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Lesson - 1

ANALYSIS OF QUANTITATIVE DATA

Object:

After studing the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of measures of central tendency-mean, median and
mode; Measures of Dispersion, relative dispersion and their area of applications.

Structure of the lesson:
This consists of .... sections as detailed below:

1.1 Measure of Central Tendency - Introduction
1.1.1 Characteristics of a good average
1.1.2 Arithmetic Mean
1.1.3 Median
1.1.4 Mode
1.1.5 Workedout Examples

1.2 Measures of Dispersion
1.2.1 Introduction
1.2.2 Characteristics of good measures of dispersion
1.2.3 Range
1.2.4 Quartile Deviation (Q.D.)
1.2.5 Mean Deviation (M.D.)
1.2.6 Standard Deviation (S.D.)
1.2.7 Workedout Examples

1.3 Exercise

1.4 Answers

1.1 Measure of Central Tendency - Introduction:

According to professor Boweley averages are "Statistical Constants which enable us to
understand in a single effort the significance of the whole." They give us an idea about the
concentration of the values in the central part of the distribution. So they are called measures of
central tendency.
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1.1.1 Characteristics of a good average:  According to G.V. Yule, the properties of a good
average are as follows:

1. It should be well defined.

2. It should be easy to calculate.

3. It should be capable of further algebraic treatment.
4. It should be based on all the observations.

5. It should not be affected by extreme observations.
6. It should not be affected by fluctuations in sampling.

1.1.2 Arthmetic Mean: The arithmetic mean or simple mean of set of observations is defined as
teir sum, divided by the number of observations.

sum of observation

i.e, mean= :
number of observations
Let Xq, Xp,eereeereeeses X, be the n observations then their mean is denoted as y and
it is given by
— XaF+ X +X
mean x =1 2 n
n
1 n
= — Z XI
ni=1
In the case of grouped frequency distribution, if Xy, Xo, -+ X, be the mid values of
class interval with corresponding frequencies f, fy, «-----o-- , T respectively, then their mean
x IS given by
mean X — fiXq +oXg +omeeenen +f.X,
fl +f2 doreennn +fn
n
_Z fiX|
1=
2 f;

1 n
N iglfixi where N in total frequency is N = X'f;
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Calculation of Mean by Change of origin and Scale: If x values and corresponding
frequencies (f) are large then the calculation of mean takes large time. This can be reduced
by taking th deviations of the given values from any arbitrary point "A" as below:

Let d; =x; —A
then fl _dl =f|X| _fl A

1 1 1
1 —

This formula is much convenient to apply. It is also called short-cut method.

In the case of frequency distribution having equal class interval say having width "h", it
is convenient to use change of origin (A) and scale (h).

Xi -A

If U, = then

Xi =A+hU|

1

1 1

= x=A+hU w Yfi=N

Hence mean is effected by both change of origin and scale. This formula is also called
step deviation method.

Properties of mean:
1. Algebric sum of the deviations of a set of values from their mean is zero.
i.e. Z(XI —§)=O

2. Sum of the squared deviations of set of values is minimum when deviations are taken
from mean of the observation.
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3. Let ;1 and ;2 be the man of ny and n, observations. The combined mean of (N, +n,)
observations is given by

= uX, +NpX,
ng+n,

4, Let W, be the weights attached to the items X;; i=12,........ ,n then the weighted
mean is given by QW = m
2 Wi
Merits and Demerits of Man:
Merits of Mean: 1. Itisrigidly defined
It is easy to understand and easy to calculate
It is based on all the observations
It is sutable for algebric treatment
Mean is an ideal average.
Demerits of Mean: It can not b determined by inspection or graphical method.
Itis not sutable for qualitative data.

It can not be obtained if one or more observations is missed.

EE B i L R

It is affected very much by extreme values.
5. It can not be suitable if te extreme class is open.

1.1.3 Median: The median is defined as the middle most or the central value of the variate, when
the observations are arranged in ascending or decending order of their magnitudes.

In the case of ungrouped data, having size n.

if n is odd then median is middle most observation.

n+1 th
i.e. median = (Tj observation.

If nis even the median is mean of two middle terms.

B

2

i.e. median = observation.
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For the grouped data the median is defined by
(N—m) x h
\2 )

f

Where ¢ is the lower limit of the median class.

median= ¢ +

f is frequency of median class

m is cumutative frequency of the class preceeding the median class
N is total frequency

h is width of class interval of median class

N
Note: To decide the median class calculate B value and see the cumulative frequency

N
which is more than or equal to o the corresponding class is called Median Class.

Merits and Demerits of Median:
Merits: Itis rigidly defined

It is easy to understand and easy to calculate
It is not effected by extreme values.

It can be used to calculate for distributions with open end classes.

1
2
3
4
Demerits: 1. It is not based on all the observations.
2 It is not sutable for mathematical treatment.
3 As compared with mean, it is affected much by fluctuations of sampling.
4

In case of even number of observations median can not be determined
exactly.

Note: To apply median formula, the frequency distribution must be continuous frequency
distribution.

1.1.4 Mode: Mode is the value which occurs most frequently in a set of observations.

In the case of grouped continuous frequency distribution mode is given by the formula.

fi—fy)h
Mode = f.;.&
2 ~(fo +12)
Where ¢ is the lower limit of model class

f, is the frequency of the modal class
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fy is the frequency of class preceding model class

f, is the requency of class succeeding the model class.

h is width of model class.

If the distribution is moderately asymmetrical, the mean, median and mode satisfy the
following empirical relationship.

mean — mode = 3(mean — median)

= mode =3 median — 2 mean

Merits and Demerits of Mode:

Merits:

Demerits:

1
2
3.
4

1
2
3.
4

Mode can obtain some times by inspection.
Mode is readily comprehensible and easy to calculate.
Mode is not affected by extreme values.

Mode can be conveniently located even if t frequency distribution has
unequal class intervals, but same width for model class, preceding and
succeeding classes.

Mode is ill-defined. Itis not always possible to find a clearly defined mode.
It is not based upon all the observations.
It is not suitable of further mathematical treatment.

Mode is effected by fluctuations of sampling.

1.1.5 Workedout Examples:

Example 1:

Solution:

Example 2:

Find the arithematic mean of the numbers 80, 30, 50, 120, 100.

Mean (_): 80+ 30+50+120+100 _ @ _ 76
X 5 5

Find the mean of the weekly earnings from the following:

Wekly earnings in Rs (X): 10 | 12 (14 | 16 | 18 | 20 | 22

Number of employees (f): 3 6 |10 |15 (24 | 42 | 75
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Solution: X f fx
10 3 30
12 6 72
14 10 140
16 15 240
18 24 432
20 42 840
22 75 1050
175 3404
.+ Mean ()= Efix
N
= % = 19.45
Step Deviation Method:
x | f u="= _216 fU
10 3 -3 -9
12 6 -2 -12
14 10 -1 -10
16 15 0 0
18 24 1 24
20 42 2 84
22 | 75 3 225
175 302
Here A = 16, h = 2
.. Mean x=A+hU
=16+ 2 (%}

=16+ 3.45 = 1945
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Example 3: A distribution of 3 components with frequencies 45, 40, 65 having their
means 2, 2.5 and 2 respectively. Findthe combined mean.

Solution: Given that Ny =45 n,=40, n3=65
X, =2, X,=25 X;=2

_ — MX, FNoX, +NaX
. Combined Mean x = —-1 272 " 373

Ny +Ny+Ng

_ 45x2+40x2-5+65x2

45+ 40+ 65
= % =2-13
Example 4: Calculate the man for the following frequency distribution.
Class interval: 0-8 8-16 | 16-24 | 24-32|32-40|40-48
Frequency: 8 7 16 24 15 7
Solution:
C.l. Frequecny | Mid Value | U= X_828 fu
X
0-8 8 4 -3 -24
8-16 7 12 -2 -14
16 -24 16 20 -1 -16
24 - 32 24 28 0 0
32-40 15 36 1 15
40 - 48 7 44 2 14
77 -25

Hence A =28, h=8
.. Mean x=A+hU

=28+(_—25) = 25-404
77
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Example5: Show that the weighted mean of first n natural numbers whose weigths are

1
equal to the corresponding numbers is equal to 5(20 + 1) :

) Ix1+ 2x 2+ 3x3+-----o--- +nxn
Solution: Mean =
1+2+3+-ccceeees +n
_12+22+32+ -------- +n?

1+2+3+----- +n
_n(n+1)(2n+1)
6{n(n2+1)}

_ 22+l Lan+)
6 3

Example 6: Pre average salary of male employees in a firm was Rs. 520 and that of
female was Rs. 420. The mean salary of all the employees was Rs. 500.
Find the percentage of male and female employees.

Solution: Let n; and n, denote respectively the number of male and female employees.
x, and x, their averages respectively.
Let x be the average of salary of all the employees.

- giventhat x, =520 ; x, =420 and x = 500.

— MX, + X,
X=—=" £ <
We know that N+,
ny 520 + n, 420

n +n,

= 500 =

= n, (500 — 420) = n, (520 - 500)
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4
Hence the percentage of male employees = 4:1

1.10
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x 100 =80 %

1
-. Percentage of female employees = c * 100 = 20%

Example 7:  From the following data find the value of median
35, 49, 225, 50, 30, 65, 40, 55, 52, 76, 48, 325, 47, 32.
Solution: Arrange the data in order the data becomes,
30, 32, 35, 40, 47, 48, 49, 50, 52, 55, 60, 65, 76, 225, 325.
Here n=15
th
. n+1
. Median = (Tj observation
16\ .
Y observation
— 8" observation
= 50
. Median value is 50.
Example 8:  From the following data find the value of median.
Income (in Rs.): 1000 | 1500 [ 800 | 2000 | 2500 | 1800
No. of Persons: 24 26 16 20 6 30
Solution: Income (in Rs.): 800 | 1000 | 1500 [ 1800 | 2000 | 2500
No. of Persons(f): 16 24 26 30 20 6
Cumulative Frequency (c.f.): 16 40 66 96 116| 122
N =122
N;l _ 122+1 _ 615

N+1

th
Median = (—j item = (61.5)™ item = 1500

+
2
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Example 9: Calculate median from the following data:
Wage (inRs.): |0-99 [ 100-199 | 200-299 | 300-399 [ 400 -499 | 500 - 599
No of Persons:| 10 18 25 12 8 3

i.e. Median class is 199.5 - 299.5

Solution: This is grouped discontinuous data. To convert this into continuous form
average of first class upper limit and second class lower limit.
e 910 _g95
i.e. the first class upper limit is 99.5 and second class lower limit is 99.5
- The continuous formis 0 - 99.5, 99.5-199.5, ...............
Wage (in Rs.) No. of Persons (f) Cumulative Frequency (cf)
0-99.5 10 10
99.5-99.5 18 28
199.5-299.5 25 53
299.5-399.5 12 65
399.5-499.5 8 73
499.5 -599.5 3 76
N=76
g % = 7—26= 38

- £=1995, f =25 m=28, h=100
2
- Median = £+ 25—

(38 - 28) 100

=199.5 + =239.5

Example 10: Calculate median value from the following data:
Cl:|5-15 |15 -25 [ 25 -35 | 35 -45
f: 20 5 15 5

45 -55
35

55 -65
20
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Solution:
Cl:|[5-15 |15 -25 25 -35 | 35 -45 |45 -55 | 55 -65
f: 20 5 15 5 35 20
C.f. 20 25 40 45 80 100
Here N =100
SN_10_ g,
2 2
i.e. Median class is 45 - 55
s 0=45 f =35 m=45 h=10.
(5-m)n
oo Median = 0+ >~——2
(50 - 45) 10
=454+ -——~
35
=45 + 0
=45+1-43 = 46-43
Example 11: Calculate mode of the following data
C.l.: |110-19 |20-29|30-39|40-49(50-59|60-69|70-79|80-89]90-99
f: 7 10 12 18 10 6 3 2 1
Solution: The give a grouped discontinuaes data can be converted into continuous form
is as follows:
C.l:19.5-195 19.5-29.5 29.5-395 39.5-495 495-595
f: 7 10 12 18 10
C.l.: | 59.5-69.5 69.5-79.5 79.5-89.5 89.5-99.5
f: 6 3 2 1

Highest frequency is 18

i.e. Mode Class is 39.5 -49.5
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Mode = £+—(f1_f0) h
2t = (fo+12)
(18-12)10
=39.5+ =43-3

(2x18-12-10)

Example 12: Calculate the mode of the following distribution.

C.l: 0-10 (10-20 [20-30 30-40 | 40-50
f: 2 6 11 20 40
C.l: 50-60|60-70 |70-80 80-90 | 90-100
f: 75 45 25 18 8
Solution: Highest frequency is 75 and it is in the class 50 - 60.

o £=50, f; =75, fy =40, f, =45, h=10.

Mode = 7 + —(fl_fo) h
2f; - (f0+f2)
(75— 40) 10

=50 +
2x 75— (40 + 45)

350
=50 + == =554
t (app)
1.2 Measures of Dispersion:

1.2.1 Introduction: Averages give us an idea of the concentration of observations about the
central part of the distribution. If we know the average alone, we cannot form complete idea
about the distribution. To illustrate this consider the following:

Series A: 15 20 25 30 35
Series B: 5 18 25 40 65

These two sets of observations have the same median. However, it may be noticed
that observations in series - A are less deviations from average while series - B are large
deviations from average (Median). Thus we can say that variability of series - B is more than
that of series - A. Hence average alone we cannot study completely the characteristics of
data and hence the necessity of measure of dispersion or variation. The various measures
of dispersions are (i) Range, (i) Mean Deviation, (iii) Quartile Deviation, (iv) Standard
Deviation.
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According to G.V. Yule, a good measure of Dispersion should have the following:
i) It should be rigidly defined.
ii) It should be easy to calculate and easy to understand.
i) It should be based on all the observations.
iv) It should be readily comprehensible.
v)  Itshould be capable of further algebric treatment.
vi) It should be affected as little as possible fluctuations of sampling.

1.2.3 Range: Range is the difference between the hightest and lowest values in the data. Itis
very useful in statistical quality control.

If X, is largest observation and X 4 is smallest observation then Range = X, — X4

This is an absolute measure and it is not suitable to compare two or more data with
different units of measurement. To compare two or more situation we use relative measures
of dispersion called as coefficient measures. These are pure numbers and independent of
units of measurement.

The relative measure of range is called coefficient of range and it is given by

- X, — X
Coefficient of Range =—f——=S
X, +Xg

1.2.4 Quartile Deviation (Q.D.): Itis defined as half the difference between the lower and upper

quartiles. Itis also called as semi-interquartile range. If Q is first quartile and Qs is the third
quartile the quartile deviation (Q.D.) is given by

Q3-Q
D. ===
Q 2
Coefficient of Q.D. _ %=
Q3+Q,
1.2.5 Mean Deviation (M.D.): It is sum absolute deviations taken from average divided by
number of observations. [If Xq, Xp,--eee ,X,, be te mid values of class intervals with
corresponding frequencies fj, fy, «--ooeeve , f,, respectively then mean deviation is given by

Mean Deviation =% > x Al

Where A is any average.
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If A is mean then M.D. about mean is given by

1 —
M.D. about mean =N 25 |Xi —X|

Coefficient of M.D. = M.D. Value —
The Average used in it

i.e. coefficient of M.D. about mean = M.D. about mean
mean

1.2.6 Standard Deviation (S.D.): Standard Deviation is the positive square root of the arthemetic
mean of squares of deviation from mean.

Itis denoted by & and it is given by

1 —\2
The square of S.D. is known as variance and it is denoted as 52.

- Variance ¢° = %Zfi (% —§)2

Coefficient of variation (C.V.) = SD. x 100
ean

x 100

x1la

Among the relative measures the coefficient of variation is the most important and is
used in almost all cases.

The simplified form of caliculation of variance is variance o2 = % zfixi2 _(;)2

The shortcut method of calculation of variance is given by

ify=2-2

= x=a+hU

—=x=a+hU
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~x;—x=h(U; -U)

= (x -x)" =h? (u; -0’

-. VAriance is effected by change of origin but is effected by scale.

1.2.7 Workedout Examples:

Example 1: Find the range and coefficient of range for the observations.
10, 8, 5, 10, 9, 14, 7, 4, 20.
Solution: Range =20-4=16
o _Xp—Xg 20-4 16 4 2
Coefficient of range = X, + X T 20+4 24 6 3
Example 2: The following are the marks of 80 students of a class. Find the range and
coefficiant of range.
Marks: 0-10 [10-20 |20-30|30-40(40-50|50-60 |60 -70[70 - 80
No. of Students: 4 12 20 18 15 8 2 1
Solution: Range =x, —Xg=80-0=80
X, —Xg 80-0
Coefficient of Range = X, +Xg T80+l
Example 3:  Calculate the quartile deviation and its coefficient from the following data.
Marks: 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44,45,
Solution: Arrange the data in order we get

39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45
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th th
Q, =size of (nTJrlj item = (12:1} = 3.25M jtem

=3%item + 0-25 (4th _ 3d)

— 40 + 0-25(41-40)

=40+ 0-25=40-25

th
Qg = size of w item = 222+ g 7610 jtem
- 9" jtem +0-75 (10”‘ _ gth)
= 43+0-75 (44~ 43)
=43+0-75 =43.75
. Q.D_:M
2

:—43-75—40-252221.75
2 2

Q3-Q; 43-75-40-25
Coefficient of Q.D. = Q3+ Q T 43.75+ 40.25

_35_o.0m2
84

Example 4: Compute coefficient of Quartile Deviation from the following data.

Sales in Rs. lakhs: 4-8 8-12 12-16 | 16-20

No. of Companies: 6 10 18 30

Sales in Rs. lakhs: 20-24 | 24-28 28-32 | 32-36 | 36-40
No. of Companies: 15 12 10 6 2
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Solution:

Sales in Rs. No. of Companies c.f.

Lakhs (C.1.) (f)

4-8 6 6

8-12 10 16

12-16 18 34

16 - 20 30 64

20-24 15 79

24 -28 12 91

28 -32 10 101

32-36 6 107

36-40 2 109
N =109

% =% _27.25" jtem

i.e. Qp isintheclass 12 - 16

(,=12,f=18 m=16, h=4

(27-25-16) 4
18

=12+

=12+2.5=14.5

% _3(27-25)=81.75
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i.e. Qg isinthe class 24 - 28.

(3=24,f=12,m=79,h=4

ﬁ_m h
4 3 (81‘75— 79) 4 11
Qp=lg+-~t——2 =244~ T o4 -24.917
fa 12 12
Q-Q
.D.- =
Q 2
| 24.917-14.5
2
_ 10-417 _5.2085

Q;-Q 24.917-14.5
Coefficient of Q-D- = 3”1 _
Q3 +Q 24-917 +14-5

10417

I
Example 5: Calculate mean deviation from mean for the following data 5, 10, 15, 20, 25,
30, 35.
Solution: Mean =1 Sx; = 5+10+15+ 20+ 25+ 30+ 35 Z@ _ 20
n 7 7
X X — X |X - §|
5 -15 15
10 -10 10
15 -5 5
20 0 0
25 5 5
30 10 10
35 15 15
60
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1 —
. Mean Deviation about mean =1 2 | Xj — X|

= ? =8-57
Example 6: Calculate mean deviation from mean to the following data:
X: 2 4 6 8 10
f: 1 4 6 4 1
Solution:
X f fx | x| fi[x - x|
2 1 2 4 4
4 4 16 2 8
6 6 36 0 0
8 4 32 2 8
10 1 10 4 4
16 96 24
mean §=%Zfixi =%=5

1 _
Mean Deviation = N 25 |Xi - x|

= 24 =15

16
Example 7:  From the following data calculate mean deviation and its coefficient.
C.l: 0-5 | 5-10 | 10-15|15-20|20-25(25-30

f: 5 8 10 7 6 4




@@ Probability And Distributions

Analysis of ... ]@

Solution:

C.l. f mid x | c.f. | X; — med fi [x; — md|
0-5 5 2.5 5 11 55
5-10 8 75 | 13 6 48
10-15] 10 125 | 23 10
15-20| 7 175 | 30 4 28
20-25| 6 225 | 36 54
25-30| 4 275 | 40 14 56

40 251
(N—mj h
Median _ ,, \2
f
(20-13)5
=10 =13.5
10
_ 1
M.D. about median =1 >f |x; —md
_ Bl 6-275
40
Coefficientof M.D. = MD.Vaue
“l 7 Median
_625_ 0-465
13.-5
Example8: Ten measurements were made with the following results:

LengthinCms: 77, 73, 75, 70, 72, 76, 75, 72, 74, 76.

Find the standard deviation.
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Solution:
X d=x-75 d?
77 2 4
73 -2 4
75 0 0
70 -5 25
72 -3 9
76 1 1
75 0 0
74 -1 1
76 1 1
-10 54
2
1 2 1
.S D- G:\/M Zdi _(MZdlj
I
10 10
=5-4-1
=4-4 =2-09
Example 9: Calculate mean and standard deviation to the following data also C.V.
Marks : 10 20 30 40 50 60

No. of Students : 8 12 20 10 7 3
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Solution:
x—-30
U= 2
X f 10 fu fu
10 8 -2 -16 32
20 12 -1 -12 12
30 20 0 0 0
40 10 1 10 10
50 7 2 14 28
60 3 3 9 27
60 5 109
— 1
U :N ZfIUI
_5 =0-083
60
1 _
of == $f U2 - (0)?
N
109 (5
60 60
=1-817- 0-0069
=1.81

- Mean x=a+hU
~ 30+10(0-083) = 30-83

2_h2 2

Variance o
— (10)® (1-81)

=100 x1-81 =181
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~ S'D- o=+181

=13.5

(e}
Coefficient of variation C.V. = < x 100

= 43-7885
Example 10: Calculate mean and standard deviation for the data given below.
Marks: 0-10 |10-20(20-30|30-40(40-50
No. of students:| 7 12 24 10 7
Solution:
C.l. f | Mdx | U= XIOZS fU | fu?
0-10 7 5 -2 -14 28
10-20 12 15 -1 -12 12
20-30 24 25 0 0 0
30-40( 10 35 1 10 10
40 - 50 7 45 2 14 28
60 -2 78
= 1
U= N SfU
_—2
60
A=25 h =10

~ Mean x=a+hU

=

=25-0-33=24-67
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SD- o= h\/%Zf U2—(G)?

2
_10,[8 (2
60 |60
~10/1-3-0-001

=10x1.1397 =11.-397

1.3 Exercise:
1.  Define various measures of central tendencies.
2.  Define various measures of dispersions.
3.  Calculate median from the following data :
70, 60, 75, 90, 65, 80, 42, 65, 72.

4, The mean of marks in statistics of 100 students of a class was 72. The mean of marks
of boys was 75 while their number was 70. Find out the mean marks of girls in the
class.

5.  Calculate the mean marks from the following data by direct method and step deviation

method.
Marks : 0-10 | 10-20 | 20-30{30-40(40-50(50-60 |[60-70
No. of students: | 5 12 15 25 8 3 2
6. Compute median from the following data:
C.l.: 10-19|20-29(30-39|40-49|50-59]| 60 - 69
f: 12 19 31 27 16 8

7.  Calculate mode value from the following dat
Age in years: 55-60|50-55 |45-50]40-45|35-40(30-35 [25-30|20 - 25
No. of persons: 8 12 30 40 20 8 7 2

o

8.  The following are the wages of 8 workers of a factory. Findthe range and coefficient of
range.

Wages in Rs.: 1400, 1450, 1520, 1380, 1485, 1495, 1575, 1440.
9.  Calculate the appropriate measure of dispersion from the following data:
Wages inRs. : Below 35 35-37(38-40(41-43 [Over 43
No. of wage earners: 14 60 95 24 7
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10.

11.

12.

13.
14.
15.

Calculate mean and standard deviation to the following data:
600, 620, 640, 620, 680, 670, 680, 640, 700, 650.

TWo cricketers scored the following runs in the several innings. Find who is a better
run - getter and who is more consistent players.

Player A: 42, 17, 83, 59, 72, 76, 64, 45, 40, 32.

PlayerB: 28, 70, 31, 0, 59, 108, 82, 14, 3, 95.

Coefficient of variation of two series are 58 % and 69 % their standard deviations are
21.2 and 15.6 respectively. What are their means.

Define standard deviation and C.V. line the step deviation formula for S.D.
Distinquish between mean and median.

Distinquish between mean and mode.

1.4 Answers:

3.

4
5
6.
7
8

10.

11.

12.

Median = 70

Number of girls are 65

Mean =30.14
Median = 37.73
Mode = 43.33

Range = Rs. 195
Coefficient of Range = 0.066
Q.D. =18

Mean = 650

S.D. = 30.33

C.V.forA = 37.92

C.V. forB=75.6

- A'is more consistent

Means are 36.55 and 22.6



Lesson — 2

MOMENTS

Syllabus :

Importance of moments, Central and non central momets shappard's corrections for moments
for grouped data. Skewness and Kurtosis - their measures including those based on quartile and
moments with real life examples.

Structure of the Lesson :
2.1 Introduction
2.2 Definitions
2.3 Central moments in terms of non central moments
2.4 Non central moments in terms of central moments
2.5 Change of Origin and Scale
2.6 Shappond's Corrections
2.7 Skewness
2.8 Kurtosis
2.9 Merits and Demerits of moments
2.10 Example
2.11 Excercise
2.12 Summary

2.13 Technical Terms

Object :

After studying the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of non-central moments, central moments, skewness,
kurtosis with real life examples.

2.1 Introduction :

To form an idea about the nature of the distribution averages and dispersions are not enough
to give clear idea. To study the pattern of distribution there are other comparable characteristics
also known as symmetry and peakedness of which the former is known as skewness and the
latter as kurtsis. To study these measures first we have to study the idea of moments.
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2.2 Definition :

(i)

(ii)

The moments are of three types, they are

() Raw moments, (i) Moments ablut any point, (iii) Central moments.

Raw Moments : If X1,X2,.ccvieiiuennee. ,Xp are mid values of class interval with corresponding
frequencies f1,fo,.......... ,f,, respectively then r’™ moment about orgin or ™ raw moment
is denoted as u} and it is given by
1N
== fix' ;r=022....
Ni=1
1 n _
inarticular if r = 1, ul—— > X =x
Nij=1
Therefore first moment about orgin is mean.
Non-Central Moments (or) Moments about any Point: If X1,Xo,...ccc....... ,Xp be the mid
values of class interval with corresponding frequencies f{,f,,........... f,, respectively then the

rth moment about a point A is denoted as u} and it is defined as

i i
N N

n
where XN =Y f;
i=1

th

Itis also called as r*' non-central moment.

1
If d; =x; — A then H%=N2f|d|r
1 1
In particular H(l) :szi (X —A)0=N2fi =1

M ==3fi (xi-A)

1
N
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. Mean X=A +p%

»Xn be the mid values of class interval with corresponding

(iii) Cental Moments: If X1,X2
™ moment about mean x is denoted as Ly

frequencies fq,fo,........ f,, respectively then r

and it is given by
—\r
) r=0,1,2,..........

1
=— Yt (x;—x
Hr NZI( i

1 _
r:NZtiZ{ where z; =x; — X

Itis also called as rth central moment

. —0
Imparticular HO:%Zfi (Xi —x) :%Zti =1

1
H1=szi (Xi _X)
1 -1
ZNZfiXi —X-Nzti

=X—X
=0

HZ:%Zfi (x; —?)2 — Variance
2.3 Expression of Central Moments in Terms of Non-Central
Moments:

We have, by definition of central moments,

1 —
M= 2t (xi %)’
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1 —\r
=szi (Xi -A +A—X) where "A" is a constant

=%Zfi (5 -A)-(x-A)]'

%Zfi (di —u%)r
MF%Zfi (di —M%)r

1 B _ 2 _ 3
zﬁzfi [d{—roldir Ld + reyd! 2(;&) —regdf 3(;&) +

1 1 _
—ﬁzfidiIr —rcl(NZfidir 1)H%+

2 3
1 1 1 1 1 1 1
Hr = TGy gk +IColy 2 (Ml) - szHr—3(H1)
Hence the expression of central moments interms non-central moments is

g+ reput o (1) —read 5 (1) + ot (<D (1)

2.4 Expression of Non - Central Moments in Terms of Central
Moments:

By the definition of non-central moments, we have

1
Ky =

where z =X; —X



1 1 _ 1 _ 2 r
:NZfiz{Hq(NZfiz{ 1}p%+rc2(ﬁz1‘izir Zj(p}) SR +(u%)

— iy oy (ud) + rczur_z(u%)z T +(“})r .................. (2.4.1)
Summary :

Subsitutingr=0,1,2,3,4in (2.3.1) and (2.4.1) we get

ng=1 Ho=1

ui=x-A np=0

M5 =Hp +(u%)2 H2 :“%‘(“%)2

M3 = pg + 3o + (u%)3 g = 15~ byt + 2( )

M4 =1z +Apgh + Bl (L&)z + (L&)A Mg = g — Ayrgyet + 6115 (u%)z —3(@)4

2.5 Effect of Change of Origin and Scale on Moments:

Theorem (2.5.1): Cental moments are independent of change of origin but not scale.

Proof : Let Uizxir_] so that
Xj =A+hU;
x=A+hU

- xj—x=h(U; -U)

Thus My Z%Zfi (Xi —;)r

=%Zfi[h(ui —U)]r
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1 J—
=hrNZfi(Ui—U)r

:hr-“r Of U

th th

-1 central moment of X - distribution = h' times r central moment of U - distibution.

Theorem (2.5.2) : non - Central moments are independent of change of origin but not scale.

Proof : Let Ui:Xi ;A so that

Xj =A+hy;

= Xi —AZhUi
1 1 r
Thus Mr—NZfi (xi =A)
1
Zﬁzfi(hui)r
:hr%ZfiU{

=h".pl of Uabout origin.

h th

Thus r™ non - central moment of distribution of x=h" times r*' moment about origin of U.

Hence Non - Central moments are independent of change of origin but not scale.
2.4 Shappard's Corrections for moments :

In case of frequency distibution, we assume that the frequencies are concentrated at mid -
points of class intervals. If the distribution is symmetrical or slightly symmetrical and the class

th
intervals are not greater than (Z_Oj of the range of the distribution then the assumption is true.

This presumption is likely to gives rise to some error in the values of the moments and is
called the "grouping error". W.F. shappard corrected the effect due to grouping in the mid point of
the intervals by the following formulas known as Shappard's corrections. He proved that the correction
is made for, if (i) the frequency distribution is continuous (ii) the frequency tails off to zero in both
directions. The corrected moments are
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2
(Corrected)=p, ——
13 (Corrected) =3
1. 7 .4
Corrected) =py——h +——h
u4( ) Ha 2 H2 240

Where h is the width of the class interval.

Note : Correction is not necessary for odd moments, because in these cases the algebric signs
of the deviations +, - remains as they are. Hence, the error is neutralized because of its

compensatory nature.

Pearson's  and Y Coefficients :

Karl Pearson defined the following four coefficients, based upon the first four central moments
they are

2
_kH3
Pr="3 Y1=3/B1
U2
BZ:M 8,3
H% Y2=p2

The sign of y; will be that of p3.
B1 and yq are the measures of skewness.

Bo and y, are measures of kurtsis.

2.7 Measures of Skewness :

2.7.1 Symmetrical distribution : A distribution is said to be symmetrical when (i) the frequencies
are symmetrically distributed about the mean. (i) For symmetrical distribution the mean,

mode and median coincide. (iii) Median lies half way between the two quantites. i.e. Qg
- median = median - Qq
Ex: The following distribution is symmetical about its mean 5

X 1 2 3 4 5 6 7 8 9
f 3 4 6 9 10 9 6 4 3
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2.7.2 Skewness :

Skewness means "lack of symmetry". We study skewness to have an idea about the shape

of the curve which we can draw with the help of the given data. The distribution is said to be
skewed if

(i)  Mean, Median and Mode fall at different points.
i.e. Mean = Median = Mode.

(i)  Quantites are not equidistant from median.
i.,e. Qg -Median  Medium - Q

(i)  The curve drawn with the help of the given data is not symmetrical but bent more to one
side than to the other and more points lie on that side.

Skewness is said to be positive, if the curve of the distribution has more longer tail on right

side. the skewness in said to be negative, if the curve of the distribution has more longer tail on left
side. The following are the figures.

2.7.3 Coefficient of skewness :

(i)

The various measures of coefficient of skewness are
(i)  Karl Pearson's coefficient of skewness

(i)  Bowley's coefficient of skewness

(i)  Coefficient of skewness based on moments.
Karl Pearson's Coefficient of Skewness :

The Karl Pearson's coefficient of skewness is given by the formula.

Coefficient of sk k= Mean — Mode
oefficient of skewness = sk = Skandard Deviation
_M-Mg
(e)

Some times mode is diffecult to obtain but median is always easy to locate. If the mode isill

- defined then we may use the relation.

Mean - Mode = 3(mean - median)

In this case, Karl Pearson's coefficient of skewness become.

3(Mean—Median)
Standard Deviation

Coefficient of skewness =
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The limits of eocfficient of skewness based on mode are +1and based on median are + 3.

1@E

Skewness is positive of Mean > Mode or Mean > Median.
Skewness is negative if mean < mode or mean < median.
(ii) Bowley's coefficient of skewness :
Bowley's coefficient of skewness is based on quartiles and it is given by the formula.
(Q3 —Median)—(Median—Qy)
coefficient of skewness = (QB M edian) +(M edian — Ql)

_ Q3+Q;—2Median
Q3-Q

It is also known as Quantile coefficent of skewness. Where Qg is third quartile and Q is
first quartile. It lies between -1 and +1.

If coefficient of skewness > 0 then the distribution is positively skewed. If coefficent of
skewness < 0 then the distribution is negatively skewed.

(iii) Coefficient of Skewness based on Moments :

The coefficient of skewness based on moments is given by

VB (B2+3)

Coefficinet of skewness =
2(5B2—-6p1-9)

Coefficient of skewness is zero if either B1=0 or B, =-3. But B, #—3 since BZ:Wz
2

can not be negative. Hence coefficent of skewness = 0 if and only at B =0.
Thus for symmetrical distribution 31 =0
To study the distribution is skewed or not it is convenient to study by using y; where
13
1= f/B_lzT/
2 .
H2
If y1 >0 then the distribution is positively skewed.
If 1 <O then the distribution is negatively skewed.

If y1 =0 then the distributionis symmetrical.
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Theorem (2.7.3.1) :  Show that Bowley's coefficient of skewness lies between -1 and +1.

Proof : We know that for any two real positive numbers aand b (a, b > 0).

la—b|<|a+Db|

a-b
a+b

<1

We know that Q3 - Median and Median - Q; are both non - negative.

Thus if a= Q3 - Median, b = Median - Q; then we get

<1

(Q3 —Median)—(Median - Q1|
(Qz—Median)+(Median-Q; )|~

= |Bowley's Coefficient of sk|<1

= —1< Bowley's Coefficient of sk <1
Hence Bowley's coefficient of skewness is always lies -1 and +1.
2.8 Kurtosis:

The skewness was mainly concerned with the identification of the right and left tails of
distribution. In addition to this measure karl pearson gave another measure called "Convexity of a
Curve" or Kurtosis. Kurtosis enables us to have an idea about the flatness or peakedness of the

Curve. Kurtosis is measured by coefficent B, or y, and given by

Po= = d Br—3
2 an =P, —-3.
u3 Y2=P2
The curve which is neither flat nor peaked is called the normal curve or mesokurtic curve and

for that curve B, =3 or y» =0.

The curve which is flatter than the normal curve is known as platykurtic and for such a curve
Bo <3 oryy<0.

The curve which is more peaked than the normal curve is called leptokurtic and for such a
curve By >3 or y5>0.
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2.9 Merits and Demerits of Moments:

Merits : moments are used to study the general nature of the frequency distribution. We compare
one distribution with another distribution with respect to those characteristics. In fact, mean,
variance, skewness and kurtosis etc are nothing but moments. Thus for analysing a statistical

data moments are also used in describing the shape and location of a frequency distribution.
These are useful in fitting of distributions.

Demerits :

1.  The higher themoments the larger error would be subjected. Hence the use of higher
order moments are avoided in practice.

2. In studying a distribution through moments, we compare it .with normal distribution. So
this method of comparision becomes less effective when a distribution is very much
away from the normal conditions.

3. In symmetrical distributions all the odd order moments are zero. Thus, our scope of
knowledge is reduced to half.

4, In some theoritical distributions some of moments do not exist.

Ex: Mean does not exist in Cavchy distribution.

Theorem 2.8.1: Show that for discrete distribution 35 >1.

Proof : If X1,X2,.cceieeis , X, be the mid values of class interval with conresponding frequencing

f1, o ., respectively.

by definition g, = £4
M2

where W =%Zfi (Xi —;)2

1 —
Ha :szi (% —X)4

We have to prove that $,> 1
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2
. 1 —4 1 —\2
l.e. [NZ]‘I (Xi —X) }Z[NZ]C' (Xi —X) jl
. —\2 )
if (Xi —x) —Zi then we have to prove
2
1 2 1
that szizi Z(NZfiZij
2
. 1 2 (1
l.e. N2f|z| —(NZﬁZ') >0

1 —\2
ie. —2f (zi —z) >0
N
Which is true since square of the quantity is non - negative. Hence P, >1

Theorem 2.8.2: Show that 35 >4

Proof: If X{,X2,.ceiienne , X, be the mid values of class interval with corresponding frequencives

flf o ,fr, respectively.
1 )2 1 —\3 1 —\4
By definition u2=WZfi (Xi —X) “3=szi (xOC —x) p4:NZfi (Xi —x)

- 1 1 1
Let y=x;—Xx then H2=N2fiyi2 H3=N2fiyi3 H4=N2fiyi4

We know that square of the quantity is non negative
1 2
e of [y?+ty; | 20
1 4, 1 o0 2 1 3
DNZfIyI +Nt Vi +2tNZfiyi >0
:>},t4+t2},t2+2t],l320

.'.(2“3)2—4'M2'M4S0 .'.at2+bt+CZOthen b2—4aCSO
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2
=4u3—4p; pg<0
2<
= u3s<pppg
2
= Halg 2 U3
2
:M224 Zu_g
H2 U2

2
:M>H3

2 = 3
U2 U2

= P22P
2.10 Examples:

Ex 1: The first three moments of a distribution about value 2 are 1,16 and -40. Show that the

variable mean = 3, variance 15 and pg3=-86. Also show that the first three moments
about zero are 3, 24 and 76.

Sol: Given the momnets about the point A= 2. They are
1 1 1
up =1 p3=16, pz=-40

o Mean x=A+p;=2+1=3

Variance Up= u% —(u%)z

=16-1=15

1 ,1( 1 1)3

M3=M3—3M2(M1)+2(M1)
—_40-3(16)(D+2(1)°=—86

The first moment about zero (origin) M% =x=3

2
M% =Uo +(u%) ~15+(3)* =24
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u%=u3+3u2(u%)+(u%)3

~-86+3(15)(3)+(3)° = 76

Ex 2: The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and
50. Find mean, variance, pg and pg4 values.

Sol: GiventhatA=5, “%:2,“12=2o, “}3=4o, Mﬁ=50
We know that ;=A+(M%)

=5+2=7
s, Mean=7.

Moments about the mean are
2
1 (.1
u2=lu2—(u1)
2
=20-(2)°=16
1 511 1)3
na=ps-3ubut+2()
—40-3(20)(2)+2(2)°
=-64
21 4
u4=uﬁ—4u%u%+6ulz(u%) —3(@)

—50-4(40)(2)+6(20)(2)* -3(2)*
- 162.

Ex 3: For a distribution the mean 10, variance is 16, v;=1 and B, is 4. Find the first four
moments about origin.

Sol: Giventhat x =10, 6%=p,=16

V1= Bl =1



= pr=1

—n3=p3=(16)°=4096
. 13 =+/4096 =64
Giventhat $,=4

:>M—‘21=4
H2

2
= Hg =42

— 4(16)°
=1024

. x=10, py =16, 3 =64, 11, =1024

Moments about orgin are

ni=x=10
1 1\2 2
uh=po+(1l) =16+ (10% =116

W5 =p3 +3uouT + (M%)g

=64+ 3(16)(10) +(10)°
=1544

W4 =g + Augut + 6y (u%)z +(|u%)4

~1024+ 4(64)10+ 6(16)(10)2 + (10)*
=23784
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Ex 4: The first four moments of a distribution about the point 7 are 2, 8, 11 and 15 respectively.
Obtain B4 and B, coefficients and comment on the nature of the distribution.

