c=0
From (2) d=e

sna=1Lb=0c=-1Ld=2%le=1

=SuS is LD

. One vector is the L.C. of remaining vectors.
= S'={(11-1,2)(21,3,0)(1,-1,0,2)(-11,0,-1)} spans W, +W,

Suppose a(1,1,-1,2)+b(2,1,3,0)+¢(1,-1,0,1) +d(-11,0,-1) = (0,0,0,0)

=a+2b+c—-d=0 ......... 1) a+b-c+d=0.eererrern. 2)
—-a+3hb=0 .. 3) 2a+c—d =0 .iirrirennn. 4)
From (3) a=3b From (1) 5b+c-d=0

From (4) 6b+c—-d=0
=b=0
~a=0..b=0and c=d
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=S'is LD

=> One vector is g is L.C of the remaining vectors.
~8"={(11-1,2)(1,-1,0,1)(-1,1,0,-1)} spans W, +W,
Suppose a(1,1,-1,2)+b(1,-1,0,1) +c(-11,0,-1) =(0,0,0,0)
A4 D-C=0 e, (1) A—D4LC=0 crrrrenn. )

—a=0 e, ®3) 2a+b=C=0 errrr.. )
a=0 wegetfrom(l)b=c
~a=0b=2%c=1
- St isL.l. and spans W, +W,
Hence g is a basis of W, +W,
sdimW, +W,) =3
6.10 Exercises:

1. Show that B={(1,0,-1)(1,2,1)(0,-3,2)} from a basis for R®.
2. Find the coordinates of (2,3,4,-1) w.r. to the basis {(1,1,0,0)(0,1,10)(0,0,1,1)(1,0,0,0)} of V,(R)
3. Extend the set {(1,0,1)(0,—1,1)} to form a basis for R®.

4. Find a basis for the subspace spanned by the vectors (1,2,0)(-1,0,1)(0,2,1) in V;(R).

5. If Vv is the vector space generated by the polynomials
X+ 2x2 —2X+1 X3 +3x% — X+ 4,2X% + X2 — 7x—7 then find a basis of V and its dimension.

- Smt. K. Ruth



LESSON - 7

LINEAR TRANSFORMATION

7.1 Objective of the Lesson:

In Chapter 5 and 6, we discussed vector spaces and some of the related topics. Now it is
natural to consider functions from a vector space into a vector space. Such a function with a
condition is called a linear transformation or a homomorphism.

In this chapter, we discuss the properties of these linear transformation and related prob-
lems.

7.2 Structure of the Lesson:
This lesson has the following components.
7.3 Introduction
7.4 Linear Transformation
7.5 Range, Null space of a linear transformation
7.6 Answers to SAQ’s
7.7 Summary
7.8 Technical terms
7.9 Exercises
7.10 Answers to Exercises
7.11 Model Examination Questions
7.12 Reference Books
7.3 Introduction:

In | B.Sc./B.A. homomorphisms from a group into a group are discussed. In chapter 2 of
this book, homomorphisms from a ring/ field into a ring/ field are discussed. In this chapter, we
discuss the homomorphisms (linear transformations) from a vector space into a vector space.

7.4 Linear Transformation:

7.4.1 Definition: Let U (F)and V (F) be vector spaces. A function T :U(F)—V(F) is called
a linear transformation from U into V if T (ac +bp) = aT (o) +bT(B) forall «,f €U and a,be F .
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7.4.2 Note: 1) Itiscalled i) a monomorphism of T is one-one
i) an epimorphism if T in onto
iif) an isomorphism if T is one-one and onto.

2. Alinear transformation T:U — U is called a linear operator on U and it is called an automor-
phism if T is one-one and onto.

3. Alinear transformation T :U (F) — F is called a linear functional on U.

4. Taking a=1, b=1weget T(a+ B)=T(a)+T(S)~a,f €U . Taking b =0, we get
T(ap)=aT(a)~wvaecF,vaecU.

5. Throughout this lesson R denotes the field of real numbers.

Solved Problems:

7.4.3 Define: T:R2 > R2 by T(X,Y,2) = (2x+Y,X),~(X, Y, 2) € R® showthat T is a linear trans-
formation.

Solution: Let a,be F,a = (o, ,,5), B = (By, Pos Bs) € R
So aa +bp =(ao, + b, ac, +bB,, a0, +bp;,)
Now T(ac +bf) = (2(ac, + bf,) + (act, +bf,), ac, +bf;)

= a(204 +ot,,00) +0(26,+ B,, B) =aT () +bT(B) forall a,be F and o, f e R®.
Hence T is a linear transformation.

7.4.4 Define: T-R® 5> R? by T(a,8,,8)=(a-a,,8 —3,) ~ (a,a,,a,) R’ Showthat Tis
a linear transformation.

Solution : Let a,be F and a = (a,,3,,a,) 8 = (b, b,,b,) € R?
So T(ax+bp)=T(aa, +bb;,aa, +bb,,aa, +bb,)
= (aa, +bh, —aa, —bh,, a3, +bb, —aa, —bb,)
=a(a -a,a -3,)+b(b-b,,b -b,)

=al (o) +bT(B)~a, B etR®,~wabeR

Hence T is a linear transformation.
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7.4.5 Show that the mapping T : R® —» R? defined by T (a,,a,,a,) = (ja,|,0)V(a,,a,,8,) e R is
not a linear transformation.

Solution: Let a,be F,a = (a;,a,,a5), B = (B, B,, Bs) € R®

Now T(ac +bpB) =T (aa, +af,, an, + af,ac, +bp;)

= (Jaa, +bBy[.0) ... (1)

But aT () +bT(B) =aT (o, ey, 0t,) +bT (B, B, B5)

=a(|a,],0)+b(|B|+0)......... 2)

From 1 and 2, itis clear that T (aa +bf) = aT («) + bT(B)

Hence T is not a linear transformation.

7.4.6 SAQ: Show that the mapping T : R? —» R? defined by T(a,,a,) = (28, +4a,,8d,), for all

(a,a,) € R? is a linear transformation.
Properties of linear transformations:

7.4.7 Theorem: Let T:U —V be alinear transformation from the vector space U (F) to the

vector space V(F). Then
a) T(0)=0 b) T(-a)=-T(@)vaeU

) T(a—p)=T(x)-T(B)~a,peU

(d) T(aa,+aa,+..+ac,)=aT()+a,T(d,)+..+aT(a,) for all «,a,.a,eU and
~va,,8,,....,a, € F.

Proof: a) We know that T () =T (a +0) =T(c) +T(6) =T(a)+0=T(a)=T(a) +T(6)

:>6:T(6), by LCL in the group (V,+).

Hence T(0)=0(=0,)

(b) Let ¢ e U= —x €U and a+(—a)=6:(zﬁu)
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Now T [o + (-a)] =T (0)

= T[a+(-a)]=T(0)

= T(a)+T(-a) =T(a) +(-[T(a)])

=T(-a)=-T(a), by LCL in the group (V,+).

Thisis true forall ¢z cU
c) We have T(a-p3) :T[a+(—,3)] =T()+T(-B)=T(a)-T(B),Va,B U
d) We use induction on n.

If n=1, the T(a,)=aT(a,)aecF and ~»a, €U

Assume the result for n=k. So we have for any a,4a,,.....,8 € F and
a,a,,...a, €U, T(ao +a,a,+..+a0,)=aT (o) +a,(x,)+..+8T(x)

Nowlet a,4,,...,8,,8,,,€ F and o, ,,...,¢,8,,, €U
T(ao, + a0, +..+aa, +3,,0,,,) =T [(a1a1 +a,a, +..t )+ ak+lak+l]
=T(ao + a0, +..+aa,)+T(a,,0,4)

= alT (al) + aZT (az) + akT (ak) + ak+lT (an+1)
So, the resultis true for n=k+1. Now the result follows from Mathematical induction.

7.4.8 Theorem: Let U(F),V(F) be vector spaces. Let T:U —»V be defined by

T(a)=0~+a €U . Then T is a linear transformation.
Proof: Let a,be F,a,f €U = aa+bp U
= T(ax+bB)=0
=a0+b0=aT(a)+bT(B),~+abeF,va,pcU
This shows that T is a linear transformation.

Note: The linear transformation T:U —V defined by T(a) =0~ €U is called the zero trans-
formation and is denoted by O.
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7.4.9 Theorem: Let V(F) be a vector spaces over a field F.
Let T:V —»V bedefinedby T(a)=a~a €V . ThenTis alinear transformation (operator) on V.
Proof: Let a,be F,a,8 €V = aa +bp €V and
T(ax+bp)=aa +bp
=aTl(a)+bT(B)~wabeF and a,p eV

So, T is a linear transformation.

Note : The linear transformation T:V —V defined by T(a)=a~a €V is called the identity
operator an V and is denoted by I.

7.4.10 Theorem: Let U(F),V(F) be vector spaces over a field Fand let T:U —V be alinear

transformation. Then the mapping —-T:U —V defined by (-T)(a) =-T(a)wa €U is a linear
transformation.

Proof: Let a,beF and o, f e U = aa +bp €U and
(-T)(ax +bB) =—[T (ax +bp)]
=—[aT(a)+bT(B)]

=-aT(a)-bT(B)

=a(-T)(a)+-b(-T)(B)~a,beF,wa,pecU
So, -T is a linear transformation.

Note: - T is called the negative of the linear transformation T.

7.4.11 Theorem: Let T, T, be linear transformation from a vector space U (F) into a vector

space V(F). Thenthe mapping T, + T, :U —V definedby (T, +T,)(t) =T, (o) + T,(a) ~»ax €U is
a linear transformation.

Proof: Let a,be F,a,B €U
Now (T, +T,)(ac +bp) =T (ac + bB) + T, (ac + b )

=aT (a) +bT,(B) +aT,(a) +bT,(B)

= a[T,(@) +T,(@)]+b[TL(B) + T,(B)]
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=a(T, +T,)(a@) +b(T, + T,)(B),~a,be F andva, f €U

So, T, +T, is a linear transformation.

7.4.12 Theorem: Let T:U —V be a linear transformation and a€ F . Then the mapping

(@aT):U -V defined by (aT)(a) =aT (a)~a €U is alinear transformation.

Proof: o, f eU and x,y e F = xa+yp eU
Now (aT)(xex +yB) = a[T (xa + yB)]
— a[XT () + yT(B)]
=a[xT(a)]+a[yT(B)]
= (@) T(a)+ayT(p)
= (xa)T (o) + (ya)T(B)
=x[aT (a)]+ y[aT(B)]
= x[(aT)(@)]+ y[(aT)(B)]

This is true for all x,ye F and forall a,f €U

So, aT is a linear transformation.

7.4.13 Theorem: Let U=F™V=F™ and AcF™". Define T:u—ov
T(X)=A(X),~+X eU. Then T is alinear transformation.

Proof: Let a,be F, X,YeU .
So, T(aX +bY) = A(aX +bY) = A(aX) + A(bY)
=a(AX)+b(AY) =aT (X) +bT(Y)

forall a,be F and X,Y U

Hence T is a linear transformation.

7.4.14 SAQ: Define: T:R2 5 R? by T(a,a,) =(a,-a,)~(a,a,) e R*. ShowthatTisa

linear transformation. (This T is called the reflection in X-axis).

by
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7.4.15 Define: T:R?2 > R2by T(a,3,) =(a,0)~(a,a,) e R*. Showthat T is alinear transfor-
mation. (This T is called the projection on the X-axis).

7.4.16 Theorem: T:U —V is a linear transformation iff

T(a+B)=T(a)+T(B) and T(ax)=aT(a)Va,B U andforall acF (U, V are vector
spaces over a field F).

Proof: 1. Suppose T:U —V is a linear transformation.
= T(aa+bp)=aT(a)+bT(p),~+a,beF and ~a,feU ......... 1)
Taking a=1b=1,weget T(la +18) =1T () + 1T (B),~+a, B €U
=>T(a+pB)=T(a)+T(B),~a,peU
Taking a=1b=0, in (1) we get T(ax +0p) =aT (a) + 0T ()
= T(aa)=al(a¢)vacFovacu
Conversely suppose that T(a + ) =T(a)+T(B) and
T(ax)=aT(ax)~va,f U wacF
Now let a,be F and «,f €U
So, T(aa +bp) =T (axr) + T(bp)
=aTl(a)+bT(p)

This is true forall o, €U and a,be F .

Hence T is a linear transformation.

In view of theorem (7.4.16), a linear transformation may also be defined as:

7.4.17 Definition: Let U (F),V (F) be vector spaces. Amapping T:U —V is alinear transfor-
mation if T(a+8)=T()T+T(B)and T (acr) = aT (a¢)~+a e F and o, €U .

The two conditions can also be replaced by the single condition:
T(ao+B) =aT (o) +T(B)~a,BeUand ~+acF.

This can be justified on similar lines.

7.4.18 Theorem: Let U(F),V(F) be vector spaces and let {al,az, ...an} be a basis of U. Let

{51,62,...5n} be any set of n vectors in V. Then 3 a unique linear transformation T:U —V
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such that T(e) =6,,1<i<n.

Proof: Let S={al,oc2,...an} Let ¢ eU. Since Sisabasisof U, 3a,,a,,.....,a,€F >

a=ao0, +aa,+..+aaq,

Define T:U »V by T(a)=T(aa,+aa,+..+a0,)=a,0, + a,0, +...+a,o,, for

every a=ao, +a,a,+..+a0,cU.
Let a,be F,a=a0 +aa,+..+aa,cU
p=bo, +ba,+..+bea, U
Now T(ac +bpS) =T[(aa, +bb)a, + (aa, +bb,)a, +....+(aa, + bb, ), |
= (ag, +bby)o, + (aa, +bb,)d, +.....+ (aa, +bb,)J,
=a(aod, +a,0,+....+a.0,)+b(bo, +bo, +....+bd,)

=al(a)+aT(B), foral «a,BecU andforall a,beF .
This shows that T is a linear transformation.
Now for each i,1<i<n,T(¢;) =T[0o, +0ct, +...+1cx, +0ct,,...+ Oct,, |
=00,+00,+...+16, + 05, , +...+ 05,
=5,

To show that T is unique, let Ty —V be a linear transformation such that

T'a)=6,,1<i<n. Let geU. So 3 §,a,.,8,€F>
a=a, +a,0,+..+au,
Now T'(a) =T'(a, +a,a, +...+a,a,)
=aT (o) +a,T (a,) +...+5.T (a,)
=ad, +a,0,+..+a,0,=T(a),~a U

So T! =T . Hence the uniqueness and hence the theorem.
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Product of linear transformations.

7.4.19 Theorem: Let U,v,W be vector spaces over a field F. Let T:U —»V,H:V —>W be linear
transformations. Then the composite function HT :U — W defined by

HT(a)=H (T(a))~a €U is alinear transformation. (This HT is called product of linear trans-
formations)

Proof: If a eU, then T(a)eV and H(T(x))eW sothat HT (a) eW
Let a,beF and a,BeU
HT (ac +bB) = H[T (ac + bB)] = H [aT (&) +bT (B)]

=aH (T(a))+bH (T(B))

=a(HT)(a)+b(HT)(B)~a,B U and a,beF
Hence HT is a linear transformation.

7.4.20 Theorem: Let U,V,W be vector spaces over a field F.
Let T, T,:U =>V;H;,H,:V - W be linear transformations. Then
) H(T,+T,)=H,T,+H,T,
i) (H+H, )T, =H,T +H,T,
i) a(H,T,) =(aH,)T, = H,(aT,)
Proof: i) Let o e U
[(H,+H )T, J(a¢) = (H, + H,)[T(a)] = H [T, (a) ]+ H, [T.() ]
=(H,T)(a) +(H,T))(a) =(H,T, + H,T.))(at) »a €U
= (H,+H,)T,=HT +H,T,
(i) and (iii) can be proved on similar lines.
7.4.21 Theorem: Let T, T,, T, be linear operators on a vector space V(F).
Then (a) TO=0T, =0, (b) TI =1T,=T,

(c) T(T,+T,) =TT, +TT, d) (+T)T, =TTL+T,T,
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(e) T(T,T,) = (T, T,)T,
Proof: Let az€V;To(@) =T, [0()] =T,(0) =(0) =0 eV

=T,0=0. Similarly we can prove that OT, =O. [Here O is the zero operator on V].
The remaining results can be proved similarly.

7.4.22 Theorem: Let L(U,V) be the set of all linear transformations from a vector space U (F)
into the  vector space V(F) .For T,T,eLU,V) and ae F,define

(M+T)a) =T (a)+T,(a)~»a U and (al)(a)=aTl,(a)~»a U . Then L(U,6V) is a vector
space over F.

Proof: By theorems 7.4.11 and 7.4.12, we have T, +T,,al, e L(U,V). This shows that L(U,V) is
closed under vector addition and scalar multiplication.

Let T, T,,T,eL(U,V) and g eU .

T+ (4T (@) =Ty(@) + (T, +T,) (@) =Ti(@) +[T, () + Ty(e)]
= [T@)+T(@)]+ Ty (@) = (T, +T, ) (@) + To(@)
=[(T1+T2)+T3](a)a+a eU

ST+ A+T)=M+T)+T,~+T,T,, T, e LU,V)

+ is associative in L(U,V).

Similarly we can prove that + is commutative in L(U,V).

The zero transformation O:U — V is identity with respectto+. For TeL(U,V)and ¢ U ,
we have

(T+0)() =T(a)+O(a) =T () +O=T(ax) »x €U
—=T+0=0. Similarly we can show that O+T =0O.
~T+0=0=0+T,~T €LU,V)

-.Qis the identity.

TelLU,V)=-TelL(U,V) bytheorem 7.4.10.
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For a €U [T+(-T)](a) =T(@)+(-T)(@) =T(a) -T(a) =OU) »a €U

. T+(-T)=0. Similarly we can show that (-T)+T =0
- _T istheinverse of T w.r.t. +.
For aeF,T,T,eLU,V),aeU.
~[aM+T,)](«) =a[(T, + T,)(@) | = a[ (T, () + T, () | = &T, () +aT,(cx)
= (al)(a)+(aT,)(a) =a(T, + aT,)(a) v+ a €U
~a(M+T,)=aTl, +aT,~+aeF and ~T,T,eLU,V).

Similarly we can prove that (a+b)T =aT +bT,(ab)T =a(bT) and IT =T ~+a,be F and
~+T el(U,V)

Hence L(U,V) is a vector space over F.
Note: L(U,V) is also denoted by Hom F(U,V) or Hom (U,V).

7.4.23 Theorem: Letdim U =n, dim \V =m. Thendim L(U,V)=mn (U, V are vector spaces
over the field F).

Proof: Let A={a,,cty,.....0,}, B={B., B,,..... B,} be ordered bases of U and V respectively. By

Theorem 7.4.18, 3 a unique linear transformation T; e L(U,V)>.

k=i
@) -{

#1

forall i, j,1<i<n,1< j<mand foreachfixed k,1<k <n.
For example: T, (o) =0, T (r,) =0, Ty (@) =0 oo, T, ()= By Ty(et,) =0
ie. T,() =P, and T (er,) =0 if k i -

Let S={T,/1<i<nl<j<m|

a) SisL.l: Let a; € F and suppose zzaij-rij =0(eLU,V)

i=1 j=1
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n

>aT, |( j O(e,)=0

For each k,1< k < n, we have (
i=1 j=1

jzzaij-rij (ak)zﬁjzakjﬁj :6:>aklﬂl+ak2ﬁ2+"'+akm:8m =0
i1 j1 =

=a,=043a,=0,...38,=0+kl<k<n=g =0+Ii,},1<i<nl< j<m

- SisL.l.
b) L(S) = L(U,V):

Clearly L(S)c L(U,V)

Let TeLU,V). Now o, eU = T(er;) eV . So T(e;) can be expressed on a l.c. of
elements of B. So 3 b,;,b,,b,,..b,eF > T(o)=b,8, +b,6, +b.B;+..+b, B,
In general for each k,1< k <n, 3b,,b,,,..0,€F>T(a)=b,b,+b,8, +...+b. B,

Let H= ZZQJT =HelLU,V). Wehave T,(a)=0 if k=i and f; if k=]

i=1 j=1

Foreach k,1<k <n, H (e ) Zzblj-rij(ak) :Zbkjﬁj =T(a,) .
i=1 j=1

1
S H(e)=T(a),~va, €B
SoHand T agree onabasisof U. If o cU , then 3a,,...a,€F >
a=aa, +a,a, +..8,a,.
So, H(a)=H(aa, +a,0, +...+aa,)=aH (o) +a,H(a,) +...+ a,H(a,)
=al(a)+a,T(a,)+..+a.T(a,)=T(a +a,a,+..+aa,=T(a)
forall g U . Hence T=H e L(S).. LU,V) c L(S) = L(S)=L(U,V).

.. Sis a basis of L(U,V) . dimL(U,V)= number of elements of S = mn. Hence the theorem.

7.5 Null space and Range:

7.5.1 Definition: Let U(F) and V(F) be vector spaces and T :U —V be alinear transformation.
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The null space N(T) of T is defined as
N(T) ={a eU/T(a)=0}
The range R (T) of T is defined as

R(T) ={T(a)/a U}
Null space is also called kernel.

Range is also called image.

7.5.2 Theorem: Let T :U — V be alinear transformation. Then N(T) is a subspace of U and
R(T) is a subspace of V.

Proof: (1) N(T) = {oc eU/T(a)= 6}

We know that § ey and T(0)=0.=0e N(T)
~¢=N(T)cU
Let a,beF,a, 8 e N(T)
=T(a)=0,T(B)=0
T(ac+bpB) =aT(a)+bT(B)=a.0+b.0=0

= ao+bfeN(T) ~a,BeN(T) and ~~a,beF .

~. N(T) is a subspace of U.
2. R(M)={T(a)/a U}
0eU=T(0)eR(M=¢=RT)cV
Let B, B8,eR(T) and a,beF .
=3a,,a,eU>T ()= f,T(,) = S,
-.af,+bp, =aT (a,) +bT (a,)
=T (ac, + bat,)

e R(T), since ac, +ba, €U .
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sap +bp, e R(M),~p,, B, eR(T) and ~+~a,be F
. R(T) is a subspace of V.

7.5.3 Example: Let V(F) be a vector space and | =V —V be the identify operator. Then
N(1)={0}, R(I)=V.

7.5.4 Example: Let U(F),V(F) be vector spaces. O:U —V be the zero linear transforma-

tion. Then N(O) =U and R(0)={O}.

7.5.5 Theorem: Let T:U(F)— V(F) be alinear transformation. If U is finite dimensional, then
R(T) is finite dimensional.

Proof: Let S={a,,a,,....a,} be abasis of U.
and S :{T(al),T(az),....,T(an)}

Let feR(T)=3JaecU>T(ax)=p

= p=al(y)+a,l(a,)+...+a,T(x,)
= Bel(S)

S R(M) c L(SY

Also S'c R(T) (- each element of g is in R(T))

= L(S") < R(T), since R(T) is a subspace of V containing s! and L(S") is the

smallest subspace containing St.
Hence L(S")=R(T).
. R(T) is finite dimensional.

7.5.6 Note: 1. dmU =n=dimR(T) <n

2. If Siis a basis of U, then R(T) = Linear span of T(S).
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ie.if S={a,,0,,....a,},then R(T)=linear span of S' ={T(a,),T(a,),.... T(a,)}
7.5.7 Example : Let T : R® _, R? be defined by T(a,,a,,a,) = (a, —a,,2a,)V(a,,a,,a,) € R®
Then N(T) = {(a,,8,,8,)/T(a,,8,,8,) = 0
={(a,,)/(a - 2,,2a,) = (0,0)}

-{(a,a,,8,)/a = a,,8,= 0}

= {a,a,0)/acR}

and R(T) = {T(a,,8,,a)/(a,,3,a) < *}

={(a,a,2a)/a,8,,8, <R}

By theorem 7.4.28, R(T) is spanned by {T(1,0,0),7(0,1,0),T(0,0,1)} , where {e,&,, &} isthe
standard basis of 3, R(T) = Span of {(ZL 0),(-1,0),(0, 2)}

= Span of {(1,0),(01)} = R?
Rank and Nullity:

7.5.8 Definition: Let T =U(F) — V(F) be alinear transformation.
The rank of T, denoted by p(T) is defined as :
o(T)=dimR(T)

The nullity of T, denoted by v(T) is defined as:

o(T) =dimN(T).

7.5.9 Theorem: Let T:U —V be a linear transformation and U be finite dimensional. Then

o(T)+0(T) =dimu .

Proof: Let dimU =n., Since N(T) is a subspace of U and U is finite dimensional, it follows that N(T)

is finite dimensional. Let dimN(T) be =k and let A={a,,a,,...,a,} be a basis of N(T). Since A

isaL.l. subset of U, A can be extended to form a basis of U. Let B:{al,az,...,ak,ak+1, ..... ,an} be
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a basis of U. Let S= {T(akﬂ),T(aM),...,T(an)} . We now show that S is a basis of R(T).
a) SisLl: Let a, T(a, ;) +a.,T () +....+a,T(a

= T (8, Oy sy + By ol + ot B Q,) =0

= 8 Oy T O p+ot B, € N(T)

=3a,a,,...a, e F 38,0, +3 .0, ,..... T, = a0y +....+ 3.,

= A0 — A0y — B0 + B (O g + oA, =0

=-a=0-a,=0,..,-a =04, =04a,,=0,..a, =0, since Bis LI

=a,,=0,.... ,a,=0 - SisL..

b) L(S)=R(T) :Clearly L(S) < R(T).

Let e R(T)=3JaecU>T(ax)=p

Now a €U = 13a,,a,,....,.a,0,,,.....8 e F3a=a0, +....4+80, +...+3_,0,, +...+3 0,

S P=T(a)=T(ao, +a,0, +....+ 8.0, + 8, 0, ., + 8,0, +.... T E,,)
=aTl()+a,l(a,)+...+aT(r,)+a ,T(t, ) +8 T (.,)+....+aT(x,)
=a,.0+a,.0+...+a8,.0+a _,T(,,)+a T (.,)+....+aT(x,)
= 8T (@) + BT (A o)+ + 8T () € L(S)

S R(M) cL(S).= L(S)=R(T) .. S is a basis of R(T)

.. p(T) = Number of elements of S=n—-k=n-v(T).

= p(M+v(T)=n=dimU; Rank T + nullity T = dimU . Hence the theorem.

Solved Problems:

7.5.10 Problem: Let T : R® s R2 be defined by T(a,,8,,8,) = (3 —a,,28,) forall (a,a,,a,) € R°.
Find the rank T, nullity T and verify p(T)+v(T)=n=dimU .

Solution: We have N(T) ={(a,,3,,8,)/T(a,,a,,a,) = (0,0)}
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={(a,8,,8,)/(a —a,,2a,) = (0,0)}
={(a.a,a)/(a =2,8 =0}

={(a,a,0)/acR}
= Span of (1, 1, 0)

o) =dimN(T) =1
R(T) = {T (2,8, 8)/ (&, 8,,a) € R}

=={(a-2,28)/a,8,8,cR|
R(T) = Span of {(T(e),T(e,). T(&)}, where {e,&,, €} is the standard basis of R3.
= Span of {(1,0),(-10),(0,2)}
= Span of {(1,0),(0,1)}
= 2
S p(M)=dmR(T)=2
Now P(T)+V(T)=2+1=3=dimR®

7.5.11 Problem: Find the null space, range, rank and nullity of the linear transformation T : R2 — R?

defined by T(x,y) = (x+y,x-y,Y) forall (x,y) e R®.
Solution: N(T) ={(x,y)/T(x,y) =0} ={(x, y)/x+ y,x-y,y) =(0,0,0}

={(x,y)/x+y=0,x-y=0,y=0} ={(0,0)}
. Nullity Tis = 0.
R(T) ={T (X, ¥)/(x,y) e R*} ={(x+ Y, X~ Y, y/x y e R}

Sincerank T + nullity T = ¢imR? = 2, it follows that rank T = 2.

Also we note that R(T) is spanned by {T(1,0),T(0,2)} ={(1,1,0),(1,-1,1)} .
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7.5.12 SAQ: Let T,,T, be two operators on R?defined by T,(X, y) = (Y, X), T, (X, ¥) = (x,0) . Show
that T.T, # T,T,.

7.5.13 SAQ: If T is a linear operator on 2 defined by T(X, y) =(X—V,Y) then find T2(x,y).

7.5.14 SAQ: Give an example of two linear operators T and S on R?such that TS=0 but ST =0.
7.6 Answers to SAQ’s:

746 SAQ: T:R? 5> R? . T(a,8,)= (28 +a,a)(a,8)cR’
Let o= (a,,), B=(B,B,)€R? and a,beR..
T(aa +bB) =T (aa, +bp,, a0, +bB,)
= (2(act, +bp,) + ac, +bpB,, a0, +bp;)
= a(2a, +a,,a,) +b(2B,+ By, B)

=aTl(a)+bT(B)~a,B eR?*and ~+a,beR

So T is a linear transformation.
7.414SAQ: T:R? 5> R? . T(a,a,)=(a,-a,)~(a,a,) e R?
Let a=(a,,a,), B=(B,B,)eR*and a,beR.
T(ac+bp) =T (ao, +bp,,ac, +bp,)
= (aa, +bp,,—aa, —bp,)
= a(ay,—a,) +b(B;,-B,)

=aT(a)+bT(B)~a,BfeR?and ~+a,beR

-. Tis alinear transformation.
7415SAQ: T:R2 5> R?. T(a,a,) = (a,,0) »(a,,a,) e R?
Let a=(a,,a,), B=(B,B,)eR*and a,beR.

~T(aa+bp)=T(ae, +bp,, 8, +bp,)
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= (aa, +bp,;,0) = a(ey,0) +b(A,,0)

=al(a)+bT(B)wabeR and va,p cR?

. Tis alinear transformation.
7.5.12 SAQ: T,,T, :R?* » R?, T,(X,y) = (Y, X)
T,(X Y) = (X,0V(X, y) € R?
T ) =T[T(x Y)]=T,(x0=(0,%)
LY =T, [T(x V)] =T,(y. ) = (¥,0)
TT,(XYy) #T,T,(X,y),if x20o0r y#0.
STL#T,T
7.5.13SAQ: T:R* 5> R*T(X,¥)=(X-V,Y)
T (xy)=T(T(xY)=T(x-y,y)
=(x=2y,y)V(x,y) e R?
7.5.14 SAQ: Give an example to show that TS=Q but ST O
Define T:R2 — R? by T(x,y) = (L0)V(x,y) eR?
S:R?2 — R2 by S(x,y) =(0,X)V(x,y) € R
TS(x, y) =T[S(x, ¥)]=T(0,X) = (1,0) e R?
ST(x,y) =S[T(x,y)]=S(1,0)=(0,])

Here TS(x,y) # ST(X,y) .. TS# ST

7.7 Summary: Linear transformation and properties, null space, range, rank, nullity are
discussed.

7.8 Technical Terms:Linear transformation, range, null space, rank, nullity.

7.9 Exercise

79.1LetV =F™": M eV. Define T:V >V by T(A) = AM + MA~+ AeV . ShowthatTis linear.
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7.9.2 Give an example of a linear operator T on 3 suchthat T#0,T?%0 but T3=Q

7.9.3 Lety = F?2. Let P:( ! _leev .Define T:V >V by T(A) = PA~ AeV Find nullity T

7.9.4 Let T:-R* — R® be defined by T(g)=(L11)
T(e)=(111),T(8)=(10,0),T(e,) =(10,2)

Verify that p(T)+v(T) =dimR*.
7.10 Answers to Exercises:
79.2 T:R®*—>R%T(ab,c)=(0,ab)~(ab,c)eR®
793 2
7.11 Model Examination Questions:
7.11.1 Define a linear transformation. Prove that T(0) =0, T (-a)=-T(a)

7.11.2 Define range and null space of a linear transformation.

Show that range and null space are subspaces.

7.11.3 Define rank and nullity. Prove that p(T)+ov(T)=dimU
7.11.4 Show that L(U,V) is a vector space.

7.11.5 Show that dimL(U,V) =mn.
7.12. Reference Books:
1. Stephen H: Fried berg and others - Linear Algebra - Prentice Hall India Pvt. Ltd., New Delhi.
2. K. Hoffman and Kunze - Linear Algebra.
2nd Edition - Prentice Hall, New Jersey - 1971.
- A. Satyanarayana Murty



LESSON - 8

MATRIX REPRESENTATION OF A LINEAR
TRANSFORMATION

8.1 Objective of the Lesson:

In Chapter 7, we discussed linear transformation from an n-dimensional vector space to an
m-dimenstional vector space. In this chapter we represent such a linear transformation as an
m X n matrix and study some properties and discuss some problems.

8.2. Structure of the Lesson:
This lesson Ihas the following components.
8.3 Introduction
8.4 Matrix representation
8.5 Composition of linear transformation and matrix multiplication
8.6 Invertibility and isomorphism
8.7 Answers to SAQ’s
8.8 Summary
8.9 Technical Terms
8.10 Exercises
8.11 Answers to Exercises
8.12 Model Examination Questions
8.13 References Books
8.3 Introduction:

In this chapter we discuss matrix of a linear transformation from a vector space to a vector
space relative to ordered bases. We also study the matrix of a product of linear transformations
and the invertibility and isomorphism of linear transformations.

8.4 Matrix Representation:

First we define an ordered basis of an n-dimensional vector space V(F) as a basis for V
endowed with a specific order.
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For example in 3, the standard basis B = {el,ez,%} is considered as an ordered basis.

Also B, = {E‘?,%,el} is an ordered basis of 3, but B, # B as ordered bases. For F”,{el,%...,en}
is considered as the standard ordered basis, where g =(1,0,0,..,0),e,=(0,10,...0) etc.

8.4.1 Definition: If B={a,0,,...,} is an ordered basis of an n-dimensional vector space V (F)

and a eV, then o can be uniquely expressed as & = Zaﬂw where a e F.

in

&

a,
We define the coordinate vector of ¢ relative to the ordered basis B as [a]B = .

a,

8.4.2 Example: For V,(R), B={e,e,e} is the standard ordered basis; where
e =(10,0),e =(0,1,0),e,=(0,0,0)

4
If o =(4,-2,3), then [a], =| -2] , since
3

a = (4,-2,3) = 4(1,0,0) — 2(0,1,0) + 3(0,0,1)

8.4.3 Example: For V,(R), we know that B, ={ay,a,,0;,} is on ordered basis where

1
o, =(10,0),a, =(1,10),0, = (1,1, s0 o = (4,3,2):>[06]Bl =11, since
2

(4,3,2) =1(1,0,0) +1(1,1,0) + 2(1, 1.1)
8.4.4 Definition: Let U(F) and V(F) be vector spaces and dimU =n,dimV =m. Let
Bl:{ocl,%,...,an} be an ordered basis of U and let Bzz{ﬂl,ﬁz,...,ﬂm} be an ordered basis of V.

Let T :U — V be alinear transformation.
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Since T(e,),T(a,),.....T(e,) € R(T) =V, these vectors can be uniquely expressed as lin-

ear combinations of elements of B, .
Foreach j,1<j<n,3 unique & €F 5T (a;) Izaﬁﬂi
i=1

The matrix A= [a,»j }mxn is called the matrix of T relative to the ordered bases B;, B, and we

write [T;B,,B,]=A.
IfU=Vand B =B,, we write A:[T;Bl,Bl]:[T]Bl_

8.4.5 Note: [T(OC;)]BZ = ] th column of A.

8.4.6 Example: If | and O are the identity and zero operators an n-dimensional vector space V

and B={0,,0,..,a,} is an ordered basis of V, then [I], =1,,, and [O], =O

nxn*

since | (¢;)=a;, =0a,+0a, +..+1la, +...+ 0,

O(a;) =0=0a, +0a, +...+ 0a, foreach j=12,...,n.

8.4.7 Theorem: Let U(F), V(F) be vector spaces, dimU =n,dimV =m and let B, B, be ordered
bases of U and V respectively. If T,,T,eL(U,V), then [T,+T,;B,B,]|=[T,;;B,,B,|+[T,; B, B, ]
and [aT;;B,B,]=a[T;;B,,B,] , where acF .

Proof: Let B ={a,04,...0,,}, B={8,Bors B
Let [Tl, B, Bz] = [aij ]mxn and [Tz; B, Bz] = [QJ]

mxn

:>T1(O‘j):_zn:aijﬂi , Tz(aj):_zm:hjﬂi ,forj=1,2,....n.

Now (T +T)(@) = Ti(@ )+ Tola) = Y &+ 20,5, = > (3, +B,)

A[L+TiB.B]=[g+] =[a] +b] =[T:B.B]+[T:B.B]
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Let ac F Now (@1)())=aT(a))=aY a5 =) aap,~j=12..n
i1 i1

- [aT,;B,,B,]= [aaij] = a[aij ]mxn =a[T,;B,,B,]

mxn

8.4.8 Note: We defined the matrix of a linear transformation T :U — V Ww.r.t. the ordered bases

m
T(a;)=D.aB , for j=12,...n
i=1
So, for each linear transformation from an n-dimensional vector space to an m-dimensional vector
space, 3 an m x n matrix A:[aﬁJ which is = [T,B,, B,]
Now if U, V are vector spaces, B, ={a,a,, ...}, B,={B,, Byr...... B} are ordered bases

of U, V respectively and AZ[aﬂ]mxn , then 3 alinear transformation T :U -V 5[T,B,,B,]= A

m
If we define T(O!j) = Zl g B , 1=212,...n,then T is a uniquely defermined linear transfor-

in V and 3 a unique linear transformation T:U —V > T(a;)=6,,1<]j<n. This result was
proved in chapter 7 - see theorem 7.4.18).

8.4.9 Theorem: Let Aec F™". Define T:E™ _y ™ by T(X)=A(X),forall XeF™. ThenT

is alinear transformation. If B, B, are standard ordered bases of g™t and ™ respectively, then
[T, B, BZ] =A.
Proof: We proved that T is a linear transformation. (See theorem 7.4.13).

Let B ={e,e,,....&}, B,={f, f,.... f,} bestandard ordered bases of F™*, F ™! respectively.

x1. —
(e e F™;it"component g =1 and other components = 0).
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&

(0] a2j
T(ej)=Aej=[a,.k]mxn S =a,f+a, f,+.+af,+..+a,f

a

mj

= _m aj; fi.
~[T:B.B]=[3] =A

8.4.10 Note: T is called the left multiplication transformation and is denoted by L, .

8.4.11 Definition: LetAbe an mxn matrix over F. The linear transformation L, : F ™" — F ™!

by L,(X)=A(X)~ X eF" (or ™) is called the left multiplication transformation.

8.4.12 Theorem: Let U(F),V(F) be vector spaces, dimU =n,dimV =m and B,B, be or-
dered bases of U and V respectively.

Let T:U —»V be a linear transformation and ¢ cU . Then [T; B]_!BZ][(X]Bl :[T((X)]Bz, where

[05 ]B1 is the coordinate matrix of ¢ w.r.t. the ordered basis B, .
Proof: Let B ={a,ty,.cccs 0t} By ={ B0, Borevees B}

Let A= [aij :Imxn =[T;B,,B,]

For a; € B, we have T(aj):;aijﬁi
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=T(x) =T{Zn:bjaj}=zn:bjT(aj)

:ijzaﬂﬁj ZZ(;bjaﬁJﬁi :Z,Qﬁi where G :ijaij

€ =

i
N
.
LN
1.
LN

a; A, Qg a, || b
Ay, Ay Aggeeeennn a,

ml m2

= [T ;B Bz][a ]Bl
Hence the Theorem.

8.4.13 Corollary: If T:V —V is a linear operator, dimV =n, B is an ordered basis of V and
a eV, then [T(a)], =[T];[a],

8.5 Composition of linear transformation and matrix multiplication:

We defined the composition of two linear transformation as : TS(at) =T [S(a)]va eU.

8.5.1 Theorem: Let U(F),V(F),W(F) be finite dimensional vector space and let B, B,, B, be
ordered bases of U, V, W respectively.

Let T:U —»V,S:V —»W be linear transformations. then [ST; B, B,]=[S;B,,B,][T;B,,B,]
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Proof: We know that ST:U —»W is defined by (ST)((Z)=S[T(OC)],-V—O{ eU is a linear
transformation.

Let Blz{al,az, ...... ap}, Bzz{ﬁl,ﬁz _______ ﬁ}, Bgz{yl,yz ....... ym} be ordered bases of U,V,W re-

spectively.

Now for each j=1,2,......, p, we have

(ST)(e;,) =S[T(e;)]

= chﬂ/i , where G; = Zamk%‘
k=1

i=1

.-.[ST;a,BS]=[qj]Wp{;akb@ =[a] 0l ],

mxp

=[S/B,,B,][T;B,,B,]
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8.5.2 Corollary: If T, S are linear operators on an n-dimensional vector space V and B is an

ordered basis of V, then [ST], =[S],[T].-
8.5.3 Theorem: Let T : F ™! _y F ™ be alinear transformation. Then 3Ae F™" >T =L,.

Proof: Let B}, B, be the standard ordered bases of g™ and g™ respectively.
Then 3 a unique matrix Ae F™" 5[T;B,,B,]= A.

. Forevery X eF™ we have

[T(X)],, =[T: BB, ][X ],
= A[X ]Bl
ST(X) = AX =L, (X)X e F™

~T=L,
We observe that ;

8.5.4 Theorem: If A, Be F™", then
1) Lys =L, +Lg
2) L,=aL,,aeF
3) L = L,oL,
Proof: L,,,(X)=(A+B)X =AX+BX =L,(X)+Ls(X)~ X eF™
=L, =L+L;
La(X) = (@)X =a(AX) =L, (X)» X  F™
= L,,=alL,
Le(X) = (AB)X = A(BX) = L,(BX) = L[ Ly(X)]

= Lg(X) = Lol (X)w X e F™ = L, =L,0L,.
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8.5.5 Theorem: Let U(F),V(F) be vector spaces, dmU =n dimV =m.
Then LU,V)=F™"

Proof: We know that L(U,V) and gEm™n are vector spaces over F. Let Blz{al,ocz, ..... ,an},

B,= {ﬁl!ﬁz, ..... , ﬂm} be ordered bases of U and V respectively.
Let T,T,eLU,V) [T;B.B,]= A:[aﬂ ]mx

and [Tz; B., Bz] =B= [b”]

mxn

- For j=12,....,n, we have Tl(aj)zzaijﬁi and T2(aj) =quﬂi
i=1 i=1

Define ¢: L(U,V) - F™" by

$(T)=[T;B,B,]~T eLU,V)

We show that ¢ is an isomorphism.

a)Let a,beF,T,T,eLU,V)

~.¢(aT, +bT,) =[aT, +bT,; B, B, ]
=[aT,;+B,,B,]|+[bT,;+B,, B, ]
=a[T;B,B,]+b[T,; B, B,]
=ag(T)+bg(T,)~T,T,eLU,V) and ~+~a,be F

.. ¢ is alinear transformation.

b) Let T, T, e LU,V) and ¢(T,) = ¢(T,)
= [T;B..B,]=[T,;B..B,]

= A=B=|a |=[h |=a =b~i,jl<ismi<j<n

-. foreach a; € B, we have Tl(aj):;aﬂﬂi :Zhjﬂi =T2(05j);*+06,- eB
1= i=1
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- T,, T, agree anabasis B of U=T,=T, on U ..¢ is one-one.

c)Let Ac Fm™ and A=[aj}m.wme S =Y af~j=12..,n,
i=1

=[T;B,B,]=A=¢(T)=A

- ¢ isonto .. ¢ is anisomorphism . L(U,V)=xF™"
Hence the theorem.
We observe that gimF™" is= mn=dimL(U,V)=mn. (We proved this independently)
8.6 Invertibility and isomorphism.

We know that a function f : A— B is said to be invertible if there exists a function g: B — A
such that gof =1, and fog=1, and g is called inverse of f and we write g = f*. Further, f

and g are bijections and f(x) =y < f *(y) = x. Since linear transformations are also functions,
it is natural to expect that the inverse of a linear transformation is also a linear transformation.

8.6.1 Definition: Let U(F) and V(F) be vector spaces. Let T:U —V be a bijective mapping.
Then the mapping S:V — U definedby S(B)=a < T(a)=f,a €U, B €V ,is called the inverse
of T and itis denoted by T-1. (If such a mapping S exists, then we say that T is invertible).
8.6.2Note: L. T (B)=a = T(a)=p,acU,BeV

2. Tis invertible iff T is a bijection.

3. Tis a bijection iff T™* is a bijection.

4. 1f T:U -V, S:V W are bijections, then ST:U —\V is also a bijection and

(ST) ' =T7s%(TY) =T
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8.6.3 Theorem: Let U(F), V(F) be vector spacesand T :U —V be a bijective linear transfor-
mation. Then T1:yv —y is also a linear transformation.

Proof: Since T:U —V is a bijection, T :V — U s also a bijection.

To prove that T-1is alinear transformation, let o,  €V,a,be F .

Since T:U —»V isonto, a,f eV =3, B, €U >T(y)=a and T(f,)=p. SinceTisa
bijection, we have

T()=a=T (a)=a, and T(B)==>T(B) =4
Now ac +bf = aT () +bT(B,) = T(ac, +bp,)
Since T is a bijection, T *(ax +bp) = aa, + bB, = aT *(a) + bT *(B) and this is true for all

a,B eV andforall a,be F. Hence T is a linear transformation.

8.6.4 Note: 1) If T:U —V is an isomorphism iff T™:V —U is an isomorphism.

2) Ifinverse of T:U —V exists, then T is said to be an ivertible linear transformation

and ToT *=1,, T T =1,.

8.6.5 Definition: If there is an isomorphism (i.e. one-one onto linear transformation) from a vector
space U(F) to a vector space V(F), then we say that U and V are isomorphic and we write U ~V/ .

8.6.6 Theorem: Let U(F), V(F) be finite dimensional vector spaces. Then U =V < dimU =dimV .
Proof: 1. Suppose U ~V

= 3 aone-one onto linear transformation T:U >V

Let dimU =n and S={a,,a,,.....a,} be abasis of U.

Let S'={T (), T(a,),..... T(,)} . We show that &t is a basis of V.

= a0 +aa, +..+aa, =0 (T is one-one)

—a,=0a,=0,..,a =0 (S is L1)
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- gtisL.l.
b) L(S)=V:Let BeV. Since T:U -V isonto, 3geU > T(a) =}
Since ¢ €U , 39,,8,,...,8, e F3a=aua, +aa, +....+a.q,
= p=T(a)=T(ao, +a,a, +...+a,,)
=aT(a)+a,T(a,)+....+a,T(a,)
= Bel(S). ~VcL(S)
Also since L(S") cV , we have L(S") =V

So, st isabasis of Vsothat dimV =n. Hence dimU =dimV -

2. Suppose dimU =dimV =n, Let S={a;,a,,....,a,} and S* = {B,, B,,....., B, } be bases
of U and V respectively.

Let g cU = F,a,,...,8, e Foa=auo +a,a, +.....+aa,
DefneT:U -V by T(a)=T(aa,+aa,+....+a,a,) =a,f,+a,f,+.... +a,p,
forall a =ao, +a,0, +....+ a0, €U

Let a,be F and a =aa, +a,a, +....+a.a,,f =ba, +bo, +.....+b o, €U .

TG b)=T| 3 (a8 b | =3 (e +10)5 = + 3 bw

=3 3, )b, =aT(@) +bT(F) v, f U and veai, p < F

- T is alinear transformation.

Tisone-one:Let a,f €U and T(a)=T(B)

a,peU =3a,b eF3a=Zn:aiai,ﬁ=Zn:hai

Now T(a)=T(B) = an]aﬂi =ihﬁi
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=Y @ -h)f, =0

=a-h=0+i=12...,n since g isL.l.

na=) a0 = o= .7 isoneone.

Tis onto:LetﬁEV:>EIa1.eFaﬁ:Zn:aiﬁ’i

i=1

n
Write azzaﬂi =aeU and

i=1

T(@)=)ap =p - T isonto — T is a bijection.
i=1

Hence T is an isomorphism.
~Uz=Vv.

8.6.7. Corollary: If T:U —V is anisomorphism between finite dimensional vector spaces and
B is a basis of U, then T(U) is a basis of V.

8.6.8 Theorem: If dmU(F)=n,theny ~ E"

Proof: Let S={a,,,,....,a,} be a basis of U.

LetaeU= Ja eFra=) aq

i=1

Define T:y _ gr by T(@)=(a,8,,....,a,) v« =ani eU
i=1
We show that T is a linear transformation: Let «, f €U ,a,be F

=3Ja,b eF3a=Zn:qai,ﬁ=Zn:hai
i=1

i=1
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.'.T(aa+bﬂ)=T(Zn:(aa +bp)al=(aa1+bq,aa1+bb2,...,aan+ban

i=1

=a(a,a,,....,a,)+b(b,b,,...b)=aT(a) +bT(B)~a,f U and ~~a,be F.

- T is alinear transformation.
Tisone-one:Let ¢, eU and T(x)=T(fS),Let & =ani,ﬁ =ani
i=1 i=1
~T(@)=T(p) = (a,a,,.....,.a,)=(,b,,......0)=>a =bh ~+i=12,..n

sa =Za1.05i =Y ba, = - T isone - one.

. T isonto: T is a bijection.
. T is an somorphism.
Hence y ~ F".
8.6.9 Fundamental Theorem of Homomorphism:

Theorem: Let U(F) and V(F) be vector spaces and T:U —V be an onto linear transforma-

, . U
tion with null space N. Then N =V,

U
Proof: Since N is the null space of T, we have NcU and N ={N +ofa EU} is the quotient

U
space and (N+a)+(N+p)=N+(a+p) and a(N+05)=N+aOH+N+OC,N+ﬁEN and

aeF

U
Define ¢ :W_)V

d(N+a)=T(at)» N+« EUN
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U
¢ is well-defined : Let N+06,N+061€N and N +ag =N +at

—Sa-ateN=kerT

=>T(e-a)=0=T(@)-T(e') =0

=>T(@)=T(a") = ¢(N+a)=¢(N +a?)
. ¢ is well-defined.

¢ is alinear transformation : Let a,be F,N+a,N+ G%
~.pla(N+a) +b(N+ B)]=¢[(N+ac) +(N+bB)]|=¢(N +ax +bp)
= T(ax +bp) =aT (o) +bT(B)
= a(N+o) +DH(N+ )% N+a,N+ f e and v-abeF.

. ¢ is linear transformation.
U
¢ isone -one : Let N+06,N+ﬁ€ﬁ and ¢(N +a)=¢(N +f3)

=>T(@=T(f)=T@-$)=0
>a-feN=>N+a=N+p
.. ¢ isone - one.
¢ isonto:Let eV . Since T:U -V isonto, aeU >T(x) =

S B=T(a)=¢(N+a)
.'.ﬁeV:>3N+ae%a¢(N+a)=ﬂ

~.¢ isonto.

N

u
. ¢ is an isomorphism W \
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8.6.10 Note: Even though T is not onto, the above theorem is true if V is replaced by T(U).
8.6.11 Definition: Alinear transformation T :U (F) — V(F) is said to be singular if N(T) # {6}
and it is said to be non-singular if N(T)= {5} .

8.6.12 Theorem: Let U(F), V(F) be two vector spaces and T :U —V be alinear transforma-

tion. then T is non-singular iff “Sis LI =T(S) is L.l .

Proof: 1. Suppose T is non-singular and suppose S= {al,az, ..... ,an} is L.I

Let S'= {T(ocl),T(az), ..... ,T(an)}

= ao, + 8,0, + .t ao, =0, since T is non-singular, N(T) ={0} .
=a=04a=0,...4,=0 (- Sis L.I')
-~ Stis LI=T(9 is L.I
Conversely suppose Sis LI =T(S)is L.I .
Let g eU and ¢ 20 -~ S={a} is L.
=>T(9)={T(a)} is L.I
=T(a)#0

noel,az0=>T(a)=0
~. T Isnon-singular.

8.6.13 Theorem: Let U(F), V(F) be vector spaces and T:U —V be a linear transformation.
Then T is non-singular iff T is one-one.

Proof: Suppose T is non-singular = N(T) ={0}

Suppose «, €U and T(a)=T(8)=>T(a)-T(B8)=0
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=T(a-8)=0
—a-f=0 ~N(T)={0}
Sa=p - T Isone-one.

Conversely suppose that T is one-one.
Suppose T(a)=0=T(a) =T (6)
= a =0, Since T is one - one.

~N(T) = {6} .. T is non-singular.
Hence the Theorem.

8.6.14 Note: T:U —V is non-singular if either

N(T):{ﬁ} (o) T(a)=0=a=0 (o) a=0=T(a)=0.
Solved Problems

8.6.15 Let T: R® — R? be alinear transformation defined by
T(X,Y,2) = (2X+y—2,3Xx— 2y +42),~(X, Y, 2) e R®
Obtain the matrix of T relative to the ordered bases.
B ={(L11.10),(L0,0)}, B, ={(L3),1L4)]
Solution: We have
TALLD=(29)
T(1LL0)=(31)
T(10,0=(2,3
Let (a,b) = x(1,3) + y(1,4) = (x+ y,3x+4y)
SX+y=a o (1)
3x+4y=Db

(1) x3: 3x+3y=3a
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Subtracting, we get: y=b—3a
. X+y-3a=a= x=4a-b
~.(a,b) e R* = (a,b) = (4a-b)(L 3) + (b—3a)(L, 4)
2TAL) =(25) = (6-6)L3+(E-5)L4)
-39 +(-DE4)
T@10)=(3Y=1113) +(-8)(L4)
T(L0,0)=(23)=5(L3) + (-3 4)

3 11 5}

~[T;B.B,]= {_1 8

8.6.16 SAQ: Let T : R® —» R? bethe linear transformation defined by T(X,y) = (X+Y,2X—Y,7Y).

Find [T;B,,B,], where B, B, are the standard ordered bases of R? and R® respectively.

8.6.17 SAQ: Let T:R3 — R?2 be the linear transformation defined by
T(XY,2) =(3x+2y—-4z,x-5y+32)

Find [T;B,,B,], where B ={(1,1,1),(1,1,0),(1,0,0)}and B, ={(1,3),(2,5)} are the ordered bases
of R3 and R2 respectively.
Solved Problem:

*B. A
B ANB’

8.6.18 If Aand B are subspaces of a vector space V over a field F, then show that

Solution: We know that A, B are subspaces — A+ B, An B are subspacs.

A+B

Also Bc A+B -, is a vector space over F.

Also AN B is a subspace of A= is a vector space over F.

ANnB

+
B is of the form B+a + 8, where gc Aand feB ie. B+f+a=B+a,
since feB=B+[=8B.

Any element of
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So any element of is of the form B + ¢ forsome g e A.

n
B
Define a mapping T : Aﬁ% by T(a)=B+a~vaeA
Clearly T is well defined ("~ o, =a, = B+a, =B+a, =>T() =T(,))
Let o, € Ala,beF
~T(ax+bp)=B+(ax+bB)=(B+ax)+(B+bp)
=a(B+a)+b(B+ )
=aT(a)+bT(p)

~va,BeAand vabeF

- T is alinear transformation.

