RINGS AND LINEAR ALGEBRA (DSMAT31/DBMAT31)
 (BSC, BA MATHS - III)

ACHARYA NAGARJUNA UNIVERSITY

 CENTRE FOR DISTANCE EDUCATIONNAGARJUNA NAGAR, GUNTUR

ANDHRA PRADESH

LESSON - 1

RINGS AND INTEGRAL DOMAINS

1.1 Objectives of the Lesson:

To learn the difinitions of algebraic structures such as a ring, a field and an integral domain and to study some examples of these structures and thier basic properties.

1.2 Structure

1.3 Introduction

1.4 Definition and basic properties of a ring
1.5 Divisors of zero and cancellation laws
1.6 Integral domain ; Division Ring and field
1.7 The characteristic of a ring
1.8 Subrings and subfields
1.9 Summary
1.10 Technical terms
1.11 Model exam questions
1.12 Exercises

1.3 Introduction:

In this lesson we define an algebraic structure called a ring. We also derive the concepts of a field and an internal domain. We learn some basic properties of a ring. Using the basic properties, we prove some theorems on rings and fields.

1.4.1 Definition of a Ring :

A ring is a nonempty set R together with two binary operations + and . called addition and multiplication respectively such that
i) $a, b \in R \Rightarrow a+b \in R$
ii) $(a+b)+c=a+(b+c), \forall a, b, c \in R$
iii) $\exists o \in R$ such that $a+o=o+a=a, \forall a \in R$
iv) $a \in R \Rightarrow \exists-a \in R$ such that $a+(-a)=0=(-a)+a$
v) $a+b=b+a, \forall a, b \in R$.
vi) $a, b \in R \Rightarrow a . b \in R$
vii) $(a . b) . c=a .(b . c), \forall a, b, c \in R$
viii) $a .(b+c)=a . b+a . c$ and $(b+c) \cdot a=b \cdot a+c \cdot a \forall a, b, c \in R$

Note:

1.4.1

1) In a Ring R the binary operation ' + ' is called addition and '.' is called multiplication.
2) We usually write $a b$ instead of a. b
3) R is a ring if i) $(R,+)$ is an abelian group
ii) (R, .) is a semigroup
iii) Multiplication is both left and right distributive over addition.
4) The element O in R is called the zero element of R
5) Sometimes ring R is denoted by ($R,+$, .) The additive inverse of an element 'a' is denoted by ' -a '.

1.4.2 Examples

1) Let $R=\{0\}$ and + , . be the operations defined by $\mathrm{O}+\mathrm{O}=\mathrm{O}$ and $\mathrm{O} . \mathrm{O}=\mathrm{O}$, then $(\mathrm{R},+,$. is a ring. This ring is called zero Ring or Null Ring .
2) Z is the set of all integers and + and . are usual addition and multiplication respectively. Then $(\mathrm{Q},+,$.) is a ring.
3) Q is the set of all rational numbers and + and . are usual addition and multiplication respectively. Then $(\mathrm{Q},+,$.$) is a ring.$
4) The set of all real numbers \mathbb{R} is a ring w.r.t usual addition and multiplication.
5) The set of all complex numbers C is a ring w.r.t usual addition and multiplication.
6) Let $n>O$ be an integer. If $a, b \in Z$ and $\mathrm{n} /(\mathrm{a}-\mathrm{b})$ (i.e., n divides (a-b)) then a is said to be congruent to b modulo n . This is denoted by $a \equiv b(\bmod \mathrm{n})$. Congruence modulo n is an equivalence relation on Z. Denote the equivalence class of an integer a by \bar{a}. Note that $\bar{a}=\bar{b}$ iff $a \equiv b(\bmod n)$. Given $a \in Z$, there are integers q and r , with $o \leq r<n$, such that $\mathrm{a}=\mathrm{nq}+\mathrm{r}$. Hence a $-\mathrm{r}=\mathrm{nq}$ and $a \equiv r(\bmod n)$. Therefore $\bar{a}=\bar{r}$. Since a was arbitrary and $o \leq r<n$, it follows that every equivalence class must be one of $\bar{O}, \overline{1}, \overline{2}, . . \overline{(n-1)}$. However these n equivalence
classes are distinct. For if $O \leq i<\bar{r}<n$, then $O<\bar{r}-i<n$ and $n \times(\bar{r}-i)$. Thus $i \neq \dot{r}(\bmod n)$ and hence $\bar{i} \not \equiv \bar{r}$. Therefore, there are exactly n equivalence classes. Let Z_{n} denote the set of all equivalence classes. Then $Z_{n}=\{\bar{O}, \overline{1}, \overline{2}, . .(\overline{(n-1)}\}$. Define addition and multiplication by $\bar{a}+\bar{b}=\overline{a+b}$ and $\bar{a} \cdot \bar{b}=\overline{a b}$. Then Z_{n} together with these operations is a ring. Z_{n} is called the ring of integers modulo n . It is customary to denote the elements in Z_{n} as $0,1, ., \ldots, n-1$ rather than $\bar{O}, \overline{1}, \ldots, \overline{n-1}$. This notation will be used whenever convenient. Addition and multiplication in Z_{n} are sometimes written as $+_{n}$ and \times_{n} respectively.
1.4.3 Ring with Unity: A ring $(R,+,$.$) is said to be a ring with unity if there exists 1 \in R$ such that $a .1=1 . a=a \forall a \in R$
1.4.4 The ring of intiger $(Z,+,$.$) is a ring with unity.$
1.4.5 Note: If R is a ring with unity 1 , then 1 is called unity or multiplicative identity or smply an identity element.
1.4.6. commutative Ring: A ring $(R,+,$.$) is said to be a commutative ring if \mathrm{a} . \mathrm{b}=\mathrm{b} . \mathrm{a}, \forall a, b \in R$, i.e. Multiplication is commntative in R.
1.4.7 Example : The ring of integer $(Z,+,$.$) is a commntative ring.$

1.4.8 Note:

i. If a Ring R has no multiplicative identity then the ring R is said to be a ring without unity.
ii. A Ring R is said to be non-commutative ring if R is not commutative.

1.4.9 Example:

i. The set of all Even intigers is a commutative ring without unity under usual addition and multiplication.
ii.
1.4.10 Note: If $(R,+,$.$) is ring then (\mathrm{R},+$) is an abelian group. Therefore we have.
i) The zero element (additive identity) of R is unique and $a+0=a, \forall a \in R$
ii) For $a \in R$ the additive inverse -a is unique and $\mathrm{a}+(-\mathrm{a})=0$
iii) For $a \in R,-(-\mathrm{a})=\mathrm{a}$
iv) For $O \in R,-0=0$
v) For $a, b \in R,-(a+b)=-a-b$
vi) For $a, b, c \in R, a+b=a+c \Rightarrow b=c$
and $\quad b+a=c+a \Rightarrow b=c$
vii) The unity element 1 is unique, if R has unity element 1 .

1.4.11 Elementary Properties of Rings:

Theorem: If R is a ring then for $a, b, c \in R$
i) $\quad o a=a o=o$
ii) $\quad a(-b)=(-a) b=-(a b)$
iii) $\quad(-a)(-b)=a b$
iv) $a(b-c)=a b-a c$

Proof: i)

i)	$o a=(o+o) a$	$\because o+o=o$
	$=o a+o a$	By right distributive law
\Rightarrow	$o a+o=o a+o a$	Since 'o' is the additive Indentity
\Rightarrow	$o=o a$	By Left cancellation Law.
III 1	$a o=a(o+o)$	$\because o+o=o$
	$=a o+a o$	By left distributive law
\Rightarrow	$a o+o=a o+a o$	$\because o$ is the additive identity
\Rightarrow	$o=a o$	By left cancellation law.

ii) To show that $a(-b)=-(a b)=(-a) b$

We have $a(-b)+a b=a(-b+b) \quad$ by left distributive law

$$
\begin{aligned}
& =a o \\
& =o \quad \text { by (i) }
\end{aligned}
$$

$\therefore a(-b)+a b=o \Rightarrow a(-b)=-a b$
III IV $(-a) b+a b=(-a+a) b \quad$ by right distributive law

$$
=o b
$$

$$
\begin{aligned}
& \text { Rings and Linear Algebra } \\
& =o \quad \text { by (i) } \\
& \therefore(-a) b+a b=o \Rightarrow(-a) b=-(a b)
\end{aligned}
$$

iii) $(-a)(-b)=-((-a) b) \quad$ by (ii)

$$
\begin{aligned}
= & -(-(a b)) \quad \text { by } \mathrm{ii} \\
& =a b
\end{aligned}
$$

iv) $a(b-c)=a[b+(-c)]$

$$
\begin{aligned}
& =a b+a(-c) \quad \text { by left distributive law. } \\
& =a b+(-a c) \quad \text { by (ii) } \\
& =a b-a c
\end{aligned}
$$

1.1.12 Note: If R is a ring with unity element and $a \in R$, then
i) $(-1) a=-a=a(-1)$
ii) $(-1)(-1)=1$
1.1.13 Definition: Idempotent Element :- Let R be a ring. An element $a \in R$ is said to be an idempotent element if $a^{2}=a$.

1.4.14 Example :

1) In the ring of Integers ($Z,+,$.$) , o and 1$ are idempotent elements.
2) In the ring $\left(Z_{6},{ }_{6}, \times_{6}\right), 0,1,3,4$ are idempotent elements.
1.4.15 Boolean Ring: A ring R is said to be a Boolean ring if every element of R is an idempotent element i.e., $a^{2}=a, \forall a \in R$.
1.4.16 Theorem: If R is a Boolean ring then
i) $a+a=0, \forall a \in R$
ii) $a+b=0 \Rightarrow a=b$
iii) R is commutative i.e. $a b=b a, \forall a, b \in R$.

Proof: Given that R is a Boolean Ring
i) Let $a \in R \Rightarrow a+a \in R \quad \because \mathrm{R}$ is closed w.r.t ' + '
$\Rightarrow(a+a)^{2}=a+a \quad$ Since $a^{2}=a, \forall a \in R$
$\Rightarrow(a+a)(a+a)=a+a$
$\Rightarrow(a+a) a+(a+a) a=a+a \quad$ by left distributive law
$\Rightarrow(a a+a a)+(a a+a a)=a+a \quad$ by right distributive law
$\Rightarrow\left(a^{2}+a^{2}\right)+\left(a^{2}+a^{2}\right)=a+a$
$\Rightarrow(a+a)+(a+a)=a+a$
Since $a^{2}=a, \forall a \in R$
$\Rightarrow(a+a)+(a+a)=(a+a)+0$
Since O is the zero element of R.
$\Rightarrow a+a=0$
by left cancellation law.
ii) Let $a, b \in R$ and $a+b=0$

$$
\begin{array}{ll}
\Rightarrow a+b=b+b & \text { by i } b+b=0 \\
\Rightarrow a=b & \text { by right cancellation law }
\end{array}
$$

iii) Let
$a, b \in R \Rightarrow a+b \in R \quad \because \mathrm{R}$ is closed under ${ }^{+}+$'
$\Rightarrow(a+b)^{2}=a+b \quad \because \mathrm{R}$ is Boolean Ring
$\Rightarrow(a+b)(a+b)=a+b$
$\Rightarrow(a+b) a+(a+b) b=a+b \quad$ by left distributive law
$\Rightarrow\left(a^{2}+b a\right)+\left(a b+b^{2}\right)=a+b \quad$ by right distributive law
$\Rightarrow a+b a+a b+b=a+b \quad \because \mathrm{R}$ is a Boolean Ring
$\Rightarrow b a+a b=0 \quad$ by left and right cancellation laws
$\Rightarrow b a=a b$
by ii.
$\therefore \mathrm{R}$ is a commutative ring.
1.4.17 Definition : Nilpotent Element : Let R be a ring. An element $a \in R$ is said to be nilpotent element if there exists a positive integer ' n ' such that $a^{n}=0$.
1.4.18 Example: In the ring $\left(Z_{9},+_{9}, \times_{9}\right), 3$ is a nilpotent element.

1.5 Zero Divisors of a Ring:

Let R be a ring. An element $0 \neq a \in R$ is said to be a zero divisor if there exists a $b \neq 0 \in R$ such that $\mathrm{ab}=0$.
1.5.1 Note: 1) A ring R is said to have zero divisors if there exist $a, b \in R, a \neq 0, b \neq 0$ but $a b=0$.
2) A ring R is said to have no zero divisors if $a, b \in R$ and $a b=0 \Rightarrow a=0$ or $b=0$.
1.5.2 Examples: i) The ring $\left(Z_{6},+_{6}, \times_{6}\right)$ has zero divisors 2,3 and 4 . For $2 \times_{6} 3=0,3 \times{ }_{6} 4=0$.
ii) The set R of all 2×2 matrices with real numbers as entries is a ring with zero divisors w.r. to addition and multiplication of matrices.

$$
\text { For } A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { are two non-zero elements of } \mathrm{R} \text { but } \mathrm{AB}=\mathrm{O} \text {. }
$$

iii) The ring of integers Z is without zero divisors for $a, b \in Z$ and $a b=0 \Rightarrow a=0$ or $b=0$.
1.5.3 Cancellation Laws in a Ring: We say that cancellation Laws hold in a ring R if $a \neq 0, a b=a c \Rightarrow b=c$ and $a \neq 0, b a=c a \Rightarrow b=c$ for $a, b, c \in R$.
1.5.4 Theorem: A ring R is without zero divisors if and only if the cancellation laws hold in R.

Proof: Suppose R is a ring without zero divisors.
i.e. $a, b \in R$ and $a b=0 \Rightarrow a=0$ or $b=0$

To prove that cancellation laws hold in R.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& a \neq 0, b, c \in R \text { and } a b=a c \\
& \text { Now } \begin{aligned}
a b=a c & \Rightarrow a b-a c=0 \\
& \Rightarrow a(b-c)=0 \\
& \Rightarrow b-c=0 \\
& \Rightarrow b=c
\end{aligned}
\end{aligned} \begin{aligned}
& \because a \neq 0 \text { and } \mathrm{R} \text { is without zero divisors }
\end{aligned}
\end{aligned}
$$

Similarly we can show that $b a=c a \Rightarrow b=c$
\therefore cancellation laws hold in R.
Suppose cancellation laws hold in R .
To prove that R has no zero divisors.
Let $a, b \in R$ and $a b=0$

If possible suppose $a \neq 0$
Now $a b=0 \Rightarrow a b=a 0$

$$
\Rightarrow b=0 \quad \text { by cancellation law. }
$$

Similarly if $b \neq 0$, then

$$
\begin{aligned}
a b=0 & \Rightarrow a b=0 b \\
& \Rightarrow a=0 \quad \text { by cancellation law }
\end{aligned}
$$

$\therefore a b=0 \Rightarrow$ either $a=0$ or $b=0$
Hence R has no zero devisors.
1.6.1 Definition: Integral Domain : A ring $(R,+,$.$) is said to be an integral domain if i) R$ is a commutative Ring with unity $1 \neq 0$, ii) R is without zero divisors.
1.6.2. Example: The ring of integers $(Z,+, \times)$ is an integral domain.
1.6.3 Theorem: A commutative ring R with unity $1 \neq 0$ is an Integral domain if and only if cancellation laws hold in R.

Proof of this theorem follows from the previous theorem.
1.6.4 Definition: Invertible element (or) Unit: Let R be a ring with unity 1. A non zero element $a \in R$ is said to be inversible if there exists $b \in R$ such that $a b=b a=1$. Here b is called multiplicative inverse of a and is denoted by a^{-1}.
1.6.5 Division Ring: A ring ($R,+,$.) is said to be a division ring if i) R has unity $1 \neq 0$, ii) Every non zero element has multiplicative inverse.
1.6.6. Example: The ring of rational numbers $(Q,+, \times)$ is a division ring.
1.6.7 Theorem: A division ring has no zero divisors.

Proof: Let R be a division ring.
Let $a, b \in R$ and $a b=0$
If possible let $a \neq 0$

$$
\Rightarrow \exists a^{-1} \in R \text { such that } a a^{-1}=a^{-1} a=1 \quad(\because R \text { is a division ring })
$$

Now $a b=0$

$$
\Rightarrow \quad a^{-1}(a b)=a^{-1} 0
$$

$$
\begin{array}{ll}
\Rightarrow & \left(a^{-1} a\right) b=0 \\
\Rightarrow & 1 b=0 \\
\Rightarrow & b=0
\end{array}
$$

Similarly if $b \neq 0$ we can prove that $a=0$
$\therefore a b=0 \Rightarrow$ either $a=0$ or $b=0$.
Hence R has no zero divisors.
1.6.8 Definition: Field : A ring R with atleast two elements is called a field if i) R is commutative, ii) R has unity, iii) Every non-zero element of R has multiplicative inverse.
1.6.9 Example: The rings of rational numbers, real numbers and complex numbers are fields.
1.6.10 Note: 1. A ring R is a field if $(R-\{0\},$.$) is an abelian group.$
2. A Commutative division ring is a field.
1.6.11 Theorem: A field has no zero divisors.

Proof: A field is a commutative devision ring. Hence from 1.6.7 it follows that a field has no zero divisors.
1.6.12 Theorem: Every field is an integral domain.

Proof: Suppose $(F,+,$.$) is a field.$
$\Rightarrow \mathrm{F}$ is a commutative ring.
To show that F is an integral domain, it is enough to show that F has no zero divisors.
Let $a, b \in F$ and $a b=0$
If possible let $a \neq 0$
$\Rightarrow \exists a^{-1} \in F$ such that $a a^{-1}=a^{-1} a=1 \quad \because F$ is a field
Now $a b=0 \quad \Rightarrow \quad a^{-1}(a b)=a^{-1} 0$
$\Rightarrow \quad\left(a^{-1} a\right) b=0$
$\Rightarrow \quad 1 b=0$
$\Rightarrow \quad b=0$
Similarly if $b \neq 0$ we can show that $a=0$

Hence $a b=0 \Rightarrow$ either $a=0$ or $b=0$
$\because F$ has no zero divisors
Now F is a commutative ring without zero divisors.
i.e. F is an integral domain.
1.6.13 Note: The converse of the above theorem is not true. i.e. an integral domain need not be a field.

Example: Ring of integers is an integral domain, but not a field.
Theorem: A finite integral domain is a field.
Proof: Let R be a finite integral domain with n elements. Now R is a commutative ring without zero divisors. To prove that R is a field it is enough to prove that R has i) Unity element, ii) Every non zero element of R has multiplicative inverse.

Let $R=\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ where a_{i} 's are n distinct elements let $0 \neq a \in R$
Now the n products $a a_{1}, a a_{\alpha} \ldots . . . a a_{n} \in R$
If possible let $a a_{i}=a a_{j}$ for $1 \leq i \leq n, 1 \leq j \leq n$ and $i \neq j$

$$
\begin{aligned}
& \Rightarrow a a_{i}-a a_{j}=0 \\
& \Rightarrow a\left(a_{i}-a_{j}\right)=0 \\
& \Rightarrow a_{i}-a_{j}=0 \quad \because a \neq 0 \text { and } \mathrm{R} \text { is integral domain. } \\
& \Rightarrow a_{i}=a_{j}
\end{aligned}
$$

This is a contradiction to the fact that a_{i} 's are distinct.
\therefore The n products $a a_{1}, a a_{2} \ldots \ldots a a_{n}$ are distinct elements of R.
Existence of Identity:
Since $a \in R=\left\{a a_{1}, a a_{2}, \ldots a a_{n}\right\}$ it follows that $a=a a_{i}$ for some $a_{i} \in R$.
We claim that a_{i} is the identity element of R .
Let $b \in R \Rightarrow b=a a_{j}$ for some $a_{j} \in R$
Now $\quad b a_{i}=\left(a a_{j}\right) a_{i}$
$=a\left(a_{j} a_{i}\right)$
$=a\left(a_{i} a_{j}\right) \quad \therefore R$ is commutative.
$=\left(a a_{i}\right) a_{j}$
$=a a_{j} \quad \therefore a a_{i}=a$
$=b$
$\therefore a_{i}$ is the identity element of R .
Existence of Inverse: Since the identity $1 \in R$ we have $1=a a_{k}$ for some $a_{k} \in R$.
\therefore For $0 \neq a \in R$ there exists $a_{k} \in R$ such that $a a_{k}=1$.
\Rightarrow Every non zero element of R is inversible. Hence R is a field.
1.7.1 Integral Multiples: In a ring R we define $0 a=0$, where left hand zero is integer O and right hand side zero is the zero element of the ring R , where $a \in R$.

We define $n a=a+a+\ldots+a, \mathrm{n}$ times where n is a positive integer.

$$
(-n) a=(-a)+(-a)+\ldots+(-a), \mathrm{n} \text { times }
$$

note that $(-n) a=n(-a)=-(n a)$
1.7.2. Note: If m, n are integers and a, b are elements of a ring R then
i) $(m+n) a=m a+n a$
ii) $\quad m(n a)=(m n) a$
iii) $m(a+b)=m a+m b$
iv) $\quad m(a b)=(m a) b=a(m b)$
v) $\quad(m a)(n b)=m n(a b)$
1.7.3 Integral Powers: If m, n are positive integers and a, b are elements of a ring R then
i) $\quad a^{m}=a . a \ldots . a, m$ times
ii) $\quad a^{m} \cdot a^{n}=a^{m+n}$
iii) $\quad\left(a^{m}\right)^{n}=a^{m n}$
1.7.4 Charecteristic of a Ring: The characteristic of a ring R is said to be ' n ' if there is a positive integer n such that $n a=0, \forall a \in R$.

If there is no such positive integer ' n ' then we say that the characteristic of the ring R is zero or infinite.
1.7.5 Example: 1 . The characteristic of the ring $\left(Z_{5},{ }_{5}, x_{5}\right)$ is 5
2. The characteristic of the ring $(Z,+,$.$) is zero.$
1.7.6 Theorem: The characteristic of a ring with unity is zero or $n>0$, according as the order of the unity element is zero or $n>0$ respectively regarded as member of the additive group of the ring.

Proof: Suppose R is a ring with unity element 1. Suppose order of 1 is zero, regarded as element of the group ($\mathrm{R},+$)
\Rightarrow There is no positive integer n such that $n .1=0$
\Rightarrow There is no positive integer n such that $n a=0 \forall a \in R$
\Rightarrow Charecteristic of R is zero.
Suppose order of $1=\mathrm{n}>0$ regarded as element of the group ($\mathrm{R},+$)
$\Rightarrow \mathrm{n}$ is the least positive integer such that $n .1=0$
Let $a \in R$
Now na $a=a+a+. .+a \mathrm{n}$ times

$$
\begin{aligned}
& =a(1+1+. .+1) \mathrm{n} \text { times } \\
& =a(n .1) \\
& =a 0 \\
& =0 \\
& \therefore n a=0, \forall a \in R
\end{aligned}
$$

Further n is the least positive integer such that $n a=0, \forall a \in R$. Since if $\mathrm{m}<\mathrm{n}$ then $m .1 \neq 0$. Hence charecteristic of a ring R is n.
1.7.7. Theorem: The characteristic of an integral domain is either zero or prime.

Proof: Suppose R is an Integral domain
Let P be the charecteristic of R
If $\mathrm{P}=0$ there is nothing to prove.

Suppose $P \neq 0$.
We claim that P is a prime number.
If possible assume that P is not a prime number.
$\Rightarrow P=m n$ where $1<m, n<P$.
Let $0 \neq a \in R$.
$\Rightarrow p a=0 \quad \because P$ is the charecteristic of R.
$\Rightarrow p a^{2}=0$
$\Rightarrow m n a^{2}=0$
$\Rightarrow(m a)(n a)=0$
$\Rightarrow m a=0$ or $n a=0 \quad \because R$ has no zero divisors
Suppose $m a=0$
Let $\quad b \in R$
Now $m a=0 \Rightarrow(m a) b=0$

$$
\begin{aligned}
& \Rightarrow(m b) a=0 \\
& \Rightarrow m b=0 \quad \because a \neq 0 \text { and } \mathrm{R} \text { is without zero divisors. }
\end{aligned}
$$

$\therefore m b=0, \forall b \in R$
A contradiction since $m<p$ and $C h$ of R is P.
Similarly we can arrive at a contradiction if $n a=0$
\therefore our assumption that P is not a prime is wrong
Hence P is a prime number.
1.7.8 Corollary : The charecteristic of a field is either zero or Prime.

Proof: Every field is an Integral domain.
\therefore By theorem: 1.7.7. it follows that the charecteristic of a field is either zero or prime.
1.8.1 Definition: Subring: Let R be a ring. A non-empty subset S of R is said to be a subring of R if S it self is a ring relative to the same operations in R.
1.8.2 Example: $1 .(z,+, \times)$ is a subring $(Q,+, \times)$
1.8.3 Note: If R is a ring then $S=\{0\}$ where 0 is the zero element of R and $S=R$ are subrings of R. These subrings are called trivial or improper subrings of R. A subring other than the above two is called a non-trivial or proper subring of R.
1.8.4 Theorem: Let R be a ring. A non-empty subset S of a ring R is a subring iff $a, b \in S \Rightarrow a-b \in S$ and $a b \in S$.

Proof: Suppose R is a ring and S a non-empty subset of R. Suppose S is a subring of R.
Let $a, b \in S$

$$
b \in S \Rightarrow-b \in S \quad \because \text { additive inverse exists. }
$$

Now $a,-b \in S \Rightarrow a-b \in S$ by closure law for addition. Also S is closed w.r. to multiplication.
$\therefore a, b \in S \Rightarrow a b \in S$.
Hence $a, b \in S \Rightarrow a-b \in S$ and $a b \in S$
Conversily suppose S is a non-empty subset of R such that $a, b \in S \Rightarrow i) a-b \in S$ and ii) $a b \in S$.

To show that S is a subring.
Existence of zero element: Since S is non-empty S has atleast one element say $a \in S$.
$a \in S \Rightarrow a-a \in S$ by the given condition.

$$
\Rightarrow 0 \in S
$$

Existence of additive inverse:

$$
\begin{aligned}
0 \in S \text { and } a \in S & \Rightarrow 0-a \in S \\
& \Rightarrow-a \in S
\end{aligned}
$$

Closure w.r. to addition:
Let $a, b \in S$

$$
b \in S \Rightarrow-b \in S
$$

Now $a,-b \in S \Rightarrow a-(-b) \in S$ by cndition (i).

$$
\Rightarrow a+b \in S
$$

Since elements of S are elements of R, associative law for addition and multiplication, commutative law for addition and distributive law holds good in S .

Also by condition (ii) S is closed w.r.to multiplication
$\therefore \mathrm{S}$ is a ring and hence a subring of R .
1.8.5 Theorem: The intersection of two subrings of a ring R is a subring of R.

Proof: Let R be a ring and S_{1}, S_{2} be two subrings of R.
Let $S=S_{1} \cap S_{2}$. To show that S is a subring of R .
Since every subring contains the zero element we have $0 \in S_{1}$ and $0 \in S_{2}$.

$$
\Rightarrow 0 \in S_{1} \cap S_{2}=S
$$

$\therefore S$ is a non-empty subset of R.
Let $a, b \in S \Rightarrow a, b \in S_{1} \cap S_{2}$
$\Rightarrow a, b \in S_{1}$ and $a, b \in S_{2}$

$$
\begin{array}{ll}
a, b \in S_{1} \Rightarrow a-b \in S_{1} \text { and } a b \in S_{1} & \because S_{1} \text { is a subring } \\
a, b \in S_{2} \Rightarrow a-b \in S_{2} \text { and } a b \in S_{2} & \because S_{2} \text { is a subring } \\
\therefore a-b \in S_{1} \cap S_{2} \text { and } a b \in S_{1} \cap S_{2} & \\
\text { i.e. } a-b \in S \text { and } a b \in S &
\end{array}
$$

Hence S is a subring of R by Theorem 1.8.4.
1.8.6 Note: 1 . The intersection of an arbitrary family of subrings is a subring.
2. Union of two subrings need not be a subring.

$$
\text { Let } S_{1}=\{2 n / n \in z\} \text { and } S_{2}=\{3 n / n \in z\}
$$

S_{1} and S_{2} are two subrings of the ring of integers $(z,+, \times)$.

$$
S_{1} \cup S_{2}=\{-6,-4,-3,-2,0,2,3,4,6,8,9, \ldots \ldots . .\}
$$

Clearly $2,3 \in S_{1} \cup S_{2}$

$$
\text { But } 3-2=1 \notin S_{1} \cup S_{2}
$$

Hence $S_{1} \cup S_{2}$ is not a subring.
1.8.7 Theorem: Let S_{1}, S_{2} be two subrings of a ring R.
then $S_{1} \cup S_{2}$ is a subring iff $S_{1} \subseteq S_{2}$ or $S_{2} \subseteq S_{1}$
(OR)
Union of two subrings of a ring R is again a subring iff one is contained in the other.
Proof: Let R be a ring and S_{1}, S_{2} be two subrings of a ring R.
Suppose $S_{1} \leq S_{2}$ or $S_{2} \leq S_{1}$
If possible assume that $S_{1} \nsubseteq S_{2}$ or $S_{2} \nsubseteq S_{1}$
$S_{1} \nsubseteq S_{2} \Rightarrow$ there is an element $a \in S_{1}$ and $a \notin S_{2} \quad \rightarrow 1$
$S_{2} \nsubseteq S_{1} \Rightarrow$ there is an element $b \in S_{2}$ and $b \notin S_{1} \quad \rightarrow 2$

$$
\begin{aligned}
& a \in S_{1} \Rightarrow a \in S_{1} \cup S_{2} \\
& b \in S_{2} \Rightarrow b \in S_{1} \cup S_{2}
\end{aligned}
$$

Now $a, b \in S_{1} \cup S_{2}$ and $S_{1} \cup S_{2}$ is a subring

$$
\begin{aligned}
& \Rightarrow a+b \in S_{1} \cup S_{2} \\
& \Rightarrow a+b \in S_{1} \text { or } a+b \in S_{2}
\end{aligned}
$$

If $a+b \in S_{1}$ then $a+b-a \in S_{1} \quad$ Since $a \in S_{1}$ and S_{1} is a subring.

$$
\Rightarrow b \in S_{1}
$$

A contradiction to (2).
If $a+b \in S_{2}$ then $a+b-b \in S_{2} \quad$ Since $b \in S_{2}$ and S_{2} is a subring.

$$
\Rightarrow a \in S_{2}
$$

A contradiction to (1)
$\therefore a+b \notin S_{1}$ and $a+b \notin S_{2}$

$$
\Rightarrow a+b \notin S_{1} \cup S_{2}
$$

$\therefore S_{1} \cup S_{2}$ is not a subring.
Which is a contradiction to the hypothesis.
\therefore Our assumption $S_{1} \nsubseteq S_{2}$ and $S_{2} \nsubseteq S_{1}$ is wrong.
Hence either $S_{1} \not \pm S_{2}$ or $S_{2} \not \pm S_{1}$
Conversily suppose $S_{1} \nsubseteq S_{2}$ or $S_{2} \nsubseteq S_{1}$
Suppose $S_{1} \nsubseteq S_{2} \Rightarrow S_{1} \cup S_{2}=S_{2}$ which is a subring.
If $S_{2} \nsubseteq S_{1} \Rightarrow S_{1} \cup S_{2}=S_{1}$ which is a subring.
\therefore either $S_{1} \leq S_{2}$ or $S_{2} \leq S_{1}$ we have $S_{1} \cup S_{2}$ is a subring.
1.8.8 Definition: Subfield: Let $(F,+,$.$) be a field. A non-empty subset K$ of F is said to be a subfield of F if K itself is a field w.r.to the same operations in F.
1.8.9 Example: The set of all rational numbers $(Q,+,$.$) is a subfield of (R,+,$.
1.8.10 Theorem: Let $(F,+,$.$) be a field. A non-empty subset K$ of F is a subfield of F iff
i) $a, b \in K \Rightarrow a-b \in K$
ii) $a \in K, 0 \neq b \in K \Rightarrow a b^{-1} \in K$ and
iii) $1 \in K$

Proof: Let F be a field and
K be a non-empty subset of F.
Suppose K is a subfield of F.
Let $a, b \in K$
$b \in K \Rightarrow-b \in K$ since additive inverse exists in a field.
Now $a,-b \in K \Rightarrow a+(-b) \in K$ by closure axiom for addition.

$$
\Rightarrow a-b \in K
$$

Let $a, 0 \neq b \in K$
$0 \neq b \in K \Rightarrow b^{-1} \in K$ since multiplicative inverse exists in a field.
Now $a, b^{-1} \in K \Rightarrow a b^{-1} \in K$ by closure axiom for multiplication.
Clearly $1 \in K$
\therefore conditions (i), (ii) and (iii) hold good.
Suppose the condition (i) $a, b \in K \Rightarrow a-b \in K$
(ii) $a, 0 \neq b \in K \Rightarrow a b^{-1} \in K$ hold good.

From condition (i) it follows that $(K,+)$ is a sub group of $(F,+)$ from (ii) and (iii) it follows that $(K-\{0\},$.$) is a sub group of (F-\{0\},$.$) .$

Since $K \npreceq F$, commutative law for addition and multiplication and distributive laws hold for elements of K.

Hence k is a subfield of F.

1.9. Summary :

In this lesson we learnt the definitions of Ring, Integral domain, Field, Subring and Subfield. We proved some theorems on Rings, Integral domains and fields.

1.10 Technical Terms:

i) Ring
ii) Commutative Ring
iii) Ring with Unity
iv) Idempotent Element
v) Boolean Ring
vi) Nilpotent Element
vii) Zero Divisors
viii) Integral Domain
ix) Unit or Invertible Element.
x) Division Ring or Skew Field
xi) Field
xii) Subring
xiii) Subfield
Xiv) Charecteristic of a Ring.

1.11 Model Questions:

1.11.1 The set M of all $n X n$ matrices with entries as real numbers is a non-commutative ring with unity with respect to addition and multiplicatin of matrices.

Solution: Let M be the set of all $\mathrm{n} \times \mathrm{n}$ matrices with entries as real numbers.
i) We know that sum of the $n \times n$ matrices and product of two $n \times n$ matrices is again anxn matrix.
$\therefore \mathrm{M}$ is closed w.r. to addition and multiplication of matrics. i.e. $A, B \in M \Rightarrow A+B \in M$ and $A B \in M$.
ii) We know that addition of matrices is associative and commutative.

$$
\begin{aligned}
\therefore & (A+B)+C=A+(B+C), \forall A, B, C \in M \\
& A+B=B+A, \forall A, B, \in M
\end{aligned}
$$

iii) The null matrix $O_{n \times n} \in M$ and $A+0=A, \forall A \in M$
iv) To each $A \in M$ there is $-A \in M$ and $A+(-A)=O_{n \times n}$
v) Multiplication of matrices is Associative.

$$
\therefore(A B) C=A(B C) \forall A, B, C \in M
$$

vi) We know that multiplication of matrices is distributive over addition.

$$
\begin{aligned}
\therefore & A(B+C)=A B+A C \\
& (B+C) A=B A+C A, \forall A, B, C \in M
\end{aligned}
$$

$\therefore M$ is aring.
The unit matrix $I_{n \times n} \in M$ and $I A=A I=A, \forall A \in M$
$\therefore M$ is a ring with unity I .
But we know that multiplication of matrices is not commutative.
Hence M is a non-commutative ring with unity.
1.11.2 The set $z(i)=\{x+i y / x, y \in z\}$ of Gaussian integers is a commutative ring with unity w.r. to addition and multiplication of complex numbers.

Solution: Given $z(i)=\{x+i y / x, y \in z\}$
Let $a=x_{1}+i y_{1}$ and $\quad b=x_{2}+i y_{2} \in z(i)$

$$
\Rightarrow x_{1}, y_{1}, x_{2}, y_{2} \in Z
$$

Now $a+b=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)$

$$
\begin{aligned}
& =\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
& \therefore a+b \in z(i) \quad \text { since } x_{1}+x_{2} \text { and } y_{1}+y_{2} \in Z \\
& \\
& \\
& a b=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
& \quad=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

$\therefore a b \in z(i)$
i.e. $z(i)$ is closed under addition and multiplication. We know that addition of complex numbers is associative and commutative.
\therefore Associative law and commutative law for addition hold good in $z(i)$ since $z(i)$ is a subset of the set of complex numbers C.

Clearly $0=0+i 0 \in z(i)$ and

$$
a+0=\left(x_{1}+i y_{1}\right)+(0+i 0)=x_{1}+i y_{1}=a
$$

$\therefore O$ is the zero element of $z(i)$
$a \in z(i) \Rightarrow-a=-x_{1}-i y_{1} \in z(i)$ and
$a+(-a)=\left(x_{1}+i y_{1}\right)+\left(-x_{1}-i y_{1}\right)=0$
$\therefore-a$ is the additive inverse of a.
We know that multiplication of complex numbers is associative and commutative.
$\therefore a(b c)=(a b) c$ and $a b=b a \forall a, b, c \in z(i)$ since $Z(i) \subseteq C$
Also multiplication of complex numbers is distributive over addition.

$$
\therefore a(b+c)=a b+a c \quad \forall a, b, c \in z(i) \text { since } Z(i) \subseteq C
$$

clearly $1=1+0 i \in z(i)$ and $a 1=\left(x_{1}+i y_{1}\right)(1+0 i)=a$
$\therefore Z(i)$ is a commutative ring with unity.
1.11.3 If $Q(\sqrt{2})=\{a+b \sqrt{2}: a, b \in Q\}$ Then $Q(\sqrt{2})$ is a field with respect to addition and multiplication of real numbers.

Solution: $Q(\sqrt{2})=\{a+b \sqrt{2}: a, b \in Q\}$
Let $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2} \in Q(\sqrt{2})$

$$
\Rightarrow a, b, c, d \in Q
$$

Now $x+y=a+b \sqrt{2}+c+d \sqrt{2}$

$$
\begin{aligned}
& \quad=(a+c)+(b+d) \sqrt{2} \\
& \therefore x+y \in Q(\sqrt{2}) \quad \because a+c, b+d \in Q \\
& x y=(a+b \sqrt{2})(c+d \sqrt{2}) \\
& \quad=(a c+2 b d)+(a d+b c) \sqrt{2} \\
& \therefore x y \in Q(\sqrt{2}) \because a c+2 b d, a d+b c \in Q
\end{aligned}
$$

$\therefore Q(\sqrt{2})$ is closed under addition and multiplication.
We know that addition of real numbers is associative and commutative. Since $Q(\sqrt{2}) \subseteq R$.
We have $(x+y)+z=x+(y+z)$ and $x+y=y+z \forall x, y, z \in Q(\sqrt{2})$
clearly $0=0+0 \sqrt{2} \in Q(\sqrt{2})$ and $x+0=x, \forall x \in Q(\sqrt{2})$
$x \in Q(\sqrt{2}) \Rightarrow-x=-a-b \sqrt{2} \in Q(\sqrt{2})$ and $x+(-x)=0$
$\therefore-x$ is the additive invirse of x.
Also multiplication of real numbers is associative, commutative and is distributive over addition.
$\therefore \quad x(y z)=(x y) z, x y=y z, x(y+z)=x y+x z$, for all $x, y, z \in Q(\sqrt{2})$ since $Q(\sqrt{2}) \subseteq R$
clearly $1=1+0 \sqrt{2} \in Q(\sqrt{2})$ and $x .1=(a+i b)(1+0 \sqrt{2})=x$
$\therefore 1$ is the multiplicative identity.

Let $0 \neq x=a+b \sqrt{2} \in Q(\sqrt{2})$

$$
\Rightarrow a \neq 0 \text { or } b \neq 0
$$

Now $\frac{1}{x}=\frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2} \in Q(\sqrt{2})$
Since $a, b \in Q$ and $a^{2}-2 b^{2} \neq c$

$$
\left\{a^{2}-2 b^{2}=0 \Leftrightarrow a^{2}=2 b^{2} \Leftrightarrow a=\sqrt{2} b \text { but } a \in Q \therefore a^{2}-2 b^{2}=0 \Leftrightarrow a=0 \text { and } b=0\right\}
$$

\therefore every non-zero element of $Q(\sqrt{2})$ has multiplicative inverse. Hence $Q(\sqrt{2})$ is a field.
1.11.4 $Z_{p}=\{0,1,2,3, \ldots \ldots \ldots \ldots . . p-1\}$ where P is a prime. Z_{p} is a field w.r.t the addition modulo P and multiplication modulo P .

Solution: $Z_{p}=\{0,1,2,3, \ldots \ldots p-1\}$
Let $a, b \in Z_{p}$
$a \oplus b=$ remainder, where $a+b$ is divided by P .
$a \odot b=$ remainder, where $a b$ is divided by P.
Clearly $a \oplus b$ and $a \odot b \in z_{p}$
$\therefore z_{p}$ is closed under addition and multiplication modulo P .
Let $a, b, c \in z_{p}$
$(a \oplus b) \oplus c=r_{1} \oplus c$ where $a+b=q_{1} p+r_{1}, 0 \leq r_{1} \leq p$

$$
=r_{2} \text { where } r_{1}+c=q_{2} p+r_{2}, 0 \leq r_{2} \leq p
$$

Now $\quad a+b+c=q_{1} p+r_{1}+c=q_{1} p+q_{2} p+r_{2}=\left(q_{1}+q_{2}\right) p+r_{2}$
$\therefore r_{2}$ is the remainder where $a+b+c$ is divided by P

$$
\begin{aligned}
a \oplus(b \oplus c) & =a \oplus s_{1} \text { where } b+c=m_{1} p+s_{1}, 0 \leq s_{1} \leq p \\
& =s_{2} \text { where } a+s_{1}=m_{2} p+s_{2}, 0 \leq s_{2} \leq p
\end{aligned}
$$

Now $a+b+c=a+m_{1} p+s_{1}=m_{1} p+a+s_{1}=m_{1} p+m_{2} p+s_{2}$

$$
=\left(m_{1}+m_{2}\right) p+s_{2}
$$

$\therefore s_{2}$ is the remainder when $a+b+c$ is divided by P .

$$
\therefore r_{1}=s_{2} \Rightarrow(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

ie addition modulo P is associative.
Clearly $0 \in z_{p}$

$$
a \oplus 0=a
$$

$\therefore 0$ is the zero element of z_{p}
Let $a \in z_{p}$
if $a=0$ then additive inverse of a is itself.
If $a \neq 0$ then $0 \leq a \leq p \Rightarrow 0 \geq-a \geq-p$

$$
\begin{aligned}
& \quad \Rightarrow p \geq p-a \geq p-p \Rightarrow p \geq p-a \geq 0 \\
& \therefore p-a \in z_{p}
\end{aligned}
$$

Now $a \oplus(p-a)=$ Remainder when $a+(p-a)$ is divided by P .

$$
=0
$$

$\therefore p-a$ is the additive inverse of $a \neq 0$
Clearly $a \oplus b=$ remainder when $a+b$ is divided by P .

$$
\begin{aligned}
& =\text { remainder when } b+a \text { is divided by P. } \quad p\{\because a+b=b+a\} \\
& =b \oplus a
\end{aligned}
$$

\therefore Addition modulo P is commutative.

$$
\begin{aligned}
(a \odot b) \odot c & =r_{1} \odot c \text { where } a b=q_{1} p+r_{1} \quad 0 \leq r_{1} \leq p \\
& =r_{2} \text { where } r_{1} c=q_{2} p+r_{2} \quad 0 \leq r_{2} \leq p
\end{aligned}
$$

Now $a b c=\left(q_{1} p+r_{1}\right) c=q_{1} p c+r_{1} c=q_{1} p c+q_{2} p+r_{2}$

$$
=\left(q_{1} c+q_{2}\right) p+r_{2}
$$

$\therefore \quad r_{2}$ is the remainder when abc is divided by P .
$a \odot(b \odot c)=a \odot s_{1}$ where $b c=m_{1} p+s_{1} \quad 0 \leq s_{1} \leq p$
$=s_{2}$ where $a s_{1}=m_{2} p+s_{2} 0 \leq s_{2} \leq p$
Now $a b c=a\left(m_{1} p+s_{1}=a m_{1} p+a s_{1}=a m_{1} p+m_{2} p+s_{2}\right.$
$=\left(a m_{1}+m_{2}\right) p+s_{2}$
$\therefore s_{2}$ is the remainder when abc is divided by P .
$\therefore r_{2}=s_{2} \Rightarrow(a \odot b) \odot c=a \odot(b \odot c)$ i.e., multiplication modulo P is associative.
clearly $1 \in z_{p}$ and $a \odot 1=1 \odot a=a, \forall a \in z_{p}$
$\therefore 1$ is the multiplicative identity.
Clearly $a \odot b=b \odot a, \forall a, b \in z_{p}$ since $a b=b a$
\therefore Multiplication modulo P is commutative.
Hence z_{p} is a commutative ring with unity.
Suppose $a \odot b=0$ where $a, b \in z_{p}$
$\Rightarrow 0$ is the remainder when ab is divided by P .
$\Rightarrow p$ divides ab
$\Rightarrow \frac{p}{a}$ or $\frac{p}{b}$ since P is prime.
$\Rightarrow a=0$ or $b=0$ since $0 \leq a \leq p$ and $0 \leq b \leq p$
$\therefore z_{p}$ has no zero divisors.
$\therefore z_{p}$ is an integral domain.
Since z_{p} is a finite integral domain z_{p} is a field.

Remark: the ring z_{p} described above is the same as the ring defined at $1 \& 2$ exampled. (upto isomorphism).
1.11.5 Give example of a division ring which is not a field.

Solution: Let $A=\left\{\left(\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i d\end{array}\right) / a, b, c, d \in R\right\}$
We know that the set M of all matrices with complex numbers as entries is a non-commutative ring with unity.

Clearly A is a non-empty subset of M.

$$
\begin{aligned}
& \text { Let } X, Y \in A \Rightarrow X=\left(\begin{array}{ll}
a_{1}+i b_{1} & c_{1}+i d_{1} \\
-c+i d_{1} & a_{1}-i b_{1}
\end{array}\right) \text { and } \\
& Y=\left(\begin{array}{cc}
a_{2}+i b_{2} & c_{2}+i d_{2} \\
-c_{2}+i d_{2} & a_{2}-i b_{2}
\end{array}\right)
\end{aligned}
$$

Now $X-Y=\left(\begin{array}{cc}\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right) & \left(c_{1}-c_{2}\right)+i\left(d_{1}-d_{2}\right) \\ -\left(c_{1}-c_{2}\right)+i\left(d_{1}-d_{2}\right) & \left(a_{1}-a_{2}\right)-i\left(b_{1}-b_{2}\right)\end{array}\right) \in A$

$$
\begin{gathered}
X Y=\left(\begin{array}{cc}
a_{1}+i b_{1} & c_{1}+i d_{1} \\
-c_{1}+i d_{1} & a_{1}-i b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2}+i b_{2} & c_{2}+i d_{2} \\
-c_{2}+i d_{2} & a_{2}-i b_{2}
\end{array}\right) \\
=\left(\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}+i\left(a_{1} b_{2}+a_{2} b_{2}+c_{1} d_{2}-c_{2} d_{1}\right) & a_{1} c_{2}-b_{1} d_{2}+a_{2} c_{1}+b_{2} d_{1}+i\left(a_{1} d_{2}+b_{1} c_{2}+d_{1} a_{2}-b_{2} c_{1}\right) \\
-c_{1} a_{2}-d_{1} b_{2}-a_{1} c_{2}+b_{1} d_{2}+i\left(-c_{1} b_{2}+a_{2} d_{1}+a_{1} d_{2}+b_{1} c_{2}\right) & -c_{1} c_{2}-d_{1} d_{2}+a_{1} a_{2}-b_{1} b_{2}+i\left(c_{1} d_{2}+c_{2} d_{1}-a_{1} b_{2}-a_{2} b_{1}\right)
\end{array}\right)
\end{gathered}
$$

$$
\therefore X Y \in A
$$

Hence $X, Y \in A \Rightarrow X+Y$ and $\quad X Y \in A$
$\therefore A$ is a subring of M and hence a ring.
Since M is a non commutative ring with unity $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

For $0 \neq X \in A$ where $X=\left(\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right)$
$X \neq 0 \Rightarrow$ one of a, b, c, d must be not equal to zero
$\therefore|X|=a^{2}+b^{2}+c^{2}+d^{2} \neq 0$ and hence X is invertible.
Hence every non-zero element of A has a multiplicative inverse.
$\therefore A$ is a division ring.
Since A is non-commutative it is not a field.
1.11.6 Show that the charecteristic of a Boolean ring R is 2 .

Solution: Let R be a Boolean ring

$$
\Rightarrow a^{2}=a, \forall a \in R
$$

Let $a \in R \Rightarrow a+a \in R$

$$
\begin{aligned}
& \Rightarrow(a+a)^{2}=a+a \quad \text { Since } \mathrm{R} \text { is a Boolean ring } \\
& \Rightarrow(a+a)(a+a)=a+a \\
& \Rightarrow a^{2}+a^{2}+a^{2}+a^{2}=a+a \\
& \Rightarrow a+a+a+a=a+a \\
& \Rightarrow a+a=0 \\
& \Rightarrow 2 a=0
\end{aligned}
$$

\therefore Charecteristics of a Boolean ring is 2 .
1.11.7 If the charecteristic of a ring R is 2 and $a, b \in R$ commute then $(a+b)^{2}=a^{2}+b^{2}$.

Solution: Let R be a ring with charecteristic 2 .
Let $a, b \in R$ such that $a b=b a$
Now $(a+b)^{2}=(a+b)(a+b)$

$$
\begin{aligned}
& =a^{2}+a b+b a+b^{2} \\
& =a^{2}+a b+a b+b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2}+0+b^{2} \text { Since ch. of } \mathrm{R} \text { is } 2,2 \mathrm{a}=0 \forall a \in R \\
& =a^{2}+b^{2}
\end{aligned}
$$

1.11.8 If R is a ring and $C(R)=\{x \in R: a x=x a \forall a \in R\}$ then show that $\mathrm{C}(\mathrm{R})$ is a subring of R . $C(R)$ is called the centre of R.
Solution: Let R be a ring.

$$
C(R)=\{x \in R / a x=x a \forall a \in R\}
$$

clearly $0 \in R$ and $a o=o a=a \forall a \in R$
$\therefore 0 \in C(R)$
$\therefore C(R)$ is a non-empty subset of R .
Let $x, y \in C(R)$
$\Rightarrow a x=x a$ and $a y=y a \forall a \in R$
Now $a(x-y)=a x-a y$

$$
=x a-y a
$$

$$
=(x-y) a \quad \forall a \in R
$$

$a(x y)=(a x) y=(x a) y=x(a y)=x(y a)$
$=(x y) a, \forall a \in R$
$\therefore x-y, x y \in C(R)$
Hence $C(R)$ is a subring of R . by 1.8.4.
1.11.9 The set of all those integers which are multiples of a given integer say m is a subring of the ring of integers.

Solution: Let $S=\{m x / x \in z\}$ where m is a given integer.
Clearly $o \in z \Rightarrow m . o=o \in S$
$\therefore S$ is a non-empty subset of Z.
Let $a, b \in S$

$$
\Rightarrow a=m x \text { and } b=m y \text { for } x, y \in z
$$

Now $a-b=m x-m y$

$$
=m(x-y)
$$

$\therefore a-b \in s \because x-y \in z$
also $a b=m x . m y$

$$
=m \cdot m x y
$$

$$
\therefore a b \in s \text { since } m x y \in z
$$

Hence S is a subring of Z by 1.8.4.
1.11.10 Show that 0 and 1 are the only idempotent elements of an integral domain.

Solution: Let R be an integral domain.
Suppose $a \in R$ is an idempotent element.

$$
\begin{aligned}
& \Rightarrow a^{2}=a \\
& \Rightarrow a^{2}-a=0 \\
& \Rightarrow a(a-1)=0 \\
& \Rightarrow a=0 \text { or } \quad a-1=0 \quad \text { since } \mathrm{R} \text { is an Integral domain. } \\
& \Rightarrow a=0 \text { or } a=1
\end{aligned}
$$

$\therefore 0$ and 1 are the only idempotent elements of an integral domain.

2. Exercise:

1. Prove that the set of even integer is a ring with respect to usual addition and multiplication.
2. In the set of integers addition \oplus, multiplication \otimes are defined as $a \oplus b=a+b-1$ and $a \otimes b=a+b-a b \quad \forall a, b \in z$. Prove that (z, \oplus, \otimes) is a commutative ring.
3. Is $R=\{a \sqrt{2} / a \in Q\}$ a ring under ordinary addition and multiplication of real numbers?
4. Is the set of all pure imaginary numbers $\{i y / y \in R\}$ a ring with respect to addition and multiplication of complex numbers?
5. Let $Q=\left\{\alpha_{0}+\alpha_{1} \bar{i}+\alpha_{2} \bar{j}+\alpha_{3} \bar{k} / \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in R\right\}$ where $\bar{i}, \bar{j}, \bar{k}$ are the quoternion units $\left(i^{2}=j^{2}=k^{2}=i j k=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j\right)$. Show that Q is a division ring with respect to addition and multiplication defined as follows. For $X, Y \in Q$ where
$X=\alpha_{0}+\alpha_{1} \bar{i}+\alpha_{2} \bar{j}+\alpha_{3} \bar{k}, \quad Y=\beta_{0}+\beta_{1} i+\beta_{2} j+\beta_{3} k$.
$X+Y=\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) \bar{i}+\left(\alpha_{2}+\beta_{2}\right) \bar{j}+\left(\alpha_{3}+\beta_{3}\right) \bar{k}$
$X Y=\left(\alpha_{0} \beta_{0}-\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)+\left(\alpha_{0} \beta_{1}-\alpha_{1} \beta_{0}-\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) \bar{i}+\left(\alpha_{0} \beta_{1}+\alpha_{2} \beta_{0}+\alpha_{3} \beta_{1}-\alpha_{1} \beta_{3}\right) \bar{j}+\left(\alpha_{0} \beta_{3}+\alpha_{1} \beta_{2}+\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) \bar{k}$
This ring is called ring of quaternions. This ring is not commutative.
6. Find the Zero divisors of the ring $\left(z_{12},+_{12}, x_{12}\right)$
7. Prove that $\pm 1, \pm i$ are the only four units of the ring of Gaussian Integers $z(i)$.
8. Show that the set of matrices $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ where $a, b, c \in z$ is a subring of the ring of 2×2 matrices whose elements are integers.
9. If R is a division ring show that $C(R)=\{x \in R / x a=a x, \forall a \in R\}$ is a field.
10. Is $s=\{\overline{1,3,5}\}$ a subring of the ring z_{6} of resedue classes modulo 6 under addition and multiplication of resedue classes.
11. Find the centre of the ring of 3×3 matrices $M_{3}(R)$, where R is the field of reals.

- Smt. K. Ruth

LESSON - 2

IDEALS AND HOMOMORPHISM OF RINGS

2.1 Objective of the Lesson:

To learn the definition of ideals, types of ideals, homomorphism of rings and theorems related to them.

2.2 Structure

2.3 Introduction

2.4 Definition of Ideal and Ideal generated by a subset
2.5 Principal ideal and Principal ideal ring.
2.6 Prime ideal and maximal ideal
2.7 Quotient ring
2.8 Homomorphism of rings
2.9 Kernal of a homomorphism
2.10 Isomorphism of rings and Fundamental theorem.
2.11 Summary
2.12 Technical Terms
2.13 Model Questions
2.14 Exercises

2.3 Introduction:

In this lesson we define Right Ideal, Left Ideal Ideal, Principal Ideal, Prime Ideal, Maximal Ideal and Quotient rings. We also define homomorphism of rings and Kernal of a homomorphism.
2.4.1 Right Ideal: Let R be a ring. A nonempty subset I of R is said to be a right ideal of R if
i) $a, b \in I \Rightarrow a-b \in I$
ii) $\quad a \in I, r \in R \Rightarrow a r \in I$
2.4.2 Left Ideal: Let R be a ring : A nonempty subset I of R is said to be a left ideal of R if
i) $a, b \in I \Rightarrow a-b \in I$
ii) $\quad a \in I, r \in R \Rightarrow r a \in I$
2.4.3 Example: 1. The set $I=\left\{\left[\begin{array}{ll}0 & a \\ 0 & b\end{array}\right] / a, b \in z\right\}$ is a left ideal of the ring of 2×2 matrices with integers as entries but not a right ideal.
2. The set $I=\left\{\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] / a, b \in z\right\}$ is a right ideal of the ring of 2×2 matrices with integers as entries but not a left ideal.
2.4.4 Ideal: Let R be a ring. A non-empty subset I of R is said to be an ideal of R if
i) $a, b \in I \Rightarrow a-b \in I$
ii) $\quad a \in I, r \in R \Rightarrow a r$ and $r a \in I$
2.4.5 Example: 1. Let R be a ring. Then $I=\{0\}$ where 0 is the zero element of the ring R is an ideal of R.

For $0-0 \in I$ and $0 . r=r .0=0 \in I, \forall r \in R$
This ideal is called the Null ideal or zero ideal.
2. The ring R itself is an ideal of R.

For $a, b \in R \Rightarrow a-b \in R$ and $a \in R, r \in R \Rightarrow a r$ and $r a \in R$.
This ideal is called the unit ideal.
The above two ideals are called trivial or improper ideals of R.
3. The set of even integers $I=\{2 n / n \in z\}$ is an ideal of the ring of integers.
2.4.6 Note: 1. Every ideal of a ring is a subring of the ring.

Let I be an ideal of a ring R.
Let $a, b \in I \Rightarrow a-b \in I$ since I is an ideal.
$b \in I \Rightarrow b \in R$
$\therefore a \in I, b \in R$ and I is an ideal $\Rightarrow a b \in I$.
Hence by 1.8 .4 I is a subring.
2. The converse of the above note is note true. i.e. every subring of a ring need not be an ideal of the ring.

We know that $(z,+, \times)$ is subring of $(Q,+, \times) \ldots .$.
We have $2 \in z$ and $\frac{1}{4} \in Q$
But $2 \times \frac{1}{4}=\frac{1}{2} \notin Z$
$\therefore Z$ is not an ideal of Q .
2.4.7 Corollary: Let I be an ideal of a ring R with unity element 1 . If $1 \in I$ then $I=R$.

Proof: Let I be an ideal of a ring R with unity element 1 . Suppose $1 \in I$.
Clearly $I \subseteq R$
Let $x \in R$
Now $1 \in I, x \in R$ and I is an ideal.

$$
\begin{align*}
\Rightarrow 1 \cdot x \in I & \\
& \Rightarrow x \in I \tag{2}
\end{align*}
$$

$\therefore R \subseteq I$

From (1) and (2) $\quad I=R$
2.4.8 Theorem: A field has no proper ideals.
(OR)
The only ideals of a field are $\{0\}$ and itself
Proof: Let F be a field.
We know that $I=\{0\}$ and $I=F$ are ideals of F by 2.4.5
Let $I \neq\{0\}$ be an ideal of F.
Since $I \neq\{0\}$ there is $0 \neq a \in I$
$\Rightarrow a \in F \quad$ since $I \subseteq F$
$\Rightarrow \exists a^{-1} \in F$ such that $a a^{-1}=a^{-1} a=1$ since F is a field.
Now $a \in I, a^{-1} \in F$ and I is an ideal

$$
\begin{aligned}
& \Rightarrow a a^{-1} \in I \\
& \Rightarrow 1 \in I
\end{aligned}
$$

Now by 2.4.7 $\quad I=F$
\therefore Every non-zero ideal of F is equal to F itself.
Hence the only ideals of a field are $\{0\}$ and itself.

2.4.9 Algebra of Ideals:

Theorem: The intersection of two ideals of a ring R is an ideal of R.
Proof: Let R be a ring and I_{1}, I_{2} be two ideals of R
Take $I=I_{1} \cap I_{2}$
Clearly $0 \in I_{1}$ and $0 \in I_{2} \Rightarrow 0 \in I_{1} \cap I_{2}=I$
$\Rightarrow \mathrm{I}$ is a non-empty subset of R.
Let $a, b \in I$ and $r \in R$.

$$
\begin{aligned}
a, b \in I & \Rightarrow a, b \in I_{1} \cap I_{2} \\
& \Rightarrow a, b \in I_{1} \text { and } a, b \in I_{2} \\
& \Rightarrow a-b \in I_{1}, r a \text { and } a r \in I_{1} \text { since } I_{1} \text { is an ideal of } \mathrm{R} \text { and } \\
& a-b \in I_{2}, r a \text { and } a r \in I_{2} \text { since } I_{2} \text { is an ideal of } \mathrm{R} .
\end{aligned}
$$

Now $a-b \in I_{1}, a-b \in I_{2} \quad r a \in I_{1}, r a \in I_{2}, a r \in I_{1}, a r \in I_{2}$
$\therefore a-b \in I_{1} \cap I_{2}=I, r a \in I_{1} \cap I_{2}=I, a r \in I_{1} \cap I_{2}=I$.
Hence I is an ideal of R.
2.4.10. Note: Union of two ideals need not be an ideal.
2.4.11 Theorem: Union of two ideals of a ring R is an ideal if and only if one is contained in the other.

Proof: Let R be a ring and I_{1}, I_{2} be two ideals of a ring R.
Suppose $I_{1} \cup I_{2}$ is an ideal of R .

To prove that $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$.
If possible assume that $I_{1} \nsubseteq I_{2}$ or $I_{2} \nsubseteq I_{1}$
$I_{1} \nsubseteq I_{2} \Rightarrow$ There is $a \in I_{1}$ and $a \notin I_{2}$
$I_{2} \nsubseteq I_{1} \Rightarrow$ There is $b \in I_{2}$ and $b \notin I_{1}$

$$
\begin{align*}
& a \in I_{1} \Rightarrow a \in I_{1} \cup I_{2} \tag{2}\\
& b \in I_{2} \Rightarrow b \in I_{1} \cup I_{2}
\end{align*}
$$

Now $a, b \in I_{1} \cup I_{2} \Rightarrow a-b \in I_{1} \cup I_{2}$ since $I_{1} \cup I_{2}$ is an ideal.

$$
a-b \in I_{1} \cup I_{2} \Rightarrow a-b \in I_{1} \text { or } a-b \in I_{2}
$$

If $a-b \in I_{1}$ Then $a-(a-b) \in I_{1}$ since $a \in I_{1}$ and I_{1} is an ideal

$$
\begin{equation*}
\Rightarrow b \in I_{1} \tag{3}
\end{equation*}
$$

A contradiction to (2) $\Rightarrow a-b \notin I_{1}$
If $a-b \in I_{2}$ Then $b+a-b \in I_{2}$ since $b \in I_{2}$ and I_{2} is an ideal

$$
\begin{equation*}
\Rightarrow a \in I_{2} \tag{4}
\end{equation*}
$$

A contradiction to (1) $\therefore a-b \notin I_{2}$
$\therefore a-b \notin I_{1} \cup I_{2}$ from (3) and (4)
$\Rightarrow I_{1} \cup I_{2}$ is not an ideal.
This is a contradiction.
Hence our assumption is wrong.
\therefore either $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$
Conversily suppose $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$
If $I_{1} \subseteq I_{2}$ Then $I_{1} \cup I_{2}=I_{2}$ which is an ideal
If $I_{2} \subseteq I_{1}$ Then $I_{1} \cup I_{2}=I_{1}$ which is an ideal
\therefore Either $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}, \Rightarrow I_{1} \cup I_{2}$ is an ideal
2.4.12 Theorem: If I_{1} and I_{2} are two ideals of a ring R then $I_{2}+I_{2}=\left\{a+b / a \in I_{1}\right.$ and $\left.b \in I_{2}\right\}$ is an ideal of R.

Proof: Let R be a ring and I_{2}, I_{2} be two ideals of R.
Suppose $I_{1}+I_{2}=\left\{a+b / a \in I_{1}\right.$ and $\left.b \in I_{2}\right\}$
Clearly $0 \in I_{1}$ and $0 \in I_{2}$
$\therefore 0=0+0 \in I_{1}+I_{2}$
$\Rightarrow I_{2}+I_{2}$ is a non-empty subset of R.
Let $x, y \in I_{1}+I_{2}$ and $r \in R$
Then $x=a_{1}+b_{1}$ where $a_{1} \in I_{1}$ and $b_{1} \in I_{2}$

$$
y=a_{2}+b_{2} \text { where } a_{2} \in I_{1} \text { and } b_{2} \in I_{2}
$$

Now $x-y=\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)$

$$
=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right)
$$

Since $a_{1}, a_{2} \in I_{1}, b_{1}, b_{2} \in I_{2}$ and I_{1}, I_{2} are ideals
We have $a_{1}-a_{2} \in I_{1}$ and $b_{1}-b_{2} \in I_{2}$

$$
\therefore x-y \in I_{1}+I_{2}
$$

$$
\begin{equation*}
x r=\left(a_{1}+b_{1}\right) r=a_{1} r+b_{1} r \in I_{1}+I_{2} \tag{1}
\end{equation*}
$$

Now $r x=r\left(a_{1}+b_{1}\right)=r a_{1}+r b_{1} \in I_{1}+I_{2} \quad$ since $a_{1} \in I_{1}, b_{1} \in I_{2}, r \in R$ and I_{1}, I_{2} are ideals.
$\therefore r x$ and $x r \in I_{1}+I_{2}$
From (1) and (2) $I_{1}+I_{2}$ is an ideal.
2.4.13 Note: $I_{1}+I_{2}$ is an ideal containing both I_{1} and I_{2}.

By the above theroem $I_{1}+I_{2}$ is an ideal.

Clearly $x \in I \Rightarrow x+0 \in I_{1}+I_{2} \quad$ since $0 \in I_{2}$

$$
\Rightarrow x \in I_{1}+I_{2}
$$

$$
\therefore I_{1} \subseteq I_{1}+I_{2}
$$

$y \in I_{2} \Rightarrow 0+y \in I_{1}+I_{2}$ since $0 \in I_{1}$

$$
\begin{aligned}
& \Rightarrow y \in I_{1}+I_{2} \\
& \therefore I_{2} \subseteq I_{1}+I_{2} \\
& I_{1} \subseteq I_{1}+I_{2}, I_{2} \subseteq I_{1}+I_{2} \Rightarrow I_{1} \cup I_{2} \subseteq I_{1}+I_{2}
\end{aligned}
$$

2.4.14 Definition: Ideal Generated by a subset:

Let R be a ring and S a subset of R. An ideal I of R is said to be generated by S.
$\begin{array}{ll}\text { If i) } S \subseteq I & \text { ii) } I^{1} \text { is an ideal of } \mathrm{R} \text { and } S \subseteq I^{1} \Rightarrow I \subseteq I^{1}\end{array}$
Ideal generated by S is denoted by $\langle S\rangle$
2.4.15 Note: Ideal generated by S is the smallest ideal containing S.
2.4.16 Theorem: If I_{1} and I_{2} are two ideals of ring R then $I_{1}+I_{2}$ is the ideal generated by $I_{1} \cup I_{2}$ i.e. $I_{1}+I_{2}=\left\langle I_{1} \cup I_{2}\right\rangle$

Proof: Let R be a ring and I_{1}, I_{2} be two ideals of a ring R.
By 2.4.12 $I_{1}+I_{2}$ is an ideal of R.
By 2.4.13 $\quad I_{1} \cup I_{2} \subseteq I_{1}+I_{2}$
Let I^{1} be an ideal of R and $I_{1} \cup I_{2} \subseteq I^{1}$

$$
\text { To prove that } I_{1}+I_{2} \subseteq I^{1}
$$

Let $x \in I_{1}+I_{2}$

$$
\Rightarrow x=a+b \text { where } a \in I_{1} \text { and } b \in I_{2}
$$

$a \in I_{1} \Rightarrow a \in I_{1} \cup I_{2} \Rightarrow a \in I^{1}$ since $I_{1} \cup I_{2} \subseteq I^{1}$

$$
\begin{aligned}
& b \in I_{2} \Rightarrow b \in I_{1} \cup I_{2} \Rightarrow b \in I^{1} \\
& \therefore a, b \in I^{1} \text { and } I^{1} \text { is an ideal. } \\
& \Rightarrow a+b \in I^{1} \\
& \quad \Rightarrow x \in I^{1}
\end{aligned}
$$

Hence $I_{1}+I_{2} \subseteq I^{1}$ \qquad
From (1) and (2) $I_{1}+I_{2}=\left\langle I_{1} \cup I_{2}\right\rangle$
2.5.1 Definition: Principal Ideal : Let R be a ring. An ideal I of R is said to be Principal ideal of R if I is generated by a single element of R . i.e. $I=\langle a\rangle$ where $a \in R$.
2.5.2 Example: (1) The null ideal $\{0\}$ of a ring R is a principal ideal.
(2) In a ring R with unity element, R itself is a principal ideal.

Definition: If a and b are nonzero elements of a ring R such that $a b=0$, then a and b are called divisors of zero (or zero divisors)

Definition: A commutative ring R with identity $1 \neq 0$ and no zero divisors is called an integral domain.
2.5.3 Principal Ideal Domain: An integral domain R with unity is said to be a principal ideal domain if every ideal of R is a principal ideal.
2.5.4 Note: Every field is a principal ideal domain. We know that a field has only two ideal $\{0\}$ and itself by 2.4.8.

Clearly $\{0\}$ is generated by 0 i.e. $\{0\}=\langle 0\rangle$
and F is generated by 1 i.e. $F=\langle 1\rangle$
\therefore The ideals of a field are principal ideals and hence a field is a principal ideal domain.
2.5.5. Theorem: The ring of integers is a principal ideal domain

Proof: Let $(z,+,$.$) be the ring of integers and I$ be an ideal of Z.
If $I=\{0\}$ then I is a principal ideal.
Suppose $I \neq\{0\}$
$\Rightarrow \exists 0 \neq a \in I$
$\Rightarrow-a \in I$ since I is an ideal.
Since $a,-a \in I, I$ contains atleast one postive integer.
Let I^{+}be the set of all positive integers of I.
Then I^{+}is non-empty.
\therefore By well ordering principal I^{+}has a least element say "b".
We claim that $I=\langle b\rangle$
Let $x \in I$
Now x, b are integers and $b \neq 0$.
By division algorithm there exists $q, r \in z$
Such that $x=b q+r$ where $0 \leq r<b$.
Now $b \in I, q \in z$ and I is an ideal.
$\Rightarrow b q \in I$
$\therefore x-b q \in I$ since $x \in I$
$\Rightarrow r \in I$
Since b is the least positive integer in I and $0 \leq r<b$. r can not be positive.
$\therefore r=0$

$$
\begin{aligned}
& \Rightarrow x=b q, q \in z \\
& \therefore I=\{b q / q \in z\}=\langle b\rangle
\end{aligned}
$$

Hence Z is a principal ideal domain.
2.6.1 Definition: Prime ideal: A proper ideal I of a commutative ring R is said to be a prime ideal if $a, b \in R$ and $a . b \in I \Rightarrow a \in I$ or $b \in I$
2.6.2 Example : In an integral domain, null ideal is prime.

Let R be an integral domain.
Suppose $a, b \in R$ and $a b \in\{0\}$

$$
\begin{aligned}
& \Rightarrow a b=0 \\
& \Rightarrow a=0 \text { or } b=0 \quad \because \text { R has no zero divisors } \\
& \Rightarrow a \in\{0\} \text { or } b \in\{0\}
\end{aligned}
$$

$\therefore\{0\}$ is a prime ideal.
2.6.3 Definition: Maximal ideal: Let R be a ring and M is an ideal of R such that $M \neq R$. M is said to be a maximal ideal of R if for any ideal I of R such that $M \subseteq I \subseteq R$ then $I=M$ or $I=R$.
2.6.4 Theroem: An ideal M of the ring of integers Z is maximal iff M is generated by some prime number.

Proof: Let Z be the ring of integers.
We know that Z is a principal ideal domain (by 2.5.5)
Suppose M is a maximal ideal of Z. Then $M=\langle n\rangle$, where $n>0$.
To prove that n is a prime number.
If possible assume that n is not prime.
$\Rightarrow n=p q$ where p and q are integers such that $1<p<n$ and $1<q<n$.
Now $I=\langle p\rangle$ is an ideal of Z and $M \subseteq I \subseteq Z$
M is maximal $\Rightarrow I=M$ or $I=Z$
If $I=M$ then $\langle p\rangle=\langle n\rangle$

$$
\begin{aligned}
& \Rightarrow p=n m \text { for some } m \in z \\
& \Rightarrow p=p q m, \text { since } n=p q . \\
& \Rightarrow m q=1 \\
& \Rightarrow m=1 \text { and } q=1
\end{aligned}
$$

This is a contradiction.
If $I=Z$ then $\langle p\rangle=\langle 1\rangle$
$\Rightarrow p=1$. Again this is a contradiction.
\therefore Our assumption that n is not prime is wrong.

Hence $M=\langle n\rangle$ where n is a prime number.
Conversely suppose M is generated by a prime number
i.e. $M=\langle n\rangle$, where n is a prime number.

To prove that M is a maximal ideal of Z.
Let I be an ideal of Z such that $M \subseteq I \subseteq Z$.
I is an ideal of $\mathrm{Z} \Rightarrow I=\langle m\rangle$ for since $m>0$.

$$
\begin{aligned}
M \subseteq I \subseteq Z & \Rightarrow\langle n\rangle \subseteq\langle m\rangle \subseteq Z \\
& \Rightarrow n \in\langle m\rangle \\
& \Rightarrow n=m q, q \in z \\
& \Rightarrow m=1 \text { or } q=1, \text { since } \mathrm{n} \text { is prime. }
\end{aligned}
$$

$$
\text { If } \mathrm{m}=1 \text { then }\langle m\rangle=\langle 1\rangle=Z
$$

$$
\Rightarrow I=Z
$$

If $q=1$ then $n=m$

$$
\begin{aligned}
& \Rightarrow\langle n\rangle=\langle m\rangle \\
& \Rightarrow M=I
\end{aligned}
$$

\therefore Either $I=M$ or $I=Z$
$\therefore M$ is a maximal ideal of Z.
2.6.5 Note: In the ring of integers an ideal generated by a composite number is not maximal.

Eq: Let $M=\langle 6\rangle$
Clearly $\langle 6\rangle \subseteq\langle 3\rangle \subseteq Z$ and $\langle 3\rangle \neq\langle 6\rangle$ and $\langle 3\rangle \neq Z$
$\therefore M$ is not maximal.

2.7.1 Quotient Rings:

Coset: Let R be a ring and I an ideal of R . Then $r+I=\{r+a / a \in I\}$ is called a coset of I generated by r.

Since $(R,+)$ is an abelian group $r+I=I+r, \forall r \in R, r+I$ is also called the resedue class containing r .
2.7.2 Theorem: Let R be a ring and I an ideal of R.

Then $R / I=\{r+I / r \in R\}$ is a ring with respect to the addition and multiplication of cosets defined by $(a+I)+(b+I)=(a+b)+I$

$$
(a+I)(b+I)=a b+I \text { for } a+I, b+I \in R / I
$$

Proof: Let R be a ring and I an ideal of R.

$$
R / I=\{r+I / r \in R\}
$$

Addition of resedue classes is well defined:
Suppose $a_{1}+I=a_{2}+I$ and $b_{1}+I=b_{2}+I$

$$
\begin{aligned}
& \Rightarrow a_{1}-a_{2} \in I \text { and } b_{1}-b_{2} \in I . \text { Since from groups } H+a=H+b \Leftrightarrow a-b \in H . \\
& \Rightarrow a_{1}-a_{2}+b_{1}-b_{2} \in I . \text { Since } I \text { is an ideal. } \\
& \Rightarrow\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right) \in I \\
& \Rightarrow\left(a_{1}+b_{1}\right)+I=\left(a_{2}+b_{2}\right)+I \\
& \Rightarrow\left(a_{1}+I\right)+\left(b_{1}+I\right)=\left(a_{2}+I\right)+\left(b_{2}+I\right)
\end{aligned}
$$

\therefore Addition is well defined.
Multiplication is well defined:

$$
\begin{aligned}
\text { Suppose } & a_{1}+I=a_{2}+I \text { and } b_{1}+I=b_{2}+I \\
\Rightarrow & a_{1} \in a_{2}+I \text { and } b_{1} \in b_{2}+I \\
\Rightarrow & a_{1}=a_{2}+u_{1} \text { and } b_{1}=b_{2}+u_{2} \text { for some } u_{1}, u_{2} \in I
\end{aligned}
$$

Now $a_{1} b_{1}=\left(a_{2}+u_{1}\right)\left(b_{2}+u_{2}\right)$

$$
\begin{aligned}
& =a_{2} b_{2}+a_{2} u_{2}+u_{1} b_{2}+u_{1} u_{2} \\
& \Rightarrow a_{1} b_{1}-a_{2} b_{2}=a_{2} u_{2}+u_{1} u_{2} \\
& \Rightarrow a_{1} b_{1}-a_{2} b_{2} \in I \text { since } u_{1}, u_{2} \in I, a_{2}, b_{2} \in R \text { and } \mathrm{I} \text { is an ideal. } \\
& \Rightarrow a_{1} b_{1}+I=a_{2} b_{2}+I \\
& \Rightarrow\left(a_{1}+I\right)\left(b_{1}+I\right)=\left(a_{2}+I\right)\left(b_{2}+I\right)
\end{aligned}
$$

\therefore Multiplication is well defined.
Closure Law : Let $a+I, b+I \in R / I$

$$
\begin{aligned}
& \Rightarrow a, b \in R \\
& \Rightarrow a+b \in R \\
& \Rightarrow(a+b)+I \in R / I \\
& \Rightarrow(a+I)+(b+I) \in R / I
\end{aligned}
$$

Associative law : Let $a+I, b+I, c+I \in R / I$

$$
\text { Now } \begin{aligned}
{[(a+I)+(b+I)]+(c+I) } & =((a+b)+I)+(c+I) \\
& =[(a+b)+c]+I \\
& =[(a+(b+c)]+I \text { since } a, b, c, \in R \\
& =(a+I)+[(b+c)+I] \\
& =(a+I)+[(b+I)+(c+I)]
\end{aligned}
$$

Existence of Identity:
Now $(0+I)+(a+I)=(0+a)+I=a+I, \forall a+I \in R / I$
$\therefore a+I=I$ is the zero element of R / I
Existence of Inverse:

$$
\text { Let } a+I \in R / I \Rightarrow a \in R
$$

$$
\Rightarrow-a \in R
$$

$$
\Rightarrow-a+I \in R / I
$$

Now $(a+I)+(-a+I)=a+(-a)+I$

$$
=0+I
$$

$\therefore-a+I$ is the additive inverse of $a+I$
Commutative Law : Let $a+I, b+I \in R / I$

$$
\begin{aligned}
(a+I)+(b+I)=(a+b)+I & =(b+a)+I \quad \text { since } a, b \in R \\
& =(b+I)+(a+I)
\end{aligned}
$$

Closure with respect to multiplication:

$$
\text { Let } \begin{aligned}
a+I, b+I \in R / I & \Rightarrow a, b \in R \\
& \Rightarrow a b \in R \text { since } \mathrm{R} \text { is a ring. } \\
& \Rightarrow a b+I \in R / I \\
& \Rightarrow(a+I)(b+I) \in R / I
\end{aligned}
$$

Associative Law for multiplication.
Let $a+I, b+I, c+I \in R / I$

$$
\begin{aligned}
{[(a+I)(b+I)(c+I]} & =(a b+I)(c+I) \\
& =(a b) c+I \\
& =a(b c)+I \quad \text { since } a, b, c \in R \\
& =(a+I)(b c+I) \\
& =(a+I)[(b+I)(c+I)]
\end{aligned}
$$

Distributive Law:

$$
\begin{aligned}
\text { Let } a+I, b+I, c+I & \in R / I \\
(a+I)[(b+I)+(c+I)] & =(a+I)[(b+c)+I] \\
& =a(b+c)+I \\
& =(a b+a c)+I \text { since } a, b, c \in R
\end{aligned}
$$

$$
\begin{aligned}
& =(a b+I)+(a c+I) \\
& =(a+I)(b+I)+(a+I)(c+I)
\end{aligned}
$$

Similarly $[(b+I)+(c+I)](a+I)=(b+I)(a+I)+(c+I)(a+I)$
$\therefore R / I$ is a ring.
The ring R / I is called the quotient ring of R modulo I .
2.7.3 Note: If R is a commutative ring and I is an ideal of R then the Quotient ring R / I is also commutative.

Proof: Let R be a commutative ring and I an ideal of R.
Let $a+I, b+I \in R / I$

$$
\begin{aligned}
(a+I)(b+I) & =a b+I \\
& =b a+I \text { Since } \mathrm{R} \text { is commutative. } \\
& =(b+I)(a+I)
\end{aligned}
$$

$\therefore \mathrm{R} / \mathrm{I}$ is commutative.
2. If R is a ring with unity then the Quotient ring R / I is also a ring with unity.

Proof: Let R be a ring with unity and I an ideal of R.

$$
1 \in R \Rightarrow 1+I \in R / I
$$

Now $(1+I)(a+I)=1 a+I=a+I$

$$
(a+I)(1+I)=a 1+I=a+I
$$

$\therefore 1+I$ is the unity element of R / I
Hence R / I is a ring with unity.
2.7.4 Theorem: An ideal I of a commutative ring R with unity is prime iff the Quotient ring R / I is an integral domain.

Proof: Let R be a commutative ring with unity and I an ideal of R
\Rightarrow The quotient ring R / I is a commutative ring with unity.
Suppose I is a prime ideal.

To show that the Quotient ring R / I is an integral domain.
Since R / I is a commutative ring it is enough to show that R / I has no zero divisors.
Let $a+I, b+I \in R / I$ and

$$
(a+I)(b+I)=0+I
$$

$\Rightarrow a b+I=I$
$\Rightarrow a b \in I$
$\Rightarrow a \in I$ or $b \in I$. Since I is prime.
$\Rightarrow a+I=I$ or $b+I=I$
$\therefore R / I$ has no zero divisors.
Hence R / I is an integral domain.
Conversily suppose R / I is an integral domain.
To prove that I is a prime ideal.
Let $a, b \in R$ and $a b \in I$

$$
\begin{aligned}
& \Rightarrow a b+I=I \\
& \Rightarrow(a+I)(b+I)=I
\end{aligned}
$$

$$
\Rightarrow a+I=I \text { or } b+I=I \quad \text { Since } R / I \text { is an integral domain. }
$$

$$
\Rightarrow a \in I \text { or } b \in I
$$

$\therefore I$ is a prime ideal.
2.7.5 Theorem: An ideal I of a commutative ring R with unity is maximal iff the quotient ring R / I is a field.

Proof: Let R be a commutative ring with unity and I an ideal of R.
$\Rightarrow \quad$ The Quotient ring R / I is a commutative ring with unity.
Suppose I is a maximal ideal of R.
To prove that R / I is a field.
Since R / I is a commutative ring with unity it is enough to prove every non-zero element of R / I has multiplicative inverse.

Let $0+I \neq a+I \in R / I$
$a+I \neq 0+I \Rightarrow a \notin I$
We have $\langle a\rangle$ is a principal ideal of R .
$\therefore\langle a\rangle+I$ is an ideal of R and $I \subseteq\langle a\rangle+I \subseteq R \quad$ Since $a \notin I$
Since I is a maximal ideal either $\langle a\rangle+I=I$ or $\langle a\rangle+I=R$
But $a \notin I \Rightarrow\langle a\rangle+I \neq I$ since $a \in\langle a\rangle+I$
$\therefore\langle a\rangle+I=R$
$1 \in R \Rightarrow 1 \in\langle a\rangle+I$
$\Rightarrow 1=a r+x$ for some $r \in R$ and $x \in I$
$\Rightarrow 1-a r=x \in I$
$\Rightarrow 1+I=a r+I$ since $a+H=b+H \Leftrightarrow a-b \in H$
$\Rightarrow 1+I=(a+I)(r+I)$
$\therefore 0+I \neq a+I \in R / I \Rightarrow \exists \quad r+I \in R / I$ such that $(a+I)(r+I)=1+I$
Hence every non zero element of R / I has multiplicative inverse.
$\therefore R / I$ is a field.
Conversely suppose R / I is a field.
To prove that I is a maximal ideal.
Let I^{1} be an ideal of R such that $I \subseteq I^{1} \subseteq R$.
If possible assume that $I^{1} \neq I$
\Rightarrow there is $a \in I^{1}$ and $a \notin I$
$\Rightarrow a+I \neq I$
i.e. $a+I$ is a non-zero element of R / I.
\Rightarrow There exists $b+I \in R / I$ such that $(a+I)(b+I)=1+I \quad$ since R / I is a field.

$$
\begin{aligned}
& \Rightarrow a b+I=1+I \\
& \quad \Rightarrow 1-a b \in I \\
& \quad \Rightarrow 1-a b \in I^{1} \quad \because I \subseteq I^{1}
\end{aligned}
$$

Now $a \in I^{1}$ and $b \in R, I^{1}$ is an ideal $\Rightarrow a b \in I^{1}$

$$
\begin{aligned}
& \therefore 1-a b+a b \in I^{1} \\
& \Rightarrow 1 \in I^{1} \\
& \Rightarrow I^{1}=R \text { by corollary 2.4.7 }
\end{aligned}
$$

$\therefore I$ is a maximal ideal of R .
2.7.6 Note: (1) If R is a commutative ring with unity, then every maximal ideal is a prime ideal.

Let M be a maximal ideal of R.
$\Rightarrow R / M$ is a field by theorem 2.7.5
$\Rightarrow R / M$ is an integral domain
$\Rightarrow M$ is a prime ideal by theorem 2.7.4
2. The converse of the above need not be true i.e., every prime ideal of a commutative ring with unity need not be a maximal ideal.

For example in the ring of integers null ideal is prime but not maximal

$$
\text { For }\{0\} \subseteq\langle 2\rangle \subseteq Z \text { and }\langle 2\rangle \neq\{0\} \text { and }\langle 2\rangle \neq Z
$$

2.8.1 Homomorphism of rings:

Definition: Let R and R^{\prime} be two rings. A mapping $f: R \rightarrow R^{1}$ is said to be a homomorphism
if i) $f(a+b)=f(a)+f(b)$
ii) $f(a b)=f(a) f(b)$ for all $a, b \in R$
2.8.2 Definition: Let R and R^{\prime} be two rings. A mapping $f: R \rightarrow R^{1}$ is said to be
i) Monomorphism if f is a homomorphism and one-one
ii) Epimorphism if f is a homomorphism and onto
iii) Isomorphism if f is a homomorphism one-one and onto.
2.8.3 Definition: A homomorphism $f: R \rightarrow R$ of a ring R into itself is called an endomorphism.
2.8.4 Definition: An isomorphism $f: R \rightarrow R$ of a ring R into itself is called an automorphism.
2.8.5 Example: 1. Let R and R^{\prime} be two rings $f: R \rightarrow R^{1}$ defined by $f(x)=0^{1}, \forall x \in R$ where 0^{1} is the zero element of R is a homomorphism.

Solution: Let $a, b \in R$.

$$
\begin{aligned}
& f(a+b)=0^{1}=0^{1}+0^{1}=f(a)+f(b) \\
& f(a b)=0^{1}=0^{1} \cdot 0^{1}=f(a) f(b)
\end{aligned}
$$

$\therefore f$ is a homomorphism.
This homomorphism is called Zero homomorphism.
2. Let R be a ring. Then the identity mapping $I: R \rightarrow R$ is an automorphism.

Solution : Let $a, b \in R$

$$
\begin{aligned}
& I(a+b)=a+b=I(a)+I(b) \\
& I(a b)=a b=I(a) \cdot I(b)
\end{aligned}
$$

$\therefore I$ is a homomorphism.
We know that identity mapping is a bijection.
$\therefore I$ is an automorphism.
This is called identity homomorphism.
2.8.6 Note: If $f: R \rightarrow R^{1}$ is an isomorphism then we say R is isomorphic to R^{1} and we write $R \cong R^{1}$.

2.8.7 Elementary Properties of Homomorphism:

Theorem: Let $f: R \rightarrow R^{1}$ be a homorphism of a ring R into a ring R^{1} and $0,0^{1}$ be the zero elements of R and R^{\prime} respectively then for $a, b \in R$.
i) $f(0)=0^{1}$
ii) $f(-a)=-f(a)$ iii) $f(a-b)=f(a)-f(b)$

Proof: $f: R \rightarrow R^{1}$ is a homomorphism.
i) $0 \in R \Rightarrow f(0) R^{1}$

$$
\begin{aligned}
& f(0)=f(0+0) \text { since } 0+0=0 \\
& \Rightarrow f(0)=f(0)+f(0) \text { since } \mathrm{f} \text { is a homomorphism. } \\
& \Rightarrow f(0)+0^{1}=f(0)+f(0) \text { since } 0^{1} \text { is the zero element of } R^{1} . \\
& \quad \Rightarrow 0^{1}=f(0) \text { by left cancellation law. }
\end{aligned}
$$

ii) $a \in R \Rightarrow \exists-a \in R$ such that $a+(-a)=0$

$$
\begin{aligned}
\therefore f & {[a+(-a)]=f(0) } \\
& \Rightarrow f(a)+f(-a)=0^{1} \text { by (i) and } \mathrm{f} \text { is a homomorphism. } \\
& \Rightarrow f(-a)=-f(a)
\end{aligned}
$$

iii) Let $a, b \in R$

$$
\begin{aligned}
f(a-b)=f[a+(-b)] & =f(a)+f(-b) \\
& =f(a)+[-f(b)] \\
& =f(a)-f(b)
\end{aligned}
$$

2.8.8 Homomorphic Image: Let $f: R \rightarrow R^{1}$ be a homomorphism of a ring R into a ring R^{1}. Then the image set $\{f(x) / x \in R\}$ is called the homomorphic image of R and is denoted by $f(R)$.
2.8.9 Theorem: A homomorphic image of a ring is a ring.

Proof: Let $f: R \rightarrow R^{1}$ be a homomorphism and $f(R)=\{f(x) / x \in R\}$ be the homomorphic image of R.

To prove that $f(R)$ is a ring.
Clearly $f(R) \subseteq R^{1}$ and $f(0)=0^{1} \in f(R)$
$\therefore f(R)$ is a non-empty subset of R^{1}.
Let $a, b \in f(R)$
$\Rightarrow a=f(x)$ and $b=f(y)$, where $x, y \in R$
$x, y \in R \Rightarrow x-y \in R$ and $x y \in R$
$\Rightarrow f(x-y) \in f(R)$ and $f(x y) \in f(R)$
$\Rightarrow f(x)-f(y) \in f(R)$ and $f(x y) \in f(R)$
$\Rightarrow a-b \in f(R)$ and $a b \in f(R)$
$\therefore f(R)$ is a subring of R^{1}
Hence $f(R)$ is a ring.
2.8.10 Note: A homomorphic image of a commutative ring is commutative.

Proof: Let $f ; R \rightarrow R^{1}$ be a homomorphism from a commutative ring R into a ring R^{1}.
$f(R)=\{f(x) / x \in R\}$ is the homomorphic image of R .
Let $a, b \in f(R) \Rightarrow a=f(x), b=f(y)$ where $x, y \in R$.
Now $a b=f(x) f(y)$
$=f(x y)$ since f is a homomorphism.
$=f(y x)$ since R is commutative.
$=f(y) f(x)$
$=b a$
$\therefore f(R)$ is commutative.
From 2.8.9 $f(R)$ is a ring $\Rightarrow f(R)$ is a commutative ring.

2.9.1 Kernal of a homomorphism:

Let $f: R \rightarrow R^{1}$ be a homomorphism from a ring R into a ring R^{1}. Then $\left\{x \in R / f(x)=0^{1}\right\}$ is called Kernel of f and is denoted by $\operatorname{ker} f \cdot 0^{1}$ is the zero element of R^{1}.
2.9.2 Theorem: If $f: R \rightarrow R^{1}$ is a homomorphism of a ring R into a ring R^{1} then ker f is an ideal of R.

Proof: Let $f: R \rightarrow R^{1}$ be a homomorphism of a ring R into a ring R^{1}.
$\operatorname{ker} f=\left\{x \in R / f(x)=0^{1}\right\}$ where 0^{1} is the zero element of R^{1}.

Clearly $0 \in R$ and $f(0)=0^{1}$
$\Rightarrow 0 \in \operatorname{ker} f$
$\therefore \operatorname{ker} f$ is a nonempty subset of R .
Let $a, b \in \operatorname{ker} f$ and $r \in R$
$a, b \in \operatorname{ker} f \Rightarrow f(a)=0^{1}$ and $f(b)=0^{1}$

$$
\begin{align*}
& \Rightarrow f(a)-f(b)=0-0^{1}=0^{1} \\
& \Rightarrow f(a-b)=0^{1} \tag{1}
\end{align*}
$$

$\therefore a-b \in \operatorname{ker} f$

$$
\begin{align*}
& f(a r)=f(a) f(r)=0^{1} f(r)=0^{1} \\
& f(r a)=f(r) f(a)=f(r) 0^{1}=0^{1} \tag{2}
\end{align*}
$$

$\therefore a r \in \operatorname{ker} f$ and $r a \in \operatorname{ker} f$
From (1) and (2) ker f is an ideal of R .
2.9.3 Theorem: A homomorphism from a ring R into a ring R^{1} is a monomorphism iff $\operatorname{ker} f=\{0\}$.

Proof: Let $f: R \rightarrow R^{1}$ be a homomorphism from a ring R into a ring R^{1}.
Suppose f is a homomorphism.
To prove that $\operatorname{ker} f=\{0\}$
Let $a \in \operatorname{ker} f \Rightarrow f(a)=0^{1}$

$$
\begin{aligned}
& \Rightarrow f(a)=f(0) \\
& \Rightarrow a=0 \text { since } \mathrm{f} \text { is one-one }
\end{aligned}
$$

\therefore ker $f=\{0\}$.
Suppose ker $f=\{0\}$.
To prove that f is one - one.

Suppose $a, b \in R$ and $f(a)=f(b)$

$$
\begin{aligned}
& \Rightarrow f(a)-f(b)=0^{1} \\
& \Rightarrow f(a-b)=0^{1} \\
& \Rightarrow a-b \in \operatorname{ker} f \\
& \Rightarrow a-b=0 \text { since } \operatorname{ker} f=\{0\} . \\
& \Rightarrow a=b
\end{aligned}
$$

$\therefore f$ is one - one.
Hence f is a monomorphism.
2.9.4 Theorem: If I is an ideal of a ring R then there is an epimorphism f from R onto R / I such that $\operatorname{ker} f=\mathrm{I}$

Proof: Let R be a ring and I am ideal of R.
Define $f: R \rightarrow R / I$ as $f(a)=a+I, \forall a \in R$
f is well defined : Suppose $a, b \in R$ and $a=b$

$$
\begin{aligned}
& \Rightarrow a+I=b+I \\
& \Rightarrow f(a)=f(b)
\end{aligned}
$$

$\therefore f$ is well defined.
$f(a+b)=(a+b)+I=(a+I)+(b+I)=f(a)+(b)$
$f(a b)=a b+I=(a+I)(b+I)=f(a)(b), \forall a, b \in R$
$\therefore f$ is a homomorphism.
f is onto : Let $x+I \in R / I$
$\Rightarrow x \in R$
Now $f(x)=x+I$
$\therefore x+I \in R / I \Rightarrow \exists x \in R$ such that $f(x)=x+I$
Hence f is onto.
$\therefore f: R \rightarrow R / I$ is an epimorphism.
\therefore ker $f=\{a \in R / f(a)=0+I\}=\{a \in R / f(a)=I\}$

$$
\begin{aligned}
& =\{a \in R / a+I=I\} \\
& =\{a \in R / a \in I\} \\
& =I
\end{aligned}
$$

2.9.5 Note: The above epimorphism is called canonical mapping or natural mapping.

2.10.1 Fundamental Theorem of Homomorphism:

If $f: R \rightarrow R^{1}$ is an epimorphism from a ring R into a ring R^{1} then $R / \operatorname{ker} f \cong R^{1}$
(OR)
Every homomorphic image of a ring is isomorphic to some quotient ring.
Proof: Suppose $f: R \rightarrow R^{1}$ is an epimorphism from a ring R into a ring R^{1}.
Let $\operatorname{ker} f=I$
We know that $\operatorname{ker} f$ is an ideal of R .
$\therefore R / \operatorname{ker} f$ is a quotient ring.
Define $\phi: R / I \rightarrow R^{1}$ by

$$
\phi(a+I)=f(a) \forall a+I \in R / I
$$

ϕ is well defined and one - one :

$$
\text { Let } \begin{aligned}
a+ & I, b+I \in R / I \\
\qquad & \begin{aligned}
& a+I=b+I \\
& \Leftrightarrow a-b \in I \\
& \Leftrightarrow f(a-b)=0^{1} \text { since } I=\operatorname{ker} f . \\
& \Leftrightarrow f(a)-f(b)=0^{1} \\
& \Leftrightarrow f(a)=f(b)
\end{aligned}
\end{aligned}
$$

$$
\Leftrightarrow \phi(a+I)=\phi(b+I)
$$

$\therefore \phi$ is well defined and one - one.
ϕ is onto :

$$
\begin{aligned}
& \text { Let } y \in R^{1} \\
& \text { since } f: R \rightarrow R^{1} \text { is onto there is } x \in R \text { such that } \\
& f(x)=y \\
& x \in R \Rightarrow x+I \in R / I
\end{aligned}
$$

$\therefore y \in R^{1} \Rightarrow$ there is $x+I \in R / I$ and $\phi(x+I)=f(x)=y$
$\therefore \phi$ is onto.
ϕ is a homomorphism:

$$
\text { Let } a+I, b+I \in R / I
$$

$$
\phi[(a+I)+(b+I)]=\phi[(a+b)+I]=f(a+b)
$$

$$
=f(a)+(b)
$$

$$
=\phi[(a+I)+\phi(b+I)]
$$

$$
\begin{aligned}
\phi[(a+I)(b+I)]=\phi[a b+I] & =f(a b) \\
& =f(a) f(b) \\
& =\phi(a+I) \phi(b+I)
\end{aligned}
$$

$\therefore \phi$ is a homomorphism which is one-one and onto i.e. ϕ is an isomorphism from R / I to R^{1}.

$$
\therefore R / I \cong R^{1} .
$$

2.10.2 Definition: A ring R is said to be embedded in a ring R^{1} if there exists a monomorphism from R into R^{1}.
2.10.3 Example: A subring S of a ring R can be embedded in ring R.

For $I: S \rightarrow R$ defined by $I(a)=a, \forall a \in s$ is a monomorphism from S into R .
2.10.4 Theorem: Every integral domain can be embedded in a field.

Proof: Let D be an integral domain.

$$
\text { Let } R=\{(a, b) / a, b \in D, b \neq 0\}
$$

Define \sim on R as $(a, b) \sim(c, d) \Leftrightarrow a d=b c$
We claim that \sim is an equivalence relation on R.
Let $(a, b) \in R \Rightarrow a, b \in D$ and $b \neq 0$

$$
\begin{aligned}
& \Rightarrow a b=b a \quad \text { Since } D \text { is commutative } \\
& \Rightarrow(a, b) \sim(a, b)
\end{aligned}
$$

$\therefore \sim$ is reflexive.
Let $(a, b),(c, d) \in R$
Suppose $(a, b) \sim(c, d) \Rightarrow a d=b c$

$$
\begin{aligned}
& \Rightarrow d a=c b \text { Since } \mathrm{D} \text { is commutative } \\
& \Rightarrow c b=d a \\
& \Rightarrow(c, d) \sim(a, b)
\end{aligned}
$$

$\therefore \sim$ is symmetric.
Let $(a, b),(c, d),(e, f) \in R$
Suppose $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$
$\Rightarrow a d=b$ and $c f=d e$
$\Rightarrow(a d) f=(b c) f$
$\Rightarrow(a d) f=b(c f)$
$\Rightarrow(a d) f=b(d e) \quad$ Since $c f=d e$
$\Rightarrow(d a) f=(b d) e \quad$ since D is commutative
$\Rightarrow d(a f)=d(b e)$
$\Rightarrow a f=b e$ by left cancellation law.
$\Rightarrow(a, b) \sim(e, f)$
$\therefore \sim$ is transitive.
Hence \sim is an equivalence relation on R.

Let $\frac{a}{b}$ be the equivalence class containing (a, b) with respect to the equivalence relation \sim.
Let $F=\left\{\frac{a}{b} / a, b \in D, a \neq 0\right\}$ the set of all equivalence classes under \sim.
We define addition + and multiplication . as $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}, \forall \frac{a}{b}, \frac{c}{d} \in F$
To show that + and . are well defined.
Suppose $\frac{a}{b}=\frac{a_{1}}{b_{1}}$ and $\frac{c}{d}=\frac{c_{1}}{d_{1}}$
$\Rightarrow(a, b) \sim\left(a_{1}, b_{1}\right)$ and $(c, d) \sim\left(c_{1}, d_{1}\right)$
$[x]=[y]$ iff $x \sim y$
$\Rightarrow a b_{1}=b a_{1}$ and $c d_{1}=d c$
Now $(a d+b c) b_{1} d_{1}=a d b_{1} d_{1}+b c b_{1} d_{1}$

$$
\begin{aligned}
& =a b_{1} d d_{1}+b b_{1} c d_{1} \\
& =b a_{1} d d_{1}+b b_{1} d c_{1} \\
& =a_{1} d_{1} b d+b_{1} c_{1} d d \\
& =\left(a_{1} d_{1}+b_{1} c_{1}\right) b d
\end{aligned}
$$

$\therefore(a d+b c, b d) \sim\left(a_{1} d_{1}+b_{1} c_{1}, b_{1} d_{1}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{a d+b c}{b d}=\frac{a_{1} d_{1}+b_{1} c_{1}}{b_{1} d_{1}} \\
& \Rightarrow \frac{a}{b}+\frac{c}{d}=\frac{a_{1}}{b_{1}}+\frac{c_{1}}{d_{1}}
\end{aligned}
$$

$\therefore+$ is well defined.
Also $a c b_{1} d_{1}=a b_{1} c d_{1}$

$$
\begin{aligned}
& =b a_{1} d c_{1} \text { Since } a b_{1}=b a_{1} \text { and } c d_{1}=d c_{1} \\
& =b d a_{1} c_{1}
\end{aligned}
$$

$\therefore(a c, b d) \sim\left(a_{1} c_{1}, b_{1} d_{1}\right)$
$\Rightarrow \frac{a c}{b d}=\frac{a_{1} c_{1}}{b_{1} d_{1}}$
$\Rightarrow \frac{a}{b} \cdot \frac{c}{d}=\frac{a_{1}}{b_{1}} \cdot \frac{c_{1}}{d_{1}}$
\therefore. is well defined.
$\therefore+$ and . are binary operations on F.
We prove that $(F,+,$.$) is a field.$
First we prove that if $x \neq 0$ the $\frac{a}{b}=\frac{a x}{b x}$ and
if $x \neq 0, y \neq 0$ the $\frac{o}{x}=\frac{o}{y}$ and $\frac{x}{x}=\frac{y}{y}$
We have $a(b x)=(a b) x=(b a) x=b(a x)$

$$
\begin{aligned}
& \Rightarrow(a, b) \sim(a x, b x) \\
& \Rightarrow \frac{a}{b}=\frac{a x}{b x}
\end{aligned}
$$

Also $o y=o=x o \Rightarrow(o, x) \sim(o, y)$

$$
\Rightarrow \frac{o}{x}=\frac{o}{y}
$$

Also $x y=x y \Rightarrow(x, x) \sim(y, y)$

$$
\Rightarrow \frac{x}{x}=\frac{y}{y}
$$

Addition is associative:
Let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in F$
$\left(\frac{a}{b}+\frac{c}{d}\right)+\frac{e}{f}=\frac{a d+b c}{b d}+\frac{e}{f}$

$$
\begin{aligned}
& =\frac{(a d+b c) f+b d e}{b d f} \\
& =\frac{a d f+b c f+b d e}{b d f} \\
& =\frac{a d f+b(c f+d e)}{b(d f)} \\
& =\frac{a}{b}+\frac{c f+d e}{d f} \\
& =\frac{a}{b}+\left(\frac{c}{d}+\frac{e}{f}\right)
\end{aligned}
$$

\therefore addition is associative.
Existance of additive identity:
If $x \neq 0$ then $\frac{o}{x} \in F$
Now $\frac{a}{b}+\frac{o}{x}=\frac{a x+b o}{b x}=\frac{a x}{b x}=\frac{a}{b}$ from (1)

$$
\frac{o}{x}+\frac{a}{b}=\frac{b o+a x}{x b}=\frac{a x}{b x}=\frac{a}{b} \quad \forall \frac{a}{b} \in F
$$

$\therefore \frac{o}{x}$ is the additive identity of F .
Existance of Inverse:
Let $\frac{a}{b} \in F \Rightarrow a, b \in D$ and $b \neq 0$

$$
\begin{aligned}
& \Rightarrow-a, b \in D \text { and } b \neq 0 \\
& \Rightarrow \frac{-a}{b} \in F
\end{aligned}
$$

Now $\frac{a}{b}+\frac{(-a)}{b}=\frac{a b+b(-a)}{b b}=\frac{a b-b a}{b b}=\frac{a b-a b}{b b}=\frac{o}{b b}=\frac{o}{x}$ from (1)

$$
\frac{-a}{b}+\frac{a}{b}=\frac{(-a) b+a b}{b b}=\frac{-a b+a b}{b b}=\frac{o}{b b}=\frac{o}{x}
$$

$\therefore \frac{-a}{b}$ is the additive inverse of $\frac{a}{b}$.

Addition is commutative:

Let $\frac{a}{b}, \frac{c}{d} \in F$
$\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}=\frac{b c+a d}{d b}=\frac{c b+d c}{d b}=\frac{c}{d}+\frac{a}{b}$
$\therefore+$ is commutative.
$\therefore(F,+)$ is an abelian group.
Multiplication is associative:

$$
\begin{aligned}
& \text { Let } \frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in F \\
& \qquad\left[\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)\right]\left(\frac{e}{f}\right)=\left(\frac{a c}{b d}\right)\left(\frac{e}{f}\right)=\frac{(a c) e}{(b d) f}=\frac{a(c e)}{b(d f)}=\left(\frac{a}{b}\right)\left[\left(\frac{c}{d}\right)\left(\frac{e}{f}\right)\right]
\end{aligned}
$$

\therefore Multiplication is assocative in F .
Existance of Multiplicative Identity:
Let $0 \neq x \in D$ then $\frac{x}{x} \in F$
For $\frac{a}{b} \in F, \quad\left(\frac{a}{b}\right)\left(\frac{x}{x}\right)=\frac{a x}{b x}=\frac{a}{b}$ and
$\left(\frac{x}{x}\right)\left(\frac{a}{b}\right)=\frac{x a}{x b}=\frac{a x}{b x}=\frac{a}{b}$ from (1)
$\therefore \frac{x}{x}$ when $x \neq 0$ is the multiplicative identity of F .
Existance of Multiplicative Identity:
Let $\frac{a}{b} \neq \frac{o}{b} \in F$

$$
\begin{aligned}
& \Rightarrow a \neq o \\
& \Rightarrow \frac{b}{a} \in F
\end{aligned}
$$

Now $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=\frac{a b}{b a}=\frac{a b}{a b}=\frac{x}{x} \quad$ from (1)

$$
\left(\frac{b}{a}\right)\left(\frac{a}{b}\right)=\frac{b a}{a b}=\frac{a b}{a b}=\frac{x}{x}
$$

$\therefore \frac{b}{a}$ is the multiplicative inverse of $\frac{a}{b}$ in F.
Multiplication is commutative:
Let $\frac{a}{b}, \frac{c}{d} \in F$

$$
\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)=\frac{a c}{b d}=\frac{c a}{d b}=\left(\frac{c}{d}\right)\left(\frac{a}{b}\right)
$$

\therefore. is commutative.
$\therefore\left(F-\left\{\frac{o}{x}\right\},.\right)$ is an abelion group.
Distributive Law:
Let $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in F$
$\left(\frac{a}{b}\right)\left[\frac{c}{d}+\frac{e}{f}\right]=\frac{a}{b}\left(\frac{c f+d e}{d f}\right)=\frac{a(c f+d e)}{b d f}=\frac{a c f+a d e}{b d f}$
$\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)+\left(\frac{a}{b}\right)\left(\frac{e}{f}\right)=\frac{a c}{b d}+\frac{a e}{b f}=\frac{a c b f+b d a e}{b d b f}=\frac{(a c f+a d e) b}{b d f b}=\frac{a c f+a d e}{b d f}$
$\therefore\left(\frac{a}{b}\right)\left[\frac{c}{d}+\frac{e}{f}\right]=\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)+\left(\frac{a}{b}\right)\left(\frac{e}{f}\right)$
Similarly $\left[\frac{c}{d}+\frac{e}{f}\right]\left(\frac{a}{b}\right)=\left(\frac{c}{d}\right)\left(\frac{a}{b}\right)+\left(\frac{e}{f}\right)\left(\frac{a}{b}\right)$
$\therefore(F,+,$.$) is a field.$

Define $f: D \rightarrow F$ by $f(a)=\frac{a x}{x}$ where $o \neq x \in D$
Clearly f is a mapping.
To show that f is a monomorphism.
f is a homomorphism:
Let $a, b \in D$
Now $f(a+b)=\frac{(a+b) x}{x}=\frac{(a+b) x^{2}}{x^{2}}$

$$
\begin{aligned}
& =\frac{a x^{2}+b x^{2}}{x^{2}} \\
& =\frac{(a x) x+(b x) x}{x x} \\
& =\frac{a x}{x}+\frac{b x}{x} \\
& =f(a)+f(b)
\end{aligned}
$$

$f(a b)=\frac{a b x}{x}=\frac{a b x^{2}}{x^{2}}=\frac{a x b x}{x x}=\frac{a x}{x} \cdot \frac{b x}{x}$

$$
=f(a) \cdot f(b)
$$

$\therefore \mathrm{f}$ is a homomorphism.
f is one-one:
Let $a, b \in D$ and $f(a)=f(b)$

$$
\begin{aligned}
& \Rightarrow \frac{a x}{x}=\frac{b x}{x} \\
& \Rightarrow(a x, x) \sim(b x, x) \\
& \Rightarrow a x x=x b x \\
& \Rightarrow a x^{2}=b x^{2} \\
& \Rightarrow(a-b) x^{2}=o \\
& \Rightarrow a-b=o \\
& \Rightarrow a=b
\end{aligned}
$$

$\therefore f$ is one - one and hence a monomorphism.
\therefore Every integral domain can be embedded in a field.

2.11.11 Summary:

In this lesson we defined ideal, principal ideal, prime ideal, maximal ideal, quotient ring homomorphism of rings, kernal of a homomorphism. We learnt algebra of ideals. Theorems on ideals, quotient rings homomorphism of rings, kernel of a homomorphism, fundamental theorem and embedding of rings.

2.12 Technical Terms:

i) Ideal
ii) Ideal generated by a subset
iii) Principal ideal
iv) Prime ideal
v) Maximal ideal
vi) Quotient ring
vii) Homomorphism of rings
viii) Kernal of a homomorphism
iv) Embedding of rings

2.13.1 Model Questions:

2.4.3 The set $I=\left\{\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right) / a, b \in z\right\}$ is a left ideal of the ring of 2×2 matrices with integers as entries but not a right ideal.
Solution: Clearly I is a non-empty subset of the ring M of 2×2 matrices with integers as entries.
Let $A=\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & c \\ 0 & d\end{array}\right) \in I$ and $C=\left(\begin{array}{ll}x & y \\ r & s\end{array}\right) \in M$
$\Rightarrow a, b, c, d, x, y, r, s \in z$
$A-B=\left(\begin{array}{ll}0 & a-c \\ 0 & b-d\end{array}\right) \in I \quad$ Since $a-c, b-d \in z$
$C A=\left(\begin{array}{ll}x & y \\ r & s\end{array}\right)\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}0 & a x+b y \\ 0 & a r+b s\end{array}\right) \in I \quad$ Since $a x+b y, a r+b s \in z$
$\therefore \mathrm{I}$ is a left ideal.
But $A C=\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)\left(\begin{array}{ll}x & y \\ r & s\end{array}\right)=\left(\begin{array}{ll}a r & a s \\ b r & b s\end{array}\right) \notin I$
Hence I is not a right ideal.
2.13.2 If R is a commutative ring and $a \in R$ then $R a=\{r a / r \in R\}$ is an ideal of R .

Solution: Let $R a=\{r a / r \in R\}$
Clearly $o \in R \Rightarrow o a \in R a$

$$
\therefore o x=o \in R a
$$

$\therefore R a$ is a non-empty subset of R.
Let $x, y \in R a$ and $r \in R$

$$
\Rightarrow x=r_{1} a \text { and } y=r_{2} a \text { where } r_{1}, r_{2} \in R
$$

Now $x-y=r_{1} a-r_{2} a=\left(r_{1}-r_{2}\right) a \in R a$

$$
r x=r\left(r_{1} a\right)=r r_{1} a \in R a
$$

$x r=\left(r_{1} a\right) r=r\left(r_{1} a\right)=r r_{1} \in R a \quad$ Since R is commutative.
$\therefore x, y \in R a$ and $r \in R \Rightarrow x-y, r x, x r \in R a$
$\therefore R a$ is an ideal of R .
2.13.3 If R is a ring and $a \in R$ then Ra is a left ideal and $a R=\{a r / r \in R\}$ is an ideal of the ring of integers z.
2.13.4 If m is a fixed integer. Then $I=\{m x / x \in Z\}$ is an ideal of the ring of integers Z.

Solution: Let z be the ring of integers and $m \in z$.
We know that z is a commutative ring and $m \in z$.
$\therefore I=\{m x / x \in z\}$ is an ideal of $z \quad$ by 2.13.2.
2.13.5 Union of two ideals need not be an ideal (2.4.10)

Solution: Let $I_{1}=\{2 x / x \in z\}$ and $I_{2}=\{3 x / x \in z\}$
Then by 2.13.4 I_{1} and I_{2} are ideals of the ring of integers Z.
$I_{1} \cup I_{2}=\{\ldots-4,-3,-2,0,2,3,4,6,8,9 \ldots\}$
$3,2 \in I_{1} \cup I_{2}$ but $3-2=1 \notin I_{1} \cup I_{2}$
$\therefore I_{1} \cup I_{2}$ is not an ideal.
2.13.6 A commutative ring R with unity element $1 \neq 0$ is a field if R has no proper ideals.

Solution: Let R be a commutative ring with unity element 1 .
Suppose R has no proper ideals.
To prove that R is a field.
Let $0 \neq a \in R$
$\Rightarrow R a=\{r a / r \in R\}$ is an ideal of R by 2.13.2.
Since R has no proper ideals either $R a=\{0\}$ or $R a=R$
But $0 \neq a \in R a$ since $a=1 . a$ and $1 \in R$
$\therefore R a \neq\{0\}$
$\Rightarrow R a=R$
But $1 \in R \Rightarrow 1 \in R a$

$$
\Rightarrow 1=b a \quad \text { for some } b \in R
$$

$\therefore \mathrm{b}$ is the multiplicative inverse of a .
\therefore Every non zero element of the commutative ring R with unity element has multiplicative inverse.
$\Rightarrow R$ is a field.
2.13.7 If I is an ideal of a ring R and $r I=\{x \in R / x a=0$ for all $a \in I\}$
then $r I$ is an ideal of R .
Solution: Let R be a ring and I an ideal of R.
Let $r I=\{x \in R / x a=0$ for all $a \in I\}$
We know that $o \in R$ and $o a=a$ for all $a \in I$
$\therefore o \in r I$
$\Rightarrow r I$ is a non-empty subset of R .
Let $x, y \in r I$ and $r \in R$.

$$
x, y \in r I \Rightarrow x a=0 \text { and } y a=0 \text { for all } a \in I
$$

$$
\begin{aligned}
& \Rightarrow x a-y a=0 \\
& \Rightarrow(x-y) a=0 \text { for all } a \in I
\end{aligned}
$$

$\therefore x-y \in r I$.

$$
\begin{aligned}
x \in r I & \Rightarrow x a=0 \quad \forall a \in I \\
& \Rightarrow r(x a)=0 \quad \forall a \in I \\
& \Rightarrow(r x) a=0 \quad \forall a \in I \\
& \Rightarrow r x \in r(I)
\end{aligned}
$$

Further I is an ideal $\Rightarrow r a \in I$ for all $a \in I$
$x \in r I \Rightarrow x a=0$ for all $a \in I$
$\Rightarrow x(r a)=0$ since $r a \in I$ for all $a \in I$
$\Rightarrow(x r) a=0$ for all $a \in I$
$\Rightarrow x r \in r(I)$
$\therefore r(I)$ is an ideal of R .
2.13.8 If n is a fixed positive integer then the mapping $f: z \rightarrow n z$ defined by $f(x)=n x$ is not a homomorphism .
Solution: Z is the set of integers.

$$
f: z \rightarrow n z \text { defined by } f(x)=n x \text { where } \mathrm{n} \text { is a fixed postive integer. }
$$

For $x, y \in z$

$$
\begin{aligned}
& f(x+y)=n(x+y) \\
&=n x+n y \\
&=f(x)+f(y) \\
& f(x y)=n x y \\
& f(x) \cdot(y)= n x . n y=n^{2} x y \\
& \therefore f(x y) \neq f(x) f(y)
\end{aligned}
$$

$\therefore f$ is not a homomorphism.
2.13.9 If R is a ring with unity element 1 and f is an epimorphism from R onto a ring R^{1} then $f(1)$ is the unity element of R^{1}.
Solution: Let R be a ring with unity element 1 .
Suppose $f: R \rightarrow R^{1}$ is an epimorphism.

$$
1 \in R \Rightarrow f(1) \in R^{1}
$$

To show that $f(1)$ is the unity element of R^{1}.
Let $b \in R^{1}$
$f: R \rightarrow R^{1}$ is onto \Rightarrow there is $a \in R$ such that $f(a)=b$

$$
a \in R \Rightarrow a . l=a=l . a
$$

Now $f(1) b=f(1) . f(a)$

$$
\begin{aligned}
& =f(1 . a) \\
& =f(a) \\
& =b
\end{aligned}
$$

Also $b f(1)=f(a) \cdot f(1)$

$$
\begin{aligned}
& =f(a 1) \\
& =f(a) \\
& =b
\end{aligned}
$$

$\therefore f(1)$ is the unity element of R^{1}.
2.13.10 The mapping $f: C \rightarrow C$ defined by $f(x+i y)=x-i y$ is an isomorphism on the set of complex numbers C.
Solution: We know that the set of complex numbers C is a ring.

$$
f: C \rightarrow C \text { defined by } f(x+i y)=x-i y
$$

Let $a+i b, c+i d \in C$

$$
\begin{aligned}
f[(a+i b)+(c+i d)] & =f[(a+c)+i(b+d)] \\
& =(a+c)-i(b+d) \\
& =a+c-i b-i d \\
& =a-i b+c-i b \\
= & f(a+i b)+f(c+i d) \\
f[(a+i b)(c+i d)]= & f[(a c-b d)+i(a d+b c)] \\
= & (a c-b d)-i(a d+b c) \\
& =(a-i b)(c-i d) \\
& =f(a+i b) f(c+i d)
\end{aligned}
$$

$\therefore f$ is a homomorphism.
f is one - one:
Suppose $f(a+i b)=f(c+i d)$

$$
\begin{aligned}
& \Rightarrow a-i b=c-i d \\
& \Rightarrow a=c \text { and } b=d \\
& \Rightarrow a+i b=c+i d
\end{aligned}
$$

$\therefore f$ is one - one.
f is onto:
Let $x+i y \in c$
$\Rightarrow x-i y \in c$ and $f(x-i y)=x+i y$
$\therefore f$ is onto.
Hence f is an isomorphism.
2.13.11 If F is a field and $f: F \rightarrow F$ is a homomorphism then f is an isomorphism or zero homomorphism.

Solution: Suppose F is a field and $f: F \rightarrow F$ is a homomorphism.
Then $\operatorname{ker} f$ is an ideal of F .
But we know that $\{0\}$ and F are the only ideals of $F \quad$ by 2.4.8.
\therefore ker $f=\{0\}$ or $\operatorname{ker} f=F$
Suppose ker $f=\{0\}$
We know that a homomorphism f is a monomorphism
Iff $\operatorname{ker} f=\{0\}$ by 2.9.3
$\therefore f: F \rightarrow F$ is a monomorphism.
Hence f is an isomorphism.
Suppose ker $f=F$
By definition of ker f we have $f(x)=0^{1}, \forall x \in F$.

Where 0^{1} is the zero element of F.
$\Rightarrow \mathrm{f}$ is zero homomorphism.

2.14 Exercises:

1. Show that the set $I=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) / a, b \in z\right\}$ is a right ideal but not a left ideal of the ring of 2×2 matrices M over integers.
2. Show that if R is a commutative ring with unity element and $a \in R$ then $R a=\{r a / r \in R\}$ is a principal ideal generated by a.
3. Find all the principal ideals of the ring $\left(z_{6},{ }_{6}, x_{6}\right)$.
4. If R is a commutative ring with unity and $a, b \in R$ then show that $\{a x+b y / x, y \in R\}$ is the ideal generated by a, b.
5. If I is an ideal of R and $[R: I]=\{x \in R / r x \in I$ for every $r \in R\}$ then $[R: I]$ is an ideal of R and $I \subseteq[R: I]$.
6. Let $R^{1}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) / a \in R\right\}$ where R is the ring of real numbers. Prove that $f: R^{1} \rightarrow R$ defined by $f\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=a$ for all $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \in R^{1}$ is an isomorphism.
7. Show that every homomorphic image of a commutative ring is commutative.
8. Give an example to show that a homomorphic image of an integral domain may not be an integral domain.
9. Let R be a ring with unity. For each inversible element $a \in R$, the mapping $f: R \rightarrow R$ defined by $f(x)=a x a^{-1}, \forall x \in R$ is an automorphism.
10. Let R be the ring of all real valued continuous functions defined on $[0,1]$ and $M=\left\{f(x) \in R / f\left(\frac{1}{3}\right)=0\right\}$. Show that M is maxmimal ideal of R .

LESSON - 3

RINGS OF POLYNOMIALS

3.1 Objective of the Lesson:

To learn the definition of a Polynomial over a ring, polynomial ring, degree of a polynomial and evaluation homomorphism.

3.2 Structure

3.3 Introduction

3.4 Definition of a Polynomial over a ring.
3.5 Algebra of Polynomials
3.6 Degree of a Polynomial
3.7 Polynomial Ring
3.8 Evaluation Homomorphism
3.9 Summary
3.10 Technical terms
3.11 Model Examination Questions
3.12 Exercises

3.3 Introduction:

In this lesson we will introduce the notion of a polynomial ring over a ring, over an integral domain and over a field. We also introduce evaluation homomorphism.

3.4.1 Definition of a Polynomial over a ring:

Let R be a ring and x an indeterminate. If $a_{0}, a_{1}, a_{2} \ldots \in R$ and $a_{i}=0$ for all except a finite number of values of i then a formal sum $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots$. is called a polynomial over R . if $f(x)=a_{0}+a_{1} x+\ldots+\ldots a_{n} x^{n}+\ldots$ has $a_{i}=0$ for all $\mathrm{i}>\mathrm{n}$, then we donate $f(x)$ by $a_{0}+a_{1} x+\ldots+a_{n} x^{n}$.
3.4.2 Example: 1. $f(x)=3+x+4 x^{2}-5 x^{4}$ is a polynomial over z .
2. $f(x)=\frac{1}{2}+2 x^{2}-\frac{3}{7} x^{3}$ is a polynomial over Q .
3. $f(x)=1+x^{2}+4 x^{3}$ is a polynomial over Z_{5}.
3.4.3 Note : 1. The set of all polynomials over a ring R with intdeterminate x is denoted by $R[x]$.
2. We omit altogether from the formal sum any term of the form $0 x^{i}$.
3.4.4 Note: 1. Let R be a ring. A polynomial over R can also be defined as a sequence $\left(a_{0}, a_{1}, a_{2} \ldots a_{n}, \ldots.\right)$ of elements of R , where all but a finite number of a_{i} 's are zero.
\therefore A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ can also be denoted by $\left(a_{0}, a_{1} \ldots a_{n} \ldots\right)$.
2. If $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ is a polynomial over a ring R then $a_{0}, a_{1}, a_{2} \ldots$ are called coefficients of $f(x) . a_{0}, a_{1} x, a_{\alpha} x^{2} \ldots$ are called constant term, x term, x^{2} term $\ldots x^{n}$ term... of $f(x)$.
3.4.4. Zero Polynomial: If 0 is the zero element of a ring R then $f(x)=0+0 x+0 x^{2}+0 x^{n}+\ldots .=(0,0,0, \ldots 0 \ldots)$ is called the zero polynomial. It is denoted by 0 or $0(x)$.
3.4.5 Constant Polynomial: Let R be a ring. Then any element a of the ring is a constant polynomial $f(x)=a+0 x+0 x^{2}+\ldots$. It is usually written as $f(x)=a$.

3.5.1 Algebra of Polynomials:

Equity of Polynomials: Two polynomials $\left(a_{0}, a_{1} \ldots a_{2} \ldots\right)$ and $g=\left(b_{0}, b_{1} \ldots . . b_{n} \ldots\right)$ over a ring R are said to be equal if $a_{i}=b_{i}$ for all $i \geq 0$.

If f and g are equal polynomials we write $f=g$.

3.5.2 Addition of Polynomials:

Let $f=\left(a_{0}, a_{1}, a_{2} \ldots a_{m} \ldots\right)$ and $g=\left(b_{0}, b_{1}, b_{2} \ldots b_{n} \ldots\right)$ be two polynomials over a ring R . the sum of f and g is denoted by $f+g=\left(c_{0}, c_{1}, c_{\alpha} \ldots c_{k} \ldots\right)$ where $c_{i}=a_{i}+b_{i}$ for $i=0,1,2, \ldots .$.
3.5.3 Example: If $f=(2,3,-4,0,0, \ldots)$ and $g=(3,-2,0,-3,0,0 \ldots)$ are two polynomials over the ring of integers z then $f+g=(5,-1,-4,-3,0,0 \ldots)=5+x-4 x^{2}-3 x^{3}$

3.5.4 Multiplication of Polynomials:

Let $f=\left(a_{0}, a_{1}, a_{2} \ldots a_{m} \ldots\right)$ and $g=\left(b_{0}, b_{1}, b_{2} \ldots b_{n} \ldots\right)$ be two polynomials. Over a ring R. The product of f and g is denoted by $f g$ and $f g=\left(c_{0}, c_{1}, c_{2} \ldots c_{p} \ldots\right)$ where $c_{i}=a_{0} b_{i}+a_{1} b_{i-1}+\ldots+a_{i} b_{0}$ i.e. $c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}=\sum_{j+k=i} a_{j} b_{k}$.
3.5.5. Example : If $f=(1,3,4,0,0 \ldots$.$) and g=(2,2,0,5,0,0, \ldots$.$) over z_{6}$ find $f g$.

$$
\begin{aligned}
& f=1+3 x+4 x^{2} \quad g=2+2 x+0 x^{2}+5 x^{3} \\
& f g=1 \times{ }_{6} 2+\left(1 \times{ }_{6} 2+{ }_{6} 3 \times{ }_{6} 2\right) x+\left(1 \times{ }_{6} 0+{ }_{6} 3 \times 6+{ }_{6} 4 \times{ }_{6} 2\right) x^{2} \\
& +\left(1 \times \times_{6} 5+{ }_{6} 3 \times 0+{ }_{6} 4 \times 6\right) x^{3} \\
& =2+2 x+2 x^{2}+x^{3}
\end{aligned}
$$

3.6.1 Degree of a Polynomial:

Let $f=\left(a_{0}, a_{1}, \ldots a_{2} \ldots\right)$ be a non-zero polynomial over a ring R . The largest integer i for which $a_{i} \neq 0$ is called the degree of the polynomial f . It is denoted by $\operatorname{deg} f(x)$ or $\operatorname{deg} f$.
3.6.2 Note: 1. The degree of a non zero polynomial $f=\left(a_{0}, a_{1}, \ldots a_{2} \ldots\right)$ is n if $a_{n} \neq 0$ and $a_{i}=0 \quad \forall i>n$.
2. The degree of a non zero constant polynomial is zero
3. The degree of the zero polynomial is not defined.
3.6.3 Definition: Leading Coefficient: If the degree of the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ is n then $a_{n} \neq 0$ is called leading coefficient in $f(x)$.
3.6.4 Example: 1. The degree of the polynomial $f(x)=3-2 x+x^{4}+x^{6}$ over the ring of integers is 6 .
2. The degree of the polynomial $f(x)=\frac{7}{4}$ over the ring of rational numbers is zero.
3.6.5 Theorem: Let $f(x), g(x)$ be two non zero polynomials over a ring R the
i) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}$ if $f(x)+g(x) \neq 0(x)$.
ii) $\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)$ if $f(x) g(x) \neq 0(x)$ where $0(x)$ is the zero polynomial.