Sol : Given that

A=7, nj=2, p5=8, p3=11, =15
1 (. 1)2 2
'-M2=M2—Gu) =8-(2)°=4

ng=pb-3ubut +2(ud)

~11-3(8)? + 2(2)°
=21

Mg =45~ A3 ] + 6|ulz(u%)2 —B(M%)4

~15-4(11),+6(8)(2)? —3(2)*
=15-88+ 192 -148

=71
2 2
B =3 -2V _gg9
1 3 64
M3

pz 212121

Ly, =t e = =605
T35 Ve
po=t4- 44375

uy (4)° 16

Comment: Since y1>0, the distribution is postively skewed and since P, >3, the curve of the
distribution is leptokurtic.

Ex5: If the first four moments of a distribution about the value 5 are equal to -4, 22, -117 and
560. Determine the corresponding moments (i) about mean, (ii) about origin.

Sol: GiventhatA =5, u%:_4, uﬁzzz, u%:_]_]_?, M}1=560

Mean (x)=A+pf=5-4=1
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(i)

(ii)

Moment about mean

na=ws (1)’ =22-16-6

3
1 o1 1, (1
na=ps-3ubpt+2(pd)

—-117 -3(22)(-4) + 2(-4)®

—_117+264-128=19
2 4
bg =ph - 4udug + 6 (u%) —3(@)

—560—4(-117)(-4) + 6(22)(-4)? —3(-4)*

= 560—-936+ 212768
=968
Moments about origin

We know that first moment about origin is mean

2
1 1
ph=pp+(pf) =6+1=7

3
u%=u3+3uzu%+(u%)
=19+3(6)(D) + (D3
=38
2 4
M= u4+4u3u%+6uz(u%) +(|u%)

~968+4(19)(1) + 6(6) (D)2 + (D*

=968+ 76+36+1
=1071
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Ex 6:

Sol :

Ex 7:

Sol :

In a frequency distibution coefficient of skewness based upon the quartiles is 0.6. If the
sum of the upper and lower quartiles are 100 and median is 38. Find the values of upper
and lower quantites.

Q3+Q1—2 Median
Q3-Q

Coefficient of SK =

Given that Q3+ Q; =100,Median =38 and coefficient of skawness = 0.6

0,6 100—2x38
Q3-Q
- Q3_Q1:10Cc));;76:40
5. Q3+Q; =100
Q3-Q=40 = 2Q3=140
=Q3 =70

Q; =100- Q3 =100-70=30

5 Q=30 and Qg=70

Afrequency distribution gives the following results. C.V. =5, Karl Pearsons SK=0.5and
o =2. Find mean and mode of the distribution.

Given that
CV. =5

-~ 94100=5

Karl Pearson's Coefficient of sk = 0.5
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Mean - Mode
:—:

0.5
SD
N 40— g/lode _05

= 40 -Mode=2x0.5=1
Mode =40-1 =39
.. Mean =40, Mode = 39.
EXERCISE:

1. Define central and non-central moments. Define central moments interms of non-central
moments.

Define skewness and explain the various measures of coefficient of skewness.
Define kurtosis and give its various measures and curves.

Show that for any frequency distribution coefficient of Kurtsis is grater than unity.
Show that Bowley's coefficient of skewness lies between -1 and +1.

What are Shappard's corrections ? Explain them.

Show that moments are not effected by origin but effected by scale.

© N o g M WD

The first four moments of a distribution about the value 4 of the variable are -1.5, 17, -30 and
108. Find the moments about mean, 31 and f,. Also find the moments about origin.

9. The first four moments of a distribution about 4 are 1, 4, 10 and 45. Obtain the moments
about mean, f; and B,. Comment on their values.

10. For adistribution the mean is 10, variance is 16, y; is +1 and [, is 4. Obtain the first four
raw moments.

11. The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Compute coefficient
of skewness and kurtosis and comment.

12. The first three moments about the origin are
(n+D(2n+1)

1_
v M2 6 y M

n(n+1)?
4

whk

1_n+1
K1 2

obtain the variance and f3; coefficient.
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13. Prove that py =u}—rolu%_1(u%)+ .......... +(-Df (u%)r.
14. Obtain Karl Pearson's coefficient of skewness for the following data.
Class: 5-15 15-25 25-35 35-45 45 - 55
Frequency : 14 22 36 18 10
Answers :

8. mean=25, up =14.75, pg=39.75, p4 =142.3125
ui =25 pd=21, p} =166, pf =1132
9. mean=5, puy =3, uz3 =0, ug =26
ui =5, pb =28, L =170, i} = 1101
B1=0, B, =2.889
The distribution is symmetric and platykurtic.
10.  u}=10, p}=116, uj=1544, uj =23184

1. p,;=0.0314, B, =3

2
-1
12. Variance uzzn?, B1=0.

13. mean =216, mode =22, c =7.137

Karl Pearson coefficient of skewness = -0.056

14. n,=13456 p3=126.144 p, =41853.26
1 =0.006531 the distribution is positively skewed

Bo = 2.31151 the distribution is Leptokurtic Curve.



Lesson - 3

ANALYSIS OF CATEGORICAL DATA

Syllabus:

Consistency of categorical data, independene and association of attributes, various meaures
of association for two way data with real life examples.

Objectives:

After studying the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of consistency of categorical data, independence
and association of attributes, various measures of association for two way data with real life
examples.

Structure of The Lesson:
This lesson consists of sections as detailed below:
3.1 Introduction
3.2 Notations
3.3 Class and Class Frequencies
3.4 Order of Class Frequencies
3.5 Ultimate Class Frequencies
3.6 Consistnecy
3.7 Independence of Attributs
3.8 Association of Attributs
3.9 Examples
3.10 Exercises
3.11 Answers
3.12 Summary

3.13 Technical Terms

3.1 Introduction:

The statistical data my be classified as two catagiries, they are quantitative data and qualitative
data. Quantitative data means the data which is measured in terms of numbers.
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Ex: Weight in Kgs of a man, height of a person in inches etc...

The data obtained in this way are known as statistics of variable. The other type of statistical
data is called statistics of attributes. Literally an attribute means a quality or characteristic. Theory
of attributes deals with qualitative characteristics which are not quantitatively measurable. Examples
of such situations arise when one deals with characters like smoking, health, honesty etc. In this
case, itis not possible to measure the extent of smoking or honesty but one can covert the number
of persons who possess a particular quality and who do not possess it.

3.2 Notations:

To understand the theory of attributes, it is necessary to introduce some notations for the
classes formed and the number of observations assigned to each. The capital letters A,B,C,.........

will be used to denote the presence or posses the several attributes. The greek letters o,f3,y,---+------

are generally used to represent the absence of the attributes A,B,C, ................. respectively. For
example if A represents the blindness then o represent not blindness, if B represents smoker then

B represents not smoker etc.

If A denotes the attribute of being blind, B represents the attribute of smoking then the
combination of attributes will be represented by grouping together the letters that indicate the attributes
concerned.

Thus AB stands for blind and smoker

AP stands for blind and non-smoker
o B stands for not blind and smoker

af stands for not blind and non-smoker

If a third attribute C be included to represent, say male, then ABC will stand for male blind
smokers. Similarly ABy, ABC, ABy etc------
3.3 Class and Class - Frequencies:

Different attributes and their combinations are called different classes and the number of
observations assigned to them are called class frequencies. The class frequencies are denoted
by putting the letter or letters within brackets.

If class of the certain attribute can be denoted by letter A then the class frequency can be
denoted as (A).

i.e. (A) means the number of objects belonging to class A.

(AB) means number of objects passessingthe attributes A and B.

Similarly (AB), (aB), (ABy). (ABC) etc are the number of objects possessing the attributes
AB, ap, ABy, ABC respectively.
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A class frequency of capital letters or positive attributes only is called positive class frequency
and greek letters or nagative attributes are called the negative class frequencies.

Ex:  (AB) is a positive class frequency

(ap) is a negative class frequency
For conveniance total frequency "N" is taken as a positive class frequency.
3.4 Order of Class Frequencies:
A class containing " r " attributes then it is taken as of ,th order class and a class frequecny

containing " r " attributes init is taken as of (th order class frequecny.

Ex: AB, BC, CA are the second order classes and their frequencies (AB), (BC), (CA) are the
second order class frequencies.

Similarly (A), (AB), (ABC) are respectively first, second, third order class frequencies.

Note: Conventionally, total frequency N is taken as the class frequency of order zero.
Class frequency in terms higher order class frequencies:

All the class frequencies of various orders are not indipendent of each other and any class
frequency can always be expressed in terms of class frequencies of higher order.

Thus N = (A) + () = (B)+(B) = (C) + (1)

The numbers of A's is equal to the number of A's which are B's added to the number of A's
which are not B's.

ie.  (A) =(AB)+(AB)
(o) =(a:B) («B)

Similarly (AB) = (ABC) + (ABy)

(AB)

(ap) = (aBC) +(aBy)

(ABC) + (ABy)

(ap) =(apC) + (afy) and so on

- (A)=(AB) + (AB)
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— (ABC) + (ABy) + (ABC) + (ABy)
(o) =(aB) +(ap)
— (a.BC) + (aBy) + (aBC) + (apy)
Also N =(A)+(a)
— (AB) + (AB) + (aB) + (aB)
— (ABC) + (ABy) + (ABC) +(ABY) +(atBC)+(aBy) + (aBC) + ()

3.5 Ultimate Class Frequencies:

Any class frequency is expressable in terms of class frequencies of higher order are called
the ultimate class frequencies. Thus in case of n attributes the ultimate class frequencies will be

the frequency of n™ order.
Note:

(1) In case of n attributes, the ultimate class frequencies each contain n symbols and
since each symbol may be written in two ways there are positive part and negative

part, for example A or a, B or B etc. Hence the total of ultimate class frequencies of

n attributes is 2" .
If A, B, C are three attributes then the total number of ultimate class frequencies
are 2° =8,
(2) Any class frequency can express as the sum of some of the 2" ultimate class
frequencies.
(3) The total of number of ultimate class frequencies specify the data completely.
Classification:

The objects or individuals possessing or not possessing a particular attribute for two distinct
classes. They are (i) Dichotomy, (ii) Manifold Classifications.

Dichotomy: The process of dividing the collection of individuals into two classes according to the
presence or absence of an attribute is called Dichotomy.

Ex: Total population can be classified into two classes as blind and not blind people.

Manifold Classification: If the number of sub classes are more than two then the grouping is
called manifold classification.
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Analysis of ]@

Ex: Grouping of university students into three classes as fail, second class, first class is a manifold

classification.

Theorem 1: Prove that the total number of class frequencies with 3 attributes is 27.

Proof: LetA, B, C are three attributes. The following are the various orders and their class

frequences.
Order Frequencies Number of frequencies
0 N 1
1 (A),(B), (C), (), (B), (v) 6
2 (AB), (AC), (BC)
(AB). (Av). (By)
(«B), (C),(BC)
(«B). (7). (BY) 12
3 (ABC), (ABy),(ABC).(ABY)
(OLBC), (aBy), ((x § C), (aBy) 8
27

Hence the total number of class frequencies with 3 attributes is 27.

Theorem 2: Prove that total number of class frequencies with n attributes are 3".

Proof: Suppose the " n " attributes are A, B, C,

of order zero number of class frequencies = 1

of order 1 number of class frequences = 2 x nC;

[Since out of n attributes one can be selected in NC; ways and for each of the nC; first

order classes there would be two class frequencies Ex: (A) and (a) forA, (B)and (B)

for B etc]

of order 2 number of class frequencies = nC, 22



@{Centre for Distence Education 3.6 Acharya Nagarjuna Universityﬁ

[Since out of n attributes 2 can select nC, ways and for each of nC, combinations of
two attributes we can form 4 class frequencies Ex: with two attributes A and B we form

(AB), (AB), (aB),(a B) are 22 class frequencies]
Similarly of order 3 number of class frequencies = nCy 23
and so on

of order n the number of class frequencies = nC, 2"

Hence the total number of class frequencies with " n "

Attributes =1+ nc;2 + NCy2% +NCg 23 +--o-vo- - +nc,2"
=(1+2)"
=3"
Theorem 3: Prove that the total number of positive class frequencies with n attributes in on.

Proof:  Suppose there are n attributes A, B, C, ---------- M

N is the only positive class frequency of order zero.

-, number of positive class frequencies of order zero = 1

number of positive class frequencies of order one = nc;
[since one attribute will give only one positive class freuency, Ex. forA only (A)].
number of positive class frequencies of order 2= nc,

[ Out of two attributes 2 can selectin nc, ways and combination of any two attributes will

give only one positive class frequency for example (AB) for A and B].
Similary number of positive class frequencies of order 3= nc5-1 and so on.

number of positive class frequencies of order n=nc, -1

-. The total number of positive class frequencies of with n attributes
=1+NC; +NCy ++-+-+- +NC

= (1+2)"

=on
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Note: The total number of negative class frequencies with n attributes are 2" —1.

Class Symbols as Operators:

Usually the some of attributes will be given and remaining must be found by using them. It

is not easy to remember always. For finding the unknown attributes without errors the easy method
is as follows:

Let us write symbolically
AN =(A)
aN=(a)

Adding we get AN +aN=(A)+(a)
= (A+a)N=N
=>A+a=1
ta=1-A
(or) A=1-oa

Thus in symbolic expression we can replace Aby 1- o and o by (1— A) . Similarly B can

be replaced by (1-B) and B can be replaced by (1-B) etc.

Dichotomising (B) according to A,

Let us write
A(B)=(AB)
Similarly B(A) = (BA)
. A(B)=B(A)=(AB)=AB-N

These are operators only, they are not numbers. By using these operators we can express
any formula easily.

Ex: (ap)=apN
= (1-A) (1-B)N
=N - AN - BN + ABN

-N-(A)-(8)+ (AB)
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(ABy) = AByN
— AB(1-C)N
— ABN — ABCN
=(AB) - (ABC)
(aBy)=apyN
=(1-A)(1-B)(1-C)N
— N — AN — BN — CN + ABN + ACN + BCN — ABCN
- N—(A) - (B) - (C) + (AB) + (AC) + (BC) - (ABC)
(ABy)=ABYN
—A(1-B)(1-C)N
— AN — ABN — ACN + ABCN

— (A) - (AB) - (AC) + (ABC)

and so on.
Theorem: Prove that for n attributes A, Ay,--------- A, as
(Al Agveeennnns An)Z(A1)+(A2)+ ........... +(An)_(n_1)N

where N is the total number of observations.
Proof: This can be proved by mathematical induction.

We have
(0g05) =05 ap N
=(1-Aq) (1-Az)N
=N = AN = AN+ AAN

=N (A1) = (Az) +(A1A;)

Since the class frequency is always non - negative.



@{Probability and Distributions 3.9 Analysis of...]@

= N=(A) - (A2) + (A1 A)20

= (AL A)2(A]) +(Ag) =N (1)
Hence the theorem is true for n=2
By substituting A,A5 in place of A, in (1) we have

(AL Az Az)2(Ag) + (A Ag) - N

v

(Ar)+(Az)+(Ag)-N-N
S (AL AL Ag) 2 (A)+(Ay)+(Az) - 2N

Hence the theorem is true for n=3.

Let us suppose that the theorem is true for n=r.

that is (AlAZ ........... Ar)Z(Al)"‘(Az)“‘ ............ +(Ar)_(r_1)N ...... (2)

(Al Ay vvnnnns A, Ar+1) > (Al) + (A2)+ ........... +(Ar Ar+1) (r—l)N
= (A1)+(A2)+ """"""" +{(Ar)+(Ar+1)—N} (r—l)N
2 (Ag)+(Ag)+reee +(Ar)+(Arg)-N

Thus the theorem is true for n=r+1.
Hence by induction, the theorem istrue for all positive integer values of n.

3.6 Consistencey:
Definition:

Consistency of a set of class frequencies may be defined as the property that none of them
is negative, otherwise the data for class frequencies are said to be inconsistent.

Sine any class frequency can be expressed as the sum of some ultimate class frequencies
it is necesarily non-negative if all the ultimate class frequencies are non-negative.
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Result:

The necessary and sufficient condition for the consistency of a set of independent class
frequencies is that no ultimate class frequency is negative.

Conclusion:

To determine whether the given frequencies are consistent or inconsistent, the given
frequencies are to be expressed in ultimate class frequencies. If any of them is negative then the
data are inconsistent otherwise the data are consistent.

3.6.1 Consistency Conditions: Consistency conditions for a single attribute A are
(A)=0
(0)20=(A)<N (3.6.1.1)
Consistency Conditions for two attributes A and B are
(AB)>0
(AB)=0= (AB)<(A)
(¢B)> 0= (AB) <(B)
(0 B)> 0= (AB)>(A)+(B)-N
Consistency Conditions for three attributes A, B and C are
() (ABC)20
(i) (ABy)>0= (ABC)<(AB)
(i) (ABC)=0= (ABC)<(AC)
(v) (aBC)>0=(ABC)<(BC)
)  (ABy)=0= (ABC)=> (AB)+(AC)—(A)
(vi) (aBy)>0= (ABC)=> (AB)+ (BC)-(B)
(vi)) (o C)=0= (ABC)>(AC)+(BC)-(C)

(vii)) (oBy)= 0= (ABC)<(AB)+(BC)+(AC)—(A)~(B)~(C)+N
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From (i) and (viii) we get

(AB)+(BC)+(AC)>(A)+(B)+(C)-N

From (ii) and (vii) we get

(AC)+(BC)-(AB) <(C)

From (iii) and (vi) we get

(AB) +(BC) - (AC)<(B)

From (iv) and (v) we get

(AB) +(AC)-(BC)<(A)

3.7 Independence of Attributes:

Two attributes A and B are said to be independent if there exists no relationship of any kind

between them.

If A and B are independent we would expect (i) The same proportion of A's amongst B's as
amongst B's (ii) The proportion of B's amongst A's same as that amongst the ¢'s.

Criterion of Independence:

1.

If A and B are independent then from (i)

(AB)_(AB) _ (aB) _(aB)

(B) = (B) = (B) = (B) ................ (3.6.2.1)
Similarly from (ii) we have
(AB) = ((x B) (AB) = (aB) ............... (3.6.2.2)

A (@ (&) ()

from equation (3.6.2.1)

(AB) _ (AB) _(AB)+(AB) _(A)

B8 (B (B)+B) N

It becomes easier to grasp the nature of the above relations if the frequencies
are supposed to be grouped into a table with two rows and two columns as follows:
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A o |tota
B | (AB) (aB) | (B)
B | (AB) («B) | (B)
total | (A) (a) | N
From table we express as
. (AB)_(aB)_(B)
O (a) " (@) N
o (AB)_(ap) _ (B)
W (A) " (@) "N
- (AB) _(AB) _(A)
W &) " N
o (@B)_(aB) (o)
™ ) ®
(AB) _(aB) _(B)
W (AB) " (aB) ~ (B)
- (AB) _(AB) _(A)
W (aB)” (aB) " (o)
2. The criterion of independence may be obtained in terms of class frequencies of first

order and it is given by

(a5) - 2)(©)

_ (A8)_(A) (8)
N

N N
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which leads to the following fundamental rule.

If the attributes A and B are independent, the proportion of AB's in the population
is equal to te product of proportions of A's and B's in the population.

3. We may obtain the third criterion of independene in terms of second order class
frequencies as follows:

(AB) (ap) =(AB) (aB)
3.8 Asociation of Attributes:

Two attributes A and B are said to be associated if they are not independent but are related
in some way or the other.

The association are of two types they are (i) positive association, (ii) Negative association.
Positive Association:
Two attributes A and B are said to be positively associated or simply associated if

(ag)> L) (B).

N

Negative Association:

Two attributes A and B are said to be Negatively Associated or disassociated if

(a8) < A1)

Complete Association:

If all A's are B's or all B's are A's then A and B are said to be completely associated. So A
and B are completely associated if either (AB) =(A) or (AB) =(B) which even is less.

Complete Disassociation:

If none of the A's are B's that is (AB) = 0 or more of the ¢'s are B's thatis (ap)=0 then
A and B are said to be completely negatively associated.

Thus when A and B are completely disassociated if (AB)=0 or (AB)=(A)+(B)-N,
whichever is more.
3.8.1 Coefficient of Association:

To measure the intensity of association, we use the two measures of coefficients,
they are



@{Centre for Distence Education 3.14 Acharya Nagarjuna Universityﬁ

1. Yule's coefficient of Association
2. Coefficient of colligation
1. Yule's Coefficient of Association: For measuring the intensity of association

between two attributes A and B G. Vdny Yule gave the coefficient of association Q
defined as follows:

o (AB) (aP) - (AP) (aB)

(AB)(a:B)+(AB)(aB)
Properties:
i) When A and B are independentthen Q =0
ii) If A and B are completely associated Q thenQ = 1
iii) If A and B are completely disassociated then Q = -1

iv) Therange of Qis -1 to +1

V) Yule's coefficient of association will not change if the terms containing any of the
attributes are multiplied by the same constant.

3.8.2 Coefficient of Colligation: The coefficient of colligation between A and B are given by
o _ A(AB) (a) - J(AB)(B)
J(AB) (o) + {/(AP) («B)
Propertions:
1. If A and B are independent then Y =0
2. If A and B are completely associated then Y =+1
3. If A and B are completely dissassociated then Y =-1
4, The range of colligationin =1 to 41
: . 2Y
5. The relation between Qand Y is Q =
1+Y?
6. The value of Y will not change if all the terms containing any of the attributes are
multiplied by the same constant.
Theorem 3.8.2: Prove that in the usual notations Q = 2Y 5
1+Y
Proof:  The coefficient of colligation Y is given by
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Let K=

y2 _LrK-2JK
1+ K + 20K

1+ K —2JK
1+K+2\/E

ie. 1+Y%=1+

14K+ 20K +1+ K 2K
1+K + 2K

~ 2(1+K)
_1+K+2\/R

2(1+K)

(1+VK )2

oy 21-VK) [ 2a4k)
T14v2 14K (1+\/§)2

(1—\/R)(1+\/R)

1+ K
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\/

_(Ap)(@B)

(A8B) (op)
. (AB)(oB)
" (AB)(o)
-Q

2y
1+Y?2

3.9 Examples:
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Example 1.  Find the remainiing class frequencies, given the following data for two attributes A

and B.

(AB) =250, (A B) =120, (a B) =

Solution: Here N =(AB)+ (AB)+(a B)+(ap)

— 250 + 120 + 200 + 70
— 640
(A)=(AB) +(AB)
— 250 + 120 = 370
(B)=(AB)+(aB)
— 250 + 200 = 450
(a) =N —(A) =640 - 370 = 270

(B) =N - (B) = 640 — 450 = 190

200, (ap) =

Example 2:  Find the remaining class frequencies, given the following data.

(A) =50, (B) = 40, (AB) = 30, N =100

Solution: (AB)=(A)-(AB)

=50-30=20
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Example 3:

Solution:

Order 2:

(0B) =(B) ~(AB)=40-30=10
(B)zN—(B)=100—40=60

(a)=N—(A)=100-50=50

(aB)=N—(A)-(B)+(AB)=100 - 50 — 40 + 30 = 40
Find the remaining class frequencies, given the following data.

(ABC)=57,(aBC) =78, (ABy) = 28 (a B y) = 620,

(ABC)=86,(apC)=65(Apy)=453 (apy)=8310.

Analysis of ]@

For three attributes there are 3° = 27, class frequencies given 8 class frequencies,

so we have to find the remaining 19 class frequencies.

(AB) =(ABC) + (ABY)
=57+ 281

=338
(AC) = (ABC)+ (ABC) =57 + 86 =143
(BC) = (ABC) + (BC) = 57 + 78 =135
(aB)=(aBC)+(aBy)=78+670=748

(@ C)=(aBC)+(a p C)=78+65=143

(B)=(aBPC)+(apy)=65+8310=8375

(ay)=(aBy)+(a B y)=670+8310 =8980

(A B) =(ABC) + (ABy) = 86+ 453 = 539

(Ay) =(ABy)+(ABy)=28L+453=734
(By)=(ABy) + (aBy) =281+ 670 =951
(BC)=(ABC) + (apC) = 86+65=151
(By)=(ABY)+ (B y)=453+8310=8763
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Order 1:

Order O:

Example 4:

Solution:

(A)=(AB) + (Ap) = 338 + 539 = 877
(B)=(AB) + (a.B) = 338+ 748 = 1086
(€)
(@)
(B)
(v)

N=(A)+(a)

(BC) + (BC) =135 + 151 = 286

(a B)+ () = 748 + 8375 = 9123

(AB) + (B) = 539 + 8375 = 8914

(Ay) + (oy) = 734 + 8980 = 9714

=877+9123

=10000

Given the following positive class frequencies, findthe ultimate class frequencies.
N =12000, (A)= 977, (B) = 1185, (C) = 596,
(AB) =153, (AC) = 284, (BC) = 250, (ABC) = 127.
The ultimate class frequencies are
(ABC)=127  (given)
(aBC) = (BC)-(ABC)
=250-127 =123
(A BC)=(AC) - (ABC)
=284 -127 =157
(ABy) = (AB)-(ABC)
=453 -127 = 326
(aBy) =(B)-(BC)-(AB)+(ABC)

=596 - 50 — 284 + 127 =189
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(ABy)=(A)-(AB)-(AC)+(ABC)
=977 — 453 - 284 + 127 = 367

(aBy) = N-(A)-(B)-(C)+(AB)+(BC)+(AC) - (ABC)
=12000 — 977 — 1185 — 596 + 453 + 284 + 250 —-127

=10102

Example 5: If 598 men in a locality exposed to cholera 147 in all were attacked. 137 were
inoculated and of these only 14 were atttacked. Find the number of persons not
inoculated not attacked, inoculated not attacked and not inoculated attacked.

Solution: Let A be the attribute of attacked.

Let B be the attribute of inoculated.
Giventhat N = 598, (A) =147, (B) =137, (AB) = 14,
So we have to obtain the values of (o), (aB) and (AB).
(aB)=N-(A)-(B)+(AB)
=598 —-147 - 137+ 14 = 328
(aB)=(B)-(AB)
=137-14=123
(AB)=(A)-(AB)

=147 -14 =133

Example6:  Given that (A)=(B)=(C) :g and 80% of A's are B's, 75% of A's are C's. Find

the limits to the percentage of B's that are C's.

=100

Solution: Let (A):(B):(c)zg

then (AB)=80, (AC)=75.

We have to find the limits of (BC).
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By using the conditions for consistency, we have
(AB)+(BC)+(AC)>(A)+(B)+(C)-N
= (BC)>(A)+(B)+(C)-N—-(AB)-(AC)
>100 + 100 + 100 — 200 — 80 — 75
= (BC)>—55-----w-neee (1) which is wrong
(AC)+(BC)-(AB)<(C)

= (BC) <(C) + (AB) — (AC)

<100+80-75
= (BC) <105-----+---- >(2) which is wrong
(AB) + (BC) — (AC) <(B) - (BC)<(B)

= (BC)<(B) +(AC) - (AB)

<100+ 75-80

(AB) +(AC)—(BC) < (A)
= (AB) +(AC)-(A)<(BC)

= 80 + 75-100 < (BC)

From (1), (2), (3), (4)we get 55<(BC)<95

Hence (BC) lies between 55% and 95%.

N
Example7:  Given that (A)=(B)=(C)= = 50 and (AB)=30, (AC)=25. Find the limits
within which (BC) will lie.

Solution: By using conditions consistency we have
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(AB) + (BC) + (AC) > (A) + (B) + (C) - N
= (BC)= (A) +(B) + (C) - N — (AB) - (AC)
>50+ 50+ 50-100-30- 25
= (BC)2 =5 (1) which is wrong
(AB) + (AC) - (BC) < (A)
= (AB)+ (AC) - (A) <(BC)

= 30+ 25—50£(BC)

(AB)+(BC) - (AC)<(B)
= (BC) <(B) + (AC) —(AB)

= (BC) <50+ 2530

(AC) +(BC)-(AB) < (C)
= (BC) <(C) + (AB) - (AC)
<50+30-25
= (BC) <55 +veveven (4) which is wrong  since (BC) ¢ (B)
- 5<(BC)<45

Example8: If Aand B are two independent attributes and N =1024, (A) =144, (B) = 384 then
find (AB), (AB), (aB) and (a B) values.

Solution: (a)=N-(A)

=1024 — 144 = 880
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(B)=N-(B)
— 1024 — 384 = 640

Since A and B are independent attributes

A)(B
then (AB)=( )N( )=l4‘1‘02284=54

R

(a)(B) _830x384
N 1024

=330

(aB)=

() (B) _880x640

(0 B) =" 1024

Example 9: Can vaccination be regarded as a preventive m

easure for small pox from the data

given below? Of 1482 persons in a locality exposed to small Pox 368 in all were
attacked. of 1482 persons, 343 had been vaccinated and of these only 35 were

attacked.

Solution: Let A denote the attribute of vaccination and B denote attack. Then the given data is

N = 1482, (A) =368, (B) = 343, (AB) =35.
(B)=N-(A)-(B)+(AB)

= 1482 - 368 — 343+ 35= 806
(AB)=(A)-(AB)=368-35=333
(aB)=(B) - (AB) = 343 - 35= 308

. Yules coefficient of association Q is given by

_ 35x 806 - 333x 308
35 x 806 + 333 x 308

--05
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~. There is a negative association between A and B.

Analysis of ]@

i.e. there is positive association between not attacked and vaccinated.

Hence vaccination can be regarded as a preventive measure for small pox.

Example 10: Find the association between proficiency in English and in Hindi among candidates
at a certain test if 245 of them passed in Hindi, 285 failed in Hindi, 190 failed in

Hindi but passed in English and 147 passed in both.

Solution: Let A denotes attribute of passed in English

B denotes attribute of passed in Hindi

giventhat (B)= 245

(B) =285

(A B)=190

(A B) =147
(A B) =190
= (A)-(AB)=190
= (A) =190+ (AB)

=190+ 147 = 337

N

(B) + (B) = 245 + 285 = 530
(a.B) = (B) - (AB) = 245 - 147 = 98
(aB)=N-(A)-(B)+(AB)

— 530 — 337 - 245 + 147

=95

.. Yules coefficient of association is given by
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_147x95-190x 98
147 x 95 + 190 x 98

=— 0142857

Hence association between English and Hindi is — 0-142857 .

Example 11: The male population of a state is 250 lakhs. The number of literate males is 20
lakhs and total number of male criminals is 26 thousands. The number of literates
male criminals is 2 thousands. Do you find any association between literacy and

criminality.
Solution: Let attribute A denote literate males and B denotes male criminals.
Thus given that N = 2,50,00000

(A) = 20,00000
(B) = 26000
(AB) = 2000
(AB) = (A) - (AB) = 2000000 — 2000 = 1998000
(aB) = (B) - (AB) = 26000 — 2000 = 24000
(ap)= N—(A)~(B)+(AB)
= 25000000 — 2000000 — 26000 + 2000

= 2,29,76,000

2000 x 22976000 — 1998000 x 24000
2000 x 22976000 + 1998000 x 24000

45952 — 47952
45952 + 47952

=-0-0213

Hence literacy and criminality are negatively associated.
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3.10 Exercises:

1.

2
3.
4

10.

11.

12.

Define class and class frequency.
Explain the following (i) order of a class, (ii) Ultimate class.
What do you understand by consistency of given data.

What do you mean by independence of attributes? Give a criteria of independence
for attributes A and B.

What are te various methods of finding whether two attributes are associated,
dissociated or independent ?

What is association of attributes ? Give the measure of coefficient of association.

Define Yule's coefficient of association (Q) and colligation (Y). Prove that
Q- 2Y/(1+ Y2) _
Given the following ultimate class frequencies, find the frequencies of positive class,

(ABC)=149, (ABy) = 738, (ABC) = 225, (A B y) = 1196,

(aBC) =204, (. By)=1762,(a pC) =171, (a. P y) = 21842.

where N is the total number of observations.

Among the adult population of a certain town 50% are male, 60% are wage - earners
and 50% are 45 years of age or over 10% of the males are not wage earners and
40% of the males are under 45 make the best possible inference about the limits
within which the percentage of persons of 45 years or over are wage - earners.

2

If 1000=N =13 (A)=2(B)=2=(C)=5(AB) and (AC)=(BC), what should be

N~

the minimum value of (BC) ?

Investigate the association between darkness of eye colour in father and son from
the following data:

Fathers with dark eyes and sons with dark eyes : 50
Fathers with dark eyes and sons with not dark eyes : 79
Father with not dark eyes and sons with dark eyes : 89

Father with not dark eyes and sons with not dark eyes : 782
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3.11 Answers:

3.

8.  (A)=2308,(B)= 2853 (C)= 749,

(AB) =887, (AC)=374,(BC) =353 N = 26287,

10. 25<(BC)<45

11. 150
12. Q=0-6951
Y =0-4052

3.12 Summary:

26
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In statistical data, the concept of non numerical data called qualitative characteristic is
defined. construction of frequency distributions of such a data is given. Notion of consistency,
independence, association are introduced. These concepts are applied in analysis of qualitative

data.

3.13 Technical Terms:
Altribute
Independence
Association
Contigency Table
Consistency of Data

Class Frequency



Lesson - 4

PROBABILITY

Syllabus:

Definition of probability, classical and relative frequency approach to probability, merits and
demerits of these approaches, random experiment sample point and sample space, definition of
an event, operation of events, properties of probability based on axioamatic approach, addition
theorem for 'n' events.

Objective:

This lesson is prepared in such a way that after studying the material the student is expected
to have a thorough comprehension of the concept "probability" - the breath of any statistical
investigation and analysis. The student would be equipped with theoretical as well as practical
aspects of probability of an event or combination of events.

Structure of the lesson:
4.1 Introduction
4.2 Basic pre-requisites
4.3 Relative frequency approach
4.4 Classical Definition
4.5 Axiomatic Approach
4.6 Addition Theorem
4.7 Examples
4.8 Exercises
4.9 Summary

4.10 Technical Terms

4.1 Introduction:

Quite often we come across statements that are not always true and not always false. The
weather forecast in news bulletins. The announcements about arrivals and departures of trains in
a railway station, the results of pre-poll surveys in general elections etc. are some situations. In all
these examples we see an element of uncertainity associated with them that would prevent us
from taking an appropriate decision. Therefore if there is a method of expressing uncertainity in
numerical quantity, depending on the magnitude of the numerical quantity one can decide whether
are not to go ahead with a decision.
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For example, let us take the news presentation in weather fore cast in TV/ Radio. It generally
says that in a particular place heavy rains are likely to be experienced, as per the satelite pictures.
The word 'likely' in the news presentation makes an individual to become alert and take an umbrella/
rain coat while going outor post-pone his/her out door works and so on. That s, the importance is
for rain rather than no rain. The above narration indicates that the weather forecast people have
some method that quantities the uncertain incident rain or no rain to say in the news. Effectively
this is the phenomenon called probability. Hence a descriptive explanation for the concept probability
can be given as 'quantification of uncertainty'. In this lesson we discuss at length the notion of
probability, the various developments in its definition, some standared theorem results along with
spectific applications.

4.2 Basic Prerequisites :

In this section we present some concepts required to expalin probability.

4.2.1 Definition: Random Experiment : An experiment whose result is not known with certainity,
unless the experiment is performed completely.

Example: 1.  Applying for an admission in a college
2. Trying to catch a bus in a bus station
3. Winning or losing a match

4, Hitting a target in a shooting test and of course - tossing a coin throwing a dice.
etc.

In all these examples some action is performed with an intended result. But the expected
result may or may not happen. Infact we experience many random experiments in daily observations.

4.2.2 Definition : Sample Space : In a random experiment, though we can not say exactly -
guess out come of the action, with some enlightened vision we can say the various possible
results, for the experiment. The set of all possible out comes of a random experiment
without any omission is called sample space. In the examples of the definition 4.2.1 the
following sets are sample spaces respectively.

{ admission, no admission}
{Catching the Bus, Missing the Bus}
{Win, lose, dran}

{hitting the target, missing the target}
{head, tail}

{1,2,3,4,5,6}

Sample space is similar to the universal set in set theory and is denoted by (3. The elements
of  are called sample points are also called simple events. Combination of simple events is
called an event. Thatis sub sets of ) are called events. For example in a die throwing example
the signleton sets {1}, {2}, {3}, {4}, {5}, {6} are called sample points. The subset {1,3,5} is an
event - denoting getting an odd number and the set {3, 6} denotes the event getting a multiple of 3.
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Hence we can think of a parallel between set theory and events in sample space. If Aand B
are any two subsets of Q.

Al=0-A is called compumentary event to A

A UB = Occurence of either of the events
AN B = Occurence of both the events A, B

In particular if ANB=¢ - the null set then A, B are specifically called muthally exclusive
events.

4.3 Relative Frequency Approach:

Let us consider the repelitions of a random experment say 'n' times. Suppose the event 'E'

r
in which we are interested appears say r times. Then " is called relative frequency of the event

r
E, which can be regarded as sequence of real fractions based on 'n' limit of " as n approachesto

infinity (i.e. limiting value of relative frequency as the number of repetitions becomes larger and
larger) iscalled probability of the event 'E'.

The relative frequency approach to the definition of probability is basically a limit of a sequence.
Hence unless the sequence is convergent, we cannot get the probability. Even if it is convergent,
one may have to do a number of repetitions of the experiment, which may be a costly affair.
Therefore this remains more of a theoretical proposition than a practically adaptable definition.

4.4 Classical Definition:

Let the sample space Q2 of a random experiment contain 'n' simple events all of which are
mutually exclusive, exhaustive and equally likely. Let m (m < n) of these are in favour of the occurence

m
of an event E. Then the ratio " is called the probability of the event E.

Example 4.4.1 : In a die throwing the sample space Q = {1,2,34,56}. Suppose we are

intenested in getting a prime number. Then the set {2,3,5} is the interested event say E. Here Q
contains 6 elements and E contains 3 elementsi.e. m = 3, n=6. According to classical definition

the probability of the event E is p(E) = 3.
6

In this definition, if the number points in thesample space is not finite, if the elements of Q are
not equally likely we can not use classical definition. More over, the phrase equally likely events is
not clear. It hints that the elements of ¢ should have equal chance of happening which in turn
means that they should have the same probability of occurence. That s, the notion of probability is
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imposed on the events to define the concept probability in classical approach. Hence this approach
is not totally admissible. Over coming all the demerits of relative frequency approach and classical
approach, probability is defined in axiomatic approach by A.N. Kolmogrov in the early part of 20th
century. We explain this approach in section 4.5.

4.5 Axiomatic Definition of Probability:

Let the sample space ¢ of a random experiment be considered. Let to be the collection of

all subsets of Q. Let P be a function to [0, 1] of the real line. such a trans formation P is called a
set function. The set function P is called a probability set function or simply probability if it obeys
the following rules - (also called axioms).

() 0<P(A)<1vAeC

iy P(Q)=1 P(¢)=0

(iiif) P(Uir‘:l Ai) = %P(Ai) where AiNAj=¢ foralli=]j
i=1

4.6 Addition Theorem:

For any two events A and B

P(AUB)=P(A)+P(B)-P(ANB)

Proof: Letthe events A and B be represented as the sets show in the figure.

The regions |, 11, lll in the figure are mutually disjoint.
Also Uyl =AUB
Uil =A

nul =B

-, by the third rule in the axiomatic definition of the probability we get the following identities.

P(AUB) = P(D+PUD+PHI) v @

P(A) =P(D)+P()--eeeeeneeen (2)



@{Probability and Distributions |

Probability I@

P(B) =PU1)+P(Il) - eeeneeen (3)

Subtracting the sum of equations (2) and (3) from (1) we set
P(AUB)-P(A)—P(B)=—P(I1) -+ (4)

Butregionllis ANB

- equation (4) becomes
P(AUB)=P(A)+P(B)-P(ANB)

4.7 Examples:
1. Prove that the probability of obtaining a total of 7 in a single thron with two dice is 1/9.
Sol. When two dice are thrown once we get a sample space contains 36 pairs points
givenly
{(i,])/i=12,3,4,5,6;j=1,2,3/4,5,6}
The total of the two digits that appear isi +j. When we wanti +j =9, the pairs
(3,6), (4,5), (5,4), (6,3) are favour of giving a total 9.
-, four points in the sample space of 36 points are in favour of getting a total '9'.
. . - 1
Hence by classical definition the probability = % =9
2. Show that in a single throw with two dice, the chance of throwing more than 7 is equal
to that of throwing lessthan 7.

