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ANALYSIS OF QUANTITATIVE DATA

Object:

After studing the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of measures of central tendency-mean, median and
mode; Measures of Dispersion, relative dispersion and their area of applications.

Structure of the lesson:

This consists of .... sections as detailed below:

1.1 Measure of Central Tendency - Introduction

1.1.1 Characteristics of a good average

1.1.2 Arithmetic Mean

1.1.3 Median

1.1.4 Mode

1.1.5 Workedout Examples

1.2 Measures of Dispersion

1.2.1 Introduction

1.2.2 Characteristics of good measures of dispersion

1.2.3 Range

1.2.4 Quartile Deviation (Q.D.)

1.2.5 Mean Deviation (M.D.)

1.2.6 Standard Deviation (S.D.)

1.2.7 Workedout Examples

1.3 Exercise

1.4 Answers

1.1 Measure of Central Tendency - Introduction:

According to professor Boweley averages are "Statistical Constants which enable us to
understand in a single effort the significance of the whole." They give us an idea about the
concentration of the values in the central part of the distribution. So they are called measures of
central tendency.
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1.1.1 Characteristics of a good average: According to G.V. Yule, the properties of a good
average are as follows:

1. It should be well defined.

2. It should be easy to calculate.

3. It should be capable of further algebraic treatment.

4. It should be based on all the observations.

5. It should not be affected by extreme observations.

6. It should not be affected by fluctuations in sampling.

1.1.2 Arthmetic Mean: The arithmetic mean or simple mean of set of observations is defined as
teir sum, divided by the number of observations.

sum of observation
i.e., mean

number of observations


Let 1 2 nx , x , ,x               be the n observations then their mean is denoted as x and

it is given by

1 2 nx x x
mean x

n

          


n

i
i 1

1
x

n 
 

In the case of grouped frequency distribution, if 1 2 nx , x , ,x        be the mid values of

class interval with corresponding frequencies 1 2 nf , f , , f          respectively, then their mean

x is given by

1 1 2 2 n n

1 2 n

f x f x f x
mean x

f f f

           


         

n

i i
i 1

i

f x

f







n

i i
i 1

1
f x

N 
  where N in total frequency is iN f 
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Calculation of Mean by Change of origin and Scale: If x values and corresponding
frequencies (f) are large then the calculation of mean takes large time. This can be reduced
by taking th deviations of the given values from any arbitrary point "A" as below:

Let i id x A 

then i i i i if d f x f A   

i i i i if d f x A f    

i i i i i
1 1 1

f d f x A f
N N N

    

i i
1

f d x A
N

   if N

i i
1

x A f d
N

   

This formula is much convenient to apply. It is also called short-cut method.

In the case of frequency distribution having equal class interval say having width "h", it
is convenient to use change of origin (A) and scale (h).

If i
i

x A
U

h


 then

i ix A hU 

i i i i if x A f h f U    

i i i i i
1 1 1

f x A f h f U
N N N

     

x A h U   if N

Hence mean is effected by both change of origin and scale. This formula is also called
step deviation method.

Properties of mean:

1. Algebric sum of the deviations of a set of values from their mean is zero.

 ii.e. x x 0 

2. Sum of the squared deviations of set of values is minimum when deviations are taken
from mean of the observation.
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3. Let
1

x and
2

x be the man of 1n and 2n observations. The combined mean of  1 2n n

observations is given by

1 21 2

1 2

n x n x
x

n n






4. Let iW be the weights attached to the items ix ; i 1,2,.............,n then the weighted

mean is given by w
i i

i

w x
x

w





.

Merits and Demerits of Man:

Merits of Mean: 1. It is rigidly defined

2. It is easy to understand and easy to calculate

3. It is based on all the observations

4. It is sutable for algebric treatment

5. Mean is an ideal average.

Demerits of Mean: 1. It can not b determined by inspection or graphical method.

2. It is not sutable for qualitative data.

3. It can not be obtained if one or more observations is missed.

4. It is affected very much by extreme values.

5. It can not be suitable if te extreme class is open.

1.1.3 Median: The median is defined as the middle most or the central value of the variate, when
the observations are arranged in ascending or decending order of their magnitudes.

In the case of ungrouped data, having size n.

if n is odd then median is middle most observation.

i.e.
th

n 1
median

2

 
  
 

observation.

If n is even the median is mean of two middle terms.

i.e.

th th
n n

1
2 2

median
2

   
    

    observation.
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For the grouped data the median is defined by

N
m h

2
median

f

 
  

  

Where  is the lower limit of the median class.

f is frequency of median class

m is cumutative frequency of the class preceeding the median class

N is total frequency

h is width of class interval of median class

Note: To decide the median class calculate
N

2
value and see the cumulative frequency

which is more than or equal to
N

2
, the corresponding class is called Median Class.

Merits and Demerits of Median:

Merits: 1. It is rigidly defined

2. It is easy to understand and easy to calculate

3. It is not effected by extreme values.

4. It can be used to calculate for distributions with open end classes.

Demerits: 1. It is not based on all the observations.

2. It is not sutable for mathematical treatment.

3. As compared with mean, it is affected much by fluctuations of sampling.

4. In case of even number of observations median can not be determined
exactly.

Note: To apply median formula, the frequency distribution must be continuous frequency
distribution.

1.1.4 Mode: Mode is the value which occurs most frequently in a set of observations.

In the case of grouped continuous frequency distribution mode is given by the formula.