Proof: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}$ be two polynomials over a ring R with $\operatorname{deg} f(x)=m$ and $\operatorname{deg} g(x)=n$.

$$
\begin{aligned}
\therefore a_{m} \neq 0 \text { and } a_{i}=0 \quad \forall i>m \text { and } \\
b_{n} \neq 0 \text { and } b_{i}=0 \quad \forall i>n
\end{aligned}
$$

Case i): Suppose $m>n$ then $\max \{m, n\}=m$

$$
\begin{aligned}
& f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\ldots+\left(a_{n}+b_{n}\right) x^{n}+a_{n+1} 1^{n+1}+\ldots+a_{m} x^{m} \\
& \therefore \operatorname{deg}[f(x)+g(x)]=m=\max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}
\end{aligned}
$$

Case ii) Suppose $m<n$ then $\max \{m, n\}=n$

$$
\begin{aligned}
& f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots+\left(a_{m}+b_{m}\right) x^{m}+b_{n+1} x^{m+1}+\ldots+b_{n} x^{n} \\
& \therefore \operatorname{deg}[f(x)+g(x)]=n=\max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}
\end{aligned}
$$

Case iii) Suppose $m=n$

$$
\begin{aligned}
& f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots+\left(a_{m}+b_{m}\right) x^{m} \\
& \therefore \operatorname{deg}[f(x)+g(x)] \leq m=\max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}
\end{aligned}
$$

ii) $f(x) \cdot g(x)=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x \ldots$

$$
=d_{0}+d_{1} x+d_{2} x^{2}+\ldots
$$

Where $d_{k}=\sum_{i+j=k} a_{i} b_{j}$ from the definition.
Suppose $k>m+n \Rightarrow i+j>m+n$

$$
\Rightarrow i>m \text { or } j>n .
$$

But $i>m \Rightarrow a_{i}=0$ and $j>n \Rightarrow b_{j}=0$
$\Rightarrow a_{i} b_{j}=0$ if $i>m$ or $j>n$
$\Rightarrow a_{i} b_{j}=0$ if $i+j>m+n$
$\Rightarrow d_{k}=0$ if $k>m+n$
$\therefore \operatorname{deg}(f(x) g(x)) \leq m+n=\operatorname{deg} f(x)+\operatorname{deg} g(x)$
3.6.6 Corollary: If $f(x)$ and $g(x)$ are two nonzero polynomials over an integral domain R then $\operatorname{deg}[f(x) \cdot g(x)]=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.

Proof: Let $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$ be two polynomials over an integral domain R with $\operatorname{deg} f(x)=m$ and $\operatorname{deg} g(x)=n$.

$$
\begin{aligned}
& \therefore a_{m} \neq 0 \text { and } a_{i}=0 \quad \forall i>m \\
& b_{n} \neq 0 \text { and } b_{i}=0 \quad \forall i>n \\
& a_{m} \neq 0, b_{n} \neq 0 \Rightarrow a_{m} b_{n} \neq 0 \text { since } \mathrm{R} \text { is an integral domain. }
\end{aligned}
$$

Now $f(x) . g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots+d_{m+n} x^{m+n}+\ldots$
Where $d_{m+n}=a_{0} b_{m+n}+a_{1} b_{m+n-1}+\ldots+a_{m} b_{n}+a_{m+1} b_{n-1}+\ldots+a_{m+n} b_{0}$

$$
=a_{m} b_{n} \quad \text { since } a_{i}=0 \text { for } i>m \text { and }
$$

$$
b_{i}=0 \text { for } i>n
$$

$$
\neq 0
$$

$\therefore \operatorname{deg}[f(x) \cdot g(x)] \geq m+n$
By 3.6.5 deg $[f(x) . g(x)] \leq m+n$
Hence $\operatorname{deg}[f(x) . g(x)]=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.
3.6.7 Corollary: If $f(x)$ and $g(x)$ are non zero polynomials over an integral domain or field then $\operatorname{deg} f(x) \leq \operatorname{deg}[f(x) . g(x)]$.

Proof: Let $f(x)$ and $g(x)$ be two polynomials over an integral domain or field.

We always have $\operatorname{deg} f(x) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x) \quad$ since $\operatorname{deg} g(x) \geq 0$.
$\Rightarrow \operatorname{deg} f(x) \leq[\operatorname{deg} f(x) . \operatorname{deg} g(x)]$ by 3.6.6.
3.7.1 Theorem: The set of all polynomials over a ring R is a ring with respect to addition and multiplication of polynomials.

Proof: Let $R[x]$ be the set of all polynomials over a ring R with indeterminate x .
Let $f(x)=a_{0}+a_{1} x+\ldots ., \quad g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots ., \quad h(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots . . \in R[x]$

$$
\begin{aligned}
f(x)+g(x) & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\ldots+\left(a_{m}+b_{m}\right) x^{m} \ldots \ldots \\
& =c_{0}+c_{1} x+c_{2} x^{2}+\ldots .
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \cdot g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots . . \text { where } d_{k}=\sum_{i+j=k} a_{i} b_{j} \\
& a_{i}, b_{i} \in R \Rightarrow a_{i}+b_{i} \text { and } a_{i} b_{i} \in R \quad \forall i, j \\
& \Rightarrow c_{i} \text { and } d_{k} \in R \quad \forall i, k
\end{aligned}
$$

$$
\therefore f(x)+g(x) \text { and } f(x) g(x) \in R[x] .
$$

$$
\therefore+\text { and . are binary operations on } R[x] .
$$

Commutative w.r. to +

$$
\begin{aligned}
f(x)+g(x) & =\sum_{i=1}^{\infty} a_{i} x^{i}+\sum_{i=1}^{\infty} b_{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty}\left(b_{i}+a_{i}\right) x^{i} \quad \text { since } a_{i}+b_{i}=b_{i}+a_{i}, \forall a_{i}, b_{i} \in R \\
& =\sum_{i=0}^{\infty}\left(b_{i} x^{i}+a_{i} x^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{\infty} b_{i} x^{i}+\sum_{i=0}^{\infty} a_{i} x^{i} \\
& =g(x)+f(x)
\end{aligned}
$$

\therefore Addition is commutative.
Associative Law w.r.to +.

$$
\begin{aligned}
{[f(x)+g(x)]+h(x) } & =\left[\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i}\right]+\sum_{i=0}^{\infty} c_{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}+\sum_{i=0}^{\infty} c_{i} x^{i} \\
& \left.=\sum_{i=0}^{\infty}\left[\left(a_{i}+b_{i}\right)+c_{i}\right)\right] x^{i} \\
& =\sum_{i=0}^{\infty}\left[a_{i}+\left(b_{i}+c_{i}\right)\right] x^{i} \quad \text { since }\left(a_{i}+b_{i}\right)+c_{i}=a_{i}+\left(b_{i}+c_{i}\right) \text { in R. } \\
& =\sum_{i=0}^{\infty}\left[a_{i} x^{i}+\left(b_{i}+c_{i}\right) x^{i}\right] \\
& =\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty}\left(b_{i}+c_{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} a_{i} x^{i}+\left[\sum_{i=0}^{\infty} b_{i} x^{i}+\sum_{i=0}^{\infty} c_{i} x^{i}\right] \\
& =f(x)+[g(x)+h(x)]
\end{aligned}
$$

\therefore addition is associative.

Existance of zero element:

The zero polynomial $0(x)=0+0 x+0 x^{2}+\ldots=\sum_{i=0}^{\infty} 0 x^{i} \in R[x]$

$$
f(x)+0(x)=\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} 0 x^{i}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{\infty}\left(a_{i}+0\right) x^{i} \\
& =\sum_{i=0}^{\infty} a_{i} x^{i} \text { Since } a_{i}+0=a_{i} \forall a_{i} \in R .
\end{aligned}
$$

$\therefore 0(x)$ is the zero element of $R[x]$.

Existance of Additive inverse:

$$
\begin{gathered}
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[x] \Rightarrow a_{i} \in R \forall i \\
\Rightarrow-a_{i} \in R \text { such that } a_{i}+\left(-a_{i}\right)=0 \\
\Rightarrow \sum_{i=0}^{\infty}\left(-a_{i}\right) x^{i} \in R[x] \\
\Rightarrow(-f)(x)=\sum_{i=0}^{\infty}\left(-a_{i}\right) x^{i} \in R[x] \\
\text { Now } \begin{aligned}
\Rightarrow f(x)+(-f)(x) & =\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty}\left(-a_{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty}\left[a_{i}+\left(-a_{i}\right)\right] x^{i} \\
& =\sum_{i=0}^{\infty} 0 x^{i} \\
& =0(x)
\end{aligned}
\end{gathered}
$$

\therefore Every element of $R[x]$ has additive inverse.

Associative Law w.r.to multiplication:

$$
[f(x) \cdot g(x)] h(x)=\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right) \sum_{i=0}^{\infty} c_{i} x^{i}
$$

$$
\begin{aligned}
& =\left[\sum_{k=0}^{\infty}\left(\sum_{i+j=k} a_{i} b_{i}\right) x^{k}\right] \sum_{i=0}^{\infty} c_{i} x^{i} \\
& =\sum_{n=0}^{\infty}\left[\sum_{i+j+s=n}\left(a_{i} b_{i}\right) c_{s}\right] x^{n} \\
& =\sum_{n=0}^{\infty}\left[\sum_{k+s=n}\left(\sum_{i+j=k} a_{i} b_{i}\right) c_{s}\right] x^{n}
\end{aligned}
$$

$$
\begin{aligned}
f(x)[g(x) h(x)] & =\left[\sum_{i=0}^{\infty} a_{i} x^{i}\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} c_{i} x^{i}\right)\right] \\
& =\sum_{i=0}^{\infty} a_{i} x^{i}\left[\sum_{s=0}^{\infty}\left(\sum_{j+k=s} b_{j} c_{k}\right) x^{i}\right] \\
& =\sum_{n=0}^{\infty}\left[\sum_{i+s=n}\left(a_{i} \sum_{j+k=s} b_{j} c_{k}\right)\right] x^{i} \\
& =\sum_{n=0}^{\infty}\left[\sum_{i+j+k=n} a_{i}\left(b_{j} c_{k}\right)\right] x^{i}
\end{aligned}
$$

$\therefore[f(x) g(x)] h(x)=f(x)[g(x) h(x)]$
Multiplication is associative.

Distributive Law:

$$
\begin{aligned}
f(x)[g(x)+h(x)] & =\sum_{n=0}^{\infty} a_{i} x^{i}\left[\sum_{j=0}^{\infty} b_{j} x^{j}+\sum_{j=0}^{\infty} c_{j} x^{j}\right] \\
& =\sum_{n=0}^{\infty} a_{i} x^{i}\left[\sum_{j=0}^{\infty}\left(b_{j}+c_{j}\right) x^{j}\right] \\
& =\sum_{n=0}^{\infty}\left[\sum_{i+j=n} a_{i}\left(b_{j}+c_{j}\right)\right] x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left[\sum_{i+j=n}\left(a_{i} b_{j}+a_{i} c_{j}\right)\right] x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i+j=n} a_{i} b_{j}\right) x^{n}+\sum_{n=0}^{\infty}\left(\sum_{i+j=n} a_{i} c_{j}\right) x^{n} \\
& =f(x) \cdot g(x)+f(x) \cdot h(x)
\end{aligned}
$$

Similarly we can prove the other distributive law.

$$
[g(x)+h(x)] F(x)=g(x) \cdot f(x)+h(x) \cdot f(x)
$$

Hence $R[x]$ is a ring.
Definition: Let R be a ring. Then $R[x]$ is called the ring of polynomials in the inderminate x with coefficiants in R.

Theorem: The ring $R[x]$ of polynomials over an integral domain R is an integral domain.
Proof: Let R be an integral domain and $R[x]$ be the ring of polynomials over R with indeterminate x.

To prove $R[x]$ is an integral domain we have to prove $R[x]$ is commutative and without zero divisors.

Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{i=0}^{\infty} a_{i} x^{i}$ and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots=\sum_{i=0}^{\infty} b_{i} x^{i} \text { be two polynomials in } R[x] .
$$

$$
\begin{aligned}
f(x) g(x) & =\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{i+j=n}^{\infty} a_{i} b_{j}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i+j=n}^{\infty} b_{j} a_{i}\right) x^{n} \quad \text { since } \mathrm{R} \text { is commutative. }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{j=1}^{\infty} b_{j} x^{j}\right)\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right) \\
& =g(x) f(x) .
\end{aligned}
$$

$\therefore R[x]$ is commutative.
Suppose $f(x) \neq 0, g(x) \neq 0$ and deg $f(x)=m, \operatorname{deg} g(x)=n$
$\Rightarrow a_{m} \neq 0$ and $\Rightarrow b_{n} \neq 0$
$\Rightarrow a_{m} b_{n} \neq 0$ Since R is an integral domain.
\therefore Atleast one coefficient in $f(x) g(x)$ is non-zero.

$$
\Rightarrow f(x) g(x) \neq 0
$$

$\therefore R[x]$ has no zero divisors.
Hence $R[x]$ is an integral domain.
3.7.3 Note: If R is a ring with unity then the ring of polynomials $R[x]$ over R is also ring with unity. Suppose R is a ring with unity 1 .

Then $\mathrm{f}(x)=1+0 x+0 x^{2}+\ldots \in R[x]$
i.e. $I(x)=\sum_{j=0}^{\infty} b_{j} x_{j} \quad$ where $\quad b_{0}=1$ and $b_{j}=0 \quad \forall j \geq 1$

Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \in R[x]$

$$
\begin{aligned}
f(x) I(x) & =\left(\sum_{i=0}^{n} a_{i} i^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{i+j=n} a_{i} b_{j}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(a_{n} \cdot 1\right) x^{n}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} a_{n} x^{n}=f(x)
$$

Similarly $I(x) f(x)=f(x)$.
$\therefore I(x)$ is the identity element of $R[x]$.
3.7.4 Corollary: If R is a field then $R[x]$ is an integral domain but not a field.

Proof: Suppose R is a field
$\Rightarrow R$ is an integral domain
$\Rightarrow R[x]$ is an integral domain by 3.7.2.
Let $0 \neq f(x) \in R[x]$
Suppose deg $f(x)>0$
If $\mathrm{g}(\mathrm{x})$ is the multiplicative inverse of $f(x)$ in $R[x]$
Then $f(x) g(x)=I(x)$
$\Rightarrow \operatorname{deg}[f(x) g(x)]=0$
$\Rightarrow \operatorname{deg} f(x)+\operatorname{deg} g(x)=0$ by 3.6.6.
$\Rightarrow \operatorname{deg} f(x)=0$
A contradiction.
$\therefore f(x)$ has no multiplicative inverse.
Hence $R[x]$ need not be a field.

3.8.1 The Evaluation:

Theorem: Let F be a subfield of a field E and $F[x]$ be the ring of polynomials over the field F . If $\alpha \in E$ then the mappying $\phi_{\alpha}: F[x] \rightarrow E$ defined by

$$
\begin{aligned}
& \phi_{\alpha}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{n} \alpha^{n} \\
& \text { for all } a_{0}+a_{1} x+a_{\alpha} x^{2}+\ldots+a_{n} x^{n} \in F[x] \text { is a homomorphism. }
\end{aligned}
$$

Proof: Let F be a subfield of a field E and $F[x]$ be the ring of polynomials over the field F . For $\alpha \in E$ $\phi_{\alpha}: F[x] \rightarrow E$ is defined by
$\phi_{\alpha}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{n} \alpha^{n}$
for all $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in F[x]$ is a homomorphism.
Cleary ϕ_{α} is well defined.
Let $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$
$\Rightarrow f(x)+g(x)=c_{0}+c_{1} x+\ldots+c_{k} x^{k}$ where $c_{0}=a_{0}+b_{0}$
$c_{1}=a_{1}+b_{1} \ldots c_{k}=a_{k}+b_{k} \quad$ and $k=\max \{m, n\}$
$\phi_{\alpha}[f(x)+g(x)]=\phi_{\alpha}\left[c_{0}+c_{1} x+\ldots+c_{k} x^{k}\right]$
$=c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\ldots+c_{k} \alpha^{k}$
$=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \alpha+\left(a_{2}+b_{2}\right) \alpha^{2}+\ldots+\left(a_{k}+b_{k}\right) \alpha^{k}$
$=\left(a_{0}+b_{0}\right)+\left(a_{1} \alpha+b_{1} \alpha\right)+\left(a_{2} \alpha^{2}+b_{2} \alpha^{2}\right)+\ldots+\left(a_{k} \alpha^{k}+b_{k} \alpha^{k}\right)$
$=\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{k} \alpha^{k}\right)+\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\ldots+b_{k} \alpha^{k}\right)$
Since a_{i} 's, b_{i} 's and α are elements of a field $=\phi_{\alpha}[f(x)]+\phi_{\alpha}[g(x)]$

$$
f(x) g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots+d_{p} x^{p} \quad \text { where } \quad d_{n}=\sum_{i+j=n} a_{i} b_{j}
$$

$$
\begin{aligned}
\phi_{\alpha}[f(x) g(x)] & =\phi_{\alpha}\left[d_{0}+d_{1} x+d_{2} x^{2}+\ldots+d_{p} x^{p}\right] \\
& =d_{0}+d_{1} \alpha+d_{2} \alpha^{2}+\ldots+d_{p} \alpha^{p} \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) \alpha+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \alpha^{2}+\ldots+\sum_{i+i=p} a_{i} b_{j} \alpha^{p} \\
& =\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{m} \alpha^{m}\right) \quad\left(b_{0}+b_{1} \alpha+\ldots+b_{n} \alpha^{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\phi_{\alpha}[f(x)] \phi_{\alpha}[g(x)] \tag{2}
\end{equation*}
$$

From (1) and (2) ϕ_{α} is a homomorphism.

3.8.2 Note:

(1) The homomorphism ϕ_{α} defined in 3.8.1 is called the evaluation homorphism at α.
(2) If $\phi_{\alpha}: F[x] \rightarrow E$ is an evaluation homorphism at $\alpha \in E$ and

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m} \in F(x)
$$

then $\phi_{\alpha}[f(x)]=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{m} \alpha^{m}$ is denoted by $f(\alpha)$.
3.8.3 Definition: Zero of a Polynomial: Let F be a subfield of a field E and $\alpha \in E$. Let $\phi_{\alpha}: F[i] \rightarrow E$ be an evaluation homorphism. For $f(x)=a_{0}+a_{1} x+\ldots+a_{n} \alpha^{n} \alpha \in F[x]$ if $f(\alpha)=\phi_{\alpha}[f(x)]=a_{0}+a_{1} x+\ldots+a_{n} \alpha^{n}=0$ then $\alpha \in E$ is called a zero of the polynomial $f(x)$ or $\alpha \in E$ is a solution of the equation $f(x)=0$.
3.8.4 Note: Let $f(x)$ be a polynomial over a subfield F of a field E . Then $\alpha \in E$ is called a zero of the polynomial $f(x)$ if $f(\alpha)=0$.
3.8.5 Example: The zeros of $f(x)=x^{4}+4$ in $z_{5}[x]$ are $1,2,3,4$

$$
\begin{aligned}
& z_{5}=\{0,1,2,3,4\} \\
& f(x)=x^{4}+4 \\
& f(x)=0 \quad \text { if } \quad x=1,2,3,4
\end{aligned}
$$

\therefore zeros of $f(x)$ are $1,2,3,4$
3.8.6 Kernal of Evaluation Homomorphism : Let F be a subfield of a field E . For $\alpha \in E_{n}$ we have an evaluation homomorphism $\phi_{\alpha}: F[x] \rightarrow E$ defined as $\phi_{\alpha}[f(x)]=f(\alpha)$. Then the set $\left\{f(x) \in F[x] / \phi_{\alpha}[f(x)]=f(\alpha)=0\right\}$ where 0 is the zero element of E is called kernal of ϕ_{α}.

It is denoted by $\operatorname{ker} \phi_{\alpha}$.

3.9 Summary:

In this lesson we defined polynomial over a ring. We proved set of all polynomials over a ring is a ring. Set of all polynomials over a field is an integral domain. We defined Evaluation homorphism, zero of a polynomial and Kernal of evaluation homomorphism.

3.10 Technical Terms:

i) Polynomial over a ring
ii) Degree of a polynomial
iii) Leading coefficient
iv) Evaluation homomorphism
v) Zero of a polynomial
vi) Kernal of Evaluation Homomorphism.

3.11 Model Examination Questions:

1. Find the sum and product of the polynomials $f(x)=2+3 x+5 x^{2}$ and $g(x)=1+2 x+3 x^{2}$ over Z_{6}.

Solution: $Z_{6}=\{0,1,2,3,4,5\}$

$$
\begin{aligned}
& f(x)=2+3 x+5 x^{2} \text { and } g(x)=1+2 x+3 x^{2} \\
& \begin{aligned}
& f(x)+g(x)=\left(2+{ }_{6} 1\right)+\left(3+{ }_{6} 2\right) x+\left(5+{ }_{6} 3\right) x^{2} \\
&=3+5 x+2 x^{2} \\
& f(x) g(x)=\left(2+3 x+5 x^{2}\right)\left(1+2 x+3 x^{2}\right) \\
&=\left(2 \times{ }_{6} 1\right)+\left(2 \times \times_{6} 2+6 \times \times_{6} 1\right) x+\left(2 \times \times_{6}+3 \times{ }_{6} 2+{ }_{6} 5 \times{ }_{6} 1\right) x^{2}+\left(3 \times{ }_{6} 3+{ }_{6} 5 \times_{6} 2\right) x^{3}+\left(5 \times{ }_{6} 3\right) x^{4} \\
& \quad= 2+x+5 x^{2}+x^{3}+3 x^{4}
\end{aligned}
\end{aligned}
$$

2. If $f(x)=5+3 x+2 x^{2}$ and $g(x)=1+3 x+4 x^{3} \in Z_{6}$ find deg $[f(x)+g(x)]$ and deg $[f(x) . g(x)]$.

Solution: Given $f(x)=5+3 x+2 x^{2}$ and $g(x)=1+3 x+4 x^{3}$

$$
\operatorname{deg} f(x)=2 \quad \operatorname{deg} g(x)=3
$$

We have deg $[f(x)+g(x)]=\max \{f(x), g(x)\}$

$$
\begin{aligned}
& \quad=\max \{2,3\} \\
& =3 \\
& f(x) \cdot g(x)=\left(5+3 x+2 x^{2}\right)\left(1+3 x+4 x^{3}\right) \\
& =5+\left[\left(5 \times_{6} 3\right)+{ }_{6}\left(3 \times_{6} 1\right)\right] x+\left[\left(3 \times_{6} 3\right)+{ }_{6}\left(2 \times_{6} 1\right)\right] x^{2}+\left[5 \times_{6} 4+{ }_{6}\left(2 \times_{6} 3\right)\right] x^{3}+\left(3 \times \times_{6} 4\right) x^{4}+\left(2 \times_{6} 4\right) x^{5} \\
& =5+5 x^{2}+2 x^{3}+2 x^{5} \\
& \operatorname{deg} f(x) \cdot g(x)=5
\end{aligned}
$$

3. If $\phi_{5}: Z_{7}[x] \rightarrow Z_{7}$ is an evaluation homomorphism find $\phi_{5}\left(2+x^{3}\right), \phi_{5}\left(3+4 x^{2}\right)$ and $\phi_{5}\left[\left(2+x^{3}\right)\left(3+4 x^{2}\right)\right]$.

Solution: $\phi_{5}: Z_{7}[x] \rightarrow Z_{7}$ is an evaluation homomorphism.

$$
\begin{aligned}
& \phi_{5}\left(2+x^{3}\right)=2+5^{3}=2+6=1 \\
& \phi_{5}\left(3+4 x^{2}\right)=3+4.5^{2}=5 \\
& \begin{aligned}
\phi_{5}\left[\left(2+x^{3}\right)\left(3+4 x^{2}\right)\right] & =\phi_{5}\left(2+x^{3}\right) \phi_{5}\left(3+4 x^{2}\right) \\
& =1.5=5
\end{aligned}
\end{aligned}
$$

4. Find the zeros of $f(x)=1+x+x^{2}$ in $Z_{7}[x]$.

Solution: We have $Z_{7}=\{0,1,2,3,4,5,6\}$

$$
\begin{aligned}
& f(0)=1+0+0^{2}=1 \neq 0 \\
& f(1)=1+1+1^{2}=3 \neq 0 \\
& f(2)=1+2+2^{2}=0 \\
& f(3)=1+3+3^{2}=6 \neq 0 \\
& f(4)=1+4+4^{2}=0 \\
& f(5)=1+5+5^{2}=3 \neq 0
\end{aligned}
$$

Rings and Linear Algebra

$$
f(6)=1+6+6^{2}=1 \neq 0 .
$$

\therefore Zeros of $f(x)=1+x+x^{2}$ in $Z_{7}[x]$ are 2 and 4.

3.12 Exercises:

1. If $f(x)=5-x^{2}$ and $g(x)=3+2 x+x^{3}$ are polynomials in $Z_{5}[x]$ find the sum and product of $f(x)$ and $g(x)$.
2. If $f(x)=3+2 x+x^{3}$ and $g(x)=4+x^{4} \in Z_{6}[x]$ then prove that $\operatorname{deg}[f(x) . g(x)] \neq \operatorname{deg} f(x)+\operatorname{deg} g(x)$
3. If $f(x)=2+5 x+3 x^{2}, g(x)=1+4 x+2 x^{3}$ find the sum product, $\operatorname{deg}[f(x)+g(x)]$ and $\operatorname{deg}[f(x) . g(x)]$ in $Z_{7}[x]$.
4. Find the zeros of $f(x)=1+x^{2}$ in $Z_{5}[x]$.
5. Let F be a field. Prove that a polynomial $f(x) \in F[x]$ is a unit if and only if it is a nonzero constant polynomial.
6. Let F be a field and let $F[x]$ be the ring of polynomials over F . Let $f(x)$ and $g(x)$ be nonzero polynomials in $F[x]$. We say that $f(x)$ divides $g(x)$ if there exists a polynomial $h(x) \in F[x]$. Such that $g(x)=f(x) \cdot h(x)$.

Prove that $f(x)$ divides $g(x)$ and $g(x)$ divides $f(x)$ if and only if $g(x)=h(x) f(x)$, where $h(x)$ is a nonzero constant polynomial in $F[x]$.

LESSON - 4

FACTORIZATION OF POLYNOMIALS OVER A FIELD

4.1 Objectives of the Lesson:

To acquain the student with the division algorithm of polynomials, irreducible polynomials, the famous Eisenstein criteria for irreducibility of polynomials, ideals in $F[x]$ and the unique factorization of a nonconstant polynomial as a product of a finite number of irredducible polynomials.

4.2 Structure:

This lesson contains the following components:

4.3 Introduction

4.4 The Division Algorithm in $F[x]$
4.5 Irreducible Polynomials
4.6 Ideal Structure in $F[x]$
4.7 Summary
4.8 Technical Terms
4.9 Exercises
4.10 Model Examination Questions
4.11 Model Practical Problem with Solution
4.12 Problems for Practicals

4.3 Introduction:

Throughout the lesson, we assume that F is a field and $F[x]$ is the ring of polynomials over F. In this lesson, similar to the division algorithm of integers, we prove the division algorithm for $F[x]$. Some important corollaries are proved. The concept of irreducibility of polynomials is introduced and some criteria for determining irreducibility of quadratic and cubic polynomials is obtained. The famous eisenstein's irreducibility criterion is discussed. Suitable examples are given. We also prove that every ideal in $F[x]$ is a principal ideal. Finally, we prove that every nonconstant polynomial in $F[x]$ can be written uniquely as a product of a finite number of
irreducible polynomials in $F[x]$.
Throughout the lesson we use the following notation.
Z : The ring of integers
Q : The field of rational numbers
R : The field of real numbers
C : The field of complex numbers
$Z_{n} \quad$: The ring of integers modulo n .
$Z_{n}[x]$: The ring of polynomials over Z_{n}.

4.4 The Division Algorithm in $F[x]$:

In order for $F[x]$ to be an Enclidean ring we need to prove the division algorithm in $F[x]$. This is provided by the following.
4.4.1 Theorem: (The division algorithm) let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m} \in F[x]$ be polynomials such that $a_{n} \neq 0$ and $b_{m} \neq 0$. Then there exist unique polynomials $q(x), r(x) \in F[x]$ such that $f(x)=q(x) g(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x) \cdot(q(x)$ is called the quotient and $r(x)$ the remainder).

Proof: If $\operatorname{deg} g(x)>\operatorname{deg} f(x)$, let $q(x)=0$ and $r(x)=f(x)$. Assume that $\operatorname{deg} g(x) \leq \operatorname{deg} f(x)$, i.e. $m \leq n$. Proof is by induction on n. If $n=0$ then $m=0, f(x)=a_{0}$ and $g(x)=b_{0}$. Let $q(x)=a_{0} b_{0}^{-1}$ and $r(x)=0$. Then $q(x) g(x)+r(x)=\left(a_{0} b_{0}^{-1}\right) b_{0}=a_{0}=f(x)$. Assume that the existence part of the theorem is true for polynomials of degree less than n where $n>0$. Now $\left(a_{n} b_{m}^{-1} x^{n-m}\right) g(x)=\left(a_{n} b_{m}^{-1} x^{n-m}\right)\left(b_{0}+b_{1} x+\ldots+b_{m} x^{m}\right)=a_{n} b_{m}^{-1} b_{0} x^{n-m}+a_{n} b_{m}^{-1} x^{n-m+1}+\ldots+a_{n} x^{n}$. Hence $f(x)-\left(a_{n} b_{m}^{-1} x^{n-m}\right) g(x)=\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right)-\left(a_{n} b_{m}^{-1} b_{0} x^{n-m} \ldots+a_{n} x^{n}\right)$ is a polynomial of degree less than n . By induction hypothesis there are polynomials $\mathrm{p}(\mathrm{x})$ and $q(x)$ such that $f(x)-\left(a_{n} b_{m}^{-1} x^{n-m}\right) g(x)=P(x) g(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$. Therefore if $q(x)=a_{n} b_{m}^{-1} x^{n-m}+P(x)$, then $f(x)=q(x) g(x)+r(x)$

For uniqueness, suppose $f(x)=q_{1}(x) g(x)+r_{1}(x)$ and $f(x)=q_{2}(x) g(x)+r_{2}(x)$, where $r_{1}(x)=0, r_{2}(x)=0$ of $\operatorname{deg} r_{1}(x)<\operatorname{deg} g(x)$ and $\operatorname{deg} r_{2}(x)<\operatorname{deg} g(x)$. Assume that $\left.r_{1}(x) \neq\right) r_{2}(x)$.

Since $\left(q_{1}(x)-q_{2}(x)\right) g(x)=r_{2}(x)-r_{1}(x)$, we get that $q_{1}(x) \neq q_{2}(x)$. Thus $\operatorname{deg}\left(q_{1}(x)-q_{2}(x)\right)+\operatorname{deg} g(x)=\operatorname{deg}\left(q_{1}(x)-q_{2}(x)\right) g(x)=\operatorname{deg}\left(r_{2}(x)-r_{1}(x)\right.$. But $\operatorname{deg}\left(q_{1}(x)-q_{2}(x)\right)+\operatorname{deg} g(x) \geq \operatorname{deg} g(x)$ and $\operatorname{deg}\left(r_{2}(x)-r_{1}(x) \leq \max \left\{\operatorname{deg} r_{2}(x), \operatorname{deg} r_{1}(x)\right\}<\operatorname{deg} g(x)\right.$. This is a contradiction. Therefore $r_{1}(x)=r_{2}(x)$ and so $q_{1}(x)=q_{2}(x)$.

We compute the polynomials $q(x)$ and $r(x)$ of theorem 4.4.1 by long division.
4.4.2. Example: For polynomials $f(x)=x^{6}+3 x^{5}+4 x^{2}-3 x+2$ and $g(x)=x^{2}+2 x-3$ in $Q[x]$, find $q(x)$ and $r(x)$ as described by the division algorithm so that $f(x)=g(x) q(x)+r(x)$ with $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$

$$
\begin{gathered}
\frac{x^{4}+x^{3}+x^{2}+x+5}{x^{2}+2 x-3} \begin{array}{c}
\frac{x^{6}+3 x^{5}+}{x^{6}+2 x^{5}-3 x^{4}} \\
\frac{x^{5}+3 x^{4}}{x^{5}+2 x^{4}-3 x^{3}} \\
\frac{x^{4}+3 x^{3}+4 x^{2}}{x^{4}+2 x^{3}-3 x^{2}} \\
\frac{x^{3}+7 x^{2}-3 x}{x^{3}+2 x^{2}-3 x} \\
\frac{5 x^{2}+2}{5 x^{2}+10 x-15} \\
-10 x+17
\end{array}
\end{gathered}
$$

Thus $q(x)=x^{4}+x^{3}+x^{2}+x+5$ and

$$
r(x)=-10 x+7
$$

4.4.3 Corollary: (Remainder theorem) Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in F[x]$. For any $a \in F$,
there exists a unique polynomial $q(x) \in F[x]$ such that $f(x)=q(x)(x-a)+f(a)$.
Proof: If $f(x)=0$, let $q(x)=0$. Then $f(x)=q(x)(x-a)+f(a)$. suppose that $f(x) \neq 0$. By theorem 4.4.1 there exist unique polynomials $q(x), r(x) \in F[x]$ such that $f(x)=q(x)(x-a)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<1$. Thus we have that $r(x)=c$ for some $c \in F$. So, $f(x)=q(x)(x-a)+c$. Then $f(a)=q(a)(a-a)+c=c$. Thus $f(x)=q(x)(x-a)+f(a)$.
4.4.4 Corollary (Factor Theorem): An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $x-a$ is a factor of $f(x)$.

Proof: If a is a zero of $f(x)$, then $f(a)=0$. By corollary 4.4.3, $f(x)=q(x)(x-a)+f(a)$, for some $q(x) \in F[x]$. since $f(a)=0$, we get that $(x-a)$ is a factor of $f(x)$. Conversely if $(x-a)$ is a factor of $f(x)$, then $f(x)=q(x)(x-a)$ for some $q(x) \in F[x]$. Then $f(a)=q(a)(a-a)=0$. Thus a is a zero of $f(x)$.
4.4.5 Example: Let $x^{3}+4 x^{2}+4 x+1 \in Z_{5}[x]$. We divide this polynomial by $x-1$ and get

Therefore $x^{3}+4 x^{2}+4 x+1=(x-1)\left(x^{2}+4\right)$ and so, $(x-1)$ is a factor of $x^{3}+4 x^{2}+4 x+1$. By corollary 4.4.4, we get that 1 is a zero of $x^{3}+4 x^{2}+4 x+1$.
4.4.6 corollary. A nonzero polynomial $f(x) \in F[x]$ of degree n has at most n zeros in F .

Proof: If $f(x)$ has no root in F then the corollary is true. So, suppose that $f(x)$ has at least one root in F . Proof is by induction on n . If $n=1$, then $f(x)=a x+b$ and $-b / a$ is the only root of $f(x)$ in F. In this case, the corollary is true. Assume that the corollary is true for all polynomials of degree $n-1$. Let $a \in F$ be a root of $f(x)$. Then $f(x)=(x-a) q(x)$, where $q(x) \in F[x]$. Therefore
$\operatorname{deg} q(x)=n-1$. By induction hypothesis, $q(x)$ has at most $n-1$ roots in F . If $b \in F$ and b is a zero of $f(x)$ other than a, then $0=f(b)=q(b)(b-a)$. since $b \neq a$, we get that $q(b)=0$. So b is a zero of $q(x)$. Thus every zero of $f(x)$ other than a is a zero of $q(x)$. Hence $f(x)$ has atmost n roots in F .
4.4.7 Example: Let $f(x)=x^{3}+x^{2}+6 x+6 \in Z_{7}[x]$. Note that 1 is a zero of $f(x)$. By corollary 4.4.4, $(x-1)$ is a factor of $f(x)$. Let us find the quotient by long division.

$$
\begin{array}{r}
x^{2}+2 x+1 \\
\begin{array}{l}
\frac{x^{3}-x^{2}}{2 x^{2}}+6 x \\
x^{2}+x^{2}+6 x+6
\end{array} \\
\frac{2 x^{2}-2 x}{x+6} \\
\frac{x-1}{0}
\end{array}
$$

Thus $\quad f(x)=(x-1)\left(x^{2}+2 x+1\right)$. Obviously $x^{2}+2 x+1=(x+1)^{2}$. Therefore $x^{3}+x^{2}+6 x+6=(x-1)(x+1)^{2}$ in $Z_{7}[x]$
4.4.8 Example: For polynomials $f(x)=x^{4}+5 x^{3}-3 x^{2}$ and $g(x)=5 x^{2}-x+2$ in $Z_{11}[x]$, find the quotient and remainder when $f(x)$ is divided by $g(x)$.

Solution:

$$
\begin{array}{r}
5 x^{2}-x+2 \begin{array}{l}
9 x^{2}+5 x-1 \\
x^{4}+5 x^{3}-3 x^{2} \\
\frac{x^{4}-9 x^{3}+7 x^{2}}{3 x^{3}-10 x^{2}} \\
\frac{3 x^{3}-5 x^{2}+10 x}{-5 x^{2}-10 x} \\
\frac{-5 x^{2}+x-2}{2}
\end{array}
\end{array}
$$

Thus $f(x)=\left(9 x^{2}+5 x-1\right)\left(5 x^{2}-x+2\right)+2$
\therefore quotient $q(x)=9 x^{2}+5 x-1$) and remainder $r(x)=2$.

4.5 Irreducible Polynomials:

We start with the following important definition.
4.5.1 Definition: A nonconstant polynomial $f(x) \in F[x]$ is called irreducible over F (or an irreducible polynomial in $F[x]$, if $f(x)$ cannot be expressed as a product $g(x) h(x)$ of two polynomials $g(x)$ and $h(x)$ in $F[x]$ such that $\operatorname{deg} g(x)<\operatorname{deg} f(x)$ and $\operatorname{deg} h(x)<\operatorname{deg} f(x)$.

If $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible over F , then $f(x)$ is said to be reducible over F .
4.5.2. Examples: 1. Every first degree polynomial in $F[x]$ is irreducible over F. In particular, $2 x+2 \in Q[x]$ is irreducible over Q.
2. Since $x^{2}+1=(x-i)(x+i)$ in $C[x], x^{2}+1$ is reducible over C .

Irreducible polynomials play an important role in the study of field theory. The problem of determining whether a given $f(x) \in F[x]$ is irreducible over F is difficult. We now give some criteria for determining irreducibility of quadratic and cubic polynomials.
4.5.3 Theorem: Let $f(x) \in F[x]$ be a polynomial of degree 2 or 3 . Then $f(x)$ is reducible over F if and only if it has a zero in F .

Proof: It $f(x)$ is reducible over F , then $f(x)=f_{1}(x) f_{2}(x)$ where $f_{1}(x)$ and $f_{2}(x)$ are polynomials in $\quad F[x]$ such that $\operatorname{deg} f_{1}(x)<\operatorname{deg} f(x) \quad$ and $\operatorname{deg} f_{2}(x)<\operatorname{deg} f(x)$. But $\operatorname{deg} f(x)=\operatorname{deg} f_{1}(x)+\operatorname{deg} f_{2}(x)$. If $\operatorname{deg} f_{1}(x)>1$ and $\operatorname{deg} f_{2}(x)>1$ then $\operatorname{deg} f(x) \geq 4$, a contradiction. Therefore either $f_{1}(x)$ or $f_{2}(x)$ is of degree 1. If, say, $f_{1}(x)$ is of degree 1 , then $f_{1}(x)=a x+b$, where $a, b \in F$. Then $f_{1}\left(-b a^{-1}\right)=0$ and hence $f\left(-b a^{-1}\right)=0$, which proves that $-b a^{-1}$ is a zero of $f(x)$ in F.

Conversely, if $f(a)=0$ for $a \in F$, then $x-a$ is a factor of $f(x)$, so $f(x)=(x-a) q(x)$, where $q(x) \in F[x]$. Since $\operatorname{deg}(x-a)<\operatorname{deg} f(x)$ and $\operatorname{deg} q(x)<\operatorname{deg} f(x)$, we get that $f(x)$ is reducible over F.
4.5.4 Examples: 1. Since the polynomial $x^{2}-2 \in Q[x]$ has no zeros in Q , by theorem 4.5.3, $x^{2}-2$ is irreducible over Q.
2. Note that $\sqrt{2}$ is a zero of $x^{2}-2$ in R , by theorem 4.5.3, we get that $x^{2}-2$ is ireducible over R .

From examples (1) and (2), we observe that irreducibility depends on fields.
3. Since $x^{3}+3 x+2 \in Z_{5}[x]$ has no zeros in Z_{5}, by theorem 4.5.3, $x^{3}+3 x+2$ is irreducible over Z_{5}.

We now state a theorem which is useful in proving some interesting theorems and whose proof is beyond the scope of this book.
4.5.5. Theorem: If $f(x) \in Z[x]$ then $f(x)$ factors into a product $g(x) h(x)$ of two polynomials $g(x)$ and $h(x)$ in $Q[x]$ such that $\operatorname{deg} g(x)=r<\operatorname{deg} f(x)$ and $\operatorname{deg} h(x)=s<\operatorname{deg} f(x)$ if and only if $f(x)$ factors into a product $u(x) v(x)$ of two polynomials $u(x)$ and $v(x)$ in $Z[x]$ such that $\operatorname{deg} k(x)=r<\operatorname{deg} f(x)$ and $\operatorname{deg} v(x)=s<\operatorname{deg} f(x)$.
4.5.6 Example: Let $f(x)=x^{3}+x+1 \in Z_{2}[x]$. It can be checked that none of the elements of Z_{2} is a zero of $f(x)$. So, $f(x)$ has no zero in Z_{2} and by theorem 4.5.3, $f(x)$ is irreducible over Z_{2}.
4.5.7 Corollary: Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+x^{n} \in Z[x]$ with $a_{0} \neq 0$. If $f(x)$ has a zero $a \in Q$, then $a \in Z$ and a divides a_{0}.

Proof: Since $a \neq 0$, we can write a as $a=\frac{\alpha}{\beta}$, where $\alpha, \beta \in Z$ and their $\operatorname{gcd}(\alpha, \beta)=1$. Then

$$
a_{0}+a_{1}\left(\frac{\alpha}{\beta}\right)+\ldots+a_{n-1}\left(\frac{\alpha^{n-1}}{\beta^{n-1}}\right)+\frac{\alpha^{n}}{\beta^{n}}=0
$$

Multiply the above equation by β^{n-1} to obtain $a_{0} \beta^{n-1}+a_{1} \alpha \beta^{n-1}+\ldots+a_{n-1} \alpha^{n-1}=-\frac{\alpha^{n}}{\beta}$. Because $\alpha, \beta \in Z$ it follows that $-\frac{\alpha^{n}}{\beta} \in Z$ since $\left(\alpha^{n}, \beta\right)=1$ and β divides α^{n}, we have that $\beta= \pm 1$. There $a= \pm \alpha \in Z$. The last equation shows that α / a_{0} and hence a / a_{0}.
4.5.8 Example: Let us show that $f(x)=x^{3}-x-1 \in Q[x]$ is irreducible over Q . If $f(x)$ is reducible over Q, then $f(x)$ has a zero a in Q. By corollary 4.5.7 $a \in Z$ and $a /-1 \therefore a= \pm 1$. But $f(1)=1-1-1=-1 \neq 0$ and $f(-1)=-1+1-1=-1 \neq 0$. So a is not a zero of $f(x)$, a contradiction. Hence $f(x)$ is irreducible over Q.

The question of deciding whether a given polynomial is irreducible or not can be a difficult and laborious one. Few criteria exist which declare that a given polynomial is or is not irreducible. One of these few is the following.
4.5.9 Theorem: (Eisenstein Criterion) Let $f(x)=a_{0}+a_{1} x+. .+a_{n} x^{n} \in Z[x], n \geq 1$. If there is a prime number p such that $p^{2} X a_{0}, p \times a_{0}, p \times a_{n-1}$ and $p \times a_{n}$, then $f(x)$ is irreducible over Q.

Proof: Assume that $f(x)$ is reducible over Q then $f(x)$ factors into a product of two polynomials in $Q[x]$ of lower degrees r and s . By theorem 4.5.5, $f(x)$ has such a factorization with polynomials of the same degrees r and s in $Z[x]$. Accordingly $f(x)=\left(b_{0}+b_{1} x+\ldots+b_{r} x^{2}\right)\left(c_{0}+c_{1} x+\ldots+c_{s} x^{s}\right)$ with $b_{i}, c_{i} \in Z, b_{r} \neq 0, c_{s} \neq 0, r<n$ and $s<n$. Then $a_{0}=b_{0} c_{0}$ and $a_{n}=b_{r} c_{s}$. Clearly $r+s=n$. Since p / a_{0} and $p^{2} \times a_{0}$, either p / b_{0} and $p X c_{0}$ or p / c_{0} and $p \times b_{0}$. Consider the case p / c_{0} and p / b_{0}.

Because p / a_{n}, it follows that p / b_{r} and $p / c s$. Let c_{m} be the first coefficient in $c_{0}+c_{1} x+\ldots+c_{s} x^{s}$ such that $p X c_{m}$. Observe that $a_{m}=b_{0} c_{m}+\ldots+b_{m} c_{0}$ from this we get that $p X a_{m}$, since $p X b_{0} c_{m}$ and $p /\left(b_{1} c_{m-1}+\ldots+b_{m} c_{0}\right)$. By hypothesis, $m=n$. Thus $n=m \leq s<n$, which is impossible. Similarly if p / b_{0} and $p \times c_{0}$, we arrive at a contradiction. Therefore our assumption is wrong and $f(x)$ is irreducible over Q.
4.5.10 Examples: 1 . Consider the polynomial $x^{3}-5 x+10 \in Z[x] .5$ is a prime number such that $5 \times 1,5 /-5,5 / 10$ and ${ }_{5}^{2} \times 10$. By theorem 4.5.9, we get that $x^{3}-5 x+10$ is irreducible over Q.
2. Similarly, by using the prime number 3, we get, by theorem 4.5.9, that $25 x^{5}-3 x^{4}-3 x^{2}-12$ is irreducible over Q.
3. The polynomial $\phi_{p}(x)=1+x+\ldots . .+x^{p-1}$ is irreducible over Q . Where p is any prime number. Solution: Note that $\phi_{p}(x)=\frac{x^{p}-1}{x-1}$. Let

$$
\begin{aligned}
g(x)=\phi_{p}(x+1) & =\frac{(x+1)^{p}-1}{(x+1)-1}=\frac{1}{x}\left(x^{p}+\binom{p}{1} x^{p-1}+\ldots .+\binom{p}{p-1} x\right) \\
& =x^{p-1}+\binom{p}{1} x^{p-2}+\ldots .+\binom{p}{p-1}
\end{aligned}
$$

Note that $\quad\binom{p}{r}$, for $r=1, . ., p-1, p \times 1$ and $p^{2} \times\binom{ p}{p-1}$. By theorem 4.5.9, $g(x)$ is irrudible over Q. But if $\phi_{p}(x)=f(x) h(x)$ were a nontrivial factorization of $\phi_{p}(x)$ in $Z[x]$, then $\phi_{p}(x+1)=f(x+1) h(x+1)$ would give a nontrivial factorization of $g(x)$ in $Z[x]$. By theorem 4.5.5., $g(x)$ is a product of two nonconstant polynomials in $Q[x]$. This a contradiction, since $g(x)$ is irreducible over Q . Thus $\phi_{p}(x)$ must also be irreducible over Q .
4. Prove that $x^{3}+3 x^{2}-8$ is irreducible over Q .

Solution: Let $f(x)=x^{3}+3 x^{2}-8$. If $f(x)$ is reducible over Q , by theorem 4.5.3, $f(x)$ has a zero a in Q. By corollary 4.5.7, $a \in Z$ and $a / 8$. Therefore $a= \pm 1, \pm, \pm 4, \pm 8$. But none of these are zeros of $f(x)$. This is a contradiction.
$\therefore f(x)$ is irreducible over Q .

4.6 Ideal Structure in F[x]:

We now introduce the notation $\langle a\rangle=\{r a / r \in R\}$ to represent the ideal of all multiples of a.
4.6.1 Definition: Let R be a commutative ring with unity. An ideal I of R is called a principal ideal if $I=\langle a\rangle$ for some $a \in R$.
4.6.2 Examples: 1 . Every ideal of Z is a principal ideal.

Solution: Let I be an idea of Z. If $I=\{0\}$, then clearly $I=<0>$. So, assume that $I \neq\{0\}$. Choose the least positive integer m in I . clearly $\langle m\rangle=\{\mathrm{km} / k \in Z\} \leq I$. Conversely, if $h \in I$, then
$h=q m+r$ where $q, r \in Z$ with $0 \leq r<m$. Since $h-q m \in I$, we get that $r \in Z$. The minimality of m implies $r=0$ and $h=q m$, i.e. $h \in<m>$. Thus
$I \subseteq<m>$. Therefore $I=<m>$ and hence I is a principal ideal.
2. We know that $F[x]$ is a commutative ring with unity. Clearly $x \in F[x]$. Then the principal ideal $\langle x\rangle$ is the set $\{x f(x) / f(x) \in F[x]\}$
\therefore the ideal $\langle x\rangle$ consists of all polynomials in $F[x]$ having zero constant term.
The next theorem is an application of the division algorithm for $F[x]$.
4.6.3 Theorem: Every ideal in $F[x]$ is a principal ideal.

Proof: Let M be an ideal of $F[x]$. If $M=\{0\}$, then $M=<0>$. Assume that $M \neq\{0\}$. Choose a nonzero polynomial $g(x)$ in M of minimal degree. If the degree of $g(x)$ is 0 , then $g(x)$ is a unit in $F[x]$. Therefore $M=<g(x)>=F[x]$. If the degree of $g(x) \geq 1$, we claim that $M=<g(x)>$. If $f(x) \in M$, then $f(x)=q(x) g(x)+r(x)$, where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$. Since $f(x), g(x) \in M$, we get that $r(x)=f(x)-q(x) g(x) \in M$. Since $g(x)$ is a nonzero element of minimal degree in M , we have that $r(x)=0$. Thus $f(x)=q(x) g(x) \in<g(x)>$. Hence $M=<g(x)>$.

We now characterize the maximal ideals of $F[x]$.
4.6.4 Theorem: Let $p(x)$ be a nonzero polynomial in $F[x]$. The $p(x)$ is irreducible over F if and only if $\langle p(x)\rangle$ is a maximal ideal of $F[x]$.

Proof: If $\langle p(x)\rangle$ is a maximal ideal of $F[x]$, then $\langle p(x)\rangle \neq F[x]$. Therefore $p(x)$ is nonconstant polynomial. Let $p(x)=u(x) v(x)$ where $u(x), v(x) \in F[x]$. Then $\langle p(x)\rangle \subseteq<u(x)\rangle$.

Hence $\langle p(x)=\langle u(x)\rangle$ or $\langle u(x)\rangle=F[x]$. If $\langle u(x)\rangle=F[x]$, then $u(x)$ is a unit, i.e. $\operatorname{deg} u(x)=0$. If $\langle u(x)\rangle=\langle p(x)\rangle$, then $u(x)=p(x) g(x)$ and hence $p(x)=u(x) v(x)=p(x) g(x) v(x)$. since $F[x]$ is an integral domain $1=g(x) v(x)$. Hence $v(x)$ is a unit, i.e. $\operatorname{deg} v(x)=0$. Therefore $p(x)$ is irreducible over F .

Conversely if $p(x)$ is irreducible over F , then $\langle p(x)\rangle \neq F\{x\}$. If $<p(x)>\subseteq I \subseteq F\{x\}$, where I is an ideal of $F[x]$. By theorem 4.6.3, $I=<f(x)>$ for some $f(x) \in F[x]$. Since $<p(x)>\subseteq<f(x)>$, we get the $p(x)=f(x) h(x)$, for some $h(x) \in F[x]$. Since $p(x)$ is irreducible, either $f(x)$ is a constant polynomial (whence $\langle f(x)\rangle=F[x])$ or $h(x)$ is a constant polynomial (whence $\langle p(x)\rangle=\langle f(x)\rangle$). Thus we have that either $\langle p(x)\rangle=\langle f(x)\rangle$ or $\langle f(x)\rangle=F[x]$. Hence $\langle p(x)\rangle$ is a maximal ideal of $F[x]$.

We now prove an useful theorem.
4.6.5 Theorem: Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $g(x) h(x)$, for some $g(x), h(x) \in F[x]$, then either $p(x)$ divides $g(x)$ or $p(x)$ divides $h(x)$.

Proof: If $p(x)$ divides $g(x) h(x)$, then $g(x) h(x) \in<p(x)>$. Since $p(x)$ is irreducible, by theorem 4.6.4, $\langle p(x)\rangle$ is a maximal ideal of $F[x]$. Every maximal ideal is a prime ideal. Therefore $<p(x)>$ is a prime ideal. Since $g(x) h(x) \in<p(x)>$, it follows that either $g(x) \in<p(x)>$ or $h(x) \in<p(x)>$, i.e. either $p(x)$ divides $g(x)$ or $p(x)$ divides $h(x)$.
4.6.6 Corollary: If $p(x) \in F[x]$ is irreducible over F and $p(x)$ divides the product $r_{1}(x) r_{2}(x) \ldots . . . r_{n}(x)$, where $r_{i} \in F[x]$ for $i=1, . ., n$, then $p(x)$ divides $r_{i}(x)$ for at least one;

Proof: We prove the corollary by induction on n . By theorem 4.6.5, the result is true for $n=2$. Assume that the result is true for $n-1$. Let $r(x)=r_{1}(x) \ldots \ldots r_{n-1}(x)$ then $p(x)$ divides $r(x) r_{n}(x)$. Again by theorem 4.6.5, either $p(x) / r(x)$ or $p(x) / r_{n}(x)$. If $p(x) / r(x)$, then by induction hypothesis $p(x) / r_{\dot{r}}(x)$ for some $1 \leq \dot{r} \leq n-1$. thus in either case we get that $p(x) / r_{\dot{r}}(x)$ for some i .
4.6.7 Theorem: If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ uniquely (up to order and units) as a product of a finite number of polynomials in $F[x]$.

Proof: Let $f(x) \in F[x]$ be a nonconstant polynomial. We first prove that $f(x)$ can be written as the product of a finite number of irreducible polynomials in $F[x]$. The proof is by induction on $\operatorname{deg} f(x)$. if deg $f(x)=1$, then $f(x)$ is irreducible and the result is true in this case. We assume
that the result is true for all polynomials $g(x)$ in $F[x]$ such that $\operatorname{deg} g(x)<\operatorname{deg} f(x)$. On the basis of this assumption we aim to prove the result for $f(x)$. If $f(x)$ is irreducible, then there is nothing to prove. If $f(x)$ is not irreducible, then $f(x)=g(x) h(x)$, where $\operatorname{deg} g(x)<\operatorname{deg} f(x)$ and $\operatorname{deg} h(x)<\operatorname{deg} f(x)$. Then by our induction hypothesis $g(x)$ and $h(x)$ can be written as a product of a finite number of irreducible polynomials in $F[x] ; g(x)=r_{1}(x) \ldots . . r_{n}(x)$ and $h(x)=t_{1}(x) \ldots . t_{m}(x)$ where $r_{i}(x)$ and $r_{\dot{r}}(x)$ are irreducible polynomials in $F[x]$. Consequently $f(x)=g(x) h(x)=r_{1}(x) \ldots . . r_{n}(x) t_{1}(x) \ldots . . t_{m}(x)$ and in this way $f(x)$ has been factored as a product of a finite number of irreducible polynomials.

It remains for us to prove uniqueness. Suppose that $f(x)=p_{1}(x) p_{2}(x) \ldots . . p_{r}(x)=q_{1}(x) \ldots . . q_{s}(x)$ are two factorizations of $f(x)$ into irreducible polynomials. By corollary 4.6.6., $p_{1}(x)$ divides $q_{i}(x)$ for some i ; since $p_{1}(x)$ and $q_{i}(x)$ are both irreducible polynomials in $F[x]$ and $p_{1}(x) / q_{i}(x)$, we have that $q_{i}(x)=u_{1} p_{1}(x)$, where u_{1} is a unit in $F[x]$.

Thus $p_{1}(x) p_{2}(x) \ldots . . p_{r}(x)=u_{1} p_{1}(x) q_{1}(x) \ldots q_{i-1}(x) q_{i+1} \ldots q_{s}(x)$; cancel off $p_{1}(x)$ and we are left with $p_{2}(x) \ldots \ldots p_{r}(x)=u_{1} q_{1}(x) \ldots q_{i-1}(x) q_{i+1} \ldots q_{s}(x)$. Repeat the argument on this relation with $p_{2}(x)$. After r steps the left side becomes 1 , the right side is a product of a certain number of $q(x)$'s (the excess of sover r). This would force $r \leq s$ since the $p(x)$'s are not units. Similarly $s \leq r$, so that $r=s$. In the process we have also showed that every $p_{i}(x)=u_{i} q_{\dot{r}}(x)$, where u_{i} is a unit; for some \dot{r}.

4.7 Summary:

In this lesson you have learnt the division algorithm of $F[x]$, irreducible polynomials, Eisenstein's irreducibility criterion, ideals in $F[x]$ and factorization of polynomials over $F[x]$.

4.8 Technical terms/Named theorems:

Irreducible polynomial
Principal ideal
Division algorithm of $F[x]$
Remainder theorem
Factor Theorem
Eisenstein's irreducibility criterion

Factorization of Polynomials over $F[x]$

4.9 Model Examination Questions:

1. State and prove the division algorithm in $F[x]$.
2. Define an irreducible polynomial. Give an example of an irreducible polynomial.
3. Prove that a nonzero polynomial $p(x)$ in $F[x]$ is irreducible if and only it $\langle p(x)\rangle$ is a maximal ideal.
4. State and prove Eisensteins irreducibility criterian.
5. For any prime number p , prove that the polynomial $\phi_{p}(x)=1+x+\ldots+x^{p-1}$ is irreducible over Q .
6. Prove that every ideal in $F[x]$ is a principal ideal.
7. Prove that every nonconstant polynomial in $F[x]$ can be factored in $F[x]$ uniquely (upto order and units) as a product of a finite number of irreducible polynomials in $F[x]$.
8. Find all prime numbers p such that $x+2$ is a factor of $x^{4}+x^{3}+x^{2}-x+1 \in Z_{p}(x)$
9. Let $f(x) \in F[x]$ be a polynomial of degree 2 or 3 . Prove that $f(x)$ is reducible over F if and only if it has a zero in F .
10. Let $f(x)=a_{0}+a_{1} x+\ldots .+a_{n-1} x^{n-1}+x^{n} \in Z[x]$ with $a_{0} \neq 0$. If $f(x)$ has a zero $a \in Q$ then prove that $a \in Z$ and a / a_{0}.

4.10 Exercises:

1. Determine which of the following are irreducible over Q .
a) $2 x^{5}-6 x^{3}+9 x^{2}-15$
b) $x^{4}-3 x^{2}+9$
c) $3 x^{5}-7 x^{4}+7$
2. Prove that
a) $x^{2}+1$ is irreducible over Z_{7}.
b) $x^{2}+x+1$ is irreducible over Z_{2}
c) $x^{2}+x+4$ is irreducible over Z_{11}
3. Find all prime numbers p such that $x+2$ is a factor of $x^{4}+x^{3}+x^{2}-x+1 \in Z_{p}[x]$
4. Show that $x^{2}+8 x-2$ is irreducible over Q .
5. For polynomials $f(x)=x^{6}+3 x^{5}+4 x^{2}-3 x+2$ and $g(x)=3 x^{2}+2 x-3$ in $Z_{7}[x]$, find the quotient $q(x)$ and remainder $r(x)$.
6. For polynomials $2 x^{7}+x^{6}-3 x^{5}+4 x^{3}-x+5$ and $x^{2}-2 x+4$ in $Q[x]$, find the quotient $q(x)$ and remainder $r(x)$.
7. If p is a prime number, prove that the polynomial $x^{n}-p$ is irreducible over Q .
8. Determine whether the following polynomials in $Z[x]$ satisfies an Eisenstein criterion for irreducibility over Q.
a) $x^{2}-12$
b) $8 x^{3}-6 x^{2}-9 x+24$
C) $4 x^{10}-6 x^{3}+24 x-18$
d) $2 x^{10}-25 x^{3}+10 x^{2}-30$

4.11 Model Practical Problems with Solution:

Problem: The polynomial $2 x^{3}+3 x^{2}-7 x-5$ can be factored into linear factors in $Z_{11}[x]$. Find this factorization.

AIM: To find factorization of the polynomial $2 x^{3}+3 x^{2}-7 x-5$ into linear factors in $Z_{11}[x]$.
Hypothesis : The polynomial $2 x^{3}+3 x^{2}-7 x-5$ can be factored into linear factors in $Z_{11}[x]$.
Solution: By Corollary 4.4.4., a linear polynomial $(x-a)$ is a factor of a polynomial $f(x)$ in $F[x]$ if and only if a is a zero of $f(x)$ in F . So, by hypothesis, all the zeros of $2 x^{3}+3 x^{2}-7 x-5$ are in Z_{11}. On verification, we get that 3 is a zero of the given polynomial, since $2.3^{3}+3.3^{2}-7.3-5=0$ in Z_{11}. Therefore $x-3$ divides $2 x^{3}+3 x^{2}-7 x-5$

Let us find the factorization by long division.

$$
\begin{array}{r}
2 x^{2}+9 x-2 \\
\begin{array}{r}
2 x^{3}+3 x^{2}-7 x-5 \\
\frac{2 x^{3}-6 x^{2}}{9 x^{2}-7 x} \\
\frac{9 x^{2}-5 x}{-2 x-5} \\
\frac{-2 x+6}{0}
\end{array}
\end{array}
$$

$\therefore 2 x^{3}+3 x^{2}-7 x-5=(x-3)\left(2 x^{2}+9 x-2\right)$
Since -3 is a zero of $2 x^{2}+9 x-2$, we can divide this polynomial by $x+3$

$$
\begin{aligned}
& \\
& \underline{2 x^{2}+6 x} \\
& 3 x-2 \\
& \frac{3 x+9}{0}
\end{aligned}
$$

Conclusion: $2 x^{3}+3 x^{2}-7 x-5=(x-3)(x+3)(2 x+3)$ is the required factorization.

4.12 Problems for Practicals:

1. Find the remainder and quotient, when the polynomial $x^{8}+5 x^{7}+3 x^{6}-2 x^{5}+x^{4}-8 x^{3}+6 x^{2}-2 x+1$ is divided by $x^{4}-x^{3}+3 x^{2}-1$ over $Q[x]$.
2. Find the remainder and quotient when the polynomial $x^{7}-2 x^{6}+4 x^{5}+x^{3}+2 x^{2}-x+3$ is divided by $3 x^{4}+2 x^{3}+4 x^{2}-1$ over $Q[x]$.
3. If $f(x)=x^{4}+5 x^{3}+3 x^{2}+2 x+1$ and $q(x)=x^{2}+x-1$ are polynomials in $Z_{5}[x]$ then find the quotient and remainder when $f(x)$ is divided by $g(x)$.
4. Show that the polynomial $x^{2}+1$ is irreducible over the field of real numbers and reducible over the field of complex numbers.
5. Show that the polynomial $x^{2}+x-4 \in Z_{11}[x]$ is irreducible over Z_{11}.
6. Resolve $x^{4}+4$ into linear factors in Z_{5}.
7. Show that $f(x)=x^{2}+8 x-2$ is irreducible over the field of rational numbers. Is it irreducible over the field of real numbers? Give reasons for your answer.
8. If $f(x)=1+x+x^{2}+x^{3}+x^{4}$, prove that $f(x)$ is irreducible over Q .
9. The polynomial $x^{3}+2 x^{2}+2 x+1$ can be factored into linear factors in $Z_{7}[x]$. Find this factorization.
10. (a) Let F be a field and $f(x), g(x) \in F[x]$. Show that $f(x)$ divides $g(x)$ if and only if $g(x) \in<f(x)>$
(b) Show that the polynomial $x^{4}+2$ is irreducible over Q .

- Prof. Y. Venkateswara Reddy

LESSON - 5

VECTOR SPACES

5.1 Objective of the Lesson:

To learn the definition of vector space, subspace, some examples of vector spaces, algebra of subspaces and related theorems.

5.2 Structure

5.3 Introduction

5.4 Definition and Properties of a vector space

5.5 Vector Subspaces

5.6 Linear sum of subspaces and Linear span of a set.
5.7 Linear dependence and Independence of Vectors
5.8 Summary
5.9 Technical Terms
5.10 Model Questions

5.11 Exercises

5.3 Introduction:

In this lesson we introduce vector space, subspace, linear sum of subspaces, linear span of a set, linear combination of vectors, linearly dependent and independent vectors.

5.4 Vector Spaces:

Let F be a field. A vector space over F is an additive abelian group V together with a function $F \times V \rightarrow V((a, \alpha) \rightarrow a \alpha)$ such that
i) $a(\alpha+\beta)=a \alpha+b \beta$
ii) $(a+B) \alpha=a \alpha+b \alpha$
iii) $a(B \alpha)=(a b) \alpha$
iv) $1 \alpha=\alpha$ for all $\alpha, \beta \in v ; a, b \in F$ and 1 is the unity element of F .
5.4.4 Note: 1) If V is a vector space over F we write $V(F)$ is a vector space. If the field is understood we simply say V is a vector space.
2. Elements of V are called vectors and elements of F are called scalars.
3. The internal composition + in V is called addition and the external composition . is called scalar multiplication.
5.4.5 Example: 1. Let F be a field and K be a subfield of F then F is a vector space over K.

Solution: Suppose F is a field and K a subfield of F.
F is a field $\Rightarrow(F,+)$ is an abelian group.
Let $a \in K$ and $\alpha \in F \Rightarrow a \in F$ and $\alpha \in F \quad$ Since $K \subseteq F$

$$
\Rightarrow a . \alpha \in F \text { Since } \mathrm{F} \text { is a field. }
$$

\therefore is an external composition in F over K .
Let $a, b \in K$ and $\alpha, \beta \in F \Rightarrow a, b \in F$ and $\alpha, \beta \in F$
$a(\alpha+\beta)=a \alpha+b \beta \quad$ by distributive law
$(a+b) \alpha=a \alpha+b \alpha \quad$ by distributive law
$a(b \alpha)=(a b) \alpha \quad$ by associative law
$1 \alpha=\alpha \quad$ Since 1 is the unity element of F.
$\therefore F$ is a vector space over the subfield K .
5.4.6 Note: Every field F is a subfield of itself
\therefore Every field is a vector space over itself.
5.4.7 Example: Let F be a field $V_{n}=\left\{\left(a_{1}, a_{2} \ldots a_{n}\right) / a_{i} \in F f o r 1 \leq i \leq n\right\}$ is the set of n -tuples. V_{n} is a vector space over F with respect to addition ' + ' and scalar multiplication ' \cdot ' defined by
$\left(a_{1}, a_{2} \ldots a_{n}\right)+\left(b_{1}, b_{2} \ldots b_{n}\right)=\left(a_{1}+b_{1}, \ldots a_{n}+b_{n}\right)$
$a\left(a_{1}, a_{2} \ldots a_{n}\right)=\left(a a_{1}, a a_{2}, \ldots a a_{n}\right)$ for $\left(a_{1}, a_{2} \ldots a_{n}\right),\left(b_{1}, b_{2} \ldots b_{n}\right) \in V_{n}$ and $a \in F$.
Solution: Let F be a field and $V_{n}=\left\{\left(a_{1}, a_{2} \ldots a_{n}\right) / a_{i} \in F, 1 \leq i \leq n\right\}$
Let $\alpha=\left(a_{1}, a_{\alpha} \ldots a_{n}\right), \beta=\left(b_{1}, b_{\alpha} \ldots b_{n}\right), r=\left(c_{1}, c_{2}, \ldots c_{n}\right) \in V_{n} \Rightarrow a_{i}$'s, b_{i} 's and c_{i} 's $\in F$
$\alpha+\beta=\left(a_{1}+b_{1}, a_{2}+b_{2} \ldots a_{n}+b_{n}\right) \in V_{n}$ since $a_{i}+b_{i} \in F$ for $1 \leq i \leq n$
$\therefore V_{n}$ is closed w.r.to ' + '.

$$
\begin{aligned}
(\alpha+\beta)+\gamma & =\left[\left(a_{1}, a_{2} \ldots a_{n}\right)+\left(b_{1}, b_{2} \ldots b_{n}\right)\right]+\left(c_{1}, c_{2} \ldots c_{n}\right) \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2} \ldots a_{n}+b_{n}\right)+\left(c_{1}, c_{2} \ldots c_{n}\right) \\
& =\left[\left(a_{1}+b_{1}\right)+c_{1}\left(a_{2}+b_{2}\right)+c_{2}, \ldots\left(a_{n}+b_{n}\right)+c_{n}\right] \\
& =\left[a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right), \ldots a_{n}+\left(b_{n}+c_{n}\right)\right] \\
& =\left(a_{1}, a_{2} \ldots a_{n}\right)+\left(b_{1}+c_{1}, b_{2}+c_{2}, \ldots b_{n}+c_{n}\right) \\
& =\alpha+(\beta+\gamma)
\end{aligned}
$$

\therefore Addition is associative.

$$
\begin{aligned}
\alpha+\beta & =\left(a_{1}, a_{2} \ldots a_{n}\right)+\left(b_{1}, b_{2} \ldots b_{n}\right) \\
& =\left(a_{1},+b_{1}, a_{2}+b_{2} \ldots a_{n}+b_{n}\right) \\
& =\left(b_{1}+a_{1}, b_{2}+a_{2} \ldots b_{n}+a_{n}\right) \quad \text { since } a_{i} s, b_{i} s \in F \\
& =\left(b_{1} b_{2} \ldots b_{n}\right)+\left(a_{1}, a_{2} \ldots a_{n}\right) \\
& =\beta+\alpha
\end{aligned}
$$

\therefore Addition is commutative.
We have $0 \in F$

$$
\therefore \overline{0}=(0,0 \ldots 0) \in V_{n}
$$

Now $\alpha+\overline{0}=\left(a_{1}, a_{2} \ldots a_{n}\right)+(0,0 \ldots 0)$

$$
\begin{aligned}
& =\left(a_{1}+0, a_{2}+0 \ldots a_{n}+0\right) \\
& =\left(a_{1}, a_{2} \ldots a_{n}\right) \\
& =\alpha
\end{aligned}
$$

$\therefore \overline{0}$ is the additive identity of V_{n}.
$\alpha=\left(a_{1}, a_{2} \ldots a_{n}\right) \in V_{n} \Rightarrow a_{1}, a_{2} \ldots a_{n} \in F$

$$
\begin{aligned}
& \Rightarrow-a_{1},-a_{2} \ldots-a_{n} \in F \\
& \Rightarrow\left(-a_{1},-a_{2} \ldots-a_{n}\right) \in V_{n}
\end{aligned}
$$

Now $\left(a_{1}, a_{2} \ldots a_{n}\right)+\left(-a_{1},-a_{2} \ldots-a_{n}\right)$

$$
\begin{aligned}
& =\left(a_{1}+-\left(a_{1}\right), a_{2}+\left(-a_{2}\right), \ldots a_{n}+\left(-a_{n}\right)\right. \\
& =(0,0 \ldots 0) \\
& =\overline{0}
\end{aligned}
$$

$\therefore\left(-a_{1},-a_{2} \ldots a_{n}\right)=-\alpha$ is the inverse of α.
Hence $\left(V_{n},+\right)$ is an abelian group.

$$
a \alpha=a\left(a_{1}, a_{2} \ldots a_{n}\right)=\left(a a_{1}, a a_{2} \ldots a a_{n}\right) \in V_{n}, \text { Since } a a_{1}, a a_{2} \ldots a a_{n} \in F
$$

$\therefore V_{n}$ is closed under scalar multiplication.
Let $a, b \in F$ and $\alpha=\left(a_{1}, a_{2} \ldots a_{n}\right), \beta=\left(b_{1}, b_{2} \ldots b_{n}\right) \in V_{n}$

$$
a(\alpha+\beta)=a\left(a_{1}+b_{1}, a_{2}+b_{2} \ldots a_{n}+b_{n}\right)
$$

$$
\begin{aligned}
& =\left(a\left(a_{1}+b_{1}\right), a\left(a_{2}+b_{2}\right) \ldots a\left(a_{n}+b_{n}\right)\right) \\
& =\left(a a_{1}+a b_{1}, a a_{2}+a b_{2} \ldots a a_{n}+a b_{n}\right) \\
& =\left(a a_{1}, a a_{2} \ldots a a_{n}\right)+\left(a b_{1}, a b_{2} \ldots a b_{n}\right) \\
& =a\left(a_{1}, a_{2} \ldots a_{n}\right)+a\left(b_{1}, b_{2} \ldots b_{n}\right) \\
& =a \alpha+a \beta
\end{aligned}
$$

$$
\begin{aligned}
(a+b) \alpha & =(a+b)\left(a_{1}, a_{2} \ldots a_{n}\right) \\
& \left.=\left((a+b) a_{1},(a+b) a_{2} \ldots(a+b) a_{n}\right)\right) \\
& =\left(a a_{1}+b a_{1}, a a_{2}+b a_{2}, \ldots a a_{n}+b a_{n}\right) \\
& =\left(a a_{1}, a a_{2} \ldots a a_{n}\right)+\left(b a_{1}, b a_{2} \ldots b a_{n}\right) \\
& =a\left(a_{1}, a_{2} \ldots a_{n}\right)+b\left(a_{1}, a_{2} \ldots a_{n}\right) \\
& =a \alpha+b \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { Rings and Linear Algebra } \\
& \begin{aligned}
a(b \alpha)= & a\left(b a_{1}, b a_{2} \ldots b a_{n}\right) \\
& =\left(a\left(b a_{1}\right), a\left(b a_{2}\right), \ldots a\left(b a_{n}\right)\right) \\
& =\left((a b) a_{1},(a b) a_{2}, \ldots(a b) a_{n}\right) \\
& =a b\left(a_{1}, a_{2} \ldots a_{n}\right) \\
& =a b \alpha
\end{aligned} \\
& \begin{aligned}
1 \alpha= & 1\left(a_{1}, a_{2} \ldots a_{n}\right) \\
= & \left(1 a_{1}, 1 a_{2} \ldots 1 a_{n}\right) \\
= & \left(a_{1}, a_{2} \ldots a_{n}\right) \\
= & \alpha
\end{aligned}
\end{aligned}
$$

$\therefore V_{n}(F)$ is a vector space.

5.4.8 Elementary Properties of a vector space:

Theorem : Let $V(F)$ be a vector space then
i) $a \overline{0}=\overline{0}$
ii) $0 \alpha=\overline{0}$
iii) $a(-\alpha)=-a \alpha$
iv) $(-a) \alpha=-a \alpha$
v) $(-a)(-\alpha)=a \alpha$
vi) $a(\alpha-\beta)=a \alpha-a \beta$
vii) $(a-b) \alpha=a \alpha-b \alpha$
viii) $\alpha=\overline{0} \Rightarrow a=0 \quad$ or $\quad \alpha=\overline{0} \quad \forall \alpha, \beta \in V$ and $\quad a \in F$

Let $V(F)$ be a vector space and $\alpha . \beta \in \vee, a \in F$
i) $a \overline{0}=a(\overline{0}+\overline{0})=a \overline{0}+a \overline{0}$
$\Rightarrow a \overline{0}+\overline{0}=a \overline{0}+a \overline{0}$

$$
\Rightarrow \overline{0}=a \overline{0} \text { by left cancellation law. }
$$

ii) $0 \alpha=(0+0) \alpha$ since 0 is the zero element of F.

$$
=0 \alpha+0 \alpha
$$

$\Rightarrow 0 \alpha+\overline{0}=0 \alpha+0 \alpha$ Since $\overline{0}$ is the identity in V .
$\Rightarrow \overline{0}=0 \alpha$ by left cancellation law.
iii) $a(-\alpha)+a \alpha=a(-\alpha+\alpha)$

$$
\begin{aligned}
& =a \overline{0} \\
& =\overline{0} \text { by i. }
\end{aligned}
$$

$$
\therefore a(-\alpha)=-a \alpha
$$

iv) $(-a) \alpha+a \alpha=(-a+a) \alpha$

$$
\begin{aligned}
& =0 \alpha \\
& =\overline{0} \text { by ii. }
\end{aligned}
$$

$$
\therefore(-a) \alpha=-a \alpha
$$

v) $(-a)(-\alpha)=-[(-a) \alpha]$ by iii.

$$
\begin{aligned}
& =-[-(a \alpha)] \text { by iv. } \\
& =a \alpha
\end{aligned}
$$

vi) $a(\alpha-\beta)=a[\alpha+(-\beta)]$

$$
\begin{aligned}
& =a \alpha+a(-\beta) \\
& =a \alpha+(-a \beta) \\
& =a \alpha-a \beta
\end{aligned}
$$

vii) $(a-b) \alpha=[a+(-b)] \alpha=a \alpha+(-b) \alpha$

$$
\begin{aligned}
& =a \alpha+(-b \alpha) \\
& =a \alpha-b \alpha
\end{aligned}
$$

Suppose $a \alpha=\overline{0}$.
If $a \neq 0$ then there exists $a^{-1} \in F$ such that $a a^{-1}=a^{-1} a=1$.
$\therefore a \alpha=\overline{0}$ and $a \neq 0$
$\Rightarrow a^{-1}(a \alpha)=a^{-1} \overline{0}$
$\Rightarrow\left(a^{-1} a\right) \alpha=\overline{0}$
$\Rightarrow 1 \alpha=\overline{0}$
$\Rightarrow \alpha=\overline{0}$
$\therefore a \alpha=\overline{0} \Rightarrow$ either $a=0$ or $\alpha=\overline{0}$.
5.4.9 Note: Let $V(F)$ be a vector space. For $a, b \in F$ and $\alpha, \beta \in V$
i) $a \alpha=b \alpha$ and $\alpha \neq \overline{0}$ then $a=b$
ii) $a \alpha=a \beta$ and $a \neq 0$ then $\alpha=\beta$

5.5. Vector Subspaces:

5.5.1 Definition: Let $V(F)$ be a vector space and $\phi \neq W \subseteq V$.

W is said to be a subspace of V if W is an additive subgroup of V and $a \beta \in W$, for all $a \in F, \beta \in W$.
5.5.2 Example: (i) Let $V(F)$ be a vector space then $W=\{\overline{0}\}$
where $\overline{0}$ is the additive identity of V is a subspace of V .
2. The vector space V itself is a subspace of V .

These two subspaces are called trivial subspaces of V .
5.5.3 Theorem: A necessary and sufficient conditions for a non-empty subset W of a vector space $V(F)$ to be a subspace are
i) $\alpha, \beta \in \omega \Rightarrow \alpha-\beta \in \omega$
ii) $a \in F, \alpha \in \omega \Rightarrow a \alpha \in \omega$

Proof: Let $V(F)$ be a vector space and W a non-empty subset of V .
Suppose W is a subspace of V.
$\Rightarrow W$ itself is a vector space.
$\Rightarrow W$ is a group w.r.to +
$\therefore \alpha, \beta \in W \Rightarrow \alpha-\beta \in W$.
Clearly $a \in F$ and $\alpha \in W \Rightarrow a \alpha \in W$
\therefore The conditions i and ii are necessary.
Now suppose i) $\alpha, \beta \in W \Rightarrow \alpha-\beta \in W$ and
ii) $a \in F$ and $\alpha \in W \Rightarrow a \alpha \in W$

W is a non-empty subset of the abelion group $(V,+)$ and $\alpha, \beta \in W \Rightarrow \alpha-\beta \in W$.
\therefore From group theory we know that $(\mathrm{W},+)$ is a subgroup of $(V,+)$.
From condition (ii) we get than W is a vector space by itself.
Hence W is a subspace of $V(F)$.
5.5.4 Theorem: A necessary and sufficient condition for a non-empty subset W of a vector space $V(F)$ to be a subspace of $V(F)$ is $a, b \in F$ and $\alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W$.

Proof: Let $V(F)$ be a vector space and W is a non-empty subset of V .
Suppose W is a subspace of $V(F)$.
$\Rightarrow W$ itself is a vector space over F.
$\Rightarrow W$ is closed under addition ' + ' and scalar multiplication '. '.
$\therefore a, b \in F$ and $\alpha, \beta \in W \Rightarrow a \alpha \in W, b \beta \in W$

$$
\Rightarrow a \alpha+b \beta \in W
$$

\therefore The condition is necessary.
Suppose the condition $a, b \in F$ and $\alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W$.
To prove that W is a subspace of $V(F)$.
Let $\alpha, \beta \in W$
Since F is a field 1 and $-1 \in F$
\therefore By the condition $1 . \alpha+(-1) \beta \in W$

$$
\Rightarrow \alpha-\beta \in W
$$

$\therefore(W,+)$ is a sub group of $(V,+)$ from group theory
$\therefore(W,+)$ is a group.
All elements of W are elements of V .
$\therefore(W,+)$ is an abelion group.
Let $a \in F$ and $\alpha \in W$
\therefore By the condition $a \alpha+0 . \alpha \in W$ since $0 \in F$

$$
\Rightarrow a \alpha \in W
$$

$\therefore W$ is closed under scalar multiplication.
Since elements of W are elements of V , we have

$$
\begin{aligned}
& a(\alpha+\beta)=a \alpha+a \beta \\
& (a+b) \alpha=a \alpha+b \alpha \\
& a(b \alpha)=(a b) \alpha \\
& \quad 1 . \alpha=\alpha \text { for all } a, b \in F \text { and } \alpha, \beta \in W
\end{aligned}
$$

$\therefore W$ is a vector space over F .
Hence W is a subspace of $V(F)$.
\therefore The condition is sufficient.

5.5.4 Algebra of Subspaces:

Theorem: The intersection of any two subspaces of a vector space is a subspace.
Proof: Let $V(F)$ be a vector space and W_{1}, W_{2} be two subspaces of V .
To prove that $W_{1} \cap W_{2}$ is a subspace.
Take $W=W_{1} \cap W_{2}$
clearly $\overline{0} \in W_{1}$ and $\overline{0} \in W_{2} \Rightarrow \overline{0} \in W_{1} \cap W_{2}=W$
$\therefore W$ is a non-empty subset of V .
Let $a, b \in F$ and $\alpha, \beta \in W$

$$
\alpha, \beta \in W \Rightarrow \alpha, \beta \in W_{1} \quad \text { and } \alpha, \beta \in W_{2}
$$

$a, b \in F, \alpha, \beta \in W_{1}$ and W_{1} is a subspace of V .

$$
\begin{equation*}
\Rightarrow a \alpha+b \beta \in W_{1} \tag{1}
\end{equation*}
$$

$a, b \in F, \alpha, \beta \in W_{2}$ and W_{2} is a subspace of V .

$$
\begin{equation*}
\Rightarrow a \alpha+b \beta \in W_{2} \tag{2}
\end{equation*}
$$

From (1) and (2) $a \alpha+b \beta \in W_{1} \cap W_{2}=W$
$\therefore a, b \in F, \alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W$
$\therefore W$ is a subspace of V . by 5.5.4.
5.5.6 Note: 1 . Intersection of any family of subspaces of a vector space is a subspace.
2. Union of two subspaces of a vector space need not be a subspace.

Example: We know that set of real numbers R is a field.
$\therefore R^{3}=V_{3}(R)=\left\{\left(a_{1}, a_{2}, a_{3}\right) / a_{1}, a_{2}, a_{3} \in R\right\}$ is a vector space by 5.4.7.
Let $\therefore W=\{(0, x, 0) / x \in R\}$ and $W_{2}=\{(0,0, y) / y \in R\}$
Clearly W_{1} and W_{2} are non-empty subsets of $V_{3}(R)$
Let $a, b \in R$ and $\alpha=\left(0, x_{1}, 0\right) \beta=\left(0, x_{2}, 0\right) \in W$;
Then $a \alpha+b \beta=a\left(0, x_{1}, 0\right)+b\left(0, x_{2}, 0\right)$

$$
\begin{aligned}
& =\left(0, a x_{1}, 0\right)+\left(0, b x_{2}, 0\right) \\
& =\left(0, a x_{1}+b x_{2}, 0\right)
\end{aligned}
$$

$\therefore a \alpha+b \beta \in W_{1}$ since $a, b, x_{1}, x_{2} \in R \Rightarrow a x_{1}+b x_{2} \in R$
Similarly $a, b \in R$ and $\gamma=\left(0,0, y_{1}\right) \quad \delta=\left(0,0, y_{2}\right) \in W_{2}$

$$
\begin{aligned}
a \gamma+b \delta & =a\left(0,0, y_{1}\right)+b\left(0,0, y_{2}\right) \\
& =\left(0,0, a y_{1}\right)+\left(0,0, b y_{2}\right) \\
& =\left(0,0, a y_{1}+b y_{2}\right)
\end{aligned}
$$

$a \gamma+b \delta \in W_{2}$ since $a, b \in R, y_{1}, y_{2} \in R \Rightarrow a y_{1}+b y_{2} \in R$

Hence W_{1} and W_{2} are subspaces of $V_{3}(R)$
Now $\alpha=(0,2,0) \in W_{1} \quad$ and $\beta=(0,0,3) \in W_{2}$

$$
\alpha+\beta=(0,2,3) \notin W_{1} \cup W_{2}
$$

$\therefore W_{1} \cup W_{2}$ need not be a subspace.
5.5.7 Theorem: Union of two subspaces of a vector space is a subspace iff one is contained in the other.

Proof: Let W_{1} and W_{2} be two subspaces of a vector space $V(F)$.
Suppose $W_{1} \cup W_{2}$ is a subspace of the vector space $V(F)$.
To prove that either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$
If possible assume that $W_{1} \nsubseteq W_{2}$ or $W_{2} \nsubseteq W_{1}$
$W_{1} \nsubseteq W_{2} \Rightarrow$ there is an $\alpha \in W_{1}$ and $\alpha \notin W_{2}$
$W_{2} \nsubseteq W_{1} \Rightarrow$ there is a $\beta \in W_{2}$ and $\beta \notin W_{1}$
$\alpha \in W_{1} \Rightarrow \alpha \in W_{1} \cup W_{2}$
$\beta \in W_{2} \Rightarrow \beta \in W_{1} \cup W_{2}$
$\therefore \alpha+\beta \in W_{1} \cup W_{2}$ since $W_{1} \cup W_{2}$ is a subspace.
$\Rightarrow \alpha+\beta \in W_{1}$ or $\alpha+\beta \in W_{2}$
If $\alpha+\beta \in W_{1}$ then $\alpha+\beta-\alpha \in W_{1}$ since $\alpha \in W_{1}$

$$
\Rightarrow \beta \in W_{1}
$$

A contradiction to (2)

If $\alpha+\beta \in W_{2}$ then $\alpha+\beta-\beta \in W_{2}$ since $\beta \in W_{2}$

$$
\Rightarrow \alpha \in W_{2}
$$

A contradiction to (1)
$\therefore \alpha+\beta \notin W_{1}$ and $\alpha+\beta \notin W_{2}$
$\Rightarrow \alpha+\beta \notin W_{1} \cup W_{2}$ A contradiction to $\alpha+\beta \in W_{1} \cup W_{2}$.
Hence either $W_{1} \subseteq W_{2} \quad$ or $\quad W_{2} \subseteq W_{1}$
Now suppose either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$
If $W_{1} \subseteq W_{2}$ then $W_{1} \cup W_{2}=W_{2}$
If $W_{2} \subseteq W_{1}$ then $W_{1} \cup W_{2}=W_{1}$
$\therefore W_{1} \cup W_{2}$ is a subspace.

5.6.1 Linear sum of two subspaces:

Definition: Let $V(F)$ be a vector space and W_{1}, W_{2} be two subspaces of $V(F)$. The set $\left\{\alpha_{1}+\alpha_{2} / \alpha, \in W_{1}, \alpha_{2} \in W_{2}\right\}$ is called linear sum of W_{1} and W_{2} and is denoted by $W_{1}+W_{2}$.
5.6.2 Theorem: If W_{1} and W_{2} are two subspaces of a vector space $V(F)$ then $W_{1}+W_{2}$ is a subspace of V . Also $W_{1} \cup W_{2} \subseteq W_{1}+W_{2}$.

Proof: Let $V(F)$ be a vector space and W_{1}, W_{2} be two subspaces of V .

$$
W_{1}+W_{2}=\left\{\alpha_{1}+\alpha_{2} / \alpha_{1} \in W_{1}, \alpha_{2} \in W_{2}\right\}
$$

Clearly $\overline{0} \in W_{1}$ and W_{2}
$\therefore \overline{0}=\overline{0}+\overline{0} \in W_{1}+W_{2}$
$\therefore W_{1}+W_{2}$ is a non-empty subset of V .
Suppose $a, b \in F$ and $\alpha, \beta \in W_{1}+W_{2}$

$$
\alpha \in W_{1}+W_{2} \Rightarrow \alpha=\alpha_{1}+\alpha_{2} \text { where } \alpha_{1} \in W_{1} \text { and } \alpha_{2} \in W_{2}
$$

$\beta \in W_{1}+W_{2} \Rightarrow \beta=\beta_{1}+\beta_{2}$ where $\beta_{1} \in W_{1}$ and $\beta_{2} \in W_{2}$
Now $a \alpha+b \beta=a\left(\alpha_{1}+\alpha_{2}\right)+b\left(\beta_{1}+\beta_{2}\right)$

$$
=\left(a \alpha_{1}+a \alpha_{2}\right)+\left(b \beta_{1}+\beta_{2}\right)
$$

$=\left(a \alpha_{1}+b \beta_{2}\right)+\left(a \alpha_{2}+b \beta_{2}\right)$
$a, b \in F$ and $\alpha_{1}, \beta_{1} \in W_{1} \Rightarrow a \alpha_{1}+b \beta_{1} \in W_{1}$ since W_{1} is a subspace.
$a, b \in F$ and $\alpha_{2}, \beta_{2} \in W_{2} \Rightarrow a \alpha_{2}+b \beta_{2} \in W_{2}$ since W_{2} is a subspace.
$\therefore a \alpha+b \beta=\left(a \alpha_{1}+b \beta_{1}\right)+\left(a \alpha_{2}+b \beta_{2}\right) \in W_{1}+W_{2}$
Hence $W_{1}+W_{2}$ is a subspace of V .
Let $\alpha_{1} \in W_{1} \Rightarrow \alpha_{1}+\overline{0} \in W_{1}+W_{2}$

$$
\begin{align*}
& \Rightarrow \alpha_{1} \in W_{1}+W_{2} \\
\therefore W_{1} & \subseteq W_{1}+W_{2} \tag{1}
\end{align*}
$$

$\alpha_{2} \in W_{1} \Rightarrow \overline{0}+\alpha_{2} \in W_{1}+W_{2}$
$\Rightarrow \alpha_{2} \in W_{1}+W_{2}$
$\therefore W_{2} \subseteq W_{1}+W_{2}$
From (1) and (2) $W_{1} \cup W_{2} \subseteq W_{1}+W_{2}$
5.6.3 Linear Combination : Let $V(F)$ be a vector space and $\alpha_{1}, \alpha_{2} \ldots \alpha_{n} \in V$ if $a_{1}, a_{2} \ldots a_{n} \in F$. then the vector $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots a_{n} \alpha_{n}$ is called linear combination of $\alpha_{1}, \alpha_{2}\left|+\alpha_{n}\right| \ldots \ldots \alpha_{n}$.
5.6.4 Linear Span of a set: Let $\mathrm{V}(\mathrm{F})$ be a vector space and S a non-empty subset of V . The set of all linear combinations of elements of all possible finite subsets of S is said to be linear span of S.

It is denoted by $\mathrm{L}(\mathrm{S})$.
5.6.5 Note: 1 . If S is a non-empty subset of a vector space V then

$$
L(S)=\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n} / a_{i} \in F \text { and } \alpha_{i} \in S \text { for } 1 \leq i \leq n\right\}
$$

2. S is a subset of $L(S)$.
5.6.6. Theorem: The linear span $L(S)$ of any subset S of a vector space V is a subspace of V. Proof: Let $\mathrm{V}(\mathrm{F})$ be a vector space and S a non-empty subset of V .
$L(S)$ is the linear spance of S .

Clearly by the defintion of linear spance $L(S)$ is a non-empty subset of V .
Let $\alpha, \beta \in L(S)$ and $a, b \in F$
$\alpha \in L(S) \Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}$ where a_{i} 's $\in F$ and $\alpha_{i}{ }^{\prime} s_{\in S}$
$\beta \in L(S) \Rightarrow \beta=b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{n} \beta_{n}$ where b_{i} 's $\in F$ and β_{i} 's $\in S$.
Now $a \alpha+b \beta=\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}\right)+b\left(b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{n} \beta_{n}\right)$

$$
=\left(a a_{1}\right) \alpha_{1}+\left(a a_{2}\right) \alpha_{2}+\ldots+\left(a a_{m}\right) \alpha_{m}+\left(b b_{1}\right) \beta_{1}+\left(b b_{2}\right) \beta_{2}+\ldots+\left(b b_{n}\right) \beta_{n}
$$

i.e. $a \alpha+b \beta$ is a linear combination of elements of S .

$$
\therefore a \alpha+b \beta \in L(S)
$$

Hence $L(S)$ is a subspace of V.
5.6.7 Theorem: If S is a non-empty sub-set of a vector space $V(F)$ then linear span of S is the intersection of all sub-spaces of V which contain S .

Proof: Let $V(F)$ be a vector space and S a non-empty sub-set of V .
Suppose W is a sub-space of V and $S \subseteq W$.
Let $\alpha \in L(S)$
$\Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{i}{ }^{\prime} s_{\in F}$ and $\alpha_{i}{ }^{\prime} s_{\in S}$.
$\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n} \in S \Rightarrow \alpha_{1}, \alpha_{2}, \ldots \alpha_{n} \in W$
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n} \in W$ Since W is a subspace it is closed under addition and scalar multiplication.

$$
\begin{array}{r}
\therefore \alpha \in L(S) \Rightarrow \alpha \in W \\
\quad \text { i.e. } L(S) \subseteq W
\end{array}
$$

$\therefore L(S)$ is a subset of every subspace which contains S
$\Rightarrow L(S) \subseteq$ Inter section of all subspaces of V . Which contains S
We know that $L(S)$ is a subspace and $S \subseteq L(S)$ by theorem 5.6.6 and 5.6.5.
\therefore Intersection of all subspaces of V which contains $S \subseteq L(S)$

From (1) and (2) $L(S)=$ Intersection of all subspaces of V .
Which contain S .
5.6.8 Note: If S is a non-empty sub-set of a vector space $V(F)$ then $L(S)$ is the smallest subspace of V containing S .
5.6.9 Theorem: If S is a non-empty subset of a vector space $V(F)$ then
i) S is a subspace of $V \Leftrightarrow L(S)=S$
ii) $L(L(S))=L(S)$

Proof: Let $V(F)$ be a vector space and S be a non-empty subset of V .
i) Suppose S is a subspace of V.

Let $\alpha \in L(S)$
$\Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where a_{i} ' $s \in F$ and α_{i} ' $s \in S$.
S is a subspace \Rightarrow It is closed under addition and scalar multiplication.

$$
\begin{gather*}
\therefore \alpha \in S \\
\therefore \alpha \in L(S) \Rightarrow \alpha \in S \\
\therefore L(S) \subseteq S \tag{1}
\end{gather*}
$$

Let $\beta \in S \Rightarrow 1 . \beta \in L(S)$

$$
\Rightarrow \beta \in L(S)
$$

$$
\begin{equation*}
\therefore S \subseteq L(S) \tag{2}
\end{equation*}
$$

Hence $L(S)=S$. From (1) and (2)
Now suppose $L(S)=S$
By theorem 5.6.6 $L(S)$ is a subspace of V .
$\therefore S$ is a subspace of V .
ii) We know that $L(S)$ is a subspace of V by 5.6.6.
$\therefore \mathrm{By}(1) \quad L(L(S))=L(S)$
5.6.10 Theorem: If S and T are two subsets of a vector space $V(F)$ then
(i) $\quad S \subseteq T \Rightarrow L(S) \subseteq L(T)$
(ii) $\quad L(S \cup T)=L(S)+L(T)$

Proof: Let $V(F)$ be a vector space and S, T be two subsets of V .
i) Suppose $S \subseteq T$

Let $\alpha \in L(S)$
$\Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{i}{ }^{\prime} s \in F$ and $\alpha_{i}{ }^{\prime} s \in S$.
i.e. α is linear combination of finite subset of S .
$\Rightarrow \alpha$ is linear combination of finite subset of T . Since $S \subseteq T$
$\Rightarrow \alpha \in L(T)$
$\therefore \alpha \in L(S) \Rightarrow \alpha \in L(T)$
$\therefore L(S) \subseteq L(T)$
ii) Let $\alpha \in L(S \cup T)$

$$
\Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}+b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{m} \beta_{m}
$$

where $a_{1}, a_{2}, \ldots ., a_{n}, b_{1}, b_{2}, \ldots ., b_{m} \in F$ and $\alpha_{i}{ }^{\prime} s_{\in S}, \beta_{j}$ ' $s_{\in T}$.
$\Rightarrow \alpha=L . C$ of elements of $S+L . C$ of elements of T.
$\Rightarrow \alpha=$ An element of $\mathrm{L}(\mathrm{S})+$ an element of $\mathrm{L}(\mathrm{T})$
$\Rightarrow \alpha \in L(S)+L(T)$
Now suppose $\alpha \in L(S)+L(T)$
$\Rightarrow \alpha=\beta+\gamma$ where $\beta \in L(S)$ and $\gamma \in L(T)$
$\beta \in L(S) \Rightarrow \beta=L . C$ of finite elements of S .
$\gamma \in L(T) \Rightarrow \gamma=L . C$ of finite elements of T.
$\therefore \alpha=L . C$ of finite elements of $S \cup T$.
$\therefore \alpha \in L(S \cup T)$
$\therefore L(S)+L(T) \subseteq L(S \cup T)$
From (1) and (2) $L(S \cup T)=L(S)+L(T)$
5.6.11 Theorem: If W_{1} and W_{2} are two subspaces of a vectorspace $V(F)$ then $L\left(W_{1} \cup W_{2}\right)=W_{1}+W_{2}$.

Proof: Let $V(F)$ be a vector space and W_{1}, W_{2} be two subspaces of V .
We know that $W_{1}+W_{2}$ is a subspace of \bigvee containing $W_{1} \cup W_{2}$ by theorem 5.6.2.
Also $L\left(W_{1} \cup W_{2}\right)$ is the smallest subspace of V containing $W_{1} \cup W_{2}$.

$$
\begin{equation*}
\therefore L\left(W_{1} \cup W_{2}\right) \subseteq W_{1}+W_{2} \tag{1}
\end{equation*}
$$

Let $\alpha \in W_{1}+W_{2}$

$$
\Rightarrow \alpha=\beta+\gamma \text { where } \beta \in W_{1} \text { and } \gamma \in W_{2}
$$

i.e. α is L.C. of finite elements of $W_{1} \cup W_{2}$
$\therefore \alpha \in L\left(W_{1} \cup W_{2}\right)$
$\therefore W_{1}+W_{2} \subseteq L\left(W_{1} \cup W_{2}\right)$
From (1) and (2) $L\left(W_{1} \cup W_{2}\right)=W_{1}+W_{2}$.

5.7 Linearly dependent and independent vectors :

5.7.1 Definition: Linearly dependent vectors: A finite subset $\left\{\alpha_{1}, \alpha_{2} \ldots . . . \alpha_{n}\right\}$ of vectors of a vector space $V(F)$ is said to be linearly dependent if there exists scalars $a_{1}, a_{2} \ldots . . . a_{n} \in F$ not all zero such that $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$.
5.7.2 Linearly Independent Vectors: A finite subset $\left\{\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}\right\}$ of vectors of a vector space $V(F)$ is said to be linearly independent if it is not linearly dependent.
5.7.3 Note: A finite subset $\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{n}\right\}$ of vectors of a vector space $V(F)$ is linearly independent if every relation of the form $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$ where a_{i} ' $s \in F \Rightarrow a_{1}=a_{2}=\ldots . .=a_{n}=0$.
5.7.4 Note: A set of vectors which contains the zero vector is linearly dependent (L.D.)

Solution: Let $\left\{\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}\right\}$ be a finite set of vectors of a vector space $V(F)$.
Suppose $\alpha_{1}=\overline{0}$ and $\alpha_{1}, \alpha_{1} \ldots \ldots \alpha_{n}$ are non zero
Then $1 \alpha_{1}+0 \alpha_{2}+0 \alpha_{3}+\ldots+0 \alpha_{n}=\overline{0}$
\therefore We have scalars $a_{1}, a_{2}, \ldots, a_{n}$ not all zero such that $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0} \quad\{$ Since $1 \neq 0\}$ $\therefore\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{n}\right\}$ is linearly dependent.
i.e. a set of vectors containing atleast one zero vector is L.D.
5.7.5 Note: A single non-zero vector forms a L.I. set.

Solution: Suppose $\left\{\alpha_{1}\right\}$ where $\alpha_{1} \neq \overline{0}$ is a subset of a vector space $V(F)$.
If $a \alpha_{1}=\overline{0}$ where $a \in F$ then $a=0$ since $\alpha_{1} \neq \overline{0}$
$\therefore a \alpha_{1}=\overline{0} \Rightarrow a=0$
\therefore A single non-zero vector forms a L.I. Set.
5.7.6 Theorem: Every super set of a linearly dependent set is linearly dependent.

Proof: Let $V(F)$ be a vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots \alpha_{n}\right\}$ be a linearly dependent set.
\therefore There exists scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$ not all zero such that $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$
Let $S^{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}, \beta_{1}, \beta_{1} \ldots \ldots \beta_{m}\right\}$ be a superset of S (i.e. $S \subseteq S^{1}$)
Now $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}+0 \beta_{1}+0 \beta_{2}+\ldots+0 \beta_{m}=\overline{0}$ (2) from (1)

In the above relation (2) all scalars are not zero.

$$
\therefore S^{1} \text { is L.D. }
$$

5.7.7 Theorem: Every non-empty subset of a linearly independent set is linearly independent.

Proof: Let $V(F)$ be a vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{n}\right\}$ be a linearly independent set.
Let $S^{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots \alpha_{k}\right\} 1 \leq k \leq n$ be a subset of S.
Suppose $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{k} \alpha_{k}=\overline{0}$ where $a_{1}, a_{2} \ldots a_{k} \in F$
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{k} \alpha_{k}+0 \alpha_{k+1}+0 \alpha_{k+2}+\ldots+0 \alpha_{n}=\overline{0}$
$\Rightarrow a_{1}=a_{2}=\ldots=a_{k}=0$ since S is L.I.
$\therefore S^{1}=\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{k}\right\}$ is L.I.
5.7.8 Theorem: Let $V(F)$ be a vector space. A finite subset of non-zero vectors $S=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots \alpha_{n}\right\}$ of $V(F)$ is linearly dependent iff some vector $\alpha_{k}, 2 \leq k \leq n$ can be expressed as linear combination of the vectors which preced it.

Proof: Let $V(F)$ be a vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{n}\right\}$ be a finite subset of non-zero vectors of $V(F)$.

Suppose S is linearly dependent.
\Rightarrow there exists scalars $a_{1}, a_{2} \ldots . a_{k} \in F$ not all zero such that $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$
Suppose k is the greatest suffix such that $a_{k} \neq 0$.
If $k=1$ then $a_{1} \alpha_{1}=\overline{0}$

$$
\Rightarrow \alpha_{1}=\overline{0} \quad \text { since } a_{k} \neq 0
$$

A contradiction since S is a subset of nonzero vectors.
$\therefore 2 \leq k \leq n$
From (1) $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$

$$
\begin{aligned}
& \Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{k} \alpha_{k}=\overline{0} \text { since } a_{i}=0 \text { for } i>k \\
& \Rightarrow a_{k} \alpha_{k}=-a_{1} \alpha_{1}-a_{2} \alpha_{2}-\ldots-a_{k-1} \alpha_{k-1} \\
& \Rightarrow \alpha_{k}=-\left(a_{k}^{-1} a_{1}\right) \alpha_{1}-\left(a_{k}^{-1} a_{2}\right) \alpha_{2} \ldots \ldots .\left(a_{k}^{-1} a_{k-1}\right) \alpha_{k-1}
\end{aligned}
$$

$\therefore \alpha_{k}$ is L.C of its preceding vectors.
Now suppose some vector $\alpha_{k}, 2 \leq k \leq n$ is a L.C of its preceding vectors.

$$
\begin{aligned}
& \therefore \alpha_{k}=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{k-1} \alpha_{k-1} \text { where } b_{1}, b_{2}, \ldots, b_{k-1} \in F \\
& \Rightarrow b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{k-1} \alpha_{k-1}+(-1) \alpha_{k}=\overline{0}
\end{aligned}
$$

$$
\Rightarrow b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{k-1} \alpha_{k-1}+(-1) \alpha_{k}+0 \alpha_{k-1}+\ldots .+0 \alpha_{n}=\overline{0}
$$

Since -1 is a non zero scalar we have $S=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}\right\}$ is L.D.
5.7.9 Theorem: Let $V(F)$ be a vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}\right\}$ be a subset of V. If $\alpha_{i} \in S$ is a linear combination of its preceding vectors then $L(S)=L\left(S^{1}\right)$ where $S^{1}=\left\{\alpha_{1}, \alpha_{2} \ldots . . \alpha_{i-1}, \alpha_{i-2}, \ldots \ldots \alpha_{n}\right\}$.

Proof: Let $V(F)$ be a vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots \ldots \alpha_{n}\right\}$ be a subset of V .
suppose $\alpha_{i} \in S$ is a linear combination of its preceding vectors.
i.e. $\alpha_{i}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{i-1} \alpha_{i-1}$ where $a_{1}, a_{\alpha} \ldots a_{k} \in F$

To prove that $L(S)=L\left(S^{1}\right)$
Clearly $S^{1} \subseteq S \Rightarrow L\left(S^{1}\right) \subseteq L(S)$
Let $\alpha \in L(S)$

$$
\Rightarrow \alpha=b_{1} \alpha_{i}+b_{2} \alpha_{2}+\ldots+b_{i-1} \alpha_{i-1}+b_{i} \alpha_{i}+b_{i-1} \alpha_{i-1}+\ldots .+b_{n} \alpha_{n} \text { where } b_{1}, b_{2}, \ldots ., b_{n} \in F
$$

But $\alpha_{i}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{i-1} \alpha_{i-1}$
$\therefore \alpha=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{i-1} \alpha_{i-1}+b_{i}\left(a \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{i-1} \alpha_{i-1}\right)+b_{i+1} \alpha_{i+1}+\ldots . .+b_{n} \alpha_{n}$
$\left.=\left(b_{1}+b_{i} a_{1}\right) \alpha_{1}+\left(b_{2}+b_{i} a_{2}\right) \alpha_{2}+\ldots .+\left(b_{i-1}+b_{i} a_{i-1}\right) \alpha_{i-1}+b_{i+1} \alpha_{i+1}+a_{2} \alpha_{2}+\ldots .+a_{i-1} \alpha_{i-1}\right)+b_{i+1} \alpha_{i+1}+\ldots+b_{n} \alpha_{n}$
$=$ L.C. of elements of S^{1}.
$\therefore \alpha \in L\left(S^{1}\right)$
$\alpha \in L(S) \Rightarrow \alpha \in L\left(S^{1}\right)$

$$
\begin{equation*}
\therefore L(S) \subseteq L\left(S^{1}\right) \tag{2}
\end{equation*}
$$

Hence $L(S)=L\left(S^{1}\right)$ from (1) and (2).

5.8 Summary:

In this lesson we learnt definitions of vector space, subspace, linear sum, linear span, linearly dependent and linearly independent vectors. We proved theorems relating to Algebra of
subspaces. Linear sum of subspaces, linear span of a set. We discussed the concepts linear combination, linear dependence and independance of vectors.

5.9. Technical Terms:

i) Internal composition
ii) External composition
iii) Vector space
iv) Vector subspace
v) Linear sum of subspaces
vi) Linear combination
vii) Linear span
viii) Linearly dependent vectors
ix) Linearly independent vectors.

5.10 Model Examination Questions:

1. The set of all $m \times n$ matrices with real entries is a vector space over the real field with respect to addition of matrices and scalar multiplication of a matrix.

Solution: Let $\mathrm{M}=$ Set of all $\mathrm{m} \times \mathrm{n}$ matrices with elements as real numbers.
i) We know that addition of two $\mathrm{m} \times \mathrm{n}$ matrices is again an $\mathrm{m} \times \mathrm{n}$ matrix.

$$
\therefore A, B \in M \Rightarrow A+B \in M
$$

M is closed w.r. to addition +.
ii) We know that addition of matrices is associative.

$$
\therefore(A+B)+C=A+(B+C), \forall A, B, C \in M
$$

Clearly the null matric $O_{m \times n} \in M$ and $A+O=O+A=A \forall A \in M$.
\therefore The null matrix O is the additive identity.
iv) $A \in M \Rightarrow-A \in M$ and $A+(-A)=(-A)+A=0$
$\therefore-A$ is the additive inverse of A .
v) Addition of matrices is commutative.

$$
\therefore A+B=B+A, \forall A, B \in M
$$

$\therefore(M,+)$ is an abelian group.
vi) Let $a \in R$ and $A \in M$
$\Rightarrow a A \in M$, where $a\left(r_{i j}\right)=\left(a r_{i j}\right)$ if $A=\left(r_{i j}\right)$.
$\therefore M$ is closed w.r.to scalar multiplication.
vii) $a(A+B)=a A+a B$ for all $a \in R$ and $A, B \in M$
viii) $(a+b) A=a A+b A$ for all $a, b \in R$ and $A \in M$
ix) $a(b A)=(a b) A$ for all $a, b \in R$ and $A \in M$
x) $1 A=A$.
$\therefore M(R)$ is a vector space.
2. The set of all real valued continuous functions defined in the open internal $(0,1)$ is a vector space over the field of real numbers with respect to addition and scalar multiplication defined by $(f+g)(x)=f(x)+g(x)$ and $(a f)(x)=a f(x)$ where $a \in R$ and $0<x<1$.

Solution: Let $S=\{f / f:(0,1) \rightarrow \mathbb{R}\}$ is continuous $\}$
i). We know that sum of two continuous functions is continuous

$$
\therefore f, g \in S \Rightarrow f+g \in S
$$

$\therefore S$ is closed w.r.to addition of functions.
ii) Let $f, g, h \in S$

$$
\begin{aligned}
{[(f+g)+h](x)=(f+g)(x)+h(x) } & =[f(x)+g(x)]+h(x) \\
& =f(x)+[g(x)+h(x)] \\
& =f(x)+(g+h)(x) \\
& =[f+(g+h)](x)
\end{aligned}
$$

\therefore Addition of functions is associative.
iii) $0:(0,1) \rightarrow R$ defined by $0(x)=0 \forall x \in(0,1)$ is a constanst function and is continuous.
$\therefore 0 \in S$

$$
(f+0)(x)=f(x)+0(x)=f(x)+0=f(x)
$$

$\therefore 0$ is the additive identity.
iv) $f:(0,1) \rightarrow R \Rightarrow-f:(0,1) \rightarrow R$
f is continuous $\Rightarrow-f$ is continuous.

$$
\begin{array}{r}
\Rightarrow-f \in S \\
f+(-f)=0
\end{array}
$$

$\therefore-f$ is the additive inverse of f .
v) For $f, g \in S$ we have $(f+g)(x)=f(x)+g(x)$

$$
\begin{aligned}
& =g(x)+f(x) \\
& =(g+f)(x)
\end{aligned}
$$

$\therefore A$ ddition is commutative.
Hence ($S,+$) is an abelian group.
vi) $f \in S$ and $a \in R \Rightarrow a f \in S$
$\therefore S$ is closed under scalar multiplication.
vii) $f, g \in S$ and $a \in R \Rightarrow$

$$
\begin{aligned}
{[a(f+g)](x)=a(f+g)(x) } & =a[f(x)+g(x)] \\
& =a f(x)+a g(x) \\
& =(a f)(x)+(a g)(x) \\
& =(a f+a g)(x)
\end{aligned}
$$

$$
\therefore a(f+g)=a f+a g
$$

viii) $[(a+b) f](x)=(a+b) f(x)=a f(x)+b f(x)$

$$
\begin{aligned}
& =(a f)(x)+(b f)(x) \\
& =(a f+b f)(x)
\end{aligned}
$$

$$
\therefore(a+b) f=a f+b f \quad \forall a, b \in R \text { and } f \in S
$$

For $1 \in R,[1 f](x)=1 f(x)=f(x)$

$$
\begin{aligned}
& \therefore 1 f=f \\
& {[(a b) f](x)=(a b) f(x)=a[b f(x)]}
\end{aligned} \begin{aligned}
& =a[(b f)(x)] \\
& =[a(b f)(x)]
\end{aligned}
$$

$$
\therefore(a b) f=a(b f)
$$

$\therefore S$ is a vector space.
3. Let $V_{3}(F)$ be a vector space. Then $W=\{(x, y, 0) / x, y \in F\}$ is a subspace of $V_{3}(F)$.

Solution: Let F be a field and $V_{3}(F)=\{(a, b, c) / a, b, c \in F\}$ the vector space of ordered triads.

$$
W=\{(x, y, 0) / x, y \in F\}
$$

Clearly W is a non-empty subset of $V_{3}(F)$.
Let $\alpha, \beta \in W$ and $a, b \in F$
$\alpha, \beta \in W \Rightarrow \alpha=\left(x_{1}, y_{1}, 0\right)$ and $\beta=\left(x_{2}, y_{2}, 0\right)$ where $x_{1}, y_{1}, x_{2}, y_{2} \in F$
$a \alpha+b \beta=a\left(x_{1}, y_{1}, 0\right)+b\left(x_{2}, y_{2}, 0\right)$

$$
\begin{aligned}
& =\left(a x_{1}, a y_{1}, 0\right)+\left(b x_{2}, b y_{2}, 0\right) \\
& =\left(a x_{1}+b x_{2}, a y_{1}+b y_{2}, 0+0\right) \\
& =\left(a x_{1}+b x_{2}, a y_{1}+b y_{2}, 0\right)
\end{aligned}
$$

$\therefore a \alpha+b \beta \in W$ since $a x_{1}+b x_{2}, a y_{1}+b y_{2} \in F$
$\therefore W$ is a subspace of $V_{3}(F)$.
4. Let $W=\{(x, 3 x, 3 x+2) / x \in \mathbb{R}\}$ show that W is not a subspace of $V_{3}(\mathbb{R})$.

Solution: Clearly $\alpha=(x, 3 x, 3 x+2), \beta=(y, 3 y, 3 y+2) \in W$
But $\alpha+\beta=(x+y, 3(x+y), 3(x+y)+4) \notin W$
$\therefore W$ is not a subspace of $V_{3}(\mathbb{R})$.
5. Express the vector $\alpha=(1,-2,5)$ as a linear combination of the vectors $e_{1}=(1,1,1), e_{\alpha}=(1,2,3), e_{3}=(2,-1,1)$

Solution: Suppose $\alpha=a e_{1}+b e_{2}+c e_{3}$ where $a, b, c \in \mathbb{R}$
Then $(1,-2,5)=a(1,1,1)+b(1,2,3)+c(2,-1,1)$

$$
\begin{align*}
& =(a, a, a)+(b, 2 b, 3 b)+(2 c,-c, c) \\
& =(a+b+2 c, a+2 b-c, a+3 b+c) \\
& \therefore a+b-2 c=1 \tag{1}\\
& a+2 b-c=-2 \\
& a+3 b+c=5 \tag{3}
\end{align*}
$$

Solving (1), (2) and (3)
(1) $+2 \times(2) \quad a+b+2 c=1$

$$
\begin{gather*}
2 a+4 b-2 c=-4 \\
3 a+5 b=-3 \tag{4}
\end{gather*}
$$

(2) + (3) $\quad 2 a+5 b=3$
(4) - (5) $\quad a=-6$

From (5) $\quad b=3$
From (1) $\quad c=2$
$\therefore(1,-2,5)=-6(1,1,1)+3(1,2,3)+2(2,-1,1)$
6. Show that the vector $(1,2,3),(1,0,0),(0,1,0)$ and $(0,0,1)$ from a linearly dependent subset of $V_{3}(\mathbb{R})$.

Solution: Suppose $\therefore(1,-2,5)=a(1,2,3)+b(1,0,0)+c(0,1,0)+d(0,0,1)=\overline{0}$

$$
\Rightarrow(a, 2 a, 3 a)+(b, 0,0)+(0, c, 0)+(0,0, d)=(0,0,0)
$$

$\Rightarrow(a+b, 2 a+c, 3 a+d)=(0,0,0)$
$\Rightarrow a+b=0 \rightarrow(1) \quad 2 a+c=0 \rightarrow(2) \quad 3 a+d=0 \rightarrow(3)$
$\Rightarrow b=-a \quad c=-2 a \quad d=-3 a$

If $a=K$ then $K(1,2,3)-K(1,0,0)-2 K(0,1,0)-3 K(0,0,1)=\overline{0}$
$\Rightarrow(1,2,3)-(1,0,0)-2(0,1,0)-3(0,0,1)=\overline{0}$
\therefore There exist scalars not all zero such that the linear combination of the give n vectors is zero. Hence the given vectors are linearly dependent.
7. Show that the vectors $(1,0,-1)(1,2,1)(0,-3,2)$ are linearly independent in $V_{3}(\mathbb{R})$.

Solution: Suppose $a(1,0,-1)+b(1,2,1)+c(0,-3,2)=\overline{0}$
$\Rightarrow(a, 0,-a)+(b, 2 b, b)+(0,-3 c, 2 c)=(0,0,0)$
$\Rightarrow(a+b, 2 b-3 c,-a+b+2 c)=(0,0,0)$
$\Rightarrow a+b=0 \rightarrow(1) \quad 2 b-3 c=0 \rightarrow(2) \quad-a+b+2 c=0$
(1)+(3) gives $2 b+2 c=0 \rightarrow$ (3)
(2) - (3) given $-5 c=0 \Rightarrow c=0$

From (3) $\quad b=0$
From (1) $\quad a=0$

$$
\begin{aligned}
& \therefore a(1,0,-1)+b(1,2,1)+c(0,-3,2)=\overline{0} \\
& \quad a=b=c=0
\end{aligned}
$$

\therefore The given vectors are linearly independent.
8. If α, β, γ are linearly independent vectors in $V(\mathbb{R})$ show that $\alpha+\beta, \beta+\gamma, \gamma+\alpha$ are also linearly independent.

Solution: Suppose $a(\alpha+\beta)+b(\beta+\gamma)+c(\gamma+\alpha)=\overline{0}$

$$
\begin{aligned}
& \Rightarrow a \alpha+a \beta+b \beta+b \gamma+c \gamma+c \alpha=\overline{0} \\
& \Rightarrow(a+c) \alpha+(a+b) \beta+(b+c) \gamma=\overline{0}
\end{aligned}
$$

α, β, γ are linearly independent.

$$
\Rightarrow a+c=a+b=b+c=0
$$

Solving $a=b=c=0$
$\therefore \alpha+\beta, \beta+\gamma, \gamma+\alpha$ are also linearly independent.

5.11 Exercises:

(1) Prove that the set of all polynomials in an indeterminate x over a field F is a vector space.
(2) Show that $\{(a, b, c) / a, b, c \in \mathbb{R}$ and $a+b+2 c=0\}$ is a subspace of $V_{3}(\mathbb{R})$.
(3) Show that $\{(a, b, c) / a, b, c \in Q\}$ is not a subspace of $V_{3}(\mathbb{R})$.
(4) Write the vector $A=\left[\begin{array}{ll}3 & -1 \\ 1 & -2\end{array}\right]$ in the vector space of all 2×2 matrices as the linear combination of the vectors.

$$
\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right] \text { and }\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

(5) Show that the subspace spanned by $S=\{\alpha, \beta\}$ and $T=\{\alpha, \beta, \gamma\}$ are the same in the vector space $V_{3}(\mathbb{R})$ if $\alpha=(1,2,1), \beta=(3,1,5)$ and $\gamma=(3,-4,7)$
(6) Show that $(1,2,1)(3,1,5)$ in \mathbb{R}^{3} are linearly independent.
(7) Show that $(1,3,2)(1,-7,-8)(2,1,-1)$ in \mathbb{R}^{3} are linearly dependent.
(8) Prove that the set $\{1, x, x(1-x)\}$ is linearly independent set of vectors in the space of all polynomials over the real field.

- Smt. K. Ruth

LESSON - 6

BASES AND DIMENSION

6.1 Objective of the Lesson:

To learn the definition of vector space. subspace, some examples of vector spaces, algebra of subspaces and related theorems.

6.2 Structure

6.3 Introduction

6.4 Definition of basis of a vector space and its properties
6.5 Dimension of a vector space
6.6 Quotient space
6.7 Summary
6.8 Technical Terms
6.9 Model Examination Questions
6.10 Exercises

6.3 Introduction:

In this lesson we define basis and dimension of a vector space, Quotient space. We prove some important theorems relating to dimension.
6.4.1 Definition: Basis of a vector space : A subset S of a vector space $V(F)$ is said to be a basis of V, if
i) S is linearly independent
ii) S spans V i.e. $L(S)=V$

6.4.2 Example: The set $S=\left\{e_{1}, e_{2} \ldots e_{n}\right\} \quad$ where $e_{1}=(1,0,0, \ldots 0)$,

$e_{2}=(0,1,0, \ldots 0), e_{3}=(0,01,0 \ldots 0) e_{n}=(0,0 \ldots 0,1)$ is a basis of the vector space $V_{n}(F)$.
Solution: $V_{n}(F)=\left\{\left(a_{1}, a_{2} \ldots a_{n}\right) / a_{1}, a_{2} \ldots a_{n} \in F\right\}$ where F is a field.
First we show that S is L.I.
Suppose $b_{1} e_{1}+b_{2} e_{2}+\ldots+b_{n} e_{n}=\overline{0}$
$\Rightarrow b_{1}(1,0, \ldots 0)+b_{2}(0,1,0 \ldots 0)+b_{n}(0,0 \ldots 0,1)=\overline{0}$
$\Rightarrow\left(b_{1}, 0, \ldots 0\right)+\left(0, b_{2}, 0, \ldots 0\right)+\ldots+\left(0,0 \ldots 0, b_{n}\right)=\overline{0}$
$\Rightarrow\left(b_{1}, b_{2} \ldots b_{n}\right)=\overline{0}=\left(0,0 \ldots 0, b_{n}\right)=\overline{0}$
$\Rightarrow b_{1}=b_{2}=\ldots b_{n}=0$
$\therefore S$ is L.I.
Let $\alpha \in V_{n}(F)$

$$
\Rightarrow \alpha=\left(a_{1}, a_{2} \ldots a_{n}\right)
$$

Now $\alpha=a_{1} e_{1}+a_{2} e_{2}+\ldots+a_{n} e_{n}$
$\therefore S$ spans V i.e. $L(S)=V_{n}(F)$
Hence S is a basis of $V_{n}(F)$
6.4.3 Note: The basis $S=\left\{e_{1}, e_{2} \ldots e_{n}\right\}$ is called standard basis of $V_{n}(F)$.
6.4.4 Definition: Finite Dimensional Vector Space: A vector space $V(F)$ is said to be finite dimensional vector space if there is a finite subset S of V which spans V . i.e. $L(S)=V$.

6.4.5 Existance of basis theorem:

Every finite dimensional vector space has a basis.
Proof: Let $V(F)$ be a finite dimensional vector space.
\Rightarrow There is a finite subset S of V such that $L(S)=V$.
Let $S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$
We may assume that $\overline{0} \notin S$.
If S is linearly independent then S itself is a basis of V.
If S is linearly independent then there exists a vector $\alpha_{k}, 2 \leq K \leq n$ which is a linear combination of its preceding vectors. by 5.7.8.

Take $S_{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{k-1}, \alpha_{k+1} \ldots \alpha_{n}\right\}$
Now $S_{1} \subseteq S$ and $L\left(S_{1}\right)=L(S)$ by 5.7.9.

$$
\Rightarrow L\left(S_{1}\right)=V \text { since } L(S)=V
$$

Rings and Linear Algebra

If S_{1} is linearly independent then S_{1} is a bais of V .
Suppose S_{2} is linearly dependent.

Proceeding as above we get a subset S_{3} of S with $n-2$ elements and $L\left(S_{3}\right)=V$.
Continuing the above process, after finite no. of steps we get a subset which is linearly independent and spans V .
\therefore We get a basis of V.
Hence every finite dimentional vector space has a basis.
6.4.6 Invariance Theorem: Let $V(F)$ be a finite dimensional vector space, then any two basis will have the same number of elements.

Proof: Let $V(F)$ be a finite dimensional vector space.
Then $V(F)$ has a basis by 6.4.5.
Let $S_{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ and $S_{2}=\left\{\beta_{1}, \beta_{2} \ldots \beta_{n}\right\}$ be two bases of $V(F)$.
$\Rightarrow S_{1}$ is $L . I, L\left(S_{1}\right)=V$ and S_{2} is $L . I, L\left(S_{2}\right)=V$
$\beta_{1} \in V \Rightarrow \beta_{1}$ is linear combination of S_{1}.
$\therefore S_{3}=\left\{\beta_{1}, \alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ is linearly dependent.
Also $L\left(S_{3}\right)=V$
\therefore There exists a vector $\alpha_{i} \in S_{3}$ which is a linear combination of the preceding vectors and $\alpha_{i} \neq \beta_{1}$ by 5.7.8.

Let $S_{4}=\left\{\beta_{1}, \alpha_{1}, \alpha_{2} \ldots \alpha_{i-1}, \alpha_{i+1}, \alpha_{i+2} \ldots \alpha_{m}\right\}$
Now $L\left(S_{4}\right)=V$ by 5.7.9.
$\therefore \beta_{2}$ is a linear combination of elements of S_{4}.
$\Rightarrow S_{5}=\left\{\beta_{1}, \beta_{2} \alpha_{1}, \alpha_{2} \ldots \alpha_{i-1}, \alpha_{i+1}, \ldots \alpha_{n}\right\}$ is L.D.
\Rightarrow There exists a vector $\alpha_{j} \in S_{5}$ which is a linear combination of the preceding vectors and $\alpha_{j} \neq \beta_{1}, \alpha_{j} \neq \beta_{2}$.

Now $S_{6}=\left\{\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2} \ldots \alpha_{i+1}, \ldots \alpha_{j-1}, \alpha_{j+1} \ldots \alpha_{n}\right\}$ generates V i.e. $V\left(S_{6}\right)=V$
If we continue this process at each step one α is excluded and a β is included in the set S_{1} obviously the set S_{1} of α 's can not be exhausted before the set S_{2} of βs otherwise $V(F)$ will be a linear span of a proper subset of S_{2} and thus S_{2} will become linearly dependent.
\therefore We must have $n \nless m$
Now interchanging the roles of S_{1} and S_{2} we shall get that $m=n$.
\therefore Any two bases of a finite dimentional vector space have the same number of elements.
6.5.1 Definition: The number of elements in any basis of a finite dimensional vector space $V(F)$ is called the dimension of the vector space $V(F)$ and will be denoted by dim V .
6.5.2 Example: The dimension of the vector space $V_{n}(F)$ is n .
6.5.3 Theorem: Every linearly independent subset of a finite dimensional vector space $V(F)$ is either a basis of V or can be extended to form a basis of V .

Proof: Let $V(F)$ be a finite dimensional vector space and $S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ be a linearly independent subset of V .

Suppose $\operatorname{dim} V=n$
$\Rightarrow V$ has a basis $\beta=\left\{\beta_{1}, \beta_{2} \ldots \beta_{m}\right\}$
consider $S_{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}, \beta_{1}, \beta_{2} \ldots \beta_{n}\right\}$
Since B is basis of V , each α can be expressed as linear combination of β 's.
$\therefore S_{1}$ is linearly dependent.
\Rightarrow One of the vectors of S_{1} is a linear combination of its preceding vectors.
This vector can not be any of the α 's, since α 's are linearly independent.
\therefore That vector is one of β 's let it be β_{i}.
Let $S_{2}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}, \beta_{1}, \beta_{2} \ldots \beta_{i-1}, \beta_{i+1}, \ldots \beta_{n}\right\}$
Clearly $L\left(S_{2}\right)=V$.
Rings and Linear Algebra (6.5) Bases and Dimension

If S_{2} is linearly independent then S_{2} will be a basis of V which is the extended set of S .
If S_{2} is linearly dependent we repeat the above process a finite no. of times and we get a linearly independent set containing S and spanning V.

This set is a basis of V which is the extention of S.
\therefore Every linearly independent subset of finite dimensional vector space is either a basis or can be extended to form a basis of V.
6.5.4 Corollary: Each subset of $(n+1)$ or more vectors of an n-dimensional vector space $V(F)$ is linearly dependent.

Proof: Let S be a subset of an n -dimensional vector space $V(F)$.
Suppose S has $(n+1)$ or more vectors.
If S is linearly independent then either S is a basis of V or can be extendend to form a basis of V by the theorem 6.5.3.

Thus a basis of V contain $(n+1)$ or more vectors.
Which is a conradiction to the fact that $\operatorname{dim} V=n$.
$\therefore S$ is linearly dependent.
6.5.5 Corollary: Any set of n linearly independent vectors of a n -dimensional vector space $V(F)$ forms a basis of V .

Proof: Let $V(F)$ be a n-dimensional vector space and S be a linearly independent subset of V with n vectors.
$\therefore S$ is a basis of V or can be extended to form a basis of V .
Since $\operatorname{dim} V=n$, S must be a basis of V .
6.5.6 Corollary: Every set of n vectors of a n -dimensional vector space $V(F)$, which generates V is a basis of V .

Proof: Let $V(F)$ be a n -dimensional vector space and S be a set of n vectors which generates V . If S is linearly dependent then we get a proper subset of S which is a basis of V.
\therefore We get a basis of V with less than n vectors. It is a contradiction to the fact that dim $V=n$.
$\therefore S$ is linearly independent.
Hence S is a basis of V.
6.5.7 Theorem: If $S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$ is a basis of a finite dimensional vector space $V(F)$ of dimen-
sion n then every element $\alpha \in V$ can be uniquely expressed as $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{1}, a_{2} \ldots a_{n} \in F$.