Sol. Of the (36) poissible pairs the following pairs give the totals written against the
repective groups of pairs.

1,1 : 2

1,2);(21) : 3

1,3), 2,2), 31) : 4

(1,4), (2,3),(3,2),(4,1) : 5

(1,5), (2,4),(3,3),(4,2),(5,1) : 6
(2,6), (3,5), (4,4), (5,3), (6,2) :8
(3,6), (4,5), (5,4), (6,3) : 9
(4,6), (5,5), (6,4) : 10



@{Centre for Distence Education 4.6 Acharya Nagarjuna Universityﬁ

Ans:

(5,6), (6,5) : 11
(6,6) : 12

In the above the number of pairs that give atotalof 2or3or4 or5or 6i.e. a total

15
less than 7 is 15. Hence probability of getting a total less than 7 is % similarly the total

number of pairs to set a total of 8 or 9, or 10 or 11 or 12 i.e. a total of more than 7 is 15.

15
- The probability of setting a total of more than 7 is also 36 because these two

probabilities are equal the result follows.

In a single throw with two dice what is the number such that it is a total with minimum
probability.

We know that when two dice are thrown once weget the following totals with
corresponding pairs of results.

Total Pairs of Observations
2 (1,1) =1 pair of out 36 pairs
3 (1,2), (2,1) = 2 Pairs out of 36 pairs
4 (1,3), (2,2), (3,1) = 3 Pairs out of 36 pairs
5 (1,4), (2,3), (3,2), (4,1) = 4 Pairs out of 36 pairs
6 (1,5), (2,4), (3,3), (4,2), (5,1) = 5 Pairs out of 36 pairs
7 (1,6), (2,5), (3,4), (4,3), (5,2) = 5 Pairs out of 36 pairs
8 (2,6), (3,5), (4,4), (5,3), (6,2) =5 Pairs out of 36 pairs
9 (3,6), (4,5),(5,4), (6,3) = 4 Pairs out of 36 pairs
10 (4,6), (5,5), (6,4) = 3 Pairs out of 36 pairs
11 (5,6), (6,5) = 2 Pairs out of 36 pairs
12 (6,6) = 1 Pairs out of 36 pairs

The probability of setting a total 2 is %6'

Also the probabilites getting a total 6 is %6

Which isthe minimum probability

Two different digits are chosen at random from the set 1,2,3,........ ,8. Show that the
probability that the sum of the digits will be equal to 5 is the same asthe probability that

their sum will exceed 13. Also show that the chance of both digits exceeding 5 is %8'
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Ans : If both the digits were to add up to 5, they should be one of the following pairs (1,4),

(2,3). Two different digits our of 8 can be taken in 8C., ways.
2

bability of getting 5 as the total = ——— = X2

-. probability of getting 5 as eoa—SC2 8x7
_1
14

In order to get a total of more than 13, the required pairs are (8,6), (8,7).

2 1
Hence the required probability is again —=—

8(;2 14

Hence the two probabilitis are the same

The chance of both the digits exceeding 5 is as follows. The pairs should be

from 6,7,8 which can be in 3(:2 ways.

3
Hence the required probability = Cp 3x2_ 3
8(;2 8x7 28
5. Four persons are chosen at random from a group containing 3 men, 2 women and 4

10
children, show that the chance that exactly two of them will be children is EL

Ans : Total number of persons in the group =9

4 persons out of these 9 can be drawn in 9(:4 ways.

Among these 2 should come from the 4 children and 2 should come from out of
5 persons of a mixture of men and women.

These two can be done 4(:2 x 5C2 ways.

4 5
Cr,x"C
Hence the required probability by applying classical definition = %
4

_[4><3>< 5><4j ;9><8><7><6
1x2 1x2) 1x2x3x4

_6x10 60 _10
Ox7x2 126 21
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6. Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. Aticket is drawn at
random five times being replaced each time. Find the probability that the sum of the
numbers or the tickets drawn is 23.

Ans: The problem is equivalent to finding how many times each of the tickets 00, 01,
10, 11 out of 5 draws are to be obtained to get a total of 23 for the numbers 00, 01, 10,
11.

It can be earily seen that

00: once, 01 : twice, 10 : once, 11 : once
or

00 : twice, 01 : once, 10 : none, 11 : twice
or

00 : none, 0.1 : twice, 10 : twice, 11 : none

Only will given a total of 23 in 5 draws.

The probabilities according to these are

(1 2 1 1) (2 1 2) (3 2)
X —=X—=X— |+| =X=x— |[+| =x—=
55 5 5 55 5 5 5

2[1 2 } 2 (1+10+75)
—+—+3|=—x———
25 5

25 "~ 25 25
_ 2x86 172
25x25 625
7. If A, B and C are three events express the following in appropriate symbols.

(@) Simuntaneous occurence of A, Band C
(b)  Occurence of at least one of them
(c) A, Band C are mutualy exclisive events
(d) Every point of Ais contained in B
(e) The event 'B' but not A occurs

Ans: (@ ANBNC

(b) AUBUC
(c) ANBNC=¢
(d AcB

(e) AlB=B-A



@{Probability and Distributions |

|

Probability

8.  Asample space S contains four points x,, X,, X3 and x, and the value of a set function
P(A) are known for the following sets

(i)
(i)

A1=(X1,X2), A2 =(X3,X4)
Az =(X1,X2,X3), Ag=(X2,X3,X4)

4 6 4 7
P(A{)=—, P(Ay)=—, P(A3)=—,P(A4)=—
Find the total number of sets including the null set
Although the set contains no sample point has the probability, bring out an example
to show that the converse is not true.

Ans: (i)  We have Q={X;,X2,X3,X4
Q contains 4 ponts. The sub sets along with the number of points in each set is
as follows.

(i)

null set = { ¢} = non of points / sets one
single ton sets = {Xy},{X5}, {X3}, {X4}=4
number of sets having two elements = 4(32 =6

number of sets with 3 elements = 4(33 =4

number of sets having all the fourth =1

Total number of sets=1+4+6+4+1=16

Consider the set of points that contain elements of A5 but not of A;
i.e. Az—Ap={xa}

l.e. A3—Aq isnotanull set

since AjcAz we know that P(A3—A;)=P(A3)-P(A;)

10 10

i.e. from the given information P(A3—A;)=0
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But Az —A; isnotanullset. Hence this is an example to show that zero probability
doesnot imply that the set whole considaration not necessarily a null set.

9. If A and B are two muthally exclusive events and P(A)=%, P(B)=% find
P(AUB), P(ANB).
Ans : Since A and B are mutually exclusive events.
ANB=4¢
P(ANB)=0

Also P(AUB)=P(A)+P(B)

N
+
Wl
I
ol

P(AUB)=§

P(ANB)=0

10. A man forget the last digit of a telephone number and dails the last digit at random.
What is the probability of not calling more than 3 wrong numbers.

Ans: The last digit would be one omons the 10 digits 0,1,2,3,4,5,6,7,8,9.

Probability of choosing a correct digit :%

Hence probability of choosing a wrong digit =1—%

_9
10

The probability of not making more than three wrong calls is obetained as follows.
In a series of 10 trails, either the first or the second or the third call should be a correct
call. Itis explained as follows :

(i)  First call may be correct call

(or)
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(i)  First wrong and second correct call
(or)
(i)  First and second one wrong calls and the third is correct calls

1 1
Probability according to (i) =—=—
y g to (i) 010

Probability according to (ii) = 9 X 1.9

10 10 100

Probability according to (iii) _2 3 1_81

1071010 1000

Hence required probability = E +i 81
10 100 1000
271
1000

11. Cet A and B be two possible out comes of an expairment and suppose that P(A) = 0.4,
P(AUB)=0.7 and P(B)=p.

For what choice of p are A and B muthally exclusive.
Ans: If A and B were to be mutually exclusive then P(AUB)=P(A)+P(B)

ie. 0.7 =04 +p
. p=07-04=0.3

12.  Suppose A and B are any two events and P(A)=p; , P(B)=p,, P(A(\B)=p; prove the
following identities.

@) P(AUB)=1-p; (i) P(ANB)=1-p,—p,+Pp3
(i) P(ANB)=p,-ps (iv) P(ANB)=p,—ps

v)  P(ANB)=1-p; (vi) P(AUB)=(1-py+Pps)

(i) P(AUB)=1-p,—p,+ps (vii)  P(AN(AUB))=p,-ps

) P(AU(ANB))=py+p,—ps
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Ans:

(ii)

(i)

(iv)

v)

(vi)

From the results of set then we know that
AUB=ANB
-.P(AUB)=P(ANB)=P(ANB)=1-p3
ANB=AUB=P(ANB)=P(AUB)
ie. P(ANB)=1-p,~p,+ps 1-P(AUB)
1-[P(A)+P(B)-P(ANB)]
AN B can be interpreted as follows :
(ANB)U(ANB)=A
Also ANB and AN B are muthally exclusive events.
- P(A)=P(ANB)+P(ANB)
ie. p=P(ANB)+p;
i.e. P(ANB)=p;—p3
Consider (ANB)U(ANB)=B
Also AN B, AN B are mutually exclusive
~ P[(ANB)U(ANB)]=P(B)
P(ANB)+P(ANB)=P(B)
P(ANB)+ps=p;
- P(ANB)=p,-p3

P(ANB)=1-P(ANB)=1-p;3

Consider (AUB)=ANB

P(AUB)=1-P(AUB)=1-P(ANB)
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=1-(py—p3) from (iii)
=1-py +p3
(vii) P(AUB)=1-P(AUB)
—1-[P(A)+P(B)-P(ANB)]
=1-[py + P2 + 3]
=1-p-p2+P3
(viii) Consider AN(AUB)
-(AnA)u(ansg)
- oU(ANB)=ANB
from (iv) we know that P(ANB)=p, - ps
~P[AN(AUB]=p,—ps
(ix) Consider AU(ANB)
Applying addition law of probabilities to the sets A and ANB we get
P(AU(ANB))=P(A)+P(ANB)-P(ANANB)
=P(A)+ P(Kﬂ B) since A, ANB are dispoint set s

=p1+(p2—p3)=p1+ P2 —P3

(because we know from (iv) that P(K N B): Ps —P3

13. Two six fased unbaised dice are thrown. Find the probability that the sum of the numbes
shown is 7 or their product is 12.

Ans: The sample space of int comes when two unbioned dice are thrown once can be
represented in the following matrix form :

11 (12 (1,3) (14 @5 (@)
(2,1) 2,2) 23) (24) (25 (2,9
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14.

Ans:

(3,1) (3,2) (3,3) (34) (35 (3,6)

(41) 42 (43) (4,4 (45 (4.)

(5,1) 5,2) (5,3) (5.4) (55) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
The set of pairs that give a total 7 is

A={(1,6), (2,5), (3,4), (4,3), (52), (6,1)} : 6events
The set of pairs that give a produt 12 is

B = {(2,6), (3,4) (6,2), (4,3)} : 4 Elements

ANB={(34),(43)] : 2elements

Total points in the sample space = 36 elements.

We konw that P(A) = 6
36

F>(B)=i
36

P(AﬂB)=3—26

Probability of setting a total 7 or a product 12 for the numbers on the two dice.

=P(AUB)=P(A)+P(B)—P(AnB)=3%+3%_3_26=3_86:§

Defects are Clasified as A, B or C and the following probabilities have been determined
from available production data.

P(A)=-20, P(B)=0.16, P(C)=0.14, P(AB)=0.08

P(BNC)=0.04, P(ANC)=0.05, P(ANBNC)=0.02

What is the probability that a randomly selected lot exhibits at least one one type
of defect? What s the probability that it exhibits A and B defects but is free from type C
defect.

Probability that the selected product to exhibit at least one defect

P(AorBor C)=P(AUBUC)
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(i)  We know that P(AUBUC)=P(A)+P(B)+P(C)
~-P(AiB)-P(BNC)-P(ANC)

+P(ANBNC)
=0.20+0.16 + 0.14 - 0.08 - 0.04 - 0.005 + 0.02
=0.35

(i)  Probability that the product exhibits both A and B defects but is free from type C
defect

=P(ANBNC)
Considertive events (ANBNC)U(ANBNC)=ANB
Also the events ANBNC and ANBNC are muthally exclusive. Hence
Pl(AnBNC)U(ANBNC)]=P(ANB)
P[ANBNC]+ P(ANBNC)=P(ANB)
0.02 + P(ANBNC)=0.08

~P(ANBNC)=0.08-0.02 = 0.06

Out of 110 students interviewed at a job fair, 22 were taking a finance couse, 20 were
taking an accounting course. One of these 110 students is selected at random. What
is the probability that the student is

(@) nottaking an accounting course
(b) Taking both a finance and an accounting course

(c) neither taking a finance course nor an accounting course

Let A, F respectively denote the events that the student takes an accounting,
finance course respectively. Given that

P(A)=2 p(F=2Z pAUF=2
110 110 110
(@) We are asked to find P(A)=1— p(A):l—E _110-20
110 110
90 9

110 11
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(b) We are asked to find P(ANF)

We know that P(AUF)=P(A)+P(F)-P(ANF)

11

. 3 208 22
55

i.e. P(ANF) = 1—21+%—1—31

111 11 5 6

55 11 55 55 55

(c) We are asked to find P(ANF)

We know that ANF=(AUF)

~P(ANF)=P(AUF)=1-P(AUF)

T 110 11

SEANE
110

4.8 Exercises:

1.

Two cards are drawn at randim from a well shuffled pack of cards show that the probability

1

of drawing two aces is Pk

Among the digits 1,2,3,4,5 at first one is closen and then a second selection is made
among we remaining four digits. Assuming that all 20 possible out comes have equal
probabilite find the probability that an odd digit will be selected (i) the first time, (ii) the
second time, (iii) both times.

3 3 3
(Ans: (i) 5 (i) 5 (iii) 0

A committee of 4 people is to be appointed from 3 offians of the production department,
4 officers of the purchase department, two officers of the sales department and 1
charted accountant. Find the probability of formming in the following manner.

()  There must be one from each catesam

(i) It should have at least one from the purchase department
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(i)  The chartered accountant must be in the committee
A i & B 2
(Ans: (i) 70’ (ii) 1 (i) 5)
Each coefficient of the equation g2 | pc+ ¢ =0 is dethmined by throwing an ordinary
die. Find the probability that the equation will have real roots.

|
(ns.216

Out of (2n + 1) tickets conseclrtinady numbered three are drawn at random. Find the
chance that the numbers are in A.P.
3n
s Mot

A, B and C are three ordinary events. Find expression for the events noted below in the
context of A, B and C (i) only A occurs, (i) Both Aand B but not C occur, (iii) All three
events occur, (iv) Atone occurs, (v) Atleasttwo occur, (vi) one and no more occurs,
(vii) Two and no more occur, (viii) none occurs.

(Ans: () ANBNC. (i) ANBNC. (i) ANBNC, (v) AUBUC
V) (AnBnc)u(anBNC)U(ANBNCIU(ANBNC)
) (AnBNC)U(ANBNC)U(ANBNC)
i) (AnBNC)U(ANBNC)U(ANBNC)
(vii) ANBNC or AUBUC

If two dice are thrown what is the probability that sumes (a) greaterthan 8, (b) neither
7 nor 11.

5 7
(Ans: (@) 75, (b) 3)

A box contains 6 red, 4 white and 5 black balls. A person draws 4 balls from the box at
random. Find the probability that among the balls drawn there is at least one ball of
each colour.

(Ans: 0.5275)

IF ANB=¢ then show that p(A) < P(B)
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10. If A and B are two events such that

5
P(A)= % P(B)= s show that

(@ P(AUB)Z% (b) gsp(AnB)g%

11. A special dice is prepared such that the probabilities of throwing 1, 2, 3, 4, 5, 6 are
respectively

1-k 1+2k 1-k 1+k 1-2k 1+k tivel
5 6 '8 6 & & respectively.

If two such dice are thrown find the probability of getting a sum equal to 9.
- (1+k)(2-3k)
(Ans : 48)

12.  Inthese of probabilities P(A) - p;. P(B)=p,, P(ANB)=p3

Express P(AUB) P(ANB) under the condition that A and B are mutually
exclusive.
13. Let A and B be the possible and comes of an experiments and suppose P(A) = 0.4,
P(AUB)=0.7, P(B) = p. For what choice of o are A and B be muthally exclusive ?

(Ans: p=0.3)
4.9 Summary:

The concept 'probability’ is defined in various ways starting from the classical definition to the
most moden way the axiomatic approach. Some general laws of probability upto the concept of
additive law for two and more than two events are estabilished besides showing the applications of
these laws in a number of examples. Some exercices in the answers one also provided for the
students to try on their own.

4.10 Technical Terms:

Relative Frequency, Random Experment, Sample Space, Simple Event, Compound Event,
Axious Operations on sets.



Lesson - 5

CONDITIONAL PROBABILITY

Syllabus:

Conditional Probability, multiplication rule of probability for n events, Broole's inequality,
independence of events, Baye's Theorem and its applications (with examples in real life).

Objective:

After studying this lesson the student is expected to have a clear notion of probabilities of
dependent events. Its application in making decision about conditional events and the principle be
find BAye's Theorem in assessing the performance of devices with builtin structural probability.

Structure of the lesson:
5.1 Introduction
5.2 Conditional Probability
5.3 Multiplication Rule
5.4 Broole's inequality
5.5 Independence of events
5.6 Baye's Theorem
5.7 Examples
5.8 Exercises
59 Summary

5.10 Technical Terms

5.1 Introduction:

In the theory of probability if we consider the probability of occurence of more than one
event in succession some times the sequence of order in which the events occur makes a difference
and some times it will not make any difference. For example from a box containging '9' cards of
identical size marked with the digits 1, 2, 3,4, 5, 6, 7, 8, 9, let us draw two cards one after the other.
This is suggested in two ways.

()  The card drawn in the 1st draw is placed back into the box before the second draw.

(i)  The card drawn in the first draw is not placed back into the box before the second
draw.
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According to the first scheme the probability of drawing '9' in the second draw will be the
same what ever may be the result of the first draw, where as according to the second scheme,
probability of drawing 9 in the second draw depends on the result of the first draw. The second
scheme gives rise to the notion of conditional probabilities. In this lesson we discuss the need for
conditional probability, its definition, independent events, applications, the Bayer's Theorem its
importance in evaluating probabilities.

5.2 Conditional Probability:

As defined in lesson - 4, let us consider a probability space. (3, C, p). Let Aand B be any
two subsets of Q. Then the conditional probability of occurrence of A after the occurence of B is

demoted by P(A/B). (to be read as probability of A given B). It is defined as

P(A N B)
P(B)

For the above definition to be valid, P(B) = 0. Similarly the conditional probability of

P(A/B)=

occurence of B after the occurence of A is denoted by P( B/A) and is defined as

P(BMNA
P(B/A) = W where P(A) =0

Since A(\B issame as B()A we can write that

P(A/B) = % ,P(B) %0
P(B/A):P(FA;(—Q)B) ,P(A) =0,

Example:

A bag contains 10 gold and 8 silver coins. Two successive draws of one coin in each draw
are made such that the coin drawn in the first draw is not replaced before the second draw is
made. Find the probability that both the draws give gold coins.

Let A, B be the events of drawing a gold coin in the first draw and second draw respectively
we are to find P(A N B) = P(A) - P(B/A).
10

We know that, P(A) = —.
18
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P(B/A) = probability of drawinga gold coin in the second draw given that a gold coin is

drawn in the first draw. Since the coin drawn is not replaced we will have a total of 17 coins of
which 9 would be gold and hence the probability of drawing a gold coin in the second draw given

9
that a gold coin is drawn in the first draw = 17"

e, P(B/A)= %

P(AﬂB):P(A).p(B/A):g_%:%

5.3 Multiplication Rule:

Let A, be any two events suchthat P(A) = 0, P(B) = 0. Then by definition we know that

m 220
o220

By cross multiplication we get
P(ANB)="P(B) P(A/B)

P(ANB)=P(A)P(B/A)

These two equations are called multiplication rule of probability for two events. We can
establish multiplication rule of probability for n events, as a theorem.

53.1 Theorem: If Aj, Ag, --evvn , A, are events. Then

P(ALNAZNAZN---NAL)=P(A1)-P(A3/A1NA3)---P(An/ALNALN---NAR )

Proof: we prove the result by the principle of mathematical induction. It is obvious that
the minimum number of events for the definition of conditional probability is 2. Therefore in
our theorem p > 2. For two events the statement of the theorem is

P(A1NA5)=P(A;) - P(Ay/A;) and this follows from the definition and cross
multiplication of conditional probability.
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Let n=3. Then LH.S. is
P(ALNA,NA3) = P(A;NB) where B=A5MA;3

But P(A;NB)=P(A;)P(B/Ay) since the statement is time for two events.

e PR P8 [P (R

ra [PEzAa0)
P(A,NA3NAL) P(ANA,)
= P(Aa): P(ZAlﬂiz)l | P(Al)z}

= P(A1) - P(A3/A1NA,) - P(Ay/Aq)

=P(A1) - P(Az/A1) - P(A3/AL N A3)
Hence the result is proved for 3 events.
In a similar maner suppose the result istrue for n = k.

ie.

P(ALNA2NAz---NAK)=P(A1)-P(Az/A1)-P(Ag/A1NAL)-P(AL /A1 NAZ N-Ay 1)
we shall prove it for n=k +1

consider

P(ALNAZNAZN-NA.1)
:P(BﬂAk-i-l) where (B:AlﬂAzﬂ ''''' ﬂAk)
ie. P(BﬂAk+1) = P(B)- P(Ak+1/B)

=P(ALNANAZ N -NAK) - P(Ak /AL NAZN-Ay)

Since we have assumed that the result is true for n=k the above becomes
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=P(A1) - P(A2/Aq) - P(Ag/A1NAZ)--

P(A/ALNAZNNA 1) - P(Akia/A1NAL - NAY)

Therefore the result if true for any natural number 'n' by the principle of mathematical
induction.

5.4 Boole's Inequality:

It Ap,Ag,weeeee A are nevents then
n n
(i)  PNA |22 P(A)-(n-)
1=1 i=1
n n
(i) P iLEJlAi si:ZlP(Ai)

Proof: We shall prove both the inequalities by the principle of mathematical induction.

(i) suppose n = 2, then by addition theorem for two events, we know that
P(ALUAz) = P(A1)+P(Az) - P(A;NA;)

Since L.H.S. is a probability itis <1

. RHS.isalso <1i.e.
P(A1)+P(A2)-P(A1NAz) <1

~ P(A1NAL) > P(A)+P(Ay) —-1=P(A1)+P(A,)-(2-1)

Hene we have P(A;NA;) > P(Ap)+P(Ay)-(2-1)

i.e. the resultis true for n=2

Suppose the result is true for n=k
i.e. P(AlﬂAz ﬂA3ﬂ """ ﬂAk) = P(A1)+P(A2)++P(Ak)—(k—l)

Let us shown that the result is true for n = k+1. The L.H.S. of the 'to be shown'
experssion is
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P(ALNA, N NAK NAL,1) =P(BNA,1) where
B=A;NA,NAZN----NA
Applying the result fortwo events B, A1 we get
P(BNAy 1) = P(B) + P(A,1)-1
ie.  P(A{NAZN-NAks1) 2 P(ALNAR N NAK) +P(Ay) -1

In the R.H.S. of the above P(A;NA,N------Ay) is greater than or equal to

P(A1)+P(Ap)+:--+P(Ag)—(k-1) since we assumed that the result is true for k

events.

Hence the above inequality be comes

P(A{NA N+ NA,1) 2 P(Ag)+P(Ag) +-+P(Ay ) = (k=1)+ P(Ay 1) -1

P(ALNAL N NAK )= Y P(A) -k

Hence by the principle of mathematical induction theresult is for any natural number.

5.5 Independence of Events:
5.5.1 Definition: Two events A, B are said to be statistically independent if the probability of
their joint occurence is same as the product of the probabilities of their individul occurances.

Symbolically P(ANB) = P(A)-P(B)

5.5.2 Definition: Inthe case of three events A, A,, A3 the concepts of independence is of
two types.

Pairwise independence and mutual independence.

If the events are independent taken two at time a we say that they are pairwise independent.
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In the case of three events this means
P(A1NA2) = P(A1)-P(Az)
P(A2NA3) =P(Az)-P(A3)

P(A1NA3) = P(A3)-P(Aq)

In addition to this if the events are independent taken all at a time (in the case of three
events).

P(A1NA2NA3)=P(A1) - P(Az)-P(A3)

If all the above fourconditions are true we say that a set of three events A1, A,, Ag
are mutually independent.

In general if we have n events say Aq, Ay, ----- ,A,, we say that hese are pair wise
independent if

P(AiﬂAj)IP(Ai)P(A]—) forall i # | i,j=12,3,- n
These conditions are nc2 in number.

These n events shall be mutually independent if in addition to the above Nc,
conditions the following are also true.

P(AINA]NAL) =P(A)) P(A) P(AL) i# =k

P(AINA;NANA,) = P(A)) P(A[) P(AL)P(A) i#j= k=t

These sets of conditions are respectively ncz, nc3 e ) nCn in number.
Hence total number of conditions required for the mutual independence of n events

is nC2 + nC3 R ERRRRERR + nCn = (1+1)n—ncl - nCo = 2n—n—1.
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On the other hand number of conditions required for pairwise independence of n

events is only Nc, . Thisis true for n> 2.

It can be seen that mutually independent events are always passwise independent
while the converse is not true as can be explained by the following example.

5.5.3 Example: Consider box containing 4 cards marked wit the digits 100, 010, 001, 111. Let
A, B, C - be the events representing drawing a card at random with 1 in hundredth place, 1
in 10th place, 1 in 1st place respectively. Then it can be seen that

P(A)=%= 4
P(B) =1,
P(C)= 1

P(ANB) =7 = P(A)-P(B)=7.

N~
N

N

P(BNC) = % = P(B)-P(C) % :

N

P(ANBNC) =% # % =P(A)-P(B)-P(C)

Hence the events A, B, C are pairwise independent but not mutually independent.

5.5.4 Example: If A nad B are independent then A and B, A and B are also independent

where A , B are complementary events for A, B respectively.
Solution:  Given P(ANB) = P(A)-P(B)

To show that P(ANB) = P(A)-P(B)

We know that P(B) = 1- P(B)

Multiplying with p(A) we get

P(A)-P(B) = P(A) - P(A)-P(B)

P(A) - P(ANB) -+ (1) - A, B areindependent
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= P(A N E) using propertis of sets
In a similar way we can prove that
P(ANB)=pP(A) - P(B)

5

555 Example: Given that P(A; U A,) = . P(A{NA,)= - Find P(Ap),

N

'P(Kz):

Wl

P(A5). Hence showthat A; , A, are independent.

Solution:

P(A,)=5=P(A2)= %

we know that

P(A1UAz) = P(A7) + P(A2) - P(A{ N Az)

5 1 1
—=P(A S
6 (1)+2 3
S P(A)=2- T 1 4 2
6 2 3 6 3
21 2 1
P(Al)-P(AZ):g-Ezgzé
Given that
1
P(AlﬂAz):5
Hence

P(A1NAz)=P(A1) P(A2)

- Ay, A, areindependent.
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5.6 Baye's Theorem:

Let Ep, Ep, +vvvveees ,E,, be mutually disjoint exhaustive events with P(E;) = 0. If Ais any

event that can occur with any of E;, Ep, «------- ,Ep then

P(Ei/A) (A/E') ( )

n

Z (A/E;) P(E;)

The L.H.S. is called posterior or inverse probability. In the numerator of R.H.S. namely

P(E;) is prior probability.

Proof:

Given that U Ei =Q - the sample space and Ej N Ej =¢forizj.i,j=12 , N
i=1

A_AﬂQ_Aﬂ[.LnJ EiJ

=1

n

P(A)= > P(ANE)= i P(E)- P(A/E)

Consider P(ANE;) = P(A) P(E;/A)

P(ANE;) _ P(E')' P(A/E;)

P(Ej/A) = -
P(A) gl p(A/E,)
ie., P(E/A)= _ P(E ) P(A/E;)
Z P(E;) - P(A/E;)

Hence the theorem is proved.
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5.6.1 Example: In a factory machines A and B are producing springs of the same type of this
production machine Aand B produce 5% and 10% defective springs respectively. Machines
A and B produce 40 % and 60% of the total output of the factory. One spring is selected at
randim and it is found to be defective. What is the probability that this defective spring is
produced by machine A.

Solution:
40
i P(A)=—=0-4
Given 100
P(B) = 2 _0.6
100
5
P(D/A)=—=0-05 D: stands for defective
100
10
P(D/B)=—=0-1
(D/B) =155

we have to find P(A/D)

P(D/A) - P(A)
(D/A)-P(A) + P(D/B)-P(B)

P(A/D) =

~ 0-05x0-4 . .020
(0-05x0-4)+(0-1)0-6 .020 + .06

~0:020 E _1
©0-080 8 4
5.7 Examples:
1 (1)? 1"
5.7.1 Example: Let S=11, > (Ej PR REE (E) be a classical event space. A, B be

k
1 : T
events given by A= {L 5}; B= {(;) /K IS an even positive int eger} find

P(ANB)
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~.P(ANB)=P(AUB)=1-P(AUB)

=1 {P(A)+P(B)-P(ANB)} (1)

v ={u3]-2- 3" (31

ANB={1]

1
P(ANB) = 47 Since S contains 41 elements.

+1

P(A) =2 p(B)=_N*2

n+1 2(n+1)

1
P(B) = 2 if n is odd
Suppose n is even using (1)

2 n+2 1

P(KﬂE):l—{

1 {4+(n+2)—2} _q
2(n+1)

2n+2-n-4

2(n+1)

n-2

P(ANB)= = 2n+D

Suppose n is even then

— = 2 1 1
P(AﬂB)—l—{m+§—n—+l}

_ 1_{4+n+1—2}
- 2(n+1)

B n+3  2n+2-n-3

+ —_
n+l 2(n+1) n+1

if nis even

n+4

“2(n+D

n-1

"7 2(n+D) - 2(n+D)

~ 2(n+D)
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5.7.8 Example: If P(B/A) B/A) then A and B are independent
Proof: P(B/A) = P(B/A)

P(BNA) P(BNA)
p(A)  P(A)

ie.  P(A)-P(BNA)=P(ANB) P(A)
—P(A)-{P(B)+P(A) —P(A UB)} = P(ANB) P(A)
- P(A) - P(B) + P(A) P(A) - P(A)-P(AUB) = P(ANB)P(A)
P(A) {P(B) - P(AUB)| = P(A) {P(ANB)- P(A)}

P(AUB)-P(B)| = P(A) - {P(A) - P(ANB)]

{P(A
P(A) {P(A) - P(A N B)} = P(A) - P(B)
P(A){PAUB} [1-P(A)]- P(B)

{

P(A) {1-P(ANB)} = P(B) - P(A) - P(B)

= P(ANB)=P(A) - P(B)

Hence it is proved that A and B are independent.

5.7.9 Example: The chances of X, Y, Z becoming managers of acompany are 4: 2: 3. The
probabilities that bonus sheme will be introduced if X, Y, Z become managers are respectively

are 0-3,0-5, 0-8. If the bonus scheme has been introduced what is the probability that X
is appointed as the manager.

ion:  Given PX) =2 P(Y) = 2, p(z) =3
Solution: Given P(X) 9 (Y) 5 (2) S

Also P(B/X)=0-3, P(B/Y) = P(B/Z)=0-8.

where B stands for bonus. We have to find f (X/B).
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Baye's Theorem gives as

P(B/X) P(X)

P(X/B) = P(B/X) P(X) + P(B/Y)P(Y) + P(B/Z)P(2)
0-3><i1r
~ 9
4 2 3

0:3x—-+0-5x—-+0-8x—
9 9 9

1.2 12 06

= = = =0-218
1.2+1.0+24 4.6 2.3

5.7 Exercises:

1.

Show that in a single throw with two dice the chance of throwing more than seven is equal
to that of throwing less than seven.

Two different digits are chosen at random fromthe set1, 2, 3, ...... 8. Show that the probability
that the sum of the digits will be equal to 5 is the same as the probability that their sum will

exceed 13 each being i
14

A coin is tossed until there are either two consecutive heads or two consecutive tails or the
number of tosses become 5. Describe the sample space.

Let A and B be two events, neither of which has probability zero. Then show that if A and
B are disjoint then A and B are independent.

= P(A
If A and B are two mutually exclusive events then show that P(A/B) = (—)

1-P(B)

A man takes advice regarding one of two possible courses of action from three advisers,
who arrived at their recommendations independently. He follows the recommendation of
the majority the probability that the individual advisers are wrong are 0.1, 0.5 and 0.05
respectively. What is the probability that the man takes incorrect advice.

A person takes four tests in succession. There probability of this passing the first test is p,

that of his passing each succeeding test is p or p/2 according as he passes or fails the

preceding one. He qualifies provided he passes atleast three tests. What is the chance of
his qualifying.
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8.  P(A)=0-7,P(B)=0-5P(AUB)=0-6 find P(AUB).
9. A certain drug manufactured by a comapny is tested chemically for its toxic nature. Let the

event the drug is toxic be denoted by E. The event the chemical test reveals that the drug

is toxic be denoted by F. Let P(E) =0, P(F/E)=P(F/E)=1-6. Then show that
probability of the drug not being toxic when the chemical test reveals that it is toxic is }é

5.9 Summary:

In this lesson an attempt is made to explain the concepts of conditional probability and
related aspects along with examples. The most important aspect isthe Baye's Theorem and inverse
probabilities. A number of examples are worked out and a good number of exercises are also
given.

5.10 Technical Terms:
Dependent events
Independent events
Product law
Pairwise independece
Mutual independence
Prior probability
Posterior / Inverse probability
Mathematical induction
Restricted sample space

Relative probability
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Lesson - 6

RANDOM VARIABLES

Syllabus:

Notion of a random variable, distribution function and its properties, discrete random variable,
probability mass function, Cnlinum random variable, probability density function, transformation of

one dimensional random variable (simple 1 -1 functions only)

Objective of The Lesson:

After studying this lesson the student is expect to have a clear comprehension of the theory
and the practical utility about the concepts of Random variable, distribution function - its properties,
Discrete random variable, probability mass function, continuous random variable, probability denisty
function and transformation of one dimensional random variable.

Structure of The Lesson:
6.1  Notion of Random variable
6.2  Distribution function and its properties
6.3 Discrete Random variable
6.4  Probability Mass Function
6.5 Continuous Random Variable
6.6  Probability Density function
6.7  Transformation of one Dimensional Random Variable
6.8 Worked Examples
6.9 Exercises
6.10 Summary

6.11 Technical Terms

6.1 Notion of Random Variable:

When a statistical experiment is conducted, all the possible outcomes of it will generate a
set, called the sample space, denoted by S. We are often much interested in its numerical description
rather than its specific outcomes. For example when we toss a coin three times, we get the following
outcomes.



@{Centre for Distence Education { Acharya Nagarjuna University}@

TTT, HTT, THT, TTH, HHT, HTH, THH, HHH

which generates a sample space S. Suppose we are interested in number of heads then a
numerical value 0, 1, 2, or 3 will be assigned to each sample points. The numerical values 0, 1, 2,
3 are random observations which may be assumed by some random variable, denoted by X. In the
example, the random variable X represents the number of heads The value sof different sample
points of the sample space Sare denoted by W. Also from the example i.e., three tosses of a fair
coin the sample points in Sare

W1=(T T T), W, =(H T T), W5 =(T H T), W4=(T T H), W5=(H HT),W6 =(H T H),
W7=(THH), W8=(HHH)

Since we define a function X, which denotes the number of heads, we note that

X (W) =0, X(Wz) =X (W3)=X(Ws)=1 X(Ws5)=X(Wg)=X(W7)=2X(Wg)=3
The inverse image

X‘l(vvi) is the event {0<X <1} for j=1
X~1(W;) is the event {1< X <2} for i =2,3,4
X7H(W;) is the event {2<X <3} for i=5,6,7

X_l(vvi) is the event {X =3} for i=8
Hence X, which denotes the number of heads in three tosses, is called a random variable.

Hence a real valued function defined on a sample space Sassociated with a given random
experiment and taking values in R(—oo, oo) is called a random variable.

6.2 DISTRIBUTION FUNCTION AND ITS PROPERTIES

Let X be a random variable then the function F(x) defined for all real x,
F(x)=P(X < x):P{W:X(W) < x}, —0<X <0

is called the distribution function (df ) of X.
Properties of Distribution function :

Property 1 : If F(x) is the distribution function of random variable X, and if X<y then (a)

0<F(x)<1V xeR, F is bounded (b) F(x)<F(y), Fis monotonically non-decreasing.
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Proof :
(a) Since probability is a hon-negative quantity and lies betweenO0Oand 1, i.e., 0<P<1
therefore we can write  0<P(X <x)<1
= 0<F(x)<1 (- P(X <x)=F(x))
(b) As F(x) is a monotonically non-decreasing function of x and x, y be any value in R,

such that x<y . Since (-, X] is a subset of (-, y| we can write
(%, ¥] = (=0, y]=(=o0. x]
- P(X, y] = P(=0, y]-P(~», X]
=P(X<y)-P(X<x)
P(x,y]=F(y)-F(x)- - -(@
Also since P(x,y]>0 we have

F(y)—-F(x)>0 (- from (1))

Property 3: If F(x) is distribution function of random variable X, then

(@). (im F(x)=F(-»)=0, (b). ¢im F(x) = F(+0)=1.

X—>—00 X—>—00

Proof: (a) Letus define that the sequence of events A, ={x <n} . Here the sequence {An}
is a decreasing sequence of events with

(imAp=¢ - - -

n—oo

Therefore by the continuity axiom on probability we have

im P(Ap) =P( (im An)=P(¢)=o (- from (1)) -------- (2)

N— oo (n—>oo

But P(A,)=P(X <-n)=F(-n) (by defition of d.f.)
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- Lim P(Ap)= ¢im F(-n)=0 (- from (2))

n—oo Nn—oo
i.e., F(—oo) =0

(b) Similarly define that the sequences of events A, ={X <n}, the sequence {An} is a
increasing sequence of events with

fimA,=S - - - (@
n—oo

Hence by the continuity axiom on probability we have

ﬁmﬂAM:%ﬁmAﬁ:HQ:l(yﬂmﬂn). )

nN—o0 Nn—oo
~P(AL)=P(X <n)=F(n) (by defn. of d.f.)

= (im P(Ap)= ¢im F(n)=1 (.- from (2))

Nn—oo n—
i.e., F(+00)=0
Property 4 : |If F(x) is the distribution function of the random variable X and if x<y then
P(x<X<y)=F(y)-F(x).
Proof : Since the events x < X <y and X < x are disjoint and their union is the event X <y .

Hence by addition theorem of probability

P(x<X<y)+P(X<x)=P(X<y)
= P(x<X<y)=P(X<y)-P(X<x) ('.'P(XSX)=F(X)& P(ng)zF(y))
We have P(x <X <y)=F(y)-F(x)

Property 5: F(x) is continuous from the right i.e., F(x +0)=F(x) for each x.

Proof : Let A, =[X £x+lj be a sequence of events and for a fixed value of x, sequence of
n
events and for a fixed value of x, sequence {An} is a decreasing sequence of events with

‘im P(Ap) = P(X <x)=F(x)

N— oo
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or /im P(ng+%j=F(x) (-.-Anz(X§x+£D

n— oo

/im F(x+1j=F(x)

n— oo n

or F(x+ij=F(x)

or F(x+0)=F(x)

6.3 Discrete Random Variable:

If the sample space S contains a finite number of points or countably infinite number of
points, it is called a discrete sample space. A random variable X defined over a discrete sample
space is called a discrete random variable.