Any element of is of the form B+ for some g e A

~B+ae B:>EIaeA3T(a)=B+a

- T isonto.
. By the Fundamental Theorem of homomorphisms, we have

A :A+B
keT B

But kerT={a e AT(x) =B} ={a € A/B+a =B}
={aeAlaeB}=ANB

A _A+B A+B_ A
“AAB. B OB TA~B

8.7 Answers to SAQ'’s:

8.6.16 SAQ: T:R* > R®, T(x,y)=(x+Y,2x—V,7y).
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B, ={a, =(10),a, = (0,1)}

B, ={B,=(L0,0), ,=(0,1,0), 3, =(0.0,}
are the standard bases of g2 and 3 respectively.
T(ey)=T(L0)=(120) =110,0)+2(0,1,0)+0(0,0,1

T(a,)=T(0,1)=(1-17)=110,0)-1(0,1,0)+7(0,0,)

8.6.17 SAQ: T:R3_»R?, T(xy)=(3x+2y—4z,x-5y+32).

B, ={o, =(1.11),a, = (1,1,0),0, = (1,0,0)}

B, ={B,=(13),5,=(25)} are ordered bases of R® and R?respectively.
T(ay)=(1-1

T(a,)=(5-4)

T(a)=(31)

Let (a,b) = xB, + yB, = (a,b) = x(1,3) + y(2,5)

. Xx+2y=a| 3x+5y=>b
3x+5y=b|3x+6y=3a

} = y=3a-b

S X=a-2y=a-6a+2b=2b-5a
~.(a,b)=(2b-5a)p,+(3a-b) s,
ST(a)=GQ-D)=-78,+4p,
T(a,) = (5,—4) =-33p,+19p,

T(as) = (31) =-135, + 85,
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[T.B.B]- -7 -33 -13
SATLBBIE g g
8.8 Summary:

In this chapter, matrix of a linear transformation from a FDVS to a FDVS relative to ordered
bases is discussed. The concept of invertibility of isomorphisms of vector spaces is discussed
and some problems are discussed.

8.9 Technical Terms:
Matrix representation of a linear transformation, isomorphism, invertibility.

8.10 Exercises:

8.10.1 Let T:R* — R? be defined by T(X, y) = (4x—2y, 2X+Y)
Find [T;B], where B={(1,1),(-1,0)}

8.10.2 Let T : R® — R?3 be defined by T(Xx,y,2) =(2y+z x—4y,3X)

Find [T:B], where B={(10,0),(0,1,0),(0,0,1)}

2 -3
8.10.3 If the matrix of T on [R? relative to the standard ordered basis is L 1 } , find the matrix of

T relative to the basis {(1L1),(L-1)} .

8.10.4 Find T:R® — R* as a linear transformation whose range is spanned by (1,-1,2,3) and
(2,3,-10).

8.10.5 Let V be a vector space of 2 x 2 matrices over R .

5 2} and T:V oV be defined by

Let P be the fixed matrix in V, Pz{

T(A) =PA+AeV . Find nullity T.

8.11 Answers to exercises:

3 -2
8.11.1 1 2
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0 2 1
8.11.2 140
13 0 0]
(1 0 0]
8.11.3 0 0
11 0 -1

8.11.4 T(x,V,2) = (x+2y,—x+ 3y, 2x—Y,3X)+(X, y, 2) e R®

8.11.5 2

8.12 Model Examination Questions:

8.12.1 Explain the concept of a matrix of a linear transformation.

8.12.2 Define the invertibility of a linear operator.

8.12.3 State and prove the fundamental theorem of homomorphisms of vector spaces.

8.12.4 Find the matrix of the linear transformation
T:R® - R? defined by T(x,y,2) = (X+Y,2Z2—X)3-(X, Y, 2) € R®
relative to the ordered bases B, ={(10,-1),(1,11),(10,0)} and B, ={(0,1),(1,0)}

8.13 Reference Books:
1. Stephen H. Fried berg and others : Linear Algebra, Prentice Hall India Pvt. Ltd., New Delhi.

2. Hoffman and Kunz; Linear Algebra, 2nd Edition, Prentice Hall; New Jersey - 197.

- A. Satyanarayana Murty



LESSON - 9

MATRICES AND DETERMINANTS

9.1 Objective of the Lesson:

In this chapter, we define elementary operations that are used to obtain simple computa-
tional methods for determining the rank of a linear transformation and the solution of a system of
linear equations. There are two types of elementary matrix operations - row operations and col-
umn operations.

9.2. Structure of the Lesson:
This lesson has the following components.
9.3 Introduction
9.4 Elementary matrix operations and elementary matrices.
9.5 Determinants
9.6 Answers to SAQ’s
9.7 Summary
9.8 Technical terms
9.9 Exercises
9.10 Answers to exercises
9.11 Model Examination Questions.
9.12 Reference Books
9.3 Introduction:

In this chapter, we discuss the elementary operations and elementary matrices. We also
discuss determinants.

9.4 Elementary Matrix Operations and Elementary Matrices:

9.4.1 Definition: Let A be an m x n matrix. Any one of the following three operations on the rows
(Columns) of A is called an elementary row (Column) operation:

1. R;; Interchange of i and j" rows.

2. R (k) : Multiplying every element of it row by k.
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3. Ry (k) : Multiplying every element of j* row by k and adding to the corresponding element
of i row.

Similarly we have column operations C;,C; (k),C; (k) .

9.4.2 Elementary Matrix:

Definition: A Matrix obtained from a unit matrix |, by subjecting the unit matrix to any one of the
elementary transformations is called an elementary matrix.

E; : Elementary matrix obtained by interchanging i and j*" rows (column)in | .

E. (k) : Elementary matrix obtained by multiplying every element of i" row (column) with k
inl,.

E;; (k) : Elementary matrix obtained by multiplying every element of j'" row with k and then

adding them to the corresponding elements of i" row in | .

Similarly E,} E'(K), Ei}(k) denote the elementary matrices obtained by applying the
corresponding elementary column operations on |.

9.4.3Note: 1.|E|=-1=|]|
2. |E (0] =k=[E'()| k=0

3. |Ej (k)| =1=|E} (K)|
4. Every elmentary matrix is non-singular and hence it is invertible.

9.4.4. Theorem: Every elementary row (column) transformation of a matrix can be obtained by
pre-multiplication (post multiplication) with the corresponding elementary matrix.

Proof: First we prove that every elementary row (column) operation of a product C = AB can be
effected by subjecting the prefactor A (Post factor B) to the same row (column) operation.

Let A be m x nand B be n x p matrices. The AB is of order m x p.

R,

RZ
We can write A= . B=[¢ ¢ - Cp]lxp,

R

m _Imx1
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where R,R,,....,R, are rows (of order 1 xn) and C,,C,,....,C, are columns of B (of order
nx1)

RC, RC,..... RC,
| RG ch.:.z.. ..... chp
RC R.Co RC,

This shows that if the rows R, R,,......R, of A are subjected to an elementary row opera-
tion, then the rows of AB are subjected to the same elementay row operation.

Similarly, if the columns of B i.e. C,,C,,.....C, are subjected to an elementary column
operation, then the columns of AB are subjected to the same elementary column operation.

Now to prove the theorem let A be an m x n matrix and |, be a unit matrix so that A=1_A.
Let R be any elementary row operation applied on A.

Then RA=R(I A) =(RI,)A=EA, where E is the elementary matrix corresponding to the
row operation R.

Again let | be unit matrix so that A= Al .
Let C be any elementary column operation applied on A.

Then CA=C(Al,) = A(Cl,) = AE,where E is the elementary matrix corresponding to the
column operation C.

9.4.5 Theorem: E*=E, [E(K)] =E (%),ki 0| E (k)]’1 =E,(-k) if c#0.

Proof: a) E; is the E-matrix (elementary marix) obtained from | by applying R;. If we again
apply R; on E;, we get |

~E;E; =1 . FE; isinvertible and (Eij )_1 =E;.

b) E (k) is the E - matrix obtained from | by applying R (k) . If we again apply R (%) on

E ,weget|.
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- B (%} E (k) =1 = E(K) isinvertible and [Eij (k)]_l = E (%J

c) E; (k) is the E - matrix obtained from | by applying R, (k). If we again apply R; (-k),
we get |
. . -1
- E;(-K)E; (k) = | = E;(K) is invertible and [Eij (k)] = E, (k)
Similarly, we can show that

(Eiil)i1 = Eijl’[Eil(k)]il = Eil(%j k#0

[E'0] =EXK)

We note that every E - matrix is nonsingular and the inverse of an E - matrix is also non-
singular.

9.4.6 Definition: A matrix A is said to be equivalent to B, if B is obtained from A by a finite number
of E - operations.

We write A~ B-
In the set M of all m x n matrices, ~ is an equivalence relation.
Since a) A~ A—~ isreflexive

b) A~ B— B~ A sothat ~ is symmetric.

c) A~B,B~C = A~Csothat ~ istransitive.

R C
9.4.7 Definition: A matrix A is said to be row (column) equivalent to B, denoted by A~ B(A~ Bj :

if it is possible to obtain B from A by a finite number of E - row (column) operations.

Solved Problems:

9.4.8 Compute the matrixes E,,;, E;, (-1, E,(-2),E, for I,.

Solution E,; =

o O O
o r»r O O
o O ~» O
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1 0 0 O
IR34(*1) 0O 1 0 _E ( 1)
7 1o o0 1 -1| *
0 00 1
1 0 00
IRzH)o 20 O—E(2)
*~ 1o 0 1 o *
0 0 0 1
0 1 0 O
|R121 0 0 O c
*“lo 0 1 0 12
0 0 0 1
1 2 1
9.4.9 Show that 10 2|~14
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Ry ()
Solution: Let A=|-1 0 2| ~ |0 2 3
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A~
3
9.4.10 Express 1 as a product of E - matrices.
1 -11
1 2 3 1 2 3 A1 2 3 10 1
Ra(-1) R(—3) Ro(-2) R(-3)
Solution: LetA=|1 0 1| -~ |0 2 2, |01 1| ~|01 1 ~
B Ra(D| n o _o|RED Re(-D)
1 -11 0O -3 2 00 g 0 0 _1_
_ 3. i 3
1 01 1 0O
Cs1(-1)
0 1 1] — |0 1 0|=1I,
0 0 1Yo 0 1
Ry (-3
SOA ~ |,

Ry (-%)
Ri2(-2),R35 (-1),R3(-3)
C31(-1),C3,(-1)

oy = By(-3) By (-1 B (-2 By (W) E, (-2 Ey (D E, () AEL (-DE (-D)
A= E N B ER] [EOT B D] [ECI L[ B ] [EAD]
= E,(DE;(DE, (2) E;(3)E,(2)E;, (1) Es(-3) Egz D E?l,l D)

133
9.4.11 Express A=|1 4 3| as a product of E - matrices.
13 4

1 3 3 1 00
Ry (1) Cxu(-3)

Solution: A= _ |0 1 0| —~ |0 1 0O|=I,
R31(_1) O O 1 C31(_3) O O l
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l,=Ey (-1 = (-1 AE;l (-3 E?:El (-3

-1

= A=[E,(-D] '[Ex(-D], '[Ex(-9] [Ex(-3]

= A=E, @ Ey @ Ey €) E, (©)
.. A'is a product of the E - matrices.

9.5 Determinants:

Determinants of matrices of order 2 x 2, 3 x 3 were studied at the Intermediate Level. Here
we attempt to define the determinant of a square matrix of order n x n and discuss the properties
although we deal with determinants of order 2 x 2, 3 x 3.

a
9.5.1 Definition: Let A:{
C

} be a 2 x 2 matrix over F.
We define the determinant of A, denoted by det A or |A| as the scalar ad - bc.

a b . . : d -b
If A= , we define adjoint of Aas adj A= .
c d —-C a

9.5.2 Note: We observe that det(A+ B) = det A+ det B, since

1 2 3 2 4 4
A= ,B= = A+B=

B TS N
and det A=-2,detB=0, det(A+B)=-4

9.5.3 Note: The function det: F?? — F is not a linear transformation.

9.5.4 Theorem: The function det: F%? — F is a linear function of each row of a 2 x 2 matrix

A when the second row is fixed i.e. if u,v,we F? and keF , then
u-+kv u Y
det[ }:det[ }kde{ }
w w w

Proof: Let u=(a,b),v=(a,,b,),w=(a,,b,)e F> and ke F ,then

de{ﬂmde{;’v}de{i Z}kde{z E}
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= (ab;—ab) +k(ah, —ab,) = (a +ka,)b, — (b +kb,)a,

=de{a1+ka2 bl+kb2}=det_u+kv}

w

'w w w
Similarly we can show that det }-F K de{ } = dé{ }
Lu Vv u+kv

9.5.5. Theorem: Let o< F22. Then det A= 0 < A isinvertible.

(Recall that Ais invertible iff 3 By AB=BA=1)

I A{a“ a“} then Al=_T_ {aﬂ _aﬂ}
1 2 det A -,

Proof: Suppose det A+0. Let C= 1 {azz _aiz}
det A 8 a

Ac:[an %L ;A{ %, —aﬁ}

a 8y - &

_ 1 {Q@H—Qﬁm —Q@Q+Q@ﬂ}
det A 8 — 88y,  —8 3, T 353,

1 dtA O 110 |
CdetA| 0 detA| [0 1]
Similarly we can show that CA=|. So Aisinvertibleand A1=C .

Conversely suppose A is invertible. So rank of A is = 2. (For definition of rank, see lesson 10).
(Since rank of an invertible n x n matrix is n)

—&
~a,#0ora, #0. Suppose a; #0. Multiply R with a, * and add to R, so that we get :
1

a, &
0 a2

1
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B8,

1

The rank of this is = 2 so that a,, —

= 8,3, —a,8, #0=>det A= 0

Similarly we can prove that det A= 0 when a,, # 0.

So in any case, we have det A= 0. Hence the Theorem.

Now we define determinants of order n.

9.5.6 Definition: Let Ae F™"
If n=1, then A=|a, |, we define det A=a,,.

If N>2 we define det A recursively as follows:

det A= Z(—l)“i%_ det A

j=1
(This is called the determinant of A and is denoted by |A4 ).

Here Aj is the (n—1)x(n—1) matrix obtained from A by deleting i row and j* column of A

If we write C; = (-D*1 det AJ— , then

det A= a0, +a,0, +...+a,G,

C; is called the cofactor of g; .

9.5.7 Note: det A= Sum of the products of each entry (in R, of A) and the corresponding cofactor.

9.5.8 Example: Find det A using cofactor expansion along the first row of the matrix

1 3 -3
A=|-3 -5 2
4 4 -6

Solution: det A= (=)' A, |A;|+(-1)"* A, |A, |+ (1" A | A,
= (-1)2.1(30-8) + (-1)*.3(18+8) + (-1)*(-3)(-12— 20)

=22-78+96=40
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9.5.9 Theorem: |I,,|=1

Proof: (by induction on n)
If n=1, then |, =[1]=l,|=1. So the theorem is true when n=1.

Assume the truth of the theorem for n—1.

Expanding |, along the first row, we get ‘In‘ =1det 1 _,+0+0..+0=11) =1. The theo-
rem is true for n. So by Mathematical induction, the Theorem is true for all positive integers n.

Hence the theorem.

The determinant of a square matrix can be evaluated by cofactor expansion along any row

i.e. if AeF™, then dgt A= Z (-1 a, det ,5“ where Aj is the (n—-1)x(n-1) matrix ob-

j=1

tained by deleting R and C; from A.

9.5.10 Theorem: If Ae F™" and B is a matrix obtained from A by interchanging two rows of A,
then det B=—det A.

a
Proof: Let Ae F™" and a,,a,,....,a, be the rows of Aso that A= a2

a,

Let B be the matrix obtained from A by interchanging r" row and s row, r < s.

~B=|""|. Now consider the matrix whose r" and s" rows are replaced by a +a.
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a, a, a,
a2 a2 a'2
a, + a, a, a,
- we have det . = det . + det )
a, + a, a, + a, a, + ag
L an . L an i L a'n B
a'1 a‘l al al

= 0 = det :r + det :r + det :S + det :S =0+detA+detB+0

a, a, a, a,
_an_ _an_ _an_ _an_
= detB=—-det A

9.5.11 Theorem: If A Be F™", then det AB =det Adet B.

Proof: First we prove the theorem when A is an elementary matrix. If A is a matrix obtained from
| by interchanging two rows of I, then det A=—1.

By Theorem (9.4.4), AB is a matrix obtained by interchanging two rows of B. So, by Theorem
(9.5.10), det AB=—det B=det Adet B

Similarly we can prove the theorem, when A is an elementary matrix of other types.

If Ais an nxn matrix with rank < n, then det A=0.
Since rank AB <rank A<n,we have dg AB=0

- det AB=0 = det AdetB
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If rank A=n, then A is invertible and hence it is a product of elementary matrices.

Let A=E_E, _,..EE

da AB= det( EmEm—l"'EZ E:I.B)

=det E.det(E, ;..E,EB)

det E,_.det(E, ,...E,E,B)

=detE detE_,....detE,detE . detB
= det(E.E, ,..E,E)detB
=det Adet B
9.5.12 Theorem: A matrix Ae F™" is invertible iff det A= 0.

1
Further A is invertible = det A = ——
urther A IS Invertple ddA

Proof: Suppose A is not invertible = Rankof Ais <n=det A=0
Suppose A is invertible = A™ exists and AA™" = |
~.1=det| =det AA™" =det Adet A™*

1
=1 ddet At=—"—
da Adeg A~ =1..de A0 an del A

9.5.13 Theorem: Let Ae F™" and let B be a matrix obtained by adding a multiple of one row to
another row of A. Then det B =det A.

Proof: Suppose B is the n x n matrix obtained from A by adding k times r" row to s row where
r+S.

& by

% ,B= b2 , then b =4 for j=s and b,=a,+ka,

a] |b

Let A=
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Let C be the matrix obtained from A by replacing a, with a, .
.. Bytheorem (9.5.4), we get

det B = det A+ kdet C = det A, since detC=0.
9.5.14 Theorem: If Ae F™ and p(A)<n,then det A=0

Proof: If p(A)<n,thentherows a&,a,,...,a, of A are linearly dependent. So 3a, > a, = al.c of
other rows.

~.3¢,c,,..C 4,...C, 24 =¢a +Ca, +..+C & ,+C ,a,, +..+Ca,

Let B be the matrix obtained from A by adding —c, times row ito rowr for each j =r
The r row of B consists of zeros only and so det B=0.
But by theorem (9.5.14) det B=det A. Hence det A=0.

9.5.15 Note: If Ae F™,then det kA=Kk" det A det(—A) = (-1)" det A and det A=0, if two
rows are identical.

9.5.16 Theorem: Forany Ac F™ det AT = det A
Proof: If Ais not invertible, then p(A) <n and det A=0
But we know that p(A) = p(A") = p(A") <n
- AT is notinvertible.
S det AT =0

~.det A" =det A=0
Suppose A is invertible. Then A is a product of elementary matrices.
Suppose A=E_E , EE
~.det AT = det(E,E, , E,E) =det(ETE]...E])
= det(E,) det(E} )...det(E.)
=detE detE,...det E

m

— (detE, )(detE, .)...(det E,)(det E))
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— det(E, E, ,...E)

=det A
Hence the Theorem.

Solved Problem:

2 0 0 1
) , 1 3 -3
9.5.17 Evaluate the determinant of the matrix A=
-2 -3 -5 2
4 -4 4 -6
Solution:
2 0 0 1 2 0 0 1
R0 1 3 3|0 1 3 -3
R0 -3 5 3|40 0 +4 -6
0 4 4 -8 0 0 16 -20
2 0 0 1
Re(-9)|0 1 3 -
_~ = B(sa
0 0 4 -6 (say)
0 0 0 4

B is an upper triangular matrix.

.. det A=Product of diagonal elements = 2(1)(4)(4) = 32

1 w wW
9.5.18 SAQ: If wis a complex cube root of unity, then show that | W W 1|=0
w1l ow
12 22 32 42
2 2 2 2
9.5.19 SAQ: Show that 22 jz :2 22=o
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b-c c-a a-b
9.5.20 SAQ: Showthat [c—a a-b b-c[=0
a-b b-c c-a

Solved Problems:

l+a 1 1 111
9.5.21 Showthat | - +b 1 Zamﬁ*g+6+g}
1 1 1+c
111
a a a
Solution: LHS = abc 1 1+1 1
b b b
i 1,1
c c
1+£+E+E 1 1+E+l 1+£+E+E
a b c a b c a b c
Ry (D)
~ abc E 1+l l
R3(D b b b
1 1 1
_ _ 1+=
C (o
1 1 1 1 00
Cu (-1
:mmp+l+1+l}1 1+= 1 _ :mmb+l+_+l}l 1 0
a b cj|b b b |c, a cllb
11 1+1 1 0 1
cC C c Cc
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1 0 O
Coi(-1)
~ 1— 1 O
C31(—1)b
1o
C

. det of given matrix is = abc[

b+c
9.5.22 Showthat |c+ a
a+b

(9.16)

1 1 1}
1+—+—+=-| 1

a b c¢
c+a a+b a
a+b b+cl=2b
b+c c+a C

Solution: Applying C,,(1) and C;(1) , we get

2(a+b+c)
LHS=(2(a+b+cC)
2(a+b+c)

a+b+c
=2|a+b+c
a+b+c

a+b+c
Ci (-1
~ 2la+b+c
Cau (-1
a+b+c

—b
Cu(®)
~ 2la+b -c

b+c -a

c+a
a+b
b+c

c+a
a+b
b+c

a+
b+c
c+

a+b
b+c
c+a

O O T

= Expanding with R, we get

S o O

( Acharya Nagarjuna University )
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-b -c

Ciz(®
~2b -¢c -
c -a -b

a b c
Cy(-1)
~2b ¢ a
Cy (-1
I P

9.6 Answers to SAQ'’s:

1+w w W
9.5.18 SAQ: Applying C,,(1), we get whw' w1
+1 1 w

1+w+w? w w? [0 w w?
Ci5(1) 5 5 )
~ l+w+w w 1/=|10 w 1|=0
1+w+w? 1 w| 0 1 w

since 1+ w + w? = 0, w being cube root of unity.

9.5.19 SAQ: Applying C,,(-1),C,,(-1), we get

1 22 51 53 1 22 5 5
22 ¥ 71 73 2> ¥ 7 7
2 2 ~3 2 2 =0
3 4 91 093 3 4 9 9
4> 5 111 11 4 5 11 1

b-a c-a a-b
9.5.20 SAQ: Applying C,,(1), weget [c-b a-b b-c
a-c b-c c-a
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0O c-a a-b
Ci5(D)
~ 0 a=-b b-c/=0

0O b-c c-a
9.7 Summary:

In this lesson, we discussed elementary transformations and applied the techniques in
determinants.

9.8 Technical Terms:

Elementary row operations, Elementary Matrix, Determinants.

9.9 Exercises:

X x* 1+x

1.1f|ly y* 1+y® =0and XY,z are different,

z 722 1+72°

show that xyz=-1.

2

1 x X
2.Showthat I y Vy?l=(x-y)(y-2)(z-X)
1 z Z2°
0 ¢ b |p?+¢c? ab ac
3.Showthat|c O a] =| ab c?+a? bc
b a 0 ac bc a’+b?
2bc-a? c? b? a b cf
4. Show that | ¢? 2ac-b’ a> |=lb ¢ a =(a®+b*+c’ —3abc)?
b? a’ 2ab-c? |c a b
1 2 3

5. Find the value of the determinant |4 5 6
7 8 9
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a+b+2c a b
6. Evaluate c b+c+2a b
c a c+a+2b

9.10 Answers to Exercises:
5. 0

6. 2(a+b+c)®

9.11 Model Examination Questions:

1. Explain the concept of elementary row/column operations.

2. Explain the concept of determinants of order 2x2,nxn

l1+a 1 1 1

1 1+b 1 1 abed |1 1 1 1 1
= +—F+—+—+—
3. Show that 1 1 1+c 1 2teTet g
1 1 1 1+d
a+ X a a a
b b+ b b a b c d
4., Show that y = Xyzw{1+—+—+—+_}
c c C+z c X Yy zZ W

d d d d+w

9.12 Reference Books:
1. Stephen H. Friedberg and others - Linear Algebra Prentice Hall India Pvt. Ltd - New Delhi.

2. K. Hoffman and Kunze - Linear Algebra - Prentice Hall, New Jersey.

- A. Satyanarayana Murty



LESSON - 10

RANK OF A MATRIX

10.1 Objective of the Lesson:

In this lesson, we define the rank of a matrix and use elementary operations to compute the
rank of a matrix. We also discuss the procedure for computing the inverse of an invertible matrix.

10.2. Structure of the Lesson:
This lesson has the following components.
10.3 Introduction
10.4 Rank of a Matrix
10.5 Matrix Inverses
10.6 Answersto SAQ’s
10.7 Summary
10.8 Technical Terms
10.9 Exercises
10.10 Answers to Exercises
10.11 Model Examination Questions
10.12 Reference Books
10.3 Introduction:

In this lesson, the concept of a rank of the matrix is introduced. We use elementary opera-
tions to compute the rank of a matrix and the rank of a linear transformation. We also introduce a
procedure for computing the inverse of an invertible matrix using elementary transformations.

10.4 Rank of a Matrix:

10.4.1 Definition: Let Ae F™". We define the rank of A as the rank of the linear transformation
L,:F"—>F™.

We recall the definitionof L, : F" — F™ as:
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L,(X)=AX,~»+X eF"

We observe that many results about the rank of a matrix can be obtained from the corre-
sponding results about linear transformation.

We know that every matrix A is the matrix representation of the linear transformation L ,
w.r.t. appropriate standard ordered bases.

i.e.if A ¢ F ™n,then 3 standard bases B,,B, of F"and F™ respectively
such that A=[L,;B,,B,].

We also observe that L, =L, & A=B,L, ., =L, +L;, L, =KL,

forall ke F,Ae F™" Be F™ = Lz =L,Lg L, =1,
We also know that : if T € L(U,V),U(F),V(F) are finite dimensional vector spaces and

B,, B, are ordered bases of U and V respectively, then

Rank T =Rank[T;B,,B,]

So the problem of finding rank of a linear transformation is reduced to that of finding rank
of a matrix.

Now we prove

10.4.2 Theorem: Let A be an m x n matrix. If P and Q are invertible mxm,nxn matrices
respectively, then

(@) Rank AQ = Rank A, (b) Rank PA = Rank A, (c) Rank PAQ = Rank A.
Proof: We have L,:F" - F",L,:F" > F"
Since Q is non-singular, we observe that L, is onto.
(. ye F"(codomain)=3X =Qy> L,(X) =QQ'y =)
Now R(Lno) = R(L,Ly) = LoLo (F") = Lo(F")(-. Ly is onto)
= R(L,) (Here R(L,) meansrange of L,)

- Rank L, = dmR(L,,)
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=dimR(L,)

=Rank L,
Similarly we can prove that rank PA = rank A,
(Since Rank PA= Rank (PA)" = Rank ATPT=Rank aAT) (by (a))
= Rank A, by Theorem 10.4.17
Rank PAQ = Rank (PA)Q = Rank PA = Rank A.

10.4.3 Corollary: Elementary row (column) operations on a matrix are rank preserving.

Proof: Suppose B is a matrix obtained from A by an elementary row operation. So 3 an elementary
matrix E such that B = EA.

Since E is invertible, we have p(B) = p(A)

10.4.4 Note: Pre-multiplication (Post multiplication) of a matrix by an elementary matrix and hence
by a finite number of elementary matrices (by a finite number of elementary operations) does not
alter the rank of the matrix.

10.4.5 Theorem: The rank of a matrix is equal to the maximum number of its linearly independent
columns i.e. the rank of a matrix is the dimension of the subspace generated by its columns.

Proof: Let Ae F™ = Rank A=Rank L, =dim(R(L,))

Let B be the standard basis of F "

.. B spansF".

= R(L,) = Span L,(B)=Span {L,(e),L,(&,),....LA(e,)}

But we know that L,(€) = Ae, =(aa,..q,..a,)| 1

= a,, the j" column of A
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- R(L,)=Span {a,,a,..a,}

. Rank A=Rank L,=dmR(L,)

—dim Span {a,,a,..a,}

1 01
10.4.6 SAQ: Find the rank of the matrix A={0 1 1
101
1 2 1]
10.4.7 SAQ : Findtherankof A=|1 0 3
112

Reduction to Normal Form:

[, O
10.4.8 Theorem: Every non-zero matrix A can be reduced to the form {O 0} by a finite number

of elementary operations, where | is the unit matrix of order r and r is the rank of A.
Proof: Let A= [61,» ]mxn (A =r;A=0
Since Ax0, 3 atleast one element §; = k=0

Interchanging R, with R, and C; with C,, we obtain a matrix B with leading element

k(= 0).
o 1 : . :
Now multiplying R of B with K’ we get a matrix C with leading element 1 so that
1 ¢, Cs...G,
Cn Cp Cpunlyy

Cy Gy CpeeCy
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Adding suitable multiples of the column C, of C to the other columns of C and adding
suitable multiples of the first row to the remaining rows of C, we get a matrix D in which all elements

of R and C, of D, except the leading element (=1) are zeros.

1 O 0 0 10 0

D= 0 dy, dy d,, _ 0

' : : A , where A isa (m-1)x(n—1) matrix.
0 dm2 dm3 dmn 0 mxn

I, O
If A=0,then A~{Ol O} and is this case, there is nothing to prove.

If A #O, we proceed with A, as we did with A.

The elementary operations applied on A, do not alter the elements of either 1* row or 1%
column of D.

I, O
Proceedings like this, we get a matrix P> P:L; O}

Now p(P)= p. ButP is obtained from A by elementary operations and hence p(A) is unaltered.

I, O
. P=r. Hence A can be reduced to the form L; O}

10.4.9 Note: 1. Using elementary operations, a matrix A of rank r can be reduced to the form

[ |1, O
lr’[lro]’ ollo o , called its normal form.

10.4.10 Note: 1) To reduce Ato normal form, sometimes, both row operations and column opera-
tions are to be applied.

2)If p(A)=r andAis MxN, then r <mand r <n;r <min{m,n}

3) p(A)=r means, every (r +1)" minor=0and 3 an r" minor of A, whichis = Q.

10.4.11 Theorem: If Alis an m x n matrix of rank r, then 3 non-singular matrices P and

a>pro=| "
>TPR%10 0
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Proof: Giventhat p(A)=r

I O
.. A can be reduced to the normal form {6 O}

For getting this, let the number of row operations used be s and let the number of column
operations used be t. We also know that every elementary row (column) operation on A is equiva-
lent to pre-(post) multiplication of A by a suitable elementary matrix.

. 3 elementary matrices B,PB,,...,P, and Q,Q,,...Q >

I, O
PP ,...BRAQ.Q,...Q =| '
s s-1 2°1 Ql Q2 Q {O Oj|

We know that each elementary matrix is non-singular and the product of non-singular ma-
trices is non-singular.

Let PR,..B=P and Q,Q,...Q =Q.

= P,Q are non-singular.

.PAQ_ |I’ O
B lo o

10.4.12 Note: If P and Q are non-singular, then p(A) = p(PAQ) .

10.4.13 Theorem: Every invertible n x n matrix is a product of elementary matrices.
Proof:- Let A be an invertible matrix = A is nonsingular = |A| #0= p(A) =n.

- A can be reduced to |, by a finite number of row, column operations.

We know that elementary row (column)operation is equivalent to pre (post) multiplication of
A by a suitable elementary matrix.

.3 elementary matrices B,P,,...,P;Q,,Q,...,Q, >
RF.- -BRAQ,Q,...Q =1,
Since each of R,Qjis non-singular, we have A=P'R,*...P'Q™*...Q".

— A= a product of elementary matrices.

10.4.14 Note: |A| #0, the A can be expressed as a product of elementary matrices in many
ways.
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10.4.15 Theorem: If AeF™" PeF™" and P is non-singular, then p(PA)=p(A) and
pP(AP) = p(A).

Proof: Since P is non-singular, 3 elementary matrices

F)11P21--~1PS B P: P].PZ"" P

~.PA=BP,...PA

Pre-multiplication by s elementary matrices is equivalent to s elementary operations on A.

But elementary operations do not alter the rank.
= p(PA) = p(A)
Similarly we can prove that p(AP) = p(A)
10.4.16 Theorem: If A~ B, then p(A) = p(B)
Proof: If A~ B, then B is obtained from A by a finite number of elementary operations.
- p(A) = p(B)

10.4.17 Theorem: If Ais m x n matrix, then p(A") = p(A)
. . [, O
Proof: 3 non-singular matrices P and Q> PAQ=D= o0 0 ,P(A) =p(D)=r

-.D'=(PAQ)' = Q'A'P*
Since P and Q are invertible, we have P and Q! are invertible.

- p(AY) = p(Q'A'P") = p(D")

1
Let p(A)=r. Since D' is an n x m matrix, D* :Pr O} sothat p(DY) =r.
00

S p(A)=p(DY)=r=p(A)
Hence the theorem.

10.4.18 Theorem: Let U,V,W be finite dimensional vector spacesand T:U —»V,S:V ->W
be linear transformations. Let A, B be matrices such that AB is defined. Then

() p(ST)< p(S)
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(i) p(AB) < p(A)
(iii) p(AB) < p(B)
iv) p(ST) < p(T)
Proof: We have R(ST)=ST(U)=S[TU)]=S[R(T)]
< S(V)(- R(T) V)
= R(S)
= p(ST)=dimR(ST) <dimR(S) = p(S)
= p(ST) < p(9)
p(AB) = p(L,g) =rank (L,Lg) < rank L, (by (i))=rank A
- p(AB) < p(A)
(i) p(AB)=p(AB)" = p(B'A")
<p(B")
= p(B)
- p(AB) < p(B)
(iv) Let B,,B,, B, be ordered bases of U,V,W respectively.
Let A=[T;B,,B,],A =[S/B,,B;]. Then AA =[ST:B,,B]

-.Rank ST = Rank A,A < Rank A by (iii)
=Rank T
. Rank ST < Rank T.

10.4.19 Note: p(AB) < min{p(A), p(B)} , A, B are matrices of suitable orders.

p(ST)<min{p(S), p(T)},T,S are linear transformations > ST exists.

10.5 The Inverse of a Matrix:

We have remarked that an n x n matrix is invertible iff its rank is n. Since we know how to
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compute the rank of any matrix, we can always test a matrix to determine whether it is invertible.
We now provide a simple technique for computing the inverse of a matrix using elementary row
operations.

10.5.1 Definition: Let A,B be mxn,mx p matrices respectively. By the argumented matrix

[A B] or [A/B] or [A/B] we mean mx(n+ p) matrix whose first n columns are the columns
of A and whose last p columns are the columns of B.

10.5.2 Theorem:
If Ais an invertible n x n matrix, it is possible to transform the matrix (A/1,) into the matrix

(In/A‘l) by a finite number of elementary row operations.
Proof: Suppose A is an n x n invertible matrix. Consider the n x 2n argumented matrix C = [A/In] .

We have A'C=[ A*A/AM ]=[I,/A"] e (1)
We know that a- is the product of elementary matrices, say

A" =E_E_,..E . Then (1) becomes:

E,E,..E[Al,]=AC=[I/A"]
Since multiplication on the left by an elementary matrix transforms the matrix by an

elementary row operation, it is possible to transform the matrix [A/In] into the form [In/A‘1] by
finite number of elementary row operations.

10.5.3 Theorem: If A, isinvertible matrix and if by a finite number of elementary row operations,
the matrix [ A/1,] is transformed into a matrix of the form [I,/B], then g_ o

Proof: Suppose A is an n x n invertible matrix.

For some n x n matrix, suppose that [A/l,] is transformed into [I,/B] by a finite number of

elementary row operations. Let E E,..E  be the elementary matrices corresponding to these
elementary row operations.

L EE, . E[A1,]=[1./B]

Let M =EE, ..

[M AM]=M[A/L,]=[1, /8]
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Clearly MA=1, and M =B and hence we have M =A"
~B=A"
10.5.4 Note: We write |A= A.-

By applying row operations of | on LHS, the same row operation should be applied on A.
This should be continued till we get BA=1.Then B= A™.

Solved Problems:

1311

1 1

10.5.5 Find the rank of (a) A:L 11 1](b) A=/1 0 1 1
B 0300

Solution: (a) One row is not a multiple of other so that the two rows are L.1.
Sp(A)=2

13 11 1311

Ru(-) Ry 3

) A~ |0 -300[~|0 -300|~|010 0/=Bsay
0 300 |00 00O 0000

A is reduced to B.

- p(A) = p(B) =2, since B has two independent rows.

1 2 31
10.5.6 Findtherankof A=|2 1 1 1
1 -110
Solution:
1 2 3 1 1 2 3 1/t 2 3 1
Ry1(-2) Rep (1) 3
A_|0 3 -5 -1 _10 3 -5 -1| _ |0 1 7 y — B, the Echelon
Do _3 0 0 0 3 /3
-3 -4 -1 1 00 1 0
form of A.

©2(A) = number of nonzero rows in the Echelon form = 2.
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2 3 -1 -1
10.5.7 Find the rank of A= -1 -2 -4
3 1 3 -2
6 3 0 -7
Solution:
1 -1 -2 -4 1 -1 -2 -4
AR12 2 3 -1 -1|R(210 5 3 7
13 1 3 -2|r (5|0 4 9 10
6 3 0 -7"0 9 12 17
1 -1 -2 -4 1 -1 -2 -4

L0001 -6 -3|=(910 1 -6 -3
0 4 9 10|g( 9|0 0 33 22

0 9 12 17 0 0 66 44
1 .1 -2 -4 1 1 -1 -2 4
re2l0 1 -6 —3|PG 0 1 -6 -3 ;
~ = b(Sa
0 4 33 22 0 0 1 g (=)
0O 0 0 O 00 0 0]

B is the Echelon form ... p(A) =3. (= number of nonzero rows of B)

1 -1 2 -3
4 1 0 2

10.5.8 Reduce the matrix A= 0 3 0 4 to the normal form and hence find the rank.
0O 1 0 2
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Solution:
1 -1 2 -3 1 -1 2 -3
R0 5 -8 14|=0 1 0 2
~|l0 3 0 4/7|0 3 0 4
0O 1 0 2 0O 5 -8 14
10 0 O 10 0 O
GO0 1 0 2RO 1 0 2
2|0 3 0 4z 50 0 0 -2
0 5 -8 14 0O 0 -8 4
1 0 0 O 10 0 O
210 1 0 0|0 1 0 O
~ 100 0 -2/7|/0 0 -8 4
0 0 -8 4 00 0 -2
1 1 00 O 1 1000
Rex[0 1 0 0 |rp 0100 N
~loo1-L~]oo 107"
000 1 0 001
JA~1, L p(A=4
0 2 3
10.5.9 Reduce the matrix A=|2 4 0| using row operations to a matrix B and obtain the rank.
3 01
Solution:
R, 2 40 R(Y) 1 20 R 2 0
A0 2 3| ~ |0 2 3| ~ |0 2 3
3 01 3 01 0 6 1
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12 0]gdf1 20 120

Rz (3) 10 Rys(-3)
~10 2 3| ~1]0 2 3] ~ |0 20
0 01 |00 1 001

RlzH)l OORZ%)l OO0

~ 10 2 0] ~|0 1 0|=1,
001 |00 1]

S A~1,B=1,. p(A)=3

[, O
10.5.10 Find non-singular matrices P and Q such that PAQ is of the form {O O] where
1 1 2
A=|1 2 3
0 -1 -1

Solution: Write A = Al

1 1 2 1 00/ (100
1 2 3|=/0 1 0|]AjO 1 O
0O -1 -1} {0 0 1] |0 O 1

1 1 2] 1 00][100
Apply : R,(-D:/0 1 1|=/-1 1 0|A[0 1 0
0 -1 -1/ |0 0 1| |0 0 1

1 0 0] [1 00] (1 -1 -2
Apply: C,(-1),C,(-2):/0 1 1 |=[-1 1 0|Aj0 1 O
0 -1 -1/ |0 0 1| |0 0o 1

100/ [1 0 0] 1 -1 -2
Apply R,():|0 1 1|=[-1 1 O0J|Al0 1 0O
000| |-1+11|]0 0 1
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100] 1 001 -1 -1
Apply C,(-1):|0 1 0|=|-1 1 O|Aj0 1 -1
000| |-111] |0 0 1

1 00 1 11

fP=-1 1 0[,Q=|0 1 -1|,then
-111 0 0 1

|: I 2 O2><lj|
PAQ =

Ol><2 lel
5 3 14 4
10.5.11 Reduce A=|0 1 2 1| to Echelon form and hence find the rank.
1 -1 2 O
Solution:
1 -1 2 O 1 -1 20
Rs R (-5)
A_|0 1 2 1| - |0 1 21
5 3 14 4 0 8 4 4

1 -1 2 0]gey/1 -1 2 0
Rs, (-8) 12
~l01 2 1/_|0o 1 2 1|=8B
0 0 -12 —4 001%

B is in Echelon form, and hence the rank of A is 3.

10.5.12 Verify whether the matrix A=

w N O

( Acharya Nagarjuna University )

2 4
4 2| isinvertible. If so, find its inverse.
31
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Solution: Given A=

w N O
w BN
R N A

0 2 41 0 O
The argumented matrix [A/1,]=]2 4 20 1 0
3 3 10 0 1

We convert the matrix into the form [1/B].

Rl242()10
[A/1]~[2 4 21 0 O
3 3 10 0 1
w[l 2 10 0
~ 10 2 41 0 O
3 3 10 0 1 |
2 100 & 0]
Ry (=3)
~ 10 2 41 0 O
0 -3 20 2 1
wn[l 2 L]0 &0
~10 1 2|2 0 o0
0 -3 -2[0 2 1
-2-1 1 31 1
|t 0 31 4 wo[l 0 31410
~ 101 2/ 00| ~|01 2[2 00
“Glo 0 4|2 21 00 1(3 = 1
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1 _>5 3
Ra(®) 1 0 1|+3 T 2
~ |0 1 o-2 2 -_1
00 1 -3 4
.. Alis invertible and
% 3
-1
At=-4 i
3 _3 1
8 8 4
12 1
10.5.13 Using elementary operations, verify whether A=|2 1 -1| isinvertible.
15 4

1 2 11 0 O
Solution: Consider the argumented matrix [A/1]=]2 1 -10 1 0

1 5 4/0 01

We verify whether [A/ I ] can be converted into the form [I /B] using elementary opera-
tions.

2 1/1 0 0
Ry (-2)
Now [A/1] ~ =|0 -3 -3-2 1 0
"l g 3 31 0 1
1 2 1/1 0 0
Ra, (1)
~ |10 -3 32 1 0
0 0 0/-3 1 1

[A/ I ] cannot be converted into the form [I /B], since the third row is a zero row.

Hence A is not invertible.
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10.5.14 SAQ: Findtherankof A=1 1 1 1

1 1 1

10.5.15 SAQ: Find therank of A=|-1 -1 -1
1 1 1

10.6 Answers to SAQ’s:

1 01

10.4.6 SAQ: A=|0 1 1|=p(A=7?
101

We observe that R, R, are identical = |A|=0

10
0. Sp(A)=2
But {O Ji p(A)
12 1R21(_1)1 2 1&(‘5)1 2 1

1047SAQ: A=|1 0 3| - |0 2 2| —|0 1 -1
11 2|0 11 0 -1 1

2 1
~|0 1 -1/ pA)=2
00 0

10.5.14 SAQ : Every 2nd order minor is 0.
. Rank A=1.

11
Ro1 (1)
105.15SAQ: A — |0 0 0|~ p(A)=1
Rsl(’l) O 0 O
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10.7 Summary:

Rank of an m x n matrix is discussed. Using elementary row/column operations, we
obtained normal form. We also explaind the procedure for finding inverse.

10.8 Technical Terms:
Rank, Elementary operations, Normal form.

10.9 Exercises:

1 230
10.9.1 Find the rank of the matrix A= 2432
o 321 3
6 8 7 5]
-2 -1 -3 -1
1 2 3 -1
10.9.2 Find the rank of the matrix
1 0 1 1
0 1 1 -1
2 -1 3 1
10.9.3 Find the rank of the matrix A=|1 -8 6 8
1 2 0 -2
111 -1
10.9.4 Find the rank of the matrix by reducing to normal form A=|{1 2 3 4
345 2

10.9.5 Find two non singular matrices P and Q such that PAQ is in the normal form, where

1 1 2
A=1 2 3
0 -1 -1
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10.9.6 Find two non-singular matrices P and Q such that PAQ is in the normal form, where

1 0 10
3 -1 21
A=
2 1 21
2 210
-1 -3 3 -1
1 2 -1 0
10.9.7 Find the inverse of A using elementary operations: A= > 5 2 _3
-1 1 0 1
10.10 Answers to Exercises:
10.9.1 3
10.9.2 3
10.9.3 2
10.9.4 2
1 0O 1 -1 1
10.9.5 P=|-1 1 0,0=/0 1 -1
-1 11 0O 0 1
1 0 0 O
10 0 -1
po| > % %qllo1 2 3
10.9.6 s 4 1 097
0 0 0 1
-1 -1 1 1
0 2 1 3
o 1 1 -1 -2
Al=
10.9.7 1 2 0 1
-11 2 6
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10.11 Model Examination Questions:

1. Expain the concept of rank of a matrix.

1 -1 2 -3
_ _ 4 1 0 2 _
2. Using elementary operations reduce A= 0 3 0 4 to normal form and hence find rank.
0O 1 0 2
1 1 2
3. Find nonsingular matrices P and Q such that PAQ is in the normal form, where A=|1 2 3
0O -1 -1

4. Using elementary operations, find the inverse of A=

w R~ O
R NP
P oW N

10.12 Reference Books:
1. Hoffman and Kunze, Linear Algebra, 2nd edition - Prentice Hall.

2. Stephen H. Friedberg and others - Linear Algebra, Prentice Hall India Pvt. Ltd - New Delhi.

- A Satyanarayana Murty



LESSON - 11

SYSTEMS OF LINEAR EQUATIONS

11.1 Objective of the Lesson:

In this lesson, we study the systems of linear equations and find solutions, when exist,
using elementary operations. The elementary operations are used to provide a computational
method for finding all solutions to such systems.

11.2. Structure of the Lesson:
This lesson has the following components.
11.3 Introduction
11.4 System of linear equations - Theoritical aspects
11.5 System of linear equations - Computationel aspects
11.6 Answersto SAQ’s
11.7 Summary
11.8 Technical Terms
119 Exercises
11.10 Answers to Exercises
11.11 Model Examination Questions
11.12 Reference Books
11.3 Introduction:

In this lesson, we study the systems of linear equations. “A System of n linear equations in
n unknowns has a solution” - This statement, sometimes, may be incorrect, because several
possibilities including no solution may arise.

11.4 System of Linear Equations - Theoretical Aspects:

The equation b=aXx +a,X, +...+a,X, ... 1)
expressing b in term of the variables X, X, ..., X, and the scalars a,, a,,... ,a, iscalled a
linear equation.

For a given b, we must find X, X, ..., X, satisfafying (1)
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A solution to a linear equation (1) is an ordered collection of n scalars y,,Y,...,Y, 3 (1) is

satisfied when X, =y, X, =Y,...,X, =Y, are substituted in (1).

11.4.1 Definition: A system of m linear equations in n unknowns over a field F or simply a linear
system, is a set of m linear equations, each in n unknowns. A linear system can be denoted by

\
X + 8% ..+ 8%, =h

QX+ A%+t A%, =,
....................... (S

_/
B Xy 8%y +.o 8 X, = by

where g; and b e F,1<i<m/1< j<nand X,X,...,X, are variables taking values in F.

a; S, - A, X bl
A Ay v By % bz
Ifwe write A=| = X = " ,B=| |, then
aml am2 amn Xn bn
the system can be represented as:
AX =B
A'is called coefficient matrix.
S
. | %] g
A solution of the system (S)isann - tuple S=| . |[€F >
Sh

As=B

The set of all solutions of a linear system is called the solution set of the system. A system
of linear equations is said to be consistent if it has a solution. Otherwise, the system is said to be
inconsistent.
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11.4.2 System of Homogeneous linear equations:

Consider a system of m homogeneous linear equations in n unknowns namely
X 8%+t aX, =0

By X + 8%, + ..+ 8y, X, =0

Ay X+ 8ppXy T+ X, =0
where &; € F. This system can be written as AX =0
11.4.3 Note: x, =0,X, =0,...,x, =0 is a solution of AX=0.

i.e. X =Q is a solution of AX=0. This is called the trivial solution or zero solution. Any
other solution is called a nonzero solution.

. AX =0 is always consistent.
A system AX = B of m linear equations in n unknows is said to be
(a) homogeneous if B=0O

(b) non-homogeneous if B#O

Any homogeneous system has atleast one solution, namely the zero solution.

11.4.4 Theorem: Let AX =0 be a homogeneous system of m linear equations in n unknowns
over afield F. Let K denote the set of all solutions of AX=0. Then K = N(L,)

Kis a subspace of F" dimK =n -rank L, =n -rank A.
Proof: We have K ={X e F"/AX :O}

We have proved that K is a subspace of F" anditis also equalto N(L,), the nullspace of
L,ie. K=N(L,).
-. We know thatrank L,+nullityL, =dimF"=n(-L,:F"—>F™)

= rank A+ nullity L, =n
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= nullity L, =n-r
11.4.5 Note: The system AX =0 has n—r L.| solutions.

11.4.6 Corollary: If m<n,, the system AX =0 has a non-zero solution.

Proof: Suppose m<n

-. RankA=Rank L, <m

~dimK =n-p(L,)>n-m, when K=N(L,)
Since n—m> 0, we have dimK >0, since K 0.
.3 anonzero solution se K .

.. S is anonzero solutionto AX =0O.

i.e. AX =0 has a nonzero solution.

We know that the solution set S of (] ) i.e. AX = O is a subspace of F". [Since
AO=0<0eS..¢#ScF".Let X, X, be solutions of AX =0
SAX =0,AX,=0= A(X,;+ X,)=0

Also A(kX,) = (kAX,)=kO =0
or AKX, +1X,) = AKX,) + AIX,) = KAX, +IAX, =kO+1.0=0 = kX, +IX, € S]

We observe that if AX =0 has a nonzero solution, then it has an infinite number of nonzero solu-

tions, since X; #0O is a solution = kX, is also a solution for every K ¢ R -

11.4.7 Note: A system of m homogeneous equations in n unknows with m< n, has a nonzero
solution.

(.p(A)=r<m<n=n-r>0)

11.4.8 System of non-homogeneous equations : The equations
A%+ 3% .+ 8%, =h)

QX+ A%+t Ay X, =,

B X+ BppXp oo 8 X, =,
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% b

. B - %] 5 |

can be written as AX =B, where A=(g;),,, X = S .B=] .
X, b,

The system AX =Q is called the homogeneous system correspondingto AX =B.

11.4.9 Theorem: Let K be the solution set of the system Ax = B and let K, be the solution set
of the corresponding homogeneous system AX =Q. Then for any solution Sto AX =B,

K={S}+K, ={S+K/KeK,}.

Proof: Let S be any solution to AX = B. We show that K ={S}+K,, = AS=B.
LetWeK.= AW=B.= AW-S)=AW-AS=B-B=0
=>W-SeK,

= 3K, e K, 5W-S=K,
~W=S+K, e{S}|+K, .. Kc{S}+K,
Now suppose W e {S} +K,, = 3K, e K, 5W =S+K,
AW = A(S+K,) = AS+ AK,
=B+O0O=B=>WeK
~{S}+K, cK
K ={S}+K,

11.4.10 Theorem: Let AX = B be a system of linear equations. Then the system is consis-
tent iff P(A) = p(A/B)

Proof: Suppose AX = B is a system of linear equations.

Here A is the coeffiencient matrix and [A/B] is the augmented matrix.

Weknowthat L,:F" > F™ L,(X)=AX.~» X eF".
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. AX = B has a solution means that 3X, e F" 5 AX, =B
= B=L,(X,)
= BeR(L,)
Let &,4a,,...,a, be the columns of A.
We know that R(L,) = Span {&,,a,,...,&,}

- AX = B is consistent

< AX = B has a solution.

< BeSpan {&,8,,...,a,]

But B € Span {a,a,,...,a,} < Span {&,8,,...,a,} =Span {a,,a,,...,a,, B}
< dim{a,a,,...,a,}=dim{a,a,,...,a,B}

<> rank A=rank = [A/B] . Hence the theorem.

Note: If p(A)# p[A/B] , the system is inconsistent (i.e.) system has no solution).

11.4.11 Theorem: If Ais a non-singular matrix of order n, then the system AX =B in n un-
knowns has a unigue solution.

Proof: Since A is nonsingular matrix of order n, |A/#0.

~p(A) = n,p[A/B] =n
- p(A) = p[A/B]= AX =B is consistent.
— AX = B has a solution.
Since Ais nonsingular, A™ exists . AX =B= A™"(AX)=A"'B
= (ATAX=AB= IX=A'B
= X=A"B

. X = A'B is a solution of AX =B.
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Let X, X, be solutions of AX =B = AX, =B, AX, =B= AX, = AX,

L ATHAX) = ANAX,) = (ATA X, = (ATA X, = Ly, =y, = X, = X,
Hence the uniqueness and hence the theorem.

11.4.12 Theorem: Let AX = B be a system of n linear equations in n unknowns. If Ais invertible,

then the system has exactly one solution A™*B. Conversely if the system has exactly one solution,
then Ais invertible.

Proof: Suppose A is inversible = A exists.
Write s= A'B.-
- As=(AAHB=(A'AB=1B=B
- s= AlB isasolutionof AX = B.
Let s, be a solution of AX=B= As =B
Now As=B,As =B= As=As,
S AM(As)=AM(As) = (A'A)s = (A'A)s
=>Isg=Is=> s =s
- s= A'B is the only solution of AX = B.
Conversely suppose that the system AX = B has exactly one solution namely s. - As=B
Let K, denote the solution set for the corresponding homogeneous system AX=0.
~{s)={s}+K, =K, ={O}
~.N(L,) ={O} = L, is non-singular
— Aisinvertible[L,:F" — F" is one-one = L, is onto]

Hence the Theorem.

Solved Problems:

11.4.13 Solve x—2y+ z=0 (System containing one equation in 3 unknowns)

Solution: A=[1 -2 1] is the coefficient matrix = p(A) =1.
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If K is the solution set, thendim K =3-1=2.

0 1
We observe that o, =| 1|,a, =| O | are independent vectors in K;{al,az} is a basis of K.
2 -1

K ={ao, +a,,/a,a, €R}is the solution set.
11.4.14 Solve: x+2y+z=0,x—y-z=0 (System of 2 equations in 3 unknows)

1 2 1
Solution: The coefficient matrix is A=L 1 _J

We observe that p(A) =2

If K is the solution set, thedim K =3-2=1

1
We observe that ¢ =| -2 | is a basis of K.
3

Solution setis = {aa/a e R}

11.4.15 Solve : x+2y+3z=0,3x+4y+4z=0,x+10y+12z=0

1 2 3
Solution: The coefficient matrixis A=|3 4 4
7 10 12
1 2 3 1|12 3 1 2 3
Ra(-3) R() R (4)
A~0—2—5~015~017=
2 2
R31( 7) O 4 _9
0O 4 -9 0 0 1

. A~ B .. B isthe echelon form.

.. p(A) =3 = number of unknowns.
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K= . The system has zero solution only.

o O O

11.4.16 Problem: Solve : x+y+2z=0,3x+4y+5z2=0,2x+3y+4z=0

1 1 1
Solution: The coefficient matrixis A={3 4 5
2 3 4
111 11 1
Ry (-3) Ra (1)
A_|012 — (01 2|=B
@1 1 2 000

~A~B,p(B)=2..p(A) =2
If K is the solution set, thendim K =3-2=1.
. The system has only one L.l solution.