Proof: Let $V(F)$ be a finite dimensional vector space with $\operatorname{dim} V=n$.
$S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$ is a basis of $V \Rightarrow L(S)=V$
$\alpha \in V \Rightarrow \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{1}, a_{2} \ldots a_{n} \in F$
Suppose $\alpha=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{n} \alpha_{n}$ where $b_{1}, b_{2} \ldots b_{n} \in F$
$\therefore a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{n} \alpha_{n}$
$\Rightarrow\left(a_{1}-b_{1}\right) \alpha_{1}+\left(a_{2}-b_{2}\right) \alpha_{2}+\ldots+\left(a_{n}-b_{n}\right) \alpha_{n}=\overline{0}$
$\Rightarrow a_{1}-b_{1}=a_{2}-b_{2}=\ldots=a_{n}-b_{n}=0$ since S is L.I.
$\Rightarrow a_{1}=b_{1}, a_{2}=b_{2} \ldots \ldots . . . a_{n}=b_{n}$
Hence every vector $\alpha \in V$ can be uniquely expressed as $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{1}, a_{2} \ldots a_{n} \in F$.
6.5.8 Note: If $B=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$ is a basis of a finite dimensional vector space $V(F)$ then every vector $\alpha \in V$ is uniquely expressed as $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{1}, a_{2} \ldots a_{n} \in F$. The scalars $a_{1}, a_{2} \ldots a_{n}$ are called coordinates of α, relative to the basis B .
6.5.9 Theorem: If W is a subspace of a finite dimensional vector space $V(F)$ then W is also finite dimensional and $\operatorname{dim} W \leq \operatorname{dim} V$. Also $V=W$ iff $\operatorname{dim} V=\operatorname{dim} W$.

Proof: Let $V(F)$ be a finite dimensional vector space with $\operatorname{dim} V=n$ and W be a subspace of V . $\operatorname{dim} V=n \Rightarrow$ Every subset of $(n+1)$ or more vectors of W is L.D.

W is a subspace of $V \Rightarrow$ every subset of $(n+1)$ or more vectors of W is L.D.
\therefore Any set of L.I. vectors in W must contain at the most n vectors.
Suppose $S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ be the largest L.I. subset of W.
Where $m \leq n$
Now we prove that S is a basis of W.

Let $\alpha \in W$
Now $S_{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}, \alpha\right\}$ is L.D. \{Since S is the largest L.I. subset of W$\}$
\Rightarrow There exists scalars $a_{1}, a_{2} \ldots a_{m} \in F$. not all zero $\ni a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}+a \alpha=\overline{0}$
If $a=0$ then $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}=\overline{0}$

$$
\Rightarrow a_{1}=a_{2}=\ldots \ldots . .=a_{m}=0 \text { since } \mathrm{S} \text { is L.I. }
$$

$\Rightarrow S_{1}$ is L.I.
A contradiction.
$\therefore a \neq 0 \Rightarrow \exists a^{-1} \in F$ such that $a a^{-1}=1$
$\therefore a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}+a \alpha=\overline{0} \Rightarrow$

$$
\alpha=-a^{-1} a_{1} \alpha_{1}-a^{-1} a_{2} \alpha_{2} \ldots \ldots . .-a^{-1} a_{m} \alpha_{m}
$$

$\therefore \alpha$ is L.C. of elements of $S \Rightarrow \alpha \in L(S)$

$$
\therefore W=L(S)
$$

Hence S is a basis of $W \Rightarrow \operatorname{dim} W=m \leq n$
$\therefore W$ is also a finite dimensional vector space with $\operatorname{dim} W \leq \operatorname{dim} V$.
Now suppose $V=W$
Then every basis of V is a basis of W .
$\therefore \operatorname{dim} V=\operatorname{dim} W$
Conversely suppose $\operatorname{dim} V=\operatorname{dim} W=n$
Let S be a basis of $W \Rightarrow S$ contains n vectors and $L(S)=W$

$$
S \subseteq W \Rightarrow S \subseteq V
$$

Now S is a linearly independent subset of a finite dimensional vector space $V(F)$ with $\operatorname{dim} V=n$
$\therefore S$ is a basis of V by 6.5.5.
$\Rightarrow L(S)=V$

$$
\therefore V=W
$$

6.5.10 Theorem: If W_{1} and W_{2} are two subspace of a finite dimensional vector space $V(F)$ then $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$

Proof: Let W_{1} and W_{2} be two subspaces of a finite dimensional vector space $V(F)$.
$\therefore W_{1}+W_{2}$ and $W_{1} \cap W_{2}$ are also subspaces of $V(F)$ and hence they are finite dimensional by 6.5.9.

Let $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=k$ and $S=\left\{\gamma_{1}, \gamma_{2} \ldots \gamma_{k}\right\}$ be a basis of $W_{1} \cap W_{2} \Rightarrow S$ is L.I. and $W_{1} \cap W_{2}=L(S) \rightarrow(1)$.

Now $S \subseteq W_{1}$ and $S \subseteq W_{2}$
Since S is a linearly independent subset of W_{1}.
S can be extended to form a basis of W_{1} by 6.5.3.
Let $S_{1}=\left\{\gamma_{1}, \gamma_{2} \ldots \gamma_{k}, \alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ be a basis of W_{1}
$\Rightarrow \operatorname{dim} W_{1}=k+m$ and $W_{1}=L\left(S_{1}\right), S_{1}$ is L.I.
S is also a linearly independent subset of W_{2}.
$\therefore S$ can be extended to form a basis of W_{2} by 6.5.3.
Let $S_{2}=\left\{\gamma_{1}, \gamma_{2} \ldots \gamma_{k}, \beta_{1}, \beta_{2} \ldots \beta_{n}\right\}$ be a basis of W_{2}
$\Rightarrow \operatorname{dim} W_{2}=k+n$ and $W_{2}=L\left(S_{2}\right), S_{2}$ is L.I.
Now we claim that $B=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{m}, \beta_{1}, \beta_{2} \ldots \beta_{n}, \gamma_{1}, \gamma_{2} \ldots \gamma_{k}\right\}$ is a basis of $W_{1}+W_{2}$.
To Prove that B is L.I.:
Suppose $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}+b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots .+b_{n} \beta_{n}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k}=\overline{0}$ for $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots . ., b_{n}, c_{1}, c_{2}, \ldots . . c_{k} \in F$.
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}=-\left(b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots . .+b_{n} \beta_{n}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k}\right) \rightarrow(4)$

Now $\Rightarrow b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots . .+b_{n} \beta_{n}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k} \in W_{2}$ and $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m} \in W_{1}$
$\therefore a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m} \in W_{1} \cap W_{2}=L(S)$ by (1)
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}=d_{1} \gamma_{1}+d_{2} \gamma_{2}+\ldots .+d_{k} \gamma_{k}$ where $d_{i}{ }^{\prime}$ s $\in F$
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}-d_{1} \gamma_{1}-d_{2} \gamma_{2}-\ldots-d_{k} \gamma_{k}=\overline{0}$
$\Rightarrow a_{1}=a_{2}=\ldots=a_{m}=d_{1}=d_{2}=\ldots . . .=d_{n}=0 \quad$ since S_{1} is L.I.
$\Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}=\overline{0}$
$\Rightarrow b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots . .+b_{n} \beta_{n}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k}=\overline{0}$ from (4)
$\Rightarrow b_{1}=b_{2}=\ldots=b_{n}=c_{1}=c_{2}=\ldots . .=c_{k}=0 \quad$ since S_{2} is L.I.
$\therefore a_{1}=a_{2}=\ldots=a_{m}=b_{1}=b_{2}=\ldots=b_{n}=c_{1}=c_{2}=\ldots . . .=c_{k}=0$
$\therefore B$ is linearly independent.
B Spans $\left(W_{1}+W_{2}\right)$
Let $\alpha \in W_{1}+W_{2}$
$\Rightarrow \alpha=\beta+\gamma$ where $\beta \in W$ and $\gamma \in W_{2}$
$\beta \in W_{1} \Rightarrow \beta=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k}$
where $a_{1}, a_{2}, \ldots, a_{m}, c_{1}, c_{2}, \ldots ., c_{k} \in F$. Since $W_{1}=L\left(S_{1}\right)$
$\gamma \in W_{2} \Rightarrow \gamma=b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{n} \beta_{n}+d_{1} \gamma_{1}+d_{2} \gamma_{2}+\ldots . .+d_{k} \gamma_{k}$
where $b_{1}, b_{2}, \ldots, b_{m}, d_{1}, d_{2}, \ldots \ldots, d_{k} \in F$ Since $W_{2}=L\left(S_{2}\right)$.
Now $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}+c_{1} \gamma_{1}+c_{2} \gamma_{2}+\ldots . .+c_{k} \gamma_{k}+b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{m} \beta_{m}+d_{1} \gamma_{1}+d_{2} \gamma_{2}+\ldots . .+d_{k} \gamma_{k}$
$=$ L.C of elements of B.
$\therefore \alpha \in L(B) \Rightarrow B$ spans $W_{1}+W_{2}$
Hence B is a basis of $W_{1}+W_{2}$.
$\therefore \operatorname{dim}\left(W_{1}+W_{2}\right)=m+n+k$

$$
\begin{aligned}
& =k+m+k+n-k \\
& =\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
\end{aligned}
$$

6.6.1 Coset: Let W be a subspace of a vector space $V(F)$ and $\alpha \in V$. Then the set $\{\gamma+\alpha: \gamma \in W\}$ is called right coset of W in V generated by α. The set $\{\alpha+\gamma: \gamma \in W\}$ is called left coset of W in V generated by α.
6.6.2 Note: 1. $\{\gamma+\alpha: \gamma \in W\}$ is denoted by $W+\alpha$ and $\{\alpha+\gamma: \gamma \in W\}$ is denoted by $\alpha+W$.
2. The right coset $W+\alpha$ are subsets of V .
3. $W+\alpha=\alpha+W$ since $(V,+)$ is an abelian group.
\therefore We say $W+\alpha$ is a coset of W generated by α.
6.6.3 Theorem: If W is a subspace of $V(F)$ then
i) $\quad W+\overline{0}=W$
ii) $\quad \alpha \in W \Leftrightarrow W+\alpha=W$
iii) $\quad W+\alpha=W+\beta \Leftrightarrow \alpha-\beta \in W$

Proof: $\overline{0} \in V \therefore W+\overline{0}=\{\alpha+\overline{0} / \alpha \in W\}$

$$
\begin{aligned}
& =\{\alpha / \alpha \in W\} \\
& =W
\end{aligned}
$$

ii) Suppose $\alpha \in W$
T.P.T. $\quad W+\alpha \leq W$

Let $\beta \in W+\alpha \Rightarrow \beta=\gamma+\alpha, \gamma \in W$
Now $\gamma+W, \alpha \in W$ and W is a subspace
$\Rightarrow \gamma+\alpha \in W$
$\Rightarrow \beta \in W$

$$
\begin{equation*}
\therefore W+\alpha \subseteq W \tag{1}
\end{equation*}
$$

T.P.T $\quad W \subseteq W+\alpha$

Let $\beta \in W$
$\alpha \in W$ and W is a subspace $-\alpha \in W$
$\beta \in W,-\alpha \in W \Rightarrow \beta-\alpha \in W$, since W is a subspace.
$\therefore \beta=(\beta-\alpha)+\alpha \in W+\alpha$

$$
\begin{equation*}
\therefore W \subseteq W+\alpha \tag{2}
\end{equation*}
$$

Hence $W+\alpha=W$ from (1) and (2)
iii) Suppose $W+\alpha=W+\beta$

Clearly $\overline{0} \in W$ since W is a subspace.

$$
\begin{aligned}
\therefore \overline{0}+\alpha \in W+\alpha & \Rightarrow \alpha \in W+\alpha \\
& \Rightarrow \alpha \in W+\beta \\
& \Rightarrow \alpha=\gamma+\beta \text { when } \gamma \in W \\
& \Rightarrow \alpha-\beta=\gamma \in W
\end{aligned}
$$

$\therefore W+\alpha=W+\beta \Rightarrow \alpha-\beta \in W$
Conversely suppose $\alpha-\beta \in W$

$$
\begin{array}{r}
\Rightarrow W+(\alpha-\beta)=W \text { from ii. } \\
\begin{array}{r}
\Rightarrow W+\alpha-\beta+\beta=W+\beta \\
\Rightarrow W+\alpha=W+\beta
\end{array}
\end{array}
$$

6.6.4 Theorem: If W is a subspace of a vector space $V(F)$ then the set V / W of all cosets of W in V is a vector space over F w.r. to addition of cosets and scalar multiplication defined by $(W+\alpha)+(W+\beta)=W+(\alpha+\beta)$ and $a(W+\alpha)=W+a \alpha$, for all $\alpha, \beta \in V$ and $a \in F$.

Proof: Let W be a subspace of a vector space $V(F)$ and $V / W=\{W+\alpha / \alpha \in V\}$ be the set of all cosets of W in V .

Addition is well defined:
Suppose $W+\alpha=W+\gamma$ and $W+\beta=W+\delta$
$\Rightarrow \alpha-\gamma \in W$ and $\beta-\delta \in W$ by 6.6.3
$\Rightarrow \alpha-\gamma+\beta-\delta \in W$ since W is a subspace
$\Rightarrow(\alpha+\beta)-(\gamma+\delta) \in W$
$\Rightarrow W+(\alpha+\beta)=W+(\gamma+\delta)$ by 6.6.3.
Scalar multiplication is well defined:
Suppose $W+\alpha=W+\gamma$

$$
\begin{aligned}
& \Rightarrow \alpha-\gamma \in W \text { by } 6.6 .3 \\
& \Rightarrow a(\alpha-\gamma) \in W \text { for } a \in F \\
& \Rightarrow a \alpha-a \gamma \in W \\
& \Rightarrow W+a \alpha=W+a \gamma \text { by } 6.6 .3 \\
& \Rightarrow a(W+\alpha)=a(W+\gamma)
\end{aligned}
$$

\therefore Addition and scalar multiplication in V/W are well defined.
Addition is associative:
Let $W+\alpha, W+\beta, W+\gamma \in V / W$

$$
\begin{aligned}
{[(W+\alpha)(W+\beta)]+(W+\gamma) } & =[W+(\alpha+\beta)]+(W+\gamma) \\
& =W[(\alpha+\beta)+\gamma] \\
& =W+[\alpha+(\beta+\gamma)] \\
& =(W+\alpha)+[W+(\beta+\gamma)] \\
& =(W+\alpha)+[(W+\beta)+(W+\gamma)]
\end{aligned}
$$

Existance of Identity:
Clearly $W+\overline{0} \in V / W$ and $(W+\alpha)+(W+\overline{0})=W+(\alpha+\overline{0})=W+\alpha$
$(W+\overline{0})+(W+\alpha)=W+(\overline{0}+\alpha)=W+\alpha, \forall W+\alpha \in V / W$
$\therefore W+\overline{0}$ is the additive identity of V / W.
Existance of Inverse:

Let $W+\alpha \in V / W \Rightarrow-\alpha \in V \Rightarrow W+(-\alpha) \in V / W$
Now $(W+\alpha)+[(W+(-\alpha)]=W+[\alpha+(-\alpha)]=W+\overline{0}=W$ and

$$
[(W+(-\alpha)]+(W+\alpha)=W+(-\alpha+\alpha)=W+\overline{0}=W
$$

$\therefore W+(-\alpha)$ is the additive inverse of $W+\alpha$.
Addition is commutative:
Let $W+\alpha, W+\beta \in V / W$
$(W+\alpha)+(W+\beta)=W+(\alpha+\beta)=W+(\beta+\alpha)$

$$
=(W+\beta)+(W+\alpha)
$$

$\therefore V / W$ is an abelian group w.r. to addition.
Let $W+\alpha, W+\beta \in V / W$ and $a, b \in F$
i) $a[(W+\alpha)+(W+\beta)]=a[W+(\alpha+\beta)]=W+(a \alpha+a \beta)$

$$
=(W+a \alpha)+(W+a \beta)=a(W+\alpha)+a(W+\beta)
$$

ii) $(a+b)(W+\alpha)=[W+(a+b) \alpha]=W+(a \alpha+b \alpha)=(W+a \alpha)+(W+b \alpha)$

$$
=a(W+\alpha)+b(W+\alpha)
$$

iii) $a b(W+\alpha)=W+(a b) \alpha=W+a(b \alpha)=a(W+b \alpha)=a[b(W+\alpha)]$
iv) $1(W+\alpha)=W+1 \alpha=W+\alpha$
$\therefore V / W$ is a vector space.
6.6.5 Quotient Space: If W is a subspace of a vector space $V(F)$. Then V / W the set of all cosets of W in V is a vector space called quotient space.
6.6.6. Theorem: If W is a subspace of a finite dimensional vector space $V(F)$ then $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.

Proof: Let W be a subspace of a finite dimensional vector space $V(F)$.

Suppose $\operatorname{dim} W=m$ and $S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}\right\}$ be a basis of W.
$\therefore S$ is linearly independent and $L(S)=W$ \qquad
Now S is a linearly independent subset of $V\{\therefore W \leq V\}$
$\therefore S$ can be extended to form a basis of V .
Let $S_{1}=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{m}, \beta_{1}, \beta_{2}, \beta_{k}\right\}$ be a basis of V .
$\therefore \operatorname{dim} V=m+k, S_{1}$ is $L . I$ and $L\left(S_{1}\right)=V$
Now we claim that $B=\left\{W+\beta_{1}, W+\beta_{2}, \ldots W+\beta_{k}\right\}$ is the basis of V / W.
B is Linearly Independent:
Let $b_{1}\left(W+\beta_{1}\right)+b_{2}\left(W+\beta_{2}\right)+\ldots+b_{k}\left(W+\beta_{k}\right)=W$ where $b_{1}, b_{2} \ldots b_{k} \in F$
$\Rightarrow\left(W+b_{1} \beta_{1}\right)+\left(W+b_{2} \beta_{2}\right)+\ldots+\left(W+b_{k} \beta_{k}\right)=W$
$\Rightarrow W+\left(b_{1} \beta_{1}+b_{2} \beta_{2} \ldots+b_{k} \beta_{k}\right)=W$
$\Rightarrow b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{k} \beta_{k} \in W$
$\Rightarrow b_{1} \beta_{1}+b_{2} \beta_{2}+\ldots+b_{k} \beta_{k}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{m}$ since $\mathrm{L}(\mathrm{S})=\mathrm{W}$ by (1)
$\Rightarrow b_{1} \beta_{1}+b_{2} \beta_{2} \ldots+b_{k} \beta_{k}-a_{1} \alpha_{1}-a_{2} \alpha_{2}-\ldots-a_{m} \alpha_{m}=\overline{0}$
$\Rightarrow b_{1}=b_{2} \ldots=b_{k}=a_{1}=a_{2}=\ldots a_{m}=0$ since S_{1} is L.I.
$\therefore B$ is linearly independent.
B Spans V / W :
Let $W+\alpha \in V / W$

$$
\Rightarrow \alpha \in V
$$

$$
\Rightarrow \alpha=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{m} \alpha_{m}+d_{1} \beta_{1}+d_{2} \beta_{2}+\ldots+d_{k} \beta_{k} \text { where } c_{1}, c_{2} \ldots c_{m} \text { and } d_{1}, d_{2} \ldots d_{k} \in F
$$

$\therefore W+\alpha=W+\left(c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{m} \alpha_{m}+d_{1} \beta_{1}+d_{2} \beta_{2}+\ldots+d_{k} \beta_{k}\right)$

$$
\begin{aligned}
& =W+\left(W+d_{1} \beta_{1}+d_{2} \beta_{2}+\ldots+d_{k} \beta_{k}\right) \text { when } W=c_{1} \alpha_{1}+\ldots+c_{m} \alpha_{m} \\
& =(W+\gamma)+\left(d_{1} \beta_{1}+d_{2} \beta_{2}+\ldots+d_{k} \beta_{k}\right) \\
& =W+d_{1} \beta_{1}+d_{2} \beta_{2}+\ldots+d_{k} \beta_{k} \text { since } W+\gamma=W \\
& =d_{1}\left(W+\beta_{1}\right)+d_{2}\left(W+\beta_{2}\right)+\ldots+d_{k}\left(W+\beta_{k}\right)
\end{aligned}
$$

$\therefore B$ spans V / W.
Hence B is a basis of V / W.
$\therefore \operatorname{dim}(V / W)=K=m+k-m=\operatorname{dim} V-\operatorname{dim} W$.

6.7 Summary:

In this lesson we learnt the definitions of basis of a vector space, dimension of a vector space and quotient space. We proved theorems relating to basis and dimension.

6.8 Technical Terms:

i) Basis
ii) Finite dimensional vector space
iii) Dimension of a vector space
iv) Quotient space

6.9 Model Examination Questions:

1. Show that vectors $(1,2,1)(2,1,0)(1,-1,2)$ form a basis for R^{3}.

Solution: Suppose $a(1,2,1)+b(2,1,0)+c(1,-1,2)=(0,0,0)$ where $a, b, c \in R$
$\Rightarrow(a+2 b+c, 2 a+b-c, a+2 c)=(0,0,0)$
$\Rightarrow a+2 b+c=0 ; 2 a+b-c=0 ; a+2 c=0$

$$
a+2 c=0 \Rightarrow a=2 c
$$

$\therefore a+2 b+c=0 \Rightarrow-2 c=+2 b+c=0 \Rightarrow 2 b-c=0 \Rightarrow 2 b=c$
$2 a+b-c=0 \Rightarrow-4 c=+b-c=0 \Rightarrow b-5 c=0$
$\Rightarrow b-10 c=0 \Rightarrow-7 b=0 \Rightarrow b=0$

$$
\therefore 2 b=c \Rightarrow c=0 \text { and } \therefore 2 b=c \Rightarrow c=0
$$

$\therefore\{(1,2,1)(2,1,0)(1,-1,2)\}$ is a basis of \mathbb{R}^{3}
We know that dim $\mathbb{R}^{3}=3$.
$\therefore\{(1,2,1)(2,1,0)(1,-1,2)\}$ forms a basis of \mathbb{R}^{3} by 6.5.5.
6.9.2 Find the coordinates of the vector $(2,1,-6)$ of \mathbb{R}^{3} relative to the basis $\{(1,1,2)(3,-1,0)(2,0,-1)\}$

Solution:
Suppose $(2,1,-6)=a(1,1,2)+b(3,-1,0)+c(2,0,-1)$ where $a, b, c \in R$
$\Rightarrow(2,1,-6)=(a+3 b+2 c, a-b, 2 a-c)$
$a+3 b+2 c=2$
$a-b=1$
$2 a-c=-6$
From (2) $b=a-1 \quad$ from (3) $c=2 a+6$
\therefore From (1) $\quad a+3(a-1)+2(2 a+6)=2$

$$
a+3 a-3+4 a+12=2
$$

$$
8 a=-7
$$

$$
a=-7 / 8
$$

$\therefore b=\frac{-7}{8}-1=\frac{-15}{8}$ and $c=\frac{-14}{8}+6=\frac{34}{8}=\frac{17}{4}$
\therefore The coordinates of $(2,1,-6)$ are $\left(\frac{-7}{8}, \frac{-15}{8}, \frac{17}{4}\right)$
6.9.3 If V is the vector space of ordered pairs of complex numbers over the real field R , then show that the set $S=\{(1,0)(i, 0)(0,1)(0, i)\}$ is a basis of V .

Solution: Suppose $a(1,0)+b(i, 0)+c(0,1)+d(0, i)=(0,0)$ for $a, b, c, d \in R$

$$
\Rightarrow(a+i b, c+i d)=(0,0)
$$

Rings and Linear Algebra

$$
\begin{aligned}
& \Rightarrow a+i b=0 \text { and } c+i d=0 \\
& \Rightarrow a=0, b=0, c=0, d=0
\end{aligned}
$$

\therefore The set $S=\{(1,0)(i, 0)(0,1)(0, i)\}$ is L.I
Let $(a+i b, c+i d) \in V$
Then $(a+i b, c+i d)=a(1,0)+b(i, 0)+c(0,1)+d(0, i)$
$\therefore S$ spans V
Hence S is a basis of V.
6.9.4 Let V be the vector space of 2×2 matrices over a field F . Show that V has dimension 4 by exhibiting a basis for V which has four elements.

Solution: Let $S=\{A, B, C, D\}$ where $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad C=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \quad D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
Clearly $S \subseteq V$
Suppose $a A+b B+c C+d D=0_{2 \times 2}$ where $a, b, c, d \in F$

$$
\begin{aligned}
& \Rightarrow a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow a=b=c=d=0
\end{aligned}
$$

$\therefore S$ is linearly independent.
Further if $\alpha=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in V$ then

$$
\alpha=a A+b B+c C+d D
$$

$\therefore S$ spans V.
Hence S is a basis of V.
$\therefore \operatorname{dim} V=4$
6.9.5 Do the vectors $(1,1,0)(0,1,2)$ and $(0,0,1)$ form a basis of $V_{3}(\mathbb{R})$.

Solution: Suppose $a(1,1,0)+b(0,1,2)+c(0,0,1)=(0,0,0)$ when $a, b, c \in R$
$\Rightarrow(a, a+b, 2 a+c)=(0,0,0)$
$\Rightarrow a=0 ; a+b=0 ; 2 b+c=0$
$\Rightarrow a=0 ; b=-a=0 ; c=-2 b=0$
\therefore The vectors $(1,1,0)(0,1,2)$ and $(0,0,1)$ are linearly independent.
Since $\operatorname{dim} V_{3}(\mathbb{R})=3$ the set $\{(1,1,0)(0,1,2)(0,0,1)\}$ is a basis of $V_{3}(\mathbb{R})$ by 6.5.5.
6.9.6 Show that the set $\{(1,0,0)(1,1,0)(1,1,1)(0,1,0)\}$ spans the vector space \mathbb{R}^{3} but not a basis.

Solution: Let $(a, b, c) \in \mathbb{R}^{3}$
Suppose $(a, b, c)=x(1,0,0)+y(1,1,0)+z(1,1,1)+t(0,1,0)$
$\Rightarrow(a, b, c)=(x+y+z, y+z+t, z)$
$\Rightarrow x+y+z=a ; y+z+t=b, z=c$
$\Rightarrow x+y=a-c ; y+t=b-c$
If $y=0$ then $x=a-c$ and $t=b-c$
$\therefore(a, b, c)=(a-c)(1,0,0)+c(1,1,1)+(b-c)(0,1,0)$
$\therefore S=\{(1,0,0)(1,1,0)(1,1,1)(0,1,0)\}$ spans \mathbb{R}^{3}
Since $\operatorname{dim} \mathbb{R}^{3}=3$, S can not be a basis.
6.9.7 If $S=\{\alpha, \beta, \gamma\}$ is a basis of $C^{3}(c)$ show that $S^{1}=\{\alpha+\beta, \beta+\gamma, \gamma+\alpha\}$ is also a basis of $C^{3}(c)$.

Solution: Suppose $a(\alpha+\beta)+b(\beta+\gamma)+c(\gamma+\alpha)=\overline{0}$ where $a, b, c \in c$
$\Rightarrow a \alpha+a \beta+b \beta+b \gamma)+c \gamma+c \alpha=\overline{0}$
$\Rightarrow(a+c) \alpha+(a+b) \beta+(b+c) \gamma=\overline{0}$
$\Rightarrow a+c=0 ; a+b=0 ; b+c=0$
$\Rightarrow a=0 ; b=0 ; c=0$
$\Rightarrow S^{1}=\{\alpha+\beta, \beta+\gamma, \gamma+\alpha\}$ is linearly independent $\operatorname{dim} C^{3}(c)=3$.
$\therefore S^{1}$ is a basis of $C^{3}(c)$
6.9.8 Extend the set of linearly independent vectors $\{(1,0,1,0),(0,-1,1,0)\}$ to the basis of V_{4}.

Solution: $S=\{(1,0,1,0),(0,-1,1,0)\}$ is a linearly independent subset of V_{4}.
Clearly $B=\{(1,0,0,0),(0,1,0,0)(0,0,1,0),(0,0,0,1)\}$ is a basis of V_{4}.
Let $S_{1}=\{(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)(0,0,1,0)(0,0,0,1)\}$.
$\therefore S_{1}$ spans V_{4} since $B \subseteq S_{1}$ and $L(B)=V_{4}$.
But $\operatorname{dim} V_{4}=4$
$\therefore S_{1}$ cannot be a basis.
$\Rightarrow S_{1}$ is linearly dependent.
$\Rightarrow(0,0,0,1)$ is a L.C. of its preceding vectors.
$\therefore S_{2}=\{(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)(0,0,1,0)\}$ spans V_{4}.
But S_{2} cannot be a basis as dim $V_{4}=4$
$\Rightarrow S_{2}$ is linearly dependent.
$\Rightarrow(0,0,1,0)$ is L.C. of its preceding vectors.
$\Rightarrow S_{3}=\{(1,0,1,0),(0,-1,1,0)(1,0,0,0),(0,1,0,0)\}$ spans V_{4}.
Since $\operatorname{dim} V_{4}=4$ and S_{3} has 4 elements S_{3} must be a basis of V_{4}.
6.9.9 Find a basis and dimension for the subspace of \mathbb{R}^{3} spanned by the vectors $(2,7,3)(1,-1,0)(1,2,1)$ and $(0,3,1)$.

Solution : Let W be the subspace of \mathbb{R}^{3} spanned by $S=\{(2,7,3)(1,-1,0)(1,2,1)(0,3,1)\}$
W is subspace of $\mathbb{R}^{3} \Rightarrow \operatorname{dim} W \leq \operatorname{dim} \mathbb{R}^{3}=3$
$\therefore S$ can not be linearly independent since S has 4 vectors.
$\therefore S$ is $L . D \Rightarrow(2,7,3)$ is L.C. of the remaining vectors.
Now $S_{1}=\{(1,-1,0)(1,2,1)(0,3,1)\}$ spans W.
Suppose $a(1,-1,0)+b(1,2,1)+c(0,3,1)=(0,0,0)$

$$
\begin{align*}
& \quad(a+b,-a+2 b+3 c, b+c)=(0,0,0) \\
& \Rightarrow a+b=0 \ldots \ldots . \text { (1) } \quad-a+2 b+3 c=0 \ldots \ldots \ldots \ldots \ldots \text { (2) } \quad b+c=0 .
\end{align*}
$$

(1) $\Rightarrow a=-b$
\therefore From (2) $b+2 b+3 c=0 \Rightarrow 3 b+3 c=0 \Rightarrow b+c=0$

$$
\begin{aligned}
& \therefore c=-b \\
& \therefore a=1, b=-1, c=1
\end{aligned}
$$

$\therefore S_{1}$ is linearly dependent.
$\Rightarrow(0,3,1)$ is L.C. of remaining vectors and $S_{2}=\{(1,-1,0)(1,2,1)\}$
Suppose $a(1,-1,0)+b(1,2,1)=(0,0,0)$

$$
\begin{aligned}
& (a+b,-a+2 b, b)=(0,0,0) \\
& \Rightarrow a+b=0-a+2 b=0 \quad b=0 \\
& \Rightarrow a=0, b=0
\end{aligned}
$$

$$
\therefore S_{2} \text { is L.I. and } L\left(S_{2}\right)=W
$$

Hence S_{2} is a basis of W.

$$
\therefore \operatorname{dim} W=2
$$

If W_{1} and W_{2} are subspaces of $V_{4}(R)$ generated by the sets $\{(1,1,-1,2)(2,1,3,0)(3,2,2,2)\}$ and $\{(1,-1,0,1)(-1,1,0,-1)\}$ respectively then find $\operatorname{dim}\left(W_{1}+W_{2}\right)$.

Solution:
Let $S_{1}=\{(1,1,-1,2)(2,1,3,0)(3,2,2,2)\}$ and $S_{2}=\{(1,-1,0,1)(-1,1,0,-1)\}$
Given $L\left(S_{1}\right)=W_{1}$ and $L\left(S_{2}\right)=W_{2}$
We know that $L\left(W_{1} \cup W_{2}\right)=W_{1}+W_{2}$
suppose $\mathrm{a}(1,1,-1,2)+b(2,1,3,0)+c(3,2,2,2)+d(1,-1,0,1)+e(-1,1,0,-1)=(0,0,0,0)$
$\Rightarrow a+2 b+3 c+d-e=0$
$a+b+2 c-d+e=0$
$-a+3 b+2 c+=0$

$$
\begin{equation*}
2 a+2 c+d-e=0 \tag{1}
\end{equation*}
$$

\qquad
(2) + (4) $3 a+b+4 c=0$
(1) - (4) $\quad-a+2 b+c=0$
(3) $-a+3 b+2 c=0$
(6)-(3) $\quad-b-c=0 \Rightarrow b=-c$

From (5) $\quad a+c=0$
From (2) $\quad d=e$
$\therefore a=1 ; b=0 ; c=-1 ; d=1 ; e=1$
$\Rightarrow S_{1} \cup S_{2}$ is $L . D$
\therefore One vector is the L.C. of remaining vectors.
$\Rightarrow S^{1}=\{(1,1,-1,2)(2,1,3,0)(1,-1,0,1)(-1,1,0,-1)\}$ spans $W_{1}+W_{2}$
Suppose $a(1,1,-1,2)+b(2,1,3,0)+c(1,-1,0,1)+d(-1,1,0,-1)=(0,0,0,0)$

$$
\begin{gather*}
\Rightarrow a+2 b+c-d=0 \\
-a+3 b=0 \tag{2}
\end{gather*}
$$

(1) $a+b-c+d=0$ \qquad

$$
\begin{equation*}
2 a+c-d=0 \tag{3}
\end{equation*}
$$

From (3) $a=3 b$
From (1) $5 b+c-d=0$
From (4) $6 b+c-d=0$

$$
\Rightarrow b=0
$$

$\therefore a=0 \therefore b=0$ and $c=d$
$\Rightarrow S^{1}$ is $L . D$
\Rightarrow One vector is S^{1} is L.C of the remaining vectors.
$\therefore S^{11}=\{(1,1,-1,2)(1,-1,0,1)(-1,1,0,-1)\}$ spans $W_{1}+W_{2}$
Suppose $a(1,1,-1,2)+b(1,-1,0,1)+c(-1,1,0,-1)=(0,0,0,0)$
$\Rightarrow a+b-c=0$ \qquad
$-a=0$
$a=0$ we get from (1) $\mathrm{b}=\mathrm{c}$
$\therefore a=0 ; b=1 ; c=1$
$a-b+c=0$ \qquad
$2 a+b-c=0$
$\therefore S^{11}$ is L.I. and spans $W_{1}+W_{2}$
Hence S^{11} is a basis of $W_{1}+W_{2}$

$$
\therefore \operatorname{dim}\left(W_{1}+W_{2}\right)=3
$$

6.10 Exercises:

1. Show that $B=\{(1,0,-1)(1,2,1)(0,-3,2)\}$ from a basis for \mathbb{R}^{3}.
2. Find the coordinates of $(2,3,4,-1)$ w.r. to the basis $\{(1,1,0,0)(0,1,10)(0,0,1,1)(1,0,0,0)\}$ of $V_{4}(\mathbb{R})$
3. Extend the set $\{(1,0,1)(0,-1,1)\}$ to form a basis for \mathbb{R}^{3}.
4. Find a basis for the subspace spanned by the vectors $(1,2,0)(-1,0,1)(0,2,1)$ in $V_{3}(\mathbb{R})$.
5. If V is the vector space generated by the polynomials $x^{3}+2 x^{2}-2 x+1, x^{3}+3 x^{2}-x+4,2 x^{3}+x^{2}-7 x-7$ then find a basis of V and its dimension.

LESSON - 7

LINEAR TRANSFORMATION

7.1 Objective of the Lesson:

In Chapter 5 and 6, we discussed vector spaces and some of the related topics. Now it is natural to consider functions from a vector space into a vector space. Such a function with a condition is called a linear transformation or a homomorphism.

In this chapter, we discuss the properties of these linear transformation and related problems.

7.2 Structure of the Lesson:

This lesson has the following components.

7.3 Introduction

7.4 Linear Transformation

7.5 Range, Null space of a linear transformation
7.6 Answers to SAQ's
7.7 Summary
7.8 Technical terms
7.9 Exercises
7.10 Answers to Exercises
7.11 Model Examination Questions
7.12 Reference Books

7.3 Introduction:

In I B.Sc./B.A. homomorphisms from a group into a group are discussed. In chapter 2 of this book, homomorphisms from a ring/ field into a ring/ field are discussed. In this chapter, we discuss the homomorphisms (linear transformations) from a vector space into a vector space.

7.4 Linear Transformation:

7.4.1 Definition: Let $U(F)$ and $V(F)$ be vector spaces. A function $T: U(F) \rightarrow V(F)$ is called a linear transformation from U into V if $T(a \alpha+b \beta)=a T(\alpha)+b T(\beta)$ for all $\alpha, \beta \in U$ and $a, b \in F$.
7.4.2 Note: 1) It is called \quad i) a monomorphism of T is one-one
ii) an epimorphism if T in onto
iii) an isomorphism if T is one-one and onto.
2. A linear transformation $T: U \rightarrow U$ is called a linear operator on U and it is called an automorphism if T is one-one and onto.
3. A linear transformation $T: U(F) \rightarrow F$ is called a linear functional on U .
4. Taking $\mathrm{a}=1, \mathrm{~b}=1$ we get $T(\alpha+\beta)=T(\alpha)+T(\beta) \forall \alpha, \beta \in U$. Taking $\mathrm{b}=0$, we get $T(\alpha \beta)=a T(\alpha) \forall a \in F, \forall \alpha \in U$.
5. Throughout this lesson \mathbb{R} denotes the field of real numbers.

Solved Problems:

7.4.3 Define: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y, z)=(2 x+y, x), \forall(x, y, z) \in \mathbb{R}^{3}$ show that T is a linear transformation.

Solution: Let $a, b \in F, \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in \mathbb{R}^{3}$

$$
\text { So } a \alpha+b \beta=\left(a \alpha_{1}+b \beta_{1}, a \alpha_{2}+b \beta_{2}, a \alpha_{3}+b \beta_{3}\right)
$$

Now $T(a \alpha+b \beta)=\left(2\left(a \alpha_{1}+b \beta_{1}\right)+\left(a \alpha_{2}+b \beta_{2}\right), a \alpha_{1}+b \beta_{1}\right)$

$$
=a\left(2 \alpha_{1}+\alpha_{2}, \alpha_{1}\right)+b\left(2 \beta_{1}+\beta_{2}, \beta_{1}\right)=a T(\alpha)+b T(\beta) \text { for all } a, b \in F \text { and } \alpha, \beta \in \mathbb{R}^{3} .
$$

Hence T is a linear transformation.
7.4.4 Define: $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, a_{1}-a_{3}\right) \forall\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$. Show that T is a linear transformation.

Solution : Let $a, b \in F$ and $\alpha=\left(a_{1}, a_{2}, a_{3}\right) \beta=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$
So $T(a \alpha+b \beta)=T\left(a a_{1}+b b_{1}, a a_{2}+b b_{2}, a a_{3}+b b_{3}\right)$

$$
\begin{aligned}
& =\left(a a_{1}+b b_{1}-a a_{2}-b b_{2}, a a_{1}+b b_{1}-a a_{3}-b b_{3}\right) \\
& =a\left(a_{1}-a_{2}, a_{1}-a_{3}\right)+b\left(b_{1}-b_{2}, b_{1}-b_{3}\right) \\
& =a T(\alpha)+b T(\beta) \forall \alpha, \beta \in t \mathbb{R}^{3}, \forall a, b \in \mathbb{R}
\end{aligned}
$$

Hence T is a linear transformation.
7.4.5 Show that the mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(\left|a_{1}\right|, 0\right) \forall\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ is not a linear transformation.

Solution: Let $a, b \in F, \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in \mathbb{R}^{3}$
Now $T(a \alpha+b \beta)=T\left(a \alpha_{1}+\alpha \beta_{1}, a \alpha_{2}+\alpha \beta_{2} a \alpha_{3}+b \beta_{3}\right)$

$$
\begin{equation*}
=\left(\left|a \alpha_{1}+b \beta_{1}\right|, 0\right) \tag{1}
\end{equation*}
$$

But $a T(\alpha)+b T(\beta)=a T\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)+b T\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$

$$
\begin{equation*}
=a\left(\left|\alpha_{1}\right|, 0\right)+b\left(\left|\beta_{1}\right|+0\right) \tag{2}
\end{equation*}
$$

From 1 and 2, it is clear that $T(a \alpha+b \beta) \neq a T(\alpha)+b T(\beta)$
Hence T is not a linear transformation.
7.4.6 SAQ: Show that the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)$, for all $\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ is a linear transformation.

Properties of linear transformations:

7.4.7 Theorem: Let $T: U \rightarrow V$ be a linear transformation from the vector space $U(F)$ to the vector space $V(F)$. Then
a) $T(\overline{0})=\overline{0}$
(b) $T(-\alpha)=-T(\alpha) \forall \alpha \in U$
(c) $T(\alpha-\beta)=T(\alpha)-T(\beta) \forall \alpha, \beta \in U$
(d) $T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}\right)=a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(d_{2}\right)+\ldots+a_{n} T\left(\alpha_{n}\right)$ for all $\alpha_{1}, \alpha_{2} \ldots \alpha_{n} \in U$ and $\forall a_{1}, a_{2}, \ldots, a_{n} \in F$.

Proof: a) We know that $T(\alpha)=T(\alpha+\overline{0})=T(\alpha)+T(\overline{0}) \Rightarrow T(\alpha)+\overline{0}=T(\alpha)=T(\alpha)+T(\overline{0})$

$$
\Rightarrow \overline{0}=T(\overline{0}) \text {, by } \operatorname{LCL} \text { in the group }(V,+) .
$$

Hence $T(\overline{0})=\overline{0}\left(=\overline{0}_{V}\right)$
(b) Let $\alpha \in \cup \Rightarrow-\alpha \in \cup$ and $\alpha+(-\alpha)=\overline{0}=\left(=\overline{0}_{U}\right)$

Now $T[\alpha+(-\alpha)]=T(\overline{0})$

$$
\Rightarrow T[\alpha+(-\alpha)]=T(0)
$$

$$
\Rightarrow T(\alpha)+T(-\alpha)=T(\alpha)+(-[T(\alpha)])
$$

$\Rightarrow T(-\alpha)=-T(\alpha)$, by LCL in the group $(V,+)$.
This is true for all $\alpha \in U$
c) We have $T(\alpha-\beta)=T[\alpha+(-\beta)]=T(\alpha)+T(-\beta)=T(\alpha)-T(\beta), \forall \alpha, \beta \in U$
d) We use induction on n.

If $n=1$, the $T\left(a_{1} \alpha_{1}\right)=a_{1} T\left(\alpha_{1}\right) \forall a \in F$ and $\forall \alpha_{1} \in U$
Assume the result for $n=k$. So we have for any $a_{1}, a_{z}, \ldots \ldots ., a_{k} \in F$ and $\alpha_{1}, \alpha_{z}, \ldots, \alpha_{k} \in U, T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+. .+a_{k} \alpha_{k}\right)=a_{1} T\left(\alpha_{1}\right)+a_{2}\left(\alpha_{2}\right)+. .+a_{k} T\left(\alpha_{k}\right)$

Now let $a_{1}, a_{z}, \ldots, a_{k}, a_{k+1}, \in F$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, a_{k+1} \in U$
$T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+. .+a_{k} \alpha_{k}+a_{k+1} \alpha_{k+1}\right)=T\left[\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+. .+a_{k} \alpha_{k}\right)+a_{k+1} \alpha_{k+1}\right]$
$=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+. .+a_{k} \alpha_{k}\right)+T\left(a_{k+1}, \alpha_{k+1}\right)$
$=a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots a_{k} T\left(\alpha_{k}\right)+a_{k+1} T\left(\alpha_{n+1}\right)$
So, the result is true for $n=k+1$. Now the result follows from Mathematical induction.
7.4.8 Theorem: Let $U(F), V(F)$ be vector spaces. Let $T: U \rightarrow V$ be defined by $T(\alpha)=\overline{0} \forall \alpha \in U$. Then T is a linear transformation.

Proof: Let $a, b \in F, \alpha, \beta \in U \Rightarrow a \alpha+b \beta \in U$
$\Rightarrow T(a \alpha+b \beta)=\overline{0}$
$=a \overline{0}+b \overline{0}=a T(\alpha)+b T(\beta), \forall a, b \in F, \forall \alpha, \beta \in U$
This shows that T is a linear transformation.
Note: The linear transformation $T: U \rightarrow V$ defined by $T(\alpha)=\overline{0} \forall \alpha \in U$ is called the zero transformation and is denoted by O .
7.4.9 Theorem: Let $V(F)$ be a vector spaces over a field F .

Let $T: V \rightarrow V$ be defined by $T(\alpha)=\alpha \forall \alpha \in V$. Then T is a linear transformation (operator) on V .
Proof: Let $a, b \in F, \alpha, \beta \in V \Rightarrow a \alpha+b \beta \in V$ and

$$
\begin{aligned}
T(a \alpha+b \beta) & =a \alpha+b \beta \\
& =a T(\alpha)+b T(\beta) \forall a, b \in F \text { and } \alpha, \beta \in V
\end{aligned}
$$

So, T is a linear transformation.
Note : The linear transformation $T: V \rightarrow V$ defined by $T(\alpha)=\alpha \forall \alpha \in V$ is called the identity operator an V and is denoted by I .
7.4.10 Theorem: Let $U(F), V(F)$ be vector spaces over a field F and let $T: U \rightarrow V$ be a linear transformation. Then the mapping $-T: U \rightarrow V$ defined by $(-T)(\alpha)=-T(\alpha) \forall \alpha \in U$ is a linear transformation.

Proof: Let $a, b \in F$ and $\alpha, \beta \in U \Rightarrow a \alpha+b \beta \in U$ and

$$
\begin{aligned}
(-T)(a \alpha+b \beta) & =-[T(a \alpha+b \beta)] \\
& =-[a T(\alpha)+b T(\beta)] \\
& =-a \cdot T(\alpha)-b T(\beta) \\
& =a(-T)(\alpha)+-b(-T)(\beta) \forall a, b \in F, \forall \alpha, \beta \in U
\end{aligned}
$$

So, $-T$ is a linear transformation.
Note: - T is called the negative of the linear transformation T .
7.4.11 Theorem: Let T_{1}, T_{2} be linear transformation from a vector space $U(F)$ into a vector space $V(F)$. Then the mapping $T_{1}+T_{2}: U \rightarrow V$ defined by $\left(T_{1}+T_{2}\right)(\alpha)=T_{1}(\alpha)+T_{2}(\alpha) \forall \alpha \in U$ is a linear transformation.

Proof: Let $a, b \in F, \alpha, \beta \in U$
Now $\left(T_{1}+T_{2}\right)(a \alpha+b \beta)=T_{1}(a \alpha+b \beta)+T_{2}(a \alpha+b \beta)$

$$
\begin{aligned}
& =a T_{1}(\alpha)+b T_{1}(\beta)+a T_{2}(\alpha)+b T_{2}(\beta) \\
& =a\left[T_{1}(\alpha)+T_{2}(\alpha)\right]+b\left[T_{1}(\beta)+T_{2}(\beta)\right]
\end{aligned}
$$

$$
=a\left(T_{1}+T_{2}\right)(\alpha)+b\left(T_{1}+T_{2}\right)(\beta), \forall a, b \in F \text { and } \forall \alpha, \beta \in U
$$

So, $T_{1}+T_{2}$ is a linear transformation.
7.4.12 Theorem: Let $T: U \rightarrow V$ be a linear transformation and $a \in F$. Then the mapping $(a T): U \rightarrow V$ defined by $(a T)(\alpha)=a T(\alpha) \forall \alpha \in U$ is a linear transformation.

Proof: $\alpha, \beta \in U$ and $x, y \in F \Rightarrow x \alpha+y \beta \in U$
Now $(a T)(x \alpha+y \beta)=a[T(x \alpha+y \beta)]$

$$
\begin{aligned}
& =a[x T(\alpha)+y T(\beta)] \\
& =a[x T(\alpha)]+a[y T(\beta)] \\
& =(a x) T(\alpha)+a y T(\beta) \\
& =(x a) T(\alpha)+(y a) T(\beta) \\
& =x[a T(\alpha)]+y[a T(\beta)] \\
& =x[(a T)(\alpha)]+y[(a T)(\beta)]
\end{aligned}
$$

This is true for all $x, y \in F$ and for all $\alpha, \beta \in U$
So, aT is a linear transformation.
7.4.13 Theorem: Let $U=F^{n \times 1}, V=F^{m \times 1}$ and $A \in F^{m \times n}$. Define $T: \cup \rightarrow \vee$ by $T(X)=A(X), \forall X \in U$. Then T is a linear transformation.

Proof: Let $a, b \in F, X, Y \in U$.
So, $T(a X+b Y)=A(a X+b Y)=A(a X)+A(b Y)$

$$
=a(A X)+b(A Y)=a T(X)+b T(Y)
$$

for all $a, b \in F$ and $X, Y \in U$
Hence T is a linear transformation.
7.4.14 SAQ: Define: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(a_{1}, a_{2}\right)=\left(a_{1},-a_{2}\right) \forall\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$. Show that T is a linear transformation. (This T is called the reflection in X -axis).
7.4.15 Define: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right) \forall\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$. Show that T is a linear transformation. (This T is called the projection on the X -axis).
7.4.16 Theorem: $T: U \rightarrow V$ is a linear transformation iff
$T(\alpha+\beta)=T(\alpha)+T(\beta)$ and $T(a \alpha)=a T(\alpha) \forall \alpha, \beta \in U$ and for all $a \in F(\mathrm{U}, \mathrm{V}$ are vector spaces over a field F).

Proof: 1. Suppose $T: U \rightarrow V$ is a linear transformation.

$$
\begin{equation*}
\Rightarrow T(a \alpha+b \beta)=a T(\alpha)+b T(\beta), \forall a, b \in F \quad \text { and } \forall \alpha, \beta \in U \tag{1}
\end{equation*}
$$

Taking $a=1, b=1$, we get $T(1 \alpha+1 \beta)=1 T(\alpha)+1 T(\beta), \forall \alpha, \beta \in U$

$$
\Rightarrow T(\alpha+\beta)=T(\alpha)+T(\beta), \forall \alpha, \beta \in U
$$

Taking $a=1, b=0$, in (1) we get $T(a \alpha+o \beta)=a T(\alpha)+o T(\beta)$

$$
\Rightarrow T(a \alpha)=a T(\alpha) \forall a \in F \omega \forall \alpha \in \cup
$$

Conversely suppose that $T(\alpha+\beta)=T(\alpha)+T(\beta)$ and

$$
T(a \alpha)=a T(\alpha) \forall \alpha, \beta \in U \forall a \in F
$$

Now let $a, b \in F$ and $\alpha, \beta \in U$
So, $T(a \alpha+b \beta)=T(a \alpha)+T(b \beta)$

$$
=a T(\alpha)+b T(\beta)
$$

This is true for all $\alpha, \beta \in U$ and $a, b \in F$.
Hence T is a linear transformation.
In view of theorem (7.4.16), a linear transformation may also be defined as:
7.4.17 Definition: Let $U(F), V(F)$ be vector spaces. A mapping $T: U \rightarrow V$ is a linear transformation if $T(\alpha+\beta)=T(\alpha) T+T(\beta)$ and $T(a \alpha)=a T(\alpha) \forall a \in F$ and $\alpha, \beta \in U$.

The two conditions can also be replaced by the single condition:

$$
T(a \alpha+\beta)=a T(\alpha)+T(\beta) \forall \alpha, \beta \in U \text { and } \forall a \in F .
$$

This can be justified on similar lines.
7.4.18 Theorem: Let $U(F), V(F)$ be vector spaces and let $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}$ be a basis of U. Let $\left\{\delta_{1}, \delta_{2}, \ldots \delta_{n}\right\}$ be any set of n vectors in V . Then \exists a unique linear transformation $T: U \rightarrow V$
such that $T\left(\alpha_{i}\right)=\delta_{i}, 1 \leq i \leq n$.
Proof: Let $S=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}$ Let $\alpha \in U$. Since S is a basis of $U, \exists a_{1}, a_{2}, \ldots . ., a_{n} \in F$ э $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$

Define $T: U \rightarrow V$ by $T(\alpha)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}\right)=a_{1} \delta_{1}+a_{2} \delta_{2}+\ldots+a_{n} \delta_{n}$, for every $\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n} \in U$.

Let $a, b \in F, \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n} \in U$

$$
\beta=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{n} \alpha_{n} \in U
$$

Now $T(a \alpha+b \beta)=T\left[\left(a_{1} a_{1}+b b_{1}\right) \alpha_{1}+\left(a_{1} a_{2}+b b_{2}\right) \alpha_{2}+\ldots . .+\left(a a_{n}+b b_{n}\right) \alpha_{n}\right]$

$$
\begin{aligned}
& =\left(a a_{1}+b b_{1}\right) \delta_{1}+\left(a a_{2}+b b_{2}\right) \delta_{2}+\ldots . .+\left(a a_{n}+b b_{n}\right) \delta_{n} \\
& =a\left(a_{1} \delta_{1}+a_{2} \delta_{2}+\ldots . .+a_{n} \delta_{n}\right)+b\left(b_{1} \delta_{1}+b_{2} \delta_{2}+\ldots . .+b_{n} \delta_{n}\right) \\
& =a T(\alpha)+a T(\beta), \text { for all } \alpha, \beta \in U \text { and for all } a, b \in F .
\end{aligned}
$$

This shows that T is a linear transformation.
Now for each $i, 1 \leq i \leq n, T\left(\alpha_{i}\right)=T\left[o \alpha_{1}+o \alpha_{2}+\ldots+1 \alpha_{i}+o \alpha_{i+1} \cdots+o \alpha_{n}\right]$

$$
\begin{aligned}
& =o \delta_{1}+o \delta_{2}+\ldots .+\mathrm{I} \delta_{i}+o \delta_{i+1}+\ldots+o \delta_{n} \\
& =\delta_{i}
\end{aligned}
$$

To show that T is unique, let $T^{1}: U \rightarrow V$ be a linear transformation such that $T^{1}\left(\alpha_{i}\right)=\delta_{i}, 1 \leq i \leq n$. Let $\alpha \in U$. So $\exists a_{1}, a_{2}, \ldots, a_{n} \in F$ э

$$
\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}
$$

Now $T^{1}(\alpha)=T^{1}\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}\right)$

$$
\begin{aligned}
& =a_{1} T^{1}\left(\alpha_{1}\right)+a_{2} T^{1}\left(\alpha_{2}\right)+\ldots+\delta_{n} T^{1}\left(\alpha_{n}\right) \\
& =a_{1} \delta_{1}+a_{2} \delta_{2}+\ldots+a_{n} \delta_{n}=T(\alpha), \forall \alpha \in U
\end{aligned}
$$

So $T^{1}=T$. Hence the uniqueness and hence the theorem.

Product of linear transformations.
7.4.19 Theorem: Let U, V, W be vector spaces over a field F . Let $T: U \rightarrow V, H: V \rightarrow W$ be linear transformations. Then the composite function $H T: U \rightarrow W$ defined by
$H T(\alpha)=H(T(\alpha)) \forall \alpha \in U$ is a linear transformation. (This HT is called product of linear transformations)

Proof: If $\alpha \in U$, then $T(\alpha) \in V$ and $H(T(\alpha)) \in W$ so that $H T(\alpha) \in W$
Let $a, b \in F$ and $\alpha, \beta \in U$

$$
\begin{aligned}
H T(a \alpha+b \beta) & =H[T(a \alpha+b \beta)]=H[a T(\alpha)+b T(\beta)] \\
& =a H(T(\alpha))+b H(T(\beta)) \\
& =a(H T)(\alpha)+b(H T)(\beta) \forall \alpha, \beta \in U \text { and } a, b \in F
\end{aligned}
$$

Hence HT is a linear transformation.
7.4.20 Theorem: Let U, V, W be vector spaces over a field F .

Let $T_{1}, T_{2}: U \rightarrow V ; H_{1}, H_{2}: V \rightarrow W$ be linear transformations. Then
i) $H_{1}\left(T_{1}+T_{2}\right)=H_{1} T_{1}+H_{1} T_{2}$
ii) $\left(H_{1}+H_{2}\right) T_{1}=H_{1} T_{1}+H_{2} T_{1}$
iii) $a\left(H_{1} T_{1}\right)=\left(a H_{1}\right) T_{1}=H_{1}\left(a T_{1}\right)$

Proof: i) Let $\alpha \in U$

$$
\begin{aligned}
{\left[\left(H_{1}+H_{2}\right) T_{1}\right](\alpha) } & =\left(H_{1}+H_{2}\right)\left[T_{1}(\alpha)\right]=H_{1}\left[T_{1}(\alpha)\right]+H_{2}\left[T_{1}(\alpha)\right] \\
& =\left(H_{1} T_{1}\right)(\alpha)+\left(H_{2} T_{1}\right)(\alpha)=\left(H_{1} T_{1}+H_{2} T_{1}\right)(\alpha) \forall \alpha \in U \\
\Rightarrow\left(H_{1}+H_{2}\right) T_{1} & =H_{1} T_{1}+H_{2} T_{1}
\end{aligned}
$$

(ii) and (iii) can be proved on similar lines.
7.4.21 Theorem: Let T_{1}, T_{2}, T_{3} be linear operators on a vector space $\mathrm{V}(\mathrm{F})$.
Then (a) $T_{1} O=O T_{1}=O$;
(b) $T_{1} I=I T_{1}=T_{1}$
(c) $T_{1}\left(T_{2}+T_{3}\right)=T_{1} T_{2}+T_{1} T_{3}$
(d) $\left(T_{1}+T_{2}\right) T_{3}=T_{1} T_{3}+T_{2} T_{3}$
(e) $T_{1}\left(T_{2} T_{3}\right)=\left(T_{1} T_{2}\right) T_{3}$

Proof: Let $\alpha \in V ; T_{1} o(\alpha)=T_{1}[o(\alpha)]=T_{1}(\bar{o})=(\bar{o})=\bar{o} \forall \alpha \in V$
$\Rightarrow T_{1} O=O$. Similarly we can prove that $O T_{1}=O$. [Here O is the zero operator on V].
The remaining results can be proved similarly.
7.4.22 Theorem: Let $L(U, V)$ be the set of all linear transformations from a vector space $U(F)$ into the vector space $V(F)$.For $T_{1}, T_{2} \in L(U, V)$ and $a \in F$, define $\left(T_{1}+T_{2}\right)(\alpha)=T_{1}(\alpha)+T_{2}(\alpha) \forall \alpha \in U \quad$ and $\left(a T_{1}\right)(\alpha)=a T_{1}(\alpha) \forall \alpha \in U$. Then $L(U, V)$ is a vector space over F.

Proof: By theorems 7.4.11 and 7.4.12, we have $T_{1}+T_{2}, a T_{1} \in L(U, V)$. This shows that $L(U, V)$ is closed under vector addition and scalar multiplication.

Let $T_{1}, T_{2}, T_{3} \in L(U, V)$ and $\alpha \in U$.

$$
\begin{aligned}
\therefore\left[T_{1}+\left(T_{2}+T_{3}\right)\right](\alpha) & =T_{1}(\alpha)+\left(T_{2}+T_{3}\right)(\alpha)=T_{1}(\alpha)+\left[T_{2}(\alpha)+T_{3}(\alpha)\right] \\
& =\left[T_{1}(\alpha)+T_{2}(\alpha)\right]+T_{3}(\alpha)=\left(T_{1}+T_{2}\right)(\alpha)+T_{3}(\alpha) \\
& =\left[\left(T_{1}+T_{2}\right)+T_{3}\right](\alpha) \forall \alpha \in U
\end{aligned}
$$

$\therefore T_{1}+\left(T_{2}+T_{3}\right)=\left(T_{1}+T_{2}\right)+T_{3} \forall T, T_{2}, T_{3} \in L(U, V)$

+ is associative in $L(U, V)$.
Similarly we can prove that + is commutative in $L(U, V)$.
The zero transformation $O: U \rightarrow V$ is identity with respect to + . For $T \in L(U, V)$ and $\alpha \in U$, we have

$$
(T+O)(\alpha)=T(\alpha)+O(\alpha)=T(\alpha)+\bar{O}=T(\alpha) \forall \alpha \in U
$$