For example if we collect data about number of persons in families of certain town, then it is
certain that number of persons in each family would be in whole numbers. Therefore there would
be no family with 2.5 or 2.67 or 1.97 persons. The variable i.e., the number of persons in a family,
in this case is a discrete random variable - some max examples of discrete random variable are
given below.

Example 1: The number of heads in tossing of a coin.

Example 2: The number of points on the dice when it is rolled.

Example 3: The number of insects survived when an insecticide is sprayed.
Example 4: The number of accidents occured in a yeatr.

Example 5: The number of defective items in a sample of size 'n'.
6.4 Probability Mass Function:

If 'X"is a discrete random variable defined on the sample space S which takes the values
X1, X, ooeee with each possible outcome x;, then a number is associated that is

pi =p(x=Xx;)=p(x;), called the probability of x;, the numbers p(x;),i=12,---- must satisfy the
following conditions.

O p()=0i (i) ZP()=1

the function pis called the probability mass function of the random variable X and the set

{xi » P(Xi )} is called the probability distribution of the random variable X.
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6.5 Continuous Random Variable:

If sample space S contains an infinite number of points or continuity of points on a line
segment or with more than one interval of points is called continuous sample space. A random
variable defined over the continuous sample space is called a continuous random variable.

For example 1: The weight of middle aged people in India lying between 40 Kg and 150 Kg is a
continuous variable.

i.e., X(x)={x:40<x <150}
2 . The maximum breaking strength 250 Kg of a wire is a continous variable.
i.e., X(x)={x:0<x<250}

6.6 Probability Density Function:

Since in dealing with the distriction of a continuous random variable will be necessary to
express the probabilities in the form of intervals. So with the help of an example continuous probability
distribution is explained as follows.

0.1) i o (1.1

o 10 X

Let us consider a squared target of one unit dimensions and a riffled is aimed at it which is
triggered several times and after some fixings it will appear as shown in figure 6.6. Whenever a
bullet is fixed it is equally likely to strike any where on the squared target. Let us consider the left
side of the target as Y - axis and the bottom as X - axis, obviously the variate X would defined
horizontal distance of a hit from the vertical axis (X = 0) and as such it may have any value between
0 and 1 and will be called as continuous random variable.

From Geometric probability it can be seen that the chance of a hit into any internal is equal
to the horizontal length of that interval divided by the total length of the board which will be equal to

05
one. For instance the probability that the hit strikes between 0.3 and 0.8, horizontal distance 10 =05,

Since for the continuous distribution it is not possible to have a finite probability associated with
single point as in the discrete distribution.
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6.7 Transofrmation of One Dimenssional Random Variable:

Let X be arandom variable defined on the event sace Sand let g( ) be a function such that

Y = g(X) is also a.r.v. defined on S. This can be shown by following theorem.

Theorem : Let X be acontinuous r.v. with p.d.f. fy (x).Let y =g(x) be strictly monotonic increasing

(or decreasing) function of x. Assume that g(x) is differentiable and hence continuous for all x.

Then the p.d.f. of the r.v. y is given by

dx

hy (y)=fx (x) Y

where X is expressed in terms of y.

Proof :

Case (i): y=g(x) is strictly increasing function of x

ie., %>0. The d.f. of y is given by
X

Hy (v)=P(Y <y)=P[g(X)<y] = P[x <g7(y)]
the inverse exists and is unique, since g(-) is strictly increasing.

“Hy (¥)=Fx|9™(y) |, where Fis the .. of X.

=R (9) [7y=00)=07(y)=x]
Differentiating w.r.t. 'y', we get
dx

()= [ ()= g [ (0]

dx

zfx (X)@ . (1)

Case (ii): y=g(x) is strictly monotonic decreasing

Hy (¥)=P(Y <y)=P[g(X)<y]
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P x=g7(y)]
~1-P[ X <g™(y)]
~1-F [g™(y)]
=1-F (%)

where X= g_l(y), the inverse exists and is unique. Differentiating w.r.t. 'y', we get

(1) =4[ 1-RG0J G =T () =tx (-3 - (@

the algebraic sign (-ve) obtained in (2) is since y is a decreasing function of X=X is a

decreasing function of y = %X <0.

By combining equation (1) & (2) gives

dx

hy (y)=fx (x) dy

6.8 Workedout Examples:

Example 1: Arandom variable X has the following probability distribution.

x 10 1 2 3 4 5 6 7 8
P(x):| K 3K 5K 7K 9K 11K| 13K} 15K [ 17K

a. determine the value of K.

b. find the distribution function.

c. find the smallest value of x for which P(X <x)>0.5

Solution :

(@) TP(xj)=1=K(1+3+5+7+9+11+13+15+17)=1

:>81K:1:>K:i
81
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(b) P(X<4)=P{(X=0)U(X=1)U(X=2)U(X =3)}=po+p1+P2+P3

=K+3K+5K+7K=16K=]é—i

P(X25)=P{(X=5)U(X =6)U(X =7)U(X =8)}

= Ps + Pg + Py + Pg = 11K + 13K +15K +17K = 56K :%

P(0<X <4)=P{(X =1)U(X =2)U(X =3)} =py +p, + p3 = 3K + 5K + 7K =15K =;—i

(c) the distribution is F(t)=P(x <t)
F(0)=P(X <0)=K
F(1)=P(X <1)=4K
F(2)=P(X £2)=9K
F(3)=P(X <3)=16K
F(4)=P(X < 4)=25K
F(5)=P(X <5)=36K
F(6)=P(X <6)=49K
F(7)=P(X £7)=64K
F(8)=P(X <8)=81K

We observe that p(X <4)=p(X <3)=F(3)=16K, etc...

P(X >5)=1-P(X <5)=1-P(X S4)=1—25K=%

P(0<X <4)=F(4)—F(O)—P4=(25—1—9)K =15K :]8-_?.
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1 _36_
(d) F(x) > F(5)= ” =0.44

then the smallest value of x for which F(x) >% is X=6,

Example 2 : Consider the distribution function

F(t)zo, t<0
=t, 0<t<1
=11 tZl

Find the density function and compute
1
(@ P[1 <t <§} (b) [—1<t<—]
4 4 2
Solution : The derivative of F(t) at t = x is given by

f(x)=[£F(t)} 4 tex
dt

f(x) =0, x<0
=1, 0<x<1
=0, x>1

Hence we define the density function
fx)=1 O0<x<1

=0 otherwise

d
As the derivative E F(t) does notexistatt=0 andt= 1, sowe take therange g<t<1 as

O<t<1

% 3
(a) 0<P 1<x<§ = jl.dx:[x]AZE_lz%
|:4 4} % % 4 4
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(b) P{—1< X < 1}z}j/zf (x)dx = (j) f (x)dx +%f (x)dx = (j) 0-dx +?21.dx
21 21 0 -1 0

=[X]gé=l—0=%

2
Example 3: Verifythat F(t)=0 t<O

=t2 OSt<%

~1-301-12) ¥ <t«1

=1 t>1

is a distribution function and derive the density funtion of X.

Solution : 1. It satisfies that 0<F(t)<1 V't

2. It satisfies that (- «)=0 and F(«c)=1

3. F(t) is a non-decreasing funtion and it is right continuous for all t
Hence it is a distribution function

the derivative of F(t) at t=x

f(x)=[%m)} a tex

f(x) =0, x<0
= 2%, 0<x< %
= 6X, %s x<1
=0 x>1
the density function is f(x) = 2x, 0<x< %
= 6X, %S x<1

=0, otherwise
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Example 4:

Solution :

Check whether the function given by

X+2 ) .
f(x) = for x=1,2,3,4,5 is a p.d.t of desuete random variable.

The given function isf(x)=X2_+2. )

Now substituting the different values of x we get from (1) x=1,2,3,4,5

f(D=3, f(4)=6/c

f(2)=4/, and f (5) =7/,
f(3)=%c

Since these values are all non negative.

f(1) + f(2) + f(3) + f(4) + f(5) = i

5 6 7
—t—+—
25 25 25 25 25

+f(x)>0 and Y f(n)=1 conditions are satisfied thus, the given function is ; p.d.f. of a

random variable hairing the range {1,2,3,4,5}.

Example5:

Solution :

Find the distribution function of the total number of heads obtained in four tosses of
a balanced coin.

Given f(0=Y, T(W=%, (=8, f(3=4 @@=y

Which follows

F(0) =f (o)=%6

F(D)=f(0)+f (D)= ye =%

F(2)=f(0)+f()+f(2)=t 4,6 1
16 16 16 16
4 6 4 15

F(3) = f(o)+f(1)+f(2)+f(3)—16 e e e 1

F(4) =f(0)+f(D+f(D+f(@)+f@)=ts 2y 08,4 1

16 16 16 16 16
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Hence the distribution function is given by

0 for x<0

i for 0<x<1

16

i for 1<x<2
F(x)= ﬁ

— for 2<x<3

16

E for 3<x<4

16

1 for X>4

This distribution function is defined not only for the values taken on by the given random

variable, but for all real numbers is observed. For example we can write F(1-7) = 1—56and F(100) =1

although the probabilities of getting "atmost 1.7 heads" or "atmost 100 heads" in four tosser of a
balanced coin may not be of any real significance.

Example 6: If X has probability density

—3X
F(x) = k-e=*, forx>0
0 otherwise

Since the given function is continuous we have

oc oc oc e—3X o«
[ f(x)dx=[ ke Xdx=k.] e Fdx=k . —2
—oc 0 0 3
:_—k(e_Oc —e‘0)=5=1:>k=3
3 3
and
Lo 3 ax [t 3, .-15
P(0.5<x<1)= | 3¢ ¥ dx=-€" X|0_5:—e_ +e 2 =0173
0.5
For x > 0,

X X X
F(x)= [ f(t)dt=]3e3dt=—e3|g =1
—oC O
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and since F(x) =0 for x <0 we can write

() for x<0
X)=
1-e3 for x>0

P(0.5<x <1)=F(1)-F(0.5)

=(1-¢3)-(1-e19)
=0.173
Example7: Let f(X) = 2x, 0 < x < 1 and 0, otherwise, be the p.d.f. of x. Find the distribution
function of p.d.f. of y= Jx.

Solution : P(YSy)=P(\/;Sy)=P(XSy2)

Fx(y)z)} f (x)dx
0

2

y? y? 2l
= [ 2xdx=2- | xdx=2—X
0 2

0

This gives the distribution function of y. the p.d.f. of y is

fy(y)=Fy(Y)=4y®, 0<y<1
Example 8: A variate x has p.d.f. f(x):}/z, x>1;
X

f(x) =0, x<1 find the p.d.f. of gx.

Solution: Let y=e* and use the transformation y =€ *

=Xx=-logy

%‘:%; le:ys(%)

Furthery >0

this gives
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dy‘
f, (X)) =|—|f
x (X) ‘dx y(Y) we get

fy(y)=[y logy]® 0<y<e™, f,(y)=0 otherwise

Example 9: Variate X has the p.d.f. f(x)=;, —oc<X<oc
n(1+X2)
Find the p.d.f. of y=tan"tx
Solution: Y=tan""x = x tany SO that d—:%c y>0
y
Thus the function is encreasing. Also
1+x2=1+tan2y=sec2y
dx Seczy 1 —=n T
hence f, (Y)=|f, (x)|—|| = =—, —<y<_
dy y n%Czy Y 2 2

Example 10: If v =|x|. Show that

R (Y):{FXC()V) R (=y)+P(x=-y),y>0

Solution: R, (Y) =P(Y<y)
—P(1x1<y)
=P(-y<x<y)
=P{(-y<x<y)U(x=-y)}
=P{-y<x<y}+P(x=-y)

=R (¥)-F(-y) +P(x=-y)

(- By using distribution properties)

Random Variables ]@
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6.9 Exercise:

1.

An experiment consists ofthree independent to uses of a fair win. Let x = the number of
heads, y = the number of head runs, z = the length of head runs. A head run being defined
as consewtive occurrence together in three tosses of the win. Find the probability function
of (i) X, (i) Y, (i) Z, (iv) X+Yand (v) XY and construct probability tables and draw their
probability charts.

A random variable X has the following probability function

X 0 1 2 3 4 5 6 7
p(X) 0 k 2k | 2k | 3k | k2| a2 | 724k
() Findk,

(i)  Evaluate P(x<6), P(x>6) and P(0<x<5)

@iy If P(x<k) >% , find the minimum value of k and

(iv) Determine the distribution function of X.

(Ans: (i) k=3, (i) 5%,%%§é,am k = 4)
The diameter of an electric cable say X ; is assumed to be a continuous random variable
with p.d.f. f(x) = 6x (1-X), 0<x <1
(i) check that above is p.d.f.
(i) Determine a number of such that P(x <b)=P(x > b)
(Ans: (i) p.d.f., (i) b=1/2)

A continuous random variable X has a p.d.f. f (x) = 3x? ,0<x<1

Find a and b such that (i) P(x<a)=P(x>a), (ii) P(x>b)=0.05

19j}é)

| 15 (
Ans: (i) a=|= , () b=| —
(ans: () a=(2 ). G b=(2
Let x be a continuous random variate with p.d.f.
f(x) = ax, 0<x<1

=4q, 1<x<2
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= -ax + 3a, 2<x<3
=0 otherwise

0] Determine the constant a

(i) Compute P(x<1.5)
(Ans: (i) a=1/2, (i) a=1/2)

6. The milege C in thousands of miles which car owners get with a certain kind of type is a
random variable having probability density function

1 —y
f(x)=—e /20
20 , forx>0

=0 for x<0.
Find the probability that one of these tyres will last
(0 at most 10,000 miles
(i)  any where form 16,000 to 24,000 miles
(i)  at least 30,000 miles.
(Ans: (i) 0.3935, (i) 0.1481, (iii) 0.2231)

7. Verify that the following function is a distrilention function

0 X <-a
1(x

F(x)= —(—+1j —a<x<a
2\a
1 X>a

8.  Apetrol pump is sopplied with petrol once a day. If its daily volume X of sales in thousands
of litres is distrilented by

f(x)=5(1-x)* ;0<x<1

What must be the capacity of its tank in order that the probability that its supply will be
exhansted in a given day shall be 0.01 ?

(Ans:a=0.6019, 601.9 litres)
9. If the comulative distribution function of X if F(x), Find the c.d.f. of
() Y=x+a, (i) Y=x-b, (ii)y=ax, (iv) y=x3, (V) y=x2

What are corresponding probability density functions ?
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L gex<1
10. Letf(x)={z X<

0 otherwise

be the p.d.f. of the r.u.x. Find distribution function and the p.d.f. of Y —x2?

6.10 Summary :

The conceproja random variable, its associated distribution function are defined and a
number of example, are given prigunction of random variables into discrate and continution types
- the associated mass functions and density functions are presulted.

6.11 Technical Terms :

Random, Variables, Distribution function, Probabilites mass function, Probability density
function.



Lesson -7

MATHEMATICAL EXPECTATION

Objective of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of mathematical expectation, moments, M.G.F.,
C.G.F., P.G.F. definitions, properties and their applications.

Structure of The Lesson:

7.1 Introduction

7.2 Mathematical expectation of random variable
7.2.1 Definition
7.2.2 Properties

7.3 Moments and Central Moments

7.4 Moment Generating Function

7.5 Cumulant Generating Function

7.6 Probability Generating Function

7.7 Characteristic Function

7.8 Tchebyshev's Inequality and Its Application

7.9 Worked Examples

7.10 Exercise

7.1 Introduction:

When real variable is associated with a probability distribution, no value of the variable is a
certainty and accordingly one is not since of what value is assumed us the real variable. In situations
like temperature in atmosphere, rainfall in monsoon, profits / losses in business, sensex in share
market etc. We can talk of only average value rater than exact value. If the probability distribution
of the underlying variable is known / specified the average value can be calculated by a concept
called Mathematical Expectation. This lesson is devoted to introduce this concept in a theoretical
way and present its practical utility along with its other related concepts in the following sections.

7.2 Mathematical Expectation of Random Variable:

7.2.1 Definition: Let X be arandom variable defined on a probability space. Suppose if X be a

discrete and Let {x;} be the countable set of its possible values, such that p (x = x;) = p;
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the mathematical expectation of X, (or the mean of X) written as E(X) , is a real number
defined by

E(X)Zzpixi’ Yi (1)

Provided the series > p; |xi| IS convergent.

Off(x)|x| dx < oo

—00

i.e., convergent, the expectation of X, written as E(x) , is the real number defined by

If the series (1), or integral (2) is conditionally convergent, E(X) does not exist.

Therefore the series (1) or integral (2) must be absolute convergent and hence E(X) exist.

Thus E(X) exists iff E(| X|) exists.

[llustration 1:
For example if the random variable X takes the values 01! 2!-.......... with probability
law
-1
P(X:XI)_ y X:O’lz ........

then ¥ x!P(X=x!)=¢* ¥ 1
x=0 x=0

Which is a divergnt series. In this case E(X) does not exist.

For example if the random variable X which takes the values

X; z(_l)i+1(i+1) =123

with the probability law P, = P(X=X;) = ———; i =123+

i(i+1)
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Heregjxip(x Xi)= % (-1 '+1(j Y Y- Y

i=1 i=1

The series on R.M.S. is conditionally convergent since the terms alternate in sign, are
monotonically decreasing and converge to zero when we use leibnitz test for alternating

series. By conditional convergence although Zplx converges, z|pI I| does not
i=1

e o]
converge. So in the above example E(X) does not exist even though > p;jX; isfinite i.e.,
i=1

Iogg.
Illustration 2:

Let us consider the r.u.X. which takes te values

— | =

and Z |Xt|pt %j:

Which is a divergent series. Hence in this case also expectation does not exist.
lllustration 3:

Let us consider a continuous r.v. 'X' and p.d.f. is

f(x):l-# C 00 < X <0

n (1+ x2)

which isthe p.d.f. of standard cauchy distribution
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5 1
f(x)dx ==
TIxlfe)ex=

1+x 1+ x2

—00

a0 0
J'ﬁdngj X ax
2 T
0

(- Integrand is an even function of X)
=1‘Iog(1+x2)‘ — 0
T 0

Since this integral does not converge to a finite limit. Hene E(X) does not exist.

7.2.2 Properties:

Expectation of a Function of a Random Variable:

Consider ar.v. X with p.d.f. (p.m.f.) f(x) and distribution F(x). If g(x) is a function

such that g(x) is ar.v. and E(g(x)) exists, then

0

E[0(0)] = 1 90)- 0F(x) = ] g(x)-1 (x)dc-wo()

—o0 —00

(for continuous r.v.)

(for discrete r.v.)

Case 1l: |If wetake g(x) =x2r being a positive integer, in (1) we get

which isdefined as M}, the (th moment (about origin) of the probability distrilention.
thus i (about origin) = E(xr)

wi (about origin) = E(X)
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w5 (about origin) = E(x2)

Hence Mean = x = p,% (about origin) = E(X) ......... (4)
2 2
and Hp =My —n7 = E(x2) =[E(X)] e (5)

—\2
Case2: Ifg(x)=[X- E(X)}2 = (X - X)
then from equation (1) we get

0

E(X-E(X)) = | [x=E(X)]* = (x)dx= | (x-x

—00

which is p,, the ' moment about mean.

In particular if r =2, we get

hz =E[X ~E(X)]* = [ (x-x

Equations (5) and (7) gives the variance of the probability distribution of a r.v. X in
terms of expectation.

Case 3: Taking g(x) = constant = C(say) in (1) we get

E(C)= [ C-f(x)dk=C [ f(X)dk=Crrrrrrr- (8)
E(C):C .......... >(9)

Addition theorem of Expectation:

Statement: If X andY are random variables then

E(X+Y)=E(X)+E(Y) ................ (1)

Provided all the exectations exists.



@{Centre for Distence Education 7.6 Acharya Nagarjuna Universityﬁ

Proof: Let X and Y be continuous r.v.'s with joint p.d.f. fx,y (x, y) and marginal p.d.f's

fy (x)and fy(y) respectively. Then by definition

E(X)=_IOOX fe()dx (2)
- Ty Wy e
E(X+Y) = J Of(x+y)fxy(x,y) dxdy

J [ x-fy y(x,y)dx dy + J [ y-fey(x,y) dx dy

|

= Ojoxfx(x)dx+ Ofyfy (y)dy

—o0 —0

—0o0 —00

x-[offxy(x, y) dy} dx + Jy[? fxy(x, y)dx} dy

=E(X)+E(Y) [From equations (2) & (3)]
The above result can be extended to n variables also by mathematical induction.

Multiplication theorem of Expectation:

Statement: If X and Y are independent random variables, then E(X Y)=E(X)-E(Y).

Proof: By definition of Mathematical expectation if X, Y are continuous r.v.'s then
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E(xy) = J Ofxyfxy(x,y) dx dy

—0o0
—00

= J [ xy-f(x) -y (y) dy dx (-- x and y are independent)

— E(X)-E(Y) [ _zx'fx(x) dx = E(X), _Ofo yfy (v)dy =E(Y)

The above result can be extended to n variables also by mathematical induction.
Theorem:

If X is a random variable and 'a’ is constant then
() E(ay(X))=aE[y(x)] (i) E(w(X)+a)=E[y(X)]+a

where ¢ (x) a function of X, is ar.v. and all the expectations exist.

Proof:

0 Elav(X)]= T a-y(X)-f(x)d=a | w(X)f(x)d=aE(y(X)

—0 —0

iy ELv(x)+a]= _Of [w(X)+a] f(x)dx

= Tw(X)F(x)dx +a- [ f(x)dx

—00 —0

=E[y(X)]+a [ T f(x)dx =1}
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Corollary: (i) 1f y(X)=x then E[aX]=A E[X] and E[X +a]= E(X) +a

(i) Ify(X)=1,then E[a]=a
Theorem: If X is a random variable and a and b are constants, then
E(ax+b)=aE(X)+b. Provided all the expectations exists.

Proof: By definition of mathematical expectation we have

E(aX+b)= [ (ax+b) f(x) dx

—o0

0

a- jx-f(x)dx+b-off(x)dx

—oo —o
=a-E(X)+b
Corollary: 1. If b=0,thenwe get E(aX)=a: E(X)
2.  Taking a=1 b=-X=-E(X),we get E(X—Y)zo
Theorem: If X >0 then E(X)>0.
Proof: If Xisacontinuousr.v.s.t. x>0 then
E(X) = _OI:OX f(x) dx = Zx'f(x) d>0 [ if X >0,P(x)=0for x <0]
L E(X)=0
Provided the expectation exists.
Theorem: Let X and Y betwo random variables such that Y < X then

E(Y)<E(X)
Provided the expectation exists.

Proof: Since Y < X, we have the r.v.

Y-X20=X-Y20
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Hence E(X-Y)>0=E(X)-E(Y)>0
= E(X)=E(Y)=E(Y)<E(X)
Theorem: |E(X)| < E[(X)| provided the expectation exist.
Proof:  Since X <|X| we have by theorem (i.e. E(Y) < E(X))
E(X) < E|X| ................ (1)
Again since — X <| X | again by theorem (i.e, E(Y)< E(X))
E(-X)<E|X|
= E(X)SE|X| ................ (2)
From (1) & (2) we get |E(X)| <E|X|

Theorem: If X is a random variable, then V (aX +b) = a®-V(X)

where a and b are constants.

Proof: Let Y =aX + Devveeeeceeeeenns (1)

Taking expectation on both sides of equation (1) we get
E(Y)=E(aX +b)
= E(Y)=aE(X)+b
Y -E(Y)=a{X -E(X)}

Squaring and taking expectation of both sides, we get

E{Y-E(Y)}? =a? E{X-E(X)

= V(Y)=a®-V(X)= V(aX +b) = a®V (X)---- (2) (- from equation (1))
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If b=0, then V(axX)=a?-V(X)
= Variance is not independent of change of scale.
If a=0,then V(b)=0
= Variance of a constant is zero
If a=1then V(X +b)=V(X)= variance is independent of change of origins.

7.3 Moments and Central Moments:

As explained in section 7.2 we can set the expectation any function g(x) of a random
variable X with the help of the probability model of that random variable. Specifically if we take

g(x) = (X _a)k where 'a' is any constant and k is a natural number i.e.

E(g(x)) = E(X-a)"

then we call this k-th moment of X about 'a' and denote is by “i . In particular if a =0 then
it is called k-th raw moment. If 'a' is taken as E(X) itself then it is called k-th central moment and
is denoted by p .

In all we introduce the following in terms of mathematical expectation.
k-th moment bout an arbitrary constant:
1 k
Wk = E(X - a)

k-th raw moment my = E(Xk)

k-th central moment 1\, = E(X — E(X))

It can be seen that first raw moment is mean of the random variable, first central moment is
zero always, second central moment is variance of the random variable.

7.4 Moment Generating Function:

The moment generating funtion (m.g.f.) of a random variable X (about origin) haing the
probability density function f (x) is given by
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My (t) = E(eX) = fetx -f (x) dx. (for continuous probability distribution)
= ye%f(x) (for descrete probability distribution) - .. (1)
X

Here the integration or summation being extended to the entire range of X, t being a real
number and itis being assumed that the R.H.S. of (1) is absolvetely convergent for some positive

number h such that -h <t <h. Thus

2y 2 Iy ?2
My (1) = E(eX) = E |1+ tX + 2 horvins +t:§ P
2 2
=1+tE(x)+t_ E(X2) 4 vveeee. L E(x2) 4.0
2! r!
1 1 t?
:1+t Ml+ M2+ ............ +_Mr+ ................ (2)

where b =E(X") = fxz -f(x) dx, for continuous distribution.

2
= %X ‘P(X) | for discrete distribution.

2
t
is the th moment of X about origin. Thus the coefficient of T in My (t) gives M%- Since

My (t) generates moments it is known as moment generating function.

Differentiating w.r.t. 't and then putting t =0 we get

d' M% - 1 2
_r{MX(t)} :_|'r'+p~r+1't+p~r+2'_+ .......
dt r! 21
t=0 t=0
1 r
= up = F.{|\/|X(t)} ................ (3)
t t=0

In general, the moment generating function of X about the point X = a is defined as
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My (t) (about X =a)= E[et(x_a)}

2 2 1
t 2 t 2
:E|:1+t(x_a)+z(x_a) e +F(X_a) Feenennn
2 2 i
t 2 t 2
:|:1+tE(X_a)+zE(X_a) Ferenenns +F(X_a) T
! t? 4
:1+tul+5“2+ .......... +r_!“2+ ............ (4)
Properties of M.G.F.:
1. Mgy (t)=My(Ct), C beinga constant --------------.. 1)

By definition of M.C.F. we have
ie, My (1) =E(eX)
- From L.H.S. of (1) is Mcy (1) = E(elX)

From R.H.S. of (1) is My (Ct)=E(e®¥) =L -H>s

2. The moment generating funtion of the sum of a number of independent random
variables is equal to the product of their respective moment gnerating functions.

Symbolically, if X1, X5, <-eevee , X, are independent random variables, then the
moment generating function of their sum X; + X5 +------- +X,, is given by
MX1+X2+ ........... X, (t) = |\/|X1 (t) . |\/|X2 (t) ......... MXn (t) .......... (1)
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3. Effect of change of origin and scale on M.G.F.

By definition of M.G.F. we have

My (t) = E(eX) ., (1)

Let us transform X to the new variable U by changing both theorigin and scale in X as

_X-a
h )

M.G.F. of U (about origin) is given by

My () =E(eY)=E {exp {MH

U

a, h are constants.

h
—E [etX/h ) e—at/h}
= g d/h. E(eo%)
- gd/h, My (t/h) [from equation (1)] «««««««---eeee - (2)
where My (t) is the m.g.f. of X about origin

Alsoif a=E(X)=p (say) and h=ocy = (say), then

E0) Ko
GX (e}

U=

is known as a standard variate. Thus the m.g.f. of a standard variate Z is given by
M (1) _gHt/o, My (t/G) -oevemenennne (3)

Remark: E(Z)= E[%) = % E(X-n)
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=1

E(Z)=0 and V(Z)=1 i.e., themeanand vareaince of a standard variate are
0 and 1 respectively.
Limitations of Moment Generating Function:

Moment Generating Function is restricted its use in statistics. Here the deficiencies of
m.g.f's with illustrations are explained.

1. Arandom variable X may have no moments although its m.g.f. exists for example let
us consider a discrete random variable with probability function.

f = X =12,
(x) X(x+1) x=1
=0, otherwise
0 0 1
Here E(X)= 3 xf(x)= 3

(X) . (x) RN

1 1 1

_—-|——+_+ ..............
2 3 4
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. © 1. . . .
Since > = is a divergent series E(X) does not exist and consequently no
x=1 X

moment of X exists. However, m.g.f. of X is given by

tx

_ o0 tX _ o0 e
Mx(t)= 2 e 100)= 2 S5
—_— < ZX —t ..............
_xz::l X(x+1) (Z_e) @
z z2 2 7
= 4+ — — b —— e

z2 728 74 z 722 728 7¢
= Z+—+—+— —_———
2 4 2 3 4 5
2 3 4
= — |og(1_Z)_£ Z_+Z_+Z_+ .......
212 3 4

=—log (1—Z)+1+%Iog (1-2),|Z| <1

=1+(%—1jlog(1—z),|z|<l
~1+(et ~1)log (1-€'), t<0
[from (1)] [-.-|Z|<1:>‘et‘<1:>t<0}

My (t)=1, fort=0

while for t >0, My (t) does not exist.
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2.

A random variable X can have m.g.f. and some (or all) moments, yet the m.g.f. does
not generate the moments.

For example consider a discrete r.v. with probability function

P(x =2X)=7;x=o,3_2, .........

Here E(x") = 3 (x) -P(x=2")=¢"
x=0

_1
=€ -exp(2)=exp(2r _1)
Hence all the moments of X exist.

The m.g.f. of X, if it exusts is given by

" 1

My (t) = Xgoexp(t-zx)(%J
:e_l. OZO: exp(tzx)i
x=0 X!

By D'Alemborts ratio test, the series on the R.H.S. converges for t<0 and

diverges for t>0. Hence My (t) cannot be differentiated at t=0 and has no
Mactaurin's expansion and lonsequently it does not generate moments.

Ar.v. X can have all or some moments, but m.g.f. does not exist except perhaps at
one point.

For example Let X be ar.v. with probability function.

=0, otherwise.

Since the distribution is symmetric about the line X =0, all moments of odd
order about origin vanish.

ie., E(x2+1)=0= iy, =0
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1

Thus all the moments of X exist. The m.g.f. of X, if it exists is given by

® X tox |1
Mx(t)zxzjo {[etz +et2 }Q}

wich converges only for t =0.
In case of continuous probability distribution consider Poneto distribution with p.d.f.

0-a . .
P(X):W ,XZa,9>1

o0

o0 Xr—G
E(x)=0-a" [x™Tdx=0-a°-
a r-o
a
which is finite iff r—-0 < 0= 0 >r and then
2 2
a -0 0-a
E(yr)=06-a°|0- =—:0>r
(X) { r—e} 0-r

However, the m.g.f. is given by

. . . . tx /,,0+1
The integral is not convergent since e* dominates x%*1 and (ex/x " )—> ®©

as X > o, hece My (t) does not exist.
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7.5 Cumulant Generating Function:
Cumulants generating function K(t) is defined as

Kx(t)=|09e Mx(t) ................ (1)

The R.H.S. of above equation (1) can be expanded as a convergent series in powers of t.
Thus

2 r
KX(t)_Klt_‘_KZ%_'— ......... +Krtr_l+ ........... :log Mx(t)
1 1 1 2 1t
=log 1+“1t+“25+u3§+ ......... + U F+ ....................... (2)

tr
Where K, = coefficient of - in Ky (t) is called the (th cumulant.

Hene
3 4
2 3 4 t t t
t t t 1 1t 1t 1t
Klt+K2_!+K3§+K4Z+ ........... = [|:H]_t+“2 2!+M33!+H4 4|+ :|
- 2 3
3 2
11 1 1 1)1 1t
J— t+ — R +— t+ —_— e
2 |M17 T2y ey } 3[”1 "2
- 4
_l 1t+ 1ﬁ+ .......... e
g|P1tTH2 g, ]

Comparing the coefficients of like powers of 't' on both sides, we get the relationship between
the moments and cumulants. Hence we have

2
Ko W3 wp
20 20 2

Ki=pi=M Kook oyl =
1 = Hg = Mean, =RKo=W -3 =l

3

Ky o 12pus 1 1 11 13
~3_F3_2fhPe M k.- io3 +2ut =
3 3 2 2 3 3T Hz T oMM T ol T



@{ Probability and Distributions [x Mathematical ]@

1 12 1.1 1?1
Kgy mg 1|pp  2Zpppg | 13w pp 44 1 12 1.1 2 1 14
a7 S [ N + oK, =t -3t a2l 6
4 4 2{4 3l 3 2 M T RaTHaTAR TR KT IA0 K T O

2 4 2 2 4
:>K4=(uﬁ—4u% M+ 6up g — 3] j—3(ui - 205 +M%)

2
1 12 2 2
=H4_3(“2—H1 j =Hy—3u5 = py —3K3 (v np=K3)

= 1y =K, +3K5
Hence Mean = K ) «-vovrererenens (3)

1, = K, = Variance, pg = Kg, 1, = K, +3K2
If we differentiate both sides of (2) w.r.t. 't' 'r' times and then put t =0, we get

2
Ky = Lﬁ? Kx (t)} ................ ()

t=0

Additive Property of Cumulants:

The (th cumulant of the sum of independent random variables is equal to the sum of

the (th cumulants of the individual variables.

Where Xj ;i =12,oeo ,n are independent random variables.

Proof:  Since X;'s are independent we have
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Differentiating both sides w.r.t. 't' 'r' times and putting t=0, we get
d2 d2 dr d2
5 KXo )] = Ky (t A% ke ()] e Lk (1t
Stz X +Xo+ +Xn( )} o {dtz Xl( )}t_o {dtr Xz( )L_O {dtz xn( ) t

= Kr(X1+X2+ """" +Xn)=Kr(X1)+K2(X2)+ """" +Kr(xn)

Effect of Change of origin and scale on cumulants:

X-a

If we take U = , then

My (t) = exp (~at/h) My (t/h)

Ku (=" 4k (1)

2 2 2 2

t t —at t/h t/h
:>K%+K11+KJQE+ ..... + K%F+:T+Kl(t/h)+K2( 2') 4eeenn +Kr%+ .....

Where K! and K, are the r'" cumulants of U and X respectively.

Comparing the coefficients, we get

h

Hence we see that except the first cumulant, all cumulants are independent of change

of origin. But the cumulants are not invariant of change of scale as the r'" cumulant of U is

(l/hz) times the r" cumulant of the distribution of X.



Converges in some interval -§, < S<&,, when the sequence is infinite then the function

G(s) is known as the generating function of the sequence { ai} .

The variable S has no significance of its own and is introduced to identify & as the coefficient
of § in the expansion G(S). If thesequence {a,} is bounded, then the comparison with the

geometric series shows that A(S) converges at least for |S| <1.
The case when g is the probability that an integral valued discrete ariable X takes the value

e, a=p =P(X=i);i=012- with ¥ p, =1, then the probability generating
function (p.g.f.) of r.v. X is defined as

G(s)=E(s*)= $ s, 5
x=0 ()

Effect of linear transformation on P.G.F.:
G(s:a+bX) = G(s?: X

Proof: G (s:a+bX)=E(s*) (By definition)

Additive Property:

If X, Y are independent variates, then for constants a, b
G(s:aX +bY) =G(s*: x) - G(s°: Y)
Proof:  G(s:aX +by)=E(s**Y) (By definition)

:E(sax-st)
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g ].E(&PY) (.- Xand Y are independent)
~G6(2:x)-6(s":v)

Ingeneral G(s: X+Y)=G(s:X)-G(s:Y)

Relation between the P.G.F. and M.G.F.:

Thus (1) is obtainable from (2) by changing s to e' and conversely to obtain (2)

from (1) changing e tos.
M (t:X)=6(e': X) ;
G(s:X)=M (log s: X)
n
For example (1) if M(t:X):(q+pet)
then G(s:X)=(q+ps)"
() if G(s:x)=emD

then M(t:X)zem(et_l)

7.7 Characteristic Function:

For some distributions m.g.f. does not exist, since the series Zetx -P(x) or the integral
X

jetxf (x) dx does not converge for real values of the auxiliary parameter t. As such the m.g.f. of

such discrete or continuous distribution fails to exist. P(x) = £2 X =012, - ,n (distribution)
X
or f (x) = Lﬂ — o < X <o (continuous distribution) can be cited as example of such cases
2
(1+x )

out of many. In this type of situations there is a more useful generating function, known as the
characteristic function and is defined as under.

by (1) = E(€™) = 2d™ (x) (for descrete distribution j = /~1)

X



= j Xt (x) dx for continuous distribution

Also by (1) = Of X 4 F(x) [ f(x)=F ()]

—00

et o 0] =| e 1000 = 61
ie., < [ |costx +i sintx|f(x) dx
< [(cos? tx +sin tx) f (x) dx
< [f(x) dx
<1 (++ costx + sin? o =1]

|<|>X (t)| <1 so the characteristic funtion always exists though My (t) may not exist.
Thisis an advantage with the characteristic function over the m.g.f.

Properties of Characteristic Function:

g 2 i gt
1_ ¢X(t):1+|t|l1—?},l2—§M3+ZM4+ ..........
ar
where 1y = (i)™ | = ox (1)
ot? t-0

Since by definition of ¢y (t) we have

by (1) = Of eitxf(x) AX ceeerrnenenns (1)

—00

Differentiating r times w.r.t. 't' and putting t =0 we get from equation (1)
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) [T ]

N
It
Thus, the coefficient of T in the expansion of ¢y (t) gives the r'" moment

about zero = “}. So like m.g.f. about zero ¢y (t) also generates the raw or crude
moments.

2. by (t) is defined or exists always with limite modulus This is the prominent advantage
of the characteristic function over the m.g.f., as the later does not exists always.

For example cauchy distribution

3. ¢x(t) is auniformly continuous function of t.

4. 4y (0)=[f(x) dx =1, we have ¢y (t) = E(€%) = ¢y (0)=E(e?) = E(1) =1

5. ¢x (t) and ¢y (-t) are conjugate quantities and ¢y (t) = ¢y (- 1)

ox (t)= E(eitx)zE[cos tX +i sin tX]

dx (t)=E[cos t X —isin t X]
=E[cos(—t)><+i sin (-t) X}

= (™) = oy (-1)
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6.  The characteristic function of the sum of two independent random variates is equal to
the product of their individual characteristic functions.

Let ¢x1(t) and ¢x2 (t) be the c.f.'s of two independent random variates X; and

X, and let dx +x, (1) be te c.f. of X;+X5, then
it(X+X itX, jtx itx X
¢x1+x2(t)=E{el( o 2)}=E{e't 1.2 )= (%) E(d%2) = dx, (1) dx,t

which also can be extended to any number of variates X;, i =1,2,--------- ,n as
¢xl+x2+ -------- +Xp (t) = ¢X1 (t) ) ¢X2 (t) """"" ¢Xn (t) .
7.  Effect of changing the origin and scale.

We have ¢y (t) = E(e™)

Changing the origin and scale by introducing a new variate U such that

i.,e., X=a+hU, we have
(I)X (t) = ¢a+hU (t) -E [eit(a+hU)} — eat . E(eithU)
it g V] _d 24, (th)

or gy (th)=e "% oy (1)

Replacing 't' by t/h, this results

oy (t) =g a/h “Ox (t/h) or ¢ x-a) (t) =dah. dx (t/h)

L~~~

If a=m,h=0c then
b (X — M) — e—int/c . ¢X (t/G)

8. If F(x) and ¢(t) be respectively, the distribution and characteristic functions, then
density of the function is given by
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o0

f(x) = Fl(x):z_lTE [ e gy (1) ct

Provided ¢(t) is integrable.

9.  Uniqueness theorem of characteristic functions.

The characteristic function uniquely determines the distribution function and
conversely a particular distribution has unique characteristic function.

7.8 Tchebyshev's Inequality:

Itis well known that the standard deviation is a measure of dispersion. Thus if the variance
is small, large deviations from the mean are improbable. Hene this role of standard deviation is
made quite obvious by a well - known Tchebyshev's inequality.