The given system is equivalentto X+ y+2z=0
y+2z=0
= y=-2z

S X=22+72=0=>Xx=2

X z 1
y|l=|-2z|=2 -2
z z 1

If z=k, then x=k,y=-2k,z=k

1
~K={ka/keR},a=|-2
1
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11.4.17 Solve x+y—-z+t=0,Xx-y+2z-t=0,3x+y+t=0

1 1 -1 1]
Solution: The coefficient matrixis A={1 -1 2 -1
31 0 1]
1 1 -1 1 1 1 -1 1]
Rou(-1) Ra (1)
Now A _ |0 -2 3 2| —~ |0 -2 3 -2|=B (say)
3 2 3 -2 00 0 O]

p(B)=2..p(A)=2

Let K be the solution set.

sdimK=n-r=4-2=2

The given system is equivalentto X+ y—z+t=0
—-2y+3z-2t=0

Let z=k,t=k, .'.2y:3k1—2k2:>y:gkl—k2

~'°X=—y+2—'[=gk1+k2+k1—k2=_%k1

1, ] 1
x| | 2% |72 o
y 3 3 -1
° = =| — _k = -
S.a . 2k1 2 kl 2 +k2 0
t K 1 1
L k2 a L 0 i
0
. Solution set K = K, +K, K.k, eR




( Rings and Linear Algebra ] (11.11) [ Systems of Linear Equations ]

11.5 System of linear equations - computationel aspects: In this section, we use elemen-
tary row operations to find one solution and using that all the solutions to the given non-homoge-
neous system (when the system is consistent).

11.5.1 Definition: If two systems of linear equations have the same solution set, then the sys-
tems are said to be equivalent.

11.5.2 Theorem: Let AX =B be a system of m linear equations in n unknowns and C be an
invertible m x m matrix.

Then the system (CA)X =CB is equivalentto AX =B.

Proof: Let K be the solution set for AX = B and let

K! be the solution set for (CA)X =CB.
Let We K. Then AW =B = C(AW)=CB = (CAW =CB
SWeK' KoK
Let W e K' = (CAW =CB = C(AW) =CB
Hence AW =C™*(CAW)=C*(CB)=(C'C)B=I1B=B

>WeK.. K'cK.. K=K

Hence the theorem.

11.5.3 Corollary: Let AX =B be a system of m linear equations in n unknowns. If [Al/ 81] isa

matrix obtained from [A/B] by a finite number of elementary row operations, then the system

AlX = B! is equivalent to the original system.

Proof: Let (A/B) be the augmented matrix of the system AX = B.

Let (Al/Bl) be obtained from (A/B) by elementary row operations.

This is equivelant to pre-multiplication of [A/B] by the elementary matrices (of order m x m),

E.E,..E,. Let C=E,E, ,....E,E,.
(Al/ Bl) =C[A/B]=[CA/CB]. Now C s invertible, since each E, is invertible.

Hence the system A'X = B' is equivalentto AX =B.
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11.5.4 Echelon form of a matrix:

If all the elements in a row of a matrix are zeros, then it is called a zero row and if there is
atleast one nonzero element in a row, then it is called a nonzero row.

11.5.5 Definition: A matrix is said to be in Echelon form if it has the following properties:
i) Zero rows, if any, must follow nonzero rows.
ii) The first nonzero element in each nonzero row is 1.

iii) The number of zeros before the first nonzero element in a row is less than the number
of zeros before the nonzero element of the next row.

11.5.6 Note: 1) Some authors ignore the property (ii) to consider a matrix to be in Echelon form.

2) The rank of a matrix in Echelon form is equal to the number of nonzero rows of
the matrix.

11.5.7 Gaussian Elimination:

We now explain a procedure for solving any system of linear equations by using the follow-
ing example. This procedure is called Gaussian elimination.

Consider the system of linear equations : 3X, +2X, +3%, —2X, =1
XX+ % =3

X +2X,+X—X, =2

323 21
The augmented matrixis [A/Blis {1 1 1 0 3
121 -1 2

By performing elementary row operations, the augmented matrix is transformed into an
upper triangular matrix in which the first nonzero entry of each row is 1 and one occurs in a column
to the right of the first nonzero entry of each preceding row.

(A=[a,-j ]nxn is upper triangular if &, =0 if i > J)
1. To get 1 as the first row first column element, we interchange R, and R..
-1 2 1 -12
[A B]-|1 1 1 0|3
3 2 3 -211
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2. Using type 3 row operations, we use R, to get zeros in the remaining positions of C..

1 2 1 -1 2
By applying R,,(-1),R;,(-3), weget|0 -1 0 1 1
0 40 1 -5

3. We get 1 in the next row in the left most possible column, without using previous rows. In this
example, C, is the left most possible column.

1 2 1 -1 2
By applying R,(-1), we get 1 in (2,2) position,weget |0 -1 0 -1 -1
0O 40 1 -5

4. Now use Type 3 - elmentary row operations to get zeros below 1. In this example, we apply

121 -1 2
R,(4,0 1 0 -1 -1
000 -3 -9

5. Repeat steps 3, 4 on each succeeding row until no nhonzero rows remain.

121 -1 2
By applying R,(-%),weget|0 1 0 -1 -1
000 1 3

6. Work upward, begining with last nonzero row and add multiples of each row to the rows above.
(so that we get zeros above the first nonzero entry in each row).

12105
By applying R,(1),R,,(1), weget [0 1 0 0 2
00013

7. Repeat the process described in step 6 for each preceeding row until it is performed with the 2nd
row at which the reduction process is complete.

In this example, by applying R,(-2), we get

o O -
O » O
o O B+
O O
w N P
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This matrix corresponds to the system : X, + X, =1

X =2
X, =3
This system is equivalent to the original system.

The equivalent system can easily be solved.

Solved Problems:

11.5.8 Show that the equations x+y+z=4,2x+5y—-2z=3, X+ 7y—7z=>5 are inconsistent.

Solution: The augmented matrix is

11 1 4
[A/B]=|2 5 -2 3

17 -7 5

11 1 4 11 1 4
Ry1(-2) Rsp (-2)
10 3 -4 5 _|0 3 -4 -5
Vo 6 8 -9 00 0 1

p(A)=2p[A/B]=3
Since p(A) # p[A/B] , the system is inconsistent.
11.5.9 Solve the System : x+2y+2z=2,3x+y-2z=1,
4x-3y—-2z=3

2X+4y+2z=4

Solution: The augmented matrix of the system is :

1 2 1 2
3 1 -2 1

Bl =
[A/] 4 -3 -1 3
2 4 2 4
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1 2 1 2] 1 2 1 2
R0 5 -5 5/F|o 1 1 1
r(a0 -11 -5 -5| 7 |0 -11 -5 -5

0 0 0 O 0 0 0 O
121 2 121 2
1
Real0 1 1 11°%@|0 1 1 1
~“ /006 6] |0011
0 00O 0 00O

p(A)=3= p[A/E]

The system is equivalentto x+2y+z=2

p(A) =3.. Aisinvertible and hence the system has a unique solution, namely

11.5.10 Problem: Obtain for what values of ) and u, the equations
X+Y+2=6,x+2y+32=10,x+2y+ Az= u have

(a) no solution (b) a unique solution (c) an infinite number of solutions.

11 1|6

Solution: The augmented matrix of the system is [A/B]=|1 2 3[10
1 2 Au
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11 1 6
Ry (-1)

—~ 01 2| 4
00 0 A-3/u-10

If =3, then p(A)=3 and p[A/B]=3.
. The system has unique solution.
if 1 =3and =10, then p(A) =2=p[A/B]<3.

. The system has an infinite number of solutions.

111 6
If A=3and 4 =10,then [A/B]~{0 1 2| 4
0 0 0/u-10

Since u-10%0, p(A) =2+ p[A/B](=3).

In this case, the system is inconsistent.

Hence A =3 u#10= system is inconsistent.

1#3 = System has unique solution.

( Acharya Nagarjuna University )

A =3, u=10= System has an infinite number of solutions.

11.5.11 Solve the following system by reducing to reduced row echelon form

2X + 3%, + X, +4X, —9%, =17
X+ X+ X+ X, —3% =6
X + X, + X, +2X, —5% =8

2X, + 2%, + 2%, +3X, — %, =14

Solution: The augmented matrix is:

2 31 4 -9 17
1111 -3 6

Bl =
[A/ ] 1112 -5 8
2 2 2 3 -8 14
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1111 -36
R:|2 3 1 4 -9 17
11112 5 8
2 223 -8 14
111 1 -36
Ra2/0 1 -1 2 -3 5
(/0 O 0 1 -2 2
00 0 1 22
111 1 -36
R0 1 -1 2 -3 5
~ 100 0 1 -2 2
00 0 0 0 O

- p(A)=3=p[A/B]
The system is equivalentto X, + X, + X, + X, —3%, =6
X, =X +2X,—3% =5
X, —2% =2
System has n—r =5-3=2 L.l solutions:
Let X, =t,% =t, X, =2+ 2,
L% -t +2(2+2t,) -3, =5= X, -t +4+t,=5
=X =1+t -t
SX ALt -+t 42420, -3, =6= X + 2t - 2t, =3

— X =3-2t +2t,
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x| [3- 2t + 2tz_ 3 -2 2
X, 1+t -t 1 1 -1
X |= t, =0|+t| 1 |+t,]| O |,t,t,eR
X, 2+ 2, 2 0 2
1% | | t, 1 10 |0} 1]
3] 2] 2]
1 1(1-1
We observe that | O | is a particular solution of the system and 1,0 is a basis of the
2 0 2
0] 101

corresponding homogeneous system.

11.5.12 SAQs: Verify whether the system x+2y+3z=0
3X+4y+4z=0

7x+10y+12z=0

has a non-trivial solution.

11.5.13 SAQ: Verify whether the system 2x+6y+11=0
6x+20y—-6z+3=0

6y—-18z+1=0
is consistent.

11.5.14 SAQ : Solve 2x—y+3z=8
—-X+2y+z=4
3X+y-4z=0
11.5.15 SAQ: Verify whether the system X+ y+z=-3
X+y—-2z=-2

2X+4y+7z=7

is consistent.
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11.5.16 SAQ: Verify whether the system x+2y—z=3

X—-y+2z=1
2X—-2y+3z=2
X-y+z=-1

is consistent. If it is consistent, solve.

11.6 Answer to SAQ’s:

1 2 3
11.5.12 SAQ: The coefficient matrixis A={3 4 4
7 10 12

3
Rez (4)

~ 10 1 E

2

1

00

Since A~ B and B is the echelon form, p(A) =3

~.I'=nNn..The system has trivial solution only.
11.5.13 SAQ: The augmented matrix is

2 6 0 -1 2 6 0—11R3

(

Systems of Linear Equations

)

[A B]=|6 20 -6 -3| ~ |0 2 6|30
0 6 -18 -1 0 6 -18-1

p(A)=2,p[A/B]=3.. p(A) # p[A/B]

.. The system is inconsistent.

2 (=3

~ |0 2 -6/30

)2 6 0-11

0O 0 0-91
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11.5.14 SAQ: The augmented matrix of the system is

2 -1 3 8] [-1 2 1 4
[AB]=|-1 2 1 4|—|2 -1 3 8
3 1 40| |3 1 40

12 1 4&(;)_121 4
Ro1(2) 3 5 16
~03516~0153
Re; (+3)

0 711 0 7 -1 12

12 1 4 |12 1
Rep(-7) Rz
~10 1 % 18| o 1Y 1A
0 0 3 -763 0 0 1
. p(A) = p[A/B]=

.. The system is consistent. It has unique solution.

The equivalent system is —x+2y+z=4

yo 5, 16
3 3

z=2

y+E 16:y—z
3 3

S X+4+2=6=>X%x=2

2

- solutionis | 2
2
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11.5.15 SAQ : The augmented matrix is

1 2 -13
11 13 1 1 1 -3
Rau(-3) Ra(-D|Q -2 -5|7
[A/B]=|3 1 -2|-2| ~ |0 -2 -5 7| ~
0 0 020

2 4 7|70 2 5 13

. p(A) =2=3=p[A/B].. The system is inconsistent.

1 2 -1 3
-1 2 1
11.5.16 SAQ: The augmented matrix is [ A/B] = 3
2 2 3 2
1 -1 1 1
1 2 -1 3 1 2 -1 3
5 R0 -7 5 -8|Re(D|0 -1 0 -4
[ (20 6 5 -4/ 7 |0 6 5 -4
R (-1)
0 -3 2 -4 0 -3 2 -4
1 2 -1 3 12 -1 3
R(DI0 1 0 4|=O®0 1 0 4
0 6 5 -4|r0 0 5 20
0 -3 2 -4 00 2 8
1 +2 -1 3
R0 1 0 4
rRp|0O 0 1 4
0O 0 1 4
1 2 -13
Ro(-DI0 1 0|4
~ 100 14
0 0 00
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~p(A) = p[A/B] =3.". The system is consistent. Equivalent system is
X+2y-2=3y=4,z=4..x=-1
. The system has unique solution.

11.7 Summary:

The theory of homogeneous linear equations and the theory of non homogeneous linear
equations is discussed.

11.8 Technical Terms:

Linear equations, homogeneous, non-homogeneous linear equations consistency, incon-
sistency.

11.9 Exercises:
11.9.1 Find the dimension and basis set of X, +3X, =0,2x +6X, =0
11.9.2 Solve: X +2X, =%, =0,2X + X, + X, =0
11.9.3 Examine for consistency x+2y—-z=3
X-y+2z=1
2X—-2y+3z=2
X—-y+z=1
11.9.4 Solve: 2x+2y-2z=1
AX+2y—2=2
6X+6y+41z=3~+ 1R
11.9.5 Determine whether the following system has a solution:
X +2X,+3%, =1
X+ X% =% =0

X +2X,+% =3
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11.10 Answers to Exercises:
{__3_}
11.9.1
- 1 -

11.9.2 1

11.9.3 Consistent

11.9.4 If 4 £ 2, system has unigue solution.

A=2=> x:%—k,y:k;z:o,keR
11.9.5 System has a solution.

11.11 Model Examination Questions:

1. Prove that the system AX=0 has n-—r L.l solutions, where ris rank A and n is the number
of unknowns.

2. Prove that the system AX = B is consistent iff p(A) = p[A/B]
3. Solve the system X, +2X,+ X, =2

X + X, —2% =1

4x, —3%, — %, =3

2X +4X, + X, =4

4. Prove that the system AX = B has unique solution iff A is invertible.

5. Show that the system x+2y—-z=33x-y+2z=1, 2Xx-2y+3z=2,Xx-Yy+2z=1 is consis-
tent and solve.

11.12 Reference Books:
1. Hoffmen and Kunze - Linear algebra, 2nd Edition Prentice Hall.

2. Stephen H. Friedberg and others - Linear algebra - Prentice Hall-India Pvt. Ltd. - New Delhi.
- A. Satyanarayana Murty



LESSON - 12

DIAGONALIZATION

12.1 Objective of the Lesson:

This lesson is concerned with diagonalization problem. For a given operator T on a finite
dimensional vector space we study about

i) The existance of an ordered basis B for V and
ii) If such basis exists the method of finding it.

A solution of diagonalization problem leads to the concept of eigen values and eigen vec-
tors and so we study about,

iii) Finding eigen values and eigen vectors of linear transformations.

12.2 Structure of the Lesson: This lesson contains the following items.
12.3 Introduction

12.4 Diagonalizable linear operator - Eigen Vector and eigen values of a
linear operator

12.5 Worked Out Examples

12.6 Properties of eigen values

12.7 Similarity

12.8 Similarity of matrices using trace.

12.9 Trace of alinear operator

12.10 Determinant of alinear operator - relating theorems
12.11 Exercise

12.12 Diagonalizability

12.13 Worked out examples

12.14 Polynomial Splitting and algebraic multiplicity
12.15 Eigen space

12.16 Summary - Test for Diagonalization

12.17 Worked out examples

12.18 Positive integral power of a diagonalizable matrix - Examples
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12.19 Invariant Subspaces

12.20 T-Cyclic subspaces generated by a non-zero vector
12.21 Cay ley - Hamilton Theorem and Examples

12.22 Summary

12.23 Technical Terms

12.24 Model Questions

12.25 Exercise

12.26 Reference Books

12.3 Introduction:

In this lesson we introduce the important notions of eigen values and eigen vectors of a
linear operator and a square matrix defined over a field. Using these concepts we discuss the
diagonalization and diagonalizability of linear operators and matrices.

12.4 Diagnolizable Linear Operator:
12.4.1 Definition:

1) Alinear operator T on a finite dimensional vector space V is called diagonalizable if there

is an ordered basis B for V such that [T]B is a diagonal matrix.

2) A square matrix A is called diagonalizable if L, (left multiplication transformation by
matrix A) is diagonalizable.

12.4.2 Eigen vector and eigen value of a linear operator :

Definition: Let T be a linear operator an a vector space V. A non zero vector vy ¢V/ is called an

eigen vector of T if there exists a scalar 3 suchthat T(v) =AV . The scalar } is called the eigen
value of A corresponding to the eigen vector v.

12.4.3 Definition: LetAbein M__(F). A non zero vector \y ¢ F" is called an eigen vector of A

nxn

if vis an eigen vector of L, ; thatisif Ay= Av for some scalar } . The scalar j} is called the eigen
value of A corresponding to the eigen vector v.

Note: i) The words characteristic vector, Latent Vectors, proper vector, spectral vector are also
used in place of eigen vector.

i) Eigen values are also known as characteristic values, Latent roots, proper values, spec-
tral values.

iii) A vector is an eigen vector of a matrix A if and only if it is an eigen vector of L,.
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iv) A scalar ) is an eigen value of A, if and only if it is an eigen value of L,.

In order to diagonalize a matrix or a linear operator we have to find a basis of eigen vectors
and the corresponding eigen values.

Before continuing our study of diagonalization problem, we give the method of computing
eigen values.

12.4.4 Method of Computing eigen Values:

Theorem: Let Abe an nxn matrix in the entries in the field F. Then a scalar , is an eigen value
of Aif and only if det (A—A1,)=0

Proof: A scalar ) is an eigen value of A, if and only if there exists a nonzero vector y ¢ " such
that Ay = Jv. Thatis (A— Al )v=0. Thisis true if and only if A— Al is notinvertible. How-

ever this result is equivalent to the statement that det (A—Al,) =0.

12.4.5 Characteristic matrix of the given matrix A:

Definition: Let A be a nxn matrix with entries in the field F. 3 be a scalar, then the matrix
(A—Al) is called the characteristic matrix of A.

12.4.6 Characteristic polynomial of A:

Definition: Let Abe a nx n matrix with entries in the field F. Then the polynomial f (1) = det(A-11)

is called the characteristic polynomial of the square matrix A of order n - of degree nin 4 . f(4) is
the characteristic function of A.

Note: By theorem 12-4-4 it follows that the eigen values of a matrix are the zeros of its character-
istic polynomial.

12.4.6A Characteristic polynomial of alinear operator:

Definition: Let T be a linear operator on a n - dimensional vector space V with an ordered basis

B. We define the characteristic polynomial f (1) of T to be the characteristic polynomial of A= [T]

ie. f(1)=det(A-Al).

B

Note: The characteristic polynomial of an operator T is defined by det (T —Al).

12.4.6B Characteristic Equation:
The equation f(4) = |A—M | =0 is called the characteristic equation of A.

Note : 2 is a characteristic value of the matrix A if and only if det (A—41) =0.
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12.4.7 Definition: Spectrum: The set of all characteristic values of A is called the spectrum of A.
12.4.8 Short cut method:

Working procedure to find the characteristic polynomial of a matrix A.

a; a,
Let A=|a, a, a,
9y Q; g

The characteristic polynomial of A corresponding to the characteristic root } is given by
A3 —tr(A)A%+ (A, + A, +A )L —det A. Where A, A,, A, denotes the cofactors of the diago-

nal elements a,;,a,, and a,, respectively. Observe that the coefficients of the characteristic poly-

nomial of a 3x 3 square matrix A are with alternating signs as follows

§ =tr(A) =Sum of the terms of the principal diagonal.
S =A,+A,+A; where

8y 8yn

;A
; :(_1)2+2
8 g &

&, &
; :(_1)3+3
U A

1:_11+1
A =D a,

here each S, is the sum of all principal minors of A of order k.

Note: i) If Ais a n x n square matrix then its characteristic polynomial is
A"=SAT+ S A + L+ (DS,

Where S, is the sum of principal minors of order k.

i) For a diagonal element of a square matrix, its minor and cofactor are the same.

12.4.9 Show that every square matrix need not posses eigen values.

0 1
Solution: Consider the matrix AZ[_l O} over the field of reals. Its characteristic equation is

|A-A1|=0.

oS 32
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-4 1 )
= det =0=>1°+1=0
-1 -2

Which has no solution is the field of real numbers. So A has no characteristic value and
hence no characteristic vector over the field of reals.

However if A is regarded as a complex matrix then its characteristic equations namely

12 +1=0 has two distinct roots I, — 1 over the field of complex numbers and consequently A
has two distinct eigen vectors.

12.4.10 Theorem: Let Ae M __ (F). Then show that

nxn

i) The characteristic polynomial of A is a polynomial of degree n with leading coefficient
(=" . ii) A has atmost n distinct eigen values.

Proof: Let A= [aﬁ] . where the entries of A belongs to the field F.

nx

The characteristic polynomial of A is given by |[A—Al].

i.e. the characteristic polynomial of A is

YR A VA a,
A, By e a,,
- DODRT- R a,, .,

Expanding the determinant, we get the polynomial as (-1)" {l” +al"t+a A"+ an}

so the leading coefficient is (-1)" and as the polynomial is of degree n; it can not have more
than n zeros. So A cannot have more than n eigen values.

Note: If T:V —V is alinear operator such that dim V = n; then [T]B =Aisa nxn

matrix. So det (A—Al) is a polynomial of degree n. So A or T can not have more than n dis-
tinct eigen values.

1.4.11 Procedure to find eigen values and eigen vectors:

Let A= [6,»,» ]nxn be the square matrix of order n.

Step 1.

Write the characteristic equation of A given by |A— Al | =0. Thisis an equation of degree n
in A.
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Step 2: Solve the equation |A—/1I | =0 togetnroots A, 4,...4,. Which are the eigen values of A.

Step 3: The corresponding eigen vectors of A are given by the nonzero vectors V = [Vl,vz,...,vn]
satisfying the equation AV = AV or (A—A1)V =0 where i=12...n

12.4.12 Theorem: Alinear operator T on a finite dimensional vector space V is diagonalizable if
and only if there exists an ordered basis B for V consisting of eigen vectors of T. Further more if T

is diagonalizable, B = {vl, V,, ,__,vn} is an ordered basis of eigen vectors of Tand D = [T]B thenD

is diagonal matrix and d”. is the eigen value corresponding to V; for 1< j <n.

Proof: Let V be a finite dimensional vector space and T be a linear operator on V. Suppose T is

diagonalizable. Then there exists an ordered basis B = {Vl’VZ""’Vn} for V such that [T]B is a

diagonal matrix. Note thatif D = [T]B is a diagonal matrix, then for each vector Vv, € B, we have
n
T(Vj) = zdijvj = dijj = ﬂ“jvj where lj = djj
i=1

Conversely if B ={v,,V,,...,V,} isan ordered basis of V, such that T(v;) = 4;v; for some

scalars A, 4,..4,, then T(v;) =0v, +0v, +...+ ,V, +...+ 0V,

A O........ 0

0 4 o :
Then clearly [T]B = . : : which is a diagonal matrix.

0 0 A

In the preceeding paragraph, each vector V in the basis B satisfies the condition T (v) = Av
for some scalar )| . Moreover, as V lies in a basis, V is hon zero. Hence the theorem.

Note: To diagonalize a matrix or a linear operator we have to find a basis of eigen vectors and the
corresponding eigen values.

12.5 Worked Out Exampes:

1 3 1 3
W.E. 1: Let A:{4 2}, B={v,V,} where v, :{ } v, :{4} is an ordered basis of R?. Prove

-1

that v;,V, are eigen vectors of A. Find [L,],. ShowthatAand [L,], are diagonalizable.
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_ AL 13 v = 1 v - 3
Solution: Given 2=, 5 T 41127 4

ot L LA

Where L, =T .

So v, is an eigen vector of L, and hence vV, is an eigen vector of A. Here 4, =-2 is the eigen.

value corresponding to Vv, .

1 3||3| [3+12] |15 3
Further more L,(v,) = = = =5 [=5y,
4 2|4] |12+8] |20 4

So v, is an eigen vector of L, and so Vv, is an eigen vector of A; with the corresponding
eigenvalue 1, =5. Note that B= {Vl,vz} is an ordered basis of R? consisting of eigen vectors of

bothAand L, and so Aand L, are diagonalizable.

B

-2 0] . _ :
Further more [L,], = 0 & is a diagonal matrix.

5 4
W.E. 2: Determine the eigen values and eigen vectors of the matrix A= L 2} .

Solution: The characteristic equation of A is |A—),I | =0.

=0
1 2-2

‘5—1 4 ‘
=
= (5-1)2-1)-4=0=> A2—-T71+6=0
=>(1-6)(1-)=0=>1=6,1
So the eigen values of A are 6, 1.

To find the eigen vector correspondingto } =6:
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Vi

The eigen vector v =
V2

} of A Corresponding to the eigen value 6 are given by the non zero

solution of the equation (A—61)v =0

1 2-6]v,
-1 4[| 0
- :O:
1 4V, 0
R, + R gives

-1 4\v| |0
0 0llv,| |0
= -V, +4v, =0=V, =4v, putting V, =1 we get v, =4.

Sovy = {ﬂ is an eigen vector of A; Corresponding to the eigen value 6.

The set of all eigen values of A corresponding to the eigen value 6 is given by Clv' where

C, is a nonzero scalar.

The eigen value v of A corresponding to the eigen value 1 are given by the non zero solu-
tion of the equation (A—Al)v=0

S
o[

=>4, +V,=0=>vVv, =-V,

Let v, =1 them v, =-1
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. 1
Sov = { J is an eigen vector of A corresponding to the eigen value 1. Every non zero

1
multiple of " . Which is of the form C, {_ J where C, # 0 is an eigen vector corresponding to

the eigen value 1.

WE. to 3 T:RR->FR(R) is a linear operator defined by
T(a,b,c) =(7a—4b+10c,4a—3b+8c,—2a+b-2c) find the eigen values of T and an ordered

basis B for R3(R) such that [T], is a diagonal matrix.

Sol: Gives T : R, — R is defined by T(a,b,c) = (7a—4b+10c, 4a— 30+ 8c,~2a + b — 2c) . Consider
the usual ordered basis B={g,e,,&,} for g2 where g =(1,0,0),&,(0,1,0),(0,0,1)
T(g) =T(L0,0) = (7(2) —4(0) +10(0), 4(1) — 3(0) +8(0) — 2(1) + 0— 2(0))
= (7,4,-2)
= 7(1,0,0)+4(0,1,0) - 2(0,0,1)
=76 +4e, 26,
T(e,)=T(0,1,0) = (-4-3,1)
= —4(1,0,0) - 3(0,0,0) +1(0,0,0)
= —4g —3e, +1e,
T(e,) =T(0,1,0) = (10;8,-2)

=10e +8e, - 2¢,

7 -4 10
ATl,=|4 88 (1)
2 1 -2

If ) is an eigen value of A; then [A—A1|=0
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or = 4 -3-1 8 |=0

From (1)

trace of A=7-3-2=2

-3 8
—(_ 1+1 . 7: :6_8:_2
A, = (-1)*" minor of ‘1 _2‘
22 mi (-3 = A0 14+20=6
A, = (-1)*? minor of =l o= -
7 _
A, = (-1)** minor of (-2) = 4 4 -21+16=-5

Their Sum = A, + A, + A, =(-2+6-5=-1
det A=7(6-8)+4(—8+16)+10(4—-6)

= 7(=2) + 4(8) +10(~2) = -2

The characteristic equation is

( Acharya Nagarjuna University )

23_22 traceof A +A (A, + A, + A)—-detA=0 1 [1-2-12

A2 -227 -1 +2=0= f(A)say
f(1)=12-2(1)?-1+2=0

The other factoris 12—1-2=(1-2)(1+1)

Hence the characteristic equationis (1 -1)(1 -2)(1 +1) =0

So characteristic values are -11,2.

i) To find the characteristic vector correspondingto 3 =—1.

(A-Alv=0

- ) —1isafactor.
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= 4 -3+1 8 |v,|=|0
| -2 1 -2+1jv,| |O
8 -4 10||v,| |O
=4 -2 8]|v,|=|0
-2 1 -1||v 0

2R, - R,4R, + R gives

8 -4 10| v, 0
0 0 6|v|=0
0 0 6|V 0
R,—R, gives

8 -4 10| v, 0
0 0 6|v|=0
0 0 OV 0

6v,=0=v,=0
8v,—4v,+10v, =0=8v, =4v, = Vv, = 2V,

put v, =1then v, =0
Vl

SoV = V, |=| 2| and every scalar multiple of it is an eigen vector.
V3

i) To find the eigen vector correspondingto 4 =1

(A-Al)v=0
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7-1 -4 10 [v] [0
=| 4 3-1 8 |v|=|0
2 1 -—2-1||v]| |0

6 -4 10| v, 0
=4 -4 8| v,|=|0
-2 1 -3||lv 0

1 1
RiXE'RZX4 gives
3 2 57v] [0
1 -1 2|v|=|0
2 1 -3||v]| |0

R, -3R,,R; + 2R, gives

0 1 -1v 0
1 -1 2|v,|=0
0 -1 1|V, 0

R+Rgves |1 -1 2|v,|=|0
0 -1 1| v |0

V, -V, =0=Vv, =V,

V-V, +2v, =0=> Vv, +v, =0=> v, =—v,

putting v, =1, v, =V, =-1

1

%)
o
<.
[

< < <
N
[

-1

( Acharya Nagarjuna University )

—1| and every scalar multiple of it is an eigen vector.
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iii) To find the eigen vector correspondingto | =2.

(A-21)v=0

5 -4 10|lv 0
=4 -5 8|v,|=|0
-2 1 -4V 0
-2 1 -4jlv 0
R < R, gives 5 8% =0
-4 10 || v, 0
R, +2R,2R, +5R gives
-2 1 -4y 0
0 3 0}v|=0

0 -3 0w/ |0

R, - R, gives

-2 1 -A4jv 0
0 83 0||v,|=|0|=-3v,=0=V,=0

2 and
0 0 Ofwv 0

=2V, +V, -4, =0= 2v, =—-4v, = v, = -2V,

Vv, 2
Put v; = -1, then v, =2,v, =0,v, =—-1and so vV = V,|=| 0| and every non zero scalar
Vv, -1

multiple of it is an eigen vector.
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The basis for which [T, is a diagonal matrix is B’ = {v',v",v"'}
ie. B ={(1,20),(1-1-1)(2,0,-1)}

W.E. 4: Let T be the linear operator on B,(R) defined by T f(x)]= f(X)+(x+1) f (x) find the
eigen values of T.

Solution: B = {ZL X, X2} is the standard Basis of P,(R). We are given linear operator on P,(R)
defined by T[ f(X)]= f (X)+(x+1) f (x)
T(1) =1+ (x+12)(0) =1=1(1) + Ox + Ox*
T(X) =x+(x+D(@)
= 2X+1=1(1) + 2.x+ 0x?
T(X*) = X* +(x+1)(2x)
= 2X+3x* =0(2) + 2.x+3.X°

So Az[T]B =

o O k-
oSO N -
w N O

The characteristic equation is |A—l| | =0

= (1-2)[(2-2)(3-2)] =0 (expanding along first column)
— (1= 2)(2-1)3=2A) =0

=>1=123



( Rings and Linear Algebra ] (12.15) [ Diagonalization ]
12.6 Properties of eigen values:

12.6.1 Theorem: Let T be a linear operator on a vector space V; and let } be an eigen value of T.

Avector y eV is an eigen vector of T corresponding to 2 ifandonlyif v 0 and ve N(T - A1),

the null space of the linear operator (T — A1) .
Proof: Let v is the characteristic vector corresponding to the characteristic value ; .
SoT(V)=Av=(T-4l)v=0
So ve the null space of T— 4 i.e. N(T-4l1)
Conversely Let ve null space of T -] .
= (T-Al)v=0
=Tv=Av

So v is the characteristic vector corresponding to the characteristic value A .

Hence the Theorem.

12.6.2 Theorem: Prove that a square matrix A; and its transport A" have the same set of
eigen values.

Proof: Characteristic polynomial of A= det(A-11)

=det(A- Al )T since the determinant of a matrix and its
transpose are equal.

=det| A" (A1)" ]

det[AT—,uT]
=det[AT—/u] since 17 = |

= Characteristic polynomial of AT .

So Aand AT have the same characteristic polynomial and hence the same set of eigen
values.

12.6.3 Show that zero is a characteristic root of a matrix if and only if the matrix is singular.

Solution: 0 is a characteristic value of A.

& ) =0 satisfies the equation [A—A1|=0
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< |A-0l|=0< A is singular.

Note : i) If 4 is a characteristic root of a non singular matrix then 3 = Q.
i) At least one characteristic root of every singular matrix is zero.

12.6.4 If ) is a characteristic root of a matrix A; K is a scalar, show that K + ) is a characteristic
root of the matrix A+ K] -

Solution: Let } be a characteristic root of a matrix A, and v be the corresponding characteristic
vector.

Then Av=Av and (A+KIl)v=Av+K(lv)
= Av+Kv
=(A+K)v

Since v 0 A+ K is acharacteristic root of the matrix A+ K| and v is a corresponding
of characteristic vector.

12.6.5 If A,,4,...A, are characteristic roots of a n x n matrix A; k is a scalar then the

charecteristic roots of A -kl are 4, -k, 4, -K,...,4, —K.

Solution: Given 4, 4,......4, are the charecteristic roots of A.
So the characteristic polynomial of A is |A—/1I |
= (A=) = A)2y — 1)
The characteristic polynomial of A 1 kI is |[A—kl —Al|=|A=(k+)I|
=[4 - (k+ )[4, - (k+D)]..[A4, - (k+ )]

=[(4-K) - D)][(%,~K) - D)]-.[ (A, —K) = )]

Hence the characteristic roots of A—kl are A, —k, 4, —k; 1, —k,..., 4, — k.

n

12.6.6 If Ais non singular prove that the eigen values of a-1 are the reciprocals of the eigen values
of A.

Solution: Let 3 be an eigen value of A and v be the corresponding eigen vector then Ay = Av.

=v=A"Av)=A(AV)
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1 _
= ;V: Alv (Since A'is non singular 4 =0)
= A’lv:lv
A

1

So 2 is an eigen value of A-', and v is the corresponding eigen vector.

Conversely suppose that 2 is an eigen value of a-l. Since A is non singular Al is also non

1
singularand (A™)™" = A. Soit follows from the first part of this question 2 is an eigen value of A.

Thus each eigen value of a-1 is equal to the reciprocal of some eigen value of A.

Hence the eigen values of At are nothing put the reciprocals of the eigen values of A.

12.6.7 Corollary: If 1,,4,...A, are the eigen values of a non singular matrix A, then 4,7, 4,74, ™"

are the eigen values of a-1.

Solution: The solution follows from the above proof.

12.6.8 Theorem: |If 1, 4,,...A, are the eigen values of A, then KA1,,K4,,...KA, are the eigen
values of KA.

Proof: If K =0 then KA=Q and each eigen value of 0 is 0. Thus 04,,04,,...04, are the eigen

values of KAwhen A;,4,,...4, are eigen values of A.

So let us suppose that K =0
We have |KA-AKI|=|K(A-2)I|
=K"|A-Al| since |KB|=K"|B|
If K 0, then |KA—AKI|=0 if and only if |[A—A1|=0.
i.e. K1 is an eigen value of KA; if and only if 2 is an eigen value of A.

Thusif A,,4,...,4, are eigen values of A, that KA, K4,..., K4, are eigen values of KA.

12.6.9 Corollary: Let 0 A be an eigen value of an invertible operator T. Show that ;! is an
eigen value of T-1.
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Solution: As A is an eigen value of T, there exists non zero y ¢V such that T(v) = Av.
=>v=TAV) =AT (V)
So A v=A"AT(v)
= A v=T*(V)
Hence j-!is an eigen value of T-1.

12.6.10 If 4 is a characteristic root of a non singular matrix A, Show that 2" is the characteris-

ticroot of A";r being an integer.
Solution: 2 is a characteristic root of a non singular matrix. So 4 = 0.

Case i) Let r > (0. Let v be a characteristic vector corresponding to 3 then Av=Av.
So Alv=A"(AV) = A7 (Av) = A(ATY)

= 2A?(Av)

=AA?(AV)

=12 A%y

Proceeding like this we get
Av=21"v

Thus 4" is a characteristic root of A and v is also a characteristic vector of A'.

Case ii) Let r =(Q then A° — | and characteristic roots of | are all unity i.e. 2°.
Case iii) Let r = —1 then Av=Av= A (Av) = A1 (V)
So lv=A(A)
= A17H(Iv) = AA(AY)

= A'v=Alv since 37} =1
= )t is a characteristic root of a-1.

l.e.when r =-1, 2" is a characteristic root of Ar.
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Case iv) Let r be negative say r = —s where s is a positive integer then A" = A™® = (A™)°.
By Case iii) 2! is a characteristic root of a-1.
By case i) (17")° is a characteristic root of (A™)®.

-, A" is a characteristic root of Ar.

Hence the theorem.

12.6.11 Corollary: If 4,,4,,...4, are the characteristic roots of A, then the characteristic roots

of p2are A7, A7,..... AL

Solution: The solution follows from the above theorem.

12.6.12 Let T be alinear operator on a vector space V. let v be an eigen vector of T corresponding
to the eigen value j . For any positive integer n prove that v is an eigen vector of T corresponding

to the eigen value ;.

Solution: Given v is an eigen vector of the linear operator T. So Tv=Av where v=0O. We have to
prove T"(v) = A"v, n being a positive integer. We prove the result by induction. For n=1, the
result is true because of (1).

Let the result be true for a positive integer m
e T"(V)=A" . (1)
Thus T™(v) =T™(Tv) = (T™T)v=T"(Tv)
=T"(Av)
= A(T™v) Since T is linear
=A(A"V) by (3)
So T™ (V) = (AA™)(V) = A™*(v) so the statement is true for m+1

The statement is true for n =1, when itis assumed to be true for m; it is proved to be true

for m+1. Hence by mathematical induction the statement is true for all positive integral values of
n.

12.6.13 Let T be alinear operator an a vector space V; over a field F and let g(x) be a polynomial
with coefficients from F. Prove that if v is an eigen vector of T with corresponding eigen value 3 ,
then g(T)(v) = g(1)v i.e.vis an eigen value of g(T) with the corresponding eigen values of g(1).
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Proof:
Let g(X)=a,+aX+a,x +..+a,A" where a € F
Let T(v) = Av.
= T2(v) =A% .Ingeneral T"(v) = A" (v)
Now g(T)=a,l +aT+a,T*+..+a,T"
(g(M)(v) =av+aT(Vv)+a,T*(V)+...+a,T"(V)
=aV+aA(V)+ A% (V) +...+a A" (V)
=(a,+ail+a,A* +..+a A"V

=g(A)v
Hence the theorem.

12.6.14 Theorem: Let Abe n x n triangular matrix over F. Prove that the eigen values of A are
diagonal elements.

8y &y e &y

Let A= 0 &, a . ay,

i.e.. A=[a1-,- ]nm where &, =0 for i > |

Characteristic equation of A is |A—),I | =0

a, - A a, Aygerenene Qn
- O a22:—2, a23 ...... a:2n _0
0 0 0 a, -4

= (a,-A)(a,-1)..(a,,—1)=0

Sothe eigenvalues of Aare a,,a,,,...,4,,
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So in a triangular matrix, the eigen values are the diagonal elements of the matrix.

12.6.5 Corollary: Show that the characteristic values of a diagonal matrix D are the elements
in the diagonal.

a, 0 O...ee.e 0
Proof: Let D =| 0 a,, O......... 0
0 0........ ann | oon

a,—A 0 0o 0
0 -2 0. 0
:> a22: :O
0 0 O a,, — A

= (8~ 4)(8, —4)-(8,,~=4) =0

Which shows the characteristic values are a,;, a,,,...... ,,, - Which are nothing but
the elements in the diagonal.

12.7 Similarity:

12.7.1 Definition: i) Two nxn matrices A and B are said to be similar if there exists a non
singular matrix P such that Ap = PB or A= PBP*

Definition Il : Two linear operators T, and T, on \/ are said to be similar if there exists a nonsingular

linear operator T on V suchthat TT =TT, or T, =TT,T*

12.7.2 Show that similar matrices have the same characteristic polynomial and hence the same
eigen value.

Proof: Let A and B are any two similar matrices then for a invertible matrix P, we have g — p1ApP.
Let det(B— A1) =det(P AP - Al)
= det(P*(A-11)P)
= det(P ) det(A— A1) det(P) = det(P) det(P) det(A— A1)

— det(P'P) det(A— A1)
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— det(1) det(A— A1)

=1.det(A-Al)

This shows that the matrices A and B have the same characteristic polynomial. Hence A
and B have the same characteristic roots.

12.7.3 Corollary: A square matrix B is similar to a diagonal matrix D. Show that the character-
istic roots of B are diagonal elements of D.

Proof: Let the D be the diagonal matrix of order n. B is similar to D.
The characteristic roots of D are the elements along the principal diagonal of D.

By the above theorem, B and D have the same charecteristic equation and hence the
same characteristic roots.

So the characteristic roots of B are the diagonal elements of D.

Hence the Theorem.
12.8 Similarity of matrices using Trace:

12.8.1 Theorem: Let A and B are two square matrices of order n. Thun show that trace of
(AB) = trace of (BA)

Proof: Let A= [a”- ]nxn B= [hj ]nxn

AB= [C”- ]nxn where C; = kZ:; a0,

BA=[dij] . Where d; :;hkakj

nx

trace of (AB) = Zn:cii = Z":(Zﬂ: aikhd}

i=1 c=1
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So trace of (AB) = trace of (BA)
Hence the theorem.
12.8.2 Theorem: Prove that similar matrices have the same trace.

Proof: Let A and B are n x n matrices over F such that A is similar to B. We have to show that

trace of A = trace of B.

Let A= [a,-,- ]nxn B= [hj }nm . Let A be similar to B; Then there exists a non singular matrix

P. suchthat o— plBpP.

trace of A = trace of (P 'BP)

= trace of (PP'B) since trace of AB is equal to trace of BA

= trace of (IB)

= trace of B.

Hence similar matrices have the same trace.
12.9 Trace of Matrix : The Sum of the elements of a square matrix A lying along the

principal diagonal is called the trace of the matrix. If A= [a,-,- ]  thentraceof A=a,; +a,+...+a,.

nx

Definition: Trace of a linear operator :

Let T be a linear operator from \/ —V/ . Then the trace of T written as tr T is the trace of
M (T) where M (T) is the matrix of T in some basis of V.

12.9.1 To show that the definition of trace of alinear operator is well defined:

To show that the trace of linear operator is independent of the basis of V.
Solution: Let M, (T); M, (T) are the matrices of T in two different bases of V. We know if T is a
linear operator from a n dimensional vector space V to V; over afield F, and T has the matrix M, (T)
in the basis {V;,V,,...V,} and the matrix M, (T) in the basis {W,W,,..W,} then there exists a non

singular matrix P of order n such that M, (T) = P™*M,(T)P.

Hence by this theorem, there exists a non singular matrix P such that M, (T) = P~*M,(T)P.
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i.e. M,(T) and M,(T) are similar matrices. But similar matrices have the same trace.
Hence trace of T does not depend upon any particular basis of V.

Hence the above definition is meaningful. So trace depends only an T and not any particu-
lar basis.

W.E. 5: Example: Let T : R, > R, be the linear transformation defined by T(X,y) = (2y,3x-Y).
0 2
Then in the basis {(ZL O)(O,l)} the matrix of T is 3 1l Sotraceof T=0-1=-1.

' _ ' _ -30 -48
Also in the basis {(1,3)(2,5)} matrix of T is 18 29

traceof T=-30+29=-1

From which we observe trace of T is not dependent on the basis of V.

12.10 Determinant of a linear operator T on V(F):

12.10.1 Definition: Let T be a linear operator on a vector space V(F) and [T] or [T], be the

matrix of this linear operator relative to a basis B; then det T = det [T] .

12.10.2 Theorem: Prove that the determinant of a linear operator T on a vector space is unique.
Or

Prove that the determinant of a linear operator is independent of the choice of an ordered
basis for V.

Proof:

Let [aH] and [hj] are the matrices of the linear operator T with respect to the basis B,

and B, of V.
ie. [T:B]=[a];and [T:B,]=[b]
Then there exists an invertible matrix [, | suchthat [b,]=[c, T*[a, ][c, ]
det [ ] = cet| [, ][, ][, ]|
- det[b, = cet| [, ] [, J[c, ]|
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-, ] cec, e[ ]
o dan]-oe[q To] Jla]

= det(1 ) det| 3, |

=1.det| a |

ie.  det[b |=det|a |
Hence the determinant of the operator T is unique even though the matrices of T are differ-
ent with respect to the bases B, and B,.

12.10.3 Theorem: If T, and T, are linear operators on a finite dimensional vector space V (F),

then prove that det(T,T,) = (detT,)(detT,) .

Proof: T, and T, are two linear operators on a finite dimensional vector space V(F). Choose B to

be an ordered basis of v. Then the matrix of the operator T,T, w.r.t the basis B can be put in the
form [TlTZ]B - [Tl]B '[TZ]B ’

Sodet [T,T,], = det([Tl]B -[TZ]B)

= det[T,], .det[T,], ...cccooonns 1)

As we know the det. of the product of two matrices is equal to the product of their determi-
nants.

Now by the definition detT = det[T |, and hence by (1) we have detTT, = (detT, )(detT,)

12.10.4 T is a linear operator an a finite dimensional vector space V. Prove that T is invertible if
and only if det (T) = 0.

Proof: T is a linear operator on a finite dimensional vector space V. Let B be a basis of the vector
space V.

If T is invertible then 771 =TT = | and det(T~'T) =det[l |, where [I ], is matrix of the
identity operator.

= det(T).det(T ) =1 since det. of the unit matrix is 1.
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Now (detT) and (detT ) are the elements of the field F and a field F is without zero divisors. i.e.

ab=0=a=0 or p=0Q or both zero.

In other words if g=0 then gh=0 inafield F.
Hence since (detT).(detT‘l) =1 hence datT 0.

Conversely let det T =0 then by def. of det T we have det[T], #0

— [T]B is invertible.

Hence the operator T is invertible.

12.10.5 Theorem: T is a linear operator on a finite dimensional vector space V. Prove that T is
invertible then det(T ™) = (detT) .

Solution: T is invertible then 7T = | =TT
det(TT ) = det(l ) = det(T 'T)

= (detT).(detT ™) =1=(det(T ™)) (detT)

So (detT™) =[det(T)]*

12.10.6 Let T be a linear operator on a finite dimensional vector space V. Then show that O is
the characteristic value of T iff T is not invertible.

Solution: Case i) Let O be the eigen value of T. Then we have to prove T is singular.

As O is a eigen value of T, there exists a nonzero v in V such that T(v) =0v.

= T(v)=0 (zero vector)

— T is singular so T is not invertible.

Case ii) Converse:
Suppose T is not invertible we have to show O is the eigen value of T.

As Tis alinear operator on afinite dimensional vector space V,and T is not invertible means
T is singular So there exists a nonzero vector v in V such that Tv=0Q=0v.

- Q is the characteristic vector.

Hence the theorem.
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12.10.7 Corollary:

Prove that a linear operator on a finite vector space is invertible if and only zero is not an
eigen value of T.

Exercise 12.11:

T is linear operator on R® defined by

a 3a+2b-2c o111
T|b|=|-4a-3b+2c| and B={|1|,/-1|,| 0|} is an ordered basis of gs. Com-
c -C 1102

pute [T]B and determine whether B is a basis of consisting of eigen vectors of T.

-1 0 O
Ans) [T],=| 0 1 O |;yes
0 0 -1

2). Tis alinear operator on R? defined by T(a,b) = (—2a+ 3b,—-10a+ 9b) . Findthe eigen values of

T and an ordered basis B for V such that [T]B is a diagonal matrix.
Ans) 1=34, B={(35),(12)}

3) Tis alinear operator on R(R) defined by T[ f(x)]= f (X)+ f (2)X. Find the eigen values of T

and an ordered basis B for V such that [T]B is a diagonal matrix.

Ans: 1=13 B= {—2+ X,—4+ x°, -8+ x3,x}

0 1 2
4) Find the eigen values of the matrix |1 0 -1
2 -1 0
Ans:2, —1++/3, —1-4/3
112
5) Find the characteristic polynomial of A=|0 3 2
1 39
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Ans: 23_1332 4314 17

4 1 -1
6)If A=|2 5 -2|thenfindi) All eigen values of A.
11 2

i) A maximum set S of linearly independent vectors of A.

Ans:i) A=3,35 i) {(ZL -1,0),(,0,1),(1, 2,1)} is a maximal set of linearly independent vectors.

11
N If A= {4 J , find the eigen values and eigen vectors A. Prove that A is diagonalizable.

Obtain a basis for g2 containing eigen vectors of A.

1111 1111
Ans: 1 =3,—1 and eigen vectors are {2} '{_2} {[2} {_2}} is a basis of R2.

8) Find the eigen values and eigen vectors of the following matrices.

6 -2 2| 8 -6 2
-2 3 -1 in|-6 7 -4
2 -1 3 2 -4 3
1 1
Ans: i) 2,2,8,a| -2 [+Db| 0| where a, b are any nonzero scalars
2 0
1
and c| —1| where c is any non zero scalar.
1
1 2
N 20, 11,|]-2 . .
i) 0,315 and theire nonzero scalar multiples.
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-10 6 3 0O -6 -16
9) Show that the matrices | —26 16 8 | and |0 17 45 | are similar.
16 -10 -5 0 6 -16

11
10) Prove that the matrix. A= L J e M,,(R) is diagonalizable.

11) Find all the eigen values and a basis for each eigen space of the linear operator T: R® —» R®
defined by T(a,b,c) =(2a+b,b-c,2b+4c)

Ans: eigenvalues 2, 3

1
: . 0
eigen space of 2 is spanned by
0
(1
: . 1
eigen space of 3 is spanned by
-2
210
12. Find the eigen values of 021
0 0 2
Ans:2,2,2
o h g o f h
13. Showthat A=|h o f|;B=/f o g
g f o h o g

have the same charecteristic equation.
12.12 Diagonalizability:

We have see in the preceeding articles that every linear operator or every matrix is not
diagonalizable. We need a simple test to determine whether an operator or a matrix can be diago-
nalized as well as a method for actually finaling a basis of eigen vectors.
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12.12.1 Theorem: Let T be linear operator on a vector space V; Let 4, 4,...4, be distinct eigen

values of T. If \,,Vv,...v, are eigen vectors of T such that A, corresponds to V, (1<i<Kk) then

{vl,vz...vk} are linearly independent.

Proof: We prove the theorem by mathematical inductionon k. If k =1, then v, #O since v, isan

eigen vector and so {Vl} is linearly independent. We assume th theoremis true for (k —1) distinct

eigen values where (k-1) >1

Let there be k eigen vectors v,Vv,,...,V, corresponding to the distinct eigen values

Ay Agseor . We will show that {V;,V,,...,V, | is linearly independent.

Suppose a,,a,,...,8, are scalars.

Such that av,+a\V, +...+aV, =0 ... (1)

Applying (T — A, 1) on both sides of (1) we get

aA-A)v+a,(4, -4V, +...+a (4 -4V, , =0

By induction hypothesis {Vl,vz,...vk_l} is linearly independent. So we must have
a(A-A)=a,(,-4)=..=a_(A4_,—24)=0.

As A, A,,...4, are distinct it follows

that 4 -4, #0 for 1<i<k-1

SO a1:a2:"':ak—1:0
Substituting these values in (1) we get a, v, =0.
As Vv, #0 so a, =0 consequently & =a,=...=a,=...=a,_, =a, =0

Thus a linear combination of vectors V;,V,...v, is equal to a zero vector implies each of the
scalar coefficient is zero.

S0 {V,,V,,..V,} is linearly independent.

Hence the theorem.

12.12.2 Corollary: Let T be a linear operator on an n dimensional vector space V. If T has n
distinct eigen values then T is diagonalizable.
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Proof: Let the n distinct eigen values of T be 4,,4,,...4, . Foe each i, choose an eigen vector V,

corresponding to 4 . By the above theorem {Vl,vz,...vn} is linearly independent and as dim \/ = n;

n

the set {V,,V,,...v,} is a basis of V. Hence T is diagonalizable.

Converse: The converse of the above theorem need not be true. i.e. If T is diagonalizable, then it
has n distinct eigen values need not be true. For example the identity operator is diagonalizable
even though it has only one eigen value namely 1.

W.E. 6: Worked Out Examples:

11
Show that A= L J € M,,,(R) is diagonalizable.

1-2 1
Solution: The characteristic polynomial of A is |A—}~I | :‘

)
=(1-A)* -1
=1-1+)(1-1-1)
= (2-2)(-2)

The characteristic equationis A(1-2) =0,

Thus 1=0,2

Hence the characteristic values of A are 0,2. Hence the characteristic values of L, are 0,2.
Which are distinct.

L, is alinear operator on vector space R?, whose dimension is 2.

. L, and hence A is diagonaliziable.

1 2
W.E. 7: Show that AZ{O J is not diagonalizable.

Solution:

The characteristic polynomial of A is |A—/1I |
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The characteristic equation of A is |A—AI | =0ie. (1-1)*=0
—>A=11

As A and hence L, has one distinct eigen value and dim R? is 2, it follows that A is not
diagonalizable.

12.14 Polynomial Splitting:

12.14.1 Definition: A polynomial f(t) in P(F) splits over F if there are scalars a,,4a,,...a, not
necessarily distinct in F such that f(t)=c(t—a)(t-a,)...(t—a,).

Example:
) t?—1=(t+1)(t—1) splits over R.
but i) (t*>+1)(t—2) does not split over R.
bu it splits over C because it factors into the product (t+i)(t—i)(t—2).

Note: If f(t) isthe characteristic polynomial of a linear operator or a matrix over a field F, then

the statement that f (t) splits is to understood to mean that it splits over F.

12.14.2 Theorem: The characteristic polynomial of any diagonalizable linear operator splits.
Proof: Let V be a n dimensional vector space. Let T be a diagonalizable linear operator over V. Let

B be an ordered basis for V such that [T]B =D is a diagonal matrix. Suppose that

Let f(t) be the characteristic polynomial of T.

f (t) = det(D —tl)
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= (4 =1)(A —1)...(4, —1)

=(D"(t-2)(t-2,)...(t - 4,)
f (t) is factored into a product of linear factors.

. f(t) splits. Hence the theorem.

Note: From the above theorem it is clear that if T is diagonalizable linear operator on an n - dimen-
sional vector space that fails to have distinct eigen values, then the characteristic polynomial of T
must have repeated zeros.

ii) The converse of the above theorem need not be true. That is, the characteristics polynomial
may split but T need not be diagonalizable. For example consider the examples W.E. 5. in which
we observe even though T may split, T need not be diagonalizable.

12.14.3 Algebraic Multiplicity:

Definition: Let 1 be an eigen value of a linear operator or matrix with characteristic polynomial
f (t). The algebraic multiplicity of ;| is the largest positive integer k for which (t — 1) is a factor
of f(t).