$\Rightarrow T+O=O$. Similarly we can show that $O+T=O$.
$\therefore T+O=O=O+T, \forall T \in L(U, V)$
$\therefore O$ is the identity.
$T \in L(U, V) \Rightarrow-T \in L(U, V)$ by theorem 7.4.10.

```
Rings and Linear Algebra

For \(\alpha \in U,[T+(-T)](\alpha)=T(\alpha)+(-T)(\alpha)=T(\alpha)-T(\alpha)=\bar{O}(U) \forall \alpha \in U\)
\(\therefore T+(-T)=0\). Similarly we can show that \((-T)+T=O\)
\(\therefore-T\) is the inverse of \(T\) w.r.t. + .
For \(a \in F, T_{1}, T_{2} \in L(U, V), \alpha \in U\).
\[
\begin{aligned}
& \begin{aligned}
\therefore\left[a\left(T_{1}+T_{2}\right)\right](\alpha)= & a\left[\left(T_{1}+T_{2}\right)(\alpha)\right]=a\left[\left(T_{1}(\alpha)+T_{2}(\alpha)\right]=a T_{1}(\alpha)+a T_{2}(\alpha)\right. \\
& =\left(a T_{1}\right)(\alpha)+\left(a T_{2}\right)(\alpha)=a\left(T_{1}+a T_{2}\right)(\alpha) \forall \alpha \in U
\end{aligned} \\
& \therefore a\left(T_{1}+T_{2}\right)=a T_{1}+a T_{2} \forall a \in F \text { and } \forall T_{1}, T_{2} \in L(U, V) .
\end{aligned}
\]

Similarly we can prove that \((a+b) T=a T+b T,(a b) T=a(b T)\) and \(1 T=T \forall a, b \in F\) and \(\forall T \in L(U, V)\)

Hence \(L(U, V)\) is a vector space over F .
Note: \(L(U, V)\) is also denoted by Hom \(F(U, V)\) or Hom \((U, V)\).
7.4.23 Theorem: Let \(\operatorname{dim} U=n, \operatorname{dim} V=m\). Then \(\operatorname{dim} L(U, V)=m n(\mathrm{U}, \mathrm{V}\) are vector spaces over the field F).

Proof: Let \(A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, B=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}\) be ordered bases of U and V respectively. By Theorem 7.4.18, \(\exists\) a unique linear transformation \(T_{i j} \in L(U, V) \ni\).
\[
T_{i j}\left(\alpha_{k}\right)= \begin{cases}\beta_{j}, & k=i \\ \overline{0} & \text { if } \\ k \neq i\end{cases}
\]
for all \(i, j, 1 \leq i \leq n, 1 \leq j \leq m\) and for each fixed \(k, 1 \leq k \leq n\).
For example: \(T_{i 1}\left(\alpha_{1}\right)=\overline{0}, T_{i 1}\left(\alpha_{2}\right)=\overline{0}, T_{i 1}\left(\alpha_{3}\right)=\overline{0} \ldots \ldots . ., T_{i 1}\left(\alpha_{i}\right)=\beta_{1}, \ldots \ldots . T_{i 1}\left(\alpha_{n}\right)=\overline{0}\)
i.e. \(T_{i j}\left(\alpha_{i}\right)=\beta_{j}\) and \(T_{i 1}\left(\alpha_{k}\right)=\overline{0}\) if \(k \neq i\).

Let \(S=\left\{T_{i j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}\)
a) S is L.I: Let \(a_{i j} \in F\) and suppose \(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} T_{i j}=O(\in L(U, V)\)

For each \(k, 1 \leq k \leq n\), we have \(\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} T_{i j}\right)\left(\alpha_{k}\right)=O\left(\alpha_{k}\right)=\bar{O}\)
\[
\begin{aligned}
& \Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} T_{i j}\left(\alpha_{k}\right)=\overline{0} \Rightarrow \sum_{j=1}^{m} a_{k j} \beta_{j}=\overline{0} \Rightarrow a_{k 1} \beta_{1}+a_{k 2} \beta_{2}+\ldots+a_{k n} \beta_{m}=\bar{O} \\
& \Rightarrow a_{k 1}=0, a_{k 2}=0, \ldots . . a_{k m}=0 \forall k, 1 \leq k \leq n \Rightarrow a_{i j}=0 \forall i, j, 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
\]
\(\therefore S\) is L.I.
b) \(\mathrm{L}(\mathrm{S})=\mathrm{L}(\mathrm{U}, \mathrm{V})\) :

Clearly \(L(S) \subseteq L(U, V)\)
Let \(T \in L(U, V)\). Now \(\alpha_{1} \in U \Rightarrow T\left(\alpha_{1}\right) \in V\). So \(T\left(\alpha_{1}\right)\) can be expressed on a l.c. of elements of B. So \(\exists b_{11}, b_{12}, b_{13}, \ldots . b_{1 m} \in F \ni T\left(\alpha_{1}\right)=b_{11} \beta_{1}+b_{12} \beta_{2}+b_{13} \beta_{3}+\ldots+b_{1 m} \beta_{m}\). In general for each \(k, 1 \leq k \leq n, \exists b_{k 1}, b_{k 2}, \ldots b_{k m} \in F \ni T\left(\alpha_{k}\right)=b_{k 1} \beta_{1}+b_{k 2} \beta_{2}+\ldots+b_{k m} \beta_{m}\)

Let \(H=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i j} T_{i j} \Rightarrow H \in L(U, V)\). We have \(T_{i j}\left(\alpha_{k}\right)=\overline{0}\) if \(k \neq i\) and \(\beta_{j}\) if \(k=i\).

For each \(k, 1 \leq k \leq n, \quad H\left(\alpha_{k}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i j} T_{i j}\left(\alpha_{k}\right)=\sum_{j=1}^{m} b_{k j} \beta_{j}=T\left(\alpha_{k}\right)\).
\[
\therefore H\left(\alpha_{k}\right)=T\left(\alpha_{k}\right), \forall \alpha_{k} \in B_{1}
\]

So H and T agree on a basis of U . If \(\alpha \in U\), then \(\exists a_{1}, \ldots . a_{n} \in F\) э
\[
\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots a_{n} \alpha_{n} .
\]

So, \(H(\alpha)=H\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}\right)=a_{1} H\left(\alpha_{1}\right)+a_{2} H\left(\alpha_{2}\right)+\ldots+a_{n} H\left(\alpha_{n}\right)\)
\[
=a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots+a_{n} T\left(\alpha_{n}\right)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}=T(\alpha)\right.
\]
for all \(\alpha \in U\). Hence \(T=H \in L(S) \therefore L(U, V) \subseteq L(S) \Rightarrow L(S)=L(U, V)\).
\(\therefore \mathrm{S}\) is a basis of \(\mathrm{L}(\mathrm{U}, \mathrm{V}) \therefore \operatorname{dimL}(\mathrm{U}, \mathrm{V})=\) number of elements of \(\mathrm{S}=\mathrm{mn}\). Hence the theorem.

\subsection*{7.5 Null space and Range:}
7.5.1 Definition: Let \(\mathrm{U}(\mathrm{F})\) and \(\mathrm{V}(\mathrm{F})\) be vector spaces and \(T: U \rightarrow V\) be a linear transformation.

The null space \(N(T)\) of \(T\) is defined as
\[
N(T)=\{\alpha \in U / T(\alpha)=\overline{0}\}
\]

The range \(R(T)\) of \(T\) is defined as
\[
R(T)=\{T(\alpha) / \alpha \in U\}
\]

Null space is also called kernel.
Range is also called image.
7.5.2 Theorem: Let \(T: U \rightarrow V\) be a linear transformation. Then \(\mathrm{N}(\mathrm{T})\) is a subspace of \(U\) and \(R(T)\) is a subspace of \(V\).

Proof: (1) \(N(T)=\{\alpha \in U / T(\alpha)=\overline{0}\}\)
We know that \(\overline{0} \in U\) and \(T(\overline{0})=\overline{0} . \Rightarrow \overline{0} \in N(T)\)
\(\therefore \phi \neq N(T) \subseteq U\)
Let \(a, b \in F, \alpha, \beta \in N(T)\)
\(\Rightarrow T(\alpha)=\overline{0}, T(\beta)=\overline{0}\)
\[
T(a \alpha+b \beta)=a T(\alpha)+b T(\beta)=a \cdot \overline{0}+b \cdot \overline{0}=\overline{0}
\]
\(\Rightarrow a \alpha+b \beta \in N(T) \quad \forall \alpha, \beta \in N(T)\) and \(\forall a, b \in F\).
\(\therefore \mathrm{N}(\mathrm{T})\) is a subspace of U .
2. \(R(T)=\{T(\alpha) / \alpha \in U\}\)
\(\overline{0} \in U \Rightarrow T(\overline{0}) \in R(T) \Rightarrow \phi \neq R(T) \subseteq V\)
Let \(\beta_{1}, \beta_{2} \in R(T)\) and \(a, b \in F\).
\[
\begin{aligned}
& \Rightarrow \exists \alpha_{1}, \alpha_{2} \in U \ni T\left(\alpha_{1}\right)=\beta_{1}, T\left(\alpha_{2}\right)=\beta_{2} \\
& \therefore a \beta_{1}+b \beta_{2}=a T\left(\alpha_{1}\right)+b T\left(\alpha_{2}\right) \\
&=T\left(a \alpha_{1}+b \alpha_{2}\right) \\
& \in R(T), \text { since } a \alpha_{1}+b \alpha_{2} \in U .
\end{aligned}
\]
\(\therefore a \beta_{1}+b \beta_{2} \in R(T), \forall \beta_{1}, \beta_{2} \in R(T)\) and \(\forall a, b \in F\)
\(\therefore R(T)\) is a subspace of V .
7.5.3 Example: Let \(\mathrm{V}(\mathrm{F})\) be a vector space and \(I=V \rightarrow V\) be the identify operator. Then \(N(I)=\{\overline{0}\}, R(I)=V\).
7.5.4 Example: Let \(U(F), V(F)\) be vector spaces. \(O: U \rightarrow V\) be the zero linear transformation. Then \(N(O)=U\) and \(R(O)=\{\bar{O}\}\).
7.5.5 Theorem: Let \(T: U(F) \rightarrow V(F)\) be a linear transformation. If \(U\) is finite dimensional, then \(R(T)\) is finite dimensional.

Proof: Let \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}\) be a basis of U .
and \(S^{1}=\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots ., T\left(\alpha_{n}\right)\right\}\)
Let \(\beta \in R(T) \Rightarrow \exists \alpha \in U\) э \(T(\alpha)=\beta\)
\[
\begin{aligned}
& \Rightarrow \exists a_{1}, a_{2}, \ldots \ldots ., a_{n} \in F \ni \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n} \\
& \Rightarrow \beta=T(\alpha)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots .+a_{n} \alpha_{n}\right) \\
& \Rightarrow \beta=a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots .+a_{n} T\left(\alpha_{n}\right) \\
& \Rightarrow \beta \in L\left(S^{1}\right)
\end{aligned}
\]
\(\therefore R(T) \subseteq L\left(S^{1}\right)\)
Also \(S^{1} \subseteq R(T) \quad\left(\because\right.\) each element of \(S^{1}\) is in \(\left.\mathrm{R}(\mathrm{T})\right)\)
\(\Rightarrow L\left(S^{1}\right) \subseteq R(T)\), since \(\mathrm{R}(\mathrm{T})\) is a subspace of V containing \(S^{1}\) and \(L\left(S^{1}\right)\) is the smallest subspace containing \(S^{1}\).

Hence \(L\left(S^{1}\right)=R(T)\).
\(\therefore R(T)\) is finite dimensional.
7.5.6 Note: 1. \(\operatorname{dim} U=n \Rightarrow \operatorname{dim} R(T) \leq n\)
2. If \(S\) is a basis of \(U\), then \(R(T)=\) Linear span of \(T(S)\).
i.e. if \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}\), then \(\mathrm{R}(\mathrm{T})=\) linear span of \(S^{1}=\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots ., T\left(\alpha_{n}\right)\right\}\)
7.5.7 Example : Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be defined by \(T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right) \forall\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}\) Then \(N(T)=\left\{\left(a_{1}, a_{2}, a_{3}\right) / T\left(a_{1}, a_{2}, a_{3}\right)=\overline{0}\right\}\)
\[
\begin{aligned}
& =\left\{\left(a_{1}, a_{2}, a_{3}\right) /\left(a_{1}-a_{2}, 2 a_{3}\right)=(0,0)\right\} \\
& =\left\{\left(a_{1}, a_{2}, a_{3}\right) / a_{1}=a_{2}, a_{3}=0\right\} \\
& =\{a, a, 0) / a \in \mathbb{R}\}
\end{aligned}
\]
and \(R(T)=\left\{T\left(a_{1}, a_{2}, a_{3}\right) /\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}\right\}\)
\[
=\left\{\left(a_{1}, a_{2}, 2 a_{3}\right) / a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}
\]

By theorem 7.4.28, \(\mathrm{R}(\mathrm{T})\) is spanned by \(\{T(1,0,0), T(0,1,0), T(0,0,1)\}\), where \(\left\{e_{1}, e_{2}, e_{3}\right\}\) is the standard basis of \(\mathbb{R}^{3}, R(T)=\) Span of \(\{(1,0),(-1,0),(0,2)\}\)
\[
=\text { Span of }\{(1,0),(0,1)\}=\mathbb{R}^{2}
\]

\section*{Rank and Nullity:}
7.5.8 Definition: Let \(T=U(F) \rightarrow V(F)\) be a linear transformation.

The rank of T , denoted by \(\rho(T)\) is defined as :
\[
\rho(T)=\operatorname{dim} R(T)
\]

The nullity of T , denoted by \(v(T)\) is defined as:
\(v(T)=\operatorname{dim} N(T)\).
7.5.9 Theorem: Let \(T: U \rightarrow V\) be a linear transformation and \(U\) be finite dimensional. Then \(\rho(T)+v(T)=\operatorname{dim} U\).

Proof: Let \(\operatorname{dim} U=n\), Since \(N(T)\) is a subspace of \(U\) and \(U\) is finite dimensional, it follows that \(N(T)\) is finite dimensional. Let \(\operatorname{dim} N(T)\) be \(=\mathrm{k}\) and let \(A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}\) be a basis of \(\mathrm{N}(\mathrm{T})\). Since A is a L.I. subset of U , A can be extended to form a basis of U . Let \(B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k+1}, \ldots ., \alpha_{n}\right\}\) be
a basis of U . Let \(S=\left\{T\left(\alpha_{k+1}\right), T\left(\alpha_{k+2}\right), \ldots, T\left(\alpha_{n}\right)\right\}\). We now show that S is a basis of \(\mathrm{R}(\mathrm{T})\).
a) S is LI: Let \(a_{k+1} T\left(\alpha_{k+1}\right)+a_{k+2} T\left(\alpha_{k+2}\right)+\ldots . .+a_{n} T\left(\alpha_{n}\right)=\overline{0}\)
\[
\begin{aligned}
& \Rightarrow T\left(a_{k+1} \alpha_{k+1}+a_{k+2} \alpha_{k+2}+\ldots . .+a_{n} \alpha_{n}\right)=\overline{0} \\
& \Rightarrow a_{k+1} \alpha_{k+1}+a_{k+2} \alpha_{k+2}+\ldots . .+a_{n} \alpha_{n} \in N(T) \\
& \Rightarrow \exists a_{1}, a_{2}, \ldots, \alpha_{k} \in F \ni a_{k+1} \alpha_{k+1}+a_{k+2} \alpha_{k+2} \ldots . .+a_{n} \alpha_{n}=a_{1} \alpha_{1}+\ldots .+a_{k} \alpha_{k} \\
& \Rightarrow-a_{1} \alpha_{1}-a_{2} \alpha_{2} \ldots . .-a_{k} \alpha_{k}+-a_{k+1} \alpha_{k+1}+\ldots .+a_{n} \alpha_{n}=\overline{0} \\
& \Rightarrow-a_{1}=0,-a_{2}=0, \ldots,-a_{k}=0 ; a_{k+1}=0, a_{k+2}=0, \ldots . a_{n}=0, \text { since B is LI. } \\
& \Rightarrow a_{k+1}=0, \ldots \ldots ., a_{n}=0 \quad \therefore S \text { is L.I. }
\end{aligned}
\]
b) \(L(S)=R(T)\) : Clearly \(L(S) \subseteq R(T)\).

Let \(\beta \in R(T) \Rightarrow \exists \alpha \in U\) э \(T(\alpha)=\beta\)
Now \(\alpha \in U \Rightarrow \exists a_{1}, a_{2}, \ldots ., a_{k} \alpha_{k+1}, \ldots ., a_{n} \in F \ni \alpha=a_{1} \alpha_{1}+\ldots .+a_{k} \alpha_{k}+\ldots+a_{k+1} \alpha_{k+1}+\ldots .+a_{n} \alpha_{n}\)
\[
\begin{aligned}
\therefore \beta & =T(\alpha)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{k} \alpha_{k}+a_{k+1} \alpha_{k+1}+a_{k+2} \alpha_{k+2}+\ldots .+a_{n} \alpha_{n}\right) \\
& =a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots+a_{k} T\left(\alpha_{k}\right)+a_{k+1} T\left(\alpha_{k+1}\right)+a_{k+2} T\left(\alpha_{k+2}\right)+\ldots .+a_{n} T\left(\alpha_{n}\right) \\
& =a_{1} \cdot 0+a_{2} .0+\ldots+a_{k} \cdot 0+a_{k+1} T\left(\alpha_{k+1}\right)+a_{k+2} T\left(\alpha_{k+2}\right)+\ldots .+a_{n} T\left(\alpha_{n}\right) \\
& =a_{k+1} T\left(\alpha_{k+1}\right)+a_{k+2} T\left(\alpha_{k+2}\right)+\ldots .+a_{n} T\left(\alpha_{n}\right) \in L(S)
\end{aligned}
\]
\(\therefore R(T) \subseteq L(S) . \Rightarrow L(S)=R(T) \therefore S\) is a basis of \(\mathrm{R}(\mathrm{T})\)
\(\therefore \rho(T)=\) Number of elements of \(S=n-k=n-v(T)\).
\(\Rightarrow \rho(T)+v(T)=n=\operatorname{dim} U\); Rank \(\mathrm{T}+\) nullity \(\mathrm{T}=\operatorname{dim} U\). Hence the theorem.

\section*{Solved Problems:}
7.5.10 Problem: Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be defined by \(T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)\) for all \(\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}\).

Find the rank T, nullity T and verify \(\rho(T)+v(T)=n=\operatorname{dim} U\).
Solution: We have \(N(T)=\left\{\left(a_{1}, a_{2}, a_{3}\right) / T\left(a_{1}, a_{2}, a_{3}\right)=(0,0)\right\}\)
\[
\begin{aligned}
&=\left\{\left(a_{1}, a_{2}, a_{3}\right) /\left(a_{1}-a_{2}, 2 a_{3}\right)=(0,0)\right\} \\
&=\left\{\left(a_{1}, a_{2}, a_{3}\right) /\left(a_{1}=a_{2}, a_{3}=0\right\}\right. \\
&=\{(a, a, 0) / a \in \mathbb{R}\} \\
&=\operatorname{Span} \text { of }(1,1,0) \\
& \therefore v(T)= \operatorname{dim} N(T)=1 \\
& R(T)=\left\{T\left(a_{1}, a_{2}, a_{3}\right) /\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}\right\} \\
&==\left\{\left(a_{1}-a_{2}, 2 a_{3}\right) / a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\} \\
& \mathrm{R}(\mathrm{~T})= \text { Span of }\left\{\left(T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)\right\}, \text { where }\left\{e_{1}, e_{2}, e_{3}\right\} \text { is the standard basis of } \mathbb{R}^{3} .\right. \\
&= \text { Span of }\{(1,0),(-1,0),(0,2)\} \\
&= \text { Span of }\{(1,0),(0,1)\} \\
&= \mathbb{R}^{2} \\
& \therefore \rho(T)=\operatorname{dim} R(T)=2
\end{aligned}
\]

Now \(P(T)+V(T)=2+1=3=\operatorname{dim} \mathbb{R}^{3}\)
7.5.11 Problem: Find the null space, range, rank and nullity of the linear transformation \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}\) defined by \(T(x, y)=(x+y, x-y, y)\) for all \((x, y) \in \mathbb{R}^{2}\).

Solution: \(N(T)=\{(x, y) / T(x, y)=\overline{0}\}=\{(x, y) / x+y, x-y, y)=(0,0,0\}\)
\[
=\{(x, y) / x+y=0, x-y=0, y=0\}=\{(0,0)\}
\]
\(\therefore\) Nullity T is \(=0\).
\[
R(T)=\left\{T(x, y) /(x, y) \in \mathbb{R}^{2}\right\}=\{(x+y, x-y, y / x, y \in \mathbb{R}\}
\]

Since rank \(\mathrm{T}+\) nullity \(\mathrm{T}=\operatorname{dim} \mathbb{R}^{2}=2\), it follows that rank \(\mathrm{T}=2\).
Also we note that \(\mathrm{R}(\mathrm{T})\) is spanned by \(\{T(1,0), T(0,1)\}=\{(1,1,0),(1,-1,1)\}\).
7.5.12 SAQ: Let \(T_{1}, T_{2}\) be two operators on \(\mathbb{R}^{2}\) defined by \(T_{1}(x, y)=(y, x), T_{2}(x, y)=(x, 0)\). Show that \(T_{1} T_{2} \neq T_{2} T_{1}\).
7.5.13 SAQ : If T is a linear operator on \(\mathbb{R}^{2}\) defined by \(T(x, y)=(x-y, y)\) then find \(T^{2}(x, y)\).
7.5.14 SAQ: Give an example of two linear operators \(T\) and \(S\) on \(\mathbb{R}^{2}\) such that \(T S=O\) but \(S T \neq O\).

\subsection*{7.6 Answers to SAQ's:}
7.4.6 SAQ: \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} . T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right) \forall\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}\)

Let \(\alpha=\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}\) and \(a, b \in \mathbb{R}\).
\[
\begin{aligned}
T(a \alpha+b \beta) & =T\left(a \alpha_{1}+b \beta_{1}, a \alpha_{2}+b \beta_{2}\right) \\
& =\left(2\left(a \alpha_{1}+b \beta_{1}\right)+a \alpha_{2}+b \beta_{2}, a \alpha_{1}+b \beta_{1}\right) \\
& =a\left(2 \alpha_{1}+\alpha_{2}, \alpha_{1}\right)+b\left(2 \beta_{1}+\beta_{2}, \beta_{1}\right) \\
& =a T(\alpha)+b T(\beta) \forall \alpha, \beta \in \mathbb{R}^{2} \text { and } \forall a, b \in \mathbb{R}
\end{aligned}
\]

So T is a linear transformation.
7.4.14 SAQ: \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} . T\left(a_{1}, a_{2}\right)=\left(a_{1},-a_{2}\right) \forall\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}\)

Let \(\alpha=\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}\) and \(a, b \in \mathbb{R}\).
\[
\begin{aligned}
T(a \alpha+b \beta) & =T\left(a \alpha_{1}+b \beta_{1}, a \alpha_{2}+b \beta_{2}\right) \\
& =\left(a \alpha_{1}+b \beta_{1},-a \alpha_{2}-b \beta_{2}\right) \\
& =a\left(\alpha_{1},-\alpha_{2}\right)+b\left(\beta_{1},-\beta_{2}\right) \\
& =a T(\alpha)+b T(\beta) \forall \alpha, \beta \in \mathbb{R}^{2} \text { and } \forall a, b \in \mathbb{R}
\end{aligned}
\]
\(\therefore \mathrm{T}\) is a linear transformation.
7.4.15 SAQ : \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} . T\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right) \forall\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}\)

Let \(\alpha=\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}\) and \(a, b \in \mathbb{R}\).
\[
\therefore T(a \alpha+b \beta)=T\left(a \alpha_{1}+b \beta_{1}, a \alpha_{2}+b \beta_{2}\right)
\]
\[
\begin{aligned}
& =\left(a \alpha_{1}+b \beta_{1}, 0\right)=a\left(\alpha_{1}, 0\right)+b\left(\beta_{1}, 0\right) \\
& =a T(\alpha)+b T(\beta) \forall a, b \in \mathbb{R} \text { and } \forall \alpha, \beta \in \mathbb{R}^{2}
\end{aligned}
\]
\(\therefore \mathrm{T}\) is a linear transformation.
7.5.12 SAQ: \(T_{1}, T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{1}(x, y)=(y, x)\)
\[
T_{2}(x, y)=(x, 0) \forall(x, y) \in \mathbb{R}^{2}
\]
\[
\begin{gathered}
T_{1} T_{2}(x, y)=T_{1}\left[T_{2}(x, y)\right]=T_{1}(x, o)=(o, x) \\
T_{2} T_{1}(x, y)=T_{2}\left[T_{1}(x, y)\right]=T_{2}(y, x)=(y, o) \\
T_{1} T_{2}(x, y) \neq T_{2} T_{1}(x, y), \text { if } x \neq o \text { or } y \neq o . \\
\therefore T_{1} T_{2} \neq T_{2} T_{1}
\end{gathered}
\]
7.5.13 SAQ: \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x-y, y)\)
\[
\begin{aligned}
T^{2}(x, y) & =T(T(x, y))=T(x-y, y) \\
& =(x-2 y, y) \forall(x, y) \in \mathbb{R}^{2}
\end{aligned}
\]
7.5.14 SAQ: Give an example to show that \(T S=O\) but \(S T \neq O\)

Define \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) by \(T(x, y)=(1,0) \forall(x, y) \in \mathbb{R}^{2}\)
\[
S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { by } S(x, y)=(0, x) \forall(x, y) \in \mathbb{R}^{2}
\]
\(T S(x, y)=T[S(x, y)]=T(0, x)=(1,0) \in \mathbb{R}^{2}\)
\(S T(x, y)=S[T(x, y)]=S(1,0)=(0,1)\)
Here \(T S(x, y) \neq S T(x, y) \therefore T S \neq S T\)
7.7 Summary: Linear transformation and properties, null space, range, rank, nullity are discussed.
7.8 Technical Terms:Linear transformation, range, null space, rank, nullity.

\subsection*{7.9 Exercise}
7.9.1 Let \(V=F^{n \times n} ; M \in V\). Define \(T: V \rightarrow V\) by \(T(A)=A M+M A \forall A \in V\). Show that T is linear.
7.9.2 Give an example of a linear operator T on \(\mathbb{R}^{3}\) such that \(T \neq O, T^{2} \neq O\) but \(T^{3}=O\)
7.9.3 Let \(V=F^{2 \times 2}\). Let \(P=\left(\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right) \in V\). Define \(T: V \rightarrow V\) by \(T(A)=P A \forall A \in V\) Find nullity T
7.9.4 Let \(T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}\) be defined by \(T\left(e_{1}\right)=(1,1,1)\)
\[
T\left(e_{2}\right)=(1,1,1), T\left(e_{3}\right)=(1,0,0), T\left(e_{4}\right)=(1,0,1)
\]

Verify that \(\rho(T)+v(T)=\operatorname{dim} \mathbb{R}^{4}\).

\subsection*{7.10 Answers to Exercises:}
7.9.2 \(\quad T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T(a, b, c)=(0, a, b) \forall(a, b, c) \in \mathbb{R}^{3}\)
7.9.3 2

\subsection*{7.11 Model Examination Questions:}
7.11.1 Define a linear transformation. Prove that \(T(\overline{0})=\overline{0}, T(-\alpha)=-T(\alpha)\)
7.11.2 Define range and null space of a linear transformation.

Show that range and null space are subspaces.
7.11.3 Define rank and nullity. Prove that \(\rho(T)+v(T)=\operatorname{dim} U\)
7.11.4 Show that \(L(U, V)\) is a vector space.
7.11.5 Show that \(\operatorname{dim} L(U, V)=m n\).
7.12. Reference Books:
1. Stephen H: Fried berg and others - Linear Algebra - Prentice Hall India Pvt. Ltd., New Delhi.
2. K. Hoffman and Kunze - Linear Algebra.

2nd Edition - Prentice Hall, New Jersey - 1971.
- A. Satyanarayana Murty

\section*{LESSON - 8}

\section*{MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION}

\subsection*{8.1 Objective of the Lesson:}

In Chapter 7, we discussed linear transformation from an n-dimensional vector space to an m-dimenstional vector space. In this chapter we represent such a linear transformation as an \(\mathrm{m} \times \mathrm{n}\) matrix and study some properties and discuss some problems.

\subsection*{8.2. Structure of the Lesson:}

This lesson Ihas the following components.

\subsection*{8.3 Introduction}

\subsection*{8.4 Matrix representation}

\subsection*{8.5 Composition of linear transformation and matrix multiplication}

\subsection*{8.6 Invertibility and isomorphism}
8.7 Answers to SAQ's
8.8 Summary
8.9 Technical Terms
8.10 Exercises
8.11 Answers to Exercises
8.12 Model Examination Questions

\subsection*{8.13 References Books}

\subsection*{8.3 Introduction:}

In this chapter we discuss matrix of a linear transformation from a vector space to a vector space relative to ordered bases. We also study the matrix of a product of linear transformations and the invertibility and isomorphism of linear transformations.

\subsection*{8.4 Matrix Representation:}

First we define an ordered basis of an n-dimensional vector space \(\mathrm{V}(\mathrm{F})\) as a basis for V endowed with a specific order.

For example in \(F^{3}\), the standard basis \(B=\left\{e_{1}, e_{2}, e_{3}\right\}\) is considered as an ordered basis. Also \(B_{1}=\left\{e_{2}, e_{3}, e_{1}\right\}\) is an ordered basis of \(F^{3}\), but \(B_{1} \neq B\) as ordered bases. For \(F^{n},\left\{e_{1}, e_{2} \ldots, e_{n}\right\}\) is considered as the standard ordered basis, where \(e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots 0)\) etc.
8.4.1 Definition: If \(B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}\) is an ordered basis of an \(n\)-dimensional vector space \(V(F)\) and \(\alpha \in V\), then \(\alpha\) can be uniquely expressed as \(\alpha=\sum_{i n}^{n} a_{i} \alpha_{i}\), where \(a_{i} \in F\).

We define the coordinate vector of \(\alpha\) relative to the ordered basis B as \([\alpha]_{B}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]\)
8.4.2 Example: For \(V_{3}(\mathbb{R}), B=\left\{e_{1}, e_{2}, e_{3}\right\}\) is the standard ordered basis; where \(e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\)

If \(\alpha=(4,-2,3)\), then \([\alpha]_{B}=\left[\begin{array}{c}4 \\ -2 \\ 3\end{array}\right]\), since
\[
\alpha=(4,-2,3)=4(1,0,0)-2(0,1,0)+3(0,0,1)
\]
8.4.3 Example: For \(V_{3}(\mathbb{R})\), we know that \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}\) is on ordered basis where
\[
\begin{aligned}
\alpha_{1}= & (1,0,0), \alpha_{2}=(1,1,0), \alpha_{3}=(1,1,1), \text { so } \alpha=(4,3,2) \Rightarrow[\alpha]_{B_{1}}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \text { since } \\
& (4,3,2)=1(1,0,0)+1(1,1,0)+2(1,1,1)
\end{aligned}
\]
8.4.4 Definition: Let \(U(F)\) and \(V(F)\) be vector spaces and \(\operatorname{dim} U=n, \operatorname{dim} V=m\). Let \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}\) be an ordered basis of U and let \(B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}\) be an ordered basis of V .

Let \(T: U \rightarrow V\) be a linear transformation.

Since \(T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots, T\left(\alpha_{n}\right) \in R(T) \subseteq V\), these vectors can be uniquely expressed as linear combinations of elements of \(B_{2}\).

For each \(j, 1 \leq j \leq n, \exists\) unique \(a_{i j} \in F \ni T\left(\alpha_{j}\right)=\sum_{i=1}^{n} a_{i j} \beta_{i}\)
The matrix \(A=\left[a_{i j}\right]_{m \times n}\) is called the matrix of T relative to the ordered bases \(B_{1}, B_{2}\) and we write \(\left[T ; B_{1}, B_{2}\right]=A\).

If \(\mathrm{U}=\mathrm{V}\) and \(B_{1}=B_{2}\), we write \(A=\left[T ; B_{1}, B_{1}\right]=[T]_{B_{1}}\).
8.4.5 Note: \(\left[T\left(\alpha_{j}\right)\right]_{B_{2}}=j\) th column of A .
8.4.6 Example: If I and O are the identity and zero operators an n -dimensional vector space V and \(B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}\) is an ordered basis of V , then \([I]_{B}=I_{n \times n}\) and \([O]_{B}=O_{n \times n}\).
\[
\begin{aligned}
& \text { since } I\left(\alpha_{j}\right)=\alpha_{j}=o \alpha_{1}+o \alpha_{2}+\ldots+1 \alpha_{j}+\ldots+o \alpha_{n} \\
& \qquad O\left(\alpha_{j}\right)=\overline{0}=o \alpha_{1}+o \alpha_{2}+\ldots+o \alpha_{n} \text { for each } j=1,2, \ldots, n .
\end{aligned}
\]
8.4.7 Theorem: Let \(\mathrm{U}(\mathrm{F}), \mathrm{V}(\mathrm{F})\) be vector spaces, \(\operatorname{dim} U=n, \operatorname{dim} V=m\) and let \(B_{1}, B_{2}\) be ordered bases of U and V respectively. If \(T_{1}, T_{2} \in L(U, V)\), then \(\left[T_{1}+T_{2} ; B_{1}, B_{2}\right]=\left[T_{1} ; B_{1}, B_{2}\right]+\left[T_{2} ; B_{1}, B_{2}\right]\) and \(\left[a T_{1} ; B_{1}, B_{2}\right]=a\left[T_{1} ; B_{1}, B_{2}\right]\), where \(a \in F\).

Proof: Let \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}\)
\[
\begin{aligned}
& \text { Let }\left[T_{1} ; B_{1}, B_{2}\right]=\left[a_{i j}\right]_{m \times n} \text { and }\left[T_{2} ; B_{1}, B_{2}\right]=\left[b_{i j}\right]_{m \times n} \\
& \Rightarrow T_{1}\left(\alpha_{j}\right)=\sum_{i=1}^{n} a_{i j} \beta_{i}, T_{2}\left(\alpha_{j}\right)=\sum_{i=1}^{m} b_{i j} \beta_{i}, \text { for } \mathrm{j}=1,2, \ldots . . \mathrm{n} .
\end{aligned}
\]
\(\operatorname{Now}\left(T_{1}+T_{2}\right)\left(\alpha_{j}\right)=T_{1}\left(\alpha_{j}\right)+T_{2}\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}+\sum_{i=1}^{m} b_{i j} \beta_{i}=\sum_{i=1}^{m}\left(a_{i j}+b_{i j}\right) \beta_{i}\)
\(\therefore\left[T_{1}+T_{2} ; B_{1}, B_{2}\right]=\left[a_{i j}+b_{i j}\right]_{m \times n}=\left[a_{i j}\right]_{n \times n}+\left[b_{i j}\right]_{m \times n}=\left[T_{1} ; B_{1}, B_{2}\right]+\left[T_{2} ; B_{1}, B_{2}\right]\)

Let \(a \in F\) N.ow \(\left(a T_{1}\right)\left(\alpha_{j}\right)=a T_{1}\left(\alpha_{j}\right)=a \sum_{i=1}^{m} a_{i j} \beta_{i}=\sum_{i=1}^{m} a a_{i j} \beta_{i}, \forall j=1,2, \ldots . n\)
\(\therefore\left[a T_{1} ; B_{1}, B_{2}\right]=\left[a a_{i j}\right]_{m \times n}=a\left[a_{i j}\right]_{m \times n}=a\left[T_{1} ; B_{1}, B_{2}\right]\)
8.4.8 Note: We defined the matrix of a linear transformation \(T: U \rightarrow V\) w.r.t. the ordered bases \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{n}\right\}, B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots . ., \beta_{n}\right\}\) of \(U\) and \(V\) respectively as \(A=\left[a_{i j}\right]_{m \times n}\), where
\[
T\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}, \text { for } j=1,2, \ldots . n
\]

So, for each linear transformation from an n -dimensional vector space to an m -dimensional vector space, \(\exists\) an \(\mathrm{m} \times \mathrm{n}\) matrix \(A=\left[a_{i j}\right]\) which is \(=\left[T, B_{1}, B_{2}\right]\)

Now if \(\mathrm{U}, \mathrm{V}\) are vector spaces, \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}\right\}, B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots . ., \beta_{m}\right\}\) are ordered bases of \(\mathrm{U}, \mathrm{V}\) respectively and \(A=\left[a_{i j}\right]_{m \times n}\), then \(\exists\) a linear transformation \(T: U \rightarrow V \ni\left[T, B_{1}, B_{2}\right]=A\) If we define \(T\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}, j=1,2, \ldots . n\), then T is a uniquely defermined linear transformation and \(\left[T, B_{1}, B_{2}\right]=A \quad\) (If we write \(\sum_{i=1}^{m} a_{i j} \beta_{i}=\delta_{j}, j=1,2, \ldots \ldots, n\), then \(\delta_{1}, \ldots ., \delta_{n}\) are n vectors in \(\vee\) and \(\exists\) a unique linear transformation \(T: U \rightarrow V \ni T\left(\alpha_{j}\right)=\delta_{j}, 1 \leq j \leq n\). This result was proved in chapter 7 - see theorem 7.4.18).
8.4.9 Theorem: Let \(A \in F^{m \times n}\). Define \(T: F^{n \times 1} \rightarrow F^{m \times 1}\) by \(T(X)=A(X)\), for all \(X \in F^{n \times 1}\). Then \(T\) is a linear transformation. If \(B_{1}, B_{2}\) are standard ordered bases of \(F^{n \times 1}\) and \(F^{m \times 1}\) respectively, then \(\left[T, B_{1}, B_{2}\right]=A\).

Proof: We proved that T is a linear transformation. (See theorem 7.4.13).
Let \(B_{1}=\left\{e_{1}, e_{2}, \ldots \ldots e_{n}\right\}, B_{2}=\left\{f_{1}, f_{2}, \ldots . ., f_{m}\right\}\) be standard ordered bases of \(F^{n \times 1}, F^{m \times 1}\) respectively. ( \(e_{i} \in F^{n \times 1} ; i^{\text {th }}\) component \(e_{i}=1\) and other components \(=0\) ).
\[
\begin{aligned}
& T\left(e_{j}\right)=A e_{j}=\left[a_{i k}\right]_{m \times n}\left[\begin{array}{c}
o \\
o \\
\vdots \\
o \\
1 \\
o \\
\vdots \\
o
\end{array}\right]=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right]=a_{1 j} f_{1}+a_{2 j} f_{2}+\ldots+a_{i j} f_{2}+\ldots . .+a_{m j} f_{m} \\
&=\sum_{i=1}^{m} a_{i j} f_{i} . \\
& \therefore\left[T: B_{1}, B_{2}\right]=\left[a_{i j}\right]_{m \times n}=A .
\end{aligned}
\]
8.4.10 Note: \(T\) is called the left multiplication transformation and is denoted by \(L_{A}\).
8.4.11 Definition: Let A be an \(m \times n\) matrix over \(F\). The linear transformation \(L_{A}: F^{n \times 1} \rightarrow F^{m \times 1}\) by \(L_{A}(X)=A(X) \forall X \in F^{n}\) (or \(F^{n \times 1}\) ) is called the left multiplication transformation.
8.4.12 Theorem: Let \(U(F), V(F)\) be vector spaces, \(\operatorname{dim} U=n, \operatorname{dim} V=m\) and \(B_{1}, B_{2}\) be ordered bases of U and V respectively.

Let \(T: U \rightarrow V\) be a linear transformation and \(\alpha \in U\). Then \(\left[T ; B_{1}, B_{2}\right][\alpha]_{B_{1}}=[T(\alpha)]_{B_{2}}\), where \([\alpha]_{B_{1}}\) is the coordinate matrix of \(\alpha\) w.r.t. the ordered basis \(\mathrm{B}_{1}\).

Proof: Let \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}\right\}, B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots . ., \beta_{m}\right\}\)
Let \(A=\left[a_{i j}\right]_{m \times n}=\left[T ; B_{1}, B_{2}\right]\)
For \(\alpha_{j} \in B_{1}\), we have \(T\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}\)

Since \(\alpha \in U, \exists\) unique \(b_{1}, b_{2}, \ldots \ldots b_{n} \in F\) э \(\alpha=\sum_{j=1}^{n} b_{j} \alpha_{j}\)
\[
\begin{aligned}
& \Rightarrow T(\alpha)=T\left[\sum_{j=1}^{n} b_{j} \alpha_{j}\right]=\sum_{j=1}^{n} b_{j} T\left(\alpha_{j}\right) \\
& =\sum_{j=1}^{n} b_{j} \sum_{i=1}^{m} a_{i j} \beta_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} b_{j} a_{i j}\right) \beta_{i}=\sum_{j=1}^{n} c_{i} \beta_{i} \text { where } c_{i}=\sum_{j=1}^{m} b_{j} a_{i j} \\
& \therefore[T(\alpha)]_{B_{2}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right] \\
& =\left[\begin{array}{c}
b_{1} a_{11}+b_{2} a_{12}+b_{3} a_{13}+\ldots .+b_{n} a_{1 n} \\
b_{1} a_{21}+b_{2} a_{22}+b_{3} a_{23}+\ldots .+b_{n} a_{2 n} \\
\vdots: \vdots \\
b_{1} a_{m 1}+b_{2} a_{m 2}+b_{3} a_{m 3}+\ldots . .+b_{n} a_{m n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \ldots \ldots . . a_{1 n} \\
a_{21} & a_{22} & a_{23} \ldots \ldots . a_{2 n} \\
\ldots & \ldots & \ldots \ldots \ldots \ldots . \\
a_{m 1} & a_{m 2} & a_{m 3} \ldots \ldots \ldots . a_{m n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \\
& =\left[T ; B_{1}, B_{2}\right][\alpha]_{B_{1}}
\end{aligned}
\]

Hence the Theorem.
8.4.13 Corollary: If \(T: V \rightarrow V\) is a linear operator, \(\operatorname{dim} V=n, \mathrm{~B}\) is an ordered basis of V and \(\alpha \in V\), then \([T(\alpha)]_{B}=[T]_{B}[\alpha]_{B}\)

\subsection*{8.5 Composition of linear transformation and matrix multiplication:}

We defined the composition of two linear transformation as : \(T S(\alpha)=T[S(\alpha)] \forall \alpha \in U\).
8.5.1 Theorem: Let \(U(F), V(F), W(F)\) be finite dimensional vector space and let \(B_{1}, B_{2}, B_{3}\) be ordered bases of \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) respectively.

Let \(T: U \rightarrow V, S: V \rightarrow W\) be linear transformations. then \(\left[S T ; B_{1}, B_{3}\right]=\left[S ; B_{2}, B_{3}\right]\left[T ; B_{1}, B_{2}\right]\)

Proof: We know that \(S T: U \rightarrow W\) is defined by \((S T)(\alpha)=S[T(\alpha)], \forall \alpha \in U\) is a linear transformation.

Let \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{p}\right\}, B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots \ldots, \beta_{n}\right\}, B_{3}=\left\{\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{m}\right\}\) be ordered bases of \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) respectively.

Let \(\quad\left[T ; B_{1}, B_{2}\right]=\left[b_{k j}\right]_{n \times p}\)
\[
\begin{gathered}
{\left[S ; B_{2}, B_{3}\right]=\left[a_{i k}\right]_{m \times n}} \\
\Rightarrow \quad \\
T\left(\alpha_{j}\right)=\sum_{k=1}^{n} b_{k j} \beta_{k}, j=1,2, \ldots \ldots, p \\
\\
S\left(\beta_{k}\right)=\sum_{i=1}^{n} a_{i k} \gamma_{i}, k=1,2, \ldots \ldots, n
\end{gathered}
\]

Now for each \(j=1,2, \ldots \ldots, p\), we have
\[
\begin{aligned}
& \begin{array}{l}
(S T)\left(\alpha_{j}\right)= \\
=S\left[T\left(\alpha_{j}\right)\right] \\
= \\
=\sum_{k=1}^{n} b_{k j} \sum_{i=1}^{n} a_{i k} \gamma_{k j} \\
=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right) \gamma_{i} \\
\quad=\sum_{i=1}^{n} c_{i j} \gamma_{i}, \text { where } c_{k j} S\left(\beta_{k j}\right) \\
=\sum_{k=1}^{n} a_{i k} b_{k j} \\
\therefore\left[S T ; B_{1}, B_{3}\right]=\left[c_{i j}\right]_{m \times p}=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{m \times p}=\left[a_{i k}\right]_{m \times n}\left[b_{k j}\right]_{n \times p} \\
\quad=\left[S ; B_{2}, B_{3}\right]\left[T ; B_{1}, B_{2}\right]
\end{array}
\end{aligned}
\]
8.5.2 Corollary: If \(T, S\) are linear operators on an \(n\)-dimensional vector space \(V\) and \(B\) is an ordered basis of V , then \([S T]_{B}=[S]_{B}[T]_{B}\).
8.5.3 Theorem: Let \(T: F^{n \times 1} \rightarrow F^{m \times 1}\) be a linear transformation. Then \(\exists A \in F^{m \times n} \ni T=L_{A}\).

Proof: Let \(B_{1}, B_{2}\) be the standard ordered bases of \(F^{n \times 1}\) and \(F^{m \times 1}\) respectively.
Then \(\exists\) a unique matrix \(A \in F^{m \times n} \ni\left[T ; B_{1}, B_{2}\right]=A\).
\(\therefore\) For every \(X \in F^{n \times 1}\), we have
\[
\begin{aligned}
{[T(X)]_{B_{2}} } & =\left[T ; B_{1}, B_{2}\right][X]_{B_{1}} \\
& =A[X]_{B_{1}} \\
\therefore T(X)=A X & =L_{A}(X) \forall X \in F^{n \times 1} \\
\therefore T & =L_{A}
\end{aligned}
\]

We observe that ;
8.5.4 Theorem: If \(A, B \in F^{m \times n}\), then
1) \(L_{A+B}=L_{A}+L_{B}\)
2) \(L_{a A}=a L_{A}, a \in F\)
3) \(L_{A B}=L_{A} o L_{B}\)

Proof: \(L_{A+B}(X)=(A+B) X=A X+B X=L_{A}(X)+L_{B}(X) \forall X \in F^{n \times 1}\)
\[
\begin{aligned}
\Rightarrow & L_{A+B}=L_{A}+L_{B} \\
& L_{a A}(X)=(a A) X=a(A X)=a L_{A}(X) \forall X \in F^{n \times 1} \\
\Rightarrow & L_{a A}=a L_{A}
\end{aligned}
\]
\(L_{A B}(X)=(A B) X=A(B X)=L_{A}(B X)=L_{A}\left[L_{B}(X)\right]\)
\(\Rightarrow L_{A B}(X)=L_{A} o L_{B}(X) \forall X \in F^{n \times 1} \Rightarrow L_{A B}=L_{A} o L_{B}\).
8.5.5 Theorem: Let \(U(F), V(F)\) be vector spaces, \(\operatorname{dim} U=n \operatorname{dim} V=m\).
\[
\text { Then } L(U, V) \cong F^{m \times n}
\]

Proof: We know that \(L(U, V)\) and \(F^{m \times n}\) are vector spaces over F. Let \(B_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{n}\right\}\), \(B_{2}=\left\{\beta_{1}, \beta_{2}, \ldots . ., \beta_{m}\right\}\) be ordered bases of \(U\) and \(V\) respectively.

Let \(T_{1}, T_{2} \in L(U, V) \quad\left[T_{1} ; B_{1}, B_{2}\right]=A=\left[a_{i j}\right]_{m \times n}\)
\[
\text { and }\left[T_{2} ; B_{1}, B_{2}\right]=B=\left[b_{i j}\right]_{m \times n}
\]
\(\therefore\) For \(j=1,2, \ldots, n\), we have \(T_{1}\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}\) and \(T_{2}\left(\alpha_{j}\right)=\sum_{i=1}^{m} b_{i j} \beta_{i}\)
Define \(\phi: L(U, V) \rightarrow F^{m \times n}\) by
\[
\phi(T)=\left[T ; B_{1}, B_{2}\right] \forall T \in L(U, V)
\]

We show that \(\phi\) is an isomorphism.
a) Let \(a, b \in F, T_{1}, T_{2} \in L(U, V)\)
\[
\begin{aligned}
\therefore \phi\left(a T_{1}+b T_{2}\right) & =\left[a T_{1}+b T_{2} ; B_{1}, B_{2}\right] \\
& =\left[a T_{1} ;+B_{1}, B_{2}\right]+\left[b T_{2} ;+B_{1}, B_{2}\right] \\
& =a\left[T_{1} ; B_{1}, B_{2}\right]+b\left[T_{2} ; B_{1}, B_{2}\right] \\
& =a \phi\left(T_{1}\right)+b \phi\left(T_{2}\right) \forall T_{1}, T_{2} \in L(U, V) \text { and } \forall a, b \in F
\end{aligned}
\]
\(\therefore \phi\) is a linear transformation.
b) Let \(T_{1}, T_{2} \in L(U, V)\) and \(\phi\left(T_{1}\right)=\phi\left(T_{2}\right)\)
\[
\begin{aligned}
& \Rightarrow\left[T_{1} ; B_{1}, B_{2}\right]=\left[T_{2} ; B_{1}, B_{2}\right] \\
& \Rightarrow A=B \Rightarrow\left[a_{i j}\right]=\left[b_{i j}\right] \Rightarrow a_{i j}=b_{i j} \forall i, j, 1 \leq i \leq m, 1 \leq j \leq n
\end{aligned}
\]
\(\therefore\) for each \(\alpha_{j} \in B_{1}\), we have \(T_{1}\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}=\sum_{i=1}^{m} b_{i j} \beta_{i}=T_{2}\left(\alpha_{j}\right) ; \forall \alpha_{j} \in B\)
\(\therefore T_{1}, T_{2}\) agree an a basis \(B_{1}\) of \(U \Rightarrow T_{1}=T_{2}\) on \(U \therefore \phi\) is one-one.
c) Let \(A \in F^{m \times n}\) and \(A=\left[a_{i j}\right]_{m \times n}\). Write \(\delta_{j}=\sum_{i=1}^{m} a_{i j} \beta_{i} \forall j=1,2, \ldots, n\).

So \(\delta_{1}, \delta_{2}, \ldots . \delta_{n}\) are n vectors in V .
\(\left\{\alpha_{1}, \ldots \ldots, \alpha_{n}\right\}\) is a basis of U and \(\delta_{1}, \ldots . \delta_{n}\) are n vectors in V .
\(\therefore \exists\) a unique linear transformation \(T: U \rightarrow V \ni T\left(\alpha_{j}\right)=\delta_{j}, j=1,2, \ldots \ldots, n\).
\[
\begin{aligned}
& \Rightarrow T\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{1}, \forall j=1,2, \ldots \ldots, n \\
& \Rightarrow\left[T ; B_{1}, B_{2}\right]=A \Rightarrow \phi(T)=A
\end{aligned}
\]
\(\therefore \phi\) is onto \(\therefore \phi\) is an isomorphism \(\therefore L(U, V) \cong F^{m \times n}\)
Hence the theorem.
We observe that \(\operatorname{dim} F^{m \times n}\) is \(=m n=\operatorname{dim} L(U, V)=m n\). (We proved this independently) 8.6 Invertibility and isomorphism.

We know that a function \(f: A \rightarrow B\) is said to be invertible if there exists a function \(g: B \rightarrow A\) such that \(g o f=I_{A}\) and \(f o g=I_{B}\) and \(g\) is called inverse of \(f\) and we write \(g=f^{-1}\). Further, f and \(g\) are bijections and \(f(x)=y \Leftrightarrow f^{-1}(y)=x\). Since linear transformations are also functions, it is natural to expect that the inverse of a linear transformation is also a linear transformation.
8.6.1 Definition: Let \(U(F)\) and \(V(F)\) be vector spaces. Let \(T: U \rightarrow V\) be a bijective mapping. Then the mapping \(S: V \rightarrow U\) defined by \(S(B)=\alpha \Leftrightarrow T(\alpha)=\beta, \alpha \in U, \beta \in V\), is called the inverse of T and it is denoted by \(T^{-1}\). (If such a mapping S exists, then we say that T is invertible).
8.6.2 Note: 1. \(T^{-1}(\beta)=\alpha \Leftrightarrow T(\alpha)=\beta, \alpha \in U, \beta \in V\)
2. T is invertible iff T is a bijection.
3. T is a bijection iff \(T^{-1}\) is a bijection.
4. If \(T: U \rightarrow V, S: V \rightarrow W\) are bijections, then \(S T: U \rightarrow W\) is also a bijection and
\[
(S T)^{-1}=T^{-1} S^{-1},\left(T^{-1}\right)^{-1}=T
\]
8.6.3 Theorem: Let \(U(F), V(F)\) be vector spaces and \(T: U \rightarrow V\) be a bijective linear transformation. Then \(T^{-1}: V \rightarrow U\) is also a linear transformation.

Proof: Since \(T: U \rightarrow V\) is a bijection, \(T^{-1}: V \rightarrow U\) is also a bijection.
To prove that \(T^{-1}\) is a linear transformation, let \(\alpha, \beta \in V, a, b \in F\).
Since \(T: U \rightarrow V\) is onto, \(\alpha, \beta \in V \Rightarrow \exists \alpha_{1}, \beta_{1} \in U\) э \(T\left(\alpha_{1}\right)=\alpha\) and \(T\left(\beta_{1}\right)=\beta\). Since \(T\) is a bijection, we have
\[
\begin{aligned}
& T\left(\alpha_{1}\right)=\alpha \Rightarrow T^{-1}(\alpha)=\alpha_{1} \text { and } T\left(\beta_{1}\right)=\beta \Rightarrow T^{-1}(\beta)=\beta_{1} \\
& \text { Now } a \alpha+b \beta=a T\left(\alpha_{1}\right)+b T\left(\beta_{1}\right)=T\left(a \alpha_{1}+b \beta_{1}\right)
\end{aligned}
\]

Since T is a bijection, \(T^{-1}(a \alpha+b \beta)=a \alpha_{1}+b \beta_{1}=a T^{-1}(\alpha)+b T^{-1}(\beta)\) and this is true for all \(\alpha, \beta \in V\) and for all \(a, b \in F\). Hence \(T^{-1}\) is a linear transformation.
8.6.4 Note: 1) If \(T: U \rightarrow V\) is an isomorphism iff \(T^{-1}: V \rightarrow U\) is an isomorphism.
2) If inverse of \(T: U \rightarrow V\) exists, then T is said to be an ivertible linear transformation and \(T o T^{-1}=I_{V}, T^{-1} o T=I_{U}\).
8.6.5 Definition: If there is an isomorphism (i.e. one-one onto linear transformation) from a vector space \(\mathrm{U}(\mathrm{F})\) to a vector space \(\mathrm{V}(\mathrm{F})\), then we say that U and V are isomorphic and we write \(U \cong V\).
8.6.6 Theorem: Let \(\mathrm{U}(\mathrm{F}), \mathrm{V}(\mathrm{F})\) be finite dimensional vector spaces. Then \(U \cong V \Leftrightarrow \operatorname{dim} U=\operatorname{dim} V\).

Proof: 1. Suppose \(U \cong V\)
\(\Rightarrow \exists\) a one-one onto linear transformation \(T: U \rightarrow V\)
Let \(\operatorname{dim} U=n\) and \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}\right\}\) be a basis of U .
Let \(S^{1}=\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots \ldots, T\left(\alpha_{n}\right)\right\}\). We show that \(S^{1}\) is a basis of V .
a) \(S^{1}\) is L. I: Let \(a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots \ldots .+a_{n} T\left(\alpha_{n}\right)=\overline{0}\)
\[
\begin{aligned}
& \Rightarrow T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}=\overline{0}=T(\overline{0})\right. \\
& \Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}=\overline{0} \quad(\because T \text { is one-one }) \\
& \Rightarrow a_{1}=0, a_{2}=0, \ldots ., a_{n}=0
\end{aligned}
\]
\(\therefore S^{1}\) is L.I.
b) \(L\left(S^{1}\right)=V\) : Let \(\beta \in V\). Since \(T: U \rightarrow V\) is onto, \(\exists \alpha \in U\) э \(T(\alpha)=\beta\)

Since \(\alpha \in U, \exists a_{1}, a_{2}, \ldots, a_{n} \in F \ni{ }^{\prime}=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots+a_{n} \alpha_{n}\)
\(\Rightarrow \beta=T(\alpha)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}\right)\)
\[
=a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots . .+a_{n} T\left(\alpha_{n}\right)
\]
\[
\Rightarrow \beta \in L\left(S^{1}\right) . \quad \therefore V \subseteq L\left(S^{1}\right)
\]

Also since \(L\left(S^{1}\right) \subseteq V\), we have \(L\left(S^{1}\right)=V\)
So, \(S^{1}\) is a basis of V so that \(\operatorname{dim} V=n\). Hence \(\operatorname{dim} U=\operatorname{dim} V\).
2. Suppose \(\operatorname{dim} U=\operatorname{dim} V=n\), Let \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}\right\}\) and \(S^{1}=\left\{\beta_{1}, \beta_{2}, \ldots \ldots, \beta_{n}\right\}\) be bases of U and V respectively.

Let \(\alpha \in U \Rightarrow \exists a_{1}, a_{2}, \ldots ., a_{n} \in F \ni \alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots+a_{n} \alpha_{n}\)
Define \(T: U \rightarrow V\) by \(T(\alpha)=T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}\right)=a_{1} \beta_{1}+a_{2} \beta_{2}+\ldots .+a_{n} \beta_{n}\) for all \(\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n} \in U\)

Let \(a, b \in F\) and \(\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}, \beta=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots \ldots .+b_{n} \alpha_{n} \in U\).
\[
\begin{aligned}
\therefore T(a \alpha+b \beta)= & T\left[\sum_{i=1}^{n}\left(a a_{i}+b b_{i}\right) \alpha_{i}\right]=\sum_{i=1}^{n}\left(a a_{i}+b b_{i}\right) \beta_{i}=\sum_{i=1}^{n} a a_{i} \beta_{i}+\sum_{i=1}^{n} b b_{i} \beta_{1} \\
& =a \sum_{i=1}^{n} a_{i} \beta_{1}+b \sum_{i=1}^{n} b_{i} \beta_{i}=a T(\alpha)+b T(\beta) \forall \alpha, \beta \in U \text { and } \forall \alpha, \beta \in F .
\end{aligned}
\]
\(\therefore T\) is a linear transformation.
T is one-one : Let \(\alpha, \beta \in U\) and \(T(\alpha)=T(\beta)\)
\[
\alpha, \beta \in U \Rightarrow \exists a_{i}, b_{i} \in F \ni \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}, \beta=\sum_{i=1}^{n} b_{i} \alpha_{i}
\]

Now \(T(\alpha)=T(\beta) \Rightarrow \sum_{i=1}^{n} a_{i} \beta_{i}=\sum_{i=1}^{n} b_{i} \beta_{i}\)
\[
\begin{gathered}
\Rightarrow \sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \beta_{i}=\overline{0} \\
\Rightarrow a_{i}-b_{i}=0 \forall i=1,2, \ldots \ldots, n \text { since } S^{1} \text { is L.I. } \\
\Rightarrow a_{i}=b_{i} \forall i=1,2, \ldots \ldots, n \\
\therefore \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}=\sum_{i=1}^{n} b_{i} \alpha_{i}=\beta \quad \therefore T \text { is one-one. }
\end{gathered}
\]

T is onto: Let \(\beta \in V \Rightarrow \exists a_{i} \in F \ni \beta=\sum_{i=1}^{n} a_{i} \beta_{i}\)
\[
\text { Write } \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i} \Rightarrow \alpha \in U \text { and }
\]
\[
T(\alpha)=\sum_{i=1}^{n} a_{i} \beta_{i}=\beta \quad \therefore T \text { is onto } \Rightarrow T \text { is a bijection. }
\]

Hence \(T\) is an isomorphism.
\[
\therefore U \cong V
\]
8.6.7. Corollary: If \(T: U \rightarrow V\) is an isomorphism between finite dimensional vector spaces and \(B\) is a basis of \(U\), then \(T(U)\) is a basis of \(V\).
8.6.8 Theorem: If \(\operatorname{dim} U(F)=n\), then \(U \cong F^{n}\)

Proof: Let \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}\right\}\) be a basis of U .
\[
\text { Let } \alpha \in U \Rightarrow \exists a_{i} \in F \ni \begin{aligned}
& \\
& \sum_{i=1}^{n} a_{i} \alpha_{i}
\end{aligned}
\]

Define \(T: U \rightarrow F^{n}\) by \(T(\alpha)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \forall \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i} \in U\).
We show that T is a linear transformation: Let \(\alpha, \beta \in U, a, b \in F\)
\[
\Rightarrow \exists a_{i}, b_{i} \in F \ni \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}, \beta=\sum_{i=1}^{n} b_{i} \alpha_{i}
\]
\[
\begin{aligned}
\therefore T(a \alpha+b \beta) & =T\left(\sum_{i=1}^{n}\left(a a_{i}+b b_{i}\right) \alpha_{1}=\left(a a_{1}+b b_{1}, a a_{1}+b b_{2}, \ldots, a a_{n}+b b_{n}\right)\right. \\
& =a\left(a_{1}, a_{2}, \ldots ., a_{n}\right)+b\left(b_{1}, b_{2}, \ldots, b_{n}\right)=a T(\alpha)+b T(\beta) \forall \alpha, \beta \in U \text { and } \forall a, b \in F .
\end{aligned}
\]
\(\therefore T\) is a linear transformation.
T is one-one : Let \(\alpha, \beta \in U\) and \(T(\alpha)=T(\beta)\), Let \(\alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}, \beta=\sum_{i=1}^{n} b_{i} \alpha_{i}\)
\[
\begin{aligned}
& \therefore T(\alpha)=T(\beta) \Rightarrow\left(a_{1}, a_{2}, \ldots . . ., a_{n}\right)=\left(b_{1}, b_{2}, \ldots . ., b_{n}\right) \Rightarrow a_{i}=b_{i} \forall i=1,2, \ldots n \\
& \therefore \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}=\sum_{i=1}^{n} b_{i} \alpha_{i}=\beta \quad \therefore T \text { is one - one. }
\end{aligned}
\]

T is onto : Let \(\left(a_{1}, a_{2}, \ldots . ., a_{n}\right) \in F^{n} \Rightarrow \alpha=\sum_{i=1}^{n} a_{i} \alpha_{i} \in U\) and \(T(\alpha)=\left(a_{1}, a_{2}, \ldots ., a_{n}\right)\)
\(\therefore T\) is onto : \(T\) is a bijection.
\(\therefore T\) is an somorphism.
Hence \(U \cong F^{n}\).

\subsection*{8.6.9 Fundamental Theorem of Homomorphism:}

Theorem: Let \(U(F)\) and \(V(F)\) be vector spaces and \(T: U \rightarrow V\) be an onto linear transformation with null space N . Then \(\frac{U}{N} \cong V\).

Proof: Since N is the null space of T , we have \(N \subseteq U\) and \(\frac{U}{N}=\{N+\alpha / \alpha \in U\}\) is the quotient space and \((N+\alpha)+(N+\beta)=N+(\alpha+\beta)\) and \(a(N+\alpha)=N+a \alpha \forall N+\alpha, N+\beta \in \frac{U}{N}\) and \(a \in F\)

Define \(\phi: \frac{U}{N} \rightarrow V\)
\[
\phi(N+\alpha)=T(\alpha) \forall N+\alpha \in \frac{U}{N}
\]
\(\phi\) is well-defined : Let \(N+\alpha, N+\alpha^{1} \in \frac{U}{N}\) and \(N+\alpha=N+\alpha^{1}\)
\[
\begin{aligned}
& \Rightarrow \alpha-\alpha^{1} \in N=\operatorname{ker} T \\
& \Rightarrow T\left(\alpha-\alpha^{1}\right)=\overline{0} \Rightarrow T(\alpha)-T\left(\alpha^{1}\right)=\overline{0} \\
& \Rightarrow T(\alpha)=T\left(\alpha^{1}\right) \Rightarrow \phi(N+\alpha)=\phi\left(N+\alpha^{1}\right)
\end{aligned}
\]
\(\therefore \phi\) is well-defined.
\(\phi\) is a linear transformation : Let \(a, b \in F, N+\alpha, N+\beta \in \frac{U}{N}\)
\[
\begin{aligned}
\therefore \phi[a(N+\alpha)+b(N+\beta)] & =\phi[(N+a \alpha)+(N+b \beta)]=\phi(N+a \alpha+b \beta) \\
& =T(a \alpha+b \beta)=a T(\alpha)+b T(\beta) \\
& =a \phi(N+\alpha)+b \phi(N+\beta) \forall N+\alpha, N+\beta \in \frac{U}{N} \text { and } \forall a, b \in F .
\end{aligned}
\]
\(\therefore \phi\) is linear transformation.
\(\phi\) is one - one : Let \(N+\alpha, N+\beta \in \frac{U}{N}\) and \(\phi(N+\alpha)=\phi(N+\beta)\)
\[
\begin{aligned}
& \Rightarrow T(\alpha)=T(\beta) \Rightarrow T(\alpha-\beta)=\overline{0} \\
& \Rightarrow \alpha-\beta \in N \Rightarrow N+\alpha=N+\beta
\end{aligned}
\]
\(\therefore \phi\) is one - one.
\(\phi\) is onto : Let \(\beta \in V\). Since \(T: U \rightarrow V\) is onto, \(\exists \alpha \in U\) э \(T(\alpha)=\beta\)
\(\therefore \beta=T(\alpha)=\phi(N+\alpha)\)
\(\therefore \beta \in V \Rightarrow \exists N+\alpha \in \frac{U}{N} \ni \phi(N+\alpha)=\beta\)
\(\therefore \phi\) is on to.
\(\therefore \phi\) is an isomorphism \(\quad \therefore \frac{U}{N} \cong V\)
8.6.10 Note: Even though \(T\) is not onto, the above theorem is true if \(V\) is replaced by \(T(U)\).
8.6.11 Definition: A linear transformation \(T: U(F) \rightarrow V(F)\) is said to be singular if \(N(T) \neq\{\overline{0}\}\) and it is said to be non-singular if \(N(T)=\{\overline{0}\}\).
8.6.12 Theorem: Let \(U(F), V(F)\) be two vector spaces and \(T: U \rightarrow V\) be a linear transformation. then T is non-singular iff " S is \(L . I \Rightarrow T(S)\) is \(L . I\) ".

Proof: 1 . Suppose T is non-singular and suppose \(S=\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}\right\}\) is L.I
\[
\begin{aligned}
& \text { Let } S^{1}=\left\{T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots . ., T\left(\alpha_{n}\right)\right\} \\
& \text { Let } a_{1}, a_{2}, \ldots \ldots ., a_{n} \in F \text { and } a_{1} T\left(\alpha_{1}\right)+a_{2} T\left(\alpha_{2}\right)+\ldots \ldots+a_{n} T\left(\alpha_{n}\right)=\overline{0} \\
& \Rightarrow T\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots \ldots+a_{n} \alpha_{n}\right)=\overline{0} \\
& \Rightarrow a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}=\overline{0}, \quad \text { since } T \text { is non-singular, } N(T)=\{\overline{0}\} . \\
& \Rightarrow a_{1}=0, a_{2}=0, \ldots . . a_{n}=0 \quad(\because \mathrm{~S} \text { is L.I) } \\
& \therefore S^{1} \text { is } L . I \Rightarrow T(S) \text { is L.I }
\end{aligned}
\]

Conversely suppose S is \(L . I \Rightarrow T(S)\) is \(L . I\).
\[
\text { Let } \begin{aligned}
\alpha \in U \text { and } \alpha \neq \overline{0} & \therefore S=\{\alpha\} \text { is L.I } \\
& \Rightarrow T(S)=\{T(\alpha)\} \text { is L.I } \\
& \Rightarrow T(\alpha) \neq \overline{0}
\end{aligned}
\]
\[
\therefore \alpha \in U, \alpha \neq \overline{0} \Rightarrow T(\alpha) \neq \overline{0}
\]
\(\therefore T\) is non-singular.
8.6.13 Theorem: Let \(U(F), V(F)\) be vector spaces and \(T: U \rightarrow V\) be a linear transformation. Then T is non-singular iff T is one-one.

Proof: Suppose T is non-singular \(\Rightarrow N(T)=\{0\}\)
\[
\text { Suppose } \alpha, \beta \in U \text { and } T(\alpha)=T(\beta) \Rightarrow T(\alpha)-T(\beta)=\overline{0}
\]
\[
\begin{aligned}
& \Rightarrow T(\alpha-\beta)=\overline{0} \\
& \Rightarrow \alpha-\beta=\overline{0} \quad \quad \because N(T)=\{\overline{0}\} \\
& \Rightarrow \alpha=\beta \quad \therefore T \text { is one - one. }
\end{aligned}
\]

Conversely suppose that T is one-one.
\[
\begin{aligned}
& \text { Suppose } T(\alpha)=\overline{0} \Rightarrow T(\alpha)=T(\overline{0}) \\
& \quad \Rightarrow \alpha=\overline{0}, \text { Since } T \text { is one - one. } \\
& \therefore N(T)=\{\overline{0}\} \quad \therefore T \text { is non-singular. }
\end{aligned}
\]

Hence the Theorem.
8.6.14 Note: \(T: U \rightarrow V\) is non-singular if either
\[
N(T)=\{\overline{0}\} \text { (or) } T(\alpha)=\overline{0} \Rightarrow \alpha=\overline{0} \text { (or) } \alpha \neq \overline{0} \Rightarrow T(\alpha) \neq \overline{0} .
\]

\section*{Solved Problems}
8.6.15 Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be a linear transformation defined by
\[
T(x, y, z)=(2 x+y-z, 3 x-2 y+4 z), \forall(x, y, z) \in \mathbb{R}^{3}
\]

Obtain the matrix of T relative to the ordered bases.
\[
B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}, B_{2}=\{(1,3),(1,4)\}
\]

Solution: We have
\(T(1,1,1)=(2,5)\)
\(T(1,1,0)=(3,1)\)
\(T(1,0,0)=(2,3)\)
Let \((a, b)=x(1,3)+y(1,4)=(x+y, 3 x+4 y)\)
\(\therefore x+y=a\)
\[
\begin{equation*}
3 x+4 y=b \tag{1}
\end{equation*}
\]
(1) \(\times 3: \quad 3 x+3 y=3 a\)

Subtracting, we get : \(y=b-3 a\)
\(\therefore x+y-3 a=a \Rightarrow x=4 a-b\)
\(\therefore(a, b) \in \mathbb{R}^{2} \Rightarrow(a, b)=(4 a-b)(1,3)+(b-3 a)(1,4)\)
\(\therefore T(1,1,1)=(2,5)=(5-6)(1,3)+(8-5)(1,4)\)
\[
=(3)(1,3)+(-1)(1,4)
\]
\(T(1,1,0)=(3,1)=11(1,3)+(-8)(1,4)\)
\(T(1,0,0)=(2,3)=5(1,3)+(-3)(1,4)\)
\(\therefore\left[T ; B_{1}, B_{2}\right]=\left[\begin{array}{ccc}3 & 11 & 5 \\ -1 & -8 & -3\end{array}\right]\)
8.6.16 SAQ: Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be the linear transformation defined by \(T(x, y)=(x+y, 2 x-y, 7 y)\). Find \(\left[T ; B_{1}, B_{2}\right]\), where \(B_{1}, B_{2}\) are the standard ordered bases of \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\) respectively.
8.6.17 SAQ: Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be the linear transformation defined by
\[
T(x, y, z)=(3 x+2 y-4 z, x-5 y+3 z)
\]

Find \(\left[T ; B_{1}, B_{2}\right]\), where \(B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}\) and \(B_{2}=\{(1,3),(2,5)\}\) are the ordered bases of \(\mathbb{R}^{3}\) and \(\mathbb{R}^{2}\) respectively.

\section*{Solved Problem:}
8.6.18 If A and B are subspaces of a vector space V over a field F , then show that \(\frac{A+B}{B} \cong \frac{A}{A \cap B}\). Solution: We know that \(\mathrm{A}, \mathrm{B}\) are subspaces \(\Rightarrow A+B, A \cap B\) are subspacs.

Also \(B \subseteq A+B \quad \therefore \frac{A+B}{B}\) is a vector space over F .
Also \(A \cap B\) is a subspace of \(A \Rightarrow \frac{A}{A \cap B}\) is a vector space over F .
Any element of \(\frac{A+B}{B}\) is of the form \(B+\alpha+\beta\), where \(\alpha \in A\) and \(\beta \in B\) i.e. \(B+\beta+\alpha=B+\alpha\), since \(\beta \in B \Rightarrow B+\beta=B\).

So any element of \(\frac{A+B}{B}\) is of the form \(B+\alpha\) for some \(\alpha \in A\).
Define a mapping \(T: A \rightarrow \frac{A+B}{B}\) by \(T(\alpha)=B+\alpha \forall \alpha \in A\)
Clearly T is well defined \(\left(\because \alpha_{1}=\alpha_{2} \Rightarrow B+\alpha_{1}=B+\alpha_{2} \Rightarrow T\left(\alpha_{1}\right)=T\left(\alpha_{2}\right)\right)\)
Let \(\alpha, \beta \in A, a, b \in F\)
\[
\begin{aligned}
\therefore T(a \alpha+b \beta)=B+(a \alpha+b \beta) & =(B+a \alpha)+(B+b \beta) \\
= & a(B+\alpha)+b(B+\beta) \\
= & a T(\alpha)+b T(\beta) \\
& \forall \alpha, \beta \in A \text { and } \forall a, b \in F
\end{aligned}
\]
\(\therefore T\) is a linear transformation.
\[
\text { Any element of } \frac{A+B}{B} \text { is of the form } B+\alpha \text { for some } \alpha \in A
\]
\(\therefore B+\alpha \in \frac{A+B}{B} \Rightarrow \exists \alpha \in A \ni T(\alpha)=B+\alpha\)
\(\therefore T\) is onto.
\(\therefore\) By the Fundamental Theorem of homomorphisms, we have
\[
\frac{A}{\operatorname{ker} T} \cong \frac{A+B}{B}
\]

But \(\operatorname{ker} T=\{\alpha \in A / T(\alpha)=B\}=\{\alpha \in A / B+\alpha=B\}\)
\[
\begin{aligned}
& =\{\alpha \in A / \alpha \in B\}=A \cap B \\
\therefore & \frac{A}{A \cap B} \cong \frac{A+B}{B} \text { (or) } \frac{A+B}{B} \cong \frac{A}{A \cap B}
\end{aligned}
\]

\subsection*{8.7 Answers to SAQ's:}
8.6.16 SAQ: \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, T(x, y)=(x+y, 2 x-y, 7 y)\).
\(B_{1}=\left\{\alpha_{1}=(1,0), \alpha_{2}=(0,1)\right\}\)
\(B_{2}=\left\{\beta_{1}=(1,0,0), \beta_{2}=(0,1,0), \beta_{3}=(0,0,1)\right\}\)
are the standard bases of \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\) respectively.
\(T\left(\alpha_{1}\right)=T(1,0)=(1,2,0)=1(1,0,0)+2(0,1,0)+0(0,0,1)\)
\(T\left(\alpha_{2}\right)=T(0,1)=(1,-1,7)=1(1,0,0)-1(0,1,0)+7(0,0,1)\)
\(\therefore\left[T, B_{1}, B_{2}\right]=\left[\begin{array}{cc}1 & 1 \\ 2 & -1 \\ 0 & 7\end{array}\right]\)
8.6.17 SAQ: \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T(x, y)=(3 x+2 y-4 z, x-5 y+3 z)\).
\(B_{1}=\left\{\alpha_{1}=(1,1,1), \alpha_{2}=(1,1,0), \alpha_{3}=(1,0,0)\right\}\)
\(B_{2}=\left\{\beta_{1}=(1,3), \beta_{2}=(2,5)\right\}\) are ordered bases of \(\mathbb{R}^{3}\) and \(\mathbb{R}^{2}\) respectively.
\(T\left(\alpha_{1}\right)=(1,-1)\)
\(T\left(\alpha_{2}\right)=(5,-4)\)
\(T\left(\alpha_{3}\right)=(3,1)\)
Let \((a, b)=x \beta_{1}+y \beta_{2} \Rightarrow(a, b)=x(1,3)+y(2,5)\)
\(\left.\left.\Rightarrow \begin{array}{c}x+2 y=a \\ 3 x+5 y=b\end{array}\right\} \begin{array}{c}3 x+5 y=b \\ 3 x+6 y=3 a\end{array}\right\} \Rightarrow y=3 a-b\)
\(\therefore x=a-2 y=a-6 a+2 b=2 b-5 a\)
\(\therefore(a, b)=(2 b-5 a) \beta_{1}+(3 a-b) \beta_{2}\)
\(\therefore T\left(\alpha_{1}\right)=(1,-1)=-7 \beta_{1}+4 \beta_{2}\)
\(T\left(\alpha_{2}\right)=(5,-4)=-33 \beta_{1}+19 \beta_{2}\)
\(T\left(\alpha_{3}\right)=(3,1)=-13 \beta_{1}+8 \beta_{2}\)
\(\therefore\left[T, B_{1}, B_{2}\right]=\left[\begin{array}{ccc}-7 & -33 & -13 \\ 4 & 19 & 8\end{array}\right]\)

\subsection*{8.8 Summary:}

In this chapter, matrix of a linear transformation from a FDVS to a FDVS relative to ordered bases is discussed. The concept of invertibility of isomorphisms of vector spaces is discussed and some problems are discussed.

\subsection*{8.9 Technical Terms:}

Matrix representation of a linear transformation, isomorphism, invertibility.

\subsection*{8.10 Exercises:}
8.10.1 Let \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be defined by \(T(x, y)=(4 x-2 y, 2 x+y)\)

Find \([T ; B]\), where \(B=\{(1,1),(-1,0)\}\)
8.10.2 Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) be defined by \(T(x, y, z)=(2 y+z, x-4 y, 3 x)\)

Find \([T: B]\), where \(B=\{(1,0,0),(0,1,0),(0,0,1)\}\)
8.10.3 If the matrix of \(T\) on \(\mathbb{R}^{2}\) relative to the standard ordered basis is \(\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]\), find the matrix of T relative to the basis \(\{(1,1),(1,-1)\}\).
8.10.4 Find \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}\) as a linear transformation whose range is spanned by (1, \(-1,2,3\) ) and \((2,3,-1,0)\).
8.10.5 Let V be a vector space of \(2 \times 2\) matrices over \(\mathbb{R}\).

Let P be the fixed matrix in \(\mathrm{V}, P=\left[\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right]\) and \(T: V \rightarrow V\) be defined by \(T(A)=P A, \forall A \in V\). Find nullity T .

\subsection*{8.11 Answers to exercises:}
8.11.1 \(\quad\left[\begin{array}{cc}3 & -2 \\ 1 & 2\end{array}\right]\)
8.11.2 \(\left[\begin{array}{ccc}0 & 2 & 1 \\ 1 & -4 & 0 \\ 3 & 0 & 0\end{array}\right]\)
8.11.3 \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right]\)
8.11.4 \(T(x, y, z)=(x+2 y,-x+3 y, 2 x-y, 3 x) \nvdash(x, y, z) \in \mathbb{R}^{3}\)
8.11.5 2

\subsection*{8.12 Model Examination Questions:}
8.12.1 Explain the concept of a matrix of a linear transformation.
8.12.2 Define the invertibility of a linear operator.
8.12.3 State and prove the fundamental theorem of homomorphisms of vector spaces.
8.12.4 Find the matrix of the linear transformation
\(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) defined by \(T(x, y, z)=(x+y, 2 z-x) \nLeftarrow(x, y, z) \in \mathbb{R}^{3}\)
relative to the ordered bases \(B_{1}=\{(1,0,-1),(1,1,1),(1,0,0)\}\) and \(B_{2}=\{(0,1),(1,0)\}\)

\subsection*{8.13 Reference Books:}
1. Stephen H. Fried berg and others : Linear Algebra, Prentice Hall India Pvt. Ltd., New Delhi.
2. Hoffman and Kunz; Linear Algebra, 2nd Edition, Prentice Hall; New Jersey - 197.

\section*{LESSON - 9}

\section*{MATRICES AND DETERMINANTS}

\subsection*{9.1 Objective of the Lesson:}

In this chapter, we define elementary operations that are used to obtain simple computational methods for determining the rank of a linear transformation and the solution of a system of linear equations. There are two types of elementary matrix operations - row operations and column operations.

\subsection*{9.2. Structure of the Lesson:}

This lesson has the following components.

\subsection*{9.3 Introduction}
9.4 Elementary matrix operations and elementary matrices.
9.5 Determinants
9.6 Answers to SAQ's
9.7 Summary
9.8 Technical terms
9.9 Exercises
9.10 Answers to exercises
9.11 Model Examination Questions.
9.12 Reference Books

\subsection*{9.3 Introduction:}

In this chapter, we discuss the elementary operations and elementary matrices. We also discuss determinants.

\subsection*{9.4 Elementary Matrix Operations and Elementary Matrices:}
9.4.1 Definition: Let A be an \(\mathrm{m} \times \mathrm{n}\) matrix. Any one of the following three operations on the rows (Columns) of \(A\) is called an elementary row (Column) operation:
1. \(R_{i j}\); Interchange of \(\mathrm{i}^{\text {it }}\) and \(\mathrm{j}^{\text {th }}\) rows.
2. \(R_{i}(k)\) : Multiplying every element of \(\mathrm{i}^{\text {th }}\) row by k .
3. \(R_{i j}(k)\) : Multiplying every element of \(\mathrm{j}^{\text {th }}\) row by k and adding to the corresponding element of \(\mathrm{i}^{\text {th }}\) row.

Similarly we have column operations \(C_{i j}, C_{i}(k), C_{i j}(k)\).

\subsection*{9.4.2 Elementary Matrix:}

Definition: A Matrix obtained from a unit matrix \(I_{n}\) by subjecting the unit matrix to any one of the elementary transformations is called an elementary matrix.
\(E_{i j} \quad\) : Elementary matrix obtained by interchanging \(\mathrm{i}^{\text {ith }}\) and jth rows (column) in \(I_{n}\).
\(E_{i}(k)\) : Elementary matrix obtained by multiplying every element of \(\mathrm{i}^{\text {th }}\) row (column) with k in \(I_{n}\).
\(E_{i j}(k)\) : Elementary matrix obtained by multiplying every element of jth row with k and then adding them to the corresponding elements of \(\mathrm{i}^{\text {th }}\) row in \(I_{n}\).

Similarly \(E_{i j}^{1}, E_{i}^{1}(k), E_{i j}^{1}(k)\) denote the elementary matrices obtained by applying the corresponding elementary column operations on I.
9.4.3 Note: 1. \(\left|E_{i j}\right|=-1=\left|E_{i j}^{1}\right|\)
2. \(\left|E_{i}(k)\right|=k=\left|E_{i}^{1}(k)\right|, k \neq 0\)
3. \(\left|E_{i j}^{1}(k)\right|=1=\left|E_{i j}^{1}(k)\right|\)
4. Every elmentary matrix is non-singular and hence it is invertible.
9.4.4. Theorem: Every elementary row (column) transformation of a matrix can be obtained by pre-multiplication (post multiplication) with the corresponding elementary matrix.

Proof: First we prove that every elementary row (column) operation of a product \(C=A B\) can be effected by subjecting the prefactor \(A\) (Post factor \(B\) ) to the same row (column) operation.

Let \(A\) be \(m \times n\) and \(B\) be \(n \times p\) matrices. The \(A B\) is of order \(m \times p\).
We can write \(A=\left[\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right]_{m \times 1}, B=\left[\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{p}\end{array}\right]_{1 \times p}\),
where \(R_{1}, R_{2}, \ldots, R_{m}\) are rows (of order 1 xn ) and \(C_{1}, C_{2}, \ldots, C_{p}\) are columns of B (of order \(\mathrm{n} \times 1\) )
\[
\therefore A B=\left[\begin{array}{ccc}
R_{1} C_{1} & R_{1} C_{2} \ldots \ldots & R_{1} C_{p} \\
R_{2} C_{1} & R_{2} C_{2} \ldots \ldots & R_{2} C_{p} \\
\ldots & \ldots & \ldots \\
R_{m} C_{1} & R_{m} C_{2} \ldots . . & R_{m} C_{p}
\end{array}\right]
\]

This shows that if the rows \(R_{1}, R_{2}, \ldots \ldots . R_{m}\) of A are subjected to an elementary row operation, then the rows of \(A B\) are subjected to the same elementay row operation.

Similarly, if the columns of B i.e. \(C_{1}, C_{2}, \ldots \ldots . C_{p}\) are subjected to an elementary column operation, then the columns of AB are subjected to the same elementary column operation.

Now to prove the theorem let A be an \(m \times n\) matrix and \(I_{m}\) be a unit matrix so that \(A=I_{m} A\). Let \(R\) be any elementary row operation applied on \(A\).

Then \(R A=R\left(I_{m} A\right)=\left(R I_{m}\right) A=E A\), where E is the elementary matrix corresponding to the row operation R.

Again let \(I_{n}\) be unit matrix so that \(A=A I_{n}\).
Let \(C\) be any elementary column operation applied on \(A\).
Then \(C A=C\left(A I_{n}\right)=A\left(C I_{n}\right)=A E\), where E is the elementary matrix corresponding to the column operation C .
9.4.5 Theorem: \(E_{i j}^{-1}=E_{i j},\left[E_{i}(k)\right]^{-1}=E_{i}\left(\frac{1}{k}\right), k \neq 0,\left[E_{i j}(k)\right]^{-1}=E_{i j}(-k)\) if \(c \neq 0\).

Proof: a) \(E_{i j}\) is the E-matrix (elementary marix) obtained from \(I_{n}\) by applying \(R_{i j}\). If we again apply \(R_{i j}\) on \(E_{i j}\), we get \(I\)
\[
\therefore E_{i j} E_{i j}=I \quad \therefore E_{i j} \text { is invertible and }\left(E_{i j}\right)^{-1}=E_{i j} \text {. }
\]
b) \(E_{i}(k)\) is the E - matrix obtained from \(I\) by applying \(R_{i}(k)\). If we again apply \(R_{i}\left(\frac{1}{k}\right)\) on \(E_{i}\), we get \(I\).
\(\therefore E_{i}\left(\frac{1}{k}\right) E_{i}(k)=I \Rightarrow E_{i}(k)\) is invertible and \(\left[E_{i j}(k)\right]^{-1}=E_{i}\left(\frac{1}{k}\right)\)
c) \(E_{i j}(k)\) is the E - matrix obtained from \(I\) by applying \(R_{i j}(k)\). If we again apply \(R_{i j}(-k)\), we get \(I\)
\[
\therefore E_{i j}(-k) E_{i j}(k)=I \Rightarrow E_{i j}(k) \text { is invertible and }\left[E_{i j}(k)\right]^{-1}=E_{i j}(-k)
\]

Similarly, we can show that
\[
\begin{aligned}
& \left(E_{i j}^{1}\right)^{-1}=E_{i j}^{1},\left[E_{i}^{1}(k)\right]^{-1}=E_{i}^{1}\left(\frac{1}{k}\right), k \neq 0 \\
& {\left[E_{i j}^{1}(k)\right]^{-1}=E_{i j}^{1}(-k)}
\end{aligned}
\]

We note that every E - matrix is nonsingular and the inverse of an E - matrix is also nonsingular.
9.4.6 Definition: A matrix \(A\) is said to be equivalent to \(B\), if \(B\) is obtained from \(A\) by a finite number of E - operations.

We write \(A \sim B\).
In the set M of all \(\mathrm{m} \times \mathrm{n}\) matrices, \(\sim\) is an equivalence relation.
Since a) \(A \sim A \Rightarrow \sim\) is reflexive
b) \(A \sim B \Rightarrow B \sim A\) so that \(\sim\) is symmetric.
c) \(A \sim B, B \sim C \Rightarrow A \sim C\) so that \(\sim\) is transitive.
9.4.7 Definition: A matrix A is said to be row (column) equivalent to B , denoted by \(A \stackrel{R}{\sim} B\binom{C}{\sim}\), if it is possible to obtain B from A by a finite number of \(E\) - row (column) operations.

\section*{Solved Problems:}
9.4.8 Compute the matrixes \(E_{23}, E_{34}(-1), E_{2}(-2), E_{12}\) for \(I_{4}\).

Solution \(E_{23}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] i,\left(\because I_{4}{ }^{R_{23}} E_{23}\right)\)
\[
\begin{aligned}
& I_{4}^{R_{34}(-1)} \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]=E_{34}(-1) \\
& I_{4} \stackrel{R_{2}(-2)}{\sim}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=E_{2}(-2) \\
& I_{4} \sim\left[\begin{array}{llll}
R_{12} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=E_{12}
\end{aligned}
\]
9.4.9 Show that \(\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3\end{array}\right] \sim I_{3}\)
\[
\begin{aligned}
& \text { Solution: Let } A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3
\end{array}\right] \underset{R_{21}(-2)}{R_{21}(1)}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5
\end{array}\right] \\
& \underset{\substack{R_{12}(-1 / 2) \\
R_{2}(-1 / 3)}}{R_{2}(-1)}\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 1 & 3 / 2 \\
2 & 1 & 5 / 3
\end{array}\right] \stackrel{R_{32}(-1)}{\sim}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 / 2 \\
0 & 0 & +1 / 6
\end{array}\right] \\
& \stackrel{R_{3}(6)}{\sim}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 / 2 \\
0 & 0 & 1
\end{array}\right] \underset{R_{23}(-3 / 2)}{R_{13}(2)}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3}
\end{aligned}
\]
\[
\therefore A \sim I_{3}
\]
9.4.10 Express \(\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 1\end{array}\right]\) as a product of \(E\) - matrices.

Solution: Let \(A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 1\end{array}\right] \underset{R_{31}(-1)}{\sim}[-1)\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -2 & -2 \\ 0 & -3 & -2\end{array}\right] \underset{R_{2}\left(-\frac{1}{3}\right)}{\sim}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & \frac{2}{3}\end{array}\right] \underset{R_{22}(-1)}{R_{12}(-2)}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -\frac{1}{3}\end{array}\right] \stackrel{R_{3}(-3)}{\sim}\)
\[
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \underset{32}{C_{31}(-1)}\left[\begin{array}{lll}
C_{31}(-1) \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3}} \\
& \therefore A \underset{\substack{R_{3}\left(-\frac{1}{3}\right) \\
R_{12}(-2), R_{32}(-1), R_{3}(-3) \\
C_{31}(-1), C_{32}(-1)}}{\sim} \quad I_{3}
\end{aligned}
\]
\(\therefore I_{3}=E_{3}(-3) E_{32}(-1) E_{12}(-2) E_{3}(-1 / 3) E_{2}\left(-\frac{1}{2}\right) E_{31}(-1) E_{21}(-1) A E_{32}^{1}(-1) E_{31}^{1}(-1)\)
\(A=\left[E_{21}(-1)\right]^{-1}\left[E_{31}(-1)\right]^{-1}\left[E_{2}(-1 / 2)\right]^{-1}\left[E_{3}\left(-\frac{1}{3}\right)\right]^{-1}\left[E_{12}(-2)\right]^{-1}\left[E_{32}(-1)\right]^{-1}\left[E_{3}(-3)\right]^{1} I_{3}\left[E_{32}^{1}(-1)\right]^{-1}\left[E_{31}^{1}(-1)\right]^{-1}\)
\(=E_{21}(1) E_{31}(1) E_{2}(2) E_{3}(3) E_{12}(2) E_{32}(1) E_{3}\left(-\frac{1}{3}\right) E_{32}^{1}(1) E_{31}^{1}(1)\)
9.4.11 Express \(A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]\) as a product of E - matrices.

Solution: \(A=\underset{R_{31}(-1)}{R_{21}(-1)}\left[\begin{array}{lll}1 & 3 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \underset{C_{21}(-3)}{\sim}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}\)
\[
I_{3}=E_{31}(-1) E_{21}(-1) A E_{21}^{1}(-3) E_{31}^{1}(-3)
\]
\(\Rightarrow A=\left[E_{21}(-1)\right]^{-1}\left[E_{31}(-1)\right]_{I_{3}}^{-1}\left[E_{31}^{1}(-3)\right]^{-1}\left[E_{21}^{1}(-3)\right]^{-1}\)
\(\Rightarrow A=E_{21}(1) E_{31}(1) E_{31}(3) E_{21}(3)\)
\(\therefore A\) is a product of the E - matrices.

\subsection*{9.5 Determinants:}

Determinants of matrices of order \(2 \times 2,3 \times 3\) were studied at the Intermediate Level. Here we attempt to define the determinant of a square matrix of order \(\mathrm{n} \times \mathrm{n}\) and discuss the properties although we deal with determinants of order \(2 \times 2,3 \times 3\).
9.5.1 Definition: Let \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) be a \(2 \times 2\) matrix over F .

We define the determinant of \(A\), denoted by \(\operatorname{det} A\) or \(|A|\) as the scalar \(a d-b c\).
If \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\), we define adjoint of A as adj \(A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\).
9.5.2 Note: We observe that \(\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B\), since
\[
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right] \Rightarrow A+B=\left[\begin{array}{ll}
4 & 4 \\
9 & 8
\end{array}\right]
\]
and \(\operatorname{det} A=-2, \operatorname{det} B=0, \operatorname{det}(A+B)=-4\)
9.5.3 Note: The function det: \(F^{2 \times 2} \rightarrow F\) is not a linear transformation.
9.5.4 Theorem: The function det: \(F^{2 \times 2} \rightarrow F\) is a linear function of each row of a \(2 \times 2\) matrix A when the second row is fixed i.e. if \(u, v, w \in F^{2}\) and \(k \in F\), then
\[
\operatorname{det}\left[\begin{array}{c}
u+k v \\
w
\end{array}\right]=\operatorname{det}\left[\begin{array}{l}
u \\
w
\end{array}\right]+k \operatorname{det}\left[\begin{array}{l}
v \\
w
\end{array}\right]
\]

Proof: Let \(u=\left(a_{1}, b_{1}\right), v=\left(a_{2}, b_{2}\right), w=\left(a_{3}, b_{3}\right) \in F^{2}\) and \(k \in F\), then
\[
\operatorname{det}\left[\begin{array}{l}
u \\
w
\end{array}\right]+k \operatorname{det}\left[\begin{array}{l}
v \\
w
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right]+k \operatorname{det}\left[\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right]
\]
\(=\left(a_{1} b_{3}-a_{3} b_{1}\right)+k\left(a_{2} b_{3}-a_{3} b_{2}\right)=\left(a_{1}+k a_{2}\right) b_{3}-\left(b_{1}+k b_{2}\right) a_{3}\)
\(=\operatorname{det}\left[\begin{array}{cc}a_{1}+k a_{2} & b_{1}+k b_{2} \\ a_{3} & b_{3}\end{array}\right]=\operatorname{det}\left[\begin{array}{c}u+k v \\ w\end{array}\right]\)
Similarly we can show that \(\operatorname{det}\left[\begin{array}{l}w \\ u\end{array}\right]+k \operatorname{det}\left[\begin{array}{l}w \\ v\end{array}\right]=\operatorname{det}\left[\begin{array}{c}w \\ u+k v\end{array}\right]\)
9.5.5. Theorem: Let \(A \in F^{2 \times 2}\). Then \(\operatorname{det} A \neq 0 \Leftrightarrow A\) is invertible.
(Recall that A is invertible iff \(\exists B \ni A B=B A=I\) )
\[
\text { If } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { then } A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
\]

Proof: Suppose \(\operatorname{det} A \neq 0\). Let \(C=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]\)
\[
\begin{aligned}
\therefore A C & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \frac{1}{\operatorname{det} A} \cdot\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] \\
& =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{11} a_{22}-a_{12} a_{21} & -a_{11} a_{12}+a_{11} a_{22} \\
a_{21} a_{22}-a_{21} a_{22} & -a_{21} a_{12}+a_{22} a_{11}
\end{array}\right] \\
& =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
\operatorname{det} A & 0 \\
0 & \operatorname{det} A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
\]

Similarly we can show that \(C A=I\). So A is invertible and \(A^{-1}=C\).
Conversely suppose \(A\) is invertible. So rank of \(A\) is \(=2\). (For definition of rank, see lesson 10).
(Since rank of an invertible \(\mathrm{n} \times \mathrm{n}\) matrix is n )
\(\therefore a_{11} \neq 0\) or \(a_{21} \neq 0\). Suppose \(a_{11} \neq 0\). Multiply \(R_{1}\) with \(\frac{-a_{21}}{a_{11}}\) and add to \(R_{2}\) so that we get :
\[
\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}-\frac{a_{12} a_{21}}{a_{11}}
\end{array}\right]
\]

The rank of this is \(=2\) so that \(a_{22}-\frac{a_{12} a_{21}}{a_{11}} \neq 0\).
\(\Rightarrow a_{11} a_{22}-a_{12} a_{21} \neq 0 \Rightarrow \operatorname{det} A \neq 0\)
Similarly we can prove that \(\operatorname{det} A \neq 0\) when \(a_{21} \neq 0\).
So in any case, we have det \(A \neq 0\). Hence the Theorem.
Now we define determinants of order n .
9.5.6 Definition: Let \(A \in F^{n \times n}\)

If \(n=1\), then \(A=\left[a_{i j}\right]\), we define \(\operatorname{det} A=a_{11}\).
If \(n \geq 2\), we define \(\operatorname{det} \mathrm{A}\) recursively as follows:
\[
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j}{ }_{a_{i j}} \cdot \operatorname{det} \bar{A}_{i j} .
\]
(This is called the determinant of A and is denoted by \(|A|\) ).
Here \(\bar{A}_{i j}\) is the \((n-1) \times(n-1)\) matrix obtained from A by deleting \(\mathrm{i}^{\text {th }}\) row and \(\mathrm{j}^{\text {th }}\) column of A If we write \(c_{i j}=(-1)^{1+j} \operatorname{det} \bar{A}_{i j}\), then
\(\operatorname{det} A=a_{11} c_{11}+a_{12} c_{12}+\ldots+a_{1 n} c_{1 n}\)
\(c_{i j}\) is called the cofactor of \(a_{i j}\).
9.5.7 Note: \(\operatorname{det} A=\) Sum of the products of each entry (in \(R_{1}\) of \(A\) ) and the corresponding cofactor.
9.5.8 Example: Find det A using cofactor expansion along the first row of the matrix
\[
A=\left[\begin{array}{ccc}
1 & 3 & -3 \\
-3 & -5 & 2 \\
-4 & 4 & -6
\end{array}\right]
\]

Solution: \(\operatorname{det} A=(-1)^{1+1} A_{11}\left|\bar{A}_{11}\right|+(-1)^{1+2} A_{12}\left|\bar{A}_{12}\right|+(-1)^{1+3} A_{13}\left|\bar{A}_{13}\right|\)
\[
\begin{aligned}
& =(-1)^{2} \cdot 1(30-8)+(-1)^{3} \cdot 3(18+8)+(-1)^{4}(-3)(-12-20) \\
& =22-78+96=40
\end{aligned}
\]
9.5.9 Theorem: \(\left|I_{n}\right|=1\)

Proof: (by induction on n )
If \(n=1\), then \(I_{1}=[1] \Rightarrow\left|I_{1}\right|=1\). So the theorem is true when \(n=1\).
Assume the truth of the theorem for \(n-1\).
Expanding \(I_{n}\) along the first row, we get \(\left|I_{n}\right|=1\) det \(I_{n-1}+0+0 \ldots+0=1(1)=1\). The theorem is true for n . So by Mathematical induction, the Theorem is true for all positive integers n .

Hence the theorem.
The determinant of a square matrix can be evaluated by cofactor expansion along any row i.e. if \(A \in F^{n \times n}\), then \(\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} \bar{A}_{i j}\) where \(\bar{A}_{i j}\) is the \((n-1) \times(n-1)\) matrix obtained by deleting \(R_{i}\) and \(C_{j}\) from A.
9.5.10 Theorem: If \(A \in F^{n \times n}\) and B is a matrix obtained from A by interchanging two rows of A , then \(\operatorname{det} B=-\operatorname{det} A\).

Proof: Let \(A \in F^{n \times n}\) and \(a_{1}, a_{2}, \ldots, a_{n}\) be the rows of A so that \(A=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]\)
Let \(B\) be the matrix obtained from \(A\) by interchanging \(r^{\text {th }}\) row and \(s^{\text {th }}\) row, \(r<s\).
\(\therefore B=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{s} \\ \vdots \\ a_{r} \\ \vdots \\ a_{n}\end{array}\right]\). Now consider the matrix whose \(\mathrm{r}^{\text {th }}\) and \(\mathrm{s}^{\text {th }}\) rows are replaced by \(a_{r}+a_{s}\).
\(\therefore\) we have det \(\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{r}+a_{s} \\ \vdots \\ a_{r}+a_{s} \\ \vdots \\ a_{n}\end{array}\right]=\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{r} \\ \vdots \\ a_{r}+a_{s} \\ \vdots \\ a_{n}\end{array}\right]+\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{s} \\ \vdots \\ a_{r}+a_{s} \\ \vdots \\ a_{n}\end{array}\right]\)
\(\Rightarrow 0=\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{r} \\ \vdots \\ a_{r} \\ \vdots \\ a_{n}\end{array}\right]+\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{r} \\ \vdots \\ a_{s} \\ \vdots \\ a_{n}\end{array}\right]+\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{s} \\ \vdots \\ a_{r} \\ \vdots \\ a_{n}\end{array}\right]+\operatorname{det}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{s} \\ \vdots \\ a_{s} \\ \vdots \\ a_{n}\end{array}\right]=0+\operatorname{det} A+\operatorname{det} B+0\)
\(\Rightarrow \operatorname{det} B=-\operatorname{det} A\)
9.5.11 Theorem: If \(A, B \in F^{n \times n}\), then \(\operatorname{det} A B=\operatorname{det} A \operatorname{det} B\).

Proof: First we prove the theorem when \(A\) is an elementary matrix. If \(A\) is a matrix obtained from I by interchanging two rows of I , then \(\operatorname{det} A=-1\).

By Theorem (9.4.4), AB is a matrix obtained by interchanging two rows of B . So, by Theorem (9.5.10), \(\operatorname{det} A B=-\operatorname{det} B=\operatorname{det} A \operatorname{det} B\)

Similarly we can prove the theorem, when \(A\) is an elementary matrix of other types.
If A is an \(n \times n\) matrix with rank \(<\mathrm{n}\), then \(\operatorname{det} A=0\).
Since rank \(A B \leq\) rank \(A \leq n\), we have \(\operatorname{det} A B=0\)
\(\therefore \operatorname{det} A B=0=\operatorname{det} A \cdot \operatorname{det} B\)

If rank \(A=n\), then A is invertible and hence it is a product of elementary matrices.
Let \(A=E_{m} E_{m-1} \ldots E_{2} E_{1}\)
\(\operatorname{det} A B=\operatorname{det}\left(E_{m} E_{m-1} \ldots E_{2} E_{1} B\right)\)
\(=\operatorname{det} E_{m} \cdot \operatorname{det}\left(E_{m-1} \ldots E_{2} E_{1} B\right)\)
\(=\operatorname{det} E_{m} \cdot \operatorname{det}\left(E_{m-1} \ldots E_{2} E_{1} B\right)\)
= ..........................................
\(=\operatorname{det} E_{m} \operatorname{det} E_{m-1} \ldots \ldots \operatorname{det} E_{2} \operatorname{det} E_{1} \cdot \operatorname{det} B\)
\(=\operatorname{det}\left(E_{m} E_{m-1} \ldots E_{2} E_{1}\right) \operatorname{det} B\)
\(=\operatorname{det} A \operatorname{det} B\)
9.5.12 Theorem: A matrix \(A \in F^{n \times n}\) is invertible iff \(\operatorname{det} A \neq 0\).

Further A is invertible \(\Rightarrow \operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}\)
Proof: Suppose A is not invertible \(\Rightarrow\) Rank of A is \(<n \Rightarrow \operatorname{det} A=0\)
Suppose A is invertible \(\Rightarrow A^{-1}\) exists and \(A A^{-1}=I\)
\(\therefore 1=\operatorname{det} I=\operatorname{det} A A^{-1}=\operatorname{det} A \operatorname{det} A^{-1}\)
\(\therefore \operatorname{det} A \cdot \operatorname{det} A^{-1}=1 \therefore \operatorname{det} A \neq 0\) and \(\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}\)
9.5.13 Theorem: Let \(A \in F^{n \times n}\) and let B be a matrix obtained by adding a multiple of one row to another row of A. Then \(\operatorname{det} B=\operatorname{det} A\).
Proof: Suppose \(B\) is the \(n \times n\) matrix obtained from \(A\) by adding \(k\) times \(r^{\text {th }}\) row to \(s^{\text {th }}\) row where \(r \neq s\).

Let \(A=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right], B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]\), then \(b_{i}=a_{i}\) for \(i \neq s\) and \(b_{s}=a_{s}+k a_{r}\)

Let C be the matrix obtained from A by replacing \(a_{s}\) with \(a_{r}\).
\(\therefore\) By theorem (9.5.4), we get \(\operatorname{det} B=\operatorname{det} A+k \operatorname{det} C=\operatorname{det} A\), since \(\operatorname{det} C=0\).
9.5.14 Theorem: If \(A \in F^{n \times n}\) and \(\rho(A)<n\), then \(\operatorname{det} A=0\)

Proof: If \(\rho(A)<n\), then the rows \(a_{1}, a_{2}, \ldots, a_{n}\) of A are linearly dependent. So \(\exists a_{r} \ni a_{r}=a l . c\) of other rows.
\(\therefore \exists c_{1}, c_{2}, \ldots c_{r-1}, \ldots, c_{n} \ni a_{r}=c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{r-1} a_{r-1}+c_{r+1} a_{r+1}+\ldots+c_{n} a_{n}\)
Let B be the matrix obtained from A by adding \(-c_{i}\) times row i to row r for each \(i \neq r\)
The \(\mathrm{r}^{\text {th }}\) row of B consists of zeros only and so \(\operatorname{det} B=0\).
But by theorem (9.5.14) \(\operatorname{det} B=\operatorname{det} A\). Hence \(\operatorname{det} A=0\).
9.5.15 Note: If \(A \in F^{n \times n}\), then \(\operatorname{det} k A=k^{n} \operatorname{det} A, \operatorname{det}(-A)=(-1)^{n} \operatorname{det} A\) and \(\operatorname{det} A=0\), if two rows are identical.
9.5.16 Theorem: For any \(A \in F^{n \times n}, \operatorname{det} A^{T}=\operatorname{det} A\)

Proof: If A is not invertible, then \(\rho(A)<n\) and \(\operatorname{det} A=0\)
But we know that \(\rho(A)=\rho\left(A^{T}\right) \Rightarrow \rho\left(A^{T}\right)<n\)
\(\therefore A^{T}\) is not invertible.
\(\therefore \operatorname{det} A^{T}=0\)
\[
\therefore \operatorname{det} A^{T}=\operatorname{det} A=0
\]

Suppose A is invertible. Then A is a product of elementary matrices.
Suppose \(A=E_{m} E_{m-1 . .} E_{2} E_{1}\)
\(\therefore \operatorname{det} A^{T}=\operatorname{det}\left(E_{m} E_{m-1 \ldots .} E_{2} E_{1}\right)^{T}=\operatorname{det}\left(E_{1}^{T} E_{2}^{T} \ldots E_{m}^{T}\right)\)
\(=\operatorname{det}\left(E_{1}^{T}\right) \operatorname{det}\left(E_{2}^{T}\right) \ldots \operatorname{det}\left(E_{m}^{T}\right)\)
\(=\operatorname{det} E_{1} \operatorname{det} E_{2} \ldots \operatorname{det} E_{m}\)
\(=\left(\operatorname{det} E_{m}\right)\left(\operatorname{det} E_{m-1}\right) \ldots\left(\operatorname{det} E_{2}\right)\left(\operatorname{det} E_{1}\right)\)
\[
\begin{aligned}
& =\operatorname{det}\left(E_{m} E_{m-1} \ldots E_{1}\right) \\
& \quad=\operatorname{det} A \\
& \quad \text { Hence the Theorem. }
\end{aligned}
\]

\section*{Solved Problem:}
9.5.17 Evaluate the determinant of the matrix \(A=\left[\begin{array}{cccc}2 & 0 & 0 & 1 \\ 0 & 1 & 3 & -3 \\ -2 & -3 & -5 & 2 \\ 4 & -4 & 4 & -6\end{array}\right]\)

Solution:
\[
\begin{aligned}
& A \underset{R_{41}(-2)}{R_{31}(1)}\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 1 & 3 & -3 \\
0 & -3 & -5 & 3 \\
0 & -4 & 4 & -8
\end{array}\right] \underset{R_{42}(4)}{R_{32}(3)}\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 1 & 3 & -3 \\
0 & 0 & +4 & -6 \\
0 & 0 & 16 & -20
\end{array}\right] \\
& \therefore \stackrel{R_{43}(-4)}{\sim}\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 1 & 3 & -3 \\
0 & 0 & 4 & -6 \\
0 & 0 & 0 & 4
\end{array}\right]=B(\text { say })
\end{aligned}
\]
\(B\) is an upper triangular matrix.
\(\therefore \operatorname{det} A=\) Product of diagonal elements \(=2(1)(4)(4)=32\)
9.5.18 SAQ: If \(w\) is a complex cube root of unity, then show that \(\left|\begin{array}{ccc}1 & w & w^{2} \\ w & w^{2} & 1 \\ w^{2} & 1 & w\end{array}\right|=0\)
9.5.19 SAQ: Show that \(\left|\begin{array}{llll}1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2}\end{array}\right|=0\)
9.5.20 SAQ: Show that \(\left|\begin{array}{lll}b-c & c-a & a-b \\ c-a & a-b & b-c \\ a-b & b-c & c-a\end{array}\right|=0\)

\section*{Solved Problems:}
9.5.21 Show that \(\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]\)

Solution: \(L H S=a b c\left|\begin{array}{ccc}1+\frac{1}{a} & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}\end{array}\right|\)
\[
\begin{aligned}
& \underset{R_{13}(1)}{R_{12}(1)} a b c\left|\begin{array}{ccc}
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\
\frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}
\end{array}\right| \\
& =a b c\left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]\left|\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{b} & 1+\frac{1}{b} & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & 1+\frac{1}{c}
\end{array}\right| \begin{array}{c}
c_{21}(-1) \\
c_{31}(-1)
\end{array}=a b c\left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]\left[\left.\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{b} & 1 & 0 \\
\frac{1}{c} & 0 & 1
\end{array} \right\rvert\,\right.
\end{aligned}
\]
\[
\underset{C_{31}(-1)}{C_{21}(-1)}\left|\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{b} & 1 & 0 \\
\frac{1}{c} & 0 & 1
\end{array}\right| \Rightarrow \text { Expanding with } \mathrm{R}_{1} \text {, we get }
\]
\(\therefore\) det of given matrix is \(=a b c\left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right] .1\)
9.5.22 Show that \(\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\)

Solution: Applying \(C_{12}(1)\) and \(C_{13}(1)\), we get
\[
\begin{aligned}
& L H S=\left|\begin{array}{lll}
2(a+b+c) & c+a & a+b \\
2(a+b+c) & a+b & b+c \\
2(a+b+c) & b+c & c+a
\end{array}\right| \\
& =2\left|\begin{array}{lll}
a+b+c & c+a & a+b \\
a+b+c & a+b & b+c \\
a+b+c & b+c & c+a
\end{array}\right| \\
& \underset{c_{21}(-1)}{C_{21}(-1)} 2\left|\begin{array}{lll}
a+b+c & -b & -c \\
a+b+c & -c & -a \\
a+b+c & -a & -b
\end{array}\right| \\
& \stackrel{c_{12}(1)}{\sim} 2\left|\begin{array}{lll}
a+c & -b & -c \\
a+b & -c & -a \\
b+c & -a & -b
\end{array}\right|
\end{aligned}
\]
\[
\begin{aligned}
& c_{1_{3}(1)}^{\sim} 2\left|\begin{array}{lll}
a & -b & -c \\
b & -c & -a \\
c & -a & -b
\end{array}\right| \\
& \underset{C_{2}(-1)}{C_{3}(-1)} 2\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
\end{aligned}
\]

\subsection*{9.6 Answers to SAQ's:}
9.5.18 SAQ: Applying \(C_{12}(1)\), we get \(\left|\begin{array}{ccc}1+w & w & w^{2} \\ w+w^{2} & w^{2} & 1 \\ w^{2}+1 & 1 & w\end{array}\right|\)
\[
\stackrel{c_{13}(1)}{\sim}\left|\begin{array}{ccc}
1+w+w^{2} & w & w^{2} \\
1+w+w^{2} & w^{2} & 1 \\
1+w+w^{2} & 1 & w
\end{array}\right|=\left|\begin{array}{ccc}
0 & w & w^{2} \\
0 & w^{2} & 1 \\
0 & 1 & w
\end{array}\right|=0
\]
since \(1+w+w^{2}=0, w\) being cube root of unity.
9.5.19 SAQ: Applying \(C_{32}(-1), C_{41}(-1)\), we get
\[
\left|\begin{array}{cccc}
1^{2} & 2^{2} & 5.1 & 5.3 \\
2^{2} & 3^{2} & 7.1 & 7.3 \\
3^{2} & 4^{2} & 9.1 & 9.3 \\
4^{2} & 5^{2} & 11.1 & 11.3
\end{array}\right| \sim 3\left|\begin{array}{cccc}
1^{2} & 2^{2} & 5 & 5 \\
2^{2} & 3^{2} & 7 & 7 \\
3^{2} & 4^{2} & 9 & 9 \\
4^{2} & 5^{2} & 11 & 11
\end{array}\right|=0
\]
9.5.20 SAQ: Applying \(C_{12}(1)\), we get \(\left|\begin{array}{lll}b-a & c-a & a-b \\ c-b & a-b & b-c \\ a-c & b-c & c-a\end{array}\right|\)
\[
\stackrel{C_{13}(1)}{\sim}\left|\begin{array}{lll}
0 & c-a & a-b \\
0 & a-b & b-c \\
0 & b-c & c-a
\end{array}\right|=0
\]

\subsection*{9.7 Summary:}

In this lesson, we discussed elementary transformations and applied the techniques in determinants.

\subsection*{9.8 Technical Terms:}

Elementary row operations, Elementary Matrix, Determinants.

\subsection*{9.9 Exercises:}
1. If \(\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0\) and \(x, y, z\) are different,
show that \(x y z=-1\).
2. Show that \(\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|=(x-y)(y-z)(z-x)\)
3. Show that \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}=\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ a c & b c & a^{2}+b^{2}\end{array}\right|\)
4. Show that \(\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 a c-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}\)
5. Find the value of the determinant \(\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|\)
6. Evaluate \(\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|\)

\subsection*{9.10 Answers to Exercises:}
5. 0
6. \(2(a+b+c)^{3}\)

\subsection*{9.11 Model Examination Questions:}
1. Explain the concept of elementary row/column operations.
2. Explain the concept of determinants of order \(2 \times 2, n \times n\)
3. Show that \(\left|\begin{array}{cccc}1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d\end{array}\right|=a b c d\left[1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right]\)
4. Show that \(\left|\begin{array}{cccc}a+x & a & a & a \\ b & b+y & b & b \\ c & c & c+z & c \\ d & d & d & d+w\end{array}\right|=x y z w\left[1+\frac{a}{x}+\frac{b}{y}+\frac{c}{z}+\frac{d}{w}\right]\)

\subsection*{9.12 Reference Books:}
1. Stephen H. Friedberg and others - Linear Algebra Prentice Hall India Pvt. Ltd - New Delhi.
2. K. Hoffman and Kunze - Linear Algebra - Prentice Hall, New Jersey.

\section*{LESSON - 10}

\section*{RANK OF A MATRIX}

\subsection*{10.1 Objective of the Lesson:}

In this lesson, we define the rank of a matrix and use elementary operations to compute the rank of a matrix. We also discuss the procedure for computing the inverse of an invertible matrix.

\subsection*{10.2. Structure of the Lesson:}

This lesson has the following components.

\subsection*{10.3 Introduction}
10.4 Rank of a Matrix
10.5 Matrix Inverses
10.6 Answers to SAQ's
10.7 Summary
10.8 Technical Terms
10.9 Exercises
10.10 Answers to Exercises
10.11 Model Examination Questions

\subsection*{10.12 Reference Books}

\subsection*{10.3 Introduction:}

In this lesson, the concept of a rank of the matrix is introduced. We use elementary operations to compute the rank of a matrix and the rank of a linear transformation. We also introduce a procedure for computing the inverse of an invertible matrix using elementary transformations.

\subsection*{10.4 Rank of a Matrix:}
10.4.1 Definition: Let \(A \in F^{m \times n}\). We define the rank of A as the rank of the linear transformation
\(L_{A}: F^{n} \rightarrow F^{m}\).
We recall the definition of \(L_{A}: F^{n} \rightarrow F^{m}\) as:
\[
L_{A}(X)=A X, \forall X \in F^{n}
\]

We observe that many results about the rank of a matrix can be obtained from the corresponding results about linear transformation.

We know that every matrix A is the matrix representation of the linear transformation \(L_{A}\) w.r.t. appropriate standard ordered bases.
i.e. if \(A \in F^{m \times n}\), then \(\exists\) standard bases \(B_{1}, B_{2}\) of \(F^{n}\) and \(F^{m}\) respectively
such that \(A=\left[L_{A} ; B_{1}, B_{2}\right]\).
We also observe that \(L_{A}=L_{B} \Leftrightarrow A=B, L_{A+B}=L_{A}+L_{B}, L_{k A}=k L_{A}\)
for all \(k \in F, A \in F^{m \times n}, B \in F^{n \times p} \Rightarrow L_{A B}=L_{A} L_{B} ; L_{I_{n}}=I_{F^{n}}\)
We also know that : if \(T \in L(U, V), U(F), V(F)\) are finite dimensional vector spaces and \(B_{1}, B_{2}\) are ordered bases of U and V respectively, then

Rank \(T=\operatorname{Rank}\left[T ; B_{1}, B_{2}\right]\)
So the problem of finding rank of a linear transformation is reduced to that of finding rank of a matrix.

Now we prove
10.4.2 Theorem: Let A be an \(\mathrm{m} \times \mathrm{n}\) matrix. If P and Q are invertible \(m \times m, n \times n\) matrices respectively, then
(a) Rank \(A Q=\) Rank A,
(b) Rank PA = Rank A,
(c) Rank PAQ = Rank \(A\).

Proof: We have \(L_{A}: F^{n} \rightarrow F^{m}, L_{Q}: F^{n} \rightarrow F^{n}\)
Since Q is non-singular, we observe that \(L_{Q}\) is onto.
\(\left(\therefore y \in F^{n}\right.\) (codomain) \(\left.\Rightarrow \exists X=Q^{-1} y \ni L_{Q}(X)=Q Q^{-1} y=y\right)\)
Now \(R\left(L_{A Q}\right)=R\left(L_{A} L_{Q}\right)=L_{A} L_{Q}\left(F^{n}\right)=L_{A}\left(F^{n}\right)\left(\therefore L_{Q}\right.\) is onto \()\)
\[
\left.=R\left(L_{A}\right) \text { (Here } R\left(L_{A}\right) \text { means range of } L_{A}\right)
\]
\(\therefore\) Rank \(L_{A Q}=\operatorname{dim} R\left(L_{A Q}\right)\)
\begin{tabular}{rl} 
Rings and Linear Algebra (10.3) Rank of a Matrix \\
& \(=\operatorname{dim} R\left(L_{A}\right)\) \\
\(=\) & Rank \(L_{A}\)
\end{tabular}

Similarly we can prove that rank \(\mathrm{PA}=\) rank A ,
(Since Rank PA \(\left.=\operatorname{Rank}(P A)^{T}=\operatorname{Rank} A^{T} P^{T}=\operatorname{Rank} A^{T}\right) \quad(\) by (a))
= Rank A, by Theorem 10.4.17
Rank \(P A Q=\) Rank \((P A) Q=\) Rank \(P A=\) Rank \(A\).
10.4.3 Corollary: Elementary row (column) operations on a matrix are rank preserving.

Proof: Suppose B is a matrix obtained from A by an elementary row operation. So \(\exists\) an elementary matrix \(E\) such that \(B=E A\).

Since E is invertible, we have \(\rho(B)=\rho(A)\)
10.4.4 Note: Pre-multiplication (Post multiplication) of a matrix by an elementary matrix and hence by a finite number of elementary matrices (by a finite number of elementary operations) does not alter the rank of the matrix.
10.4.5 Theorem: The rank of a matrix is equal to the maximum number of its linearly independent columns i.e. the rank of a matrix is the dimension of the subspace generated by its columns.

Proof: Let \(A \in F^{m \times n} \Rightarrow\) Rank A \(=\) Rank \(L_{A}=\operatorname{dim}\left(R\left(L_{A}\right)\right)\)
Let B be the standard basis of \(F^{n}\)
\(\therefore B\) spans \(F^{n}\).
\(\therefore R\left(L_{A}\right)=\operatorname{Span} L_{A}(B)=\operatorname{Span}\left\{L_{A}\left(e_{1}\right), L_{A}\left(e_{2}\right), \ldots . L_{A}\left(e_{n}\right)\right\}\)

But we know that \(L_{A}\left(e_{j}\right)=A e_{j}=\left(a_{1} a_{2} \ldots a_{j} \ldots a_{n}\right)\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]\)
\[
=a_{j} \text {, the } j^{\text {th }} \text { column of } \mathrm{A} \text {. }
\]
\(\therefore R\left(L_{A}\right)=\) Span \(\left\{a_{1}, a_{2} \ldots a_{n}\right\}\)
\(\therefore\) Rank A \(=\) Rank \(L_{A}=\operatorname{dim} R\left(L_{A}\right)\)
\[
=\operatorname{dim} \operatorname{Span}\left\{a_{1}, a_{2} \ldots a_{n}\right\}
\]
10.4.6 SAQ: Find the rank of the matrix \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]\)
10.4.7 SAQ : Find the rank of \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2\end{array}\right]\)

\section*{Reduction to Normal Form:}
10.4.8 Theorem: Every non-zero matrix A can be reduced to the form \(\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\) by a finite number of elementary operations, where \(I_{r}\) is the unit matrix of order \(r\) and \(r\) is the rank of A.

Proof: Let \(A=\left[a_{i j}\right]_{m \times n}, \rho(A)=r ; A \neq O\)
Since \(A \neq O, \exists\) atleast one element \(a_{i j}=k \neq 0\)
Interchanging \(R_{i}\) with \(R_{1}\) and \(C_{j}\) with \(C_{1}\), we obtain a matrix B with leading element \(k(\neq 0)\).

Now multiplying \(R_{1}\) of B with \(\frac{1}{k}\), we get a matrix C with leading element 1 so that
\[
C=\left[\begin{array}{ccc}
1 & c_{12} & c_{13} \ldots \ldots c_{1 n} \\
c_{21} & c_{22} & c_{23} \ldots \ldots c_{2 n} \\
\ldots & \ldots & \ldots \\
c_{n 1} & c_{n 2} & c_{n 3} \ldots . . c_{n n}
\end{array}\right]
\]

Adding suitable multiples of the column \(C_{1}\) of \(C\) to the other columns of \(C\) and adding suitable multiples of the first row to the remaining rows of C , we get a matrix D in which all elements of \(R_{1}\) and \(C_{1}\) of D , except the leading element \((=1)\) are zeros.


If \(A_{1}=O\), then \(A \sim\left[\begin{array}{ll}I_{1} & O \\ O & O\end{array}\right]\) and is this case, there is nothing to prove.
If \(A_{1} \neq O\), we proceed with \(A_{1}\) as we did with A.
The elementary operations applied on \(\mathrm{A}_{1}\) do not alter the elements of either \(1^{\text {st }}\) row or \(1^{\text {st }}\) column of D .

Proceedings like this, we get a matrix \(P \ni P=\left[\begin{array}{cc}I_{P} & O \\ O & O\end{array}\right]\)
Now \(\rho(P)=p\). But P is obtained from A by elementary operations and hence \(\rho(A)\) is unaltered.
\(\therefore p=r\). Hence \(A\) can be reduced to the form \(\left[\begin{array}{cc}I_{r} & O \\ O & O\end{array}\right]\)
10.4.9 Note: 1. Using elementary operations, a matrix \(A\) of rank \(r\) can be reduced to the form \(I_{r},\left[I_{r} 0\right],\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\), called its normal form.
10.4.10 Note: 1) To reduce A to normal form, sometimes, both row operations and column operations are to be applied.
2) If \(\rho(A)=r\) and A is \(m \times n\), then \(r \leq m\) and \(r \leq n ; r \leq \min \{m, n\}\)
3) \(\rho(A)=r\) means, every \((r+1)^{\text {th }}\) minor \(=0\) and \(\exists\) an \(r^{\text {th }}\) minor of A , which is \(\neq 0\).
10.4.11 Theorem: If \(A\) is an \(m \times n\) matrix of rank \(r\), then \(\exists\) non-singular matrices \(P\) and \(Q\) э \(P A Q=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\)

Proof: Given that \(\rho(A)=r\)
\(\therefore A\) can be reduced to the normal form \(\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\)
For getting this, let the number of row operations used be s and let the number of column operations used be \(t\). We also know that every elementary row (column) operation on \(A\) is equivalent to pre-(post) multiplication of A by a suitable elementary matrix.
\(\therefore \exists\) elementary matrices \(P_{1}, P_{2}, \ldots, P_{s}\) and \(Q_{1}, Q_{2}, \ldots Q_{t}{ }^{\ni}\)
\[
P_{s} P_{s-1} \ldots P_{2} P_{1} A Q_{1}, Q_{2} \ldots Q_{t}=\left[\begin{array}{cc}
I_{r} & O \\
O & O
\end{array}\right]
\]

We know that each elementary matrix is non-singular and the product of non-singular matrices is non-singular.

Let \(P_{s} P_{s-1} \ldots P_{2}=P\) and \(Q_{1}, Q_{2} \ldots Q_{t}=Q\).
\(\Rightarrow P, Q\) are non-singular.
\(\therefore P A Q=\left[\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right]\)
10.4.12 Note: If \(P\) and \(Q\) are non-singular, then \(\rho(A)=\rho(P A Q)\).
10.4.13 Theorem: Every invertible \(\mathrm{n} \times \mathrm{n}\) matrix is a product of elementary matrices.

Proof:- Let A be an invertible matrix \(\Rightarrow A\) is nonsingular \(\Rightarrow|A| \neq 0 \Rightarrow \rho(A)=n\).
\(\therefore A\) can be reduced to \(I_{n}\) by a finite number of row, column operations.
We know that elementary row (column)operation is equivalent to pre (post) multiplication of \(A\) by a suitable elementary matrix.
\(\therefore \exists\) elementary matrices \(P_{1}, P_{2}, \ldots, P_{s} ; Q_{1}, Q_{2} \ldots, Q_{t}\) э
\[
P_{s} P_{s-1} \ldots P_{2} P_{1} A Q_{1}, Q_{2} \ldots Q_{t}=I_{n}
\]

Since each of \(P_{i}, Q_{j}\) is non-singular, we have \(A=P_{1}^{-1} P_{2}^{-1} \ldots P_{s}^{-1} Q_{t}^{-1} \ldots Q_{1}^{-1}\).
\(\Rightarrow A=a\) product of elementary matrices.
10.4.14 Note: \(|A| \neq 0\), the A can be expressed as a product of elementary matrices in many ways.
10.4.15 Theorem: If \(A \in F^{m \times n}, P \in F^{n \times n}\) and P is non-singular, then \(\rho(P A)=\rho(A)\) and \(\rho(A P)=\rho(A)\).

Proof: Since P is non-singular, \(\exists\) elementary matrices
\[
\begin{gathered}
P_{1}, P_{2}, \ldots, P_{s} \ni P=P_{1} P_{2}, \ldots P_{s} \\
\therefore P A=P_{1} P_{2}, \ldots P_{s} A
\end{gathered}
\]

Pre-multiplication by s elementary matrices is equivalent to s elementary operations on A .
But elementary operations do not alter the rank.
\[
\therefore \rho(P A)=\rho(A)
\]

Similarly we can prove that \(\rho(A P)=\rho(A)\)
10.4.16 Theorem: If \(A \sim B\), then \(\rho(A)=\rho(B)\)

Proof: If \(A \sim B\), then B is obtained from A by a finite number of elementary operations.
\[
\therefore \rho(A)=\rho(B)
\]
10.4.17 Theorem: If A is \(\mathrm{m} \times \mathrm{n}\) matrix, then \(\rho\left(A^{1}\right)=\rho(A)\)

Proof: \(\exists\) non-singular matrices \(P_{m \times m}\) and \(\mathrm{Q}_{n \times n} \ni P A Q=D=\left[\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right], \rho(A)=\rho(D)=r\)
\[
\therefore D^{1}=(P A Q)^{1}=Q^{1} A^{1} P^{1}
\]

Since \(P\) and \(Q\) are invertible, we have \(P^{1}\) and \(Q^{1}\) are invertible.
\[
\therefore \rho\left(A^{1}\right)=\rho\left(Q^{1} A^{1} P^{1}\right)=\rho\left(D^{1}\right)
\]

Let \(\rho(A)=r\). Since \(D^{1}\) is an \(\mathrm{n} \times \mathrm{m}\) matrix, \(D^{1}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]^{1}\) so that \(\rho\left(D^{1}\right)=r\).
\(\therefore \rho\left(A^{1}\right)=\rho\left(D^{1}\right)=r=\rho(A)\)
Hence the theorem.
10.4.18 Theorem: Let \(U, V, W\) be finite dimensional vector spaces and \(T: U \rightarrow V, S: V \rightarrow W\) be linear transformations. Let \(A, B\) be matrices such that \(A B\) is defined. Then
(i) \(\rho(S T) \leq \rho(S)\)
(ii) \(\rho(A B) \leq \rho(A)\)
(iii) \(\rho(A B) \leq \rho(B)\)
iv) \(\rho(S T) \leq \rho(T)\)

Proof: We have \(R(S T)=S T(U)=S[T(U)]=S[R(T)]\)
\[
\begin{aligned}
& \subseteq S(V)(\because R(T) \subseteq V) \\
& =R(S)
\end{aligned}
\]
\(\therefore \rho(S T)=\operatorname{dim} R(S T) \leq \operatorname{dim} R(S)=\rho(S)\)
\(\therefore \rho(S T) \leq \rho(S)\)
\(\rho(A B)=\rho\left(L_{A B}\right)=\operatorname{rank}\left(L_{A} L_{B}\right) \leq \operatorname{rank} L_{A}(\) by \((i))=\operatorname{rank} \mathrm{A}\)
\(\therefore \rho(A B) \leq \rho(A)\)
(iii) \(\rho(A B)=\rho(A B)^{T}=\rho\left(B^{T} A^{T}\right)\)
\[
\begin{aligned}
& \leq \rho\left(B^{T}\right) \\
& =\rho(B)
\end{aligned}
\]
\(\therefore \rho(A B) \leq \rho(B)\)
(iv) Let \(B_{1}, B_{2}, B_{3}\) be ordered bases of \(U, V, W\) respectively.

Let \(A_{1}=\left[T ; B_{1}, B_{2}\right], A_{2}=\left[S ; B_{2}, B_{3}\right]\). Then \(A_{2} A_{1}=\left[S T ; B_{1}, B_{3}\right]\)
\(\therefore\) Rank ST \(=\) Rank \(A_{2} A_{1} \leq \operatorname{Rank} A_{1}\) by (iii)
\[
\text { = Rank } \mathrm{T}
\]
\(\therefore\) Rank ST \(\leq\) Rank .
10.4.19 Note: \(\rho(A B) \leq \min \{\rho(A), \rho(B)\}, A, B\) are matrices of suitable orders.
\(\rho(S T) \leq \min \{\rho(S), \rho(T)\}, T, S\) are linear transformations \(э\) ST exists.

\subsection*{10.5 The Inverse of a Matrix:}

We have remarked that an \(\mathrm{n} \times \mathrm{n}\) matrix is invertible iff its rank is n . Since we know how to We now provide a simple technique for computing the inverse of a matrix using elementary row operations.
10.5.1 Definition: Let \(A, B\) be \(m \times n, m \times p\) matrices respectively. By the argumented matrix \(\left[\begin{array}{ll}A & B\end{array}\right]\) or \([A / B]\) or \([A / B]\) we mean \(m \times(n+p)\) matrix whose first n columns are the columns of \(A\) and whose last \(p\) columns are the columns of \(B\).

\subsection*{10.5.2 Theorem:}

If A is an invertible \(\mathrm{n} \times \mathrm{n}\) matrix, it is possible to transform the matrix \(\left(A / I_{n}\right)\) into the matrix \(\left(I_{n} / A^{-1}\right)\) by a finite number of elementary row operations.

Proof: Suppose A is an \(\mathrm{n} \times \mathrm{n}\) invertible matrix. Consider the \(\mathrm{n} \times 2 \mathrm{n}\) argumented matrix \(C=\left[A / I_{n}\right]\).
We have \(A^{-1} C=\left[A^{-1} A / A^{-1} I_{n}\right]=\left[I_{n} / A^{-1}\right]\)
We know that \(A^{-1}\) is the product of elementary matrices, say
\[
\begin{aligned}
& A^{-1}=E_{p} E_{p-1} \ldots E_{1} \text {. Then (1) becomes: } \\
& E_{p} E_{p-1} \ldots E_{1}\left[A / I_{n}\right]=A^{-1} C=\left[I_{n} / A^{-1}\right]
\end{aligned}
\]

Since multiplication on the left by an elementary matrix transforms the matrix by an elementary row operation, it is possible to transform the matrix \(\left[A / I_{n}\right]\) into the form \(\left[I_{n} / A^{-1}\right]\) by finite number of elementary row operations.
10.5.3 Theorem: If \(A_{n \times n}\) is invertible matrix and if by a finite number of elementary row operations, the matrix \(\left[A / I_{n}\right]\) is transformed into a matrix of the form \(\left[I_{n} / B\right]\), then \(B=A^{-1}\) Proof: Suppose A is an \(\mathrm{n} \times \mathrm{n}\) invertible matrix.

For some \(\mathrm{n} \times \mathrm{n}\) matrix, suppose that \(\left[A / I_{n}\right]\) is transformed into \(\left[I_{n} / B\right]\) by a finite number of elementary row operations. Let \(E_{1}, E_{2} \ldots E_{p}\) be the elementary matrices corresponding to these elementary row operations.
\[
\therefore E_{p} E_{p-1} \ldots E_{1}\left[A / I_{n}\right]=\left[I_{n} / B\right]
\]

Let \(M=E_{p} E_{p-1} \ldots E_{1}\)
\[
[M A / M]=M\left[A / I_{n}\right]=\left[I_{n} / B\right]
\]

Clearly \(M A=I_{n}\) and \(M=B\) and hence we have \(M=A^{-1}\)
\(\therefore B=A^{-1}\)

\subsection*{10.5.4 Note: We write \(I A=A\).}

By applying row operations of I on LHS, the same row operation should be applied on A. This should be continued till we get \(B A=I\). Then \(B=A^{-1}\).

\section*{Solved Problems:}
10.5.5 Find the rank of (a) \(A=\left[\begin{array}{cccc}1 & 2 & 1 & 1 \\ 1 & 1 & -1 & 1\end{array}\right]\), (b) \(A=\left[\begin{array}{llll}1 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 3 & 0 & 0\end{array}\right]\)

Solution: (a) One row is not a multiple of other so that the two rows are L.I.
\(\therefore \rho(A)=2\)
(b) \(A \xlongequal[R_{21}(-1)]{\sim}\left[\begin{array}{cccc}1 & 3 & 1 & 1 \\ 0 & -3 & 0 & 0 \\ 0 & 3 & 0 & 0\end{array}\right] \underset{R_{32}(1)}{\sim}\left[\begin{array}{cccc}1 & 3 & 1 & 1 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \stackrel{R_{2}\left(-\frac{1}{3}\right)}{\sim}\left[\begin{array}{llll}1 & 3 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=B\) (say)
\(A\) is reduced to \(B\).
\(\therefore \rho(A)=\rho(B)=2\), since \(B\) has two independent rows.
10.5.6 Find the rank of \(A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0\end{array}\right]\)

Solution:
\[
A \underset{R_{31}(-1)}{R_{21}(-2)}\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & -3 & -5 & -1 \\
0 & -3 & -4 & -1
\end{array}\right] \stackrel{R_{32}(-1)}{\sim}\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & -3 & -5 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \stackrel{R_{2}\left(-\frac{1}{3},\right.}{\sim}\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 5 / 3 & 1 / 3 \\
0 & 0 & 1 & 0
\end{array}\right]=B \text {, the Echelon }
\]
form of \(A\).
\(\rho(A)=\) number of nonzero rows in the Echelon form \(=2\).
10.5.7 Find the rank of \(A=\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]\)

Solution:
\[
\begin{aligned}
& A \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
2 & 3 & -1 & -1 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right] \underset{\substack{R_{21}(-3) \\
R_{41}(-6)}}{R_{21}(-2)}\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{array}\right] \\
& A \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
R_{23(-1)} \\
0 & 1 & -6 & -3 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{array}\right] \underset{R_{22}(-9)}{R_{32}(-4)}\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & -6 & -3 \\
0 & 0 & 33 & 22 \\
0 & 0 & 66 & 44
\end{array}\right] \\
& \stackrel{R_{43}(-2)}{\sim}\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & -6 & -3 \\
0 & 4 & 33 & 22 \\
0 & 0 & 0 & 0
\end{array}\right] \stackrel{R_{3}\left(\frac{1}{33}\right.}{\sim}\left[\begin{array}{cccc}
1 & -1 & -2 & -4 \\
0 & 1 & -6 & -3 \\
0 & 0 & 1 & \frac{2}{3} \\
0 & 0 & 0 & 0
\end{array}\right]=B(\text { say })
\end{aligned}
\]

B is the Echelon form \(\therefore \rho(A)=3\). ( = number of nonzero rows of B )
10.5.8 Reduce the matrix \(A=\left[\begin{array}{cccc}1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2\end{array}\right]\) to the normal form and hence find the rank.

Solution:
\[
\begin{aligned}
& A \stackrel{R_{21}(-4)}{\sim}\left[\begin{array}{cccc}
1 & -1 & 2 & -3 \\
0 & 5 & -8 & 14 \\
0 & 3 & 0 & 4 \\
0 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{cccc}
R_{24}
\end{array} c_{1}-1 \begin{array}{ccc}
-3 \\
0 & 1 & 0 \\
2 \\
0 & 3 & 0 \\
0 & 5 & -8 \\
14
\end{array}\right] \\
& \underset{C_{31}(-2)}{C_{21}(1)}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 3 & 0 & 4 \\
0 & 5 & -8 & 14
\end{array}\right] \underset{R_{42}(-5)}{\sim}\left[(-3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & -2 \\
0 & 0 & -8 & 4
\end{array}\right]\right. \\
& \underset{42}{ }(-2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & -8 & 4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
R_{34} & 1 & 0 & 0 \\
0 & 0 & -8 & 4 \\
0 & 0 & 0 & -2
\end{array}\right] \\
& \underset{R_{4}\left(-\frac{1}{2}\right)}{\sim}\left[\begin{array}{lllc}
R_{3}\left(-\frac{1}{8}\right)
\end{array}\left[\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right] \stackrel{R_{34}\left(\frac{1}{2}\right)}{\sim}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=I_{4}\right. \\
& \therefore A \sim I_{4} \therefore \rho(A)=4
\end{aligned}
\]
10.5.9 Reduce the matrix \(A=\left[\begin{array}{lll}0 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 0 & 1\end{array}\right]\) using row operations to a matrix \(B\) and obtain the rank.

Solution:
\[
A \sim\left[\begin{array}{lll}
R_{12} & 4 & 0 \\
0 & 2 & 3 \\
3 & 0 & 1
\end{array}\right] \stackrel{R_{1}(1 / 2)}{\sim}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 3 \\
3 & 0 & 1
\end{array}\right] \stackrel{R_{31}(-3)}{\sim}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 3 \\
0 & -6 & 1
\end{array}\right]
\]
\[
\begin{aligned}
& \stackrel{R_{32}(3)}{\sim}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 3 \\
0 & 0 & 10
\end{array}\right] \stackrel{R_{3}\left(\frac{1}{10}\right)}{\sim}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right] \stackrel{R_{23}(-3)}{\sim}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \stackrel{R_{12}(-1)}{\sim}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \stackrel{R_{2}(1 / 2)}{\sim}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} \\
& \therefore A \sim I_{3} \cdot B=I_{3} \therefore \rho(A)=3
\end{aligned}
\]
10.5.10 Find non-singular matrices P and Q such that PAQ is of the form \(\left[\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right]\), where
\[
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 3 \\
0 & -1 & -1
\end{array}\right]
\]

Solution: Write \(A=I A I\)
\[
\therefore\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 3 \\
0 & -1 & -1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]
\(\quad\) Apply: \(\quad R_{21}(-1):\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -1 & -1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

Apply : \(C_{21}(-1), C_{31}(-2):\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & -1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A\left[\begin{array}{ccc}1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

Apply \(R_{32}(1):\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & +1 & 1\end{array}\right] A\left[\begin{array}{ccc}1 & -1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

Apply \(C_{32}(-1):\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1\end{array}\right] A\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]\)

If \(P=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1\end{array}\right], Q=\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]\), then
\(P A Q=\left[\begin{array}{cc}I_{2} & 0_{2 \times 1} \\ 0_{1 \times 2} & 0_{1 \times 1}\end{array}\right]\)
10.5.11 Reduce \(A=\left[\begin{array}{cccc}5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0\end{array}\right]\) to Echelon form and hence find the rank.

Solution:
\[
\begin{aligned}
& A \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
\sim & 1 & 2 & 1 \\
5 & 3 & 14 & 4
\end{array}\right] \stackrel{R_{31}(-5)}{\sim}\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
0 & 1 & 2 & 1 \\
0 & 8 & 4 & 4
\end{array}\right] \\
& \stackrel{R_{32}(-8)}{\sim}\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & -12 & -4
\end{array}\right] \stackrel{R_{3}\left(\frac{-1}{12}\right)}{\sim}\left[\begin{array}{cccc}
1 & -1 & 2 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & \frac{1}{3}
\end{array}\right]=B
\end{aligned}
\]
\(B\) is in Echelon form, and hence the rank of \(A\) is 3 .
10.5.12 Verify whether the matrix \(A=\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1\end{array}\right]\) is invertible. If so, find its inverse.

Solution: Given \(A=\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1\end{array}\right]\)

The argumented matrix \(\left[A / I_{A}\right]=\left[\begin{array}{lll|lll}0 & 2 & 4 & 1 & 0 & 0 \\ 2 & 4 & 2 & 0 & 1 & 0 \\ 3 & 3 & 1 & 0 & 0 & 1\end{array}\right]\)

We convert the matrix into the form \([I / B]\).
\[
\begin{aligned}
& {[A / I]^{R_{12}}\left[\begin{array}{ccc|ccc|c}
2 & 4 & 2 & 0 & 1 & 0 \\
2 & 4 & 2 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \stackrel{R_{1}\left(\frac{1}{2}\right)}{\sim}\left[\begin{array}{ccc|ccc|}
1 & 2 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 4 & 1 & 0 & 0 \\
3 & 3 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \stackrel{R_{31}(-3)}{\sim}\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 4 & 1 & 0 & 0 \\