 
 

1 0

1 0 2

f f h
Mode

2f f f


 

 


Where  is the lower limit of model class

1f is the frequency of the modal class
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0f is the frequency of class preceding model class

2f is the requency of class succeeding the model class.

h is width of model class.

If the distribution is moderately asymmetrical, the mean, median and mode satisfy the
following empirical relationship.

 mean mode 3 mean median  

mode 3 median 2 mean  

Merits and Demerits of Mode:

Merits: 1. Mode can obtain some times by inspection.

2. Mode is readily comprehensible and easy to calculate.

3. Mode is not affected by extreme values.

4. Mode can be conveniently located even if t frequency distribution has
unequal class intervals, but same width for model class, preceding and
succeeding classes.

Demerits: 1. Mode is ill-defined. It is not always possible to find a clearly defined mode.

2. It is not based upon all the observations.

3. It is not suitable of further mathematical treatment.

4. Mode is effected by fluctuations of sampling.

1.1.5 Workedout Examples:

Example 1: Find the arithematic mean of the numbers 80, 30, 50, 120, 100.

Solution:  
80 30 50 120 100 380

Mean 76x
5 5

   
  

Example 2: Find the mean of the weekly earnings from the following:

Wekly earnings in Rs (X): 10 12 14 16 18 20 22

Number of employees (f): 3 6 10 15 24 42 75
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Solution: x f fx

10 3 30

12 6 72

14 10 140

16 15 240

18 24 432

20 42 840

22 75 1050

175 3404

  i i
1

Mean f xx
N

  

3404
19.45

175
 

Step Deviation Method:

x f
x 16

U
2


 f U

10 3 - 3 - 9

12 6 - 2 - 12

14 10 - 1 - 10

16 15 0 0

18 24 1 24

20 42 2 84

22 75 3 225

175 302

Here A = 16, h = 2

Mean x A h U  

302
16 2

175

 
   

 

16 3.45 19.45  



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @1 . 8 Acharya Nagarjuna UniversityCentre for Distence Education

Example 3: A distribution of 3 components with frequencies 45, 40, 65 having their
means 2, 2.5 and 2 respectively. Findthe combined mean.

Solution: Given that 1 2 3n 45, n 40, n 65  

1 2 3x 2, x 2 5, x 2   

1 2 31 2 3

1 2 3

n x n x n x
Combined Mean x

n n n

 
 

 

45 2 40 2 5 65 2

45 40 65

     


 

320
2 13

150
  

Example 4: Calculate the man for the following frequency distribution.

Class interval: 0 - 8 8 - 16 16 - 24 24 - 32 32 - 40 40 - 48

Frequency: 8 7 16 24 15 7

Solution:

C.I. Frequecny Mid Value
x 28

U
8


 f U

f x

0 - 8 8 4 - 3 - 24

8 - 16 7 12 - 2 - 14

16 - 24 16 20 - 1 - 16

24 - 32 24 28 0 0

32 - 40 15 36 1 15

40 - 48 7 44 2 14

77 -25

Hence A 28, h 8 

Mean x A h U  

25
28 25 404

77

 
    

 
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Example 5: Show that the weighted mean of first n natural numbers whose weigths are

equal to the corresponding numbers is equal to  
1

2n 1
3

 .

Solution:
1 1 2 2 3 3 n n

Mean
1 2 3 n

              


           

2 2 2 21 2 3 n

1 2 3 n

          


       

   

 

n n 1 2n 1

n n 1
6

2

 


  
 
 

 
 

2 2n 1 1
2n 1

6 3


  

Example 6: Pre average salary of male employees in a firm was Rs. 520 and that of
female was Rs. 420. The mean salary of all the employees was Rs. 500.
Find the percentage of male and female employees.

Solution: Let 1n and 2n denote respectively the number of male and female employees.

1x and
2x their averages respectively..

Let x be the average of salary of all the employees.

 given that
1 2x 520 ; x 420  and x 500 .

We know that
1 21 2

1 2

n x n x
x

n n






1 2

1 2

n 520 n 420
500

n n


 



1 2 1 2n 500 n 500 n 520 n 420   

   2 1n 500 420 n 520 500   

2 180 n 20 n 
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1
1 2

2

n 4
n : n 4 :1

n 1
   

Hence the percentage of male employees
4

100 80 %
4 1

  


 Percentage of female employees
1

100 20 %
5

  

Example 7: From the following data find the value of median

35, 49, 225, 50, 30, 65, 40, 55, 52, 76, 48, 325, 47, 32.

Solution: Arrange the data in order the data becomes,

30, 32, 35, 40, 47, 48, 49, 50, 52, 55, 60, 65, 76, 225, 325.

Here n 15

th
n 1

Median
2

 
   

 
observation

th
16

2

 
  
 

observation

th8 observation

50

 Median value is 50.

Example 8: From the following data find the value of median.

Income (in Rs.): 1000 1500 800 2000 2500 1800

No. of Persons: 24 26 16 20 6 30

Solution: Income (in Rs.): 800 1000 1500 1800 2000 2500

No. of Persons(f): 16 24 26 30 20 6

Cumulative Frequency (c.f.): 16 40 66 96 116 122

N 122

N 1 122 1
61.5

2 2

 
  

 
th

thN 1
Median item 61.5 item 1500

2

 
    

 
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Example 9: Calculate median from the following data:

Wage (in Rs.): 0 - 99 100 - 199 200 - 299 300 - 399 400 - 499 500 - 599

No of Persons: 10 18 25 12 8 3

Solution: This is grouped discontinuous data. To convert this into continuous form
average of first class upper limit and second class lower limit.