W.E. 8: Example:

i) det A=

o O w
o W
A MO

The characteristic polynomial is |A—t||

3-t 1 0
=| 0 3-t
0 0O 4-t

expanding along the first column; the characteristic polyno-

mials is (3-t) [(3—t)(4-t)—0]

=(3-1)* (4-1)
Hence 3,3,4 are the eigen values.

So ) =3 is an eigen value of A with multiplicity 2. ) = 4 is an eigen value of A with multi-
plicity 1.

i) For n x n null matrix, zero is the characteristic root of algebraic multiplicity n.
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iil) For identity matrix of order n unity is the characteristic root of algebraic multiplicity n.
12.15 Eigen Space:
12.15.1 Definition: Let T be a linear operator on a vector space V, det ) be an eigen value of T.
Define E, = {VeV T(v) = /lv} =N(T-41,).

The set E, is called the eigen space of T corresponding to the eigen value } .

Analogously we define the eigen space of a square matrix A to be the eigen space of L,.

Note: E, is a subspace of V consisting of the zero vector and eigen vectors of T. Corresponding
to the eigen value 2 . So the maximum number of linearly independent eigen vectors of T corre-

sponding to the eigen value j is the dimension of E, .

12.15.2 Theorem: Let T be a linear operator on a finite dimensional vector space V. Let 4 be an
eigen value of T having multiplicity m. Then 1<dim(E,) <m.

Proof: Choose an ordered basis {vl,vz,...,vp} for E,. extend it to an ordered basis

B:{vl,vz,...,vp,vpﬂ...vn} for V.

Let A:[T]B. Observe that v, (1<i < p) is an eigen vector of T corresponding to J and

Al B
therefore A= P
0 C

(A-91, B
Then the characteristic polynomial of T is f (t) = det(A—tl ) = det
n-p

0 c—tl
=det((2-t)l,)det(c-tl, )

= (A -t)Pg(t) where g(t) is apolynomial.
Thus (A -t)P isafactorof f(t) and hence the multiplicity of }, is atleast p. Butdim (E,)=p. So
dim (E,) <m.

Hence 1<dim(E,) <m.
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12.15.3 We state some theorem without proofs:

Lemma: Let T be alinar operator and Let 4;, 4,...4, be distinct eigen values of T. Foreach i =1,2..k,

let v, € EA;, the eigen space correspondingto A . If v, +V, +...4+V, =0 then v, =0 for all i.

12.15.4 Theorem: Let T be a linear operator on a vector space V, and let 1,,4,,...4, be distinct
eigen values of T. Foreach i =1,2..k; let § be afinite linearly independent subset of Eigen space
EA, . Then S=SUS,USU..US isalinearly independent subset of V.

12.15.5 Theorem: Let T be alinear operator on a finite dimensional vector space V such that the
characteristic polynomial of T splits. Let A,,4,,...4, be the distinct eigen values of T. Theni) Tis

diagonalizable if and only if the multiplicity of 4 is equal to the dim (EA,) for alli.

ii) If T is diagonalizable and B is an ordered basis for EA, for each i, then

B=B uB,UB;,uU...uUB, is an ordered basis for V consisting of eigen vectors of T.

12.16 Summary:
Test for Diagonalization :

Let T be a linear operator on an n dimensional vector space V. Then T is diagonalizable if
and only if both the following conditions hold.

i) The characteristic polynomial of T splits.
ii) For each eigen value /) of T, the multiplicity of | equalston-rank (T —A4l)

In order to test the diagonalizability of a square matrix, the same conditions can be used
since the diagonalizability of A is equivalent to the diagonalizability of the operator L, .

If T is a diagonalizable operator and B, B,,...B, are ordered basis for the eigen space of T,

then the union B= B, U B, U...uU B, is an ordered basis for V consisting of eigen vectors of T, and
hence [T], is a diagonal matrix.

When we want to test T for diagonalizability we usually choose a convient basis B for V, and
form A= [T]B if the characteristic polynomial of A splits, then use the condition (ii) above to check

if the multiplicity of each of the repeated eigen value of A equal ton -rank (A— Al). If the character-
istic polyomial of A is splitting condition. (ii) is automatically satisfied for eigen values with multiplic-
ity 1. If Alis diagonlizable then T is also diagonalizable.

If we find T is diagonalizable and want to find a basis B for V, consisting of eigen vectors of
T, we addopt the following procedure.
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1) We first find a basis for each eigen space of A. the union of these bases is a basis C for gn

consisting of eigen vectors of A. Each vector in C is the coordinate vector relative to B of an eigen
vector of T. The set consisting of these n eigen vectors of T is the desired basis B.

Further more, if Ais a nxn diagonalizable matrix, we can find an invertible nxn
matrix Q and a diagonal nxn matrix D such that Q*AQ=D.

The matrix Q has as its columns the vectors in a basis of eigen vectors of A, and D has as
its j th diagonal entry the eigen value of A corresponding to the j th column of Q.

12.17 Workedout Examples:
W.E. 9:

Let T be the linear on P,(R) defined by T[ f(X)]= f (X). Test T for diagonalizability.

Solution: T is a linear operator on B[R] defined by T[f(X)]=f (X). The standard basis for
R(R) is B={1x,x*}
Given T[f(x)]=f (x)

T(1) = 0= 0.1+ 0.x+ 0.2

T(X) =1=1(1) + Ox+ 0x?

T(x?) = 2x=0(1) + 2x+ 0x?

>

[

_|

mI—l

[
© o o
o o
o N O

The characteristic equation is |A—l| | =0

-2 1 0
=0 -4 2|=0
0O 0 -4

expanding along the third row we get

0-0+(-1)(-A°~0)=0
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-2*-0

Thus T has only one eigen value } =(Q with multiplicity 3.
T[f(¥)]=f (X)=0= f(X) is a constant polynomial.
E, = N(T —Al)= N(T) is the subspace of P,(R) with constant polynomials.

So {1} isabasis of E,. Sodim (E,) =1 consequently there is no basis of P,(R) consist-

ing of eigen vectors of T. And so T is not diagonalizable.

310
W.E. 10: Testthe matrix A={0 3 0]|e M, ;(R) for diagonalizability.
0 0 4

Solution: The characteristic equation is |A—/”LI | =0.

3-4 1 0
= 0 3-24 0 |=0
0 0 4-2

expanding along the third row.
0-0+(4-1){(3-1)*-0}=0

= (4-1)(3-1)*=0s0 1=4,3,3
Also A has eigen values 1, =4 and A, =3 with multiplicities 1 and 2 respectively.

Since A, has multiplicity 1; condition (ii) is satisfied for 4,. Thus we need only to test
condition (ii) for A, .
To find the rank of (A—A4,1) where 4,=3
3-3 1

(A-2,1)=| 0 3-3
0 0 4-3

0
0

Il
o O O
o O -
= O O
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Which can be put in Echelon form. Here the number of non zero rows 2. So Rank of

(A-1,1)=2.

For ,=3,n-rank (A—-A4,1) =3- 2 =1.Which is not the multiplicity of 1,. So the
condition (ii) fails for A, and so A is not diagonalizable.
W.E. 11:

Test for diagonalizability of the linear operator T on PF,(R) defined as follows:

TLF)]=f@+ ' (Qx+(f'(0)+f(0))x
Also find an ordered basis for R3 of eigen vectors of [T]B where B is the standard basis of P,(R).
Solution: T is a linear operator on P,(R) defined by T[ f (x)]= f (1) + f '(O)x+( f(0)+f (O)) x?

B= {], X, X2} is the standard ordered basis for P,(R) and A=[T],

T =1+0x+0x*; T(X)=1+1.x+(1+0)x?

ie. T(X)=1+x+ X%

T(X*) =1+ 0x+ (0+2)x°

i.e. T(x*) =1+0x+2x?

111
Thus A=[T],~|® 1 ©
012

-2 1 1

det (A-Al)=| 0 1-1 0O

0 1 2-4

=(1-1) [(1— A)(2-)- O] expanding along the first column.

=(1-2)*(2-4)



( Rings and Linear Algebra ] (12.3@ [ Diagonalization ]

The characteristic polynomial of A and hence of Tis (1-1)?(2— 1) which splits. Hence
the condition (i) is satisfied.

Also A, =1 has multiplicity 2.
and A, =2 has multiplicity 1 and hence condition (i) is satisfied.
So we verify condition (i) for 4, =1

For this (n - rank (A-A41))

1-1 1 1
=3 - rank of 0 1-1 0
0 1 2 -1
0 1 1
—3-rank | O 0 0
0 1 1

=3-() =2. Since the matrix has only one linearly independent row.
Heren-rank (A — A,1) = 2 =multiplicity of A,.
Hence as the required conditions are satisfied, T is diagonalizable.

We now find the ordered basis C for R3 of eigen vectors of A. We consider each eigen
value separately.

Let 4, =1 then (A-A1)v=0

1-1 1 1|y 0

=| 0 1-1 0|.|v,|=|0

0 1 1||v, 0
01 1fv| |O
=|0 0 O||v,|=|0
01 1jv, 0

=>V,+V,=0->V,=-V, Let v, =S,v, =t
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v, s 1 0
then | V2 | = —t|=s/0|+t| -1
V, t 0 1
1110 A
So C, =<|0],| -1|} is a basis for the eigen space E, =1V eR® /(A-Al)v=0
0|1 Vv,

To find the eigen space correspondingto 4, =2.

(A-L,1)v=0

1-2 1 1 A 0
= 0 1-2
0 0 2-2|v, 0

-1 1 1][v] [o
=0 -1 0|v,|=|0
(0 0 0]lv] |0

=-V,=0,-v,+V,+V,=0>-v,+v,=0s0 v, =V,

Putv,=1thenv,=0, v,=1
1 A
So C,=1|0| is the basis for the eigen space E, ={v=|v, |eR® /(A-2,l)v=0

1 A

consider C=C, UC, then

1/{0(|1
C=40},/-1],/0
oj|1](1

Thus C is an ordered basis for R3 consisting of eigen vectors of A.
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Finally we observe that the vectors in C are the coordinate vectors relative to B of the
vectors in the set.

A= {L—X+ X%, 1+ Xz} which is an ordered basis for P,(R) consisting of eigen vectors of
T. Thus

[T]A - which is the required diagonal matrix.

o O -
o+ O
N O O

0 -2

1 3} is diagonalizable and find a 2x2 matrix P such that

W.E. 12: Show that the matrix {

p1AP is adiagonalizable matrix.

0 -2
Solution: The characteristic equation of the given matrix A:{1 3} is

-1 2

|A—AI|:O:>‘
1 3-4

-

= -A(3-1)+2=0—->12-31+2=0
= (A-2)(A-)=01in 1=21

Thus A has two distinct eigen values 4, =1, 1, =2. As the diamensionality of the vector
space is 2.

We see that A is diagonalizable.

1) To find the eigen space corresponding to A4, =1:

We have (A-Al)v=0

Iy el 2o

=V, +2V,=0->V, =-2v, put v, =1 then v, =-2

= vla ]
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or C = 2 is a basis of eigen space. E, = v R? /(A-11)=0
17| 1 genspace. E, = {Vje /( -1)=

if) To find eigen space corresponding to A, =2.

ool 2
1 3-2||v,| |0

-2 2|V 0 0
= v - _)V1+V2_ SO V, =-V,

2

Put v, =1 th 1sov=| 2 -1
ut v, = enVv,=—1S0 = =
2 1 V. 1

-1
So C, = { 1 } is the basis of the eigen space Eﬂa = {Vl} c Rz/(A— Al )V = O}
V2

[—2][ -1
C=C G, :{ }[ 1 }} is an ordered basis for g2 consisting of the eigen vectors of A.

o
Let P= 1 1 } is the matrix whose columns are vectors in C.

; 10
D=P lAF>=[|_A]B:L) 2}

W.E. 13:

Let T be the linear operator on R3 which is represented in the standard basis by the matrix

-9 4 4
8 35 4 . Prove that T is diagonalizable. Find a basis of R® consisting of eigen
-16 8 7

vectors of T.
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-9 4 4

Solution: The given matrix A=| -8 3 4
-16 8 7

Diagonalization

The characteristic polynomial of A corresponding to the characteristic root ) is

)2 (trace of A) 12 + (A, + A,, + A;)A —det A
Where A, is the cofactor of the diagonal element a, .

trace of A=a,;, +a,, +8, =-9+3+7=1

3 4
=)0 J=21-32=-11
A= (DM 7‘
-9 4
= (-1)*? —-63+64=1
A= (977 7‘
-9 4
= (-1)*° =-27+32=5
A= (17| 3‘

A +A,+A,=-11+1+5=-5
det A=-9(21-32) — 4(-56+ 64) + 4(—64 + 48)
=99-32-64=3
The characteristic polynomial is
A°—2%*-51-3=f(1) say
f(-)=-1-1+5-3=0
A+1isafactorof f(1)=0
The other factor is
A2 —21-3
=(A-3)(1+)

-1

1-1-5-3

-1 2 3

1 -2

-3
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So f(A)=0=(1+1)*(1-3)=0
Hence the characteristic roots are —1,-1,3

Thus the eigen value A, = —1 has the multiplicity 2

A, =3 has the multiplicity 1.

1) To find eigen space corresponding to 4, = -1

(A-A1)v=0

[-9+1 4 4
=| 8 3+1 4 ||v,|=0

-8 4 4|V,
=| -8 4 4|v,|=0
-16 8 8||v,
R,—R.R —2R gives
-8 4 4|y
0 0 0|y, [=0
0 0 0y,
2 1 1y, 0
1 _O-
RxE gives | 0 0 0f%|=0=|0
4 0 0 0y, 0

-2V, +V,+Vv, =0 put v, =t,v, =5

then v, =2v, v, =2t-s

v, t 1 0
v=|V, [=| s |=t|0|+s| 1
A 2t—s 2 -1

( Acharya Nagarjuna University )
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1] 0 \
So C,=1/0/|,| 1|} isabasis of for the eigen space E, =1V |€ R* /(A-21)v=0
2| -1 Vs

Dim of E, =2 which is equal to the multiplication of 4, =-1.
i.e. multiplicity of 4, = Dim E,

ii) To find the eigen space corresponding to A, = 3:

(A-AI)v=0

[9-3 4 4 [y
= 8 3-3 4 ||v|=0

| 16 8 T7-3|v,

[-12 4 4]y,
=| -8 0 4|v,|=0

1-16 8 4] v,

1 1 1
RXZ’RZXZ’RsXZ gives
-3 1 1|y
-2 0 1||v, =0
-4 2 1|V,

3R, -2R,3R, -3R gives

-3 1 1|y
0 2 1|v|=0
0 2 -1fv,
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R, +R, gives

-3 1 1jv 0
0 -2 1||v|=/0|=-2v,+V,=0 so v,=2v, and
0 O Oflv| |0

iy

-3V, +V,+V,; =0—>-3v,+Vv,+2Vv, =0

=3v,=3V, S0 V, =V,

A 1
Putv,=1 soV,=1 v,=2 Hence v=|V, [=|1
vV, 2
1 A
So C,=4| 1| is abasis of eigen space E, =<|v, |[eR® [(A-2,v)=0
2 YA

Dim E, =1 whichis equal to the multiplicity of 1, =3

Multiplicity of 4, =dimE,

1{/0}|1
If we consider the union of bases of these two subspaces we get C=<|01|,| 1 |[,|1
2(-1]12

which is linearly independent. Thus the set C is a basis of R3? consisting of the eigen vectors of T.

Hence T is diagonalizable.

W.E. 14:
Let T: R — R is defined as follows
43, +a,

a
T|a, |=|2a +3a,+2a,
a, a, +4a,

Find whether the linear operator T is diagonalizable or not.
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& 4a, +a,
Solution: Given T| &, |=| 2a, +3a, + 23,
8 a +48,

B={e.e, &} where g ={1,0,0},e,={0,1,0},e,={0,0,1} is the standard basis of for R3.

1 440 4
T(g)=T|0|=|2+0+0|=|2
0 1+0+0 1

=4(1,0,0)+ 2(0,1,0) +1(0,0,1)

=4¢ +2¢e,+1e,
0 4(0)+0 0
T(e,)=T|1|=|2(0)+3(1)+20) |=|3
0 0+4(0) 0

=0(10,0)+3(0,1,0)+0(0,0,1

=0g +3e, + Oe,
0 40)+1 1
T(e)=T|0|={2(0)+3D+2() |=|2
1 0+4(1) 4

=1(1,0,0) + 2(0,1,0) + 4(0,0,2)
=1e +3e, +Og,

Writing [T], as A we get

Hence the characteristic polynomial is [A—A1 .
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The characteristic polynomial of A corresponding to the characteristic root ) is

A3 —(trace of A) 12 + (A, + A, + A)A —det A.

Where A, is the cofactor or diagonal element a,. trace of A=4+3+4=11

A11 = (_1)l+l

3 2
=12-0=12
0 4

2+2 4
A, =) 1

1
‘:16—1=15
4

3+3 4
As=(-1) )

0
‘:12—0:12
3

A +A,+A;=12+15+12=39

det A=4(12-0)-0+1(0-3)=48-3=45

Hence the characteristic polynomial is 1° -111° + 391 —45= f (1) say
f(3)=27-991-45=0

. A —3 is afactor of the characteristic equation f(1)=0.

The other factor is

12 -81+15 311 -11 39 -45
=(A-3)(1-9) 3 -24 45
So f(A1)=(1-3)*(1-5) 1 -8 15{(0

Hence the characteristic roots are 3, 3, 5.

So the eigen values of T are
A, =5 with multiplicity 1
A, =3 with multiplicity 2
i) To find the eigen space corresponding to A4, =5:

(A- 41 )v=0
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-1 0 1|v 0
=2 -2 2|Vv|=|0

1 0 -1fv, 0
R, +2R,R,+ R gives

-1 0 1jv 0
=0 -2 4|v,|=|0
0 0 Ofv 0

=-2V,+4v, =0=V, =2V,
-V, +v,=0 v =V,

Put v, =1, then v, =2,v, =1

A 1
Sov=|V, |=|2
vV, 1
1 Vi
So C,=1| 2|} is a basis of eigen space E, =1V |€ R /(A-4Vv)=0
1 Vs

Dim of E;, =1 which is equal to the multiplicity of 4,.
if) To find the eigen space corresponding to 4, =3

(A-Llv=0
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101y 0
=2 0 2|v |=0=|0
10 1|y 0
R,-2R,R - R gives
1 0 1|v 0

0 0 Of|vw,|=|0

0 0 Oflv,| |O

S+, =0= Vv, =y

The unknown Vv, does not appear in this system, we assign it a parametric value say Vv, = S

and solve the system for v, and v,. If v, =t , then v, = —t, introducing another parameter t. The
result is the general solution to the system.

v, —t 0 -1
V, |=| s|=s/1|+t] O for steR
V| |t 0 1
0] [-1 v,
So C,=1/1},| 0| isabasis of the eigen space E, =1|V, | R* /(A-1,v)=0
0|1 A

dim Eﬂ2 = 2; The multicity of 1, =2
So dim E, = multicity of 1, =2

The union of two bases C, and C,.
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1101
is C=C,uC,=<|2]|,|1]|,| O |; islinearly independent and hence is a basis of R3; consisting
1101

of eigen vectors of T. Consequenty T is diagonalizable.

W.E.15: Let T be a linear operator an B,(R) defined by T[ f (x)]= f(X)+(x+1 f (x). Show
that T is diagonalizable.

Solution: B = {1, X, X2} is the standard basis of P,(R) we are given a linear operator on B,(R)

defined by T[ f(X)]= f () +(x+1) f (X).

In W.E. 4. We have shown A=[T] =

5 and the eigen values of T are 1, 2, 3.

o O -
o N -
w N O

We will now find eigen vectors corresponding to the eigen values 1, 2, 3.

To find the eigen space corresponding to 4, =1.

We have (A-41)v=0

1-1 1 0 ||lv 0 1 0Oflvy 0
= 0 2-1 2 |v|=0=|0 1 2|v|=|0
0 0 3-1j|v, 0 0 2|v| |O

=2v,=0 sov,=0and v, +2v,=0=V, =0.

Since v, =0 and v, =0 and v, can take any real value. Say v, =1

1

V1
Hence the eigen vector corresponding to A, =1 is given by V=|V, |=| 0 | and every non
Vv, 0

zero scalar multiple of it is an eigen vector.

1

So C, =4| 0|} is a basis for the eigen space.
0
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Vl
E, =4V |eR /(A-A,l)v=0
V3
dimE, =1, Multiplicity of 4, =1.

~.dimE, = Multiplicity of 4,

To find the eigen space corresponding to A, =2:

(A-A,1)v=0

-1 1 0|y
=0 0 2(|v|=0=V,=0
0 0 1jv,
-V, +V, =0
v, =V,

put v, =1, then v, =1, v; =0

1

( Acharya Nagarjuna University )

v,
1

Hence Vv=|V, |=| 1| is the eigen vector and every scalar multiple of it is also an eigen vector.
V3

0

1
So C,=<|1|; is a basis for the eigen space.
0



( Rings and Linear Algebra ) (12.5?) [ Diagonalization

Vl
E, =1V [eR /(A-2,]1)=0
V3

Dim of E, =1; Multiplicity of A, =1
-.Dimof E, = Multiplicity of 4,
To find the eigen space corresponding to 4, =3:

(A-A, V=0

-2 1 0fv 0
=0 -1 2|v,|=|0 =-V,+2,=0s0Vv,=2v; -2v,+Vv,=0 v,=2y,
0 0 Oflw 0

put v, =1 sov,=2,v,=1

A 1
Hence v=|V, |=| 2| is an eigen vector and every scalar multiple of it is also an eigen vector.
Vv, 1
1
So C, =1<| 2|} is a basis for the eigen space.
1
Vl
E, =1V, |€eR’ /(A-A])v=0;dmE, =1
V3

Multiplicity of A, =1so dimE, = Multiplicity of A,
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Thus we observe that the multiplicity of each eigen value is equal to the dimension of the

corresponding eigen space.

11(1)(1
Let C=C,UC,uC,=4|0/(,/1|,| 2|} is linearly independent. Thus this set is a basis of
0/10]|1

R3 consisting of eigen vectors of T.

So T is diagonalizable.
12.18 Method to find any positive integral power of a diagonalizable

matrix A:
A'is a diagonalisable matrix of order n. We can find a n x n matrix Q such that Q*AQ s a

diagonal matrix D.
D-Q*AQ=[L.],
Q is the matrix whose columns are the eigen vectors.
Preoperating with Q, and post operating with Q" we get A=QDQ™
A =(QDQY
So A=(QDQ™)(QDQ™)..(QDQ™) (k terms)
=QD(Q'QD(Q'Q..DQ"
So Ak =QD*Q ™
W.E. 16: Examples:

1 4
For AZ{ } € M,»(R) find an expression for an where n is a positive integer.

1 4

Solution: given A= {2 3} . We show that A is diagonalizable and find a 2« 2 matrix Q, such that

Q'AQ is a diagonal matrix.
Then we compute a" for any positive integer no.

The characteristic equation of A is
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s
=0

1-1
|A-Al|=0=
2 3
— (1-1)(3-1)-8=0

A2 —4)-5=0=(L-5)(A+1) =0

Hence the characteristic values are -1, 5.

Hence the eigen values of L, are -1, 5.

Which are district, L, is a linear operator on a two dimensional vector space. So L,
and hence A is diagonalizable.

To find eigen space corresponding to A, =-1:

B 1-2 4 v |
amesald T
5 salelo=lz el

= =0= =0=
2 3+1|v, 2 4|v, 0

v, -2
=2V, +4v, =0=V, =-2V, put v, =1 and so v, =—2. There fore {Vj_{ 1}

-2
Hence Ci = { 1 }} is a basis for the eigen

space E ={RjeR2/(A—ﬂ,ll )v=0}

To find the eigen space corresponding to A, = 5:

[1-5 4 [y,
(A=Al)v=0 = }{ }:o

2 3-5]v,
-4 41, 0]
= = O =
2 2|V 0




(Centre for Distance Education )

(12.50)

=4, +4v,=0= -V, +V, ==V, =V, put v, =1, them v, =1 so v={

( Acharya Nagarjuna University )

i

Vi
V.

2

1
J} is a basis for the eigen space EA1 = {[

1

v R® /(A hv=0
Vje /(_Ai)v_

|

So C:CluCZ:{
-2 1
1 J’

D:Q-lAQz[LA]{

21
}{ }} is an ordered basis for R2 consisting of eigen vectors of A.

G

1
-1

-1

3

-1 0
0 5

o

Q—l

LetQZ{

An — QDn D—1

:Q[

0
(9"

(-D"
0

W.E. 17: If A{

-2
1

14
e

D"

1
4

(_

"
0

(-1
0

(-2(-D)" 5

5n

D" +5"

1

0
(9"

I

5n

I

0

-1
1

I

-1
3

-1 1
1 2

1
2

|

)

[2(-D)"+5" (-2)(-D)" +2.(5)"
(D" +2.5"

1
-1 -2

|

|

B

J . Find the eigen values and eigen vectors of A. Prove that Ais diagonal-

izable. Find a basis of R2? containing eigen vectors of A.
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Solution: The characteristic equation is |[A-Al|=0

1-2 1 ,
= =0=(1-4)"-4=0
4 1-2

=>1-2+2)1-1-2)=0=(3-1)(-1-1) =0
=>A=31=-1
Thus A has two eigen values 4, =3, 4, =-1

To find the eigen vector corresponding to A, = 3:

a-av=0="% 1Mo
(A-Alv= :{4 1—3} v |

-2 1V _0 _
:{4 _2} | R, + 2R gives

-2 1jlv 0
= [=>-2v+Vv,=0->Vv,=2y
0 Of|v,| |O

Vl
put v, =t, then v, =2t so V_{v }—{

Where te R

1

Thus {2} is the eigen vector corresponding to A, =3

To find the eigen vector corresponding to A, =-1:

(A—AZI)V=O:{1+1 1}[\’1}0
4 141 v,

2 1jv 0 _
:{4 2}{ }— R, - 2R gives

\Z

(

Diagonalization
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2 1ilv 0
= [=2v,+V,=0->V,=2y
0 0O]lv, 0

put vV, =S them v, =-2s

v, S 1
Thus V= = =S where s € R
v, -2s 2

1
So {_2} is the eigen vector corresponding to 4, =-1.

1)1
{2}{_2}} is a basis of R?, since there vectors are linearly in dependentand dim g2 — 2.

This is basis of g2 consisting of eigen vectors of A. So L, and hence A is diagonalizable

-2 2 -3
W.E.18: Find the matrix P which diagonalizes the matrix A=| 2 1 —6| andverify that p-1pp
-1 -2 0

is a diagonal matrix.

Solution: The characteristic equation of Ais [A—A1|=0

trace of A=-2+1+0=-1

1 -6

= (- =0-12=-12
A=(D7 o‘

=(-)*?| T ]=0-3=-3
A= (| 03‘
2 2

=(-1°*° =-2-4=-6
A=D1 1‘

A +A,+A,=-12-3-6=-21
det A=-2(0-12)-2(0-6)-3(-4+1)

=24+12+9=145
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The characteristic equation is
A3 —)2. trace of A+ (A, +A,+A;)A—-det A=0
ie. f(1)=2A°-(-)A*+(-2)A +45=0
=%+ 1°-211+45=0
f(-3)=-27+9+63-45
=0
) +3 is afactor.
3] 1 +1 -21 -45

-3 6 +45

1 -2 -15(0

The other factor is 1> —21 -15= (1 -5)(1 +93)
So f(1)=(1+5?*(1-5)=0
The eigen values are 1 =-3,-3,5

i) To find the eigen space corresponding to 4, =5.

(A-A1)v=0

(2-5 2 -3y,
=| 2 1-5 -6/||v,|=0
-1 -2 5|y,

-7 2 -3]v,
=2 4 6|v|=0
-1 2 5]y,

R -7R;,R, + 2R, given
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0 16 32|V

0 -8 -16||v, |=0
-1 -2 5V,

R + 2R, gives

0O 0 O (v (O
0 -8 -16(|v, |=|0|= -8v,-16v,=0=V, =-2v,
-1 -2 5|y |0

-\, -2V, -5, =0
-V, +4v, -5y, =0 since v, = -2V,
=V, =-V,

put v, =1then v, =-1v, =2

v, 1
v=|V, |= . , .
2 is an eigen vector corresponding to 4, =5.
v; | |-1
1] v,
C,=1{| 2 || isabasis of the eigen space E, =1|V, |eR® /(A-A4]1)v=0
-1 V3

i) To find the eigen space corresponding to 4, =-3

(A-A,1)v=0

—2+3 2  -31[v,
=| 2 1+3 -6||v,|=0
1 -2 -3||v,
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1 2 3y
=12 4 -6|v (=0, R -2R,R+R give
-1 -2 +3||v,
1 2 -3||v,
0 0 O |lv,|=0,
0O 0 O 3
So Vv,+2v,-3v,=0
v, =—2V, + 3V,
put v, =—-S;v, =t
v, 25+ 3t 2 3
Then V=|V, |=| -Ss+0t |=s| -1|+t| 0
A Os+1t 0 1
2113 1
So C,=+¢|—1|,| 0| is a basis corresponding to E, =1/ V, eR /(A-1,l)Vv=0
0|1 Vs
1 2 3
P=|2 -1 0|;detP=1-1-0)-2(2-0)+3(0-1
-1 0 1
=-1-4-3=-8
-1 -2 3
P‘1=iAdj.A=_—1 -2 4 6
det P
-1 -2 -5
-1 -2 3|2 2 3 1—5—10 15
P'A=—|-2 4 6|2 4 6|=—|6 -12 -18

8
-1 -2 5|1 -2 -5 3 6 15
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. 5 -10 151 2 3 . 40 0 O
P’lAP:% 6 -12 -18{|2 -1 0|=—| 0 24 O

3615—10180024

5 0 O
=0 -3 0 |=diag (5,-3,-3)
0 0 -3

Hence p-1pp is a diagonal matrix.

W.E.19: Find the matrix P which transforms the matrix A to diagonal form and

Il
N R R

hence calculate p%.
Solution: Characteristic equation is [A—A1|=0

trace of A=1+2+3=6

2 1
3‘=6—2:4
2

_1=3+2:5
3

A = (_1)l+1

2+2 1
A, = -9 2

1 0

=2-0=2
1 2

A%s = (_1)3+3

A +A, A, =4+5+2=11
det A=1(6-2)-0+(-1)(2-4)=4+2=6
The characteristic equation is

23— p2trace of A+ A(A,+A,+A;)—-det A=0

f(L)=1°-6A2+111-6=0
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f()=1-6+11-6=0 So } —1 is afactor.
111 6 11 6
+1 -5 -6
1 -5 6[0

The other factoris 32 -5 +6

=(A-51-2)
Hence f(1)=(A1-D(1-2)(1-3)=0
The eigenvaluesof Aare 1, 2, 3

i) To find the eigen space correspondingto 3 =1:

1-1 0 -1y
(A-A1)v=0=| 1 2-1 1 ||v,|=0
2 2 3-1|v
0 0 -1v,
=1 1 1|v|=0
2 2 2|V
0 0 -1][v
R-2R,gives |11 1 1||v,|=0
00 0]|v

-V, =0= v, =0

V,+V,+Vv, =0
ie. v, +v,=0
=V, =-V,

Put v, =1 them v, =-1v,=0
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v, 1
SoVv=|V, |=|-1
A 0
1 v
So C, =4| —1|; is a basis of the eigen space E, =1V | R /(A-Al)v=0
0 A

ii) To find eigen space correspondingto 4, =2

1-2 0 -1y -1 0 -1|v
(A-Al)v=0=| 1 2-2 1 ||, |=0=|1 0 1|\ |=0
2 2 3-2||v, 2 2 1|V
R, + R; gives
-1 0 -1j|v
0 0 O0||v,|=0=-v,-v,=080V;=-V,
2 2 14V,

2V, +2v,+Vv, =0
=2v+2v,-Vv,=0
=>V+2v,=0 v,=-2v,
ifv,=0Lv,=-2,v;=2
vi| |2 -2 v,
V2

=| 1 |so C,=4| 1 |; isa basis of eigen space E, =1V eR® /(A-A4,l)v=0
V; 2 2 A
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iii) To find the eigen space corresponding to 4, = 3.

1-3 0 -1|v -2 0 -1jv
1 2-3 1 |v,[|=0=1 -1 1|v|=0
2 2 3-3||v, 2 2 0|y

=-2V,-V,=0= Vv, =-2v,
2V, +2v,=0= Vv, =~V
V-V, +V,=0=Vv +v, +-2v, =0

put v, =1, then v, =1v, =2

v, | -1 -1 v,
Sov=|V,|=| 1 |Hence C;=4| 1 |tisabasisof E, =4V, |eR’ /(A-4l)v=0
Vs 2 2 Vs

Writing the three eigen vectors of the matrix as the three columns, the required transfor-

1 -2 -1
mation matrix P={-1 1 1
o 2 2

det P=1(2-2) + 2(-2—0) - 1(-2-0)
=0-4+2=-2

pio—L agp
det P

1o 2 -1

-2 2 0
2
2 2 -1

102—110—11—2—1
Now p*AP=—"2 2 0|1 2 1|-1 1 1
2 -2 1|2 2 3|0 2 2
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0 2 11 -2 -1
Y4 o4 ol 11

-6 6 -3||0 2 2

. 2 0 O 1 00
=_? 0 -4 0|=|0 2 0|=D (say)
0O 0 -6 0 0 3

P'AP=D= A=PDP"
A*=PD*P*

1 2 a[@* o oo 2 -1
11 10 @* o2 2 o x(‘?lj
0 2 2/lo 0o @2 -2

1 -2 -1][1 0 O 0o 2 -1
=-1 1 11|/0 16 O |x _71 2 2 0
0 2 20 0 81 -2 -2 -1

) 1 -32 810 2 -1
=_7 -1 16 812 2 0
0 32 162||-2 -2 -1

98 100 80 -49 -50 -40
A= -1 -130 -132 -81|=| 65 66 40
-260 -260 -162| |130 130 81

12.19 Invariant Subspaces:

We observed if v is an eigen vector of a linear operator T, then T maps the span of {V} into
itself. Subspaces that are mapped into themselves are great importance in the study of linear
operator.

12.19.1 T invariant Subspace: Let T be a linear operator on a vector space V. A subspace @
of Vis said to be a T - invariant subspace of V if T\W) cW, thatis, if T(v) eW forall ve w .
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W.E. 20: Example: Suppose that T is a linear operator on a vectorspace V; Then the following

subspaces are T - invariant (i) {O} @iyVv (i) R(T) (iv) N (T) (v) E, for any eigen

value 2 of T.

Solution : i) To show {0} is T - invariant.
Let W, ={0}. We know that W, is a subspace of V.

Also T(0)=0eW, for Oev

Thus W, is a T invariant subspace of V.

i) To show that V is T - invariant.

We know V is a subspace of V.

Let veV then T(v) eV forall veV which proves that Vis a T - invariant subsspace of
V.

iii) To show range of Ti.e. R(T) is T invariant.
We know that R(T) is a subspace of V.
Letue R(T) <V =ueV
~T(u)eR(T) forall ue R(T) so R(T) isaT - invariant subspace of V.

iv) To show Null space N(T) is T - invarient.

T 'is a linear operator on V.

N(T) = {a eV/T(a)= O(eV)} and N(T) is a null space of V i.e. a subspace of V.
T(N(T)) = N(T) i.e T(u) e N(T) forall ue N(T).

~.N(T) isaT - invariant subspace of V.
W.E. 21: Tis the linear operator on R? defined by T(a,b,c) = (a+b,b+c,0)
Then xy plane ={(x,y,0)/x,ye R} and x axis ={(x,0,0)/xe R} are T - invariant subspaces of
R®-

Solution: Given T : R® _» R® is defined by T(a,b,c) = (a+b,b+c,0)

We know that W, = xy plane = {(x,0,0)/x e R} is a subspace of g3.
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But v=(X,0,0) e WV,
TV)=T(XY,0)=(Xx+Yy,y+0,0)=(x+Yy,y,0) eW, forall ve W,
Thus W, is a T - invariant subspace of R3.
Similarly Let W, = X —axis={(x,0,0/xe R}
We know that W, is a subspace of R3.
Let v=(x,0,0) e W,

T(v)=T(x,0,0)=(x+0,0+0,0) =(x,0,0) e W, for all veW,. Thus W, is an invariant sub-
space of R®.

12.20 T - Cyclic subspace of V generated by a non zero vector:

12.20.1 Definition: Let T be a linear operator on a vector space V and let v be a nonzero vector in

V, The subspace w = span ({V,T(V),T(VZ)...}) is called the T - Cyclic subspace of V generated by
V.

We can easily prove that w is T - invariant subspace of V. In fact, w is the smallest
T - invariant subspace of V containing non zero vector v.

W.E. 22:

T is a linear operator on P(R) defined as T( f (X)) = f'(X). Find the T - Cyclic subspace

generated by x2.
Solution: We have T[f(x)]= f (X) and so
T(x%) = () = 2x
T2(*) =T[T(x) |=T[(29]=(2%) =2

T - Cyclic subspace generated by x2 = Span [{XZ.ZX, 2}]2 P(X)

W.E. 23:

Let T be the linear operator on R? defined by T(a,b,c)={-b+c,a+c,3c}. Find the
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T - Cyclic subspace generated by g =(1,0,0).

Solution: Given T : R® _s R? is defined by
T(ab,c)={-b+c,a+c,3c}
T(e)=T(L0,0)=¢,
T*(e)=[T(8)]=T()=T(0.10) =(-10,0)= ¢
T%(8)=[T*(8) |=T(-8)=T(-10,0)=(0-10) =,
Thus T cyclic subspace generated by & ={g,T(€),T*(&),....}

= Span {g,&,} =[(st,0)/s,teR]

12.20.2 Theorem: Let T be alinear operator on a finite dimensional vector space V, and let w be

aT - invariant subspace of V. Then the characteristic polynomial of T,, devides the characteristic
polynomial of T.

Proof: Choose an ordered basis C = {Vl,vz,....vk} for w, and it is extended to form an ordered

basis B={V,,V,,...\, V.-V, } for V. Let A=[T], and B, =[T, ] . So A can be written as
B B
0 B
Let f(t) be the characteristic polynomial of T and g(t) the characteristic polynomial of
Ty -

Then f(t)=det(A—t|n)=de{Bl‘“k B, }

0 Bt

g(t).det(B, -tl . ,)
Thus g(t) divides f(t).

W.E. 24: Tis alinear operator on Rr* defined by T(a,b,c,d)=(a+b+2c-d,b+d,2c—-d,c+d).

If W= {(t, S,0,0)/t,s€e R} is a subspace of R*. Verify that characteristic polynomial of T, divides
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the characteristic polynomial of T.

Solution: Given TR >R is a linear operator defined by
T(a,b,c,d)=(a+b+2c-d,b+d,2c-d,c+d)

W ={(t,s,0,0)/t,se R} is a subspae of R*.
Let (a,b,0,0) € R* then T(a,b,0,0) = (a+b,b,0,0) eW

consider C = {el,ez} which is an ordered basis of w . Extend this to the standard ordered basis

B of R*.

Then B, =[T, ], :E) ﬂ and A=[T] = 1

O O - -
N

Let the characteristic polynomial of the f (t) and g(t) be the characteristic polynomial of

1-t 1 2 -1

Then f(t) =|A-tl|= -t 0 1

1-t 0 1
—(1-t| 0 2-t -1|=@-t)@-t)

1 1-t
0 1 1-t

2—t —1‘

=g(t).[(2-t)a-1t) +1]
=g(t)(t* -3t +3)
Thus g(t) divides f (t).

Thus the characteristic polynomial of T, divides the characteristic polynomial of T.
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12.20.3 Theorem: Let T be a linear operator on a finite dimensional vector space V, and let w
denote the T - Cyclic subspace of V generated by a non zero vector yeV . Let k=dim(W)

Then
i)

i)

{v,t(v),Tz(v), ..... T k‘1(V)} is a basis of W .

If agv+aT (V) +....+a_ T (V) +T“(V)=0

then the characteristic polynomial of T,, is f (t) = (-1)*(a, + at + at® +...+ a_t"" +t*)

Proof: i) Since v O the set {V} is linearly independent.

Let j be the largest positive integer for which B={V,T(V),T2(V) ..... T j’l(v)} is linearly indepen-

dent. Sucha | mustexist because V is finite dimensional. Let Z = Span (B). Then B is a basis for

Z. Further more T!(v) e Z. We use this fact to show that Z is a T - invariant subspace of V. Let

we Z . Since w is alinear combination of the vectors of B, there exists scalars bo,bl,....bj,l such

that w=Rv+BT(V)+...+b, T I"{(v) and hence T(w) is a linear combination of vectors in Z and

hence belongsto Z. So Zis T - invariant. Further more, ve Z,and W isthe smallest T - invariant
subspace of V, that contains [] so that E Clearly, E and so we conclude that[ . It

follows that B is a basis for [ 7], and therefore| | Thus[ .

Hence

is a basis of D

i) Now view B as an ordered basis for D

Let

be scalars such that

Observe that

Which has the characteristic polynomial.

Thus| |is the characteristic polynomial of D proving (ii).
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12.21.1 Cayley Hamilton Theorem for Linear Operators:
Theorem:

Let T be a linear operator on the n dimensional vector space V. (or let Abe [ | matrix

over the field F) and E be the characteristic polynomial for T (or for A) then (zero

transformation (or[ | (null matrix)
Or

Every square matrix satisfies its characteristic equation
Or

Every matrix is zero of its characteristic polynomial.

Proof: Consider an n square matrix over a field F for[ — relative to an ordered basis B.

The characteristic polynomial [ of Ais given by

The characteristic equationis| |

i.e.

The elements of the matrix E are polynomials at most of the first degree in t with the
result that the elements of the matrix Adj| | are ordinary polynomials in t of degree| Jor
less. As we know that the elements of the matrix Adj E are the cofactors of the elements of
the matrix | . Itimplies that the matrix adj| | can be written as
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Where j is a square matrix of order n, over F with elements independent of t. Now by
the property of adjoints we have

Or

Equating the coefficients of corresponding powers of t we get

]

Multiplying the above matrix equations by respectively we get

Thus

Also we have

o

Thus because

Hence the theorem.
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From this theorem, we conclude that if T is a linear transformation on the n dimensional

vector space| |; then there is a polynomial f of degree n, such that

Corollary: To find an expression for the inverse of a nonsingular matrix A:

Solution: We have‘

and i.e. \_[

Thus from the cayley - Hamilton theorem we have

So

or

correspondingly

giving an expression for the inverse of a non singular matrix A.

Aliter : To show every linear operator satisfies its characteristic equation.

Let T be a linear operator defined on V and E be its characteristic polynomial we will

show that for all | 1fl | as[ " islinear we have Let Let| |

be the T - cyclic subspace generated by []. Let. | Then is a

basis for D

Hence there exists scalars

Suchthat| D
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Hence| (2) is the characteristic poly-

From (1) and (2) we get

Butwe have| |divides| | Hence there exists a polynomial [ | such that

So

Hence T satisfies its characteristic equation.
12.21.2 Theorem: Cayley - Hamilton theorem for matrices:

Every square matrix satisfies its characteristic equation. i.e. If for a square matrix A of order n;

then the matrix equation

is satisfied by A. i.e.

Proof: As the elements of [ ]are at most of the first degree in| ], the elements of S
can be written as a matrix polynomial in D given by

where are matrices of the type

[ ]whose elements are functions of Ds.

Now

Since A. AdjA=detA.L
So

comparing coefficients of like powers of D on both sides we get




(Centre for Distance Education ) (12.7@

L

Pre multiplying there successively by

Thus =

So every square matrix satisfies its characteristic equation.

Corollary 1: Let A be a non singular matrix i.e.

Pre multiplying (1) by [ | we get

( Acharya Nagarjuna University )

and adding we get

also

or

and therefore

Corollary 2: If m be a positive integer such that| |, then multiplying the result (1) by[ |

we get

Showing that any positive integral power of

lower order.

W.E. 25: Worked Out Examples:

of Aiis linearly expressible in terms of those

Let T be a linear operator on || defined by

the standard basis of D Show that T satisfies its characteristic equation and

characteristic equation.

Solution:[ " lisalinear operator defined by

is the standard basis of

and

is

where

and

satisfies its
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The characteristic polynomial of T is _

Hence T satisfies its characteristic equation more over
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SatISerS its characteristic equation.

| isalinearoperator definedbyl [ Find the

characteristic polynomial. Verify cayley - Hamilton theorem.

Soluion:| —is alinear transformation definedby[ ]
is the standard ordered basis of T where _
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The characteristic equation is -

Wehavetoshow| — Twhere O is the zero operator from| |



(Centre for Distance Education Jrn((12.80)( Acharya Nagarjuna University )

o[

So T satisfies its characteristic equation.

W.E. 27: Find the characteristic equation of the matrix

- and verify that it is satisfied by A and hence find ||

Solution: The characteristic equation of the matrix is

or [

We have to show that _ where O is the null matrix.
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)

s

So [T

Hence A satisfies its characteristic equation preoperating with - we get

T e

W.E. 28:

If - thenexpress| —lasalinear polynomial in A by using

Cayley. Hamilton theorem.

Solution: The characteristic equation is -
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By Cayley - Hamilton theorem every matrix satisfies its own characteristic equation.

So S = O (null matrix)

| - 1)
The given linear polynomial is | using (1) we get
| |
| |
‘ ‘ since ‘ ‘
| |
| |
| |
Thus | is expressed as a linear polynomial
Aliter:
By (1) (zero matrix)
So [ e 2)
Multiply (2) by []
| [E— (3)
| I— (4)
| I— (5)
Now | |

using (5)
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using (4)

using (3)

using (2)
| Jwhichisalinear polynomial.
W.E. 29:

Using Cayley - Hamilton theorem find the inverse and || of the matrix

det
Characteristic equation is
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By Cayley - Hamilton theorem every matri satisfies its characteristic equation

Pre operating with || we get

]
]
By

multiplying by A
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W.E. 30:

Find the inverse of the matrix

Solution: We know if A is an n x n square matrix, its characteristic polynomial is

Where . is the sum of the principal minors of order K.

By this result, the characteristic polynomial of the given matrix

To find . (i.e. the sum of principal minors of order 2)

by using cayley hamilton theorem.
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The rows and columns deleted.

-

2) |

3) [N

4

o

& [

To find the sum of principal minors of order 3 i.e. . :

Deleted row and column

L _
]
]

2 [
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3 0

gives

- expanding along the first column.

Hence the characteristic equation is _
- I

By Cayley Hamilton theorem every matrix satisfies its characteric equation.

Pre operating with| .
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12.22 Summary:

In this lesson we discussed about

i) Eigen vectors and eigen values of linear operator and of a square matrix - Properties of eigen
values. Diagonalizability of linear operators and matrices. Test for diagonalization and numerical
problems - Invariant subspaces. Cayley-Hamilton theorem for linear operators and matrices.
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12.23 Technical Terms:

(

Diagonalization )

In this chapter we come across the following technical terms.

Eigen vectors

Eigen values
Characteristic equation
Diagonalization

Trace of a linear operator

Eigen space.

12.24 Model Questions:

1. Prove that if the characteristic roots of a matrix A are

D are

then the characteristic roots of

2.1f D is an eigen value of a nonsingular matrix A, then show thatD is an eigen value of E

3. Find the eigen values and the corresponding eigen vectors of the matrix

Ans : i) 2, 2, 8 Characteristic vector corresponding 2 is

coresponding to 8 is where k is scalar.

where a, b are scalars and
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Ans :ii) 0, 3, 15, k, I, m are scalars.

4) Using Cayley - Hamilton theorem show that _ where -

5) State and prove Cayley - Hamilton Theorem.

6) If - thenexpress| — las alinear polynomial in A by using Cayley

Hamilton theorem.

Ans [

7) Find the characteristic equation of the matrix A and verify that it is satisfied by A and hence find

i)-
ﬁ)-
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8) Find the inverse of the matrix by Cayley Hamilton theorem

ANS :

12.25 Exercises:

1. For each of the following matrices test A for diagonalizability and if A is diagonaliz-

able, find an invertible matrix Q and a diagonal matrix D such that

0] Ans: diagonalizable

ii) Ans: Not diagonalizable
iii) Ans : Diagonalizable
iv) Ans : Diagonalizable

2. For each of the following linear operators T on a vector space V, test T for diagonalizability and if

T is diagonalizable find a basis B for V such that is a diagonal matrix.

i) and T is defined by respectively.

Ans: T is not diagonalizable
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i) ]and Tis defined by

Ans: T is not diagonalizable.

ii)

Ans: T is diagonalizable

and T is defined by

)| and Tis defined |

Ans : T is diagonalizable

3. Prove that if T is diagonalizable, then D is diagonalizable, when T is a linear operator on a finite
dimensional vector space V.

4. Show that is not diagonalizable.

5. Prove that the matrix is not diagonalizable over the field C.

6. For the matrix over the field C, Find the diagonal form and a diagonalizing
matrix Q.

Ans:

7.Let T be alinear operator on D which is represented in the standard ordered basis by the matrix

. find the characteristic values of A and prove that T is diagonalizable.

Ans: 1,2, 2
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8) Let T be a linear operator on a finite dimensional vector space V; and let D be an eigen value of

T. Show that the eigen space of D i.e.

is invariant under T.

9) For each of the following linear operators T on the vector space V, determine whether the given
subspace D is a T - invariant subspace of V.

() and

Ans: T - invariant

(i) and

Ans: T - invariant

(iii) and

Ans: not T - invariant

10) Find the characteristic equation of the matrix and verify that it is satisfied by A

and hence find E

Ans: \

11) Verify that the matrix

satisfies its characteristic equation and conpute E

Ans:\
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12) Find the characteristic equation of the matrix and show that it is satisfied by

A. Hence obtain n the inverse of the given matrix.

Ans :
13) Find the characteristic roots of the matrix and verify cayley - Hamilton theorem for
this matrix. Find the inverse of the matrix A and also express asa

linear polynomial.

ANs :

The given matric polynomial =[]

14) If express\ as a linear polynomial in A.

Ans: S

15) Calculate D by using Cayley - Hamilton theorem given

ANs :

16) If showthat| " Tand hence find[ ],
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B -61 93
ANS : 62 94

12.26 Reference Books:

1) Linear Algebra 4th edition : Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence.
2) Schaum’s out lines : Beginning Linear Algebra Seymour Lipschutz

3) A course in abstract Algebra : Vijay K . khanna. S.K. Bhambari

4) Linear Algebra : Gupta and Sharma

5) Fundamentals of Linear Algebra : M.L. Aggarwal, Romesh Kumar

- A. Mallikharjana Sarma



LESSON - 13

INNER PRODUCT SPACES

13.1 Objective of the Lesson:

In this previous lessons the properties of vector spaces discussed are based on addition
and scalar multiplication of vectors. In this lesson we introduce the concept of length of vectors by
means of an additional structure on the vector space known as inner product.

13.2. Structure of the Lesson:
In this lesson the following concpts are discussed:
13.3 Introduction and properties of complex numbers

13.4 Inner product and inner product space - definitions - examples - basic
theorems

13.5 Norm of a vector definition, theorems in inner product spaces
13.6 Norm of a vector, normed vector spaces - definitions and theorems
13.7 Worked out examples
13.8 Summary
13.9 Technical terms
13.10 Model Questions
13.11 Exercises
13.12 Reference Books
13.3.1 Introduction:

In general a vector space is defined over an arbitrary field F. In this lesson we restrict the
field F to be the field of real numbers or complex numbers. In th first case the vector space is
called a real vector space and in the second case it is called a complex vector space. We study
real vector space in analytical geometry and vector analysis. There the concept of length and
orthogonality is disscussed.

In this lesson we introduce the concept of length and orthogonality of vectors by means of
an additional structure on the vector space known as an inner product.

We also have dot or scalar product of two vectors whose properties are discussed in
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vector algebra. An inner product on a vector space is a generatisation of dot product in R3.

Before defining inner product and inner product spaces we shall state some important
properties of complex numbers.

13.3.2 Some Properties of Complex Numbers:

Let Z=x+iy forsome x;yeR and i =+/—1 be the given complex number. Here x is
called the real part of the complex number Z. vy is called the imaginary part of Z and we write

x=Rezand y=1_27.
The modules of the complex number Z = x+1iy is the non negative real number m and
is denoted by |Z|
Also if z=x+1y is acomplex number then Z = x—1y is called the conjugate complex number of Z.
If Zz=7Z,then x+iy=X—-iy so y=0.

i.e. Z=Z = Z js areal number. Obviously we have

) z+Z=2x=2Rez i) zZ—Z=2y=2Imz
i) Z=x*+y*=|7’ iv) [2/=0=>x=0,y=01ie. |[=0=2=0
) (7)=2 W [7]=I2

vii) |2l =[x* +y* 2 0i.e. |22 Rez viii) I z,z, are two complex numbers then

) [z+2|<[z|+|Z] i)z +2,=7+7
i) 2z, =Z.Z, V) 2 -2,=27 -3,
V) {%} =% provided z, # 0

13.4 Inner Product and Inner Product Space:

13.4.1 Definition: LetV be a vector space over F. An inner product on V is a function that assigns
to every order pair of vectors u and v in \/ , ascalarin field F denoted by <u,V > such that for all
u,v inV, andforall geF the following holds good.

) <U+V,W>=<U,W>+<V,W> (Linearity)
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i) <au,v>=a<u,v> Linearity

There two conditions can be clubbed as <au+bv,w>=a<u,w>+b<v,w>
i) <u,v>=<Vv,u> wWhere bar denotes the complex conjagate (conjugate symmetry)

iv) <U,v> >0 and <u,u>=0<« u=0 where O denotes the zero vector in V (non nega-
tivity)

13.4.2. Definition II: A vector space together with an inner product defined on it is called an inner
product space.

Thus inner product space is a vector space over the field of real or complex numbers with
an inner product function.

Note: a) Conditions (i) and (ii) simply requires that the inner product is linear in the first
component.

(b) If F =R, the condition (iii) reduces to <U,V>=<V,U>. In this case i.e.when F = R,
the inner product space V(F) is called Eucledian space.

(c) If F =C. Thentheinner product space V(F) is called a unitary space or complex inner
product space.

(d) It can be easily shown that if a,a,..a,€F;u,u,,..u and yeV , then

n

n n

<Y au,v>=>a <u,v>
i=1 i=1
W.E. I

Worked Examples:

If u=(a,a,,.-a,),v=(b,b,..b,) €V, (C) then show that <u,v>=ab+ab,+..+a b de-

fines an inner product on V_(C).