0 & -3 & -2 & 0 & \frac{-3}{2} & 1
\end{array}\right] \\
& \underset{R_{2}\left(\frac{1}{2}\right)}{\sim}\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 2 & \frac{1}{2} & 0 & 0 \\
0 & -3 & -2 & 0 & \frac{-3}{2} & 1
\end{array}\right] \\
& R_{12}(-2) \\
& \underset{R_{32}(3)}{\sim}\left[\begin{array}{lll|lll}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & 2 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 4 & \frac{3}{2} & \frac{-3}{2} & 1
\end{array}\right]
\end{aligned}
\]
\[
\stackrel{\substack{R_{15}(3) \\
R_{23}(-2)}}{\sim}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & +\frac{1}{8} & -\frac{5}{8} & \frac{3}{4} \\
0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{2} \\
0 & 0 & 1 & \frac{3}{8} & -\frac{3}{8} & \frac{1}{4}
\end{array}\right]
\]
\(\therefore A\) is invertible and
\[
A^{-1}=\left[\begin{array}{ccc}
+\frac{1}{8} & -\frac{5}{8} & \frac{3}{4} \\
-\frac{1}{4} & \frac{3}{4} & -\frac{1}{2} \\
\frac{3}{8} & -\frac{3}{8} & \frac{1}{4}
\end{array}\right]
\]
10.5.13 Using elementary operations, verify whether \(A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 5 & 4\end{array}\right]\) is invertible.

Solution: Consider the argumented matrix \([A / I]=\left[\begin{array}{ccc|ccc}1 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 1 & 5 & 4 & 0 & 0 & 1\end{array}\right]\)
We verify whether \([A / I]\) can be converted into the form \([I / B]\) using elementary operations.
\[
\begin{gathered}
\text { Now }[A / I] \underset{R_{31}(-1)}{R_{21}(-2)}=\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -3 & -3 & -2 & 1 & 0 \\
0 & 3 & 3 & -1 & 0 & 1
\end{array}\right] \\
\stackrel{R_{32}(1)}{\sim}\left[\begin{array}{ccc|ccc|}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -3 & -3 & -2 & 1 & 0 \\
0 & 0 & 0 & -3 & 1 & 1
\end{array}\right]
\end{gathered}
\]
\([A / I]\) cannot be converted into the form \([I / B]\), since the third row is a zero row.
Hence \(A\) is not invertible.
10.5.14 SAQ : Find the rank of \(A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]\)
10.5.15 SAQ : Find the rank of \(A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1\end{array}\right]\)

\subsection*{10.6 Answers to SAQ's:}
10.4.6 SAQ: \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right] \Rightarrow \rho(A)=\) ?

We observe that \(R_{1}, R_{3}\) are identical \(\Rightarrow|A|=0\)
\[
\text { But }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \neq 0 . \quad \therefore \rho(A)=2
\]
10.4.7 SAQ: \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 2\end{array}\right] \underset{R_{31}(-1)}{\sim}\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -2 & 2 \\ 0 & -1 & 1\end{array}\right] \underset{R_{2}\left(-\frac{1}{2}\right)}{\sim}\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right]\)
\[
\sim\left[\begin{array}{ccc} 
& 2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \therefore \rho(A)=2
\]
10.5.14 SAQ : Every 2nd order minor is 0 .
\[
\therefore \text { Rank } \mathrm{A}=1 .
\]
10.5.15 SAQ : \(A \underset{R_{31}(-1)}{R_{21}(1)}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \therefore \rho(A)=1\)

\subsection*{10.7 Summary:}

Rank of an \(m \times n\) matrix is discussed. Using elementary row/column operations, we obtained normal form. We also explaind the procedure for finding inverse.

\subsection*{10.8 Technical Terms:}

Rank, Elementary operations, Normal form.

\subsection*{10.9 Exercises:}
10.9.1 Find the rank of the matrix \(A=\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]\)
10.9.2 Find the rank of the matrix \(\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]\)
10.9.3 Find the rank of the matrix \(A=\left[\begin{array}{cccc}2 & -1 & 3 & 1 \\ 1 & -8 & 6 & 8 \\ 1 & 2 & 0 & -2\end{array}\right]\)
10.9.4 Find the rank of the matrix by reducing to normal form \(A=\left[\begin{array}{cccc}1 & 1 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 2\end{array}\right]\)
10.9.5 Find two non singular matrices \(P\) and \(Q\) such that \(P A Q\) is in the normal form, where
\[
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 3 \\
0 & -1 & -1
\end{array}\right]
\]
10.9.6 Find two non-singular matrices \(P\) and \(Q\) such that \(P A Q\) is in the normal form, where
\[
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
3 & -1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & -2 & 1 & 0
\end{array}\right]
\]
10.9.7 Find the inverse of \(A\) using elementary operations: \(A=\left[\begin{array}{cccc}-1 & -3 & 3 & -1 \\ 1 & 2 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]\)

\subsection*{10.10 Answers to Exercises:}
\begin{tabular}{ll}
10.9 .1 & 3 \\
10.9 .2 & 3 \\
10.9 .3 & 2 \\
10.9 .4 & 2
\end{tabular}
10.9.5 \(\quad P=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 1\end{array}\right), Q=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)\)
10.9.6 \(P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 5 & -1 & -1 & 0 \\ -1 & -1 & 1 & 1\end{array}\right), Q=\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 1\end{array}\right)\)
10.9.7 \(\quad A^{-1}=\left(\begin{array}{cccc}0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6\end{array}\right)\)

\subsection*{10.11 Model Examination Questions:}
1. Expain the concept of rank of a matrix.
2. Using elementary operations reduce \(A=\left(\begin{array}{cccc}1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2\end{array}\right)\) to normal form and hence find rank.
3. Find nonsingular matrices \(P\) and \(Q\) such that \(P A Q\) is in the normal form, where \(A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]\)
4. Using elementary operations, find the inverse of \(A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]\)

\subsection*{10.12 Reference Books:}
1. Hoffman and Kunze, Linear Algebra, 2nd edition - Prentice Hall.
2. Stephen H. Friedberg and others - Linear Algebra, Prentice Hall India Pvt. Ltd - New Delhi.

\section*{SYSTEMS OF LINEAR EQUATIONS}

\subsection*{11.1 Objective of the Lesson:}

In this lesson, we study the systems of linear equations and find solutions, when exist, using elementary operations. The elementary operations are used to provide a computational method for finding all solutions to such systems.

\subsection*{11.2. Structure of the Lesson:}

This lesson has the following components.

\subsection*{11.3 Introduction}

\subsection*{11.4 System of linear equations - Theoritical aspects}
11.5 System of linear equations - Computationel aspects
11.6 Answers to SAQ's
11.7 Summary
11.8 Technical Terms
11.9 Exercises
11.10 Answers to Exercises
11.11 Model Examination Questions
11.12 Reference Books

\subsection*{11.3 Introduction:}

In this lesson, we study the systems of linear equations. "A System of \(n\) linear equations in n unknowns has a solution" - This statement, sometimes, may be incorrect, because several possibilities including no solution may arise.

\subsection*{11.4 System of Linear Equations - Theoretical Aspects:}

The equation \(b=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\)
expressing b in term of the variables \(x_{1}, x_{2} \ldots, x_{n}\) and the scalars \(a_{1}, a_{2}, \ldots, a_{n}\) is called a linear equation.

For a given b, we must find \(x_{1}, x_{2} \ldots, x_{n}\) satisfafying (1)

A solution to a linear equation (1) is an ordered collection of n scalars \(y_{1}, y_{2}, \ldots, y_{n} \ni(1)\) is satisfied when \(x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{n}=y_{n}\) are substituted in (1).
11.4.1 Definition: A system of \(m\) linear equations in \(n\) unknowns over a field \(F\) or simply a linear system, is a set of \(m\) linear equations, each in \(n\) unknowns. A linear system can be denoted by
\[
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}  \tag{S}\\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}\right\}
\]
where \(a_{i j}\) and \(b_{i} \in F, 1 \leq i \leq m, 1 \leq j \leq n\) and \(x_{1}, x_{2}, \ldots, x_{n}\) are variables taking values in \(F\).

If we write \(A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n:} \\ \vdots & & & \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right], X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]\), then
the system can be represented as:
\[
A X=B
\]
\(A\) is called coefficient matrix.
A solution of the system (S) is an n - tuple \(s=\left[\begin{array}{c}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{array}\right] \in F^{n} \ni\)
\[
A s=B
\]

The set of all solutions of a linear system is called the solution set of the system. A system of linear equations is said to be consistent if it has a solution. Otherwise, the system is said to be inconsistent.

\subsection*{11.4.2 System of Homogeneous linear equations:}

Consider a system of \(m\) homogeneous linear equations in \(n\) unknowns namely

where \(a_{i j} \in F\). This system can be written as \(A X=O\)
11.4.3 Note: \(x_{1}=0, x_{2}=0, \ldots, x_{n}=0\) is a solution of \(A X=O\).
i.e. \(X=O\) is a solution of \(A X=O\). This is called the trivial solution or zero solution. Any other solution is called a nonzero solution.
\(\therefore A X=O\) is always consistent
A system \(A X=B\) of m linear equations in n unknows is said to be
(a) homogeneous if \(B=O\)
(b) non-homogeneous if \(B \neq O\)

Any homogeneous system has atleast one solution, namely the zero solution.
11.4.4 Theorem: Let \(A X=O\) be a homogeneous system of m linear equations in n unknowns over a field F . Let K denote the set of all solutions of \(A X=O\). Then \(K=N\left(L_{A}\right)\)

K is a subspace of \(F^{n}, \operatorname{dim} K=n-\operatorname{rank} L_{A}=n-\operatorname{rank} \mathrm{A}\).
Proof: We have \(K=\left\{X \in F^{n} / A X=O\right\}\)
We have proved that K is a subspace of \(F^{n}\) and it is also equal to \(N\left(L_{A}\right)\), the nullspace of \(L_{A}\) i.e. \(K=N\left(L_{A}\right)\).
\(\therefore\) We know that rank \(L_{A}+\) nullity \(L_{A}=\operatorname{dim} F^{n}=n\left(\because L_{A}: F^{n} \rightarrow F^{m}\right)\)
\(\Rightarrow\) rank A + nullity \(L_{A}=n\)
\[
\Rightarrow \text { nullity } L_{A}=n-r
\]
11.4.5 Note: The system \(A X=O\) has \(n-r\) L.I solutions.
11.4.6 Corollary: If \(m<n\), the system \(A X=O\) has a non-zero solution.

Proof: Suppose \(m<n\)
\(\therefore\) Rank A \(=\) Rank \(L_{A} \leq m\)
\(\therefore \operatorname{dim} K=n-\rho\left(L_{A}\right)>n-m\), when \(K=N\left(L_{A}\right)\)
Since \(n-m>0\), we have \(\operatorname{dim} K>0\), since \(K \neq O\).
\(\therefore \exists\) a nonzero solution \(s \in K\).
\(\therefore s\) is a nonzero solution to \(A X=O\).
i.e. \(A X=O\) has a nonzero solution.

We know that the solution set S of \((I)\) i.e. \(A X=O\) is a subspace of \(F^{n}\). [Since \(A O=O \Leftrightarrow O \in S \therefore \phi \neq S \subseteq F^{n}\). Let \(X_{1}, X_{2}\) be solutions of \(A X=O\)
\[
\therefore A X_{1}=O, A X_{2}=O \Rightarrow A\left(X_{1}+X_{2}\right)=0
\]

Also \(A\left(k X_{1}\right)=\left(k A X_{1}\right)=k . O=O\)
or \(\left.A\left(k X_{1}+l X_{2}\right)=A\left(k X_{1}\right)+A\left(l X_{2}\right)=k A X_{1}+l A X_{2}=k . O+l . O=O \Rightarrow k X_{1}+l X_{2} \in S\right]\)
We observe that if \(A X=O\) has a nonzero solution, then it has an infinite number of nonzero solutions, since \(X_{1} \neq O\) is a solution \(\Rightarrow k X_{1}\) is also a solution for every \(K \in \mathbb{R}\).
11.4.7 Note: A system of m homogeneous equations in n unknows with \(m<n\), has a nonzero solution.
\[
(\therefore \rho(A)=r \leq m<n \Rightarrow n-r>0)
\]
11.4.8 System of non-homogeneous equations : The equations
\[
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{n}
\end{aligned}
\]
can be written as \(A X=B\), where \(A=\left(a_{i j}\right)_{m \times n}, X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]\)

The system \(A X=O\) is called the homogeneous system corresponding to \(A X=B\).
11.4.9 Theorem: Let K be the solution set of the system \(A X=B\) and let \(\mathrm{K}_{\mathrm{H}}\) be the solution set of the corresponding homogeneous system \(A X=O\). Then for any solution S to \(A X=B\),
\[
K=\{S\}+K_{H}=\left\{S+K / K \in K_{H}\right\} .
\]

Proof: Let \(S\) be any solution to \(A X=B\). We show that \(K=\{S\}+K_{H} \Rightarrow A S=B\).
Let \(W \in K . \Rightarrow A W=B . \Rightarrow A(W-S)=A W-A S=B-B=0\)
\[
\begin{aligned}
& \Rightarrow W-S \in K_{H} \\
& \Rightarrow \exists K_{O} \in K_{H} \ni W-S=K_{O}
\end{aligned}
\]
\[
\therefore W=S+K_{o} \in\{S\}+K_{H} \therefore K \subseteq\{S\}+K_{H}
\]

Now suppose \(W \in\{S\}+K_{H} \Rightarrow \exists K_{0} \in K_{H} \ni W=S+K_{0}\)
\[
\begin{gathered}
\therefore A W=A\left(S+K_{0}\right)=A S+A K_{0} \\
=B+O=B \Rightarrow W \in K \\
\therefore\{S\}+K_{H} \subseteq K \\
\therefore K=\{S\}+K_{H}
\end{gathered}
\]
11.4.10 Theorem: Let \(A X=B\) be a system of linear equations. Then the system is consistent iff \(\rho(A)=\rho(A / B)\)

Proof: Suppose \(A X=B\) is a system of linear equations.
Here A is the coeffiencient matrix and \([A / B]\) is the augmented matrix.
We know that \(L_{A}: F^{n} \rightarrow F^{m}, L_{A}(X)=A X . \forall X \in F^{n}\).
\(\therefore A X=B\) has a solution means that \(\exists X_{1} \in F^{n} \ni A X_{1}=B\)
\[
\begin{aligned}
& \Rightarrow B=L_{A}\left(X_{1}\right) \\
& \Rightarrow B \in R\left(L_{A}\right)
\end{aligned}
\]

Let \(a_{1}, a_{2}, \ldots, a_{n}\) be the columns of A .
We know that \(R\left(L_{A}\right)=\) Span \(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\)
\(\therefore A X=B\) is consistent
\(\Leftrightarrow A X=B\) has a solution.
\(\Leftrightarrow B \in \operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\)
But \(B \in \operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \Leftrightarrow \operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\operatorname{Span}\left\{a_{1}, a_{2}, \ldots, a_{n}, B\right\}\)
\[
\Leftrightarrow \operatorname{dim}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\operatorname{dim}\left\{a_{1}, a_{2}, \ldots, a_{n}, B\right\}
\]
\(\Leftrightarrow\) rank \(\mathrm{A}=\) rank \(=[A / B]\). Hence the theorem.
Note: If \(\rho(A) \neq \rho[A / B]\), the system is inconsistent (i.e.) system has no solution).
11.4.11 Theorem: If A is a non-singular matrix of order n , then the system \(A X=B\) in n unknowns has a unique solution.

Proof: Since A is nonsingular matrix of order \(\mathrm{n},|A| \neq 0\).
\(\therefore \rho(A)=n, \rho[A / B]=n\)
\(\therefore \rho(A)=\rho[A / B] \Rightarrow A X=B\) is consistent.
\(\Rightarrow A X=B\) has a solution.
Since \(A\) is nonsingular, \(A^{-1}\) exists \(\therefore A X=B \Rightarrow A^{-1}(A X)=A^{-1} B\)
\[
\begin{aligned}
\Rightarrow\left(A^{-1} A\right) X=A^{-1} B & \Rightarrow I X=A^{-1} B \\
& \Rightarrow X=A^{-1} B
\end{aligned}
\]
\(\therefore X=A^{-1} B\) is a solution of \(A X=B\).

Let \(X_{1}, X_{2}\) be solutions of \(A X=B \Rightarrow A X_{1}=B, A X_{2}=B \Rightarrow A X_{1}=A X_{2}\)
\(\therefore A^{-1}\left(A X_{1}\right)=A^{-1}\left(A X_{2}\right) \Rightarrow\left(A^{-1} A\right) X_{1}=\left(A^{-1} A\right) X_{2} \Rightarrow I y_{1}=I y_{2} \Rightarrow X_{1}=X_{2}\)
Hence the uniqueness and hence the theorem.
11.4.12 Theorem: Let \(A X=B\) be a system of n linear equations in n unknowns. If A is invertible, then the system has exactly one solution \(A^{-1} B\). Conversely if the system has exactly one solution, then A is invertible.

Proof: Suppose A is inversible \(\Rightarrow A^{-1}\) exists.
Write \(s=A^{-1} B\).
\(\therefore A s=\left(A A^{-1}\right) B=\left(A^{-1} A\right) B=I B=B\)
\(\therefore s=A^{-1} B\) is a solution of \(A X=B\).
Let \(\mathrm{s}_{1}\) be a solution of \(A X=B \Rightarrow A s_{1}=B\)
Now \(A s=B, A s_{1}=B \Rightarrow A s=A s_{1}\),
\[
\begin{aligned}
\therefore A^{-1}\left(A s_{1}\right)=A^{-1}(A s) & \Rightarrow\left(A^{-1} A\right) s_{1}=\left(A^{-1} A\right) s \\
& \Rightarrow I s_{1}=I s \Rightarrow s_{1}=s
\end{aligned}
\]
\(\therefore s=A^{-1} B\) is the only solution of \(A X=B\).
Conversely suppose that the system \(A X=B\) has exactly one solution namely s. \(\therefore A s=B\)
Let \(\mathrm{K}_{\mathrm{H}}\) denote the solution set for the corresponding homogeneous system \(A X=O\).
\[
\begin{aligned}
& \therefore\{s\}=\{s\}+K_{H} \Rightarrow K_{H}=\{O\} \\
& \therefore N\left(L_{A}\right)=\{O\} \Rightarrow L_{A} \text { is non-singular } \\
& \Rightarrow A \text { is invertible }\left[L_{A}: F^{n} \rightarrow F^{n} \text { is one-one } \Rightarrow L_{A}\right. \text { is onto] }
\end{aligned}
\]

Hence the Theorem.

\section*{Solved Problems:}
11.4.13 Solve \(x-2 y+z=0\) (System containing one equation in 3 unknowns)

Solution: \(A=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]\) is the coefficient matrix \(\Rightarrow \rho(A)=1\).

If K is the solution set, then \(\operatorname{dim} K=3-1=2\).
We observe that \(\alpha_{1}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \alpha_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\) are independent vectors in \(K ;\left\{\alpha_{1}, \alpha_{2}\right\}\) is a basis of \(K\).
\(K=\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2} / a_{1}, a_{2} \in \mathbb{R}\right\}\) is the solution set.
11.4.14 Solve: \(x+2 y+z=0, x-y-z=0\) (System of 2 equations in 3 unknows)

Solution: The coefficient matrix is \(A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & -1 & -1\end{array}\right]\)
We observe that \(\rho(A)=2\)
If K is the solution set, the \(\operatorname{dim} K=3-2=1\)
We observe that \(\alpha=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]\) is a basis of K .
Solution set is \(=\{a \alpha / a \in \mathbb{R}\}\)
11.4.15 Solve : \(x+2 y+3 z=0,3 x+4 y+4 z=0, x+10 y+12 z=0\)

Solution: The coefficient matrix is \(A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]\)
\[
A \underset{R_{31}(-7)}{R_{21}(-3)}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -5 \\
0 & -4 & -9
\end{array}\right] \stackrel{R_{2}\left(-\frac{1}{2}\right)}{\sim}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 5 / 2 \\
0 & -4 & -9
\end{array}\right] \stackrel{R_{32}(4)}{\sim}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 5 / 2 \\
0 & 0 & 1
\end{array}\right]=B
\]
\(\therefore A \sim B \therefore B\) is the echelon form.
\(\therefore \rho(A)=3=\) number of unknowns.
\(\therefore K=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}\). The system has zero solution only.
11.4.16 Problem: Solve : \(x+y+z=0,3 x+4 y+5 z=0,2 x+3 y+4 z=0\)

Solution: The coefficient matrix is \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 4 & 5 \\ 2 & 3 & 4\end{array}\right]\)
\[
A \underset{R_{31}(-2)}{R_{21}(-3)}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \stackrel{R_{32}(-1)}{\sim}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]=B
\]
\(\therefore A \sim B, \rho(B)=2 \therefore \rho(A)=2\)
If K is the solution set, then \(\operatorname{dim} K=3-2=1\).
\(\therefore\) The system has only one L.I solution.
The given system is equivalent to \(x+y+z=0\)
\[
y+2 z=0
\]
\[
\Rightarrow \quad y=-2 z
\]
\[
\therefore x-2 z+z=0 \Rightarrow x=z
\]
\[
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
z \\
-2 z \\
z
\end{array}\right]=z\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
\]

If \(z=k\), then \(x=k, y=-2 k, z=k\)
\[
\therefore K=\{k \alpha / k \in \mathbb{R}\}, \alpha=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \text {. }
\]
11.4.17 Solve \(x+y-z+t=0, x-y+2 z-t=0,3 x+y+t=0\)

Solution: The coefficient matrix is \(A=\left[\begin{array}{cccc}1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1\end{array}\right]\)
Now \(\underset{R_{31}(-3)}{R_{21}(-1)}\left[\begin{array}{cccc}1 & 1 & -1 & 1 \\ 0 & -2 & 3 & -2 \\ 3 & -2 & 3 & -2\end{array}\right] \stackrel{R_{32}(-1)}{\sim}\left[\begin{array}{cccc}1 & 1 & -1 & 1 \\ 0 & -2 & 3 & -2 \\ 0 & 0 & 0 & 0\end{array}\right]=B\) (say)
\[
\rho(B)=2 \therefore \rho(A)=2
\]

Let K be the solution set.
\(\therefore \operatorname{dim} K=n-r=4-2=2\)
The given system is equivalent to \(x+y-z+t=0\)
\[
\begin{gathered}
-2 y+3 z-2 t=0 \\
\text { Let } z=k_{1}, t=k_{2} \quad \therefore 2 y=3 k_{1}-2 k_{2} \Rightarrow y=\frac{3}{2} k_{1}-k_{2} \\
\therefore x=-y+z-t=\frac{3}{2} k_{1}+k_{2}+k_{1}-k_{2}=-\frac{1}{2} k_{1} \\
\therefore \alpha=\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} k_{1} \\
\frac{3}{2} k_{1}-k_{2} \\
k_{1} \\
k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]
\end{gathered}
\]
\(\therefore\) Solution set \(K=\left\{\left[\begin{array}{c}-1 / 2 \\ 3 / 2 \\ 1 \\ 0\end{array}\right] k_{1}+k_{2}\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right] / k_{1}, k_{2} \in \mathbb{R}\right\}\)
11.5 System of linear equations - computationel aspects: In this section, we use elementary row operations to find one solution and using that all the solutions to the given non-homogeneous system (when the system is consistent).
11.5.1 Definition: If two systems of linear equations have the same solution set, then the systems are said to be equivalent.
11.5.2 Theorem: Let \(A X=B\) be a system of m linear equations in n unknowns and C be an invertible mx m matrix.

Then the system \((C A) X=C B\) is equivalent to \(A X=B\).
Proof: Let K be the solution set for \(A X=B\) and let
\(\mathrm{K}^{1}\) be the solution set for \((C A) X=C B\).
Let \(W \in K\). Then \(A W=B \Rightarrow C(A W)=C B \Rightarrow(C A) W=C B\)
\[
\therefore W \in K^{1} \quad \therefore K \subseteq K^{1}
\]

Let \(W \in K^{1} \Rightarrow(C A) W=C B \Rightarrow C(A W)=C B\)
Hence \(A W=C^{-1}(C A W)=C^{-1}(C B)=\left(C^{-1} C\right) B=I B=B\)
\[
\Rightarrow W \in K \therefore K^{1} \subseteq K \therefore K=K^{1}
\]

Hence the theorem.
11.5.3 Corollary: Let \(A X=B\) be a system of \(m\) linear equations in \(n\) unknowns. If \(\left[A^{1} / B^{1}\right]\) is a matrix obtained from \([A / B]\) by a finite number of elementary row operations, then the system \(A^{1} X=B^{1}\) is equivalent to the original system.

Proof: Let \((A / B)\) be the augmented matrix of the system \(A X=B\).

Let \(\left(A^{1} / B^{1}\right)\) be obtained from \((A / B)\) by elementary row operations.
This is equivelant to pre-multiplication of \([A / B]\) by the elementary matrices (of order \(\mathrm{m} \times \mathrm{m}\) ), \(E_{1}, E_{2} \ldots, E_{p}\). Let \(C=E_{p} E_{p-1} \ldots, E_{2} E_{1}\).
\(\therefore\left(A^{1} / B^{1}\right)=C[A / B]=[C A / C B]\). Now C is invertible, since each \(E_{i}\) is invertible.
Hence the system \(A^{1} X=B^{1}\) is equivalent to \(A X=B\).

\subsection*{11.5.4 Echelon form of a matrix:}

If all the elements in a row of a matrix are zeros, then it is called a zero row and if there is atleast one nonzero element in a row, then it is called a nonzero row.
11.5.5 Definition: A matrix is said to be in Echelon form if it has the following properties:
i) Zero rows, if any, must follow nonzero rows.
ii) The first nonzero element in each nonzero row is 1 .
iii) The number of zeros before the first nonzero element in a row is less than the number of zeros before the nonzero element of the next row.
11.5.6 Note: 1) Some authors ignore the property (ii) to consider a matrix to be in Echelon form.
2) The rank of a matrix in Echelon form is equal to the number of nonzero rows of the matrix.

\subsection*{11.5.7 Gaussian Elimination:}

We now explain a procedure for solving any system of linear equations by using the following example. This procedure is called Gaussian elimination.

Consider the system of linear equations: \(3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4}=1\)
\[
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 \\
& x_{1}+2 x_{2}+x_{3}-x_{4}=2
\end{aligned}
\]

The augmented matrix is \([A / B]\) is \(\left[\begin{array}{ccccc}3 & 2 & 3 & -2 & 1 \\ 1 & 1 & 1 & 0 & 3 \\ 1 & 2 & 1 & -1 & 2\end{array}\right]\)
By performing elementary row operations, the augmented matrix is transformed into an upper triangular matrix in which the first nonzero entry of each row is 1 and one occurs in a column to the right of the first nonzero entry of each preceding row.
\[
\left(A=\left[a_{i j}\right]_{n \times n} \text { is upper triangular if } a_{i j}=0 \text { if } i>j\right)
\]
1. To get 1 as the first row first column element, we interchange \(R_{1}\) and \(R_{3}\).
\[
\left[\begin{array}{ll}
A & B
\end{array}\right]^{R_{13}}\left[\begin{array}{cccc|c}
1 & 2 & 1 & -1 & 2 \\
1 & 1 & 1 & 0 & 3 \\
3 & 2 & 3 & -2 & 1
\end{array}\right]
\]
2. Using type 3 row operations, we use \(R_{1}\) to get zeros in the remaining positions of \(C_{1}\).

By applying \(R_{21}(-1), R_{31}(-3)\), we get \(\left[\begin{array}{ccccc}1 & 2 & 1 & -1 & 2 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -4 & 0 & 1 & -5\end{array}\right]\)
3. We get 1 in the next row in the left most possible column, without using previous rows. In this example, \(\mathrm{C}_{2}\) is the left most possible column.

By applying \(R_{2}(-1)\), we get 1 in \((2,2)\) position, we get \(\left[\begin{array}{ccccc}1 & 2 & 1 & -1 & 2 \\ 0 & -1 & 0 & -1 & -1 \\ 0 & -4 & 0 & 1 & -5\end{array}\right]\)
4. Now use Type 3 - elmentary row operations to get zeros below 1. In this example, we apply
\[
R_{32}(4),\left[\begin{array}{ccccc}
1 & 2 & 1 & -1 & 2 \\
0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & -3 & -9
\end{array}\right]
\]
5. Repeat steps 3 , 4 on each succeeding row until no nonzero rows remain.

By applying \(R_{3}(-1 / 3)\), we get \(\left[\begin{array}{ccccc}1 & 2 & 1 & -1 & 2 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\)
6. Work upward, begining with last nonzero row and add multiples of each row to the rows above. (so that we get zeros above the first nonzero entry in each row).

By applying \(R_{13}(1), R_{23}(1)\), we get \(\left[\begin{array}{lllll}1 & 2 & 1 & 0 & 5 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\)
7. Repeat the process described in step 6 for each preceeding row until it is performed with the 2 nd row at which the reduction process is complete.

In this example, by applying \(R_{12}(-2)\), we get \(\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\)

This matrix corresponds to the system : \(x_{1}+x_{3}=1\)
\[
\begin{aligned}
& x_{2}=2 \\
& x_{4}=3
\end{aligned}
\]

This system is equivalent to the original system.
The equivalent system can easily be solved.

\section*{Solved Problems:}
11.5.8 Show that the equations \(x+y+z=4,2 x+5 y-2 z=3, x+7 y-7 z=5\) are inconsistent.

Solution: The augmented matrix is
\[
\begin{aligned}
& {[A / B]=\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
2 & 5 & -2 & 3 \\
1 & 7 & -7 & 5
\end{array}\right]} \\
& \underset{R_{21}(-2)}{\sim}\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
0 & 3 & -4 & -5 \\
0 & 6 & -8 & -9
\end{array}\right] \stackrel{R_{32}(-2)}{\sim}\left[\begin{array}{cccc}
1 & 1 & 1 & 4 \\
0 & 3 & -4 & -5 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \rho(A)=2, \rho[A / B]=3 \\
& \text { Since } \rho(A) \neq \rho[A / B] \text {, the system is inconsistent. }
\end{aligned}
\]
11.5.9 Solve the System : \(x+2 y+z=2,3 x+y-2 z=1\),
\[
\begin{aligned}
& 4 x-3 y-z=3 \\
& 2 x+4 y+2 z=4
\end{aligned}
\]

Solution: The augmented matrix of the system is :
\[
[A / B]=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
3 & 1 & -2 & 1 \\
4 & -3 & -1 & 3 \\
2 & 4 & 2 & 4
\end{array}\right]
\]
\[
\begin{aligned}
& \underset{R_{31}(-4)}{R_{21}(-3)}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & -5 & -5 & -5 \\
0 & -11 & -5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \stackrel{R_{2}\left(\frac{-1}{5}\right)}{\sim}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & -11 & -5 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \stackrel{R_{32}(11)}{\sim}\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 6 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \underset{R_{3}\left(\frac{1}{6}\right.}{\sim}\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \rho(A)=3=\rho[A / B]
\end{aligned}
\]

The system is equivalent to \(x+2 y+z=2\)
\[
\begin{gathered}
y+z=1 \\
z=1 \\
\therefore y=0 \\
\therefore x+0+1=2 \\
\quad \therefore x=1
\end{gathered}
\]
\(\rho(A)=3 \therefore A\) is invertible and hence the system has a unique solution, namely \(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\).
11.5.10 Problem: Obtain for what values of \(\lambda\) and \(\mu\), the equations \(x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu\) have
(a) no solution
(b) a unique solution
(c) an infinite number of solutions.

Solution: The augmented matrix of the system is \([A / B]=\left[\begin{array}{lll|l}1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & \lambda & \mu\end{array}\right]\)
\(\underset{R_{32}(-1)}{R_{21}(-1)}\left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & \lambda-3 & \mu-10\end{array}\right]\)

If \(\lambda \neq 3\), then \(\rho(A)=3\) and \(\rho[A / B]=3\).
\(\therefore\) The system has unique solution.
if \(\lambda=3\) and \(\mu=10\), then \(\rho(A)=2=\rho[A / B]<3\).
\(\therefore\) The system has an infinite number of solutions.
If \(\lambda=3\) and \(\mu=10\), then \([A / B] \sim\left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & \mu-10\end{array}\right]\)
Since \(\mu-10 \neq 0, \rho(A)=2 \neq \rho[A / B](=3)\).
In this case, the system is inconsistent.
Hence \(\lambda=3, \mu \neq 10 \Rightarrow\) system is inconsistent.
\[
\begin{aligned}
& \lambda \neq 3 \quad \Rightarrow \text { System has unique solution. } \\
& \lambda=3, \mu=10 \Rightarrow \text { System has an infinite number of solutions. }
\end{aligned}
\]
11.5.11 Solve the following system by reducing to reduced row echelon form
\[
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3}+4 x_{4}-9 x_{5}=17 \\
& x_{1}+x_{2}+x_{3}+x_{4}-3 x_{5}=6 \\
& x_{1}+x_{2}+x_{3}+2 x_{4}-5 x_{5}=8 \\
& 2 x_{1}+2 x_{2}+2 x_{3}+3 x_{4}-x_{5}=14
\end{aligned}
\]

Solution: The augmented matrix is:
\[
[A / B]=\left[\begin{array}{cccccc}
2 & 3 & 1 & 4 & -9 & 17 \\
1 & 1 & 1 & 1 & -3 & 6 \\
1 & 1 & 1 & 2 & -5 & 8 \\
2 & 2 & 2 & 3 & -8 & 14
\end{array}\right]
\]
\[
\begin{aligned}
& \stackrel{R_{12}}{\sim}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & -3 & 6 \\
2 & 3 & 1 & 4 & -9 & 17 \\
1 & 1 & 1 & 2 & -5 & 8 \\
2 & 2 & 2 & 3 & -8 & 14
\end{array}\right] \\
& \underset{R_{31}(-1)}{R_{21}(-2)}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & -3 & 6 \\
0 & 1 & -1 & 2 & -3 & 5 \\
0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 1 & -2 & 2
\end{array}\right] \\
& \stackrel{R_{34}(-1)}{\sim}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & -3 & 6 \\
0 & 1 & -1 & 2 & -3 & 5 \\
0 & 0 & 0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
\]
\(\therefore \rho(A)=3=\rho[A / B]\)
The system is equivalent to \(x_{1}+x_{2}+x_{3}+x_{4}-3 x_{5}=6\)
\[
\begin{array}{r}
x_{2}-x_{3}+2 x_{4}-3 x_{5}=5 \\
x_{4}-2 x_{5}=2
\end{array}
\]

System has \(n-r=5-3=2\) L.I solutions:
\[
\begin{aligned}
& \text { Let } x_{3}=t_{1}, x_{5}=t_{2} \quad \therefore x_{4}=2+2 t_{2} \\
& \begin{aligned}
\therefore x_{2}-t_{1}+2\left(2+2 t_{2}\right)-3 t_{2}=5 & \Rightarrow x_{2}-t_{1}+4+t_{2}=5 \\
& \Rightarrow x_{2}=1+t_{1}-t_{2}
\end{aligned} \\
& \begin{aligned}
\therefore x_{2}+1+t_{1}-t_{2}+t_{1}+2+2 t_{2}-3 t_{2}=6 & \Rightarrow x_{1}+2 t_{1}-2 t_{2}=3 \\
& \Rightarrow x_{1}=3-2 t_{1}+2 t_{2}
\end{aligned}
\end{aligned}
\]
\[
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3-2 t_{1}+2 t_{2} \\
1+t_{1}-t_{2} \\
t_{1} \\
2+2 t_{2} \\
t_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0 \\
2 \\
0
\end{array}\right]+t_{1}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
2 \\
1
\end{array}\right], t_{1}, t_{2} \in \mathbb{R}
\]

We observe that \(\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 2 \\ 0\end{array}\right]\) is a particular solution of the system and \(\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 2 \\ 1\end{array}\right]\right\}\) is a basis of the
corresponding homogeneous system.
11.5.12 SAQs: Verify whether the system \(x+2 y+3 z=0\)
\[
\begin{array}{r}
3 x+4 y+4 z=0 \\
7 x+10 y+12 z=0
\end{array}
\]
has a non-trivial solution.
11.5.13 SAQ: Verify whether the system \(2 x+6 y+11=0\)
\[
\begin{array}{r}
6 x+20 y-6 z+3=0 \\
6 y-18 z+1=0
\end{array}
\]
is consistent.
11.5.14 SAQ : Solve \(2 x-y+3 z=8\)
\[
\begin{aligned}
& -x+2 y+z=4 \\
& 3 x+y-4 z=0
\end{aligned}
\]
11.5.15 SAQ: Verify whether the system \(x+y+z=-3\)
\[
\begin{aligned}
& 3 x+y-2 z=-2 \\
& 2 x+4 y+7 z=7
\end{aligned}
\]
is consistent.
11.5.16 SAQ: Verify whether the system \(x+2 y-z=3\)
\[
\begin{array}{r}
3 x-y+2 z=1 \\
2 x-2 y+3 z=2 \\
x-y+z=-1
\end{array}
\]
is consistent. If it is consistent, solve.

\subsection*{11.6 Answer to SAQ's:}
11.5.12 SAQ: The coefficient matrix is \(A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]\)
\[
\therefore \underset{R_{31}(-7)}{R_{21}(-3)}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -5 \\
0 & -4 & -9
\end{array}\right] \stackrel{R_{2}\left(\frac{-1}{2}\right)}{\sim}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & \frac{5}{2} \\
0 & -4 & -9
\end{array}\right]
\]
\[
\underset{R_{32}(4)}{\sim}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & \frac{5}{2} \\
0 & 0 & 1
\end{array}\right]=B
\]

Since \(A \sim B\) and B is the echelon form, \(\rho(A)=3\)
\(\therefore r=n \therefore\) The system has trivial solution only.
11.5.13 SAQ: The augmented matrix is
\[
\begin{aligned}
& {\left[\begin{array}{ll}
A & B
\end{array}\right]=\left[\begin{array}{cccc}
2 & 6 & 0 & -11 \\
6 & 20 & -6 & -3 \\
0 & 6 & -18 & -1
\end{array}\right] \stackrel{R_{21}(-3)}{\sim}\left[\begin{array}{ccc|c}
2 & 6 & 0 & -11 \\
0 & 2 & -6 & 30 \\
0 & 6 & -18 & -1
\end{array}\right] \underset{R_{32}(-3)}{\sim}\left[\begin{array}{ccc|c}
2 & 6 & 0 & -11 \\
0 & 2 & -6 & 30 \\
0 & 0 & 0 & -91
\end{array}\right]} \\
& \rho(A)=2, \rho[A / B]=3 \therefore \rho(A) \neq \rho[A / B]
\end{aligned}
\]
\(\therefore\) The system is inconsistent.
11.5.14 SAQ: The augmented matrix of the system is
\[
\begin{aligned}
& {[A / B]=\left[\begin{array}{cccc}
2 & -1 & 3 & 8 \\
-1 & 2 & 1 & 4 \\
3 & 1 & -4 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
R_{12} \\
\sim & 2 & 1 & 4 \\
2 & -1 & 3 & 8 \\
3 & 1 & -4 & 0
\end{array}\right]} \\
& \underset{R_{31}(+3)}{R_{21}(2)}\left[\begin{array}{cccc}
-1 & 2 & 1 & 4 \\
0 & 3 & 5 & 16 \\
0 & 7 & -1 & 12
\end{array}\right] \stackrel{R_{2}\left(\frac{1}{3}\right)}{\sim}\left[\begin{array}{cccc}
-1 & 2 & 1 & 4 \\
0 & 1 & \frac{5}{3} & \frac{16}{3} \\
0 & 7 & -1 & 12
\end{array}\right] \\
& \stackrel{R_{32}(-7)}{\sim}\left[\begin{array}{cccc}
-1 & 2 & 1 & 4 \\
0 & 1 & 5 / 3 & 16 / 3 \\
0 & 0 & -3 / 3 & -76 / 3
\end{array}\right] \stackrel{R_{3}\left(\frac{-3}{38}\right)}{\sim}\left[\begin{array}{cccc}
-1 & 2 & 1 & 4 \\
0 & 1 & 5 / 3 & 16 / 3 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \therefore \rho(A)=\rho[A / B]=3
\end{aligned}
\]
\(\therefore\) The system is consistent. It has unique solution.
The equivalent system is \(-x+2 y+z=4\)
\[
\begin{array}{r}
y+\frac{5}{3} z=\frac{16}{3} \\
z=2
\end{array}
\]
\(\therefore y+\frac{10}{3}=\frac{16}{3} \Rightarrow y=2\)
\[
\therefore x+4+2=6 \Rightarrow x=2
\]
\(\therefore\) solution is \(\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\)
11.5.15 SAQ : The augmented matrix is
\([A / B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & -3 \\ 3 & 1 & -2 & -2 \\ 2 & 4 & 7 & 7\end{array}\right] \underset{R_{31}(-2)}{R_{21}(-3)}\left[\begin{array}{cccc}1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 2 & 5 & 13\end{array}\right] \stackrel{R_{43}(-1)}{\sim}\left[\begin{array}{ccc|c}1 & 2 & -1 & 3 \\ 0 & -2 & -5 & 7 \\ 0 & 0 & 0 & 20\end{array}\right]\)
\(\therefore \rho(A)=2 \neq 3=\rho[A / B] \therefore\) The system is inconsistent.
11.5.16 SAQ: The augmented matrix is \([A / B]=\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 3 & -1 & 2 & 1 \\ 2 & -2 & 3 & 2 \\ 1 & -1 & 1 & -1\end{array}\right]\)
\[
\begin{aligned}
& {[A / B] \underset{\substack{R_{31}(-2) \\
R_{11}(-1)}}{R_{21}(-3)}\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -7 & 5 & -8 \\
0 & -6 & 5 & -4 \\
0 & -3 & 2 & -4
\end{array}\right] \stackrel{R_{23}(-1)}{\sim}\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & -1 & 0 & -4 \\
0 & -6 & 5 & -4 \\
0 & -3 & 2 & -4
\end{array}\right]} \\
& \stackrel{R_{2}(-1)}{\sim}\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & 1 & 0 & 4 \\
0 & -6 & 5 & -4 \\
0 & -3 & 2 & -4
\end{array}\right] \underset{R_{42}(3)}{\sim}\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
R_{32}(6) \\
0 & 1 & 0 & 4 \\
0 & 0 & 5 & 20 \\
0 & 0 & 2 & 8
\end{array}\right] \\
& \underset{R_{4}(1 / 2)}{R_{3}(1 / 5)}\left[\begin{array}{cccc}
1 & +2 & -1 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 4 \\
0 & 0 & 1 & 4
\end{array}\right] \\
& \stackrel{R_{43}(-1)}{\sim}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
\]
\(\therefore \rho(A)=\rho[A / B]=3 \therefore\) The system is consistent. Equivalent system is
\(x+2 y-z=3, y=4, z=4 \therefore x=-1\)
\(\therefore\) The system has unique solution.

\subsection*{11.7 Summary:}

The theory of homogeneous linear equations and the theory of non homogeneous linear equations is discussed.

\subsection*{11.8 Technical Terms:}

Linear equations, homogeneous, non-homogeneous linear equations consistency, inconsistency.

\subsection*{11.9 Exercises:}
11.9.1 Find the dimension and basis set of \(x_{1}+3 x_{2}=0,2 x_{1}+6 x_{2}=0\)
11.9.2 Solve : \(x_{1}+2 x_{2}-x_{3}=0,2 x_{1}+x_{2}+x_{3}=0\)
11.9.3 Examine for consistency \(x+2 y-z=3\)
\[
\begin{aligned}
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2 \\
& x-y+z=1
\end{aligned}
\]
11.9.4 Solve : \(2 x+2 y-2 z=1\)
\[
\begin{aligned}
& 4 x+2 y-z=2 \\
& 6 x+6 y+\lambda z=3 \forall \lambda \in \mathbb{R}
\end{aligned}
\]
11.9.5 Determine whether the following system has a solution:
\[
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=0 \\
& x_{1}+2 x_{2}+x_{3}=3
\end{aligned}
\]
11.10 Answers to Exercises:
11.9.1 \(\left\{\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}\)
11.9.2 \(\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}\)
11.9.3 Consistent
11.9.4 If \(\lambda \neq 2\), system has unique solution.
\[
\lambda=2 \Rightarrow x=\frac{1}{2}-k, y=k ; z=0, k \in \mathbb{R}
\]
11.9.5 System has a solution.

\subsection*{11.11 Model Examination Questions:}
1. Prove that the system \(A X=O\) has \(n-r\) L.I solutions, where r is rank A and n is the number of unknowns.
2. Prove that the system \(A X=B\) is consistent iff \(\rho(A)=\rho[A / B]\)
3. Solve the system \(\quad x_{1}+2 x_{2}+x_{3}=2\)
\[
\begin{aligned}
& 3 x_{1}+x_{2}-2 x_{3}=1 \\
& 4 x_{1}-3 x_{2}-x_{3}=3 \\
& 2 x_{1}+4 x_{2}+x_{3}=4
\end{aligned}
\]
4. Prove that the system \(A X=B\) has unique solution iff A is invertible.
5. Show that the system \(x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2, x-y+z=1\) is consistent and solve.

\subsection*{11.12 Reference Books:}
1. Hoffmen and Kunze - Linear algebra, 2nd Edition Prentice Hall.
2. Stephen H. Friedberg and others - Linear algebra - Prentice Hall-India Pvt. Ltd. - New Delhi.

LESSON - 12

\section*{DIAGONALIZATION}

\subsection*{12.1 Objective of the Lesson:}

This lesson is concerned with diagonalization problem. For a given operator T on a finite dimensional vector space we study about
i) The existance of an ordered basis \(B\) for \(V\) and
ii) If such basis exists the method of finding it.

A solution of diagonalization problem leads to the concept of eigen values and eigen vectors and so we study about,
iii) Finding eigen values and eigen vectors of linear transformations.
12.2 Structure of the Lesson: This lesson contains the following items.

\subsection*{12.3 Introduction}

\subsection*{12.4 Diagonalizable linear operator - Eigen Vector and eigen values of a linear operator}

\subsection*{12.5 Worked Out Examples}
12.6 Properties of eigen values
12.7 Similarity
12.8 Similarity of matrices using trace.
12.9 Trace of a linear operator
12.10 Determinant of a linear operator - relating theorems
12.11 Exercise
12.12 Diagonalizability
12.13 Worked out examples
12.14 Polynomial Splitting and algebraic multiplicity
12.15 Eigen space
12.16 Summary - Test for Diagonalization
12.17 Worked out examples
12.18 Positive integral power of a diagonalizable matrix - Examples

\subsection*{12.19 Invariant Subspaces}

\subsection*{12.20 T-Cyclic subspaces generated by a non-zero vector}

\subsection*{12.21 Cay ley - Hamilton Theorem and Examples}

\subsection*{12.22 Summary}

\subsection*{12.23 Technical Terms}

\subsection*{12.24 Model Questions}

\subsection*{12.25 Exercise}

\subsection*{12.26 Reference Books}

\subsection*{12.3 Introduction:}

In this lesson we introduce the important notions of eigen values and eigen vectors of a linear operator and a square matrix defined over a field. Using these concepts we discuss the diagonalization and diagonalizability of linear operators and matrices.

\subsection*{12.4 Diagnolizable Linear Operator:}

\subsection*{12.4.1 Definition:}
1) A linear operator \(T\) on a finite dimensional vector space \(V\) is called diagonalizable if there is an ordered basis B for V such that \([T]_{B}\) is a diagonal matrix.
2) A square matrix A is called diagonalizable if \(L_{A}\) (left multiplication transformation by matrix \(A\) ) is diagonalizable.

\subsection*{12.4.2 Eigen vector and eigen value of a linear operator :}

Definition: Let \(T\) be a linear operator an a vector space \(V\). A non zero vector \(v \in V\) is called an eigen vector of T if there exists a scalar \(\lambda\) such that \(T(v)=\lambda V\). The scalar \(\lambda\) is called the eigen value of A corresponding to the eigen vector \(v\).
12.4.3 Definition: Let A be in \(M_{n \times n}(F)\). A non zero vector \(V \in F^{n}\) is called an eigen vector of A if \(v\) is an eigen vector of \(L_{A}\); that is if \(A v=\lambda v\) for some scalar \(\lambda\). The scalar \(\lambda\) is called the eigen value of A corresponding to the eigen vector \(v\).
Note: i) The words characteristic vector, Latent Vectors, proper vector, spectral vector are also used in place of eigen vector.
ii) Eigen values are also known as characteristic values, Latent roots, proper values, spectral values.
iii) A vector is an eigen vector of a matrix A if and only if it is an eigen vector of \(L_{A}\).
iv) A scalar \(\lambda\) is an eigen value of \(A\), if and only if it is an eigen value of \(L_{A}\).

In order to diagonalize a matrix or a linear operator we have to find a basis of eigen vectors and the corresponding eigen values.

Before continuing our study of diagonalization problem, we give the method of computing eigen values.

\subsection*{12.4.4 Method of Computing eigen Values:}

Theorem: Let A be an \(n \times n\) matrix in the entries in the field F . Then a scalar \(\lambda\) is an eigen value of A if and only if \(\operatorname{det}\left(A-\lambda I_{n}\right)=0\)

Proof: A scalar \(\lambda\) is an eigen value of \(A\), if and only if there exists a nonzero vector \(v \in F^{n}\) such that \(A v=\lambda v\). That is \(\left(A-\lambda I_{n}\right) v=0\). This is true if and only if \(A-\lambda I_{n}\) is not invertible. However this result is equivalent to the statement that det \(\left(A-\lambda I_{n}\right)=0\).

\subsection*{12.4.5 Characteristic matrix of the given matrix \(A\) :}

Definition: Let A be a \(n \times n\) matrix with entries in the field \(\mathrm{F} . \lambda\) be a scalar, then the matrix ( \(A-\lambda I\) ) is called the characteristic matrix of \(A\).

\subsection*{12.4.6 Characteristic polynomial of \(A\) :}

Definition: Let A be a \(n \times n\) matrix with entries in the field F . Then the polynomial \(f(\lambda)=\operatorname{det}(A-\lambda I)\) is called the characteristic polynomial of the square matrix A of order n - of degree n in \(\lambda \cdot f(\lambda)\) is the characteristic function of \(A\).

Note: By theorem 12-4-4 it follows that the eigen values of a matrix are the zeros of its characteristic polynomial.

\subsection*{12.4.6A Characteristic polynomial of a linear operator:}

Definition: Let T be a linear operator on a n -dimensional vector space V with an ordered basis
B. We define the characteristic polynomial \(f(\lambda)\) of T to be the characteristic polynomial of \(A=[T]_{B}\). i.e. \(f(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)\).

Note: The characteristic polynomial of an operator T is defined by det \((T-\lambda I)\).

\subsection*{12.4.6B Characteristic Equation:}

The equation \(f(\lambda)=|A-\lambda I|=0\) is called the characteristic equation of A .
Note : \(\lambda\) is a characteristic value of the matrix A if and only if det \((A-\lambda I)=0\).
12.4.7 Definition: Spectrum: The set of all characteristic values of \(A\) is called the spectrum of \(A\).

\subsection*{12.4.8 Short cut method:}

Working procedure to find the characteristic polynomial of a matrix A.
Let \(A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\)
The characteristic polynomial of \(A\) corresponding to the characteristic root \(\lambda\) is given by \(\lambda^{3}-\operatorname{tr}(A) \cdot \lambda^{2}+\left(A_{11}+A_{22}+A_{33}\right) \lambda-\operatorname{det} A\). Where \(A_{11}, A_{22}, A_{33}\) denotes the cofactors of the diagonal elements \(a_{11}, a_{22}\) and \(a_{33}\) respectively. Observe that the coefficients of the characteristic polynomial of a \(3 \times 3\) square matrix \(A\) are with alternating signs as follows
\(S_{1}=\operatorname{tr}(A)=\) Sum of the terms of the principal diagonal.
\(S_{2}=A_{11}+A_{22}+A_{33}\) where
\[
A_{11}=(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| ; A_{22}=(-1)^{2+2}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| ; A_{33}=(-1)^{3+3}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\]
here each \(S_{k}\) is the sum of all principal minors of A of order k.
Note: i) If A is a \(\mathrm{n} x \mathrm{n}\) square matrix then its characteristic polynomial is
\[
\lambda^{n}-S_{1} \lambda^{n-1}+S_{2} \lambda^{n-1}+\ldots+(-1)^{n} S_{n}
\]

Where \(S_{k}\) is the sum of principal minors of order k .
ii) For a diagonal element of a square matrix, its minor and cofactor are the same.
12.4.9 Show that every square matrix need not posses eigen values.

Solution: Consider the matrix \(A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\) over the field of reals. Its characteristic equation is \(|A-\lambda I|=0\).
i.e. \(\operatorname{det}\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}=0\)
\(\Rightarrow \operatorname{det}\left|\begin{array}{cc}-\lambda & 1 \\ -1 & -\lambda\end{array}\right|=0 \Rightarrow \lambda^{2}+1=0\)
Which has no solution is the field of real numbers. So A has no characteristic value and hence no characteristic vector over the field of reals.

However if \(A\) is regarded as a complex matrix then its characteristic equations namely \(\lambda^{2}+1=0\) has two distinct roots \(i,-i\) over the field of complex numbers and consequently A has two distinct eigen vectors.
12.4.10 Theorem: Let \(A \in M_{n \times n}(F)\). Then show that
i) The characteristic polynomial of \(A\) is a polynomial of degree \(n\) with leading coefficient \((-1)^{n}\). ii) A has atmost n distinct eigen values.

Proof: Let \(A=\left[a_{i j}\right]_{n \times n}\) where the entries of A belongs to the field F .
The characteristic polynomial of A is given by \(|A-\lambda I|\).
i.e. the characteristic polynomial of \(A\) is
\[
\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} \ldots \ldots . . & a_{1 n} \\
a_{22} & a_{22-\lambda} \ldots \ldots . & a_{2 n} \\
a_{n+1} & a_{11} \ldots \ldots \ldots & a_{n n-\lambda}
\end{array}\right|
\]

Expanding the determinant, we get the polynomial as \((-1)^{n}\left\{\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2} \ldots+a_{n}\right\}\) so the leading coefficient is \((-1)^{n}\) and as the polynomial is of degree n ; it can not have more than \(n\) zeros. So \(A\) cannot have more than \(n\) eigen values.

Note: If \(T: V \rightarrow V\) is a linear operator such that \(\operatorname{dim} V=n\); then \([T]_{B}=A\) is a \(n \times n\) matrix. So det \((A-\lambda I)\) is a polynomial of degree n . So A or T can not have more than n distinct eigen values.
1.4.11 Procedure to find eigen values and eigen vectors:

Let \(A=\left[a_{i j}\right]_{n \times n}\) be the square matrix of order n .

\section*{Step 1:}

Write the characteristic equation of A given by \(|A-\lambda I|=0\). This is an equation of degree n in \(\lambda\).

Step 2: Solve the equation \(|A-\lambda I|=0\) to get n roots \(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\). Which are the eigen values of A .
Step 3: The corresponding eigen vectors of A are given by the nonzero vectors \(V=\left[v_{1}, v_{2}, \ldots, v_{n}\right]\) satisfying the equation \(A V=\lambda_{i} V\) or \(\left(A-\lambda_{i} I\right) V=0\) where \(i=1,2 \ldots . n\)
12.4.12 Theorem: A linear operator \(T\) on a finite dimensional vector space \(V\) is diagonalizable if and only if there exists an ordered basis B for V consisting of eigen vectors of T . Further more if T is diagonalizable, \(B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) is an ordered basis of eigen vectors of T and \(D=[T]_{B}\) then D is diagonal matrix and \(\mathrm{d}_{\mathrm{ij}}\) is the eigen value corresponding to \(V_{j}\) for \(1 \leq j \leq n\).
Proof: Let V be a finite dimensional vector space and T be a linear operator on V. Suppose T is diagonalizable. Then there exists an ordered basis \(B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) for \(V\) such that \([T]_{B}\) is a diagonal matrix. Note that if \(D=[T]_{B}\) is a diagonal matrix, then for each vector \(v_{j} \in B\), we have
\[
T\left(v_{j}\right)=\sum_{i=1}^{n} d_{i j} v_{j}=d_{j j} v_{j}=\lambda_{j} v_{j} \text { where } \lambda_{j}=d_{j j}
\]

Conversely if \(B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) is an ordered basis of V , such that \(T\left(v_{j}\right)=\lambda_{j} v_{j}\) for some scalars \(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\), then \(T\left(v_{j}\right)=0 v_{1}+0 v_{2}+\ldots+\lambda_{j} v_{j}+\ldots+0 v_{n}\)

Then clearly \([T]_{B}=\left[\begin{array}{ccc}\lambda_{1} & 0 \ldots \ldots . . & 0 \\ 0 & \lambda_{2} & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_{n}\end{array}\right]\) which is a diagonal matrix.
In the preceeding paragraph, each vector \(v\) in the basis B satisfies the condition \(T(v)=\lambda v\) for some scalar \(\lambda\). Moreover, as \(v\) lies in a basis, \(v\) is non zero. Hence the theorem.

Note: To diagonalize a matrix or a linear operator we have to find a basis of eigen vectors and the corresponding eigen values.

\subsection*{12.5 Worked Out Exampes:}
W.E. 1: Let \(A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right], B=\left\{v_{1}, v_{2}\right\}\) where \(v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]\) is an ordered basis of \(R^{2}\). Prove that \(v_{1}, v_{2}\) are eigen vectors of A . Find \(\left[L_{A}\right]_{B}\). Show that A and \(\left[L_{A}\right]_{B}\) are diagonalizable.

\section*{Rings and Linear Algebra}

Solution: Given \(A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right], v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]\)
\[
L_{A}\left(v_{1}\right)=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{ll}
1 & -3 \\
4 & -2
\end{array}\right]_{2 \times 1}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]=-2\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=-2 v_{1}
\]

Where \(L_{A}=T\).
So \(v_{1}\) is an eigen vector of \(L_{A}\) and hence \(v_{1}\) is an eigen vector of \(A\). Here \(\lambda_{1}=-2\) is the eigen. value corresponding to \(v_{1}\).

Further more \(L_{A}\left(v_{2}\right)=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{l}3+12 \\ 12+8\end{array}\right]=\left[\begin{array}{l}15 \\ 20\end{array}\right]=5\left[\begin{array}{l}3 \\ 4\end{array}\right]=5 v_{2}\)
So \(v_{2}\) is an eigen vector of \(L_{A}\) and so \(v_{2}\) is an eigen vector of A ; with the corresponding eigen value \(\lambda_{2}=5\). Note that \(B=\left\{v_{1}, v_{2}\right\}\) is an ordered basis of \(R^{2}\) consisting of eigen vectors of both A and \(L_{A}\) and so A and \(L_{A}\) are diagonalizable.
\[
\text { Further more }\left[L_{A}\right]_{B}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 5
\end{array}\right] \text { is a diagonal matrix. }
\]
W.E. 2: Determine the eigen values and eigen vectors of the matrix \(A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]\).

Solution: The characteristic equation of A is \(|A-\lambda I|=0\).
\[
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
5-\lambda & 4 \\
1 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow(5-\lambda)(2-\lambda)-4=0 \Rightarrow \lambda^{2}-7 \lambda+6=0 \\
& \quad \Rightarrow(\lambda-6)(\lambda-1)=0 \Rightarrow \lambda=6,1
\end{aligned}
\]

So the eigen values of \(A\) are 6, 1.
To find the eigen vector corresponding to \(\lambda=6\) :

The eigen vector \(v^{\prime}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\) of A Corresponding to the eigen value 6 are given by the non zero solution of the equation \((A-6 I) v^{\prime}=O\)
\[
\begin{aligned}
& \Rightarrow\left[\begin{array}{cc}
5-6 & 4 \\
1 & 2-6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{cc}
-1 & 4 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]
\(R_{2}+R_{1}\) gives
\[
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \Rightarrow-v_{1}+4 v_{2}=0 \Rightarrow v_{1}=4 v_{2} \text { putting } v_{2}=1 \text { we get } v_{1}=4 .
\end{aligned}
\]

So \(v^{\prime}=\left[\begin{array}{l}4 \\ 1\end{array}\right]\) is an eigen vector of A ; Corresponding to the eigen value 6.
The set of all eigen values of A corresponding to the eigen value 6 is given by \(C_{1} v^{\prime}\) where \(C_{1}\) is a nonzero scalar.

The eigen value \(v\) of A corresponding to the eigen value 1 are given by the non zero solution of the equation \((A-\lambda I) v=O\)
\[
\begin{array}{r}
\Rightarrow(A-1 I) v=O \\
\Rightarrow\left[\begin{array}{ll}
4 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}
\]
\(4 R_{2}-R_{1}\) gives \(\left[\begin{array}{ll}4 & 4 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
\(\Rightarrow 4 v_{1}+v_{2}=0 \Rightarrow v_{1}=-v_{2}\)
Let \(v_{1}=1\) them \(v_{2}=-1\)

So \(v^{\prime \prime}=\left[\begin{array}{c}1 \\ -1\end{array}\right]\) is an eigen vector of \(A\) corresponding to the eigen value 1 . Every non zero multiple of \(v^{\prime \prime}\). Which is of the form \(C_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]\) where \(C_{2} \neq 0\) is an eigen vector corresponding to the eigen value 1 .
W.E. to 3: \(T: R^{3}(R) \rightarrow R^{3}(R) \quad\) is a linear operator defined by \(T(a, b, c)=(7 a-4 b+10 c, 4 a-3 b+8 c,-2 a+b-2 c)\) find the eigen values of T and an ordered basis B for \(R^{3}(\mathrm{R})\) such that \([T]_{B}\) is a diagonal matrix.

Sol: Gives \(T: R_{3} \rightarrow R^{3}\) is defined by \(T(a, b, c)=(7 a-4 b+10 c, 4 a-3 b+8 c,-2 a+b-2 c)\). Consider the usual ordered basis \(B=\left\{e_{1}, e_{2}, e_{3}\right\}\) for \(R^{3}\) where \(e_{1}=(1,0,0), e_{2}(0,1,0), e_{3}(0,0,1)\)
\[
\begin{aligned}
T\left(e_{1}\right)=T(1,0,0) & =(7(1)-4(0)+10(0), 4(1)-3(0)+8(0)-2(1)+0-2(0)) \\
& =(7,4,-2) \\
& =7(1,0,0)+4(0,1,0)-2(0,0,1) \\
& =7 e_{1}+4 e_{2}-2 e_{3}
\end{aligned}
\]
\(T\left(e_{2}\right)=T(0,1,0)=(-4-3,1)\)
\[
=-4(1,0,0)-3(0,0,0)+1(0,0,0)
\]
\[
=-4 e_{1}-3 e_{2}+1 e_{3}
\]
\[
T\left(e_{3}\right)=T(0,1,0)=(10 ; 8,-2)
\]
\[
=10 e_{1}+8 e_{2}-2 e_{3}
\]
\[
A[T]_{B}=\left[\begin{array}{ccc}
7 & -4 & 10  \tag{1}\\
4 & -3 & 8 \\
-2 & 1 & -2
\end{array}\right]
\]

If \(\lambda\) is an eigen value of A ; then \(|A-\lambda I|=0\)
or \(\quad \Rightarrow\left|\begin{array}{ccc}7-\lambda & -4 & 10 \\ 4 & -3-\lambda & 8 \\ -2 & 1 & -2-\lambda\end{array}\right|=0\)
From (1)
trace of \(A=7-3-2=2\)
\(A_{11}=(-1)^{1+1}\) minor of \(7=\left|\begin{array}{cc}-3 & 8 \\ 1 & -2\end{array}\right|=6-8=-2\)
\(A_{22}=(-1)^{2+2}\) minor of \((-3)=\left|\begin{array}{cc}7 & 10 \\ -2 & -2\end{array}\right|=-14+20=6\)
\(A_{33}=(-1)^{3+3}\) minor of \((-2)=\left|\begin{array}{ll}7 & -4 \\ 4 & -3\end{array}\right|=-21+16=-5\)
Their Sum \(=A_{11}+A_{22}+A_{33}=(-2+6-5)=-1\)
\(\operatorname{det} A=7(6-8)+4(-8+16)+10(4-6)\)
\[
=7(-2)+4(8)+10(-2)=-2
\]

The characteristic equation is
\[

\]

The other factor is \(\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)\)
Hence the characteristic equation is \((\lambda-1)(\lambda-2)(\lambda+1)=0\)
So characteristic values are \(-1,1,2\).
ii) To find the characteristic vector corresponding to \(\lambda=-1\).
\[
(A-\lambda I) v=O
\]
\(\Rightarrow\left[\begin{array}{ccc}7+1 & -4 & 10 \\ 4 & -3+1 & 8 \\ -2 & 1 & -2+1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\(\Rightarrow\left[\begin{array}{ccc}8 & -4 & 10 \\ 4 & -2 & 8 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\(2 R_{2}-R_{1}, 4 R_{3}+R_{1}\) gives
\(\left[\begin{array}{ccc}8 & -4 & 10 \\ 0 & 0 & 6 \\ 0 & 0 & 6\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\(R_{3}-R_{2}\) gives
\(\left[\begin{array}{ccc}8 & -4 & 10 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\(6 v_{3}=0 \Rightarrow v_{3}=0\)
\(8 v_{1}-4 v_{2}+10 v_{3}=0 \Rightarrow 8 v_{1}=4 v_{2} \Rightarrow v_{2}=2 v_{1}\)
put \(v_{1}=1\) then \(v_{2}=0\)
So \(v^{\prime}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\) and every scalar multiple of it is an eigen vector.
ii) To find the eigen vector corresponding to \(\lambda=1\)
\[
(A-\lambda I) v=0
\]
\[
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc}
7-1 & -4 & 10 \\
4 & -3-1 & 8 \\
-2 & 1 & -2-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
6 & -4 & 10 \\
4 & -4 & 8 \\
-2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{1} \times \frac{1}{2} ; R_{2} \times \frac{1}{4} \text { gives } \\
& {\left[\begin{array}{ccc}
3 & -2 & 5 \\
1 & -1 & 2 \\
-2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{1}-3 R_{2}, R_{3}+2 R_{2} \text { gives } \\
& {\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & -1 & 2 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{3}+R_{1} \text { gives }\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & -1 & 2 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& v_{2}-v_{3}=0 \Rightarrow v_{2}=v_{3} \\
& v_{1}-v_{2}+2 v_{3}=0 \Rightarrow v_{1}+v_{3}=0 \Rightarrow v_{3}=-v_{1} \\
& \text { putting } v_{1}=1, v_{3}=v_{2}=-1 \\
& \text { So } v^{\prime \prime}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right] \text { and every scalar multiple of it is an eigen vector. }
\end{aligned}
\]
iii) To find the eigen vector corresponding to \(\lambda=2\).
\[
(A-\lambda I) v=0
\]
\[
\Rightarrow\left[\begin{array}{ccc}
7-2 & -4 & 10 \\
4 & -3-2 & 8 \\
-2 & 1 & -2-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]
\[
\Rightarrow\left[\begin{array}{ccc}
5 & -4 & 10 \\
4 & -5 & 8 \\
-2 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]
\(R_{1} \leftrightarrow R_{3}\) gives \(\left[\begin{array}{ccc}-2 & 1 & -4 \\ 4 & -5 & 8 \\ 5 & -4 & 10\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\(R_{2}+2 R_{1}, 2 R_{3}+5 R_{1}\) gives
\[
\left[\begin{array}{ccc}
-2 & 1 & -4 \\
0 & -3 & 0 \\
0 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]
\(R_{3}-R_{2}\) gives
\[
\begin{aligned}
{\left[\begin{array}{ccc}
-2 & 1 & -4 \\
0 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow-3 v_{2}=0 \Rightarrow v_{2}=0 \text { and } } \\
-2 v_{1}+v_{2}-4 v_{3}=0 \Rightarrow 2 v_{1}=-4 v_{3} \Rightarrow v_{1}=-2 v_{3}
\end{aligned}
\]

Put \(v_{3}=-1\), then \(v_{1}=2, v_{2}=0, v_{3}=-1\) and so \(v^{\prime \prime \prime}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]\) and every non zero scalar multiple of it is an eigen vector.

The basis for which \([T]_{B}\) is a diagonal matrix is \(B^{\prime}=\left\{v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right\}\)
\[
\text { i.e. } B^{\prime}=\{(1,2,0),(1,-1,-1)(2,0,-1)\}
\]
W.E. 4: Let T be the linear operator on \(P_{2}(R)\) defined by \(T[f(x)]=f(x)+(x+1) f^{\prime}(x)\) find the eigen values of T .

Solution: \(B=\left\{1, x, x^{2}\right\}\) is the standard Basis of \(P_{2}(R)\). We are given linear operator on \(P_{2}(R)\) defined by \(T[f(x)]=f(x)+(x+1) f^{\prime}(x)\)
\[
\begin{aligned}
T(1) & =1+(x+1)(0)=1=1(1)+0 x+0 x^{2} \\
T(x) & =x+(x+1)(1) \\
& =2 x+1=1(1)+2 \cdot x+0 x^{2} \\
T\left(x^{2}\right) & =x^{2}+(x+1)(2 x) \\
& =2 x+3 x^{2}=0(1)+2 \cdot x+3 \cdot x^{2}
\end{aligned}
\]

So \(A=[T]_{B}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]\)

The characteristic equation is \(|A-\lambda I|=0\)
\[
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
0 & 2-\lambda & 2 \\
0 & 0 & 3-\lambda
\end{array}\right|=0 \\
& \Rightarrow(1-\lambda)[(2-\lambda)(3-\lambda)]=0 \text { (expanding along first column) } \\
& \Rightarrow(1-\lambda)(2-\lambda)(3-\lambda)=0 \\
& \Rightarrow \lambda=1,2,3
\end{aligned}
\]

\subsection*{12.6 Properties of eigen values:}
12.6.1 Theorem: Let \(T\) be a linear operator on a vector space \(V\); and let \(\lambda\) be an eigen value of \(T\). A vector \(v \in V\) is an eigen vector of T corresponding to \(\lambda\) if and only if \(v \neq 0\) and \(v \in N(T-\lambda I)\), the null space of the linear operator \((T-\lambda I)\).

Proof: Let \(v\) is the characteristic vector corresponding to the characteristic value \(\lambda\).
So \(T(v)=\lambda v \Rightarrow(T-\lambda I) v=0\)
So \(v \in\) the null space of \(T-\lambda\) i.e. \(N(T-\lambda I)\)
Conversely Let \(v \in\) null space of \(T-\lambda I\).
\[
\begin{aligned}
& \Rightarrow(T-\lambda I) v=0 \\
& \Rightarrow T v=\lambda v
\end{aligned}
\]

So \(v\) is the characteristic vector corresponding to the characteristic value \(\lambda\).
Hence the Theorem.
12.6.2 Theorem: Prove that a square matrix A; and its transport \(A^{T}\) have the same set of eigen values.

Proof: Characteristic polynomial of \(A=\operatorname{det}(A-\lambda I)\)
\[
\begin{aligned}
& =\operatorname{det}(A-\lambda I)^{T} \text { since the determinant of a matrix and its } \\
& \quad \text { transpose are equal. } \\
& =\operatorname{det}\left[A^{T}-(\lambda I)^{T}\right] \\
& =\operatorname{det}\left[A^{T}-\lambda I^{T}\right] \\
& =\operatorname{det}\left[A^{T}-\lambda I\right] \text { since } I^{T}=I \\
& =\text { Characteristic polynomial of } A^{T} .
\end{aligned}
\]

So \(A\) and \(A^{T}\) have the same characteristic polynomial and hence the same set of eigen values.
12.6.3 Show that zero is a characteristic root of a matrix if and only if the matrix is singular.

Solution: 0 is a characteristic value of \(A\).
\(\Leftrightarrow \lambda=0\) satisfies the equation \(|A-\lambda I|=0\)
\(\Leftrightarrow|A-0 I|=0 \Leftrightarrow A\) is singular.
Note : i) If \(\lambda\) is a characteristic root of a non singular matrix then \(\lambda \neq 0\).
ii) At least one characteristic root of every singular matrix is zero.
12.6.4 If \(\lambda\) is a characteristic root of a matrix \(\mathrm{A} ; \mathrm{K}\) is a scalar, show that \(K+\lambda\) is a characteristic root of the matrix \(A+K I\).

Solution: Let \(\lambda\) be a characteristic root of a matrix A , and \(v\) be the corresponding characteristic vector.

Then \(A v=\lambda v\) and \((A+K I) v=A v+K(I v)\)
\[
\begin{aligned}
& =\lambda v+K v \\
& =(\lambda+K) v
\end{aligned}
\]

Since \(v \neq 0 \quad \lambda+K\) is a characteristic root of the matrix \(A+K I\) and \(v\) is a corresponding of characteristic vector.
12.6.5 If \(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\) are characteristic roots of a \(\mathrm{n} \times \mathrm{n}\) matrix \(A ; k\) is a scalar then the charecteristic roots of \(A-k I\) are \(\lambda_{1}-k, \lambda_{2}-k, \ldots, \lambda_{n}-k\).

Solution: Given \(\lambda_{1}, \lambda_{2} \ldots \ldots . \lambda_{n}\) are the charecteristic roots of A .
So the characteristic polynomial of A is \(|A-\lambda I|\)
\[
=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
\]

The characteristic polynomial of \(A+k I\) is \(|A-k I-\lambda I|=|A-(k+\lambda) I|\)
\[
\begin{aligned}
& =\left[\lambda_{1}-(k+\lambda)\right]\left[\lambda_{2}-(k+\lambda)\right] \ldots\left[\lambda_{n}-(k+\lambda)\right] \\
& \left.\left.\left.=\left[\left(\lambda_{1}-k\right)-\lambda\right)\right]\left[\left(\lambda_{2}-k\right)-\lambda\right)\right] \ldots\left[\left(\lambda_{n}-k\right)-\lambda\right)\right]
\end{aligned}
\]

Hence the characteristic roots of \(A-k I\) are \(\lambda_{1}-k, \lambda_{2}-k ; \lambda_{3}-k, \ldots, \lambda_{n}-k\).
12.6.6 If A is non singular prove that the eigen values of \(A^{-1}\) are the reciprocals of the eigen values of \(A\).

Solution: Let \(\lambda\) be an eigen value of A and \(v\) be the corresponding eigen vector then \(A v=\lambda v\).
\[
\Rightarrow v=A^{-1}(\lambda v)=\lambda\left(A^{-1} v\right)
\]
\[
\begin{aligned}
\Rightarrow & \frac{1}{\lambda} v=A^{-1} v(\text { Since } A \text { is non singular } \lambda \neq 0) \\
\Rightarrow A^{-1} v & =\frac{1}{\lambda} v
\end{aligned}
\]

So \(\frac{1}{\lambda}\) is an eigen value of \(A^{-1}\), and \(v\) is the corresponding eigen vector.
Conversely suppose that \(\lambda\) is an eigen value of \(A^{-1}\). Since A is non singular \(A^{-1}\) is also non singular and \(\left(A^{-1}\right)^{-1}=A\). So it follows from the first part of this question \(\frac{1}{\lambda}\) is an eigen value of \(A\).

Thus each eigen value of \(A^{-1}\) is equal to the reciprocal of some eigen value of \(A\).
Hence the eigen values of \(A^{-1}\) are nothing put the reciprocals of the eigen values of \(A\).
12.6.7 Corollary: If \(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\) are the eigen values of a non singular matrix A , then \(\lambda_{1}^{-1}, \lambda_{2}{ }^{-1} \ldots \lambda_{n}{ }^{-1}\) are the eigen values of \(A^{-1}\).
Solution: The solution follows from the above proof.
12.6.8 Theorem: If \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\) are the eigen values of A , then \(K \lambda_{1}, K \lambda_{2}, \ldots K \lambda_{n}\) are the eigen values of \(K A\).

Proof: If \(K=0\) then \(K A=O\) and each eigen value of 0 is 0 . Thus \(0 \lambda_{1}, 0 \lambda_{2}, \ldots 0 \lambda_{n}\) are the eigen values of KA when \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\) are eigen values of A .

So let us suppose that \(K \neq 0\)
\[
\text { We have } \begin{aligned}
|K A-\lambda K I| & =|K(A-\lambda) I| \\
& =K^{n}|A-\lambda I| \text { Since }|K B|=K^{n}|B|
\end{aligned}
\]

If \(K \neq 0\), then \(|K A-\lambda K I|=0\) if and only if \(|A-\lambda I|=0\).
i.e. \(K \lambda\) is an eigen value of \(K A\); if and only if \(\lambda\) is an eigen value of \(A\).

Thus if \(\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}\) are eigen values of A , that \(K \lambda_{1}, K \lambda_{2} \ldots, K \lambda_{n}\) are eigen values of \(K A\).
12.6.9 Corollary: Let \(0 \neq \lambda\) be an eigen value of an invertible operator T . Show that \(\lambda^{-1}\) is an eigen value of \(T^{-1}\).

Solution: As \(\lambda\) is an eigen value of T , there exists non zero \(v \in V\) such that \(T(v)=\lambda v\).
\[
\Rightarrow v=T^{-1}(\lambda v)=\lambda T^{-1}(v)
\]
\[
\text { So } \lambda^{-1} v=\lambda^{-1} \lambda T^{-1}(v)
\]
\[
\Rightarrow \lambda^{-1} v=T^{-1}(v)
\]

Hence \(\lambda^{-1}\) is an eigen value of \(T^{-1}\).
12.6.10 If \(\lambda\) is a characteristic root of a non singular matrix A , Show that \(\lambda^{r}\) is the characteristic root of \(A^{r} ; r\) being an integer.

Solution: \(\lambda\) is a characteristic root of a non singular matrix. So \(\lambda \neq 0\).
Case i) Let \(r>0\). Let \(v\) be a characteristic vector corresponding to \(\lambda\) then \(A v=\lambda v\).
So \(A^{r} v=A^{r-1}(A v)=A^{r-1}(\lambda v)=\lambda\left(A^{r-1} v\right)\)
\[
\begin{aligned}
& =\lambda A^{r-2}(A v) \\
& =\lambda A^{r-2}(\lambda v) \\
& =\lambda^{2} A^{r-2} v
\end{aligned}
\]

Proceeding like this we get
\[
A^{r} v=\lambda^{r} v
\]

Thus \(\lambda^{r}\) is a characteristic root of \(A^{r}\) and \(v\) is also a characteristic vector of \(A^{r}\).
Case ii) Let \(r=0\) then \(A^{0}=I\) and characteristic roots of \(I\) are all unity i.e. \(\lambda^{0}\).
Case iii) Let \(r=-1\) then \(A v=\lambda v \Rightarrow A^{-1}(A v)=A^{-1}(\lambda v)\)
\[
\begin{aligned}
& \text { So } I v=\lambda\left(A^{-1} v\right) \\
& \Rightarrow \lambda^{-1}(I v)=\lambda^{-1} \lambda\left(A^{-1} v\right) \\
& \Rightarrow \lambda^{-1} v=A^{-1} v \text { since } \lambda^{-1} \lambda=1 \\
& \Rightarrow \lambda^{-1} \text { is a characteristic root of } A^{-1} .
\end{aligned}
\]
i.e. when \(r=-1, \lambda^{r}\) is a characteristic root of \(A^{r}\).

Case iv) Let \(r\) be negative say \(r=-s\) where s is a positive integer then \(A^{r}=A^{-s}=\left(A^{-1}\right)^{s}\).
By Case iii) \(\lambda^{-1}\) is a characteristic root of \(A^{-1}\).
By case i) \(\left(\lambda^{-1}\right)^{s}\) is a characteristic root of \(\left(A^{-1}\right)^{s}\).
\(\therefore \lambda^{r}\) is a characteristic root of \(A^{r}\).
Hence the theorem.
12.6.11 Corollary: If \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\) are the characteristic roots of A , then the characteristic roots of \(A^{2}\) are \(\lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}, \ldots \ldots, \lambda_{n}{ }^{2}\).

Solution: The solution follows from the above theorem.
12.6.12 Let T be a linear operator on a vector space V . let v be an eigen vector of T corresponding to the eigen value \(\lambda\). For any positive integer n prove that v is an eigen vector of \(T^{n}\) corresponding to the eigen value \(\lambda^{n}\).

Solution: Given \(v\) is an eigen vector of the linear operator T . So \(T v=\lambda v\) where \(v \neq O\). We have to prove \(T^{n}(v)=\lambda^{n} v, \mathrm{n}\) being a positive integer. We prove the result by induction. For \(n=1\), the result is true because of (1).

Let the result be true for a positive integer \(m\)
i.e. \(T^{m}(v)=\lambda^{m} v\)

Thus \(T^{m+1}(v)=T^{m}(T v)=\left(T^{m} T\right) v=T^{m}(T v)\)
\[
\begin{aligned}
& =T^{m}(\lambda v) \\
& =\lambda\left(T^{m} v\right) \text { Since } T \text { is linear } \\
& =\lambda\left(\lambda^{m} v\right) \text { by }(3)
\end{aligned}
\]

So \(T^{m+1}(v)=\left(\lambda \lambda^{m}\right)(v)=\lambda^{m+1}(v)\) so the statement is true for \(m+1\)
The statement is true for \(n=1\), when it is assumed to be true for \(m\); it is proved to be true for \(m+1\). Hence by mathematical induction the statement is true for all positive integral values of n .
12.6.13 Let T be a linear operator an a vector space V ; over a field F and let \(g(x)\) be a polynomial with coefficients from F . Prove that if \(v\) is an eigen vector of \(T\) with corresponding eigen value \(\lambda\), then \(g(T)(v)=g(\lambda) v\) i.e. \(v\) is an eigen value of \(g(T)\) with the corresponding eigen values of \(g(\lambda)\).

Proof:
Let \(g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} \lambda^{m}\) where \(a_{i} \in F\)
Let \(T(v)=\lambda v\).
\(\Rightarrow T^{2}(v)=\lambda^{2} v\). In general \(T^{r}(v)=\lambda^{r}(v)\)
Now \(g(T)=a_{0} I+a_{1} T+a_{2} T^{2}+\ldots+a_{m} T^{m}\)
\[
\begin{aligned}
(g(T))(v) & =a_{0} v+a_{1} T(v)+a_{2} T^{2}(v)+\ldots+a_{m} T^{m}(v) \\
& =a_{0} v+a_{1} \lambda(v)+a_{2} \lambda^{2}(v)+\ldots+a_{m} \lambda^{m}(v) \\
& =\left(a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{m} \lambda^{m}\right) v \\
& =g(\lambda) v
\end{aligned}
\]

Hence the theorem.
12.6.14 Theorem: Let \(A\) be \(n \times n\) triangular matrix over \(F\). Prove that the eigen values of \(A\) are diagonal elements.
\[
\text { Let } A=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} \ldots \ldots . & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots \\
\vdots & \vdots & \vdots & a_{24} \\
0 & 0 & 0 \ldots \ldots \ldots & a_{n n}
\end{array}\right]
\]
\[
\text { i.e.. } A=\left[a_{i j}\right]_{n \times n} \text { where } a_{i j}=0 \text { for } i>j
\]

Characteristic equation of \(A\) is \(|A-\lambda I|=0\)
\[
\begin{aligned}
& \Rightarrow\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & a_{13} \ldots \ldots \ldots & a_{1 n} \\
0 & a_{22}-\lambda & a_{23} \ldots \ldots \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & a_{n n}-\lambda
\end{array}\right|=0 \\
& \Rightarrow\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right)=0
\end{aligned}
\]

So the eigen values of A are \(a_{11}, a_{22}, \ldots, a_{n n}\)

So in a triangular matrix, the eigen values are the diagonal elements of the matrix.
12.6.5 Corollary: Show that the characteristic values of a diagonal matrix \(D\) are the elements in the diagonal.

Proof: Let \(D=\left[\begin{array}{cccc}a_{11} & 0 & 0 \ldots \ldots . & 0 \\ 0 & a_{22} & 0 \ldots \ldots . & 0 \\ 0 & 0 & 0 \ldots \ldots . & a_{n n}\end{array}\right]_{n \times n}\)
Characteristic equation of D is \(|D-\lambda I|=0\).
\[
\begin{aligned}
& \Rightarrow\left|\begin{array}{cccc}
a_{11}-\lambda & 0 & 0 \ldots \ldots . . & 0 \\
0 & a_{22}-\lambda & 0 \ldots \ldots . . & 0 \\
\vdots & \vdots & & \\
0 & 0 & 0 \ldots \ldots \ldots & a_{n n}-\lambda
\end{array}\right|=0 \\
& \Rightarrow\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right)=0
\end{aligned}
\]

Which shows the characteristic values are \(a_{11}, a_{22}, \ldots \ldots, a_{n n}\). Which are nothing but the elements in the diagonal.

\subsection*{12.7 Similarity:}
12.7.1 Definition: i) Two \(n \times n\) matrices A and B are said to be similar if there exists a non singular matrix P such that \(A P=P B\) or \(A=P B P^{-1}\)

Definition II : Two linear operators \(T_{1}\) and \(T_{2}\) on \(V\) are said to be similar if there exists a nonsingular linear operator \(T\) on \(V\) such that \(T_{1} T=T T_{2}\) or \(T_{1}=T T_{2} T^{-1}\)
12.7.2 Show that similar matrices have the same characteristic polynomial and hence the same eigen value.

Proof: Let A and B are any two similar matrices then for a invertible matrix P , we have \(B=P^{-1} A P\).
\[
\text { Let } \begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1} A P-\lambda I\right) \\
& =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}\left(P^{-1} P\right) \operatorname{det}(A-\lambda I)
\end{aligned}
\]
\[
\begin{aligned}
& =\operatorname{det}(I) \operatorname{det}(A-\lambda I) \\
& =1 \cdot \operatorname{det}(A-\lambda I)
\end{aligned}
\]

This shows that the matrices \(A\) and \(B\) have the same characteristic polynomial. Hence \(A\) and \(B\) have the same characteristic roots.
12.7.3 Corollary: A square matrix \(B\) is similar to a diagonal matrix \(D\). Show that the characteristic roots of \(B\) are diagonal elements of \(D\).

Proof: Let the D be the diagonal matrix of order n . B is similar to D .
The characteristic roots of \(D\) are the elements along the principal diagonal of \(D\).
By the above theorem, B and D have the same charecteristic equation and hence the same characteristic roots.

So the characteristic roots of \(B\) are the diagonal elements of \(D\).
Hence the Theorem.

\subsection*{12.8 Similarity of matrices using Trace:}
12.8.1 Theorem: Let \(A\) and \(B\) are two square matrices of order \(n\). Thun show that trace of \((A B)=\) trace of \((B A)\)

Proof: Let \(A=\left[a_{i j}\right]_{n \times n} B=\left[b_{i j}\right]_{n \times n}\)
\[
\begin{aligned}
& A B=\left[C_{i j}\right]_{n \times n} \text { where } C_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \\
& B A=\left[d_{i j}\right]_{n \times n} \text { where } d_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j} \\
& \text { trace of }(A B)=\sum_{i=1}^{n} C_{i i}=\sum_{c=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k i}\right) \\
& \\
& =\sum_{k=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}
\end{aligned}
\]

Interchanging the order of summation in the last sum.
\[
=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} b_{k i} a_{i k}\right)
\]
\[
=\sum_{k=1}^{n} d_{k k}=d_{11}+d_{22}+\ldots+d_{n n}
\]

So trace of \((A B)=\) trace of \((B A)\)
Hence the theorem.
12.8.2 Theorem: Prove that similar matrices have the same trace.

Proof: Let \(A\) and \(B\) are \(n \times n\) matrices over \(F\) such that \(A\) is similar to \(B\). We have to show that trace of \(A=\) trace of \(B\).

Let \(A=\left[a_{i j}\right]_{n \times n} B=\left[b_{i j}\right]_{n \times n}\). Let A be similar to B ; Then there exists a non singular matrix
P. such that \(A=P^{-1} B P\).
\[
\text { trace of } \begin{aligned}
\mathrm{A} & =\text { trace of }\left(P^{-1} B P\right) \\
& =\text { trace of }\left(P P^{-1} B\right) \text { since trace of } A B \text { is equal to trace of } B A \\
& =\text { trace of }(I B) \\
& =\text { trace of } \mathrm{B} .
\end{aligned}
\]

Hence similar matrices have the same trace.
12.9 Trace of Matrix : The Sum of the elements of a square matrix A lying along the principal diagonal is called the trace of the matrix. If \(A=\left[a_{i j}\right]_{n \times n}\) then trace of \(A=a_{11}+a_{22}+\ldots+a_{n n}\).

\section*{Definition: Trace of a linear operator :}

Let T be a linear operator from \(V \rightarrow V\). Then the trace of T written as tr T is the trace of \(M(T)\) where \(M(T)\) is the matrix of T in some basis of V .

\subsection*{12.9.1 To show that the definition of trace of a linear operator is well defined:}

To show that the trace of linear operator is independent of the basis of \(V\).
Solution: Let \(M_{1}(T) ; M_{2}(T)\) are the matrices of T in two different bases of V . We know if T is a linear operator from an dimensional vector space V to V ; over a field F , and T has the matrix \(M_{1}(T)\) in the basis \(\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\) and the matrix \(M_{2}(T)\) in the basis \(\left\{w_{1}, w_{2}, \ldots w_{n}\right\}\) then there exists a non singular matrix P of order n such that \(M_{2}(T)=P^{-1} M_{1}(T) P\).

Hence by this theorem, there exists a non singular matrix P such that \(M_{2}(T)=P^{-1} M_{1}(T) P\).
i.e. \(M_{1}(T)\) and \(M_{2}(T)\) are similar matrices. But similar matrices have the same trace. Hence trace of \(T\) does not depend upon any particular basis of \(V\).

Hence the above definition is meaningful. So trace depends only an \(T\) and not any particular basis.
W.E. 5: Example: Let \(T: R_{2} \rightarrow R_{2}\) be the linear transformation defined by \(T(x, y)=(2 y, 3 x-y)\). Then in the basis \(\{(1,0)(0,1)\}\) the matrix of T is \(\left[\begin{array}{cc}0 & 2 \\ 3 & -1\end{array}\right]\). So trace of \(T=0-1=-1\).

Also in the basis \(\{(1,3)(2,5)\}\) matrix of T is \(\left[\begin{array}{cc}-30 & -48 \\ 18 & 29\end{array}\right]\)
trace of \(T=-30+29=-1\)
From which we observe trace of T is not dependent on the basis of V .

\subsection*{12.10 Determinant of a linear operator \(T\) on \(V(F)\) :}
12.10.1 Definition: Let \(T\) be a linear operator on a vector space \(V(F)\) and \([T]\) or \([T]_{B}\) be the matrix of this linear operator relative to a basis B ; then \(\operatorname{det} T=\operatorname{det}[T]\).
12.10.2 Theorem: Prove that the determinant of a linear operator \(T\) on a vector space is unique.

Or
Prove that the determinant of a linear operator is independent of the choice of an ordered basis for V.

Proof:
Let \(\left[a_{i j}\right]\) and \(\left[b_{i j}\right]\) are the matrices of the linear operator \(T\) with respect to the basis \(B_{1}\) and \(B_{2}\) of \(V\).
i.e. \(\left[T: B_{1}\right]=\left[a_{i j}\right]\); and \(\left[T: B_{2}\right]=\left[b_{i j}\right]\)

Then there exists an invertible matrix \(\left[c_{i j}\right]\) such that \(\left[b_{i j}\right]=\left[c_{i j}\right]^{-1}\left[a_{i j}\right]\left[c_{i j}\right]\)
\[
\begin{aligned}
\operatorname{det}\left[b_{i j}\right] & =\operatorname{det}\left[\left[c_{i j}\right]^{-1}\left[a_{i j}\right]\left[c_{i j}\right]\right] \\
& =\operatorname{det}\left[b_{i j}\right]=\operatorname{det}\left[\left[c_{i j}\right]^{-1}\left[a_{i j}\right]\left[c_{i j}\right]\right]
\end{aligned}
\]
i.e. \(\quad \operatorname{det}\left[b_{i j}\right]=\operatorname{det}\left[\left[c_{i j}\right]\left[c_{i j}\right]^{-1}\right] \operatorname{det}\left[a_{i j}\right]\)
\[
=\operatorname{det}\left[c_{i j}\right]^{-1} \operatorname{det}\left[c_{i j}\right] \operatorname{det}\left[a_{i j}\right]
\]
\[
\begin{aligned}
& =\operatorname{det}(I) \operatorname{det}\left[a_{i j}\right] \\
& =1 \cdot \operatorname{det}\left[a_{i j}\right]
\end{aligned}
\]
i.e. \(\quad \operatorname{det}\left[b_{i j}\right]=\operatorname{det}\left[a_{i j}\right]\)

Hence the determinant of the operator T is unique even though the matrices of T are different with respect to the bases \(B_{1}\) and \(B_{2}\).
12.10.3 Theorem: If \(T_{1}\) and \(T_{2}\) are linear operators on a finite dimensional vector space \(V(F)\), then prove that \(\operatorname{det}\left(T_{1} T_{2}\right)=\left(\operatorname{det} T_{1}\right)\left(\operatorname{det} T_{2}\right)\).

Proof: \(T_{1}\) and \(T_{2}\) are two linear operators on a finite dimensional vector space \(\mathrm{V}(\mathrm{F})\). Choose B to be an ordered basis of v . Then the matrix of the operator \(T_{1} T_{2}\) w.r.t the basis B can be put in the form \(\left[T_{1} T_{2}\right]_{B}=\left[T_{1}\right]_{B} \cdot\left[T_{2}\right]_{B}\).

So \(\operatorname{det}\left[T_{1} T_{2}\right]_{B}=\operatorname{det}\left(\left[T_{1}\right]_{B} \cdot\left[T_{2}\right]_{B}\right)\)
\[
\begin{equation*}
=\operatorname{det}\left[T_{1}\right]_{B} \cdot \operatorname{det}\left[T_{2}\right]_{B} \tag{1}
\end{equation*}
\]

As we know the det. of the product of two matrices is equal to the product of their determinants.

Now by the definition \(\operatorname{det} T=\operatorname{det}[T]_{B}\) and hence by (1) we have \(\operatorname{det} T_{1} T_{2}=\left(\operatorname{det} T_{1}\right)\left(\operatorname{det} T_{2}\right)\)
12.10.4 T is a linear operator an a finite dimensional vector space V . Prove that T is invertible if and only if \(\operatorname{det}(T) \neq 0\).

Proof: \(T\) is a linear operator on a finite dimensional vector space \(V\). Let \(B\) be a basis of the vector space V.

If T is invertible then \(T T^{-1}=T^{-1} T=I\) and \(\operatorname{det}\left(T^{-1} T\right)=\operatorname{det}[I]_{B}\) where \([I]_{B}\) is matrix of the identity operator.
\(\Rightarrow \operatorname{det}(T) \cdot \operatorname{det}\left(T^{-1}\right)=1\) since det. of the unit matrix is 1.

Now \((\operatorname{det} T)\) and \(\left(\operatorname{det} T^{-1}\right)\) are the elements of the field F and a field F is without zero divisors. i.e.
\(a b=0 \Rightarrow a=0\) or \(b=0\) or both zero.
In other words if \(a=0\) then \(a b=0\) in a field F .
Hence since \((\operatorname{det} T) .\left(\operatorname{det} T^{-1}\right)=1\) hence \(\operatorname{det} T \neq 0\).
Conversely let \(\operatorname{det} T \neq 0\) then by def. of \(\operatorname{det} T\) we have \(\operatorname{det}[T]_{B} \neq 0\)
\(\rightarrow[T]_{B}\) is invertible.
Hence the operator T is invertible.
12.10.5 Theorem: T is a linear operator on a finite dimensional vector space V . Prove that T is invertible then \(\operatorname{det}\left(T^{-1}\right)=(\operatorname{det} T)^{-1}\).

Solution: T is invertible then \(T T^{-1}=I=T^{-1} T\)
\[
\operatorname{det}\left(T T^{-1}\right)=\operatorname{det}(I)=\operatorname{det}\left(T^{-1} T\right)
\]
\(\Rightarrow(\operatorname{det} T) \cdot\left(\operatorname{det} T^{-1}\right)=1=\left(\operatorname{det}\left(T^{-1}\right)\right)(\operatorname{det} T)\)
So \(\left(\operatorname{det} T^{-1}\right)=[\operatorname{det}(T)]^{-1}\)
12.10.6 Let \(T\) be a linear operator on a finite dimensional vector space \(V\). Then show that O is the characteristic value of T iff T is not invertible.

Solution: Case i) Let \(O\) be the eigen value of \(T\). Then we have to prove \(T\) is singular.
As O is a eigen value of T , there exists a nonzero v in V such that \(T(v)=0 v\).
\(\Rightarrow T(v)=O\) (zero vector)
\(\Rightarrow T\) is singular so \(T\) is not invertible.
Case ii) Converse:
Suppose \(T\) is not invertible we have to show \(O\) is the eigen value of \(T\).
As T is a linear operator on a finite dimensional vector space V , and T is not invertible means T is singular So there exists a nonzero vector v in V such that \(T v=O=0 v\).
\(\therefore O\) is the characteristic vector.
Hence the theorem.

\subsection*{12.10.7 Corollary:}

Prove that a linear operator on a finite vector space is invertible if and only zero is not an eigen value of T .

\section*{Exercise 12.11:}

T is linear operator on \(R^{3}\) defined by
\[
T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left[\begin{array}{c}
3 a+2 b-2 c \\
-4 a-3 b+2 c \\
-c
\end{array}\right] \text { and } B=\left\{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right\} \text { is an ordered basis of } R^{3} \text {. Com- }
\]
pute \([T]_{B}\) and determine whether B is a basis of consisting of eigen vectors of T .
Ans ) \([T]_{B}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\); yes
2). \(T\) is a linear operator on \(R^{2}\) defined by \(T(a, b)=(-2 a+3 b,-10 a+9 b)\). Find the eigen values of T and an ordered basis B for V such that \([T]_{B}\) is a diagonal matrix.

Ans ) \(\lambda=3,4, \quad B=\{(3,5),(1,2)\}\)
3) T is a linear operator on \(P_{3}(R)\) defined by \(T[f(x)]=f(x)+f(2) x\). Find the eigen values of T and an ordered basis B for V such that \([T]_{B}\) is a diagonal matrix.

Ans: \(\lambda=1,3 \quad B=\left\{-2+x,-4+x^{2},-8+x^{3}, x\right\}\)
4) Find the eigen values of the matrix \(\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 0\end{array}\right]\)

Ans: \(2,-1+\sqrt{3},-1-\sqrt{3}\)
5) Find the characteristic polynomial of \(A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9\end{array}\right]\)

Ans: \(\lambda^{3}-13 \lambda^{2}+31 \lambda-17\)
6) If \(A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]\) then find i) All eigen values of A .
ii) A maximum set \(S\) of linearly independent vectors of \(A\).

Ans: i) \(\lambda=3,3,5 \quad\) ii) \(\{(1,-1,0),(1,0,1),(1,2,1)\}\) is a maximal set of linearly independent vectors.
7) If \(A=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]\), find the eigen values and eigen vectors A . Prove that A is diagonalizable. Obtain a basis for \(R^{2}\) containing eigen vectors of A .

Ans: \(\lambda=3,-1\) and eigen vectors are \(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}\) is a basis of \(R^{2}\).
8) Find the eigen values and eigen vectors of the following matrices.
i) \(\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]\)
ii) \(\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]\)

Ans: i) \(2,2,8 ; a\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]+b\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\) where \(\mathrm{a}, \mathrm{b}\) are any nonzero scalars and \(c\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\) where \(c\) is any non zero scalar.
ii) \(0,3,15 \quad\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\) and theire nonzero scalar multiples.
9) Show that the matrices \(\left[\begin{array}{ccc}-10 & 6 & 3 \\ -26 & 16 & 8 \\ 16 & -10 & -5\end{array}\right]\) and \(\left[\begin{array}{ccc}0 & -6 & -16 \\ 0 & 17 & 45 \\ 0 & -6 & -16\end{array}\right]\) are similar.
10) Prove that the matrix. \(A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \in M_{2 \times 2}(R)\) is diagonalizable.
11) Find all the eigen values and a basis for each eigen space of the linear operator \(T: R^{3} \rightarrow R^{3}\) defined by \(T(a, b, c)=(2 a+b, b-c, 2 b+4 c)\)

Ans: eigen values 2,3
eigen space of 2 is spanned by \(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\)
eigen space of 3 is spanned by \(\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]\)
12. Find the eigen values of \(\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]\)

Ans: 2, 2, 2
13. Show that \(A=\left[\begin{array}{lll}o & h & g \\ h & o & f \\ g & f & o\end{array}\right] ; B=\left[\begin{array}{ccc}o & f & h \\ f & o & g \\ h & o & g\end{array}\right]\)
have the same charecteristic equation.

\subsection*{12.12 Diagonalizability:}

We have see in the preceeding articles that every linear operator or every matrix is not diagonalizable. We need a simple test to determine whether an operator or a matrix can be diagonalized as well as a method for actually finaling a basis of eigen vectors.
12.12.1 Theorem: Let \(T\) be linear operator on a vector space \(V\); Let \(\lambda_{1}, \lambda_{2} \ldots \lambda_{k}\) be distinct eigen values of T . If \(v_{1}, v_{2} \ldots v_{k}\) are eigen vectors of T such that \(\lambda_{i}\) corresponds to \(V_{i}(1 \leq i \leq k)\) then \(\left\{v_{1}, v_{2} \ldots v_{k}\right\}\) are linearly independent.

Proof: We prove the theorem by mathematical induction on \(k\). If \(k=1\), then \(v_{1} \neq O\) since \(v_{i}\) is an eigen vector and so \(\left\{v_{1}\right\}\) is linearly independent. We assume th theorem is true for \((k-1)\) distinct eigen values where \((k-1) \geq 1\)

Let there be \(k\) eigen vectors \(v_{1}, v_{2}, \ldots, v_{k}\) corresponding to the distinct eigen values \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\). We will show that \(\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\) is linearly independent.

Suppose \(a_{1}, a_{2}, \ldots, a_{k}\) are scalars.
Such that \(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k}=O\)
Applying ( \(T-\lambda_{k} I\) ) on both sides of (1) we get
\[
a_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+a_{2}\left(\lambda_{2}-\lambda_{k}\right) v_{2}+\ldots+a_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}=0
\]

By induction hypothesis \(\left\{v_{1}, v_{2}, \ldots v_{k-1}\right\}\) is linearly independent. So we must have \(a_{1}\left(\lambda_{1}-\lambda_{k}\right)=a_{2}\left(\lambda_{2}-\lambda_{k}\right)=\ldots=a_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right)=0\).

As \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\) are distinct it follows
that \(\lambda_{i}-\lambda_{k} \neq 0\) for \(1 \leq i \leq k-1\)
So \(a_{1}=a_{2}=\ldots=a_{k-1}=0\)
Substituting these values in (1) we get \(a_{k} v_{k}=0\).
As \(v_{k} \neq O\) so \(a_{k}=0\) consequently \(a_{1}=a_{2}=\ldots=a_{3}=\ldots=a_{k-1}=a_{k}=0\)
Thus a linear combination of vectors \(v_{1}, v_{2} \ldots v_{k}\) is equal to a zero vector implies each of the scalar coefficient is zero.

So \(\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\) is linearly independent.
Hence the theorem.
12.12.2 Corollary: Let \(T\) be a linear operator on an \(n\) dimensional vector space \(V\). If \(T\) has \(n\) distinct eigen values then T is diagonalizable.

Proof: Let the n distinct eigen values of T be \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\). Foe each i , choose an eigen vector \(v_{i}\) corresponding to \(\lambda_{i}\). By the above theorem \(\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\) is linearly independent and as \(\operatorname{dim} V=n\); the set \(\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\) is a basis of V . Hence T is diagonalizable.

Converse: The converse of the above theorem need not be true. i.e. If T is diagonalizable, then it has \(n\) distinct eigen values need not be true. For example the identity operator is diagonalizable even though it has only one eigen value namely 1 .

\section*{W.E. 6: Worked Out Examples:}

Show that \(A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \in M_{2 \times 2}(R)\) is diagonalizable.
Solution: The characteristic polynomial of A is \(|A-\lambda I|=\left|\begin{array}{cc}1-\lambda & 1 \\ 1 & 1-\lambda\end{array}\right|\)
\[
\begin{aligned}
& =(1-\lambda)^{2}-1^{2} \\
& =(1-\lambda+1)(1-\lambda-1) \\
& =(2-\lambda)(-\lambda)
\end{aligned}
\]

The characteristic equation is \(\lambda(\lambda-2)=0\),
Thus \(\lambda=0,2\)
Hence the characteristic values of A are 0,2. Hence the characteristic values of \(L_{A}\) are 0,2. Which are distinct.
\(L_{A}\) is a linear operator on vector space \(R^{2}\), whose dimension is 2 .
\(\therefore L_{A}\) and hence A is diagonaliziable.
W.E. 7: Show that \(A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\) is not diagonalizable.

\section*{Solution:}

The characteristic polynomial of A is \(|A-\lambda I|\)
\[
=\left|\begin{array}{cc}
1-\lambda & 2 \\
0 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}
\]

The characteristic equation of A is \(|A-\lambda I|=0\) i.e. \((1-\lambda)^{2}=0\)
\[
\rightarrow \lambda=1,1
\]

As A and hence \(L_{A}\) has one distinct eigen value and \(\operatorname{dim} R^{2}\) is 2 , it follows that A is not diagonalizable.

\subsection*{12.14 Polynomial Splitting:}
12.14.1 Definition: A polynomial \(f(t)\) in \(P(F)\) splits over F if there are scalars \(a_{1}, a_{2}, \ldots a_{n}\) not necessarily distinct in F such that \(f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right)\).

Example:
i) \(t^{2}-1=(t+1)(t-1)\) splits over R .
but ii) \(\left(t^{2}+1\right)(t-2)\) does not split over R .
bu it splits over C because it factors into the product \((t+i)(t-i)(t-2)\).
Note: If \(f(t)\) is the characteristic polynomial of a linear operator or a matrix over a field F , then the statement that \(f(t)\) splits is to understood to mean that it splits over \(\mathbf{F}\).
12.14.2 Theorem: The characteristic polynomial of any diagonalizable linear operator splits.

Proof: Let V be a n dimensional vector space. Let T be a diagonalizable linear operator over V. Let \(B\) be an ordered basis for V such that \([T]_{B}=D\) is a diagonal matrix. Suppose that
\[
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 \ldots \ldots \ldots & 0 \\
0 & \lambda_{2} & 0 \ldots \ldots \ldots & 0 \\
\vdots & \vdots & \vdots & \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right]
\]

Let \(f(t)\) be the characteristic polynomial of T .
\[
f(t)=\operatorname{det}(D-t I)
\]
\[
=\operatorname{det}\left[\begin{array}{cccc}
\lambda_{1}-t & 0 & \ldots \ldots . & 0 \\
0 & \lambda_{2}-t & \ldots \ldots \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & & \lambda_{n}-t
\end{array}\right]
\]
Rings and Linear Algebra (12.33) Diagonalization
\(=\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{n}-t\right)\)
\(=(-1)^{n}\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \ldots\left(t-\lambda_{n}\right)\)
\(f(t)\) is factored into a product of linear factors.
\(\therefore f(t)\) splits. Hence the theorem.
Note: From the above theorem it is clear that if \(T\) is diagonalizable linear operator on an \(n\)-dimensional vector space that fails to have distinct eigen values, then the characteristic polynomial of \(T\) must have repeated zeros.
ii) The converse of the above theorem need not be true. That is, the characteristics polynomial may split but \(T\) need not be diagonalizable. For example consider the examples W.E. 5. in which we observe even though T may split, T need not be diagonalizable.

\subsection*{12.14.3 Algebraic Multiplicity:}

Definition: Let \(\lambda\) be an eigen value of a linear operator or matrix with characteristic polynomial \(f(t)\). The algebraic multiplicity of \(\lambda\) is the largest positive integer \(k\) for which \((t-\lambda)^{k}\) is a factor of \(f(t)\).

\section*{W.E. 8 : Example:}
i) \(\operatorname{det} A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4\end{array}\right]\)

The characteristic polynomial is \(|A-t I|\)
\[
\Rightarrow\left|\begin{array}{ccc}
3-t & 1 & 0 \\
0 & 3-t & 4 \\
0 & 0 & 4-t
\end{array}\right| \text { expanding along the first column; the characteristic polyno- }
\]
mials is \((3-t)[(3-t)(4-t)-0]\)
\[
=(3-t)^{2}(4-t)
\]

Hence 3,3,4 are the eigen values.
So \(\lambda=3\) is an eigen value of \(A\) with multiplicity 2. \(\lambda=4\) is an eigen value of \(A\) with multiplicity 1.
ii) For \(\mathrm{n} x \mathrm{n}\) null matrix, zero is the characteristic root of algebraic multiplicity n .
iii) For identity matrix of order \(n\) unity is the characteristic root of algebraic multiplicity \(n\).

\subsection*{12.15 Eigen Space:}
12.15.1 Definition: Let \(T\) be a linear operator on a vector space V , det \(\lambda\) be an eigen value of T .

Define \(E_{\lambda}=\{v \in V: T(v)=\lambda v\}=N\left(T-\lambda I_{v}\right)\).
The set \(E_{\lambda}\) is called the eigen space of T corresponding to the eigen value \(\lambda\).
Analogously we define the eigen space of a square matrix A to be the eigen space of \(L_{A}\).
Note: \(E_{\lambda}\) is a subspace of V consisting of the zero vector and eigen vectors of T . Corresponding to the eigen value \(\lambda\). So the maximum number of linearly independent eigen vectors of T corresponding to the eigen value \(\lambda\) is the dimension of \(E_{\lambda}\).
12.15.2 Theorem: Let \(T\) be a linear operator on a finite dimensional vector space \(V\). Let \(\lambda\) be an eigen value of T having multiplicity m . Then \(1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m\).

Proof: Choose an ordered basis \(\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}\) for \(E_{\lambda}\). extend it to an ordered basis \(B=\left\{v_{1}, v_{2}, \ldots, v_{p}, v_{p+1} \ldots v_{n}\right\}\) for \(V\).

Let \(A=[T]_{B}\). Observe that \(v_{i}(1 \leq i \leq p)\) is an eigen vector of \(T\) corresponding to \(\lambda\) and therefore \(A=\left[\begin{array}{cc}\lambda I_{p} & B \\ 0 & C\end{array}\right]\)

Then the characteristic polynomial of T is \(f(t)=\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left[\begin{array}{cc}(\lambda-t) I_{p} & B \\ 0 & c-t I_{n-p}\end{array}\right]\)
\[
=\operatorname{det}\left((\lambda-t) I_{p}\right) \operatorname{det}\left(c-t I_{n-p}\right)
\]
\[
=(\lambda-t)^{p} g(t) \text { where } g(t) \text { is a polynomial. }
\]

Thus \((\lambda-t)^{p}\) is a factor of \(f(t)\) and hence the multiplicity of \(\lambda\) is atleast p . But \(\operatorname{dim}\left(E_{\lambda}\right)=p\). So \(\operatorname{dim}\left(E_{\lambda}\right) \leq m\).

Hence \(1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m\).
12.15.3 We state some theorem without proofs:

Lemma: Let T be a linar operator and Let \(\lambda_{1}, \lambda_{2} \ldots \lambda_{k}\) be distinct eigen values of T . For each \(i=1,2 \ldots k\), let \(v_{i} \in E \lambda_{i}\), the eigen space corresponding to \(\lambda_{i}\). If \(v_{1}+v_{2}+\ldots+v_{k}=0\) then \(v_{i}=0\) for all i.
12.15.4 Theorem: Let \(T\) be a linear operator on a vector space V , and let \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\) be distinct eigen values of T. For each \(i=1,2 \ldots k\); let \(S_{i}\) be a finite linearly independent subset of Eigen space \(E \lambda_{i}\). Then \(S=S_{1} \cup S_{2} \cup S_{3} \cup \ldots \cup S_{k}\) is a linearly independent subset of V .
12.15.5 Theorem: Let \(T\) be a linear operator on a finite dimensional vector space \(V\) such that the characteristic polynomial of T splits. Let \(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\) be the distinct eigen values of T . Then i) T is diagonalizable if and only if the multiplicity of \(\lambda_{i}\) is equal to the \(\operatorname{dim}\left(E \lambda_{i}\right)\) for all i .
ii) If T is diagonalizable and \(B_{i}\) is an ordered basis for \(E \lambda_{i}\) for each i , then \(B=B_{1} \cup B_{2} \cup B_{3} \cup \ldots \cup B_{k}\) is an ordered basis for V consisting of eigen vectors of T .

\subsection*{12.16 Summary:}

\section*{Test for Diagonalization :}

Let T be a linear operator on an n dimensional vector space V . Then T is diagonalizable if and only if both the following conditions hold.
i) The characteristic polynomial of T splits.
ii) For each eigen value \(\lambda\) of T , the multiplicity of \(\lambda\) equals to \(\mathrm{n}-\mathrm{rank}(T-\lambda I)\)

In order to test the diagonalizability of a square matrix, the same conditions can be used since the diagonalizability of A is equivalent to the diagonalizability of the operator \(L_{A}\).

If T is a diagonalizable operator and \(B_{1}, B_{2}, \ldots B_{k}\) are ordered basis for the eigen space of T , then the union \(B=B_{1} \cup B_{2} \cup \ldots \cup B_{k}\) is an ordered basis for V consisting of eigen vectors of T , and hence \([T]_{B}\) is a diagonal matrix.

When we want to test T for diagonalizability we usually choose a convient basis B for V , and form \(A=[T]_{B}\) if the characteristic polynomial of A splits, then use the condition (ii) above to check if the multiplicity of each of the repeated eigen value of A equal to n - rank \((A-\lambda I)\). If the characteristic polyomial of A is splitting condition. (ii) is automatically satisfied for eigen values with multiplicity 1 . If A is diagonlizable then T is also diagonalizable.

If we find \(T\) is diagonalizable and want to find \(a\) basis \(B\) for \(V\), consisting of eigen vectors of T , we addopt the following procedure.
1) We first find a basis for each eigen space of \(A\). the union of these bases is a basis \(C\) for \(F^{n}\) consisting of eigen vectors of \(A\). Each vector in \(C\) is the coordinate vector relative to \(B\) of an eigen vector of \(T\). The set consisting of these \(n\) eigen vectors of \(T\) is the desired basis \(B\).

Further more, if A is a \(n \times n\) diagonalizable matrix, we can find an invertible \(n \times n\) matrix Q and a diagonal \(n \times n\) matrix D such that \(Q^{-1} A Q=D\).

The matrix \(Q\) has as its columns the vectors in a basis of eigen vectors of \(A\), and \(D\) has as its \(j\) th diagonal entry the eigen value of \(A\) corresponding to the \(j\) th column of \(Q\).

\subsection*{12.17 Workedout Examples:}

\section*{W.E. 9:}

Let T be the linear on \(P_{2}(R)\) defined by \(T[f(x)]=f^{\prime}(x)\). Test T for diagonalizability.
Solution: T is a linear operator on \(P_{2}[R]\) defined by \(T[f(x)]=f^{\prime}(x)\). The standard basis for \(P_{2}(R)\) is \(B=\left\{1, x, x^{2}\right\}\)

Given \(T[f(x)]=f^{\prime}(x)\)
\[
T(1)=0=0.1+0 . x+0 . x^{2}
\]
\[
T(x)=1=1(1)+0 x+0 x^{2}
\]
\[
T\left(x^{2}\right)=2 x=0(1)+2 x+0 x^{2}
\]
\(A=[T]_{B}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]\)
The characteristic equation is \(|A-\lambda I|=0\)
\[
\Rightarrow\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 2 \\
0 & 0 & -\lambda
\end{array}\right|=0
\]
expanding along the third row we get
\[
0-0+(-\lambda)\left(-\lambda^{2}-0\right)=0
\]
\[
-\lambda^{3}-0
\]

Thus \(T\) has only one eigen value \(\lambda=0\) with multiplicity 3 .
\(T[f(x)]=f^{\prime}(x)=0 \Rightarrow f(x)\) is a constant polynomial.
\(E_{\lambda}=N(T-\lambda I)=N(T)\) is the subspace of \(P_{2}(R)\) with constant polynomials.
So \(\{1\}\) is a basis of \(E_{\lambda}\). So dim \(\left(E_{\lambda}\right)=1\) consequently there is no basis of \(P_{2}(R)\) consisting of eigen vectors of T . And so T is not diagonalizable.
W.E. 10: Test the matrix \(A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right] \in M_{3 \times 3}(R)\) for diagonalizability.

Solution: The characteristic equation is \(|A-\lambda I|=0\).
\[
\Rightarrow\left[\begin{array}{ccc}
3-\lambda & 1 & 0 \\
0 & 3-\lambda & 0 \\
0 & 0 & 4-\lambda
\end{array}\right]=0
\]
expanding along the third row.
\[
\begin{aligned}
& 0-0+(4-\lambda)\left\{(3-\lambda)^{2}-0\right\}=0 \\
& \quad \Rightarrow(4-\lambda)(3-\lambda)^{2}=0 \text { so } \lambda=4,3,3
\end{aligned}
\]

Also A has eigen values \(\lambda_{1}=4\) and \(\lambda_{2}=3\) with multiplicities 1 and 2 respectively.
Since \(\lambda_{1}\) has multiplicity 1 ; condition (ii) is satisfied for \(\lambda_{1}\). Thus we need only to test condition (ii) for \(\lambda_{2}\).

To find the rank of \(\left(A-\lambda_{2} I\right)\) where \(\lambda_{2}=3\)
\(\left(A-\lambda_{2} I\right)=\left[\begin{array}{ccc}3-3 & 1 & 0 \\ 0 & 3-3 & 0 \\ 0 & 0 & 4-3\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\)

Which can be put in Echelon form. Here the number of non zero rows 2. So Rank of \(\left(A-\lambda_{2} I\right)=2\).

For \(\lambda_{2}=3, \mathrm{n}-\operatorname{rank}\left(A-\lambda_{2} I\right)=3-2=1\). Which is not the multiplicity of \(\lambda_{2}\). So the condition (ii) fails for \(\lambda_{2}\) and so A is not diagonalizable.

\section*{W.E. 11:}

Test for diagonalizability of the linear operator T on \(P_{2}(R)\) defined as follows:
\[
T[f(x)]=f(1)+f^{\prime}(0) x+\left(f^{\prime}(0)+f^{\prime \prime}(0)\right) x^{2}
\]

Also find an ordered basis for \(R^{3}\) of eigen vectors of \([T]_{B}\) where B is the standard basis of \(P_{2}(R)\).
Solution: T is a linear operator on \(P_{2}(R)\) defined by \(T[f(x)]=f(1)+f^{\prime}(0) x+\left(f^{\prime}(0)+f^{\prime \prime}(0)\right) x^{2}\)
\[
B=\left\{1, x, x^{2}\right\} \text { is the standard ordered basis for } P_{2}(R) \text { and } A=[T]_{B}
\]
\[
T(1)=1+0 x+0 x^{2} ; \quad T(x)=1+1 \cdot x+(1+0) x^{2}
\]
i.e. \(T(x)=1+x+x^{2}\)
\(T\left(x^{2}\right)=1+0 x+(0+2) x^{2}\)
i.e. \(T\left(x^{2}\right)=1+0 x+2 x^{2}\)

Thus \(A=[T]_{B}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]\)
\[
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right| \\
& =(1-\lambda)[(1-\lambda)(2-\lambda)-0] \text { expanding along the first column. } \\
& =(1-\lambda)^{2}(2-\lambda)
\end{aligned}
\]

\section*{Rings and Linear Algebra}

The characteristic polynomial of A and hence of T is \((1-\lambda)^{2}(2-\lambda)\) which splits. Hence the condition (i) is satisfied.

Also \(\lambda_{1}=1\) has multiplicity 2 .
and \(\lambda_{2}=2\) has multiplicity 1 and hence condition (ii) is satisfied.
So we verify condition (ii) for \(\lambda_{1}=1\)
For this ( n - rank \(\left(A-\lambda_{1} I\right)\) )
\(=3-\) rank of \(\left[\begin{array}{ccc}1-1 & 1 & 1 \\ 0 & 1-1 & 0 \\ 0 & 1 & 2-1\end{array}\right]\)
\(=3-\operatorname{rank}\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]\)
\(=3-(1)=2\). Since the matrix has only one linearly independent row.
Here n - rank \(\left(A-\lambda_{1} I\right)=2=\) multiplicity of \(\lambda_{1}\).
Hence as the required conditions are satisfied, T is diagonalizable.
We now find the ordered basis C for \(R^{3}\) of eigen vectors of A . We consider each eigen value separately.

Let \(\lambda_{1}=1\); then \((A-\lambda I) v=0\)
\[
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc}
1-1 & 1 & 1 \\
0 & 1-1 & 0 \\
0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow v_{2}+v_{3}=0 \rightarrow v_{2}=-v_{3} \text { Let } v_{1}=s, v_{3}=t
\end{aligned}
\]
then \(\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}s \\ -t \\ t\end{array}\right]=s\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\)

So \(C_{1}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}\) is a basis for the eigen space \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /(A-\lambda I) v=0\right\}\)
To find the eigen space corresponding to \(\lambda_{2}=2\).
\[
\begin{gathered}
\left(A-\lambda_{2} I\right) v=O \\
\Rightarrow\left[\begin{array}{ccc}
1-2 & 1 & 1 \\
0 & 1-2 & 0 \\
0 & 0 & 2-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Rightarrow\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Rightarrow-v_{2}=0,-v_{1}+v_{2}+v_{3}=0 \rightarrow-v_{1}+v_{3}=0 \text { so } v_{3}=v_{1}
\end{gathered}
\]

Put \(v_{1}=1\) then \(v_{2}=0, v_{3}=1\)
So \(C_{2}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}\) is the basis for the eigen space \(E_{\lambda_{2}}=\left\{v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} I\right) v=0\right\}\)
consider \(C=C_{1} \cup C_{2}\) then
\[
C=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
\]

Thus C is an ordered basis for \(R^{3}\) consisting of eigen vectors of A .

Finally we observe that the vectors in \(C\) are the coordinate vectors relative to \(B\) of the vectors in the set.
\(A=\left\{1,-x+x^{2}, 1+x^{2}\right\}\) which is an ordered basis for \(P_{2}(R)\) consisting of eigen vectors of T. Thus
\[
[T]_{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \text { which is the required diagonal matrix. }
\]
W.E. 12: Show that the matrix \(\left[\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right]\) is diagonalizable and find a \(2 \times 2\) matrix \(P\) such that \(P^{-1} A P\) is a diagonalizable matrix.

Solution: The characteristic equation of the given matrix \(A=\left[\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right]\) is \(|A-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}-\lambda & -2 \\ 1 & 3-\lambda\end{array}\right|=0\).
\(\Rightarrow-\lambda(3-\lambda)+2=0 \rightarrow \lambda^{2}-3 \lambda+2=0\)
\(\Rightarrow(\lambda-2)(\lambda-1)=0\) in \(\lambda=2,1\)
Thus A has two distinct eigen values \(\lambda_{1}=1, \lambda_{2}=2\). As the diamensionality of the vector space is 2 .

We see that \(A\) is diagonalizable.
1) To find the eigen space corresponding to \(\lambda_{1}=1\) :

We have \((A-\lambda I) v=O\)
\[
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
-1 & -2 \\
1 & 3-1
\end{array}\right|\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow v_{1}+2 v_{2}=0 \rightarrow v_{1}=-2 v_{2} \text { put } v_{2}=1 \text { then } v_{1}=-2 \\
& \text { So } v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
\]
or \(C_{1}=\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}\) is a basis of eigen space. \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in R^{2} /\left(A-\lambda_{1} I\right)=O\right\}\)
ii) To find eigen space corresponding to \(\lambda_{2}=2\).
\[
\begin{aligned}
& \left(A-\lambda_{1} I\right) v=O \Rightarrow\left[\begin{array}{cc}
0-2 & -2 \\
1 & 3-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
-2 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0 \rightarrow v_{1}+v_{2}=0 \text { so } v_{1}=-v_{2}
\end{aligned}
\]

Put \(v_{2}=1\), then \(v_{1}=-1\) so \(v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)

So \(C_{2}=\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}\) is the basis of the eigen space \(E_{\lambda_{2}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in R^{2} /\left(A-\lambda_{2} I\right) v=O\right\}\)
\(C=C_{1} \cup C_{2}=\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}\) is an ordered basis for \(R^{2}\) consisting of the eigen vectors of A .
Let \(P=\left[\begin{array}{cc}-2 & -1 \\ 1 & 1\end{array}\right]\) is the matrix whose columns are vectors in C .
\(D=P^{-1} A P=\left[L_{A}\right]_{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\)

\section*{W.E. 13:}

Let T be the linear operator on \(R^{3}\) which is represented in the standard basis by the matrix \(\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]\). Prove that T is diagonalizable. Find a basis of \(R^{3}\) consisting of eigen vectors of T .

Solution: The given matrix \(A=\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]\)
The characteristic polynomial of A corresponding to the characteristic root \(\lambda\) is
\[
\lambda^{3}\left(\text { trace of A) } \lambda^{2}+\left(A_{11}+A_{22}+A_{33}\right) \lambda-\operatorname{det} A\right.
\]

Where \(A_{i i}\) is the cofactor of the diagonal element \(a_{i i}\).
trace of \(A=a_{11}+a_{22}+a_{33}=-9+3+7=1\)
\[
\begin{gathered}
A_{11}=(-1)^{1+1}\left|\begin{array}{ll}
3 & 4 \\
8 & 7
\end{array}\right|=21-32=-11 \\
A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
-9 & 4 \\
-16 & 7
\end{array}\right|=-63+64=1 \\
A_{33}=(-1)^{3+3}\left|\begin{array}{ll}
-9 & 4 \\
-8 & 3
\end{array}\right|=-27+32=5 \\
A_{11}+A_{22}+A_{33}=-11+1+5=-5 \\
\operatorname{det} A=-9(21-32)-4(-56+64)+4(-64+48) \\
=99-32-64=3
\end{gathered}
\]

The characteristic polynomial is
\[
\begin{aligned}
& \lambda^{3}-\lambda^{2}-5 \lambda-3=f(\lambda) \text { say } \\
& f(-1)=-1-1+5-3=0
\end{aligned}
\]

\(\lambda+1\) is a factor of \(f(\lambda)=0\)
The other factor is
\[
\begin{aligned}
& \lambda^{2}-2 \lambda-3 \\
= & (\lambda-3)(\lambda+1)
\end{aligned}
\]

So \(f(\lambda)=0 \Rightarrow(\lambda+1)^{2}(\lambda-3)=0\)
Hence the characteristic roots are \(-1,-1,3\)
Thus the eigen value \(\lambda_{1}=-1\) has the multiplicity 2
\[
\lambda_{2}=3 \text { has the multiplicity } 1 .
\]
1) To find eigen space corresponding to \(\lambda_{1}=-1\)
\[
(A-\lambda I) v=O
\]
\(\Rightarrow\left[\begin{array}{ccc}-9+1 & 4 & 4 \\ -8 & 3+1 & 4 \\ -16 & 8 & 7+1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=O\)
\(\Rightarrow\left[\begin{array}{ccc}-8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=O\)
\(R_{2}-R_{1}, R_{3}-2 R_{1}\) gives
\[
\left[\begin{array}{ccc}
-8 & 4 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O
\]
\(R_{1} \times \frac{1}{4}\) gives \(\left[\begin{array}{ccc}-2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=O=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)
\[
-2 v_{1}+v_{2}+v_{3}=0 \text { put } v_{1}=t, v_{2}=s
\]
then \(v_{3}=2 v_{1}-v_{2}=2 t-s\)
\(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}t \\ s \\ 2 t-s\end{array}\right]=t\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+s\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\)

So \(C_{1}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\right\}\) is a basis of for the eigen space \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{1} I\right) v=O\right\}\)
\(\operatorname{Dim}\) of \(E_{\lambda_{1}}=2\) which is equal to the multiplication of \(\lambda_{1}=-1\).
i.e. multiplicity of \(\lambda_{1}=\operatorname{Dim} E_{\lambda_{1}}\)
ii) To find the eigen space corresponding to \(\lambda_{2}=3\) :
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v=O \\
& \Rightarrow\left[\begin{array}{ccc}
-9-3 & 4 & 4 \\
-8 & 3-3 & 4 \\
-16 & 8 & 7-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{ccc}
-12 & 4 & 4 \\
-8 & 0 & 4 \\
-16 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
& R_{1} \times \frac{1}{4}, R_{2} \times \frac{1}{4}, R_{3} \times \frac{1}{4} \text { gives } \\
& {\left[\begin{array}{ccc}
-3 & 1 & 1 \\
-2 & 0 & 1 \\
-4 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& 3 R_{2}-2 R_{1}, 3 R_{3}-3 R_{1} \text { gives } \\
& {\left[\begin{array}{ccc}
-3 & 1 & 1 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O}
\end{aligned}
\]
\(R_{3}+R_{2}\) gives
\(\left[\begin{array}{ccc}-3 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Rightarrow-2 v_{2}+v_{3}=0\) so \(v_{3}=2 v_{2}\) and
\[
-3 v_{1}+v_{2}+v_{3}=0 \rightarrow-3 v_{1}+v_{2}+2 v_{2}=0
\]
\(\Rightarrow 3 v_{1}=3 v_{2}\) so \(v_{2}=v_{1}\)
Put \(v_{1}=1\), so \(v_{2}=1, v_{3}=2\) Hence \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\)

So \(C_{2}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right\}\) is a basis of eigen space \(E_{\lambda_{2}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} v\right)=O\right\}\)
\(\operatorname{Dim} E_{\lambda_{2}}=1\) which is equal to the multiplicity of \(\lambda_{2}=3\)
Multiplicity of \(\lambda_{2}=\operatorname{dim} E_{\lambda_{2}}\)
If we consider the union of bases of these two subspaces we get \(C=\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right\}\) which is linearly independent. Thus the set C is a basis of \(R^{3}\) consisting of the eigen vectors of T .

Hence T is diagonalizable.

\section*{W.E. 14:}

Let \(T: R^{3} \rightarrow R^{3}\) is defined as follows
\[
T\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
4 a_{1}+a_{3} \\
2 a_{1}+3 a_{2}+2 a_{3} \\
a_{1}+4 a_{3}
\end{array}\right]
\]

Find whether the linear operator T is diagonalizable or not.

Solution: Given \(T\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{c}4 a_{1}+a_{3} \\ 2 a_{1}+3 a_{2}+2 a_{3} \\ a_{1}+4 a_{3}\end{array}\right]\)
\(B=\left\{e_{1}, e_{2}, e_{3}\right\}\) where \(e_{1}=\{1,0,0\}, e_{2}=\{0,1,0\}, e_{3}=\{0,0,1\}\) is the standard basis of for \(R^{3}\).
\[
\begin{array}{r}
T\left(e_{1}\right)=T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
4+0 \\
2+0+0 \\
1+0+0
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right] \\
=4(1,0,0)+2(0,1,0)+1(0,0,1) \\
=4 e_{1}+2 e_{2}+1 e_{3} \\
T\left(e_{2}\right)=T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
4(0)+0 \\
2(0)+3(1)+2(0) \\
0+4(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right] \\
=0(1,0,0)+3(0,1,0)+0(0,0,1) \\
=0 e_{1}+3 e_{2}+0 e_{3} \\
T\left(e_{3}\right)= \\
=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4(0)+1 \\