99 100
i.e. 99.5

2




i.e. the first class upper limit is 99.5 and second class lower limit is 99.5

 The continuous form is 0 - 99.5, 99.5 - 199.5, ...............

Wage (in Rs.) No. of Persons (f) Cumulative Frequency (cf)

0 - 99.5 10 10

99.5 - 99.5 18 28

199.5 - 299.5 25 53

299.5 - 399.5 12 65

399.5 - 499.5 8 73

499.5 - 599.5 3 76

N = 76

N 76
38

2 2
  

i.e. Median class is 199.5 - 299.5

199.5, f 25, m 28, h 100    

N
m h

2
Median

f

 
 

   

 38 28 100
199.5 239.5

25


  

Example 10: Calculate median value from the following data:

C.I.: 5 - 15 15 - 25 25 - 35 35 - 45 45 - 55 55 - 65

f : 20 5 15 5 35 20
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Solution:

C.I.: 5 - 15 15 - 25 25 - 35 35 - 45 45 - 55 55 - 65

f : 20 5 15 5 35 20

C.f.: 20 25 40 45 80 100

Here N = 100

N 100
50

2 2
  

i.e. Median class is 45 - 55

45, f 35, m 45, h 10.    

N
m h

2
Median

f

 
 

   

 50 45 10
45

35


 

50
45

35
 

45 1 43 46 43    

Example 11: Calculate mode of the following data

C.I.: 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99

f : 7 10 12 18 10 6 3 2 1

Solution: The give a grouped discontinuaes data can be converted into continuous form
is as follows:

C.I.: 9.5 - 19.5 19.5 - 29.5 29.5 - 39.5 39.5 - 49.5 49.5 - 59.5

f : 7 10 12 18 10

C.I.: 59.5 - 69.5 69.5 - 79.5 79.5 - 89.5 89.5 - 99.5

f : 6 3 2 1

Highest frequency is 18 i.e. Mode Class is 39.5 - 49.5

1 0 239.5, f 18, f 12, f 10, h 10     .
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 
 

1 0

1 0 2

f f h
Mode

2f f f


 

 


 
 

18 12 10
39 5 43 3

2 18 12 10


    

  

Example 12: Calculate the mode of the following distribution.

C.I.: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50

f : 2 6 11 20 40

C.I.: 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100

f : 75 45 25 18 8

Solution: Highest frequency is 75 and it is in the class 50 - 60.

1 0 250, f 75, f 40, f 45, h 10      .

 
 

1 0

1 0 2

f f h
Mode

2f f f


 

 


 
 

75 40 10
50

2 75 40 45


 

  

 
350

50 55.4 app
65

  

1.2 Measures of Dispersion:

1.2.1 Introduction: Averages give us an idea of the concentration of observations about the
central part of the distribution. If we know the average alone, we cannot form complete idea
about the distribution. To illustrate this consider the following:

Series A: 15 20 25 30 35

Series B: 5 18 25 40 65

These two sets of observations have the same median. However, it may be noticed
that observations in series - A are less deviations from average while series - B are large
deviations from average (Median). Thus we can say that variability of series - B is more than
that of series - A. Hence average alone we cannot study completely the characteristics of
data and hence the necessity of measure of dispersion or variation. The various measures
of dispersions are (i) Range, (ii) Mean Deviation, (iii) Quartile Deviation, (iv) Standard
Deviation.
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According to G.V. Yule, a good measure of Dispersion should have the following:

i) It should be rigidly defined.

ii) It should be easy to calculate and easy to understand.

iii) It should be based on all the observations.

iv) It should be readily comprehensible.

v) It should be capable of further algebric treatment.

vi) It should be affected as little as possible fluctuations of sampling.

1.2.3 Range: Range is the difference between the hightest and lowest values in the data. It is
very useful in statistical quality control.

If x is largest observation and sx is smallest observation then sRange x x 

This is an absolute measure and it is not suitable to compare two or more data with
different units of measurement. To compare two or more situation we use relative measures
of dispersion called as coefficient measures. These are pure numbers and independent of
units of measurement.

The relative measure of range is called coefficient of range and it is given by

Coefficient of Range s

s

x x

x x









1.2.4 Quartile Deviation (Q.D.): It is defined as half the difference between the lower and upper

quartiles. It is also called as semi-interquartile range. If 1Q is first quartile and 3Q is the third

quartile the quartile deviation (Q.D.) is given by

3 1Q Q
Q.D.

2




Coefficient of Q.D. 3 1

3 1

Q Q

Q Q






1.2.5 Mean Deviation (M.D.): It is sum absolute deviations taken from average divided by

number of observations. If 1 2 nx , x , ,x        be te mid values of class intervals with

corresponding frequencies 1 2 nf , f , , f          respectively then mean deviation is given by

Mean Deviation i i
1

f x A
N

 

Where A is any average.



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @1 . 15 Analysis of ...Probability And Distributions

If A is mean then M.D. about mean is given by

M.D. about mean i i
1

f x x
N

 

Coefficient of M.D.
M.D. Value

The Average used in it


i.e. coefficient of M.D. about mean
M.D. about mean

mean


1.2.6 Standard Deviation (S.D.): Standard Deviation is the positive square root of the arthemetic
mean of squares of deviation from mean.

It is denoted by  and it is given by

   
2

i i
1

S.D. f x x
N

  

The square of S.D. is known as variance and it is denoted as 2 .

 
22

i i
1

Variance f x x
N

   

Coefficient of variation (C.V.)
S.D.

100
mean

 

100
x


 

Among the relative measures the coefficient of variation is the most important and is
used in almost all cases.