In equality: If X be random variable taking only non negative values, possess a finite mean pn

and variance o2 = Var (X) then forany t>0.

62

P(|X—M|2t)st—2

Proof: We shall prove this inequality for a continuous variable we have for any k > 0.

Now let us consider the random variable Y = (x - H)z

then E(Y)=E(X - p)* = o2

Applying the result above, we get
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(e}
where K = t2

or P(|X—u|st)21—‘t’—2

Known as Tchebeyshev's inequality.

7.9 Worked Examples:

Example 1. A boy throws a coin four times an guesses ach time whether the head or the tail has
been thrown. He was not allowed to see the results. He is to recieve 6 rupees for 2

heads, 1 rupee for 3 heads and 50 paise for 4 heads. Find his expectation.

The probability of getting x heads in 4 throws

=4c, [%)X ' (EJH ;x=01234. ( P=0a= %)

Solution:

the probability of getting 2 heads in 4 throws is

(3 (3 =5
2 2 8

the probability of getting 3 heads in 4 throws is

a3 (5 -
2 2 4

the probability of getting 4 heads in 4 throws is

4 14(14—4_1
O =l I -
2 2 16

Theexpectation is, the boy is to recieve 6 Rs for 2 heads 1 Rs for 3 heads and

=

0.50 Rs for 4 heads.
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3 1 1
The expectation =—- of 6 Rs + — of 1 Rs + — of 0.50 Rs.

8 4 16
= ﬂ Rs.
32
. . . (-1) 2K
Example 2: Find E(X) if a random variable X takes the values xy = Y (K =12, eenns )
. 1
with probabilities P, = 2_K
Solution:  Since X is a random variable and takes te values.
K 5K
-1)" 2 .
Xk = ( )K (given) (K =12 )
(-1) 2 (-1°22 4
Xp="——=-2, Xy = =—=2
1 2 2
(-1)°2% g oo 1 1 1
X3 = 3 = ?, ............ and probab|||t|es pl = E, p2 _?, p3 = ?, ..........
we have  E(X) = pyXq +PoXp+PaXg+-reeeeeee
_ l(_2)+i(2)+i(‘_8J e,
2 22 23 3
= —1+ l f— E + ...............
3
1 1 1
=—|1-=+=-eee =-log(1+1)=-log2=-log =
\ { >3 } g (1+1) 9 97

Example 3: If n dice are tossed and X denotes sum of the numbers on them, then find E(X) .

Solution:  Denoting the number of jth dice by X; we have the sum of the numbers on n dice



But for the i dice, the variate x; can take the values as 1,2,3,4,5,6 each with

probability 37 thus

E(xi):£-1+1-2+E-3+1-4+l-5+l-6
6 6 6 6 6 6

A7

6 2
Hence E(x)=Z+Z+ ......... n times _n
2 2 2

Example 4. Aboxcontains'a'white and'b ' black balls, ' ¢ ' balls are drawn. Find the expectation
of the number of white balls drawn.

Solution:  Let 'X' we the number of whites among the a balls drawn then dejining a variate X;
such that

x; =1if i ball drawnis white | 12
i =12,
=0y i" ball drawn isblack

" X; takes values 1 and 0 with probabilities a/a+b and b/a+b.

aoba

" E(XI)Zl +0- —
a+b a+b a+b
a a . ac
E(X)=— + ——— 4 eeeeennnen c times =
Hene E(X) a+b a+b a+b
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Example 5: Find the m.g.f. of mean of ' n ' independent observations of the variate X in terms of

the m.g.f. of X.
Solution:  Suppose the variate X assumes values X; + Xy +------+- +X,, - Distribution of each
X; (i =12, s ,n) would be the same as that of the variate itself. Hence m.g.f. of

each X; would be equalto My (t).

. mgf of ﬁ :Mx(lJ; for i=12---cvvvvens n
n n

also mgf.of

mgf. of X =[Mx (%])}”

Example 6: Find the m.g.f. of a random variable whose moments are p} =(r+1)! 2

2 2
Solution:  Sine Mx(t):1+tu%+%u12+ --------- +%p}+ ---------
2

© ot
_r§0 F Hr

0 t2 r 0 r
==Y —(r+1)2'= 3 (r+1)(2t)

r=o I! r=0

—1+2(21) + 3(2t)7 + 4(2)> + oo

- (-2 2=y (1)

Solution:  Here F(x)=0, when x <0, F(0) = %;

hene P(X=O)=% for x>0, f(x):Fl(x)zée_x,
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Hence

1 1 1
= — 4+ — R
2 2 1-t

2-t
= , T<!
21-1)

Example 8: Show that ¢y (t) is a uniformly continuous function of t.

0

Solution:  Since ¢x (t)= [ €™ f(x) dx = ¢y (t+h)= | e (X £ () aix

—© —o0

T {ei(t+h)x _ eitx}

—0

| dx (t+h)=ox ()] = dF(x)

< [ d]le™™ 1] dF(x)

—00

< [ [em* 1] F(x) as|d1¥] =1

—00

< [{]dm[sa) dr(x) as [dmaf<leifn] o1

<2 T dF(x) as|éM| =1

<2 | TdF(x)zl for p.df

—00
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Example 9:

Solution:

Example 10:

Solution:

i.e., ¢y (t) is bounded.

Also fim [oy (t+h) - by (t)] < J dim " _1|d F(x) =0
h—0 h—0

= hfimo Oy (t+h)=dy (t) V't

Hence ¢y (t) is a uniformly continuous function of t.

Find the characteristic function of the random variate X which assums, values
X1 =—1 and X, =1 with probabilities %% each.

Let Xq, X, be the values assumes by random variate X with probabilities p;, p, then
by definition of characteristic function we have

by (1) = E(eitx) -p, gtxg D, ol txs

I
2 2

t =Cos t

(-.-xlz—L xzzlplz%,pzz% given)

Arandom variable x has the density function e * for x > 0 show that Tchelochev's

inequality gives p { | X — 1| > 2} < % and show that the actual probability is g3,

Here t =2,

Mean is given by
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2
Gzzulz—u% =2-1=1

Substituting the values of t, mean and variance on Tchebychev's inequality we get

P{1x-11> 2} %

Since x>0,|x-1|>2=x+>2x>3

Hence the actual probability is given by

pzoj:e_x dx =[—e‘x}: —e3-e”=e>-0=¢"

Example 11: A variate X has mean 50 and variance 100. Find the following
(i) P(X >65)+ P(X <35), (i) P{|X—50| < 20}, (i) P(30< X <70), (iv) Values

of t that make P (|X-50/>1t)<0-01.

Solution: If Z= (x— M )/G is standard r.v. then Techebychev's in equality is

P{z|>K} <1/K?, or P{|Z|<K}>1—(}{<2j --------------- (1)
Here Z = (Xl—050)

Q) (Z>/2)+P(Z< y) (|Z|>3 )<%
i P(|z|]<2)>1-%=9,

(i) P(-2<Z<2)=P(2]<2)=3,

Pzt zlcy (100j<001 2> (100)2, ie, t > 100
(iv) (| | 40) 2 2 = t©>(100), ie

Example 12: A sample of size nis drawn from a population whose meanis 5and SpD.|. prove
that

P{|X -5 <0-001 21—(?}
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. o 2
Solution:  Here E(X) = =5, var (X)= %=1 k -107°
n n

By using Tchebychev's inequality we have

P{|X—M|<K}21—[G—2J

K2

- P{|X—5| <10‘3} zl—g

10°
= P{|X-5 < 0-001} 21—7

Example 13: A discrete variate X is specified by f(-a)=f(a)= % f(0)= % compute

P(| X| 2 2c) and compare it with Techychev's inequality bound.

Solution: Here E(x) = —_a+§+£3 =0
8 8 4
2 .2
E(x2) =&, & 1
8 4

Now by Techebychev's inequality we have
P{|X|2 20} =P{|X-M| za} < I
Actually P=P{X|>20}=1-{|X|<a} =1-P{-a< X < a}

=1-P(X=0)=1-3, =1/

Hene Techychev's upper bound coincides with actual values and so the upper bound
IS atttained.
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7.10 Exercise:

1. Let X be arandom variable with the following probability distribution.

X : -3 6 9

P(X=x) : % % %

Find E(X) and E(x2) and using the laws of expectation evaluate E(2X +1)2.

[Ans: 1—1 % 209}
2 2

2.  Find the expectation fo the number on a die when thrown and also find the expected
values of the sum of numbers of points when two unbiased dice are throuwn.

[Ans: E(X)=%, E(X)=7}

3. Let Xber.v.withman p and variance 2. Showthat E(X — b)2, as a function of b, is
minimised when b=p.

4. Iftis any positive real number, show that the function defind by

P(x)=¢"(1-¢ e

can represent a probability function of a random variable X assuming the values
12,300 find the g(x) and Var(X) of the distribution.

[Ans: E(X)=¢',V(X)=¢€ (et —1)}

5. Letthe random variable X assume the value ' r ' with the probability law

Find the m.g.f. of X and hence its mean and variance.

: pet 1 1
[A”S- Mx(t)zm- KL= K2 =%2}



@{Centre for Distence Education 7.36 Acharya Nagarjuna Universityﬁ

6.

10.

11.

12.

The probability density funtion of the random variable X follows the following probability
law.

1 —|x-6]
(%)= p( 0 j ene
Find the m.g.f. of X. Hence or otherwise find g(x) and V(X).

3922

|:AnS Mx() 1+et+ R ’“’%261“22292

For a distribution, the cymmulants are given by
K,=n[(r-1)!],n>0
Find the characteristic function.

Find the density function f (x) corresponding to the characteristic function defined as
follows:

1-|t], [t|<1

o(t) =

0, |t]>1

Let X be a random variable with generatingfunction P(S) . Find the generating funtion
of(a) X+1, (b) 2X.

| Ans: () S-P(S), (b) P(S)’ |
Find the generating function of (a) P(X <n), (b) P(X <n) and(c) P(X =2n).

If P(S) is the probability generating function for X, find the generating function for

(X-a)/b. [Ans: S_a/b-P(S]/b)]

For geometric distribution P(x)=2_x;x =123, prove that Theloychev's
inequality gives

Px-2<2 > 1]

while the actual probability is 19/
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13.

14.

15.

16.

17.

18.

Does there exist a variate X for which P{u, - 26 <X <p, +25}=0-6

If X is the number scored in a throw of a fair die, show that the Tchetycev's inequality

gives P{|X—u|> -5} < 0-47 where p is the mean of X, while the actual probability is
zero.

Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that

P{IX-7>3} < 3%4. Compare this with the actual probability.

A symmetric die is throiwn 600 times. Find the where bound for the probability of
getting 80 to 120 sixes.

| Ans: P{80<S<120}>19 |

Use TchebycheV's inequality to determine how many times a fair win must be bassed
in order that the probability will be at least 0.90 that the ratio of the observed number of
heads to the number of tosses will lie between 0.4 and 0.6

[Ans: n=250]

Thirteen eards are drawn simultaneously from a pack of 52. If aces count 1, face
cards 10 and other according to their denominations, find the expectation of the total

score on the 13 cards. [Ans: E(X) =85]



Lesson - 8

WEAK LAW OF LARGE NUMBERS &
CENTRAL LIMIT THEOREM

Object of Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of weak law of large numbers, central limit
theorem and their applications.

Structure of The Lesson:
This consists of sections as detailed below :
8.1 Introduction
8.2 Elements of Weak Law of Large Numbers
8.3 Elements of Central Limit Theorem
8.4 Workedout Examples

8.5 Exercise

8.1 Introduction:

In repeated experimentation, the observations of the experiment start stabilizing at some
value or around some value thus giving regularities of the experiment. This phenomenon can be
explained by law called Law of Large Numbers.

8.2 Elements of Weak Law of Large Numbers:

Let 'X' be random variable with density f (X) and let its expected value be E(X)=p. Then
E(X) is an average of an infinite number of values. Here the problem is that using a finite number

of values of x say n, can a reliable conclusion be made about E(X) , the average of an infinite
number of values of X. For this answer is given by the weak law of large humbers which states
that, if a random sample of size n or larger is taken from a population with density f(x), the
probability that the sample mean X will deviate from E(X) =, the population mean, by any

arbitary small quantity can be made as near to one as desired, or in other words, foran > 0 and
0< & <1, there exists an integer 'n' such that for m>n.

P{|Ym—u|<E}>1—8 as n—> o



@{Centre for Distence Education 8.2 Acharya Nagarjuna Universityﬁ

Such types of weak law of large numbers are of different variaties proposed by different
persons by changing the hypothetical conditions. The statements and proofs of all such results
are beyond the scope of this study material. However if we want to know the applications, a few of
them are -

1. The converging limit of the arithmatic means of a series of observations such as the average
temperature of a resion the average rainfall in a monsoon the average height to which an
individual can grow etc. In all these cases the mean of the first 'n' observations will be
calculated and the limiting behaviour of all these means as 'n' becomes larger can be assessed
through probability distributions and expectations.

8.3 Elements of Central Limit Theorem:

In a collection of indefinitely many observations for a randim variables. The arithmatic mean
is calculated the distribution of the arithmatic mean may not be known exactly in an analytic form.
But as the size of the sample increases the graph of the distribution function for the arithmatic
mean is likely to follow a definite shape and stabilizes to that shpae ultimately. In statistical science
we always consider mean as the best average and standard deviation as the best dispersion
method given these two measures a complete discription of the distribution spread over the entire
real line is given by only normal distribution. Hence if the limiting distribution of the arithmatic mean
of the sample whatever may be its parent is modelled by a normal distribution we say that central
limit property holds good for that data.

In literature central limit theorem proved for all the cases of i.i.d. random variables. This
result can be used by various practitioners in this hypotesis testing, analysis of variance interval
estimation etc., whenever use of normal distribution rises the only requiremet is the data should be
sufficiently large.

8.4 Workedout Examples:

Example 1:  If the variable X, assumes the value 2"-2'%9" with probability 27" ; r=12,-------
examine whether WLLN holds in this case.

Solutionl: Putting k=12,3,---- the values of the identical variables Xq, X5, X3+ are
respectively Sl-2log, 22—2'092, 23—2'093, ........... with probabilities
1 1 1 ,
FRE Al TR so that
E(X;)=E(Xy+Xp+Xg+------ )= E(X1)+E(Xp)+E(Xg)+----

_ ol-2log! 1 + 92-2log® | 1 4 p3-2log? 1

n r
_ 2r—2|og o T
r=1
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Example 2:

Solution:

Strategic ... I@
® 1 ® 1
= X = ( Kk = o9 k)

(=1 221091 Ty glog 221d'

© 1 ® 1 © 1
z log" - I =2 Io4-lor:Z log" log*
r:leg Og r:leg g r:l eg g

® 1
=Y ;
r=1 rIOQ
:1—‘,— 1 7 + %_‘_ .........
2Iog 3Iog

where the R.H.S. is a convergent series since Iogfe1 >1 (In the test = J/np, p>1),

there by showing that the mathematical expectation of variates X, r=1,2,------ exists

and hence the weak law of large humbers holds in this case (Due to Khintchine
theorem).

If {Xi} be mutually independent and identically distributed random variables with
mean P and finite variance and if S, = X+ Xo+-------- +X,,, then prove that the

law of large numbers does not hold for the sequence (Sq>

Since Sy =X+ Xg+eeeenes +X
S =X1;S =Xy + Xy S3=Xg+Xp+Xg;weeeeee etc.
Thus the variates are S, S, ------+- . Sh
By = Var (Sy+Sy+-oeeee +Sn)
=Var (x1+(x1+x2)+ ........... +(Xp+Xg e _|_xn))

=Var (NXg +(n=1)Xp+-w--o +2Xp 1+ Xp)

= n? Var (Xq) + (N=1)% Var (Xp) +------ +22 Var(Xp1)+12 Var(X,,)

Also, variables being identically distributed,

Var(Xq)=Var(Xy)=---wee- =Val’(Xn):c52
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< Bn = [nz + (n—1)2+ ------- +22+12J 2

n(n+1)(2n+1)

=0

giving  /im Egzwio
n—->o n

Hence the law of large numbers does not hold for the sequence { Sn} .

Example 3:  Show that the following sequence does not obey WLLN:
P\ Xy ==(2k -1) } v
Solution: We have

E(Xy)== 2k1 %Zkl

Var(X) = E(Xi )2 - [E(X) ]

- E(X4)2 -0 (- E(X)=0)

—E(X ) = % (2k-1) + % (2k—-1)=2k-1

n n
Bh= X V(Xk)= X (2k-1)=
K=1 K=1

- lim B_r21 =1#0 it follows that for { X} the WLLN does not hold.

n—>owo n
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Example 4: Avariate X, has the distribution

P(Xy =0) :1_(%2k+2) , P(Xk - 3") = p(Xk - _3k) _37(2k+2)
Does the WLLN hold for the sequence { Xy} ?

Solution: Here E(Xy)=3" 3(2K+2) gk g(ZK+2) _

E(xﬁ) _ gk g2k-2 gk g2k-2_2
9

2 .
B = Var X =| — | = 2’ ........... ’n
n =2 Var (Xj) (gnJ 1
As B_g:(gij_)o as n— o itfollows that WLLN holds for the sequence { X} .
n n

Example5: Let { Xn} be a sequence of mutually independent variates such that

P{xn :il} =%(1—2_n), P{)(n =i2_n} _on-1

Does the WLLN hold for this sequence ?

Solution: Here E(X,) =

N[~

(1-2") - % (12 )42 Mol _on(p 1)

E(X%) = (1_ 2—n)+_ (1— Z_n)+2_2n . 2—n—1 4 2—2n ,2—n—1

NI~
N

=1-2"+ 2% = var(X,)

Bh =
r

I M=

62= 3 (1-2242%) =n-(1-2")+ 2 (1_g)
1 r=1 7
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anl_'_ 1 _%_li.iqo as n—ow

nZ n 2".p2 pZ 78" p2

It follows that the WLLN holds for the given sequence.

Example 6: Prove that the WLLN is applicable to the arithmetic mean of a sequence of
independent variates X, specified by

Solution: Here E(Xy) =%(Iog K)]/2 - %(Iog k)]/2 =0
Var (Xy) = E(xZ) - [E(xi)]* = E(xE)
:%Iongr%logk:Iog k

.'.Bn=Zcf=Iogl+IogZ+ ------- +logn=1logn!

Using Stirlings approximation to n!,

-n n+l/2
B_Qzlog(e n2 \/ﬂ)ziz{(mr%jlognﬂog\/?n}

n n n
log v2m -
= (1+2_1nj log (n)]/n + w

Now as n — o, TEALIN 1, sothat eachterm — 0.

. Bn
Hence /im — =0, asn —> w.
n— o n2

This proves the apllicability of the weak law of large numbers.

Example 7:  If Xq,oooeeeenen X, arei.i.d. variaties, with p.m.t. P(X; =+1)= }/2 show that central
limit theorem holds for this sequence.
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~ E(Yn)=0 Va(Y,)=n"Var (S,) =1 [+ Var(S,)=n]
¢ (t:x)=E(X)

= leit +le_it =cost
2 2

o(t:Yp) :d)(y\/ﬁ : injz[cbx (t/x/ﬁﬂn [ Xj areiid]

= [oos o0 = [1-( %4, Jrol )|

as N — o

fim ¢ (t:Yy) = fim [1_(t%n)+ O(%)T 2

Which is the characteristic function of N (0, 1). It follows that Y,, — N(0, 1)

as N — o, thus showing that L.L.T. holds for the sequence { X} .
8.5 Exercise:

1. Examine whether the weak law of large numbers holds for the sequence {Xk} of
independent random variables defined as follows:

P[Xk —+ 2"} = 2 (%)

P[Xy=0]=1-27%
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2. If X,, takesthe values 1 and O with corresponding probabilities p,, and 1-p,,, examine
whether the weak law of large numbers can be applied to the sequence { Xn} where

the variables X, ,n=12,---------. are independent.

3. { X } i =1,2,-00ccene is a sequence of independent random variables with expected

n
> Giz tends to zero as n
i=1

tends to infinity, show that the weak law of large numbers holds good to the sequence.

, , 1
value of X; equal to m; and variance of X; is of. If —
n

4.  Examine whether the weak law of large numbers holds good for the sequence X,, of
independent random variables, where

R

5. If Xq+Xo+-eeeen +X,, be r.v.'s with means pq, py,---ovoee ,u, and standard

deviations oy, G, --+wweee .o, andif 6, - 0 as N — «, showthat Xn — p,, convergs
to zero stochastically.

6. Show that if m is the number of successes in n independent trials, the probability of

success at the i trial being p; then ”% converges in probability to

(PLt+pg -t +pny.
n



Lesson - 9

UNIFORM AND BINOMIAL
DISTRIBUTIONS

Objectives:

After studying the lesson the student is expected to have clear comprehension of the theory
and practical utility about the concepts of discrete Uniform Distribution and Biononial Distribution.

Structure of The Lesson:

This lesson consists of 3 sections as detailed below:

9.1 Discrete Uniform Distribution
9.1.1 Moments
9.1.2 Moment Generating Function
9.1.3 Characteristic Function

9.2 Bernoulli's Distribution
9.2.1 Mean and Variance of Bernoulli Distribution
9.2.2 Moment Generating Function
9.2.3 Characteristic Function

9.3 Binomial Distribution
9.3.1 Moments of Binomial Distribution
9.3.2 Moment Generating Function
9.3.3 Cumulant Generating Function
9.3.4 Characteristic Function
9.3.5 Probability Generating Function
9.3.6 Recurrence ralation for the moments of Binomial Distribution
9.3.7 Recurrence relation for the probabilities of Binomial Distribution
9.3.8 Additive Property (or) Reproductive Property
9.3.9 Mode of The Binomial Distribution
9.3.10 Worked Examples

9.4 Exercise

9.5 Answers
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9.1 Discrete Uniform Distribution:

Definition: A random variable X is said to have a discrete uniform distribution over the range
[1, n] if its p.m.f. is given as follows:

1
P(XZX):H CX =2, n (9.1.1)
= 0 otherwise

Here n is known as the parameter of the distribution and it takes the set of all positive integers.
Equation (9.1.1) is also called a discrete rectangular distribution.

9.1.1 Moments:

Mean = E(X) = X x P(x)

1 {n(n+1)(2n+1)}

6

_(n+1)(2n+1)

Variance =V (X) = E(x?) - [E(X)}z

_(n+1(2n+1) (n+1)°
6 4

n2 -1
12
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9.1.2 Moment Generating Function:

The M.G.F. of uniform distribution is given by

My (t) = E(e) = %etx -P(x)

9.1.3 Characteristic Function:

The c.f. of uniform distribution is given by

dy (1) = E(e%)

= ¥ d%P(x)
x=1

gt (1_ e" it)

n(1-¢")

9.2 Bernoull's Distribution:
Definition: A random variable X is said to have a Bernoulli distribution with parameter p if its
p.m.f. is given by

P(X:X):Pqu_X 1 X:O’l’ .........

=0 otherwise where q=1-p

The parameter p always lies btween 0 and 1.

A random experiment whose outcomes are of two types they are success (S) and failure (F)
occurring with probabilities of p and g respectively is called a Bernoulli experiment. In this experiment
r.v. X takes the values 1 and O respectively with occurance of S and F.
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9.2.1 Mean and Variance of Bernoulli Distribution:
Mean = E(X) = ¥ x-P(x)
=0-g+1p=p
E(x2) = ¥x% P(x)
=02-q+12~p
=p
- Vaiance =V (X) = E(x?) - [E(X]
=p-p
=P(1-P)

=Pq
Mean = p and Variance = Pq
9.2.2 Moment Generating Function:

If X is a Bernoulli variate with parameter p then its M.G.F. is given by
My (1) = E(eX)
=ye* P(x)
=@ p(x =0)+ @ p(x =1)
=1.9+ e p

= q+ Pé'
9.2.3 Characteristic Function:

The c.f. of Bernoulli Distribution is given by

dy (1) = E[ X ]

1 .
= ¥ ¥ .p(x)
x=0
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_ g0 p(x=0) + &t. P(X =1)
=1.q +eit'p
=q+ Pe't

9.3 Binomial Distribution:

Introduction:

Binomial distribution was discovered by James Bernoulli in the year 1700 and was first
published in 1713. Let a random experiment be performed repeatedly and let the occurrence of an
event in a trial be called a success (S) andits non-occurrence is called failure (F). Let asetofn
independent Bernoulli trials in which the probability of success (p) in any trial is constant for each
trial and q is the probability of failure in any trial. Let the random variable X be the number of

successes in "n" Bernoulli trails. The possible values of X are 0,1,2,----- - ,n. This probability
model is the most widely used model and it is appropriate in the following experimental situations.

1.  Theresult of each trial can be classified into one of the two mutually exclusive outcomes
say success and failure.

2. Probability of success (p) remais constant for each trail.
3.  The outcomes of all trials are independent of each other.
Then such experimental situation is called Binomial.

If X denotes the exact number of sucess in "n" trials then X takes the values
0,L2,--eeveeve ,n . Ifthey are exactly x successes then the remaining (n—x) are failures. Since,
the probability of success is p and that of a failure is q. The probability of x successes and
consequently (n—x) failuresin nindependent trials in a specified order is given by the compound

probability theorem by the expression p* g"~*. But x successes in n trials can occur in (Q)

ways. Hence the requised probability is (Q) p* qn_x.

The probability distribution of the number of success so obtained is called the Binomial
Probability distribution, the reason is obvious that the probabilities of 0,1,2,------- ,N successes are

the successive terms of the binomial expansion of (q+ p)n .

Definition: A random variable X is said to follow binomial distribution if it assumes only non -
negative integer values and its p.m.f. is given by

Xgqn=> - =012, ,
P(X =x)=P(x) = (Q)pq x=0L "

. (9.3.1)
0 otherwise; g=1-p



@{Centre for Distence Education 9.6 Acharya Nagarjuna Universityﬁ

The two constants n and p are known as the parameters of the distribution. Any random
variable which follows binomial distribution is known as binomial variate.

Note: 1. Ifr.v. X follows binomial distribution with parameters n and p then it is denoted as
X ~B(n,p).

n n
2. Total probability = " p(x)= > (n)pxq”_x =(g+p)" =1
0 X

x=0 X =

9.3.1 Moments of Binomial Distribution:  The first four moments about origin of binomial
distribution are obtained as follows:

ui = E(X) = Zn: x- p(x)
x=0

n
_ ) X N—X
“E e

N M-1) v 1 no
znpz[x_Jpxlqnx
=1

—np :Gj (2:3 (2:3 .........

- Meanof B.D.is np
B = E(x?)
= E[X (X-1) + X]
= E[X(X-D] + /2(X)

= Y XD PO+ Y x P()

x=0 x=0



{1 Uniform and ....

=n(n-Dp? (q+p)" % +np

=n(n-1)p?+np

=E[X(x-D (X -2) +3X (X -1 + X]

= E[X (X -D(X - 2) ]+ 3E[X (X -D] + E(X)

= 3 x(x-D(x-2) () P +3 3 x(x-Dn) e+

Xx=0 Xx=0

=n(n-D(n-2)p° Zn: [n—SJ 3" 4 3n(n-1)p? Z( jpx 2qn .
x=3\X—3 -2

K2
=n(n-1(n-2) p% (q+p)" > +3n(n-Dp?(q+p)" *+np

s =n(n-D(n-2)p% +3n (n-Dp? + np

Similarly x* = x (x —=1D(x - 2)(x —3) + 6x(x ~1)(x - 2) + 7x(x 1) + X

= E(x?)

=E[X(X-D(X-2)(X-3)+6X(X -D(X -2)+7X(X -1 +X]
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= E[X(X =D(X =2)(X =3)] + [X (X =D(X =2)]+ 7TE[X (X = D]+ E(X)

—n(n-D(n-2)(n-3)p* + 6n(n-D(n-2)p>+ Tn(n-Dp®+np

[After simplification]
Central Moments:

The first four central moments are given by

by =0

w2 = wh—(d)
=n(n-1p? +np- n’p?
—n2p? - np? + np — n%p?

=np(1-p)

. variance p, =npq
1 .11 1)3
M3 =u3 —3up ug + 2(“1)
=n(n-D(n-2)p3+3n(n-1p? +np—3{n(n—1)p2 +np} np + 2(np)3

np[3np1 p) +2p -3p+1- 3npq]

np[3np 1-p) +2p -3p+1- 3npq]
= np(2p2 - 3p+1)

= np(2p®~2p+q)

= np(1-p)(1-2p)

= npa(1-2p)

=npq(q+p-2p)
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=npq(q-p)

: g =npq(a-p)
u4=ui—4%ui+&é@ﬁf—3@ﬂ4

=n(n-D(n-2)(n-3)p* + 6n(n-D(n-2)p> + 7n(n-Dp? +np
—4[n(n—1)(n—2)p3+3n(n—1)p2 +n p} np+6 [n(n—l)p2 +n p] (np)* -3(np)*

=npq[1+3(n-2)pq]

2 2
Wi n’p’a’(a-p)* (a-p)

Coefficient of Skewness B1=—% = =
i P npg

; wg npgl+3(n-2)pq] 1+3(n-2)pq

Coefficient of Kurtosis P2 = —5 = =

oefficient of Kurtosis 2 2022 npg
(1-6paq)
= 4+ —
npq
q-p 1-2p

Measure of Skewness v, = \/1371 =
VAPa  /Npq

Measure of Kurtosis v, =B, -3

1-6pq
~ npq

9.3.2 Moment Generating Function:

If X ~B(n, p) thenits p.m.f. is given by

p(x) = ncxpan_x :
The M.G.F. of X is given by

M, (8) = E(eX)
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= Zn: e%p(x)
x=0
n
_ z etX.(n) qun—X
x=0 X
_ Z”: 0 (pet)an—x
x:O(X)

= (a+pet)’

Mx (t) = (q+pet)n

Calculation of Mean and Variance using M.G.F.

The M.G.F. of Binomial distribution is given by

M, (0 =(q-+pet)’
[ d }
Hl—[a MX(t) o

={d(q+p€yqtzo

dt

=np v p+g=1
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Uniform and ....

n-2 n-1
=n p[(n—l)(q+pet) p.et-et+(CI+pet) etl:o
=n p[(n—l) p+l]
=n(n-Dp?+np

. 1 1)2
.. Variance My =1, — (“1)
=n(n-Dp®+np-n?p?
= n?%p? — np? + np—n?p?
=np (1-p)
=npq
Mean of B.D.is np

Variance of B.D.is npq

9.3.3 Cumulant Generating Function:

n
We know that M., (t) = (g -+ pe')

By defination C.G.F. of r.v. X is given by

Ky () = togM, (1)

= /og [(q+ pet)n}

= nlog (g-+pe')

2 3
=N 000 | 0P| {4t g gerrennns
21 3
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t
1 _ _ . . o _
~. Mean ) = k1 = The coefficient of 1 in K, (t)=np

2
t
Variance M, = k2 = The coefficient of 21 in Ky (D)= n(p_pz)

=np(l-p)
=npq
3
K, = The coefficient of 3 in Ky (1) =n [p ~3p%+ 2p3}
=np(1-3p + 2p?)
=np(1-p)(1-2p)
=npq(1-2p)
gy =K =npg (1-2p)=npa(qg-p)
4
K, = The coefficient of —in K, (1) = n [p—7p2+12p3—6p4]
= np[1-7p +12p° - 6p° ]
=np(1-p) (1-6p+6p?)

= npq[l— 6p(1- p)} = HDQ(1_6PCI)
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. _ 2
oy, = K, +3KZ

=npq(1-6pq) + 3n2p2q2

=npq(1-6pg+3npq)

=npq[1+3pq(n-2)]

9.3.4 Characteristic Function:

By definition  d, (t) = E[ X ]

n .
=Y €%p(x)
Xx=0

xzzlo( Q)(peit )X ' qn—x

N
= (q+pe')
-. C.F. of B.D. is given by
NG
d, (t) = (q+ pe't)
9.35 Probability Generating Function:
By definition P.G.F. of r.v. X is given by

p, (5 =ELS*]

=)
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Zn:( )(PSX nx

(q+Ps)"
- P.GIF. of B.D.is P(S) = (q + ps)”
9.3.6 Recurrence Relation for The Moments of Binomial Distribution:

By defination the r'™ moment about mean is given by

w = E[X-EX)]

z x—nP)" P(x)

n

X N—X
X (x=nP)(n) P g q=1-P
Differentiating w.r.t. P we get

du n r(x=nP)" " (=n)P* 1-P)"* + (x —nP)'
—L= n

r

P2 o(X (P (=)@ P)" (D) + (1-p)" *xP* L}

_ Zn: (-nr) (x—nP)r_l(n)PX Q-P" - i (x—nP)r(n)PX 1-P)"*H(n-x)

x=0 x=0

i %( )P 1-P)"* (x-nP)’

n n (1_ P)n—x
_ _ r-1 _ _ r X = 7 _
=nr XZ:“O(X nP) ~ P(x) Xz:“o(x nP) (Q)P ) (n—x)

n

+ Z{ J(x nP)' (n )PX a-p"
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(n-=x)

S e RGO - 3 =) P+ Y X x—nP) P(x)
x=0 x=0 q x=0P

o

=—nr 3 (x=nP) 1P(x) - i (x-n P)r P(x)[ﬂ_i}
=0

X = Xx=0 q

n nP — xP — x
=—nr p_ - > (x=nP)" P(x) {P—q}
x=0 q

drP

{nP—x(p+q):|
Pq

du n ;
fo—g=-nrp - D (x=nP) P(X)
x=0

P-
=-nmrp - i (x—nP)’ P(x){npqx}

x=0

=-nryp_ + XZilo(x—n P)f P(x)-w

=-nr +i Zn: (x=nP)"™*P(x)
- Hr—l Pq

x=0

1
=—ner_l+P—qu+1

1 dur
“ gt T gp T MHe

du
—_— _r . = | / ceeeeteen
=M = Pq[OIP + nrur_l] r=12,

we know that by =1L p, =0

d},tl
If r=1 then n, =Pg d—p+n(1) Ho



@{Centre for Distence Education 9.16 Acharya Nagarjuna University]@

=Pq[0+n]
=nPq

g U =nPq

duz
If r=2then Hy = Pq $+2nu1

d
=Pq {ﬁ(n Pq) + 2n(0)}

=nPq [P(-1)+q@] - q=1-P
=nPq(q-P)

.. ny=nPq (q-P)

du
If r=3, then p, =Pq| —2 +3(n) n
4 dpP 2

- Pq {d—i {nPqg(a-P)}+3n(n PQ)}

d
=nPq ﬁ[P(1— P)(1-2P)]+3n Pq}

d 2
=nPq @(P_P )(1-2P) +3nPq

=nPq[1-6Pq+3nPq]
=nPq[1-6Pqg+3nPq]
=nPq[1-6Pg+3nPq]

=nPq[1+3Pq(n-2)]



@{Probability and Distributions K

9.3.7 Recurrence Relation For The Probabilities of Binomial Distribution:

By definition P.M.F. of Binomial Distribution is p(x) = (n) P .q"™ ; x=012- n
X
X+1_ n—-x-1

We have

P(x) (n) pan_x

[n—ij
“x+1)q

-. The required recurrence formula for the probabilities of Binomial Distribution is

n-x\P
P(x+1)=[—J—P(x) 0 Xx=0,1,2,----- - ,n-1
X+1/q

This formula is very convenient to obtain probabilities of Binomial Distribution for the

given data. The only probability we need to calculate is p(0) which is given by P(0) = qn.

Where q is estimated from the given data by equating the mean y of the distribution
to nP, the mean of B.D.

Thus P = §/n
g=1-P
The remaining probabilities P(1), P(2), -« eeeenee- ,P(n) can be obtained using
recurrence formula on substitution of x =0,1,2,------ ,n—1 respectively.

9.3.8  Additive Property (or) Reproductive Property:
Statement: If X1 and X2 are two independent random variables with parameters (nl, P)
and (nz’ P) respectively then X1 + X2 also follows Binomial Distribution with parameters

(n, +n,,P).
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n
Proof: Giventhat X, ~ B(nl, P) then its M.G.F. is given by M, (1) = (q+Pet) !
1

n
Also X, ~ B(n,, P) then its M.G.F. is given by sz(t) = (q + Pet) 2

If X1 and >(2 are independent then from the properties of M.G.F. we have

|\/|X1+X2 (1) = Mxl(t) : MX2 (1)

n

= (q+ Pet)nl (q+Pet) 2

n,+n

:(q+Pet)1 2

Which is the M.G.F. of a Binomial Variate with parameters (n +n,, P). Hence by

1
unigueness theorem of M.G.F.'s X1+X2 ~ B(nl+ n,, P).
Remark:

If Xl and X2 are two independent random variables with parameters (nl, Pl) and

(nz' Pz) respectively then X, +X, does not follow Binomial Distribution.
n
Since X, ~B(n_,P)and X, ~B(n,, P, )then M.L.F's are M_ (t)=(q +Pet) 1
1 ( 1 1) 2 ( 2 2) X, ( 11

B t\"2
and sz(t)—(q2+P2e) .
Using the property of M.G.F. we have

My ix, ()= Mxl(t) My, (t)

n,

- (ql * Plet)nl ' (q2 * Pzet)

n
Which cannot be expressed in the form (q+ Pet)
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Hence X1 + X2 is not a Binomial Variate.

Hence in general the sum of two independent binomial variates is not a binomial
variate.

9.3.9 Mode of The Binomial Distribution:

n\P gq"*
We have P(X) - (X) X—1 _Nn—-x+1
P(x -1) ( n )P q
x-1
n! (x=D'(n=x+21! P
“x(n—x)! n! q
(n-x+1 P
SR a

xq+(n-x+1)P-xq
- q

(n+DP-x(P+q)
Xq

=1+

(n=1) P-x

B P
X (9.3.9.1)

Mode is the value of x for which p(x) is maximum.

Case (i): If (n+1)P is not an integer.

Let (n+DP=m+f, where m is an integral part and f is fraction part of (n+1)P
where 0<f <1.

Substituting in (9.3.9.1) we get

P(x) (m+f)-x
=1+
P(x -1) Xq

CX =12, e ,n (9.3.9.2)

from (9.3.9.2) it is obvious that
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P(x) P(x)
P(X_l)>1forx:],2, -------- ,m and P(x—1)<1f0rxzn+ln+2’ ....... n
PO P(2) P(m) P(m+1)  P(m+2) P(n)

RO P " Rm TRmeD T PD
=P <PD<P(2)< - - - <P(m-D<P(m)>P(m+1)>P(m+2)> - - - >P(n)
— P(x) is maximum at X =m.
.. Mode=m=integral part of (n+1DP
Case (ii): If (n+1) P is aninteger
Let (Nn+DP=m

Substituting in (9.3.9.1) we get

P(x)

m>1for x=12 ---(m-1

P(x)

— — _=1forx=m
P(x—1

P(x)
— <1forx=m+lm+2, ---,n
P(x -1
Now proceeding as in case (i), we have
P(0)<P<P(2)< - <P(m-1)=P(m)>P(m+1)> -..>P(n)
Thus maximum probability is at P(m-1) & P(m)

Therefore m and m -1 are two modes.
9.3.10 Worked Examples:

Example 1: The mean and variance of Binomial Variate X with parameters n and P are 16 and 8.
Find (i) P(x=0), (i) P(x=1), (i) P(X>2)

Solution: If X ~B(n, P) thenits mean = nP and Variance = nPq

Giventhat nP=16



Uniform and .... ]@

@{Probability and Distributions K

nPq=38

nPg 8

“nP 16

Also nP=16
16
2

:nz(—y)=32

-. The parameters of B.D. are n=32, P= 2

X1 32-X
It P.M.F. is given by P(X =x) =32 C, [EJ [EJ S X =01 32

1 0 1 32-0 1 32 1
0 Poco-26 3 (5] (3] =

1\ 13321 N2 3
(i) P(X=1)=32C, (E} (EJ :32(EJ =?

(i) P(X>2)=1-P(X <2)

=1-[P(X=0) + P(X =1)]
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ety

33
232

=1

Example 2: Ina certain town 50% of the population is literates and assume that 100 investigators
take a sample of 10 individuals each to see would you expect to report that three
people or less are literates in the sample ?

50
Solution: The probability of literates = p = 50% = 10~

N

1
..q_E

Giventhat n=10, N =100.