2(0)+3(1)+2(1) \\
0+4(1)
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] \\
=1(1,0,0)+2(0,1,0)+4(0,0,1) \\
=1 e_{1}+3 e_{2}+0 e_{3}
\end{array}
\]

Writing \([T]_{B}\) as A we get
\[
A=[T]_{B}=\left[\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right]
\]

Hence the characteristic polynomial is \(|A-\lambda I|\).

The characteristic polynomial of A corresponding to the characteristic root \(\lambda\) is
\[
\lambda^{3}-(\text { trace of } \mathrm{A}) \lambda^{2}+\left(A_{11}+A_{22}+A_{33}\right) \lambda-\operatorname{det} A .
\]

Where \(A_{i i}\) is the cofactor or diagonal element \(a_{i i}\). trace of \(A=4+3+4=11\)
\(A_{11}=(-1)^{1+1}\left|\begin{array}{ll}3 & 2 \\ 0 & 4\end{array}\right|=12-0=12\)
\(A_{22}=(-1)^{2+2}\left|\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right|=16-1=15\)
\(A_{33}=(-1)^{3+3}\left|\begin{array}{ll}4 & 0 \\ 2 & 3\end{array}\right|=12-0=12\)
\(A_{11}+A_{22}+A_{33}=12+15+12=39\)
\(\operatorname{det} A=4(12-0)-0+1(0-3)=48-3=45\)
Hence the characteristic polynomial is \(\lambda^{3}-11 \lambda^{2}+39 \lambda-45=f(\lambda)\) say
\(f(3)=27-99 \lambda-45=0\)
\(\therefore \lambda-3\) is a factor of the characteristic equation \(f(\lambda)=0\).
The other factor is
\[
\begin{aligned}
& \lambda^{2}-8 \lambda+15 \\
& =(\lambda-3)(\lambda-5)
\end{aligned}
\]

So \(f(\lambda)=(\lambda-3)^{2}(\lambda-5)\)


Hence the characteristic roots are \(3,3,5\).
So the eigen values of \(T\) are
\(\lambda_{1}=5\) with multiplicity 1
\(\lambda_{2}=3\) with multiplicity 2
i) To find the eigen space corresponding to \(\lambda_{1}=5\) :
\[
\left(A-\lambda_{1} I\right) v=O
\]
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
4-5 & 0 & 1 \\
2 & 3-5 & 2 \\
1 & 0 & 4-5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -2 & 2 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{2}+2 R_{1}, R_{3}+R_{1} \text { gives } \\
& \Rightarrow\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -2 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow-2 v_{2}+4 v_{3}=0 \Rightarrow v_{2}=2 v_{3} \\
& -v_{1}+v_{3}=0
\end{aligned} v_{1}=v_{3} .
\]

Put \(v_{3}=1\), then \(v_{2}=2, v_{1}=1\)
So \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\)

So \(C_{1}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}\) is a basis of eigen space \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{1} v\right)=O\right\}\)
\(\operatorname{Dim}\) of \(E_{\lambda_{1}}=1\) which is equal to the multiplicity of \(\lambda_{1}\).
ii) To find the eigen space corresponding to \(\lambda_{2}=3\)
\[
\left(A-\lambda_{2} I\right) v=O
\]
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
4-3 & 0 & 1 \\
2 & 3-3 & 2 \\
1 & 0 & 4-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 2 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{2}-2 R_{1}, R_{3}-R_{1} \text { gives } \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow 1 v_{1}+v_{3}=0 \Rightarrow v_{3}=-v_{1}
\end{aligned}
\]

The unknown \(v_{2}\) does not appear in this system, we assign it a parametric value say \(v_{2}=s\) and solve the system for \(v_{3}\) and \(v_{1}\). If \(v_{3}=t\), then \(v_{1}=-t\), introducing another parameter t . The result is the general solution to the system.
\[
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text { for } s, t \in R
\]

So \(C_{2}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}\) is a basis of the eigen space \(E_{\lambda_{2}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} v\right)=O\right\}\)
\(\operatorname{dim} E_{\lambda_{2}}=2 ;\) The multicity of \(\lambda_{2}=2\)
So \(\operatorname{dim} E_{\lambda_{2}}=\) multicity of \(\lambda_{2}=2\)
The union of two bases \(C_{1}\) and \(C_{2}\).
is \(C=C_{1} \cup C_{2}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}\) is linearly independent and hence is a basis of \(R^{3}\); consisting of eigen vectors of T . Consequenty T is diagonalizable.
W.E.15: Let T be a linear operator an \(P_{2}(R)\) defined by \(T[f(x)]=f(x)+(x+1) f^{\prime}(x)\). Show that T is diagonalizable.

Solution: \(B=\left\{1, x, x^{2}\right\}\) is the standard basis of \(P_{2}(R)\) we are given a linear operator on \(P_{2}(R)\) defined by \(T[f(x)]=f(x)+(x+1) f^{\prime}(x)\).

In W.E. 4. We have shown \(A=[T]_{B}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]\) and the eigen values of \(T\) are 1, 2, 3.
We will now find eigen vectors corresponding to the eigen values \(1,2,3\).
To find the eigen space corresponding to \(\lambda_{1}=1\).
We have \(\left(A-\lambda_{1} I\right) v=O\)
\[
\begin{gathered}
\Rightarrow\left[\begin{array}{ccc}
1-1 & 1 & 0 \\
0 & 2-1 & 2 \\
0 & 0 & 3-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\Rightarrow 2 v_{3}=0 \text { so } v_{3}=0 \text { and } v_{2}+2 v_{3}=0 \Rightarrow v_{2}=0 .
\end{gathered}
\]

Since \(v_{3}=0\) and \(v_{2}=0\) and \(v_{1}\) can take any real value. Say \(v_{1}=1\)
Hence the eigen vector corresponding to \(\lambda_{1}=1\) is given by \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\) and every non zero scalar multiple of it is an eigen vector.

So \(C_{1}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}\) is a basis for the eigen space.
\(E_{\lambda_{2}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} I\right) v=O\right\}\)
\(\operatorname{dim} E_{\lambda_{1}}=1 ; \quad\) Multiplicity of \(\lambda_{1}=1\).
\(\therefore \operatorname{dim} E_{\lambda_{1}}=\) Multiplicity of \(\lambda_{1}\)
To find the eigen space corresponding to \(\lambda_{2}=2\) :
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v=O \\
& {\left[\begin{array}{ccc}
1-2 & 1 & 0 \\
0 & 2-2 & 2 \\
0 & 0 & 3-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& \Rightarrow\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \Rightarrow v_{3}=0 \\
& -v_{1}+v_{2}=0 \\
& v_{2}=v_{1}
\end{aligned}
\]
\[
\text { put } v_{1}=1 \text {, then } v_{2}=1, v_{3}=0
\]

Hence \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\) is the eigen vector and every scalar multiple of it is also an eigen vector.

So \(C_{2}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}\) is a basis for the eigen space.
\(E_{\lambda_{2}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} I\right)=O\right\}\)
\(\operatorname{Dim}\) of \(E_{\lambda_{2}}=1 ;\) Multiplicity of \(\lambda_{2}=1\)
\(\therefore\) Dim of \(E_{\lambda_{2}}=\) Multiplicity of \(\lambda_{2}\)
To find the eigen space corresponding to \(\lambda_{3}=3\) :
\[
\left(A-\lambda_{3} I\right) v=O
\]
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
1-3 & 1 & 0 \\
0 & 2-3 & 2 \\
0 & 0 & 3-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& \Rightarrow\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow-v_{2}+2 v_{3}=0 \text { so } v_{2}=2 v_{3}-2 v_{1}+v_{2}=0 \quad v_{2}=2 v_{1}
\end{aligned}
\]
\[
\text { put } v_{1}=1 \text {, so } v_{2}=2, v_{3}=1
\]

Hence \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\) is an eigen vector and every scalar multiple of it is also an eigen vector.

So \(C_{3}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}\) is a basis for the eigen space.
\(E_{\lambda_{3}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{3} I\right) v=O\right\} ; \operatorname{dim} E_{\lambda_{3}}=1\)
Multiplicity of \(\lambda_{3}=1\) so \(\operatorname{dim} E_{\lambda_{3}}=\) Multiplicity of \(\lambda_{3}\)

Thus we observe that the multiplicity of each eigen value is equal to the dimension of the corresponding eigen space.

Let \(C=C_{1} \cup C_{2} \cup C_{3}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}\) is linearly independent. Thus this set is a basis of \(R^{3}\) consisting of eigen vectors of T .

So T is diagonalizable.

\subsection*{12.18 Method to find any positive integral power of a diagonalizable matrix A:}

A is a diagonalisable matrix of order n . We can find a \(\mathrm{n} \times \mathrm{n}\) matrix Q such that \(Q^{-1} \mathrm{AQ}\) is a diagonal matrix D .
\[
D=Q^{-1} A Q=\left[L_{A}\right]_{B}
\]
\(Q\) is the matrix whose columns are the eigen vectors.
Preoperating with Q , and post operating with \(Q^{-1}\) we get \(A=Q D Q^{-1}\)
\[
A^{k}=\left(Q D Q^{-1}\right)^{k}
\]

So \(A^{k}=\left(Q D Q^{-1}\right)\left(Q D Q^{-1}\right) \ldots\left(Q D Q^{-1}\right)(\mathrm{k}\) terms \()\)
\[
=Q D\left(Q^{-1} Q\right) D\left(Q^{-1} Q\right) \ldots D Q^{-1}
\]

So \(A^{k}=Q D^{k} Q^{-1}\)

\section*{W.E. 16: Examples:}

For \(A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right] \in M_{2 \times 2}(R)\) find an expression for \(A^{n}\) where n is a positive integer.
Solution: given \(A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]\). We show that A is diagonalizable and find a \(2 \times 2\) matrix Q , such that \(Q^{-1} A Q\) is a diagonal matrix.

Then we compute \(A^{n}\) for any positive integer no.
The characteristic equation of \(A\) is
\[
\begin{aligned}
&|A-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}
1-\lambda & 4 \\
2 & 3-\lambda
\end{array}\right|=0 \\
& \Rightarrow(1-\lambda)(3-\lambda)-8=0 \\
& \lambda^{2}-4 \lambda-5=0 \Rightarrow(\lambda-5)(\lambda+1)=0
\end{aligned}
\]

Hence the characteristic values are \(-1,5\).
Hence the eigen values of \(L_{A}\) are -1, 5 .
Which are district, \(L_{A}\) is a linear operator on a two dimensional vector space. So \(L_{A}\) and hence A is diagonalizable.

To find eigen space corresponding to \(\lambda_{1}=-1\) :
\[
\begin{array}{r}
\left(A-\lambda_{1} I\right) v=0 \Rightarrow\left[\begin{array}{cc}
1-\lambda_{1} & 4 \\
2 & 3-\lambda_{1}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \\
\Rightarrow\left[\begin{array}{cc}
1+1 & 4 \\
2 & 3+1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \Rightarrow\left[\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}
\]
\[
\Rightarrow 2 v_{1}+4 v_{2}=0 \Rightarrow v_{1}=-2 v_{2} \text { put } v_{2}=1 \text { and so } v_{1}=-2 . \text { There fore }\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\]

Hence \(C_{1}=\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}\) is a basis for the eigen
space \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in R^{2} /\left(A-\lambda_{1} I\right) v=O\right\}\)
To find the eigen space corresponding to \(\lambda_{2}=5\) :
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v=O \quad \Rightarrow\left[\begin{array}{cc}
1-5 & 4 \\
2 & 3-5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \\
\Rightarrow & {\left[\begin{array}{cc}
-4 & 4 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]
\[
\begin{aligned}
& \Rightarrow-4 v_{1}+4 v_{2}=0 \Rightarrow-v_{1}+v_{2} \Rightarrow \Rightarrow v_{1}=v_{2} \text { put } v_{1}=1 \text {, them } v_{2}=1 \text { so } v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& C_{2}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \text { is a basis for the eigen space } E_{\lambda_{1}}=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \in R^{2} /\left(A-\lambda_{1} I\right) v=O\right\} \\
& \text { So } C=C_{1} \cup C_{2}=\left\{\left[\begin{array}{c}
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \text { is an ordered basis for } R^{2} \text { consisting of eigen vectors of } \mathrm{A} \text {. } \\
& \text { Let } Q=\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right], Q^{-1}=\frac{-1}{3}\left[\begin{array}{cc}
1 & -1 \\
-1 & -2
\end{array}\right] \\
& D=Q^{-1} A Q=\left[L_{A}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right] \\
& A^{n}=Q D^{n} D^{-1} \\
& =Q\left[\begin{array}{cc}
(-1)^{n} & 0 \\
0 & (5)^{n}
\end{array}\right] Q^{-1} \\
& =\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-1)^{n} & 0 \\
0 & (5)^{n}
\end{array}\right]\left(\frac{-1}{3}\right)\left[\begin{array}{cc}
1 & -1 \\
-1 & -2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-1)^{n} & 0 \\
0 & 5^{n}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
(-2)(-1)^{n} & 5^{n} \\
(1)^{n} & 5^{n}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
2(-1)^{n}+5^{n} & (-2)(-1)^{n}+2 \cdot(5)^{n} \\
-(1)^{n}+5^{n} & (-1)^{n}+2 \cdot 5^{n}
\end{array}\right]
\end{aligned}
\]
W.E. 17: If \(A=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]\). Find the eigen values and eigen vectors of A . Prove that A is diagonalizable. Find a basis of \(R^{2}\) containing eigen vectors of A .

Solution: The characteristic equation is \(|A-\lambda I|=O\)
\[
\begin{gathered}
\Rightarrow\left|\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right|=O \Rightarrow(1-\lambda)^{2}-4=0 \\
\Rightarrow(1-\lambda+2)(1-\lambda-2)=O \Rightarrow(3-\lambda)(-\lambda-1)=0 \\
\Rightarrow \lambda=3, \lambda=-1
\end{gathered}
\]

Thus A has two eigen values \(\lambda_{1}=3, \lambda_{2}=-1\)
To find the eigen vector corresponding to \(\lambda_{1}=3\) :
\[
\begin{aligned}
& \left(A-\lambda_{1} I\right) v=O \Rightarrow\left[\begin{array}{cc}
1-3 & 1 \\
4 & 1-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \quad R_{2}+2 R_{1} \text { gives } \\
& {\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow-2 v_{1}+v_{2}=0 \rightarrow v_{2}=2 v_{1}} \\
& \text { put } v_{1}=t \text {, then } v_{2}=2 t \text { so } v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
\]

Where \(t \in R\)
Thus \(\left[\begin{array}{l}1 \\ 2\end{array}\right]\) is the eigen vector corresponding to \(\lambda_{1}=3\)
To find the eigen vector corresponding to \(\lambda_{2}=-1\) :
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v=O \Rightarrow\left[\begin{array}{cc}
1+1 & 1 \\
4 & 1+1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=O \quad R_{2}-2 R_{1} \text { gives }
\end{aligned}
\]
\[
\begin{gathered}
{\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow 2 v_{1}+v_{2}=0 \rightarrow v_{2}=2 v_{1}} \\
\text { put } v_{1}=s \text { them } v_{2}=-2 s
\end{gathered}
\]

Thus \(v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}s \\ -2 s\end{array}\right]=s\left[\begin{array}{l}1 \\ 2\end{array}\right]\) where \(\mathrm{s} \in R\)
So \(\left[\begin{array}{c}1 \\ -2\end{array}\right]\) is the eigen vector corresponding to \(\lambda_{2}=-1\).
\[
\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right\} \text { is a basis of } R^{2} \text {, since there vectors are linearly in dependent and } \operatorname{dim}_{R^{2}}=2 .
\]

This is basis of \(R^{2}\) consisting of eigen vectors of A . So \(L_{A}\) and hence A is diagonalizable
W.E.18: Find the matrix P which diagonalizes the matrix \(A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]\) and verify that \(P^{-1} A P\) is a diagonal matrix.

Solution: The characteristic equation of A is \(|A-\lambda I|=0\)
\[
\begin{aligned}
& \text { trace of } A=-2+1+0=-1 \\
& A_{11}=(-1)^{1+1}\left|\begin{array}{cc}
1 & -6 \\
-2 & 0
\end{array}\right|=0-12=-12 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
-2 & -3 \\
-1 & 0
\end{array}\right|=0-3=-3 \\
& A_{33}=(-1)^{3+3}\left|\begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array}\right|=-2-4=-6 \\
& A_{11}+A_{22}+A_{33}=-12-3-6=-21 \\
& \operatorname{det} A=-2(0-12)-2(0-6)-3(-4+1) \\
& \quad=24+12+9=45
\end{aligned}
\]

The characteristic equation is
\[
\lambda^{3}-\lambda^{2} . \text { trace of } A+\left(A_{11}+A_{22}+A_{33}\right) \lambda-\operatorname{det} A=0
\]
i.e. \(f(\lambda)=\lambda^{3}-(-1) \lambda^{2}+(-21) \lambda+45=0\)
\[
\begin{aligned}
& =\lambda^{3}+\lambda^{2}-21 \lambda+45=0 \\
f(-3) & =-27+9+63-45 \\
& =0
\end{aligned}
\]
\(\lambda+3\) is a factor.
\[
\begin{array}{c|ccc|c}
-3 & \begin{array}{llll}
1 & +1 & -21 & -45 \\
& -3 & 6 & +45 \\
\hline & 1 & -2 & -15 \\
& 0 \\
\hline
\end{array}
\end{array}
\]

The other factor is \(\lambda^{2}-2 \lambda-15=(\lambda-5)(\lambda+3)\)
So \(f(\lambda)=(\lambda+5)^{2}(\lambda-5)=0\)
The eigen values are \(\lambda=-3,-3,5\)
i) To find the eigen space corresponding to \(\lambda_{1}=5\).
\[
\begin{gathered}
\left(A-\lambda_{1} I\right) v=O \\
\Rightarrow\left[\begin{array}{ccc}
-2-5 & 2 & -3 \\
2 & 1-5 & -6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
\Rightarrow\left[\begin{array}{ccc}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
R_{1}-7 R_{3}, R_{2}+2 R_{3} \text { given }
\end{gathered}
\]
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 16 & 32 \\
0 & -8 & -16 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& R_{1}+2 R_{2} \text { gives } \\
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -8 & -16 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{array}{r}
-8 v_{2}-16 v_{3}=0 \Rightarrow v_{2}=-2 v_{3} \\
-v_{1}-2 v_{2}-5 v_{3}=0 \\
-v_{1}+4 v_{3}-5 v_{3}=0 \text { since } v_{2}=-2 v_{3} \\
\Rightarrow v_{3}=-v_{1}
\end{array}}
\end{aligned}
\]
put \(v_{1}=1\) then \(v_{3}=-1, v_{2}=2\)
\(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\) is an eigen vector corresponding to \(\lambda_{1}=5\).
\(C_{1}=\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}\) is a basis of the eigen space \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{1} I\right) v=0\right\}\)
ii) To find the eigen space corresponding to \(\lambda_{2}=-3\)
\[
\begin{aligned}
& \left(A-\lambda_{2} I\right) v=O \\
& \Rightarrow\left[\begin{array}{ccc}
-2+3 & 2 & -3 \\
2 & 1+3 & -6 \\
-1 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O
\end{aligned}
\]
\(\Rightarrow\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & +3\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=O, R_{2}-2 R_{1}, R_{3}+R_{1}\) give
\(\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=O\),
\[
\begin{array}{ll}
\text { So } \quad & v_{1}+2 v_{2}-3 v_{3}=0 \\
& v_{1}=-2 v_{2}+3 v_{3} \\
\text { put } v_{2}= & -s ; v_{3}=t
\end{array}
\]

Then \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}2 s+3 t \\ -s+0 t \\ 0 s+1 t\end{array}\right]=s\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]+t\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\)

So \(C_{2}=\left\{\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}\) is a basis corresponding to \(E_{\lambda_{1}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{2} I\right) v=O\right\}\)
\(P=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{array}\right] ; \operatorname{det} P=1(-1-0)-2(2-0)+3(0-1)\)
\[
\begin{gathered}
=-1-4-3=-8 \\
P^{-1}=\frac{1}{\operatorname{det} P} A d j \cdot A=\frac{-1}{8}\left[\begin{array}{ccc}
-1 & -2 & 3 \\
-2 & 4 & 6 \\
-1 & -2 & -5
\end{array}\right] \\
P^{-1} A=\frac{-1}{8}\left[\begin{array}{ccc}
-1 & -2 & 3 \\
-2 & 4 & 6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{ccc}
-2 & 2 & 3 \\
-2 & 4 & 6 \\
-1 & -2 & -5
\end{array}\right]=\frac{-1}{8}\left[\begin{array}{ccc}
-5 & -10 & 15 \\
6 & -12 & -18 \\
3 & 6 & 15
\end{array}\right]
\end{gathered}
\]
\[
\begin{aligned}
P^{-1} A P & =\frac{-1}{8}\left[\begin{array}{ccc}
-5 & -10 & 15 \\
6 & -12 & -18 \\
3 & 6 & 15
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]=\frac{-1}{8}\left[\begin{array}{ccc}
-40 & 0 & 0 \\
0 & 24 & 0 \\
0 & 0 & 24
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right]=\operatorname{diag}(5,-3,-3)
\end{aligned}
\]

Hence \(P^{-1} A P\) is a diagonal matrix.
W.E.19: Find the matrix \(P\) which transforms the matrix \(A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]\) to diagonal form and hence calculate \(A^{4}\).

Solution: Characteristic equation is \(|A-\lambda I|=0\)
trace of \(A=1+2+3=6\)
\[
\begin{aligned}
& A_{11}=(-1)^{1+1}\left|\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right|=6-2=4 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right|=3+2=5 \\
& A_{33}=(-1)^{3+3}\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right|=2-0=2 \\
& A_{11}+A_{22+} A_{33}=4+5+2=11 \\
& \operatorname{det} A=1(6-2)-0+(-1)(2-4)=4+2=6
\end{aligned}
\]

The characteristic equation is
\[
\lambda^{3}-\lambda^{2} \text { trace of } A+\lambda\left(A_{11}+A_{22}+A_{33}\right)-\operatorname{det} A=0
\]
\[
f(\lambda)=\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
\]

\section*{Rings and Linear Algebra}
(12.63)
\(f(1)=1-6+11-6=0 \quad\) So \(\lambda-1\) is a factor.


The other factor is \(\lambda^{2}-5 \lambda+6\)
\[
=(\lambda-5)(\lambda-2)
\]

Hence \(f(\lambda)=(\lambda-1)(\lambda-2)(\lambda-3)=0\)
The eigen values of \(A\) are 1, 2, 3
i) To find the eigen space corresponding to \(\lambda=1\) :
\[
\begin{aligned}
& \left(A-\lambda_{1} I\right) v=O \Rightarrow\left[\begin{array}{ccc}
1-1 & 0 & -1 \\
1 & 2-1 & 1 \\
2 & 2 & 3-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
& R_{3}-2 R_{2} \text { gives }\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \\
& \begin{array}{r}
-v_{3}=0 \Rightarrow v_{3}=0 \\
v_{1}+v_{2}+v_{3}=0 \\
\text { i.e. } v_{1}+v_{2}=0 \\
\Rightarrow v_{2}=-v_{1}
\end{array}
\end{aligned}
\]

Put \(v_{1}=1\), them \(v_{2}=-1, v_{3}=0\)
\[
\text { So } v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
\]
\[
\text { So } C_{1}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right\} \text { is a basis of the eigen space } E_{\lambda_{1}}=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in R^{3} /\left(A-\lambda_{1} I\right) v=O\right\}
\]
ii) To find eigen space corresponding to \(\lambda_{2}=2\)
\[
\left(A-\lambda_{2} I\right) v=O \Rightarrow\left[\begin{array}{ccc}
1-2 & 0 & -1 \\
1 & 2-2 & 1 \\
2 & 2 & 3-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \Rightarrow\left[\begin{array}{ccc}
-1 & 0 & -1 \\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O
\]
\(R_{2}+R_{3}\) gives
\[
\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 0 & 0 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \Rightarrow-v_{1}-v_{3}=0 \text { so } v_{3}=-v_{1}
\]
\[
\begin{aligned}
& 2 v_{1}+2 v_{2}+v_{3}=0 \\
\Rightarrow & 2 v_{1}+2 v_{2}-v_{1}=0 \\
\Rightarrow & v_{1}+2 v_{2}=0 \quad v_{1}=-2 v_{2}
\end{aligned}
\]
\[
\text { if } v_{2}=1, v_{1}=-2, v_{3}=2
\]
\[
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \text { so } C_{2}=\left\{\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]\right\} \text { is a basis of eigen space } E_{\lambda_{2}}=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in R^{3} /\left(A-\lambda_{2} I\right) v=O\right\}
\]
iii) To find the eigen space corresponding to \(\lambda_{3}=3\).
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
1-3 & 0 & -1 \\
1 & 2-3 & 1 \\
2 & 2 & 3-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O \Rightarrow\left[\begin{array}{ccc}
-2 & 0 & -1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=O} \\
& \Rightarrow-2 v_{1}-v_{3}=0 \Rightarrow v_{3}=-2 v_{1} \\
& 2 v_{1}+2 v_{2}=0 \Rightarrow v_{2}=-v_{1} \\
& \quad v_{1}-v_{2}+v_{3}=0 \Rightarrow v_{1}+v_{1}+-2 v_{1}=0
\end{aligned}
\]
put \(v_{1}=-1\), then \(v_{2}=1, v_{3}=2\)
So \(v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]\) Hence \(C_{3}=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]\right\}\) is a basis of \(E_{\lambda_{3}}=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in R^{3} /\left(A-\lambda_{3} I\right) v=O\right\}\)
Writing the three eigen vectors of the matrix as the three columns, the required transfor-
mation matrix \(P=\left[\begin{array}{ccc}1 & -2 & -1 \\ -1 & 1 & 1 \\ 0 & 2 & 2\end{array}\right]\)
\[
\operatorname{det} P=1(2-2)+2(-2-0)-1(-2-0)
\]
\[
\begin{gathered}
=0-4+2=-2 \\
P^{-1}=\frac{1}{\operatorname{det} P} \text { Adj. } P
\end{gathered}
\]
\[
=\frac{-1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right]
\]

Now \(P^{-1} A P=\frac{-1}{2}\left[\begin{array}{ccc}0 & 2 & -1 \\ 2 & 2 & 0 \\ -2 & -2 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -2 & -1 \\ -1 & 1 & 1 \\ 0 & 2 & 2\end{array}\right]\)
\[
\begin{aligned}
& =\frac{-1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
4 & 4 & 0 \\
-6 & -6 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -1 \\
-1 & 1 & 1 \\
0 & 2 & 2
\end{array}\right] \\
& =\frac{-1}{2}\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=D \text { (say) } \\
& P^{-1} A P=D \Rightarrow A=P D P^{-1} \\
& A^{4}=P D^{4} P^{-1} \\
& =\left[\begin{array}{ccc}
1 & -2 & -1 \\
-1 & 1 & 1 \\
0 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
(1)^{4} & 0 & 0 \\
0 & (2)^{4} & 0 \\
0 & 0 & (3)^{4}
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right] \times\left(\frac{-1}{2}\right) \\
& =\left[\begin{array}{ccc}
1 & -2 & -1 \\
-1 & 1 & 1 \\
0 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 81
\end{array}\right] \times\left(\frac{-1}{2}\right)\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right] \\
& =\left(\frac{-1}{2}\right)\left[\begin{array}{ccc}
1 & -32 & -81 \\
-1 & 16 & 81 \\
0 & 32 & 162
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & -1 \\
2 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right] \\
& A^{4}=\frac{-1}{2}\left[\begin{array}{ccc}
98 & 100 & 80 \\
-130 & -132 & -81 \\
-260 & -260 & -162
\end{array}\right]=\left[\begin{array}{ccc}
-49 & -50 & -40 \\
65 & 66 & 40 \\
130 & 130 & 81
\end{array}\right]
\end{aligned}
\]

\subsection*{12.19 Invariant Subspaces:}

We observed if \(v\) is an eigen vector of a linear operator T , then T maps the span of \(\{v\}\) into itself. Subspaces that are mapped into themselves are great importance in the study of linear operator.
12.19.1 T invariant Subspace: Let \(T\) be a linear operator on a vector space \(V\). A subspace \(\omega\) of V is said to be a T - invariant subspace of V if \(T(W) \subseteq W\), that is, if \(T(v) \in W\) for all \(v \in \omega\).
W.E. 20: Example: Suppose that \(T\) is a linear operator on a vectorspace \(V\); Then the following subspaces are T-invariant (i) \(\{O\}\),
(ii) V
(iii) \(R(T)\)
(iv) \(N(T)\)
(v) \(E_{\lambda}\) for any eigen value \(\lambda\) of \(T\).

Solution : i) To show \(\{0\}\) is T - invariant.
Let \(W_{1}=\{0\}\). We know that \(W_{1}\) is a subspace of V .
Also \(T(0)=0 \in W_{1}\) for \(0 \in v\)
Thus \(W_{1}\) is a T invariant subspace of V .
ii) To show that V is T - invariant.

We know V is a subspace of V .
Let \(v \in V\) then \(T(v) \in V\) for all \(v \in V\) which proves that V is a T - invariant subsspace of V.
iii) To show range of T i.e. \(R(T)\) is T invariant.

We know that \(R(T)\) is a subspace of V .
Let \(u \in R(T) \leq V \Rightarrow u \in V\)
\(\therefore T(u) \in R(T)\) for all \(u \in R(T)\) so \(R(T)\) is a T - invariant subspace of V .
iv) To show Null space \(N(T)\) is T-invarient.
\(T\) ' is a linear operator on \(V\).
\(N(T)=\{\alpha \in V / T(\alpha)=O(\in V)\}\) and \(N(T)\) is a null space of V i.e. a subspace of V .
\[
T(N(T)) \subseteq N(T) \text { i.e } T(u) \in N(T) \text { for all } u \in N(T)
\]
\(\therefore N(T)\) is a T - invariant subspace of V .
W.E. 21: T is the linear operator on \(R^{3}\) defined by \(T(a, b, c)=(a+b, b+c, 0)\)

Then xy plane \(=\{(x, y, 0) / x, y \in R\}\) and x axis \(=\{(x, 0,0) / x \in R\}\) are T - invariant subspaces of \(R^{3}\).

Solution: Given \(T: R^{3} \rightarrow R^{3}\) is defined by \(T(a, b, c)=(a+b, b+c, 0)\)
We know that \(W_{1}=x y\) plane \(=\{(x, 0,0) / x \in R\}\) is a subspace of \(R^{3}\).

But \(v=(x, 0,0) \in W_{1}\)
\(T(v)=T(x, y, 0)=(x+y, y+0,0)=(x+y, y, 0) \in W_{1}\) for all \(v \in W_{1}\)
Thus \(W_{1}\) is a T-invariant subspace of \(R^{3}\).
Similarly Let \(W_{2}=X-\) axis \(=\{(x, 0,0 / x \in R\}\)
We know that \(W_{2}\) is a subspace of \(R^{3}\).
Let \(v=(x, 0,0) \in W_{2}\)
\(T(v)=T(x, 0,0)=(x+0,0+0,0)=(x, 0,0) \in W_{2}\) for all \(v \in W_{2}\). Thus \(W_{2}\) is an invariant subspace of \(R^{3}\).

\subsection*{12.20 T - Cyclic subspace of \(V\) generated by a non zero vector:}
12.20.1 Definition: Let T be a linear operator on a vector space V and let \(v\) be a nonzero vector in V , The subspace \(W=\) span \(\left(\left\{v, T(v), T\left(v^{2}\right) \ldots\right\}\right)\) is called the T - Cyclic subspace of V generated by \(v\).

We can easily prove that \(W\) is T - invariant subspace of V . In fact, \(W\) is the smallest T - invariant subspace of V containing non zero vector \(v\).

\section*{W.E. 22:}

T is a linear operator on \(P(R)\) defined as \(T(f(x))=f^{\prime}(x)\). Find the T - Cyclic subspace generated by \(x^{2}\).

Solution: We have \(T[f(x)]=f^{\prime}(x)\) and so
\[
\begin{aligned}
& T\left(x^{2}\right)=\left(x^{2}\right)^{\prime}=2 x \\
& T^{2}\left(x^{2}\right)=T\left[T\left(x^{2}\right)^{\prime}\right]=T[(2 x)]=(2 x)^{\prime}=2
\end{aligned}
\]

T - Cyclic subspace generated by \(x^{2}=\) Span \(\left[\left\{x^{2}, 2 x, 2\right\}\right]=P_{2}(x)\)

\section*{W.E. 23:}

Let T be the linear operator on \(R^{3}\) defined by \(T(a, b, c)=\{-b+c, a+c, 3 c\}\). Find the

T-Cyclic subspace generated by \(e_{1}=(1,0,0)\).
Solution: Given \(T: R^{3} \rightarrow R^{3}\) is defined by
\[
\begin{aligned}
T(a, b, c) & =\{-b+c, a+c, 3 c\} \\
T\left(e_{1}\right) & =T(1,0,0)=e_{2} \\
T^{2}\left(e_{1}\right) & =\left[T\left(e_{1}\right)\right]=T\left(e_{2}\right)=T(0,1,0)=(-1,0,0)=-e_{1} \\
T^{3}\left(e_{1}\right) & =\left[T^{2}\left(e_{1}\right)\right]=T\left(-e_{1}\right)=T(-1,0,0)=(0,-1,0)=-e_{2}
\end{aligned}
\]

Thus \(T\) cyclic subspace generated by \(e_{1}=\left\{e_{1}, T\left(e_{1}\right), T^{2}\left(e_{1}\right), \ldots.\right\}\)
\[
=\operatorname{Span}\left\{e_{1}, e_{2}\right\}=[(s, t, o) / s, t \in R]
\]
12.20.2 Theorem: Let \(T\) be a linear operator on a finite dimensional vector space V , and let \(W\) be a T - invariant subspace of V . Then the characteristic polynomial of \(T_{W}\) devides the characteristic polynomial of T .

Proof: Choose an ordered basis \(C=\left\{v_{1}, v_{2}, \ldots . v_{k}\right\}\) for \(W\), and it is extended to form an ordered basis \(B=\left\{v_{1}, v_{2}, \ldots . v_{k}, v_{k+1} \ldots \ldots v_{n}\right\}\) for V . Let \(A=[T]_{B}\) and \(B_{1}=\left[T_{W}\right]_{c}\). So A can be written as \(\left[\begin{array}{cc}B_{1} & B_{2} \\ 0 & B_{3}\end{array}\right]\).

Let \(f(t)\) be the characteristic polynomial of T and \(g(t)\) the characteristic polynomial of \(T_{W}\).

Then \(f(t)=\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left[\begin{array}{cc}B_{1}-t I_{k} & B_{2} \\ 0 & B_{3}-t I_{n-k}\end{array}\right]\)
\[
g(t) \cdot \operatorname{det}\left(B_{3}-t I_{n-k}\right)
\]

Thus \(g(t)\) divides \(f(t)\).
W.E. 24: T is a linear operator on \(R^{4}\) defined by \(T(a, b, c, d)=(a+b+2 c-d, b+d, 2 c-d, c+d)\). If \(W=\{(t, s, o, o) / t, s \in R\}\) is a subspace of \(R^{4}\). Verify that characteristic polynomial of \(T_{W}\) divides
the characteristic polynomial of T .
Solution: Given \(T: R^{4} \rightarrow R^{4}\) is a linear operator defined by \(T(a, b, c, d)=(a+b+2 c-d, b+d, 2 c-d, c+d)\)
\[
W=\{(t, s, o, o) / t, s \in R\} \text { is a subspae of } R^{4} .
\]

Let \((a, b, 0,0) \in R^{4}\) then \(T(a, b, 0,0)=(a+b, b, 0,0) \in W\)
consider \(C=\left\{e_{1}, e_{2}\right\}\) which is an ordered basis of \(W\). Extend this to the standard ordered basis B of \(R^{4}\).

Then \(B_{1}=\left[T_{W}\right]_{C}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) and \(A=[T]_{B}=\left[\begin{array}{cccc}1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 1\end{array}\right]\)
Let the characteristic polynomial of the \(f(t)\) and \(g(t)\) be the characteristic polynomial of \(T_{W}\).

Then \(f(t)=|A-t I|=\left|\begin{array}{cccc}1-t & 1 & 2 & -1 \\ 0 & 1-t & 0 & 1 \\ 0 & 0 & 2-t & -1 \\ 0 & 0 & 1 & 1-t\end{array}\right|\)
\[
\begin{gathered}
=(1-t)\left|\begin{array}{ccc}
1-t & 0 & 1 \\
0 & 2-t & -1 \\
0 & 1 & 1-t
\end{array}\right|=(1-t)(1-t)\left|\begin{array}{cc}
2-t & -1 \\
1 & 1-t
\end{array}\right| \\
=g(t) \cdot[(2-t)(1-t)+1] \\
=g(t)\left(t^{2}-3 t+3\right)
\end{gathered}
\]

Thus \(g(t)\) divides \(f(t)\).
Thus the characteristic polynomial of \(T_{W}\) divides the characteristic polynomial of T .
12.20.3 Theorem: Let T be a linear operator on a finite dimensional vector space V , and let \(W\) denote the T - Cyclic subspace of V generated by a non zero vector \(v \in V\). Let \(k=\operatorname{dim}(W)\) Then
i) \(\quad\left\{v, t(v), T^{2}(v), \ldots . . T^{k-1}(v)\right\}\) is a basis of \(W\).
ii) If \(a_{0} v+a_{1} T(v)+\ldots \ldots+a_{k-1} T^{k-1}(v)+T^{k}(v)=0\)
then the characteristic polynomial of \(T_{W}\) is \(f(t)=(-1)^{k}\left(a_{0}+a_{1} t+a_{2} t^{2}+\ldots .+a_{k-1} t^{k-1}+t^{k}\right)\)
Proof: i) Since \(v \neq O\) the set \(\{v\}\) is linearly independent.
Let \(j\) be the largest positive integer for which \(B=\left\{v, T(v), T^{2}(v) \ldots . . T^{j-1}(v)\right\}\) is linearly independent. Such a \(j\) must exist because \(V\) is finite dimensional. Let \(Z=\operatorname{Span}(B)\). Then \(B\) is a basis for Z. Further more \(T^{j}(v) \in Z\). We use this fact to show that \(Z\) is a \(T\) - invariant subspace of V . Let \(w \in Z\). Since \(W\) is a linear combination of the vectors of B , there exists scalars \(b_{0}, b_{1}, \ldots b_{j-1}\) such that \(w=b_{0} v+b_{1} T(v)+\ldots .+b_{j-1} T^{j-1}(v)\) and hence \(T(w)\) is a linear combination of vectors in Z and hence belongs to Z . So Z is T - invariant. Further more, \(v \in Z\), and \(W\) is the smallest T - invariant subspace of V , that contains \(\square\) so that \(\square\). Clearly, \(\square\), and so we conclude that \(\square\). It follows that B is a basis for \(\square\), and therefore \(\square\). Thus \(\square\).

ii) Now view B as an ordered basis for \(\square\)
Let \(\square\) be scalars such that \(\square\)

Observe that

Which has the characteristic polynomial.


Thus \(\square\) is the characteristic polynomial of proving (ii).

\subsection*{12.21.1 Cayley Hamilton Theorem for Linear Operators:}

\section*{Theorem:}

Let T be a linear operator on the n dimensional vector space V . (or let A be \(\square\) matrix over the field F) and \(\square\) be the characteristic polynomial for \(T\) (or for A) then \(\square\) (zero transformation (or \(\square\) (null matrix)

Or
Every square matrix satisfies its characteristic equation
Or
Every matrix is zero of its characteristic polynomial.
Proof: Consider an n square matrix over a field F for \(\square\) relative to an ordered basis B .
i.e.


The characteristic polynomial \(\square\) of \(A\) is given by

i.e.
\(\square\) (1) for


The characteristic equation is \(\square\)
i.e. \(\square\)
The elements of the matrix \(\square\) are polynomials at most of the first degree in \(t\) with the result that the elements of the matrix Adj \(\square\) are ordinary polynomials in \(t\) of degree \(\square\) or less. As we know that the elements of the matrix Adj \(\square\) are the cofactors of the elements of the matrix \(\square\). It implies that the matrix adj \(\square\) can be written as
\(\square\)

\section*{Rings and Linear Algebra (12.73) Diagonalization}

Where is a square matrix of order n , over F with elements independent of t . Now by the property of adjoints we have

Or

Equating the coefficients of corresponding powers of \(t\) we get


From this theorem, we conclude that if T is a linear transformation on the n dimensional vector space \(\square\) ; then there is a polynomial \(f\) of degree \(n\), such that \(\square\) Corollary: To find an expression for the inverse of a nonsingular matrix A :

Solution: We have \(\square\)

and \(\square\) i.e.

Thus from the cayley - Hamilton theorem we have



So \(\square\)

or
correspondingly

giving an expression for the inverse of a non singular matrix A.
Aliter : To show every linear operator satisfies its characteristic equation.
Let \(T\) be a linear operator defined on \(V\) and \(\square\) be its characteristic polynomial we will

 basis for \(\qquad\)
Hence there exists scalars \(\square\)
Such that


So


Hence \(T\) satisfies its characteristic equation.

\subsection*{12.21.2 Theorem: Cayley - Hamilton theorem for matrices:}

Every square matrix satisfies its characteristic equation. i.e. If for a square matrix A of order n;

then the matrix equation
is satisfied by A. i.e.
Proof: As the elements of \(\square\) are at most of the first degree in \(\square\) the elements of \(\square\) can be written as a matrix polynomial in \(\square\) given by


Since A. \(\operatorname{Adj} \mathrm{A}=\operatorname{det} \mathrm{A} . \mathrm{I}\).

\section*{So}

comparing coefficients of like powers of \(\square\) on both sides we get
\(\square\)


Pre multiplying there successively by \(\square\) and adding we get


So every square matrix satisfies its characteristic equation.
Corollary 1: Let A be a non singular matrix i.e. \(\square\) also \(\square\) and therefore
Pre multiplying (1) by \(\square\) we get


Corollary 2: If \(m\) be a positive integer such that \(\square\) , then multiplying the result (1) by we get


Showing that any positive integral power of \(\square\) of A is linearly expressible in terms of those lower order.

\section*{W.E. 25: Worked Out Examples:}

Let \(T\) be a linear operator on \(\square\) defined by \(\square\) and \(\square\) the standard basis of \(\square\). Show that \(T\) satisfies its characteristic equation and \(\square\) satisfies its characteristic equation.

Solution: \(\square\) is a linear operator defined by \(\square\)
\(\square\)


Hence T satisfies its characteristic equation more over


Thus \(\square\) satisfies its characteristic equation.

\section*{W.E. 26 :}
\(\square\) is a linear operator defined by \(\square\). Find the
characteristic polynomial. Verify cayley - Hamilton theorem.
Solution: \(\square\) is alinear transformation defined by \(\square\)
\(\square\) is the standard ordered basis of T where \(\square\)
\(\square\)


\section*{Rings and Linear Algebra (12.79) Diagonalization}


The characteristic equation is \(\square\)
i.e.



We have to show \(\square\) where \(O\) is the zero operator from \(\square\) .
\(\square\)


W.E. 27: Find the characteristic equation of the matrix


Solution: The characteristic equation of the matrix is



\(\square\)
or \(\square\)
We have to show that \(\square\) where \(O\) is the null matrix.



So
Hence A satisfies its characteristic equation preoperating with \(\square\) we get

W.E. 28:


Cayley. Hamilton theorem.
Solution: The characteristic equation is \(\square\)

By Cayley - Hamilton theorem every matrix satisfies its own characteristic equation.



Aliter:


So \(\square \ldots \ldots . . . . .\). (2)
Multiply (2) by \(\square\)

\(\square\) .(5)

Now

\(\square\)

W.E. 29 :

Using Cayley - Hamilton theorem find the inverse and \(\qquad\) of the matrix

trace of


det
Characteristic equation is
\(\square\)

\section*{Centre for Distance Education}

By Cayley - Hamilton theorem every matri satisfies its characteristic equation

So
\[
\text { Pre operating with } \square \text { we get }
\]






By (2)
multiplying by A


\section*{W.E. 30:}

Find the inverse of the matrix
 by using cayley hamilton theorem.

Solution: We know if A is an \(\mathrm{n} \times \mathrm{n}\) square matrix, its characteristic polynomial is


Where \(\square\) is the sum of the principal minors of order K .

By this result, the characteristic polynomial of the given matrix
given by
\(\square\) trance of \(A\) and is det. of \(A\).


To find (i.e. the sum of principal minors of order 2)

The rows and columns deleted.
1)

2)

3) \(\square\)

4)


5)


6)




To find the sum of principal minors of order 3 i.e. \(\square\)
Deleted row and column
1)

2) \(\square\)



Hence the characteristic equation is \(\square\)
i.e. \(\qquad\)
By Cayley Hamilton theorem every matrix satisfies its characteric equation.
Hence
Pre operating with



By (1) \(\square\)

So


\subsection*{12.22 Summary:}

In this lesson we discussed about
i) Eigen vectors and eigen values of linear operator and of a square matrix - Properties of eigen values. Diagonalizability of linear operators and matrices. Test for diagonalization and numerical problems - Invariant subspaces. Cayley-Hamilton theorem for linear operators and matrices.

\section*{Rings and Linear Algebra}
(12.89)

\subsection*{12.23 Technical Terms:}

In this chapter we come across the following technical terms.
Eigen vectors
Eigen values
Characteristic equation
Diagonalization
Trace of a linear operator
Eigen space.

\subsection*{12.24 Model Questions:}
1. Prove that if the characteristic roots of a matrix \(A\) are \(\square\) then the characteristic roots of are \(\square\).
2. If \(\square\) is an eigen value of a nonsingular matrix \(A\), then show that is an eigen value of
3. Find the eigen values and the corresponding eigen vectors of the matrix
i)


Ans: i) 2, 2, 8 Characteristic vector corresponding 2 is
 where \(a, b\) are scalars and coresponding to 8 is where k is scalar.


Ans : ii) \(0,3,15\), \(\mathrm{k}, \mathrm{I}, \mathrm{m}\) are scalars.
4) Using Cayley - Hamilton theorem show that \(\square\) where
5) State and prove Cayley - Hamilton Theorem.
6) If \(\square\) then express \(\square\) as a linear polynomial in A by using Cayley Hamilton theorem.

Ans: \(\square\)
7) Find the characteristic equation of the matrix \(A\) and verify that it is satisfied by \(A\) and hence find \(\square\).
i)


Ans: \(\square\)
ii)


Ans: \(\square\)


Ans :


\subsection*{12.25 Exercises:}
1. For each of the following matrices \(\square\) test A for diagonalizability and if A is diagonalizable, find an invertible matrix \(Q\) and a diagonal matrix \(D\) such that \(\square\)
(i)


Ans: diagonalizable

ii)


Ans: Not diagonalizable
iii)


Ans: Diagonalizable

iv)


Ans: Diagonalizable
2. For each of the following linear operators T on a vector space V , test T for diagonalizability and if \(T\) is diagonalizable find a basis \(B\) for \(V\) such that \(\square\) is a diagonal matrix.
i) \(\square\) and T is defined by \(\square\) respectively.

\section*{Ans: T is not diagonalizable}


Ans: \(T\) is not diagonalizable.
iii) \(\square\) and \(T\) is defined by


Ans: \(T\) is diagonalizable \(\square\)
iv) \(\square\) and \(T\) is defined


Ans: \(T\) is diagonalizable \(\square\)
3. Prove that if \(T\) is diagonalizable, then is diagonalizable, when \(T\) is a linear operator on a finite dimensional vector space V .
4. Show that \(\square\) is not diagonalizable.
5. Prove that the matrix \(\square\) is not diagonalizable over the field C .
6. For the matrix

over the field C , Find the diagonal form and a diagonalizing matrix Q .

Ans:

7. Let \(T\) be a linear operator on \(\square\) which is represented in the standard ordered basis by the matrix

find the characteristic values of \(A\) and prove that \(T\) is diagonalizable.

Ans: 1, 2, 2
Rings and Linear Algebra (12.93) Diagonalization
8) Let \(T\) be a linear operator on a finite dimensional vector space \(V\); and let \(\square\) be an eigen value of
T. Show that the eigen space of \(\square\) i.e. \(\square\) is invariant under T.
9) For each of the following linear operators T on the vector space V , determine whether the given subspace \(\square\) is a \(T\) - invariant subspace of \(V\).
(i)


Ans: T- invariant
(ii)


Ans: T-invariant
(iii) \(\square\)
Ans: not T-invariant
10) Find the characteristic equation of the matrix
 and verify that it is satisfied by A and hence find \(\square\)
Ans: \(\square\)

11) Verify that the matrix

satisfies its characteristic equation and conpute

Ans: \(\square\)

12) Find the characteristic equation of the matrix and show that it is satisfied by
A. Hence obtain \(n\) the inverse of the given matrix.

Ans: \(\square\)

13) Find the characteristic roots of the matrix
 and verify cayley - Hamilton theorem for this matrix. Find the inverse of the matrix \(A\) and also express as a linear polynomial.

Ans: \(\square\)


The given matric polynomial = \(\square\)
14) If
 express
 as a linear polynomial in A .

Ans: \(\square\)
15) Calculate by by using Cayley - Hamilton theorem given \(\square\)

Ans :

16) If \(\square\) show that \(\square\) and hence find

Ans : \(B^{5}=\left[\begin{array}{ll}-61 & 93 \\ -62 & 94\end{array}\right]\)

\subsection*{12.26 Reference Books:}
1) Linear Algebra 4th edition : Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence.
2) Schaum's out lines : Beginning Linear Algebra Seymour Lipschutz
3) A course in abstract Algebra : Vijay K . khanna. S.K. Bhambari
4) Linear Algebra: Gupta and Sharma
5) Fundamentals of Linear Algebra : M.L. Aggarwal, Romesh Kumar

\section*{INNER PRODUCT SPACES}

\subsection*{13.1 Objective of the Lesson:}

In this previous lessons the properties of vector spaces discussed are based on addition and scalar multiplication of vectors. In this lesson we introduce the concept of length of vectors by means of an additional structure on the vector space known as inner product.

\subsection*{13.2. Structure of the Lesson:}

In this lesson the following concpts are discussed:
13.3 Introduction and properties of complex numbers
13.4 Inner product and inner product space - definitions - examples - basic
theorems
13.5 Norm of a vector definition, theorems in inner product spaces
13.6 Norm of a vector, normed vector spaces - definitions and theorems
13.7 Worked out examples
13.8 Summary
13.9 Technical terms
13.10 Model Questions
13.11 Exercises
13.12 Reference Books

\subsection*{13.3.1 Introduction:}

In general a vector space is defined over an arbitrary field \(F\). In this lesson we restrict the field F to be the field of real numbers or complex numbers. In th first case the vector space is called a real vector space and in the second case it is called a complex vector space. We study real vector space in analytical geometry and vector analysis. There the concept of length and orthogonality is disscussed.

In this lesson we introduce the concept of length and orthogonality of vectors by means of an additional structure on the vector space known as an inner product.

We also have dot or scalar product of two vectors whose properties are discussed in
vector algebra. An inner product on a vector space is a generatisation of dot product in \(R^{3}\).
Before defining inner product and inner product spaces we shall state some important properties of complex numbers.

\subsection*{13.3.2 Some Properties of Complex Numbers:}

Let \(Z=x+i y\) for some \(x ; y \in R\) and \(i=\sqrt{-1}\) be the given complex number. Here x is called the real part of the complex number \(Z\). \(y\) is called the imaginary part of \(Z\) and we write \(x=\operatorname{Re} z\) and \(y=I_{m} Z\).

The modules of the complex number \(Z=x+i y\) is the non negative real number \(\sqrt{x^{2}+y^{2}}\) and is denoted by \(|z|\).

Also if \(z=x+i y\) is a complex number then \(\bar{z}=x-i y\) is called the conjugate complex number of \(z\).
If \(z=\bar{z}\), then \(x+i y=x-i y\) so \(y=0\).
i.e. \(z=\bar{z} \Rightarrow z\) is a real number. Obviously we have
i) \(z+\bar{z}=2 x=2 \operatorname{Re} z\)
ii) \(z-\bar{z}=2 i y=2 \operatorname{Im} z\)
iii) \(z \bar{z}=x^{2}+y^{2}=|z|^{2}\)
iv) \(|z|=0 \Rightarrow x=0, y=0\) i.e. \(|z|=0 \Rightarrow z=0\)
v) \(\overline{(\bar{z})}=z\)
vi) \(|\bar{z}|=|z|\)
vii) \(|z|=\sqrt{x^{2}+y^{2}} \geq 0\) i.e. \(|z| \geq \operatorname{Re} z \quad\) viii) If \(z_{1}, z_{2}\) are two complex numbers then
i) \(\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|\)
ii) \(\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}\)
iii) \(\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \bar{z}_{2}\)
iv) \(\overline{z_{1}-z_{2}}=\bar{z}_{1}-\bar{z}_{2}\)
v) \(\overline{\left[\frac{z_{1}}{z_{2}}\right]}=\frac{\bar{z}_{1}}{\bar{z}_{2}}\) provided \(z_{2} \neq 0\)

\subsection*{13.4 Inner Product and Inner Product Space:}
13.4.1 Definition: Let V be a vector space over F . An inner product on V is a function that assigns to every order pair of vectors \(u\) and \(v\) in \(V\), a scalar in field F denoted by \(\langle u, v\rangle\) such that for all \(u, v\) in V , and for all \(a \in F\) the following holds good.
\[
\text { i) }\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle \text { (Linearity) }
\]
ii) \(\langle a u, v\rangle=a\langle u, v\rangle \quad\) Linearity

There two conditions can be clubbed as \(\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle\)
iii) \(\overline{\langle u, v\rangle}=\langle v, u\rangle\) where bar denotes the complex conjagate (conjugate symmetry)
iv) \(\langle u, v\rangle \geq 0\) and \(\langle u, u\rangle=0 \Leftrightarrow u=0\) where O denotes the zero vector in V (non negativity)
13.4.2. Definition II: A vector space together with an inner product defined on it is called an inner product space.

Thus inner product space is a vector space over the field of real or complex numbers with an inner product function.

Note: a) Conditions (i) and (ii) simply requires that the inner product is linear in the first component.
(b) If \(F=R\), the condition (iii) reduces to \(\langle u, v\rangle=\langle v, u\rangle\). In this case i.e. when \(F=R\), the inner product space \(V(F)\) is called Eucledian space.
(c) If \(F=C\). Then the inner product space \(V(F)\) is called a unitary space or complex inner product space.
(d) It can be easily shown that if \(a_{1}, a_{2}, \ldots a_{n} \in F ; u_{1}, u_{2}, \ldots u_{n}\) and \(v \in V\), then \(\left.<\sum_{i=1}^{n} a_{i} u_{i}, v\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle u_{i}, v\right\rangle\)

\section*{W.E. I:}

\section*{Worked Examples:}

If \(u=\left(a_{1}, a_{2}, \ldots a_{n}\right), v=\left(b_{1}, b_{2}, \ldots b_{n}\right) \in V_{n}(C)\) then show that \(\langle u, v\rangle=a_{1} \bar{b}+a_{2} \bar{b}_{2}+\ldots+a_{n} \overline{b_{n}}\) defines an inner product on \(V_{n}(C)\).

Solution: We will now show that all the postulates of an inner product holds for \(\langle u, v\rangle=a_{1} \bar{b}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n}\) \(\qquad\)
1) Linearity: Let \(w=\left(c_{1}, c_{2}, \ldots c_{n}\right) \in V_{n}(C)\)

Let \(a, b, c \in C\) we have
\[
\begin{aligned}
a u+b v & =a\left(a_{1}, a_{2}, \ldots a_{n}\right)+b\left(b_{1}, b_{2}, \ldots b_{n}\right) \\
& =\left(a a_{1}+b b_{1}, a a_{2}+b b_{2}, \ldots, a a_{n}+b b_{n}\right)
\end{aligned}
\]

So \(\langle a u+b v ; w\rangle=\left(a a_{1}+b b_{1}\right) \bar{c}_{1}+\left(a a_{2}+b b_{2}\right) \bar{c}_{2}+\ldots+\left(a a_{n}+b b_{n}\right) \bar{c}_{n}\)
\[
\begin{aligned}
& =\left(a a_{1} \bar{c}_{1}+a a_{2} \bar{c}_{2}+\ldots+a a_{n} \bar{c}_{n}\right)+\left(b b_{1} \bar{c}_{1}+b b_{2} \bar{c}_{2}+\ldots+b b_{n} \bar{c}_{n}\right) \\
& =a\left(a_{1} \bar{c}_{1}+a_{2} \bar{c}_{2}+\ldots+a_{n} \bar{c}_{n}\right)+b\left(b_{1} \bar{c}_{1}+b_{2} \bar{c}_{2}+\ldots+b_{n} \bar{c}_{n}\right) \\
& =a<u, w\rangle+b<v, w\rangle
\end{aligned}
\]

Thus \(\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle\)
ii) Congugate symmetry : From the definition of the product given in (1)
\[
<v, u>=b_{1} \bar{a}_{1}+b_{2} \bar{a}_{2}+\ldots+b_{n} \bar{a}_{n}
\]

So \(\overline{\langle v, u\rangle}=\overline{\left(b_{1} \bar{a}_{1}+b_{2} \bar{a}_{2}+\ldots+b_{n} \bar{a}_{n}\right)}\)
\[
\begin{aligned}
& =\overline{\left(b_{1} \bar{a}_{1}\right)}+\overline{\left(b_{2} \bar{a}_{2}\right)}+\ldots+\overline{\left(b_{n} \bar{a}_{n}\right)} \\
& =\overline{b_{1}} \overline{\left(\bar{a}_{1}\right)}+\overline{b_{2}} \overline{\left(\bar{a}_{2}\right)}+\ldots+\overline{b_{n}} \overline{\left(\bar{a}_{n}\right)} \\
& =\bar{b}_{1} a_{1}+\bar{b}_{2} a_{2}+\ldots+\bar{b}_{n} a_{n} \\
& =a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n} \\
& =\langle u, v\rangle \text { by (i) } \quad \text { (Since multiplication is commulative) } \\
& \quad \text { So } \overline{\langle v, u\rangle}=\langle u, v\rangle
\end{aligned}
\]

\section*{iii) Nonnegativity:}
\[
\begin{align*}
\langle u, u> & =a_{1} \bar{a}_{2}+a_{2} \bar{a}_{2}+\ldots+a_{n} \bar{a}_{n} \\
& =\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2} . \tag{2}
\end{align*}
\]
as \(a_{i}\) is a complex number so \(\left|a_{i}\right|^{2} \geq 0\)
So (2) is a sum of \(n\) non-negative real numbers and so \(\geq 0\). Thus \(\langle u, u\rangle \geq 0\) and also
\[
\begin{aligned}
\langle u, u\rangle=0 & \Rightarrow\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}=0 \\
& \Rightarrow \text { each }\left|a_{i}\right|^{2}=0 \text { so each } a_{i}=0
\end{aligned}
\]

So \(u=\left(a_{1}, a_{2}, \ldots a_{n}\right)=(0,0, \ldots 0)=O\)

Hence the product defined in (1) is an Inner product on \(V_{n}(C)\) and with respect to this inner product \(V_{n}(C)\) is an inner product space.
13.4.3 Note: i) Standard inner product:

Definition: The inner product \(\langle u, v\rangle\) on \(V_{n}(C)\) defined as \(\langle u, v\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots a_{n} \bar{b}_{n}\) where \(u=\left(a_{1}, a_{2}, \ldots a_{n}\right)\) and \(v=\left(b_{1}, b_{2}, \ldots b_{n}\right)\) is called the standard inner product on \(V_{n}(C)\).
ii) If \(u, v\) are two vectors in \(V_{n}(R)\), then the standard inner product of \(u, v\) is given by
\[
\begin{aligned}
\langle u, v\rangle & =a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n} \\
& =a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
\end{aligned}
\]
\(\because\) in the field of real nos \(\bar{b}_{1}=b_{1}\)
\(=u . v\) which is the dot product of \(u\) and \(v\) and the inner product \(\langle u, v\rangle\) is denoted by u.v.
iii) \(\langle u, v\rangle=a_{1}\left(a_{1}\right)+a_{2}\left(a_{2}\right)+\ldots a_{n}\left(a_{n}\right)\)
\[
=a_{1}^{2}+a_{2}^{2}+\ldots a_{n}^{2}=u . u
\]

\section*{W.E. 2:}

Let \(V\) be the vector space over C of all continuous complex valued functions defined on \([0,1]\). If \(f, g \in V\); then \(\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} \mathrm{dt}\) defines an inner product.

Solution: Let \(f, g, h \in V\) and \(a, b \in C\), then
i) Linearity : \(\int_{0}^{1}[a f(t)+b g(t)] \overline{h(t)} \mathrm{dt}\)
\[
\begin{aligned}
& =a \int_{0}^{1} f(t) h(t) \mathrm{dt}+b \int_{0}^{1} g(t) \overline{h(t)} \mathrm{dt} \\
& =a<f, h>+b<g, h>
\end{aligned}
\]
ii) Conjugate symmetry:
\[
\begin{aligned}
<\overline{g, f}> & =\int_{0}^{1} g(t) \overline{f(t)} \mathrm{dt} \\
& =\int_{0}^{1} \overline{g(t) \overline{f(t)} \mathrm{dt}} \\
& =\int_{0}^{1} f(t) \overline{g(t)} \mathrm{dt}=<f, g>
\end{aligned}
\]

Thus \(\langle\overline{g, f}\rangle=\langle f, g\rangle\)
iii) Non negativity:
\[
\begin{aligned}
<f, f> & =\int_{0}^{1} f(t) \overline{f(t)} \mathrm{dt} \\
& =\int_{0}^{1}|f(t)|^{2} \mathrm{dt} \geq 0
\end{aligned}
\]
\[
\begin{aligned}
\text { Also }<f, f>=0 & \Leftrightarrow \int_{0}^{1}|f(t)|^{2} \mathrm{dt}=0 \\
& \Leftrightarrow f(t)=0\{\forall t \in[0,1]\} \\
& \Leftrightarrow f=0
\end{aligned}
\]

As the required conditions are satisfied V is an inner product space.

\section*{W.E. 3:}

For \(f(x), g(x) \in P(R)\), the vector space of polynomials over the field R , defined on \([0,1]\) if \(\langle f(x), g(x)\rangle=\int_{0}^{1} f^{\prime}(t) . g(t) \mathrm{dt}\) then prove that it is not an inner product.

Solution: Take \(f(x)=x ; g(x)=x^{2}\) on \([0,1]\)
\[
\text { then } f^{\prime}(x)=1 \quad g^{\prime}(x)=2 x
\]

So \(\langle f, g\rangle=\int_{0}^{1} 1\left(t^{2}\right) \mathrm{dt}=\left[\frac{t^{3}}{3}\right]^{1}=\frac{1}{3}\)
\(\langle g, f\rangle=\int_{0}^{1} 2 t(t) \mathrm{dt}=2\left[\frac{t^{3}}{3}\right]_{0}^{1}=2\left(\frac{1}{3}\right)=\frac{2}{3}\)
Hence \(\langle f, g>\neq<g, f\rangle\)
So as the conjugate symmentry is not satisfied. Hence it is not an inner product.

\subsection*{13.4.4. Some Key points in Matrices:}
1) Definition: i) Let \(A \in M_{m \times n}(F)\). We define the conjugate transpose or Adjoint of A to be the \(\mathrm{n} \times \mathrm{m}\) matrix denoted by \(\mathrm{A}^{*}\) and is defined as if \(A=\left[a_{i j}\right]_{m \times n}\) then \(A^{*}=\left[b_{i j}\right]_{n \times m}\) where \(b_{i j}=\overline{a_{j i}}\) i.e. \(\overline{\left(A^{T}\right)}=(\bar{A})^{T}\)
\[
\begin{aligned}
& \text { For example Let } A=\left[\begin{array}{ll}
i & 1+2 i \\
2 & 3+4 i
\end{array}\right] \text { then } \\
& A^{*}=\left[\begin{array}{cc}
-i & 2 \\
1-2 i & 3-4 i
\end{array}\right]
\end{aligned}
\]

Note: If A has real entries then A * is the transpose of A. i.e. \(A^{*}=A^{T}\).
ii) Trace of a matrix : Let A be a square matrix of order n . The sum of all the elements of A lying along the principal diagonal is the called the trace of A . We write trace of A as \(\operatorname{tr}(A)\).
\[
\text { Thus trace of } A=\sum_{i=1}^{n} a_{i i}
\]

Ex: If \(A=\left[\begin{array}{ccc}1 & 3 & 4 \\ 2 & -1 & 3 \\ 2 & 1 & 2\end{array}\right]\) then \(\operatorname{tr} A=(1)+(-1)+2=2\)
ii) \(\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B\)
iii) \(\operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A\) where \(\lambda \in C\)
iv) \(\operatorname{tr}(A B)=\operatorname{tr}(B A)\)
v) \(\operatorname{tr} A=t r A^{T}\)

\section*{W.E. 4:}

Let \(V=M_{m \times n}(F)\). Define \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)\) for all \(A, B \in V\), then show that V is an inner product space.

Solution: We are given \(V=M_{m \times n}(F)\) is a vector space and \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)\)
with this definition we will show that \(V(F)\) is a inner product space.
i) Linearity: Let \(A, B \in V\). Let \(a, b \in F\) then by
1) \(\langle a A+b B, C\rangle=\operatorname{tr}\left(C^{*}(a A+b B)\right)\)
\[
\begin{aligned}
&=\operatorname{tr}\left(C^{*}(a A)+C^{*}(b B)\right) \\
&= \operatorname{tr}\left(a\left(C^{*} A\right)+b\left(C^{*} B\right)\right) \\
&= \operatorname{tr}\left(a\left(C^{*} A\right)\right)+\operatorname{tr}\left(b\left(C^{*} B\right)\right) \\
&= \operatorname{tr}\left(C^{*} A\right)+b . \quad\left(\operatorname{tr}\left(C^{*} B\right)\right) \\
&=a<A, C>+b<B, C>
\end{aligned}
\]

Hence the condition of linearity holds good.
ii) Non-negativity :
if \(A=\left[a_{i j}\right]_{n \times n}\) then \(A^{*}=\left[b_{i j}\right]_{n \times n}\) where \(b_{i j}=\overline{a_{j i}}\)
\[
\begin{align*}
& A * A=\left[c_{i j}\right]_{n \times n} \text { where } c_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}=\sum_{k=1}^{n} a_{k i} a_{k j} \\
& \begin{aligned}
\langle A, A\rangle=\operatorname{tr}(A * A) & =c_{11}+c_{22}+\ldots+c_{n n}=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{i=1}^{n} b_{i k} a_{k i} \\
& =\sum_{i=1}^{n} \sum_{i=1}^{n} \overline{a_{k i}} a_{k i}=\sum_{i=1}^{n} \sum_{k=1}^{n}\left|a_{k i}\right|^{2}
\end{aligned}
\end{align*}
\]

Now if \(A \neq O\) then \(a_{k i} \neq 0\) for some K and i So \(\langle A, A\rangle>0\)
If \(A=O\) (null matrix) then \(a_{i j}=0\) for all \(\mathrm{i}, \mathrm{j}\).

So \(a_{k i}=0\) for all \(k, i\)
So \(\quad \sum_{i=1}^{n}\left|a_{k i}\right|^{2}=0\)
\[
\begin{align*}
& \Rightarrow \operatorname{trace} \text { of }\left(A^{*} A\right)=0 \\
& \Rightarrow\langle A, A\rangle=0 \quad \ldots . . . . . \tag{2}
\end{align*}
\]

Thus if \(A=O\) (null matrix) \(\langle A, A\rangle=0\).
Thus from (1) and (2) \(\langle A, A\rangle \geq 0\)
Hence the condition of non negativity is satisfied.

\section*{Conjugate Symmetry:}

Let \(A, B \in V\)
Then \(\langle A, B\rangle=\operatorname{traceof}(B * A)\) by given data.
\[
\begin{aligned}
<\overline{A, B}> & =\overline{\operatorname{tr}\left(B^{*} A\right)}=\operatorname{tr}\left(\overline{B^{*} A}\right) \\
& =\operatorname{tr}\left(\overline{B^{*}\left(A^{T}\right)^{T}}\right) \because\left(A^{T}\right)^{T}=A \\
& =\operatorname{tr}\left(\overline{(\bar{B})^{T}} \overline{\left.\left(A^{T}\right)^{T}\right)}\right. \\
& =\operatorname{tr}\left(B^{T}\left((\bar{A})^{T}\right)^{T}\right) \\
& =\operatorname{tr}\left(\left((\bar{A})^{T} B\right)^{T}\right) \because \operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right) \\
& =\operatorname{tr}(A * B) \\
& =<B, A>
\end{aligned}
\]

So \(=\langle\overline{A, B}\rangle=\langle B, A\rangle\)
As all the three required conditions are satisfied,
\(V=M_{n \times n}(F)\) is an inner product space.

\subsection*{13.4.5 Frobenius Inner Product:}

Definition: The inner product on \(V=M_{n \times n}(F)\) defined by \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)\) for all \(A, B \in V\) is called the Frobenius inner product and then \(V=M_{n \times n}(F)\) is an inner product space with the inner product defined above.

\section*{W.E. 5 :}

Provide the reason why the product \(\langle(a, b),(c, d)\rangle=a c-b d\) on \(R^{2}\) is not an inner product on the given vector space.

Solution: Let \((a, b)=(3,4) \in R^{2}\)
then by given data
\[
\begin{aligned}
<(a, b),(a, b)> & =<(3,4),(3,4)> \\
& =(3)(3)-(4)(4)=9-16=-7 \nsupseteq 0
\end{aligned}
\]

Hence the condition of non negativity is not satisfied. Hence \(\langle(a, b),(c, d)\rangle=a c-b d\) is not an inner product.

\section*{W.E. 6:}

Provide the reason why the product \(\langle f(x), g(x)\rangle=\int_{0}^{1} f^{\prime}(t) g(t) \mathrm{dt}\) on \(P(R)\) where ' denotes differentiation, is not an inner product on the given vector space.

Solution: Take \(f(x)=x \quad g(x)=x^{2}\) on \([0,1]\). Then
\[
\begin{aligned}
& \langle f, g\rangle=\int_{0}^{1} 1 \cdot t^{2} \mathrm{dt}=\left[\frac{t^{3}}{3}\right]_{0}^{1}=\left(\frac{1}{3}-0\right)=\frac{1}{3} \\
& \langle g, f\rangle=\int_{0}^{1} 2 t \cdot t \mathrm{dt}=2 \int_{0}^{1} t^{2} \mathrm{dt}=2 \cdot\left[\frac{t^{3}}{3}\right]_{1}^{0}=\frac{2}{3}
\end{aligned}
\]

Hence \(\langle f, g>\neq<g, f\rangle\)
Hence the conjugate symmatry does not hold. So the given product is not an inner product.

\subsection*{13.4.6 Theorem:}

Let V be an inner product space. Then for \(u, v, w \in V\) and \(a, b, c \in F\) the following statements are true.
i) \(\langle u, v+w\rangle=\langle u, w\rangle+\langle u, w\rangle\)
ii) \(\langle u, c v\rangle=\bar{c}\langle u, v\rangle\)
iii) \(\langle u, O\rangle=\langle O, u\rangle=0\)
iv) \(\quad\langle a u-b v, w\rangle=a\langle u, w\rangle-b\langle v, w\rangle\)
v) \(\langle u, a v+b w\rangle=\bar{a}\langle u, v\rangle+\bar{b}\langle v, w\rangle\)
vi) If \(\langle u, v\rangle=\langle u, w\rangle\) for all \(u \in V\) then \(v=w\).

\section*{Proof:}
i) To show \(\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle\)

By definition \(\langle u, v+w\rangle=\overline{\langle v+w, u\rangle}\)
\[
\begin{aligned}
& =\overline{\langle v, u\rangle+\langle w, u\rangle} \\
& =\overline{\langle u, v\rangle}+\overline{\langle w, u\rangle} \\
& =\langle u, v\rangle+\langle u, w\rangle
\end{aligned}
\]
\[
\text { Thus }\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle
\]
ii) To show \(\langle u, c v\rangle=\bar{c}\langle u, v\rangle\)

By Definition : \(\langle u, c v\rangle=\langle c v, u\rangle\) (by conjugate symmetry)
\[
\begin{aligned}
& =\overline{c<v, u\rangle} \text { by linearity } \\
& =\bar{c}\langle\overline{v, u}\rangle \\
& =\bar{c}\langle u, v\rangle
\end{aligned}
\]
\[
\text { Thus }\langle u, c v\rangle=\bar{c}\langle u, v\rangle
\]
iii) To show \(\langle u, O\rangle=\overline{\langle O, u,\rangle}=0\)
\[
\begin{align*}
& \text { Now }\langle u, O\rangle=\langle u, 0(O)> \\
&=0<u, O>=0 \tag{1}
\end{align*}
\]

\section*{Centre for Distance Education}
\(\because 0\) is real number its conjugate is itself.
So \(\langle u, O\rangle=0\)
IIlly \(\langle 0, u\rangle=\langle 0(O), u\rangle\)
\[
=0<O, u\rangle
\]
\[
\begin{equation*}
=0 \tag{2}
\end{equation*}
\]

From (1) and (2)
\[
\langle u, O\rangle=\langle O, u\rangle=0
\]
iv) To show that \(\langle a u=b v, w\rangle=a\langle u, w\rangle-b\langle v, w\rangle\)

Here \(\langle a u-b v, w\rangle=\langle a u+(-b) v, w\rangle\)
\[
\begin{aligned}
& =a\langle u, w\rangle+(-b)\langle v, w\rangle \\
& =a\langle u, w\rangle-b\langle v, w\rangle \text { by linearity. }
\end{aligned}
\]

Thus \(\langle a u-b v, w\rangle=a\langle u, w\rangle-b\langle v, w\rangle\)
v) To show that \(\langle u, a v+b w\rangle=\bar{a}\langle u, v\rangle+\bar{b}\langle v, w\rangle\)

Solution: \(\langle u, a v+b w\rangle=\overline{\langle a v+b w, u\rangle}\) by conjugate symmetry.
\[
\begin{aligned}
& =\overline{a<v, u\rangle+b<w, u\rangle} \\
& =\bar{a}\langle\overline{v, u}\rangle+\bar{b}\langle\overline{w, u}\rangle \\
& =\bar{a}\langle u, v\rangle+\bar{b}\langle u, w\rangle \text { by conjugate sym metry. }
\end{aligned}
\]

Thus \(\langle u, a v+b w\rangle=\bar{a}\langle u, v\rangle+\bar{b}\langle u, w\rangle\)
Corollary: If \(a, b\) are real numbers then
i) \(\langle u, a v+b w\rangle=a\langle u, v\rangle+b\langle u, w\rangle\)
ii) \(\langle u, a v-b w\rangle=a\langle u, v\rangle-b\langle u, w\rangle\) since if x is real number then \(\bar{x}=x\).
vi) If \(\langle u, v\rangle=\langle u, w\rangle\) for all \(u \in V\), then to show \(v=w\).

Solution: given \(\langle u, v\rangle=\langle u, w\rangle\) for all \(u \in V\)
\[
\Rightarrow\langle u, v\rangle-\langle u, w\rangle=0 \text { for all } u \in V
\]
\[
\begin{aligned}
& \Rightarrow\langle u, v-w\rangle=0 \text { for all } u \in V \\
& \Rightarrow\langle v-w, v-w\rangle=0 \text { choosing } u=v-w \\
& \Rightarrow v-w=0 \\
& \Rightarrow v=w
\end{aligned}
\]

Thus if \(\langle u, v\rangle=\langle u, w\rangle\) for all \(u \in V\), then \(v=w\)
Remark: From (ii) and (v) of the above theorem, the reader should observe that the inner product is conjugate linear in the second part.

Note: i) \(\langle-u,-v\rangle=(-1)\langle u,-v\rangle=(-1) \overline{(-1)}\langle u, v\rangle\)
\[
=(-1)(-1)\langle u, v\rangle=\langle u, v\rangle
\]
ii) \(\langle u, a v-b w\rangle=\bar{a}\langle u, v\rangle-\bar{b}\langle u, w\rangle\)
iii) \(\langle u+v, u+v\rangle=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle\)
iv) If \(u_{1}, u_{2}, \ldots u_{n}, v \in V\) and \(a_{1}, a_{2}, \ldots a_{n} \in F\) then \(<a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}, v>\)
\[
=a_{1}\left\langle u_{1}, v\right\rangle+a_{2}\left\langle u_{2}, v\right\rangle+\ldots+a_{n}\left\langle u_{n}, v\right\rangle
\]
i.e. \(\left\langle\sum_{i=1}^{n} a_{i} u_{i}, v\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle u_{i}, v\right\rangle\)

Also \(\left\langle v, \sum_{i=1}^{n} a_{i} u_{i}\right\rangle=\sum_{i=1}^{n} \overline{a_{i}}\left\langle v, u_{i}\right\rangle\)
v) \(\langle a u, b v\rangle=a \bar{b}\langle u, v\rangle\) for all \(u, v \in V\) and \(a, b \in F\).

\subsection*{13.5 Norm or length of a vector in an inner product space:}

Consider the vector space \(V_{3}(R)\) with standard inner product defined on it.
If \(u=\left(a_{1}, a_{2}, a_{3}\right) \in V_{3}(R)\) then \(\langle u, u\rangle=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\),
Now we know that in the three dimensional Euclidean space \(\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\) is the length of the vector \(u=\left(a_{1}, a_{2}, a_{3}\right)\). Motivated by this fact, we make the following definition.
13.5.1 Definition: Let V be an inner product space if \(u \in V\), then the norm or length of the vector \(u\) written as \(\|u\|\) is defined as the positive square root of \(\langle u, u\rangle\) i.e. \(\|u\|=\sqrt{\langle u, u\rangle}\).

Note: i) If \(u\) is a vector in an inner product space \(V(F)\) then \(\langle u, u\rangle\) is always non negative and hence \(\|u\|=\sqrt{\langle u, u\rangle}\) is meaning ful and it is non negative.
ii) In the inner product space \(V_{2}(R)=R^{2}(R)\). If \(u=(a, b) \in V_{2}\) then \(\|u\|=\|(a, b)\|=\sqrt{a^{2}+b^{2}}=\sqrt{\langle u, u\rangle}\)
iii) In the inner product space \(V_{n}(C)=C_{n}\)
if \(u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) then
\[
\begin{aligned}
\|u\|=\left\|\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right\| & =\sqrt{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}} \\
& =\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}}=\sqrt{\langle u, u\rangle}
\end{aligned}
\]

\subsection*{13.5.2 Unit Vector:}

Definition: Let V be an inner product space. If \(u \in V\) is such that \(\|u\|=1\), then \(u\) is called a unit vector. thus in an inner product space a vector is called a unit vector, if its length is one unit.
13.5.3 Theorem: Let \(V(F)\) be an inner product space. \(u\) is a non zero vector in V . Then show that \(\frac{1}{\|u\|} u\) is a unit vector.

Proof: \(\left\langle\frac{1}{\|u\|} u, \frac{1}{\|u\|} u\right\rangle=\frac{1}{\|u\|}\left\langle u, \frac{1}{\|u\|} u>=\frac{1}{\|u\|} \cdot \frac{1}{\|u\|}\langle u, u\rangle\right.\)
\[
=\frac{1}{\|u\|^{2}}\|u\|^{2}=1
\]
\[
\Rightarrow\left\|\frac{1}{\|u\|} u\right\|^{2}=1 \Rightarrow\left\|\frac{u}{\|u\| \|}\right\|=1 \Rightarrow \frac{u}{\|u\|} \text { is a unit vector. }
\]

Note: If \(u\) is a non zero vector in an inner product space \(V(F)\), then the unit vector \(\frac{u}{\|u\|}\) is called the unit vector corresponding to \(u\). This process of getting a unit vector along \(u\) is called normalizing \(u\).
13.5.4 Definition: Normalising:

The process of multiplying a non zero vector in an inner product space by the reciprocal of its length is called normalizing.

Note ii) In the inner product space \(R^{2}, i=(1,0) j=(0,1)\) are unit vectors since the length of each is 1 .
iii) In the inner product space \(R^{3} ; i=(1,0,0) j=(0,1,0) ; k=(0,0,1)\) are unit vectors since the length of each is 1 .
iv) In the inner product space \(R^{3}\); if \(u=\left(a_{1}, a_{2}, a_{3}\right)\); then \(\|u\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\) and the unit vector corresponding to \(u\) is
\[
\begin{aligned}
\frac{1}{\|u\|} u & =\frac{1}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}\left(a_{1}, a_{2}, a_{3}\right) \\
& =\left(\frac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}, \frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}, \frac{a_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}\right)
\end{aligned}
\]

\section*{W.E.7:}

If \(u=(1-i, 2+3 i), v=(2-5 i, 3-i)\) are two vectors in a complex inner product space then find \(\langle u, v\rangle,\|u\|,\|v\|\).

Solution: \(\langle u, v\rangle=\langle(1-i, 2+3 i),(2-5 i, 3-i)\rangle\)
\[
\begin{aligned}
&=(1-i) \overline{(2-5 i)}+(2+3 i) \overline{(3-i)} \\
&=(1-i)(2+5 i)+(2+3 i)(3+i) \\
&=(2+3 i+5)+(6+11 i-3) \\
&<u, v>=(7+3 i)+(3-11 i)=10-8 i \\
&\|u\|^{2}=<u, u>=<(1-i, 2+3 i),(1-i, 2+3 i)> \\
&=(1-i) \overline{(1-i)}(2+3 i) \overline{(2+3 i)} \\
&=(1-i)(1+i)+(2+3 i)(2-3 i) \\
&\|u\|^{2}=(1+1)+(4+9)=15
\end{aligned}
\]
\[
\text { So }\|u\|=\sqrt{15}
\]
iii) \(\|v\|^{2}=\langle v, v\rangle=\langle(2-5 i, 3-i),(2-5 i, 3-i)\rangle\)
\[
\begin{aligned}
& =(2-5 i) \overline{(2-5 i)}+(3-i) \overline{(3-i)} \\
& =(2-5 i)(2+5 i)+(3-i)(3+i)
\end{aligned}
\]

So \(\|v\|^{2}=\langle v, v\rangle=(4+25)+(9+1)=39\)
\[
\text { So }\|v\|=\sqrt{39}
\]

\section*{W.E.8:}

Find the unit vector corresponding to \((2-i, 3+2 i, 2+\sqrt{3} i)\) of \(V_{3}(C)\) with respect to the standard inner product.

Solution: Let \(u=(2-i, 3+2 i, 2+\sqrt{3} i)\)
\[
\begin{aligned}
\|u\|^{2}=\langle u, u\rangle & =<(2-i, 3+2 i, 2+\sqrt{3} i),(2-i, 3+2 i, 2+\sqrt{3} i)> \\
& =(2-i) \overline{(2-i)}+(3+2 i) \overline{(3+2 i)}+(2+\sqrt{3 i}) \overline{(2+\sqrt{3} i)} \\
& =(2-i)(2+i)+(3+2 i)(3-2 i)+(2+\sqrt{3 i})(2-\sqrt{3} i) \\
& =(4+1)+(9+4)+(4+3)=25
\end{aligned}
\]
\[
\text { So }\|u\|^{2}=25 \text { Hence }\|u\|=\sqrt{25}=5
\]

Hence unit vector corresponding to \(u\) is \(\frac{1}{\|u\|} u\)
\[
=\frac{1}{5}(2-i, 3+2 i, 2+\sqrt{3 i})
\]

\section*{W.E. 9:}

If \(u=(0,3,4) ; v=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)\) are two vectors in a real inner product space, then find \(\langle u, v\rangle\).

Solution: \(\langle u, v\rangle=\left\langle(0,3,4),\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)\right\rangle\)
\[
\begin{aligned}
& \left.=<(0,3,4), \frac{1}{\sqrt{2}}(1,0,1)\right\rangle \\
& =\frac{1}{\sqrt{2}}\langle(0,3,4),(1,0,1)\rangle \\
& =\frac{1}{\sqrt{2}}\left\{0(1)+3(0)+4(1)=\frac{4}{\sqrt{2}}=2 \sqrt{2}\right\}
\end{aligned}
\]

\subsection*{13.5.5 Theorem:}

\section*{Let V be an inner product space over a field F then show that}
\[
\|c u\|=|c|\|u\| \forall u \in V, \forall c \in F
\]

Proof: \(\|c u\|^{2}=\langle c u, c u>\)
\[
\begin{aligned}
& =c \bar{c}\langle u, u\rangle \\
& =|c|^{2}\|u\|^{2}
\end{aligned}
\]
\[
\text { Hence }\|c u\|=|c|\|u\|
\]

\subsection*{13.5.6 Theorem:}

Let V be an inner product space over a field F . Then show that \(\|u\|=0\) if and only if \(u=0\) and in any case \(\|u\| \geq 0\).

Proof: \(\|u\|=\sqrt{\langle u, u\rangle}\) by definition of norm.
So \(\|u\|^{2}=\langle u, u\rangle \Rightarrow\|u\|^{2} \geq 0\) since by definition \(\langle u, u\rangle \geq 0\)
\[
\Rightarrow\|u\| \geq 0
\]

Also we know by definition of inner product
\[
\langle u, u\rangle=0 \text { if and only if } u=0
\]
i.e. \(\|u\|^{2}=0\) if and only if \(u=0\)
i.e. \(\|u\|=0\) if and only if \(u=0\)

Thus in an inner product space \(\|u\|>0\)
if and only if \(u \neq O\).

\subsection*{13.5.7 Theorem:}

CAUCHY - SCHWARZ'S INEQUALITY: If \(u, v\) are any two vectors in an inner product space \(V(F)\) then \(|\langle u, v\rangle| \leq\|u\|\|v\|\).

Proof: Case (i) if \(v=O\) then \(\langle u, v\rangle=\langle u, O\rangle=\langle u, 0 O\rangle\)
\[
O<u, O\rangle=0
\]
\[
\begin{equation*}
\text { So }|\langle u, v\rangle|=|0|=0 \tag{1}
\end{equation*}
\]
\(\qquad\)
and \(\|u\|\|\nu\|=\|u\|\|O\|=\|u\|(0)=0\)
\[
\begin{equation*}
\text { From (1) and (2) }|\langle u, v\rangle|=\|u\|\|v\| \tag{2}
\end{equation*}
\]

Hence \(|<u, v\rangle \mid \leq\|u\|\|v\|\) holds good.
Case (ii) Let \(v \neq O\) for any C in \(\mathrm{F}\|u-c v\| \geq 0\)
\[
\begin{equation*}
\text { So } 0 \leq\|u-c v\| \tag{3}
\end{equation*}
\]

Now \(\|u-c v\|^{2}=\langle u-c v, u-c v\rangle\)
\[
\begin{align*}
& =\langle u, u-c v>-c\langle v, u-c v\rangle \\
& =\langle u, u\rangle-\bar{c}\langle u, v\rangle-c\{\langle v, u\rangle-\bar{c}\langle v, u\rangle\} \\
& =\langle u, u>-\bar{c}\langle u, v\rangle-c\langle v, u\rangle+c \bar{c}\langle v, u\rangle \ldots \ldots . . . \tag{4}
\end{align*}
\]

In particular set \(c=\frac{\langle u, v\rangle}{\langle v, u\rangle}\)
Using the value of \(c\) in (4) we get
\(\|u-c v\|^{2}=\langle u, u\rangle-\frac{\overline{\langle u, v\rangle}}{\overline{\langle v, v\rangle}}\langle u, v\rangle-\frac{\langle u, v\rangle}{\langle v, v\rangle} \overline{\langle u, v\rangle}+\frac{\langle u, v\rangle}{\langle v, v\rangle} \frac{\overline{\langle u, v\rangle}}{\langle v, v\rangle}\langle v, v\rangle\)
So \(\|u-c v\|^{2}=\langle u, u\rangle-\frac{\langle\overline{u, v}\rangle\langle u, v\rangle}{\langle v, v\rangle}\) \(\qquad\) (5) Since \(\langle v, v\rangle\) is real number. \(\langle\overline{v, v}\rangle=\langle v, v\rangle\).

Thus from (3) we have \(0 \leq\|u-c v\|\)
\[
\text { i.e. } 0 \leq\|u-c v\|^{2}
\]

We get \(0 \leq\langle u, u\rangle-\frac{\langle\overline{u, v}\rangle\langle u, v\rangle}{\langle v, v\rangle}\) using (5)
\[
\begin{aligned}
& \Rightarrow 0 \leq\|u\|^{2}-\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}} \\
& \Rightarrow 0 \leq\|u\|^{2}\|v\|^{2}-|\langle u, v\rangle|^{2} \\
& \Rightarrow|\langle u, v\rangle|^{2} \leq\|u\|^{2}\|v\|^{2} \\
& \Rightarrow|\langle u, v\rangle| \leq\|u\|\|v\|
\end{aligned}
\]

Hence the theorem.

\subsection*{13.5.8 Special Case of Cauchy - Schwaz's inequality :}

\section*{Cauchy's inequality Theorem:}

In the vector space \(V_{n}(C)\) with standard inner product defined on it,
\[
\left|\sum_{i=1}^{n} a_{i} \bar{b}_{i}\right| \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2}
\]

Or
If \(a_{1}, a_{2}, a_{3} \ldots a_{n}\) and \(b_{1}, b_{2}, \ldots b_{n}\) are complex numbers, then
\[
\left|a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n}\right| \leq\left(\sqrt{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}}\right) \times\left(\sqrt{\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\ldots+\left|b_{n}\right|^{2}}\right)
\]

Proof: Let \(u=\left(a_{1}, a_{2}, \ldots a_{n}\right)\) and \(v=\left(b_{1}, b_{2}, \ldots b_{n}\right)\) are any two vectors in the vector space \(V_{n}(C)\) with standard inner product defined on it.

Then \(a_{1}, a_{2}, \ldots a_{n}\) and \(b_{1}, b_{2}, \ldots b_{n}\) are all complex numbers.
\[
\text { We have }\langle u, v\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n}
\]
\[
\left|<u, v>\left.\right|^{2}=\left|a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n}\right|^{2}\right.
\]
\[
\text { Also }\|u\|^{2}<u, v>=a_{1} \bar{a}_{1}+a_{2} \bar{a}_{2}+\ldots+a_{n} \bar{a}_{n}
\]
\[
=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}
\]

Similarly \(\|v\|^{2}=\langle v, v\rangle=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\ldots+\left|b_{n}\right|^{2}\)
By cauchy - Schwarz's inequality
\[
|<u, v>| \leq\|u\|\|v\|
\]
i.e. \(\left|a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+\ldots+a_{n} \bar{b}_{n}\right| \leq\left(\sqrt{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}}\right) \times\left(\sqrt{\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\ldots+\left|b_{n}\right|^{2}}\right)\)

Note : If \(u, v \in V_{n}(R)\) then \(\overline{a_{i}}=a_{i} ; \overline{b_{i}}=b_{i}\) so i.e. when \(a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\) are real numbers.
\[
\text { then }\left|a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right| \leq\left(\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}\right) \times\left(\sqrt{b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}}\right)
\]

Or
\[
\left|a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right| \leq\left(\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}\right)\left(\sqrt{b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}}\right)
\]
W.E. 10: Using Cauchy - Schwarz, inequality, prove that the also vector value of the cosine of an angle can not be greater than 1 .

Solution: Let F be the field of real numbers R and \(V=F^{(3)}\)
Consider the standard inner product on V .
Let \(u=\left(a_{1}, a_{2}, a_{3}\right) ; v=\left(b_{1}, b_{2}, b_{3}\right)\) be any two non zero vectors in V .
\[
O=(0,0,0)
\]

Let \(\theta\) be the angle between the vectors \(u\) and \(v\) then
\[
\left.\begin{array}{rl}
\cos \theta & =\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}} \\
& =\frac{\langle u, v\rangle}{\|u\|\|v\|}
\end{array}\right\} \begin{aligned}
& |\cos \theta|
\end{aligned}=\frac{\langle u, v\rangle}{\|u\|\|v\|} \leq \frac{\|u\|\|v\|}{\|u\|\|v\|}
\]

Since by Cauchy Schwarz inequality \(|\langle u, v\rangle| \leq\|u\|\|v\|\)
\[
\therefore|\cos \theta| \leq 1
\]

Hence the absolute value of the cosine of an angle can not be greater than 1 .

\subsection*{13.5.9 Triangular inequality:}
in an inner product space \(V(F)\), prove that \(\|u+v\| \leq\|u\|+\|v\|\).
Proof: By definition of norm
\[
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v> \\
& =\langle u, u+v>+\langle v, u+v> \\
& =\langle u, u>+\langle u, v>+\langle v, u>+\langle v, v> \\
& =\|u\|^{2}+\left\langle u, v>+\overline{\langle u, v\rangle}+\|v\|^{2} \text { since }\langle v, u\rangle=\overline{\langle u, v>}\right. \\
& =\|u\|^{2}+2 \operatorname{Re}\langle u, v\rangle+\|v\|^{2} \\
& \leq\|u\|^{2}+2|\langle u, v\rangle|+\|v\|^{2} \text { Since } \operatorname{Re} z \leq|z| .
\end{aligned}
\]

Hence \(\|u+v\|^{2} \leq\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}\) since By Cauchy - Schwarz inequality \(|\langle u, v\rangle| \leq\|u\|\|v\|\)
\[
\begin{aligned}
& \Rightarrow\|u+v\|^{2} \leq(\|u\|+\|v\|)^{2} \\
& \Rightarrow\|u+v\| \leq\|u\|+\|v\|
\end{aligned}
\]

\section*{Geometrical interpretation of triangular inequality:}

Consider \(u, v\) to be the vectors in an Inner product space \(V_{3}(R)\) with standard inner product defined on it. Let the vectors \(u, v\) be represented by the sides \(A B, B C\) of triangle ABC . Then evedently we have \(u+v=A C\) and \(\|u\|=A B,\|v\|=B C\) and \(\|u+v\|=A C\).

Then Cauchy - Schwarz's inequality implies that \(A C \leq A B+B C\).

\section*{W.E. 11:}

Prove that if V is an inner product space then \(|\langle u, v\rangle|=\|u\|\|v\|\) if and only if one of the vectors \(u\) or \(v\) is a multiple of the other (or \(u, v\) are linearly dependent).

Solution:
Case i) Let \(|<u, v\rangle \mid=\|u\|\|v\|\)
if \(v=O\) (zero vector) then clearly \(|\langle u, v\rangle|=0\) and \(\|u\|\|v\|=\|u\|\|0\|=0\)
so \(|\langle u, v\rangle|=\|u\|\|v\|\) and we can write \(v=0 u\) i.e. \(v\) is a scalar multiple of \(u\). (i.e. \(u, v\) are linearly dependent).

Similarly if \(u=O\) then \(u=0 v\) i.e. \(u\) is a scalar multiple of \(v\) (i.e. \(u, v\) are linearly dependent)
Let \(v \neq O\) and let \(c=\frac{\langle u, v\rangle}{\|v\|^{2}}\)
Let \(w=u-c v\)
\(\langle w, w\rangle=\langle u-c v, u-c v\rangle\)
\(=\langle u, u\rangle-\bar{c}\langle u, v\rangle-c<v, u\rangle+c \bar{c}\langle v, v\rangle\) by (4) Cauchy - Schwarz's inequality.
\[
\begin{aligned}
& =\|u\|^{2}-\frac{\overline{\langle u, v\rangle}}{\|v\|^{2}}\left\langle u, v>-\frac{\langle u, v\rangle}{\|v\|^{2}}\langle v, u\rangle+\frac{\langle u, v\rangle \overline{\langle u, v\rangle}}{\|v\|^{2}}\|v\|^{2}\right. \\
& \|v\|^{2} \\
& =\|u\|^{2}-\frac{\langle u, v>\langle v, u>}{\|v\|^{2}} \\
& =\|u\|^{2}-\frac{\langle u, v>\overline{\langle u, v>}}{\|v\|^{2}}
\end{aligned}
\]
\[
=\|u\|^{2}-\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}}
\]
\[
=\|u\|^{2}-\frac{\|u\|^{2}\|v\|^{2}}{\|v\|^{2}} \quad \text { since }=|<u, v>|=\|u\|\|v\|
\]
\[
=0
\]

Hence \(\langle w, w\rangle=0 \Rightarrow w=O\)
\[
\Rightarrow u-c v=O \Rightarrow u=c v \text { i.e. }
\]
\(u\) is a scalar multiple of \(v\). Similarlity when \(u \neq O\) we can prove \(v\) is a scalar multiple of \(u\).
i.e. \(u, v\) are linearly dependent.

Converse: If one of the vectors \(u, v\) are zero vectors then they are linearly dependent i.e. one can be expressed as a scalar multiple of other and
\[
\begin{array}{r}
|\langle u, v\rangle|=0 \text { and }\|u\|\|v\|=0 \\
\text { So }|\langle u, v\rangle|=\|u\|\|v\|
\end{array}
\]

Let us suppose that both \(u, v\) are non zero vectors and they are linearly dependent.
So one is a scalar multiple of the other.
Let \(u=c v\) for some \(c \in F\)
\[
\begin{align*}
& \langle u, v\rangle=\langle c v, v\rangle=c\langle v, v\rangle=c\|v\|^{2} \\
& \therefore|\langle u, v\rangle|=\mid c\|v\|^{2} \ldots \ldots \ldots \text { (1) } \tag{1}
\end{align*}
\]

Also \(\|u\|=\|c v\|=|c|\|v\|\)
\[
\begin{equation*}
\text { Hence }\|u\|\|v\|=|c|\|v\|^{2} \tag{2}
\end{equation*}
\]

From (1) and (2) it follows
\[
|\langle u, v\rangle|=\|u\|\|v\|
\]

Hence from the above two cases the theorem follows.

\subsection*{13.5.9 Theorem:}

If \(u, v\) are vectors of an inner product space \(V(F)\), then \(\|u\|-\|v\| \leq \Delta u-v \|\)
Proof: \(u, v\) are vectors in an inner product space \(V(F)\).
\[
\begin{align*}
& \|u\|=\|u-v+v\| \leq\|u-v\|+\|v\| \text { by triangular inequality. } \\
& \text { So }\|u\|-\|v\| \leq\|u-v\| \ldots \ldots \ldots . \text { (1) }  \tag{1}\\
& \text { Again }\|v\|=\|v-u+u\| \leq\|v-u\|+\|u\| \text { by triangular inequality } \\
& \Rightarrow\|v\|-\|u\| \leq\|v-u\| \ldots \ldots \ldots \ldots \text { (2) }
\end{align*}
\]

From (1) and (2)
\[
\|u\|-\|v\| \leq\|u-v\|
\]

\subsection*{13.5.10 Parallelogram law on an inner product space :}

If \(u, v\) are any two vectors in an inner product space \(V(F)\) then show that
\[
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
\]

Proof: \(u, v\) are any two vectors in an inner product space \(V(F)\).
So \(\|u+v\|^{2}=\langle u+v, u+v>\) by definition of norm.
\[
\begin{aligned}
& =<u, u+v><v, u+v> \\
& =<u, u>+<u, v>+<v, u>+<v, v>
\end{aligned}
\]
i.e. \(\|u+v\|^{2}=\|u\|^{2}+\langle u, v\rangle+\langle v, u\rangle+\|v\|^{2}\)
\[
\text { Also } \begin{align*}
\|u+v\|^{2} & =\langle u-v, u-v\rangle  \tag{1}\\
& =\langle u, u-v\rangle-\langle v, u-v\rangle \\
& =\langle u, u\rangle-\langle u, v\rangle-\{\langle v, u\rangle-\langle v, v\rangle\}
\end{align*}
\]

So \(\|u-v\|^{2}=\|u\|^{2}-\langle u, v\rangle-\langle v, u\rangle+\|v\|^{2}\) \(\qquad\)
Adding (1) and (2) we get
\[
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+\|v\|^{2}
\]

Hence the theorem.

\section*{Geometrical inter pretation of parallelogram Law:}

Let \(u\) and \(v\) be two vectors in the vector space \(V_{3}(R)\) with standard inner product defined on it. Suppose the vector \(u\) is represented by the side AB , and the vector \(v\) is represented by the side BC of a parallelogram ABCD then th vectors \(u+v, u-v\), represents the diagonals \(A C\) and \(D B\) of the parallelogram.


From the theorem of parallelogram law \(\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)\)
\[
\begin{aligned}
\Rightarrow A C^{2}+D B^{2} & =2\left(A B^{2}+B C^{2}\right) \\
& =A B^{2}+B C^{2}+C D^{2}+D A^{2}
\end{aligned}
\]
\(\Rightarrow\) The sum of the squares on the diagonals of a parallelogram is equal to the sum of the squares on the four sides.

\subsection*{13.5.11 Theorem:}

If \(u\), and \(v\) are two vectors in an innter product space \(V(F)\) such that \(\|u+v\|=\|u\|+\|v\|\) then the vectors are linearly dependent.

Proof: \(u, v\) are two vectors in an inner product space \(V(F)\) such that \(\|u+v\|=\|u\|+\|v\|\)
\[
\Rightarrow\|u+v\|^{2}=(\|u\|+\|v\|)^{2}
\]
\(\Rightarrow\langle u+v, u+v\rangle=\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\|\)
\(\Rightarrow\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle=\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\|\)
\(\Rightarrow\|u\|^{2}+\langle u, v\rangle+\overline{\langle u, v>}+\|v\|^{2}=\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\|\)
\(\Rightarrow 2 \operatorname{Re}\langle u, v\rangle=2\|u\|\|v\|\)
i.e. \(R \mathrm{e}\langle u, v\rangle=\|u\|\|v\|\)

We know \(\operatorname{Re} z \leq|z|\)
So \(\operatorname{Re}(u, v) \leq|\langle u, v\rangle|\)
\(\Rightarrow\|u\|\|v\| \leq|<u, v\rangle \mid \leq\|u\|\|v\|\) by (1) and Cauchy - Schawarz's inequality.
\[
\Rightarrow|\langle u, v\rangle|=\|u\|\|v\|
\]

Hence \(u, v\) are linearly independent.
Note: The converse of the above theorem need not be true.
For example consider the inner product space \(V_{3}(R)\) with standard inner product defined on it.

Let \(u=(-1,0,1), v=(3,0,-3) \in V_{3}(R)\)
then \(v=-3 u\). Hence \(u\) and \(v\) are linearly dependent.
\[
\begin{aligned}
\|u\|=\sqrt{(-1)^{2}+0^{2}+(1)^{2}}=\sqrt{2},\|v\| & =\sqrt{(3)^{2}+0^{2}+(-3)^{2}} \\
& =\sqrt{18}=3 \sqrt{2}
\end{aligned}
\]
\[
\begin{align*}
& \|u\|+\|v\|=\sqrt{2}+3 \sqrt{2}=4 \sqrt{2}  \tag{1}\\
& (u+v)=(-1,0,1)+(3,0,-3)=(2,0,-2) \\
& \|u+v\|=\sqrt{4+0+4}=\sqrt{8}=2 \sqrt{2} \ldots \ldots .
\end{align*}
\]

From (1) and (2) \(\|u+v\| \neq\|u\|+\|v\|\).
13.5.12 If \(u, v\) are vectors in an inner product space \(V(F)\) then show that
\(\operatorname{Re}\langle u, v\rangle=\frac{1}{4}\|u+v\|^{2} \frac{-1}{4}\|u-v\|^{2}\) and if \(F=\mathrm{R}\), then show that \(\langle u, v\rangle=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}\)
Proof: \(u, v\) are two vectors in an inner product space \(V(F)\),
\[
\begin{align*}
& \text { We have } \begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v> \\
= & =\langle u, u+v>+\langle u, u+v> \\
= & \langle u, u>+\langle u, v>+\langle v, u>+\langle v, v> \\
= & \|u\|^{2}+\left\langle u, v>+\overline{\langle u, v>}++\|v\|^{2}\right. \\
= & \|u\|^{2}+2 \operatorname{Re}\langle u, v\rangle+\|v\|^{2} \ldots \ldots \ldots \ldots . .(1)
\end{aligned}
\end{align*}
\]

Also \(\|u-v\|^{2}=\langle u-v, u-v\rangle\)
\[
\begin{aligned}
& =\langle u, u-v\rangle-\langle v, u-v\rangle \\
& =\langle u, u\rangle-\langle u, v\rangle-\{\langle v, u\rangle-\langle v, v\rangle\}
\end{aligned}
\]

So \(\quad\|u-v\|^{2}=\|u\|^{2}-\langle u, v\rangle-\overline{\langle u, v\rangle}+\|v\|^{2}\)
\[
\begin{equation*}
=\|u\|^{2}-2 \operatorname{Re}\left\langle u, v>+\|v\|^{2}\right. \tag{2}
\end{equation*}
\]

Subtracting (2) from (1) we get
\[
\begin{align*}
& \|u+v\|^{2}-\|u-v\|^{2}=4 \operatorname{Re}\langle u, v\rangle \\
& \text { So } \operatorname{Re}\langle u, v\rangle=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2} . \tag{3}
\end{align*}
\]

If \(F=\mathrm{R}\), then \(\operatorname{Re}\langle u, v\rangle=\langle u, v\rangle\)
So (3) becomes
\[
\langle u, v\rangle=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}
\]

\subsection*{13.5.13 Theorem:}

If \(u\) and \(v\) are vectors in a unitary space then
\[
4\langle u, v\rangle=\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}
\]

Proof: \(u\) and \(v\) are vectors in a unitary space \(V(F)\)
\[
\begin{aligned}
\|u+v\|^{2} & =<u, v>,<u, v> \\
& =<u, u>+<u, v>+<v, u>+<v, v>
\end{aligned}
\]
i.e. \(\quad\|u+v\|^{2}=\|u\|^{2}+\langle u, v\rangle+\langle v, u\rangle+\|v\|^{2}\)
\[
\begin{equation*}
\|u-v\|^{2}=\|u\|^{2}-\left\langle u, v>-\left\langle v, u>+\|v\|^{2}\right.\right. \tag{1}
\end{equation*}
\]

So \(\quad\|u+v\|^{2}-\|u-v\|^{2}=2\langle u, v\rangle+2\langle v, u\rangle\) \(\qquad\)
\[
\begin{aligned}
\|u+i v\|^{2} & =<u+i v, u+i v> \\
& =<u, u+i v>+i<v, u+i v> \\
& =<u, u>+\bar{i}\langle u, v>+i\{\langle v, u>+\bar{i}\langle v, v>\} \\
& =<u, u>-i<u, v>+i\{\langle v, u>-i<v, v>\}
\end{aligned}
\]
\[
\text { Since } \bar{i}=-i
\]
\[
=\|u\|^{2}-i<u, v>+i<v, u+\|v\|^{2}
\]

So \(i\|u+i v\|^{2}=i\|u\|^{2}+\langle u, v\rangle-\langle v, u\rangle+i\|v\|^{2}\) \(\qquad\)
Also \(\|u-i v\|^{2}=\langle u-i v, u-i v>\)
\[
\begin{aligned}
& =<u, u-i v>-i<v, u-i v> \\
& =\langle u, u>-\bar{i}\langle u, v>-i\{<v, u>-\bar{i}\langle u, v>\}
\end{aligned}
\]

So \(\|u-i v\|^{2}=\|u\|^{2}+i\langle u, v\rangle-i\langle v, u\rangle+\|v\|^{2}\) since \(\bar{i}=-i\)
So \(-i\|u-i v\|^{2}=-i\|u\|^{2}+\langle u, v\rangle-\langle v, u\rangle-i\|v\|^{2}\)

Adding (2) and (3) we get
\[
\begin{equation*}
i\|u+i v\|^{2}-i\|u-i v\|^{2}=2<u, v>-2\langle v, u\rangle \tag{4}
\end{equation*}
\]
\(\qquad\)
Adding (1) and (4) we get
\[
4\langle u, v\rangle=\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}
\]

\subsection*{13.5.14 Theorem:}

If \(u\) and \(v\) are vectors in a unitary space then prove that \(\langle u, v\rangle=\operatorname{Re}\langle u, v\rangle+i \operatorname{Re}\langle u, i v\rangle\).

\section*{Proof:}

If \(z=x+i y\) then \(y=\operatorname{Im} z\)
\[
\begin{aligned}
& =\operatorname{Re}\{-i(x+i y)\} \\
\text { i.e. } y & =\operatorname{Re}(-i z)
\end{aligned}
\]

So by this \(\operatorname{Im}<u, v>\operatorname{Re}\{-i<u, v>\}\)
\[
\begin{aligned}
=\operatorname{Re}\{\langle u, i v\rangle\} \quad \text { Since }\langle u, i v\rangle= & \bar{i}\langle u, v\rangle \\
& =-i<u, v\rangle
\end{aligned}
\]

Hence \(\langle u, v\rangle=\operatorname{Re}\langle u, v\rangle+i \operatorname{Re}\langle u, i v\rangle . \quad\) Since \(Z=\) real \(Z+i \operatorname{Im} Z\)

\subsection*{13.6 Norm of a Vector in a vector space:}

Definition: Let V be a vector space over F , where F is either R or C . Regardless of whether V is or is not an inner product space, we define a norm |.|| as a real valued function on V satisfying the following three conditions for \(u, v \in V\) and \(a \in F\).
i) \(\|u\| \geq 0\) and \(\|u\|=0\) if and only if \(u=0\)
ii) \(\|a u\|=|a|\|u\|\)
iii) \(\|u+v\| \leq\|u\|+\|v\|\)

A vector space \(V(F)\) in which the above three conditions are satisfied is called a normed vector space.

\subsection*{13.6.2 Definition: Normed Vector Space:}

Let \(V(F)\) be an inner product space in which norms of a vector \(u \in V\) is defined as \(\|u\|=\sqrt{\langle u, u\rangle}\). The inner product space with this definition of norm is called a normed vector space if the following three conditions are satisfied.
i) \(\|u\| \geq 0\) and \(u=0\) if and only if \(u=O\)
ii) \(\|a u\|=|a| \mid u \|\) and
iii) \(\|u+v\| \leq\|u\|+\|v\| \quad \forall u, v \in V\) and \(a \in F\)
13.6.3 Theorem: Every inner product space is a normed vector space.

Proof: As the three conditions required for a normed vector space are true in every inner product space, it follows that every inner product space is a normed vector space.

\subsection*{13.6.4 Distance in an inner product space:}

Definition: Let \(u\) and \(v\) be two vectors in an inner product space \(V(F)\). The distance between the vectors \(u\) and \(v\) is denoted by \(\mathrm{d}(u, v)\) and is defined as \(d(u, v)=\|u-v\|=\sqrt{\langle u-v, u-v\rangle}\) Note: \(d(u, v)\) is a non negative real number.

Ex: Let \(u=\left(a_{1}, a_{2}, a_{3}\right) v=\left(b_{1}, b_{2}, b_{3}\right)\) be two vectors in the inner product space \(R^{3}\). Then
\[
u-v=\left(a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right)
\]
\(d(u, v)=\|u-v\|=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}}\)
13.6.5 Theorem: If \(u, v, w\) are any three vectors in an inner product space \(V(F)\) then prove that
i) \(d(u, v) \geq 0\) and \(d(u, v)=0\) iff \(u=v\)
ii) \(d(u, v)=d(v, u)\)
iii) \(d(u, v) \leq d(u, w)+d(w, v)\)
iv) \(d(u, v)=d(u+w, v+w)\)

Proof: i) To show that \(d(u, v) \geq 0\) and \(d(u, v)=0\) iff \(u=v\).
By definition \(d(u, v)=\|u-v\| \geq 0\) since the norm of a vector is a non negative real number.
and \(d(u, v)=0 \Leftrightarrow\|u-v\|=0 \Leftrightarrow\|u-v\|^{2}=0\)
\[
\begin{aligned}
& \Leftrightarrow\langle u-v, u-v>=0 \\
& \Leftrightarrow u-v=0 \Leftrightarrow u=v
\end{aligned}
\]

Thus \(d(u, v)=0\) if and only if \(u=v\).
ii) To show \(d(u, v)=d(v, u)\)

Proof: We have by definition
\[
\begin{aligned}
d(u, v) & =\|u-v\| \\
& =\|(-1)(v-u)\| \\
& =\mid(-1)\|u-v\| \\
& =1\|v-u\| \\
& =\|v-u\|=d(v, u)
\end{aligned}
\]

So \(d(u, v)=d(v, u)\)
iii) To show that \(d(u, v) \leq d(u, w)+d(w, v)\)

Proof: \(d(u, v)=\|u-v\|\)
\[
\begin{aligned}
& =\|(u-w)+(w-v)\| \\
& \leq\|(u-w)\|+\|w-v\| \text { by triangle inequality. } \\
& \leq d(u, w)+d(v, w)
\end{aligned}
\]
\[
\text { So } d(u, v) \leq d(u, w)+d(v, w)
\]
iv) To show \(d(u, v)=\|u-v\|\)

Proof: \(\quad d(u, v)=\|u-v\|\)
\[
=\|(u+w)-(v+w)\|
\]
\[
=d(u+w, v+w)
\]

Thus \(d(u, v)=d(u+w, v+w)\).

\subsection*{13.7 Worked Out Examples:}

\section*{W.E. 12 :}

Show that \(V_{3}(R)\) is an inner product space under \(\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\).

Solution: As the given field is the field of real numbers the conjugate symmetry is nothing but symmetry
i) Symmetry:

Let \(u=\left(x_{1}, x_{2}, x_{3}\right), v=\left(y_{1}, y_{2}, y_{3}\right)\)
given \(\langle u, v\rangle=\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\)
So \(\langle v, u\rangle=<\left(y_{1}, y_{2}, y_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)=y_{1} x_{1}+y_{2} x_{2}+y_{3} x_{3}\)
\[
\begin{aligned}
& =x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \\
& =\langle u, v\rangle
\end{aligned}
\]

Thus \(\langle v, u\rangle=\langle u, v\rangle\)
ii) Linearity: Let \(a, b \in R\) then
\[
\begin{aligned}
& a u+b v=a\left(x_{1}, x_{2}, x_{3}\right)+b\left(y_{1}, y_{2}, y_{3}\right) \\
& =\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}, a x_{3}+b y_{3}\right)
\end{aligned}
\]

Let \(w=\left(z_{1}, z_{2}, z_{3}\right)\) be any vector in \(V_{3}(R)\).
Then \(\left.\langle a u+b v, w\rangle=<\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}, a x_{3}+b y_{3}\right),\left(z_{1}, z_{2}, z_{3}\right)\right\rangle\)
\[
\begin{aligned}
& \quad=\left(a x_{1}+b y_{1}\right) z_{1}+\left(a x_{2}+b y_{2}\right) z_{2}+\left(a x_{3}+b y_{3}\right) z_{3} \\
& =\left(a x_{1} z_{1}+b y_{1} z_{1}\right)+\left(a x_{2} z_{2}+b y_{2} z_{2}\right)+\left(a x_{3} z_{3}+b y_{3} z_{3}\right) \\
& =a\left(x_{1} z_{1}+x_{2} z_{2}+x_{3} z_{3}\right)+b\left(y_{1} z_{1}+y_{2} z_{2}+y_{3} z_{3}\right) \\
& =a<u, w>+b<v, w>
\end{aligned}
\]

Thus \(\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle\)
iii) Non negativity : \(\langle u, u\rangle=\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}, x_{2}, x_{3}\right)\right\rangle\)
\[
\begin{gathered}
=x_{1}\left(x_{1}\right)+x_{2}\left(x_{2}\right)+x_{3}\left(x_{3}\right) \\
<u, u>=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq 0 \\
<u, u>=0 \Leftrightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0 \Leftrightarrow x_{1}=0, x_{2}=0, x_{3}=0
\end{gathered}
\]

So \(u=\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)=O\)
Hence \(\langle u, u\rangle=0 \Leftrightarrow u=O\).
As all the three required conditions are satisifed, the given product is an inner product.
So \(V_{3}(R)\) is an inner product space.

\section*{W.E. 13:}

Which of the following define inner product in \(V_{2}(R)\). Give reasons
i) \(\langle u, v\rangle=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2}\)
ii) \(\langle u, v\rangle=2 x_{1} y_{1}+5 x_{2} y_{2}\) where \(u=\left(x_{1}, x_{2}\right) \quad v=\left(y_{1}, y_{2}\right)\)

Solution: \(u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right)\) are any two vectors in \(V_{2}(R)\).
i) To verify \(\langle u, v\rangle=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2}\) is an inner product or not.
i) Symmetry :
\[
\left.\begin{array}{rl}
\langle v, u\rangle & \left.=<\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle \\
& =y_{1} x_{1}+2 y_{1} x_{2}+2 y_{2} x_{1}+5 y_{2} x_{2} \\
& =x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2} \\
& =<u, v>
\end{array} \text { Hence }<v, u\right\rangle=\langle u, v\rangle
\]
ii) Linearity :

Let \(a, b \in R\); then
\[
\begin{aligned}
a u+b v & =a\left(x_{1}, x_{2}\right)+b\left(y_{1}, y_{2}\right) \\
& =\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}\right)
\end{aligned}
\]

Let \(w=\left(z_{1}, z_{2}\right)\) be any vector in \(V_{2}(R)\).
Then \(\left.\langle a u+b v, w\rangle=<\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}\right),\left(z_{1}, z_{2}\right)\right\rangle\)
\[
=\left(a x_{1}+b y_{1}\right) z_{1}+2\left(a x_{1}+b y_{1}\right) z_{2}\left(a x_{2}+b y_{2}\right) z_{1}+5\left(a x_{2}+b y_{2}\right) z_{2}
\]

Thus
\[
\begin{aligned}
<a u+b v, w> & =a x_{2} z_{1}+b y_{1} z_{1}+2 a x_{1} z_{2}+2 b y_{1} z_{2}+2 a x_{2} z_{1}+2 b y_{2} z_{1}+5 a x_{2} z_{2}+5 b y_{2} z_{2} \\
& =a\left(x_{1} z_{1}+b x_{1} z_{2}+2 x_{2} z_{1}+5 x_{2} z_{2}\right)+b\left(y_{1} z_{1}+2 y_{1} z_{2}+2 y_{2} z_{1}+5 y_{2} z_{2}\right) \\
& =a<u, w>+b<v, w>
\end{aligned}
\]

Thus \(\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle\)

\section*{Non Negativity:}
\[
\begin{aligned}
\langle v, v\rangle & \left.=<\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle \\
& =x_{1} x_{1}+2 x_{1} x_{2}+2 x_{2} x_{1}+5 x_{2} x_{2} \\
& =\left(x_{1}+2 x_{2}\right)^{2}+x_{2}^{2} \geq 0
\end{aligned}
\]
and \(\langle u, u\rangle=0 \Leftrightarrow\left(x_{1}+2 x_{2}\right)^{2}+x_{2}^{2}=0\)
\[
\begin{aligned}
& \Leftrightarrow x_{1}+2 x_{2}=0 ; x_{2}=0 \Leftrightarrow x_{1}=0, x_{2}=0 \\
& \Leftrightarrow u=(0,0)=O
\end{aligned}
\]

Hence \(\langle u, u\rangle=0 \Leftrightarrow u=O\).
As the three required conditions are satisfied \(\langle u, v\rangle=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} x_{2}\) is an inner product.
2. To verify \(\langle u, v\rangle=2 x_{1} y_{1}+5 x_{2} y_{2}\) is an inner product or not.
given \(u=\left(x_{1}, x_{2}\right) v=\left(y_{1}, y_{2}\right) .\langle u, v\rangle=2 x_{1} y_{1}+5 x_{2} y_{2}\)

Symmetry: \(\langle v, u\rangle=\left\langle\left(y_{1}, y_{2}\right)\left(x_{1}, x_{2}\right)\right\rangle\)
\[
\begin{aligned}
& =2 y_{1} x_{1}+5 y_{2} x_{2} \\
& =2 x_{1} y_{1}+5 x_{2} y_{2} \\
& =\langle u, v>
\end{aligned}
\]

Thus \(\langle v, u\rangle=\langle u, v\rangle\)
ii) Linearity :

Let \(w=\left(z_{1}, z_{2}\right)\) be any vector in \(V_{2}(R)\)
Let \(a, b \in R\)
Then \(a u+b v=a\left(x_{1}, x_{2}\right)+b\left(y_{1}, y_{2}\right)\)
\[
=\left(\left(a x_{1}+b y_{1}\right),\left(a x_{2}+b y_{2}\right)\right)
\]

Now \(\left\langle a u+b v, w>=<\left(\left(a x_{1}+b y_{1}\right),\left(a x_{2}+b y_{2}\right)\right),\left(z_{1}, z_{2}\right)>\right.\)
\[
\begin{aligned}
& =2\left(a x_{1}+b y_{1}\right) z_{1}+5\left(a x_{2}+b y_{2}\right) z_{2} \text { by given definition } \\
& =2 a x_{1} z_{1}+2 b y_{1} z_{1}+5 a x_{2} z_{2}+5 b y_{2} z_{2} \\
& =a\left(2 x_{1} z_{1}+5 x_{2} z_{2}\right)+b\left(2 y_{1} z_{1}+5 y_{2} z_{2}\right) \\
& =a<u, w>+b<v, w>
\end{aligned}
\]

Thus \(\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle\)
iii) Non Negativity : \(\langle u, u\rangle=\left\langle\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle\)
\[
\begin{aligned}
& =2 x_{1} x_{1}+5 x_{2} x_{2} \\
& =2 x_{1}^{2}+5 x_{2}^{2} \geq 0
\end{aligned}
\]

More over \(\langle u, u\rangle=0 \Leftrightarrow 2 x_{1}^{2}+5 x_{2}^{2}=0\)
\[
\begin{aligned}
\Leftrightarrow x_{1}=0, x_{2}=0 & \Leftrightarrow u=\left(x_{1}, x_{2}\right)=(0,0) \\
& \Leftrightarrow u=O
\end{aligned}
\]

Thus \(\langle u, u\rangle=0 \Leftrightarrow u=O\)
As all the three required conditions are satisfied \(\langle u, v\rangle=2 x_{1} y_{1}+5 x_{2} y_{2}\) where \(u=\left(x_{1}, x_{2}\right), v=\left(y_{1}, y_{2}\right)\) is an inner product.

\section*{W.E. 14:}

If \(u, v\) are vectors in an inner product space \(V(F)\) and \(a, b \in F\), then prove that \(\left.\|a u+b v\|^{2}=|a|^{2}\|u\|^{2}+a \bar{b}\langle u, v\rangle+\bar{a} b<v, u\right\rangle+|b|^{2}\|v\|^{2}\)

Solution: \(u, v\) are vectors in the inner product space \(V(F)\).
\[
\begin{aligned}
\|a u+b v\|^{2} & =<a u+b v, a u+b v> \\
& =a<u, a u+b v>+b<v, a u+b v> \\
& =a\{\bar{a}<u, u>+\bar{b}<u, v>\}+b\{\bar{a}<v, u>+\bar{b}<v, v>\} \\
& =a \bar{a}<v, u>+a \bar{b}\langle u, v>+b \bar{a}\langle v, u\rangle+b \bar{b}\langle v, v> \\
& =|a|^{2}\|u\|^{2}+a \bar{b}\langle u, v\rangle+\bar{a} b\langle v, u\rangle+|b|^{2}\|v\|^{2}
\end{aligned}
\]

Hence the problem.

\section*{W.E. 15 :}

Use the Frobenius inner product, compute \(\|A\|,\|B\|\) and \(\left\langle A, B>\right.\) for \(A=\left[\begin{array}{cc}1 & 2+i \\ 3 & i\end{array}\right]\) and \(B=\left[\begin{array}{cc}1+i & 0 \\ i & -i\end{array}\right]\) also compute the angle between A and B on \(M_{2 \times 2}(F)\).

Solution: \(B=\left[\begin{array}{cc}1+i & 0 \\ i & -i\end{array}\right]\) Hence \(B^{*}=\left[\begin{array}{cc}1-i & -i \\ 0 & i\end{array}\right]\)
\[
\begin{aligned}
B^{*} A=\left[\begin{array}{cc}
1-i & -i \\
0 & i
\end{array}\right]\left[\begin{array}{cc}
1 & 2+i \\
3 & i
\end{array}\right] & =\left[\begin{array}{cc}
1(1-i)+3(-i) & (1-i)(2+i)+(-i) i \\
0(1)+3 i & 0(2+i)+i(i)
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-4 i & 2-i+1+1 \\
3 i & -1
\end{array}\right]
\end{aligned}
\]

So \(B^{*} A=\left[\begin{array}{cc}1-4 i & 4-i \\ 3 i & -1\end{array}\right]\)
trace of \(\left(B^{*} A\right)=1-4 i-1=-4 i\)
As \(A=\left[\begin{array}{cc}1 & 2+i \\ 3 & i\end{array}\right] ; \quad A^{*}=\left[\begin{array}{cc}1 & 3 \\ 2-i & -i\end{array}\right]\)
\(A * A=\left[\begin{array}{cc}1 & 3 \\ 2-i & -i\end{array}\right]\left[\begin{array}{cc}1 & 2+i \\ 3 & i\end{array}\right]=\left[\begin{array}{cc}10 & 2+i+3 i \\ 2-i-3 i & 4-i^{2}-1^{2}\end{array}\right]\)
\[
=\left[\begin{array}{cc}
10 & 2+4 i \\
2-4 i & 6
\end{array}\right]
\]
trace of \(A * A=10+6=16\)
\(\|A\|^{2}=\langle A, A\rangle=\) trace of \(A * A=16\)
\(\|A\|=\sqrt{<A, A>}=4\)
\(B * B=\left[\begin{array}{cc}1-i & -i \\ 0 & i\end{array}\right]\left[\begin{array}{cc}1+i & 0 \\ i & -i\end{array}\right]\)
\[
=\left[\begin{array}{cc}
1-i^{2}-i^{2} & +i^{2} \\
i^{2} & -i^{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right]
\]
trace of \(B * B=3+1=4\)
\[
\|B\|^{2}=\langle B, B\rangle=\operatorname{trace} \text { of } B * B=4
\]
\[
\|B\|=\sqrt{\langle B, B\rangle}=2
\]
\(<A, B>=\) trace of \(B * A=\) trace of \(\left[\begin{array}{cc}1-4 i & 4-i \\ 3 i & -1\end{array}\right]\)
\[
=1-4 i-1=-4 i
\]

If \(\theta\) is the angle between \(A\) and \(B\).
then \(\cos \theta=\frac{|\langle A, B\rangle|}{\|A\|\|B\|}=\frac{|-4 i|}{4(2)}=\frac{4}{8}=\frac{1}{2}\)
\(\cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}\)
Thus the angle between \(A\) and \(B\) is \(\frac{\pi}{3}\)

\section*{W.E. 16:}

Let T be a linear operator an inner product space suppose that \(\|T(u)\|=\|u\| \forall u \in V\). Prove that \(T\) is one one:

Solution: \(V(F)\) is an inner product space.
T is a linear operator on V .
So \(T(a u+b v)=a T(u)+b T(v)\) for all \(u, v \in V\) for all \(a, b \in F\).
Show that T is one one:
Let \(u, v \in V\) such that
\[
\begin{aligned}
& T(u)=T(v) \\
\Rightarrow & T(u)-T(v)=O \quad \text { (Zero vector in } \mathrm{V}) \\
\Rightarrow & T(u-v)=O \quad \text { (Since } T \text { is a linear operator) } \\
\Rightarrow & \|T(u-v)\|=|O| \\
\Rightarrow & \|(u-v)\|=0 \text { Since } \quad\|T(u)\|=\|u\| \text { for all } u \in V \\
\Rightarrow & \|u-v\|^{2}=0 \\
\Rightarrow & \langle u-v, u-v>=0 \\
\Rightarrow & u-v=O \\
\Rightarrow & u=v
\end{aligned}
\]

Thus \(T(u)=T(v) \Rightarrow u=v \forall u, v \in V\)
So T is one one.

\section*{W.E. 17:}

Let \(u=(2,1+i, i)\) and \(v=(2-i, 2,1+2 i)\) be vectors in \(C^{3}\). Compute \(\langle u, v\rangle,\|u\|,\|v\|\) and \(\|u+v\|\). Then verify both the Cauchy - Schwarz inequality and the triangle in equality.

Solution : \(\langle u, v\rangle=\langle(2,1+i, i),(2-i, 2,1+2 i)\rangle\)
\[
\begin{aligned}
& =2 \overline{(2-i)}+(1+i) 2+i \overline{(1+2 i)} \\
& =2(2+i)+2(1+i)+i(1-2 i) \\
& =4+2 i+2 i+2+i-2 i^{2} \\
& =4+5 i+2+2=8+5 i
\end{aligned}
\]

So \(\langle u, v\rangle=8+5 i\)
\[
\begin{aligned}
\|u\|^{2}=\langle u, u> & =<(2,1+i, i),(2,1+i, i)> \\
& =2(2)+(1+i) \overline{(1+i)}+i \overline{(i)} \\
& =2(2)+(1+i)(1-i)+i(-i) \\
\|u\|^{2} & =4+1-i^{2}-i^{2}=7
\end{aligned}
\]
\[
\text { So }\|u\|=\sqrt{7}
\]
\[
\left.\|v\|^{2}=\langle v, v\rangle=<(2-i, 2,1+2 i),(2-i, 2,1+2 i)\right\rangle
\]
\[
\begin{aligned}
& =(2-i) \overline{(2-i)}+2(2)+(1+2 i) \overline{(1+2 i)} \\
& =(2-i)(2+i)+4+(1+2 i)(1-2 i) \\
& =4-i^{2}+4+1-4 i^{2} \\
\|v\|^{2} & =4+1+4+1+4=14
\end{aligned}
\]
\[
\begin{aligned}
& \text { So }\|v\|=\sqrt{14} \\
& u+v=(2,1+i, i)+(2-i, 2,1+2 i) \\
&=(2+2-i, 1+i+2, i+1+2 i)=(4-i, 3+i, 1+3 i)
\end{aligned}
\]
\(\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle(4-i, 3+i, 1+3 i),(4-i, 3+i, 1+3 i)\rangle\)
\[
\begin{aligned}
& =(4-i) \overline{(4-i)}+(3+i) \overline{(3+i)}(1+3 i) \overline{(1+3 i)} \\
& =(4-i)(4+i)+(3+i)(3-i)+(1+3 i)(1-3 i) \\
& =16-i^{2}+9-i^{2}+1-9 i^{2}=26+1+1+9=37
\end{aligned}
\]

Hence \(\|u+v\|=\sqrt{37}\)
To verify Cauchy - Schwarz in equality \(|\langle u, v\rangle| \leq\|u\|\|v\|\).
We have shown \(\langle u, v\rangle=8+5 i\)
\[
\begin{equation*}
|\langle u, v\rangle|=\sqrt{64+25}=\sqrt{89} \tag{1}
\end{equation*}
\]
\(\|u\|=\sqrt{7},\|\nu\|=\sqrt{14}\)
\(\|u\|\|\nu\|=\sqrt{7} \sqrt{14}=\sqrt{7 \times 14}=\sqrt{98}\)
but \(\sqrt{89}<\sqrt{98}\)
So \(|\langle u, v\rangle|<\|u\|\|v\|\)
Hence Cauchy - Schwarz's in equality is verified.
To verify triangle inequality \(\|u+v\| \leq\|u\|+\|v\|\)
we have \(\|u\|+\|v\|=\sqrt{7}+\sqrt{14}\)
But \(\sqrt{7}+\sqrt{14}>\sqrt{37}\)
So \(\|u\|+\|v\|>\|u+v\|\)
Hence triangle inequality is verified.

\section*{W.E. 18 :}

In \(C([0,1])\) if \(f(t)=t ; \quad g(t)=e^{t}\). Compute \(<f, g>,\|f\|,\|g\|\), and \(\|f+g\|\). Then verify both the Cauchy - Schwarz in equality and the triangle in equality. If \(\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t\).

Solution: Let \(V=C([0,1])\) be the inner product space of real valued continuous functions on \([0,1]\) with the inner product \(f\) and \(g\) defined by
\[
\begin{aligned}
& \langle f, g\rangle=\int_{0}^{1} f(t) g(t) \mathrm{dt} \\
& \langle f, g\rangle=\int_{0}^{1} e^{t} . t \mathrm{dt} \\
& =\left[t . e^{t}\right]_{0}^{1}-\int_{0}^{1} 1 . e^{t} \mathrm{dt} \\
& 1 . e^{1}-\left[e^{t}\right]_{0}^{1}=e^{1}-\left(e^{1}-e^{0}\right)=e-e+1=1 \\
& \langle f, g\rangle=1 \\
& \|f\|^{2}=\langle f, f\rangle=\langle t, t\rangle=\int_{0}^{1} t . t \mathrm{dt}=\int_{0}^{1} t^{2} \operatorname{det}=\left[\frac{t^{3}}{3}\right]_{0}^{1} \\
& \text { i.e. }\|f\|^{2}=\frac{1}{3}-0=\frac{1}{3} \\
& \|f\|^{2}=\frac{1}{3} \quad \text { So } \quad\|f\|=\frac{1}{\sqrt{3}} \\
& \|g\|^{2}=<g, g>=\int_{0}^{1} e^{t} \cdot e^{t} \mathrm{dt}=\int_{0}^{1} e^{2 t} \mathrm{dt}=\left[\frac{e^{2 t}}{2}\right]_{0}^{1} \\
& \text { i.e. }\|g\|^{2}=\frac{1}{2}\left(e^{2}-e^{0}\right)=\frac{1}{2}\left(e^{2}-1\right) \\
& \|g\|=\sqrt{\frac{1}{2}\left(e^{2}-1\right)} \\
& f+g=t+e^{t} \\
& \|(f+g)\|^{2}=\langle f+g, f+g\rangle=\left\langle\left(t+e^{t}\right),\left(t+e^{t}\right)\right\rangle
\end{aligned}
\]
\[
\begin{aligned}
& =\int_{0}^{1}\left(t+e^{t}\right)^{2} d t=\int_{0}^{1}\left(t^{2}+2 t e^{t}+e^{2 t}\right) \mathrm{dt} \\
& =\left[\frac{t^{3}}{3}+\frac{e^{2 t}}{2}+2 e^{t} \cdot(t-1)\right]_{0}^{1}
\end{aligned}
\]
\[
\|f+g\|^{2}=\frac{1}{3}+\frac{1}{2}\left(e^{2}-1\right)+2=\frac{1}{6}\left(3 e^{2}+11\right)
\]
i.e. \(\|f+g\|=\sqrt{\frac{1}{6}\left(3 e^{2}+11\right)}\)

To verify Cauchy - Schwarz inequality \(|\langle u, v\rangle| \leq\|u\| \cdot\|v\|\)
We have \(|<f, g\rangle|=|1|=1\)
\(\|f\|\|g\|=\frac{1}{\sqrt{3}} \cdot \sqrt{\frac{1}{2}\left(e^{2}-1\right)}\)
From (1) and (2)
\[
|<f, g>|<\|f\|\|g\|
\]

Hence Cauchy - Schwarz in equality is verified.
ii) To verify triangular in equality \(\|u+v\| \leq\|u\|+\|v\|\)

We have \(\|f+g\|=\sqrt{\frac{1}{6}\left(3 e^{2}+11\right)}\)
\[
\|f\|+\|g\|=\frac{1}{\sqrt{3}}+\sqrt{\frac{1}{2}\left(e^{2}-1\right)}
\]

Hence \(\|f+g\|<\|f\|+\|g\|\)
So triangle inequality is verified.

\section*{W.E. 19 :}

In the vector space \(V_{n}(F)\) with standard inner product defined on it show that
\[
\left[\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{2}\right]^{1 / 2} \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right]^{1 / 2}
\]

Solution: In the vector space \(V_{n}(F)\) with the standard inner product defined on it, let \(u=\left(a_{1}, a_{2}, \ldots a_{n}\right), v=\left(b_{1}, b_{2}, \ldots b_{n}\right)\) then \(u+v=\left(a_{1}, a_{2}, \ldots a_{n}\right)+\left(b_{1}, b_{2}, \ldots b_{n}\right)\)
\[
\begin{aligned}
& \text { So } u+v=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots a_{n}+b_{n}\right) \\
& \qquad=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) \\
& \|u\|=\sqrt{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\ldots+\left|a_{n}\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}}
\end{aligned}
\]

Similarly \(\|v\|=\sqrt{\sum_{i=1}^{n}\left|b_{i}\right|^{2}}\)
By triangle in equality \(\|u+v\| \leq\|u\|+\|v\|\)
\[
\text { So } \sqrt{\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{2}} \leq \sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}}+\sqrt{\sum_{i=1}^{n}\left|b_{i}\right|^{2}}
\]

\subsection*{13.8 Summary:}

In this lesson we discussed about inner products - inner product spaces, norm or length of a vector in an inner produc space - normalising the vectors - Cauchy - Schwarz's in equality triangle in equality - Parallellogram Law - Norm of a vector in a vector space - distance between two vectors.

\subsection*{13.9 Technical Terms:}

Inner Product, Inner Product Space, Norm of a vector, Normed Vector space, Distance between vectors.

\subsection*{13.10 Model Questions:}
1. Find unit vector corresponding to \((2-i, 3+2 i, 2+\sqrt{3} i)\) of \(V_{3}(C)\) with respect to the standard inner product.

Ans: \(\frac{1}{5}(2-3 i, 3+2 i, 2+\sqrt{3} i)\)
2. Which of the following define inner product in \(V_{2}(R)\). Give reasons
i. \(\langle u, v\rangle=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+5 x_{2} y_{2}\)
ii. \(\langle u, v\rangle=2 x_{1} y_{1}+5 x_{2} y_{2}\) where \(u=\left(x_{1}, x_{2}\right) v=\left(y_{1}, y_{2}\right)\)

Ans: i) inner product
ii) inner product
3. Show that \(V_{3}(R)\) is an inner product space under the inner product \(\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\).

\subsection*{13.11 Exercises:}
1. If \(u=\left(a_{1}, a_{2}\right), v=\left(b_{1}, b_{2}\right) \in V_{2}(R)\) then define \(\langle u, v\rangle=a_{1} b_{2}-a_{1} b_{2}+4 a_{2} b_{2}\). Show that it is an inner product on \(V_{2}(R)\).
2. Show that \(V_{3}(R)\) is an inner product space under the product defined by \(\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\)
3. If \(u=\left(a_{1}, a_{2}\right), v=\left(b_{1}, b_{2}\right)\) then show that \(\langle u, v\rangle=2 a_{1} \bar{b}_{1}+a_{1} \bar{b}_{2}+a_{2} \bar{b}_{1}+a_{2} \bar{b}_{2}\) is an inner product on \(V_{2}(R)\).
4. Prove that \(\langle u, v\rangle=a_{1}+a_{2}+b_{1}+b_{2}\) does not define an inner product in \(V_{2}(R)\).
5. Let \(u=(1,3,-4,2), v=(4,-2,2,1), w=(5,-1,-2,6)\) in \(R^{4}\) then find \(\langle u, w\rangle,\langle v, w\rangle\) and verify that \(\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle\) and compute \(\|u\|,\|v\|,\|w\|\).

Ans: \(\langle u, w\rangle=22,\langle v, w\rangle=24\)
\[
\|u\|=\sqrt{30},\|v\|=5,\|w\|=\sqrt{66}
\]
6. \(u=(1,2), v=(-1,1)\) are two vectors in the vector space \(R^{2}\), with standard inner product. If \(w\) is a vector such that \(\langle u, w\rangle=-1,\langle v, w\rangle=3\) then find \(w\).

Ans: \(w=\left(\frac{-7}{3}, \frac{2}{3}\right)\)
7. In the vector space \(P(t)\) of all polynomials with inner product \(\left\langle f, g>=\int_{0}^{1} f(t) g(t) d t\right.\)

If \(f(t)=t+2, \quad g(t)=3 t-2, \quad h(t)=t^{2}-2 t-3\) then find
i) \(\langle f, g\rangle\), and \(\langle f, h\rangle\),
ii) \(\|f\|\) and \(\|g\|\)
iii) Normalize f and g.

Ans: \(\langle f, h\rangle=-1,\langle f, h\rangle=\frac{-37}{4}\)
\[
\|f\|=\frac{\sqrt{57}}{3}\|g\|=1
\]
\(\hat{f}=\) unit vector along \(f=\frac{3}{\sqrt{57}}(t+2) ; \hat{g}=g=3 t-2\)
8. Let \(M=M_{2 \times 3}\) with inner product \(\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)\) and Let \(A=\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4\end{array}\right] B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] C=\left[\begin{array}{ccc}3 & -5 & 2 \\ 1 & 0 & -4\end{array}\right]\) then find
i) \(\langle A, B\rangle,\langle A, C\rangle,\langle B, C\rangle\)
ii) \(\langle 2 A+3 B, 4 C\rangle\)
iii) \(\|A\|\) and \(\|B\|\)

Ans: \(\langle A, B\rangle=119 ;\langle A, C\rangle=-9,\langle B, C\rangle=-21\)
\(<2 A+3 B, 4 C>=-324\)
\(\|A\|=\sqrt{271}, \quad\|B\|=\sqrt{91}\)
9. Find \(\cos \theta\) where \(\theta\) is the angle between
i) \(u=(1,-3,2)\) and \(v=(2,1,5)\) in \(R^{3}\)
ii) \(u=(1,3,-5,4)\) and \(v=(2,-3,4,1)\) in \(R^{4}\)
iii) \(f(t)=2 t-1, \quad g(t)=t^{2}\) where \(\langle f, g\rangle=\int_{0}^{1} f(t) g(t) \mathrm{dt}\)
iv) \(A=\left[\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right] ; B=\left[\begin{array}{cc}0 & -1 \\ 2 & 3\end{array}\right]\) where \(\langle A B\rangle=\operatorname{tr}\left(B^{T} A\right)\)
i) \(\frac{9}{\sqrt{105}}\)
ii) \(\frac{-23}{3 \sqrt{130}}\)
iii) \(\frac{\sqrt{15}}{6}\)
iv) \(\frac{2}{\sqrt{210}}\)
10. If \(u=(1,-5,3)\) and \(v=(4,2,-3)\) are two vectors in \(R^{3}\) then find the distance between \(u\) and \(v\).

Ans : \(d(u, v)=\sqrt{94}\)
11. In the inner product space \(C^{2}\) for \(u, v \in C^{2}\) and \(A=\left[\begin{array}{cc}1 & i \\ -i & 2\end{array}\right]\) if the inner product \(\langle u, v\rangle=u A v^{*}\) compute \(\langle u, v\rangle\) for \(u=[1-i, 2+3 i]\), and \(v=[2+i, 3-2 i]\)

Ans: \(6+2 i \in C\)
12. If \(u=(1-i, 2+3 i), v=(2-5 i, 3-i)\) are two vectors in \(V(C)=C^{2}(C)\) with standard inner product find \(\langle u, v\rangle\) and \(\|u\|,\|v\|\).

Ans: \(10+14 i, \sqrt{27}, \sqrt{51}\)
13. If \(u, v\) are two vectors in a Eucledian space \(V(R)\) such that \(\|u\|=\|v\|\), then prove that \(\langle u+v, u-v\rangle=0\).
14. Find the norm of the vector \(v=(1,-2,5)\) and also normalise this vector.

Ans: \(\|v\|=\sqrt{30}, \quad \hat{v}=\left(\frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right)\)
15. Let \(V(R)\) be the vector space of polynomials with inner product determined by \(<f, g>=\int_{0}^{1} f(t) g(t) \mathrm{dt}\) for \(f, g \in V\). If \(f(x)=x^{2}+x-4, g(x)=x-1\) for all \(x \in[0,1]\) then find \(<f, g>,\|f\|,\|g\|\).

Ans: \(\frac{7}{4}, \sqrt{\frac{311}{30}}, \frac{1}{\sqrt{3}}\)

> Rings and Linear Algebra

\subsection*{13.12 Reference Books :}
1. Linear Algebra - 4th edition

Stephen. H - Friedberg, Arnold J. insel, Lawrence E - Spence.
2. Topics in Algebra - I.N. Herstein
3. Modern Algebra Vol. II K.S. Narayanan, T.K. Mani Cavachagom pillay
4. A course in Abstract Algebra - Vijay K. Khanna, S.K. Bhambhari

\section*{LESSON - 14}

\section*{ORTHOGONALIZATION}

\subsection*{14.1 Objective of the Lesson:}

In geometry perpendicularity is an useful concept. We introduce now a similar concept in inner product spaces. In previous chapters, we have seen the special role of the standard ordered bases for \(C^{n}\) and \(R^{n}\). The special properties of these bases stem from the fact that the basis vectors form an orthonormal set. Just as bases are the building blocks of vector spaces, bases that are also orthonormal sets are the building blocks of Inner product spaces.