The simplified form of caliculation of variance is variance  22 2
i i

1
f x x

N
  

The shortcut method of calculation of variance is given by

if
x a

U
h




x a h U  

x a h U  
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 i ix x h U U   

   
2 22

i ix x h U U   

 
22

x i i
1

f x x
N

  

 
22

i i
1

f h U U
N

 

 
22

i i
1

h f U U
N

 

2 2
Uh 

 VAriance is effected by change of origin but is effected by scale.

1.2.7 Workedout Examples:

Example 1: Find the range and coefficient of range for the observations.

10, 8, 5, 10, 9, 14, 7, 4, 20.

Solution: Range 20 4 16  

Coefficient of range
s

s

x x 20 4 16 4 2

x x 20 4 24 6 3

 
    

 




Example 2: The following are the marks of 80 students of a class. Find the range and
coefficiant of range.

Marks: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80

No. of Students: 4 12 20 18 15 8 2 1

Solution: Range sx x 80 0 80    

Coefficient of Range
s

s

x x 80 0
1

x x 80 1

 
  

 




Example 3: Calculate the quartile deviation and its coefficient from the following data.

Marks: 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45.

Solution: Arrange the data in order we get

39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45
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th th
th

1
n 1 12 1

Q size of item 3 25 item
4 4

    
      

   

 rd th rd3 item 0 25 4 3   

 40 0 25 41 40   

40 0 25 40 25    

   th
th

3

3 n 1 3 12 1
Q size of item 9 75 item

4 4

 
   

 th th th9 item 0 75 10 9   

 43 0 75 44 43   

43 0 75 43.75   

3 1Q Q
Q.D.

2


 

43 75 40 25 3 5
1 75

2 2

   
   

Coefficient of Q.D.
3 1

3 1

Q Q 43 75 40 25

Q Q 43 75 40 25

   
 

   

3 5
0 042

84


  

Example 4: Compute coefficient of Quartile Deviation from the following data.

Sales in Rs. lakhs: 4 - 8 8 - 12 12 - 16 16 - 20

No. of Companies: 6 10 18 30

Sales in Rs. lakhs: 20 - 24 24 - 28 28 - 32 32 - 36 36 - 40

No. of Companies: 15 12 10 6 2



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @1 . 18 Acharya Nagarjuna UniversityCentre for Distence Education

Solution:

Sales in Rs. No. of Companies c.f.

Lakhs (C.I.) (f)

4 - 8 6 6

8 - 12 10 16

12 - 16 18 34

16 - 20 30 64

20 - 24 15 79

24 - 28 12 91

28 - 32 10 101

32 - 36 6 107

36 - 40 2 109

N = 109

thN 109
27 25 item

4 4
  

i.e. 1Q is in the class 12 - 16

1 12, f 18, m 16, h 4   

1

N
m h

4
Q

f

 
 

  

 27 25 16 4
12

18

 
 

11 25
12 4

18


 

12 2 5 14 5    

 
3N

3 27 25 81 75
4

   
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i.e. 3Q is in the class 24 - 28.

3 24, f 12, m 79, h 4   

 3

3 3
3

3N
m h

81 75 79 4 114
Q 24 24 24 917

f 12 12

 
           

3 1Q Q
Q D

2


  

24 917 14 5

2

  


10 417
5 2085

2


  

Coefficient of
3 1

3 1

Q Q 24 917 14 5
Q D

Q Q 24 917 14 5

   
   

   

10 417
0 264

39 417


  



Example 5: Calculate mean deviation from mean for the following data 5, 10, 15, 20, 25,
30, 35.

Solution: i
1 5 10 15 20 25 30 35 140

Mean x 20
n 7 7

     
   

x x x x x

5 - 15 15

10 - 10 10

15 - 5 5

20 0 0

25 5 5

30 10 10

35 15 15

60
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 Mean Deviation about mean i
1

x x
N

 

60
8 57

7
  

Example 6: Calculate mean deviation from mean to the following data:

x : 2 4 6 8 10

f : 1 4 6 4 1

Solution:

x f f x ix x i if x x

2 1 2 4 4

4 4 16 2 8

6 6 36 0 0

8 4 32 2 8

10 1 10 4 4

16 96 24

i i
1 96

mean x f x 5
N 16

  

Mean Deviation i i
1

f x x
N

 

24
1 5

16
  

Example 7: From the following data calculate mean deviation and its coefficient.

C.I. : 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30

f : 5 8 10 7 6 4
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Solution:

C.I. f mid x c.f. ix med i if x md

0 - 5 5 2.5 5 11 55

5 - 10 8 7.5 13 6 48

10 - 15 10 12.5 23 1 10

15 - 20 7 17.5 30 4 28

20 - 25 6 22.5 36 9 54

25 - 30 4 27.5 40 14 56

40 251

Median

N
m h

2

f

 
 

  

 20 13 5
10 13 5

10


   

M.D. about median i i
1

f x md
N

 

251
6 275

40
  

Coefficient of M.D.
M.D. Value

Median


6 275
0 465

13 5


  



Example 8: Ten measurements were made with the following results:

Length in Cms : 77, 73, 75, 70, 72, 76, 75, 72, 74, 76.

Find the standard deviation.
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Solution:

x d x 75  2d

77 2 4

73 - 2 4

75 0 0

70 - 5 25

72 - 3 9

76 1 1

75 0 0

74 - 1 1

76 1 1

- 10 54

2
2
i i

1 1
S D d d

M M

 
       

 

2
54 10

10 10

 
   

 

5 4 1  

4 4 2 09   

Example 9: Calculate mean and standard deviation to the following data also C.V.