Let X denotes no of literates
. Probability that three people or less are literates out of 10 samples = P(X < 3)

=P(X=0)+P(X=1 +P(X=2)+P(X =3)

0 10-0 1 2 10-2 3 10-3
101 1 10-1 1)%(1 1N\371
_10~ || 2 10~|° 0~ 5] 0~ -]
- Co(zj (2) " Cl(zJ (%) " Cz(zj (ZJ i C3(2) (Zj
1

0

[1+10 C + 1002 + 10C3]

1
=—O[1+1O+45+120]

v

176
1024

~. No. of investigators expect to report that there or less people are literates

=100 P(X < 3)
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176

=100 x
1024

=17-8
. 17 are the investigators.

Example 3: In 256 sets of twelve tosses of a fair coin in how many cases may one expect eight
heads and four tails.

1
Solution: P = Probability of getting head =§

1
. Q= >
giventhat n =12, N = 256.

Let X denotes no of heads.

LPx)="C P q" ;x=012 - -,n

The probability of getting eight heads = P(X =8)

8 12-8
-2e,(3) (3
8l2) \2

495
212

495
4096

Out of 256 sets, the no of cases of getting 8 heads

495
4096

= 256 x

=31

-. Expected no. of case is 31.
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Example 4. A perfect cubic die is throw a large number of times in sets of 8. The occurence of
a 5 or 6 is called a success. In what proportion of the sets would you expect 3

successes?
. . . . ) 2 1
Solution: The probability of getting a 5 or 6 with a die = p = 5 = 3
! 1 2
R
giventhat n=8
1
If X denotes no. of success then X ~ B| 8, 3
1 X 2 8-3
8
LPx)="C, | = — :x=012, ---,8
w-te,[5] (5] 1 x-on

The probability of 3 successes in one set of 8= P(X =3)

S

1 32
=56x —x ——
27 243
1792
6561
=0.-2731
-, The proportion of the sets giving 3 successes =100x 0-2731
=27-31
~ 27

Example5: Obtain the M.G.F. of Binomial distribution with n=7 and P=0-6. Find the first
three central moments.
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Solution:

Example 6:

Solution:

If X ~B(n, P) then its M.G.F. is given by M (t) :(q+Pet)n
giventhat n=7,P=0-6,q=1-P=0-4

. M.GF. of given B.D. is Mx(t)=(0-4+0-66t)7

Mean =nP=7(0-6)=4-2

Variance = p, =nPq=7(0-6) (0-4) =1-68

ManPQ(q_P)

=7(0-6)(0-4) (0-4-0-6)

Uniform and .... ]@

With the usual notation, find P for a Binomial r.v. X if n = 6 and if 9P(X=4) = P(X=2).

Giventhat n=6

and 9P(X =4)=P(X =2)

= 9x6C,Pq® 4

- 9x15P* g% =15P? ¢*

=q=3P
=1-P=3P

— 4P=1

~ 2

o

=6C, P*q
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-, parameters of B.D. are n=6 and P = 2

Example7:  If X is a r.v. following B.D. with mean 2.4 and variance 1.44. Find P(X >5) and

(1< X <4).

Solution: Giventhat nP< 2-4

nPq=144

nPgq 144 3
97 0P T24 5

ol w
al N

S P=1-q=1-

2.4 2.4

N=—=—=6

" (%)

The parameters of B.D. are n=6, P= % :

2 X 6-X
Its P.M.F. is given by P(x) =6C, (EJ (EJ ;x=0,1,

Now P(X >5) = P(X =5) + P(X = 6)

-ocs[) (3] voes)
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2°[18+2] 128

6 3125

P(l<X<4)=P(X=2)+P(X =3)+P(X=4)

32 e el

1
= [ 15x4x 3t + 20x 2P« 3 +15x 2% x 3]
5

Example 8: For a binomial distribution, mean = 20, S.D. = 4. Calculate mode value.

Solution: Giventhat mean nP=20

SD./nPq =4

= nPq=4%=16

nPq 16 4

nP 20 5

P=1-q=1-0-8=0-2

20 20
snN=—=—=100

P 0-2

.. Mode = Integral of (n+1) P=(100+1) 0-2=20-2

. Mode =20
9.4 Exercise:
1. Obtain the moment generating function of B.D. and hence find its mean and variance.

1
: 1 1 H
2. Show that relation between moments about origin is M,,; =P {n K +4 r}

dP
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3.

© N o 0 B

10.

11.

12.

13.

14.
15.

Obtain the probability generating function of a Binomial Distribution. Hence or otherwise
obtain the mean and variance of the distribution.

State and Prove the reproductive property of B.D.

Define Binomial Distribution and derive its mean and variance.

Obtain the characteristic function of B.D. hence or otherwise find its mean and variance.
Derive the mode of the Binomial Distribution.

Derive the cumulant generating function of B.D. and hence find the first four central
moments.

Determine the Binomial Distribution for which the mean is 4 and variance 3 and find its
mode.

1
In a shooting competition, the probability of a man hitting a target is = If he shoots 5

times, what is the probability of hitting the target at least twice.

In a Binomial Distribution consisting of 5 independent trials, probabilities of 1 and 2
successes are 0.4096 and 0.2048 respectively. Find the parameter P of the distribution.

Ten coins are thrown simultaneously. Find the probability of getting at least seven
heads.

A and B play a game in which their chances of winning are in the ratio 3 : 2. Find A's
chance of winning at least three games out of the five games played.

Define discrete uniform distribution and hence find its mean and variance.

Define Bernoulli Distribution. Find its M.G.F. and hence find its mean and variance.

9.5 Answers:

10.

11.

12.

13.

1
n =16, P:Z’ Mode=4

P(X >2)=0-2634



Lesson - 10

POISSON DISTRIBUTION

Objective:

After studying this lesson the student is expected to have clear comprehencsion of thetheory
and practical utility about the concepts of poisson distribution and its properties.

Structure of The Lesson:
This lesson consists of sections as detailed below:
10.1 Introduction
10.2 Defination

10.3 Uses or Live examples of Poisson Distribution

104 Poisson distribution is a limiting case of Binomial Distribution
10.5 Moments of Poisson Distribution

10.6 Recurrence Relation for Moments of The Poisson Distribution
10.7 Moment Generating Function of Poisson Distribution

10.8 Characteristic Function of The Poisson Distribution

10.9 Cumulants of The Poisson Distribution

10.10 Probability Generating Function of Poisson Distribution
10.11 Additive or Reproductive Property of Poisson Distribution
10.12 Mode of The Poisson Distribution

10.13 Recurence Relation for The Probabilities of P.D.

10.14 Worked Examples

10.15 Exercise

10.16 Answers

10.1 Introduction:

Poisson Distribution was discovered by the French mathematician and Physicist Simeon
Denis Poisson in 1837. Some times we come across a rare event which occurs once in number
of trials. For example, consider the event of a recieving telephone calls at a particular telephone
exchange in some specified time. If we consider a trial as a number of calls on particular time and
the outcome of the trial as to recieve a call or not to recieve a call, then clearly, "n" represents the
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number of calls during a particular time period is very large and it is difficult to find it exactly. Also,
the probability "p" of recieving a call is very small. However, the mean number of calls in the time

period is np = (say) is finite constant. In these situations if X denotes umber of calls then the
—A 4 X
probability function of randim variable in the given time period can be given by p(X=x) =€ XK,

Where e is a constant with approximate value 2.7183. Thisdistribution of X is called Poisson
Distribution and the variable X is called a poisson variate.

10.2 Defination:

A random variable X is said to follow a Poisson Distribution if it assumes only non - negative
integer values and its probability mass function (p.m.f.) is given by

e X
| . Xx=0L12,-------
p(X=x)={ X
A>0
0 ; otherwise

Here ), is called as the paramter of the distribution.

Remarks: 1. If X is a Poisson Variate with parameter ), then it is denoted as X ~ p(k)
0 o énkx
2. Thetotal probability = D (x) = ) —
x=0 x=0
o X
e
=1

3. Distribution function of Poisson Distribution is given by
X
F(x) = p(X Z p(r)

e S

ﬁ: .
r=0 r!
X e_7“. }Lr

= z T ; X=0212-cco0---
r=0 )
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10.3 Uses or Live Examples of Poisson Distribution:

The poisson distribution may be useful in the following some instances.
Number of sucides reported in a particular city.
Number of deaths from a disease such as heart attack or due to snake bite.
Number of faulty blads in as acket of large number of blades.
Number of air accidents in some unit of time.

Number of printing mistakes at each page of the book.

© a bk~ w NP

Number of telephone calls received at a particular telephone exchage in some unit of
time.

7. The number of defective material in a packing manufactured by a company.
10.4 Poisson Distribution is a Limiting Case of Binomial Distribution:

The poisson distribution is a limiting case of Binomial Distribution under the following
conditions.

(i) The number of trials "n" is large, i.e. N — o

(i) The constant probability of success "p" for each trial is very small, i.e. p—0

(i) np isfinite, say A=np

A q 1 A
By definition the p.m.f. of Binomial Distribution is
p(x) = (2) px qn_x X=0212--- n

_n(n-D(n-2)------ [n—x+1] (xjx (1 xj”_x

X!

N n—x
A n(n=D(n=2)-ceennnen [n—(x-1)] [1_nj
x!
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fim p(x) = % Jim {[1_EJ[1_E] ......... {1_ (X‘l)}} i (1_73”

n 2\
/im (1—J
n— oo n

¥ et
Tx! 1
e—k 7\,X ' 2 n N
= , X :O,]_’Z’ ........ mm 1__ —e
X n— o n

Hence poisson distribution is a limiting case of B.D.
10.5 Moments of Poisson Distribution:
The p.m.f. of Poisson Distribution with parameter ), is given by
et X
x! '

p(x) =

Moments about origin:

o]

Lup=ECO =3 x-p(x)
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-. Mean of The Poisson distribution is A .
p% = E(XZ)

=E[X(X -D(X -2)+3X(X -D+X]

0 —A 21X o -\ X
= > x(x-D(x-2) +3)) x(x—l)e +A
x=0 x! x=0 x!
. x-3 o 7\x—2
—gt .3 > x(x-D(x-2)- +3e7 22 > x(x-D—————+
x=3 x(x =D (x-2)(x -3)! N x(x =D (x-2)!
o X-3 X=2
_ M3 2.2 N
© XZS (x—3)!+ © Z(x—2)! ’

3 +3% 4+

T SR Y

= E[X(X -D(X -2)(X =3) +B6X (X -D(X =2) + 7X (X -1 + X]

Wy =2t e e et

Central Moments:

o = ()]
22422
—2

. Variance of P.D. is A
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Thus Poisson Distribution is a discrete distribution in which mean and variance are equal.

3
1 11 1
g = 13 — 3u5u + 2(u3)

=23+an2a-3(2-n )+ 3

=A

o =i - aud ud + oud () - 3(ud)’

At 6034702 - 40343240+ 6 (12 40) 22 -

—3%+

Coefficient of skewness B, = H

Coefficinet of kurtosis B, =

Measure of skewness V; = /By =

Measure of kurtosis V, =, —3

=3+—-3

1
A

-

Note: As A — o, B; = 0 and B, — 3. Hence for large ) poisson distribution tends to normal

distribution.
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10.6 Recurrence Relation for Moments of The Poisson Distribution:

The p.m.f. of Poisson Distribution with parameter ) is given by

e aX

p(x) =
X!

EX)=T

By definition = E[X — E(X)]"

i (x-1)" p(x)
x=0

o r e—kxx
Defferentiate w.r.t. 3., we get
d & o (x-0)" o B B
RaiE o S &y (> Fe-D+ex2* 7
A x=0 x=0 X!
e S

=—r i (x—1)t

[e'e} _}\‘ r
N Z (x=2) (Xe—xkx—l_kxe—x)
-0 X! X =0

X!

_ —ré:o(x 1) 00+ Y (x A o (i ) J

x=0 X!

(x=2)

=-r i (x=2)""p0x) + i (x=2)" p(x)-
x=0 x=0

—r i (x—x)r_lp(x)+1 i (x =) p(x)

x=0 Ax=0

1
=— Tl +; Hri1
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du, 1
So——=—Tn,_4+t—H
di r-1 N r+1
= Ep —%—H’u
N r+1 dr r-1

| Gy
T Y Tk

du
Hence the recurrence relation for the momentsis p, 4 =2 [d—r + rur_l}
A

. dpl
Putting r =1, we get p, =2 d—+uo
A

Il
o

=1 [0+1] vy

du,
Forr=2, weget puz=»2 W+Zul

=>{i(x)+o}
da

= [1+0]

=A

dug
forr=3,weget p,=~2 KJFP’“Z

=2 {i(x)ﬁum}
da

=1 [1+30]

—h+ 32
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10.7 Moment Generating Function of Poisson Distribution:

If X follows P.D. with parameter ), then its p.m.f. is given by

—A A X
e

p(x) = ;X =0,12,000n
X!

The M.G.F. of X is given by

My (8) = Ele™ ]

= i e*p(x)

x=0

(e'-)

. A
Hence M.G.F. of P.D.is My (t)=¢

Mean and variance using M.G.F.

1 d
= |— M, (1)
H {dt X }t:O
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L d°M (1)
Wy = |5
dt® |, _,

_ {i el ‘ek(et—l)}

dt t-0

=k[7» e”.e¢ +e0-e0}
=L [A+]]
2%

ay =27

, 1 1\2
.. Variance Ko =l —(ul)
=22 422
=
10.8 Characteristic Function of The Poisson Distribution:

By definition d, (1) = ele¥]

= i eitxp(x)
x=0



it
- ¢.f.of PD.is dy (t) = e”(e -1)

Mean and Variance using c.f.

od
Hi:(—i){ X(t)}
ot (=0

N@E

Poisson Distribution ]@
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= ()% x[eit 2iele’ el -eo}

= ()2

Ani+i]

= (=) iA[ni+i]

=(-i)’

i20 (L+1)

=i*n (L +1)

22

s =224

variance p, = le - (“1)2

2222

=A

10.9 Cumulants of The Poisson Distribution:

By definition K (t) = ‘og M, (t)

= (og [ex (o~ 1)]
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The r™ cumulant k, = The Coefficient of — in K (t) =2

r!
Hence all the cumulants of P.D. are equal to 1
1

Variance p, =k, =1

2
5+ 32
; _ug_xz_l
P
TEOE A
A+ 32 1
B _Ha AT =3+—
27 27 2 N
o I8

10.10 Probability Generating Function of Poisson Distribution:

By definition P.G.F. of P.D. is given by

(s = E(s¥)
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10.11 Additive or Reproductive Property of Poisson Distribution:

Statement: Prove that sum of independent poisson variates is also a Poisson variate.

Proof: Let X, X5, eeee ,X,, are independent poisson variates with parameters
My Agyreeneess A, respectively.
i.e. X ~P(x|) S =12, n
' T A (¢-a) : -
then its M.G.F. is givenby M, (t)=e . =22, n
1

. The M.G.F. of sum of poisson variates are given by

w Xi's areind...
_let) ol ) gl
_ e(klmﬁ ............... ) (et -1)
Which is the M.G.F. of a Poisson Variate with parameters A, +t, +:------- A,

n
Hence by unigueness theorem of M.G.F.'s z X; is also a Poisson Variate with

x=1

n
parameter » A, .
i=1
Hence sum of the independent Poisson Variates is also a Poisson Variate.

Note: The difference of two independent Poisson Variates is not a Poisson Variate.

10.12 Mode of The Poisson Distribution:
If X ~p (i) thenits p.m.f. is given by

—A 4 X
e

p(x) = C X =012, e
X!
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e X
op) X! e (x-1)!
Consider i R —]
p(x-1) e" 2 x(x -1 ey
(x —1)!
p(x) %
p(x-1) x

Case (i): If ) is not aninteger, then A = m+t where mis an integral part and t (0<t<1) isa
fractional part of the ), .

p(x)  m+t
p(X—l): X : Xx=0L12----- ,m m+1---.
. @> @> .......... p(m) > 1 p(m+1)<ll ........
It is clear that 0(0) 0(D) ’p(m—l) p(m)
sop(0) <p@<p(2) <ovnennnnn <p(m-1 <p(m)>pm+D >p(mM+2)>----..

Which shows that p(m) is the maximum value.
. m is the mode and which is an integral part of }, .

Case (ii): If », isaninteger say A =m then

p(x) m
p(x-]_):; X=012--- M, M4
p(D) p(2) p(m-1) p(m) p(m+1)
[ > —_ > ............ , > e < ......
p(0) p(1) p(m-2) p(m-1) p(m)
=p0)<p@D<p(2) <-oovvvvvne <p(m-2 =p(m) > p(m+1) > ------.

In this case we have two maximum values they are p(m-1) and p(m).

-. Mode values are m and m —1 when } is integer.
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10.13 Recurrence Relation For The Probabilities of P.D.:
If X ~p(L) thenits p.m.f.is given by

e—k X
p(x) = | X =012 eeee
X!
( ) e—?» KX+1
= X+1)= — 012 eeon..
P (x+1)! ’ x=012
. p(x+1)_e_x W+t X!

= X

p(x) (x+1)! g X

= plx+1 = (LJ p(x)

X+1

Hence recurrence relation between probability of P.D. is

p(x+1) = (L] p(x)

X+1

This formula is very convenient to calculate the probability of P.D. The value of R, given

by p(0) = e"‘. Where 2 is the mean of the given frequency distribution. The other probabilities
can be obtained by using above recurrence relation.

10.14 Worked Examples:

Example 1: If the probabilities of a Poisson Variate taking the values 3 and 4 are equal, calculate
the probabilities of the variable taking the values 0 and 2.

Solution: If X ~p(X) theits p.m.f. is given by
ek
p(X =x) = ' X =012, e
x!

Giventhat P(x=3)=p(x=4)
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e -4 -
. p(X =0) = —e*-0.0183

45
p(x=2)="° —e*x8=0146

Example 2:  The probability of getting no misprint in a page of a book is e

probability that a page of a book contains more than 2 misprints.

4
Solution: Giventhat P(x=0)=e

)
—>e =e
=>A=4
~p(X>2) = 1-p(X<2)

=1-{p(X=0)+p(X =1 +p(X =2)]

[e_d'-4O e txat e_4x42]
- + +
0! 1! 2!

=1-e x13
=1-13x0-0183

=0-762

Determine the
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Example 3:

Solution:

Example 4:

Solution:

Atelephone switch board receives 20 calls on an average during an hour. Find the
probability that during a period of 5 minutes (i) no calls is received, (ii) exactly 3
calls are received, (iii) more than 5 calls are received.

We assume that the number of incoming cells during any time period follows Poisson
Process. 20 calls per hour is equivalent to 0.33 calls perminute, which is the mean
rate of occurrance. Hence number of cells in 5 minute period follows a Poisson

Dostribution with parameter A =1-65

wAt=0-33x5=1.65

(i)  p(nocallsinab5 minute period) —e " _0.192

) | | e e’
(i) p (3callsinab minute period) =—=0-144
3!
. . _ » &% (1.65)
(i) p (morethan 5 calls in a 5 minute period) = Z —F—F—FF = 0-007
X=6 x!

Assuming that one in 80 births is a case of twins, calculate the probability of 2 or
more births of twins on a day when 30 births occur using (i) Binomial Distribution,
(i) Poisson Approximation.

(i)  Assuming X to be a Binomial Variate.

1
p = probability of twin births = — = 0-0125
80

q=1-p
=0-9875
given n=30

- p(X =x)=30C, (0-0125)* (0-9875)*° %

.. Probability of 2 or more births of twins on a day is
p(X=2)=1-p(X < 2)

=1-[p(X =0)+p(X =1)]
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4
=>A=—
3
A .0
e A _ -4
p(X =0) = et -g/3
0!
3
L o,3 _4/3@
Y e 64
3! 6 27 x 6
32 —%

10.15 Exercise:
1. Derive Poisson distribution as a limiting form of a Binomial Distribution.
2.  State and prove reproductive property of Poisson Distribution.

3. Derive the recurrence relation between the moments of Poisson Distribution and hence
obtain the Skewness and Kurtosis.

4. If Xis a Poisson variate with parameter ), andr is a non - negative integer then prove
that

1 1 du
TR k[pr +—rj where u% —e(x")

Show that all the Cumulants are equal to the parameter 3, .
Derive M.G.F. of Poisson Distribution and hence find its mean and variance.

Derive P.G.F. of Poisson Distribution and hence find its mean and variance.

© N o o

Find the cumulant generating function of Poisson Distribution. Using cumulants find
the first form Central Moments.
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0.

10.
11.

12.

13.

14.

15.

Derive the characteristic function fo poisson distribution and find the mean and variance
from it.

Derive mode of Poisson Distribution.

Assuming that the probability that a bomb dropped from an aeroplane will hit a largest

1
is —. If 6 bombs are dropped, find the probability that
5

() Exactly two will hit the target.
(i)  Atleast two will hit the target.

If X and Y are independent Poisson Variates having means 1 and 3 respectively, find
the mean and variance of 3X +Y .

Show that for a Poisson Distribution [3]1/2 ([32 —3)Hi0 =1.

In a book of 520 pages, 390 typo - graphical errors occur. Assuming Poisson law for
the number of errors per page, find the probability that a random sample of 5 pages
will contain no error.

If x is a Poisson variate such that
p(X =2)=9p(X =4)+90p(X =6)

Find X value, mean, variance and coefficient of skewness.

10.16 Answers:

11.
12.

14.

15.

() 0-24576 (i) 0-34464
6, 12.

[p(x 0] ="

A=1 mean =1 variance=1, p =1



Lesson-11

NEGATIVE BINOMIAL DISTRIBUTION

Objective:

After studying the material of this lesson, the student supposed to have a clear concept
about the negative binomial distribution, its dualities with the ordinary binomial distribution, the
situations where if works well.

Structure of The Lesson:
11.1  Introduction
11.2  Definition
11.3 Moments of Negative Binomial Distribution
11.4 Moment Generating Function of Negative Binomial Distribution
11.5 Characteristic Function of Negative Binomial Distribution
11.6  Probability Generating Function
11.7 Poisson Distribution as a Limiting Case of The Negative Binomial Distribution
11.8 Recurrence Relation Between Central Moments of NBD
11.9 Recurrence Relation For The Probabilities of NBD
11.10 Workedout Examples
11.11 Exercise
11.12 Answers

11.1 Introduction:

The important characteristic of the Binomial Distribution is mean value is always greater
than the variance. The Negative Binomial Distribution obtained by the same process that gives
rise to Binomial Distribution, but its mean is always less than the variance. In Binomial Distribution,
no of successes "X" varies from 0 to n where n is number of trials and is fixed, where as in Negative
Binomial Distribution X is fixed and n is allowed to vary. Some of such sitvations are (i) Death of
insects, (i) Number of insects bites, (iii) Bacterial clustering etc are leads to the Negative
Binomial Distribution.

The random experiment with the following properties lead to Negative Binomial Distribution.

1. The result of each trial can be classified into one of the two mutvally exclusive out
comes say success and failure.

2. Probability of success "p" remains constant for each trial.
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3. The outcomes of all trials are independent of each other.

4. The series of thetrials is performed until a fixed number of success in achieved.
1.2 Defination:

A random variable X is said to follow a negative Binomial Distribution with parameters r and
p if its p.m.f. is given by

X+r-1) X | x =012
PG = ro1 )P XTRRS

0 otherwise

Simplified form of Negative Binomial Distribution

- )

_(x+r—1)(x+r—2) --------- (r+Dr
- X!
~ (DX (=r)(=r=1) -+ (-r=x+2) (-r—x+1)
- x!
) (_rj
X
P(x) = [_er p () ' X =012, e

r —-r
which is the (x +1)th term in the expansion of P (1— Q) , a binomial expansion with negative
index. Hence the distribution is known as negative binomial distribution.

The relation which establishes a similarity to Binomial Distribution:

1 Y
If P=— and d=— sothat Q-P=1 Sp+g=1
Q Q P

-, The p.m.f. of NBN becomes

" ar -pY* _ ~
p(X)_(XJQ (QJ : X=012- -
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This is the general term in the Negative Binomial expansion (Q- P)_r

That is the relation with B.D. is P=-P

n=-r

11.3 Moments of Negative Binomial Distribution:

0

w=EX) = ¥ xpx)

1l
M
x
/%\
X

(X+r=1D (X+r—=2)----
X

EEEEEEEEEEG

x=1 X(X—l)!

[

_ rprq (l_q)f(r+l)
r r

_rpa _rpq

(1 q)r+1 pr+1
p

= E[X(X -1 +X]

= E[X(X -D] + E(X)

Negative Binomial ...

(11.3.1)
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Now E[X (X -1 ]= i x(x -1 p(x)
x=0

Il
]

x(x—l)(XH_l] p g
X=2 X

D (x4t T-D(X41-2) (14 2)g< 2
=2 (x-2)!

o' r(r+D g
X

o [ X+T=1) x-
r(r+Dp" g Z[ qu ?

N X—2

r(r+0p q° (1- q)_(HZ)

r(r+1p' g

(1_ q)r+2

r(r+D p' q2 ~ r(r+Dp" q2 _r(r+1) q2

- r+2 o p? o2 (11.3.2)
substituting (11.3.2) in (11.3.1) we get
qz
My = r(r+D—= + r% E(X):r%

p

, 1 1\2
- Hp=Hp =Ky

o rq rq’
=r(r+)—% + — - —
2 2
P> P p
2 2 2 2.2
r'q” rq” rq rqg
e R
p p> P p
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2 Lg+p=1

. _ y
. variance p, = 2
p

Note: Mean < variance, which is a special feature of the NBD.

11.4 Moment Generating Function of Negative Binomial Distribution:

The p.m.f. of Negative Binomial Distribution is given by

X+r-1) ¢ «x
p(x)=( y Jpq ; X =012,

The M.G.F. of NBD is given by

My () = E[eX]
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-r

AMy (D =p' (1—qet)

Mean and variance using M.G.F.

= {% [pr re (1- qet)_r_l}}

Acharya Nagarjuna University]@

i [x+r—1j ¢ = (1-q)"

x=0 X
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=rqp (1_q)_(r+1) + { (r+1q (1—Q)_(r+2)}}

1 (r+1)q]

=rap |1t 2
p p

2

rq q
—t f(r+1)—2
P p

: 1 2
Vaiance p, = “2‘(“1)

2
p
11.5 Characteristic Function of Ngative Binomial Distribution:

If X follows Negative Binomial Distribution with parameters p and r then its p.m.f. is given by

X+r-1) r «x
p(x) = § P q ; X =012
The c.f. of Xis given by

dx (t) = E[eitx ]

_ z eitx p(x)
x=0

X

_ 3 ot [X+r—1J o o
x=0
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=p’ (1—q eit)_r

r

kb
(1-qe)

11.6 Probability Generating Function:

Sy (1) =

If X follows NBD with parameter r and p then its p.m.f. is given by

X+r-1) v «
p(x)=( ) ]p q ; = 0L 2.

The P.G.F. of X is given by

p(s) = E(s)

I
M
U)x
p=3
z

Il
DMs
VR
X
x I
|
N
—
O
L
X

L P(s)=p (1-q9)"

Mean and variance using P.G.F.

d
{— p(s)}
ds o1

1
mean = p; =E(X)

Il
1
& |
-c—:
—~
i
o]
N2
=
| |
(7]
Il
[iny
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r
. Man uiz—q

1 _Tn 1
We know that p, —[p (s)+p (S)}s:l

pll(s) = di [pl(s)]

S

d

- r'a a9 ]

=p'rq| ~(r+0) (1-as) 2 (-q)],_,
-p'rq [— (r+1 (1- Q)_(HZ) (—Q)]

~ p (r+1)q2 ~ prr(r+1)q2

(1_q)r+2 pr+2
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o
=r(r+1)—2
p
q g
uéz r(r+l)—+—
p p
. 1 2
- Variance p, = “2‘(#&)
2 2 2
q rq rgq
=rr+) 5 +——-—
p p p
22 2 22
rq rq rq rgq
T2 T2t T T2
p P p

Hence mean = r% and variance = yz
p

ol

L gq+p=1

11.7 Poisson Distribution As A Limiting Case of The Neagative

Binomial Distribution:

Negative Binomial Distribution tends to Poisson Distribution under the following conditions.

1. P->O0

2. r—>ow

3. rP=Ax, finite
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The p.m.f. of NBD is given by

P(x) = (X +Xr _1J p' g
[x+r—1j _r [PJX
= Q —
X Q

(X+r=1) (X+r=—2)" (r+1) (1+p)_r[p]
1+

: P{;H {“(X;ﬂ ............ [“J e [EJ
: Hlﬂ HZH ............. 1] - p>(1—1pj

Now proceeding to the limits, we get

R e | o R RGO
im P(x)=— fim 3|1+ —— || [T+ —— || 1+—|p A" - fim | 1+— m | 1+—
r— oo Xl r—oo r r r r— o r r— o r

1 4 -
- et

x!

x!

Which is the p.m.f. of the Poisson Distribution with parameter 3, .
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11.8 Recurrence Relation Betwen Central Moments of NBD:

Theorem: Show that the recurrence relation between central moments of NBD is

kr du
=gl = u_1—-——
Hk1=4 pz k-1 dp

Proof: By definition, p.m.f. of NBD is given by

P(x) = (X +Xr_1j p g

Differentiating w.r.t. p we get

k k-1
d o (Xx+r-1 r _ _ r
—k Z( X ][[X—EJ {pr xq H@+q*rp' 1}+prqx k[x——qJ Lz]

dp x-o
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duy 1 rk
SO S R i) S |
dp p
1 rk duy
= M1 T g M1 T
q p dp
rk dpy
== Z kT
M1 =0 pz k-1 dp

In particular if k = 1 then

n d
by =0 —Z5Ho~ M
p

dp
=q|— =1 u =0
P Ho L]
:ry
p
If k=2 we get
{Zr d }
Hy =0 3 M7~ Hp
3 pz dp

{26

_2rg 2qp

3 3
p P

rq
=— (1+1-p)
p
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rq
M3 =—3 (1+q)
p

Similarly if k =3, then p, =%[p2+3q(r+2ﬂ
p
11.9 Recurrence Relation For The Probabilities of NBD:

; X:O’:LZ’ ........

By definition p(x)z(xﬂl—lj =
r_

X+r) r x+1
:>p(X+l)=(r_ljp q

X+Tr pr qx+1
pP(x+1)  \r-1

P(X) (X+r—1] pr qx

r-1

_ et -pixt q:(x+rJ
(r=D'(x +D! (x +r—1)!

X+1
X+r
P(x+1 = | —— |9 P(x)
X+1
Hence recurrence relation between probabilities of Negative Binomial Distribution is
X+r
P(x+1)=|——d p(x)
X+1

11.10 Workedout Examples:

Example1:  Whatis the probability that we need 5 trials to get the two successes, if the probability
1

of success is —.
4

1
Solution: Given that |O=Z
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27

256

=0-1054

Example 2: If a boy is throwing stones at a target, what is the probability that his 10th throw is
his 5th hit, if the probability of hitting the target at any trial is 0.5 ?
Solution: Given that p=0-5
q=0-5

r=5 X+r=10

. p(x=5)= {SgilJ (0-5)° (0-5)°

(9 10
—@ (0-5)

=126 % (0.-5)1°
=0-12305

Example 3: If the probability is 0.40 that a child exposed to a certain contagious diseas will
catch it, what is the probability that the tenth child exposed to the disease will be
third to catch it.
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Solution: Given that p=0-4

q=0-6

r=3

~ p(r=3)= {7;f;1J (0-4)° (0-6)"

_(® 3 7
_[2j (0-4)” (0-6)

=0-0645

Acharya Nagarjuna Universityﬁ

X+r=10

1
Example 4: If the probability of getting a head is —, find the probability that a fourth toss is the
2

getting of head first time.

1
Solution: Given that p:E

r=1 X+r=4

16
—~0-0625

Example 5: If the probability is 0.75 that a person will believe a rumour about the corruption of

certain politicians, find the probabilities that

(i) The eighth person to hear the rumour will be the fifth to believe it.

(i) The fifteenth person to hear the rumour will be the tenth to believe it.
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Solution: () Giventhat p=0-75
g=0-25

r=5

- p(r-5) = {Sgilj (0-75)° (0-25)°

=[7] (0-75)° (0-25)°
4

=0-1298
@ ~ p(r=10) = ﬁf} (075" (0-25)°

=0-1101

Example 6:  Obtain the characteristic function of the Negative Binomial Distribution given in the

A X
A 1 -a
form p(x) =( ] E— [—j ;o x=0212,-------- and hence evaluate its first
X a+l 1+a
two moments.
Solution: The c.f. of X is given by

dx (t) = E[eitX]

-5 (AT

-\

z[(l+oc)—0teit]
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: A+1 .
:1+xa(e't_1)+x( )xz (elt_1)+ .........
2
it (it)? M+D 2| it (it)? ’
=l4+A<|1l4—+ L 4ottt 1l+—0 |1+ — L — RLEEE
1 2! 2 1 2!
2 3 12
it it A +1 it
dx(t) :1—}-}\,0([“_’_&_’_&4_ ...... ]+(—”a2 [it+(_)+ ...... ]
21 3! 2! ol
(it)
3 “1 = The coefficient of T in dy (t) =aX
it)?

1 .. . 2
T The coefficeint of —2! indy (t)=2oa+a” L(L+1)
= A0 + 7»2(12 +7»oc2

g =y~ ()

= A0+ Xzocz + Xocz - kzaz

=\ + 7»0c2

=La(l+a)
-. Mean = a), Vaiance =ia(1+a)-

11.11 Exercise:

1. Define Negative Binomial Distribution and find its mean and variance.

2. Obtain M.G.F. of Negative Binomial Distribution and hence find its mean and
variance.

3. Obtain c.f. of Negative Binomial Distribution and hence find its mean and
variance.

4., Obtain P.G.F. of Negative Binomial Distribution and hence find its mean and

variance.
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11.12

5. Obtain cumulant generating function of Negative Binomial Distribution and hence
find its mean and variance.

6. Show that Poisson Distribution is a limiting case of Negative Binomial Distribution.

7. If X is Negative Binomial Variate with p.m.f.

X+r-1\ r «x
p(x) — q ; X = O’L 2, ........
then show that the recurrence relation between central moments is
du, rk
=q — + 5 M
M1 =49 dg 2 Pk-11.

8. Deduce the moments of Negative Binomial Distribution from those of Binomial
Distribution.

9. An item is produced in large numbers. The machine is known to produce 5%
defectives. A quality control inspector is examining the items by taking them at
random. What is the probability that at least 4 items are to be examined in order
to get 2 defectives?

10. Find the probability that a person tossing 3 coins will get either all heads or all
tails, for the second time on the fifth toss.

Answers:

- [X-r 2 X—2
9 p(x=4)= > ,_q|(0-05)%(0-95 % = 0.9928
X=4\“"
10 p(X 2) = (Aj (1J2 (3]3 =0-103
' 1){a) \4



Lesson - 12

GEOMETRIC DISTRIBUTION

Objective:

After study this lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of mean, variance, moments, generating functions
and properties of Geometric Distribution.

Structure of The Lesson:
12.1 Introduction
12.2 Defination
12.3 Derivation of Geometric Distribution
12.4 Moments of Geometric Distribution
12.5 Moment Geometric Function
12.6 Characteristic Function
12.7 Probability Generating Function
12.8 Recurrence Relation For The Moments of Geometric Distribution
12.9 Lack of Memory Property of Geometric Distribution
12.10 Recurrence Relation For The Probabilities of G.D.
12.11  Additive Property of G.D.
12.12 Workedout Examples
12.13 Exercise
12.14 Answers

12.1 Introduction:

Suppose we have a series of independent trials or repetitions and on each trial or repetition
the probability of success "p" remains fixed. In Geometric Distribution X can be defind as the
number of failures before the first success. It can also be defined as number of trials required for
getting the first success. The probability that there are X failures prceding the first success is given

by qxp. Some of the situations where the Geometric Distribution are as follows:

1.  Suppose a man is hitting the torget. Number of failures before hitting the target.

2. Number of balls required for a cricket bowler to make the batsman out on the
assumption of probability that the bats man will be out for any ball is same.
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12.2 Defination:

A random variable X is said to have a Geometric Distribution if it assumes only non -
negative values and its p.m.f. is given by

X - = \) |l / s
p={4P i x=012
0 otherwise; p+q=1
Note: (i)  Since the various probabilities for x=0,12,-------- are the various terms of

Geometric progression, hene the distribution named as Geometric Distribution.

(i)  Total Probability = > p(x)

Hence total probability is one.
12.3 Derivation of Geometric Distribution:

If X denotes the number of failures before the first success then X can take any one of the
values 0,1,2,-------- if the probability of success is p then probability of failure willbe q=1-p.

Now p(X =0) = Probability of zero failures
= Probability of success in the first trial

=p
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p(X =1) = p(one failure)
= p {failure in the first trial and success in the next trial}
=qp
p(x =2) = p[ two failures preceeding first success]
= q2 p
Proceding in the similar manner, we get

P(X-X)=q"p ; Xx=012----

It is a Geometric Progression with common ratio g - hene the distribution is Geometric
Distribution.

12.4 Moments of Geometric Distribution:

The p.m.f. of Geometric Distribution is given by

P(X)=0p ; X=012 -

By defination ui =E(X)= D, X p(x)
x=0

= z X.qx.p
x=0
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_pg
2
p

T la

= E[X(X -1 +X]
= E[X(X -1]+ E(X)

0

Now E[X(X-1]= D X(x-1p(x)
X=2

o]

> x(x-Dq" p

X=2

2 -2
pa” > x(x-19"
X=2

2
pq [2+3x 2q+4x3q2+5x4q3+ -------- J

2
2pq |:l+3q+6q2+10q3+ .......... :|
2 _
=2pq” (1-q)~°

2
2pq
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20
T2
P

2

L_ 2 9 q

= —+ =
H2 2 p E(X)= 7,

2 wg+p =1

Hence variance up, = yz
p

ué = E(XS)
=E[X(X -D(X -2)+3X(X -1 +X]

= E[X (X -D(X -2)] + 3E[ X (X -1 ]+ E(X) (12.4.1)

Now E[X(X-1)(X-2)] = i x(x-1(x-2)q" p
x=0
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(X 1)(X 2) x3

- 6pq° (1+4q+10¢° + 20+
3 _
=6pq° (1-9)™

3
_ 6pg
(1-9)*

3
_6pg

—a (12.4.2)

We know that E[X (X -1)] = 2‘/ and E(X)= / (12.4.3)

Substituting (12.4.2) and (12.4.3) in (12.4.1) we get

1 6g° 3X29° g
“3:F+ 2 *4

= E[X(X -D(X -=2)(X =3) (X -D(X-2)+7X(X -D+X]

4 3 2 on simplification

24q4 36q3 l4q2 q
= + + + A
p p p
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12.5 Moment Generating Function:

The p.m.f. of G.D. is given by

pP(X)=q"p ; X=012, -
The M.G.F. of G.D. is given by

M () = E(e™)

Mean and variance using M.G.F.

L My (t) =

{

Q)

€

oooaaaaaa@@ Geometric Distribution ]@
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1| dMy ()
M2 = 7%
dt t—0

d 72 ¢
:{EPQ(l_qe) e}t—o

= pQ[(l—qet)_z e - 2(1—qet)_3(—qet) et}t—o

1 2q
“PAlZ 3

p p
2
g 2q
P p

variance p, = “i - (“1)2

2 2
9. .29° q
ot 272
P p™ p
qa

P
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a
2 p+g=1
D p+q

. variance = YZ
p

12.6 Characteristic Function:
If X follows G.D. then its c.f. is given by

dy () = EL™ ]

Mean and Variance using C.F.

cody (1) =

[ ody ()
We know that 1] = (—|){ A }
ot {0
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-1
:(—i){% p(l—q e't) }t_o

=(-)p [(—l) (l—q eit)_z (_iqeit)}tzo
R [
:—i2 pq(1—q)_2 it =-1

_ (D pq

2
p

L
1
.. Mean ulz%

2
t=0

, =2
= (-i)? {%I pge" (1—qe't) }
t=0

= (—i)2 ipq [i eit(l—q)_2 Lot (1—qeit)_3(—2)(—qeit)i}tzo
- (-)?ipq [i (1- q)_2 +2qi(1- q)_3]

4 1 2q
R IV}
P~ P

= pq{i2 + 2—2}
p P
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- variance (pz)zyz
p

12.7 Probability Generating Function:
If X follows G.D. then its P.G.F. is given by

p(s) = E(s¥)
= i S P(x)
x=0
_ i s qx =
x=0
=P > (qs)
Xx=0
=P(1-q9)*
. P(S) =

—~~

1-q9)

EEEEEEEEEE

Geometric Distribution]@
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Mean and Variance using P.G.F.