Solution: We will now show that all the postulates of an inner product holds for
<u,v>=ab+ab +..+ab ... (1)

1) Linearity: Let w=(c,,C,,...c,) €V,(C)
Let a,b,ce C we have
au+bv=a(a,a,..a,)+b,b,..n)

= (aa, +bb,aa, +bb,,...,aa, +bh,)
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So <au+bv,w>= (aa, +bb)c +(aa, +bb,)C, +...+ (aa, + bb, )T,

= (aa,C, +aa,C, +...+aac,) +(bbC +bbc, +...+bb.C)
=a(ac +aC,+..+a.C,)+b(bc +bC +...+bC)
=a<uw>+b<v,w>

Thus <au+bv,w>=a<u,w>+b<v,w>

ii) Congugate symmetry : From the definition of the product given in (1)

<v,u>=ba +ba, +..+ba,

So <v,u>=(ba +ba, +..+b,a,)

=ha +ba, +..+ba,

=ab +ab, +..+aph,

=<u,v> by (i) (Since multiplication is commulative)

So <V,u>=<u,v>

iii) Nonnegativity:
<u,u>=aa,+a,a,+..+a,3a,
:|a1|2+|a2|2+...+|an|2 ............. 2)
as a is a complex number so [a| >0

So (2) is a sum of n non-negative real numbers and so >(Q. Thus <u,u>>0 and also

<uu>=0=al +|a[ +..+[a| =0
— each [a| =0 soeach g =0

Sou=(a,a,,..a,)=(0,0,.0=0
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Hence the product defined in (1) is an Inner product on V,(C) and with respect to this

inner product V, (C) is an inner product space.

13.4.3 Note: i) Standard inner product:

Definition: The inner product <u,v> on V,(C) defined as <u,v>=al +a,b, +..ab, where

u=(a,a,,..a,) and v=(b,b,,..b,) is called the standard inner product on V, (C).
ii) If u,v are two vectors in V, (R) , then the standard inner product of U,V is given by
<u,v>=ah+ab, +..+ah,
=ab+ab +..+ab,

-- in the field of real nos El =h

= W.V which is the dot product of u and v and the inner product <u,Vv >
is denoted by U.V.

i) <u,v>=a(a)+a,(8,)+.2,(a,)

=a’+a;+..a>=uu
W.E. 2:

Let V be the vector space over C of all continuous complex valued functions defined on
1
[01]. If f,geV; then < f.g >:I f(t)g(t) dt gefines an inner product.
0

Solution: Let f,g,heV and a,beC, then

i) Linearity I[af (t) +bg (t)]mdt

_ aj f (t)h(t) dt+ bj g(t)h(t) dt

=a< f,h>+b<g,h>
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i) Conjugate symmetry:

< g_f>=jg(t)mdt

g(t) f (t)dt

O ey

:Jl'f(t)ﬁdt:<f,g>

Thus <a >=< f,g>
iif) Non negativity:

1

<f, f>=[fOfM)d

(=)

[f ()" dt>0

O ey

1
Also < f, f >:Oc>j|f(t)|2dt:0
0

o ft)= O{Avf—t € [O,l]}

< =0

( Acharya Nagarjuna University )

As the required conditions are satisfied V is an inner product space.

W.E. 3:

For f(x),g(x) € P(R), the vector space of polynomials over the field R, defined on [0,1]

1
if < f(x),g(x) >:I f (t).g(t)dt then prove that it is not an inner product.
0

Solution: Take f(x) = x; g(x) = x? on [0,]]

then f'(x)=1 g (x) = 2x
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i , T 1
So < f,g>= l(t)dt:[—} ==
5 3 3

1 31
<g.f>=[2amdt=2| - :2(%:3
) 3" “(3)73

Hence < f,g>#<g, f >
So as the conjugate symmentry is not satisfied. Hence it is not an inner product.

13.4.4. Some Key points in Matrices:

1) Definition: i) Let Ae M (F). We define the conjugate transpose or Adjoint of A to be the

n x m matrix denoted by A * and is defined as if A= [a,-,- lmn then A* = [h,— ]nxm where b =a; i.e.

(A)=(A

I 1+2i
For example Let A= then

2 3+4i
o i 2
l1-2i 3-4i

Note: If A has real entries then A * is the transpose of A.i.e. aAx — AT .

i) Trace of a matrix : Let A be a square matrix of order n. The sum of all the elements of A lying
along the principal diagonal is the called the trace of A. We write trace of Aas tr (A).

n
Thus trace of A= zaii

i=1

1 3 4
Ex:If A=12 -1 3|thentr A=()+(-D)+2=2
2 1 2

i) tr(A+B)=trA+trB
iii) tr(1A) = AtrA where 1 eC

iv) tr (AB) = tr (BA)
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V) trA=trA’
W.E. 4:

LetV =M, (F). Define < AB>=tr(B* A) forall A BeV ,thenshowthatV is aninner
product space.

Solution: We are given V =M _ _(F) is a vector space and < A B>=tr(B* A) .......... (1)

mxn

with this definition we will show that V (F) is a inner product space.

i) Linearity: Let A BeV .Let a,beF thenby
1) <aA+bB,C >=tr (C* (aA+bB))
=tr (C* (ah) + C* (bB))
=tr (a(C* A)+b(C* B))
=tr (a(C* A))+tr (b(C* B))
=tr(C* A)+b. (tr(C*B))

=a<AC>+b<B,C>

Hence the condition of linearity holds good.

i) Non-negativity :

it A=[a; ]  then A“=[h; | where b Z%

A* A:[C'j]nxn where ¢; =) ba, :kZaMakj
=1

k=1

i=1 i=1 i=1
> Yaa =Yl ... (1)
i=1 i=1 i=1 k=1

Now if A=O then a; #0 for some KandiSo < A /A> >0

If A=0O (null matrix) then a; =0 foralli, j.
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So a,; =0 forall k,i

So Yla,[ =0
i=1

—trace of (A* A)=0
=><AA>=0 ... 2
Thus if A=Q (null matrix) <A A>=0.

Thus from (1) and (2) < A /A> >0

Hence the condition of non negativity is satisfied.

Conjugate Symmetry:
Let ABeV

Then < A, B >=traceof (B* A) by given data.

<AB>=tr(B* A)=tr(B* A)

=tr (ﬁﬁ) - (ATY = A

=tr (((K)T B)Tj wtr(A)=tr(A7)

=tr(A* B)
=<B,A>
S0 =< A B>=<B,A>
As all the three required conditions are satisfied,

V =M__(F) is aninner product space.

nxn

Inner Product Spaces
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13.4.5 Frobenius Inner Product:

Definition: The inner product on V =M __(F) defined by < A B>=tr(B* A) for all ABeV is

nxn
called the Frobenius inner product and then V =M ___(F) is an inner product space with the inner

product defined above.

W.E.5:

nxn

Provide the reason why the product < (a,b),(c,d) >=ac—bd on R? is not an inner product
on the given vector space.

Solution: Let (a,b) = (3,4) € R?
then by given data
<(a,b),(a,b) >=<(3,4),(3,4) >
=3)(3)-(4)(4)=9-16=-720

Hence the condition of non negativity is not satisfied. Hence < (a,b),(c,d) >=ac-hbd is
not an inner product.

W.E. 6:

1
Provide the reason why the product < T (), 9(X) >:I F(0g(t)dt on P(R) where * de-
0

notes differentiation, is not an inner product on the given vector space.
Solution: Take f(x)=x g(x)=x? on [0,1]. Then

1 t3 1 1 1
< f,g>=j1.t2dt={—} =(__o - =
0 3 0 3 3

1 1 ts‘ 2
<g,f >=j2t.tdt=2jt2dt=2.{— ==
0 5 3 3

d1

Hence < f,g>=<g, f >

Hence the conjugate symmatry does not hold. So the given product is not an inner
product.

13.4.6 Theorem:

Let V be an inner product space. Then for u,v,weV and a,b,ce F the following
statements are true.
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Inner Product Spaces

i) <U,V+W>=<UW>+<U,WwW>
1)) <u,cv>=Cc<u,v>

i) <Uu,0>=<0,u>=0

iv) <au-bv,w>=a<u,w>-b<v,w>
V) <u,av+bw>=a<u,v>+b<v,w>
Vi) If <u,v>=<u,w> forallUeV then v=w.

Proof:

i) To show <U,V+W>=<U,V>+<UW>

By definition <u,v+w>=<v+w,u>

=<V,U>+<WU>

=<U,V>+<WwuU>
= <U,V>+<Uuw>

Thus <U,V+W>=<U,V>+<U,W>
ii) To show <u,cv>=C <Uu,v>
By Definition : < u,cv>=< cv,u> (by conjugate symmetry)
—c<v,u> bylinearity
=C< ﬁ >
=C<u,v>

Thus <u,cv>=C < U,V>

iif) To show <uy,0>=<0,u,>=0

Now < u,0>=<u,0(0) >
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-+ 0 is real number its conjugate is itself.
So <u,0>=0
lily < 0,u>=<0(0),u >

=0<0O,u>

From (1) and (2)
<U,0>=<0,u>=0
iv) To show that < au=bv,w>=a<u,w>-b<v,w>
Here < au—Dbv,w>=<au+ (-b)v,w>
=a<u,w>+(-b) <v,w>
=a<u,w>-b<v,w> by linearity.
Thus <au—-bv,w>=a<u,w>-b<v,w>

v) To show that <u,av+bw>=a<u,v> +b <v,w>

Solution: < u,av+bw >= < av+bw,u > by conjugate symmetry.

=a<v,u>+b<w,u>
—a<v,u>+b<wu>
=3 <Uu,V>+b <u,w> by conjugate sym metry.
Thus <u,av+bw>=a<u,v>+b <u,w>
Corollary: If a, b are real numbers then
i) <u,av+bw>=a<u,v>+b<u,w>
i) <u,av—bw>=a<u,v>-b<u,w> since if x is real number then X = x.
vi) If <u,v>=<u,w> forall yeV,thento show v=w.

Solution: given <u,v>=<u,w> forall ueV

—<u,v>—<uw>=0 forall ueV
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=<u,v—-w>=0 forall yeV
=<V-W,Vv—W>=0 choosing u=v-w

=>v-w=0
=>V=W
Thusif <u,v>=<u,w> forall yeV,thenv=w

Remark: From (ii) and (v) of the above theorem, the reader should observe that the inner product
is conjugate linear in the second part.

Note: i) <—u,-v>=(-1) <u,~v>=(-1)(-) <u,v>
= (-)(-1) <u,v>=<u,v>
i) <u,av-bw>=a<u,v>-b <u,w>
i) <U+vV,u+v>=<U,u>+<U,Vv>+<V,u>+<V,v>
iv) If u,u,,..u,,veV and a,a,,..a, € F then <au, +a,u, +...+a,u,,v>
=a <Uu,v>+a, <U,V>+..+a <u,v>

n

i.e. <Zn:aui,v>=2q <u,v>
i=1

i=1

n n __
Also <V,Za1.ui >:Za,. <vU >
i=1 i=1

V) <au,bv>=ab <u,v> forall u,veV and a,beF.
13.5 Norm or length of a vector in an inner product space:

Consider the vector space V,(R) with standard inner product defined on it.
If u=(a,a,,a,) €eV;(R) then <u,u>=a’+a’ +a’’

Now we know that in the three dimensional Euclidean space w/a12 + a22 + a§ is the length of the

vector U=(a,,a,,a,). Motivated by this fact, we make the following definition.

13.5.1 Definition: Let V be an inner product space ify ¢V , then the norm or length of the

vector u written as ||u|| is defined as the positive square root of <u,U>i.e. ||u|| = /< u,u>.
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Note: i) If u is a vector in an inner product space V(F) then <u,u > is always non negative

and hence |u] = J<u,u> is meaning ful and it is non negative.

i) In the inner product space V,(R)=R*R). If u=(ab)eV, then
Jul=I(@b)] =& b =y<uu>

iii) In the inner product space V, (C) =C,

ifu=(a,a,,..a,) then

2

13.5.2 Unit Vector:
Definition: Let V be an inner product space. If yeV is such that ||u|| =1, then u is called a unit

vector. thus in an inner product space a vector is called a unit vector, if its length is one unit.

13.5.3 Theorem: Let V(F) be an inner product space. u is a non zero vector in V. Then show

1
that Mu is a unit vector.

T IE <u,u
f: < S U>=—.—
POl || Tl Tl T
2
UL _
||U|| ||u|| ||u|| IS a unit vector.

u
Note: If u is a non zero vector in an inner product space V(F), then the unit vector M is called

the unit vector corresponding to u. This process of getting a unit vector along u is called
normalizing u.
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13.5.4 Definition: Normalising:

The process of multiplying a non zero vector in an inner product space by the reciprocal of
its length is called normalizing.

Note ii) In the inner product space R?,i = (1,0) j =(0,1) are unit vectors since the length of
each is 1.

iii) In the inner product space R®;i =(1,0,0) j =(0,1,0);k =(0,0,1) are unit vectors since
the length of each is 1.

iv) In the inner product space R’; if u=(a,a,,&); then |u|=,/a +a;+a; and the unit

vector corresponding to U is

iU=—(<"‘16‘zae)
™ Jarrazead

_ a % &
Ja+ai+al Jal+a+al &l +al+al

W.E.7:
If u=(1-i,2+3), v=(2-5i,3-1) aretwo vectors in a complex inner product space

then find < u,v>,|ul|,|Iv] .
Solution: < u,v>=< (1-i,2+3),(2-5i,3~i) >
=(1-i)(2-51) + (2+3i)(3-i)
= (L-1)(2+50) +(2+3)(3+i)
=(2+3+5)+(6+11i - 3)
<U,v>=(7+3) +(3-11) =10~ 8§
Jul* =<u,u>=<@~i,2+3),@1-i,2+3) >
= (1-1)(A-1)(2+3)(2+3)
= (L-i)@+i)+(2+3)(2-3i)

Jul* = @+2) + (4+9) =15
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So |ul = J15

il) |v|* =< v,v>=< (2-5i,3-i),(2-5i,3-i) >
= (2-50)(2-50) +(3-1)(3-1)
= (2-51)(2+5i) +(3-)(3+i)
So |V|* =<Vv,v>= (4+25)+(9+1) = 39
S0 v =+/39
W.E.8:

Find the unit vector corresponding to (2-1,3+2i,2+ J§i) of V3(C) with respect to the
standard inner product.

Solution: Let u=(2-i,3+2i,2+ \/§i)

lu|* =< u,u>=<(2-i,3+2i,2++/3),(2-1,3+ 2i,2+/3) >

=(2-i)(2=1)+ (3+21)(3+ 21) + (2+/31) (2 +/3)
= (2-0)(2+i0)+ (3+2)(3-2i) + (2+/31)(2-/3)

=(4+)+(9+4)+(4+3) =25
So ||u||2 =25 Hence |u|= J25=5

1
Hence unit vector corresponding to u is Mu

:%(Z—i,3+2i,2+\/§)
W.E. 9:

1
if u=(0,3, 4)JV:( Oﬁj are two vectors in a real inner product space, then find

-

<u,v>,
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1 1
Solution: <u,v>=<(0,3,4), (Eoﬁj >

1

=< (0,3,4), N

(1,0.1)>

-1 034,001

NG

1

4
= E{0(1) +3(0)+4(1) = 5 2&}

13.5.5 Theorem:
Let V be an inner product space over a field F then show that

||cu|| = |C| ||u|| wueV,w»ceF

Proof: ||cu|* =< cu,cu >
=CcC <u,u>
=cf* Jul”
Hence | cul =|cf|u]
13.5.6 Theorem:
Let V be an inner product space over a field F. Then show that |u| =0 if and only if y=0
and in any case [u[>0.
Proof: ||u|=+/<u,u> by definition of norm.

So ||u||2 =<u,u>= ||u||2 > 0 since by definition <u,u >>0

=|u|>0
Also we know by definition of inner product

<u,u>=0ifandonlyif u=0



(Centre for Distance Education ) (13.19) ( Acharya Nagarjuna University )

i.e. ||u||2 =0 ifandonlyif y=0
ie. |u|=0ifandonlyif u=0
Thus in an inner product space |ul| >0

if and only if u=0.
13.5.7 Theorem:

CAUCHY - SCHWARZ'S INEQUALITY : If u,v are any two vectors in an inner product space
V(F) then |[<u,v>|<|ul|M.

Proof: Case (i) if v=0 then <u,v>=<u,O >=<u,00 >

O<u,0>=0
So |<u,v>/=[0/=0 ......... (1)
and [uf M =[uf[O] =[u]©@=0"......2)

From (1) and (2) [<u,v>|=|u| V|
Hence |< u,v>|<|u]|v] holds good.

Case (ii) Let v=O forany Cin F |u—cv|>0

Now ||u—cv||2 =<Uu—Ccv,u—cv>
=<U,U—CV>-C<V,U—CV>

=<U,u>-C<u,v>—-Cc{<V,u>-C<V,u>}

=<U,U>-C<UV>-C<V,U>+CC<V,U> .....cooo.e. 4)
. <u,v>
In particular set ¢ =
<V,u>

Using the value of ¢ in (4) we get
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<u,v> <u,Vv><u,v>
<U,V>— ,
<V,V> <V,V> <V,V> <V,V>

<V,V>

||u—cv||2 =<u,u>—

<u,v><u,v>

2 -
So ||U—CV|| =Uu>-— ... (5) Since <V,V> isrealnumber. <v,v>=<v,v>.

<V,V>
Thus from (3) we have 0<|u—cy]

ie. 0<|u- Cv||2

<u,v><u,v> .
We get 0<<u,u>——————"— using (5)
<V,V>

|< u,v>|2

W

= <[l " |< v

= 0<|uf -

= [<u v <|uf v

=<uv>|<|uliv]

Hence the theorem.

13.5.8 Special Case of Cauchy - Schwaz’s inequality :
Cauchy’s inequality Theorem:

In the vector space V, (C) with standard inner product defined on it,

<[Sar] [3mr]

Or

2&5

If &,a,,a,...a, and b,b,,.., are complex numbers, then

<(Val +[af +r[af )< VIbf < +tlaf |

‘qﬁ+%@+m+q@
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Proof: Let u=(a,a,,...,) and v=(b,b,,..n) are any two vectors in the vector space V, (C)

with standard inner product defined on it.

Then a,,a,,...a, and b,b,,...b, are all complex numbers.

We have <u,v>=al +ab, +..+ah,

2

<u,v>[ :‘a151+a252 +..+ab
Also  |uf* <uv>=aa +a,a,+..+a3,

:|a1|2+|a|2|2+...+|an|2

similarly |v|* =<v,v>= [0 +|b,|" +...+]b,[
By cauchy - Schwarz’s inequality

[<u.v>[<|ufM

ie. ‘a161+a262+...+ag15n S(\/|31|2 +|az|2+"'+|an|2)x(\/|Q|2 +|Q|2 +"'+|bn|2)

Note : If u,veV,(R) then a = a ;b =b soie.when a,a,,..a,, b,b,,..h, are real numbers.

then |a1bl+a2b2+...+a\1bn|S(\/af+a22+...+aﬁ)x(\/bl2 +b22+...+bf)

Or

oty ab v < (Vo o (BT
W.E. 10: Using Cauchy - Schwarz, inequality, prove that the also vector value of the cosine of

an angle can not be greater than 1.

Solution: Let F be the field of real numbers Rand \/ = F©®

Consider the standard inner product on V.
Let u=(a,,a,,a;);v=(,b,,b,) be any two non zero vectors in V.

0=(0,0,0)
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Let 9 be the angle between the vectors u and v then

cosg = bt ab, 4 ab,
Jaz+al+al fof + b7+
_<uv>
Jullv]
cos| = <> UM

Julvl vl
Since by Cauchy Schwarz inequality [< u,v>| < |uf[|v]

~.|cosf| <1
Hence the absolute value of the cosine of an angle can not be greater than 1.

13.5.9 Triangular inequality:

in an inner product space V (F), prove that |Ju+v| <|u]+|v] .
Proof: By definition of norm

Ju+v =<u+v,u+v>

=<u,u+v>+<Vv,u+Vv>

=<U,U>+<UV>+<V,U>+<V,V>

=|u|* + <u,v>+<u,v>+ |V since <v,u>=<u,v>
= |u|* +2Re<u,v> +|M]
<|lu* +2|<u,v>|+|M[* Since Rez<|Z.
Hence |u+V|’ <||u|” + 2||u|[v|+|M]* since By Cauchy - Schwarz inequality |< u,v >| <ju]|v|
=+ < (Jul + )

= [u+v<ful+M
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Geometrical interpretation of triangular inequality:

Consider U,V to be the vectors in an Inner product space V,(R) with standard inner prod-

uct defined onit. Let the vectors U,V be represented by the sides AB, BC of triangle ABC. Then

evedently we have y+v= AC and |u = AB,|v|=BC and |u+V|=AC.

Then Cauchy - Schwarz’s inequality implies that AC < AB+ BC -
W.E. 11:

Prove that if V is an inner product space then |< u,v>| :||u||||v|| if and only if one of the

vectors u or v is a multiple of the other (or U,V are linearly dependent).

Solution:

Case i) Let |[< u,v >| = ||u]|||v||
if v=0 (zero vector) then clearly |< u,v >|=0 and |u]|]V| = |ul|0] =

so |<u,v>|=|u| |V and we can write v = Qu i.e. v is a scalar multiple of u. (i.e.

u,Vv are linearly dependent).

Similarly if y=Q then y=Qv i.e. u is ascalar multiple of v (i.e. U,V are linearly dependent)

<uVv>

M

Let yxQandlet C=

Let w=u-cv

<W,wW>=<u-cCcv,u—-Ccv>

=<U,u>-C<U,v>—-C<V,U>+CC <V,v> by (4) Cauchy - Schwarz’s inequality.

_” ” <u,v> <u,v> <UV><UV>|| ”2

<u,v> B — <V,u>+
M Vi MM

:” ||2_<U,V><V,U>

W

:” ||2_<U,V><U,V>

M
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|< u,v>|2

M

M snee =|<uv>{=|u] M

=[ulf~

=0
Hence <w,w>=0=>w=0
=u-ov=0=u=cv ie.
u is a scalar multiple of v. Similarlity when y+Q we can prove v is a scalar multiple of u.

i.e. U,V are linearly dependent.

Converse: If one of the vectors U,V are zero vectors then they are linearly dependent i.e. one
can be expressed as a scalar multiple of other and

<u,v>/=0 and [u] =0

So [<uv>|=[ufv]

Let us suppose that both U,V are non zero vectors and they are linearly dependent.

So one is a scalar multiple of the other.

Let u=cv forsome ceF

<U,V>=<CV,V>=C<V,V>= c||v||2

Also [u] = lev]=cf|v]

Hence ||ul||Vi| = |c|||v||2 .......... 2)

From (1) and (2) it follows

[<uv>[=[ulM
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Hence from the above two cases the theorem follows.

13.5.9 Theorem:
If U,V are vectors of an inner product space V(F), then [Ju]—[v]| <[u—-Vv]|
Proof: U,V are vectors in an inner product space V (F).

|ul| =[lu=v+V]| < u=v|+|v| by triangular inequality.

So Ju[-M <[u=V] ... @

Again |V|=|v—u-+ul <|v—ul|+|u| by triangular inequality
= V- [ul <[v-u] woc.... e

From (1) and (2)
Jlull= M| < flu = vi

13.5.10 Parallelogram law on an inner product space :

If U,v are any two vectors in an inner product space V(F) then show that
Ju+ v +u=v]" = 2Jul] + 2]
Proof: U,V are any two vectors in an inner product space V (F).

So |u +v||2 =<U+V,u+Vv> by definition of norm.

=<U,U+V><V,u+v>

=<U,U>+<UV>+<V,U>+<V,V>

i.e. ||u+v||2 :||u||2+<u,v>+<v,u >+||v||2 ............ (1)

Also ||u+v||2 =<uU-V,u—-v>

=<u,u-v>-<Vv,u-v>

=<U,U>—<UV>—{<V,u>-<V,v>}
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So ||u—v||2 :||u||2—<u,v>—<v,u>+||v||2 ............... (2)
Adding (1) and (2) we get

Ju+ i +Ju—vi* = 2uf + v

Hence the theorem.
Geometrical inter pretation of parallelogram Law:

Let u and v be two vectors in the vector space V,(R) with standard inner product defined
on it. Suppose the vector u is represented by the side AB, and the vector v is represented by the
side BC of a parallelogram ABCD then th vectors U+V,U—V, represents the diagonals AC and
DB of the parallelogram.

From the theorem of parallelogram law ||U +V||2 +||U —V||2 = 2(||U||2 +||V||2)

— AC? + DB? = 2(AB? + BC?)

= AB? + BC? + CD? + DA?

= The sum of the squares on the diagonals of a parallelogram is equal to the sum of the
squares on the four sides.

13.5.11 Theorem:

If u, and v are two vectors in an innter product space V (F) such that ||[u+Vv] =||u[+[Vv]
then the vectors are linearly dependent.

Proof: U,V are two vectors in an inner product space V (F) such that |u+V||= u]+|v]|

= [+ = Jul + M)’
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=<u+v,u+v>= ul” + V[ +2[uf|v]

S<UUS+H<UV>+<V,U>+<V,V>= ||u||2 +||v||2 + 2||u||||v||

= ol <uv<uvs V= ul+ M+ 2[u M
= 2Re<u,v>=2|u| |v|
ie. Re<u,v>=|ul[v] .....cvvve.e (1)
We know Rez<|Z]
So Re(u,v) <|<u,v>|
= |uf|M| <|< u,v>| < |ul[IV] by (1) and Cauchy - Schawarz's inequality.

=[<uv>]=[u]]M

Hence u,V are linearly independent.

Note: The converse of the above theorem need not be true.

For example consider the inner product space V,(R) with standard inner product defined

onit.
Let u=(-10,2),v=(3,0,-3) e ,(R)

then yv=_3y. Hence u and v are linearly dependent.

Jul= (=D + 0% + % =2,V = (3 + 0 + (-3)?
=18=3/2
Jul+[M =2 +3V2 =42 ... 1)
U+V) =(-1,0,1)+(3,0,-3) = (2,0,-2)

lu+v|=v4+0+4=18=2V2 ... (2)

From (1) and (2) [u+V] = |u]+|Vv].
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13.5.12 If u,Vv are vectors in an inner product space V (F) then show that

1 2-1 2 _ 1 2 1 2
Re<u,v>==|u+V["—|u-V|" andif g =R, then show that < U,V >==[u+V|| —=|u-v]|
4 4 4 4
Proof: U,V are two vectors in an inner product space V(F),

We have ||u+v||2 =<U+V,U+V>

=<u,u+v>+<u,u+v>

=<U,U>+<UV>+<V,U>+<V,V>

= ||u||2 +<UV>+< u,v>++||v||2
= ||u||2 +2Re<u,v> +||v||2 ............. 1)

Also ||u—v||2 =<u-V,u—-v>
=<U,U-V>—-<V,U—V>

=<U,U>—<UV>—{<V,U>—-<V,V>}

So ||u—v||2 =||u||2—< u,v>—< u,v>+||v||2

= ||u||2 - 2Re<u,v> +||v||2 ........... 2)

Subtracting (2) from (1) we get
||u+v||2 —||u—v||2 =4Re<u,v>
So Re<u,v> =—||U+V||

If F =R, then Re<u,v>=<u,Vv>

So (3) becomes

1 2 1 2
< u,v>=—||u+v|| ——||u—v||
4 4
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13.5.13 Theorem:

If u and v are vectors in a unitary space then
d<uvs=|uv’ —u-v +ifutiv]® —iju-ivf
Proof: u and vare vectors in a unitary space V (F)

||u+v||2 =<U,V><UV>

=<U,U>+<UV>+<V,U>+<V,V>
ie. v =|uf" + <uv>+<vus 4|V
lu=vi = uf" —<u,v>—<v,u>+|vf
so  |u+v[ -Ju-v[ =2<uv>+2<v,u>
Jlu+iv[] =<u+iv,u+iv>
=<U,U+iV>+ <v,u+iv>
=<UU>H <UV>+H {<V,u>+T <v,v>)
=<U,U>—i <U,Vv>+ {<v,u>—i<v,v>}
Since T — _j
= |u[’ =i <u,v>+i<vu+|v|
So i||u+iv||2=i||u||2+<u,v>—<v,u>+i ||v||2 ........... (2)
Also [u—iv[] =<u—iv,u—iv>
=<U,u—-iv>—-i<v,u-iv>
=<u,u>—i <uv>—if<vu>—i <uv>|
So ||u—iv||2 :||u||2 +i<u,v>—-i<v,u >+||v||2 since | = _j

So —i|u- iv||2 = ||u||2 +<UV>—<V,U>—i ||v||2 ............ (3)
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Adding (2) and (3) we get
i||u+iv||2—i||u—iv||2=2<u,v>—2<v,u> ........ (4)
Adding (1) and (4) we get
d<uv>=|utv —Ju-v +illu+iv]’ —iu-iv]
13.5.14 Theorem:

If u and v are vectors in a unitary space then prove that < u,v>=Re<u,v > +iRe<u,iv >.

Proof:
If z=X+1y then y=Imz
= Re{-i(x+iy)}
i.e. y=Re(-i2)
So by this Im <u,v> Re{-i <u,v>}
=Re{<u,iv>}  Since <u,iv>=T <u,v>
=—-i<u,v>
Hence <u,v>=Re<u,v>+iRe<u,iv>. Since Z=real Z+ilmZ

13.6 Norm of a Vector in a vector space:

Definition: Let V be a vector space over F, where F is either R or C. Regardless of whether V
is or is not an inner product space, we define a norm ||| as a real valued function on V satisfying

the following three conditions for u,veV and gc F .

i) Ju[ =0 and ||u|=0 if and only if u=0
i) ] =aifu]
i) u-+v]}< Jul+[M

A vector space V (F) in which the above three conditions are satisfied is called a normed
vector space.
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13.6.2 Definition: Normed Vector Space:

Let V(F) be an inner product space in which norms of a vector yeV is defined as

|u|=+/<u,u>. The inner product space with this definition of norm is called a normed vector
space if the following three conditions are satisfied.

i) [u|>0 and u=0 ifand only if u=0
i) |[au] = allu] and

i) u+v]| <|ul|+|V] ~uveV and aeF

13.6.3 Theorem: Every inner product space is a normed vector space.

Proof: As the three conditions required for a normed vector space are true in every inner product
space, it follows that every inner product space is a normed vector space.

13.6.4 Distance in an inner product space:

Definition: Let u and v be two vectors in an inner product space V (F). The distance between

the vectors u and v is denoted by d (u,v) and is defined as d(u,v) =|u-v|=y<u-v,u-v>
Note: d(u,V) is a non negative real number.

Ex: Let u=(a,a,,a;)v=(b,b,,bb,) be two vectors in the inner product space R3. Then

u-v=(a-h,a,-b,a,-h)

d(u,v) =Ju-v|=1/(a,~h)* +(a, ~b,)* + (8 —b,)’

13.6.5 Theorem: If u,v,w are any three vectors in an inner product space V (F) then prove
that

i) d(u,v)>0 and d(u,v) =0 iff u=v
i) d(u,v) =d(v,u)

iii) d(u,v) < d(u,w)+d(w,v)

iv) d(u,v) =d(u+w,Vv+w)

Proof: i) To show that d(u,v) >0 and d(u,v) =0 iff u=v.

By definition d(u,V) =|u—V| >0 since the norm of a vector is a non negative real number.
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and d(u,v):0<:>||u—v||:0<:>||u—v||2 =0
S<U-v,u-v>=0

Su-v=0su=v

Thus d(u,v) =0 ifand only if u=v.

ii) To show d(u,v) =d(v,u)

Proof: We have by definition
d(u,v) =u—v|
=[CDev-w]
|- tjju
iy
=|v—ul|=d(v,u)
So d(u,v) =d(v,u)
iii) To show that d(u,v) <d(u,w)+d(w,V)
Proof: d(u,v) =[u—V|
=||(u—w) +(w-v)]
<[ (u—w)||+|jw—V|| by triangle inequality.

<d(u,w)+d(v,w)

So d(u,v) <d(u,w)+d(v,w)
iv) To show d(u,v) = u—V|
Proof:  d(u,v) =|u—V|

=||(u+w) - (v+w)|

(

Inner Product Spaces
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=d(u+w,v+w)
Thus d(u,v)=d(U+w,v+Ww).
13.7 Worked Out Examples:
W.E.12:

Show that V,(R) is an inner

< (%% %), (Vs You Ya) >= XY %Y, + X35
Solution : As the given field is the field of real numbers the conjugate symmetry is nothing but

product space under

symmetry

I) Symmetry:
Let U= (X, %,%),V=(Y1, Y2 ¥s)
given <U,V>=< (X, %, %), (Y1 Va1 ¥3) >= X Y1 Y, + %Y,
S0 <V, U>=< (Y1, Vo1 ¥3)i (X0 %0 %) = VX + Yo X + Y3
= XY+ XY, XY

=<U,V>
Thus <V,u>=<u,v>
i) Linearity: Let a,be R then
au+bv=a(x, %, %) +b(y,, ¥, ¥5)
= (ax, +by,, ax, +by,, &% + by;)
Let w=(z,z,,2,) beanyvectorin V;(R).
Then < au+bv,w>=< (ax +by,,ax, +by,,ax, +by,),(z,z,,2) >
= (ax, +by;)z + (&%, +by,)z, + (&% +by,)z,
= (axz +by,z) + (8%, +by,2,) + (%2, + by,2,)
=a(xz + %2+ %2)+b(y,2 +Y,2 + ¥;Z,)

=a<uw>+b<v,w>
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Thus <au+bv,w>=a<u,w>+b<v,w>
iii) Non negativity : <U,U>=< (X, X%,,X%;), (X, X%, %) >
=%, (%) + % (%) +%5(%;)
<UU>=X+X+x >0
<UU>=0 X +X+x =0 % =0,%=0,%=0
So U= (%,%,%)=(0,000=0

Hence <u,u>=0<u=0.

As all the three required conditions are satisifed, the given product is an inner product.
So V,(R) is an inner product space.
W.E. 13:

Which of the following define inner product in V,(R) . Give reasons

) <U,v>=XY, +2XY, +2XY, +5XY,

i) <u,v>=2xY,+5%Y, where u=(x,%) V=(¥,,¥,)
Solution: u=(x,%,),v=(Y,,Y,) are any two vectors in V,(R).

i) To verify <u,V>= XY, +2XY, +2XY, +5X,Y, is an inner product or not.
i) Symmetry :
<V U>=< (Y1, Y,), (%, %) >
=YX+ 23/1)(2 + 23/2)(1 + 5y2X2
= XY +2X Y, + 2%, +9%Y,
=<u,v>
Hence <V,U>=<U,V>
ii) Linearity :

Let a,be R; then
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au+bv=ax, %) +b(y;, ¥,)
= (axl+by1'ax2+by2)
Let w=(z,z,) be any vectorin V,(R).

Then <au+bv,w>=< (ax, +by,,ax, +by,),(z,z) >

= (ax, +by,) z +2(ax, +by,)z,(ax, +by,)z +5(ax, +by,)z,
Thus

<au+bv,w>=ax,z +by,z + 2ax z, + 2by, z, + 2ax,z + 2by, z +5ax,z, + 5by, z,

=a(xz +bxz,+2%,2 +5%,2) +b(y,2 + 2Y,2, + 2Y,7 +5Y,Z,)
=a<u,w>+b<v,w>

Thus <au+bv,w>=a<u,w>+b<v,w>

Non Negativity:
<V, V>=< (X, %), (%, %) >
= XX + 2% X%, +2%X +5%,%
= (% +2%,)*+X >0
and <u,u>=0< (X +2%)°+X =0
S X+2%=0x,=0=Xx=0,x,=0
&u=(0,0=0
Hence <u,u>=0<u=0.

As the three required conditions are satisfied <u,v>= XY, +2XY, +2X,Y, +5X,X, is an
inner product.

2. To verify <u,v>=2XY, +5X,Y, is aninner product or not.

given U= (X, %)V = (Y, ¥,). <U,V>=2XY, +5%,Y,
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Symmetry: <V,u>=< (Y, Y,)(X,%) >
= 2y1X1+5y2X2

= 2%y, +5%Y,
=<u,v>
Thus <V,U>=<U,V>
ii) Linearity :
Let w=(z,z,) be any vectorin V,(R)

Let a,beR

Then au+bv=a(x,x,)+b(y,,Y,)
= ((ax +by,), (ax, +by,))

Now < au+bv,w>=<((ax, +by,),(ax, +by,)),(z.,z) >

Inner Product Spaces

= 2(ax, +by,)z +5(ax, +by,)z, by given definition

= 2ax,2, + 2by, 7, + 5a%, 2, + 50y, z,
=a(2xz +5%,2,) +b(2y,2 +5Y,2,)
=a<uw>+b<v,w>

Thus <au+bv,w>=a<u,w>+b<v,w>

iii) Non Negativity : <u,u>=< (X, X,),(X,%,) >
= 2X,% + 9%, X,
=2x7+5x; >0

More over < u,u>=0< 2x7 +5xX; =0

<% =0,%=0=u=(x,%)=(0,0)

=u=0
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Thus <u,u>=0<u=0

As all the three required conditions are satisfied <u,v>=2xYy,+5XYy, where
u=(X,%),v=(Y,,¥,) is an inner product.
W.E. 14:

If u,v are vectors in an inner product space V(F) and a,beF , then prove that

lau+bv|” =[af |u[* +ab <u,v>+ab<v,u>+[b]*|M]
Solution: U,V are vectors in the inner product space V(F).
lau+bv|* =< au +bv, au + bv >
=a<u,au+bv>+b<v,au+bv>
—af{@a<u,u>+b <uv>} +b{a<v,u>+b <v,v>|
=aa<v,u>+ab <u,v>+ba<v,u>+hb <v,v>

= |a|2 ||u||2 +ab<u,v>+ab<v,u> +|b|2 ||v||2

Hence the problem.

W.E. 15:

1 2+i
Use the Frobenius inner product, compute ||A||||B|| and < A B> for A:L i } and

1+i O
B :{ } also compute the angle between Aand Bon M, ,(F).
[

_ 1+i O 1-i i
Solution: B=| . .| Hence B*= 0 .
i i i

B*A:{L4 -1{1 2+1 [1(1—i) + 3(~i) a—DQ+D+(4ﬁ}

0o i3 i 0(1) + 3 0(2+i)+i(i)

~ [1-4i 2—-i+1+1
3 -1
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So B* A{l—m 4—?

3i -1

trace of (B* A)=1-4i—-1=-4i

1 24i _
3 i 2—i i

1 31[1 2+i|] [ 10 2+i+3i

A*A=| ~  © A S L,
2—-1 —-11|3 I 2-1-31 4-1--1

B 10 2+ 4
12-4 6

trace of A* A=10+6=16

||A||2 =< A A>= trace of A* A=16

A=< AA> -4
[1-i —i}{lﬂ o}
B*B= . . .
| 0 i i —i

traceof B*B=3+1=4
||B||2 =<B,B>= trace of B*B =4
IB|=v<B,B>=2

1-4i 4-i
< A, B >= trace of g* A =trace of 3 1

=1-4i—1=—4

If @ isthe angle between A and B.
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th c030—|<A'B>|—|_4i|—4—1
en = = ~— A A
|AllB] 42 8 2

0050:1:0:2
2 3

T
Thus the angle between A and B is 3

W.E. 16:

Let T be a linear operator an inner product space suppose that [T(u)| =|u|~+ueV. Prove
that T is one one:

Solution: V(F) is an inner product space.
T is a linear operator on V.

So T(au+bv)=aT(u)+bT(v) forall u,veV forall a,beF .
Show that T is one one:

Let u,veV such that
T(u)=T()
=T(u)-T(v)=0  (ZerovectorinV)
=Tu-v)=0 (Since T is a linear operator)
=[Tu-v)|=[0]
=||(u-v)|=0 Since |T(u)|=]u] forall yev
= Ju-v[' =0
=><U-V,u-v>=0

=u-v=0
=u=v
Thus T(u)=T(V) > u=v-+u,veV

So T is one one.
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W.E. 17:

Let u=(2,1+i,i) and v=(2-i,2,1+2i) be vectors in c3. Compute <u,V>,||ul,|v| and

lu+V|. Then verify both the Cauchy - Schwarz inequality and the triangle in equality.
Solution : <u,v>=<(2,1+i,i),(2-1,2,1+ 2i) >

=2(2-1)+ (1+i)2+i(1+2)

=2(2+1)+2(1+i)+i(1-2i)

=4+2i+2i+2+i-2°

=4+5+2+2=8+5i

SO <U,V>=8+5i
u[* =< u,u>=< (2,1+i,i),(2,1+i,i) >
=2(2)+@+i)A+i)+i(i)
= 2(2) + (1+i)A—i) +i(~i)
lu[* = 4+1-i2-i?=7
0 Ju]=+7
M =< v,v>=< (2-i,2,1+2i),(2-,2,1+ 2i) >
=(2-i)(2=1)+2(2) + 1+ 2i)(1+ 2i)
= (2-0)(2+1) + 4+ (1+ 20)(1-2i)
—4-i2 4+ 4+1-4i
M =4+1+4+1+4=14
So v ~4

u+v=(21+i,1)+(2-1,2,1+ 2i)

=(2+2-1,1+i+2,i+1+2i) =(4-i,3+1,1+3i)
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||u+v||2 =<U+V,Uu+Vv>=<(4-i,3+i,1+3i),(4-i,3+i,1+ 3i) >
=@4-D)E-D)+@+1)E+)A+3)(Q+3)
=([4-D)@A+1)+B+)(B-1)+1+3)@Q-3i)
=16-i°+9-i*+1-9i* =26+1+1+9=37
Hence ||u+v||=\/§
To verify Cauchy - Schwarz in equality |< u,v>| < [uf|v.

We have shown < u,v>=8+5i

[<uv>|=v64+25=189 ... (1)

Jul =7 |v] = vi4
Ju[[V] = V714 =714 =98 ..... (2)
but /89 < /08

So |<u,v>|<uljv]

Hence Cauchy - Schwarz’s in equality is verified.

To verify triangle inequality |Ju+ V| <||ul|+|v]
we have |u] +[v| =7 +14
But /7 ++/14 > /37

So [Jul+ V][> u+v|
Hence triangle inequality is verified.

W.E. 18:

In C([0.1]) if f(t)=t; g(t)=¢. Compute < f,g>f],g. and |f +g]|. Then verify
1

both the Cauchy - Schwarz in equality and the triangle in equality. If < f,g>= I f(Hg(t)dt

0
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Solution: Let V = C([0,1]) be the inner product space of real valued continuous functions on [0,1]
with the inner product f and g defined by

1

<f,g>=[f®g(t)dt

0

1
<f,g >=Iet.tdt
0

= [t.et ]z —Jl‘l.et dt
1.e1—[e‘]i =e—(e-¢)=e-e+l=1

<f,g>=1

2 1 L 3T
1] =<f,f>=<t,t>=jt.tdt=jt det = | L
0 0 3 0

1 1
1= solfl-%

2 - _ F ” e? !
loff =< g.g>=[e edt=e dt:{7}
0 0

0

e o’ =%(e2—e°):%(e2—1)

1
Jol = 3(¢-

f+g=t+¢€

I(F+a)[* =< f+g,f+g>=<(t+€),(t+€)>
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1 1
= [(t+e)’dt=[(t*+2te' + &) dt
0

0
3 2 1
= t—+e—+2et.(t—1)
3 2 o

||f+g|| =—+ (e 1)+2——(3e2+11)

ie |f+g|= ‘/%(3e2+11)

To verify Cauchy - Schwarz inequality |< u,v>|<u].|v|

We have |< f,g>[=[1]=1 ... (1)

Illlg II—I

From (1) and (2)

[< f.9>{<[ [lg]

Hence Cauchy - Schwarz in equality is verified.

ii) To verify triangular in equality |[u + v/ < [ju]| + [v|

We have | f + g||:,/%(3e2+11)
_ 1, L
[¥l+l8l=—7+yz€ -2

Hence | f +gf <||f]+]g]

So triangle inequality is verified.
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W.E.19:

In the vector space V, (F) with standard inner product defined on it show that
Sa <ol | < Saf |+ S|

Solution: In the vector space V,(F) with the standard inner product defined on it, let

u=(a,a,,..a,), v=(,b,,..b) thenu+v=(a,a,,..a,)+(b,b,,..b)

Sou+v=(a+b,a,+b,..a,+b)

=i(a +h)

o=l +fas + . +faf = [ faf

Similarly ||V|| = Zm |2
i=1

By triangle in equality ||u+ V|| <ul| +|v|

13.8 Summary:

In this lesson we discussed about inner products - inner product spaces, norm or length of
a vector in an inner produc space - normalising the vectors - Cauchy - Schwarz’s in equality tri-
angle in equality - Parallellogram Law - Norm of a vector in a vector space - distance between two
vectors.

13.9 Technical Terms:

Inner Product, Inner Product Space, Norm of a vector, Normed Vector space, Distance
between vectors.

13.10 Model Questions:

1. Find unit vector corresponding to (2—i,3+ 2i,2+\/§i) of V,; (C) with respect to the standard
inner product.
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Ans : %(2—3i,3+2i,2+\/§i)

2. Which of the following define inner product in V,(R) . Give reasons

I <U,V>= XY, +2XY, +2XY, +5X,Y,

i. <U,v>=2XY,+5%Y, where u=(x,%,)Vv=(Y,,¥,)
Ans : i) inner product

ii) inner product
3. Show that V,(R) is an inner product space under the inner product
< (%% %), (Vs You Vo) >= XY %Y, + X35

13.11 Exercises:

1.Ifu=(a,a,),v=(h,b,) eV, (R) thendefine <u,v>=ab, —ab, +4a,b,. Showthatitis aninner
product on V,(R).

2. Show that V,(R) is an inner product space under the product defined by

<X %, %), (V) Yar Ya) > =X Y+ XY, + XY,

3.1f u=(a,a,),v=(b,b,) then showthat < u,v>=2ah +ab, +a,b +a,b, is an inner product on
V,(R).

4. Prove that <u,v>=a, +a, +b +b, does not define an inner product in V,(R).

5. Letu=(143-4,2),v=(4,-2,21),w=(5-1-2,6) in g* then find <u,w>,<V,w> and verify

that <U+V,W>=<U,W>+<V,w> and compute |u],|v,|w].
Ans: <u,w>=22,<V,wW>=24
|u] =+/30, V| =5 w] = V68

6. u=(12),v=(-L1) are two vectors in the vector space R2?, with standard inner product. If w

is a vector such that <u,w>=-1,<v,w>= 3 then find w.

Ans : W:(izj
3 3



( Rings and Linear Algebra ) (13.45) [ Inner Product Spaces

1
7. In the vector space P(t) of all polynomials with inner product < f.g>= I f(t)g(t)dt
0
If f(t)=t+2, g(t)=3t-2, h(t)=t*>-2t -3 then find
i) <f,g> and < f,h>,
i) | f[| and g]

iii) Normalize f and g.

Ans: < f,h>=-1< f,h>=_—37

J57
[t==3-lgl=1.

3 .
f = unit vector along ZE(I‘FZ)QQ =g=3-2

8. Let M=M,, with inner product <AB>=tr(B"A) and
A_987B_123C_’3—52 _
|6 5 4] |4a586] |1 0 -4thenfind
) <AB><AC><B,C> i) <2A+3B,4C > i) |[A and |B]|
Ans: < A B>=119;< AC>=-9,<B,C>=-21
<2A+3B,4C>=-324
|A|=+271, [B]=+o1
9. Find cos @ where @ is the angle between

) u=(1-32) and v=(2,15) in R®

i) u=(13,-5,4) and v=(2,-3,4,1) in R*

i)y f(t)=2t-1, g(t)=t*> where < f,g >=J1.f(t)g(t)dt

Let
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2 17 [0 -1
iv) A= 3 _ ;B= 5 g | Where < AB>=tr(B"A)

2

9 —23 N
i) = i) T i) vis iv)
V105 34130 6 J210

10. If u=(3,-5,3) and v=(4,2,-3) are two vectors in R3 then find the distance between uand v.

Ans: d(u,v) =/94

1 i
11. Inthe inner product space 2 for u,ve C? and AZ{_i 2} if the inner product < u,v >= UAvV*

compute <U,v> for u=[1-i,2+3i], and v=[2+i,3- 2]

Ans: 6+2ieC
12.1f u=(1-i,2+3i), v=(2-5i,3-1i) aretwo vectorsin V(C) = C*(C) with standard inner prod-

uct find <u,v> and |ul.[v].

Ans: 10+14i,+/27,+/51

13. If u,v are two vectors in a Eucledian space V(R) such that ||jul|=||v|, then prove that

<u+v,u-v>=0.

14. Find the norm of the vector v= (1,-2,5) and also normalise this vector.

A 1 -2 5
Ans: |[V|=~/30, v= : ,
” ” («/30 A/30 \/BOJ
15. Let V(R) be the vector space of polynomials with inner product determined by

1

<f,9>=[FOUMd for f,gev. If F(x)=x*+x—4g(x)=x1 for all xe[0,1] then find

0

<f.0>[f].]g]-
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LESSON - 14

ORTHOGONALIZATION

14.1 Objective of the Lesson:

In geometry perpendicularity is an useful concept. We introduce now a similar concept in
inner product spaces. In previous chapters, we have seen the special role of the standard ordered

bases for c" and Rn. The special properties of these bases stem from the fact that the basis

vectors form an orthonormal set. Just as bases are the building blocks of vector spaces, bases
that are also orthonormal sets are the building blocks of Inner product spaces.

14.2. Structure of the Lesson:
This lesson contains the following items.
14.3 Introduction
14.4 Orthogonality and Orthonormality definitions and Theorems
145 Worked out examples
14.6 Orthogonality - Linear independence-theorems
14.7 Orthonormal set definition - worked out examples
14.8 Orthonormal set of vectors - Linear independence Theorems
14.9 Worked out examples
14.10 Exercises

14.11 Orthonormal basis - Gram-Schmidt Orthogonalization process - Working pro-
cedure - Worked out examples

14.12 Fourier coefficients - Worked out examples
14.13 Parseval’s Identity - Bessel’s inequality - Theorems

14.14 Orthogonal complinent - Theorems - Closest vector - Orthogonal Projection
- Theorems

14.15 Worked out examples
14.16 Summary

14.17 Technical Terms
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14.3 Introduction:

Let us consider the case of vectors in g2 and we see that how the perpendicularity is
considered here. The two vectors u and ve R* are perpendicular if and only if the pythogorean

relation ||u||2 +||\,1|2 :||u+\,1|2 ...... (D) holds. Inreal inner product spaces this pythagorean relation can be

written in a very simple form by using the condition that the angle between the vectors is 90° or
cosine of the angle between the vectors u and v is zero. Here the condition (1) is equivalent to a

very simple condition <u,v>=0. We extend this idea to the vectors of Inner product spaces.

14.4 Orthogonality:
14.4.1 Orthogonality of Two Vectors:

Definition: Two vectors u and v in an inner product space V are said to be orthogonal or perpen-
dicular if <u,v>=0.

14.4.2 Orthogonal Set :

Definition: A subset S of an inner product space is said to be orthogonal if any two distinct
vectors in S are orthogonal.

14.4.3 A Vector Orthogonal to a Subset S of V:

Definition: A vector u is said to be orthogonal to a subset S of Inner product space V; if it is
orthogonal to each vector in S.

14.4.4 Orthogonal Subspaces :

Two subspaces of an inner product space are called orthogonal if every vector in each is
orthogonal to every vector in the other.

Two subspaces W, and W, of an inner product space V(F) are said to be orthogonal if

<u,v>=0 ~wueW, and ~»veW,

14.4.5 A Theorem:

Show that orthogonality in an inner product space is symmetric.

Proof: Let V(F) the given inner product space. u, v are two vectors in V such that u is orthogonal
tov.

SO0 < u,v >== < u,Vv > = conjugate of 0.
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So <v,u>=0. Hence v is orthogonal to u.

Hence orthogonality in an inner product is symmetric.
14.4.5B Theorem:

If u is orthogonal to v, then every scalar multiple of u is orthogonal to v. Where U,V are
vectors in an inner product space.

Proof: u, v are vectors in an inner product space V (F)
As U, isorthogonalto v; v;<u,v>=0 ... (1)
Let k be a scalar belonging to F.
then < ku,v>=k <u,v>=k(0)=0 using (1)
~.k u is orthogonal to v.
Hence every scalar multiple of u is orthogonal to v.

14.4.6 Theorem:

Zero vector in V is orthogonal to every vector in an Inner product space.
Proof: O is the zero vector in the inner product space V (F).

Let u be any vector in V. There <0,u>=<0u,u>=0<u,u>=0

As u is arbitrary, zero vector is orthogonal to every vector.

14.4.7 Theorem: Show that zero vector is the only vector which is orthogonal to itself in an Inner
Product Space.

Proof: Let u be any vector in the given inner product space V (F), which is orthogonal to itself.

So <u,u>=0=u=0 (zero vector) by definition of inner product.

Hence zero vector is the only vector which is orthogonal to itself.

14.4.8 Theorem:

The vectors u, v of a real inner product space V(F) are orthogonal if and only if
Ju i =+ v
Proof: u, v are two vectors in an inner product space V(F).

Now u-+v[" = ul* + v

<S<U+HV,U+V>=<U,U>+ <V, V>
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S<UU+V>+<V,U+V>=<U,U>+<V,V>

S<UU>+<UV>+<V,U>+<V,V>=<U,U>+<V,V>
o<u,v>+<v,u>=0

&=<U,V>+<U,v>=0 since <U,V> isreal <y v>=<u,v>
&< u,v>=0< u,v are orthogonal vectors.

14.4.9 Geometrical interpretation:

Let u, v be two vectors in the inner product space V,(R) with standard inner product defined

onit. Letu, v represent the sides AB, BC of triangle ABC. In the three dimensional Eucledian

space. Then ||u|=AB. |v|=BC..

Also the vector u + v represent the side AC of the triangle ABC and ||u +V|| =AC. Then

from the above theorem |ABC =90° if and only if AC2 = AB2+ BC?2 Which is pythogorean
theorem.

Note The above theorem does not held in complex inner product space.
If u=(0,i),v=(0,1) inV,(C)
There ||u+v||2 =<U+V,Uu+V>

=<U,U>+<UV>+<V,U>+<V,V>
:||u||2+<u,v>+< u;v>+||v||2

= ||u||2 + ||v||2 +2Re<Uu,V> ... 1)
since z+Z=2Rez
But <u,v>=<(0,i),(0,1) >
=0(0)+0(2) +i(0) + c(2)
=0+i#0

and Re<u,v>=0 using this in (1)

We get |u+v{* = Julf + |V}
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Which does not imply <u,v>=0
14.5 Worked out Examples:
W.E.1 : Find a unit vector orthogonal to (4,2,3) in R3.
Solution : Let u=(4,2,3) and v=(a,b,c) be orthogonal to u.
Hence <u,v>=0=<(4,2,3),(a,b,c) >=0

=4a+2b+3c=0 -eeeeeennnnn D
Any solution of this equation gives a vector orthogonal to u.

a=1b=1c=-2 satisfy the equation (1). So u=(a,b,c)=(1,1,-2) is orthogonal
to u. V| =J@%+ (@ +(-2)? =6

N

.1 1 1 1 -
Hence V= MV 76 11-2)= 76 /6’ Jg | s the unit vector orthogonal to the given

(o]

vector u=(4,2,3).
W.E. 2 : Find a non-zero vector w which orthogonalto u=(1,2,1) and v=(2,5,4) in R3.
Solution: Let w= (X, Y, z) be the vector which is orthogonal to both u and v.
So <u,w>=0=<(12,1),(x,y,2) >=0
= X+2y+12=0 .......... Q)
and <v,w>=0=<(2,5,4),(x,y,2 >=0
= 2X+5y+4z=0 .......... (2)
(1)x2: 2x+4y+2z=0
Subtracting from (2) y+2z=0
So y=-22

Put z=1y=-2
using these values in (1)

X—4+1=0=>x=3
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Thus w=(X,Y,2) =(3,-2,1) is the desired non zero vector orthogonal to both u and v.