Marks : 10 20 30 40 50 60

No. of Students : 8 12 20 10 7 3
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Solution:

x f
x 30

U
10


 f U 2f U

10 8 - 2 - 16 32

20 12 - 1 - 12 12

30 20 0 0 0

40 10 1 10 10

50 7 2 14 28

60 3 3 9 27

60 5 109

i i
1

U f U
N

 

5
0 083

60
  

 2L 2
U

1
f U U

N
  

2
109 5

60 60

 
   

 

1 817 0 0069   

1 81 

Mean x a h U  

 30 10 0 083 30 83    

Variance 2 2 2
Uh  

   2
10 1 81 

100 1 81 181   
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S D 181    

13 5 

Coefficient of variation C.V. 100
x


 

13 5
100

30 83


 



43 7885 

Example 10: Calculate mean and standard deviation for the data given below.

Marks: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50

No. of students: 7 12 24 10 7

Solution:

C.I. f Mid x
x 25

U
10


 f U 2f U

0 - 10 7 5 - 2 - 14 28

10 - 20 12 15 - 1 - 12 12

20 - 30 24 25 0 0 0

30 - 40 10 35 1 10 10

40 - 50 7 45 2 14 28

60 - 2 78

1
U f U

N
 

2

60




A = 25, h = 10

Mean x a h U  

2
25 10

60

 
    

25 0 33 24 67    
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 221
S D h f U U

N
    

2
78 2

10
60 60

 
   

 

10 1 3 0 001   

10 1 1397 11 397    

1.3 Exercise:

1. Define various measures of central tendencies.

2. Define various measures of dispersions.

3. Calculate median from the following data :

70, 60, 75, 90, 65, 80, 42, 65, 72.

4. The mean of marks in statistics of 100 students of a class was 72. The mean of marks
of boys was 75 while their number was 70. Find out the mean marks of girls in the
class.

5. Calculate the mean marks from the following data by direct method and step deviation
method.

Marks : 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 -70

No. of students : 5 12 15 25 8 3 2

6. Compute median from the following data:

C.I. : 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69

f : 12 19 31 27 16 8

7. Calculate mode value from the following data:

Age in years: 55 - 60 50 - 55 45 - 50 40 - 45 35 - 40 30 - 35 25 - 30 20 - 25

No. of persons: 8 12 30 40 20 8 7 2

8. The following are the wages of 8 workers of a factory. Findthe range and coefficient of
range.

Wages in Rs.: 1400, 1450, 1520, 1380, 1485, 1495, 1575, 1440.

9. Calculate the appropriate measure of dispersion from the following data:

Wages in Rs. : Below 35 35 - 37 38 - 40 41 - 43 Over 43

No. of wage earners: 14 60 95 24 7
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10. Calculate mean and standard deviation to the following data:

600, 620, 640, 620, 680, 670, 680, 640, 700, 650.

11. TWo cricketers scored the following runs in the several innings. Find who is a better
run - getter and who is more consistent players.

Player A : 42, 17, 83, 59, 72, 76, 64, 45, 40, 32.

Player B : 28, 70, 31, 0, 59, 108, 82, 14, 3, 95.

12. Coefficient of variation of two series are 58 % and 69 % their standard deviations are
21.2 and 15.6 respectively. What are their means.

13. Define standard deviation and C.V. line the step deviation formula for S.D.

14. Distinquish between mean and median.

15. Distinquish between mean and mode.

1.4 Answers:

3. Median = 70

4. Number of girls are 65

5. Mean = 30.14

6. Median = 37.73

7. Mode = 43.33

8. Range = Rs. 195

Coefficient of Range = 0.066

9. Q.D. = 1.8

10. Mean = 650

S.D. = 30.33

11. C.V. for A = 37.92

C.V. for B = 75.6

 A is more consistent

12. Means are 36.55 and 22.6
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MOMENTS

Syllabus :

Importance of moments, Central and non central momets shappard's corrections for moments
for grouped data. Skewness and Kurtosis - their measures including those based on quartile and
moments with real life examples.

Structure of the Lesson :

2.1 Introduction

2.2 Definitions

2.3 Central moments in terms of non central moments

2.4 Non central moments in terms of central moments

2.5 Change of Origin and Scale

2.6 Shappond's Corrections

2.7 Skewness

2.8 Kurtosis

2.9 Merits and Demerits of moments

2.10 Example

2.11 Excercise

2.12 Summary

2.13 Technical Terms

Object :

After studying the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of non-central moments, central moments, skewness,
kurtosis with real life examples.

2.1 Introduction :

To form an idea about the nature of the distribution averages and dispersions are not enough
to give clear idea. To study the pattern of distribution there are other comparable characteristics
also known as symmetry and peakedness of which the former is known as skewness and the
latter as kurtsis. To study these measures first we have to study the idea of moments.
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2.2 Definition :

The moments are of three types, they are

(i) Raw moments, (ii) Moments ablut any point, (iii) Central moments.

(i) Raw Moments : If 1 2 nx , x ,................., x are mid values of class interval with corresponding

frequencies 1 2 nf , f ,.........., f respectively then thr moment about orgin or
thr raw moment

is denoted as
1
r and it is given by

n
1 r
r i i

i 1

1
f x ; r 0,1, 2,..........

N 
  

inarticular if r = 1,
n

1
1 i i

i 1

1
f X x

N 
  

Therefore first moment about orgin is mean.