\subsection*{14.2. Structure of the Lesson:}

This lesson contains the following items.

\subsection*{14.3 Introduction}

\subsection*{14.4 Orthogonality and Orthonormality definitions and Theorems}

\subsection*{14.5 Worked out examples}

\subsection*{14.6 Orthogonality - Linear independence-theorems}
14.7 Orthonormal set definition - worked out examples
14.8 Orthonormal set of vectors - Linear independence Theorems
14.9 Worked out examples
14.10 Exercises
14.11 Orthonormal basis - Gram-Schmidt Orthogonalization process - Working pro-
cedure - Worked out examples
14.12 Fourier coefficients - Worked out examples
14.13 Parseval's Identity - Bessel's inequality - Theorems

\subsection*{14.14 Orthogonal complinent - Theorems - Closest vector - Orthogonal Projection - Theorems}
14.15 Worked out examples
14.16 Summary
14.17 Technical Terms

\subsection*{14.18 Model Questions}

\subsection*{14.19 Exercise}

\subsection*{14.20 Reference Books}

\subsection*{14.3 Introduction:}

Let us consider the case of vectors in \(R^{2}\) and we see that how the perpendicularity is considered here. The two vectors \(u\) and \(v \in R^{2}\) are perpendicular if and only if the pythogorean relation \(\|u\|^{2}+\|v\|^{2}=\|u+v\|^{2} \ldots . .\). (1) holds. In real inner product spaces this pythagorean relation can be written in a very simple form by using the condition that the angle between the vectors is \(90^{\circ}\) or cosine of the angle between the vectors \(u\) and \(v\) is zero. Here the condition (1) is equivalent to a very simple condition \(\langle u, v\rangle=0\). We extend this idea to the vectors of Inner product spaces.

\subsection*{14.4 Orthogonality:}

\subsection*{14.4.1 Orthogonality of Two Vectors:}

Definition: Two vectors \(u\) and \(v\) in an inner product space V are said to be orthogonal or perpendicular if \(\langle u, v\rangle=0\).

\subsection*{14.4.2 Orthogonal Set :}

Definition: A subset \(S\) of an inner product space is said to be orthogonal if any two distinct vectors in \(S\) are orthogonal.

\subsection*{14.4.3 A Vector Orthogonal to a Subset S of V:}

Definition: A vector \(u\) is said to be orthogonal to a subset \(S\) of Inner product space \(V\); if it is orthogonal to each vector in \(S\).

\subsection*{14.4.4 Orthogonal Subspaces :}

Two subspaces of an inner product space are called orthogonal if every vector in each is orthogonal to every vector in the other.

Two subspaces \(\mathrm{W}_{1}\) and \(\mathrm{W}_{2}\) of an inner product space \(V(F)\) are said to be orthogonal if \(\langle u, v\rangle=0 \quad \forall u \in W_{1}\) and \(\forall v \in W_{2}\)

\subsection*{14.4.5 A Theorem:}

Show that orthogonality in an inner product space is symmetric.
Proof: Let \(V(F)\) the given inner product space. \(\mathrm{u}, \mathrm{v}\) are two vectors in V such that u is orthogonal to v .
\[
\text { So }\langle u, v\rangle=\Rightarrow \overline{\langle u, v\rangle}=\text { conjugate of } 0 \text {. }
\]
\[
\text { So }\langle v, u\rangle=0 \text {. Hence } v \text { is orthogonal to } u \text {. }
\]

Hence orthogonality in an inner product is symmetric.

\subsection*{14.4.5B Theorem:}

If \(u\) is orthogonal to \(v\), then every scalar multiple of \(u\) is orthogonal to \(v\). Where \(u, v\) are vectors in an inner product space.

Proof: \(u, v\) are vectors in an inner product space \(V(F)\)
As \(u\), is orthogonal to \(v ; v ;\langle u, v\rangle=0\)
Let \(k\) be a scalar belonging to \(F\).
\[
\text { then }\langle k u, v\rangle=k\langle u, v\rangle=k(0)=0 \text { using (1) }
\]
\(\therefore k u\) is orthogonal to \(v\).
Hence every scalar multiple of \(u\) is orthogonal to \(v\).

\subsection*{14.4.6 Theorem:}

Zero vector in V is orthogonal to every vector in an Inner product space.
Proof: \(\mathbf{O}\) is the zero vector in the inner product space \(V(F)\).
Let u be any vector in V . There \(\langle 0, u\rangle=\langle 0 u, u\rangle=0\langle u, u\rangle=0\)
As u is arbitrary, zero vector is orthogonal to every vector.
14.4.7 Theorem: Show that zero vector is the only vector which is orthogonal to itself in an Inner Product Space.

Proof: Let \(u\) be any vector in the given inner product space \(V(F)\), which is orthogonal to itself. So \(\langle u, u\rangle=0 \Rightarrow u=O\) (zero vector) by definition of inner product.

Hence zero vector is the only vector which is orthogonal to itself.

\subsection*{14.4.8 Theorem:}

The vectors u , v of a real inner product space \(V(F)\) are orthogonal if and only if \(\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}\).

Proof: \(\mathrm{u}, \mathrm{v}\) are two vectors in an inner product space \(V(F)\).
\[
\text { Now }\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
\]
\(\Leftrightarrow\langle u+v, u+v\rangle=\langle u, u\rangle+\langle v, v\rangle\)
\(\Leftrightarrow<u, u+v>+<v, u+v>=<u, u>+<v, v>\)
\(\Leftrightarrow\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle=\langle u, u\rangle+\langle v, v\rangle\)
\(\Leftrightarrow\langle u, v\rangle+\langle v, u\rangle=0\)
\(\Leftrightarrow=\langle u, v\rangle+\langle u, v\rangle=0\) since \(\langle u, v\rangle\) is real \(\langle\overline{u, v}\rangle=\langle u, v\rangle\)
\(\Leftrightarrow\langle u, v\rangle=0 \Leftrightarrow u, v\) are orthogonal vectors.

\subsection*{14.4.9 Geometrical interpretation:}

Let u , v be two vectors in the inner product space \(V_{3}(R)\) with standard inner product defined on it. Let u , v represent the sides \(\overline{A B}, \overline{B C}\) of triangle ABC . In the three dimensional Eucledian space. Then \(\|u\|=A B . \quad\|v\|=B C\)..

Also the vector \(\mathrm{u}+\mathrm{v}\) represent the side \(\overline{A C}\) of the triangle ABC and \(\|u+v\|=A C\). Then from the above theorem \(\left\lfloor A B C=90^{\circ}\right.\) if and only if \(A C^{2}=A B^{2}+B C^{2}\) which is pythogorean theorem.

Note The above theorem does not held in complex inner product space.
If \(u=(0, i), v=(0,1)\) in \(V_{2}(C)\)
There \(\|u+v\|^{2}=\langle u+v, u+v\rangle\)
\[
\begin{gather*}
=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
=\|u\|^{2}+\langle u, v\rangle+\overline{\langle u ; v\rangle}+\|v\|^{2} \\
=\|u\|^{2}+\|v\|^{2}+2 \operatorname{Re}\langle u, v>\ldots \ldots \ldots . .(1) \\
\quad \text { since } z+\bar{z}=2 \operatorname{Re} z
\end{gather*}
\]

But \(\langle u, v\rangle=<(0, i),(0,1)\rangle\)
\[
\begin{aligned}
& =0(0)+0(1)+i(0)+c(1) \\
& =0+i \neq 0
\end{aligned}
\]
and \(\operatorname{Re}\langle u, v\rangle=0\) using this in (1)
We get \(\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}\)

Which does not imply \(\langle u, v\rangle=0\)

\subsection*{14.5 Worked out Examples:}
W.E. 1 : Find a unit vector orthogonal to \((4,2,3)\) in \(R^{3}\).

Solution : Let \(u=(4,2,3)\) and \(v=(a, b, c)\) be orthogonal to \(u\).
Hence \(\langle u, v\rangle=0 \Rightarrow\langle(4,2,3),(a, b, c)\rangle=0\)
\[
\begin{equation*}
\Rightarrow 4 a+2 b+3 c=0 \tag{1}
\end{equation*}
\]

Any solution of this equation gives a vector orthogonal to \(u\).
\[
a=1, b=1, c=-2 \text { satisfy the equation (1). So } u=(a, b, c)=(1,1,-2) \text { is orthogonal }
\]
to \(u\).
\[
\|v\|=\sqrt{(1)^{2}+(1)^{2}+(-2)^{2}}=\sqrt{6}
\]

Hence \(\hat{v}=\frac{1}{\|v\|} v=\frac{1}{\sqrt{6}}(1,1,-2)=\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)\) is the unit vector orthogonal to the given vector \(u=(4,2,3)\).
W.E. 2 : Find a non-zero vector \(w\) which orthogonal to \(u=(1,2,1)\) and \(v=(2,5,4)\) in \(R^{3}\).

Solution: Let \(w=(x, y, z)\) be the vector which is orthogonal to both \(u\) and \(v\).
\[
\text { So } \begin{align*}
\langle u, w\rangle=0 & =<(1,2,1),(x, y, z)\rangle=0 \\
& \Rightarrow x+2 y+12=0 \quad \ldots \ldots . \tag{1}
\end{align*}
\]
and \(\langle v, w\rangle=0 \Rightarrow\langle(2,5,4),(x, y, z)\rangle=0\)
\(\Rightarrow 2 x+5 y+4 z=0\)
(1) \(\times 2: 2 x+4 y+2 z=0\)

Subtracting from (2) \(y+2 z=0\)
So
\[
y=-2 z
\]

Put \(z=1, y=-2\)
using these values in (1)
\[
x-4+1=0 \Rightarrow x=3
\]

Thus \(w=(x, y, z)=(3,-2,1)\) is the desired non zero vector orthogonal to both u and v .
W.E. 3 : In a real inner product space if \(u, v\) are two vectors such that \(\|u\|=\|v\|\) then prove that \(u-v\), and \(u+v\) are orthogonal. Interpret the result geometrically.

Solution: \(\langle u-v, u+v\rangle=\langle u, u\rangle+\langle u, v\rangle-\langle v, u\rangle-\langle v, v\rangle\)
\[
=\|u\|^{2}+\langle u-v\rangle-\overline{\langle u, v\rangle}-\|v\|^{2}=0
\]

Since in the real inner product space \(\overline{\langle u, v\rangle}=\langle u, v\rangle\) and given \(\|u\|=\|v\|\).
So as \(\langle u-v, u+v\rangle=0\), the vectors \(u-v, u+v\) are orthogonal.
Geometrical interpretation:

\(\langle u-v, u+v\rangle=0\)
\(\Rightarrow u-v, u+v\) are orthogonal
\(\Rightarrow\) The diagonals \(A C\) and \(D B\) are perpendicular.
Hence in a Rhombus the diagonals are perpendicular.
W.E. 4: If \(u, v\) are two vectors in a real inner products space and \(u+v, u-v\) are orthogonal then \(\|u\|=\|v\|\)

Solution: \(u+v, u-v\) are orthogonal.
\[
\begin{aligned}
& \quad \Rightarrow\langle u+v, u-v>=0 \\
& \Rightarrow\langle u, u>-\langle u, v>+\langle v, u>-\langle v, v>=0 \\
& \Rightarrow\|u\|^{2}-\left\langle u, v>+\overline{\langle u, v>}-\|v\|^{2}=0\right. \\
& \Rightarrow\|u\|^{2}-\|v\|^{2}=0 \text { since in a real inner product space } \overline{\langle u, v\rangle}=\langle u, v>
\end{aligned}
\]
\(\Rightarrow\|u\|^{2}=\|v\|^{2} \Rightarrow\|u\|=\|v\|\)
Thus the vectors \(u+v, u-v\) are orthogonal \(\Rightarrow\|u\|=\|v\|\)
Geometrical interpretation:
Let \(\mathrm{u}, \mathrm{v}\) be two vectors in the inner product space \(V_{3}(R)\) with standard inner product defined on it. Let \(u\), v represent the sides \(A B\) and \(B C\) of a parallelogram \(A B C D\). Then \(\|u\|=A B,\|v\|=B C\). \(u+v, u-v\) represent the diagonal \(\overline{A C}\) and \(\overline{D B}\) of the parallelogram.

As \(u+v, u+v\) are orthogonal the diagonals \(A C, D B\) are perpendicular.
\(\|u\|=\|v\| \Rightarrow A B=B C\). Thus if the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

W.E. 5: Let V be an inner product space and suppose that \(u\) and \(v\) are orthogonal vectors in an inner product space \(V\),
\[
\begin{equation*}
\text { Prove that }\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} \text {. Deduce the Pythagorean theorem in } R_{2} \text {. } \tag{1}
\end{equation*}
\]

Solution: As \(u\) and \(v\) are orthogonal vectors in an inner product space \(\mathrm{V},\langle u, v\rangle=0\)
Now
\[
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+\langle u, u\rangle+\overline{\langle u, v\rangle}+\|v\|^{2} \ldots \ldots \ldots . .(2) \\
& =\|u\|^{2}+0+\text { conjugate of } 0+\|v\|^{2} \text { using (1) }
\end{aligned}
\]
\[
\text { So }\|u\|^{2}+\|v\|^{2}=\|u\|^{2}+\|v\|^{2}
\]

Deduction of Pythogorem theorem:
If \(u, v\) are two orthogonal vectors in a real inner product space, then \(\overline{\langle u, v\rangle}=\langle u, v\rangle \ldots \ldots\). (3) using in (2).
\[
\begin{align*}
\|u+v\|^{2} & =\|u\|^{2}+\|v\|^{2}+2\langle u, v\rangle \\
& =\|u\|^{2}+\|v\|^{2}+0 . \text { As } u, v \text { are orthogonal vectors }\langle u, v\rangle=0 \tag{4}
\end{align*}
\]

So \(\|u+v\|^{2}+\|u\|^{2}+\|v\|^{2}\)
In \(R_{2}\) if \(\overline{A B}=u, \overline{B C}=v\) then \(\overline{A C}=u+v\) and (4) states \(A C^{2}=A B^{2}+B C^{2}\) which is pythogorean theorem.
W.E. 6 : If \(u\), \(v\) are two orthogonal vectors in an inner product space \(V(F)\) and \(\|u\|=\|v\|=1\) then prove that \(\|u-v\|=d\langle u, v\rangle=\sqrt{2}\)

Solution: \(\mathrm{u}, \mathrm{v}\) are orthogonal vectors in an inner product space \(V(F)\). So \(\langle u, v\rangle=0\)
\[
\begin{align*}
(d(u, v))^{2} & =\|u-v\|^{2}  \tag{1}\\
& =\langle u-v, u-v> \\
= & \langle u, u>-\langle u, v>-\langle v, u>+\langle v, v> \\
= & \|u\|^{2}-0-0+\|v\|^{2} \text { since, } u, v \text { are orthogonal. } \\
= & (1)^{2}+(1)^{2} \text { since given }\|u\|=\|v\|=1 \\
= & 2
\end{align*}
\]

So \(d(u, v)=\|u-v\|=\sqrt{2}\)

\subsection*{14.6.1 Theorem:}

Show that any orthogonal set of non zero vectors in an inner product space V is linearly independent.

Proof: Let \(S\) be an orthogonal set of non zero vectors in an inner product space V .
Let \(S_{1}=\left\{u_{1}, u_{2} \ldots, u_{n}\right\}\) be a finite subset of S containing m vectors which are distinct.

Let \(\sum_{j=1}^{m} c_{j} u_{j}=c_{1} u_{1}+c_{2} u_{2}+c_{n} u_{n}=O\)

We will show that each scalar coefficient is zero. Let \(u_{i}\) be any vector in \(S_{1}\). i.e. \(1 \leq i \leq m\). Now consider \(\left\langle c_{1} u_{1}+c_{2} u_{2}+\ldots+\ldots+c_{i-1} u_{i-1}+c_{i} u_{i}+c_{i} u_{i}+c_{m} u_{m}, u_{i}\right\rangle\)
\[
\begin{align*}
& =c_{1}<u_{1}, u_{i}>+c_{2}<u_{2}, u_{i}>+\ldots+c_{i-1}<u_{i-1}, u_{i}>+c_{i}<u_{i}, u_{i}>+c_{i+1}<u_{i+1}, u_{i}>+\ldots c_{m}<u_{m}, u_{i}> \\
& \text { i.e. } \left.<\sum_{j=1}^{m} c_{j} u_{j}, u_{i}>=c_{i}<u_{i}, u_{i}\right\rangle \ldots \ldots \ldots \ldots \text { (2) } \tag{2}
\end{align*}
\]
\(\because\) As the vectors are orthogonal \(\left\langle u_{i}, u_{j}\right\rangle=0\) for \(i \neq j\)

But by (1) \(\sum_{j=1}^{m} c_{j} u_{j}=O\)
Using in (2)
\[
\left\langle O, u_{i}\right\rangle=c_{i}\left\|u_{i}\right\|^{2} \Rightarrow c_{i}^{2}\left\|u_{i}\right\|^{2}=0
\]

So \(c_{i}\left\|u_{i}\right\|=0\). But \(u_{i}\) is a non zero vector. \(\left\|u_{i}\right\| \neq 0\)
Hence \(c_{i}=0\) for \(1<i \leq m\)
Thus \(c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}=0\)
\[
\Rightarrow c_{1}=0, c_{2}=0, \ldots c_{m}=0
\]

Hence \(S_{1}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}\) is a linearly independent set.
Thus every finite subset of \(S\) is linearly independent. Hence \(S\) is linearly independent.

\subsection*{14.6.2 Theorem:}

Let \(S=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}\) be an orthogonal set of non zero vectors in an inner product space \(V(F)\).

If a vector \(v\) in V is in the linear span of S ,
Then \(v=\sum_{i=1}^{m} \frac{\left\langle v, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}} u_{i}\)

Proof: v is a vector in the inner product space V , which is in the linear span of \(S=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\).
So \(v\) can be expressed as a linear combination of the vectors of \(S\). So there exists scalars \(c_{1}, c_{2}, \ldots c_{m}\) in F. Such that \(v=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}=\sum_{j=1}^{m} c_{j} u_{j}\)
then for each i where \(1 \leq i \leq m\)
\[
\begin{aligned}
\left\langle v, u_{i}\right\rangle & \left.=<\sum_{j=1}^{m} c_{j} u_{j}, u_{i}\right\rangle \ldots \ldots \ldots . . \text { (1) } \\
& =\sum_{J=1}^{m} c_{j}<u_{j}, u_{i}>\text { by linear property of inner products. } \\
& =c_{i}<u_{i}, u_{i}>\text { on summing up with respect to } \mathrm{j}, \text { and } \mathrm{S} \text { is an orthogonal set }
\end{aligned}
\] of non zero vectors. So \(\left\langle u_{j}, u_{i}\right\rangle=0\) if \(j \neq i\).
\[
\begin{equation*}
\text { So }<v, u_{i}>=c_{i}\left\|u_{i}\right\|^{2} \tag{2}
\end{equation*}
\]

As \(u_{i}\) is a non zero vector in \(\mathrm{S},\left\|u_{i}\right\| \neq 0\)

So by (2) \(\quad c_{i}=\frac{\left\langle v, u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}}\)
But \(v=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}\)
So \(v=\frac{\left\langle v, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\|u_{2}\right\|^{2}} u_{2}+\ldots+\frac{\left\langle v, u_{m}\right\rangle}{\left\|u_{m}\right\|^{2}} u_{m}\)

Hence \(v=\sum_{i=1}^{m} \frac{\left\langle v, u_{i}>\right.}{\left\|u_{i}\right\|^{2}} u_{i}\)
Hence the theorem.

\subsection*{14.7.1 Definition:}

Orthonormal set: Let \(S\) be a set of unit vectors in an inner product space \(V\), which are mutually orthogonal then S is said to be an orthonormal set.

Let \(S\) be a set of vectors in an inner product space \(V\). Then \(S\) is said to be orthonormal set if
i) \(u \in S \Rightarrow\|u\|=1\) ie \(\langle u, u\rangle=1\) and
ii) \(u, v \in S\) and \(u \neq v \Rightarrow\langle u, v\rangle=0\)

\section*{Or}

A finite set \(S=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}\) of an inner product space V is orthonormal if
\[
<u_{i}, u_{j}>=\delta_{i j} \text { where } \delta_{i j} \text { denotes the kronecker delta. }
\]
\[
\text { i.e. } \delta_{i j}=\left\{\begin{array}{l}
1 \text { if } \mathrm{i}=\mathrm{j} \\
0 \text { if } i \neq j
\end{array}\right.
\]

Note: i) An orthonormal set is an orthogonal set in which every vector is a unit vector i.e. A set consisting of mutually orthogonal unit vectors is called an orthonormal set.

Note ii): An orthonormal set does not contain zero vector.

\subsection*{14.7.2 Worked Out Examples:}
W.E. 7: Prove that \(S=\left\{\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right),\left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right),\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)\right\}\) is an orthonormal set in \(R^{3}\) with standard inner product.

Solution: Let \(u=\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right), v=\left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right), w=\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)\) are the given vectors of S .
\[
\begin{aligned}
& \|u\|=\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}}=\sqrt{\frac{1}{9}+\frac{4}{9}+\frac{4}{9}}=1 \\
& \|v\|=\sqrt{\left(\frac{2}{3}\right)^{2}+\left(\frac{-1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}+\frac{1}{9}+\frac{4}{9}}=\sqrt{1}=1 \\
& \|w\|=\sqrt{\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{-1}{3}\right)^{2}}=\sqrt{\frac{4}{9}+\frac{4}{9}+\frac{1}{9}}=1
\end{aligned}
\]
\[
\begin{aligned}
&\langle u, w\rangle=\left.=\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right),\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)\right\rangle=\frac{1}{3}\left(\frac{2}{3}\right)+\left(\frac{-2}{3}\right)\left(\frac{2}{3}\right)+\left(\frac{-2}{3}\right)\left(\frac{-1}{3}\right) \\
& \text { i.e. }\langle u, w\rangle=\frac{2}{9}-\frac{-4}{9}+\frac{2}{9}=0=\langle w, u\rangle \\
&\left.\langle u, v\rangle=<\left(\left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right),\left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right)\right)\right\rangle \\
&=\frac{1}{3}\left(\frac{2}{3}\right)+\left(\frac{-2}{3}\right)\left(\frac{-1}{3}\right)+\left(\frac{-2}{3}\right)\left(\frac{2}{3}\right)=\frac{2+2-4}{9}=0
\end{aligned}
\]
i.e. \(\langle u, v\rangle=0=\langle v, u\rangle\)
\[
\begin{aligned}
&\langle v, w\rangle=\left\langle\left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right),\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)\right\rangle \\
&=\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)+\left(\frac{-1}{3}\right)\left(\frac{2}{3}\right)+\left(\frac{2}{3}\right)\left(\frac{-1}{3}\right)=\frac{4-2-2}{9}=0
\end{aligned}
\]

Thus \(\langle v, w\rangle=0=\langle w, v\rangle\)
As the length of each vector in \(S\) is unity, the inner product of two different vectors in \(S\) is 0 ,
So \(S\) is an orthonormal set.
W.E.7b : Consider the usual basis of \(E=\left\{e_{1}, e_{2}, e_{3}\right\}\) of the Eucledian space \(R^{3}\) where \(e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\). Show that E is orthonormal.

\section*{Solution:}
\[
\begin{aligned}
& e_{1}=(1,0,0) \text { so }\left\|e_{1}\right\|=\sqrt{1^{2}+0^{2}+0^{2}}=1 \\
& e_{2}=(0,1,0) \text { so }\left\|e_{2}\right\|=\sqrt{0^{2}+1^{2}+0^{2}}=1 \\
& e_{3}=(0,0,1) \text { so }\left\|e_{3}\right\|=\sqrt{0^{2}+0^{2}+1^{2}}=1
\end{aligned}
\]

Thus \(\quad\left\|e_{1}\right\|=\left\|e_{2}\right\|=\left\|e_{3}\right\|=1\)
More over \(\left\langle e_{1}, e_{2}\right\rangle=\langle(1,0,0),(0,1,0)\rangle\)
\[
\begin{gathered}
=1(0)+0(1)+0(0)=0 \\
\therefore<e_{1}, e_{2}>=0=<e_{2}, e_{1}> \\
<e_{2}, e_{3}>=<(0,1,0),(0,0,1)>=0(0)+1(0)+0(1)=0 \\
\therefore<e_{2}, e_{3}>=0=<e_{3}=e_{2}> \\
<e_{3}, e_{1}>=<(0,0,1),(1,0,0)>=0(1)+0(0)+0(0)=0 \\
\text { Thus }<e_{3}, e_{1}>=0=<e_{1}, e_{3}>
\end{gathered}
\]

Thus the length of each vector in E is unity and the inner product of any two different vectors of \(E\) is zero. So \(E\) is an orthonormal set.
W.E. 8: If \(S=\{(1,2,-3,4),(3,4,1,-2),(3,-2,1,1)\}\) is a subset of \(R^{4}\). Obtain orthonormal set from S. Verify Pythagorean theorem.

Solution: Let \(u=(1,2,-3,4), v=(3,4,1,-2) ; w=(3,-2,1,1)\)
Now \(\langle u, v\rangle=\langle(1,2,-3,4),(3,4,1,-2)\rangle=1(3)+2(4)+(-3)(1)+4(-2)\)
\[
=3+8-3-8=0
\]

Thus \(\langle u, v\rangle=0=\langle v, u\rangle\)
\(\langle v, w\rangle=(3,4,1,-2),(3,-2,1,1)\rangle=3(3)+4(-2)+1(1)+(-2)(1)\)
\[
=9-8+1-2=0
\]

So \(\langle v, w\rangle=0=\langle w, v\rangle\)
\(\langle w, u\rangle=\langle(3,-2,1,1),(1,2,-3,4)\rangle=3(1)(-2) 2+1(-3)+1(4)\)
\[
=3-4-3+4=0
\]

Thus \(\langle w, u\rangle=0=\langle u, w\rangle\)
Thus the inner product of any two different vectors in S is zero. So S is orthogonal.
We normalise S to obtain an orthonormal set.
\[
\begin{aligned}
& \|u\|=\sqrt{1^{2}+(2)^{2}+(-3)^{2}+4^{2}}=\sqrt{1+4+9+16}=\sqrt{30} \\
& \|v\|=\sqrt{3^{2}+4^{2}+1^{2}+(-2)^{2}}=\sqrt{9+16+1+4}=\sqrt{30}
\end{aligned}
\]
\[
\|w\|=\sqrt{3^{2}+(-2)^{2}+1^{2}+1^{2}}=\sqrt{9+4+1+1}=\sqrt{15}
\]

Hence the required orthonormal set of vectors is
\[
\left\{\left(\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{-3}{\sqrt{30}}, \frac{4}{\sqrt{30}}\right),\left(\frac{3}{\sqrt{30}}, \frac{4}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}\right),\left(\frac{3}{\sqrt{15}}, \frac{-2}{\sqrt{15}}, \frac{1}{\sqrt{15}}, \frac{1}{\sqrt{15}}\right)\right\}
\]

More over \(u+v+w=(1,2,-3,4)+(3,4,1,-2)+(3,-2,1,1)\)
\[
\begin{gathered}
=(7,4,-1,3) \\
\|u+v+w\|^{2}=(49+16+1+9)=75 \\
\|u\|^{2}+\|v\|^{2}+\|w\|^{2}=30+30+15=75 \\
\text { Hence }\|u+v+w\|^{2}=\|u\|^{+}+\|v\|^{2}+\|w\|^{2}
\end{gathered}
\]

Which verifies the pythogorean theorem for the orthogonal set S.
W.E. 9: Let \(V(F)\) be an inner product space. If u is a non zero vector in V then show that \(\left\{\frac{u}{\|u\|}\right\}\) is an orthonormal set.

Solution: u is a non zero vector in V . So \(\|u\| \neq 0\)
\[
\text { Hence } \begin{aligned}
\left\langle\frac{u}{\|u\|}, \frac{u}{\|u\|}>\right. & =\frac{1}{\|u\|}<u, \frac{u}{\|u\|}> \\
& =\frac{1}{\|u\|} \cdot \frac{1}{\|u\|}<u, u>=\frac{1}{\|u\|^{2}}\|u\|^{2}=1
\end{aligned}
\]

As \(\frac{u}{\|u\|}\) is an unit vector and so \(\left\{\frac{u}{\|u\|}\right\}\) is an orthonormal set. it is a subset of V .
Note: Every inner product space has an orthonormal subset.
14.8.1 Theorem: Every orthonormal set of vectors in an inner product space \(V(F)\) is linearly independent.

Proof: Let S be an orthonormal set of vectors in an inner product space V. Let \(S_{1}=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) be a finite subset of \(S\) containing \(m\) vectors.

Let \(c_{1}, c_{2}, \ldots c_{m}\) be scalars belonging to F such that
\[
c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}=O \ldots \ldots . . . . . \text { (1) (zero vector) }
\]

Now
\[
<c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{i} u_{i}+\ldots+c_{m} u_{m}, u_{i}>=<O, u_{i}>=0 \text { where } 1 \leq i \leq m
\]
\[
\Rightarrow c_{1}<u_{1}, u_{i}>+c_{2}<u_{2}, u_{i}>+\ldots c_{i-1}<u_{i-1}, u_{i}>+c_{i}<u_{i}, u_{i}>+c_{i+1}<u_{i+1}, u_{i}>+\ldots+c_{m}<u_{m}, u_{i}>=0 \text {.(2) }
\]

As \(u_{1}, u_{2} \ldots u_{m}\) are orthonormal vectors
\[
<u_{j}, u_{i}>=\left\{\begin{array}{l}
1 \text { if } j \neq i \\
0 \text { if } j=i
\end{array}\right.
\]
using this in the above (2) we get
\[
\begin{aligned}
& \qquad c_{i}<u_{i}, u_{i}>=0 \\
& \Rightarrow c_{i}=0 \text { since }<u_{i}, u_{i}>\neq 0 \text { where } 1 \leq i \leq m . \\
& \text { So } c_{i}=0, c_{2}=0, \ldots c_{m}=0 \\
& \text { Thus }
\end{aligned}
\]
\[
c_{1} u_{1}+c_{2} u_{2}+\ldots c_{m} u_{m}=O \Rightarrow c_{1}=0, c_{2}=0, \ldots c_{m}=0
\]

Hence \(S_{1}=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) is linearly independent.
As \(S_{1}\) is arbitarary, every finite sub set of \(S\) is linearly independent. Hence \(S\) is linearly independent.

Aliter : Let \(S\) be an orthonormal set in an inner product space. Let \(u \in S\), then \(u \neq O\), since \(u=O \Rightarrow\langle u, u\rangle=0 \neq 1\) is a contradiction.

So \(S\) is an orthogonal set of non zero vectors.
As we know every orthogonal set of non-zero vectors in an inner product space V is linearly independent, if follows \(S\) is linearly independent.

Hence every orthonormal set of vectors in an inner product space \(V(F)\) is linearly independent.
14.8.2 Theorem: Let \(S=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) be an orthonormal set of vectors in an inner product space \(V(F)\). If a vector \(v\) is in the linear span of S ; then
\[
v=\sum_{i=1}^{m}<v, u_{i}>u_{i}
\]

Proof: v is given to be a vector in the linear span of S . So v can be expressed as a linear combination of the vectors of \(S\). Hence there exists scalars \(c_{1}, c_{2}, \ldots c_{m}\) in \(F\) such that
\[
\begin{equation*}
v=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}=\sum_{J=1}^{m} c_{j} u_{j} \tag{1}
\end{equation*}
\]

We have for each i where \(1 \leq i \leq m\)
\[
\begin{aligned}
&\left.<v, u_{i}>=\ll \sum_{J=1}^{m} c_{j} u_{j}, u_{i}\right\rangle \\
&=\sum_{J=1}^{m} c_{j}\left\langle u_{j}, u_{i}\right\rangle \text { by linearty of inner product } \\
&\left.=c_{i}<u_{i}, u_{i}\right\rangle \text { since }
\end{aligned}
\]
\[
\left\langle u_{j}, u_{i}\right\rangle=\left\{\begin{array}{l}
0 \text { if } j \neq i \\
1 \text { if } j=i
\end{array}\right.
\]
\[
=c_{i}(1)=c_{i}
\]

Thus \(\left\langle v, u_{i}\right\rangle=c_{i}\) where \(1 \leq i \leq m\).
Putting these values of \(c_{1}, c_{2}, \ldots c_{m}\) in (1)
\[
\text { We get } v=\sum_{i=1}^{m}<v, u_{i}>u_{i}
\]

\subsection*{14.8.3 Theorem:}

If \(S\) is an orthonormal set of vectors of an inner product space \(V(F)\) then \(v=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}\) implies \(a_{1}=<v, u_{i}>\) where \(u_{i} \in S, a_{i} \in F\) for \(i=1,2, \ldots n\).

Proof: S is an orthonormal set. So for \(u_{i}, u_{j} \in S\)
\[
\left\|u_{i}\right\|=1,\left\|u_{j}\right\|=1 \text { and }<u_{i}, u_{j}>=0 \text { where } i \neq j
\]

Thus for each \(i=1,2, \ldots n\);
\[
\begin{align*}
<v, u_{i}>=<a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}, u_{i}> & =a_{i}<u_{i}, u_{i}> \\
& =a_{i} \ldots \ldots \ldots \tag{1}
\end{align*}
\]

Hence \(a_{i}=<v, u_{i}>\) and so \(v=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=\sum_{c=1}^{n} a_{i} u_{i}\)
\[
v=\sum_{i=1}^{n}<v, u_{i}>u_{i} \text { using (1) }
\]

\subsection*{14.8.4 Theorem:}

If \(S=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) is an orthonormal set in an inner product space \(V(F)\) and \(u \in V\) then \(w=v-\sum_{i=1}^{m}<v, u_{i}>u_{i}\) is orthogonal to each of \(u_{1}, u_{2} \ldots u_{m}\).

Proof:
\[
\begin{aligned}
& \text { For } j=1,2, \ldots, m \\
& <w, u_{j}>=<v-\sum_{i=1}^{m}<v, u_{i}>u_{i}, u_{j}> \\
& =<v, u_{j}>-\sum_{i=1}^{m}<v, u_{i}><u_{i}, u_{j}> \\
& =<v, u_{j}>-\left\{\left\langle v, u_{1}><u_{1}, u_{j}>+<v, u_{2}><u_{2}, u_{j}>+\ldots+<v, u_{j}><u_{j}, u_{j}>+\ldots+<v, u_{m}><u_{m}, u_{j}>\right\}\right. \\
& =<v, u_{j}>\left\{<v, u_{1}>0+<v, u_{2}>0+\ldots<v, u_{j}>(1)+<v, u_{j+1}>(0)+\ldots+<v, u_{m}>0\right\}
\end{aligned}
\]
\(=\left\langle v, u_{j}\right\rangle-\left\langle v, u_{j}\right\rangle=0\)
\(\therefore\left\langle w, u_{j}\right\rangle=0 \Rightarrow w\) is orthogonal to each of \(u_{1}, u_{2} \ldots u_{m}\).
\(\Rightarrow v-\sum_{i=1}^{m}<v, u_{i}>u_{i}\) is orthogonal to each of \(u_{1}, u_{2} \ldots u_{m}\).
14.8.5 Corollary: If \(S=\left\{u_{1}, u_{2} \ldots u_{m}\right\}\) is an orthonormal set in an inner product space \(V(F)\) and \(u \in V\), then \(w=v-\sum_{i=1}^{m}<v, u_{i}>u_{i}\) is orthogonal to each vector of \(L(S)\).

Proof: From the above the orem the vector \(\mathbf{w}\) is orthogonal to each of \(u_{1}, u_{2} \ldots u_{m}\).
So \(\left\langle w, u_{i}\right\rangle=0=\left\langle u_{i}, w\right\rangle\) for each \(i\) where \(1 \leq i \leq m\)
Let \(u \in L(S)\). Then there exists scalars \(c_{1}, c_{2}, \ldots c_{m}\) in F such that
\[
u=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}
\]

Now \(\langle u, w\rangle=\left\langle c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{m} u_{m}, w\right\rangle\)
\[
\begin{aligned}
& =c_{1}\left\langle u_{1}, w\right\rangle+c_{2}\left\langle u_{2}, w\right\rangle+\ldots+c_{m}\left\langle u_{m}, w\right\rangle \\
& =c_{1}(0)+c_{2}(0)+\ldots+c_{m}(0) \text { using (1) }
\end{aligned}
\]
\(\therefore u\) is orthogonal to w . So w is orthogonal to u . Hence w is orthogonal to every vector of \(L(S)\).

\subsection*{14.9 Worked Out Examples:}
W.E.10: If \(S=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is an orthogonal set of an inner product space \(V(F)\) then prove that \(\left\{a_{1} u_{1}, a_{2} u_{2}, \ldots a_{n} u_{n}\right\}\) is also an orthogonal set for any choice of non zero scalars \(a_{1}, a_{2}, \ldots a_{n} \in F\).

Solution: \(S=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is an orthogonal set
\[
\Rightarrow\left\langle u_{i}, u_{j}>=0 \ldots . . \text { (1) } \forall u_{i}, u_{j} \in S \text { and } i \neq J .\right.
\]

Consider \(a_{i} u_{i}, a_{j} u_{j} \in S_{1}=\left\{a_{1} u_{1}, a_{2} u_{2}, \ldots a_{n} u_{n}\right\}\)
Then \(\left.\left.<a_{i} u_{i}, a_{j} u_{j}\right\rangle=a_{i} \overline{a_{j}}<u_{i}, u_{j}\right\rangle\)
\[
\begin{gathered}
=a_{i} \overline{a_{j}}(0) \text { using (1) } \\
\Rightarrow\left\langle a_{i} u_{i}, a_{j} u_{j}>=0 \forall a_{i} u_{i}, a_{j} u_{j} \in S_{1} \text { and } i \neq J\right.
\end{gathered}
\]

So \(S_{1}=\left\{a_{1} u_{1}, a_{2} u_{2}, \ldots a_{n} u_{n}\right\}\) is also an orthogonal set.
W.E.11: If \(S=\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\right\}\) is an orthonormal subset of the inner product space \(R^{3}(R)\) express the vector \((2,1,3)\) as a linear combination of the basis vectors of \(S\).

Solution: Let \(u_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) ; u_{2}=\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) ; u_{3}=\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\)
Then \(S=\left\{u_{1}, u_{2}, u_{3}\right\}\) and let \(v=(2,1,3)\)
Let \(v=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}\) where \(c_{1}, c_{2}, c_{3} \in R\) by 14.8.3.
\[
\begin{aligned}
& c_{1}=\left\langle v, u_{1}\right\rangle=2\left(\frac{1}{\sqrt{2}}\right)+1\left(\frac{1}{\sqrt{2}}\right)+3(0)=\frac{3}{\sqrt{2}} \\
& c_{2}=\left\langle v, u_{2}\right\rangle=2\left(\frac{1}{\sqrt{3}}\right)+1\left(\frac{-1}{\sqrt{3}}\right)+3\left(\frac{1}{\sqrt{3}}\right)=\frac{4}{\sqrt{3}} \\
& c_{3}=\left\langle v, u_{3}\right\rangle=2\left(\frac{-1}{\sqrt{6}}\right)+1\left(\frac{1}{\sqrt{6}}\right)+3\left(\frac{2}{\sqrt{6}}\right)=\frac{5}{\sqrt{6}}
\end{aligned}
\]
\[
\text { So } v=(2,1,3)=\frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)+\frac{4}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)+\frac{5}{\sqrt{6}}\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)
\]
W.E. 12 : Let \(V(C)\) be the inner product space of continuous complex valued functions on \([0,2 \pi]\) with inner product \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} \mathrm{dt}\). Prove that \(S=\left\{f_{n}(t)=c^{\mathrm{int}} / n \in Z\right\}\) is an orthonormal subset of V .

Solution: \(<f_{n}, f_{n}>=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n t} e^{-\mathrm{int}} \mathrm{dt}\)
\[
=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\mathrm{int}} e^{-\mathrm{int}} \mathrm{dt}
\]

So \(\left\langle f_{n}, f_{n}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} 1 \mathrm{dt}=\frac{1}{2 \pi}[t]_{0}^{2 \pi}=\frac{2 \pi}{2 \pi}=1\)
Let \(m \neq n\) then
\[
\begin{aligned}
<f_{m}, f_{n}> & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m t} \overline{e^{\text {int }}} \mathrm{dt}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i m t} e^{-\mathrm{int}} \mathrm{dt} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(m-n) t} \mathrm{dt} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\{\cos (m-n) t+i \sin (m-n) t\} \\
& =\frac{1}{2 \pi}\left[\frac{1}{(m-n)} \sin (m-n) t-\frac{1}{(m-n)} \cos (m-n) t\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi}(0)=0
\end{aligned}
\]

Thus \(<f_{n}, f_{n}>=1 \forall n \in Z\) and \(<f_{m}, f_{n}>=0\) if \(m \neq n, m, n \in Z\)
As the required two conditions are satified \(S=\left\{f_{n}(t)=e^{\text {int }} / n \in Z\right\}\) is an orthonormal subset of V .
W.E. 13 : Find \(k\), so that the following pair is orthogonal \(f(t)=t+k ; g(t)=t^{2}\) where \(\langle f, g\rangle=\int_{0}^{1} f(t) g(t) \mathrm{dt}\)

Solution: We first find \(\langle f, g\rangle\).
\[
\begin{aligned}
\langle f, g\rangle=\int_{0}^{1}(t+k) t^{2} d t & =\int_{0}^{1}\left(t^{3}+k t^{2}\right) d t \\
& =\left[\frac{t^{4}}{4}+\frac{k t^{3}}{3}\right]_{0}^{1}=\frac{1}{4}+\frac{k}{3}
\end{aligned}
\]

As \(\mathrm{f}, \mathrm{g}\) are orthogonal vectors \(\langle f, g\rangle=0\).
\[
\begin{aligned}
& \text { So } \frac{1}{4}+\frac{k}{3}=0 \Rightarrow 3+4 k=0 \\
& \text { So } k=\frac{-3}{4}
\end{aligned}
\]

\subsection*{14.10 Exercise:}
1. Find the vector of unit length which is orthogonal to \(u=(2,-1,6)\) of \(V_{3}(R)\) with respect to standard inner product.
\[
\text { Ans: }\left(\frac{2}{5}, \frac{-2}{3}, \frac{-1}{3}\right)
\]
2. Find two mutually orthogonal vectors each of which is orthogonal to the vector \(u=(4,2,3)\) of \(V_{3}(R)\) with respect to the standard inner product.

Ans: \((3,-3,-2) ;(5,17,-18)\)
3. Normalize the following vectors in \(R^{3}\)
(i) \(\quad u=(2,3,-1)\) Ans: \(\hat{u}=\left(\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}\right)\)
(ii) \(\quad v=\left(\frac{1}{2}, \frac{1}{3}, \frac{-1}{4}\right)\);

Ans: \(\hat{v}=\left(\frac{6}{\sqrt{61}}, \frac{4}{\sqrt{61}}, \frac{-3}{\sqrt{61}}\right)\)
4. Find a unit vector orthogonal to \(u_{1}=(1,2,1)\) and \(u_{2}=(3,1,0)\) in \(R^{3}\) with the standard inner product.
\[
\text { Ans: } \frac{1}{\sqrt{35}}(1,-3,5)
\]
5. Let V be the vector space over R of all continuous real valued functions defined in \([0,1]\) with inner product defined by \(\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t\). For each positive integer n , define \(f_{n}(t)=\sqrt{2} \cos (2 \pi n t), g_{n}(t)=\sqrt{2} \sin (2 \pi n t)\). Then show that \(S=\left\{1, f_{1}, g_{1}, f_{2}, g_{2} \ldots\right\}\) is an orthonormal set.
6. Let S consists of the following vectors in \(R^{3} u_{1}=(1,1,1), u_{2}=(1,2,-3), u_{3}=(5,-4,-1)\)

Then 1) Show that S is orthogonal and S is a basis of \(R^{3}\). (ii) Write \(v=(1,5,-7)\) as a linear combination of \(u_{1}, u_{2}, u_{3}\).

Ans: \(v=\frac{-1}{3} u_{1}+\frac{16}{7} u_{2}+\frac{-4}{21} u_{3}\)
7 (a). Find the value of K so that the pair of vectors \(u=(1,2, k, 3)\) and \(v=(3, k, 7,-5)\) are orthogonal in \(R^{4}\).
\[
\text { Ans : } k=\frac{4}{3}
\]
(b) Find \(m\) so that \((m,-3,-4),(m,-m, 1)\) may be orthogonal vectors in \(R^{3}\).
\[
\text { Ans : } m=-4,1
\]
8. If \(\{(10,1,0),(0,1,0,1),(-1,0,1,0)\}\) is an orthogonal subset of \(R^{4}(R)\) inner product space, obtain the orthonormal set by normalizing.

Ans : \(\frac{1}{\sqrt{2}}(1,0,1,0), \frac{1}{\sqrt{2}}(0,1,0,1), \frac{1}{\sqrt{2}}(-1,0,1,0)\)
9. If \(\mathrm{u}, \mathrm{v}\) are orthonormal vectors in \(V(F)\) prove that \(d(u, v)=\sqrt{2}\).
10. Two vectors \(\mathrm{u}, \mathrm{v}\) in an unitary space \(V(C)\) are orthogonal if and only if
\[
\|a u+b v\|^{2}=|a|^{2}\|u\|^{2}+|b|^{2}\|v\|^{2}
\]
11. show that \(\left\{\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)\right\}\) is an orthonormal set in \(R^{3}\).

\subsection*{14.11 Orthonormal Basis:}

Definition: A basis of an inner product space that consists of mutually orthogonal unit vectors is called an orthonormal basis.

Ex: i) The basis \(S=\{(1,0),(0,1)\}\) of the inner product space \(R^{2}(R)\) is also orthonormal. So \(S\) is an orthonormal basis of \(R_{2}\).
ii) The set \(S=\left\{\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right),\left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)\right\}\) is an orthonormal basis of \(R^{2}(R)\).
iii) The set \(S=\{(1,0,0),(0,1,0),(0,0,1)\}\) is a basis of the inner product space \(R^{3}(R)\), which is also orthonormal. So S is an orthonormal basis of \(R^{3}(R)\).
iv) The standard ordered basis for the inner product space \(V_{n}(R)\) is also orthonormal. So it is an ortho normal basis.

\subsection*{14.11.1 Finite dimensional inner product space: Definition:}

A finite dimensional vector space, in which an inner product is defined is called a finite dimensional inner product space.

We now establish that every finite dimensional inner product space possesses an orthonormal basis. If S is a basis of the finite dimensional inner product space \(V(F)\), we construct an orthonormal set \(\mathrm{S}^{1}\) from S such that \(L(S)=L\left(S^{1}\right)=V\).

\subsection*{14.11.2 Gram - Schmidt orthogonalisation Process:}

Theorem: Show that every finite dimensional inner product space has an orthonormal basis.
Proof: Let \(V(F)\) be an n -dimensional inner product space. Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be the basis of \(V(F)\). We will now construct an orthonormal set in \(V(F)\) with the help of elements of B .

As B is the basis of \(V(F)\) so each \(u_{i}(i=1,2, \ldots n) \in B\) is a non zero vector.
Now \(u_{1} \neq O \rightarrow\|u\| \neq 0\)
Further let \(\frac{u_{1}}{\left\|u_{1}\right\|}=v_{1}(\) say \() \neq O\)
This belongs to \(V(F)\) and \(\left\|v_{1}\right\|^{2}=\left\langle v_{1}, v_{1}\right\rangle\)
\[
\begin{aligned}
& =<\frac{u_{1}}{\left\|u_{1}\right\|}, \frac{u_{1}}{\left\|u_{1}\right\|}>=\frac{\left\langle u_{1}, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} \\
& \text { (Since }\|u\| \text { is real) } \\
& =1
\end{aligned}
\]

So the set \(\left\{v_{1}\right\}\) forms an orthonormal set in \(V(F)\) and \(v_{1}\) is in the linear span of \(u_{1}\). Now we extend the above set by assuming \(w_{2}=u_{2}-<u_{2}, v_{1}>v_{1}\) and \(w_{2} \in V(F)\) Evidently \(w_{2} \neq 0\) otherwise \(w_{2}=O\) would imgly \(u_{2}=<u_{2}, v_{1}>v_{1}\) i.e. \(u_{2}\) is a scalar multiple of \(v_{1}\) or \(u_{2}\) is a scalar multiple \(u_{1}\), or \(u_{1}, u_{2}\) are linearly dependent. Which is not possible as being elements of the basis.
\[
\text { Now } \frac{w_{2}}{\left\|w_{2}\right\|}=v_{2}(\text { say })(\neq O) \in V(F)
\]

Evidently \(\left\|\nu_{2}\right\|=1\) now
\[
\begin{gathered}
\left\langle v_{2}, v_{1}>=<\frac{w_{2}}{\left\|w_{2}\right\|}, v_{1}>=\frac{1}{\left\|w_{2}\right\|}<w_{2}, v_{1}>\right. \\
=\frac{1}{\left\|w_{2}\right\|}<u_{2}-<u_{2}, v_{1}>v_{1}, u_{1}> \\
\text { So }\left\langle v_{2}, v_{1}>=\frac{1}{\left\|w_{2}\right\|}<u_{2}, v_{1}>-<u_{2}, v_{1}>\frac{\left\langle v_{1}, v_{1}\right\rangle}{\left\|w_{2}\right\|}\right. \\
=\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|w_{2}\right\|}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|w_{2}\right\|} \text { since }\left\langle v_{1}, v_{1}\right\rangle=1 \\
=0
\end{gathered}
\]

As \(\left\langle v_{2}, v_{1}\right\rangle=0, v_{1}, v_{2}\) are orthogonal to each other and have unit norms implying the set \(\left\{v_{1}, v_{1}\right\}\) is an orthonormal set and consists of distinct vectors \(v_{1}\) and \(v_{2}\). As also \(w_{2}=u_{2}-\left\langle u_{2}, v_{1}>v_{1}\right.\).
\[
\Rightarrow v_{2}\left\|w_{2}\right\|=u_{2}-<u_{2}, v_{1}>\frac{u_{1}}{\left\|u_{1}\right\|} \quad \text { Since }\left(\frac{w_{2}}{\left\|w_{2}\right\|}=v_{2}\right)
\]
\(\Rightarrow v_{2}=\frac{u_{2}}{\left\|w_{2}\right\|}-\frac{\left\langle u_{2}, v_{1}>u_{1}\right.}{\left\|w_{2}\right\|\left\|u_{1}\right\|}\)
or \(v_{2}\) is a linear combination of \(u_{1}\) and \(u_{2}\) i.e. \(u_{1}, u_{2}\) generate \(v_{2}\) and further more \(u_{1}\) generates \(v_{1}\).

Now we extend the set \(\left\{v_{1}, v_{2}\right\}\) by assuming that \(w_{3}=u_{3}-<u_{3}, v_{1}>v_{1}-<u_{3}, v_{2}>v_{2} \in V(F)\).
here again \(\left\langle v_{2}, v_{1}\right\rangle=0,\left\langle v_{3}, v_{2}\right\rangle=0\) and \(\left\langle v_{3}, v_{3}\right\rangle=1\)
\[
\text { Where } v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|} \neq O \in V(F)
\]

This shows that the set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) is an orthonormal set of distinct vectors \(v_{1}, v_{2}, v_{3}\). Also \(v_{3}\) is a linear combination of \(u_{3}, u_{2}, u_{1}\) i.e. \(u_{1}, u_{2}, u_{3}\) generate \(v_{3}\). Thus we have constructed an orthonormal set \(\left\{v_{1}, v_{2}, v_{3}\right\}\) such that \(v_{1}, v_{2}, v_{3}\) are distinct vectors and \(v_{j}(j=1,2,3)\) is a linear combination of \(u_{1}, u_{2}, \ldots u_{j}\) suppose that, in this way, we have constructed an orthonormal set \(\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}(k<n)\) of \(k\) distinct vectors such that \(v_{j}(j=1,2, \ldots k)\) is a linear combination of \(u_{1}, u_{2}, \ldots, u_{j}\).

To prove it by induction, we consider the vector
\[
\begin{equation*}
w_{k+1}=w_{k+1}-<u_{k+1}, v_{1}>v_{1}-<u_{k+1}, v_{2}>v_{2} \ldots .-<u_{k+1}, v_{k}>v_{k} \tag{1}
\end{equation*}
\]

Evidently \(w_{k+1}\) is orthogonal to each of the vectors \(v_{1}, v_{2}, \ldots v_{k}\) and \(w_{k+1} \neq 0_{j}\) other wise \(w_{k+1}=0\) would mean that \(u_{k+1}\) is a linear combination of \(v_{1}, v_{2}, \ldots v_{k}\) and by assumption that \(v_{j}\) is a linear combination of \(u_{1}, u_{2}, \ldots u_{j}\). We infer that \(u_{k+1}\) is a linear combination of \(u_{1}, u_{2}, \ldots u_{k}\) which is impossible as \(u_{1}, u_{2}, \ldots u_{k}, u_{k+1}\) is a linearly independent set of vectors. Now we write
\[
v_{k+1}=\frac{w_{k+1}}{\left\|w_{k+1}\right\|} \Rightarrow\left\|v_{k+1}\right\|=1
\]
and also that \(v_{k+1}\) is orthogonal to each of the vectors \(v_{1}, v_{2}, \ldots v_{k}\). Where \(v_{k+1} \neq v_{j}(j=1,2, \ldots k)\). Because \(v_{k+1}=v_{j}(j=1,2, \ldots k)\) will imply that \(u_{k+1}\) is a linear combination of \(u_{1}, u_{2}, \ldots u_{k}\), which impossible. Also from the above it is clear that \(v_{k+1}\) is the linear combination of \(u_{1}, u_{2}, \ldots u_{k+1}\). Hence
we have constructed an orthonormal set \(\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}\) of \(k+1\) distinct vectors such that \(v_{j}(j=1,2, \ldots, k+1)\) is the linear combination of \(u_{1}, u_{2}, \ldots, u_{j}\). Thus by induction we can construct an orthonormal set \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) of n - distinct vectors such that \(v_{j}(j=1,2, \ldots, n)\) is the linear combination of \(u_{1}, u_{2}, \ldots, u_{j}\).

As we know that an orthonormal set is always linearly independent, it follows that \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) is a linearly independent set and consequently it is a basis of \(V(F)\) as it contains the number of vectors, equal to the dimension of \(V(F)\). Further more this basis set is a complete orthonormal set as the maximum number of vectors in an orthonormal set in V can be n .

This method of converting a basis of \(V(F)\) into a complete orthonormal set is called Gram - Schmidt orthogonalisation process.

\subsection*{14.11.3 Working Procedure to apply Gram - Schwidt orthogonalization process to numerical problems:}

Suppose \(B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) is a given basis of a finite dimensional inner product space V . Let \(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) be an orthonormal basis for V , which we are required to construct from the basis B. The vectors \(v_{1}, v_{2}, \ldots, v_{n}\) will be obtained in the following way.
\[
\begin{aligned}
& \text { Take } v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|} \\
& u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|} \text { where } w_{2}=u_{2}-<u_{2}, v_{1}>v_{1} \\
& v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|} \text { where } w_{3}=u_{3}-<u_{3}, v_{1}>v_{1}-<u_{3}, v_{2}>v_{2}
\end{aligned}
\]
\[
v_{n}=\frac{w_{n}}{\left\|w_{n}\right\|} \text { where } w_{n}=u_{n}-<u_{n}, v_{1}>v_{1}-<u_{n}, v_{2}>v_{2} \ldots-<u_{n}, v_{n-1}>v_{n-1}
\]

Note: \(\left\{u_{1}=w_{1}, w_{2}, w_{3} \ldots w_{n}\right\}\) is an orthogonal basis.

\section*{Worked out Examples:}
W.E. 14: Apply Gram - Schmidt process to the vectors \(u_{1}=(1,0,1) ; u_{2}=(1,0,-1) ; u_{3}=(0,3,4)\) to obtain an orthonormal basis for \(V_{3}(R)\) with standard inner product.

\section*{Rings and Linear Algebra}

Solution: \(u_{1}=(1,0,1)\) so \(\|u\|=\sqrt{1^{2}+0^{2}+1^{2}}=\sqrt{2}\)
\[
\begin{gathered}
v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{2}}(1,0,1)=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
u_{2}=(1,0,-1) \text { so }<u_{2}, v_{1}>=<(1,0,-1), \frac{1}{\sqrt{2}}(1,0,1) \\
\text { So }<u_{2}, v_{1}>=\frac{1}{\sqrt{2}}\{1(1)+0(0)+(-1)(1)\}=0 \\
w_{2}=u_{2}-<u_{2}, v_{1}>v_{1}=(1,0,-1)-0\left\{\frac{1}{\sqrt{2}}(1,0,1)\right\}=(1,0,-1) \\
\begin{array}{r}
\left\|w_{2}\right\|=\sqrt{1^{2}+0^{2}+(-1)^{2}}=\sqrt{2} \\
v_{2}= \\
u_{3}=(0,3,4) \text { so } u_{3}=(0,3,4)<u_{3}, v_{1}>=<(0,3,4), \frac{1}{\sqrt{2}}(1,0,-1)=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
=\frac{1}{\sqrt{2}}<(0,3,4),(1,0,1)> \\
<u_{3}, v_{1}>=\frac{1}{\sqrt{2}}\{0(1)+3(0)+4(1)\}=\frac{4}{\sqrt{2}}=2 \sqrt{2} \\
=\frac{1}{\sqrt{2}}\{0(1)+3(0)+4(1)\}=2 \sqrt{2} \\
<u_{3}, v_{1}>=<(0,3,4), \frac{1}{\sqrt{2}}(1,0,1)>=\frac{1}{\sqrt{2}}<(0,3,4),(1,0,1)> \\
\end{array} \\
\end{gathered}
\]

Now \(w_{3}=u_{3}-<u_{3}, v_{1}>v_{1}-<u_{3}, v_{2}>v_{2}\)
\[
=(0,3,4)-2 \sqrt{2} \cdot \frac{1}{\sqrt{2}}(1,0,1)+2 \sqrt{2} \cdot \frac{1}{\sqrt{2}}(1,0,-1)
\]
\[
\begin{aligned}
& =(0,3,4)-(2,0,2)+(2,0,-2)=(0,3,0) \\
& \left\|w_{3}\right\|=\sqrt{0^{2}+3^{2}+0^{2}}=3 \\
& v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\frac{1}{3}(0,3,0)=(0,1,0)
\end{aligned}
\]

The required orthonormal basis is \(\left\{v_{1}, v_{2}, v_{3}\right\}\)
\[
=\left\{\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right),(0,1,0)\right\}
\]
W.E. 15: Apply Gram - Schmidt process to obtain an orthonormal basis for \(V_{3}(R)\) with respect to the standard inner product to the vectors \((2,0,1),(3,-1,5),(0,4,2)\).

Solution: Let \(\left\{u_{1}, u_{2}, u_{3}\right\}\) be the basis of the finite dimensional vector space \(V_{3}(R)\) where \(u_{1}=(2,0,1), u_{2}=(3,-1,5), u_{3}=(0,4,2)\)

Now \(\left\|u_{1}\right\|=\sqrt{2^{2}+0^{2}+1^{2}}=\sqrt{5}\)
\[
v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{5}}(2,0,1)=\left(\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right)
\]
\(u_{2}=(3,-1,5)\)
\(\left\langle u_{2}, v_{1}\right\rangle=\left\langle(3,-1,5), \frac{1}{\sqrt{5}}(2,0,1)\right\rangle=\frac{1}{\sqrt{5}}\langle(3,-1,5),(2,0,1)\rangle\)
\[
=\frac{1}{\sqrt{5}}\{3(2)+(-1)(0)+5(1)\}=\frac{11}{\sqrt{5}}
\]
\(w_{2}=u_{2}-<u_{2}, v_{1}>v_{1}\) so \(w_{2}=(3,-1,5)-\frac{11}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}\right)(2,0,1)\)
\[
\text { So } w_{2}=(3,-1,5)-\frac{11}{\sqrt{5}}(2,0,1)=\left(3-\frac{22}{5},-1-0,5-\frac{11}{5}\right)
\]
\[
\begin{aligned}
& \text { So } w_{2}=\left(\frac{-7}{5}, \frac{-5}{5}, \frac{14}{5}\right)=\frac{1}{5}(-7,-5,14) \\
& \left\|w_{2}\right\|=\frac{1}{5} \sqrt{(-7)^{2}+(-5)^{2}+(14)^{2}}=\frac{1}{5} \sqrt{49+25+196} \\
& \text { So }\left\|w_{2}\right\|=\frac{1}{5} \sqrt{270} \\
& v_{2}=\frac{w_{2}}{\left\|w_{2}\right\|} \frac{5}{\sqrt{270}} \cdot \frac{1}{5}(-7,-5,14)=\frac{1}{\sqrt{270}}(-7,-5,14) \\
& \left.u_{3}=(0,4,2) \text { so }\left\langle u_{3}, v_{1}\right\rangle=<(0,4,2), \frac{1}{\sqrt{5}},(2,0,1)\right\rangle \\
& =\frac{1}{\sqrt{5}}\langle(0,4,2),(2,0,1)\rangle \\
& =\frac{1}{\sqrt{5}}\{0(2)+4(0)+2(1)\}=\frac{2}{\sqrt{5}} \\
& \left\langle u_{3}, v_{2}\right\rangle=\left\langle(0,4,2), \frac{1}{\sqrt{270}}(-7,-5,14)_{>}\right. \\
& =\frac{1}{\sqrt{270}}<(0,4,2),(-7,-5,14)> \\
& =\frac{1}{\sqrt{270}}\{0(-7)+4(-5)+2(14)\} \\
& =\frac{1}{\sqrt{270}}(-20+28)=\frac{8}{\sqrt{270}} \\
& w_{3}=u_{3}-<u_{3}, v_{1}>v_{1}-<u_{3}, v_{2}>v_{2} \\
& =(0,4,2)-\frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}}(2,0,1)-\frac{8}{\sqrt{270}} \cdot \frac{1}{\sqrt{270}}(-7,-5,14) \\
& =(0,4,2)-\frac{2}{5}(2,0,1)-\frac{8}{270}(-7,-5,14)
\end{aligned}
\]
\[
\begin{aligned}
& =\left(0-\frac{4}{5}+\frac{56}{270}, 4-0+\frac{40}{270}, 2-\frac{2}{5}-\frac{112}{270}\right) \\
& =\left(\frac{0-54(4)+56}{270}, \frac{1080+40}{270}, \frac{540-54 \times 2-112}{270}\right) \\
& =\left(\frac{-160}{270}, \frac{1120}{270}, \frac{320}{270}\right)=\left(\frac{-16}{27}, \frac{112}{27}, \frac{32}{27}\right)
\end{aligned}
\]

So \(w_{3}=\frac{16}{27}(-1,7,2), \quad\left\|w_{3}\right\|=\frac{16}{27} \sqrt{(-1)^{2}+7^{2}+2^{2}}\)
\[
\begin{gathered}
\left\|w_{3}\right\|=\frac{16}{27} \sqrt{54} \\
v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\frac{27}{16 \sqrt{54}} \cdot \frac{16}{27}(-1,7,2) \\
\text { So } v_{3}==\frac{1}{\sqrt{54}}(-1,7,2)=\frac{1}{3 \sqrt{6}}(-1,7,2)
\end{gathered}
\]

Hence the required orthonormal basis is \(\left\{v_{1}, v_{2}, v_{3}\right\}\) where \(v_{1}=\frac{1}{\sqrt{5}}(2,0,1)\) and
\[
v_{2}=\frac{1}{\sqrt{270}}(-7,-5,14) \text { and } v_{3}=\frac{1}{3 \sqrt{6}}(-1,7,2)
\]

\subsection*{14.12 Fourier Coefficients :}

Definition: Let B be an orthonormal subset (possibly infinite) of an inner product space V and let \(v \in V\). We define the fourier coefficients of \(v\) relative to B to be the scalar \(\langle v, u\rangle\)
where \(u \in B\).

\section*{Worked out Examples:}
W.E. 16: If \(S=\{(1,1,1),(0,1,1),(0,0,1)\}\) is a subset of the vector space \(R^{3}\) and \(V=R^{3}\). Obtain the orthonormal basis B for span (S) and find the fourier coefficients of the vector \((1,0,1)\) to \(B\).

\section*{Rings and Linear Algebra}

Solution: Let \(u_{1}=(1,1,1), u_{2}=(0,1,1), u_{3}=(0,0,1)\)
\[
\begin{aligned}
& \left\|u_{1}\right\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \text { so } v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{3}}(1,1,1) \\
& \begin{aligned}
\left\langle v_{2}, v_{1}\right\rangle=\left\langle(0,1,1), \frac{1}{\sqrt{3}}(1,1,1)\right\rangle & =\frac{1}{\sqrt{3}}\langle(0,1,1),(1,1,1)\rangle \\
& =\frac{1}{\sqrt{3}}\{0(1)+1(1)+1(1)\}=\frac{2}{\sqrt{3}}
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
w_{2} & =u_{2}-\left\langle v_{2}, v_{1}\right\rangle v_{1} \\
& =(0,1,1)-\frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}(1,1,1) \\
& =(0,1,1)-\frac{2}{\sqrt{3}}(1,1,1)=\left(0-\frac{2}{3}, 1-\frac{2}{3}, 1-\frac{2}{3}\right) \\
w_{2} & =\left(\frac{-2}{3}, \frac{1}{3}, \frac{1}{3}\right)=\frac{1}{3}(-2,1,1)
\end{aligned}
\]

So \(\quad\left\|w_{2}\right\|=\frac{1}{3} \sqrt{(-2)^{2}+1^{2}+1^{2}}=\frac{\sqrt{6}}{3}\)
\[
v_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{3}(-2,1,1) \cdot \frac{3}{\sqrt{6}}=\frac{1}{\sqrt{6}}(-2,1,1)
\]
\(<u_{3}, v_{1}>=<(0,0,1), \frac{1}{\sqrt{3}}(1,1,1)>=\frac{1}{\sqrt{3}}\{0(1)+0(1)+1(1)\}\)
\[
\left\langle u_{3}, v_{1}\right\rangle=\frac{1}{\sqrt{3}}
\]
\(\left\langle u_{3}, v_{2}\right\rangle=\left\langle(0,0,1), \frac{1}{\sqrt{6}}(-2,1,1)\right\rangle=\frac{1}{\sqrt{6}}\{0(-2)+0(1)+1(1)\}\)
i.e. \(\left\langle u_{3}, v_{2}\right\rangle=\frac{1}{\sqrt{6}}\)
\[
\begin{aligned}
& w_{3}=u_{3}-\left\langle u_{3}, v_{1}\right\rangle-\left\langle u_{3}, v_{2}\right\rangle v_{2} \\
&=(0,0,1)-\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}(1,1,1)-\frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}}(-2,1,1) \\
&=(0,0,1)-\frac{1}{3}(1,1,1)-\frac{1}{6}(-2,1,1) \\
&=\left(0-\frac{1}{3}+\frac{2}{6}, 0-\frac{1}{3}-\frac{1}{6}, 1-\frac{1}{3}-\frac{1}{6}\right)=\left(0, \frac{-1}{2}, \frac{1}{2}\right) \\
& w_{3}=\frac{1}{2}(0,-1,1) \\
& \qquad\left\|w_{3}\right\|=\frac{1}{2} \sqrt{0+1+1}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& v_{3}=\frac{\omega_{3}}{\left\|\omega_{3}\right\|}=\sqrt{2}\left(\frac{1}{2}\right)(0,-1,1)=\frac{1}{\sqrt{2}}(0,-1,1)
\end{aligned}
\]

So the orthonormal basis of \(\mathrm{Span}(\mathrm{S})\) is \(B=\left\{v_{1}, v_{2}, v_{3}\right\}\) where
\[
v_{1}=\frac{1}{\sqrt{3}}(1,1,1), v_{2}=\frac{1}{\sqrt{6}}(-2,1,1), v_{3}=\frac{1}{\sqrt{2}}(0,-1,1)
\]

To find the fourier coefficients of the vector \(v=(1,0,1)\) relative to \(S^{1}=\left\{v_{1}, v_{2}, v_{3}\right\}\) :
\[
\begin{aligned}
&\left\langle v, v_{1}\right\rangle\rangle=\left\langle(1,0,1), \frac{1}{\sqrt{3}}(1,1,1)\right\rangle=\frac{1}{\sqrt{3}}(1) 1+0(1)+1(1) \\
&\left\langle v, v_{1}\right\rangle=\frac{2}{\sqrt{3}} \\
&\left\langle v, v_{1}\right\rangle=\left\langle(1,0,1), \frac{1}{\sqrt{6}}(-2,1,1)\right\rangle=\frac{1}{\sqrt{6}}\{1(-2)+0(1)+1(1)\} \\
&\left.<v, v_{2}\right\rangle=\frac{-1}{\sqrt{6}}
\end{aligned}
\]
\(\left\langle v, v_{3}\right\rangle=\left\langle(1,0,1), \frac{1}{\sqrt{2}}(0,-1,1)\right\rangle=\frac{1}{\sqrt{2}}\{1(0)+0(-1)+1(1)\}\)
\[
\left\langle v, v_{3}\right\rangle=\frac{1}{\sqrt{2}}
\]

Hence the fourier coefficients relative to the set B is \(\frac{2}{\sqrt{3}}, \frac{-1}{\sqrt{6}}, \frac{1}{2}\) or \(\frac{2 \sqrt{3}}{3}, \frac{-\sqrt{6}}{6}, \frac{\sqrt{2}}{2}\)
W.E. 17: If \(V=L(S)\) where \(S=\{(1, i, 0),(1-i, 2,4 i)\}\). Find the orthonormal basis B of V and compute the fourier coefficients of the vector \((3+i, 4 i,-4)\) relative to B .

Solution: Let \(u_{1}=(1, i, 0) u_{2}=(1-i, 2,4 i\),
then \(\left\|u_{1}\right\|^{2}=\left\langle u_{1}, u_{1}>=<(1, i, 0),(1, i, 0)>\right.\)
\[
\begin{aligned}
& \qquad \begin{array}{l}
=1 \overline{1})+i(\bar{i})+0(\overline{0}) \text { where } \bar{a} \text { is congugate of a. } \\
\\
=1(1)+i(-i)+0(0) \\
\\
=1-i^{2}+0=1+1=2 \\
\left\|u_{1}\right\|=\sqrt{2} \text { so } v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{2}}(1, i, 0) \\
<u_{2}, v_{1}>=<(1-i, 2,4 i), \frac{1}{\sqrt{2}}(1, i, 0)> \\
=
\end{array} \\
& =\frac{1}{\sqrt{2}}\{(1-i) \overline{1}+2 \bar{i}, 4 i(\overline{0})\} \\
& =
\end{aligned}
\]
\[
\begin{gathered}
=(1-i, 2,4 i),-\frac{1}{2}\{(1-3 i), 3+i, 0\} \\
=\left((1-i)-\frac{(1-3 i)}{2}, 2-\frac{(3+i)}{2}, 4 i-0\right) \\
w_{2}=\left(\frac{1+i)}{2}, \frac{1-i)}{2}, 4 i\right)=\frac{1}{2}((1+i),(1-i), 8 i) \\
\left\|w_{2}\right\|^{2}=<\frac{1}{2}((1+i),(1-i), 8 i), \frac{1}{2}(1+i, 1-i, 8 i)> \\
=\frac{1}{2}\left(\frac{1}{2}\right)\{(1+i) \overline{(1+i)}+(1-i) \overline{(1-i)}+8 i(8 \bar{i})\} \text { where } \bar{a} \text { is congugate of } a . \\
\left\|w_{2}\right\|^{2}=\frac{1}{4}\{(1+i)(1-i)+(1-i)(1+i)+8 i(-8 i)\} \\
=\frac{1}{4}\left\{(1+1)+(1+1)-64 i^{2}\right\} \\
\left\|w_{2}\right\|=\frac{1}{2} \sqrt{2+2+64}=\frac{1}{2} \sqrt{68}=\frac{2}{2} \sqrt{17}=\sqrt{17}
\end{gathered}
\]

Hence \(v_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{\sqrt{17}} \cdot \frac{1}{2}(1+i, 1-i, 8 i)\)
So \(v_{2}=\left(\frac{1+i}{2 \sqrt{17}}, \frac{1-i}{2 \sqrt{17}}, \frac{4 i}{\sqrt{17}}\right)\)
So the orthonormal basis \(B=\left\{v_{1}, v_{2}\right\}\)
\[
\text { Where } v_{1}=\left(\frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}}, 0\right) \text { and } v_{2}=\left(\frac{1+i}{2 \sqrt{17}}, \frac{1-i}{2 \sqrt{17}}, \frac{4 i}{\sqrt{17}}\right)
\]

To find the fourier coefficients of \(v=(3+i, 4 i,-4)\)
Now \(\left\langle v, v_{1}\right\rangle=<(3+i, 4 i,-4), \frac{1}{\sqrt{2}}(1, i, 0)>\)
\[
\begin{aligned}
&=\frac{1}{\sqrt{2}}\{(3+i) 1+(4 i)(-i)-4(0)\} \quad(\because \bar{i}=-i) \\
&<v, v_{1}>= \frac{1}{\sqrt{2}}(3+i+4)=\frac{1}{\sqrt{2}}(7+i) \\
&<v, v_{2}>=<(3+i, 4 i,-4), \frac{1}{2 \sqrt{17}}(1+i, 1-i, 8 i)> \\
&= \frac{1}{2 \sqrt{17}}\{(3+i) \overline{(1+i)}+4 i \overline{(1-i)}-4 \overline{(8 i)}\} \\
&= \frac{1}{2 \sqrt{17}}\{(3+i)(1-i)+4 i(1+i)-4(-8 i)\} \\
&= \frac{1}{2 \sqrt{17}}\{(3+1-2 i)+(4 i-4)+32 i\} \\
&= \frac{1}{2 \sqrt{17}}\{(0+34 i\}=\sqrt{17} i
\end{aligned}
\]

Hence the fowrier coefficients of v relative to B are \(\left\langle v, v_{1}\right\rangle,\left\langle v, v_{2}\right\rangle\) i.e. \(\frac{1}{\sqrt{2}}(7+i), \sqrt{17} i\)

\subsection*{14.13 Parseval's Identity:}
14.13.1 Theorem: Parseval's Identity : If \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an ortho-normal basis of a finite dimensional inner product space \(V(F)\) then \(\langle u, v\rangle=\sum_{i=1}^{n}\left\langle u, u_{i}\right\rangle\left\langle u_{i}, v\right\rangle\) for all \(u, v \in V\). Proof: \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is a basis of V . Let \(u, v \in V\). Then there exists scalars \(a_{1}, a_{2}, \ldots a_{n}\), \(b_{1}, b_{2}, \ldots b_{n} \in F\) so that
\[
\begin{aligned}
& u=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=\sum_{i=1}^{n} a_{i} u_{i} \\
& v=b_{1} u_{1}+b_{2} u_{2}+\ldots+b_{n} u_{n}=\sum_{J=1}^{n} b_{j} u_{j}
\end{aligned}
\]

Now \(\left.\langle u, v\rangle=<\sum_{i=1}^{n} a_{i} u_{i}, \sum_{j=1}^{n} b_{j} u_{j}\right\rangle\),
\(=\sum_{i=1}^{n}<a_{i} u_{i}, b_{i} u_{i}>\) since \(<u_{i}, u_{j}>0\) for \(i \neq j\)
\(=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\left\langle u_{i}, u_{i}\right\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\)
\[
\text { since }\left\langle u_{i}, u_{j}\right\rangle=1 \text { if } i=j
\]

But \(\left\langle u, u_{i}\right\rangle=\sum_{i=1}^{n}\left\langle a_{i}, u_{i}, u_{i}\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle u_{i}, u_{i}\right\rangle=a_{i} \ldots \ldots .\). (2) Since \(\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}0 \text { if } i \neq j \\ 1 \text { if } \mathrm{i}=\mathrm{j}\end{array}\right.\)
and \(\left\langle u_{i}, v\right\rangle=\left\langle u_{i}, \sum_{J=1}^{n}\left\langle b_{j}, u_{j}\right\rangle\right.\)
\[
\begin{align*}
& =\bar{b}_{i}<u_{i}, u_{i}>\quad \text { Since }<u_{i}, u_{j}>=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
1 \text { if } \mathrm{i}=\mathrm{j}
\end{array}\right. \\
& =\bar{b}_{i}(1)=\bar{b}_{i} \ldots \ldots \ldots \text { (3) } \tag{3}
\end{align*}
\]

Using (2) and (3) in (1) we get
\[
\langle u, v\rangle=\sum_{i=1}^{n}\left\langle u, u_{i}\right\rangle\left\langle u_{i}, v\right\rangle \text { for all } u, v \in V
\]
14.13.2 Corollary: If \(S=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is a complete orthonormal set in an inner product space \(V(F)\) and if \(v \in V\), then \(\left.\sum_{i=1}^{n}\left|<v, u_{i}\right\rangle\right|^{2}=\|v\|^{2}\)

Proof: By Parseval's Identity if \(v \in V\) then \(\langle u, v\rangle=\sum_{i=1}^{n}\left\langle u, u_{i}\right\rangle\left\langle u_{i}, v\right\rangle\) for all \(v \in V\)

So as \(v \in V,\langle v, v\rangle=\sum_{i=1}^{n}\left\langle v, u_{i}\right\rangle\left\langle u_{i}, v\right\rangle\)
\[
=\sum_{i=1}^{n}<v, u_{i}>\overline{\left.<v, u_{i}\right\rangle}
\]

So \(\|v\|^{2}=\sum_{i=1}^{n}\left|<v, u_{i}>\left.\right|^{2} \therefore z \bar{z}=|z|^{2}\right.\)
Thus \(\left.\sum_{i=1}^{n}\left|<v, u_{i}\right\rangle\right|^{2}=\|v\|^{2}\)

\subsection*{14.13.3 Theorem:}

Bessel's Inequality: Let V be an inner product space and Let \(S=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal subset of V . Prove that for any \(v \in V\), we have \(\left.\sum_{i=1}^{n}\left|<v, u_{i}\right\rangle\right|^{2} \leq\|v\|^{2}\).

Further more the equality holds if and only if \(v\) is in the subspace generated by \(u_{1}, u_{2}, \ldots u_{n}\).
Proof: Consider the vector \(w=v-\sum_{i=1}^{n}<v, u_{i}>u_{i}\)

Now \(\|w\|^{2}=\langle w, w\rangle=\left\langle v-\sum_{i=1}^{m}\left\langle v, u_{i}>u_{i}, v-\sum_{j=1}^{m}\left\langle v, u_{j}>u_{j}\right\rangle\right.\right.\)
\[
\begin{aligned}
& =\left\langle v, v>-\sum_{i=1}^{m}\left\langle v, u_{i}><u_{i}, v>-\sum_{j=1}^{m} \overline{\left\langle v, u_{j}>\right.}<v, u_{j}>+\sum_{i=1}^{m} \sum_{j=1}^{m}\left\langle v, u_{i}>\overline{\left\langle v_{i} u_{j}>\right.}<u_{i}, u_{j}\right\rangle\right.\right. \\
& =<v, v>-\sum_{i=1}^{m}<v, u_{i}>\overline{<u_{i}, u_{j}>}-\sum_{i=1}^{m} \overline{\left\langle v, u_{j}>\right.}<v, u_{j}>+\sum_{i=1}^{m}\left\langle v, u_{i}\right\rangle \overline{\left.<v, u_{i}\right\rangle}
\end{aligned}
\]

On summing up with respect to j and remembering \(\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}1 \text { if } \mathrm{i}=\mathrm{j} \\ 0 \text { if } i \neq j\end{array}\right.\)
\[
=\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\left.\right|^{2}-\sum_{i=1}^{m}\right|<v, u_{i}>\left.\right|^{2}+\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}
\]
i.e. \(\quad\|w\|^{2}=\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}\)

Now \(\|w\|^{2} \geq 0 \Rightarrow\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2} \geq 0\)
\[
\Rightarrow \sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2} \leq\|v\|^{2}
\]

To show that equality hold if and only if v is in the subspace spanned by \(u_{1}, u_{2}, \ldots u_{m}\) :

Case i) Let the equality holds good i.e. \(\sum_{i=1}^{m}\left|\left\langle v, u_{i}\right\rangle\right|^{2}=\|v\|^{2}\) then from (1)
i.e. \(\|w\|^{2}=\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}\)

We get \(\|w\|^{2}=0 \Rightarrow w=O\) (zero vector)
\[
\begin{aligned}
& \Rightarrow v-\sum_{i=1}^{m}<v, u_{i}>u_{i}=O \\
\Rightarrow & v=\sum_{i=1}^{m}<v, u_{i}>u_{i}
\end{aligned}
\]

Thus if the equality holds good then v is a linear combination of \(u_{1}, u_{2}, \ldots u_{m}\)
\[
\text { Hence } v \text { is in the subspace spanned by } u_{1}, u_{2}, \ldots u_{m}
\]

Case ii) Converse : v is in the subspace spanned by \(u_{1}, u_{2}, \ldots, u_{m}\)
So \(v\) can be expressed as a linear combination of \(u_{1}, u_{2}, \ldots, u_{m}\), by theorem 14.8.2. We know that
\[
v=\sum_{i=1}^{m}<v, u_{i}>u_{i}
\]
\(\qquad\) (2) But we know
\[
\begin{aligned}
& w=v-\sum_{i=1}^{m}<v, u_{i}>u_{i}=O \text { using (2) } \\
& \text { So }\|w\|^{2}=0 \\
& \Rightarrow\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}=0 \\
& \Rightarrow \sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}=\|v\|^{2}
\end{aligned}
\]

Thus the equality holds good.
Hence the theorem.
14.13.4 Corollary: Let \(\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) be an orthogonal set of non zero vectors in an inner product space V . If \(v\) is any vector in V , then \(\sum_{i=1}^{m}\left(\frac{\left|\left\langle v, u_{i}\right\rangle\right|^{2}}{\left\|u_{i}\right\|^{2}}\right) \leq\|v\|^{2}\)

Proof: Let \(B=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\) where \(v_{i}=\frac{u_{i}}{\left\|u_{i}\right\|}(1 \leq i \leq m)\). Then \(\left\|v_{i}\right\|=1\), so the set B is an orthonormal set. Hence by Bessels's inequality we get \(\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2} \leq\|v\|^{2}\)

Also \(\left\langle v, v_{i}\right\rangle=\left\langle v, \frac{u_{i}}{\left\|u_{i}\right\|}>=\frac{1}{\left\|u_{i}\right\|}<v, u_{i}\right\rangle\)
\[
\begin{equation*}
\text { So }\left|<v, v_{i}>\left.\right|^{2}=\frac{1}{\left\|u_{i}\right\|^{2}}\right|<v, u_{i}>\left.\right|^{2} \tag{2}
\end{equation*}
\]

From (1) and (2) we get
\[
\sum_{i=1}^{m}\left(\frac{\left|\left\langle v, u_{i}\right\rangle\right|^{2}}{\left\|u_{i}\right\|^{2}}\right) \leq\| \| \|^{2}
\]
14.13.5 Theorem: If V is a finite dimensional inner product space, and if \(\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) is an orthonormal set in V , such that \(\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2}=\|v\|^{2}\) for every \(v \in V\); prove that \(\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) must be a basis of V .

Proof: Let v be any vector in V. Consider
\[
\begin{equation*}
w=v-\sum_{i=1}^{m}<v, u_{i}>u_{i} \tag{1}
\end{equation*}
\]

As in the proof of Bessel's inequality
We have \(\|w\|^{2}=\langle w, w\rangle\)
\[
\begin{aligned}
& =\|v\|^{2}-\sum_{i=1}^{m}\left|<v, u_{i}>\right|^{2} \\
& =0 \text { by given condition. } \\
\Rightarrow w=O \Rightarrow v & =\sum_{i=1}^{m}<v, u_{i}>u_{i}
\end{aligned}
\]

Thus every vector \(v\) in V can be expressed as a linear combination of the vectors in the set \(S=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) i.e. \(L(S)=V\). As S is an orthonormal basis, S is linearly independent.

Hence \(S\) is a basis of \(V\).

\subsection*{14.14 Orthogonal Compliment:}
14.14.1 Definition: Let \(S\) be a non empty subset of an inner product space V . We define \(S^{\perp}\) (read \(S\) perp) to be the set of all vectors in V ; that are orthogonal to every vector in S ; i.e.
\(S^{\perp}=\{u \in V /\langle u, v\rangle=0\) for all \(v \in S\}\)
\(S^{\perp}\) is called the orthogonal complement of \(S\) and the symbol is usually read as \(S\) perpendicular

Note i) \(S^{\perp} \subset V\)
ii) \(u \in S^{\perp}, v \in S \quad \Rightarrow\langle u, v\rangle=0\)
iii) \(\mathbf{O}\) (zero vector) is an element in \(\mathrm{V} . v \in S\)
\[
\text { then }\langle O, u\rangle=0 \forall u \in S \Rightarrow O \in S^{\perp} \text {. Hence } S^{\perp} \neq \phi
\]
14.14.2 Theorem: If \(S\) is any non empty subset of an inner product space \(V(F)\), then \(S^{\perp}\) is a subspace of \(V(F)\).

Proof: By definition \(S^{\perp}=\{u \in V /\langle u, v\rangle=0 \forall v \in V\}\)
Let \(u_{1}, u_{2} \in S^{\perp}\) and \(v \in S\). then \(\left\langle u_{1}, v\right\rangle=0\) \(\qquad\)
and \(\left\langle u_{2}, v\right\rangle=0\) \(\qquad\) (2) Now for \(a, b \in F\) and for each \(v \in S\) we have
\[
\begin{aligned}
\left\langle a u_{1}+b u_{2}, v\right\rangle & =\left\langle a u_{1}, v\right\rangle+\left\langle b u_{2}, v\right\rangle \\
& =a\left\langle u_{1}, v\right\rangle+b\left\langle u_{2}, v\right\rangle \\
& =a(0)+b(0) \text { using (1) and (2) } \\
& =0
\end{aligned}
\]
\(\therefore\) For \(u_{1}, u_{2} \in S^{\perp} \quad a, b \in F\)
\[
a u_{1}+b u_{2} \in S^{\perp} \text { so } S^{\perp} \text { is a subspace of } \mathrm{V} \text {. }
\]
14.14.3 Theorem: If \(V(F)\) is an inner product space, \(\mathbf{O}\) is the zero vector in V , then show that \(\{O\}^{\perp}=. V\)

Proof: Let \(v \in V\), then \(\langle v, O\rangle=0\) by definition of inner product. So \(v \in O^{\perp}\) i.e. any element v of V is also an element of \(S^{\perp}\). So \(V \subseteq\{0\}^{\perp}\) \(\qquad\) (1). Also \(\{0\}^{\perp} \subseteq V\) \(\qquad\) (2) from (1) and (2) \(\{0\}^{\perp}=V\).

\subsection*{14.14.4 Theorem:}

If \(V(F)\) is an inner product space, \(\mathbf{O}\) is the zero vector of V ; then show that \(V^{T}=\{0\}\).
Proof: Let \(u \in V^{\perp}\) then \(\langle u, v\rangle=0 \forall v \in V\) by definition of \(V^{\perp}\) when \(v=u\) then \(\langle u, u\rangle=0\)
\[
\text { i.e. }\|u\|^{2}=0 \Rightarrow u=O
\]

Thus \(\mathbf{O}\) is the only vector orthogonal to itself and hence \(V^{\perp}=\{O\}\)

\subsection*{14.14.5 Theorem:}

If \(S\) is a subset of an inner product space \(V(F)\), then show that \(S \wedge S^{\perp}=\{O\}\)
Proof: If \(u \in S \wedge S^{\perp}\) then \(u \in S\) and \(u \in S^{\perp}\)
\(\Rightarrow u\) is orthogonal to \(u\).
\(\Rightarrow\langle u, u\rangle=0 \Rightarrow u=O\)
So \(S \wedge S^{\perp}=\{O\}\)

\subsection*{14.14.6 Theorem:}

If \(S_{1}, S_{2}\) are two subsets of an inner product space \(V(F)\) then show that \(S_{1} \subseteq S_{2} \Rightarrow S_{2}^{\perp} \subseteq S_{1}^{\perp}\) Solution: Let \(u \in S^{\perp} \Rightarrow u\) is orthogonal to every vector in \(S_{2}\).

As \(S_{1} \subseteq S_{2}\) so u is orthogonal to every vector in \(S_{1}\).
\(\Rightarrow u \in S_{1}^{\perp}\) thus \(u \in S_{2}^{\perp} \Rightarrow u \in S_{1}^{\perp}\)
\[
\text { So } S_{2}^{\perp} \subseteq S_{1}^{\perp}
\]

\subsection*{14.14.7 Theorem:}

If \(S\) is a subset of an inner product space \(V(F)\), then show that \(S^{\perp}=\operatorname{span}(S)^{\perp}\).
Proof: V is an inner product space over the field F .
S is a subset of \(V \quad\) So \(S \subseteq \operatorname{span}(\mathrm{~S})\)
We know if \(S_{1}, S_{2}\) are two subsets of V , then \(S_{1} \subseteq S_{2} \Rightarrow S_{2}^{\perp} \subseteq S_{1}^{\perp}\)
Hence by this, [ span of \(S]^{\perp} \subseteq S^{\perp}\).
Let \(u \in S^{\perp}\) and \(v \in \operatorname{span}\) of (S). Hence there exists scalars \(a_{1}, a_{2}, \ldots, a_{n}\) in F such that \(v=a_{1} w_{1}+a_{2} w_{2}+\ldots+a_{n} w_{n}\) where \(w_{1}, w_{2}, \ldots w_{n} \in S\)
\[
\begin{aligned}
& \text { As } \left.u \in S^{\perp}\langle u, v\rangle=<u, a_{1} w_{1}+a_{2} w_{2}+\ldots+a_{n} w_{n}\right\rangle \\
& \text { So }\left\langle u, v>=\bar{a}_{1}\left\langle u, w_{1}\right\rangle+\bar{a}_{2}\left\langle u, w_{2}\right\rangle+\ldots+\bar{a}_{n}<u, w_{n}\right\rangle \\
& =\bar{a}_{1}(0)+\bar{a}_{2}(0)+\ldots+\bar{a}_{n}(0)=0
\end{aligned}
\]

As \(v \in\) span of \(S\) and \(\langle u, v\rangle=0\) where \(u \in S^{\perp}\)
So \(u \in[\text { span of } S]^{\perp}\)
Thus \(u \in S^{\perp} \Rightarrow u \in(\text { Span } S)^{\perp}\)
\(\therefore S^{\perp} \subseteq(\text { Span } S)^{\perp}\)
From (1) and (2) \(S^{\perp}=(\text { span } S)^{\perp}\)
14.14.8 Theorem: If \(B=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}\) is an orthonormal subset of the inner product space \(V(F)\), then for each \(v \in V, w=v-\sum_{j=1}^{m}<v, u_{j}>\) is a vector of \(B^{\perp}\).

Proof: We have proved in theorem 14.8 .4 that w is orthogonal to each of \(u_{1}, u_{2}, \ldots u_{m}\). By definition of orthogonal complement \(w \in B^{\perp}\).

Hence the theorem.

\subsection*{14.14.9 Orthogonal Compliment of an orthogonal compliment:}

Definition: If \(S\) is a subset of an inner product space \(V(F)\), then \(S^{\perp}\) is a sub space V . We define \(\left(S^{\perp}\right)^{\perp}\) written as \(S^{\perp \perp}\) (containing those vectors in \(V(F)\) which are orthogonal to each vector of \(\left.S^{\perp}\right)\) by \(\left(S^{\perp}\right)^{\perp}=S^{\perp}\left\{u \in V:<u, v>\forall v \in S^{\perp}\right\}\)

Note: Obviously \(\left(S^{\perp}\right)^{\perp}\) is a subspace of V ; since we know if S is any set of vectors in an inner product space \(V(F)\) then \(S^{\perp}\) is a subspace of V .

\subsection*{14.14.10 Theorem:}

Show that for any subset S of an inner product space \(V(F), S \subseteq S^{\perp}\).
Solution : \(V(F)\) is the given inner product space S , is subset of V . then \(S^{\perp}, S^{\perp}\) are subspaces of V.
\[
\begin{aligned}
& \text { Let } u \in S \text { then }\langle u, v\rangle=0 \text { for all } v \in S^{\perp} \\
& \langle u, v\rangle=O\langle v, u\rangle=O \text { for } v \in S^{\perp} \text { and } u \in V
\end{aligned}
\]
\[
\text { So by definition } u \in S^{\perp \perp}
\]

Thus \(u \in S \Rightarrow u \in S^{\perp \perp}\)
\[
\text { So } S \subseteq S^{\perp} \text {. }
\]
W.E. 18: If \(V(F)\) is an inner product space and S is any subset of V then show that
i) \(S^{\perp}=(L(S))^{\perp}\)
ii) \(L(S) \subseteq S^{\perp}\)
iii) \(L(S)=S^{\perp}\) if V is finite dimensional
iv) \(S^{\perp}=S^{\Perp}\)

Solution: \(V(F)\) is an inner product space S is a subset of V .
i) To show \(S^{\perp}=(L(S))^{\perp}\)

As S is a subset of \(\mathrm{V}, S \subseteq L(S)\)
\[
\begin{equation*}
\text { Hence }[L(S)]^{\perp} \subseteq S^{\perp} \tag{1}
\end{equation*}
\]
\(\qquad\)
To show \(S^{\perp} \subseteq[L(S)]^{\perp}\)
Let \(v \in L(S)\) then \(v=\sum_{i=1}^{n} a_{i} u_{i} \forall u_{i} \in S\)
for \(u \in S^{\perp}\) we have \(\quad\langle u, v\rangle=\left\langle u, \sum_{i=1}^{n} a_{i} u_{i}\right\rangle\)
\[
\begin{align*}
& =\sum_{i=1}^{n} \bar{a}_{i}<u, u_{i}>\text { by definition. } \\
& =0 \text { since } u \text { is perpendicular to each } u_{i} \in S . \tag{2}
\end{align*}
\]

This implies u is perpendicular to \(v \in L(S)\) i.e. \(u \in(L(S))^{\perp}\) or \(S^{\perp} \subseteq[L(S)]^{\perp}\) \(\qquad\)
From (1) and (2) \(\quad S^{\perp}=[L(S)]^{\perp}\)
ii) To show that \(L(S) \subseteq S^{\Perp}\)

Let \(u \in L(S)\) and \(v \in S^{\perp}\). Then v is orthogonal to every vector of S or inother words v is orthogonal to the linear combination of a finite number of vectors in \(S\). i.e. \(v\) is orthogonal to \(u\).
\[
\Rightarrow u \in\left(S^{\perp}\right)^{\perp} \text { i.e. } u \in S^{\perp \perp}
\]

Thus \(u \in L(S) \Rightarrow u \in S^{\perp \perp}\). So \(L(S) \subseteq S^{\perp \perp}\)
iii) To show \(S^{\perp}=S^{\perp \perp 1}\)

We have \(S \subseteq L(S)\) and \(L(S) \subseteq S^{\Perp}\) from (iii)
So \(S \subseteq S^{\perp \perp} \Rightarrow S^{\perp} \subseteq\left(S^{\perp}\right)^{\perp}\)
\(\Rightarrow S^{\perp} \subseteq S^{\perp \perp}\)
\[
\text { Now } \begin{align*}
S & \subseteq S^{\perp \perp} \Rightarrow S,\left(S^{\perp \perp}\right)^{\perp} \subseteq S^{\perp}  \tag{1}\\
& \Rightarrow S^{\perp \perp} \subseteq S^{\perp} \ldots \ldots \ldots \text { (2) } \tag{2}
\end{align*}
\]

From (1) and (2) we get \(S^{\perp}=S^{\Perp \perp}\)
14.14.11 Theorem: Let W be a finite dimensional subspace of an inner product space V . Let \(v \in V\) then there exists unique vectors \(u \in W\) and \(w \in W^{\perp}\) such that \(v=u+w\).

Proof: Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal basis of W . Then B is linearly independent and \(L(B)=W\). Let \(u\) be defined as \(u=\sum_{i=1}^{n}\left\langle v, u_{i}>u_{i}\right.\) and \(w=v-u\).

Now \(u \in W=L(B)\) and \(v=u+w\) now we have to prove that \(w \in W^{\perp}\).
As B is an orthonormal basis of the vector space \(W . w=v-\sum_{i=1}^{n}<v, u_{i}>u_{i}\) a vector of \(W^{\perp}\).
So for \(v \in V\), there exists \(u \in W\) and \(w \in W^{\perp}\) such that \(v=u+w\).
To show the uniqueness:
Let if possible \(v=u^{\prime}+w^{\prime}\) where \(u^{\prime} \in W\) and \(w^{\prime} \in W^{\perp}\)
Then \(u+w=u^{\prime}+w^{\prime} \Rightarrow u-u^{\prime}=w^{\prime}-w\)
But \(u \in W, u^{\prime} \in W^{\prime}, W\) is a subspace \(\Rightarrow u-u^{1} \in W\)
\(w^{\prime} \in W^{\perp}\) and \(w \in W^{\perp} \Rightarrow w^{\prime}-w \in W^{\perp}\) since \(W^{\perp}\) is a subspace and as \(W \wedge W^{\perp}=\{O\}\) and so \(u-u^{\prime}=W^{\prime}-w=0 \Rightarrow u=u^{\prime}, w=W^{\prime}\)

So the representation \(v=u+w\) is unique.
Note: For \(u \in W\), there exists \(w \in w^{\perp}\) such that \(u+w=v \in V\)

\subsection*{14.14.12 Closest Vector:}

If \(V=R^{3}\) and \(S=\left\{e_{3}\right\}\) where \(e_{3}=(0,0,1)\) there \(S^{\perp}\) is equal to \(x y\) plane.
Consider the problem in \(R^{3}\) of finding the distance from a point P to a plane W .
If we let \(v\) be the vector determined by O and P , we may restate the problem as follows.


Determine the vector u in W that is ctosest to v . The desired distance is clearly \(\|v-u\|\) we observe from the figure that the vector \(w=v-u\) is orthogonal to every vector in W and so \(w \in W^{\perp}\). For any \(x \in W\), there exists a point \(Q^{\prime} \in W\) plane so that \(P Q^{\prime}>P Q\).
i.e. \(|v-x| \geq v-u\)

The vector \(u \in W\) is clearly the orthogonal projection of \(v \in V\) on the plane.
14.14.3 Orthogonal Projection: Let \(W\) be a subspace of the finite dimensional inner product space. For \(v \in V\) there exists unique vectors \(u \in W, w \in W^{\perp}\) such that \(v=u+W\).

The vector \(u \in W\) that is \(u=\sum_{i=1}^{n}<v, u_{i}>u_{i}\) where \(\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) is an orthonormal basis of W , is called the orthogonal projection of \(v \in V\) on the subspace W .
14.14.14 Theorem: Let \(S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\) is an orthonormal set in an n - dimensional inner product space V. Then show that \(S\) can be extended to an orthonormal basis \(S^{1}=\left\{v_{1}, v_{2}, \ldots v_{k}, v_{k+1} \ldots v_{n}\right\}\) for V.

Proof: \(V(F)\) is an n - dimensional inner product space. So \(V(F)\) is an n dimensional vector space. \(S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\) is an orthonormal subset of \(V\). So it can be extended to the set \(S_{1}=\left\{v_{1}, v_{2}, \ldots v_{k}, w_{k+1}, w_{k+2} \ldots w_{n}\right\}\), so as to form a basis of the vectorspace \(V(F)\).

By applying Gram schmidt orthogonalisation process to \(S_{1}\) we can obtain an orthonormal basis in which the first k vectors are the vectors in S ; the last \(\mathrm{n}-\mathrm{k}\) vectors are obtained after normalising, given by \(S^{\prime}=\left\{v_{1}, v_{2}, \ldots v_{k}, v_{k+1} \ldots v_{n}\right\}\). So that \(L\left(S^{\prime}\right)=V\).

Hence the theorem.
14.14.15 Corollary 1 : If \(S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\) is an orthonormal set in an inner product space V and if W is span ( S ) i.e. W is a subspace of V , then \(S_{2}=\left\{v_{k+1}, v_{k+2}, \ldots v_{n}\right\}\) is an orthonormal basis of \(W^{\perp}\). Proof: In the above theorem we have shown that

S can be estended to \(S^{\prime}=\left\{v_{1}, v_{2}, \ldots v_{k}, v_{k+1}, \ldots v_{n}\right\}\)
So \(S_{2}=\left\{v_{k+1}, v_{k+2} \ldots, v_{n}\right\} \subseteq S^{\prime}\) (Basis of V )
Hence \(S_{2}\) is linearly independent, being the subset of basis of V .
We are given \(L(S)=W\) and \(S \wedge S_{2}=\phi\),so \(S_{2} \subset W^{\perp}\) we will now show that \(\left(S_{2}\right)=W^{\perp}\).
As \(L\left(S^{\prime}\right)=V\) for any \(u \in V\), we have \(u=\sum_{i=1}^{n}<u, u_{i}>u_{i}\)
\[
\text { Let } \begin{aligned}
u \in W^{\perp} \Rightarrow & <u, u_{i}>=0 \text { for } i=1,2, . . k \\
& \text { since } S \subset W .
\end{aligned}
\]
\(\therefore\) for each \(u \in W^{\perp}\),
\[
u=<u, u_{1}>u_{1}+<u, u_{2}>u_{2}+\ldots+<u, u_{k}>u_{k}+\sum_{i=k+1}^{n}<u, u_{i}>u_{i}
\]
\[
\begin{align*}
& =O+O+\ldots+O+\sum_{i=k+1}^{n}<u, u_{i}>u_{i} \\
& =\sum_{i=k+1}^{n}<u, u_{i}>u_{i} \tag{2}
\end{align*}
\]

So \(u \in W^{\perp} \rightarrow u \in L\left(S_{2}\right) \Rightarrow W^{\perp} \subset L\left(S_{2}\right)\)
From (1) and (2) \(\quad L\left(S_{2}\right)=W\)
As \(\mathrm{S}_{2}\) is linearly independent \(L\left(S_{2}\right)=W\)
\[
S_{2}=\left\{u_{k+1}, u_{k+2}, \ldots u_{n}\right\} \text { is a basis of } W^{\perp} .
\]
14.14.16 Corollary 2: V is an n dimensional inner product space and if W is any subspace of V , then show that \(\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)\).

Proof: As V is a finite dimensional inner product space and W is a subspace V , so W is finite dimensional inner product space. So it has an orthonormal basis \(S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\). So it can be extended to an orthonomal basis \(S_{1}=\left\{v_{1}, v_{2}, \ldots v_{k}, v_{k+1}, \ldots v_{n}\right\}\) and by the above corollary 1 , \(S_{1}=\left\{. v_{k+i}, v_{k+2}, \ldots v_{n}\right\}\) is an orthonormal basis of \(W^{\perp}\).

So \(\operatorname{dim} V=n=k+(n-k)\)
\[
=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)
\]

Hence \(\operatorname{dim} V=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)\).

\subsection*{14.14.17 Projection Theorem:}

If W is any subspace of a finite dimensional inner product space then show that
i) \(v=W \oplus W^{\perp}\) where \(W^{\perp}\) is an orthogonal complement of W .
ii) \(\left(W^{\perp}\right)^{\perp}=W\)

Proof: W being a subspace of a finite dimensional vector spae \(V(F)\) of dimension n , is also finite dimensional say of dimension \(k\).

Thus we can find \(B_{1}=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}\) as an orthonormal set in W which is also a basis of W . This can be exteneded to give \(B=\left\{u_{1}, u_{2}, \ldots u_{k}, u_{k+1} \ldots u_{n}\right\}\) as an orthonormal basis for \(V(F)\).

As \(W\) is a subspace of \(V\), then \(W^{\perp}\) is also a subspace of \(V\); and \(W \wedge W^{\perp}=\{0\} \ldots \ldots\) (1) where 0 is the zero vector.

We will now prove \(V=W+W^{\perp}\)
Now consider the vector \(w=v-\sum_{i=1}^{k}<u, u_{i}>u_{i}\)
Now \(<w, u_{j}>=<v-\sum_{i=1}^{k}<v, u_{i}>u_{i}, u_{j}>1 \leq j \leq k\)
\[
\begin{aligned}
& =<v, u_{j}>-\sum_{i=1}^{k}<v, u_{i}><u_{i}, u_{j}> \\
& =<v, u_{j}>-<v, u_{j}><u_{j}, u_{i}>
\end{aligned}
\]
\[
\text { Since }\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}
1 \text { if } \mathrm{i}=\mathrm{j} \\
1 \text { if } i \neq j
\end{array}\right.
\]

So \(\left\langle w, u_{j}\right\rangle=\left\langle v, u_{j}\right\rangle-\left\langle v, u_{j}\right\rangle=0\)
Showing that W is orthogonal to each of the vectors \(u_{1}, u_{2}, \ldots . u_{k}\). i.e. orthogonal to the subspace W spanned by there vectors and hence it belongs to \(W^{\perp}\).

Also, the vectors \(\sum_{i=1}^{k}<v, u_{i}>u_{i}\) being a linear combination of elements of \(B_{1} \in W\).
Hence from (2) i.e. \(w=v-\sum_{i=1}^{k}<v, u_{i}>u_{i}\)
each \(v \in V\) we have
\[
\begin{aligned}
& v=\left[\sum_{i=1}^{k}\left\langle v, u_{i}>u_{i}\right]+w\right. \\
& =\text { an elements of } \mathrm{W}+\text { an elements of } W^{\perp} .
\end{aligned}
\]

So \(V=W+W^{\perp}\)
and we have \(W \wedge W^{\perp}=\{0\}\) \(\qquad\)
So from (1) and (3) \(V=W_{1} \oplus W_{2}\)
ii) To prove that \(\left(W^{\perp}\right)^{\perp}=W\) when W is a subspace of an inner product space of finite dimension.

Proof: By definition \(\left(W^{\perp}\right)^{\perp}=W^{\perp}=\left\{w \in V:\langle w, v\rangle=0 \forall v \in W^{\perp}\right\}\)
Let \(u \in W \Rightarrow\langle u, v\rangle=0 \forall v \in W^{\perp}\)
Hence from definition of \(W^{\Perp}, u \in W^{\Perp}\)
Thus \(u \in W \Rightarrow u \in W^{\Perp}\) so \(W \subseteq W^{\Perp}\)
We have \(V=W \oplus W^{\perp}\) \(\qquad\)
So \(\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}\) \(\qquad\)
Putting \(W^{\perp}\) fro \(W\) in (1) we get
\[
\begin{equation*}
V=W^{\perp} \oplus W^{\Perp} \tag{3}
\end{equation*}
\]
\(\qquad\)
So \(\operatorname{dim} V=\operatorname{dim}\left(W^{\perp}\right)+\operatorname{dim}\left(W^{\perp}\right)\) \(\qquad\)
From (2) and (4) we get \(\operatorname{dim} W=\operatorname{dim} W^{\Perp}\)
Now \(W \subseteq W^{\Perp}\). Hence W is a subspace of \(W^{\perp \perp}\) and \(\operatorname{dim} W=\operatorname{dim} W^{\perp}\) so \(W=W^{\Perp}\)
Thus \(\left(W^{\perp}\right)^{\perp}=W\).
Note: If W is a subspace of any finite dimensional inner product space \(\mathrm{V}(\mathrm{F})\), then \(V=W \oplus W^{\perp}\)
\[
\begin{aligned}
& \Rightarrow \operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp} \\
& \Rightarrow \operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W
\end{aligned}
\]

\subsection*{14.15 Worked Out Examples:}
W.E.19: If \(\varpi_{1}\) and \(\varpi_{2}\) are two subspaces of a finite dimensional inner product space \(\mathrm{V}(\mathrm{F})\)
then show that
i) \(\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \wedge W_{2}^{\perp}\)
and
ii) \(\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}\)

\section*{Rings and Linear Algebra}

Solution: i) To show \(\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \wedge W_{2}^{\perp}\)
We know \(S_{1} \subseteq S_{2} \Rightarrow S_{2}^{\perp} \subseteq S_{1}^{\perp}\)
Now \(W_{1} \subseteq W_{1}+W_{2} \Rightarrow\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp}\)
and \(W_{2} \subseteq W_{1}+W_{2} \Rightarrow\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp}\)
Hence from the above two, it follows
\[
\begin{equation*}
\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \wedge W_{2}^{\perp} \tag{1}
\end{equation*}
\]

To show that \(W_{1}^{\perp} \wedge W_{2}^{\perp} \subseteq\left(W_{1}+W_{2}\right)^{\perp}\)
Let \(w \in W_{1}^{\perp} \wedge W_{2}^{\perp} \Rightarrow w \in W_{1}^{\perp}\), and \(w \in W_{2}^{\perp}\)
\(\Rightarrow\langle w, u\rangle=0 \forall u \in W_{1}\)
and \(\langle w, v\rangle=0 \forall v \in W_{2}\)
Thus \(\langle w, u\rangle=0\) and \(\langle w, v\rangle=0 \Rightarrow\langle w, u+v\rangle=0\) where \(u+v \in W_{1}+W_{2}\)
So \(w \in\left(W_{1}+W_{2}\right)^{\perp}\)
Thus \(w \in W_{1}^{\perp} \wedge W_{2}^{\perp} \Rightarrow w \in\left(W_{1},+W_{2}\right)^{\perp}\)
\[
\begin{equation*}
\text { So } W_{1}^{\perp} \wedge W_{2}^{\perp} \subseteq\left(W_{1},+W_{2}\right)^{\perp} \tag{2}
\end{equation*}
\]
\(\qquad\)
From (1) and (2) \(\left(W_{1},+W_{2}\right)^{\perp}=W_{1}^{\perp} \wedge W_{2}^{\perp}\).
ii) To show that \(\left(W_{1},+W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}\)

As \(W_{1}, W_{2}\) are subspace of \(V ; W_{1}^{\perp}, W_{2}^{\perp}\) are also subspaces of V . Hence replacing \(W_{1}\) and \(W_{2}\) by \(W_{1}^{\perp}\) and \(W_{2}^{\perp}\) respectively in the above i.e.
\[
\begin{aligned}
& \left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \wedge W_{2}^{\perp} \\
& \left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}=\left(W_{1}^{\perp}\right)^{\perp} \wedge\left(W_{2}^{\perp}\right)^{\perp} \\
\Rightarrow & \left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}=W_{1} \wedge W_{2}
\end{aligned}
\]

Since \(W_{1}^{\perp}=W_{1}\) and \(W_{2}^{\perp \perp}=W_{2}\)
\[
\Rightarrow\left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}=\left(W_{1} \wedge W_{2}\right)
\]

So \(\left(W_{1} \wedge W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp} \quad\) since \(W^{\perp}=W\)
W.E.20: For \(R^{3}(R)\) space \(W=L(\{(1,0,0),(0,1,0)\})\) is a subspace Let \(v=(2,3,4) \in R^{3}\).

Orthonormal basis of \(W=\left\{u_{1}, u_{2}\right\}\) where \(u_{1}=(1,0,0), u_{2}=(0,1,0)\).
Find the orthogonal projection of \(v\) and \(w\).
Solution: The orthogonal projection of \(v\) on \(w\) is equal to \(\sum_{i=1}^{2}<v, u_{i}>u_{i}=<v, u_{1}>u_{1}+<v, u_{2}>u_{2}\)
\[
\begin{aligned}
& =<(2,3,4),(1,0,)>(1,0,0)+<(2,3,4),(0,1,0)>(0,1,0) \\
& =2(1,0,0)+3(0,1,0) \\
& =(2,3,0)
\end{aligned}
\]

\section*{W.E. 21 :}

Let \(V=P_{3}(R)\) be the inner product space of atmost 3rd degree polynomials continues on \([-1,1]\). Let the inner product be defined as \(\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t\) where \(f, g \in V\), If \(W=P_{2}(R)\) is a sub space of V , with standard basis \(B=\left\{1, x, x^{2}\right\}\).
i) Obtain orthonormal basis by Gram-schmidt process.
ii) Represent the polynomial \(f(x)=1+2 x+3 x^{2} \in P_{2}(R)\) as a linear combination of the orthonomial basis obtained above.
iii) Obtain the orthogonal projection of \(f(x)=x^{3}\) belonging to \(P_{2}(R)\), the subspace of \(P_{3}(R)\).

Solution: i) To obtain on orthonormal basis by Gram schmidt process.
The standard basis of \(P_{3}(R)\) is \(B=\left\{u_{1}, u_{2}, u_{3}\right\}\) given \(u_{1}=1, u_{2}=x, u_{3}=x^{2}\)
Let \(B^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}\) be the corresponding orthonormal basis.
\[
u_{1}=1 \quad\left\|u_{1}\right\|^{2}=\left\langle u_{1}, u_{1}>=\int_{-1}^{1}(1)(1) d t .[t]_{-1}^{1} \leq 1+1=2, \quad\|u\|=\sqrt{2}\right.
\]
\(v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{2}}\)
\(\left\langle u_{2}, v_{1}\right\rangle=\int_{-1}^{1}(t) \cdot \frac{1}{\sqrt{2}} d t=\frac{1}{\sqrt{2}}\left[-\frac{t^{2}}{2}\right]_{-1}=\frac{1}{2 \sqrt{2}}(1-1)=0\)
\(w_{2}=u_{2}-\left\langle u_{2}, v_{1}>v_{1}\right.\)
\(w_{2}=x-0=x\)
\(\left\|w_{2}\right\|^{2}=\left\langle w_{2}, w_{2}\right\rangle=\int_{-1}^{1} t . t d t=2 \int_{0}^{1} t^{2} d t=2\left[\frac{t^{3}}{3}\right]_{0}^{1}=\frac{2}{3}\)
\(\left\|w_{2}\right\|=\sqrt{\frac{2}{3}}\)
\(v_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\sqrt{\frac{3}{2}}(x)=\sqrt{\frac{3}{2}}(x)\)
\(\left\langle u_{3}, v_{1}\right\rangle=\int_{-1}^{1} t^{2} \cdot \frac{1}{\sqrt{2}} d t=\frac{2}{\sqrt{2}} \int_{0}^{1} t^{2} d t=\sqrt{2}\left[\frac{t^{3}}{3}\right]_{0}^{1}=\frac{\sqrt{2}}{3}\)
\(\left\langle u_{3}, v_{2}\right\rangle=\int_{-1}^{1} t^{2} \cdot \sqrt{\frac{3}{2}} t d t=\sqrt{\frac{3}{2}} \int_{0}^{1} t^{3} d t=\sqrt{\frac{3}{2}}\left[\frac{t^{4}}{4}\right]_{0}^{1} \quad\) i.e. \(\left\langle u_{3}, v_{2}\right\rangle=0\)
\(w_{3}=u_{3}-<u_{3}, v_{2}>v_{2}-<u_{3}, v_{1}>v_{1}\)
\[
=x^{2}-0 \sqrt{\frac{3}{2}} x-\frac{\sqrt{2}}{3} \frac{1}{\sqrt{2}}=x^{2}-\frac{1}{3}
\]
\(\left\|w_{3}\right\|^{2}=\left\langle w_{3}, w_{3}\right\rangle=\int_{-1}^{1}\left(t^{2}-\frac{1}{3}\right)^{2} d t=\int_{-1}^{1}\left(t^{4}-\frac{2}{3} t^{2}+\frac{1}{9}\right) d t\)
\(=2 \int_{-1}^{1}\left(t^{4}-\frac{2}{3} t^{2}+\frac{1}{9}\right) d t\)
\[
\begin{gathered}
=2 \int_{-1}^{1}\left[\frac{t^{5}}{5}-\frac{2}{3} \frac{3^{3}}{3}+\frac{1}{9} t\right]_{0}^{1} \\
\left\|w_{3}\right\|^{2}=2\left\{\frac{1}{5}-\frac{2}{9}+\frac{1}{9}\right\}=2\left(\frac{9-10+5}{45}\right)=\frac{8}{45} \\
\left\|w_{3}\right\|=\sqrt{\frac{8}{45}} \\
v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\sqrt{\frac{45}{8}} \frac{\left(3 x^{2}-1\right)}{3}=\sqrt{\frac{5}{8}}\left(3 x^{2}-1\right)
\end{gathered}
\]

Hence the orthonormal basis of the subspace is \(\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{8}}\left(3 x^{2}-1\right)\right\}\)
ii) The given polynomial is \(f(x)=1+2 x+3 x^{2} \in P_{2}(R)\)

To express \(f(x)\) as a linear combination of the vectors in the orthonormal basis:
The linear combination of \(f(x)=\sum_{i=1}^{3}<f, v_{i}>v_{i}\)
\[
\begin{aligned}
\left\langle f, v_{1}\right\rangle & =\int_{-1}^{1}\left(1+2 t+3 t^{2}\right) \cdot \frac{1}{\sqrt{2}} d t \\
& =\frac{2}{\sqrt{2}} \int_{0}^{1}\left(1+3 t^{2}\right) d t+\frac{2}{\sqrt{2}} \int_{-1}^{1} t d t \\
\left\langle f, v_{1}\right\rangle & =\sqrt{2}\left[t+3 \cdot \frac{t^{3}}{3}\right]_{0}^{1}+0=\sqrt{2}(2) \\
\left\langle f, v_{2}\right\rangle & =\int_{-1}^{1}\left(1+2 t+3 t^{2}\right) \sqrt{\frac{3}{2}} t d t \\
& =\sqrt{\frac{3}{2}} \int_{-1}^{1}\left(t+2 t^{2}+3 t^{3}\right) d t
\end{aligned}
\]
\[
\begin{aligned}
& =\sqrt{\frac{3}{2}} \cdot 4 \int_{-1}^{1} t^{2} d t+\frac{\sqrt{3}}{2} \int_{-1}^{1}\left(t+3 t^{3}\right) d t \\
& \left\langle f, v_{2}\right\rangle=2 \sqrt{2} \sqrt{3}\left[\frac{(t)^{3}}{3}\right]_{0}^{1}+0=\frac{2 \sqrt{6}}{3} \\
& \left.<f, v_{3}\right\rangle=\int_{-1}^{1}\left(1+2 t+3 t^{2}\right) \sqrt{\frac{5}{8}}\left(3 t^{2}-1\right) d t \\
& =\sqrt{\frac{5}{8}} \times 2 \int_{0}^{1}\left(-1+9 t^{4}\right) d t \\
& =2 \sqrt{\frac{5}{8}}\left\{[-t]_{0}^{1}+9 \cdot\left[\frac{t^{5}}{5}\right]_{0}^{1}\right\}=2 \sqrt{\frac{5}{8}}\left\{-1+\frac{9}{5}\right\} \\
& =\frac{2}{2} \sqrt{\frac{5}{2}} \frac{(-5+9)}{5} \\
& \text { So }\left\langle f, v_{3}\right\rangle=\frac{2 \sqrt{10}}{5}
\end{aligned}
\]

So \(f(x)=<f, v_{1}>v_{1}+<f, v_{2}>v_{2}+<f, v_{3}>v_{3}\)
\[
=2 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)+\frac{2 \sqrt{6}}{3}\left(\sqrt{\frac{3}{2}} x\right)+\frac{2 \sqrt{10}}{5}\left(\sqrt{\frac{5}{8}}\left(3 x^{2}-1\right)\right)
\]

Where \(f(x)\) is a linear combination of vector of orthonormal basis
iii) To find the orthogonal projection of \(f(x)=x^{3} \in P_{3}(R)\) on \(W=P_{2}(R)\) :

Solution : The orthogonal projection of \(f(x)=x^{3}\) on \(W=\sum_{i=1}^{3}<f, v_{i}>v_{i}\).
\[
=<f, v_{1}>v_{1}+<f, v_{2}>v_{2}+<f, v_{3}>v_{3}
\]
\(<f, v_{1}>=\int_{-1}^{1} t^{3} \frac{1}{\sqrt{2}} d t=0\)
\[
\begin{aligned}
& <f, v_{2}>=\int_{-1}^{1} t^{3} \sqrt{\frac{3}{2}} t d t=2 \sqrt{\frac{3}{2}} \int_{0}^{1} t^{4} d t \\
& \text { So }<f, v_{2}>=\sqrt{6}\left[\frac{t^{5}}{5}\right]_{0}^{1}=\frac{\sqrt{6}}{5} \\
& <f, v_{3}>=\int_{-1}^{1} t^{3} \cdot \sqrt{\frac{5}{8}}\left(3 t^{2}-1\right) d t \\
& =\sqrt{\frac{5}{8}} \int_{-1}^{1}\left(3 t^{5}-t^{3}\right) d t=\sqrt{\frac{5}{8}}\left[3 \cdot \frac{t^{6}}{6}-\frac{t^{4}}{4}\right]_{-1}^{1} \\
& \text { So }<f, v_{3}>=0
\end{aligned}
\]

Hence the orthogonal projection of \(f(x)=x^{3}\) on \(W=P_{2}(R)\) is \(<f, v_{1}>v_{1}+<f, v_{2}>v_{2}+<f, v_{3}>v_{3}\)
\[
\begin{aligned}
& =0\left(\frac{1}{\sqrt{2}}\right)+\frac{\sqrt{6}}{5}\left(\sqrt{\frac{3}{2}} x\right)+0 \cdot \frac{\sqrt{5}}{8}\left(3 x^{2}-1\right) \\
& =\frac{3}{5} x
\end{aligned}
\]
W.E. 22 : Compute \(S^{\perp}\) if \(S=\{(1,0, i),(1,2,1)\}\) in the inner product space \(C^{3}(C)\).

Solution: Let \(S=\left\{u_{1}, u_{2}\right\}\) so that \(u_{1}=(1,0, i) ; u_{2}=(1,2,1)\)
By definition \(S^{\perp}=\left\{v \in C^{3} /\langle v, u\rangle=0 \forall u \in S\right\}\)
Let \(u=(a, b, c) \in C^{3}\) where \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are scalars belonging to C .
\(v \in S^{\perp} \Rightarrow\left\langle v, u_{1}\right\rangle=0\) and \(\left\langle v, u_{2}\right\rangle=0\)
i.e. \(\left\langle v, u_{1}\right\rangle=0 \Rightarrow\langle(a, b, c),(1,0, i)\rangle=0\)
\[
\Rightarrow a(1)+b(0)+c(\bar{i})=0 \text { where } \bar{i} \text { is the congugate of } \mathrm{i} .
\]
\[
\text { So } a-c i=0 \quad \ldots . \text { (1) since } \bar{i}=-i
\]
\[
\begin{aligned}
& \begin{aligned}
\text { and }<v, u_{2}>=0 & \Rightarrow<(a, b, c),(1,2,1)>=0 \\
& \Rightarrow a(1)+b(2)+c(1)=0 \\
& \Rightarrow a+2 b+c=0
\end{aligned} \\
& \text { Let } c=1 \text {, then from (1) } a=i
\end{aligned} \quad \begin{aligned}
& \text { using in (2), } i+2 b+1=0 \Rightarrow b=\frac{-(i+1)}{2} \\
& \text { So } v=(a, b, c)=\left(i, \frac{-(1+i)}{2}, 1\right) \\
& \text { So } S^{\perp}=\left\{i, \frac{-(1+i)}{2}, 1\right\}
\end{aligned}
\]

\subsection*{14.16 Summary:}

In this lesson we discussed about orthogonality of vectors. Orthonormality. properties of orthogonality and orthonormality, Gram-Schmidt orthogonalization process to obtain orthonormal bases. Parseval's identity, Bessels inequality orthogonal complements closest vectors projection.

\subsection*{14.17 Technical Terms:}

Orthogonality of vectors, orthonormality of vectors, orthogonalization, orthogonal compliment orthogonal projection.

\subsection*{14.18 Model Questions:}
1. Define i) Orthogonal set
ii) Orthonormal set in an inner product space.
2. If \(u, v\), are two vectors in a real inner product space \(V(F)\) such that \(\|u\|=\|v\|\) then show that \((u+v)\) is orthogonal to \(u-v\).
3. Show that the vectors \((-1,0),(0,-1)\) in \(R^{2}\) form an orthonormal basis over R under usual inner product on \(R^{2}\).
4. Prove that every orthogonal set of non zero vectors in an inner product space \(V(F)\) is linearly independent.
5. State and prove Parsvel's identity.
6. Apply Gram -Schmidt process to obtain an orthonormal basis for \(V_{3}(R)\) with the standard inner product to the vectors.
i) \((2,1,3),(1,2,3),(1,1,1)\)

Ans: \(\frac{1}{\sqrt{14}}(2,1,3), \frac{1}{\sqrt{42}}(4,5,1), \frac{1}{\sqrt{3}}(1,1,-1)\)
ii) \((1,-1,0),(2,-1,-2),(1,-1,-2)\)

Ans: \(\frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{3 \sqrt{2}}(1,1,-4), \frac{1}{3}(-2,-2,-1)\)
7. State and prove Bessel's inequality.

\subsection*{14.19 Exercise:}
1. Apply the Gram - Schmidt process to obtain an orthonormal basis for \(V_{3}(R)\) with the standard inner product to the vectors
i) \((2,1,3),(1,2,3),(1,1,1)\)
\[
\text { Ans : } \frac{1}{\sqrt{14}}(2,1,3), \frac{1}{\sqrt{42}}(-4,5,1), \frac{1}{\sqrt{3}}(1,1,-1)
\]
ii) \((1,0,1),(1,0,-1),(0,1,4)\)
\[
\text { Ans : } \frac{1}{\sqrt{2}}(1,0,1), \frac{1}{\sqrt{2}}(1,0,-1),(0,1,0)
\]
iii) \((1,-1,0),(2,-1,-2),(1,-1,-2)\)
\[
\text { Ans : } \frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{3 \sqrt{2}}(1,1,-4), \frac{1}{3}(-2,-2,-1)
\]
2. In each part apply Gram - Schmidt process to the given subset \(S\) of the inner product space V to obtain an orthogonal basis for the span (S). Then normalise there vectors in this basis, to obtain an orthonormal basis B for span \((\mathrm{S})\) and compute the fourier coefficients of the given vector relative to B.
i). \(v=R^{4} ; S=\{(2,-1,-2,4),(-2,1,-5,5),(-1,3,7,11)\}\) and \(v=(-11,8,-4,18)\).
\[
\begin{aligned}
\text { Ans: } & \left\{\frac{1}{5}(2,-1,-2,4), \frac{1}{\sqrt{30}}(-4,2,-3,1), \frac{1}{\sqrt{155}}(-3,4,9,7)\right\} \\
& 10,3 \sqrt{30}, \sqrt{155}
\end{aligned}
\]
ii) \(v=C^{4} ; S=\{(-4,3-2 i, i, 1-4 i),(-1-5 i, 5-4 i,-3+5 i, 7-2 i),(-27-i,-7-6 i,-15+25 i,-7-6 i)\}\) and \(v=(-13-7 i,-12+3 i,-39-11 i,-26+5 i)\).

Ans: \(\left\{\frac{1}{\sqrt{47}}(-4,3-2 i, i, 1-4 i), \frac{1}{\sqrt{60}}(3-i,-5 i,-2+4 i, 2+i), \frac{1}{\sqrt{1160}}(-17-i,-9+8 i,-18+6 i,-9+8 i)\right\}\)
\[
\sqrt{47}(-1-i), \sqrt{60}(-1+2 i), \sqrt{1160}(1+i)
\]
iii) \(V=P_{2}(R)\) with the inner product \(\langle f(x), g(x)\rangle=\int_{0}^{1} f(t) g(t) d t ; S=\left\{1, x, x^{2}\right\} ; h(x)=(1+x)\)

Ans: \(\left\{1,2 \sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right\}, \frac{3}{2}, \frac{\sqrt{3}}{6}, 0\right.\)
iv) \(V=M_{2 \times 2}(R), S=\left\{\left[\begin{array}{cc}3 & 5 \\ -1 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 9 \\ 5 & -1\end{array}\right],\left[\begin{array}{cc}7 & -17 \\ 2 & -6\end{array}\right]\right\}\) and \(A=\left[\begin{array}{cc}-1 & 27 \\ -4 & 8\end{array}\right]\)

Ans: \(\left\{\frac{1}{6}\left[\begin{array}{cc}3 & 5 \\ -1 & 1\end{array}\right], \frac{1}{6 \sqrt{2}}\left[\begin{array}{cc}-4 & 4 \\ 6 & -2\end{array}\right], \frac{1}{9 \sqrt{2}}\left[\begin{array}{cc}9 & -3 \\ 6 & -6\end{array}\right]\right\}\)
\[
24,6 \sqrt{2},-9 \sqrt{2}
\]
3. In each of the following parts find the orthogonal projection of the given vectors on the given subspace W of the inner product space V .
i) \(V=R^{2} ; u=(2,6)\); and \(W=\{(v, w): w=4 v\}\)

Ans: \(\frac{1}{17}\left[\begin{array}{cc}2 & 6 \\ 10 & 4\end{array}\right]\)
ii) \(V=R^{3} ; u=(2,1,3)\) and \(W=\left\{\left(u_{1}, u_{2}, u_{3}\right) / u_{1}+3 u_{2}-2 u_{3}=0\right\}\)

Ans : \(\frac{1}{14}\left[\begin{array}{l}29 \\ 17 \\ 40\end{array}\right]\)
4. Find the distance from the vector \(u=(2,1,3)\) to the sub space \(W=\left\{\left(u_{1}, u_{2}, u_{3}\right) / u_{1}+3 u_{2}-2 u_{3}=0\right\}\) of the vector space \(R^{3}\).

Ans: \(\frac{1}{\sqrt{14}}\)
5. If W be a sub space of the inner product space \(V_{3}(R)\) spanned by \(B_{1}=\{(1,0,1),(1,2,-2)\}\) then find a basis of orthogonal compliment of \(W^{\perp}\).

Ans: \(\{(2,-3,-2)\}\) is the basis of \(W^{\perp}\)
6. If \(W=L(\{(1,2,3,-2),(2,4,5,-1)\})\) the subspace of \(R^{4}(R)\); find a basis of the orthogonal compliment \(W^{\perp}\).

Ans : \(\left\{(2,-1,0,0),\left(0, \frac{-7}{2}, 3,1\right)\right\}\)
7. If \(V=L(S)\) with inner product \(\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t\) and \(S=\{\sin t, \cot , 1, t\}\). Find an orthogonal basis and compute the fourier coefficients of \(h(t)=2 t+1\)

Ans: \(\left\{\sin t, \cos t, 1-\frac{4}{\pi} \sin t, t+\frac{4}{\pi} \cos t-\frac{\pi}{2}\right\}\)

\subsection*{14.20 Reference Books:}
1. Linear Algebra 4th edition Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
2. Schaum's outline; Beginning Linear Albegra Seymour Lipschutz
3. Topics in Algebra I.N. Herstein
4. Linear Algebra J.N. Sharma \& A.R. Vasishtha
- A. Mallikharjana Sarma

\section*{LESSON - 15}

\section*{LINEAR OPERATORS}

\subsection*{15.1 Objective of the Lesson:}

We are familiar with the conjugate transpace of a matrix \(A^{*}\) of A . If A is \(\left[a_{i j}\right]_{m+n,}\), then \(A^{*}=\left[b_{i j}\right]_{n+n}\) where \(b_{i j}=\bar{a}_{j i}\) i.e. \(A^{*}\) is the transpace of the matrix formed with the conjugate complex numbers of the elements of \(A\).

For a linear operator T on an inner product space V , we now define a related linear operator on V , called the adjoint of T , whose matrix representation with repect of any orthonormal basis B for V is \([T]_{B}^{*}\). The analogy between conjugate complex numbers and adjoint of a linear operator will become apparent.

As V is an inner product space in this chapter, we study the condition which guarantee that V has an orthonormal basis.

\subsection*{15.2. Structure of the Lesson:}

This lesson contains the following items.

\subsection*{15.3 Introduction}

\subsection*{15.4 Basic definitions}
15.5 Theorems on linear transformations
15.6 Worked Out Examples
15.7 Adjoint of an operator - Definition
15.8 Theorems on adjoint operators
15.9 Worked out examples
15.10 Some properties of adjoint operators - theorems
15.11 Worked out Examples
15.12 Exercise
15.13 Normal and self adjoint operators definitions and theorems
15.14 T-In variance and polynomial split definitions
15.15 Schur Theorem and other theorems
15.16 Normal operator definition - and examples
15.17 Theorems an normal operators
15.18 Positive definite and semidefinite transformations - definitions and theorems
15.19 Worked out examples

\subsection*{15.20 Summary}
15.21 Technical Terms
15.22 Model Questions
15.23 Exercise
15.24 Reference Books

\subsection*{15.3 Introduction:}

Here we shall consider linear functionals defined on an inner product space \(V(F)\). Since an inner product space is also a vector space so all concepts of linear functionals on vector spaces are also applicable to inner product space. So give some basic definitions that are useful in inner product spaces.

\subsection*{15.4 Basic Definitions:}
1. Linear Operators: Let \(V(F)\) be a vector space. A linear transformation from \(V(F)\) to \(V(F)\) is called a linear operator.

Also a linear functional f over \(V(F)\) is a mapping i.e. \(f: V \rightarrow F\) that assigns to every vector v in V , an element \(f(v)\) in F ; such that f is linear.

In other words \(f(u+v)=f(u)+f(v)\) for every \(u, v \in V ; f(a u)=a f(u)\) for every \(a \in F\). These two can be clubbed together as \(f(a u+b v)=a f(u)+b f(v) \forall u, v \in V\) and \(a, b \in F\)

Or
\[
f(a u+v)=a f(u)+f(v) \forall u, v \in V \text { and } \forall a \in F
\]
2. Inner Product: An inner product on V is a function f that assigns to every order pair of vectors \(\mathrm{u}, \mathrm{v}\) in V a scalar \(\langle u, v\rangle\) in \(F(=R\) or C\()\)

Also \(f\left(a u_{1}+b u_{2}, v\right)=\left\langle a u_{1}+b u_{2}, v\right\rangle\)
\[
=a\left\langle u_{1}, v\right\rangle+b\left\langle u_{2}, v\right\rangle \text { for } u_{1}, u_{2} \in V, a, b \in F
\]

Hence \(f\) is also linear and hence \(f\) is a linear functional on \(V\).

If \(V(F)\) is a finite dimensional inner product space; then it will have an orthonormal basis.

\subsection*{15.5 Theorems on Linear Transformations:}
15.5.1 Theorems: Let V be a finite dimensional inner product space and f is a linear transformation from \(V \rightarrow F\). Then there exists a unique vector \(v\) in V such that \(f(u)=\langle u, v\rangle \forall u \in V\).

Proof: Let \(B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) is an orthonormal basis for V ; and f is a linear transformation from \(V \rightarrow F\).

Let \(v=\sum_{j=1}^{n} \overline{f\left(u_{j}\right)} \quad u_{j}\) for each \(f\left(\bar{u}_{j}\right) \in F\) \(\qquad\)
\(f \overline{\left[u_{j}\right]}\) simply denotes the conjugate of \(f\left(u_{j}\right)\)
Then \(v \in V\), further more let g be a function from V to F defined by
\[
\begin{equation*}
g(u)=<u, v>\forall u \in V \tag{2}
\end{equation*}
\]
\(\qquad\)
To show that g is a linear functional on V ;
Let \(a, b \in F, w_{1}, w_{2} \in V\), we have
of \(\left(a w_{1}+b w_{2}\right)=<a w_{1}+b w_{2}, v>\) by (2)
\[
\begin{aligned}
& =a\left\langle w_{1}, v\right\rangle+b\left\langle w_{2}, v\right\rangle \\
& =a g\left(w_{1}\right)+b g\left(w_{2}\right)
\end{aligned}
\]

Thus g is a linear functional on V .
Now we will show \(g=f\).
Let \(u_{k} \in B\) then \(g\left(u_{k}\right)=\left\langle u_{k}, v>\right.\) \(\qquad\)
Now substituting the value of v , from (1), we get
\[
\begin{aligned}
g\left(u_{k}\right) & =<u_{k}, \sum_{j=1}^{n} f \overline{\left(u_{j}\right)} \quad u_{j}> \\
& =\overline{\sum_{j=1}^{n} f \overline{\left(u_{j}\right)}}<u_{k}, u_{j}>
\end{aligned}
\]
\(\left.=\sum_{j=1}^{n} f\left(u_{j}\right)<u_{k}, u_{j}\right\rangle=f\left(u_{k}\right) \quad \therefore\left\{\left\langle u_{k}, u_{j}\right\rangle\right\}=\left\{\begin{array}{c}0 \text { if } j \neq k \\ 1 \text { if } j=k\end{array}\right.\)
i.e. \(g\left(u_{k}\right)=f\left(u_{k}\right)\)

Thus f and g agree on a basis for \(V(F)\) and hence \(g=f\).
Inother words we say that there exists a vector \(v \in V\) corresponding to the linear functional fon V :
\[
f(u)=<u, v>\forall u \in V
\]

Uniqueness of v :
Suppose there exists w in \(V\) such that
\[
f(u)=<u, w>\forall u \in V
\]

Thus \(\langle u, v\rangle=\langle u, w\rangle \forall u \in V\)
\(\Rightarrow\langle u, v\rangle-\langle u, w\rangle=0 \forall u \in V\)
\(\Rightarrow\langle u, v-w\rangle=0\) for all \(u \in V\)
\(\Rightarrow\langle v-w, v-w\rangle=0\) Substituting \(v-w\) for \(u\) a particular value
\(\Rightarrow v=w=0\)
\[
\Rightarrow v=w
\]

So \(v\) is unique. Hence the theorem.
15.5.2 Theorem: For any linear operator \(T\) on a finite dimensional inner product space \(V\), then there exists a unique linear operator \(T^{*}\) on V such that
\[
\left\langle T(u), v>=<u, T^{*}(v)>\forall u, v \in V\right.
\]

Proof: Let T be a linear operator on a finite dimensional inner product space V ; over the field F let v be a vector in V . Let f be a function from V into F defined by \(f(u)=\langle T(u), v>\forall u \in V\)

To show that \(f\) is a linear functional on \(V\).
Let \(a, b \in F ; u_{1}, u_{2} \in V\), then
\[
f(a u+b v)=<T\left(a u_{1}+b u_{2}\right), v>\text { from (1) }
\]
\[
=<a T\left(u_{1}\right)+b T\left(u_{2}\right), v>\text { Since T is linear. }
\]

So \(\left.f<a u_{1}+b u_{2}\right\rangle=a f\left(u_{1}\right)+b f\left(u_{2}\right)\) from (1)
Thus \(f\) is a linear functional on \(V\).
So there exists a unique vector \(v^{\prime}\) in V .
such that \(f(u)=\left\langle u, v^{\prime}\right\rangle \forall u \in V\) \(\qquad\)
Hence from (1) and (2) we observe that if T is a liear operator on V , then corresponding to every \(v\) in V , there is a uniquely determined vector \(v^{\prime}\) in V such that \(\langle T(u), v\rangle=\left\langle u, v^{\prime}\right\rangle\) for all \(u \in V\). Let \(T^{*}\) be the rule by which we associate v with \(v^{\prime}\). i.e. let \(T^{*}(v)=v^{\prime}\).

Then \(T^{*}\) is a function from V to V defined by \(\langle T(u), v\rangle=\left\langle u, T^{*}(v) \forall u, v \in V\right.\)
1. To show that \(T^{*}\) is linear:

Let \(a, b \in F ; v_{1}, v_{2} \in V\). then for every u in V we have \(\left\langle u, T^{*}\left(a v_{1}+b v_{2}\right)\right\rangle\)
\[
\begin{align*}
& =<T(u),\left(a v_{1}+b v_{2}\right)>\text { from (3) } \\
& =\bar{a}<T(u), v_{1}>+\bar{b}<T(u), v_{2}> \\
& =\bar{a}<u, T^{*}\left(v_{1}\right)>+\bar{b}<u, T^{*}\left(v_{2}\right)>\text { from }  \tag{3}\\
& =<u, a T^{*}\left(v_{1}\right)>+<u, b T^{*}\left(v_{2}\right)> \\
& =<u, a T^{*}\left(v_{1}\right)+b T^{*}\left(v_{2}\right)>
\end{align*}
\]

So \(T^{*}\left(a v_{1}+b v_{2}\right)=a T^{*}\left(v_{1}\right)+b T^{*}\left(v_{2}\right)\)
since in an inner product space \(\langle u, v\rangle=\langle u, w\rangle \Rightarrow v=w\) for every \(u\).
So \(T^{*}\) is a linear operator on V .
So corresponding to a linear operator T on V there exists a linear operator \(T^{*}\) on V , such that \(\langle T(u), v\rangle=\left\langle u, T^{*}(v)\right\rangle \forall u, v \in V\).

To show that \(T^{*}\) is unique:
Let F be a linear operator on V such that \(\langle T(u), v\rangle=\langle u, F(v)\rangle \forall u, v \in V\)
\[
\Rightarrow<u, T^{*}(v)=<u, F(v)>\forall u, v \in V
\]

So T is unique.
Hence the theorem.
Note i) The symbol \(T^{*}\) is red as T star.
ii) \(T(u)\) can be taken as \(T u\) and \(T^{*}(v)\) as \(T v\).
iii) T is a linear operator on a finite dimensional inner product space V . If T has an eigen vector, then \(T^{*}\) does so.
iv) \(T^{*}\) is called an adjoint operator. Which we deal later in a detailed manner.

\subsection*{15.6 Worked Out Examples:}

\section*{W.E.1:}
1. For each of the inner product space \(V(F)\) and linear transformation (linear functionals) \(f: V \rightarrow F\) find a vector \(v\), such that \(f(u)=\langle u, v\rangle\) for all \(v \in V\).
i) \(\quad V=R^{2} ; F=R ; f\left(a_{1}, a_{2}\right)=2 a_{1}+a_{2}\)
ii) \(\quad V=C^{2} ; F=C ; f\left(z_{1}, z_{2}\right)=z_{1}-2 z_{2}\)

Solution: Given \(V=R^{2} ; F=R, f\left(a_{1}, a_{2}\right)=2 a_{1}+a_{2}\) to find \(v\).
\(V \rightarrow F\) i.e. \(R^{2} \rightarrow R\) is an inner product space of \(\operatorname{dim}=2\)
\(V(F)\) i.e. \(R_{2}(R)\) has an orthonormal basis \(\left\{u_{1}=(1,0), u_{2}=(0,1)\right\}\)
Such that \(\left\langle u_{1}, u_{1}\right\rangle=1,\left\langle u_{2}, u_{2}\right\rangle=1,\left\langle u_{1}, u_{2}\right\rangle=0,\left\langle u_{2}, u_{1}\right\rangle=0\)
\(f: V \rightarrow F\) is a linear functional such that \(f(u)=f\left(u_{1}, u_{2}\right)=2 u_{1}+u_{2}\) for \(u=\left(u_{1}, u_{2}\right)\)
Let \(u \in V\) then \(u=a_{1} u_{1}+a_{2} u_{2}\) for \(a_{1}, a_{2} \in R\) and \(f(u)=f\left(a_{1} u_{1}+a_{2} u_{2}\right)=a f\left(u_{1}\right)+a_{2} f\left(u_{2}\right)\)
.... (1) since \(f\) is linear. We have \(v \in V\) such that \(f(v)=\langle u, v\rangle\).
\(\therefore v=b_{1} u_{2}+b_{2} u_{2}\) for \(b_{1}, b_{2} \in R\) \(\qquad\)
\(\therefore\langle u, v\rangle=\left\langle a_{1} u_{1}+a_{2} u_{2}, b_{1} u_{1}+b_{2} u_{2}\right\rangle\)
\[
=a_{1} b_{2}<u_{1}, u_{1}>+a_{2} b_{2}<u_{1}, u_{2}>+a_{2} b_{1}<u_{2}, u_{1}>+a_{2} b_{2}<u_{2}, u_{2}>
\]
\[
\begin{equation*}
=a_{1} b_{1}+a_{2} b_{2} \tag{3}
\end{equation*}
\]

Since \(f(u)=\langle u, v\rangle\) from (1) and (3) we get \(a_{1} b_{1}+a_{2} b_{2}=a_{1} f\left(u_{1}\right)+a_{2} f\left(u_{2}\right)\)
Comparing both sides of the above we get
\[
\begin{aligned}
& b_{1}=f\left(u_{1}\right), b_{2}=f\left(u_{2}\right) \\
& \Rightarrow b_{1}=f(1,0)=2(1)+0=2 \\
& b_{2}=f(0,1)=2(0)+1=1
\end{aligned}
\]

Hence \(v=b_{1} u_{1}+b_{2} u_{2}=2(1,0)+1(0,1)=(2,1)\) is the required vector.
ii) \(V \rightarrow F\) is \(C^{2} \rightarrow C\) defined by \(f\left(z_{1}, z_{2}\right)=z_{1}-2 z_{2}\) to find \(v\).

Solution: \(V \rightarrow F\) in \(C^{2} \rightarrow C\) is a linear functional such that \(f(u)=f\left(z_{1}, z_{2}\right)=z_{1}-2 z_{2}\)
Let \(u \in V\), then \(u=a_{1} z_{1}+a_{2} z_{2}\) for some scalar belonging to C .
\[
\therefore f(u)=f\left(a_{1} z_{1}+a_{2} z_{2}\right)=a_{1} f\left(z_{1}\right)+a_{2} f\left(z_{2}\right) \ldots \ldots . .(1) \text { for } a_{1}, a_{2} \in C
\]
\(\therefore\) since f is linear.
We have \(v \in V\) such that \(f(u)=\langle u, v\rangle\)
\[
\text { So } v=b_{1} z_{1}+b_{2} z_{2} \text { for some } b_{1}, b_{2} \in C
\]
\(\langle u, v\rangle=\left\langle a_{1} z_{1}+a_{2} z_{2}, b_{1} z_{1}+b_{2} z_{2}\right\rangle\)
\[
\begin{align*}
& \left.\left.\left.\left.=a_{1} \bar{b}_{1}<z_{1}, z_{1}\right\rangle+a_{1} \bar{b}_{2}<z_{1}, z_{2}\right\rangle+a_{2} \bar{b}_{1}<z_{2}, z_{1}\right\rangle+a_{2} \bar{b}_{2}<z_{2}, z_{2}\right\rangle \\
& =a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2} \ldots \ldots \ldots \ldots . . . \tag{3}
\end{align*}
\]

Since \(f(u)=\langle u, v\rangle\) from (3) and (1)
We have \(a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}=a_{1} f\left(z_{1}\right)+a_{2} f\left(z_{2}\right)\)
Comparing on both sides we get
\[
\begin{aligned}
& \bar{b}_{1}=f\left(z_{1}\right) ; \quad \bar{b}_{2}=f\left(z_{2}\right) \\
& \text { So } \bar{b}_{1}=f(1,0)=1-2(0)=1
\end{aligned}
\]
\[
\bar{b}_{2}=0-2(1)=-2 . \text { Hence } b_{1}=1, b_{2}=-2
\]

Hence \(v=b_{1} z_{1}+b_{2} z_{2}=1(1,0)-2(0,1)=(1,-2)\)
Which is the required vector.
W.E.2: For each of the inner product space \(V(F)\) and linear functional \(\mathrm{g}: V \rightarrow F\) find a vector v such that \(g(u)=\langle u, v\rangle\) for all \(u \in V\).
i) \(\quad V=R^{3} ; g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-2 a_{2}+4 a_{3}\)
ii) \(\quad V(F)=V(C) ; x=\left(a_{1}, a_{2}, a_{3}\right) ; g(x)=\frac{1}{3}\left(a_{1}+a_{2}+a_{3}\right)\)

Solution: (1) \(V=R^{3} \quad g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-2 a_{2}+4 a_{3}\) then to find \(v\).
\(V \rightarrow F\).i.e. \(R^{3} \rightarrow R ; V\) is an inner product space of \(\operatorname{dim}=3\).
\(V(R)\) has an orthonormal basis \(\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)\right\}\)
Such that \(\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array}\right.\)
\(g: V \rightarrow R\) i.e. \(g: R^{3} \rightarrow R\) is a linear functional
such that \(g(u)=g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-2 a_{2}+4 a_{3}\) for \(u=\left(a_{1}, a_{2}, a_{3}\right)\)
Let \(u \in V\), then \(u=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=\sum_{i=1}^{3} a_{i} u_{i}\) for \(a_{i} \in R\)
So \(g(u)=g\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right)=a_{1} g\left(u_{1}\right)+a_{2} g\left(u_{2}\right)+a_{3} g\left(u_{3}\right)\)
Since \(g\) is linear.
We have \(v \in V\) such that \(g(u)=\langle u, v\rangle\)
So \(v=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=\sum_{j=1}^{3} b_{j} u_{j} \ldots \ldots \ldots .\). (2) for \(b_{j} \in R\)

So \(\left.\langle u, v\rangle=<\sum_{i=1}^{3} a u_{i}, \sum_{j=1}^{3} b_{j} u_{j}\right\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\)
As \(g(u)=\langle u, v>\) from (1) and (3) we have
\[
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=a_{1} g\left(u_{1}\right)+a_{2} g\left(u_{2}\right)+a_{3} g\left(u_{3}\right)
\]
comparing \(b_{1}=g\left(u_{1}\right), b_{2}=g\left(u_{2}\right), b_{3}=g\left(u_{3}\right)\)
\(\Rightarrow b_{1}=g(1,0,0)=1-2(0)+4(0)=1\)
\(b_{2}=g(0,1,0)=0-2(1)-4(0)=-2\)
\(b_{3}=g(0,1,0)=0-2(0)+4(1)=4\)
\(\therefore v=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}\) from (2)
\(=1(1,0,0)-2(0,1,0)+4(0,0,1)\)
\(=(1,-2,4)\) which is the required vector.
ii) \(g: V \rightarrow F\) i.e. \(V_{3} \rightarrow C\) is a linear functional \(V(F)\) is an inner product space of \(\operatorname{dim}=3\).
\(V_{3}\) has an orthonormal basis \(\left\{u_{1}, u_{2}, u_{3}\right\}\)
\[
\text { Such that }\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}
1 \text { if } j=i \\
0 \text { if } j \neq i
\end{array}\right.
\]
given \(g: V_{3} \rightarrow C\) is a linear transformation
Such that \(g(u)=g\left(a_{1}, a_{2}, a_{3}\right)=\frac{1}{3}\left(a_{1}+a_{2}+a_{3}\right)\) for \(u=\left(a_{1}, a_{2}, a_{3}\right)\)
Let \(u \in V_{3}\) then \(u=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=\sum_{i=1}^{3} a_{i} u_{i}\) for \(a_{i} \in C\).
\(\therefore g(u)=g\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right)=a_{1} g\left(u_{1}\right)+a_{2} g\left(u_{2}\right)+a_{3} g\left(u_{3}\right)\)
we have \(v \in V_{3}\) such that \(g(u)=\langle u, v\rangle\)
\[
\begin{align*}
& \therefore v=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=\sum_{J=1}^{3} b_{j} u_{j} \ldots . . \text { (2) for same } b_{j} \in C \\
& \text { So } \left.\langle u, v\rangle=<\sum_{i=1}^{3} a_{i} u_{i}, \sum_{i=1}^{3} b_{j} u_{j}\right\rangle \\
& \left.\langle u, v\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+a_{3} \bar{b}_{3} \ldots \ldots \ldots . . \text { (3) } \quad \text { Since }<u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
1 \text { if } i=j
\end{array}\right. \tag{3}
\end{align*}
\]

Since \(g(u)\langle u, v\rangle\) from (1) and (3)
\[
a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+a_{3} \bar{b}_{3}=a_{1} g_{1}\left(u_{1}\right)+a_{2} g_{2}\left(u_{2}\right)+a_{3} g_{3}\left(u_{3}\right)
\]

Comparing \(\bar{b}_{1}=g_{1}\left(u_{1}\right) ; \bar{b}_{2}=g_{2}\left(u_{2}\right) ; \bar{b}_{3}=g_{3}\left(u_{3}\right)\)
\[
\Rightarrow b_{1}=\overline{g_{1}\left(u_{1}\right)}, \quad b_{2}=\overline{g_{2}\left(u_{2}\right)}, \quad b_{3}=\overline{g_{3}\left(u_{3}\right)}
\]

If the orthonormal basis is taken as the standard basis we can have \(u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1)\)

We have since \(g(u)=g\left(a_{1}, a_{2}, a_{3}\right)=\frac{1}{3}\left(a_{1}+a_{2}+a_{3}\right)\)
we have \(g\left(u_{1}\right)=g(1,0,0)=\frac{1}{3}(1+0+0)=1 / 3\)
\[
\begin{aligned}
g\left(u_{2}\right)= & g(0,1,0)=\frac{1}{3}(0+1+0)=1 / 3, \quad g\left(u_{3}\right)=g(0,0,1)=\frac{1}{3}(0+0+1) \quad g\left(u_{3}\right)=1 / 3 \\
\therefore b_{1}= & \overline{g\left(u_{1}\right)}=1 / 3, b_{2}=\overline{g\left(u_{2}\right)}=1 / 3, b_{3}=\overline{g\left(u_{3}\right)}=1 / 3 \\
& \text { So } v=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3} \text { from (1) } \\
& \Rightarrow v=\frac{1}{3}(1,0,0)+\frac{1}{3}(0,0,1)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