W.E. 3 : In a real inner product space if u, v are two vectors such that |u]|=|v|| then prove that

u-V, and u+v are orthogonal. Interpret the result geometrically.

Solution: <U—-V,U+V>=<U,U>+<U,V>—<V,U>—<V,V>
= ||u||2+ <U—-V>—< u,v>—||v||2 =0
Since in the real inner product space < u,v > =< u,v> and given ||u|| = ||V|| .

Soas <u-v,u+v>=0,the vectors u—V,u+V are orthogonal.

D

Geometrical interpretation:

In the 3 dimensional space Let y= AB,v=BC.
then |ul| =|\v|= AB=BC.

In the rhombus ABCD, AC =u+Vv,DB=u-V

. A B
where AC, DB are the diagonals. u

<u-Vv,u+v>=0
= Uu-V,u+V are orthogonal

— The diagonals AC and pB are perpendicular.
Hence in a Rhombus the diagonals are perpendicular.

W.E. 4: If u, v are two vectors in a real inner products space and U+V,U—V are orthogonal then
Jul =M
Solution: U+V,u—V are orthogonal.

=><Uu+Vv,u-v>=0

S<UU>—<U,V>+<V,U>—-<V,v>=0
:>||u||2—<u,v>+< u,v>—||v||2 =0

= ||u||2 —||v||2 =0 since in a real inner product space <u,v>=<u,v >
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= [u* =" = ul=IM

Thus the vectors u+V,u—V are orthogonal = ||u|| = ||V||
Geometrical interpretation:

Let u, v be two vectors in the inner product space V,(R) with standard inner product defined

onit. Letu, vrepresent the sides AB and BC of a parallelogram ABCD. Then ||u||: AB, ||V||: BC.

u+Vv,u-V represent the diagonal AC and pg

of the parallelogram.
As U+V,U+V are orthogonal the diagonals AC, DB

are perpendicular.

|lu||=|M|= AB =BC. Thus if the diagonals

. A u B
of a parallelogram are perpendicular, then the
parallelogram is a rhombus.

W.E. 5: Let V be an inner product space and suppose that u and v are orthogonal vectors in an inner
product space V ,

Prove that ||u+v||2 = ||u||2 +||v||2. Deduce the Pythagorean theorem in R, .

Solution: As u and v are orthogonal vectors in an inner product space V, <u,v>=0 ...... Q)

Now

||u+v||2 =<U+V,U+V>

=<U,U>+<UV>+<V,U>+<V,V>

:||u||2+<u,u>+< u,v>+||v||2 .......... 2)
= ||u||2 +0+ conjugate of 0+||v||2 using (1)

So Jul+ " =l + M
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Deduction of Pythogorem theorem:

If u, v are two orthogonal vectors in a real inner product space, then < u,v>=<u,v>..... (3)
using in (2).

lu+v = ulf +|v]" +2<u,v>
=||u|* +|Vv|" +0. As u,v are orthogonal vectors <u,v>=0
So Ju+v|" +|ul” + V[ oo (4)

In R, if AB=u,BC=v then AC=u+v and (4) states AC? = AB? + BC? Wwhich is
pythogorean theorem.

W.E. 6 : If u, v are two orthogonal vectors in an inner product space V (F) and ||u||=|\v| =1 then
prove that [u—v|=d <u,v>= J2
Solution: u, v are orthogonal vectors in an inner product space V(F). So <u,v>=0 ....... @
(d(u))” =Ju—v’
=<u-Vv,u—v>
=<UU>—<UV>—<V,U>+<V,V>

= ||u||2 -0-0+ ||v||2 since, u, v are orthogonal.

= (1)%+ (1)? since given |u]=|v| =1
=2
So d(u,v) :||u—v||:\/§

14.6.1 Theorem:

Show that any orthogonal set of non zero vectors in an inner product space V is linearly
independent.

Proof: Let S be an orthogonal set of non zero vectors in an inner product space V.

Let § = {ul,uz...,un} be a finite subset of S containing m vectors which are distinct.



[ Rings and Linear Algebra J (14.9) [ Orthogonalization ]

m
Let chuj =QU+CU, +CU, =0 ... (1)
j=1

We will show that each scalar coefficient is zero. Let U be any vectorin §.i.e. 1<i<m.
Now consider <cu, +C,U, +...+...+C ;U , +CU +CU, +C U, ,U >

=C <U,U >+C, <Uy,U >+...+ Gy <U 4, U >+C <U,U >+C; <Uy,U > +..C <U,,u >
m
i.e. <chuj’ui >=6 <u,U > (2)
j=1
-+ As the vectors are orthogonal <u,,u; >=0 for i # j

But by (1) JZZC,-U; =0
Using in (2)
<O >=g|uf = ¢[uff =0
So ¢|ju|=0. But u isanon zero vector. ||u|=0
Hence ¢ =0 for 1<i<m
Thus cu, +c,u, +...+¢, U, =0
=¢=0c,=0,.c,=0

Hence S = {clc2 Cm} is a linearly independent set.

Thus every finite subset of S is linearly independent. Hence S is linearly independent.

14.6.2 Theorem:

Let S= {ul,uz,..., um} be an orthogonal set of non zero vectors in an inner product space
V(F).

If a vector v in V is in the linear span of S,

Then v

Il
NgE
N AN
c | <
e <

N
\
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Proof: v is a vector in the inner product space V, which is in the linear span of S= {ul, uz,...um} .

So v can be expressed as a linear combination of the vectors of S. So there exists scalars ¢,,C,,...C,,
m
in F. Such that V= GU + G, +...+C Uy, = ZCJU,-
then for each i where 1<i<m

<V,U >—<ZCJUJ,U > e, 1)

= ch <U;,U > py linear property of inner products.
J=1

= ¢ <U,u > onsumming up with respect to j, and S is an orthogonal set

of non zero vectors. So <U;,U >=0if j=i.
2
So <V,U >=G || crreneee 2)

As U, is anon zero vector in S, [u;|#=0

So by (2) c = VU >

o fulf

But v=cu, +CU, +...4+ C, U,

_<vu > +<v,u22>u2+ +<vqﬂ>
uf* Juf
Hence v= Zm:<vu>i
7l

Hence the theorem.
14.7.1 Definition:

Orthonormal set: Let S be a set of unit vectors in an inner product space V, which are mutu-
ally orthogonal then S is said to be an orthonormal set.

Or
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Let S be a set of vectors in an inner product space V. Then S is said to be orthonormal
set if

) ueS=|u|=1ie <u,u>=1and

i) uveSand uzv= <u,v>=0

Or

A finite set S= {ul, Uyy.ens um} of an inner product space V is orthonormal if

<U,U; >= 5”- where & ;; denotes the kronecker delta.
lifi=j

ie. 0, =

ij
Oif i # |
Note: i) An orthonormal set is an orthogonal set in which every vector is a unit vector i.e. A set
consisting of mutually orthogonal unit vectors is called an orthonormal set.
Note ii): An orthonormal set does not contain zero vector.
14.7.2 Worked Out Examples:

W.E. 7: Prove that Sz{(E _—2 _—Zj(g _—13)(

2 -1) . . ,
et : —,— | is an orthonormal set in R3 with
33 3)\3 3 3 3

standard inner product.

- u_(z—_Z—_ZJ V_(z—_lz] W_(zz—_lj .
Solution: Let 3733 ) 3'3'3) 3'3' 3 are the given vectors of S.
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e §3365) SRR

, 2 -4 2
e, <UwW>=———+—=0=<w,Uu>
9 9 9

ie. <u,v>=0=<v,u>

2-12\(22 -1
<VW>=<| —,—,— |,| =,=,— |>
(3 3 3) (3 3 3)

BIEEIEEIE) 7

Thus <v,w>=0=<w,V >

As the length of each vector in S is unity, the inner product of two different vectors in Sis 0,

So S is an orthonormal set.

W.E.7b : Consider the usual basis of Ez{q,%,es} of the Eucledian space R3 where
g =(10,0),e,=(0,1,0),e,=(0,0,1). Show that E is orthonormal.

Solution:

6=(10,0) so |e||=vI’+0*+0* =1
e =(010) so |g|=v0*+2P+0* =1
e,=(0,0,1) so |g=v0*+0*+1* =1

Thus & =[] = e, =1

More over < g, €, >=<(1,0,0),(0,1,0) >
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=1(0)+0()+0(0) =0
-.<g,6>=0=<e,6 >

<e, g >=<(010),(0,0,1)>=0(0)+1(0)+0(1) =0
-<e,g>=0=<eg,=¢>
<g,€e >=<(0,0,2),(10,0) >=0(2) +0(0)+0(0) =0

Thus <e,, g >=0=<¢,6, >

Thus the length of each vector in E is unity and the inner product of any two different vectors
of E is zero. So E is an orthonormal set.

W.E. 8: If S:{(:L 2,-3,4),(3,4,1,-2),(3, —2,11)} is a subset of R*. Obtain orthonormal set from
S. Verify Pythagorean theorem.

Solution: Let u = (1,2,-3,4),v=(3,4,1,-2);w=(3,-2,1,1)
Now <u,v>=<(1,2,-3,4),(3,4,1,-2) >=1(3) + 2(4) + (-3)() +4(-2)
=3+8-3-8=0
Thus <u,v>=0=<v,u>
<v,w>=(3,4,1,-2),(3,-2,1,1) >=3(3) + 4(-2) +1(1) + (-2)(1)
=9-8+1-2=0
So <vV,W>=0=<w,v>
<w,u>=<(3,-2,11),(1,2,-3,4) >=3(1)(-2)2+1(-3) +1(4)
=3-4-3+4=0
Thus <w,u>=0=<u,w>

Thus the inner product of any two different vectors in S is zero. So S is orthogonal.

We normalise S to obtain an orthonormal set.

Jul =\/12 +(2)2 +(-3)% +42 =1+ 4+9+16 =/30

=& + &+ + (-2 =\o+16+1+4=130
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W=+ (27 +T+F =9+ 4+1+1-15

Hence the required orthonormal set of vectors is

{(1 2 -3 4)(3 4 1 —2)(3 2 1 1}}
/30 '+/30'/30'4/30 )"\ /30 '+/30 /30 'v/30 )\ V15 V15 V15 V15
More over U+v+w=(1,2,-3,4) +(3,4,1,-2) +(3,-2,11)
=(7,4,-13)
lu+v+w] =(49+16+1+9) =75

lull” + |V +| i = 30+30+15="75

Hence Ju+ v+ wi" = ful"+ v+ wf"

Which verifies the pythogorean theorem for the orthogonal set S.

u
W.E. 9: Let V(F) be an inner product space. If uis a non zero vector in V then show that {M}
is an orthonormal set.

Solution: u is a non zero vector in V. So |ul| =0

u u

Hence <_’_>:i< u’i>
(VR T V]

1 1 1 2
=—.—<Uu>=—|ul =1
o T <> oM

u u
As M is an unit vector and so {M} is an orthonormal set. itis a subset of V.

Note: Every inner product space has an orthonormal subset.

14.8.1 Theorem: Every orthonormal set of vectors in an inner product space V (F) is linearly
independent.
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Proof: Let S be an orthonormal set of vectors in an inner product space V. Let § = {ul,uz, ...um}
be a finite subset of S containing m vectors.

Let c,C,,...C,, be scalars belonging to F such that

cu +CuU, +...+cu, =0 ............ (1) (zero vector)

Now

<qU +CU, +...+ QU +...+C U, U >=<O,u >=0 where 1<j<m.

m~m?
=C <U,U >+C, <U,,U >+..¢ , <U,,U >+C <U,U >+G,, <U_,,U>+.+C, <U ,u>=0()
As u,U,...u, are orthonormal vectors
1if j=#i
<u;,U >=
Oif j=i
using this in the above (2) we get

c <u,u >=0

= ¢ =0 since <u,u >=0 where 1<j<m.

Thus

¢y +cu,+..cu, =0=c¢ =0,c,=0,.c,=0

Hence S ={u;,u,,..U,} is linearly independent.

As S, is arbitarary, every finite sub set of S is linearly independent. Hence S is linearly
independent.

Aliter : Let S be an orthonormal set in an inner product space. Let Ue S, then u=0O, since
u=0 =<u,u>=0=1 is a contradiction.
So S is an orthogonal set of non zero vectors.

As we know every orthogonal set of non-zero vectors in an inner product space V is linearly
independent, if follows S is linearly independent.
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Hence every orthonormal set of vectors in an inner product space V(F) is linearly

independent.
14.8.2 Theorem: Let S:{ul,uz,...um} be an orthonormal set of vectors in an inner product

space V(F). If avector vis in the linear span of S; then

m
v=>Y<v,u>u
i=1

Proof: v is given to be a vector in the linear span of S. So v can be expressed as a linear combina-

tion of the vectors of S. Hence there exists scalars c,C,,...C,, in F such that

V:Clu1+C2u2+"'+Cmum:zcjuj .......... (D)
We have for each i where 1<j<m

m
<V >=< ) cu;,u >
J=1

m
= ZC,- <Uj,U > py linearty of inner product
J=1

=G <Uu,U > since
0if j#i
<Uuj, U >=
1if j=i
=c(D=c

Thus <v,u >=¢C where 1<j<m.

Putting these values of ¢,C,,...C,, in (1)

m
We get V=Z<V’Ui >4
i=1
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14.8.3 Theorem:

If S is an orthonormal set of vectors of an inner product space V(F) then

v=au, +au,+..+au, implies a =<v,u >where u €S,a eF fori=212,..n.
Proof: S is an orthonormal set. So for U;,U; € S

||Ui||=l||uj||:1 and <u,u; >=0 where i# |

Thus foreach i =12,..n;

<VU >=<au, +a,Uu, +...+3a,u,, U >=a <u,u >

n
Hence & =<Vv,u > and so vV=a, +a,U, +...+a U, = > au
c=1
n
V=2, < VU > U using (1)
i=1

14.8.4 Theorem:

If S= {ul,uz,...um} is an orthonormal set in an inner product space V(F)and yeV then

m
W=V—> <VU >U is orthogonal to each of u,U,..U, .
i=1

Proof:

For j=12,...m

m
<SW,U; >=<V=) <V > ULU; >
i=1

m
=<V,U; > =D <V ><U,u; >
i=1

=<V, U > = {< VL S<U, U >+ <V Uy >< U, Uy > ok < VLU S<U U Sk <V <UL U >

=<V,U; > {<V,Uy > 04 <V,U, > 04 <V, Uy > (D4 <V, Uy > (0) +..4+ <V, Uy, > 0

j+1l
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=<V,U; > =<V, U, >=0

~.<wW,u; >= 0= w is orthogonal to each of u,,u,...u,,.

m
= V=2 <V,U >U s orthogonal to each of U, Uy..U,, .
i=1

14.8.5 Corollary: If S= {ul,uz...um} is an orthonormal set in an inner product space V(F) and

m
ueV,then w=v- Z< V,U > U, is orthogonal to each vector of L(S).
i=1

Proof: From the above the orem the vector w is orthogonal to each of u,u,...u,,.
So <wW,u, >=0=<u,,w> foreachiwhere 1<j<m......... Q)
Let ue L(S). Then there exists scalars c,C,,...C,, in F such that
u=cuy +cu, +...+C U,
Now <u,w>=<CU, +CU,+...+C U, ,W>
=C <U,W>+C, <U,,W>+...+C, < U, W>

=¢,(0)+¢c,(0) +...+¢,(0) using (1)
..U is orthogonal to w. So w is orthogonal to u. Hence w is orthogonal to every vector of
L(S).

14.9 Worked Out Examples:

W.E.10: If S= {ul,uz,...un} is an orthogonal set of an inner product space V (F) then prove that

{alul,azuz,...anun} is also an orthogonal set for any choice of non zero scalars a,,a,,...a, € F .
Solution: S={u,,U,,..u,} is an orthogonal set

=><Uu,u; >=0 ... (1) vU,u;eSandj=]J.
Consider au,a,u; € § ={au,a,u,,..au, |

Then <au,au; >=aa; <u,u; >
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=agj(0) using (1)
= <ay,au; >=0~au,au; €S and j = J

So § = {alul, azuz,...anun} is also an orthogonal set.

A . R ——

inner product space R*(R) express the vector (2,1,3) as a linear combination of the basis vectors
of S.

Solution: Let u :(iioj [ 11 j [iiij
=2z NEINENG 5" V6 V6
Then S={u;,u,,u,} and let v=(2,1,3)

Let v=cu, +C,u, +CU, where c,C,,C; R by 14.8.3.

1 3

C, =<V,U, >= 2(%}&(3}%3(0) = ﬁ
A3
A5

v=(2 lg)_i(i 1 o}i[i -1 i}i(—_l 1 i)
S0 T V22’27 ) VB\VB'YB'VE) VBl V6'VE V6
W.E.12: Let V(C) be the inner product space of continuous complex valued functions on [0, 271]

21 )
with inner product < f, g >:% I f(t)g(f)ct. Prove that S={f,(t)=c™/ne Z} is an orthonormal
0

subset of V.
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1 2r i —int
Solution: < fas fr >= Z_j. eMe  dt
4 0

2z

-t | e dt
2r 3,
2
So < f,, f, >=ij1dt=i[t]§” ST
2r 2 2

Let m= n then

1 2 imt jnt 1 2 imt —int
<fm,fn>:—J-e e dt:—je e " dt
2r 3, 2z 5

2
:ij'ei(m—n)t dt
21
1 2r
=" I {cos(m-n)t +isin(m- n)t}
Vs

0

2z

:i[ sin(m-n)t —
27| (m=n) (m-n)

cos(m-— n)t}

0
1
=—(0)=0
>0
Thus < f ,f >=1wneZ and < f_,f >=0if mznmneZ

As the required two conditions are satified S:{ f.(t)= e"‘t/n € Z} is an orthonormal
subset of V.

W.E.13 : Find k, so that the following pair is orthogonal f(t)=t+k;g(t)=t*> where

1

<f,g >:If(t)g(t)dt

0

Solution: We firstfind < f,g>.
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1 1
< f,g>=[(t+k)t’dt = [ (£ + k)t

0 0

t kT 1 k
43| 43

As f, g are orthogonal vectors < f,g>=0.
1 k
~+—-—=0=>3+4k=0
50473

k=—
So 1

14.10 Exercise:

1. Find the vector of unit length which is orthogonal to u = (2,-1,6) of V,(R) with respect to stan-
dard inner product.

2-2-1
ANs: 53’3

2. Find two mutually orthogonal vectors each of which is orthogonal to the vector u = (4,2,3) of
V;(R) with respect to the standard inner product.
Ans: (3,-3,-2);(5,17,-18)

3. Normalize the following vectors in R3

. 2 3 -1
M u=(23-1 A”S:”:(M’Jﬁ’mj

0 B e e

(||) 2)314 ’ AnNsS: \/a’\/a’\/a

4. Find a unit vector orthogonal to U, =(1,2,1) and u, =(3,1,0) in R3 with the standard inner
product.

1
. —(1,-3,5
Ans : Nes 1 )
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5. LetV be the vector space over R of all continuous real valued functions defined in [0,1] with inner

1
product defined by <f,g>=jf(t)g(t)dt_ For each positive integer n, define

0

f (t)=+2cos(2rnt), g (t) =+/2sin(2znt). Then show that S={1, f,, g, f,, ;... is an orthonor-
mal set.

6. Let S consists of the following vectors in g3 u, =(1,11),u, =(1,2,-3),u, = (5,-4,-1)

Then 1) Show that S is orthogonal and S is a basis of R3. (i) Write v=(1,5,-7) as alinear

combination of u,,u,,U,.

-1 16 -4
Ans: V=—U +—U, +—

u3
3 7 21

7 (a). Find the value of K so that the pair of vectors u = (1,2,k,3) and v=(3,k,7,-5) are orthogonal
in R*.

Ans : k:ﬂ
3

(b) Find m so that (m,-3,-4),(m,—m,1) may be orthogonal vectors in R3.

Ans: m=-41

8. If {(lO,ZLO),(O,ZL 0,2), (-1, O,ZLO)} is an orthogonal subset of R*(R) inner product space, obtain
the orthonormal set by normalizing.

1 1 1

Ans : \/E \/E \/E

9. If u, v are orthonormal vectors in V (F) prove that d(u,v) = ﬁ

10,1,0),—=(0101),—=(-1010)

10. Two vectors u, v in an unitary space V (C) are orthogonal if and only if

Jaut=+bv]|” = afJul” +of" ]

(1—1 1}(01 1)(2 1—1)
Ty =y o ) P el Yl ) Ty =y — i i 3
11. show that NN 5" /2 6 /6 J6 [ 'san orthonormal set in R3.
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14.11 Orthonormal Basis:

Definition: A basis of an inner product space that consists of mutually orthogonal unit vectors
is called an orthonormal basis.

Ex: i) The basis S= {(ZL 0), (0,1)} of the inner product space R*(R) is also orthonormal. So Sis an

orthonormal basis of R, .

1 2 2 -1
ii) The set S= {EEJ(E EJ} is an orthonormal basis of R*(R).

iii) The set S= {(L 0,0),(0,2,0), (0, 0,1)} is a basis of the inner product space R*(R), which is also
orthonormal. So S is an orthonormal basis of R*(R) .

iv) The standard ordered basis for the inner product space V, (R) is also orthonormal. So it is an
ortho normal basis.

14.11.1 Finite dimensional inner product space: Definition:

A finite dimensional vector space, in which an inner product is defined is called a finite
dimensional inner product space.

We now establish that every finite dimensional inner product space possesses an orthonor-
mal basis. If S is a basis of the finite dimensional inner product space V(F), we construct an

orthonormal set S* from S such that L(S)=L(S") =V .

14.11.2 Gram - Schmidt orthogonalisation Process:

Theorem: Show that every finite dimensional inner product space has an orthonormal basis.

Proof: Let V(F) be an n - dimensional inner product space. Let B = {ul,uz,...un} be the basis of

V(F). We will now construct an orthonormal set in V (F) with the help of elements of B.

As B is the basis of V(F) so each u,(i =12,...n) € B is a non zero vector.

Now U, # O — |u[ =0

Further let ﬁ =Vvi(say) O

This belongs to V(F) and |v,||" =<v;,v, >
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bou o <uu>
o] ue [

(Since ||u|| is real)
=1
So the set {Vl} forms an orthonormal setin V(F) and v, isin the linear span of u,. Now

we extend the above set by assuming W, =U, —<u,,Vv, >V, and w, eV (F) Evidently w, #0
otherwise w, =0 would imgly u, =<u,,V, >V, i.e. U, is a scalar multiple of v, or u, is a scalar

multiple u,, or U, u, are linearly dependent. Which is not possible as being elements of the basis.

Now ﬁwz(w)(st 0) eV (F)

Evidently ||V, =1 now

W, 1
<V, V) >=< 20\ >=—— < W, V, >

[
:M U= <Up,Vp >V, Uy >
2
So <V,,V; >=i< U,,V, >—<U,,V, >w
el ]

_<Up V> <y V>
el el

since <v,v,>=1

=0
As <v,,v, >=0,v,,V, are orthogonal to each other and have unit norms implying the set

{vl,vl} is an orthonormal set and consists of distinct vectors v, and Vv,. As also

W, = Uy— <U,,V; > V.

— l'IZI. W2
=SV, (W[ =U-—<U,V,>— ; —2 _vy
2” 2” 2 20 V1 ””” Since (”Wz” 2)
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_ U <U,Vvi>u
| i s

=V,

or v, is a linear combination of u, and u, i.e. U, U, generate v, and further more u, gener-

ates V, .
Now we extend the set {V;,V,} by assuming that W, =U,— <U,,V; > V,—<U,V, >V, eV (F).
here again <V,,V, >=0,<V,,v, >=0 and <V,,v,>=1

Where Vs ZHx—3” #0eV(F)
3

This shows that the set {vl,vz,vg} is an orthonormal set of distinct vectors v,,V,,V,. Also
Vv, is a linear combination of u,,u,,u, i.e. u,,u,,u, generate v,. Thus we have constructed an
orthonormal set {V;,V,,V;} such that v,,v,,V, are distinct vectors and v;(j =12,3) is a linear
combination of U;,U,,....u; suppose that, in this way, we have constructed an orthonormal set
{ViVy, Vi } (k<) of k distinct vectors such that Vv;(j=12,..k) is a linear combination of
Up, Uy, U

To prove it by induction, we consider the vector

Wy = W= <UgsVy >V—<Ue Vo > Vooim <U gV >V e (1)

Evidently w,,, is orthogonal to each of the vectors v,,V,,..v, and w,, # 0, other wise
W,,; = 0 would mean that u,,, is a linear combination of v,,V,,...v, and by assumption that Vv, is
alinear combination of u;,u,,..u; . We infer that u,, is alinear combination of u,,u,,...u, whichis

impossible as u,,u,,...u,,U,., is a linearly independent set of vectors. Now we write

W
Vk+1 = — = ||Vk+1|| = 1

[

and also that V,,, is orthogonal to each of the vectors V;,V,,..v,. Where v, , #V,(j =12,..K).
Because V,,,; =V,(j=12,..k) will imply that u,, is a linear combination of u,,u,,...U,, which

impossible. Also from the above itis clear that v, , is the linear combination of u,,u,,...u,,, . Hence
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we have constructed an orthonormal set {vl,vz,...,vk,vkﬂ} of k+1 distinct vectors such that
v, (1 =12,...,k+1) is the linear combination of u,,U,,..., U; . Thus by induction we can construct an
orthonormal set {V;,V,,...,V,} of n - distinct vectors such that v, (j =12,...,n) is the linear combi-

nation of U;,U,,...,U; .

As we know that an orthonormal set is always linearly independent, it follows that
{Vl,Vz,...,V } is a linearly independent set and consequently it is a basis of V(F) as it contains the

n

number of vectors, equal to the dimension of V(F). Further more this basis set is a complete
orthonormal set as the maximum number of vectors in an orthonormal set in V can be n.

This method of converting a basis of V (F) into a complete orthonormal set is called Gram
- Schmidt orthogonalisation process.

14.11.3 Working Procedure to apply Gram - Schwidt orthogonalization process to
numerical problems:

Suppose B = {ul,uz,...,un} is a given basis of a finite dimensional inner product space V.

Let {Vl,vz,...,vn} be an orthonormal basis for V, which we are required to construct from the basis

B. The vectors v,,V,,...,V, will be obtained in the following way.
Take Vi =ﬁ

_ e
U, = w,| where W, =U,— < U,,V, >V,

W,
3
V; = i—¢ -
3 ”W3” where W, = U;— < Uy, V, > V,—<U,V, >V,
W,
V, = -
n ”Wn” where W, =uU —<U,,V, >V,—<U,V, >V,..—<U,V,; >V, ,

Note: {U, =W, W,,W,..\W,} is an orthogonal basis.
Worked out Examples:

W.E. 14: Apply Gram - Schmidt process to the vectors u, =(1,0,2);u, = (1,0,-1);u, =(0,3,4) to

obtain an orthonormal basis for V,(R) with standard inner product.
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Solution: U, =(1,0,2) so ||u] =v12+0? +1* = J2

= 0 (} fj

U, = (10,-1) 50 <UpV, >=< (lo,—l),%ao,l)
o <UpV, >= % {(1(1) + 0(0) + (-1)(®)} =0

W, =U,—<U,,V, >V, = (l,O,—l)—O{% 8 0,1)} =(10,-1)

W] = 22 + 0% + (=12 =2

= o] - 5 %0-D- %O%

1
E(l’o,l) >

u, =(0,3,4) so u, =(0,3,4) <u,,v, >=<(0,3,4),

-1 0324,001>

V2

0(1) +3(0) + 4(1)} = 4 o2

V2

<U,,V, >=

A

1

2

1 (1,0, >=

2

<U,,V, >=<(0,3,4), <(0,3,4),(3,0,1) >

1
= ——{0(1) +3(0) + 4(2)} = 2/2
ﬁ{() (0) +4(1)}
Now W, = Uy— < Uy, V, > V,— < Uy, V, >V,

—(0,3.4) - 2421 (1,01) + 242~ (1,0,-1)

7z 7z
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=(0,3,4)-(2,0,2)+(2,0,-2) =(0,3,0)

W[ = VO +3*+0* =3

The required orthonormal basis is {V;,V,,V,

oo o)

( Acharya Nagarjuna University )

W.E. 15: Apply Gram - Schmidt process to obtain an orthonormal basis for V,(R) with respect
to the standard inner product to the vectors (2,0,1),(3,-1,5),(0,4,2) .

Solution: Let {ul,uz,u3} be the basis of the finite dimensional vector space V,(R) where

u, =(2,0,1),u, =(3,-15),u, =(0,4,2)

Now ||L'1|| 2+ 0P+ =5

(201) (2 o,ij

ol 1|| V5" 5
u, =(3-159)
1 1
<u2,vl>:<(3,—15)\/_(201)>_\/§<(3,—15),(2,0,1)>
11
\/§{3(2)+( 1)(O)+5(1)} \/E
W, =u,—<Uu,,Vv, >V, sow,=(3-L5)- \1/%(\/15)(2,0,1)

So w2=(3,—],5)—£(2,0,1):( 252 _1-0,5-1

J5 5

J
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sow, ==, 2 ¥_L 7 514
5'5'5) 5

v, | = %\/(—7)2 +(=5)? + (14)? = é\/49+ 25+196

o [ = /270

W51

1
(-7,-514) =—
= Tw,[ V270 5" )= 270

(-7,-5,14)

U, =(0,4,2) so <UsV; >= <(0,4,2), \/_ ,(2,0,1) >

:i<(o,4,2),(2,0,1)>

5

1

:E{

0(2) +4(0) +2(1)} = %

<u,,V, >=<(0,4,2), (-7,-514) >

1
270
1

~ /270
1

<(0,4,2),(-7,-5,14) >

= —={0(-7)+4(-5) + 2(14)}

V270

1 8
~J270 J270

=U—<U;,V, >V—<U,,V, >V
3 31V1 7 V1 312~ V2

(-20+28) =

2 1 8

5B 5

=(0,4,2) - ,—5,14)

—(042)——(201) —( 7,-5,14)
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= 0-24+ 2 4-04+—,2-%

4 56 40 2 112
5 270 270 5 270

0-54(4) +56 1080+ 40 540-54x2-112
270 o270 270

_(-160 1120 320\ (-16 112 32
270 ' 270 ' 270 27 ' 27’27

So =217, w28 T2

16
”Ws” - E\/S_A’

W, 27 16
= 2L 17,2
) 16v52 27" ="

V; =

1

So V5= @

1

(_l- 712) = 3\/6

(-17.2)

1
Hence the required orthonormal basis is {V;,V,,V;} where Vlzﬁ(Z,O,l) and

1 1
Vv, = 270 (-7,-514) and Vs = —=

270 3J6

14.12 Fourier Coefficients :

(-17.2)

Definition: Let B be an orthonormal subset (possibly infinite) of an inner product space V and let
veV . We define the fourier coefficients of v relative to B to be the scalar <Vv,u >

where ye B.
Worked out Examples:

W.E. 16: If S={(1,1,1),(0,1,2),(0,0,1)} is a subset of the vector space g3 and \/ = R®. Obtain the

orthonormal basis B for span (S) and find the fourier coefficients of the vector
(1,0,1) to B.
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Solution: Let u,=(111), u,=(0,11), u,=(0,0,1)
||LI1||:\/12+12+12 =3 so Vv ” ” \/é(l’ll)
1 1
<V,,V, >=< (O,ll),ﬁ(lll) >=— NE <(011),11) >

=T{0(1)+J(1)+J(1)} _T

W, =U,— < V,,V, >V,

=011~ \/é Ne (ll,l)
2 2 2 2
= (0,111)—%(1,1,1) = (0_5'1_§’1_§j

211 1
WZ‘(?’E’éj‘é(_Z'M)

So |- T -0

” 2”_—(— ll)\/— \/—( 2,11)
<uy, v, >=< (0, 0,1),%(1,11) - %{0(1) +0() +1(1)}
<uy =
<u,v, >=<(0,0,1), % (—2,11) >= % (0(-2) +0() +1()!

l.e. <Ug,V, >=

NG
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W, = Uy— < U,V > — < Uy, V, >V,

1 1 1 1

E-E(lll)—%-%

= (0, 0,1) - (—2,1,1)

1 1
= (0, 011)_§(l111) _E(_Z’ll)

obZolty i) (oY)
3 6 3 6 36 2

v3=”Z—3”=ﬁ@(o,—1,1)=%(0,—1,1)

So the orthonormal basis of Span (S) is B={v,,V,,V,} where
1 1 1

v,=—=@,1),v, =— —

1 3( ) 2 \/E

NE NG

(-2,1,9),v, =— (0,-1,1)

To find the fourier coefficients of the vector v=(1,0,1) relativeto S'= {vl,vz,v3} :

<\, >=< (1, 0,1),% @LLy> = % D1+0(1) +1(1)
<v,v1>:$

<vv, >=< (1,0,1), % (211> = ie (1(-2) + 0Q) + 1(1)}
<V, >=—=

J6
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1
<V,V,>=<(1,0,1D),—(0,-11) > =—410)+0(-D+1(1
2 ( )JE( ) \/—{1()()1()}
<V, V, >= 1
1 V3 _ﬁ
. » . 2 11 2/3 62
Hence the fourier coefficients relative to the set B is \/5\/62 or—,T,7

W.E. 17: If V = L(S) where S={(1i,0),(1—i,2,4i)} . Find the orthonormal basis B of V and com-

pute the fourier coefficients of the vector (3+1i,4i,—4) relative to B.
Solution: Let u, = (L,i,0)u, =(1-1,2,4i,)
then [u,|* =<u,,u, >=< (Li,0),(Li,0) >
= ](T) +i(i)+ 0(6) where 7 is congugate of a.
=1(1) +i(-i)+0(0)

=1-i’+0=1+1=2

2 304 [y =75 41

1 .
,ﬁ(ll,0)>

<u,, Vv, >=<(1-1,2,4)

{(1 N1+27, 4|(O)}

SI

((A—i)1+2(~i) + 4i(0)}

%ll|| .

1 a-3

J2

1 .
E{I—I—ZI}:

W, = U < UV, >V, = (1—i,2,4i),—%(1—3i).%(],i,0)
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= (1—i,2,4i),—%{(1—3i),3+i,O}

:((1_0_ (1-3i) P (3+1) i _Oj
2 2

1+|) 1-i)
W, = ( > o J =(@+i),@-i),8i)

||W2|| =< = ((1+|) @-i),8i), —(1+i,1—i,8i)>
1/1 Y TN ey
:E(Ej{(1+l)(l+l)+(1_|)(1_|)+8|(8I )} where 7 is congugate of a.
||W2|| (1+|)(1 i)+ (@—i)@+i)+8i(-8i)}
:%{(1+1)+(1+1)—64iz}

||W2||:%x/2+ 2+64 =%\/6_=§\/1_7=\/1_7

w, 11

Hence V, = ” 2” «/_7

(1+| 1-1,80)

Sov_(1+i 1-i 4ij
* \ 217" 2v17 V17

So the orthonormal basis B ={v,,V, }

1+i  1-i 4ij

1
Where V, =| —,—,0| and Vv, = , ,
' (\/E J2 j 2 [2\/17 217 ' 17

To find the fourier coefficients of v= (3+1i,4i,-4)

1 .
),ﬁ(l,h()) >

Now < V,v, >=< (3+1i,4i,-4
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%{(3+i)1+(4i)(—i)—4(0)}

<vy, >=i2(3+i+4)=i(7+i)

V2 V2

<V,V, >=< (3+i,4i,—4),2i(1+i,1—i,8i) >

V17

1 . : . : o
_m{(3+|)(1+|)+4| (1—|)—4(8I)}

L{
Vs

=L r(3+1-20)+ (4i-4)+32i)

217

(3+i)(L—i)+4i (L+i) - 4(-8i)}

:2_j1_7{(0+34i}=ﬁi

1 . .
Hence the fowrier coefficients of v relative to B are <v,v, >,<V,Vv, > i.e. 3(7‘“),@'

14.13 Parseval’s ldentity:

14.13.1 Theorem: Parseval’s Identity : If B={uj,u,,..u,} be an ortho-normal basis of a

n
finite dimensional inner product space V (F) then <U,V>= Z< u,u; ><Uu,V> forall u,veV .

Proof: B={u,u,,..u, }is a basis of V. Let u,veV. Then there exists scalars a,a,,..a,,

b,b,,..b, ¢ F sothat

u=au, +au,+..+au, :Zn:a.ui
i=1

n
v=hu +bu, +...+bu, => by,
J=1

Orthogonalization

i=1



[Centre for Distance Education ] (14.3@ (Acharya Nagarjuna University ]

n n
Now  <uv>=<) au,y bu, >,
i1 =t

n
=2.,<4au, hu > since <u,,u; >0 for i # j
i=1

Ken
A
c
I=
V
Il
M-
)
o
i
=
N

->a

n
i=1 i=1

since <u,U; >=11if i =]
Oif i #j
n n
But <U,U >= > <aU,U >=>.8 <U,U >=8 .......... (2) Since <u,u; >=
= =

1ifi=]

n
and <U,V>=<u,> <bu, >

J=1
Oif i # ]
=b <u,u > Since <U;,u; >=
1ifi=]
=h@ =0 ..o 3)

Using (2) and (3) in (1) we get

n
<UV>=D <UL > <ULV forall uveV
i=1

14.13.2 Corollary: If S= {ul,uz,...un} is a complete orthonormal set in an inner product space

V(F) and if vev , then 2 <Vt > =V
i=1

n
Proof: By Parseval's Identity if vV then <u,v>= Z< u,u ><u,v> forall veV
i=1
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n
Soas VeV, <Vv>=) <VU ><Uu,v>
i=1

n
=) <vu ><v,u >
i=1

n
so M = Z|< vu >z =7

i=1

Thus X<Vt > =|M
i=1
14.13.3 Theorem:

Bessel’s Inequality: Let V be an inner product space and Let S={uj,u,,...U,} be an orthonor-

n
mal subset of V. Prove that for any veV , we have Z|< v,y >|2 < ||V||2
i=1

Further more the equality holds if and only if v is in the subspace generated by u,,U,,...u,.

n
Proof: Consider the vector W= V—z< ViU >4,
i=1

Now ||w||2 =< W, W >=< v—i<v,ui >ui,v—i<v,uj >u, >
i=1 j=1

m m m m
=<V,V> =D <V, U ><UL V> =) <V U > <V U >+ D <V U > < VU > <UL U >
i-1 =1 i—1 j-1

m m m
=<V,V> =D <V U > <UL U > =D <V U ><VU > Y <V U ><V, U >
i=1 i=1 i=1

lifi=j
On summing up with respect to j and remembering <u;,u; >=
Oif i # |
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=||\/||2—Zm:|< v,u >|2—Zm:|< v,u >|2 +Zm:|< AT
i=1 i=1 i=1
. 2 2 u 2
e WP =M - v S e ®
i=1
Now W]’ > 0= M7 - > Je v > 20
i=1

=Y v s <|M?

i=1

To show that equality hold if and only if v is in the subspace spanned by u;,u,,...u,;:

m
Case i) Let the equality holds good i.e. Z|< v,y >|2 = ||V||2 then from (1)

i=1
2 2 i 2
e Wl =M= 2, < vy >
We get ||vv||2 =0= w=0 (zero vector)

m
=vV-><vu>u=0
i=1

m
= V=) <V,U >y,
i=1

Thus if the equality holds good then v is a linear combination of u,,u,,...u,
Hence v is in the subspace spanned by u,,U,,...U,
Case ii) Converse : v is in the subspace spanned by u,,u,,...,u,

So v can be expressed as a linear combination of u,u,,...,u.,, by theorem 14.8.2. We
know that

V=D <vU>U (2) But we know
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W=v->» <v,u >u =0 using (2)

i=1
So [w|" =0

=M _i|< vu >*=0

= levu > =M
i=1

Thus the equality holds good.

Hence the theorem.

14.13.4 Corollary: Let {u,u,,..u,} be an orthogonal set of non zero vectors in an inner product

<v,u >
space V. If v is any vector in'V, then Z[ ” ” | ] ”V”

u
Proof: Let B={v,V,,..,V,} where % = ||u ” (I<i<m). Then |v|=1, so the set B is an

m
orthonormal set. Hence by Bessels’s inequality we get Z|< vy >|2 < ||V||2 ....... (1)
i=1
Also <V, >=<V,—= <V,U >
>0 ||u I ||u ||
2 1
So <,V > =——=|<v,u > ... 2)
Ju

From (1) and (2) we get

m (|<v,u >
Z[' K j<||v||2

ul
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14.13.5 Theorem: If V is a finite dimensional inner product space, and if {ul,uz,...um} is an

m
orthonormal set in V, such that Z|< Vi 4, >|2 =||V||2 for every v eV ; prove that {Ul,uz,...um} must
i=1

be a basis of V.

Proof: Let v be any vector in V. Consider

W=V=D <V,U >0 (1)
i=1

As in the proof of Bessel's inequality
We have ||vv||2 =< W,W>
- M - Yf< v, >f
i=1
=0 by given condition.

m
Sw=0 =V=) <V,u>u
i=1

Thus every vector vin V can be expressed as a linear combination of the vectors in the set

S= {ul,uz,...um} i.e. L(S)=V . As Sis an orthonormal basis, S is linearly independent.

Hence S is a basis of V.

14.14 Orthogonal Compliment:

14.14.1 Definition: Let S be a non empty subset of an inner product space V. We define g*
(read S perp) to be the set of all vectors in V; that are orthogonal to every vector in S; i.e.

S'={ueV/<u,v>=0forall ve S}

St is called the orthogonal complement of S and the symbol is usually read as S perpen-
dicular

Note 1) St~V
i) ue s, veS =><u,v>=0

iii) O (zero vector) is an elementinV. ye S

then <O,u>=0+UeS=0eS" . Hence S" #¢
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14.14.2 Theorem: If S is any non empty subset of an inner product space V(F), then St is a
subspace of V(F).

Proof: By definition S* ={ueV/<u,v>=0+veV}
Let u,u,eS" and yve S. then <u,v>=0 ......... (1)
and <U,,v>=0 .......... (2) Now for a,be F and for each y e S we have
<au, +bu,,v>=<au,v>+<bu,,v>
=a<u,v>+b<u,,v>
=a(0) +b(0) using (1) and (2)
=0
- Foru,u,eS" a,beF
au, + bu, e S* so g’ is a subspace of V.

14.14.3 Theorem: If V(F) is an inner product space, O is the zero vector in V, then show that
[0} =V

Proof: Let V€V , then <v,0>=0 by definition of inner product. So v € O i.e. any element v of
Vis also an element of gt. So V < {0}L ......... (1). Also {0}l cV o (2) from (1) and (2)
(o =v.

14.14.4 Theorem:

If V(F) is an inner product space, O is the zero vector of V; then show that VAR {O} .

Proof: Let y e\ * then <u,v>=0-+VveV by definition of \y/* when v=u then <u,u>=0
i.e. ||u||2 =0=u=0

Thus O is the only vector orthogonal to itself and hence V* ={O}
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14.14.5 Theorem:

If S is a subset of an inner product space V (F), then show that SAS" :{O}

Proof: If ye SAS' then ye S and yest

= uis orthogonal to u.

=<uu>=0=u=0

So S/\SL={O}
14.14.6 Theorem:

If S, S, are two subsets of an inner product space V (F) thenshowthat Sc S =S c§
Solution: Let y e S+ = y is orthogonal to every vector in S, .

As S c S so uis orthogonal to every vectorin S .

= ueS thusueS =ue§

So S, ¢S
14.14.7 Theorem:

If S is a subset of an inner product space V (F), then show that - — span (S)*.
Proof: V is an inner product space over the field F.

S is a subset of V So Sc span (S)
We know if §,S, are two subsets of V,then ScS, =S S
Hence by this, [ span of " = S" .......... (1)

Let ye St and ve span of (S). Hence there exists scalars a,,a,,...,a, in F such that

vV=aWw +a,W,+..+a,w, where w,w,,.w, €S
a8
As Ue S <u,v>=<u,aWw +a,W, +...+a,w, >
So <u,v>=a <u,w >+a, <u,Ww, >+...+a, <u,w, >

=3,(0)+3,(0)+..+3d,(0)=0
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As vespanof Sand <u,v>=0 where y e S*
So u e[ span of S]*
Thus Ue S* = Ue (Span S)*
St (Span S) 2)
From (1) and (2) S* =(span S)*

14.14.8 Theorem: If B= {ul, u,, ...um} is an orthonormal subset of the inner product space V (F),

m
then for each VeV,W:V—Z<V,Uj > is a vector of gt.
j=1

Proof: We have proved in theorem 14.8.4 that w is orthogonal to each of u,,u,,...u . By definition
of orthogonal complement we B*.
Hence the theorem.

14.14.9 Orthogonal Compliment of an orthogonal compliment:

Definition: If Sis a subset of an inner product space V (F), then g is a sub space V. We define

(S")* written as s'* (containing those vectors in V (F) which are orthogonal to each vector of

st)by (SY)' = S“{u eV <uv>wve Si}

Note: Obviously (S")* is a subspace of V; since we know if S is any set of vectors in an inner

product space V (F) then ' is a subspace of V.
14.14.10 Theorem:

Show that for any subset S of an inner product space V(F), Sc S*.

Solution : V (F) is the given inner product space S, is subset of V. then S*, S** are subspaces of
V.

Let ye S then <u,v>=0 forall ve S*
<u,v>=0<v,u>=0 for ye st and yeVv

So by definition y ¢ §t+
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Thus ye S=uesSt
So Sg Sll.

W.E. 18: If V(F) is an inner product space and S is any subset of V then show that
) S'=(L(9))
i) L(S)c S+
ii) L(S)=S"" if Vis finite dimensional
iv) S =5

Solution: V(F) is an inner product space S is a subset of V.
) To show S* :(L(S))L
As Siis a subset of V, Sc L(S)
Hence [L(S)] = S" ....ovn. (1)

To show S* c[L(S)]"

Let ve L(S) then V=) au~UueS
i=1

n
for ue St wehave  <U,V>=<U,D> au >
i=1

=>.3 <U,U > by definition.
i=1
= since u is perpendicular to each U, € S.
This implies u is perpendicular to ve L(S) i.e. ue(L(S))" or S c[L(I)] ... 2)

From (1) and (2) s =[L9]

ii) To show that L(S) < S*
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Let ue L(S) and ye S*t. Then vis orthogonal to every vector of S or inother words v is
orthogonal to the linear combination of a finite number of vectors in S. i.e. v is orthogonal to u.

=ue(SH)"ie yestt
Thus ue L(S)=>ueS™. So L(S)c S
iif) To show gt — gttt
We have Sc L(S) and L(S)c S from (iii)

So Sg SJ_J_ = SJ_ = (SJ_L)J_

From (1) and (2) we get St = gttt

14.14.11 Theorem: Let W be a finite dimensional subspace of an inner product space V. Let

veV then there exists unique vectors UeW and weW" such that v=u+w.

Proof: Let B={u1,u2,...un}be an orthonormal basis of W. Then B is linearly independent and

L(B)=W. Letu be defined as u=»_<V,u; >U, and w=v—u.
i=1

Now ueW = L(B) and v =u+w now we have to prove that we W~

n
As B is an orthonormal basis of the vector space W. W=V - Z< V,U, > U avector of \W*.
i=1

So for yeV , there exists ye\W and we\W* such that v=u+w.

To show the uniqueness:
Let if possible y = '+ w Where e and w e W*
Theny+w=u+wW=u-Uu=w-w

But ueW,u eW,W is a subspace — y—uteW
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W eW! and weW* = w —weW-" since W is a subspace and as WAW" ={O} and so
u-u=W-w=0=>u=u,w=W

So the representation v =u+ w is unique.
Note: For ye\W, there exists e w*- suchthat y+w=veV

14.14.12 Closest Vector:
If v = R® and S={e,} where e, =(0,0,1) there S' is equal to xy plane.

Consider the problem in R3 of finding the distance from a point P to a plane W.

If we let v be the vector determined by O and P, we may restate the problem as follows.

P
W=v-u
Vv
a0°
Q
Ql
u
W © T =X

Determine the vector u in W that is ctosest to v. The desired distance is clearly [v—u| we

observe from the figure that the vector w=v—u is orthogonal to every vector in W and so we\W™-
For any xeW, there exists a point Q eW plane so that PQ > PQ.
ie. v—x|>v-u

The vector ye\WV is clearly the orthogonal projection of v\ on the plane.

14.14.3 Orthogonal Projection: Let W be a subspace of the finite dimensional inner product
space. For yeV there exists unique vectors ueW,weW=* suchthat y=y+w .

n
The vector y cw thatis U= <v,u >u where {U,,..,U,} is an orthonormal basis of
i=1

W, is called the orthogonal projection of y eV on the subspace W.
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14.14.14 Theorem: Let S= {Vl,vz,...vk} is an orthonormal set in an n - dimensional inner prod-

uct space V. Then show that S can be extended to an orthonormal basis S' = {Vl,vz, ...vk,vk+1...vn}
for V.

Proof: V(F) is an n - dimensional inner product space. So V(F) is an n dimensional vector

space. S={vl,v2,...vk} is an orthonormal subset of V. So it can be extended to the set

S = {1\ Vp,.. Vi, Wiy, Wy, W, |, SO as to form a basis of the vectorspace V (F).

By applying Gram schmidt orthogonalisation process to § we can obtain an orthonormal
basis in which the first k vectors are the vectors in S; the last n - k vectors are obtained after

normalising, given by S ={V,,V,,..V,Vj.;--V,} . Sothat L(S)=V .
Hence the theorem.

14.14.15 Corollary 1: If S= {Vl,vz, ...Vk} is an orthonormal set in an inner product space V and if
W is span (S) i.e. W is a subspace of V, then S, = {Vk+17vk+27"'vn} is an orthonormal basis of \W*.

Proof: In the above theorem we have shown that

S can be estended to S ={V,,V,,..Vj, Vi1, .-V, }
S0 S, ={Vi1,VyupeVy} €S (Basis of V)
Hence S, is linearly independent, being the subset of basis of V.

We are given L(S)=W and SAS,=¢ ,s0 S, cW" we will now show that (S,) =W".

As L(S)=V forany yeV, we have U=Z< u,u >y

i=1
Let ueW" =<u,uy, >=0 fori=12k
since ScW.

- foreach ueW™*,

n
u=<uu >Uu+<uu, >U,+.+<uu >u t 2, <uU>u
i=k+1
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=0+0+..+0+ ) <u,u >y

i=k+1

n
=) <uu>u
i=k+1

SoueW' »uel(S)=>W cL(S) e 2)
From (1) and (2) L(S)=W
As S, is linearly independent L(S,) =W

S, = {Ugi1 Ugopr-- Uy | s @ basis of W

14.14.16 Corollary 2: V is an n dimensional inner product space and if W is any subspace of V,
then show that dim(V) = dim(W) +dim(W™") .

Proof: As V is a finite dimensional inner product space and W is a subspace V, so W is finite

dimensional inner product space. So it has an orthonormal basis S= {Vl,vz,...vk} . So it can be
extended to an orthonomal basis Sl={Vl,vz,...vk,vkﬂ,...vn} and by the above corollary 1,

S ={Vi.i+Viszs--V, | is an orthonormal basis of W- .
Sodim V =n=k+(n-k)

= dim(W) + dim(W")
Hence dimV = dim(W) +dim(W") .

14.14.17 Projection Theorem:

If W is any subspace of a finite dimensional inner product space then show that
) v=W®W! where \w* is an orthogonal complement of W.
i) (W) =W

Proof: W being a subspace of a finite dimensional vector spae V (F) of dimension n, is also finite
dimensional say of dimension k.

Thus we can find B, = {ul,uz,...uk} as an orthonormal set in W which is also a basis of W. This

can be exteneded to give B = {ul,uz,...uk,ukﬂ...un} as an orthonormal basis for V(F).
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As W is a subspace of V, then \W- is also a subspace of V; and W AW" = {0} ...... (1) where
0 is the zero vector.

We will now prove v/ =\W +W*

[
Now consider the vector W=V — Z< uu >u (2)
i=1

k
Now <w,u, >=<v-) <v,u >u,u, >1<j<k
i=1

k
=<V, U, >—;<v,ui ><U,U; >
i=

=<V,U; > —<V,U; ><U;, U >

lifi=j
Since <Uu;,U; >=
lifi#|
So <W,U; >=<V,U; >—<V,u; >=0

Showing that W is orthogonal to each of the vectors u,,u,,...u, . i.e. orthogonal to the sub-

space W spanned by there vectors and hence it belongs to \W*.

k
Also, the vectors Z< V,U >U; being a linear combination of elements of B €W .
i=1

Kk
Hence from (2) i.e. W=Vv—Y <v,u >U
i=1

each veV we have
k
V=D v U [+w
i=1

= an elements of W + an elements of \W-*.
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So from (1) and (3) V =W ®@W,
ii) To prove that (W")" =w when W is a subspace of an inner product space of finite dimension.
Proof: By definition (W*")" =W = {WeV <W,V>=0-V eWL}

Let ueW =< u,v>=0~vveW"
Hence from definition of W, ue W

Thus yeW =ueW" sO Wcw
We have v =\W®W" ........ Q)

So dimV =dimW +dimwW" -....... 2

Putting W+ fro W in (1) we get

So dimV =dim(W") +dimW"") ........ 4)
From (2) and (4) we get dimw = dimwW"*
Now W cW* . Hence W is a subspace of w*- and dimw =dimw** so W =wW*
Thus (W) =W.
Note: If W is a subspace of any finite dimensional inner product space V(F), then V =W ®W"
= dimV =dimW +dimw*
= dimW* =dimV —dimw
14.15 Worked Out Examples:
W.E.19: If @, and @, are two subspaces of a finite dimensional inner product space V(F)

then show that ) (W, +W,)" =W AW,

and i) (W, +W,)" =W +W;"
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Solution: i) To show (W, +W,)" =W AW,
Weknow ScS =S5 c§
Now W, =W, +W, = (W, +W,)" =W,
and W, cW, +W, = (W, +W,)" cW,*
Hence from the above two, it follows
W, +W,)" W AW, ... (1)
To show that W™ AW, < (W, +W,)*
Let weW" AW;" = weW,", and weW,;"
=><W,u>=0~ueW,
and <wW,v>=0~»veW,
Thus <w,u>=0 and <w,v>=0=<w,u+v>=0 where u+veW +W,
So we (W, +W,)"

Thus we W' AW, = we (W, +W,)*

From (1) and (2) (W,,+W,)" =W~ AW,

ii) To show that (W, W) =W* + W

As W,,W, are subspace of V;W",W," are also subspaces of V. Hence replacing W, and

W, by W and W," respectively in the above i.e.
W+W)" =W AW,
W +Wo ) = (W) AW, )

= W +W, )" =W AW,
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Since W =W, and W, =W,

= W W) = (W AW,)
So W, AW,)" =W +W,"  since W =\
W.E.20: For R¥(R) space W =L({(1,0,0),(0,1,0)}) is a subspace Let v=(2,34) e R’.

Orthonormal basis of W = {u;,u,} where u, = (1,0,0),u, =(0,1,0).

Find the orthogonal projection of v and w.