(ii) Non-Central Moments (or) Moments about any Point : If 1 2 nx , x ,............., x be the mid

values of class interval with corresponding frequencies 1 2 nf , f ,...........f respectively then the

thr moment about a point A is denoted as
1
r and it is defined as

 
n r1

r i i
i 1

1
f x A

N 
    

n r1
r i i

i 1

1
f x A

N 
  

where
n

i
i 1

xN f


 

It is also called as thr non-central moment.

If i id x A  then
1 r
r i i

1
f d

N
  

In particular  01
0 i i i

1 1
f x A f 1

N N
     

 1
1 i i

1
f x A

N
  
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i i i
1 1

f x A f
N N

  

x A  if N

 Mean
1
1x A 

(iii) Cental Moments : If 1 2, nx , x ..........., x be the mid values of class interval with corresponding

frequencies 1 2 nf , f ,........f respectively then
thr moment about mean x is denoted as r

and it is given by

 rr i i
1

t x x
N

   r = 0,1,2,..........

r
i i

1
r t Z

N
  where i iz x x 

It is also called as thr central moment

Imparticular  0o i i i
1 1

f x x t 1
N N

     

 1 i i
1

f x x
N

  

i i i
1 1

f x x t
N N

   

x x  it N

= 0

 22 i i
1

f x x Variance
N

   

2.3 Expression of Central Moments in Terms of Non-Central
Moments:

We have, by definition of central moments,

 rr i i
1

t x x
N

  
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 ri i
1

f x A A x
N

    where "A" is a constant

   
r

i i
1

f x A x A
N

      

 
r1

i i 1
1

f d
N

  i i

1
1

d x A

x A

 

  



 
r

1
r i i 1

1
f d

N
  

       
2 3 rrr r 1 1 r 2 1 r 3 1 1

i i 1 i 1 2 i 1 3 i 1 1
1

f d rc d rc d rc d ........... 1
N

   
             

   
rrr r 1 1 1

i i 1 i i 1 1
1 1

f d rc f d ............ 1
N N

 
        

 

       
2 3 rr1 1 1 1 1 1 1 1

r 1 r 1 1 2 r 2 1 3 r 3 1 1rc rc rc ........ 1               

Hence the expression of central moments interms non-central moments is

       
2 3 rr1 1 1 1 1 1 1 1

r 1 r 1 1 2 r 2 1 3 r 3 1 1rc rc rc ........ 1               

2.4 Expression of Non - Central Moments in Terms of Central
Moments:

By the definition of non-central moments, we have

 r1
r i i

1
f x A

N
  

r
i i

1
f x x x A

N
      

r1
i i 1

1
f z

N
     ; where i iz x x 

1
1 x A  
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   
2 rr r 1 1 r 2 1 1

i i 1 i 1 2 i 1 1
1

f z rc z rc z .........
N

  
          

   
2 rr r 1 1 r 2 1 1

i i 1 i i 1 2 i i 1 1
1 1 1

f z rc f z rc f z ............
N N N

    
            

   

     
2 r1 1 1

r 1 r 1 1 2 r 2 1 1rc rc .........            ..................(2.4.1)

Summary :

Subsituting r = 0,1,2,3,4 in (2.3.1) and (2.4.1) we get

1
0 1  0 1 

1
1 x A   1 0 

 
21 1

2 2 1     
21 1

2 2 1    

 
31 1 1

3 3 2 1 13         31 1 1
3 3 2 1 i3 2       

   
2 41 1 1 1

4 4 3 1 2 1 14 6             
2 41 1 1 1 1 1

4 4 3 1 2 1 14 6 3          

2.5 Effect of Change of Origin and Scale on Moments:

Theorem (2.5.1) : Cental moments are independent of change of origin but not scale.

Proof : Let
i

i
x A

U
h


 so that

i ix A hU 

x A hU 

 i ix x h U U   

Thus  rr i i
1

f x x
N

  

 
r

i i
1

f h U U
N

    
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 rr
i i

1
h f U U

N
 

r
rh  of U

thr central moment of X - distribution =
rh times

thr central moment of U - distibution.

Theorem (2.5.2) : non - Central moments are independent of change of origin but not scale.

Proof : Let i
i

x A
U

h


 so that

i ix A hU 

i ix A hU  

Thus  r1
r i i

1
f x A

N
  

 ri i
1

f hU
N

 

r r
i i

1
h f U

N
 

r 1
rh  of U about origin.

Thus
thr non - central moment of distribution of

rx h times thr moment about origin of U.

Hence Non - Central moments are independent of change of origin but not scale.

2.4 Shappard's Corrections for moments :

In case of frequency distibution, we assume that the frequencies are concentrated at mid -
points of class intervals. If the distribution is symmetrical or slightly symmetrical and the class

intervals are not greater than

th
1

20

 
 
 

of the range of the distribution then the assumption is true.

This presumption is likely to gives rise to some error in the values of the moments and is
called the "grouping error". W.F. shappard corrected the effect due to grouping in the mid point of
the intervals by the following formulas known as Shappard's corrections. He proved that the correction
is made for, if (i) the frequency distribution is continuous (ii) the frequency tails off to zero in both
directions. The corrected moments are
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 
2

2 2
h

Corrected
12

  

 3 3Corrected 

  2 4
4 4 2

1 7
Corrected h h

2 240
     

Where h is the width of the class interval.

Note : Correction is not necessary for odd moments, because in these cases the algebric signs
of the deviations +, - remains as they are. Hence, the error is neutralized because of its
compensatory nature.