1 _exyo|
T E(X)—[ds p(s)L:l

1 | d®pls
SS s=1

= pq [d% {3(1—q3)_2}L:1

~pa|(1-gs) 21— 2(1-as) 3 (-as)s],_,

= pq[(l— q) 2 +2q(1- q)ﬂ
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variance V(X)=p, = YZ
p

12.8 Recurrence Relation For The Moments of Geometric
Distribution:

The p.m.f. of G.D. is given by
pPX)=q"p Xx=0L2

and we know that E(X) = %

The rth moment about mean is given by

T [ix—E(x))]

e [ T A R A R 4|
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| AN

2
p

1} pa’ + LX—%I (x pqx_l—qx)}

r-1 r
=— Z(x—%) p(x) + = Z(X—%) pq” (x—%)
P x=0 x=0
-r 1 X r+1
—zur_l+—2(x—%) p(x)
p x=0
—r +1
=M _gt—H
pz r-1 q r+1
1 du, r
— = 4+ —
jq“wl dq p2 Hri
du, r
= M 1=0]—— + 5K
r+1 {dq p2 rl}
. _ dup, r
Hence the recurrence relation between momentsiis p. ., =q aq +—
p
it 1 =1, then n,=q| 24" |- 9 “pg=1 py =0
=1 Mo =(q dq 2 Mo |~ p2 < Mo M1 '
dpp 2 d a(1+q)
fr=2, thenpy=q|—2+—p, |=q—| V., ||=
3 {dq 2™ dq p2 p3

dug
= =q—>+
If r=3, then pyu q{dq
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=pi4[p2+3q(3)]

-2 (p*+pa)
p

2
Q(p + pQ)
- Mg = 4
p

12.9 Lack of Memory Property of Geometric Distribution:

The special property of Geometric Distribution is lack of memory. It means that the
probability of additional number of failures before the first success is equal to "t", given that the
number of failures preceding the first success is greater than or equal to "k" is the same as the
unconditional probability of the number of failures before the first success is "t".

By definition p(X =t)=pq'; =012

We have to show that p[x = k+%( . k} =p(X =t)

Consider,
p[x:my }:p[x:knﬂxm]
p[X =k + 1]
:W (12.9.1)
Now p(X >k) = > pq”
x =k
k+1 +r
:p|:q +q +q R ER RN :l
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k -1
=pq (1-q)
qu k
= T =q (12.9.2)

Substituting (12.9.2) in (12.9.1) we get
k+t

Pq

xzk): k
q

p(X =k+t

Hence p[x=k+tx>k}=P(X=t)

Hence G.D. lacks memory.
12.10 Recurrence Relation For The Probabilities of G.D.:
The p.m.f. of G.D. is given by

L p(x+1)=qp(X) ; Xx=012- e

For apply this recurrence relation we need P(0) =p

The other probabilities P(1), P(2),--------- can be easily obtained by using recurrence

relation.
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12.11 Additive Property of G.D.:

If X; and X, are two independent Geometric variables with parameter p.
i.e. X;~G-D-(p) and X, ~G-D-(p)

The M.GF. of X; & X, are given by
)71 t\ 1
Mxl(t):p(l—qe) sz(t):p(l—qe )
My +x, (1) =My (t)-My_ (1)

2 t\ 2
My +x, (1) =P (L-ae
This is M.G.F. of Negative Binomial Distribution with r = 2.

Hence by uniqueness theorem of M.G.F.'s X; + X, follows Negative Binomial Distribution.

12.12 Workedout Examples:
Example 1. If the probability that a target is destroyed on any shot is 0.5. What is the probability

that is would be destroyed on eth attempt?
Solution: Given that p=0-5

q=1-p=0-5
The probability that target would be destroyed on 6th attempt
—P(X=5)=q"P
=(05)° (0-5)

-(0:9)°

Example 2: An unbiased dice is tossed until the occurrence of a six. Find probability that the
number of trials required in all is more than 6.

Solution: Let x be the number of trials required in alll

.. P(X=x)= P[(x-1) trials does not give six and x™ trial gives 6]
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Example 3:

@ 1) ¢ xmazee

~ P(X>6) = @6

Assume that a student is waiting for school bus. The probability that exactly X
buses will pass the student before the school bus arrives is given by

(i) Whatis the probability that five buses will pass the student before the school
bus arrives ?

(i)  What is the probability tht additional five buses will pass before the school bus
arrives given that more than three have already passed?
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5 6
=q - q
=q (1-q)

5
=q p
) 2\ (1
3] |3
32
729

12.13 Exercise:

1. Define Geometric Distribution and state where the distribution is useful.

2. Find the M.G.F. of Geometric Distribution and hence find its mean and variance.

3. Find the characteristic function of Geometric Distribution and hence find its mean
and variance.

4, Find the probability generating function of Geometric Distribution and hence find its
mean and variance.

5. Explain memory less property of Geometric Distribution.

6. Obtain the recurrence relation between moments of Geometric Distribution.
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7. If the probability is 0.75 that an applicant for a driver's licence will pass the road
test on ny given try, what is the probability that an applicant will finally pass the test
on the fourth try.

8. If the probability that a target is destroyed on any one shot is 0.5. What is te
probability that it would be destroyed on 8th attempt?

9. Adieiscostuntil 6 appeons. Whatis the probability that it must be cast more than

five times.

12.14 Answers:
7.  0.1055

8. (0:5°



Lesson - 13

HYPERGEOMETRIC DISTRIBUTION

Objective:

After studying the lesson the students are expected to have clear comprehension of the
theory and practicl utility about the concepts of mean, variance, limiting case, recurrence relation
of Hypergeometric Distribution.

Structure of The Lesson:
This lesson consists of the following sections as detailed below:
13.1 Introduction
13.2  Defination
13.3 Mean and Variance of Hypergeometric Distribution
13.4 Hypergeometric Distribution Tends to Binomial Distribution
13.5 Recurrence Relation Between Probabilities of H.G.D.
13.6 Workedout Examples
13.7 Exercise

13.8 Answers

13.1 Introduction:

Hypergeometric Distribution is used when sampling conducted without replacement from
a finite population. In this distribution, the rpobability of an outcome in any trial is not same as in any
other trial. Consider a box with N balls, M of which are white and N - m are red. Suppose that we
draw a sample of n balls at random by without replacement from the box. then the probability of

getting x white balls out of n balls (x <n) is (Mj (N_MJ/(N).
x )L n=x n

Since x white balls can be drawn from "m" white balls in ('\)fj ways and out of the

remaining N— m red balls, (n - x) balls can be choosen in [N_Mj ways.

i.e. favourable number of cases = (T) (l\rti\(/lj
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total possible number of cases = (I:j

. probability of getting x white balls = P(X =x) =

13.2 Defination:

A discrete random variable X is said to follow the Hypergeometric Distribution with
parameter N, m and n if it assumes only non - negative values and its probability mass function is

given by
{MJ{N_MJ
X n—x
-~ 7 - X:O’lz’ ........ ,min n,M
P(X =x) = N (n:M)
n
0 otherwise

Where N is a positive integer, m is a positive integer not exceeding N and n is a positive
integer that is at most N.

|
M=
2
x
N

Note: Total probability =

Here N, m, n are parameters of Hypergeometric Distribution.
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13.3 Mean and Variance of Hypergeometric Distribution:
The p.m.f. of Hypergeometric Distribution (H.G.D.) is given by

P(x)=w ; x=012

)

By defination E(X)= Zn: X.M

=

e L

- nM
Hence mean of HGD is N

E(x?) = E[X (X —1)+X]

= E[X(X -1 ]+ E(X) (13.3.1)
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n

Consider E[X(X -1)] > x(x-1) P(x)

Il
M=
x
~~
X
|
e
/
x <Z
~
/
s 2
[
x Z
~

1 n M M-1 (M-2)(N-M
%t M ez

NY T X x-1
n

_N'I\rill(—l\i(ril)zl [l::zz}

n n-1{n-2

_n(-DM(M-D
a N(N-1)

(13.3.2)

Substituting (13.3.2) in (13.3.1) we get

E(Xz):n(n—l)M(M—1)+nM E(X):M
N(N-1) N N

v =E(X?) —[ExOP

n(h-DM(M-1) nM n°M?

+
N (N-1) N N2

nM [(n—l)(M—l) nM}
— +1-—
N N-1 N
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~ nM [ N(h-D(M-D+N(N-1)-(N-1)nM
N N(N-1)

nM 2
=———[NMn-NM-Nn+N-NMn+Mn+N"-N
N“(N-1)
nM
=— [N(N-M)-n(N-M)]
N“(N-1)

_(N-n)(N-M)nM
N%(N-1)

nM(N-n)(N-M)
N% (N-1)

- variance V(X) =

13.4 Hypergeometric Distribution Tends To Binomial Distribution:

Hypergeometric Distribution tends to Binomial Distribution, under the following conditions.

i) Noow
y M
(i) ~N P

The p.m.f. of H.G.D. is given by

)
P(X:x) z%
)
~ M! (N-M)! (N-n)!n!
T (M=!(x]) (N-M=n+x)1(n=x)1 NI

MM -D)-- M=x+1) (M -=x)! (N-M)(N-M-2)-----(N-M -n+x+D(N-M —n+x)!
- x! (M =x!) (n=x)1(N=M —n+x)!

n! (N-n)!
“NIN-D(N=2)----(N=n+D(N-n)!
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_n MM-1---(M=+D(N-M)(IN-M=1)-----(N-M —n+x+1)
~ x!(n=x)! N(N=1):- (N-n+1)

[ (A ). (2

fim P(x) :()r(l) p-qe-ep-(1=p)(A=p)------ (1-p)

N— o

_[(n)} x _n-x
=(x]P Qa o g=1-p
Hence HGD tends Binomial Distribution.

13.5 Recurrence Relation Between Probabilities of HGD:

Y

e

By definition p(x) =

p(x+1) =

M ) ( N=M N
p(x+1) [x+1}(n—x—l} [n]
px) N (MY/N=M
DY [y
M! (N-M)!
T XA D' (M —x—D! (n-x—DI(N-M—-n+x+1)!




dProbability and Distributions | . 7 |poocoooeaeeaaad Hypergeometric ]@

XM =) (n=x)1(N=M —n+x)!
MI(N-M)!

X

~ XIM=x)(M =x=D!(N=M =n+x)!' (n=x)(n=x -1
(X +DXIH (M =x =D (n=x-D!'(N=M =n+X+1)(N=M —n+x)!

(M -=x) (n-=x)
(Xx+D(N=M-n+x+1)

(M =x)(n=x)

(X+1)(N—M—n+x+1).p(x) ;X =012

L op(x+1 =

which is the required recurrence relation.

13.6 Workedout Eamples:

M n
Cx Cr—x .
(M+n) !

C,

Examplel: Ifp.m.f.of HGDis p(x) = X=012------ I then find its mean
and variane.

Solution: Mean = E(X) = Zr: x-p(x)
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M+n-1
WSS
M + nj M+n-1
r r-1

Mr
M +n

Mean =

E(x?) = g[x(x =D+ X]

=E[X(X-D]+EX)- - - @

Now

E[X(X-1)] = zr: x<x_1)w

s [M+n)
r

M-2 n
~ Zr:x(x—l)M(M_l) x—2 \r—x
X =

x(x-1) (M:n)
Rt S

r

~ MM-1) (M+n-2
(M+nj ( r-2 j
r

M+n-2
M(M—l)( o j

Sl s [y
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AEEEEEEEEEEEEEE

rr-)M(M-1)

“Wmimmnn @
Substituting (2) in (1) we get
(x2) - rr-D(M)(M-1  Mr RO MT
"M (M+n-1  M+n '  M+n

variance V(X) = E(x2) - [E(X)]?

M(M=-Dr(r-0  Mr  M?%?
= =+ —
(M+n)(M+n-1)  M+n (M +n)?

Mr {(M +n)M-D(r-D+(M+n)(M+n-1)-Mr(M+n-1) |

“M+n) (M+n) (M+n-1) |
2 2 2 ]
Mr MTr+Mnr—-Mr-nr-M" -Mn+n+n+M"~ +
- 2
(M+n)*(M+n-1) 2Mn—n—n+n2—M2r—Mnr+Mr_
Mr
[Mn—nr+n2}

T M+mZ(M+n-1)

Mnr(M+n-r)

Variance = >
(M+n)*(M+n-1)

Example 2:  As part of an air pollution survey, an inspector decides to examine the exhavst of 6
of a company's 24 trucks. If 4 of the company's trucks emit excessive amounts of
pollutants, what is the probability that none of them will be included in the inspector's
sample?

Solution: nN=6N=24M=4.

ol%)
p(X=0) = \O\8) 0-2880

()
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Example 3:  Among the 16 applicants for ajob, ten have college degrees. If three of the applicants
are randamly choosen for interviews, what are the probabilities that

(i) none has a college degree
(i) one has a college degree

(i) two have college degree

(ig) Allthree have college degree

Solution: Given that N=16, M =10, n=3.
Using HGD

. 0)(3 20 1
3

Hi
i) P(x o) = \L\2 _10x15 15

16 560 56
3
)G
45x6 27
(i) P(x =2)=-2\_ i

)
V) P(x=3) = \°

Example 4: What is the probability that an IRS avditor will catch only two incometax returns with
illegitimate deductions, if she randomly select five returns from among 15 returns of
which 9 contain illegitmate deductions?

Solution: Giventhat N=15 M =9, n=5 X =2.
Substituting X =2 in HGD we get

9)\(6
2/13) 36x20 240

(15) ~ 3003 1001
5

P(X:2)=(
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Example5: A box consists of 15 red balls and 5 black balls. 5 balls are drawn at random what
is the probability that drawn balls consists of 2 black balls.

Solution: Using HGD we can get probability
Giventhat N=20,n=5M =5 X =2.

2)(3)
2)\ 3
P(X = 2) = T
5
10 x 455
- 15504

=0-29

Example 6: A bag contains 4 white balls and 3 green balls. 3 balls are drawn. What is the
probability in that 2 are white.

Solution: N=4+3=7, M=4, n=3 X=2.

O [ H

U

1. Define Hypergeometric Distribution.

13.7 Exercise:

Obtain the mean and variane of Hypergeometric Distribution.
Obtain the recurrence relation between probabilities of Hypergeometric Distribution.

Show that Binomial Distribution as a limiting case of Hypergeometric Distribution.

a > WD

In a group of 10 people there are 5 drinkers. Find te probability distribution of the
number of drinkers X, in a random sample of 6 people selected. Hence find its
mean and variance.

6.  Ataxi cab company has 12 ambassadors and 8 fiats. If 5 of these cabs are in the
shop for repairs and Ambassador is as likely to be in for repairs as a fiat. What is
the probability

(i) 3 ofthem are Ambassadors and 2 are Fiats.

(i)  Atleast 3 of them are Ambassadors.
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13.8

7.  Abasket consists of 5 Apples and 4 Mangoes. If 4 fruits are randomly drawn, find
the probability that
()  no mangoes were selected
(i)  exactly two mangoes were selected.

8.  From a group of 10 boys and 6 girls, a committee of 5 students is to be formed at
random
()  Find the probability that the committee consists of 2 boys and 3 girls.

(i)  How many girls are expected in the committee.

9.  Abox contains 7 black and 4 white balls. If 5 balls are drawn, find the probability
that they consists of 2 white balls.

10. A Jury of 12 members is drawn at random from a voters list of 1000 persons out of
which 700 are non-graduates and 300 are graduates. What is the probability that
the Jury will consists of all graduates?

(i)  Compute the probability by Hypergeometric Distribution.
(i)  Compute the probability by Binomial Distribution.

Answers:

5. mean = 2.9991, variance = 0.6.

6. () 0.3973
(i) 0.7038

7. (i) 0.03968
(i) 0.47619

8. () 0.20604
@iy 2

90

10. () 0.000000454

(i) 0.00000053



Lesson - 14
NORMAL DISTRIBUTION

Object of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of definition, properties, importance in statistics
of Normal Distribution and as limiting case of Binomial and Poisson Distribution.

Structure of The Lesson:
This lesson consists of the following sections as detailed below:
14.1 Introduction
14.2  Definition
14.3 Properties of Normal Distribution
14.4 Moment Generating Function
145 Cumulant Generating Function
14.6  Characteristic Function
14.7 Moments
14.8 Normal Distribution as Limiting Case of Binomial Distribution
14.9 Normal Distribution as Limiting Case of Poisson Distribution
14.10 Importancein Statistics
14.11 Workedout Examples
14.12 Exercise

14.1 Introduction:

The Normal Distribution was introduced in 1733 by Mathematician De-Moivre, who obtained
this continuous distribution as a limiting case of the binomial distribution and applied it to problems
arising in the game of chance. Later Laplace and Gauss derived it independently of each other as
the distribution of erross in physical measurements. Thus the normal distribution has got wide
applications in the theory of statistics.

14.2 Definition:
A random variable X is said to have a Normal Distribution with parameters p, called mean

and 02 the variance if its density function is given by the probability law
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tiwal- oo {2

—0<X <, —0< U<, >0

Therefore, A random variable X with mean p and variance 2 following the Normal

B
is a standard normal

Distribution is expressed as X ~ N(p,, 52). If X ~ N(M, 02), then Z =
(&

variate with mean O i.e., E(Z) =0 and variance 1i.e., V(Z) =1 andis denoted by Z ~ N(0,1).

Hence the probability density function of standard normal variate Z is given by

_27

¢(2) =

\/;-_n ,—0<Z <o

and the corresponding distribution function, denoted by ®(Zz) is given by

2 Jox

Here below two important results on the distribution function ¢(z) of standard normal

z Z 2
cI)(Z)zP(ZSZ):jCD(U)dUz ! je édu

variate.

Result 1: To show that ®(-Z) =1-®(2)
Proof: ®(-2)=P(2<-2Z)=P(222) (By symmetry)
~1-P(2<2)

=1-®(2)

b—u a—u
Result 2: To showthat P(@<X <b)=® — - —

where X ~ N (u, 02)



a- b- -
Proof: P(asXsb):P{ Heze “} [...ZZX “j

14.3 Properties of Normal Distribution:

The normal probability curve with mean p and standard deviation c is given by the equation

L _(X_MV2
f(x)= e 20

d2n

) —0 <X <

and has the following properties

1. The curve is bell shaped and symmetrical about the line X =p.

X =U
2. Mean, median and mode of the distribution coincide.

Mean of Normal Distribution:

8

~(x—p)

1 2
e °  dx
9 27

E(X)= | x-

&‘

M:Z:>x=u+csz, dx =cdZ

X
put

X 00, Z=0w0, X=—0,7Z =-—0,
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% 2
-Z
E(Z)—J’(quGZ) ! -e K,o‘dz

8

0 _ZZ 0 _22
(¢}
H JZ-e gdz

e 2 dz+—

=pn-1+0

=

['e) ZZ
1 A
Z-e dZ=0isan

o 2
—z/
J e /2 dZ=1 and the second integral
A2 2n

odd function].

[.‘.

Median of Normal Distribution:
If M is the median of the Normal Distribution we have

M

1
Jf(x)dx:— RN
2
-0
~(x-p)?
262
But f(x) = e , —00 <X <00
9 2n

Substituting the value of f (x) in equation (1) we get



Normal Distribution@

<

~(x-p)
1 202
e dx =
o/ 2n }/2
wo—(xn)° M —(x-)*
1 2 1 2 1
= e 2° dx+ e ° dx==. . (2
% 2n %l 2n 2
o "

—(x-n) o

u
1 202 1 J _Z%
But e dx=—— | e dzZ =

M

1 1 202

§+ Je dXZ%
n

~(x-p)°

M
1 2
= J’e 20" 4x=0
n

o

= u=M
Hence for the Normal Distribution Mean = Median.

Mode of Normal Distribution:
Mode is the value of x for which f (x) is maximum that is mode is the solution

of f'(x)=0 and f"(x)<0. For Normal Distribution with mean p and standard

deviation ¢ f(x) is given by

~(x-n)

2
f(x)= g 20 . —o< X<

o
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Taking logarithms on both sides of above equation becomes

2

~(x—p)
202

e

tog f(x) = rog,

1
o

{ 1 J 202
= (0gg +(0og, €
2n
2
ko (x2 p;) rogt [ logs =1, K = (0g— —
()
2
fog f(x) = K - (x i) K is constant.
20
Differentiating w.r.t. 'X' above equation becomes
1 -1 -1
m-f (X)=?(X—u):>f (x)=?(x—p)f(x)
-1
Also f"(x) = — [1-F () + (x—p)f'(x)]
()
:__i{f(x) +(x—u)2[_f (ZX)H [ f'(x)=_—;(x—u)f(x)J
(¢} (¢} (o)
-1 (x—u)°
= — [f (x) ————f (x)}
(e} (e}
—f(x) (X—u)2
= |17
(e} (e}

AS F/(x) = 0= — (x-)f(x) =0
(¢)
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= (x-u)=0
= X=p

At the point X = p we have from equation

00 = S [F 0y = ——— <0

" .
o o2 % 2n
Hence X = is the mode of the Normal Distribution. Therefore mean , median
and mode coincide at X =p.

2 4
3. Mean deviation about mean is \/7 N < o (approximately)

/I

- 2
Quartile deviation (Q-D-) = % = 3 c (approximately)
2 4 2 4
or Q-D-:M-D-:S-D-::§c:gc:o::§:§:1:>Q-D-:M-D-:S-D-::10:12:15

LetXbea N(u, (52). If Q; and Qg are the first and third quartiles respectively
then by definition.

P(X<Q)=0:25 and P(X >Qg)=0-25

The points Q; and Q3 are located as shown in the figure given below.
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When X =Q3,Z= Qs =Z, (say) -
(e}
and when X=Q, z-Qk
()

Substracting (1) & (2) we get

Q-Q
=8 _<l_37,
(&)

The quartile deviation is given by Q-D- =

From the figure

Acharya Nagarjuna Universityﬁ

= -2, (as from the figure) -

Q3 —Q _

(D)

-(2)

> GZl

P(0<Z<Z,)=0-25 = Z, = 0-67 (approximately) (From Normal Tables)

2
- QD= 021=0-670§§c5

For Normal Distribution mean deviation about mean is given by

2 4
M-D-=,—c=—o0c
i 5

Also for Normal Distribution standard deviation S-D- =c

Hence Q-D-:M-D-:S:D-::—oc:

wl N
ol

G.0:

wl N

4
:§:1::10:12:15

4, As x increases numerically, f(x) decreases rapidly, the maximum probability

occurring at the point X = 1 and given by

1

2

5. Area under the normal curve is unity

[POO]max =

K ~(x-1)?
1 2 02

e dx -
of2n

(D)

As area A =
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Normal Distribution@

PUt Z=— " = x=w, Z=w
(¢}
X=-0, Z=-w

cdZ=dx

Substituting in equation (1) we get

1 —27 1 ‘27
A= | —e 72dz=2|—e 72 dz (from properties of Integral)
A 2T \2T

—o0

o

o © 1
=%It% e_tdt:injtz et
0 0
At r(%) Jt%_le‘t dt:F(}/Z)
T

" W(e
a

2

&

Il

E

A =

-, Area under the normal curve is unity.
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6. Since f (x) being the probability, which will never be negative therefore no portion of
the curve lies below the x - axis.

7. X - axis is an asymptok to the curve.
8. The distribution has points of inflexionat Xx=p + c
At the points of inflexion of normal curve, we should have
f"(x)=0 and f"(x)=0

For normal curve we get

2
() = =) [1— (x-n) ]

= X=pto.

Thus the points of inflexion of the normal curve are given by x=p+ o and

1 —_
f(x)=——e }é . That is they are equidistant (at a distance o) from the mean.
o
2n

9. Mean Deviation from the mean for Normal Distribution:

Mean Deviation about mean = I |x—p|f(x)dx

—00

~(x-n)? (x>

1 2 1 2
= J|x—u| e °  dx (- f(x)= e °  for
—0

% 2n ci/Z—Tc

Normal Distribution)
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(By property of Integrales)

2
2 /
Since in the above equation the integrand | z| e 2 s an even function of z.

Alsoin [0, »], | z| = z we have

o 2

2 -z

\ﬁ-cjz-e édz

T

0

2 0 2

— - e dt o
\/; GI (puttmg 7_tJ

M -D- (about mean)

=— o (approximately)
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10.

Area property of Normal Distribution:
If X~N (p, 02) then the probability that random value of X will lew between

X =u and X =X, is given by
Xq Xy —(x-p)°
1 202
Plu<X<x)= [f(x)dx = e dx
% 2n
H u

Put lzz, ie., X—u=o02 dx=ocdz
(¢}

When X =y, Z=0;X=Xxy,Z2=

L) z
Plu<X<x)=P(0<Z<z)= 2 jezédz=.f¢(z)dz
T 0

0

2
—Z
e A is the probability density function of standard

Where ¢(z) =
27
il
normal variate. The deinite integral f #(2) d z is known as normal probability integral
0

and it gives the area under standard normal curve between the ordinates at z=0

and Z=2z,. These areas have been tabulated for different values of z;, at internals

of 0-01.

il X=p+o X=p+2c X=p+3c
0 zZ=1 z=2 Z=3

X=p-3 X=p-26 X=p-o X
Z=-3 Z=-2 Z=— z
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Probability that a random value of X lies in the internal (n — o, p + o) is given

by
u+oc
Plu-c<X<p+o)= I f (x) dx
u—o
X — 1
- Pl -1<z= <+1|= [ ¢(2) dz
(e)
-1
1
= P(-1<z<1l) = z-j¢(z)dz (By symmetry)
0
=2-[o(1) - o(0)]
= 2x 0-3413 (s ¢(1) = 0-3413 are taken from tables)
=0-6826
Similarly

2
P(u-26 <x <p+20)=P(-2<z<2)= [ $(2)dZ
-2

2
=2-[¢(2)dz
0
=2 [®(2) - ®(0)]=2x0-4772 = 0-9544 (- ®(2)=0-4772, $(0) =0)

3
P(p-3c <X <p+30)=P(-3<z<3)= Id)(Z)dZ
3

=2-|¢(2)dz

O+—w

=2-[0(3)-0(0)]
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11.

- o(3) = 049865,]

0-9973

Therefore the probability that a normal variate X lies outside the range p + 3c
is given by

P(|X-p|>3c)=P(|Z|>3)=1-P(-3<z<3)=1- 0-9973
=0-0027

Thus the probability of normal variate lie with in the range p = 35, though
theoritically, it may range from — o to «.

Linear combination of independent normal variates is also a normal variate.
Let X;, (i=12------ ,n) be nindependent normal variates with mean y; and

. 2 .
variance o; respectively. Then

iy, 0= e fu 1ot |
2

n
The m.g.f. of their linear combimation 2. & X;, where a,a, - - .4

i=1
are constatns, is given by

Mz a|x| (t) = Ma1X1+a2X2+ . . '+an Xn (t)
i
(- x; s are independent)
=My (3 t) My (azt) - - My (a,t)- - -(2)

(+ Mcx (D =My (Ct))

From equation (1) we have



Equation (2) gives

tzalzoz (2522
MZaiXi (t) = | exp| pagt+ % -eXp| Hodot+ 272
|

N
= exp [Zai“i}’Ltz =1 5 N &)

n
Equation (3) is the m.g.f. of a normal variate with mean Z a;u; and variance
i=1

n
Z aiz 0-2 . Hence by uniqueness theorem of m.g.f.

i
i=1

Hence linear combination of independent normal variates is also a normal
variate.

14.4 Moment Generating Function of Normal Distribution:
The m.g.f. (about origin) is given by

My (D= [ ™ f(x)dx

—00

i 2
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) in Texp{t(ww)} exp(_Z%jdz

Jox

X—p
" ——=Z=>X=pu+0z & dx=0dz
(o)

7N\
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Note: M.G.F. of standard Normal Variate. If X ~N (u, 02) then standard normal

p o=
variate is given by Z = (X-w) .
(e}

pt
—+
G

2
t
—ut -t "
Now Mz(t)ze 4-MX(%):e 4-e o’
14.5 Cumulant Generating Function:

The c.g.f. of Normal Distribution is given by

2 2
( ! GKJ t? 62 e t°c
Ky (t) = fog M (t) = tog,\e =| ut+ 5 -logg = pt +

.. Mean = K; = Coefficientof tin K (t) =p

2
t
. _ _ . . . 2
Variance = K, = Coefficient of > Ky(h=0c
{2
and K, = coefficient of o in Ky (1)=0; for r=34,-----.

2 4

Hz 0 g 3)0/{

HeneBlz—gz 3=0and By=—= =3

o (o2 “g M

14.6 Characteristic Function of Normal Distribution:

From the definition Characteristic Function we have

oy (1) = E(e™) = I e (%) dx

—0
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8
N

X—p
put ——=z=X=p+0c2z; dx=cdz

it(ntoz) _j2
e
{ dz

Lo = | ———— e
o

—00

dz

put z-itec=K, dz=dK

-1
itp—tzc2

2 - _kz
e
-je édk
27 _

DTN 0) S —

122

2 ity——t"oc - _k7
= e 2 -Je 2 dk
0
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2 2

:eitp—;t o ( F(%):\/;)

14.7 Moments of Normal Distribution:
Odd order moments about mean are given by

Mons1 = | (x—n )2 (%) dx

—o0

g 11 = \/7 J 2n+1 (_ZZjdz

X—p
v ——=Z=>X-u=02 dx=ocdz
(e}

o0

fz'”l ( 2)dz=0- L@

. . 2n+1 2 . .
Since the integrand z -exp| ¢ 5 | Isan odd function of z.



@{Centre for Distence Education 14 .20 Acharya Nagarjuna University]@

Even order moments about mean are given by

Uy, = I(X—u)zn f(x)dx

1l
a
N |
a
g —8
—~~
P
|
-
N—"
N
35
©
|
—_
X
|
-
N—"
N
N
Q
| —
o
X

(- Integrand is an even function of z)

o0
2-c ¢ dt 2 1
gy = J(zt)n.et,_ L-,.%_t:z_\/ﬁ;dz_fdt
t
0
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Changing n rog (n—1) in the above expression we get

n-1 2n-2

Hon_2 Z%T(n_%)

=20 =
r(n-3]
2 D
o 1
=20 [n—Ej [+ T(N)=(-DTr(n-1]
= Hopn = o” (2n-Dupyp - - (2

Which gives the recurrence relation for the moments of Normal Distribution. From equation
(2) we get

Hop = [(Zn—l)GZJ [(2n—3)02} Mon-a

~[(2n-16?] [(2n—3)02} [(2n-5)6%] - '(302) (102) Ho

-1.3.5. . .(2n_1)62”. . .3

From equations (1) & (2) we conclude that for the Normal Distribution all odd order
moments about mean vanish and the even order moments are given by equation (3).
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14.8 Normal Distribution as Limiting Case of Binomial Distribution:

If X ~B then the m.g.f. i t)"
(n, p), then the m.g.f. is Mx(t):(q+pe)
The m.g.f. of standard binomial variate is

X—-n X -
z-27NP_~A7H
Jnpq ©

If u=np and 02 =npq, is given by

M, (t)=e %MX(%)

M, (t) = e_nym-(mpe/m}n
o]
(VS V|

B y t=(-p) "
~ e /P9 4 pe Jpa

[ | (-1-p=a)

2.2 ~ 2,2 _ "
= 1- +——+01\n 7 +pyl+——+—+0"\n 7
q pt pt 1( /2) gt gt 11( /2)
Jnpg 2npPq lnpgq 2nPq

2 3 2 3
—X X X X X X X X
{ e =1-—+——-+- - €& =1l+—F—+—+- - J
! o2t 3

-3 -3 3
Where Ol(n 2) and 011 (n /2) involve terms containing n/2 and higher powers of nin

the denominator.
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2 M, (1) = |(gq+p)+

2n pd (- p+a=1)

3
Where O(n‘%) involves terms with n/2 and higher powers of n in the denominator.

2
t -3
~. log M, (t) = n-ﬁog[1+% + O(n A)} ( fogm" =n fog m)
o)l € o))
=Ny _—+oln72)-=9—+0\n"2); +-
2n 22n
2 3 4
{..gog(l+x):x_x_+x__x_+. : il
' X 3 4

= g + Olll(n_%)

Where olll(n_}é) involve terms with n}/2 and higher powers of n in the denominator. As
n— o we get

2
. t
fim fog M, (t) =—
n— o 2
i %)
:>n£|_>mooMZ(t)=exp 5 (D

The above expression (1) is the m.g.f. of standard normal variate. Hence by uniqueness
theorem of moment generating functions standard binomial variate tends to standard normal variate
as h — o . In otherwords, binomial distribution tends to normal distributionas n — o .
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14.9 Normal Distribution as Limiting Case of Poisson Distribution:

X% X-
L 222278

\/I o

Where mean u=4 and 02 =A=>oc= \/Z for poisson distribution.

e, E(2)=A, Va(Z)=>.

E(z):E[ﬂJ:i.E(x_x)z E(X) —h =7 — % =0

N
2 2
V(Z)=E(Zz)—[E(Z)]2=E ol I E X
i Ji
X272 XA
=E| — w El——|=0
¥ 4w
1 5 1 1
:XE(X—K) =XM2=YX=1 ( u2=V(Z)=7L)
M.G.F.of Z=M,(t) = E(e'?) = E[et(x_%}
tX —tA
S va
tX
=E[e ﬁ-e_tﬁ}
tX
= e_tﬂ-E(e */X)
w Ao, X tx 00
_ gt 3 e * .e/ﬁ ( E(X) = ZX-P(X,X)J
%0 X! x=0
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e_x_t\/x : exp(x-e/ﬁj
&P [—x o+ xe/ﬁ}

t2 £

t
exp|-A-—tVA +A|l+—=+—+—F5-+-

2%

2
1 1t
Mz(t)zexp{—t2+——+- : }

2 <INPY

As A — oo, we get

Mz(t):exp(t%)- )

Above expression (1) is the m.g.f. of standard normal variate. Therefore by uniqueness
theorem of m.g.f.'s standard poisson variate tends to standard normal variate as A — « . Hence

Poisson Distribution tends Normal Distribution for large values of parameter.

14.10 Importance of Normal Distribution in Statistics:

This was an important distribution which was initially discovered for studying the random
errors of measurements, that isduring the calculations of orbits of celestial bodies. It happened
because of a remarkable coincidence that normal distribution follows all the basic principles of
errors. Itis mainly for this quality that the distribution has a wide range of application these days in
the theory of statistics. To count a few are industrial quality control, testing of significance, sampling
distributions of various statistics, graduation of non-normal curves etc. Length of the leaves from
a particular point of time, weights of trees of the same variety, weights taken for a group of students
taken of the same age, intelligence, proportion of male to female births for some particular
geographical region over a period of years and many other examples from variousfields can be
given which are studied through normal distribution. Some facts of Normal Distribution we given
below:

1. Normal Distribution approximates the p.d.f's of most of the commonly occurring
distributions such as Binomial, Poisson, Hyper - Geometric ... etc.



@{Centre for Distence Education 14 .26 Acharya Nagarjuna Universityﬁ

2.

Many of the sampling distributions such as students t, Snedecor's F, Pearson's

X2 etc. are asynptotically normal. Also most of sampling distributions tend to
normality as n — o .

Sometimes a non - normal variate begins to exhibit normality properties under
suitable transformations.

P{|Z|>1.96}=0-05 and P{|Z|>3}=0-0027,if Zis N(0,1). These properties

of N(0,1)form the basis of "Large Sample Theory".

For large number (> 30) of variate observations the sample can always be treated
as normal, even though the parent population is non - normal (central limit theorem).

In tests of significance the posent population is assumed to be normal.

Normal distribution finds large applications in statistical quality control in industries
and graduation of non - normal curves.

14.11 Workedout Examples:

Example 1:

Solution:

Let X be a random variable with the Standard Normal Distribution ¢.
Find (i) P(0<X <1.42) (i) P(-0-73<X <0) (i) P(X=>113)
(iv) Determine the value of tif P(X <t)=0-7967

(

) Here P(0<X <1-42) is equal to the area under the standard normal curve

between 0 and 1.42. Thus in Table of areas under standard normal curve,
page () look down the first column until 1.4 reached, and then continue right to

column 2. The entry is 0.4222. Hence P(0< X <1.42)=0-4222.

N\

0 1.42

(i) P(-0-73<X <0)=P(0<X <0-73) (By symmetry) is equal to the area under

the standard normal curve between 0 and 0.73. Thus in Table of areas under
standard normal curve, page look down the first column until 0.73 reached
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and then continue right to column 2. The entry is 0.2673, hence
P(0< X <0-73)=0-2673.

/

-0.73 O

(i) P (X =1-13) which can be written as
P(X >1-13) = P(X > 0) - P(0< X <1.13)
=0-5000 - 0-3708 = 0-1292

From table of area under the standard normal curve gives the value of 1.13 as

0.3708 & P(X > 0) = 0-5000.

(iv) P(X<t)=0-7967

Here t must be positive since the probability is greater than % . Therefore

we write P(OSXSt):P(Xst)—%
=0-7967 — 0-5000 (+ P(X <t)=0-7967)

P(0< X <t)=0-2967
Now observing the value 0.2967 in Table of areas under standard normal curve

which lies at t =0-83.
Therefore we obtain the value of t as 0.83
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Example 2: Ina Normal Distribution 31 percent of the items are under 45 and 8 percent are over
64. Find the mean and standard deviation of the distribution. Given ¢(0-5) = 0-19,

®(1-405) =0-42.

Solution:

Example3: Iff(x)=e *,0<x <o thenfind (i) P(1<x<?2), (i) F(x), x>0. Showthtitisa

p.d.f. and obtain its mean L, ug and pg,.

Solution: Givenf(x)=e *, 0<x <o
X 2
_ w12 _ _ 1 1 e-1
. X X 1 2
(i) P(l<x<2)=ff(x)dx=Je dx:[—e ]lze —e =5
1 e e

1

(i) F(x) = Tf(x) dx :je_x dx = [—e_x]; —1-¢"
0 0

(i) Since f(x)>0V x in [0,00] and [f(x)dx = [e dx=1
0 0

o f(x) isap.d.f.

Now mean = M1=J.X ‘e dx:J'x e dx=T(2)=1
0 0

1 1 1
W & pz=T(4)=6, u, =I(5) =24
2
1 1
LMy =y —yy =2-1=1
1,11, 1 3
Hg=p3—3p, py + 2 =6-3(2) (D +2(1)° =2

2 4
1 11 1 1 1
and 1y =1 - 4ug y + 61y 1 31 = 24— 4(6)(D) + 6(2)(D? - 3* = 9



@{Probability and Distributions

Normal Distribution@

Example 4:

Solution:

Example 5:

Solution:

The water consumption of a city, in excess of 20,000 gallons, is exponentially
distributed with mean o =20,000. The city's water works has a daily stock of

4,00,000 gallons. What is the probability that the stock is in sufficient for atleast two
of the three days selected at random?

If Y is the total consumption in a day, then X =Y — 20,000 has an exponential
distribution with mean 20,000 i.e., with the probbaility density function

f(x) o e_%o,ooo

= ) < XL,
20,000 for 0< X <o

-+ The stock will be proved insufficient, if the demand exceeds 40,000 gallons,
i.e., X >40,000- 20,000, i.e., >20,000.

The probability that the stock remains insufficient on any particular day

o0

1 _
= p{X > 20,000} = J 0600 Vaom dx=e

20,000

-, The probability that the stock is insufficient for atleast two or three days
selected at random = probability that it is insufficient for all the three days + probability
that it is insufficient for two or the three days.

() +3c, (6%°) (1-™)

_e D {e—lo +al1- e—lo)} _ {3 B Ze—lo}

Suppose that X has an exponentil distribution with parameter ). What is the
probbaility that X exceeds its expected value ?