2
Solution: The orthogonal projection of v on w is equal to z< Vb > U =<Vv,U > U+ <Vv,U, > U,
i=1

=<(2,3,4),(1,0,) > (1,0,0)+ < (2,3,4),(0,1,0) > (0,1,0)
=2(1,0,0)+3(0,1,0)
= (2,3,0)

W.E. 21

Let V = B(R) be the inner product space of atmost 3rd degree polynomials continues on

1

[-11]. Letthe inner product be defined as < f,9>= j F(H9(t)dt where f,geV, fW=P,(R)

-1

is a sub space of V, with standard basis B = {L X, Xz} .
i) Obtain orthonormal basis by Gram-schmidt process.

i) Represent the polynomial f (x) =1+ 2x+3x’ € P,(R) as a linear combination of the
orthonomial basis obtained above.

iiif) Obtain the orthogonal projection of f (x) = x> belongingto F,(R), the subspace of F,(R).

Solution: i) To obtain on orthonormal basis by Gram schmidt process.

The standard basis of P(R) is B={u,,u,,u,} given u, =1, u, =X, u, = x*

Let B ={v;,V,,v;} be the corresponding orthonormal basis.

1
U =1 fuff =<u,u>= [OO ], <1+1=2, [u]=V2
-1
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WU
Ju| 2

<Uy,V, >= J.(t)\/_ }{ tz} \/_(1 D=0

W, =U,— <Uy,\, >V,

W, = X-0=X
1 1 t3 1 2
[, |* =< wg,, w, >= Ilt.tdt - 2! t2dt = 2{5}0 -
2
=2

W, 3 3
== —(X)=\P(X)
s | \/; 2
e 2 T V2
<u3,vl>__jlt Tdt—\/_J.t dt = {EL_?

1 1 4 1
<U,,V. >=J't2. §tdt= §J't3dt= 3|t
31 V2 -1 5 2} 5| 2 0

Wy = Ug— < Uy, V, > V,— < Uy, V>V,

=x*-0 \/7x———_ 2 1
3

1 1
||W3||2 =< W5, W >= J. (t*—1)%dt =J. (t*—2t* + L)t
he A

€. <U,V, >=0

1
=2[ (t* -3t + {)ct
-1
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Hence the orthonormal basis of the subspace is 1%V Vs { \/7 \/7(3)( _1)}

i) The given polynomial is f (x) =1+2x+3x* € B(R)

To express f(Xx) as alinear combination of the vectors in the orthonormal basis:

3
The linear combination of f(X) =Z< fv >y,
i=1

1
1
<f,v>=|@A+2t+3?).——dt
=] " 72
2 7 2 ¢
=— [ @+3t?)dt +— | tdt
\/2£( ) JE_Il

3 1
<f,v >z«/§[t+3.%} +O:\/§(2)
0

1
< f,v, >=j(1+ 2t+3t2)\/§tdt
Y 2
3 1
:\/:j(t+2tz+3t3)dt
2—1
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1 1
= ,/§.4jt2dt+£j(t+3t3)dt
2" 2

<f,v,>= 2@@{%} +0=¥

0

1

< fv>= I(1+2t+3tz)\/§(3t2—1)dt

-1

= \/gx 2J(l; (-1+9t*)dt
= ﬁ{[t]&g{q }:2 5{—1+9}
gt " 7|5, 8 5
_zﬁ(—sw)
2\V2 5

210
5

So < f,v,>=

So f(X)=<f,vy>v+<f,v,>v,+<f >\

2235 S e )

Where f(x) is a linear combination of vector of orthonormal basis

iii) To find the orthogonal projection of f(x) = x* € B,(R) on W=PR,(R):
3

Solution : The orthogonal projection of f(x) = x® on W = Y <ty
i=1

=< f,vy>v+<f,v,>v,+<f,v,>\

1
< f,vl>=jt3 =0
-1

1
——dt
V2
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<fv>—J.t\/7tdt— \fjt“dt
-1

5 1
so < f,v, >:\/€{t€} :@

s

1
< f,v,>= It3.\/§(3t2 ~Ddt
-1

oo ]

So < f,v,>=0

Hence the orthogonal projection of f(x)=x> on W=R(R

<f,v>v+<fv,>v,+<f,v,>\

= O(%)+§(\/§J+ O.%(sz -1

W.E. 22 : Compute st if S={(1,0,i),(1,2,2)} in the inner product space C*(C) .
Solution: Let S={u;,u,} sothat u =(10,i); u,=(1212)
By definiion S" ={ve C’/<v,u>=0~ueS]
Let u=(a,b,c) € C*® where a, b, c are scalars belonging to C.
ve S" =<v,u, >=0and <v,u, >=0
i.e. <v,u >=0=<(a,b,c),(1,0,i)>=0

= a(1) +b(0) +c(i ) =0 where T is the congugate of i.

Soa-ci=0 ....(1) since | =—j
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and <v,u, >=0=<(a,b,c),(1,2,1)>=0
= ald)+b(2)+c(1)=0

=a+2b+c=0

Let c=1,thenfrom (1) a=i

: —(i+1
using in (2), i +2b+1=0= b=g

So v=(a,b,c) =(i,_(12+i) ,1j

So ' :{i,_(1+i) ’1}
2

14.16 Summary:

In this lesson we discussed about orthogonality of vectors. Orthonormality. properties of
orthogonality and orthonormality, Gram-Schmidt orthogonalization process to obtain orthonormal
bases. Parseval's identity, Bessels inequality orthogonal complements closest vectors projection.

14.17 Technical Terms:

Orthogonality of vectors, orthonormality of vectors, orthogonalization, orthogonal compli-
ment orthogonal projection.

14.18 Model Questions:

1. Define i) Orthogonal set i) Orthonormal set in an inner product space.

2. If u, v, are two vectors in a real inner product space V (F) such that |u]|=|v| then show that

(u+vV) is orthogonal to u—v.

3. Show that the vectors (-1,0),(0,-1) in R2 form an orthonormal basis over R under usual inner

product on R?.

4. Prove that every orthogonal set of non zero vectors in an inner product space V (F) is linearly
independent.
5. State and prove Parsvel's identity.

6. Apply Gram -Schmidt process to obtain an orthonormal basis for V,(R) with the standard inner
product to the vectors.
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1 1 1
) (21,3),(1,2,3),(111) Ans: ﬁ(2,13),ﬁ(4,5,1) ,ﬁ(ll—l)

i) (1L-10).(2-1-2,L-1-2)  Ans: \/—(l 10), &15(11—4),%(-2,_2,_1)

7. State and prove Bessel's inequality.

14.19 Exercise:

1. Apply the Gram - Schmidt process to obtain an orthonormal basis for V,(R) with the standard
inner product to the vectors

) (213),(1,2,3),(1,1,1)

1
,ﬁ(l.l.—l)

1 (-4,51)

(213), T2

Ans : \/—
i) (1,0,1),(1,0,-1),(0,1,4)

(1.0,1),—=(10,-1),(0,1,0)

Ans : \/—
iii) (L,-10),(2,-1-2),(1L,-1-2)

@

(L-1,0),—— (ll—4)é(—2,—2,—1)

Ans : \/— 3\/5

2. In each part apply Gram - Schmidt process to the given subset S of the inner product space V to
obtain an orthogonal basis for the span (S). Then normalise there vectors in this basis, to obtain an
orthonormal basis B for span (S) and compute the fourier coefficients of the given vector relative to
B.

). v=R"S={(2,-1,-2,4),(-21-55),(-1,3,7,11)} and v=(-11,8,-4,18).

1
ns: {g(z,—1—2,4)\/_( 4,2, 31)\/_( 3497)}
10,34/30,~/155

i) v=C* S={(~4,3-2i,i,1- 4i),(-1-5i,5- 4i,~3+5i,7-2i),(~27 —i,~7 - 6i,~15+ 25,7 6i)}
and v =(~13-7i,~12+3i,~39—11i, 26+ 5i).
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1 L L1 L . ) 1 ) . ) }
Ans:{ —(-4,3-2,i1,1-41),— (3—-1,-59,-2+4,2+1),—— (-17-1,-9+8i,-18+61,-9+8i
{‘/47( ) \/60( ) \/1160( )}

J47(-1-1),4/60(-1+ 2i),+/1160(1+i)

i) V = P,(R) with the inner product < f (x),g(X) >= [ f ©)g(t)dt; S={Lx,%*}; h(x) = 1+ x)

1 , . 1] 33
ANS : {1’2\/5()(_5)’6\/3()( X+ 6}’21 6 10

3 5(|-1 9||7 -17 -1 27
s 92 2 T n ]

o (3% Yol oals 3]
24,6/2,-942

3. In each of the following parts find the orthogonal projection of the given vectors on the given
subspace W of the inner product space V.

i) V =R%u=(26); and W={(v,w):w=4v}

12 6
Ans: 17110 4

i) V =R;u=(2213) and W ={(u,u,,u,)/u, +3u, —2u, =0}

29
17
40

1
Ans: 14

4. Find the distance from the vector u = (2,1,3) to the sub space W = {(u;,,,u,)/u, +3u, — 2u, =0}

of the vector space R3.

1
ANs: ﬁ
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5. If W be a sub space of the inner product space V,(R) spanned by B, = {(ZL 0,1),(1,2, —2)} then

find a basis of orthogonal compliment of \A/-.
Ans : {(2,-3,-2)} is the basis of W*

6. 1f W= L({(:L 2,3,-2),(2,4,5, —1)}) the subspace of R*(R); find a basis of the orthogonal compli-

ment \\/*-.

Ans : {(2,—],0,0),(0,_—27,3,1)}

s

7.1 V = L(S) with inner product < f,g >=I f (t)g(t)dt and S={sint,cot,Lt}. Find an orthogo-

0

nal basis and compute the fourier coefficients of h(t) =2t +1

: 4 . 4
AnNs : {smt,cost,l——smt,t+—cost—£}
Vs T 2

14.20 Reference Books:

1. Linear Algebra 4th edition Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
2. Schaum’s outline; Beginning Linear Albegra Seymour Lipschutz

3. Topics in Algebra I.N. Herstein

4. Linear Algebra J.N. Sharma & A.R. Vasishtha

- A. Mallikharjana Sarma



LESSON - 15

LINEAR OPERATORS

15.1 Objective of the Lesson:

We are familiar with the conjugate transpace of a matrix 4* of A. IfAis [a,-j lw then

A*= [b,-j]m where b,.j = Eﬁ i.e. 4x* is the transpace of the matrix formed with the conjugate
complex numbers of the elements of A.

For a linear operator T on an inner product space V, we now define a related linear operator
onV, called the adjoint of T, whose matrix representation with repect of any orthonormal basis B for

Vis [T ]B . The analogy between conjugate complex numbers and adjoint of a linear operator will
become apparent.

As V is an inner product space in this chapter, we study the condition which guarantee that
V has an orthonormal basis.

15.2. Structure of the Lesson:
This lesson contains the following items.
15.3 Introduction
15.4 Basic definitions
15.5 Theorems on linear transformations
15.6 Worked Out Examples
15.7 Adjoint of an operator - Definition
15.8 Theorems on adjoint operators
15.9 Worked out examples
15.10 Some properties of adjoint operators - theorems
15.11 Worked out Examples
15.12 Exercise
15.13 Normal and self adjoint operators definitions and theorems
15.14 T - In variance and polynomial split definitions

15.15 Schur Theorem and other theorems
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15.16 Normal operator definition - and examples

15.17 Theorems an normal operators

15.18 Positive definite and semidefinite transformations - definitions and theorems
15.19 Worked out examples

15.20 Summary

15.21 Technical Terms

15.22 Model Questions

15.23 Exercise

15.24 Reference Books

15.3 Introduction:

Here we shall consider linear functionals defined on an inner product space V' (F). Since

an inner product space is also a vector space so all concepts of linear functionals on vector spaces
are also applicable to inner product space. So give some basic definitions that are useful in inner
product spaces.

15.4 Basic Definitions:

1. Linear Operators : Let I/ (F) be a vector space. A linear transformation from V' (F) to V' (F)
is called a linear operator.

Also a linear functional f over V' (F) is a mapping i.e. f:V — F that assigns to every

vector vin V, an element f(v) in F; such that fis linear.

In other words f(u+v)= f(u)+ f(v) forevery u,veV ; f(au)=af (u) forevery qc F .
These two can be clubbed together as f(au +bv)=af (u)+bf (v)~u,veV and a,be F

Or

flau+v)=af (u)+ f(v)~u,veV and \pge F

2. Inner Product: Aninner product on V is a function f that assigns to every order pair of vectors
u,vinVascalar <u,v>in F(=R orC)

Also f(au, +bu,,v)=<au, +bu,,v>

=a<u,v>+b<u,,v> foru,u,eV,a,beF

Hence f is also linear and hence f is a linear functional on V.
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If V(F) is afinite dimensional inner product space; then it will have an orthonormal basis.

15.5 Theorems on Linear Transformations:

15.5.1 Theorems: Let V be a finite dimensional inner product space and f is a linear transforma-
tion from |7 — F . Then there exists a unique vector v in V such that f(u)=<u,v>-~uel .

Proof: Let B = {ul,uz,...,un} is an orthonormal basis for V; and f is a linear transformation from

V—>F.

Let V:Zn:f(uj) u;, foreach f(u,)eF ...... (1)

f[uj] simply denotes the conjugate of f(u,)
Then y ¢ 7, further more let g be a function from V to F defined by

gu)=<u,v>~uel ...... (2)

To show that g is a linear functional on V;

Let a,be F, w,w, €V, we have
of (aw, +bw,)=<aw, +bw,,v > by (2)
=a<w,v>+b<w,,v>

=ag(w)+bg(w,)
Thus g is a linear functional on V.

Now we will show g = f.

Let u, € B then g(u,) =<u,,v> .......... (3)

Now substituting the value of v, from (1), we get

gu,) =< uk,if@ u; >

n
=D fu)<ugu; >
Jj=1
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0if j#k

:Zn:f(uj)<uk,uj >= f(u,) '.‘{<“ka”,~ >} -
1if j=k

Le. g(u,)=f(u,)
Thus f and g agree on a basis for V' (F) and hence g = .

Inother words we say that there exists a vector y ¢ 7 corresponding to the linear functional
fonV:

fw)=<u,v>~uelV

Uniqueness of v:

Suppose there exists w in V such that
fw)=<u,w>~uelV

Thus <u,v>=<u,w>~ueclV
=S><u,v>—<uw>=0~uecl

=<u,v—w>=0 forall y eV
=<v—w,v—w>=0 Substituting v—w for u a particular value
=Sv=w=0
=Sv=w

So v is unique. Hence the theorem.

15.5.2 Theorem: For any linear operator T on a finite dimensional inner product space V, then
there exists a unique linear operator 7 on V such that

<T),v>=<u,T*(v)>~u,veV

Proof: Let T be a linear operator on a finite dimensional inner product space V; over the field F let
v be a vector in V. Let f be a function from V into F defined by f'(u)=<T(u),v>~uel ... (1)

To show that f is a linear functional on V.
Let a,b e F;u,,u, eV ,then

f(au+bv)=<T(au, +bu,),v> from (1)
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=<aT(u,)+bT(u,),v> Since T is linear.

So f <au,+bu, >=af (u,)+bf (u,) from (1)
Thus fis a linear functional on V.

So there exists a unique vector ' in V.

such that f(u) =< UY >NUEV e, (2)

Hence from (1) and (2) we observe that if T is a liear operator on V, then corresponding to

every v inV, there is a uniquely determined vector ' in V such that < T'(u),v >=< u,v > forall

ueV . Let 7+ be the rule by which we associate vwith v .i.e.let T * (v)=v'.
Then 7* is a function from V to V defined by < T'(u),v >=<u,T*(v) ~~u,veV ....(3)
1. To show that 7 * is linear:
Let a,be F;v,,v, eV . thenforeveryuinV we have <u,T *(av, +bv,) >
=<T(u),(av, +bv,) > from (3)
=a <T(u),v, >+b <T(u),v, >
=a<u,T*(v,)>+b <u,T*(v,)> from (3)
=<u,al *(v,\) >+ <u,bT *(v,) >
=<u,al *(v,)+bT *(v,) >
So T'*(av,+bv,)=aTl *(v,)+bT *(v,)
since in an inner product space <u,v >=<u,w>=v=w for every u.

So 7* is alinear operator on V.

So corresponding to a linear operator T on V there exists a linear operator 7* on 'V, such

that <7'(u),v >=<u,T*(v)>~u,vel .
To show that 7 * is unique:

Let F be a linear operator on V such that < T'(u),v >=<u, F(v) > ~u,veV

=><u,T*(v)=<u,F(v)>~u,velV
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=>T*=F

So T is unique.

Hence the theorem.

Note i) The symbol 7% is red as T star.

i) T(u) canbe takenas Ty and T*(v) as Ty.

iii) T is a linear operator on a finite dimensional inner product space V. If T has an eigen
vector, then 7* does so.

iv) 7 * is called an adjoint operator. Which we deal later in a detailed manner.

15.6 Worked Out Examples:
W.E.1:

1. For each of the inner product space V' (F') and linear transformation (linear functionals) f:V — F

find a vector v, such that f(u)=<u,v> forall ycJ .
i) V=RF=R;f(a,a,)=2a +a,
ii) V:CZ;cm;f(zl,zz)zzl—222
Solution: Given V = R*; F =R, f(a,,a,) =2a, +a, tofind v.
V — F i.e. R? 5 R is aninner product space of dim =2
V(F) i.e. R,(R) has an orthonormal basis {u1 =(L0),u, = (O,l)}
Such that <u,,u, >=1,<u,,u, >=1,<u,,u, >=0,<u,,u, >=0
f:V — F is alinear functional such that f(u)= f(u,,u,)=2u, +u, for u=(u,,u,)

Let u eV then u=au, +a,u, for a,,a, € R and f(u)= f(au, +a,u,)=af (u,)+a,f(u,)

.. (1) sincefis linear. We have y ¢ such that f(v)=<u,v>.
Sv=bu, +bu, for b,b,eR ... (2)
S<u,v>=<au, +a,u,,bu, +bu, >

=ab, <u,,u, >+a,b, <u,,u, > +a,b <u,,u, >+a,b, <u,,u, >
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=ab +ab, ... (3)

Since f(u)=<u,v> from (1) and (3) we get a,b, +a,b, =a,f(u,)+a, f(u,)

Comparing both sides of the above we get
by = f(u),b, = f(u,)
=b =f(1,0=2(1)+0=2
b, = f(0,1)=2(0)+1=1
Hence v=bu, +b,u, =2(1,0)+1(0,1) = (2,1) is the required vector.
i) v — Fis ¢* - ¢ defined by f(z,,z,) =z -2z, tofind v.
Solution: ¥ — F in ¢? — ¢ is alinear functional such that f(u) = f(z,,z,) =z -2z,

Let u eV ,then u = a,z, + a,z, for some scalar belonging to C.

S fw)=f(az +a,z)=a,f(z)+a,f(z,) ... (1) for a,,a,eC
-, since fis linear.

We have y ¢/ suchthat f(u)=<u,v>
So v=b,z, +b,z, forsome b,b, eC
<u,v>=<a,z,+a,z,,bz +b,z, >

=ab <z,z,>+ab, <z,z, >+a,b <z,,z, >+a,b, < z,,z, >

Since f(u)=<u,v> from (3)and (1)

We have 0151 + azgz =a,f(z)+a,f(z,)

Comparing on both sides we get
bi=f(z) b=f(z)

So b = f(1,0)=1-2(0) =1
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b, =0-2(1)=-2. Hence b, =1,b, =2

Hence v=bz +b,z, =1(1,0)-2(0,1) = (1,-2)
Which is the required vector.

W.E.2: For each of the inner product space V' (F) and linear functional g: )/ —» F find a vector v

such that g(u)=<u,v> forall y eV .

I) V:R3;g(a15a2,a3):al—2a2 +4a3
1
") V(F):V(C);x:(apaz,%);g(x)=§(a1+a2+a3)

Solution: (1) y = p* g(a,,a,,a;) =a, —2a, +4a, then to find v.
V — FieR® — R;V is aninner product space of dim=3.
V(R) has an orthonormal basis {u, =(1,0,0),u, =(0,1,0),u, =(0,0,1)}
1if i=j
Such that <u,,u, >=
Oifi#j
g:V —> R ie. g:R’ — R isalinear functional

such that g(u) = g(a,,a,,a,) = a, —2a, +4a, for u=(a,a,,a,)

3
Let 4 ey, then U=au, +au, +au; = Zaiui for a,eR

i=1

So g(u)=g(au, +au, +au,)=a,g(u,)+a,gu,)+a,g(u;) ........... (1)
Since g is linear.

We have y ¢ )/ such that g(u)=<u,v >

3
So v="bu, +byu, +bu, =Y bu, ... (2) for b, eR
=1
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3 3
So <u,v>=< Zauiﬁzbjuj >=ab +ab, +aby (3)
i1 =

As g(u)=<u,v> from (1) and (3) we have
ab +a,b, +ab, =ag(u)+a,g(u,)+a,g(u,)
comparing b, = g(u,),b, = g(u,),b, = g(u,)
= b, =g(1,0,0)=1-2(0)+4(0) =1
b, =g(0,1,0)=0-2(1)-4(0) =-2
b, =g(0,1,0)=0-2(0)+4(1)=4
v =by, +b,v, +b,v, from (2)
=1(1,0,0)—-2(0,1,0) + 4(0,0,1)
= (1,-2,4) which is the required vector.
i) g:V > F i.e. V; = C is alinear functional }J'(F') is an inner product space of dim=3.
V, has an orthonormal basis {ul,uz,u3}
1if j=i
Such that <u,,u, >=
Oif j#i

given g:V; — C is alinear transformation

1
Such that g(u)=g(al,az,a3)=§(a1 +a, +a) for u=(a,,a,,a,)

3
Let u €V, then U = aju; + ayU, + Az, = Zaiui fora, eC.
P

g =g(au, +au, +au,)=a,g(u)+a,g(u,)+a,g(u,) .......... (1)

we have v el such that g(u)=<u,v>
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So <u,v>=< iaiui,ibjuj >
i i
Oifi#j
<u,v>= all;1 +a21;2 +61353 ........... (3) Since <u,,u; >=
1ifi=j
Since g(u) <u,v> from (1) and (3)
all;1 +azl;2 +a31;3 =a,g,u)+a,g,(u,)+a,g,(u;)
Comparing b, = g,(u,);b, = &, (u,);b; = g, (u;)

=b=gW), b=g,1,), b=g )
If the orthonormal basis is taken as the standard basis we can have
u, =(1,0,0),u, =(0,1,0),u, = (0,0,1)

1
We have since g(u):g(alaaZaaB):g(al+a2+a3)
1
_ _1 _1
we have () =g(10,0)=—(1+0+0)= I

g(uz):g(O,l,O):%(0+l+O): 1, g(u3):g(0,0,1)=%(0+0+1) gw) =Y

b =gle)= 14.b, = glw) = 4.b = glw) = 14

So v =bu, +b,u, +b,u, from (1)

| | 111
= (10,0 40,0, =| L1 1
r=310.0+30.0.D (3 3 3)

Which is the required vector.
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1
W.E.3 : If V,(F) is an inner product space with orthonormal basis {u,,u,,u,} where 23@1,0),

1
”223(1,—1,0), u,=(0,0,1). If f is a linear functional on V,(F) such that
f)=-2,f(u,)=1, f(u;)=1. Find the vector v such that f(u)=<u,v>-~uecV,(F).
Solution: V; = F i.e. V; — C is aninner product.

V,(F) is an inner product space with dimension 3.

1 1
¥, has the orthonormal basis {u,,u,,u,} where ¥ zﬁ(lala 0);u, :ﬁ(la_la 0) and

1if j=i
u; =(0,0,1). suchthat <u,,u, >=
0if j#i

f:V; = C isalinear functional such that f(u)= f(a,,a,,a;).

3
Let u eV so U =au +au, +au; = zaiui forall a, e C.
i=1

S @)= flaw +au, +au,) =a, f(u)+a,f(u,)+a, f (uy)

We have yc ) so f(u)=<u,v>

3
v=bu +bu, +ba =) b, forb eC ... 2)
j=1

3 3
<u,v>=< Za;”n ij”j >=a,b +a,b, +ab, . (3)
i=1 j=1

Since f(u)=<u,v> from (1) and (3):
ab, +a,b, +ab, =a f(u)+a,f(w,)+a,f(u,)

Comparing b, = f(u)).b, = f(u,).b, = £ ()
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:b1 :f(u1);b2 :f(uz);b3 :f(us)

= b =-2,b,=1b, =1

1 1

1,1 1.

So v = b, + by, + by, = —2( (1,-1,0)+1(0,0,1)

-1 -3
so v=| —,—,0 | is the required vector.
(ﬁ V2 j

15.7 Definition:

Adjoint of an operator: Let T be a linear operator in an inner product space V (finite dimensional
or not). We say that T has an adjoint 7 *, if there exists a linear operator 7* on V; such that

<T),v>=<u,T*(v)>~u,vel.

In theorem 15.5.2, we have proved that every linear operator on a finite dimensional inner
product space possess an adjoint. But it should be noted that if V is not finite dimensional then
some linear operator may possess an adjoint, while the other may not. In any case if T possess an
adjoint 7 *, itis unique as we have proved in that theorem.

Note: We have <y, T(v) >=<T(v),u>=<v,T*u)>=<T*(u),v> -

Hence <u,T(v) >=<T*(u),v> forall u,velV .

15.8.1 Theorem: Let V be a finite dimensional inner product space. Let B = {u,,u,,..u,} be
an orthonormal basis for V. Let T be a linear operator on V; with respect to the ordered basis B.

Then a; =<T'(u,),u; >.

Proof: As B is an orthonormal basis of V; and if v is any vector in V; then v = Z< v,u, >u,
i=1

Taking T'(u,) in place of v, in the above, we get T(u;)= Z< T(u),u, >u; ... (1)
i=1

where j=1,2,..n.

Now if A= [a,-j ]H be the matrix of T in the ordered basis B; then we have T(”,-) = zaijui;

i=1

Jj=1,2,..n . Asthe expression for T'(u;) as alinear combination of the vectors in B is unique and
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so from (1) and (2) we have a, =<T'(u,),u; > where i=1,2,..n and j=12,..n.

15.18.2 Theorem:

Let V be a finite dimensional inner product space let T be a linear operator on V. Let B be
any orthonormal basis for V. Then the matrix 7 * is the conjugate transpose of the matrix T i.e.

|:T :'B :[T]B
Proof: Let B = {ul,uz,...un} be an orthonormal basis of V. Let 4= [a,-j ]H be the matrix of T with
respect to the ordered basis B. Then a;, =<T'(u,),u, > ......... (1)

Now 7 * is also a linear operator on V.

Let C=[c; ]  be the matrix of 7* in the ordered basis B. Let ¢, =<T*(u,),u, > ..... (2)

Where ¢; :<T*(uj),ui >:<ui,T*(uj)> since <u,v>=<v,u>
=<T(u,),u;, > bydef of T

= a; by (1)

—_— ES

C=[a- ] ;80 C'=4* where 4x is the conjugate transpose of A. So [T*]B :[T]B

lj n+
Note: Here the basis B is the orthonormal basis but not an ordinary basis.

15.8.3 Corollary: If A and B are n x n matrices, then

(i) (A+B)*=A*+B* (i) (CA)*=CA* forall Ce F
(iii) (AB)*=B*A* (iv) 4%*= 4
(V) =7 (vi) 0’ =0, (null matrix order n)

15.9 Worked out examples:

W.E.4: Let T be a linear operator on C,, defined by T'(a,,a,)=(2ia, +3a,,a, —a,) if B is the

standard ordered B as is for C? then find 7' *(q,,q,) .
Solution: We are given T'(a,,a,) = (2ia, +3a,,a, —a,)

The standard ordered basis is B ={(1,0),(0,1)}
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T(1,0) = (2i(0) +3(0),1-0) = (2i,1)
=2i(1,0)+1(0,1)

T1,0)=(0+3,0-1)=(3,-1)=3(1,0)-1(0,1)
2i 3
-7
[Tk]g :[T]B :{ 3 _J. Hence the coordinate matrix of

. =2i 1 || a .

[T*](a,,a,) = 3 lla I (=2ia, +a,,3a, ~@,) in the same basis is
2

=T*(a,,a,)=("2ia, +a,)1,0)+(3a, —a,)(0,1) = (-2ia, +a,,3a, —a,)

W.E.5 : Let A be a n x n matrix, then show that LA* = [LA]*

Solution: Let B be the standard basis for 7. then we have [L,] =4. Hence

(L] ] =l =1 L,],

So (LA)* =L,

A

W.E.6 : Example: If the linear transformation T on V;(C) is defined by
T(a,b,c)= (2a +(—-1)b,(3+2i)a —4ic,2ia+ (4 -3ib —3c)) for any (a,b,c)eV;(R) then
find 7" (a,b,c) with respect to standard basis.

Solution: The matrix of T relating to the standard basis of V;(C) which is also an orthonormal basis
is given by

2 1-i 0
T=|3+2i 0 —4i|=|a;]
2 4-3i -3
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If 7% is the adjoint of T; then the matrix of 7 * relative to the standard basis B is

2 3-2i -2
[T*]=[a,|=|1+i 0 443
0 4 -3

Thus showing that
T*(a,b,c)= (2a +(3-2i)b—2ic,(1+i)a+(4+3i)c,4ib— 30) for each (a,b,c) eV,(C)

W.E.7: Let Tis a linear operator on V,(F) defined by T(a,b,c)=(a+b,b,a+b+c) for a,b,ce F,
then find 7*.

Solution: Let (x,y,z) e V;(F) and T is a linear operator on V,. By definition.
<(a,b,c),T*(x,y,z)>=<T(a,b,c),(x.y,z) >
=<(a+b,b,a+b+c),(x,y,z) >
=(a+b)x+by+(a+b+c)z
=ax+bx+by+az +bz +cz

=a(Xx+z2)+b(x+y+2)+cz

=a(x+z)+b(x+y+z)+cz

=<(a,b,c),(x+z,x+y+2z,z)>

So T*(x,y,z2)=(x+z,x+y+2z,z)~(x,y,z)eT*
15.10 Some Properties of adjoint operators:

15.10.1 Theorem: Suppose S and T are linear operators on an inner product space V, and C is
a scalar.

If S and T possess adjoints on V, then

) (S+T)*=S*+T* (i) (CT)*=CT* where C is a scalar
i) (ST)*=T*S* (iv) (T**=T

V) 0 = where O is the zero operator

[* =] where J is the identity operator
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vi) If T is invertible then 7-1 is also in vertible and in this case (7*) ' = (T’l)*
vii) Trx =T
Proof: (1) To show that (S +T7)*=S*+T*
As Sand T are linear operatorsonV, § + 7 is also alinear operatoronV, Forevery u,vel .
<u,(S+T)*(v)>=<(S+1T)(u),v>
=<Sw)+T(u),v>
=<Sw),v>+<T(u),v>
=u,S*(v)>+<u,T*Wv)>
=<u,S*(v)+T*(v) > by definition of adjoint.
=<u,(S*+T*)(v) >
Thus for the linear operator § +7 on v, there exists operator §*+7* on V such that
<(S+7T),(u),v>=<u,(S*+T*)v> ~u,velV

or <u,(S+T)*(v)>=<u,(S*+T*)v >
By uniqueness of adjoint (S+7)" =S" +T"

ii) To show that (CT*)= CT * where C is a scalar in F.

As T is a linear operator on V; so C7 is also a linear operator on V; for every u, v in 'V,

we have <u,(CT)*,v>=<(CT)u,v>=<CT(u),v>=C <<T(u),v>
=C<u,T*(v)>
=<u,CT*(v) >
=<u,(CT*)v>
So by the uniqueness of the adjoint we get (CT)* = CT*.

iii) To show that (ST)*=T*S*

As S, T are linear operators on V, so ST is also a linear operator on V. For every u, vin V.
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We have < u,(ST)*(v) >=<(ST)(u),v >
=< ST (u),v > by definition of product of two operators
=<T(u),S *(v) > by definition of adjoint
=< u,T*(S*(v)) >
=< u,(T*S*)(v) >

ie <u,(ST)*(v) >=<u,(T*S*)(v) >

= (ST)*=T *S* as the adjoint operator is unique.

iv) To show that (7T*)*=T

<u,((T)*)*(v) >=<T*(u),v>

=<v,T*(u)> (Since <u,v>=<v,u>)

=<T(v),u> by definition of adjoint

=<u,T(v)> Since <u,y>=<v,u>)
Thus for a linear operator 7 *, there exists a linear operator T on V, such that
<u,(T*)*(v)>=<u,T(v) >
Hence (T*)* =T by the uniqueness of adjoint.
v) a) To show that * = 9 where () is the zero operator
O is the zero operator in V. For every u, vin V.
We have <u,O"(v) >=< Ou,v >
=0=<u,0(v)>
Thus <u,0"(v) >=<u,0(v) > forall u,veV
= O =0 (Where O is the zero operator) by uniqueness of adjoint.

(b) To show that j* —

For every u,veV we have
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<u, [*(v)>=<I(u),v=<u,v>
=<u,l(v)>
Thusforall u,veV, <u,l*(v)>=<u,l(v)>
So j* — J by uniqueness of adjoint.
vi) To show that (7*)™ =(T")*
T is an invertible operator on V. So we have
TT' =T'T=1I
= (177 )*=(1"'T)*=1*
= (T )*T*=T*(T")*=1 since [*=]
This shows that 7+ is invertible and the inverse of 7* i.e. (T")™' = (T ')”
i.e. inverse of adjoint of T is adjoint of inverse of T.
viiyfor u,veV,<u,T(v) >=<T *(u),v >=<u,T **(v)
— T** =T by uniqueness of adjoint.

Note: T is a linear operator on an innerproduct spaceVand U, =T +T*,U, =TT *
thenU, =(T+T ) =T +(T") =T +T®T+T =U,

and U, =(TT") =(T")Y T =TT =U,
Worked Out Examples:

W.E.8: V is the inner product space g2, T is a linear operator in V; evaluate 7* at u =((3,5) of V
where T'(a,b)=(2a+b,a—3b)

Solution: (a,b) € R?, Let (a,,b,) € R
Then by defination of 7 *
<(a,b),T *(a,,b)>=<T(a,b),(a,,b) >

=<(2a+b,a-3b),(a,,b) > by definition of T.
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=(2a+b)a,+(a—-3b)b,
=(2a,+b))a+(a,—3b)b
So <(a,b),T*(a,,b) >=<(a,b),(2a, +b,,a,—3b) >
as (a,b),(a,,b)) are arbitrary elements in g2, then we have 7 *(a,,b,) =(2a, +b,,a, —3b,)
or T*(a,b)=(2a+b,a—3b)
So T*(3,5)=(2x3+5,3-3x5)
i.e. T*(3,5=(011,-12)

W.E.9: Let V be the vector space V,(C) with standard inner product. Let T be the linear operator
defined by 7(1,0) = (1,-2).7(0,1) = (i,—1) . If u=(a,b) thenfind T *(u).

Solution: Let B = {(1, 0),(0, 1)} . Then B is the standard basis for V. It is an orthonormal basis for V.

Letus find [T], . i.e. the matrix of T in the ordered basis B.

B"

We have T(1,0) = (1,-2) = 1(1,0) — 2(0,1)

7(0,1)=(,-1)=i(1,0)-1(0,1)

-5

sofrl,~| . 7]

Now (a,b) =a(1,0)+5b(0,1)

The coordinate T *(a,b) in the basis B.

1o T

T*(a,b) = (a—2b)(1,0)+(=ia —b)(0,1)
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=(a—2b,—ia—-b)

W.E.10: The inner product space V is ¢? and T is the linear operator on V, defined by
1(z,,z,) =2z +iz,,(1-i)z). Find 7% at u =(3—-1i,1+2i).

Solution: Let B= {(1, 0), (0, 1)} . Then B is the standard ordered basis for V. Itis an orthonormal

basis. Letus find [T],.
T(z,,2,) = 2z +iz,,(1-1)z,)
T(1,0)=(2,(1-1))
=2(1,0)+ (1-7)(0,1)

7(0,1)=(i,0)=i(1,0)+0(0,1)

-2 )

(7], = {_21 _(10_ i)}

Now (z,,z,)=z/(1,0)+z,(0,1)

, . , |2 -1z 2z, +z,(i-1)
The coordinate matrix of 7'*(z,,z,) inthe basisBis | = )
- 0 ||z —iz, + 0z,

T*(z,,2,) =(2z, +2,(i—1))(1,0) — iz (0,1)
=2z, +z,(i-1),-iz))
T*(B3—-i,1+2i)= (2B -)+1+2)i-1)-i(3-0))
=6-2i+i—-2-1-2i
=((3-3i),-(3i+1))
W.E.11: Let T be the linear operator on V,(C), defined by 7 (1,0) = (1+i,2)

T(0,1) = (i,i) using the standard
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inner product. Find the matrix 7 in the standard ordered basis. Does T commute with 7.

Solution: Let B = {(1, 0), (0, 1)} . Bis the standard ordered basis for T. Itis orthonormal basis
We have T(1,0) = (1+i,2) = (1+i)(1,0) +2(0,1)

7(0,1) = (i,i) = i(1,0) +i(0, 1)

so[r),-|'y" ]

l

So [T*], = The conjugate transpose of the matrix [7], .

15

We have [7] (7], :F;i ’:Ml__f 2}

[ 6 3i+l
=| 3y g | e 2)

Now from (1) and (2) [T'], [T *], #[T*],[T],
=[TT*], #[T*T],

So IT*#T*T
So T does not commute with 7.

15.12 Exercise:

1. For each of the following inner product spaces V over F and linear transformations g:V — F

find a vector v such that g(u) =<u,v> forall 4y ) .
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)y =Rr?;g(a,,a,,a,)=a, —2a, +4a,

Ans: v=(1,-2,4)

i) V = P,(R) with < f,h>= j F(O)dt

g(N)=10+f 1
ANSs : y = 2104 — 204u +33

2. V' =PB(R) is an inner product space T is a linear operator on V. The inner product in V is given
1

by < f-g>= [ f()gWdt; T(f)=[ +3f
-1

f(t)=4-2¢ Evaluate 7.
Ans: T*[ f(t)]=12+6t

3. A linear operator T on R*(R) is given by T(x,y)=(x+2y,x—y) forall x,y e R. If the inner

product on p? is the standard one, find the adjoint 7.
Ans: T*(x,y)=(x+y,2x-y)

4. Let T be alinear operatoron V,(C) defined by 7'(1,0) = (1,-2); T'(1,0) = (i,—1) using the standard
inner product find 7 *(u). Where u =(a,b)

Ans: (a—2b,—ia—b)

15.13 Normal and Self-Adjoint Operators:

15.13.1 Definition: Self Adjoint Operator: A Linear operator T on an inner product space
V(F) is called self adjoint operator if and only if 7 = 7 *.

Note: 1) A self adjoint operator is called a symmetric according as the space is called Eucledian i.e.
F=R-

2. A self adjoint operator is called Hermitian when the vector space is unitary i.e. fF=C.

3. In an inner product space if T is self adjoint operator. Then
<T(u),v>=>u,T*V)>=<u,T(v)>>~u,vel .
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4.1f () is the zero operatorin ¥, 1 is the identity operator in V, then 0* = 6, [*=].So ()and J are
self adjoint operators.

5. An n x n real or complex matrix A is self adjoint if 4= 4*.

6. A self adjoint operator is also called as Hermitian operator. A self adjoint matrix is also called as
Hermitian matrix.

15.13.2 Theorem:

Every linear operator T on a finite dimensional complex inner product space V can be uniquely
expressed as 7* =1 +iT, where T, and 7, are self adjoint linear operators on V.

1 1
Proof: Let T, =5(T+T*) and 7, :E(T_T*) ......... (1)

*

then 7, = {%(T+T*)} :%{T* +(T*)*}

1 1
=—(T*+T)==—(T+T*) =T,
> )= )=T,

i.e. I;7*=1T, so T, is self adjoint.

*

Also Tz* — {%(T _ T*)}
i

! **___1 *_TY —
—(z—ij(T—T)—zi(T =T, ... (2)

i.e. ,*=T, so T, is self adjoint.
From the above we get T+ 7* = 2T
T-T*=2T,
Adding 2T = 2T, +iT)) =T =T +iT, ............ (3)
Subtracting 27* =2(T, —iT,) = T* =T, —iT,

Whence 7T, and 7, are self adjoint.
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Uniqueness resolution of T:

Let 7=U, +iU, where U, and U, are self adjoint operators. Then
T*=U, +iU,)*=U, *+@{U,)*

=U, *+iU,*

=U,*-iU,*

=U,-iU,

T+T*=(U,+iU,)+ (U, -iU,)=2U,
1
2U1 :E(T"'T*):
Also T —T*= (U, +iU,)— (U, -iU,) = 2U,

=U,= Y (T T*)=T,. Hence the expression T =T, +iT, is unique.

15.13.3 Prove that the product of two self adjoint operators on an inner product space is self
adjoint, iff they commute.

Proof: Let 7, and 7, be two self adjoint operators on an inner product space V;
Case i) Let the product of 7, and 7, i.e. T|T, is self adjoint.

So IT))*=1TT,=>T,*T}*=TT,

= T,T, =TT, since T, and T, are self adjoint operators 7,*=1;, I,*=T,

Thus when 1|7, is self adjoint the 77, = 1.7, i.e. they commute.
Case ii) Converse : Let 7} and 7, commute i.e. T\7, = 1.7,

So (I\T)*=T,*T,*=T,T, (Since I}*=T, and T,*=T,)

=TT, since T, =73,

Thus (I,T,)*=T1T7T,. So T[T, is self adjoint.

Hence the theorem.
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15.13.4 If 7, and 7, are self adjoint linear operators on an inner product space, then show that

1, + 1T, is self adjoint.
Solution: 7, is a self adjoint operator. So 7,* =1,
and T, is a self adjoint operator. So 7,*=T,
Now (T, + T, * =T, *+T,* =T, + T,
So (I, +T,)*=1 +T,, Hence T, +T, is self adjoint.

15.13.5 If T is a self adjoint linear transformation on an inner product space then

T=0o<T(u),u>=0 foral 4y cp.

Proof: Let 7= () (Zero operator)
<T(u),u >=<0(u),u >=<0,u >=0 forall y .

Conversely Let < T(u),u>=0, u eV, thento showthat 7 ().

Consider < T(u+v),u +v >=0 by given condition
=><Tw)+TV),u+v>=0
=><TWw,u>+<Tw),v>+<TW),u>+<T{v),v>=0
=<T(u),v>+<T(u),v>=0 bygiven condition
=><Tw),v>+<v,T*(u)>=0 ...... (1) Since <T(v),u >=<v,T*(u)>
=><Tw),v>+<v,T(u)>=0 ... (2) Since =T

Case i) Let V be a complex inner product space then by (1) replacing v by jy we get

<T(u),iv>+<T(@v),u>=0

= —i<T(u),v>+i<T(v),u>=0 since conjugate of i is -i.
= -<Tw),v>+<TW),u>=0 ....... (3)
Adding (1) and (3) we get
2<T(u),v>=0 forall u,veV

So <T(u),T(v)>=0 putting v="T(u)
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=T(u)=0

A

=T=0

Case ii) In case if V is real inner product space we have <v,T(u)>=<T(u),v> since
<u,v>=<v,u >,

From (2) <T(u),v>+<v,T(u)>=0
= 2<T(u),v>=0 using above, ~u,velV
=<T(u),T(u)>=0 putting v=T(u)
=<Tw)=0,~u,veV So 7=

Hence the theorem.

15.13.6 If T is a linear transformation on a complex inner product space, then T is self adjoint
<< T(u),v> isreal ~~u,vel .

Proof: Case i) Let T is self adjoint. So 7*=7T.

then ~u,e V , <T(w),u >=<u,T*(u)>=<u,T(u) >
S<Tw),u>=<Tu),u>=<T(u),u> isreal

Case ii) Converse :

Let < T(u),u > is real for each y ¢ /. Then to prove that T is a self adjoint transformation

i.e. to show <T7T'(u),v>=<u,T(v)>~u,uch .
Now <T(u+v),u+v>=<Tw)+T(v),u+v>
=<TW)u>+<TWw),v>+<TW),u>+<Tw),v>

Since by hypothesis <T(u+v),u+v>,<T(v),u> and <T(v),v> are all real and so

<T(u),v>+<T(u),u> is alsoreal. So equating it to its complex conjugate.

Weget <T(u),v>+<TO),u>=(<T(u),v>+<TW),u>)

=<T(u),v>+<T(v),u>)
=v,T(u)>+<u,T(v)>

Thus forall u,vel .
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<TWw),v>+<TW),u>=<v,T(u)>+<u,T(V)> ccoccv.... (1)
replacing v by jy we get

<T),iv>+<T@v),u>=<iv,T(u) >+ <u,T(iv)>
= —-i<Tw),v>+<iTW),u>=i<v,T(u)>+<u,iT(v) >
= —-i<TWw),v>+i<TW),u>=i<v,T(u)>—i <u,T(V)> cccocverrrrnes (2)
Multiplying (2) by i and adding to (1) we get

2<T),v>=2<u,T(v)>

— T is self adjoint operator.

Hence the theorem.

15.13.7 Theorem:

If T is a self adjoint linear operator on an inner product space V, thenif 7. () and 420,
then aT is self adjoint if and only if a is real.

Proof: Let a be real. Then we have (aT)*=aT *
=¢qT since ais real and T is self adjoint.
Thus (aT)*=aT . Soitfollows aT is self adjoint.
Converse: Let aT is self adjoint So (aT)*=aT
=al*=aT

= aT = aqT since T is self adjoint.
—(@-a)T=0

as T#0,s0 a—a=0=a=a
Hence a is real.
Hence the theorem.
15.13.8 Theorem:
Let T be a linear operator on a finite dimensional inner product space V. Then T is self

adjoint if and only if its matrix in every orthonormal basis is a self adjoint matrix.

Proof: Let B be any orthonormal basis of V. Then [T* ]B =[T], oo (1)
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If T is self adjoint, then 7" =T .

So from (1) we get [T]B :[T]*B

So [T], is a self adjoint matrix.

B

Conversely Let [T'], be a self adjoint matrix then [T]B = [T]; :[T*L from (1)

So 7 =7+*. Hence T is self adjoint.

15.13.9 Theorem:

If T is self adjoint linear operator on a finite dimensional inner product space, then prove that
det (T) is real.

Proof: Let B be any orthonormal basis for V.

Then we have [T*]B = [T]*B and T is self adjoint. So 7* — 7 i.e. [T] =[T],

A*

Suppose [T], = 4 and then [T]; =
Then A = A* = det(A) = det(4%)

= (det A) = det 4
Sodet Ais real. Hence detT is real. Since detT =det[T], =det 4

Hence the theorem.
15.13.10 Theorem:

Let T be a self adjoint linear operator on a finite dimensional inner product space.
Prove that the range of T is orthogonal complement of the null space of T i.e. R(T) = {N(T)}i
Proof: Let u be any elementin R(T"). Then there exists a vector v in V such that u =T(v)

Now if we N(T) then T(w)=0

We have <u,w>=<T(v),w>=<v,T*(w) >

=<v,T(w)> since 7*=T
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=<v,0>=0

it follows that <u,w>=0 forall we N(T)
Thus u e[ N(T)]
Thus ue R(T)=ue [N(T)]l and hence
R(T)S N(T)" woeeeen. (1)

Again dim[R(T)]+dim[N(T)]=dimV
and ¥V =NT®[ND]
= dim(N(T))+dim[N(T)]" =dimV’
<. dim R(T) = dim[ N(T)]"
Now R(T) c [N(T)] and dim[R(T)]=[N(T)]"

So R(T)=[N(D)]

15.13.11 Let T be a linear operator on a finite dimensional inner product space V. If T has an eigen
vector then show that 7 * has an eigen vector.

Proof: Let u be an eigen vector of T; with eigen value 3} . Then forany y <}, we have
0=<0,v>=<(T-Al)(u),v>
=<u,(T-2A1)*(u) >
=<u,(T*-A1)*(v)>
Hence u is orthogonal to therange of 7% _) 7 .

So 7*_) 1 isnotonto and hence is not one toone. Thus 7*_}7 has a non zero null space, and

any non zero vector in this null space is an eigen vector of 7 * with corresponding eigen value } .
15.14 Some Basic Concepts which are already discussed:
15.14.1 T Invariance:

W is a subspace of a vector space Vand 7:) — J islinear. W is said to be T - invariant
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if T(w)eW forevery ywe W thatis T(IW)cW . If Wis T -invariant. We define the restriction of T
on W to be the function 7, : W —W defined by 7,,(w)=T(w) forall wcw .

15.14.2 Definition: Polynomial split:

A polynomial f(¢) in P(F) is said to split over F, if there exists scalars c,q,,a,,...a, not
necessarily distinct in F such that f (1) =C(t—a,)(t—a,),...(t—a,).

Thus a polynomial is said to split if it factors into linear factors.

15.14.3 Theorem:

Let V be a finite dimensional inner product space. Let T be alinear operator on V. suppose
W is a subspace of V, which is invariant under T. Then show that the orthogonal compliment is
invariant under 7 *.

Solution: We are given that W is invariant under T. We have to prove that ' is invariant under
T*. Let v be an vector in p~. Then to prove that 7 *(v) isin y,*. i.e. T*(v) is orthogonal to
every vector in W. Let u be any vectorin W. then <u, T *(v) >=<T(u),v>=0

Since ueW =T(u)eW as W is T invariant.

Also v is orthogonal to every vectorin W.

T *(v) is orthogonal to every vector u in W.
S T*(v) isin .
So wt is invariant under T *.

15.15.1 Schur Theorem: Let T be a linear operator on a finite dimensional inner product space
V. Suppose that the characteristic polynomial of T splits. Then show that there exists an orthonor-

mal basis B for V such that the matrix [T'], is upper triangular.
Proof: The proof is by mathematical induction on the dimension n of V. The result is immediate if
n =1. so suppose that the result is true for linear operators on (n—1) dimensional inner product

spaces whose characteristic polynomial splits. We know that if T is a linear operator on a finite
dimensional inner product space V, and if T has an eigen vector, then 7 * will have an eigen vector.

so we can assume that 77* has a unit eigen vector w. Suppose that T*(W) = A and that

W = span ({w}) we will now show that ~* is is T invariant.

If yewtand y =cwe W then

<TW),u>=<TW),cw>=<v,T*(cw) >
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=<v,cT *(w)>=<v,cAw >
zc_/1<v,w>za(0)=0

So T(u)ew*

We know that if T is a linear operator on a finite dimensional vector space V and W is a

T-invariant subspace of V, then the characteristic polynomial of 7, divides the characteristic poly-
nomial of T.

By this theorem, the characteristic polynomial of 7}, divides the characteristic polynomials
of T and hence splits.

We know that if W is any subspace of a finite dimensional inner product space V, then
dim(V) = dim(W) + dim(W™")

So dim(w")=n—-1 so we may apply the induction hypothesis to T . and obtain an or-

thonormal basis g' of p* such that (T )B, is upper triangular.

WJ_

Clearly B =B U{w} is an orthonormal basis for VV such that [T, is upper triangular.

Hence the theorem.

15.15.2 Theorem: Let T be a self adjoint operator on a finite dimensional real inner product space
V. Then show that the characteristic polynomial of T splits.

Proof: Let dim(V) = . Let B be an orthonormal basis for Vand 4= [T]B . Then Ais self adjoint.
Let 7, be alinear operatoron ¢ . defined by 7, (u)=Auforall , ¢ c*. T, is self adjoint because
[TA]D = A where D is the standard ordered orthonormal basis for ¢”. As T, a self adjoint operator,

the eigen values of 7, are real.

By fundamental theorem of Algebra, the characteristic poly nomial splits into factors of the

form t— ). Since each } is real the characteristic polynomial splits over R. But 7, has the same

characteristic polynomial as A; which has the same polynomial as T. So the characteristic polyno-
mial of T splits.

Hence the theorem.

Note: Fundamental theorem of Algebra.

Suppose the P(z)=a,z" +a, z"" +...+az+a, is a polynomial in P(C) of degree n>1,

then P(z) has a zero and then exists complex numbers c,,c,,...c, not necessarily distinct such
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that P(z)=a,(z—c)(z~-c,)..(z—c,).

15.15.3 Theorem: Let V be a finite dimensional inner product space and let T be a self adjoint
linear operator on V. Then there is an orthonormal basis for V, each vector of which is a character-
istic vector for T and consequently the matrix of T with respect to B is a diagonal matrix.

Proof: As T is a self adjoint linear operator on a finite dimensional inner product space V, so T must
have a characteristic value and T must have a characterisitc vector.

u
Let 0=y be a characteristic vector for T. Let i = M Then u, is a characterisitic vector

for T and ||u|| =1. Ifdim y =1, then {u,} is an orthonormal basis for V, and v, is a characteristic

vector for T. Thus the theorem is true if dim V = 1. Now we proceed by induction on the dimension
of V. Suppose the theroem is true for inner product spaces of dimension less than dimension of V.
Then we shall prove that it is true for n and the proof of will be complete by induction.

Let W be the one dimensional subspace of V spanned by the characteristic vector u, forT.
Let u, be the characteristic vector corresponding to the characteristic value C. Then T'(u,) = C(u,).
If v is any vector in W. Then v=ku, where f is a scalar. We have
T(v)=T(ku,)=kT(u,) =k(cu,) =kec(u,). So T(u)eW . W isinvariantunder T. So " is invariant
under 7*. ButT is self adjoint means 7 =7 *. So p* is invariant under T. If dim J7 =5, then
dim p* = dimV —dimW =n-1

So w* with the the inner product from V is an inner product space of dimension one less
than the dimension of V.

suppose § is the linear operator induced by T on pt i.e. S is the restriction of T to p-.
Then S(w)=T(w)~weW~". Then restriction of 7* to - will be the adjoint of §* of S. Thus
S is a self adjoint linear joperator on t, because if w is any vector in pt then
S*w) =T*(w) =T(w)=S(w)

SS*E=S.

Thus S is a self adjoint linear operator on L ; Whose dimension is less than dimension
of V. so by our induction hypothesis 7+ has an orthonormal basis {ul,uz,...un}. Consisting of
characteristic vectors for S. Suppose u, is the characteristic vector for S corresponding to the

characteristic value c¢;. Then S(u,) = Cu,

=T(u,)=Cu,
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So u, is also a characteristic vector of T. Thus u,,u,,...u, are also characteristic vectors

forT. since y —waew*. So B= {ul,uz,...u,,} is an orthonormal basis for V each vector of which
is a characteristic vector of T. The matrix T relative to B will be a diagonal matrix.

15.16 Normal Operator:

Definition: Let T be a linear operator on an inner product space V. Then T is said to be normal if
it commutes with its adjointi.e. if 77x=Tx*T.

Note i) If V is finite dimensional then 7 * will definitely exist. If V is not finite dimensional, then the
above definition will make sense if and only if T possess adjoint.

ii) Every self adjoint operator is normal.
Suppose T is self adnoint operator, then 7 = 7, so obviously 7*7 = 77 *.

So T is normal.

W.E.12 Examples: If 7. p2 _y R? berotation by 9, where (0 < 9 < rr, and if, for standard basis B.

cosf -—sinf
7,-|

. show that T is normal.
sin@ cosO

cos@ —sinf [T*] B cos@ sinf
sin@ cosO |’ 5| _sin® cosO

TGRSR vt o] B

sinf cosO || —sin@ cosé

ana [T, 7], =| oo Ol Y

—sin@ cosO || sin@ cosf

Solution: [7], {

As [T],[T*], =[7*], (7], = [177],[T*T],
So T is normal.