Pearson's  and  Coefficients :

Karl Pearson defined the following four coefficients, based upon the first four central moments
they are

2
3

1 3
2


 

 1 1
  

4
2 2

2


 

 2 2 3  

The sign of 1 will be that of 3 .

1 and 1 are the measures of skewness.

2 and 2 are measures of kurtsis.

2.7 Measures of Skewness :

2.7.1 Symmetrical distribution : A distribution is said to be symmetrical when (i) the frequencies
are symmetrically distributed about the mean. (ii) For symmetrical distribution the mean,

mode and median coincide. (iii) Median lies half way between the two quantites. i.e. 3Q

- median = median - 1Q

Ex: The following distribution is symmetical about its mean 5

x 1 2 3 4 5 6 7 8 9

f 3 4 6 9 10 9 6 4 3
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2.7.2 Skewness :

Skewness means "lack of symmetry". We study skewness to have an idea about the shape
of the curve which we can draw with the help of the given data. The distribution is said to be
skewed if

(i) Mean, Median and Mode fall at different points.

i.e. Mean  Median  Mode.

(ii) Quantites are not equidistant from median.

i.e. 3Q - Median  Medium - 1Q

(iii) The curve drawn with the help of the given data is not symmetrical but bent more to one
side than to the other and more points lie on that side.

Skewness is said to be positive, if the curve of the distribution has more longer tail on right
side. the skewness in said to be negative, if the curve of the distribution has more longer tail on left
side. The following are the figures.

2.7.3 Coefficient of skewness :

The various measures of coefficient of skewness are

(i) Karl Pearson's coefficient of skewness

(ii) Bowley's coefficient of skewness

(iii) Coefficient of skewness based on moments.

(i) Karl Pearson's Coefficient of Skewness :

The Karl Pearson's coefficient of skewness is given by the formula.

Coefficient of skewness = sk =
Mean Mode

Skandard Deviation



om m




Some times mode is diffecult to obtain but median is always easy to locate. If the mode is ill
- defined then we may use the relation.

Mean - Mode = 3(mean - median)

In this case, Karl Pearson's coefficient of skewness become.

Coefficient of skewness =
 3 Mean Median

Stan dard Deviation


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The limits of eocfficient of skewness based on mode are 1 and based on median are 3 .

Skewness is positive of Mean > Mode or Mean > Median.

Skewness is negative if mean < mode or mean < median.

(ii) Bowley's coefficient of skewness :

Bowley's coefficient of skewness is based on quartiles and it is given by the formula.

coefficient of skewness =
   
   

3 1

3 1

Q Median Median Q

Q Median Median Q

  

  

3 1

3 1

Q Q 2Median

Q Q

 




It is also known as Quantile coefficent of skewness. Where 3Q is third quartile and 1Q is

first quartile. It lies between -1 and +1.

If coefficient of skewness > 0 then the distribution is positively skewed. If coefficent of
skewness < 0 then the distribution is negatively skewed.

(iii) Coefficient of Skewness based on Moments :

The coefficient of skewness based on moments is given by

Coefficinet of skewness
 

 
1 2

2 1

3

2 5 6 9

  


   

Coefficient of skewness is zero if either 1 0  or 2 3   . But 2 3  since 4
2 2

2


 



can not be negative. Hence coefficent of skewness = 0 if and only at 1 0  .

Thus for symmetrical distribution 1 0 

To study the distribution is skewed or not it is convenient to study by using 1 where

3
2

3
1 1

2

 
   


.

If 1 0  then the distribution is positively skewed.

If 1 0  then the distribution is negatively skewed.

If 1 0  then the distributionis symmetrical.
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Theorem (2.7.3.1) : Show that Bowley's coefficient of skewness lies between -1 and +1.

Proof : We know that for any two real positive numbers a and b (a, b > 0).

a b a b  

a b
1

a b


 



We know that 3Q - Median and Median - 1Q are both non - negative.

Thus if a = 3Q - Median, b = Median - 1Q then we get

   
   

3 1

3 1

Q Median Median Q
1

Q Median Median Q

  


  

Bowley 's Coefficient of sk 1 

1 Bowley 's Coefficient of sk 1   

Hence Bowley's coefficient of skewness is always lies -1 and +1.

2.8 Kurtosis:

The skewness was mainly concerned with the identification of the right and left tails of
distribution. In addition to this measure karl pearson gave another measure called "Convexity of a
Curve" or Kurtosis. Kurtosis enables us to have an idea about the flatness or peakedness of the

Curve. Kurtosis is measured by coefficent 2 or 2 and given by

4
2 2

2


 


and 2 2 3   .

The curve which is neither flat nor peaked is called the normal curve or mesokurtic curve and

for that curve 2 3  or 2 0  .

The curve which is flatter than the normal curve is known as platykurtic and for such a curve

2 3  or 2 0  .

The curve which is more peaked than the normal curve is called leptokurtic and for such a

curve 2 3  or 2 0  .
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2.9 Merits and Demerits of Moments:

Merits : moments are used to study the general nature of the frequency distribution. We compare
one distribution with another distribution with respect to those characteristics. In fact, mean,
variance, skewness and kurtosis etc are nothing but moments. Thus for analysing a statistical
data moments are also used in describing the shape and location of a frequency distribution.
These are useful in fitting of distributions.

Demerits :

1. The higher themoments the larger error would be subjected. Hence the use of higher
order moments are avoided in practice.

2. In studying a distribution through moments, we compare it .with normal distribution. So
this method of comparision becomes less effective when a distribution is very much
away from the normal conditions.