Since X has an exponential distribution with parameter ),

we have
f(x)=ne ™ x>0
then E(X) = jx-f(x)dx :ij-e_ X dx =
0 0
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Example 6:

Solution:

Example 7:

Solution:

Cars arrive at a petrol bunk randomly every 2 minutes on the average. Determine
the probability that the arrival time of cars does not exceed 1 minute.

Here we have to find P(X <1). Since here X is the arrival time of cars follows an
exponential distribution with parameter ), .

f(x)=7»-e_7“x ,A>0,x>0
=0, otherwise

the c.d.f. of exponential distribution is F(x) =1- e X

=p(X < x)

1
Since the rate of arrival is A = 2 arrival per minute.

) -

then P(X<1)=1-e2 =1-e2 =0-39
If X is normally distributed with u =0 nd variance 1 what is the expectation and
variance of () (x2), (i) €™ ?
Since X ~ N(0, 1)we have the p.d.f.

exp(—}dx- - -

f(x)=
2

1
\ 21
0] Mean value of X? is given by

E(X2 ): “12 = j x% £ (X)dx

—00

N exp(_xzj dx (- form (D)
- : : - form
Jar L 2
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2
2 —X
= x2 . @(p[—} dx (By properties of Integrals)
A 21 2
0
2
Putting — =1t
J 2
x2=2t:>x=\/§ x=0,t=0
1
dx = —— - dt X=00,t =00
2t

2 T2 4

=— |t7"-e dt
=
2 [ 2o

=22 et
2l

0
E(XZ):i.r(3 )_i i.r(ijzi.\/gzl
o VP R 2\
L E(x?) =t =1 ie., Mean of X°
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Jo o)
- -\/Z-exp 2 ) (- from (D)

2n
X2

s %y T —t=1x=.J2t
=—-ft 2. ¢ ' dt 1
O dx=%/_—t\/§ dt
:i-ft%_l-e_t dt

Jr
:%ft%_l etdt (x=0, t=0

To X =00, t=00)

4 3 4 31
(/2) =2 (/2)=ﬁ'§'§'r(%)
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[+ 1(#5) =)

EEEEEEG6

2 2
.. variance of (Xz) =H, = ulz - “i = E(X4)—[E(X2)J
=3-1=2.

(ii) Mean value of €™
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8

1 - % [{x2—4ax+2a2} —2a2}
= e

x

2 1 -1
— % . I[ exp {7 (x—2a)2} dx

. ax .
. variance of e is

2
V(e™) =y =1 -1

Example 8: If X is a normal variate with mean 1 and variance 4, Y is another normal variate
independent of X with mean 2 and variance 3. What isthe distribution of X +2Y ?

Solution: We are given X ~ N (1, 4)
i.e., given E(X)=1 V(X)=4.
Again Y ~N(2,3)

i.e., given E(Y) =2 V(Y)=3.

Here X, Y are independent.
L E(X+2Y)=E(X)+2-E(Y)=1+2-2=1+4=5
V(X+2Y) =V(X)+V(2Y)=V(X) +4-V(Y)=4+4.3
=4+12=16

X +2Y ~ N (5, 16)
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Example 9: If two normal populations have the same total frequency but the standard deviation
of one is K times that of the other, show that the maximum frequency of the first is

% that of the other.

Solution: If c and Ko are standard deviations of the two populations and Let N be the total
frequency. Then we have
2
N —(x-
O 427 26
2
N —(x—-M
& Y = -exp (2 3 - (2
Ko /27 2K o

But for the normal distribution the maximum frequency is obtained against
mode which is m here in both the cases.

-, In case of eqution (1) we have

2
N —(X-m
Y = exp[( 2)} . . (3
O+/27 26
2
N —(Xx-m
& Y = exp ( 3 g P )
Ko.2n 2K o
. . , N
In case of equation (3), the maximum frequency is = =Y, (say)

c 271_

1

N
_—=—Y
KG\/Z—TC K ©

In case of equation (4) the maximum frequency is =

Hence the result

Example 10: If X and Y are independent normal variates with means 3, 4 and variances 4, 9
respectively, find the value of ), and show that

P(3x+2y <) = P(5X - 3Y >3).

Solution: Let U=3X+2Y and V =5X -3Y
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Since X and Y are independent normal variates, Hence U and V are also normally
distributed with X ~N(3,4), Y ~N(4,9).

E(U)=3x3+2x4=17, E(V)=5x3-3x4=15-12=3
Var(U)=32 V(X)+22 V(Y)=9-4+4.9=36+36=72

Var (V) =5°V(X)+3° V(Y) = 25.4+9.9-100 + 81 =181

u-17 r-17
. P(3X+2Y <i) =P(U<A)=P <
V72 72
ol P1T
2
Where Z ~N (0, 1)
V-3 3-3
P(5X —3Y >31)=P(V >31)=P >
181 181

From the given condition
A =17 3r-3
Plz< =P|Z>——| - - -
{72 181

Since P(Z<a)=P(Z<b) then a=-b

C-17 3 -3
S 181
— 13-45), — 228.71 = 25.456), — 25. 456
_ 203.254
N T 16.929

12-006
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Using the value 3, in (1) we have

-33.929
P[Zs j: P(Z < —3-9987)
8-485
=P(Z <+3-9987) (- By symetry)
=¢(3.9987) =0-500 - - -(2)

(- from Tables)

—53-786
>

Thly p(z >
13- 4536

J = P(Z>-3-9979)

—1-P(Z < —3-9979)

—1- P(Z <3-9979)

=1-¢(3-9979)
=1-05
=0-5- - -(3

from (2) & (3) we get
P(3X+2Y <i)=P(5X -3Y = 3})

Example 11: The linear measurements of the items of a product are approximately normally
distributed with a mean of 20 cms and standard deviation of 4 cms. Items which
measure between 18 cms and 23 cms are sold at 50p each and the other items at
30p, each. Findthe total amount collected if in all 10,000 items are sold. How
many items are of measurements 26 cms or more?

Solution: Let X be the linear measures of the items of a product which is normally distributed

with mean n=20cms and S-D- o =4cms.

Sowhen X =18 cms the corresponding standard normal variate Z is given by

X—p 18-20
c 4 B

Z= ~0-5
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Again for X = 23 cms the standard normal variate Z is given by

_X-p 23-20

(¢

4 =0.75

18-20 X-p 23-20
. P{18<X<23} =P < <
4 c 4

=P{-0-5<Z<0-75}
=P{0<Z<0-5}+P{0<Z<0-75}
=0-1915+0-2734

=0-4649

The area under the curve between Z=-0-5+00-5=0-3830. Since
0(2) =z2p(2), ie., ¢(-0-5) =2¢(0-5) and the area between Z =-0-75+ 00-75
iS 0-5468.

- The number of items which measure between 18 cms and 23 cms
=10,000 x P {18< X < 23} =10,000 x 0-4649
= 4649
The other items = 10,000 — 4649 = 5351
Out of 10,000 items sold the total amount collected is
= 4649 x 50 + 5351 x 30 = 232450 + 160530

= Rs. 3929.80

Since the items measured between 18 cms and 23 cms are sold at 50
paise and the other items are sold at 30 paise each.

The number of items having measurement 26 cms or more

X—un 26-20
>
c 4

=P(X>26):P{ }zP{Z>1-5}:P{1-5<Z<oo}

= (o) — ¢(1-5) =1-0-4332 = 0-5668
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Example 12:

Solution:

Example 13:

Solution:

Since the probability greater than 0.5 we have
P(X >26)=0-5668-0-5 = 0-0668

- The number of items = 0-0668 x 10,000 = 668

In a normal distribution 31% of the items are under 45 and 8% are over 64. Find
the mean and S.D. of the distribution.

If 1 be the mean and o be the standard deviation of the distribution and given that
31% of items are under 45.

ie, P(X<45)=0-31

= P(X > 45) =1-0-31=0-69
But probability greater than 0.5 therefore

P(X >45)=0-69-0-5=0-19
Also 8% are over 64.

Assume the mean height of soldurs to be 68.22 inches with variance of 10.8 square
inches, how many soldurs in a reginent of 1000 would you expect to be of 6 feet

tall? Given that the area under the standard normal curve between x =0 and
X =0-35is 0-1368 and between x=0 and x=1-15is 0-3746.

Let X denote the height of an individual then by hypothesis X ~ N (68-22,10-8). If
p denotes the probability that an individual is over 6 feet (i.e., 72 inches) then

X-68-22  72-68-22
p=P(X>72)=P >

Jios 328
p=P(Z>1-15)
oo p=1-P(Z<115)
=1-0-3749-0-5
p=0-1254
From this we can say that the number of soldurs with height over 6 feet is

N =1000 p =1000 x 0-1254 =125-4 =125
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Example 14: If X and Y are independent normal variates with the same mean 1 (known to be
less than 2) and standard deviatiors c; and o, respectuvely. Such that

P(4X —3Y <6)+ P(5X +12Y >30)=1 and
P(4X +3Y <12) + P(5X —12Y < -20) =1

determine the common mean and the ratio of the variances.
Solution: Let us suppose that

V(X)=cr and V(Y)=05 ;  E(X)=E(Y)=p
. ax - 3Y ~ N (p,1607 + 967)

5X +12Y ~ N (17y, 2567 +1440°2

4X +3Y ~ N[ 74,1607 + 962 |

5X —12Y ~ N (-7, 2507 +14452)

2 2
Let us denote 16012+ 902 by o and 25 o, +144 6, by [32_

. P(4X —3Y <6) + P(5X +12Y > 30)

6-u 30-17p
= Pl Z< +Pl 22— |=1
o p

and  P(4X+3Y <12) + P(5X —12 < — 20)

12 - 7u 20+ 7
=P Z< +P ZST =1
o

o
6-— 30-17 12-7 -20+7
Also P(Zg—usz(Zg “j& P(ZS “jzp(zz—”j
B B a B
6— 30-17
Hence h_ H (1)
a B

12-7p  -20+7p  20-7u
o B B
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Solving (1) & (2)
o 6—u 12-7n
B 30-17p 20-7n

— 112 ~ 352 + 240=0
e, (u-1)(112p - 240)=0
240

u=1and p=—>2
K H= 112

But we are given the pu < 2. So the permissible value of u=1

o 6-p ) 61 5
B 30-17u/" = 30-17 13
o 25
—=—=015
g2 169

14.12 Exponential Distribution - Exercise:

1. If X Xy, eeeee ,X,, are independentr.v.'s X; haivng an exponential distribution with

parameter 6,,i =12, ,n. Then prove that Z = min(Xl,Xz, ----- ,Xn) has an

n
exponential distribution with parameter Z 0; .
i=1

2. X and Y are independent with a common p.d.f.
—X

fx)=4¢ + X =0

0, x<0

1_
Find a p.d.f. for X-Y . (Ans: g(u)=ze ¥l o < u<o)

3. Let X and Y having common p.d.f. o - e ¥, 0<x<o,0>0. Findthe p.d.f. of

() x> (i) 3+2X (i) X-Y and (v) |[X-Y|
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10.

-2 —a(x-3)
Ans: (i) %x £ exp (—ocx%) (ii e 2 ,x>3

N R

X v x and (V) e <x >0

I
(iii) 5
If X has exponential distribution with mean 2. Find P(X <1/X < 2).

Supose that during rainy season on a tropical island the length of the shower has an
exponential distribution, with parameter A 2, time being measured in minutes. What

is the probability that a shower will last more than three minutes ? If a shower has
already lasted for 2 minutes, what is the probability that it will last for atleast one
more minute?

A continuous random variable X has the probability density function f (x) given by

f0—Ae 6

,X>0
= 0, otherwise
Find the value of A and show that for any two positive humbers s and t,

X >S+t
P[ > X>S}=P[X>t]_

If X ~Expo (L), find the value X, such that P{ X> xa}
P{X < xa}

Show that Y = —(%) tog F(X) is Expo(L).

Suppose the life of automobile batteries is exponentially distributed with parameter
A =0-001 days.
(&) What is the probability that a battery will last more than 1200 days?

(b) What is the probability that a battery will last more than 1200 days given that it
has already served 1000 days?

[Ans: (a) 0.301, (b) 0.819]
The life time X in hours of a TV tube of certain type obeys an exponential distribution
with A =0-001 hrs. Find

(@ P[X >1000]
(b) P[700 <X <1000] [Ans: (a) 0.368, (b) 0.129]



Lesson - 15

RECTANGULAR DISTRIBUTION

Objectives:

After studying this lesson the student is expected to have a clear comprehension of thetheory
and the practical utility about the concepts of definition and properties such as m.g.f., c.g.f.
characteristic function, moments upto fourth order of Rectangular Distribution.

Structure of The Lesson:
This lesson consists of the following sections as detailed below:
15.1 Introduction
15.2  Definition
15.3 Properties
15.4 Applications in Real Life
15,5 Workedout Examples

15.6 Exercise

15.1 Introduction:

The simplest of all continuous random variables is the one in which the probability of its
values is constant every where over an interval of the real line called uniform or rectangular
distribution. We study this in the present lesson.

15.2 Definition:

The random variable 'X' with a p.d.f. given by

-

f(x)= — a<X<Bp>a (1

, otherwise

o ™

is said to be a uniform (or) rectangul;ar variable on the interval (o, B) and f (x) given by
(2) is called uniform or rectangular density function. If X has the density function (1), itis expressed
as X ~U(a,B). o and B are called parameters of the distribution the distribution is said to be

rectangular because it takes the rectangular space and as the p.d.f. remains uniform for all the
variate values within the range it is called uniform distribution.
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Y, Y
(P F (x) FOO=1
1
%B—a) <<®
o a B X ¢} o B §
p-d-f-of U(a, B) c-df a U(a,B)

Distribution Function:

0 Jif —o<Xx<a
X—o
F(x) is given by F(x) = 5 Jf a<x <P
-
0 Jf B< X <o
dF(x) 1
Since F-(x) = = =f(x)20 in a<x<P
— Qo

f(x)=0, for X>B and for X <a, that is the density function is discontinuous at

X=a & X=0.

15.3 Properties:

1. Moments:

1 -
If v, and p, denote ™ moment about origin and central moments, then

I

QR ™

r+

B
2 B
u%=E(Xr)=J X dx= T .sz.dxzix_
5 B—a r+1
(04
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For r=2123 - - -inequation (1) we get

2 2
W= men —E)= P (-] ()

(B-o) 2 (B~d) 2

variance  V(X) = E(x?) - [ECOP = b - (ui)z

B2+oc2+B0L (B—a)2
3 4

V(X) =

4% +40” +4po - 337 -3 64>
B 12

B Bz +(12 - 2Ba
- 12

B3+OL3+[3(12+OLB2
B 4
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For finding p5 we have

3
1 11 1
Hg = H3 = 3Ho g + 24y

- 1 1 1 N
Now substituting thevalues of 5, 15, 1y and after simplification we get

82+ a®1pa’ +ap? ~ 3([32+(12+BOC) (B+a) . Z(B+“)3
4 3 2 B4

U3 =

B3+a3+Ba2+aB2 B3+3B2a+3B oc2+oc3 [B3+ a3+2B2a+2Ba2]
J’_ J—
4 4 2

28% 1203 +4p%0 + 4po’  [pRroli2pPa + 2pa?]

4 2

R

2 4
1 11 11 1
Hg =Ky = Auzhy + 605 =31y

- 11 1 1 o
Now substituting the values of py, u3, 1y, 1y and after simplification we get

(B-a)
Ma=""gy

2. Pearson's Coefficient Skewness:
For uniform or rectangular distribution the skewness is

51:“—§=0 [ 0 . = (B_GZ)J
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or y,= Bl:o

Since y; =0, the distribution U(a, B) is symmetric.

3. Pearson's Coefficient Kurtosis:

For uniform or rectangular distribution the Kurtosis is

_Ma _ —oc4 —ocz
Bz—“‘g‘—% (._.M (-a)  _@ )J

9
v2=B,-3=2-3="%

Since v, <0 the distribution U(a, B) is platycurtic.
4., Moment Generating Function:

Accoridng to the definition of m.g.f. we have
My ()= [ e -£(x) dx

If X~U(a,B) wehave

B
tx 1
My(t)= e -——dx
< J B-o
o

) 1 etX ?
C(Bra) t )

tB ta
L Rt
t(p-a) t(B-a)

5. Characteristic Function:

According to definition of characteristic function we have

oy (1) = Ieitx - f(x) dx
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If X ~U(a,B) we have
B . .
(t):J”x-—d T
by e o X ( f(x) B—Otj

(B-a) it

eiBt _eiat
RN =)

6. Mean Deviation About Mean:

Mean deviation about mean for rectangular distribution is given by

B
I | (|
M-D- = E(1X M)_J 5 (B—a)d
C
:(B—la) 12|42 (z=x- B
-C
X = C:—(B—Ot)
' 2
(B—o)
x=B,C= > )
C C
_ 2 J2d2= 2z Z_ZJ:cz—o: c?
(B-o) (B-a) Z (B-a) (B-a)
0 0
ol ()
2
We have M -D- = c’ =(B_a)z. 1 _(B-o)

(B-a) 4 M 4
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7. Median:

If m is the median then

m

Jf(x)dx :;

8. Mode:

Since in the rectangular distribution (p—a) x (b—a) ™ each point in the internal
(a, b) has the maximum probability it follows that each point of (a, b) is a mode.
9. If X and Y are independently and identically distributed (i. i. d.) rectangular or uniform

U(0,1), the distribution of the variates (x+Y), (x-y), xy and % are as follows:

X+Y, 0<x+y <1
f(x+y)= 2 (x+
y), 1<x+y<2

X-y+1, -1<x-<0
—(x-y), 0<x-y<1

f(x-y)= L
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f(xy)=-rog(xy), 0<xy <1
%, 0<%<1

f(%)z %2, 1<%/<oo
X

15.5 Worked Examples:

Example 1:

Solution:

Obtain the m.g.f. for the rectangular distribution
f(x)=1

Hence obtain mean, variance, mean deviation.

The p.d.f. of the rectangular distribution is

fx)=1- - -

By the definition of m.g.f., we have
M, (1) = E(etx)zjetx f(x) dx

If X ~U(0, 1) we have

1 tX 1 t 0 t
tX e e —-e e -1
t
0 0

for mean we have

-(2)
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Hence variance ., is given by

o (1f_1 1% 11 1
MamH2m W) T3 2) T3Ta T2

Mean deviation about the mean is

1

Vg
> dx=£

X——

e 2

NES——

1
E“X—MU:]M—MLHXMX=J
0 0

L ok
1 XZJ 2%
= EX —7 +7J—— X
0 0 A b
1 1 1 1
- Z_ 4 1 _Z_1 4=
4 8 2 8 /2 4

Example 2: A circular is marked from 1 to 10. It has a balanced pointer pivoted at the centre
such that when it is whirled and allowed to stop, it is equally likely to stop any where.
What is the probbility that in 2 out of 3 trials the pointer stops in between 2 and 3?

Solution: Let X be the distance of the stopping point measured from the zero point, implies

that X has rectangular distribution with the p.d.f.

f()—1 0<x <10
T TR L

=0, otherwise

.. The probability that the pointer stops in between 2 and 3 at any single trial is

3 3 1
.if(x) dx = lEdX (- from (D)
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1
1 3 1
“10" IZ—(?’ 2=75=p ()

If the following of the pointer between 2 & 3 gives probability of success as 'p’,
then it will be same for all the trials.

-, The probability of 2 successes out of 3 trials

CREN IR

1 1 9
=3X— X—X—
10 10 10
27
1000
= 0-027

Example3: If Xis U(L, 2) find Z suchthat P(X >Z + M, )= %

Solution: Since X ~ U(Y, 2) its p.d.f. is given by

f(x)=1 1<x<.2 ' @
=0, otherwise
2
2 2
X 2 —1 4-1
HX=E(X)={xdx=7J= —/2
1

1
Also given that P(X >Z+ My ) = 2
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Example4: If Xis U(-b, b), determine b if P(1x1>2)= %
Since X ~U(-b, b) its p.d.f. is

f(x)=%b, —b<x<b

=0, otherwise

Solution:

S0 = P(]X|>2)=1-P(| X |<2)=1-P(-2< X < 2)

B dx 1., 1 A2
~1- J— =1-—[x]% _1—5[ 2—(—2)}_1—%

3 2 2 3 2 1
= %:Bzz or b=8

Let X an Y beiid. U(a b) variates and K € (a, b). Find the number K such that

Example 5:
the probability that at least one of X and Y exceeds K is p.

Let A={X>K}, B={Y >K}; then

Solution:
;i d b
X -K — K-a
P(A)=P(B)= | —=—+— ; PlA)= - @
Jb—a b-a (a) b-a
K
2
_ _1-0(a).p(B) 21_[(K-a) J
p=p(AUB)=1-p(A).p(B) =1 [ %b_a)
(K_a)(b—a) = J1-p = K=a+(b-a)\/1-p.
Example 6: A variate X has the uniform distribution with the density function given by

1
f(x)=—, 0< x<100
100
0, otherwise

compute P(X >60) and P(20 < x < 40)
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Solution:  Variate X has the uniform distribution with the density function given by

1
f(x)=—, 0< <100
100

(D
=0, otherwise
100 100 1 1 100 1
P(X>60)= j f(x)dx = J —dx=—I[x] =—[100 - 60]
100 100 60 100
60 60
40
=——=0-4
100
40 40 40
1 1 1
P(20<x<40)= [ fO)dx= | ——dx=—[x] =—"[40-20]
100 100 20 100
20 20
20
=—=0-20
100

Example 7: The variates a nad b are independently and uniformly distributed in the intervals

[0, 6] and [0, 9] respectively. Find the probability that x” — ax + b =0 has two real
roots.

Solution: Solving the given quadratic equation we get
1 [ 2
X = —[ atya —4b}
2

2
The roots are imaginary if b > a%

> 9
" F{b>a—J= J — dadb 11

" P(bg a%) = P(Roots are real)z%
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15.6 Exercise:

1.

If X is a random variable with a continuous distributuion function F, then F(x) has a

uniform distribution on [0, 1].
Show that for the rectangular distribution

1
f(x) =—,-a< x<a
2a

1
The m.g.f. about origin is Py (sinhaf). Also show that moments of even order
a

2n
a

are given by u, = D

If X'is uniformly distributed with mean 1 and variance % find P(X <0).

(Ans: %r)

If X has a uniform distribution in [0, 1] find the distribution (p.d.f.) of -2 fog X . Identify
the distribution also.

Subway trains on a certain line run every % hour between mid - night and six in the

morning. What is the probability that a man entering the station at a random time
during this period will have to wait at least twenty minutes ?
For the rectangular distribution
dF=Kdx, 1<x<?2
Show that Arithmetic Mean > Geometric Mean > Harmonic Mean.

Assume a string, 1 meter long, is to be cut in two at a random point along its length.
Let X be the point where cut occurs and let its p.d.f. be

f(x)=1, 0<x<1
what is the probability that the longer piece is at least twice the length of the shorter?

If X is U (-3, 3) find K such that P(X < K):%. Also compute P(X(2));
P{|X-2|<2}, P(X=2) and P{|X|<2}.
Suppose that X is uniformly distributed over (—a, o) where o >0 determine o so

that P(|X|<1)=P(|x|>1). P(X>1)=13, P(x<¥)=-03.

(Ans: a=2,a=3 a:%)



Lesson - 16

EXPONENTIAL DISTRIBUTION

Object of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts, properties of exponential distribution.

Structure of The Lesson:
This lesson consists of the following sections as detailed below:
16.1 Introduction
16.2 Definition
16.3 Properties
16.4 Workedout Examples
16.5 Applications in Real Life

16.6 Exercise

16.1 Introduction:

In the theory of continuous distributions we commonly say normal distribution is an example

of model for any data. Because its range is spread over (—00, +00), for data that is generally

positive valued, application of normal distribution is not suitable sometimes. Then the simple model
that can be useful is exponential distribution. The random variable of exponential distribution is
positive valued. Like normal distribution it has many smooth properties. It can be used on a good
model for life time of a number of industrial products. In this lesson we study a number of theoretical
aspects of exponential distribution.

16.2 Definition:

The continuous random variable X which is distributed according to the probability law
—AX
f(x)=re """, O<x<ow,A>0- - -1
=0, otherwise

is called the exponential variate with parameter X, f (x) is called the probability density

function of exponential distribution. Any variate having the p.d.f. (1) is expressedas X ~ Expo (1) .
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Y

f (X)T

X
0 —_—> X
Exponenutial Curve
The cumulative distribution function F(x) is given by
f At A
F(x)=j re “dt=1-e ", x>0
0
-AX
0< otherwise
Y
F(x)
0 1 2 X
ﬁ X

Exponential Distribution Function
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16.3 Properties:

1. Mean of exponential distribution is % .

We have M1 = E(x) = _[X -f(x) dx
0

:-([X.x.e_kxdx ( f(x)=7ve_xx)

ny =EX)= %
2. Variance of Exponential Distribution is %2
We know V(x)=E(x2)—[E(x)]2
S (Hi)z

But E(x):%- - & E(xz) is given by
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(x?) ) T2, oax
X —pz—IX -f(x)dx_jx A-e 7 dx
0 0

pé = E(Xz) = %2

Hence V(x)= E(xz) - [E(x)]2 -

AT =V(X)=%L2

3. Moments of all order exist.

2 1
——— = f 1) & (2
772 /Xz (from (1) & (2))

The rth moment about origin is given by
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:x,r(:—ll) Je—ky n-1 :Fk(:)
" 0
I (r+1)
- "
1 !
He :F (- T(n) =(n-1)1)

1 6 1 11 8 2 1
Hy=—3, Hg=H3 -3 +24y =— -3 ——+2-—
~ 3T a0
6 6
373 53 3 4
24 2 4

/R S R e S ¥
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5.

Characteristic Function:

The characteristic function of a random variable X having the probability
function f (x) is given by

by (0= [ 1(x0) dx

- X ~Expo (L) we have

©
oy (0= [ ae™ dx
0

—(A—it)x

a0
:k-je dx
0

by (1) = (kfit) =(1—i%)_1

Cumulant Generating Function:

The cumulatn generating function of a random variable 'X' is given by

If X ~ Expo (%)

Ky (1) = fog (1— %)_1 [ My (1) = (1_%)_lj



{ Exponential ... ]@

@[Probability and Distributions

“12%’“22%21 “32%3' “42%4

If A >1, mean is greater than variance
A <1, meanis less than variance

A =1, mean is equal to variance

This is an important feature of this distribution.
7. Moment Generating Function:

The moment generating function (.g.f.) of a random variable X (about origin)
having the probability function f (x) is given by

My (t) = E(e™) = [e - f (x)dx
X ~ Expo (1) we have

o0
My (t) = xj'-etx e dx
0
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Using the binomial expansion we get
o0 t r
r=0

r

t
M% = E(x2)= coefficient of - in My (t)
r

r!
_F’ r=:L2, ........
0= (S 2 ) ()
xO==|-—==] >=|5) 5-|5) 37 =)
( 100 (1—x) = x> x> x* (-D" %" ]
Og _X __X_7_?_7........7 .....

r=1 r=1 A
. " - (r-1)
coefficient of — in the above expression is Kr(t) =—
: A
1 1 2 6
Thus Ki(D=—, K, (1) =—, K5(t) =—, K (1) =—-----.
A % 23 2t
8. Therelationship between central moments and cumulants are

iy = Ky (1), 1y = Ky (1), 1g = Kg(t), 1y = K, (1) +3-K5 (1)
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9 (a). Pearson's Measure of Skewness:

Since K= Kl(t)z% » Uo = Kz(t)z%\lz;

u3=K3(t)=%3, u4=K4(t)+3K§(t):%4

We have

3 (%3)2 4

iy

RCRFe
or ylzﬁzﬁzz

(b). Pearson's Measure of Kurtosis:

s
n by px _9

[32=_ =

We have n2 B (%2)2 - )(4/ 1
(¥ 067 w2 702

or y,=B,-3=9-3=6

The values of 3; or y; and 3, or v, clearly staks that exponential distribution
is positively skewed and is teptokurtic.

10.  Median of exponential distribution:

If m is the median of exponential distribution then

re Mdx=1-e "M

1
2

oO—3

- e—%m:%

= mzk_l-ﬁogg.



@{Centre for Distence Education 16. 10 Acharya Nagarjuna Universityﬁ

11. Relation with uniform distribution

If X ~ Expo (1), then Y=¢ " is U (0,1)
i.e., consider the robbaility differential of exponential variate

X

dR () =xe " dx , 0<x<ow - - (D)

AX —AX

Hence changing the sign d F,(y)=1dy, 0<y<1

ie, Y~U(O01)
12. Memory - less Property:

The p.d.f. of the exponential distribution with parameter }, is

f(x):x-e_“-x>0,0< X < 00

We have
P(Y<xNX=>a)=P(X-a<x NX=a) (- Y=X-a)
=P(X<a+x NX=a)

=P(a<X <a+x)
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P(X > a) };a(

=(1—e_“)- )

s Az e

X
Also P(Xg):»]e‘“dx:l—e‘“ .. (2
0

~ from (1) & (2) we get

P(Ygxza):P(sz)

i.e., exponential distribution lacks memaory.

16.4 Workedout Examples:

Example 1.  Show that for the exponential distribution

dP(x)zyo-e%‘dx, 0<x<w ; 6>0, Y, isa constant.

mean and variance are equal. Also obtain the interquantile range of the distribution.

Solution: In order to change the given distribution into probability density function, we must
have

(- the total area under curve is unity)
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SV I T ) B
= yo-czlzyoz%

1 -
Hence the p.d.f. f(x)=—"-e 4 0<x<w,6>0

(¢

0

o0 1 —X
Mean :E(X)zuizIx-f(x)dx=Jx-—-e Adx
(¢)

@ |
ol
8
8
®
x
ol

(-

N -

o0 1 —X
Similarly :Ixz-f(x)dx=Jx2-—-e 4dx
0

By integrating by parts)

(- e™=0¢ =1
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8

8

o

Wy =20 j _26? | (e - &f)]=267 . . 2
0

V() =p, = Mlz - “1 =262~ 6% (- from (D & (2))

Hence S-D-=+/V(x =\/?=6‘ - -(3)

Therefore the mean and S.D. are equal to .

Interquartile Range

If Q;, Qg be the first and the third qurtiles then

J ¢ 7 ax -

-bIH

G 0
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Example 2:

Solution:

- (e %)y,
jl—e_Q%z% :e_Q%zl—%z%

-Q Q
——Eo 3 =1 _vog4/. or Q =ocrlog 4
= 9%, = 5 9% Q = fog %

Q3

A
Also Jie .dx = A:_ : JZE
AR

0 (¢}

-Q -Q
:—(e %—eoj:%:l—e %:%
-Q
e %z% :_T%zfog% or Q;=oc/og 4

- Interquartile rangeis Q3 -Q;=0-/0g4-c - (0g %

= G(W—Mwog?)):c%ogg

The water consumption of a city, in excess of 20,000 gallons, is exponentially
distributed with mean 20,000. The city's water works has a daily stock of 4,00,000
gallons. What is the probability that the stock is insufficient for atleast two of the

three days selected at random ?

If Y is the total consumption in a day, then X =Y -20,000 has an exponential
distribution with mean 20,000 with the probability density function

f(x)= /0000 for 0<X<
20000

- If the demand exceeds 40,000 gallons then the stock will be proved insufficient.
i.e., X >40,000 — 20,000

= X 220,000
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The probability that the stock remains insufficient on any particular day is given
by

o]

1 7 _
P(X > 20,000) = J e Voo dx =e

20,000
20,000

The probability that the stock is insufficient for atleast two of three days selected

at random is equal to sum of probability that it is insufficient for all the three days and
p[robability that it is insufficient for two of the three days.

_ (%), 3C, () (1-e™)

—30
e

+3¢e 2 (1—e_10)

|
(D‘
N
o
—_
mH
o
)
—_
=
|
®
[y
o
~—
S—
Il
N
o
—_
=
o
©
W
(D\
=
o
~——



Lesson - 17

GAMMA DISTRIBUTION

Objecti of The Lesson:

After studying this lesson the student expect to have a clear comprehension of the theory
and the practical utility about the definition, properties and applications of Gamma Distribution.

Structure of The Lesson:
This lesson consists of the following sections as detailed below:
17.1 Introduction
17.2 Definition
17.3 Properties
17.4 Workedout Examples

17.5 Exercise

17.1 Introduction:

We studied exponential distribution lesson 16. One of the properties of exponential
distribution is that sum of the i dependent and identically distribution exponential variates follows a
distribution, whose probability density function is given by a mathematical expression involving a
gamma function. Even directly also we can define the gamma distribution from the improper
integrals of mathematics. In this lesson we consider such a distribution and discuss its properties
and applications.

17.2 Definition:

The continuous variate X which is distributed according the probability law

e—x 'Xn—l
f(X) = W

‘nN>00<x<w- - -(1

=0, othewise

is known as a Gamma variate with parameter n, f(x) is called the probability density
function of Gamma Distribution. Any variate having the p.d.f. (1) is expressedas X ~T'(n). The

function f (x) defined above represents a probability function since
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[160dx =—— [¢% X" dx = —— T (n)-1
0 5 r(n)

Also a continuous random variable X having the following p.d.f. is said to have a Gamma
Distribution with two parameters o and n is

n

o _ _
f(x)=—-eax.xn1;a>0,n>0 c 0<x<w- - -(2)
r'(n)

= 0, otherwise

If X has this density we expressitas X ~I'(a, n). Taking a=1 in(2) we get(1). Hence

we may denote itas X ~T'(n)=(1, n).

The cumulative distribution function of gamma variate x is
1 1 p —Uu n-1
F(x)=j(u)du=—-je -u “du, x>0
5 rin

= 0, otherwise

17.3 Properties - Moments:

Moments about origin is given by u% = E(Xr)z _[ X2 F(x)dx - - oD

—00

It X ~T'(n) then from equation (1)

r(n)

0

1 —X n+r-1
=|——¢e d
Jr(n)

0

1 —X n+r-1
=——|e " -Xx dx
F(n)-[
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1 T x n-1
pr = D(ne1) c T = e X" x| - -2
for r=1,23- - - thresult(2)gives
1 I'(n+1) (n+1-1)!
B R ] (T =(n-1))
n!
"y

5 1 T(n+2) (n+2-1)! (n+1)!
B N O N R\ Y

2
" H2=H12—Hi :n(n+1)—n2:}rz/+n—;rz/:n

r(n+3 3-1)1  (n+2)!
r=3 = SZ)L(?:_Q!) =((:J:1))!:n(n+l)(n+2)

=n(n+1)

1 101 3 3
" Mg =Mz — 3us g+ 21y =n(n+)(n+2)-3n(n+Dn+2-n

1_F(n+4)_(n+4—1)| (n+3)!
=TT T e (nepy P nr2(ne3)

2 4
1 11 11 1
By =g —4H3 +605 1y 3y

= n(n+D (n+2) (n+3)—4n (n+D(n+2)n + 6-n(n+1)-n> — 3n”

=3n2 +6n
us  (2n)? 4 h, 3n°+6n
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Harnonic Mean:

For Harnonic Mean H we evaluate

E( ) ( j J— f(x)dx—ﬁ I% x"1 e dx

H rn) (n-1)! n-1
H=n-1
Mode:
1 —X n-1
If X ~T(n) then f(x)=——-e " -x ~,n>0,0<x<w

r'(n)

. Mode M, is obtained by taking f(x) = 0

d 1 x n1 1 -X n- -X n-
= f (X)—d—f( )_ {F(n)e -X }Zm{_e X l_|_e . X z(n_l)}

—X n-2

r(n)

{-x+(n-1)}

—X n-2

=0 X i (neD) =
fTx)=0= - {=x+(n-1)}

= -x+(n-1)=0 or x=n-1.

Giving the possible value of mode =n-1. Also for x =n-1, fl(x) is negative,
which confirms that x = n—1 is the modal value of the distribution.

If X3, X5, 0eee X, are i.i.d. Expo (1) variates, then S, =X Xy, X, is a

gamma (A, n) variate.
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Proof: If X ~Expo()), thenits m.g.f. is given by
/11
(0 [1-
Now MSn(t)zMXerv ,,,,,,, ,xn(t) = Mxl(t)-sz(t)- : -Mxn(t)
-1 -1 -1
_t 1=t .. 1=t
_-4)--4) -%)

n times

-n f
=(1—%) (-.-Xis arei-i-d-Expo(x))
The shows that S, ~ gamma (x, n) variate.

Limiting form of Gamma Distributionas n — o :

If X ~T(n), then E(X)=n=p(say) and Var (X)=n= o2 (say).

Then standard gamma variate is given by

X
|
=

X
S

iy
ot 00 oy (1) - ¢ o)
T e )
- )
= Kyt = fog M (0 =ran &7 41 )|

=-Jnt —n-rog (1—/\/5)
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:—\/ﬁt+ﬁt+t%+0(n_%)

-1 1
Where O(n A) are terms containing > and higher powers of n in the denaminator.

2 2
t t
fim K, (1) =— = /im Mz(t)zeé
n—8

n— o

Which is the m.g.f. of a standard normal variate therefore Gamma Distribution
tends to Normal Distribution for large values of parameter n.

Moment Generating Function:

According to definition of Moment Generating Function we have
My (0 = E(e™) = [ £ (x) dx

If X ~T'(n) thenwe have

7 X e—x Xn—l
¢ )
M, (t)= |e”  —— dx
x (¥ J r(n)
0

r(n) 5
— - T
:L,F(n) ,|t|<1 ...Je ky'yn 1dy= (n)
r(n) (1—t)n K"
0
2
- =1-0)""=1ent+ n(n+1).t2+ o .+n(n+1). - (n+r-Dt

T " rt
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Which gives },t::,' = the coefficience of i nin+d - - -(n+r-1

My () =(1-t)"" |t] <1 (r=1234,- - -)

Mean “i =n, plz =n(n+1), p]é =n(n+D(n+2), p,i =n(n+D(n+2)(n+3), pu, =n.

Cumulant Generating Function of Gamma Distribution:
By definition of cumulant generating function

We have
Ky (t)=rtogMy (t) - - (1)
If X ~T'(n), thenwe have M (1) = (1-t) ", |t| <1

. substituting the value of M (t) in (1) we get

n

Ky (t) = tog (1-t)~

=-n (og (1-t)
{ 2 2 }
=—Nn-f-t-—————=— . . .
2 3 4
2 3 4
X X X
( tog(1-x)=—x-——-—-" j
2 3 4
K, (1) {t c.et } (2)
=N +— 44— - . . . . .
X 2 3 4

Ke®=n3t/
r=1

r

Kx(t)zn-iltr—!(r—l)!- N )
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- Mean = K; is obtained by taking coefficient of tin K, (t)
i.e., Kl =N
2
1, =K, is obtained by taking coefficient of > in Ky (t)
i.e., K2 =N
3
1y = K5 is obtained by taking coefficient of 3 in Ky (t)
i.e., Ky=2n

4
t
is obtained by tking coefficient of o in Ky (1)

ie., K,=6n

u4+K4+3K§=6n+3n2

Like Poisson Distribution, the mean and variance of the Gamma Distribution are
equal.

Pearson's Measure of Skewness:

. 2 2
Since ulzKl(t)zn, u2=K2(t)=n, p3=K3(t)=2n, ny =K, +3K, =6n+3n

2 2 2
i 2n 4n

We have [31:_32%: . :%
Ko n n

or Y1=\/l37=\/%=%>0



dProbability and Distributions

{

@ag Gamma Distribution ]@

Pearson's Measure of Kurtosis:

2
6n + 3n n(3n+6
We have ﬁzzu_gz — = ( > ):(3+6n)
Ho n n

6 5.6
or y2=B2—3=3+H—3= n>0

Since y; >0, the Gamma Distribution is positively skewed and v, > 0 implies that
it is leptokurtic. Obviously, the point ([31, Bz) lies on the straight line 23, — 3B, -6=0.
Additive Property of Gamma Distribution:

The sum of independent gamma variate is also a gamma variate. More specifically,

if Xq, Xgyeeeens , X are independent gamma variates with parameters ny, Ny, -+« Ny
respectively then X;+X,+---- +X| is also a gamma variate with parameter
Ny +Ny e +N,
Proof: Since X; 