\end{aligned}
\]

Which is the required vector.
W.E. 3 : If \(V_{3}(F)\) is an inner product space with orthonormal basis \(\left\{u_{1}, u_{2}, u_{3}\right\}\) where \(u_{1}=\frac{1}{\sqrt{2}}(1,1,0)\), \(u_{2}=\frac{1}{\sqrt{2}}(1,-1,0), \quad u_{3}=(0,0,1)\). If f is a linear functional on \(V_{3}(F)\) such that \(f\left(u_{1}\right)=-2, f\left(u_{2}\right)=1, f\left(u_{3}\right)=1\). Find the vector \(v\) such that \(f(u)=\langle u, v\rangle \forall u \in V_{3}(F)\).

Solution: \(V_{3} \rightarrow F\) i.e. \(V_{3} \rightarrow C\) is an inner product.
\(V_{3}(F)\) is an inner product space with dimension 3.
\(V_{3}\) has the orthonormal basis \(\left\{u_{1}, u_{2}, u_{3}\right\}\) where \(u_{1}=\frac{1}{\sqrt{2}}(1,1,0) ; u_{2}=\frac{1}{\sqrt{2}}(1,-1,0)\) and
\(u_{3}=(0,0,1) . \quad\) such that \(\left\langle u_{i}, u_{j}\right\rangle=\left\{\begin{array}{l}1 \text { if } j=i \\ 0 \text { if } j \neq i\end{array}\right.\)
\(f: V_{3} \rightarrow C\) is a linear functional such that \(f(u)=f\left(a_{1}, a_{2}, a_{3}\right)\).
Let \(u \in V\) so \(u=a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=\sum_{i=1}^{3} a_{i} u_{i}\) for all \(a_{i} \in C\).
\[
f(u)=f\left(a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}\right)=a_{1} f\left(u_{1}\right)+a_{2} f\left(u_{2}\right)+a_{3} f\left(u_{3}\right)
\]

We have \(v \in V\) so \(f(u)=\langle u, v\rangle\)
\[
\begin{align*}
& \therefore v=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=\sum_{j=1}^{3} b_{j} u_{j} \text { for } b_{j} \in C \ldots  \tag{2}\\
& \left.\langle u, v\rangle=<\sum_{i=1}^{3} a_{i} u_{i}, \sum_{j=1}^{3} b_{j} u_{j}\right\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+a_{3} \bar{b}_{3} \tag{3}
\end{align*}
\]
\(\qquad\)

Since \(f(u)=\langle u, v\rangle\) from (1) and (3):
\[
a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+a_{3} \bar{b}_{3}=a_{1} f\left(u_{1}\right)+a_{2} f\left(u_{2}\right)+a_{3} f\left(u_{3}\right)
\]

Comparing \(\bar{b}_{1}=f\left(u_{1}\right), \bar{b}_{2}=f\left(u_{2}\right), \bar{b}_{3}=f\left(u_{3}\right)\)
\[
\begin{aligned}
& \quad \Rightarrow b_{1}=\overline{f\left(u_{1}\right)} ; b_{2}=\overline{f\left(u_{2}\right)} ; b_{3}=\overline{f\left(u_{3}\right)} \\
& \Rightarrow b_{1}=-2, b_{2}=1, b_{3}=1 \\
& \text { So } v=b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=-2\left(\frac{1}{\sqrt{2}}\right)(1,1,0)+1 \cdot \frac{1}{\sqrt{2}}(1,-1,0)+1(0,0,1) \\
& \quad \text { so } v=\left(\frac{-1}{\sqrt{2}}, \frac{-3}{\sqrt{2}}, 0\right) \text { is the required vector. }
\end{aligned}
\]

\subsection*{15.7 Definition:}

Adjoint of an operator: Let T be a linear operator in an inner product space V (finite dimensional or not). We say that T has an adjoint \(T^{*}\), if there exists a linear operator \(T^{*}\) on V ; such that \(\langle T(u), v\rangle=\left\langle u, T^{*}(v)\right\rangle \forall u, v \in V\).

In theorem 15.5.2, we have proved that every linear operator on a finite dimensional inner product space possess an adjoint. But it should be noted that if V is not finite dimensional then some linear operator may possess an adjoint, while the other may not. In any case if T possess an adjoint \(T^{*}\), it is unique as we have proved in that theorem.

Note: We have \(\langle u, T(v)\rangle=\overline{\langle T(v), u\rangle}=\overline{\left\langle v, T^{*}(u)\right\rangle}=\left\langle T^{*}(u), v\right\rangle\).
Hence \(\langle u, T(v)\rangle=\left\langle T^{*}(u), v\right\rangle\) for all \(u, v \in V\).
15.8.1 Theorem: Let V be a finite dimensional inner product space. Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal basis for V . Let T be a linear operator on V ; with respect to the ordered basis B . Then \(a_{i j}=<T\left(u_{j}\right), u_{i}>\).

Proof: As B is an orthonormal basis of V ; and if \(v\) is any vector in V ; then \(v=\sum_{i=1}^{n}<v, u_{i}>u_{i}\)
Taking \(T\left(u_{j}\right)\) in place of \(v\), in the above, we get \(T\left(u_{j}\right)=\sum_{i=1}^{n}<T\left(u_{j}\right), u_{i}>u_{i}\)
where \(j=1,2, \ldots n\).
Now if \(A=\left[a_{i j}\right]_{n+n}\) be the matrix of T in the ordered basis B ; then we have \(T\left(u_{j}\right)=\sum_{i=1}^{n} a_{i j} u_{i}\); \(j=1,2, \ldots n\). As the expression for \(T\left(u_{j}\right)\) as a linear combination of the vectors in B is unique and
so from (1) and (2) we have \(a_{i j}=<T\left(u_{j}\right), u_{i}>\) where \(i=1,2, \ldots n\) and \(j=1,2, \ldots n\).

\subsection*{15.18.2 Theorem:}

Let V be a finite dimensional inner product space let T be a linear operator on V . Let B be any orthonormal basis for V . Then the matrix \(T^{*}\) is the conjugate transpose of the matrix T i.e. \(\left[T^{*}\right]_{B}=[T]_{B}^{*}\)

Proof: Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal basis of V . Let \(A=\left[a_{i j}\right]_{n+n}\) be the matrix of T with respect to the ordered basis B. Then \(\left.a_{i j}=<T\left(u_{j}\right), u_{i}\right\rangle\) \(\qquad\)
Now \(T^{*}\) is also a linear operator on V .
Let \(C=\left[c_{i j}\right]_{n+n}\) be the matrix of \(T^{*}\) in the ordered basis B. Let \(c_{i j}=\left\langle T^{*}\left(u_{j}\right), u_{i}\right\rangle\)
Where \(c_{i j}=\left\langle T^{*}\left(u_{j}\right), u_{i}\right\rangle=\overline{\left\langle u_{i}, T^{*}\left(u_{j}\right)\right\rangle}\) since \(\langle u, v\rangle=\overline{\langle v, u\rangle}\)
\[
\begin{aligned}
& =\overline{<T\left(u_{j}\right), u_{j}>} \text { by def. of } \mathrm{T} \\
& =\overline{a_{j i}} \text { by (1) }
\end{aligned}
\]
\(\therefore C=\left[\overline{a_{i j}}\right]_{n+n}\); so \(C=A^{*}\) where \(A^{*}\) is the conjugate transpose of A. So \(\left[T^{*}\right]_{B}=[T]_{B}^{*}\)
Note: Here the basis B is the orthonormal basis but not an ordinary basis.
15.8.3 Corollary: If \(A\) and \(B\) are \(n \times n\) matrices, then
(i) \((A+B)^{*}=A^{*}+B^{*}\)
(ii) \((C A)^{*}=\bar{C} A^{*}\) for all \(C \in F\)
(iii) \((A B)^{*}=B^{*} A^{*}\)
(iv) \(A^{* *}=A\)
(v) \(I^{*}=I\)
(vi) \(0_{n \times n}^{*}=0_{n \times n}\) ( null matrix order \(n\) )

\subsection*{15.9 Worked out examples:}
W.E.4: Let T be a linear operator on \(\mathrm{C}_{2}\), defined by \(T\left(a_{1}, a_{2}\right)=\left(2 i a_{1}+3 a_{2}, a_{1}-a_{2}\right)\) if B is the standard ordered B as is for \(\mathrm{C}^{2}\) then find \(T^{*}\left(a_{1}, a_{2}\right)\).

Solution: We are given \(T\left(a_{1}, a_{2}\right)=\left(2 i a_{1}+3 a_{2}, a_{1}-a_{2}\right)\)
The standard ordered basis is \(B=\{(1,0),(0,1)\}\)
\[
\begin{gathered}
T(1,0)=(2 i(0)+3(0), 1-0)=(2 i, 1) \\
=2 i(1,0)+1(0,1) \\
T(1,0)=(0+3,0-1)=(3,-1)=3(1,0)-1(0,1) \\
{[T]_{B}=\left[\begin{array}{cc}
2 i & 3 \\
1 & -1
\end{array}\right]} \\
{\left[T^{*}\right]_{B}=[T]_{B}^{*}=\left[\begin{array}{cc}
-2 i & 1 \\
3 & -1
\end{array}\right] . \text { Hence the coordinate matrix of }} \\
{\left[T^{*}\right]\left(a_{1}, a_{2}\right)=\left[\begin{array}{cc}
-2 i & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left(-2 i a_{1}+a_{2}, 3 a_{1}-a_{2}\right) \text { in the same basis is }} \\
\Rightarrow T^{*}\left(a_{1}, a_{2}\right)=\left(-2 i a_{1}+a_{2}\right)(1,0)+\left(3 a_{1}-a_{2}\right)(0,1)=\left(-2 i a_{1}+a_{2}, 3 a_{1}-a_{2}\right)
\end{gathered}
\]
W.E. 5 : Let A be a \(\mathrm{n} \times \mathrm{n}\) matrix, then show that \(L_{A^{*}}=\left[L_{A}\right]^{*}\)

Solution: Let B be the standard basis for \(F^{n}\). then we have \(\left[L_{A}\right]_{B}=A\). Hence
\[
\begin{gathered}
{\left[\left[L_{A}\right]^{*}\right]_{B}=\left[L_{A}\right]_{B}^{*}=A^{*}=\left[L_{A^{*}}\right]_{B}} \\
\text { So }\left(L_{A}\right)^{*}=L_{A^{*}}
\end{gathered}
\]
W.E.6 : Example: If the linear transformation T on \(V_{3}(C)\) is defined by
\[
T(a, b, c)=(2 a+(1-i) b,(3+2 i) a-4 i c, 2 i a+(4-3 i b-3 c)) \text { for any }(a, b, c) \in V_{3}(R) \text { then }
\] find \(T^{*}(a, b, c)\) with respect to standard basis.

Solution: The matrix of T relating to the standard basis of \(V_{3}(C)\) which is also an orthonormal basis is given by
\[
T=\left[\begin{array}{ccc}
2 & 1-i & 0 \\
3+2 i & 0 & -4 i \\
2 i & 4-3 i & -3
\end{array}\right]=\left[a_{i j}\right]_{3 \times 3}
\]

If \(T^{*}\) is the adjoint of T ; then the matrix of \(T^{*}\) relative to the standard basis B is
\[
\left[T^{*}\right]=\left[\overline{a_{j i}}\right]=\left[\begin{array}{ccc}
2 & 3-2 i & -2 i \\
1+i & 0 & 4+3 i \\
0 & 4 i & -3
\end{array}\right]
\]

Thus showing that
\[
T^{*}(a, b, c)=(2 a+(3-2 i) b-2 i c,(1+i) a+(4+3 i) c, 4 i b-3 c) \text { for each }(a, b, c) \in V_{3}(C)
\]
W.E.7: Let T is a linear operator on \(V_{3}(F)\) defined by \(T(a, b, c)=(a+b, b, a+b+c)\) for \(a, b, c \in F\), then find \(T^{*}\).

Solution: Let \((x, y, z) \in V_{3}(F)\) and T is a linear operator on \(V_{3}\). By definition.
\[
\begin{aligned}
\quad & \left\langle(a, b, c), T^{*}(x, y, z)\right\rangle=\langle T(a, b, c),(x . y, z)\rangle \\
= & \langle(a+b, b, a+b+c),(x, y, z)\rangle \\
= & (a+b) \bar{x}+b \bar{y}+(a+b+c) \bar{z} \\
= & a \bar{x}+b \bar{x}+b \bar{y}+a \bar{z}+b \bar{z}+c \bar{z} \\
= & a(\bar{x}+\bar{z})+b(\bar{x}+\bar{y}+\bar{z})+c \bar{z} \\
= & a \overline{(x+z)}+b \overline{(x+y+z)}+c \bar{z} \\
= & \langle(a, b, c),(x+z, x+y+z, z)\rangle
\end{aligned}
\]

So \(T^{*}(x, y, z)=(x+z, x+y+z, z) \forall(x, y, z) \in T^{*}\)

\subsection*{15.10 Some Properties of adjoint operators:}
15.10.1 Theorem: Suppose \(S\) and \(T\) are linear operators on an inner product space \(V\), and \(C\) is a scalar.

If \(S\) and \(T\) possess adjoints on \(V\), then
i) \((S+T)^{*}=S^{*}+T^{*}\)
(ii) \((C T)^{*}=\bar{C} T *\) where C is a scalar
iii) \((S T)^{*}=T * S^{*}\)
(iv) \(\left(T^{*}\right)^{*}=T\)
v) \(O^{*}=O\) where O is the zero operator \(I^{*}=I\) where \(I\) is the identity operator
vi) If T is invertible then \(T^{-1}\) is also in vertible and in this case \(\left(T^{*}\right)^{-1}=\left(T^{-1}\right) *\)
vii) \(T^{* *}=T\)

Proof: (1) To show that \((S+T)^{*}=S^{*}+T^{*}\)
As S and T are linear operators on \(\mathrm{V}, S+T\) is also a linear operator on V , For every \(u, v \in V\).
\[
\begin{aligned}
<u,(S+T)^{*}(v)> & =<(S+T)(u), v> \\
& =<S(u)+T(u), v> \\
& =<S(u), v>+<T(u), v> \\
& =<u, S^{*}(v)>+<u, T^{*}(v)> \\
& =<u, S^{*}(v)+T^{*}(v)>\text { by definition of adjoint. } \\
& =<u,\left(S^{*}+T^{*}\right)(v)>
\end{aligned}
\]

Thus for the linear operator \(S+T\) on \(v\), there exists operator \(S^{*}+T^{*}\) on V such that
\[
\begin{aligned}
& \langle(S+T),(u), v\rangle=\left\langle u,\left(S^{*}+T^{*}\right) v\right\rangle \forall u, v \in V \\
& \text { or } \left.\left\langle u,(S+T)^{*}(v)\right\rangle=<u,\left(S^{*}+T^{*}\right) v\right\rangle
\end{aligned}
\]

By uniqueness of adjoint \((S+T)^{*}=S^{*}+T^{*}\)
ii) To show that \(\left(C T^{*}\right)=\bar{C} T^{*}\) where C is a scalar in F .

As T is a linear operator on V ; so \(C T\) is also a linear operator on V ; for every \(u, v\) in V , we have \(\left\langle u,(C T)^{*}, v\right\rangle=\langle(C T) u, v\rangle=\langle C T(u), v\rangle=C\langle\langle T(u), v\rangle\)
\[
\begin{aligned}
& =C<u, T^{*}(v)> \\
& =<u, \bar{C} T^{*}(v)> \\
& =<u,\left(\bar{C} T^{*}\right) v>
\end{aligned}
\]

So by the uniqueness of the adjoint we get \((C T)^{*}=\bar{C} T^{*}\).
iii) To show that \((S T)^{*}=T^{*} S^{*}\)

As \(\mathrm{S}, \mathrm{T}\) are linear operators on V , so ST is also a linear operator on V . For every \(\mathrm{u}, \mathrm{v}\) in V .

We have \(\left\langle u,(S T)^{*}(v)\right\rangle=\langle(S T)(u), v\rangle\)
\(=<S T(u), v>\) by definition of product of two operators
\(=<T(u), S^{*}(v)>\) by definition of adjoint
\(=<u, T^{*}\left(S^{*}(v)\right)>\)
\(=<u,\left(T^{*} S^{*}\right)(v)>\)
i.e \(\left\langle u,(S T)^{*}(v)\right\rangle=\left\langle u,\left(T^{*} S^{*}\right)(v)\right\rangle\)
\(\Rightarrow(S T)^{*}=T^{*} S^{*}\) as the adjoint operator is unique.
iv) To show that \(\left(T^{*}\right)^{*}=T\)
\[
\begin{aligned}
\left\langle u,\left((T)^{*}\right)^{*}(v)\right\rangle & =\left\langle T^{*}(u), v\right\rangle \\
& =\overline{\left\langle v, T^{*}(u)\right\rangle}(\text { Since }\langle u, v\rangle=\overline{\langle v, u\rangle}) \\
& =\overline{\langle T(v), u\rangle} \quad \text { by definition of adjoint } \\
& =\langle u, T(v)\rangle \quad \text { Since }\langle u, v\rangle=\overline{\langle v, u\rangle})
\end{aligned}
\]

Thus for a linear operator \(T^{*}\), there exists a linear operator T on V , such that
\[
<u,\left(T^{*}\right)^{*}(v)>=<u, T(v)>
\]

Hence \(\left(T^{*}\right)^{*}=T\) by the uniqueness of adjoint.
v) a) To show that \(O^{*}=O\) where \(O\) is the zero operator

O is the zero operator in V . For every \(\mathrm{u}, \mathrm{v}\) in V .
We have \(\left\langle u, O^{*}(v)\right\rangle=<O u, v>\)
\[
=0=\langle u, O(v)\rangle
\]

Thus \(\left\langle u, O^{*}(v)\right\rangle=\langle u, O(v)\rangle\) for all \(u, v \in V\)
\(\Rightarrow O^{*}=O\) (Where O is the zero operator) by uniqueness of adjoint.
(b) To show that \(I^{*}=I\)

For every \(u, v \in V\) we have
\[
\begin{aligned}
\left\langle u, I^{*}(v)>\right. & =\langle I(u), v=\langle u, v> \\
& =<u, I(v)>
\end{aligned}
\]

Thus for all \(u, v \in V,\left\langle u, I^{*}(v)\right\rangle=\langle u, I(v)\rangle\)
So \(I^{*}=I\) by uniqueness of adjoint.
vi) To show that \(\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}\)
\(T\) is an invertible operator on \(V\). So we have
\[
\begin{aligned}
& T T^{-1}=T^{-1} T=I \\
& \Rightarrow\left(T T^{-1}\right)^{*}=\left(T^{-1} T\right)^{*}=I^{*} \\
& \Rightarrow\left(T^{-1}\right)^{*} T^{*}=T^{*}\left(T^{-1}\right)^{*}=I \text { since } I^{*}=I
\end{aligned}
\]

This shows that \(T^{*}\) is invertible and the inverse of \(T^{*}\) i.e. \(\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}\)
i.e. inverse of adjoint of \(T\) is adjoint of inverse of \(T\).
vii) for \(u, v \in V,\langle u, T(v)\rangle=\left\langle T^{*}(u), v\right\rangle=\left\langle u, T^{* *}(v)\right.\)
\(\Rightarrow T^{* *}=T\) by uniqueness of adjoint.
Note: T is a linear operator on an innerproduct space V and \(U_{1}=T+T^{*}, U_{2}=T T^{*}\)
then \(U_{1}^{*}=\left(T+T^{*}\right)^{*}=T^{*}+\left(T^{*}\right)^{*}=T^{*}+T \oplus T+T^{*}=U_{1}\)
and \(U_{2}^{*}=\left(T T^{*}\right)^{*}=\left(T^{*}\right)^{*} T^{*}=T T^{*}=U_{2}\)

\section*{Worked Out Examples:}
W.E.8: V is the inner product space \(R^{2}, \mathrm{~T}\) is a linear operator in V ; evaluate \(T^{*}\) at \(u=((3,5)\) of V where \(T(a, b)=(2 a+b, a-3 b)\)

Solution: \((a, b) \in R^{2}\), Let \(\left(a_{1}, b_{1}\right) \in R^{2}\)
Then by defination of \(T^{*}\)
\[
\begin{aligned}
<(a, b), T^{*}\left(a_{1}, b_{1}\right)> & =<T(a, b),\left(a_{1}, b_{1}\right)> \\
& =<(2 a+b, a-3 b),\left(a_{1}, b_{1}\right)>\text { by definition of } \mathrm{T} .
\end{aligned}
\]
\[
\begin{aligned}
& =(2 a+b) a_{1}+(a-3 b) b_{1} \\
& =\left(2 a_{1}+b_{1}\right) a+\left(a_{1}-3 b_{1}\right) b
\end{aligned}
\]

So \(\left\langle(a, b), T^{*}\left(a_{1}, b_{1}\right)\right\rangle=\left\langle(a, b),\left(2 a_{1}+b_{1}, a_{1}-3 b_{1}\right)\right\rangle\)
as \((a, b),\left(a_{1}, b_{1}\right)\) are arbitrary elements in \(R^{2}\), then we have \(T^{*}\left(a_{1}, b_{1}\right)=\left(2 a_{1}+b_{1}, a_{1}-3 b_{1}\right)\)
\[
\text { or } T^{*}(a, b)=(2 a+b, a-3 b)
\]
\[
\text { So } T^{*}(3,5)=(2 \times 3+5,3-3 \times 5)
\]
i.e. \(T^{*}(3,5)=(11,-12)\)
W.E.9: Let V be the vector space \(V_{2}(C)\) with standard inner product. Let T be the linear operator defined by \(T(1,0)=(1,-2) \cdot T(0,1)=(i,-1)\). If \(u=(a, b)\) then find \(T^{*}(u)\).

Solution: Let \(B=\{(1,0),(0,1)\}\). Then B is the standard basis for V . It is an orthonormal basis for V . Let us find \([T]_{B}\). i.e. the matrix of T in the ordered basis B .

We have \(T(1,0)=(1,-2)=1(1,0)-2(0,1)\)
\[
\begin{aligned}
& T(0,1)=(i,-1)=i(1,0)-1(0,1) \\
& {[T]_{B}=\left[\begin{array}{cc}
1 & i \\
-2 & -1
\end{array}\right]}
\end{aligned}
\]

The matrix of \(T^{*}\) in the ordered basis B is the conjugate transpace of the matrix \([T]_{B}\).
So \([T]_{B}=\left[\begin{array}{cc}1 & -2 \\ -i & -1\end{array}\right]\)
Now \((a, b)=a(1,0)+b(0,1)\)
The coordinate \(T^{*}(a, b)\) in the basis B .
\[
=\left[\begin{array}{cc}
1 & -2 \\
-i & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
a & -2 b \\
-i a & -b
\end{array}\right]_{2 \times 1}
\]
\(T^{*}(a, b)=(a-2 b)(1,0)+(-i a-b)(0,1)\)
\[
=(a-2 b,-i a-b)
\]
W.E.10: The inner product space V is \(C^{2}\) and T is the linear operator on V , defined by
\[
T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right) . \text { Find } T^{*} \text { at } u=(3-i, 1+2 i) .
\]

Solution: Let \(B=\{(1,0),(0,1)\}\). Then B is the standard ordered basis for V . It is an orthonormal basis. Let us find \([T]_{B}\).
\[
\left.\begin{array}{l}
T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right) \\
T(1,0)=(2,(1-i)) \\
=2(1,0)+(1-i)(0,1) \\
T(0,1)=(i, 0)=i(1,0)+0(0,1) \\
{[T]_{B}=\left[\begin{array}{cc}
2 & i \\
1-i & 0
\end{array}\right]}
\end{array}\right]\left[T^{*}\right]_{B}=\left[\begin{array}{cc}
2 & -(1-i) \\
-1 & 0
\end{array}\right] \quad \$
\]

Now \(\left(z_{1}, z_{2}\right)=z_{1}(1,0)+z_{2}(0,1)\)
The coordinate matrix of \(T^{*}\left(z_{1}, z_{2}\right)\) in the basis B is \(\left[\begin{array}{cc}2 & i-1 \\ -i & 0\end{array}\right]\left[\begin{array}{c}z_{1} \\ z_{2}\end{array}\right]=\left[\begin{array}{c}2 z_{1}+z_{2}(i-1) \\ -i z_{1}+0 z_{2}\end{array}\right]\)
\[
\begin{aligned}
& T^{*}\left(z_{1}, z_{2}\right)=\left(2 z_{1}+z_{2}(i-1)\right)(1,0)-i z_{1}(0,1) \\
& =\left(2 z_{1}+z_{2}(i-1),-i z_{1}\right) \\
& \begin{aligned}
T^{*}(3-i, 1+2 i)= & (2(3-i)+(1+2 i)(i-1)-i(3-i)) \\
= & 6-2 i+i-2-1-2 i \\
= & ((3-3 i),-(3 i+1))
\end{aligned}
\end{aligned}
\]
W.E.11: Let T be the linear operator on \(V_{2}(C)\), defined by \(T(1,0)=(1+i, 2)\)
\[
T(0,1)=(i, i) \text { using the standard }
\]
inner product. Find the matrix \(T^{*}\) in the standard ordered basis. Does T commute with \(T^{*}\). Solution: Let \(B=\{(1,0),(0,1)\}\). B is the standard ordered basis for T . It is orthonormal basis

We have \(T(1,0)=(1+i, 2)=(1+i)(1,0)+2(0,1)\)
\[
T(0,1)=(i, i)=i(1,0)+i(0,1)
\]
\[
\text { So }[T]_{B}=\left[\begin{array}{cc}
1+i & i \\
2 & i
\end{array}\right]
\]

So \(\left[T^{*}\right]_{B}=\) The conjugate transpose of the matrix \([T]_{B}\).
\[
=\left[\begin{array}{cc}
1-i & 2 \\
-i & -i
\end{array}\right]
\]

We have \([T]_{B} \cdot\left[T^{*}\right]_{B}=\left[\begin{array}{cc}1+i & i \\ 2 & i\end{array}\right]\left[\begin{array}{cc}1-i & 2 \\ -i & -i\end{array}\right]\)
So \([T]_{B}\left[T^{*}\right]_{B}=\left[\begin{array}{cc}3 & 3+2 i \\ 3-2 i & 5\end{array}\right]\)
Also \(\left[T^{*}\right]_{B}[T]_{B}=\left[\begin{array}{cc}1-i & 2 \\ -i & i\end{array}\right]\left[\begin{array}{cc}1+i & i \\ 2 & i\end{array}\right]\)
\(=\left[\begin{array}{cc}6 & 3 i+1 \\ -3 i+1 & 2\end{array}\right]\)
Now from (1) and (2) \([T]_{B}\left[T^{*}\right]_{B} \neq\left[T^{*}\right]_{B}[T]_{B}\)
\[
\Rightarrow\left[T T^{*}\right]_{B} \neq\left[T^{*} T\right]_{B}
\]

So \(T T^{*} \neq T^{*} T\)
So T does not commute with \(T^{*}\).

\subsection*{15.12 Exercise:}
1. For each of the following inner product spaces V over F and linear transformations \(g: V \rightarrow F\) find a vector v such that \(g(u)=<u, v>\) for all \(u \in V\).
i) \(V=R^{3} ; g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-2 a_{2}+4 a_{3}\)

Ans: \(v=(1,-2,4)\)
ii) \(V=P_{2}(R)\) with \(\langle f, h\rangle=\int_{0}^{1} f(t) h(t) d t\)
\[
g(f)=f(0)+f^{\prime}(1)
\]

Ans: \(v=210 u^{2}-204 u+33\)
2. \(V=P_{1}(R)\) is an inner product space T is a linear operator on V . The inner product in V is given by \(\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t ; \quad T(f)=f^{\prime}+3 f\)
\[
f(t)=4-2 t \text { Evaluate } T^{*}
\]

Ans: \(T^{*}[f(t)]=12+6 t\)
3. A linear operator T on \(R^{2}(R)\) is given by \(T(x, y)=(x+2 y, x-y)\) for all \(x, y \in R\). If the inner product on \(R^{2}\) is the standard one, find the adjoint \(T^{*}\).

Ans: \(T^{*}(x, y)=(x+y, 2 x-y)\)
4. Let T be a linear operator on \(V_{2}(C)\) defined by \(T(1,0)=(1,-2) ; T(1,0)=(i,-1)\) using the standard inner product find \(T^{*}(u)\). Where \(u=(a, b)\)

Ans: \((a-2 b,-i a-b)\)

\subsection*{15.13 Normal and Self-Adjoint Operators:}
15.13.1 Definition: Self Adjoint Operator: A Linear operator T on an inner product space \(V(F)\) is called self adjoint operator if and only if \(T=T^{*}\).

Note: 1) A self adjoint operator is called a symmetric according as the space is called Eucledian i.e. \(F=R\).
2. A self adjoint operator is called Hermitian when the vector space is unitary i.e. \(F=C\).
3. In an inner product space if T is self adjoint operator. Then
\[
\left.\left.\langle T(u), v\rangle=>u, T^{*}(v)\right\rangle=<u, T(v)\right\rangle \forall u, v \in V .
\]
4. If \(\hat{0}\) is the zero operator in \(V, I\) is the identity operator in V , then \(\hat{0^{*}}=\hat{0}, I^{*}=I\). So \(\hat{0}\) and \(I\) are self adjoint operators.
5. An \(\mathrm{n} \times \mathrm{n}\) real or complex matrix A is self adjoint if \(A=A^{*}\).
6. A self adjoint operator is also called as Hermitian operator. A self adjoint matrix is also called as Hermitian matrix.

\subsection*{15.13.2 Theorem:}

Every linear operator T on a finite dimensional complex inner product space V can be uniquely expressed as \(T^{*}=T_{1}+i T_{2}\) where \(T_{1}\) and \(T_{2}\) are self adjoint linear operators on V .

Proof: Let \(T_{1}=\frac{1}{2}\left(T+T^{*}\right)\) and \(T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)\)
then \(T_{1}^{*}=\left\{\frac{1}{2}\left(T+T^{*}\right)\right\}^{*}=\frac{1}{2}\left\{T^{*}+\left(T^{*}\right)^{*}\right\}\)
\[
=\frac{1}{2}\left(T^{*}+T\right)=\frac{1}{2}\left(T+T^{*}\right)=T_{1}
\]
i.e. \(T_{1}^{*}=T_{1}\) so \(T_{1}\) is self adjoint.

Also \(T_{2}^{*}=\left\{\frac{1}{2 i}\left(T-T^{*}\right)\right\}^{*}\)
\[
\begin{equation*}
=\left(\frac{1}{2 i}\right)\left(T-T^{*}\right)^{*}=\frac{-1}{2 i}\left(T^{*}-T\right)=T_{2} \tag{2}
\end{equation*}
\]
i.e. \(T_{2}{ }^{*}=T_{2}\) so \(T_{2}\) is self adjoint.

From the above we get \(T+T^{*}=2 T_{1}\)
\[
\begin{equation*}
T-T^{*}=2 i T_{2} \tag{3}
\end{equation*}
\]

Adding \(2 T=2\left(T_{1}+i T_{2}\right) \Rightarrow T=T_{1}+i T_{2}\)
Subtracting \(2 T^{*}=2\left(T_{1}-i T_{2}\right) \Rightarrow T^{*}=T_{1}-i T_{2}\)
Whence \(T_{1}\) and \(T_{2}\) are self adjoint.

Uniqueness resolution of T :
Let \(T=U_{1}+i U_{2}\) where \(U_{1}\) and \(U_{2}\) are self adjoint operators. Then
\[
\begin{aligned}
T^{*}=\left(U_{1}+i U_{2}\right)^{*} & =U_{1}^{*}+\left(i U_{2}\right)^{*} \\
& =U_{1}^{*}+\bar{i} U_{2} * \\
& =U_{1}^{*} *-i U_{2} * \\
& =U_{1}-i U_{2}
\end{aligned}
\]
\[
T+T^{*}=\left(U_{1}+i U_{2}\right)+\left(U_{1}-i U_{2}\right)=2 U_{1}
\]
\[
\Rightarrow U_{1}=\frac{1}{2}\left(T+T^{*}\right)=T_{1}
\]

Also \(T-T^{*}=\left(U_{1}+i U_{2}\right)-\left(U_{1}-i U_{2}\right)=2 U_{2}\)
\(\Rightarrow U_{2}=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2}\). Hence the expression \(T=T_{1}+i T_{2}\) is unique.
15.13.3 Prove that the product of two self adjoint operators on an inner product space is self adjoint, iff they commute.

Proof: Let \(T_{1}\) and \(T_{2}\) be two self adjoint operators on an inner product space V ;
Case i) Let the product of \(T_{1}\) and \(T_{2}\) i.e. \(T_{1} T_{2}\) is self adjoint.
So \(\left(T_{1} T_{2}\right)^{*}=T_{1} T_{2} \Rightarrow T_{2} * T_{1}^{*}=T_{1} T_{2}\)
\(\Rightarrow T_{2} T_{1}=T_{1} T_{2}\) since \(T_{1}\) and \(T_{2}\) are self adjoint operators \(T_{1}^{*}=T_{1}, T_{2}^{*}=T_{2}\)
Thus when \(T_{1} T_{2}\) is self adjoint the \(T_{1} T_{2}=T_{2} T_{1}\) i.e. they commute.
Case ii) Converse : Let \(T_{1}\) and \(T_{2}\) commute i.e. \(T_{1} T_{2}=T_{2} T_{1}\)
\[
\text { So } \begin{aligned}
\left(T_{1} T_{2}\right)^{*} & =T_{2} * T_{1}^{*}=T_{2} T_{1} \quad\left(\text { Since } T_{1}^{*}=T_{1} \text { and } T_{2}^{*}=T_{2}\right) \\
& =T_{1} T_{2} \text { since } T_{1} T_{2}=T_{2} T_{1}
\end{aligned}
\]

Thus \(\left(T_{1} T_{2}\right)^{*}=T_{1} T_{2}\). So \(T_{1} T_{2}\) is self adjoint.
Hence the theorem.
15.13.4 If \(T_{1}\) and \(T_{2}\) are self adjoint linear operators on an inner product space, then show that \(T_{1}+T_{2}\) is self adjoint.

Solution: \(T_{1}\) is a self adjoint operator. So \(T_{1}^{*}=T_{1}\)
and \(T_{2}\) is a self adjoint operator. So \(T_{2}{ }^{*}=T_{2}\)
\[
\begin{aligned}
& \text { Now }\left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}=T_{1}+T_{2} \\
& \text { So }\left(T_{1}+T_{2}\right)^{*}=T_{1}+T_{2} \text {, Hence } T_{1}+T_{2} \text { is self adjoint. }
\end{aligned}
\]
15.13.5 If T is a self adjoint linear transformation on an inner product space then \(T=\hat{0} \Leftrightarrow\langle T(u), u\rangle=0\) for all \(u \in V\).

Proof: Let \(T=\hat{0}\) (Zero operator)
\[
\langle T(u), u\rangle=<\hat{0}(u), u\rangle=<0, u\rangle=0 \text { for all } u \in V .
\]

Conversely Let \(\langle T(u), u\rangle=0, u \in V\), then to show that \(T=\hat{0}\).
Consider \(\langle T(u+v), u+v\rangle=0\) by given condition
\[
\begin{aligned}
& \Rightarrow\langle T(u)+T(v), u+v\rangle=0 \\
& \Rightarrow\langle T(u), u\rangle+\langle T(u), v\rangle+\langle T(v), u\rangle+\langle T(v), v\rangle=0 \\
& \Rightarrow\langle T(u), v\rangle+\langle T(u), v\rangle=0 \text { by given condition } \\
& \Rightarrow\langle T(u), v\rangle+\left\langle v, T^{*}(u)\right\rangle=0 \ldots \ldots . \text { (1) Since }\langle T(v), u\rangle=\left\langle v, T^{*}(u)\right\rangle \\
& \Rightarrow\langle T(u), v\rangle+\langle v, T(u)\rangle=0 \ldots \ldots . . \text { (2) Since } T^{*}=T
\end{aligned}
\]

Case i) Let V be a complex inner product space then by (1) replacing \(v\) by \(i v\) we get
\[
\langle T(u), i v\rangle+\langle T(i v), u\rangle=0
\]
\(\Rightarrow-i\langle T(u), v\rangle+i\langle T(v), u\rangle=0\) since conjugate of i is -i .
\(\Rightarrow-\langle T(u), v\rangle+\langle T(v), u\rangle=0\)
Adding (1) and (3) we get
\(2\langle T(u), v\rangle=0\) for all \(u, v \in V\)
So \(\langle T(u), T(v)\rangle=0\) putting \(v=T(u)\)
\[
\begin{aligned}
& \Rightarrow T(u)=0 \\
& \Rightarrow T=\hat{0}
\end{aligned}
\]

Case ii) In case if V is real inner product space we have \(\langle v, T(u)\rangle=\langle T(u), v\rangle\) since \(\langle u, v\rangle=\langle v, u\rangle\).

From (2) \(\quad\langle T(u), v\rangle+\langle v, T(u)\rangle=0\)
\[
\begin{aligned}
& \Rightarrow 2\langle T(u), v\rangle=0 \text { using above, } \forall u, v \in V \\
& \Rightarrow\langle T(u), T(u)\rangle=0 \text { putting } v=T(u) \\
& \Rightarrow\langle T(u)=0, \forall u, v \in V \text { So } T=\hat{0}
\end{aligned}
\]

Hence the theorem.
15.13.6 If T is a linear transformation on a complex inner product space, then T is self adjoint \(\Leftrightarrow<T(u), v>\) is real \(\forall u, v \in V\).

Proof: Case i) Let T is self adjoint. So \(T^{*}=T\).
then \(\forall u, \in V,\langle T(u), u\rangle=\left\langle u, T^{*}(u)\right\rangle=\langle u, T(u)\rangle\)
\(\therefore\langle T(u), u\rangle=\overline{\langle T(u), u\rangle} \Rightarrow\langle T(u), u\rangle\) is real.
Case ii) Converse :
Let \(\langle T(u), u\rangle\) is real for each \(u \in V\). Then to prove that T is a self adjoint transformation i.e. to show \(\langle T(u), v\rangle=\langle u, T(v)\rangle \forall u, u \in V\).

Now \(\langle T(u+v), u+v\rangle=\langle T(u)+T(v), u+v\rangle\)
\[
=\langle T(u), u\rangle+\langle T(u), v\rangle+\langle T(v), u\rangle+\langle T(v), v\rangle
\]

Since by hypothesis \(\langle T(u+v), u+v\rangle,\langle T(v), u\rangle\) and \(\langle T(v), v\rangle\) are all real and so \(\langle T(u), v\rangle+\langle T(u), u\rangle\) is also real. So equating it to its complex conjugate.

We get \(\langle T(u), v\rangle+\langle T(v), u\rangle=\overline{(\langle T(u), v\rangle+\langle T(v), u\rangle)}\)
\[
\begin{aligned}
& =\overline{\langle T(u), v\rangle}+\overline{\langle T(v), u>)} \\
& =\langle v, T(u)\rangle+\langle u, T(v)\rangle
\end{aligned}
\]

Thus for all \(u, v \in V\).
\[
\begin{equation*}
\langle T(u), v\rangle+\langle T(v), u\rangle=\langle v, T(u)\rangle+\langle u, T(v)\rangle \tag{1}
\end{equation*}
\]
replacing \(v\) by \(i v\) we get
\[
\begin{align*}
& \langle T(u), i v\rangle+\langle T(i v), u\rangle=\langle i v, T(u)\rangle+\langle u, T(i v)\rangle \\
& \Rightarrow-i\langle T(u), v\rangle+\langle i T(v), u\rangle=i\langle v, T(u)\rangle+\langle u, i T(v)\rangle \\
& \Rightarrow-i\langle T(u), v\rangle+i\langle T(v), u\rangle=i\langle v, T(u)\rangle-i\langle u, T(v)\rangle \tag{2}
\end{align*}
\]

Multiplying (2) by i and adding to (1) we get
\[
2\langle T(u), v\rangle=2\langle u, T(v)\rangle
\]
\(\Rightarrow T\) is self adjoint operator.
Hence the theorem.

\subsection*{15.13.7 Theorem:}

If T is a self adjoint linear operator on an inner product space V , then if \(T \neq \hat{0}\) and \(a \neq 0\), then aT is self adjoint if and only if a is real.

Proof: Let a be real. Then we have \((a T)^{*}=\bar{a} T^{*}\)
\[
=a T \text { since a is real and } \mathrm{T} \text { is self adjoint. }
\]

Thus \((a T)^{*}=a T\). So it follows aT is self adjoint.
Converse: Let aT is self adjoint So \((a T)^{*}=a T\)
\(\Rightarrow \bar{a} T^{*}=a T\)
\(\Rightarrow \bar{a} T=a T\) since \(T\) is self adjoint.
\(\Rightarrow(\bar{a}-a) T=\hat{0}\)
as \(T \neq \hat{0}\), so \(\bar{a}-a=0 \Rightarrow \bar{a}=a\)
Hence a is real.
Hence the theorem.

\subsection*{15.13.8 Theorem:}

Let T be a linear operator on a finite dimensional inner product space V . Then T is self adjoint if and only if its matrix in every orthonormal basis is a self adjoint matrix.

Proof: Let B be any orthonormal basis of V . Then \(\left[T^{*}\right]_{B}=[T]_{B}^{*}\)

If T is self adjoint, then \(T^{*}=T\).
So from (1) we get \([T]_{B}=[T]_{B}^{*}\)
So \([T]_{B}\) is a self adjoint matrix.
Conversely Let \([T]_{B}\) be a self adjoint matrix then \([T]_{B}=[T]_{B}^{*}=\left[T^{*}\right]_{B}\) from (1) So \(T=T^{*}\). Hence T is self adjoint.

\subsection*{15.13.9 Theorem:}

If \(T\) is self adjoint linear operator on a finite dimensional inner product space, then prove that \(\operatorname{det}(T)\) is real.

Proof: Let B be any orthonormal basis for V .
Then we have \(\left[T^{*}\right]_{B}=[T]_{B}^{*}\) and T is self adjoint. So \(T^{*}=T\) i.e. \([T]_{B}=[T]_{B}^{*}\)
Suppose \([T]_{B}=A\) and then \([T]_{B}^{*}=A^{*}\)
Then \(A=A^{*} \Rightarrow \operatorname{det}(A)=\operatorname{det}\left(A^{*}\right)\)
\[
\Rightarrow \overline{(\operatorname{det} A)}=\operatorname{det} A
\]

So \(\operatorname{det} \mathrm{A}\) is real. Hence \(\operatorname{det} T\) is real. Since \(\operatorname{det} T=\operatorname{det}[T]_{B}=\operatorname{det} A\) Hence the theorem.

\subsection*{15.13.10 Theorem:}

Let \(T\) be a self adjoint linear operator on a finite dimensional inner product space.
Prove that the range of T is orthogonal complement of the null space of T i.e. \(R(T)=\{N(T)\}^{\perp}\)
Proof: Let u be any element in \(R(T)\). Then there exists a vector \(v\) in V such that \(u=T(v)\)
Now if \(\mathrm{w} \in N(T)\) then \(T(w)=O\)
We have \(\langle u, w\rangle=\langle T(v), w\rangle=\left\langle v, T^{*}(w)\right\rangle\)
\[
=<v, T(w)>\text { since } T^{*}=T
\]
\[
=\langle v, O\rangle=0
\]
it follows that \(\langle u, w\rangle=0\) for all \(w \in N(T)\)
Thus \(u \in[N(T)]^{\perp}\)
Thus \(u \in R(T) \Rightarrow u \in[N(T)]^{\perp}\) and hence
\[
\begin{equation*}
R(T) \subseteq N(T)^{\perp} \tag{1}
\end{equation*}
\]

Again \(\operatorname{dim}[R(T)]+\operatorname{dim}[N(T)]=\operatorname{dim} V\)
and
\[
\begin{aligned}
& V=N(T) \oplus[N(T)]^{\perp} \\
& \Rightarrow \operatorname{dim}(N(T))+\operatorname{dim}[N(T)]^{\perp}=\operatorname{dim} V \\
& \quad \therefore \operatorname{dim} R(T)=\operatorname{dim}[N(T)]^{\perp}
\end{aligned}
\]

Now \(R(T) \subseteq[N(T)]^{\perp}\) and \(\operatorname{dim}[R(T)]=[N(T)]^{\perp}\)
\[
\text { So } R(T)=[N(T)]^{\perp}
\]
15.13.11 Let \(T\) be a linear operator on a finite dimensional inner product space \(V\). If \(T\) has an eigen vector then show that \(T^{*}\) has an eigen vector.

Proof: Let \(u\) be an eigen vector of T ; with eigen value \(\lambda\). Then for any \(v \in V\), we have
\[
\begin{aligned}
0=\langle O, v> & =\langle(T-\lambda I)(u), v> \\
& =<u,(T-\lambda I) *(u)> \\
& =<u,\left(T^{*}-\bar{\lambda} I\right) *(v)>
\end{aligned}
\]

Hence u is orthogonal to the range of \(T^{*}-\bar{\lambda} I\).
So \(T^{*}-\bar{\lambda} I\) is not onto and hence is not one to one. Thus \(T^{*}-\lambda I\) has a non zero null space, and any non zero vector in this null space is an eigen vector of \(T^{*}\) with corresponding eigen value \(\bar{\lambda}\).

\subsection*{15.14 Some Basic Concepts which are already discussed:}

\subsection*{15.14.1 T Invariance:}

W is a subspace of a vector space V and \(T: V \rightarrow V\) is linear. W is said to be T - invariant
if \(T(w) \in W\) for every \(w \in W\) that is \(T(W) \subseteq W\). If W is T - invariant. We define the restriction of T on W to be the function \(T_{W}: W \rightarrow W\) defined by \(T_{W}(w)=T(w)\) for all \(w \in W\).
15.14.2 Definition: Polynomial split:

A polynomial \(f(t)\) in \(P(F)\) is said to split over F , if there exists scalars \(c, a_{1}, a_{2}, \ldots a_{n}\) not necessarily distinct in F such that \(f(t)=C\left(t-a_{1}\right)\left(t-a_{2}\right), \ldots\left(t-a_{n}\right)\).

Thus a polynomial is said to split if it factors into linear factors.

\subsection*{15.14.3 Theorem:}

Let V be a finite dimensional inner product space. Let T be a linear operator on V . suppose W is a subspace of V , which is invariant under T . Then show that the orthogonal compliment is invariant under \(T^{*}\).

Solution: We are given that W is invariant under T . We have to prove that \(w^{\perp}\) is invariant under \(T^{*}\). Let \(v\) be an vector in \(W^{\perp}\). Then to prove that \(T^{*}(v)\) is in \(w^{\perp}\). i.e. \(T^{*}(v)\) is orthogonal to every vector in W . Let \(u\) be any vector in W . then \(\left\langle u, T^{*}(v)\right\rangle=\langle T(u), v\rangle=0\)

Since \(u \in W \Rightarrow T(u) \in W\) as W is T invariant.
Also v is orthogonal to every vector in W .
\(T^{*}(v)\) is orthogonal to every vector u in W.
\(\therefore T^{*}(v)\) is in \(W^{\perp}\).
So \(W^{\perp}\) is invariant under \(T^{*}\).
15.15.1 Schur Theorem: Let \(T\) be a linear operator on a finite dimensional inner product space V . Suppose that the characteristic polynomial of T splits. Then show that there exists an orthonormal basis B for V such that the matrix \([T]_{B}\) is upper triangular.

Proof: The proof is by mathematical induction on the dimension n of V . The result is immediate if \(n=1\). so suppose that the result is true for linear operators on \((n-1)\) dimensional inner product spaces whose characteristic polynomial splits. We know that if T is a linear operator on a finite dimensional inner product space V , and if T has an eigen vector, then \(T^{*}\) will have an eigen vector. so we can assume that \(T^{*}\) has a unit eigen vector \(w\). Suppose that \(T^{*}(W)=\lambda W\) and that \(\mathrm{W}=\) span \((\{w\})\) we will now show that \(W^{\perp}\) is is T invariant.
\[
\begin{aligned}
& \text { If } v \in W^{\perp} \text { and } u=c w \in W \text { then } \\
& \qquad \quad\left\langle T(v), u>=\langle T(v), c w\rangle=\left\langle v, T^{*}(c w)\right\rangle\right.
\end{aligned}
\]
\[
\begin{aligned}
& =\left\langle v, c T^{*}(w)\right\rangle=\langle v, c \lambda w\rangle \\
& =\overline{c \lambda}\langle v, w\rangle=\overline{c \lambda}(0)=0
\end{aligned}
\]

So \(T(u) \in W^{\perp}\)
We know that if T is a linear operator on a finite dimensional vector space V and W is a T-invariant subspace of V , then the characteristic polynomial of \(T_{W}\) divides the characteristic polynomial of T .

By this theorem, the characteristic polynomial of \(T_{W}\) divides the characteristic polynomials of T and hence splits.

We know that if W is any subspace of a finite dimensional inner product space V , then \(\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)\)

So \(\operatorname{dim}\left(w^{\perp}\right)=n-1\) so we may apply the induction hypothesis to \(T_{w^{\perp}}\) and obtain an orthonormal basis \(B^{\prime}\) of \(W^{\perp}\) such that \(\left(T_{w^{\perp}}\right)_{B^{\prime}}\) is upper triangular.

Clearly \(B=B^{\prime} \cup\{w\}\) is an orthonormal basis for \(\vee\) such that \([T]_{B}\) is upper triangular.
Hence the theorem.
15.15.2 Theorem: Let \(T\) be a self adjoint operator on a finite dimensional real inner product space V . Then show that the characteristic polynomial of T splits.

Proof: Let \(\operatorname{dim}(V)=n\). Let B be an orthonormal basis for V and \(A=[T]_{B}\). Then A is self adjoint. Let \(T_{A}\) be a linear operator on \(C^{n}\). defined by \(T_{A}(\mathrm{u})=\) Au for all \(u \in C^{n} . T_{A}\) is self adjoint because \(\left[T_{A}\right]_{D}=A\) where D is the standard ordered orthonormal basis for \(C^{n}\). As \(T_{A}\) a self adjoint operator, the eigen values of \(T_{A}\) are real.

By fundamental theorem of Algebra, the characteristic poly nomial splits into factors of the form \(t-\lambda\). Since each \(\lambda\) is real the characteristic polynomial splits over R . But \(T_{A}\) has the same characteristic polynomial as A; which has the same polynomial as T. So the characteristic polynomial of T splits.

Hence the theorem.
Note: Fundamental theorem of Algebra.
Suppose the \(P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\) is a polynomial in \(P(C)\) of degree \(n \geq 1\), then \(P(z)\) has a zero and then exists complex numbers \(c_{1}, c_{2}, \ldots c_{n}\) not necessarily distinct such
that \(P(z)=a_{n}\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)\).
15.15.3 Theorem: Let V be a finite dimensional inner product space and let T be a self adjoint linear operator on V . Then there is an orthonormal basis for V , each vector of which is a characteristic vector for T and consequently the matrix of T with respect to B is a diagonal matrix.

Proof: As T is a self adjoint linear operator on a finite dimensional inner product space V , so T must have a characteristic value and T must have a characterisitc vector.

Let \(O \neq u\) be a characteristic vector for T . Let \(u_{1}=\frac{u}{\|u\|}\). Then \(u_{1}\) is a characterisitic vector for T and \(\|u\|=1\). If \(\operatorname{dim} V=1\), then \(\left\{u_{1}\right\}\) is an orthonormal basis for V , and \(u_{1}\) is a characteristic vector for T . Thus the theorem is true if \(\operatorname{dim} \mathrm{V}=1\). Now we proceed by induction on the dimension of V . Suppose the theroem is true for inner product spaces of dimension less than dimension of V . Then we shall prove that it is true for \(n\) and the proof of will be complete by induction.

Let W be the one dimensional subspace of V spanned by the characteristic vector \(u_{1}\) for T . Let \(u_{1}\) be the characteristic vector corresponding to the characteristic value C . Then \(T\left(u_{1}\right)=C\left(u_{1}\right)\). If \(v\) is any vector in W . Then \(v=k u_{1}\), where \(k\) is a scalar. We have \(T(v)=T\left(k u_{1}\right)=k T\left(u_{1}\right)=k\left(c u_{1}\right)=k c\left(u_{1}\right)\). So \(T(u) \in W\). W is invariant under T . So \(W^{\perp}\) is invariant under \(T^{*}\). But T is self adjoint means \(T=T^{*}\). So \(W^{\perp}\) is invariant under T . If \(\operatorname{dim} V=n\), then \(\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=n-1\)

So \(W^{\perp}\) with the the inner product from V is an inner product space of dimension one less than the dimension of V .
suppose \(S\) is the linear operator induced by T on \(W^{\perp}\) i.e. S is the restriction of T to \(W^{\perp}\). Then \(S(w)=T(w) \forall w \in W^{\perp}\). Then restriction of \(T^{*}\) to \(W^{\perp}\) will be the adjoint of \(S^{*}\) of S . Thus \(S\) is a self adjoint linear joperator on \(W^{\perp}\), because if \(w\) is any vector in \(W^{\perp}\) then
\[
\begin{gathered}
S^{*}(w)=T^{*}(w)=T(w)=S(w) \\
\therefore S^{*}=S .
\end{gathered}
\]

Thus \(S\) is a self adjoint linear operator on \(W^{\perp}\); Whose dimension is less than dimension of V . so by our induction hypothesis \(W^{\perp}\) has an orthonormal basis \(\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\). Consisting of characteristic vectors for S. Suppose \(u_{i}\) is the characteristic vector for S corresponding to the characteristic value \(c_{i}\). Then \(S\left(u_{i}\right)=C_{i} u_{i}\)
\[
\Rightarrow T\left(u_{i}\right)=C_{i} u_{i}
\]

So \(u_{i}\) is also a characteristic vector of T . Thus \(u_{1}, u_{2}, \ldots u_{n}\) are also characteristic vectors for T . since \(V=W \oplus W^{\perp}\). So \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is an orthonormal basis for V each vector of which is a characteristic vector of T . The matrix T relative to B will be a diagonal matrix.

\subsection*{15.16 Normal Operator:}

Definition: Let T be a linear operator on an inner product space V . Then T is said to be normal if it commutes with its adjoint i.e. if \(T T^{*}=T^{*} T\).

Note i) If V is finite dimensional then \(T^{*}\) will definitely exist. If V is not finite dimensional, then the above definition will make sense if and only if T possess adjoint.
ii) Every self adjoint operator is normal.

Suppose T is self adnoint operator, then \(T^{*}=T\), so obviously \(T^{*} T=T T^{*}\).
So T is normal.
W.E. 12 Examples: If \(T: R^{2} \rightarrow R^{2}\) be rotation by \(\theta\), where \(0<\theta<\pi\), and if, for standard basis B .
\[
[T]_{B}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { show that } \mathrm{T} \text { is normal. }
\]

Solution: \([T]_{B}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] ;\left[T^{*}\right]_{B}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\)
Now \([T]_{B} \cdot\left[T^{*}\right]_{B}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
and \(\left[T^{*}\right]_{B} \cdot[T]_{B}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
As \([T]_{B}\left[T^{*}\right]_{B}=\left[T^{*}\right]_{B}[T]_{B} \Rightarrow\left[T T^{*}\right]_{B}\left[T^{*} T\right]_{B}\)
So T is normal.

\section*{Normal Matrix : Definition:}

A real or complex \(\mathrm{n} \times \mathrm{n}\) matrix A is normal if and only if it commutes with its conjugate transpose. i.e. \(A A^{*}=A^{*} A\).

Example : \(A=\left[\begin{array}{cc}1 & 1 \\ i & 3+2 i\end{array}\right]\) then \(A^{*}=\left[\begin{array}{cc}1 & -i \\ 1 & 3-2 i\end{array}\right]\)
and \(A A^{*}=\left[\begin{array}{cc}1 & 1 \\ i & 3+2 i\end{array}\right]\left[\begin{array}{cc}1 & -i \\ 1 & 3-2 i\end{array}\right]\)
\[
=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 14
\end{array}\right]
\]
\[
A^{*} A=\left[\begin{array}{cc}
1 & -i \\
1 & 3-2 i
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
i & 3+2 i
\end{array}\right]=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 14
\end{array}\right]
\]

Thus \(A A^{*}=A^{*} A\). So A is normal.

\subsection*{15.17 Theorems on Normal Operators:}
15.17.1 An operator \(T\) on an inner product space is normal
\[
\Leftrightarrow\left\|T^{*}(u)\right\|=\|T(u)\| \forall u \in V
\]

Proof: For all \(u \in V\), we have
\[
\begin{aligned}
&\left\|T^{*}(u)\right\|=\|T(u)\| \Leftrightarrow\left\|T^{*}(u)\right\|^{2}=\|T(u)\|^{2} \\
& \Leftrightarrow<T^{*}(u), T^{*}(u)>=<T(u), T(u)> \\
& \Leftrightarrow<T T^{*}(u), u>=<T^{*} T(u), u> \\
& \Leftrightarrow<\left(T T^{*}-T^{*} T\right) u, u>=0 \\
& \Leftrightarrow T T^{*}-T^{*} T=\hat{0} \text { (zero operator) } \\
& \Leftrightarrow T T^{*}=T^{*} T \\
& \Leftrightarrow T \text { is normal. }
\end{aligned}
\]

\subsection*{15.17.2 Theorem:}

If T is a normal operator on an inner product space \(V(F)\), then \(T-C I\) is normal for every \(C \in F\).

Proof: \((T-C I)^{*}=T^{*}-(C I)^{*}\)
\[
\begin{aligned}
& =T^{*}-\bar{C} I^{*} \\
= & T^{*}-\bar{C} I \ldots \ldots \ldots \text { (1) since } I^{*}=I
\end{aligned}
\]

Again \((T-C I) *(T-C I)\)
\[
\begin{aligned}
& =\left(T^{*}-\bar{C} I\right)(T-C I) \text { using (1) } \\
& =T^{*} T-C T^{*}-\bar{C} T+C \bar{C} I \quad(\therefore I T=T I=T) \\
& =T^{*} T-\bar{C} T+-C T^{*}+C \bar{C} I \quad\left(\therefore T T^{*}=T^{*} T\right) \\
& =(T-C I)(T-C I)^{*}
\end{aligned}
\]

As \((T-C I) *(T-C I)=(T-C I)(T-C I) *\) it follows that \(T-C I\) is normal.

\subsection*{15.17.3 Theorem:}

Let T be a normal operator on an inner product space V . Then a necessary and sufficient condition that u be a characteristic vector of T is that it be a characteristic vector of \(T^{*}\).

Proof: T is a normal operator on an inner product space V. So \(T T^{*}=T^{*} T\)
\[
\begin{align*}
& \Rightarrow<\left(T T^{*}\right)(u), u>=<\left(T^{*} T\right)(u), u>\text { for any } u \in V \\
& \Rightarrow<T\left(T^{*}\right)(u), u>=<T^{*}(T(u), u> \\
& \Rightarrow<T^{*}(u), T^{*}(u)>=<T(u),\left(T^{*}\right)^{*}(u)> \\
& \Rightarrow\left\|T^{*}(u)\right\|^{2}=<T(u), T(u)>\text { since } T^{* *}=T \\
& \Rightarrow\left\|T^{*}(u)\right\|^{2}=\|T(u)\|^{2} \\
& \Rightarrow\left\|T^{*}(u)\right\|=\|T(u)\| \text { ie }\|T(u)\|=\left\|T^{*}(u)\right\| \ldots \ldots \ldots \ldots . . \tag{1}
\end{align*}
\]

We know that if T is normal, C is a scalar then \(T-C I\) is normal.
Hence from (1) for all \(u \in V\).
\[
\begin{aligned}
& \|(T-C I)(u)\|=\left\|(T-C I)^{*}(u)\right\| \\
& \Rightarrow\|(T-C I) u\|=\left\|\left(T^{*}-\bar{C} I\right) u\right\|
\end{aligned}
\]

In particular \((T-C I) u=0\) if and only if \(\left(T^{*}-\bar{C} I\right)(u)=0\) i.e. \(T(u)=C u\), if and only if \(T^{*}(u)-\bar{C} u\). Hence u is the characteristic vector for T with characteristic value C if and only if \(u\) is a characteristic value for \(T^{*}\) with characteristic value \(\bar{C}\).

Result: If u is an eigen vector of T , then u is also an eigen vector of \(T^{*}\). Infact if \(T(u)=\mathrm{Cu}\); then \(T^{*}(u)=\bar{C} u\).

\subsection*{15.17.4 Theorem:}

Let T be a normal operator on an inner product space. If \(u \in V\), then \(T(u)=O \Leftrightarrow T^{*}(u)=O\)
Proof: T is normal \(\Leftrightarrow T T^{*}=T^{*} T\)
\[
\text { Also } \begin{aligned}
\|T(u)\|^{2}= & <T(u), T(u)> \\
= & <u, T^{*} T(u)> \\
= & <u,\left(T^{*} T\right) u> \\
= & <u,\left(T T^{*}\right) u> \\
& <T^{*}(u), T^{*}(u)> \\
= & \left\|T^{*}(u)\right\|^{2}
\end{aligned}
\]

So \(\|T(u)\|=\left\|T^{*}(u)\right\|\)
Now \(T(u)=O \Leftrightarrow\|T(u)\|=0 \Leftrightarrow\left\|T^{*}(u)\right\|=0\)
\[
\Leftrightarrow T^{*}(u)=O
\]

Thus \(T(u)=O \Leftrightarrow T^{*}(u)=O\)
15.17.5 Let V be an inner product space. Let T be a normal operator on V . If \(\lambda_{1}, \lambda_{2}\) are distinct eigen values of T with corresponding eigen vectors, \(u_{1}\) and \(u_{2}\) then show that \(u_{1}\) and \(u_{2}\) are orthogonal.

Proof: Let \(u_{1}, u_{2}\) are the characteristic vectors of T corresponding to the characteristic values \(\lambda_{1}, \lambda_{2}\left(\lambda_{1} \neq \lambda_{2}\right)\). Now \(T u_{1}=\lambda_{1} u_{1}, T u_{2}=\lambda_{2} u_{2}\) then \(T^{*} u_{2}=\bar{\lambda} u_{2}\).

Again \(\lambda_{1}<u_{1}, u_{2}>=<\lambda_{1} u_{1}, u_{2}>\)
\[
\begin{aligned}
& =<T u_{1}, u_{2}> \\
& =<u_{1}, T^{*} u_{2}> \\
& =<u_{1}, \bar{\lambda}_{2} u_{2}>
\end{aligned}
\]
or
\[
\lambda_{1}<u_{1}, u_{2}>=\lambda_{2}<u_{1}, u_{2}>
\]
\[
\begin{aligned}
& \Rightarrow\left(\lambda_{1}-\lambda_{2}\right)<u_{1}, u_{2}>=0 \\
& \Rightarrow\left\langle u_{1}, u_{2}\right\rangle=0 \text { since } \lambda_{1} \neq \lambda_{2} \\
& \Rightarrow u_{1}, u_{2} \text { are orthogonal. }
\end{aligned}
\]

Hence the theorem.
15.17.6 Let V be a finite dimensional complex inner product space and let T be a normal operator on V . Then V has an orthonormal basis B , each vector of which is a characteristic Vector for T , and conrequently the matrix of T with respect to B is a diagonal matrix.
Proof: As T is a linear operator on a finite dimensional complex inner product space V , so T must have a characteristic value and so \(T\) must value a characteristic vector.

Let \(O \neq u\) be a characteristic vector of T .

Let \(u_{1}=\frac{u}{\|u\|}\). Then \(u_{1}\) is also a characteristic, vector for T since \(\|u\|=1\). If \(\operatorname{dim} V=1\), then \(\left\{u_{1}\right\}\) is an orthonormal basis for V . and \(u_{1}\) is a characteristic vector for T .

Thus the theorem is true if \(\operatorname{dim} V=1\).
Now we proceed by induction on the dimension of V . We suppose that the theorem is true for inner product spaces of dimension les than \(\operatorname{dim} V\). Then we shall prove that it is true for V and the proof is complete by induction.

Let W be the one dimensional subspace of V spanned by the characteristic vector \(u_{1}\) for T . Let \(u_{1}\) be the characteristic vector corresponding to the characteristic value C . Then \(T\left(u_{1}\right)=C u_{1}\). If v is any vector in W then \(v=K u_{1}\) where K is some scalar.

We have \(T(v)=T\left(K u_{1}\right)=K T\left(u_{1}\right)\)
\[
=K\left(C u_{1}\right)=(K C) u_{1}
\]

So \(T(v) \in W\). Thus W is invariant under T and So \(W^{\perp}\) is invariant under \(T^{*}\).
Now T is normal. So if \(u_{1}\) is a characterisitc vector of T , then \(u_{1}\) is also a characteristic vector of \(T^{*}\).

So by the same argument as above, W is also invariant under \(T^{*}\). So \(W^{\perp}\) is invariant under \(\left(T^{*}\right)^{*}\) i.e. \(W^{\perp}\) is invariant under T. If \(\operatorname{dim} V=n\), then \(\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=n-1\).

So \(W^{\perp}\) with the inner product from V is a complex inner product space of dimension less than dimenstion of V .

Suppose S is the linear operator induced by T on \(W^{\perp}\) i.e. S is the restriction of T on \(W^{\perp}\).
Then \(S(v)=T(v) \forall v \in W^{\perp}\)
This restriction of \(T^{*}\) to \(W^{\perp}\) will be the adjoint of \(S^{*}\) of S . Now S is a normal operator on \(W^{\perp}\). For v is any vector in \(W^{\perp}\)
\[
\text { then } \begin{aligned}
\left(S S^{*}\right)(v)=S\left(S^{*}(v)\right) & =S\left(T^{*}(v)\right) \\
& =T\left(T^{*}(v)\right) \\
& =\left(T T^{*}\right)(v) \\
=\left(T^{*} T\right) v & =T^{*}[T(v)] \\
& =T^{*}[S(v)] \\
& =S^{*}[S(v)] \\
& =\left(S^{*} S\right)(v)
\end{aligned}
\]

So \(\left(S S^{*}\right)=\left(S^{*} S\right)\) and thus \(S\) is a normal operator on \(W^{\perp}\); whose dimension is less than the dimension of V .

So by our induction hypothesis, \(W^{\perp}\) has an orthonormal basis \(\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) consisting of characteristic vectors of \(S\). Suppose \(u_{i}\) is the characteristic vector for \(S\) corresponding to the characteristic value \(C_{i}\).

Then \(S\left(u_{i}\right)=C u_{i} \Rightarrow T\left(u_{i}\right)=C u_{i}\)
So \(u_{i}\) is also a characteristic vector for T .
Thus \(u_{2}, u_{3}, \ldots u_{n}\) are also characteristic vectors for T. Since \(V=W \oplus W^{\perp}\), so \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is also an orthornormal basis for \(T\) each vector of which is a characteristic vector for T . The matrix of T relative to B will be the diagonal matrix. Hence the theorem.

\subsection*{15.15.7 Theorem:}

Suppose T is a linear operator on a finite dimensional inner product space V and suppose
that there exists an orthonormal basis \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) for V such that each vector in B is a characteristic vector for T . Then prove that T is normal.

Proof: If \(u_{i} \in B\), then it is given that \(u_{i}\) is a characteristic root of T . So
Let \(T\left(u_{i}\right)=C_{i} u_{i}\) for \(i=1,2, . . n\)
Then \(\left[T^{*}\right]_{B}\) is a diagonal matrix with diagonal elements \(c_{1}, c_{2}, \ldots c_{n}\). Since
\(\left[T^{*}\right]_{B}=[T]_{B}\) so \(\left[T^{*}\right]_{B}\) is also a diagonal matrix with diagonal elements \(\bar{c}_{1}, \bar{c}_{2}, \ldots \bar{c}_{n}\)
Now as two diagonal matrices commute it follows
\[
\begin{aligned}
& {[T]_{B}=\left[T^{*}\right]_{B}=\left[T^{*}\right]_{B}[T]_{B} } \\
\Rightarrow & {\left[T T^{*}\right]_{B}=\left[T^{*} T\right]_{B} } \\
\Rightarrow & T T^{*}=T^{*} T \Rightarrow T \text { is normal. }
\end{aligned}
\]

Hence the theorem.
Note: The above two theorems can be clubbed together and can be restated as.
Let T be a linear operator on a finite dimentional complex inner product space V . Then T is normal if and only if there exists an orthonormal basis of V consisting of eigen vectors of T .

\subsection*{15.18 Positive Definite and Positive Semidefinite Transformations:}

\subsection*{15.18.1 1) Positive definite operator: Definition:}

A linear operator T on a finite dimensional inner product space V is called positive definite in symbol \(T>0\), if T is self adjoint and \(\langle T(u), u>0\) for all \(O \neq u \in V\).
ii) Positive semi definite operator : A linear operator on an inner product space V is called postive semi definite (or non negative) in symbol \(T \geq 0\) if it is self adjoint and if \(\langle T(u), u\rangle \geq 0 \forall u\) in \(V\). Note i) An \(n \times n\) matrix \(A\) with entries from \(R\) or \(C\) is called positive definite if \(L_{A}\) is positive definite.
ii) An \(\mathrm{n} \times \mathrm{n}\) matrix A with entries from R or C is called postive semidefinite if \(L_{A}\) is positive semi definite.
15.8.3 Theorem: Let \(T\) be a self adjoint operator on an inner product space V . If T is positive or non negative then every characteristic value of T is positive or non negative respectively.

Proof: Let C be a characteristic value of T .
Then \(T(u)=C u\) for some non zero vector \(u\).
\[
\text { We have }\langle T(u), u\rangle=\langle C u, u\rangle=C\langle u, u\rangle
\]
\(=C\|u\|^{2}\)
\[
\Rightarrow C=\frac{\langle T(u), u\rangle}{\|u\|^{2}}
\]

If T is postive then \(\langle T(u), u \gg 0\), so \(C>0\) i.e. C is postive.
If T is non negative then \(\langle T(u), u\rangle \geq 0\)
So \(C \geq 0\) i.e. \(C\) is non negative.

\subsection*{15.18.4 Theorem:}

If \(T\) is a self adjoint operator on a finite dimensional inner product space \(V\), such that the characteristic values of T are non-negative show that T is non-negative.
Proof: T is a self adjoint operator on a finite dimensional inner product space V . Let T has all charcterisitc values non-negative.

As T is self adjoint, we can find an orthonormal basis \(B=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}\) consisting of characteristic vectors of T .

For each \(v_{1}\) we have \(T\left(v_{i}\right)=C_{i} V_{i}\) where \(C_{i} \geq 0\). Let w be any vector in V
Let \(w=a_{1} u_{1}+a_{2} u_{2}+\ldots .+a_{n} u_{n}\)
Then \(T(w)=T\left(a_{1} v_{1}+a_{2} v_{2}+\ldots .+a_{n} v_{n}\right)\)
\[
\begin{aligned}
& =a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)+\ldots .+a_{n} T\left(v_{n}\right) \\
& =a_{1} c_{1} v_{1}+a_{2} c_{2} v_{2}+\ldots .+a_{n} c_{n} v_{n}
\end{aligned}
\]

We have \(\left.\langle T(w), w\rangle=<a_{1} c_{1} v_{1}+a_{2} c_{2} v_{2}+\ldots .+a_{n} c_{n} v_{n}, a_{1} v_{1}+a_{2} v_{2}+\ldots .+a_{n} v_{n}\right\rangle\)
\[
\begin{aligned}
& =a_{1} \bar{a}_{1} c_{1}+a_{2} \bar{a}_{2} c_{2}+\ldots .+a_{n} \bar{a}_{n} c_{n} \quad\left(\therefore\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} \text { is an orthonormal }\right) \\
& =\left|a_{1}\right|^{2} c_{1}+\left|a_{2}\right|^{2} c_{2}+\ldots .+\left|a_{n}\right|^{2} c_{n} . \geq 0 \\
& \quad \text { since } c_{i} \geq 0 \text { and }\left|a_{i}\right| \geq 0
\end{aligned}
\]

Thus \((T(w), w>\quad \geq 0 \forall w \in V\)
Hence \(T \geq O\) i.e. T is non negative.

\subsection*{15.18.5 Theory:}

Let T be a linear operator on a finite dimensional inner product space V . Let \(A=\left[a_{i j}\right]_{n \times n}\) be the matrix of T relative to an ordered orthonormal basis \(B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\). Then T is positive if and only if the matrix A satisfies the following conditions.
i) \(A=A^{*}\) i.e. A is self adjoint
ii) \(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \overline{x_{i}} x_{j}>0\) where \(x_{1}, x_{2}, \ldots, x_{n}\) and n scalars not all zero.

Proof: Let v be any vector in V. Then
\[
\begin{aligned}
& v=x_{1} u_{1}+x_{2} u_{2}+\ldots x_{n} u_{n} \\
& \text { then }\left\langle T(v), v>=<\left(T \sum_{j=1}^{n} x_{j} u_{j}\right), \sum_{i=1}^{n} x_{i} u_{i}>\right. \\
&=<\sum_{j=1}^{n} x_{j} T\left(u_{j}\right), \sum_{i=1}^{n} x_{i} u_{i}> \\
&=\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} \bar{x}_{i}<T\left(u_{j}\right), u_{i}>
\end{aligned}
\]

We know if \(A=\left[a_{i j}\right]_{n \times n}\) be the matrix of T with respect to the ordered basis B then \(a_{i j}=\left\langle T\left(u_{j}\right), u_{i}\right\rangle\) using in the above we get \(\langle T(v), v\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \overline{x_{i}} x_{j}\)

Now suppose T is positive. Then \(T=T^{*}\)
So \(A=A^{*}\)
If \(x_{1}, x_{2}, \ldots x_{n}\) are any n scalars not all zero, then \(v=x_{1} u_{1}+x_{2} u_{2}, \ldots+x_{n} u_{n}\) is a non zero vector in V . Since T is positive \(\langle T(v), v\rangle>0\) Hence \(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \bar{x}_{i} x_{j}>0\)
conversely suppose that the conditions (1) and (ii) of the theorem hold. \(A=A^{*} \Rightarrow T=T^{*}\)
Also (ii) implies \(\left\langle T(v), v>0\right.\). If non zero \(v \in V\), then we can write \(v=x_{1} u_{1}+x_{2} u_{2}, \ldots+x_{n} u_{n}\) where \(x_{1}, x_{2}, \ldots x_{n}\) are scalars not all zero. Hence T is positive.

\subsection*{15.18.6 Working procedure to verify the positiveness of a square matrix:}

Let \(A=\left[a_{i j}\right]_{n \times n}\) be a square matrix of order n ; over the field F . Then the principal minors of A are the following n scalars
\[
\operatorname{det}\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots . & a_{1 k} \\
a_{k 1} & \ldots . & \ldots . & a_{k k}
\end{array}\right]=X_{k} \text { say }(k=1,2, . . n)
\]

Then the matrix A is positive if and only if the principal minors are all positive and \(A=A^{*}\). Where as the matrix \(A\) is not positive if \(\operatorname{det} A\) is not positive.

\subsection*{15.19 Worked out Examples:}
W.E. 13 : T is a linear operator on an inner product space \(V=R^{2}\) defined by \(T(a, b)=(2 a-2 b,-2 a+5 b)\). Determine whether T is normal, self adjoint or neither. If possible, find an orthonormal basis of eigen vectors of T for V and list the corresponding eigen values.

Solution: \(V=R^{2}(F=R)\) is an inner product space of dimension 2 .
So \(V(F)=R^{2}(R)\) has an orthonormal basis \(B=\left\{u_{1}=(1,0), u_{2}=(0,1)\right\}\). Here T is a linear operator on \(V(F)\) such that \(T(a, b)=(2 a-2 b,-2 a+5 b)\) for \(u=(a, b)\).
\[
T(1,0)=(2(1)-2(0),-2(1)+5(0))=(2,-2)
\]
and \(T(0,1)=(2(0)-2(1),-2(0)+5(1))=(-2,5)\)
\[
\text { So }[T]_{B}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right] \text { and }\left[T^{*}\right]_{B}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]
\]

So \(T=T^{*} \Rightarrow T\) is self adjoint.
\[
\begin{gathered}
\text { Also }[T]_{B}\left[T^{*}\right]_{B}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
8 & -14 \\
-14 & 29
\end{array}\right] \\
{\left[T^{*}\right]_{B}[T]_{B}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
8 & -14 \\
-14 & 29
\end{array}\right]} \\
\text { So }[T]_{B}\left[T^{*}\right]_{B}=\left[T^{*}\right]_{B}[T]_{B} \\
\Rightarrow\left[T T^{*}\right]_{B}=\left[T^{*} T\right]_{B} \Rightarrow T T^{*}=T^{*} T
\end{gathered}
\]
\(\Rightarrow T\) is normal.
Let \(A=[T]_{B}\). Characteristic equation is \(|A-\lambda I|=0 \Rightarrow\left|\left[\begin{array}{cc}2 & -2 \\ -2 & 5\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right|=0\)
\[
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & -2 \\
-2 & 5-\lambda
\end{array}\right|=0 \Rightarrow(2-\lambda)(5-\lambda)-4=0 \\
& \Rightarrow \lambda^{2}-7 \lambda+6=0 \Rightarrow(\lambda-6)(\lambda-1)=0 \\
& \quad \Rightarrow \lambda=6, \lambda=1
\end{aligned}
\]

To find eige vector corresponding \(\lambda=6\).
\[
\begin{aligned}
& (A-\lambda I) X=O \\
& {\left[\begin{array}{cc}
2-6 & -2 \\
-2 & 5-6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=O \Rightarrow\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=O} \\
& \Rightarrow-4 x_{1}-2 x_{2}=0 \Rightarrow x_{2}=-2 x_{1}
\end{aligned}
\]
put \(x_{1}=1\), then \(x_{2}=-2\)
So \(X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ -2\end{array}\right]\) and every scalar multiple of it is an eigen vector.
To find eigen vector corresponding to \(\lambda=1\).
\[
\begin{gathered}
(A-\lambda I) X=O \\
\Rightarrow\left[\begin{array}{cc}
2-1 & -2 \\
-2 & 5-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=O \Rightarrow\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \\
\Rightarrow x_{1}-2 x_{2}=0 \text { and }-2 x_{1}+4 x_{2}=0 \\
\Rightarrow x_{1}=2 x_{2} \text { so put } x_{2}=1, \text { then } x_{1}=2
\end{gathered}
\]

So \(X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]\) and every scalar multiple of it is an eigen vector.

An orthonormal basis of eigen vectors is \(\left\{\frac{1}{\sqrt{5}}(1,-2), \frac{1}{\sqrt{5}}(2,1)\right\}\) with corresponding eigen values 6 and 1 .
W.E. 14 : Let V be a finite dimensional inner product vector space and T be an idempotent operator on V i.e. \(T^{2}=T\) then T is self adjoint if and only if \(T T^{*}=T^{*} T\).

Solution: Let T be self adjoint then \(T^{*}=T\) and \(T^{2}=T\).
\[
\begin{aligned}
& \text { To prove } T T^{*}=T^{*} T \\
& \begin{aligned}
& \text { Now }<T(u), v>=<u, T^{*}(v)>=<u, T(v)> \\
&<u, T T(v)>=<u, T^{*} T(v)> \\
&=<u, T T^{*}(v)>\text { since } T^{*}=T . \\
& \Rightarrow T^{*} T=T T^{*}
\end{aligned}
\end{aligned}
\]

Converse : Given \(T^{2}=T, T T^{*}=T^{*} T\) to prove that T is self adjoint i.e. \(T^{*}=T\).
Now \(\left.\langle T(u), T(u)\rangle=\left\langle u, T^{*} T(u)\right\rangle=<u, T T^{*}(u)\right\rangle\)
\[
\begin{gather*}
=<T^{*} u, T^{*} u> \\
\Rightarrow\|T(u)\|^{2}=\left\|T^{*}(u)\right\|^{2} \tag{1}
\end{gather*}
\]
\(\therefore T(u)=O\) if and only if \(T^{*}(u)=O\)
Choose any vector in V such that \(u=v-T(v)\).
\[
T(u)=T\left(v-T(v)=T(v)-T^{2}(v)=T(v)-T(v)=O\right.
\]

Since \(T(u)=0\) it follows that \(T^{*}(u)=O\)
But \(T^{*}(u)=O \Rightarrow T^{*}(v-T(v)=O\)
or \(T^{*}(v)-T^{*} T(v)=O\)
or \(T^{*}(v)=T^{*} T(v) \forall v \in V\)
\[
\begin{equation*}
\text { So } T^{*}=T^{*} T \tag{2}
\end{equation*}
\]

Now \(T=\left(T^{*}\right)^{*}=\left(T^{*} T\right)^{*}=T^{*} T^{* *}=T^{*} T=T^{*}\)
As \(T=T^{*}\), therefore, T is self adjoint.
W.E. 15 : Let V be the space of polynomials over the field of complex numbers with inner product defined as \(\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)}, f, g \in V\). If D is the differetial operator, find out if D is itself adjoint or not.

Solution: Let dash denotes the differentiation i.e \(D f=f^{\prime}\)
\(\langle D f, g\rangle=\left\langle f^{\prime}, g\right\rangle=\int_{0}^{1} f^{\prime}(t) \overline{g(t)} d t\)
intergrating by parts we get
\[
<D f, g>=\left[\begin{array}{ll}
f & \bar{g} \tag{1}
\end{array}\right]_{0}^{1}-\int_{0}^{1} f(t) \overline{g^{\prime}(t)} d t
\]

Also \(<f, D g>=<f, g^{\prime}>-\int_{0}^{1} f(t) \overline{g^{\prime}(t)} d t\) by definition ..
If D were to be self adjoint \(\langle D f, g\rangle=<f, D g>\)
But since (1) and (2) are not the same. D is not selfadjoint.
W.E. 16 : If \(T_{1}, T_{2}\) are positive linear operators on an inner product vector space then prove that \(T_{1}+T_{2}\) is also positive.

Solution: Given \(T_{1}{ }^{*}=T_{1},\left\langle T_{1}(u), u \gg 0 ; T_{2}{ }^{*}=T_{1}\right.\)
and \(\left\langle T_{2}(u), u\right\rangle>0\)
\(\operatorname{Now}\left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}=T_{1}+T_{2}\)
\(\therefore T_{1}+T_{2}\) is self adjoint.
Again \(\left\langle\left(T_{1}+T_{2}\right)(u), u>=<T_{1}(u)+T_{2}(u), u\right\rangle\)
\(=\left\langle T_{1}(u), u\right\rangle+\left\langle T_{2}(u), u \gg 0\right.\) by given conditions.
Hence \(T_{1}+T_{2}\) is also +ve .

\subsection*{15.20 Summary:}

In this lesson we discussed about linear operators. Adjoint operator. Properties of adjoint operators. Normal and self adjoint operators their properties-polynomial split-schur theorem, positive, semi positive square matrices.

\subsection*{15.21 Technical Terms:}

The technical terms we come across in this lesson are adjoint operator, self adjoint operator, polynomial split, Normal operator, positive matrix, semi positive matrix.

\subsection*{15.22 Model Questions:}
1. Define adjoint of a linear operator on an inner product space V . If \(S^{*}, T^{*}\) are adjoint operators of S and V , then prove that
(i) \(\quad(S+T)^{*}=S^{*}+T^{*}\)
(ii) \(\quad(S T)^{*}=T^{*} S^{*}\)
2. Define self adjoint operator. Let T be a self adjoint linear operator on a finite dimensional inner product space. Then prove that \(R(T)=\{N(T)\}^{\perp}\)
3. State and prove schur theorem in Linear operators.
4. Define normal operator. If T is a normal operator on an inner product space then show that \(T-C I\) is normal for every \(C \in F\).
5. Define positive linear operator. If \(T_{1}, T_{2}\) are positive linear operators on an inner product space then prove that \(T_{1}+T_{2}\) is above positive.

\subsection*{15.23 Exercise:}
1. For each linear operator \(T\) on an inner product space \(V\), determine whether \(T\) is normal, self adjoint or neither. If possible produce an orthonormal basis of eigen vectors of T for V and list the corresponding eigen values.
1) \(V=C^{2}\), and T defined by \(T(a, b)=(2 a+i b, a+2 b)\)

Ans : T is normal, but not self adjoint. An orthonormal basis of eigen vectors is \(\left\{\frac{1}{2}((1+i), \sqrt{2}), \frac{1}{2}(1+i,-\sqrt{2}\}\right.\) with corresponding eigen values \(2+\frac{1+i}{\sqrt{2}}, 2-\frac{(1+i)}{\sqrt{2}}\).

Ans: \(T\) is self adjoint.
ii) \(V=M_{2 \times 2}(R)\) and T is defined by \(T(A)=A^{T}\)

Ans: T is self adjoint. An orthonormal basis of eigen vectors.
\[
\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right\} \text { corresponding eigen values are }
\]
\(1,1,-1,-1\).
2. Let V be a complex inner product space, and let T be a linear operator on V .

Prove that T is normal if and only if \(T_{1} T_{2}=T_{2} T_{1}\).
3. Prove that every entry on the main diagonal of a positive matrix is positive.
4. Which of the following matrices are positive.
i) \(A=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]\)
ii) \(B=\left[\begin{array}{cc}1 & 1+i \\ 1-i & 3\end{array}\right]\)

Ans: (i) \(A\) is not positive
(ii) B is positive
5. If T is a linear operator on an inner product space \(V(F)\) and \(a, b\) are scalars such that \(|a|=|b|\), then show that \(a T+b T^{*}\) is normal.

\subsection*{15.24 Reference Books:}
1. Linear Algebra 4th edition; Stephen H. Friedberg. Arnold J. Insel, Lawrence E. Spence.
2. Sehaum's outlines, Beginning Linear Algebra, Seymour Lipschutz.
3. Linear Algebra

Dr. S.N. Goel
4. Linear Algebra
K.P. Gupta

\section*{- A. Mallikharjana Sarma}

\section*{LESSON - 16}

\section*{UNITARY AND ORTHOGONAL OPERATORS}

\subsection*{16.1 Objective of the Lesson:}

In this chapter we study the analogy between complex numbers and linear operators. In the previous lessons, we observed that the adjoint of a linear operator acts similarly to the conjugate of a complex number. A complex number has length 1 , if \(z \bar{z}=1\).

In this lesson we study those linear operators T on an inner product space V , such that \(T T^{*}=T * T=I\). We see that these are precisely the linear operators that preserves length; in the sense that \(\|T(u)\|=\|u\|\) for all \(u \in V\). As another characterisation we prove that on a finite dimensional complex inner product space, these are the normal operators whose eigen values all have absolute value 1 .

\subsection*{16.2 Structure of the lesson :}

This lesson contains the following items:

\subsection*{16.3 Introduction}

\subsection*{16.4 Some basic definitions}
16.5 Unitary operator and orthogonal operator, definition
16.6 Theorems - Equivalent statements
16.7 Reflection - definition - examples.
16.8 Some basic properties of unitary operators
16.9 Matrices representing unitary and orthogonal transformations
16.10 Theorems
16.11 Worked out examples
16.12 Working procedure to find unitary matrix \(P\) and diagonal matrix \(D\) such that \(P^{*} A P=D\).
16.13 Worked Out examples
16.14 Summary
16.15 Technical Terms
16.16 Model Questions
16.17 Exercise
16.18 Reference Books

\subsection*{16.3 Introduction :}

Linear operators preserve the operations of vector addition and scalar multiplication and isomorphisms preserve all the vector space structure. We now consider those linear operators T on an inner product space that preserve the length. We see that this condition guarantees, that T preserves the inner product.

\subsection*{16.4 Some Basic Definitions:}

\subsection*{16.4.1 Definition:}

Let U and V be two inner product spaces over F . Let \(T: U \rightarrow V\) be a linear transformation. Then we say that
i) T preserves inner products if \(\langle T(u), T(v)\rangle=\langle u, v\rangle\) for all \(u, v \in U\).
ii) T Preserves norms if \(\|T(u)\|=\|u\| \forall u \in U\).
iii) T preserves isometry if T preserves distances i.e. if \(\|T(u)-T(v)\|=\|u-v\| \forall u, v \in U\).

Note that the distance \(T(u)\) to \(T(v)\) is \(\mathrm{d}(T(u), T(v))\) and is equal to \(\|T(u)-T(v)\|\).

\subsection*{16.4.2 Equivalent Conditions:}

Let \(U(F)\) and \(V(F)\) be two inner product spaces. Let \(T: U(F) \rightarrow V(F)\) be a linear transformation. Then the following three conditions are equivalent.
i) T preserves inner product
ii) T preserves norms
iii) T is an isometry.

\subsection*{16.4.3 Inner Product Isomorphism:}
16.4.4 Definition: Let T be a linear transformation from an inner product space \(V(F)\) to an inner product space \(V(F)\). Then T is said to be an inner product space isomorphism if
i) T is invertible i.e. T is one one onto
ii) T preserves inner products

Here \(U(F)\) and \(V(F)\) are said to be isomorphic and we write \(U \cong V\).
T preserves inner products \(\Rightarrow \mathrm{T}\) is non singular
\(\Rightarrow \mathrm{T}\) is one one.
Hence an inner product space isomorphism from \(U\) onto \(V\) can also be defined as a linear transformation from U onto V , which preserves inner products.

\section*{Rings and Linear Algebra}

\subsection*{16.5 Definition:}

\section*{i) Unitary Operator:}

Let T be a linear operator on a finite dimensional inner product space over the field of complex numbers and \(\|T(u)\|=\|u\|\) for all \(u \in U\) then T is called a unitary operator.
ii) Orthogonal Operator: Let T be a linear operator on a finite dimensional inner product space V , over the field of real numbers R and if \(\|T(u)\|=\|u\|\) for all \(u \in V\), then T is said to be orthogonal opeator.
iii) Isometry: Let T be a linear operator on an infinite dimensional inner product space V over F and if \(\|T(u)\|=\|u\|\) for all \(u \in V\), then T is called an isometry.

If in addition, the operator is onto (the condition guarantees one to one), then the operator is called unitary if \(F=C\) or orthogonal operator if \(F=R\).
iv) Definition: \(U\) and \(V\) are two vector spaces over a field \(F\). Then the zero transformation \(T_{0}: U \rightarrow V\) is defined by \(T_{0}(u)=O \forall u \in U\). The zero transformation is also denoted by \(\hat{0}\).
16.6.1 Theorem: Let \(T\) be a self adjoint operator on a finite dimensional inner product space \(V\). If \(\langle u, T(u)\rangle=0 \quad u \in V\); then \(T=T o\).

Proof: We know that if T is a linear operator on a finite dimensional inner product space V , then T is said to be self adjoint, if and only if there exists on orthonormal basis \(B\) for \(V\) consisting of eigen vectors of T .

By the above theorem we can choose an orthonormal basis B for V. consisting of eigen vectors of T. If \(u \in B\) then \(T(u)=\lambda u\) for some \(\lambda\).
\[
\text { then } \begin{aligned}
0 & =\langle u, T(u)=\langle u, \lambda u\rangle=\bar{\lambda}\langle u, u\rangle \\
& \Rightarrow \bar{\lambda}=0 \text { Hence } T(u)=O \text { for all } u \in B
\end{aligned}
\]

So \(T=T_{0}\)

\subsection*{16.6.2 Equivalent Statements:}

Theorem: Let T be a linear operator on a finite dimensional inner product space V . Then the following statements are equivalent
i) \(T T^{*}=T * T=I\)
ii) \(\langle T(u), T(v)\rangle=\langle u, v\rangle \forall u, v \in V\)
iii) If B is an orthonormal basis for V , then \(T(B)\) is an orthonormal basis for V .
iv) There exists an orthonormal basis B for V , such that \(T(B)\) is an orthonormal basis for V .
v) \(\|T(u)\|=\|u\| \forall u \in V\)

Proof:
1. We will now prove that (i) \(\Rightarrow\) (ii)
given \(T T^{*}=T * T=I\)
Let \(u, v \in V \Rightarrow\langle u, v\rangle=\langle I(u), v\rangle\)
\[
\begin{aligned}
& =<\left(T^{*} T\right)(u), v>\text { using (1) } \\
& =<T^{*}(T(u), v> \\
& =<T(u), T(v)>
\end{aligned}
\]

Thus \(T T^{*}=T^{*} T=I \Rightarrow\langle T(u), T(v)\rangle=\langle u, v\rangle\) for all \(u, v \in V\)
\[
\text { Hence (i) } \Rightarrow \text { (ii) }
\]
ii) To show (ii) \(\Rightarrow\) (iii)

Given \(\langle T(u), T(v)\rangle=\langle u, v\rangle \forall u, v \in V\)
Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal basis for V. So \(T(B)=\left\{T\left(u_{1}\right), T\left(u_{2}\right), \ldots, T\left(u_{n}\right)\right\}\)
from (2) \(<T\left(u_{i}\right), T\left(u_{j}\right)>=<u_{i}, u_{j}>\)
\[
\left\langle\delta_{i j}\right\rangle=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
\]
\(\Rightarrow T(B)=\left\{T\left(u_{1}\right), T\left(u_{2}\right), \ldots T\left(u_{n}\right)\right\}\) is an orthonormal basis for V .
\[
\text { Hence (ii) } \Rightarrow \text { (iii) }
\]
3. To show that (iii) \(\Rightarrow\) (iv)

Given B is an orthonormal basis for V , then \(T(B)\) is an orthonormal basis for V .
Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an orthonormal basis for V ; then by (3) \(T(B)=\left\{T\left(u_{1}\right), T\left(u_{2}\right), \ldots T\left(u_{n}\right)\right\}\) is an orthonormal basis for V .
\[
\text { Hence (iii) } \Rightarrow \text { (iv) }
\]
4. To show that (iv) \(\Rightarrow\) (v)

Let \(u \in V\) and \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) is a basis for V. So \(u=\sum_{i=1}^{n} a_{i} u_{i}\) for some scalar \(a_{i}\)
\[
\begin{align*}
&\|u\|^{2}=<\sum_{i=1}^{n} a_{i} u_{i}, \sum_{j=1}^{n} a_{j} u_{j}> \\
&=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} \overline{a_{j}}<u_{i}, u_{j}> \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a_{j}}<u_{i}, u_{j}> \\
&=\sum_{i=1}^{n} a_{i} \bar{a}_{i}<u_{i}, u_{i}>\text { summing of } j=1,2, \ldots n \text { and remembering } \\
& \quad<u_{i}, u_{j}>=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
1 \text { if } i=j
\end{array} \quad \text { as } \mathrm{B}\right. \text { is orthonormal. } \\
&=\sum_{i=1}^{n} a_{i} \bar{a}_{i} \quad \text { (1) }  \tag{1}\\
&=\sum_{i=1}^{n}\left|a_{i}\right|^{2} \quad \ldots . . . \text { (A) }
\end{align*}
\]

Applying the same manipulation to \(T(u)=\sum_{i=1}^{n} a_{i} T\left(u_{i}\right)\) and using the fact \(T(B)\) is also orthonormal we obtain \(\|T(u)\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}\)

From (A) and (B) we get \(\|T(u)\|=\|u\|\)
So (iv) \(\Rightarrow(\mathrm{v})\)
5. Finally we will prove that \(V \rightarrow i\) (i)

Let \(u \in V\) we have \(\langle u, u\rangle=\|u\|^{2}=\|T(u)\|^{2}\)
\[
\begin{aligned}
& =<T(u), T(u)> \\
& =<u, T * T(u)>
\end{aligned}
\]
\[
\text { So } \left.<u, u>-<u, T^{*} T(u)\right\rangle=0 \forall u \in V
\]
\[
\Rightarrow<u,(I-T * T) u>=0 \forall u \in V
\]

Let \(S=\left(I-T^{*} T\right)\) then S is self - adjoint and \(\langle u, S(u)\rangle=0 \forall u \in V\),
We know if T is a self adjoint operator on a finite dimensional inner product space and if \(<u, T(u)\rangle=0 \forall u \in V\). Then \(T=T_{0}\) where \(T_{0}\) is the zero transformation.

So \(T_{0}=S=(I-T * T)\)
\[
\text { So } T * T=I
\]

Since V is finite dimensional, \(T T^{*}=I\)
Hence \(\|T(u)\|=\|u\| \forall u \in V, \Rightarrow T T^{*}=T * T=I\)
\[
\text { Hence (v) } \Rightarrow \text { (i) }
\]

Note: Among the equivalent conditions, any one can be taken as a definition in doing problems.

\subsection*{16.6.3 Theorem:}

If T is a unitary operation then show that \(T^{*}=T^{-1}\)
Proof: T is a unitary operation \(\Rightarrow\|T(u)\|=\|u\|\)
\[
\begin{aligned}
& \Rightarrow\|T(u)\|^{2}=\|u\|^{2} \\
& \Rightarrow<T(u), T(u)>=<u, u> \\
& \Rightarrow<\left(T^{*} T\right)(u), u>=<u, u> \\
& \Rightarrow<\left(T^{*} T\right)(u), u>=<I(u), u> \\
& \Rightarrow<\left(T^{*} T-I\right) u, u>=0 \\
& \Rightarrow T * T-I=\hat{O} \text { (null operator) }
\end{aligned}
\]
\[
\begin{aligned}
& \Rightarrow T * T=I \Rightarrow T * T T^{-1}=I T^{-1} \\
& \Rightarrow T^{*} I=T^{-1} \Rightarrow T^{*}=T^{-1}
\end{aligned}
\]

Thus if T is a unitary operator then \(T^{*}=T^{-1}\)
Remark: If T is unitary, then T is non singular.

\subsection*{16.6.4 Theorem:}

Let T be a linear operator on a finite dimensional real inner product space V , then V has an orthonormal basis of eigen vectors of T with corresponding eigen values of obsolute value 1 if and only if T is both self adjoint and orthogonal.

Proof: Let V has then orthogonal basis \(B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\)
such that \(T\left(u_{i}\right)=\lambda u_{i}\) and \(|\lambda|=1\) for all i ,
As T is a linear operator and there exists an orthonormal basis B for V consisting of eigen vectors of T , and so T is self adjoint.

Thus \(\left(T T^{*}\right)\left(u_{i}\right)=T\left(\lambda_{i} u_{i}\right)=\lambda_{i} \lambda_{i} u_{i}=\lambda_{i}^{2} u u_{i}=u_{i}\) for each i. So \(T T^{*}=I\) so T is orthogonal.
Hence T is both self adjoint and orthogonal.
Converse: Let T be both self adjoint and Orthogonal:
We know if T is a linear operator on a finite dimensional real inner product space V , then T is self adjoint if and only if there exists an orthonormal basis \(B\) for \(V\) consisting of eigen vectors of \(T\).

So by this theorem V possess an orthonormal basis \(B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) such that \(T\left(u_{i}\right)=\lambda_{i} u_{i}\) for all i . If T is also orthogonal. We have \(\left|\lambda_{i}\right| \cdot\left\|v_{i}\right\|=\left\|\lambda_{i} v_{i}\right\|=\left\|T\left(v_{i}\right)\right\|=\left\|v_{i}\right\|\)

Thus \(\left|\lambda_{i}\right|\left\|v_{i}\right\|=\left\|v_{i}\right\| \Rightarrow\left|\lambda_{i}\right|=1\) for every i.
Hence from the above two cases the theorem follows.
16.6.5 Corollary: Let T be a linear operator on a finite dimensional complex inner product space V . Then V has an orthonormal basis of eigen vectors of T with corresponding eigen values of absolute value 1 if and only if \(T\) is unitary.

Proof: The proof is similar as above.

\subsection*{16.7 Reflection:}
16.7.1 Definition: Let \(L\) be a one dimensional subspace of \(R^{2}\) about a line \(L\) through the origin.

A linear operator T on \(R^{2}\) is called a reflection of \(R^{2}\) about L ; if \(T(u)=u \forall u \in L\) and
\[
T(u)=-u . \forall u \in L^{\perp} .
\]
16.7.2 Example: Let T be a reflection of \(R^{2}\) about a line through the origin. We shall show that T is an orthogonal operator. Select vectors \(u_{1} \in L\) and \(u_{2} \in L^{\perp}\) such that \(\left\|u_{1}\right\|=\left\|u_{2}\right\|=1\).

Then \(T\left(u_{1}\right)=u_{1}, T\left(u_{2}\right)=-u_{2}\) thus \(u_{1}\) and \(u_{2}\) are eigen vectors of \(T\) with corresponding eigen values 1 and -1 respectively. Further more \(\left\{u_{1}, u_{2}\right\}\) is an orthonormal basis for \(R^{2}\). It follows that T is an orthogonal operator.

\subsection*{16.8 Some Basic Properties of Unitary Operators:}

\subsection*{16.8.1 Show that every unitary operator is normal:}

Proof: Let \(T\) be linear operatory on the inner product space V. Which is unitary.
So \(T T^{*}=T^{*} T=I\). Hence T is invertible and \(T^{-1}=T^{*}\).
So T is normal.
Hence every unitary operator is normal.
16.8.2 If \(S\) and \(T\) are unitary operators, then ST is unitary or the product of two unitary operators is unitary.

Proof: S, T are two unitary operators on V. Then
\[
\begin{equation*}
S^{-1}=S^{*}, T^{-1}=T^{*} \tag{1}
\end{equation*}
\]
\(\qquad\)
Now \((S T)^{-1}=T^{-1} S^{-1}=T * S *\) using (1)
\[
=(S T)^{*}
\]

As \((S T)^{-1}=(S T)^{*}\); ST is unitary. Hence the product of two unitary operators is unitary.
Aliter i) : S and T are two unitary operators on a finite dimensional inner product space V .
We have to show that ST is unitary.
Now \((S T)(S T)^{*}=S T\left(T^{*} S^{*}\right)\)
\[
\begin{aligned}
& =S\left(T T^{*}\right) S^{*} \\
& =S I S^{*}=S S^{*}=I
\end{aligned}
\]

So \((S T)(S T)^{*}=I\)
Similarly \((S T) *(S T)=I\)
So \(S T\) is unitary.
Hence the theorem.
ii) Let \(S\) and \(T\) be the given unitary operators then \(S\) and \(T\) are invertible. So ST is invertible
\[
\text { Also } \begin{aligned}
\|(S T)(u)\| & =\| S(T(u) \| \\
& =\|T(u)\|=\|u\| \text { since } S \text { and } T \text { are unitary. }
\end{aligned}
\]

So \(\|S T(u)\|=\|u\|\)
So ST is unitary.
Hence the theorem.
16.8.3 Corollary: Prove that the composite of orthogonal operators is orthogonal.

Proof: Similar as above.

\subsection*{16.8.4 Theorem:}

Show that the inverse of a unitary operator is unitary.
Proof: Let V be an inner product space. T is a unitary operator on V . We have to show that \(T^{-1}\) is unitary.

As T is unitary \(\|T(u)\|=\|u\|\) for all \(u \in V\)
We put \(v=T(u)\) ie \(T^{-1}(v)=u\)
We get \(\left\|T T^{-1}(v)\right\|=\left\|T^{-1}(v)\right\|\)
\[
\Rightarrow\|v\|=\left\|T^{-1}(v)\right\|
\]

Hence \(\left\|T^{-1}(v)\right\|=\|v\| \forall v \in \mathrm{~V}\)
Which implies \(T^{-1}\) in unitary.
Aliter : Let T be unitary. \(T^{-1}\) is the inverse operator of T . Now \(\left(T^{-1}\right)^{-1}=\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}\)
Since T is unitary \(T^{-1}=T^{*}\).
Thus as \(\left(T^{-1}\right)^{-1}=\left(T^{-1}\right) *\) it follows that the inverse of a unitary operator is unitary.
16.8.5 Show that the set of all unitary operators on an inner product space V is a group with respect to composite of operations.

Solution: Let G denote the set of all unitary operators on an inner product space \(V(F)\).

Let \(T_{1}, T_{2}\) be arbitary unitary operators belonging to G .
So \(T_{1} T_{1}{ }^{*}=T_{1} * T_{1}=I, T_{2}, T_{2} *=T_{2} * T_{2}=I\)
First we will show that \(T_{1} T_{2}\) is a unitary operator
\(\operatorname{Now}\left(T_{1}, T_{2}\right)\left(T_{1} T_{2}\right) *=\left(T_{1} T_{2}\right)\left(T_{2}^{*} T_{1}^{*}\right)=T_{1}\left(T_{2} T_{1} *\right) T_{2}\)
\[
=T_{1} I T_{1}^{*}=T_{1} T_{2}^{*}=I
\]

Thus \(\left(T_{1} T_{2}\right)\left(T_{1} T_{2}\right)=I\)
\[
\begin{aligned}
\left(T_{1} T_{2}\right) *\left(T_{1} T_{2}\right) & =\left(T_{2} * T_{1}^{*}\right)\left(T_{1} T_{2}\right)=T_{2}^{*}\left(T_{1} * T_{1}\right) T_{2} \\
& =T_{2} * I T_{2}=\left(T_{1} * T_{2}\right) I
\end{aligned}
\]

Hence \(\left(T_{1} T_{2}\right)\left(T_{1} T_{2}\right)^{*}=I=\left(T_{1} T_{2}\right) *\left(T_{1} T_{2}\right)\)
So \(T_{1} T_{2}\) is a unitary operators.
We verify group axiones.
i) Closure Property: If \(T_{1} T_{2}\) are any two unitary operators belongging to \(\mathrm{G}, T_{1} T_{2}\) is a unitary operator and hence belongs to G . Hence G is closed.
ii) Associativity: We know composite of operators is associative. Hence if \(T_{1}, T_{2}, T_{2}\) are any three unitary operators in G. then \(\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)\).
iii) Existence of Identity: Let I be the identity operator in G. So I is inversible and \(\|I(u)\|=\|u\| \forall u \in V\). so I is unitary operator on V. Hence belongs to G and \(I T=T I=T \forall T \in G\).

So I is the identity element in G .
iv) Existence of Inverse : T is unitary \(\Rightarrow T\) is inversible \(\Rightarrow T^{-1}\) is also invertible.

Let \(T^{-1}(u)=v\) so that \(T(v)=u\) for all \(u, v \in V\)
\[
\begin{equation*}
\therefore\|T(u)\|=\|v\| \tag{1}
\end{equation*}
\]

But T is unitary \(\Rightarrow\|(u)\|=\left\|T^{-1}(v)\right\|\)
\[
\Rightarrow\left\|T^{-1}(u)\right\|=\|u\| \Rightarrow T^{-1} \text { is also unitary. }
\]
\[
\therefore T^{-1} \in G .
\]

As all the group axious are satisfied, the set \(G\) of all unitary operators on V is a group.
16.8.6 Let T be a unitary operator on an inner product space V , let W be a finite dimensional T-invariant subspace of V. Prove that \(W^{\perp}\) is T - invariant.

Solution: W is a subspace \(\mathrm{V}, \mathrm{W}\) is T - invariant.
So any \(w \in W \Rightarrow T(w) \in W\)
To prove that \(W^{\perp}\) is \(T\) - invariant, it enough to show that any \(w \in W^{\perp} \Rightarrow T(w) \in W^{\perp}\)
Let \(w \in W\) and \(u \in W^{\perp}\) be arbitrary, then \(\langle u, w\rangle=0\) and \(T(w)=w_{1} \in W\)
As T is unitary
\[
\left.\left.<T(u), w_{1}\right\rangle=<T(u), T(w)\right\rangle=\langle u, w\rangle=0
\]

Thus \(\left\langle T(u), w_{1}\right\rangle=0 \forall w_{1} \in W\)
This implies \(T(u)\) is \(\perp W(T(u)\) is perpendicular to \(W) \Rightarrow T(u) \in W^{\perp}\)
any \(u \in W^{\perp} \Rightarrow T(u) \in W^{\perp}\)
So \(W^{\perp}\) is T-invariant.

\subsection*{16.8.7 Show that the determinant of a unitary operator has absolute value.}

Solution: Let T be a unitary operator on a finite dimensional inner product space \(V(F)\). Let B be an ordered orthonormal basis for V . Let A denote matrix of T relative to B . Then
\[
\operatorname{det} T=\operatorname{det} A=\operatorname{det}[T]_{B}
\]

T is unitary \(\quad \Rightarrow T * T=I \Rightarrow[T * T]_{B}=[I]_{B}\)
\[
\Rightarrow\left[T^{*}\right]_{B} \cdot[T]_{B}=[I]_{B}
\]

So \(\operatorname{det}\left[T^{*}\right]_{B} \cdot \operatorname{det}[T]_{B}=1 \Rightarrow \operatorname{det} A^{*} \cdot \operatorname{det} A=1\)
\[
\begin{aligned}
& \Rightarrow \overline{(\operatorname{det} A)}(\operatorname{det} A)=1 \\
& \Rightarrow|(\operatorname{det} A)|^{2}=1 \Rightarrow \operatorname{det} A=1
\end{aligned}
\]

So \(\operatorname{det} \mathrm{A}\) and hence \(\operatorname{det} \mathrm{T}\) has absolute value 1 .

\subsection*{16.9 Matrices representing Unitary and Orthogonal Transformations:}
16.9.1 Definition: A square matrix A is called an orthogonal matrix. If \(A^{T} A=A A^{T}=I\) and unitary if \(A^{*} A=A A^{*}=I\).

Note i): For a real matrix A we have \(A^{*}=A^{T}\)
So a real unitary matrix is also orthogonal. In this case, we call orthogonal rather then unitary.
ii) The condition \(A A^{*}=I\) is equivalent to the statement that the rows of A form an orthonormal basis for \(F^{n}\) because
\(\delta_{i j}=I_{i j}=\left(A A^{*}\right)_{i j}=\sum_{k=1}^{n} A_{i K}\left(A^{*}\right)_{k j}=\sum_{k=1}^{n} A_{i k} \overline{A_{j k}}\) and the last term represents the inner product of ith row and jth column.

Here \(A_{i k}\) represents the ikth entry of the matrix A.
iii) The condition \(A^{*} A=I\) is equivalent to the statement that the columns of A form an orthonormal basis of \(F^{n}\).
iv) A linear operator T on an inner prouct space V is unitary (Orthogonal) if and only if \([T]_{B}\) is unitary (orthogonal) for some orthonormal basis B for V .

Ex: The matrix \(\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\) is clearly orthogonal. One can easily see that the rows of the matrix form an orthonormal basis for \(R^{2}\). Similarly the columns of the matrix form an orthonormal basis for \(R^{2}\).

\subsection*{16.9.2 Equivalent Matrices : Definition:}

Let \(A\) and \(B\) are unitary (orthogonal) matrices of order \(n \times n\). There \(B\) is unitarily equivalent or (orthogonally equivalient) if and only if there exists an \(\mathrm{n} \times \mathrm{n}\) unitary. (Orthogonal) matrix.

P such that \(B=P * A P\)
Note: The relation unitarily equivalent to (orthogonally equivalent to) is an equivalence relation on \(M_{n \times n}(C)\left[M_{n \times n}(R)\right]\).
W.E.1: Let T be a reflection of \(R^{2}\) about a lin \(L\) through the origin, Let B be the standard ordered basis for \(R^{2}\) and let \(A=[T]_{B}\) then \(T=L_{A}\).

Since \(T\) is an orthogonal operator and \(B\) is an orthonormal basis, \(A\) is an orthogonal matrix. Discribe A.

Solution: Suppose that \(\alpha\) is the angle from the positive x axis to L . Let \(v_{1}=(\cos \alpha, \sin \alpha)\) and \(v_{2}=(-\sin \alpha, \cos \alpha)\). Then \(\left\|v_{1}\right\|=\left\|v_{2}\right\|=1\).
\(v_{1} \in L, v_{2} \in L^{\perp}\). Hence \(W=\left\{v_{1}, v_{2}\right\}\) is an orthonormal basis for \(R^{2}\). Because \(T\left(v_{1}\right)=v_{1}\) and \(T\left(v_{2}\right)=-v_{2}\) we have
\[
\begin{gathered}
\quad[T]_{W}=\left[L_{A}\right]_{W}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\text { Let } Q=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
\end{gathered}
\]

Thus \(A=Q\left(L_{A}\right)_{W} Q^{-1}\)
\[
\begin{aligned}
& =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \alpha-\sin ^{2} \alpha & 2 \sin \alpha \cos \alpha \\
2 \sin \alpha \cos \alpha & -\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos z \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right]
\end{aligned}
\]

We know that for a complex normal (real symmetric) matrix A, there exists an orthogonal basis B for \(F^{n}\). Consisting of eigen vectors of A . Hence A is similar to a diagonal matrix D . We know that \(A \in M_{n \times m}(F)\) and W be an ordered basis for \(F^{n}\).

Then \(\left(L_{A}\right)_{W}=Q^{-1} A Q\). Where Q is the \(\mathrm{n} \times \mathrm{n}\) matrix whose jth column is the vector of W . Hence by this theorem, the matrix Q whose columns are the vectors in B is such that \(D=Q^{-1} \mathrm{AQ}\), But since the columns of Q are the orthonormal basis for \(F^{n}\), it follows that Q is unitary (orthogonal). Hence \(A\) is unitarily equivalent (orthogonally equivalent) to \(D\).

\subsection*{16.10.1 Theorem:}

Let V be a finite dimensional inner product space and T be the linear operator on V . Then T is unitary if and only if the matrix T in some (or every) ordered orthonormal basis for V is a unitary matrix.

Proof: V is a finite dimensional inner product space. T is a linear operator on V . Let \(B=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}\) be an ordered orthonormal basis for V . and let A be the matrix of T relative to B. i.e. \([T]_{B}=A\).

Case i) : Let T be unitary. Then T is invertible and hence \(\left(T^{*} T\right)=I \Rightarrow[T * T]_{B}=I_{B}\)
\[
\Rightarrow\left[T^{*}\right]_{B} \cdot[T]_{B}=I \text { where } A^{*}=\left[T^{*}\right]_{B}
\]
\(A=[T]_{B}\) then \(A * A=I\)
\[
\text { So } A=[T]_{B} \text { is unitary. }
\]

Converse:
Suppose that the matrix A is unitary there we have \(A^{*} A=I\).
\[
\begin{aligned}
& \Rightarrow\left[T^{*}\right]_{B}[T]_{B}=[I]_{B} \\
& \Rightarrow[T * T]_{B}=[I]_{B} \\
& \Rightarrow T * T=I
\end{aligned}
\]

So T is unitary.
From the above two cases the theorem follows.
16.10.2 Corollary: A linear operator T on an inner product space V is orthogonal if and only if \([T]_{B}\) is orthogonal for same orthonormal basis B for V.

Proof: Similar as above.
16.10.3 Let \(A\) be a complex \(n \times n\) matrix, then \(A\) is normal if and only if \(A\) is unitary equivalent to \(a\) diagonal matrix.

Proof: Let \(C^{n}\) be the vector space V with standard inner product defined on it and let B be its ordered basis. If T is the linear operator on V such that it is represented in the standard ordered basis by the matrix A , then we have \([T]_{B}=A\) and \(\left[T^{*}\right]_{B}=A^{*}\)
\[
\operatorname{Now}[T * T]_{B}=[T]_{B} \cdot[T *]_{B}=A A^{*} \text { and }[T * T]_{B}=A * A .
\]

Case i) If A is a normal matrix then \(A^{*} A=A A^{*}\) and hence \(\left[T T^{*}\right]_{B}=[T * T]_{B}\). i.e. \(T T^{*}=T * T\) i.e. T is a normal operator. From the above, i.e. T being a linear operator on an inner product space V , it follows that there exists an orthonormal basis say \(B_{1}\) for \(V\) each vector of which is a characteristic vector for T , and hence \([T]_{B_{1}}\) is a diagonal matrix. Further if P is a transition matrix from B to \(B_{1}\), then it is a unitary matrix as both B and \(B_{1}\) are orthonormal bases. When P is a unitary matrix we have \(P^{*} P=I\) i.e. \(P^{*}=P^{-1}\). Also we have \([T]_{B_{1}}=P^{-1}[T]_{B} P=P^{*} A P=\) diagonal matrix.

Converse: Suppose that \(A\) is unitarily equivalent to a diagonal matrix \(D\).
Suppose that \(A=P^{*} D P\) where P is a unitary matrix and D is a diagonal matrix
\[
\text { then } \begin{align*}
A A^{*}= & \left(P^{*} D P\right)\left(P^{*} D P\right)^{*} \\
= & \left(P^{*} D P\right)\left(P^{*} D P^{* *}\right) \\
= & \left(P^{*} D P\right)\left(P^{*} D^{*} P\right) \\
& P^{*} D\left(P P^{*}\right) D^{*} P \\
& P^{*} D I D^{*} P \\
& P^{*}\left(D D^{*}\right) P \ldots \ldots \ldots \ldots \tag{1}
\end{align*}
\]

Similarly \(A A^{*}=P^{*}\left(D D^{*}\right) P\)........ (2)
Since \(D\) is a diagonal matrix, however
We have \(D D^{*}=D^{*} D\) so \(A A^{*}=A * A\).
Hence \(A\) is normal.
From the above two cases, the theorem follows.
16.10.4 Corollary: Let \(A\) be a real \(n \times n\) matrix: Then \(A\) is symmetric if and only if \(A\) is orthogonally equivalent to a real diagonal matrix.

Proof: The proof is similar as above.
16.10.5 Schur's Theorem for Matrices: By Schaur's theorem proved in normal and adjoint operators, in the matrix form, it can be stated as

Let A be a matrix \(M_{n \times n}(R)\) whose characteristic polynomial splits over F then
i) If \(F=C\) then A is unitarily equivalent to a complex upper triangular matrix.
ii) If \(F=R\), then A is orthogonally equivalent to a real upper triangular matrix.

\subsection*{16.11 Worked out examples:}
W.E.2: Let T be a linear operator on \(R^{3}\) which rotates every vector in \(R^{3}\) about \(Z\) axis by a constant angle \(\theta\). Prove that T is a orthogonal transformation:

Solution: T is invertible since there exists a linear transformation \(T^{-1}\) which rotates every vector in \(R^{3}\) about Z axis by a constem angle \(\theta\) in the direction opposite to T . Hence
\[
T^{-1}\left(T(u)=\left(T^{-1} T\right) u=I(u)=u \forall u \in R^{3}\right.
\]

Also if \(u=(x, y, z) \forall x, y, z \in R\) then
\[
\begin{aligned}
& T(u)=T(x, y, z)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z) \\
& \begin{aligned}
\|u\|^{2} & =x^{2}+y^{2}+z^{2} \\
\|T(u)\|^{2} & =(x \cos \theta-y \sin \theta)^{2}+(x \sin \theta+y \cos \theta)^{2}+z^{2} \\
& =x^{2}+y^{2}+z^{2}
\end{aligned}
\end{aligned}
\]

Hence \(\|T(u)\|=\|u\|\)
Hence the linear transformation \(T\) is orthogonal.
W.E.3: Show that the matrix \(A=\left[\begin{array}{cc}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]\) is unitary if and only if \(a^{2}+b^{2}+c^{2}+d^{2}=1\).

Solution: \(A^{*}=\left[\begin{array}{cc}a-i c & b-i d \\ -b-i d & a+i c\end{array}\right]\)
Now \(A A^{*}=\left[\begin{array}{cc}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]\left[\begin{array}{cc}a-i c & b-i d \\ -b-i d & a+i c\end{array}\right]\)
\[
=\left[\begin{array}{cc}
a^{2}+b^{2}+c^{2}+d^{2} & 0 \\
0 & a^{2}+b^{2}+c^{2}+d^{2}
\end{array}\right]
\]

So \(A A^{*}=I\) and only if \(a^{2}+b^{2}+c^{2}+d^{2}=1\)
Hence A is unitary if and only if \(a^{2}+b^{2}+c^{2}+d^{2}=1\).
W.E.3A: Show that the matrix \(A=\left[\begin{array}{ccc}0 & 2 m & n \\ l & m & -n \\ l & -m & n\end{array}\right]\) where \(l=\frac{1}{\sqrt{2}}, m=\frac{1}{\sqrt{6}}, n=\frac{1}{\sqrt{3}}\) is orthogonal.

Solution: Let \(C_{1}, C_{2}, C_{3}\) be the column vectors of A . Then
\[
C_{1}=\left[\begin{array}{l}
0 \\
l \\
l
\end{array}\right] ; C_{2}=\left[\begin{array}{c}
2 m \\
m \\
-m
\end{array}\right] ; C_{3}=\left[\begin{array}{c}
n \\
n \\
-n
\end{array}\right]
\]

We have \(\left\langle C_{1}, C_{1}\right\rangle=0+l^{2}+l^{2}=2 l^{2}=2 \times \frac{1}{2}=1\)
\[
\begin{aligned}
& \left\langle C_{2}, C_{2}\right\rangle=4 m^{2}+m^{2}+m^{2}=6 m^{2}=6 \cdot \frac{1}{6}=1 \\
& \left.<C_{3}, C_{3}\right\rangle=n^{2}+n^{2}+n^{2}=3 n^{2}=3 \cdot \frac{1}{3}=1 \\
& \left.<C_{1}, C_{2}\right\rangle=0(2 m)+l(m)-l(m)=0 \\
& \left.<C_{2}, C_{3}\right\rangle=2 m n-m n-m n=0 \\
& \left.<C_{3}, C_{1}\right\rangle=0 n+l(-n)+l n=0
\end{aligned}
\]

Thus the columns of A form an orthogonal set of vectors. So A is orthogonal.
W.E. 4 : Find an orthogonal matrix P whose first row is \(\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)\).

Solution: Let \(u_{1}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)\)
First we find a non zero vector \(w_{2}=(x, y, z)\) which is orthogonal to \(u_{1}\), for which
\[
\begin{aligned}
& \left\langle u_{1}, w_{2}\right\rangle=0 \\
& <\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right),(x, y, z)>=0
\end{aligned}
\]
\(\Rightarrow \frac{x}{3}+\frac{2 y}{3}+\frac{2 z}{3}=0 \Rightarrow x+2 y+2 z=0\)
Put \(x=0, \Rightarrow z=-y\) put \(y=1\), then \(z=-1\)
So one such solution is \(w_{2}=(x, y, z)=(0,1,-1)\)
Normalize \(w_{2}\) to get the second row of P i.e. \(u_{2}=\left(0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)\)

Now find a non zero vector \(w_{3}=(x, y, z)\)
Which is orthogonal to both \(u_{1}\) and \(u_{2}\) for which
\[
\begin{align*}
\left\langle u_{1}, w_{3}\right\rangle & =0,\left\langle u_{2}, w_{3}\right\rangle=0 \\
\left.<u_{1}, w_{3}\right\rangle & \left.=0 \Rightarrow<\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right),(x, y, z)\right\rangle=0 \\
& \Rightarrow \frac{x}{3}+\frac{2 y}{3}+\frac{2 z}{3}=0 \Rightarrow x+2 y+2 z=0  \tag{1}\\
<u_{2}, w_{3}> & =0 \Rightarrow<\left(0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),(x, y, z)>=0 \\
& \Rightarrow 0 x+\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}=0 \Rightarrow y-z=0 \ldots \ldots . \tag{2}
\end{align*}
\]

Put \(z=-1\) then \(y=-1 \Rightarrow x=4\) from (1)
So \(w_{3}=(4,-1,-1)\) normalize \(w_{3}\), to
obtain the third row of \(P\)
i.e. \(u_{3}=\left(\frac{4}{\sqrt{18}}, \frac{-1}{\sqrt{18}}, \frac{-1}{\sqrt{18}}\right)=\left(\frac{4}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}\right)\)

Hence the required orthogonal matrix is \(P=\left[\begin{array}{ccc}\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{4}{3 \sqrt{2}} & \frac{-1}{3 \sqrt{2}} & \frac{-1}{3 \sqrt{2}}\end{array}\right]\)
Caution: The above matrix is not unique.
W.E. 5 : Let \(A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2\end{array}\right]\) determine whether or not i) the rows of A are orthogonal.
ii) A is an orthogonal matrix.
iii) The columns of \(A\) are orthogonal.

Solution: 1. The rows of \(A\) are orthogonal since
\[
\begin{aligned}
& \langle(1,1,-1),(1,3,4)\rangle=1(1)+1(3)+(-1) 4=0 \\
& <(1,1,-1),(7,-5,2)\rangle=(1)(7)+1(-5)+(-1) 2=0 \\
& <(1,3,4),(7,-5,2)\rangle=(7)+3(-5)+4(2)=0
\end{aligned}
\]
2. \(A\) is not an orthogonal matrix since the rows of \(A\) are not unit vectors.
\[
\begin{aligned}
& \left\|u_{1}\right\|^{2}=\langle(1,1,-1),(1,1,-1)>=(1)(1)+1(1)+(-1)(-1)=3 \\
& \left\|u_{1}\right\|=\sqrt{3} \text { not unity. }
\end{aligned}
\]
3. The columns of \(A\) are not orthogonal since for example \(<(1,1,7),(1,3,-5)\rangle=1(1)+1(3)+7(-5)=-31 \neq 0\).
W.E.6: For which value of \(\alpha\) is the following matrix is unitary \(\left[\begin{array}{cc}\alpha & \frac{1}{2} \\ \frac{-1}{2} & \alpha\end{array}\right]\)

Solution: Let \(A=\left[\begin{array}{cc}\alpha & \frac{1}{2} \\ \frac{-1}{2} & \alpha\end{array}\right]\) so \(A^{*}=\left[\begin{array}{cc}\bar{\alpha} & \frac{-1}{2} \\ \frac{1}{2} & \bar{\alpha}\end{array}\right]\)
Where \(A^{*}\) is the cojugate transpose of the matrix A .
The matrix A is unitary if \(A A^{*}=I\)
i.e. \(\left[\begin{array}{cc}\alpha & \frac{1}{2} \\ \frac{-1}{2} & \alpha\end{array}\right]\left[\begin{array}{cc}\bar{\alpha} & \frac{-1}{2} \\ \frac{1}{2} & \bar{\alpha}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
i.e. \(\left[\begin{array}{cc}\alpha \bar{\alpha}+\frac{1}{4} & \frac{-1}{2} \alpha+\frac{1}{2} \bar{\alpha} \\ \frac{-1}{2} \bar{\alpha}+\frac{1}{2} \alpha & \frac{1}{4}+\alpha \bar{\alpha}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
i.e. \(\alpha \bar{\alpha}+\frac{1}{4}=1 \quad \frac{-1}{2} \alpha+\frac{1}{2} \bar{\alpha}=0\)
\[
\frac{-1}{2} \bar{\alpha}+\frac{1}{2} \alpha=0 \quad \frac{1}{4}+\alpha \bar{\alpha}=1
\]

Solving we get \(\frac{1}{2}(\bar{\alpha}-\alpha)=0 \Rightarrow \alpha\) is real say a
(Since if \(\alpha=x+i y\) then \(\bar{\alpha}=x\)-iy so
\[
\bar{\alpha}-\alpha=(x-i y)-(x+i y)=0 \Rightarrow y=0)
\]

Again for \(\alpha\) real we get \(\frac{1}{4}+\bar{\alpha} \alpha=1\)
\[
\Rightarrow \alpha^{2}=1-\frac{1}{4} \Rightarrow \alpha^{2}=\frac{3}{4} \text { so } \alpha= \pm \sqrt{\frac{3}{4}}
\]

Hence the matrix A is unitary if \(\alpha= \pm \sqrt{\frac{3}{4}}\)
W.E. 7: If \(V(F)\) is a finite dimensional unitary space and T be a linear transformation on \(V(F)\), then show that T is self adjoint \(\Leftrightarrow<T(u), u>\) is real for each \(u \in V\).

Solution: Case i) Let T be self adjoint.
So \(T^{*}=T\)
Now \(\langle T(u), u\rangle=<u, T^{*}(u)>\) for all \(u \in V\)
\[
\begin{aligned}
& =<u, T(u)>^{\prime} \text { by (1) } \\
& =\overline{\langle T(u), u>}
\end{aligned}
\]

Thus \(\langle T(u), u\rangle=\langle T(u), u\rangle\)
So \(\langle T(u), u\rangle\) is real.
(Since in complex numbers \(z=\bar{z} \Rightarrow z\) is real)
Case ii) Converse : Let \(\langle T(u), u\rangle\) be real \(\forall u \in V\)
\[
\begin{gathered}
\text { then }<T(u), u>=\overline{\langle T(u), u>}=<u, T(u)> \\
\Rightarrow<u, T^{*}(u)>=<u, T(u)>
\end{gathered}
\]
\[
\text { by definition of adjoint } \left.\Rightarrow<T(u), u>=<u, T^{*}(u)\right\rangle
\]
\[
\Rightarrow T^{*}=T
\]

So T is self adjoint.
Hence from the two cases the result follows.
W.E. 8 : If \(B\) and \(B^{\prime}\) are two orthonormal bases for a finite dimensional complex inner product space V . Prove that for each linear transformation T on V , the matrix \([T]_{B}\), is unitarily equivalent to the matrix \([T]_{B}\).

Solution: Let P is a transition matrix from B to \(B^{\prime}\) and as \(\mathrm{B}, B^{\prime}\) are orthonormal bases, P is a unitary matrix. Thus \(P * P=I \Rightarrow P^{*}=P^{-1}\)

Now \([T]_{B}=P^{-1}[T]_{B} P=P *[T]_{B} P\)
So \([T]_{B^{\text {I }}}\) is unitarily equivalent to the matrix \([T]_{B}\).

\subsection*{16.12 Working Procedure:}

To find an orthogonal or unitary matrix P and a diagonal matrix D for a given matrix A such that \(P^{*} A P=D\).
1) Find the characteristic polynomial \(f(\lambda)\) and all eigen values of A .
2. Find a maximal set \(S\) of non zero orthogonal eigen vectors of \(A\).
3. Then find an orthonormal set \(S^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) of non zero vectors of A.
4. Let P be the matrix whose columns are \(u_{1}, u_{2}, \ldots, u_{n}\).
5. Let \(D\) be the diagonal matrix whose diagonal elements are the characteristic roots of \(A\).
6. Then we got the orthogonal matrix P , and diagonal matrix D such that \(P * A P=D\).
W.E. 9 : If \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\) find an orthogonal matrix P and a diagonal matrix D such that \(P^{T} A P=D\)

Solution: The characteristic equation is \(|A-\lambda I|=0\)
\[
\begin{gathered}
\Rightarrow\left|\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right|=0 \Rightarrow(1-\lambda)^{2}-4=0 \\
\Rightarrow(1-\lambda+2)(1-\lambda-2)=0 \\
\Rightarrow(3-\lambda)(-\lambda-1)=0 \\
\Rightarrow \lambda=3, \lambda=-1
\end{gathered}
\]

For \(\lambda=3\), To find a basis for eigen space of \(A\) :
\[
\begin{aligned}
& {[A-\lambda I] X=O} \\
& \Rightarrow\left|\begin{array}{cc}
3 & 2 \\
2 & 1-3
\end{array}\right|\left[\begin{array}{l}
x \\
y
\end{array}\right]=O \Rightarrow\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=O \\
& R_{2}+R_{1} \text { gives }\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0 \Rightarrow-2 x+2 y=0 \\
& \Rightarrow x=y \\
& \text { if } x=1, \text { then } y=1
\end{aligned}
\]
\[
\text { So } v_{1}=(1,1)
\]

To find a basis for eigen space of \(A\) for \(\lambda=-1\)
\[
\begin{aligned}
{[A-\lambda I]\left[\begin{array}{l}
x \\
y
\end{array}\right]=O } & \\
\Rightarrow\left[\begin{array}{cc}
1+1 & 2 \\
1 & 1+1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=O & \Rightarrow 2 x+2 y=0 \\
& \Rightarrow y=-x \\
& \text { if } x=1, \text { then } y=-1
\end{aligned}
\]
\[
\text { So } v_{2}=(1,-1)
\]

Evidently \(v_{2}\) is orthogonal to \(v_{1}\).
Hence the orthogonal basis of A is \(\left\{v_{1}, v_{2}\right\}=\{(1,1),(1,-1)\}\)
The corresponding orthonormal basis is \(\left\{u_{1}, u_{2}\right\}\).

Where \(u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}(1,1)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\)
\[
u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{2}}(1,-1)=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)
\]

Thus one possible choice for \(P=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]\)
\[
=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\]
and \(D=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]\)
Note : We can apply Gram - Schmidt orthogonalisation process to find orthonormal basis.
W.E. 10 : If \(A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]\) find an orthogonal matrix \(P\) and a diagonal matrix \(D\) such that \(P^{T} A P=D\).

Solution: A is a symmetric matrix. A is orthogonally equivalent to a diagonal matrix.
We will now find the orthogonal matrix P and a diagonal matrix D such that \(P^{T} A P=D\).
To find P :
To find \(P\) we first find an orthonormal basis of eigen vectors.
The characteristic equation is \(|A-\lambda I|=0\).
\[
\Rightarrow\left|\begin{array}{ccc}
4-\lambda & 2 & 2 \\
2 & 4-\lambda & 2 \\
2 & 2 & 4-\lambda
\end{array}\right|=0 \text { on expansion we get the characteristic equation. }
\]

\section*{Or}
trance of \(A=4+4+4=12,|A|=4(16-4)-2(8-4)+2(4-8)\) i.e. \(|A|=48-8-8=32\)
\[
M_{11}=\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right|=16-4=12 ; M_{22}=\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right|=16-4=12 ; M_{33}=\left|\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right|=16-4=12
\]

So \(M_{11}+M_{22}+M_{33}=12+12+12=36\)
Hence the characteristic equation is \(\lambda^{3}-(A\) trace of \(A) \lambda^{2}+\left(M_{11}+M_{22}+M_{33}\right) \lambda-|A|=0\)
i.e. \(f(\lambda)=\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0\)

Here \(f(2)=2^{3}-12(4)+36(2)-32=8-48+72-32=0\)
Hence one characteristic value is \(\lambda=2\).
Hence the other factor is
\[
\lambda^{2}-10 \lambda+16
\]
\[
\left.\lambda=2 \left\lvert\, \begin{array}{rrrr}
1 & -12 & 36 & -32 \\
& 2 & -20 & 32 \\
\hline & 1 & -10 & 16
\end{array}\right.\right)
\]

So \(f(\lambda)=(\lambda-2)\left(\lambda^{2}-10+16\right)=0\)
\[
\Rightarrow(\lambda-2)(\lambda-2)(\lambda-8)=0
\]

So \(\lambda=2,2,8\)
To find a basis for the eigen space of A , corresponding to \(\lambda=2\). Then \([A-\lambda I] X=O\)
\[
\Rightarrow\left[\begin{array}{ccc}
4-2 & 2 & 2 \\
2 & 4-2 & 2 \\
2 & 2 & 4-2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=O
\]

By \(R_{2}-R_{1}, R_{3}-R_{1}\) we get
\[
\begin{gather*}
{\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=O} \\
\Rightarrow 2 x+2 y+2 z=0 \text { ie } x+y+z=0 \tag{1}
\end{gather*}
\]

This system has two independent solutions
put \(y=1, z=0\) i.e. \(x=-y=-1\)
\[
v_{1}=(-1,1,0)
\]

We seek a second solution which is orthogonal to \(v_{1}\). Let this solution be \(v_{2}=(a, b, c)\).
So \(-a+b=0\); and from (1) \(a+b+c=0\)
using \(a=b\) we get \(2 b+c=0\) i.e. \(c=-2 b\)
if \(b=1\), then \(c=-2 \quad a=1\)
\[
\text { So } v_{2}=(a, b, c)=(1,1,-2)
\]

Thus \(v_{1}=(-1,1,0)\) and \(v_{2}=(1,1,-2)\) form an orthogonal basis for eigen space of \(\lambda=2\). for \(\lambda=8,(A-\lambda I)(X)=O\)
\[
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccc}
4-8 & 2 & 2 \\
2 & 4-8 & 2 \\
2 & 2 & 4-8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=O \\
& \Rightarrow\left[\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=O
\end{aligned}
\]
\[
2 R_{2}+R_{1}, 2 R_{3}+R_{1} \text { gives }
\]
\[
\left[\begin{array}{ccc}
-4 & 2 & 2 \\
0 & -6 & 6 \\
0 & 6 & -6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=O
\]
\[
R_{3}+R_{2} \text { gives }
\]
\[
\begin{aligned}
{\left[\begin{array}{ccc}
-4 & 2 & 2 \\
0 & -6 & 6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =O \\
\Rightarrow-4 x+2 y+2 z & =0 \\
-6 y+6 z & =0
\end{aligned}
\]
or \(-2 x+y+z=0\) and \(-y+z=0 \quad y=z\)
So \(2 x=2 z \Rightarrow x=z\)
put \(z=1\), then \(x=1, y=1\)
This system gives the non zero solution.
\[
v_{3}=(1,1,1) \text { which is orthogonal to both } v_{1} \text { and } v_{2} .
\]

Thus \(v_{1}, v_{2}, v_{3}\) form a maximal set of non zero orthogonal vectors of A.
Normalize \(v_{1}, v_{2}, v_{3}\) by dividing each with their corresponding lengths to obtain an orthonormal basis is \(u_{1}, u_{2}, u_{3}\)
\[
\begin{aligned}
& u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}(-1,1,0) \\
& u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{6}}(1,1,-2) \\
& u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\frac{1}{\sqrt{3}}(1,1,1)
\end{aligned}
\]

Aliter: we can apply Gram - Schmidth orthogonalisation process to find an orthonormal basis.

Let \(P\) be the matrix whose columns are \(u_{1}, u_{2}, u_{3}\), Then \(P=\left[\begin{array}{ccc}\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]\)
and the diagonal matrix D which is formed with the characteristic roots given by
\[
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right]
\]

Note: In finding the basis for the eigen space corresponding \(\lambda=2\), we get \(x+y+z=0 \ldots \ldots\) (1) by putting \(y=0\), we get \(x+z=0\) when \(z=1, x=-1\)

So \(v_{2}=(-1,0,1) \quad v_{1}=(-1,1,0)\)
So \(\{(-1,1,0),(-1,0,1)\}\) is a basis of eigen space for \(\lambda=2\), this set is not orthogonal. So we can apploy Gram-Sdmidt orthogonalisation process to obtain the orthogonal basis \(\left\{(-1,1,0), \frac{-1}{2}(1,1,-2)\right\}\).

Find a orthogonal basis for \(f\) th eigen space for \(\lambda=8\), the union of the there two bases is the orthonormal basis. Normalising the vectors, we get the orthonormal basis.

\subsection*{16.14 Summary:}

In this lesson we discussed about unitary operators, orthogonal operators, equivalent statements. Inverse of unitary operator, Matrices representing unitary and orthogonal transformations, Equivalent matrices.

\subsection*{16.15 Technical Terms:}

The technical terms. we come across in this lesson are unitary operator, orthogonal operator, Isometry - Orthogonal matrix, unitary matrix, equivalent matrices, unitarily equivalent.

\subsection*{16.16 Model Questions:}
1. Define unitary operator. If T is a unitary operator then show that \(T^{*}=T^{-1}\).
2. If \(S\) and \(T\) are unitary operators then show that ST is unitary.
3. Let T be a unitary operator on an inner product space V , Let W be a finite dimensional T invariant subspace of V . Then prove that \(W^{\perp}\) is T -invariant.
4. Let A be a complex \(\mathrm{n} \times \mathrm{n}\) matrix, then A is normal if and only if A is unitarily equivalent to a diagonal matrix.

\subsection*{16.17 Exercise:}
1. For each of the following matrices A ; find an orthogonal or unitary matrix P and a diagonal matrix
D. Such that \(P^{*} A P=D\)
i) \(\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right] \quad\) Ans: \(P=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]\) and \(D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4\end{array}\right]\)
ii) \(\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right] \quad\) Ans : \(P=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{5}{2} \\ \frac{-1}{\sqrt{2}} & \frac{5}{2}\end{array}\right]\) and \(D=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]\)
2. Show that the matrices \(\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\) and \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i\end{array}\right]\) are unitarily equivalent.
3. Show that the matrices \(\left[\begin{array}{ll}1 & 2 \\ 2 & i\end{array}\right]\) and \(\left[\begin{array}{ll}i & 4 \\ 1 & 1\end{array}\right]\) are not unitarily equivalent.
4. Find the number and exhibit all 2 x 2 orthogonal matrices of the form \(\left[\begin{array}{cc}\frac{1}{3} & x \\ y & z\end{array}\right]\)

Ans: \(4,\left[\begin{array}{cc}\frac{1}{3} & \sqrt{8} / 3 \\ \sqrt{8} / 3 & \frac{-1}{3}\end{array}\right],\left[\begin{array}{cc}\frac{1}{3} & \sqrt{8} / 3 \\ -\sqrt{8} / 3 & \frac{1}{3}\end{array}\right],\left[\begin{array}{cc}\frac{1}{3} & -\sqrt{8} / 3 \\ \sqrt{8} / 3 & \frac{1}{3}\end{array}\right]\) and \(\left[\begin{array}{cc}\frac{1}{3} & -\sqrt{8} / 3 \\ -\sqrt{8} / 3 & \frac{-1}{3}\end{array}\right]\)
5. Prove that the following matrices are unitary.
\[
\begin{aligned}
& \text { i) }\left[\begin{array}{ccc}
\frac{1}{2}(1+i) & \frac{i}{\sqrt{3}} & \frac{3+i}{2 \sqrt{15}} \\
\frac{-1}{2} & \frac{1}{\sqrt{3}} & \frac{4+3 i}{2 \sqrt{15}} \\
\frac{1}{2} & \frac{-i}{\sqrt{3}} & \frac{5 i}{2 \sqrt{15}}
\end{array}\right] \\
& \text { iii) }\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & i \sqrt{\frac{2}{3}} \\
\frac{-i}{\sqrt{2 / 3}} & \frac{-1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
\]
6. Prove the following matrices are orthogonal
\[
\text { i) }\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { ii) }\left[\begin{array}{ccc}
\frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} & \frac{3}{\sqrt{14}} \\
\frac{3}{\sqrt{10}} & 0 & \frac{-1}{\sqrt{10}} \\
\frac{-1}{\sqrt{35}} & \frac{5}{\sqrt{35}} & \frac{-3}{\sqrt{35}}
\end{array}\right]
\]
7. Find an orthogonal matrix whose first row is
i) \(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\)
ii) a multiple of \((1,1,1)\)

Ans: i) \(\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}}\end{array}\right]\) ii) \(\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}}\end{array}\right]\)
8. Find a unitary matrix whose first row is
i) a multiple of (1,1-i)
ii) \(\left(\frac{1}{2}, \frac{1}{2} i, \frac{1}{2}-\frac{1}{2} i\right)\)
Ans: \(i)\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & (1-i) / \sqrt{3} \\ (1+i) / \sqrt{3} & \frac{-1}{\sqrt{3}}\end{array}\right]\)
ii) \(\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} i & \frac{1}{2}-\frac{1}{2} i \\ i / \sqrt{2} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{-1}{2} i & \frac{-1}{2}+\frac{1}{2} i\end{array}\right]\)
9. Find a \(3 \times 3\) orthogonal matrix P whose first two rows are multiples of \(u=(1,1,1)\) and \(v=(1,-2,3)\) respectively.

Ans : \(\quad P=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{14}} & \frac{-2}{\sqrt{14}} & \frac{3}{\sqrt{14}} \\ \frac{5}{\sqrt{38}}, & \frac{-2}{\sqrt{38}}, & \frac{-3}{\sqrt{38}}\end{array}\right]\)
10. Real matrices \(A\) and \(B\) are said to be orthogonally equivalent if there exists an orthogonal matrix \(P\) such that \(B=P^{T} A P\). Show that this relation is an equivalence relation.
11. Prove that if \(A\) and \(B\) are unitarily equivalent matrices, then \(A\) is positive definite if and only if \(B\) is positive definite.
12. Let U be a unitary operator on an inner product space V , and let W be a finite dimensional U Invariant subspace of V. Prove that \(U(W)=W\).
13. Let A and B are \(\mathrm{n} \times \mathrm{n}\) matrices that are unitarily equivalent then prove that \(\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(B^{*} B\right)\)

\subsection*{16.18 Reference Books:}
1. Linear Algebra 4th edition Stephen H. Friedberg, Arnol J. Insel, Lawrence E. Spence.
2. Schaum's Out lines Beginning Linear Algebra, Seymour Lipschutz.
3. Topics in Algebra I.N. Herstein
4. Linear Algebra
P.P. Gupta Ph.D. and S.K. Sharma Ph.D.```