Normal Matrix : Definition:

A real or complex n x n matrix A is normal if and only if it commutes with its conjugate
transpose. i.e. 44*= 4* 4.

y 11 1 —i
. = * —
Example : i 340 then A*= | 3-2i
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and aqi—|l |1 7
i 34+2i||1 3-2i
[ 2 3-3
1343i 14

[ A | | 2 3-3i
A* A= =
I 3-2i||i 3+2i| [3+3i 14

Thus A4*=A*A4. So Ais normal.

15.17 Theorems on Normal Operators:
15.17.1 An operator T on an inner product space is normal
@] =|raf~uer
Proof: For all 4 7, we have
|7+ @l =|re)] < [r* ] =[ref
S<T*w), T*(u)>=<T(u),T(u)>
S<TT*(u),u >=<T*T(u),u >
S<(TIT*-T*T)u,u>=0

« TT*_T*T =() (zero operator)
STT*=T*T
< T is normal.

15.17.2 Theorem:

If T is a normal operator on an inner product space V' (F), then 7 —CJ is normal for every
CeF.
Proof: (T -CH*=T*—-(CI)*
=T*-Cl*

=T H*_CJ eevennnr (1) since jx=p

Again (T —CI)*(T —CI)
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=(T*-CI)T -CI) using (1)
—T*T-CT*-CT+CCI (- IT=TI=T)
—T*T-CT+-CT*+cCI (~.TT*=T*T)
=(T—-CI\T -CI)*
As (T-CH*(T-CI)=(T-CI T -CI)* it follows that 7—(7 is normal.

15.17.3 Theorem:

Let T be a normal operator on an inner product space V. Then a necessary and sufficient
condition that u be a characteristic vector of T is that it be a characteristic vector of 7 *.

Proof: T is a normal operator on an inner product space V. So 77*=T*T
=< (TT*)(u),u >=<(T*T)(u),u> forany yep
=><T(T*)u),u>=<T*(T(u),u >
=< T*w), T*w)>=<Tu),(T*)*(u)>
= |T* )| =< T'(u),T(u) > since T#x_T.
=@ =[]

= |T* )| =T @)| ie |T@)|=|T*@)| ..cccovve... (1)
We know that if T is normal, C is a scalar then 7 — 7 is normal.

Hence from (1) forall 4 1.

|7 =CD@)| =T -cD* @)
=~ = *~Ciw|

In particular (T—Chu=0 if and only if (T*-CI)(u)=0 i.e. T(u)=Cu, if and only if
T *(u)—Cu . Hence u is the characteristic vector for T with characteristic value C if and only if «

is a characteristic value for 7 * with characteristic value (.

Result: If u is an eigen vector of T, then u is also an eigen vector of 7. Infactif 7(u) = Cu; then

T*(u)=Cu.
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15.17.4 Theorem:

Let T be a normal operator on aninner product space. If u € V' ,then T(u) =0 < T*(u) =0

Proof: Tis normal < TT*=T*T
Also || 7(w)|" =< T(u),T(u) >
=<u,T*T(u)>
=<u,(T*T)u >
=<u,(TT*)u >
<T*w),T*(u)>
=[7* @l
So |7 =[]
Now T(u) = 0 & |[T()] =0 & |T* ()] =0
<ST*wu)=0
Thus T(u)=0 < T*(u)=0

15.17.5 Let V be an inner product space. Let T be a normal operator on V. If 4,4, are distinct

eigen values of T with corresponding eigen vectors, u, and u, then show that u, and u, are
orthogonal.

Proof: Let u,,u, are the characteristic vectors of T corresponding to the characteristic values

X> (A #A,) . Now Tu, = Ay, Tu, = Au, then T *u, = du, .
Again A, <uy,u, >=<Au,u, >
=<Tu,,u, >
=<u,, T *u, >
=<u,, Aty >

or A <upuy, >=A, <up,u, >
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:(ll_lz)<u1’u2 >=0
=<u,,u, >=0 since 4, # 4,

= u,,u, are orthogonal.

Hence the theorem.

15.17.6 Let V be a finite dimensional complex inner product space and let T be a normal opera-
toron V. Then V has an orthonormal basis B, each vector of which is a characteristic Vector for
T, and conrequently the matrix of T with respect to B is a diagonal matrix.

Proof: As T is a linear operator on a finite dimensional complex inner product space V, so T must
have a characteristic value and so T must value a characteristic vector.

Let O=u be a characteristic vector of T.

Let u, = ”Z—” . Then u, is also a characteristic, vector for T since |u]|=1. If dimy =1, then

{ul} is an orthonormal basis for V. and u, is a characteristic vector for T.

Thus the theorem is true if dimV =1.

Now we proceed by induction on the dimension of V. We suppose that the theorem is true for inner
product spaces of dimension les than dim}” . Then we shall prove that itis true for V and the proof
is complete by induction.

Let W be the one dimensional subspace of V spanned by the characteristic vector u, for T.
Let u, be the characteristic vector corresponding to the characteristic value C. Then T'(u,) = Cu, .

If v is any vector in W then v = Ku, where K is some scalar.
We have T'(v) =T (Ku,) = KT (u,)
= K(Cu,) = (KC)u,
So T(v)e W . Thus W is invariant under T and So /! is invariant under 7 *.

Now T is normal. So if u, is a characterisitc vector of T, then u, is also a characteristic
vector of 7.

So by the same argument as above, W is also invariant under 7. So py+ is invariant

under (T*)* i.e. yt isinvariantunder T. Ifdim V=, thendim p* =dimV —dimW =n—-1-
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So t+ with the inner product from V is a complex inner product space of dimension less
than dimenstion of V.

Suppose S is the linear operator induced by T on jy+ i.e. S is the restriction of Ton .
Then S(V)=T(V)~»veW"

This restriction of 7* to 7 will be the adjoint of §* of S. Now S is a normal operator on

w+. Forvis any vectorin p+
then (SS*)(v) =S (S*(v)) =S (T*(»))
=T(T*(v))
=(IT*)(v)
=(T*Tyw=T*[T(v)]
=T*[S)]
= S*[SW)]

=(§*8)(v)

So (88*)=(S§*S) and thus S is a normal operator on jy* ; whose dimension is less than
the dimension of V.

So by our induction hypothesis, j* has an orthonormal basis {u,,u,,...,u,} consisting of
characteristic vectors of S. Suppose u, is the characteristic vector for S corresponding to the

characteristic value C, .
Then S(u;) = Cu, = T'(u,) = Cu,
So u, is also a characteristic vector for T.

Thus u,,u,,..u, are also characteristic vectors for T. Since p-wpoew*', so

B= {ul,uz,...un} is also an orthornormal basis for T each vector of which is a characteristic vector
for T. The matrix of T relative to B will be the diagonal matrix. Hence the theorem.

15.15.7 Theorem:

Suppose T is a linear operator on a finite dimensional inner product space V and suppose
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that there exists an orthonormal basis B = {ul,uz,...un} for V such that each vector in B is a char-
acteristic vector for T. Then prove that T is normal.

Proof: If u, € B, then itis given that u, is a characteristic root of T. So
Let T(u,) =Cu, for i=1,2,..n
Then [T *]B is a diagonal matrix with diagonal elements c,,c,,...c,. Since

[T*], =[T], so [T*], is also a diagonal matrix with diagonal elements ¢,,¢,,...c,
. Now as two diagonal matrices commute it follows

(7], =[r4, =[74,[7],
= {7, =[77],

= TT*=T*T = T is normal.
Hence the theorem.
Note: The above two theorems can be clubbed together and can be restated as.

Let T be a linear operator on a finite dimentional complex inner product space V. Then T is
normal if and only if there exists an orthonormal basis of V consisting of eigen vectors of T.

15.18 Positive Definite and Positive Semidefinite Transformations:
15.18.1 1) Positive definite operator: Definition:

A linear operator T on a finite dimensional inner product space V is called positive definite
in symbol 7 > 0, if T is self adjointand <7T(u),u >0 forall Ozy eV .

ii) Positive semi definite operator : A linear operator on an inner product space V is called postive
semi definite (or non negative) in symbol 7 > ( ifitis self adjointand if <7(u),u > >0Q~cuin ).

Note i) An n x n matrix A with entries from R or C is called positive definite if L, is positive definite.

i) An n x n matrix A with entries from R or C is called postive semidefinite if L, is positive
semi definite.

15.8.3 Theorem: Let T be a self adjoint operator on an inner product space V. If T is positive or
non negative then every characteristic value of T is positive or non negative respectively.

Proof: Let C be a characteristic value of T.

Then T'(u) = Cu for some non zero vector u.

We have <T(u),u >=<Cu,u >=C <u,u >
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2
= Cllu|
<T(u),u>
= —2
o
If T is postive then <T'(u),u > >0, so C >0 i.e. Cis postive.
If T is non negative then <T'(u),u > >0

So C >0 i.e. Cis non negative.

15.18.4 Theorem:

If T is a self adjoint operator on a finite dimensional inner product space V, such that the
characteristic values of T are non-negative show that T is non-negative.

Proof: T is a self adjoint operator on a finite dimensional inner product space V. Let T has all
charcterisitc values non-negative.

As T is self adjoint, we can find an orthonormal basis B ={v,,v,,V;,...,v,}| consisting of
characteristic vectors of T.

For each v, we have T'(v,) = C.V; where C, 20. Letw be any vectorin V
Let w=au, +au, +...+au,
Then T(w)=T(ay, +a,v, +...+a,v,)

=al(v)+a,T(v,)+..+aT(v,)

=a,cv, +a,c,v, +....ta.c,y,
We have <T(w),w > =<a,cv, +a,c,v, +...+a,.cv,,av, +a,v, +...+a,v, >

= a,a,c, +a,a,c, +...+a,a,.c, (- {v1,v5,V;,...,v, } is an orthonormal)
= |a1|2 ¢ +|c12|2 c, +....+|an|2 c,.=20
since ¢, 20 and |a,[>0

Thus (T(w),w> >0~welV

Hence 7> i.e. T is non negative.



{ Rings and Linear Algebra J (15.41) ( Linear Operators ]
15.18.5 Theory:

Let T be a linear operator on a finite dimensional inner product space V. Let 4= [a,-j] be

nxn

the matrix of T relative to an ordered orthonormal basis B = {ul,uz,...,un} . Then T is positive if and
only if the matrix A satisfies the following conditions.

i) 4= 4x*i.e.Alisself adjoint

non -
i) Zzaijxixj >0 where x,,x,,..,x, and n scalars not all zero.
i=l j=1

Proof: Let v be any vectorin V. Then

V= XU+ XU, + XU,

then <T(v),v>=< (Tijujj,Zx[u[ >
j=1 i=1

=< ZXjT(uj),Zx[u[ >
j=1 i=l

= ijxi <T(u,)u >
j=1 i=1
We know if A=[a,-j]nxn be the matrix of T with respect to the ordered basis B then

a; =<T(u,),u; > using in the above we get < T(v),v>= Zzag;xij
=1 j=1

Now suppose T is positive. Then 7 =7 *
So g=g*

If x,,x,,..x, are any n scalars not all zero, then v = xu, + x,u,,...+ x,u, is a non zero

vector in V. Since T is positive < T'(v),v> >( Hence Zzaij xx; >0
i=1 j=1

conversely suppose that the conditions (1) and (ii) of the theorem hold. 4= g4*= T =T*

Also (ii) implies < T'(v),v>0. If non zero y ¢ I/, then we can write v = x,u, +x,u,,...+x u,

where x,,Xx,,...x, are scalars not all zero. Hence T is positive.
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15.18.6 Working procedure to verify the positiveness of a square matrix:

Let A= [a,-j] , be asquare matrix of order n; over the field F. Then the principal minors of

nx

A are the following n scalars

a, a, .. a, _x
det =4k say (k=1,2,..n)
7 P T

Then the matrix A is positive if and only if the principal minors are all positive and 4 = 4*.
Where as the matrix A is not positive if det A is not positive.

15.19 Worked out Examples:

W.E.13 : T is a linear operator on an inner product space p = pg?> defined by

T(a,b)=(2a—-2b,-2a +5b) . Determine whether T is normal, self adjoint or neither. If possible,
find an orthonormal basis of eigen vectors of T for V and list the corresponding eigen values.

Solution: ¥ = R*(F = R) is an inner product space of dimension 2.

So V(F) = R*(R) has an orthonormal basis B = {u, =(1,0),u, =(0,1)} . Here Tis alinear
operator on V(F) suchthat T(a,b)=(2a—2b,—2a+5b) for u=(a,b).

7(1,0)= (2(1) -2(0),-2() + 5(0)) =(2,-2)

and 7(0,1) = (2(0) - 2(1), ~2(0) +5(1)) = (-2, 5)

R e T O

So 7 =7*—= T is self adjoint.
2 =212 2 8 -14
Aiso [T, [77], {—2 5 }{—2 5 }:{—14 29 }
2 212 2 8 -14
T* T = =
2 7 8 2

So [1],[1], =[T],[7],

=|[TT*|, =[T*T], > T*=T*T
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— T is normal.

2 2 1
Let A=[T],. Characteristic equation is [A-AI]=0= ‘{_2 }_2{

2-4 2
-2 5-2

‘:0:(2—,1)(5—,1)—4:0

=S AT=TA+6=0=>(A1-6)(A-1)=0
=>A=6,4=1
To find eige vector corresponding A =6 -

(A-ADX =0

2-6 2 || x -4 2| x
=0= =0
-2 5-6||x, -2 1| x,
= —4x,-2x,=0=x, =-2x

put x, =1, then x, =-2

X 1
So X ={ 1} =[ 2} and every scalar multiple of it is an eigen vector.
X, -

To find eigen vector correspondingto 4 =1.

(A-ADX =0

2-1 -2 || x I 2| x
= =0=> =0
-2 5-1||x, -2 4 || x,
= x,—2x,=0 and —2x, +4x, =0

= x,=2x, soput x, =1, then x, =2

2
So X = {xl } = L} and every scalar multiple of it is an eigen vector.
X
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An orthonormal basis of eigen vectors is {L {, —2),L(2, 1)} with corresponding eigen

V5 V5

values 6 and 1.

W.E. 14 : Let V be a finite dimensional inner product vector space and T be an idempotent
operatoronVi.e. 72 — 7 then T is self adjointif and only if 77— 7*7.

Solution: Let T be self adjointthen 7«7 and 72 7.
To prove TT*—T*T
Now < T'(u),v>=<u,T *(v)>=<u,T(v) >
<u,TT(v) >=<u,T*T(v) >
=<u,IT*(v)> since T*=T.
=>T*T=TT*
Converse : Given T2 =T,TT*=T*T to prove that T is self adjointi.e. 7% 7.
Now < T(u),T(u) >=<u,T*T(u) >=<u,TT*(u) >
=<T*u,T*u>
=[ref =r*eof
~Tw)=0 ifandonlyif T*(u)=0 .......... (1)
Choose any vector in V such that u =v-T(v).
Tu)=T(v-TW)=TW)-T*(»)=T(v)-T(v)=0
Since T'(u) =0 it follows that T*(u) =0
But 7*(u)=0=>T*(v-T(v)=0
or T*(W)-T*T(v)=0
or T*(v)=T*T(v)~»velV
SO T =TT v (2)
Now T =(T*)*=(T*T)*=T*T**=T*T=T*

As T — 7*, therefore, T is self adjoint.
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W.E.15 : Let V be the space of polynomials over the field of complex numbers with inner product

1
defined as </>& >= If(f)g(t),f,g €V If D is the differetial operator, find out if D is itself
0

adjoint or not.

Solution: Let dash denotes the differentiationi.e Df = f'

<Df,g>=<f,g>= [ f()g(t)t

intergrating by parts we get

<Df.g>=[f gl -[rmgwd ™)

If D were to be self adjoint < Df,g >=< f,Dg >

But since (1) and (2) are not the same. D is not selfadjoint.

W.E.16 : If 7,7, are positive linear operators on an inner product vector space then prove that

1, +1T, is also positive.

Solution: Given T,*=T,,<T;(u),u> >0, T,*=T,

and <T,(u),u> >0

Now (T, +T3) =T, + T, =T, +T,
=T, +T, is self adjoint.

Again <(T, + 1) (u),u >=<T,(u)+ T, (u),u >
=<T(u),u>+<T,(u),u>>0 by given conditions.

Hence 7, +7, is also +ve.
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15.20 Summary:

In this lesson we discussed about linear operators. Adjoint operator. Properties of adjoint
operators. Normal and self adjoint operators their properties-polynomial split-schur theorem, posi-
tive, semi positive square matrices.

15.21 Technical Terms:

The technical terms we come across in this lesson are adjoint operator, self adjoint
operator, polynomial split, Normal operator, positive matrix, semi positive matrix.

15.22 Model Questions:

1. Define adjoint of a linear operator on an inner product space V. If S*,T * are adjoint operators of
S and V, then prove that

(i) (S+T)*=S*+T*

(i) (ST)*=T*S*
2. Define self adjoint operator. Let T be a self adjoint linear operator on a finite dimensional inner
product space. Then prove that R(T) = {N(T)}i

3. State and prove schur theorem in Linear operators.

4. Define normal operator. If T is a normal operator on an inner product space then show that
T —CI is normal forevery Cec F .

5. Define positive linear operator. If 7,7, are positive linear operators on an inner product space

then prove that 7, + 7, is above positive.

15.23 Exercise:

1. For each linear operator T on an inner product space V, determine whether T is normal, self
adjoint or neither. If possible produce an orthonormal basis of eigen vectors of T for V and list the
corresponding eigen values.

1) y = ¢?, and T defined by T(a,b) = (2a +ib,a +2b)

Ans : T is normal, but not self adjoint. An orthonormal basis of eigen vectors is

1 ' 1 ) 1+ (1+7)
—(A+D)N2),=A+i,—2 b wi - - 24+ —,2—-
{2(( i) ) 2( l } with corresponding eigen values \/5 \/5 .

Ans: T is self adjoint.

i) V=M,,(R) and T is defined by 7(4)=4"
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Ans: T is self adjoint. An orthonormal basis of eigen vectors.

1 (0 1)y 1(1 Oy 1 (0 -1}y 1 (-1 O

ﬁ 1 0 ’ﬁ 0 1 =$ 1 0 ’ﬁ 0 1 corresponding eigen values are
I,1,-1,-1.
2. LetV be a complex inner product space, and let T be a linear operator on V.
Prove that T is normal if and only if 7\7, =T.T; .

3. Prove that every entry on the main diagonal of a positive matrix is positive.

4. Which of the following matrices are positive.

0 i 1 1+i
)4=15 o i) P= s

Ans: (i) A is not positive
(i) B is positive
5. If T is a linear operator on an inner product space V' (F') and a,b are scalars such that |a| =|b| ,

then show that 47 + 7 * is normal.

15.24 Reference Books:

1. Linear Algebra 4th edition; Stephen H. Friedberg. Arnold J. Insel, Lawrence E. Spence.
2. Sehaum’s outlines, Beginning Linear Algebra, Seymour Lipschutz.

3. Linear Algebra Dr. S.N. Goel

4. Linear Algebra K.P. Gupta

- A. Mallikharjana Sarma



LESSON - 16

UNITARY AND ORTHOGONAL OPERATORS

16.1 Objective of the Lesson:

In this chapter we study the analogy between complex numbers and linear operators. In
the previous lessons, we observed that the adjoint of a linear operator acts similarly to the conju-
gate of a complex number. A complex number has length 1, if 77 —1.

In this lesson we study those linear operators T on an inner product space V, such that
TT*=T*T =| . We see that these are precisely the linear operators that preserves length; in the

sense that ||T(u)|| = ||u|| forall y eV . As another characterisation we prove that on a finite dimen-

sional complex inner product space, these are the normal operators whose eigen values all have
absolute value 1.

16.2 Structure of the lesson :

This lesson contains the following items:

16.3 Introduction

16.4 Some basic definitions

16.5 Unitary operator and orthogonal operator, definition

16.6 Theorems - Equivalent statements

16.7 Reflection - definition - examples.

16.8 Some basic properties of unitary operators

16.9 Matrices representing unitary and orthogonal transformations

16.10 Theorems

16.11 Worked out examples

16.12 Working procedure to find unitary matrix P and diagonal matrix D such that
P*AP=D-

16.13 Worked Out examples

16.14 Summary

16.15 Technical Terms

16.16 Model Questions

16.17 Exercise

16.18 Reference Books
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16.3 Introduction :

Linear operators preserve the operations of vector addition and scalar multiplication and
isomorphisms preserve all the vector space structure. We now consider those linear operators T
on an inner product space that preserve the length. We see that this condition guarantees, that T
preserves the inner product.

16.4 Some Basic Definitions:
16.4.1 Definition:

Let U and V be two inner product spaces over F. Let T:UU —V be alinear transformation.
Then we say that

i) T preserves inner products if <T(u),T(v) >=<u,v> forall u,veU.

i) T Preserves norms if [T (u)| = |u|~ueU.
iii) T preserves isometry if T preserves distances i.e. if [T(u)-T(V)|=|u-V|~u,veU.

Note that the distance T (u)to T(v) is d(T(u),T(v)) and is equal to [T (u)-T (V)| .
16.4.2 Equivalent Conditions:

Let U(F) and V (F) be two inner product spaces. Let T :U(F) —V(F) be alinear trans-
formation. Then the following three conditions are equivalent.

i) T preserves inner product ii) T preserves norms i) T is an isometry.
16.4.3 Inner Product Isomorphism:
16.4.4 Definition: Let T be a linear transformation from an inner product space V (F) to aninner
product space V(F). Then T is said to be an inner product space isomorphism if

I) T is invertible i.e. T is one one onto

i) T preserves inner products

Here U (F) and V(F) are said to be isomorphic and we write U =~V .
T preserves inner products = T is hon singular
= T is one one.

Hence an inner product space isomorphism from U onto V can also be defined as a linear
transformation from U onto V, which preserves inner products.
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16.5 Definition:

i) Unitary Operator:

Let T be alinear operator on a finite dimensional inner product space over the field of com-

plex numbers and [T (u)| =||u forall ueU then T is called a unitary operator.

i) Orthogonal Operator: Let T be a linear operator on a finite dimensional inner product space

V, over the field of real numbers R and if ||T(u)|| = ||u|| forall yeV , then T is said to be orthogonal
opeator.

iii) Isometry: Let T be a linear operator on an infinite dimensional inner product space V over F

and if |[T(u)| =[] for all ueV , then Tis called an isometry.

If in addition, the operator is onto (the condition guarantees one to one), then the operator is
called unitary if F = C or orthogonal operator if F = R.

iv) Definition: U and V are two vector spaces over a field F. Then the zero transformation

T,:U =V is defined by T (u)=0O~ueU . The zero transformation is also denoted by ().

16.6.1 Theorem: Let T be a self adjoint operator on a finite dimensional inner product space V. If
<u,T(u)>=0 ueV;then T =To.

Proof: We know that if T is a linear operator on a finite dimensional inner product space V, then T
is said to be self adjoint, if and only if there exists on orthonormal basis B for V consisting of eigen
vectors of T.

By the above theorem we can choose an orthonormal basis B for V. consisting of eigen
vectors of T. If ye B then T(u) = Au for some 4 .

then 0= <u,T(u) =<u,Au>=1 <u,u>
— 2 =0 Hence T(u)=0O forall ye B
SoT =T,

16.6.2 Equivalent Statements:

Theorem: Let T be a linear operator on a finite dimensional inner product space V. Then the
following statements are equivalent

DTT*=T*T =1
i) <T(u), T(V) >=<u,v>-u,veV

iii) If B is an orthonormal basis for V, then T(B) is an orthonormal basis for V.
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iv) There exists an orthonormal basis B for V, such that T(B) is an orthonormal basis for V.

) [T =[u] vuev

Proof:

1. We will now prove that (i) = (ii)
given TT* =T*T = | -eeeeeeeer Q)
Let u,veV =<u,v> =<1(u),v>
=< (T*T)(u),v> using (1)
=<T*(T(u),v>
=<T(u), T(v) >
Thus TT*=T*T =1 =<T(u),T(v) >=<u,v> forall u,veV
Hence (i) = (ii)
ii) To show (ii) = (iii)
Given <T(u),T(v)> = <u,v>>U,veV ....... 2
Let B={u,,u,,..u,} be an orthonormal basis for V. So T(B)={T(u,),T(u,),...T(u,)}
from (2) <T(u),T(uy;) >=<u,u; >
1ifi=]
<5ij > =
0if 1 # |
— T(B)= {T(ul),T(uz), ...T(un)} is an orthonormal basis for V.
Hence (ii) = (iii)
3. To show that (iii) = (iv)

Given B is an orthonormal basis for V, then T(B) is an orthonormal basis for V....... (3)

Let B={u,,u,,..u,} be anorthonormal basis for V; then by (3) T(B) ={T (u,), T(W,),...T(u,)}
is an orthonormal basis for V.
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Hence (iii) = (iv)

4. To show that (iv) = (V)

Let yeV and B={u,u,,..u,} is a basis for V. So u=>"au for some scalar a
i=1

n n
”“”2 =<>.au,p au >
i1 =1

n n

=) a) a<u,u >
=1

[aN

n n

aa, <u,u >

j=

[N
=

n
=Zaa <U,U > summing of j=1,2,..n and remembering
i=1
0if 1 # |
<u,u; >= as B is orthonormal.

1if i = j

= 2,83 (1)

Il
=

5
N

Applying the same manipulation to T(U)ZzaiT(Ui) and using the fact T(B) is also

i=1

orthonormal we obtain ||T(U)||2 = Z|a1 |2 ......... (B)
i=1

From (A) and (B) we get |[T(u)|=]ul|

So (iv) = (V)
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5. Finally we will prove that v — i (i)

Let yeV we have <u,u>= ||u||2 = ||T(u)||2
=<T(u), T(u) >
=<u,T*T(u)>

So <u,u>—<uTT(U)>=0vueV
=<U,(I -T*T)u>=0~ueV

Let S=(I —-T*T) then Sis self - adjoint and <u, S(u) >=0~ueV ,

We know if T is a self adjoint operator on a finite dimensional inner product space and if
<u,T(u)>=0~ueV. Then T = T  where T, is the zero transformation.

SoT, =S=(-T*T)

SoT*T=|

Since V is finite dimensional, TT* = |
Hence |T(u)|=|u|~ueV,=TT*=T*T =1

Hence (v) = (i)
Note: Among the equivalent conditions, any one can be taken as a definition in doing problems.

16.6.3 Theorem:

If T is a unitary operation then show that T+ — -1
Proof: T is a unitary operation = T (u)| = ul
= [T =u
=<T(u),T(u)>=<u,u>
=< (T*T)(u),u>=<u,u>
=< (T*T)(u),u>=<1(u),u>
=<(T*T-1u,u>=0

—T*T =1 =O (null operator)
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ST*T=1=>T*TT ' =I1T"

ST =T '=>T*=T"
Thus if T is a unitary operator then T+ — -1

Remark: If T is unitary, then T is non singular.
16.6.4 Theorem:

Let T be a linear operator on a finite dimensional real inner product space V, then V has an
orthonormal basis of eigen vectors of T with corresponding eigen values of obsolute value 1 if and
only if T is both self adjoint and orthogonal.

Proof: Let V has then orthogonal basis B = {ul,uz,...,un}
such that T(u) = Au, and |A|=1 for all i,

As T is a linear operator and there exists an orthonormal basis B for V consisting of eigen
vectors of T, and so T is self adjoint.

Thus (TT*)(u) =T(AU)=AAU = A’uu =u foreachi. So TT* =| so T is orthogonal.
Hence T is both self adjoint and orthogonal.

Converse: Let T be both self adjoint and Orthogonal:

We know if T is a linear operator on a finite dimensional real inner product space V, then T
is self adjoint if and only if there exists an orthonormal basis B for V consisting of eigen vectors of T.

So by this theorem V possess an orthonormal basis B ={u,,U,,...,u,} suchthat T(u) = 4u,

for alli. If T is also orthogonal. We have |4 |.[v | = |4V | =[Tv)|=|v|

Thus |A||M] =[M] = |4] =1 for everyi.
Hence from the above two cases the theorem follows.

16.6.5 Corollary: Let T be a linear operator on a finite dimensional complex inner product space
V. Then V has an orthonormal basis of eigen vectors of T with corresponding eigen values of
absolute value 1 if and only if T is unitary.

Proof: The proof is similar as above.

16.7 Reflection:

16.7.1 Definition: Let L be a one dimensional subspace of R2 about a line L through the origin.
Alinear operator T on R? is called a reflection of g2 about L;if T(u)=u~uelL and

TU)=-u~uel".
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16.7.2 Example: Let T be a reflection of g2 about a line through the origin. We shall show that T

is an orthogonal operator. Select vectors u, € L and u, € L* such that |u,]| = u,[|=1.

Then T(u)=u,,T(u,) =—-u, thus u, and u, are eigen vectors of T with corresponding

eigenvalues 1 and -1 respectively. Further more {ul,uz} is an orthonormal basis for R2. It follows
that T is an orthogonal operator.

16.8 Some Basic Properties of Unitary Operators:
16.8.1 Show that every unitary operator is normal:
Proof: Let T be linear operatory on the inner product space V. Which is unitary.
SO TT*=T*T =| . Hence Tis invertible and T-1 = T*.
So T is normal.
Hence every unitary operator is normal.

16.8.2 If Sand T are unitary operators, then ST is unitary or the product of two unitary operators is
unitary.

Proof: S, T are two unitary operators on V. Then

Now (ST)'=T'S*'=T*S* using (1)
=(Sn)*
As (ST)™ =(ST)*; STis unitary. Hence the product of two unitary operators is unitary.

Aliter i) : S and T are two unitary operators on a finite dimensional inner product space V.

We have to show that ST is unitary.

Now (ST)(ST)* = ST(T* )

= S(TT*)S*
=95 =S5 =|
So (ST)(ST)* = |

Similarly (ST)*(ST) =1
So ST is unitary.

Hence the theorem.
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i) Let S and T be the given unitary operators then S and T are invertible. So ST is invertible

Also |(ST)(u)| = S(T (W)

= ||T(u)|| = ||u|| since S and T are unitary.

So [[ST(W] = u]

So ST is unitary.
Hence the theorem.
16.8.3 Corollary: Prove that the composite of orthogonal operators is orthogonal.
Proof: Similar as above.
16.8.4 Theorem:

Show that the inverse of a unitary operator is unitary.

Proof: Let V be an inner product space. T is a unitary operator on V. We have to show that T-1
is unitary.

As T is unitary [T(u)|=|u] forall uev
We put v=T(u) ie T*(v)=u
we gt [TT200] =T
= |v| = ||T‘l(v)||
Hence ||T‘l(v)|| =[v|~+vev
Which implies T-1 in unitary.
Aliter : Let T be unitary. T-1is the inverse operator of T. Now (T™%)™ = (T*)™ = (T*)*
Since T is unitary T-1 —T*.
Thus as (T‘l)_l = (T'l)* it follows that the inverse of a unitary operator is unitary.

16.8.5 Show that the set of all unitary operators on an inner product space V is a group with
respect to composite of operations.

Solution: Let G denote the set of all unitary operators on an inner product space V (F).



(Centre for Distance Education ) (16.10 ( Acharya Nagarjuna University )

Let T,, T, be arbitary unitary operators belonging to G.
So TT*=T*T, =1T,T,*=T,*T, =

First we will show that T, T, is a unitary operator
Now (Tl,Tz)(TlTZ)* = (TlTZ)(T2 *T, *) =T, (T2T1 *)T2

=TIT, =TT, =1

Thus (T,T,)(T,T,) =1

(TL)* (L) =(T*T*)MT) =T, (T,* T)T,
=T,*IT, =(T,*T))I

Hence (TT,)(TT,)* =1 =(T,T,)* (T.T,)

So T,T, is aunitary operators.

We verify group axiones.

i) Closure Property: If TT, are any two unitary operators belongging to G, T, T, is a unitary
operator and hence belongs to G. Hence G is closed.

if) Associativity: We know composite of operators is associative. Hence if T,,T,, T, are any
three unitary operators in G. then (T,T,)T, =T,(T,T,) .

iii) Existence of Identity: Let | be the identity operator in G. So | is inversible and

|1 (u)||=ul|~ueV . sotis unitary operator on V. Hence belongsto Gand |T =TI =T+« T eG.
So | is the identity element in G.

iv) Existence of Inverse : T is unitary — T is inversible — T-1 is also invertible.

Let T (u)=v sothat T(v)=u forall u,veV
Ty =M e 1)

But T is unitary = |(u)]=[T*(v)|
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= ||T’1(u)|| =|ju|= T is also unitary.

~TleG.
As all the group axious are satisfied, the set G of all unitary operators on V is a group.

16.8.6 Let T be a unitary operator on an inner product space V, let W be a finite dimensional
T-invariant subspace of V. Prove that W+ is T - invariant.

Solution: W is a subspace V, W is T - invariant.

Soany weW =T(w) eW
To prove that \w* is T - invariant, it enough to show that any we W* = T(w) e W"*

Let weW and y W+ be arbitrary, then <u,w>=0 and T(w)=w, eW
As T is unitary
<T(u),w, >=<T(u),T(W)>=<u,w>=0
Thus <T(u),w, >=0+w, e W
This implies T(u) is | W (T(u) is perpendicularto W)= T (u) e W~
any yew! =T(u)eW"
So W+ is T-invariant.
16.8.7 Show that the determinant of a unitary operator has absolute value.

Solution: Let T be a unitary operator on a finite dimensional inner product space V(F). LetB
be an ordered orthonormal basis for V. Let A denote matrix of T relative to B. Then

detT = det A=det[T],
Tisunitary =T*T=1=[T*T] =[I],
=[] [Tl =0
So det[T*],.det[T], =1= det A*.det A=1
— (det A)(det A) =1

= |(det A) =1= det A=1
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So det A and hence det T has absolute value 1.
16.9 Matrices representing Unitary and Orthogonal Transformations:
16.9.1 Definition: A square matrix A is called an orthogonal matrix. If AT A= AAT = | and unitary
it A* A= AAF = -
Note i) : For a real matrix A we have px — AT

So a real unitary matrix is also orthogonal. In this case, we call orthogonal rather then
unitary.

i) The condition AA* = | is equivalent to the statement that the rows of A form an orthonor-
mal basis for gn because

n n -
5ij = lij = (AA* ij = ZAK (A*)kj = ZAK Ajk and the last term represents the inner product
k=1 k=1
of ith row and jth column.
Here A, represents the ikth entry of the matrix A.

iif) The condition A* A= is equivalent to the statement that the columns of A form an
orthonormal basis of gn.

iv) A linear operator T on an inner prouct space V is unitary (Orthogonal) if and only if [T]B

is unitary (orthogonal) for some orthonormal basis B for V.

cosf -—-sn@

sno  cos@ } is clearly orthogonal. One can easily see that the rows of

Ex: The matrix {
the matrix form an orthonormal basis for g2 . Similarly the columns of the matrix form an orthonor-
mal basis for R2.

16.9.2 Equivalent Matrices : Definition:

Let A and B are unitary (orthogonal) matrices of order n x n. There B is unitarily equivalent
or (orthogonally equivalient) if and only if there exists an n x n unitary. (Orthogonal) matrix.

P suchthat B = p* AP
Note: The relation unitarily equivalent to (orthogonally equivalent to) is an equivalence relation on
M (C)[M,.(R)].
W.E.1: Let T be a reflection of g2 about a lin L through the origin, Let B be the standard ordered
basis for gz and let A=[T]_ then T=L,.
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Since T is an orthogonal operator and B is an orthonormal basis, A is an orthogonal matrix.
Discribe A.

Solution: Suppose that ¢ is the angle from the positive x axis to L. Let v, =(cosa,9na) and

v, =(-sina,cosa). Then |v|=|\v,|=1.

V,eL, v, el . Hence W={v,V,} is an orthonormal basis for g2. Because T(V,)=V,

and T(Vv,) =-V, we have

Let Q:{

cosa —Sna
sina  CoSa

Thus A=Q(L,), Q"

[cosae —-sina|[1 O] cosa sna
—Sing cosa

| sina cosa ||0 -1

[cosa —sina|[ cosa  sina
Sna cosa ||-Sina Ccoso

cos’a—sn‘a 2sina coso
| 2sinacosa —(cos’ a—sin’a)

[coszo  sin2a
| SN2 —C0S2o

We know that for a complex normal (real symmetric) matrix A, there exists an orthogonal
basis B for gn. Consisting of eigen vectors of A. Hence A is similar to a diagonal matrix D. We

know that Ae M __.(F) and W be an ordered basis for gn.

Then (LA)W =Q'AQ. Where Q is the n x n matrix whose jth column is the vector of W.

Hence by this theorem, the matrix Q whose columns are the vectors in B is such that D =QAQ,

But since the columns of Q are the orthonormal basis for gn, it follows that Q is unitary (orthogo-
nal). Hence A is unitarily equivalent (orthogonally equivalent) to D.
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16.10.1 Theorem:

Let V be a finite dimensional inner product space and T be the linear operatoron V. ThenT
is unitary if and only if the matrix T in some (or every) ordered orthonormal basis for V is a unitary
matrix.

Proof: V is a finite dimensional inner product space. T is a linear operatoron V. Let B = {ul, u,, ...un}

be an ordered orthonormal basis for V. and let A be the matrix of T relative to B. i.e. [T]B =A.

Case i) : Let T be unitary. Then T is invertible and hence (T*T)=1=[T*T] =1,
=[T*],[T],=! where A=[T*],
A=[T], then Ax A= |

So A=[T], is unitary.
Converse:

Suppose that the matrix A is unitary there we have A* A= .
=TT =[],

=TT, =[1]

B
=>T*T=I
So T is unitary.
From the above two cases the theorem follows.
16.10.2 Corollary: A linear operator T on an inner product space V is orthogonal if and only if

[T]B is orthogonal for same orthonormal basis B for V.

Proof: Similar as above.

16.10.3 Let A be a complex n x n matrix, then A is normal if and only if A is unitary equivalent to a
diagonal matrix.

Proof: Let c" be the vector space V with standard inner product defined on it and let B be its
ordered basis. If T is the linear operator on V such that it is represented in the standard ordered

basis by the matrix A, then we have [T]B =A and [T*]B = A*

Now [T*T], =[T], [T*], = AA* and [T*T], = A*A.
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Case ) If Aisanormal matrixthen A* A = AA* and hence ['I_I'*]B = [T*T]B e TT*=T*T l.e.
T is a normal operator. From the above, i.e. T being a linear operator on an inner product space V,
it follows that there exists an orthonormal basis say B, for V each vector of which is a characteristic

vector for T, and hence [T]Bl is a diagonal matrix. Further if P is a transition matrix from B to B,

then it is a unitary matrix as both B and B, are orthonormal bases. When P is a unitary matrix we
have p* p = | i.e. px — p-1. Alsowe have [T]Bl = P[T], P=P* AP = diagonal matrix.
Converse: Suppose that A is unitarily equivalent to a diagonal matrix D.
Suppose that A= p* Dp where P is a unitary matrix and D is a diagonal matrix
then AA* = (P* DP)(P* DP)*
=(P* DP)(P* DP**)
=(P*DP)(P*D* P)
P*D(PP*)D*P
P*DID* P
P*(DD*)P ....cccee..e. (1)
Similarly AA* =P*(DD*)P ........ 2)
Since D is a diagonal matrix, however
We have DD*=D*D SO AA* = A* A.
Hence A is normal.

From the above two cases, the theorem follows.

16.10.4 Corollary: Let A be areal n x n matrix: Then A is symmetric if and only if A is orthogonally
equivalent to a real diagonal matrix.

Proof: The proof is similar as above.

16.10.5 Schur’s Theorem for Matrices: By Schaur’s theorem proved in normal and adjoint
operators, in the matrix form, it can be stated as

Let Abe amatrix M ___(R) whose characteristic polynomial splits over F then

nxn
i) If F =C then Ais unitarily equivalent to a complex upper triangular matrix.

i) If F = R, then Ais orthogonally equivalent to a real upper triangular matrix.
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16.11 Worked out examples:

W.E.2: LetT be a linear operator on R3 which rotates every vector in R3 about Z axis by a
constant angle g. Prove that T is a orthogonal transformation:

Solution: T is invertible since there exists a linear transformation -1 which rotates every vector in
R® about Z axis by a constem angle g in the direction opposite to T. Hence

THTW=T"Tu=1u)=uwuekR’
Alsoif u=(X,y,2)~X,Y,zZe R then
T(u)=T(X,Y,2z) =(xcosd —ysing, xsinf + ycoso, z)
||u||2 =X°+y*+7
||T(u)||2 = (x00s6 — ysing)® + (xsiné + ycosh)® + 7°
=X’ +y'+27°
Hence [T <[y
Hence the linear transformation T is orthogonal.

a+ic -b+id

W.E.3: Show that the matrix A:{bﬂd a—ic } is unitary ifand only if g2 +p?2+c?+d?=1-

a-ic b-id
-b-id a+ic

Solution: A* :{

AN = a+ic —-b+id || a-ic b-id
Now " =1 h1id  a—ic

-b-id a+ic
_|a®+b*+c?+d? 0
0 a’+b*+c?+d?

So AAr =1 andonlyif g% +p? +c® +d? =1

Hence Ais unitaryifandonly if g2 +p2+c2+d%2=1-
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0 2m n 1 1 1
. N A — _ l=—=,m=—,n=—; -
W.E.3A: Show that the matrix A : m n| where 2 /6 3 is orthogo
-m n

nal.

Solution: Let C,,C,,C, be the column vectors of A. Then

0 2m n
C=|1C,=| m|,C,=
I -m -n

We have <C1,Cl>:O+I2+I2:2|2:2x%:1

<C,,C, >:4m2+m2+m2:6m2:6%:1

<C,,C,>=n’+n*+n’ =3n° :3.%:1

<C,C,>=0(2m)+I(m)-I(m)=0
<C,,C,>=2m-m-mn=0

<GC,,C >=0n+I(-n)+In=0

Thus the columns of A form an orthogonal set of vectors. So A is orthogonal.

122
W.E.4 : Find an orthogonal matrix P whose first row is (gggJ :
N _(} 2 Ej
Solution: Let % 3'3'3

First we find a non zero vector W, = (X, Y, z) which is orthogonal to u,, for which

<u,w, >=0

|

wIiN

% j,(x,y,z)>=0

wlkr
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= X+Q+——O:> X+2y+2z=0

3 3
Put x=0,=2 z=-y put y=1,then z=-_1

So one such solution is W, =(X, Y, z) =(0,1,-1)

-1
. . u, = O'_'_
Normalize w, to get the second row of P i.e. * ( 2 \/Ej

Now find a non zero vector w; = (X, Y, 2)
Which is orthogonal to both u; and u, for which

<u,wW, >=0,<u,,Ww,>=0

122
<U,W,>=0=<| =,—, = |,(X,y,2)>=0
255w
X 2y 2z
= —4+—+—=0=>x+2y+2z2=0
3 3 3 y+2z=0 ... 1)

<u2,w3>:0:><( \/,\/,j (x,y,2)>=0

= 0X+—= =0=>y-z=0

f f
Put z=_1then y=-1— x=4 from (1)
So w, =(4,-1,-1) normalize w,, to

obtain the third row of P

> =5 77 (505 0 )
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Hence the required orthogonal matrix is P =

%‘,l_‘ %||H wliN
LN ERFAIN

Z'b o Wk
N

Caution: The above matrix is not unique.

1 1 -1

W.ES5:Let A=|1 3 4 | determine whether or not i) the rows of A are orthogonal.

7 -5 2

i) A is an orthogonal matrix.
iii) The columns of A are orthogonal.

Solution: 1. The rows of A are orthogonal since
<(11-1),(134)>=11)+1(3) +(-14=0
<(1.1,-1),(7,-52) >=M(7) +1-5) +(-)2=0
<(13,4),(7,-52)>=(7)+3(-5)+4(2)=0

2. A'is not an orthogonal matrix since the rows of A are not unit vectors.

Jw ] =< 11-1),(L1-D) >= Q) + 1Y) + (-)(-D) =3

|| =+/3 not unity.

3. The columns of A are not orthogonal since for
<(11,7),(L,3,-5) >=1(1) +1(3) + 7(-5) = —31=0.

1
a —_—
2

W.E.6: For which value of ¢ is the following matrix is unitary | — 1
—_— o
2

example
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« * g 1
Solution: Let A = 1 2 SO Af = 2
2 > a

2

Where pa* is the cojugate transpose of the matrix A.

The matrix A is unitary if AAx = |

1. -1
a E o E B 1 0
ie. | -1 1 _| |01
— all=z «a
L 2 2
I Oco_ch1 _—1a+1&
4 2 2|10
e.|-1_ 1 1 01
—a+—-—a —+od
L 2 2 4
e aa+—=1 _—106 1(7=0
2 2
-1_ 1
—a+§a=0 —+aa =1

. 1._ .
Solving we get E(a —a)=0= g isreal say a

(Since if o¢ = X+1y then & = X—1y so

a—o=(X—-1y)—(x+iy)=0=y=0)

1 _
Again for o real we get Z+Ota =1

Hence the matrix A is unitary if & ==*,|—

N
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W.E. 7: If V(F) is afinite dimensional unitary space and T be a linear transformation on V (F),
then show that T is self adjoint << T (u),u > is real for each yeV .

Solution: Case i) Let T be self adjoint.
SOT*=T  ceern. Q)

Now <T(u),u>=<u,T*(u)> forall yeVv
=<u,T(u) > by (1)
=<T(u),u>"
Thus <T(u),u >=m
So <T(u),u> isreal.

(Since in complex numbers z=7 = z is real)
Case ii) Converse : Let <T(u),u> bereal x.yeV
then <T(u),u>=<T(u),u>=<u,T(u)>
=<Uu,T*(u)>=<u,T(u) >
by definition of adjoint =< T (u),u >=<u,T* (u) >
=>T*=T.

So T is self adjoint.

Hence from the two cases the result follows.
W.E.8 : If Band g’ are two orthonormal bases for a finite dimensional complex inner product
space V. Prove that for each linear transformation T on V, the matrix [T ]B' is unitarily equivalent
to the matrix [T], .

Solution: Let P is a transition matrix from Bto B and as B, B are orthonormal bases , P is a
unitary matrix. Thus pxp=| — p*=p

Now [T], =P*[T],P=P*[T], P

B

So [T].: is unitarily equivalent to the matrix [T], .
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16.12 Working Procedure:

To find an orthogonal or unitary matrix P and a diagonal matrix D for a given matrix A such
that p* AP=D -

1) Find the characteristic polynomial f (1) and all eigen values of A.

2. Find a maximal set S of non zero orthogonal eigen vectors of A.
3. Then find an orthonormal set S = {ul,uz,...,un} of non zero vectors of A.

4. Let P be the matrix whose columns are u,,U,,...,U, .

5. Let D be the diagonal matrix whose diagonal elements are the characteristic roots of A.

6. Then we got the orthogonal matrix P, and diagonal matrix D such that p* Ap=D .

12
W.E.9Q: If A= {2 J find an orthogonal matrix P and a diagonal matrix D such that pT pop = D

Solution: The characteristic equation is |A—/”tl | =0

1-2 2 )
= =0=>@1-4)"-4=0
2 1-4

= @1-1+2)(1-1-2)=0
= (3-A)(-1-1) =0
—A=31=-1

For A =3, To find a basis for eigen space of A:

[A—M]XzO
e o P o
= =0=> =0
2 1-3|y 2 2|y
-2 2|l x

= X=Yy

if x=1, then y=1
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Sov, =(L1)

To find a basis for eigen space of Afor 4 =—1

af]

1+1 2 || x
= =0=2x+2y=0
1 1+1)|y

= y=-X

if x=1, then y=-1
Sov,=(1-1
Evidently v, is orthogonal to v, .
Hence the orthogonal basis of A is {V;,V,} ={(1,2),(%,-1)}

The corresponding orthonormal basis is {Uy,U,} .

Where U H_T 1Y = (%%j

I\)I—‘
~—

boVe ol (1
S RN AR W

Thus one possible choice for P =

Sl Sl
Sl e

D_3O
and ¥ =14 _

Note : We can apply Gram - Schmidt orthogonalisation process to find orthonormal basis.
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4
W.E.10:If A=|2 find an orthogonal matrix P and a diagonal matrix D suchthat pT Ap = D -
2

N BN
A NN

Solution: A is a symmetric matrix. A is orthogonally equivalent to a diagonal matrix.

We will now find the orthogonal matrix P and a diagonal matrix D such that pTAp =D
To find P:

To find P we first find an orthonormal basis of eigen vectors.

The characteristic equation is |A—/1I | =0.

on expansion we get the characteristic equation.

Or
trance of A=4+4+4=12|A=4(16-4)—2(8—4)+2(4-8) i.e. |A=48-8-8=32
4 2 4 2 4 2
M, = =16-4=12.- M, = =16-4=12. M, = =16-4=12
2 4 ' 2 4 ' 2

So M, +M_, + M, =12+12+12=36
Hence the characteristic equationis 1% — (A trace of A) A%+ (M, +M,, +M)A—|A=0
ie. f(1)=1°-124+361-32=0
Here f(2)=2°-12(4)+36(2)-32=8-48+72-32=0
Hence one characteristic value is } = 2.

Hence the other factor is A=211 -12 36 -32

2% -102+16 2 -20 32
1 -10 16 | O
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So f(A)=(1-2)(A*-10+16)=0

= 1-2)(1-2)(1-8) =0
So 1=2,28
To find a basis for the eigen space of A, correspondingto 4 =2. Then [A—ll ] X=0
4-2 2 2

=| 2 4-2 2 |y|=0
2 2 4-2|z

By R,—R,R,— R we get

2 2 2
00O
00O

N < X
Il
@)

= 2X+2y+2z=01ie X+y+z=0 .......... (1)

This system has two independent solutions
put y=1z=0ie x=-y=-1
v, = (-110)
We seek a second solution which is orthogonal to v; . Let this solution be v, = (a,b,c).
So —a+b=0;andfrom (1) a+b+c=0
using a=b weget 2p+c=0i.e. c=-2b
if pb=1,then c=-2 a=1
So v, =(a,b,c)=(11-2)
Thus v, =(-110) and v, =(1,1-2) form an orthogonal basis for eigen space of } =2.

for 1=8,(A-A1)(X)=0
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-4 2 2| x
=2 -4 2 =0
2 2 4|z

2R, +R,2R, + R gives

-4 2 2| X
0 6 6|y|=0
0 6 6|z

R, + R, gives

-4 2 2|X
0 -6 6||y|=0
0 0 0}z

= —4x+2y+2z2=0
-6y+6z=0
or -2x+y+z=0and -y+z=0 y=2
S0 2x=2z=>x=12
put z=1, then x=1y=1
This system gives the non zero solution.

v, = (L1,1) which is orthogonal to both v, and v,.
Thus v,,V,,V, form a maximal set of non zero orthogonal vectors of A.

Normalize v,,V,, Vv, by dividing each with their corresponding lengths to obtain an orthonor-

mal basis is u;,Uu,,U,
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( 1,1,0)
4TI T
v, 1
u=—-=—-+(1L1,-2
T Nt
Vs 1y

Aliter: we can apply Gram - Schmidth orthogonalisation process to find an orthonormal basis.

Let P be the matrix whose columns are u;,u,,U,, Then P=

o Gl &L
SL &l- &l
Sk &l &

and the diagonal matrix D which is formed with the characteristic roots given by

2 00
D=|0 2 O
0O 0 8

Note: In finding the basis for the eigen space corresponding 1 =2, weget X+ y+2z=0 ...... (1) by

putting y=0, we get x+z=0 when z=1,x=—
So v, =(-102) v, =(-110)

So {(—ZLl,O),(—l O,l)} is a basis of eigen space for A = 2, this set is not orthogonal. So
we can apploy Gram-Sdmidt orthogonalisation process to obtain the orthogonal basis

{(—uo),‘?lm—z)}.

Find a orthogonal basis for f th eigen space for ) =8, the union of the there two bases is the
orthonormal basis. Normalising the vectors, we get the orthonormal basis.
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16.14 Summary:

In this lesson we discussed about unitary operators, orthogonal operators, equivalent state-
ments. Inverse of unitary operator, Matrices representing unitary and orthogonal transformations,
Equivalent matrices.

16.15 Technical Terms:

The technical terms. we come across in this lesson are unitary operator, orthogonal opera-
tor, Isometry - Orthogonal matrix, unitary matrix, equivalent matrices, unitarily equivalent.

16.16 Model Questions:

1. Define unitary operator. If T is a unitary operator then show that T+ —T-1.

2. If Sand T are unitary operators then show that ST is unitary.
3. Let T be a unitary operator on an inner product space V, Let W be a finite dimensional T invariant

subspace of V. Then prove that \W/+ is T-invariant.

4. Let A be a complex n x n matrix, then A is normal if and only if A is unitarily equivalent to a diagonal
matrix.

16.17 Exercise:

1. For each of the following matrices A; find an orthogonal or unitary matrix P and a diagonal matrix
D. Suchthat p*x AP=D

101 1]
0 2 2 V2 \/6 \/é -2 0 O
i) Ans: P= 411 and D={ 0 -2 O
2 0 2 : 2 6 3
2 2 0 o 1 0O 0 4
0o <= —
. V6 3]
1 5
5 4 2 2 10
i) L 2} Ans: P= ﬁ 5 and D:{O 6}
2 2
0 10 100
2. Show that the matrices -1 00 and 010 are unitarily equivalent.
0 01 0O 0 —i
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1 2 i 4
3. Show that the matrices {2 i} and L J are not unitarily equivalent.

1
4. Find the number and exhibit all 2 x 2 orthogonal matrices of the form | 3 X
y z
1 1 1
s VBBl o VBR[| 3 B/ I B3
Ans: 4, 1| "t 1 and 3 L
V8/3 = ||-8/3 = ||V83 = Y —
3 3 3 3
5. Prove that the following matrices are unitary.
1, 0 3+
—1+1) —
2" B o 1
L1 443 NG
i) 2 V3 2J15 ii) - -1
1 — 5i T 5
- = = 2 2
L 2 3 215
12
V3 N3 1{(1+i) —(-i)
iy | -1 iv) 5 : -
—_— = 2| +i) @-i)
J23 3
6. Prove the following matrices are orthogonal
(11 (1 2 3]
2 2 Jid Vi i
-1 1 0 3 0 1
0 0 1 -1 5 -3
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7. Find an orthogonal matrix whose first row is

1 2
i) 55 i) a multiple of (1,1,2)
11 1]
1 2] |5 BB
Ans : i) \/5 \/5 i) 0 i __1
2 1 7z
SR R R
V6 V6 6.
8. Find a unitary matrix whose first row is
11.1 1.
i) a multiple of (1,1-i) i) (EEIE_EIJ
1 1 /\/é I 1 1| l_li_
N 2 21 2 2
Ans: i) (1+1)/43 -1 i) [i/v2 N 0
NE
1 -1 -1 1
= =i —=+=i
L 2 2 2 2

9. Find a 3x 3 orthogonal matrix P whose first two rows are multiples of u=(1,1,1) and v=(1,-2,3)
respectively.

1 1 1

V3 V3 43

1 -2 3
Ans: P=

iz Jia ia

5 -2 -3

10. Real matrices A and B are said to be orthogonally equivalent if there exists an orthogonal matrix
P suchthat g = pT pAp. Show that this relation is an equivalence relation.
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11. Prove that if Aand B are unitarily equivalent matrices, then Ais positive definite if and only if B is
positive definite.

12. Let U be a unitary operator on an inner product space V, and let W be a finite dimensional U -
Invariant subspace of V. Prove that U(W) =W .

13. Let A and B are n x n matrices that are unitarily equivalent then prove that tr(A* A) =tr(B* B)
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