3. In symmetrical distributions all the odd order moments are zero. Thus, our scope of
knowledge is reduced to half.

4. In some theoritical distributions some of moments do not exist.

Ex: Mean does not exist in Cavchy distribution.

Theorem 2.8.1 : Show that for discrete distribution 2 1  .

Proof : If 1 2 nx , x ,..........., x be the mid values of class interval with conresponding frequencing

1 2 nf , f ,................, f respectively..

by definition 4
2 2

2


 



where  22 i i
1

f x x
N

  

 44 i i
1

f x x
N

  

We have to prove that 2 1 

i.e. 4
2
2

1





i.e. 2
4 2  
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i.e.    
2

4 2
i i i i

1 1
f x x f x x

N N

   
         

if  2ix x Zi  then we have to prove

that

2
2

i i i i
1 1

f z f z
N N

 
  
 

i.e.

2
2

i i i i
1 1

f z f z 0
N N

 
   
 

i.e.  2i i
1

f z z 0
N

 

Which is true since square of the quantity is non - negative. Hence 2 1 

Theorem 2.8.2 : Show that 2 1  

Proof : If 1 2 nx , x ,............., x be the mid values of class interval with corresponding frequencives

1 2 nf , f ,.................., f respectively..

By definition  22 i i
1

f x x
N

    33 i
1

f x x
N

    44 i i
1

f x x
N

  

Let iy x x  then
2

2 i i
1

f y
N

  
3

3 i i
1

f y
N

  
4

4 i i
1

f y
N

  

We know that square of the quantity is non negative

i.e.
22

i i i
1

f y ty 0
N

    

4 2 2 3
i i i i i

1 1 1
f y t y 2t f y 0

N N N
     

2
4 2 3t 2t 0     

 23 2 42 4 0      2 2at bt c 0 then b 4ac 0     
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2
3 2 44 4 0     

2
3 2 4   

2
2 4 3    

2
32 4

3 3
2 2

 
 

 

2
34

2 3
2 2


 

 

2 1  

2.10 Examples:

Ex 1 : The first three moments of a distribution about value 2 are 1,16 and -40. Show that the

variable mean = 3, variance 15 and 3 86   . Also show that the first three moments

about zero are 3, 24 and 76.

Sol : Given the momnets about the point A = 2. They are

1 1 1
1 2 31, 16, 40      

 Mean 1
1x A 2 1 3     

Variance  
21 1

2 2 1   

= 16 - 1 = 15

   
31 1 1 1

3 3 2 1 13 2       

    340 3 16 1 2 1 86   

The first moment about zero (origin) 1
1 x 3  

   
2 21 1

2 2 1 15 3 24      
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   
31 1 1

3 3 2 1 13      

    386 3 15 3 3 76   

Ex 2 : The first four moments of a distribution about the value 5 of the variable are 2, 20, 40 and

50. Find mean, variance, 3 and 4 values.

Sol : Given that A = 5, 1
1 2  , 1

2 20  , 1
3 40  , 1

4 50 

We know that  1
1x A  

5 2 7  

 Mean = 7.

Moments about the mean are

 
21 1

2 2 1   

 220 2 16  

 
31 1 1 1

3 3 2 1 13 2      

    340 3 20 2 2 2  

= - 64

   
21 41 1 1 1 1 1

4 4 3 1 2 1 14 6 3         

       2 4
50 4 40 2 6 20 2 3 2   

= 162.

Ex 3 : For a distribution the mean 10, variance is 16, 1v 1 and 2 is 4. Find the first four

moments about origin.

Sol : Given that x 10 , 2
2 16  

1 1v 1  
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1 1  

2
3
3
2

1


 


 32 3
3 2 16 4096   

3 4096 64  

Given that 2 4 

4
2
2

4


 


2
4 24  

 24 16

= 1024

2 3 4x 10, 16, 64, 1024       

Moments about orgin are

1
1 x 10  

   
2 21 1

2 2 1 16 10 116      

 
31 1 1

3 3 2 1 13      

    364 3 16 10 10  

= 1544

   
2 41 1 1 1

4 4 3 1 2 1 14 6         

      2 4
1024 4 64 10 6 16 10 10   

= 23784
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Ex 4 : The first four moments of a distribution about the point 7 are 2, 8, 11 and 15 respectively.

Obtain 1 and 2 coefficients and comment on the nature of the distribution.

Sol : Given that

A = 7,
1 1 1 1
1 2 3 42, 8, 11, 15       

   
2 21 1

2 2 1 8 2 4       

 
31 1 1 1

3 3 2 1 13 2       

   2 3
11 3 8 2 2  

= 21

   
2 41 1 1 1 1 1

4 4 3 1 2 1 14 6 3         

       2 4
215 4 11 6 8 2 3 2   

= 15 - 88 + 192 - 48

= 71

 22
3

1 3
2

21
6.89

64


    



31
2

3
2
2

21 21 21
2.625

8644


      



 

4
2 2 2

2

71 71
4.4375

164


    



Comment : Since 1 0,  the distribution is postively skewed and since 2 3  , the curve of the

distribution is leptokurtic.

Ex 5 : If the first four moments of a distribution about the value 5 are equal to -4, 22, -117 and
560. Determine the corresponding moments (i) about mean, (ii) about origin.

Sol : Given that A = 5, 1
1 4  , 1

2 22  , 1
3 117   , 1

4 560 

Mean   1
1x A  = 5 - 4 = 1
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(i) Moment about mean

 
21 1

2 2 1 22 16 6      

 
31 1 1 1

3 3 2 1 13 2      

    3117 3 22 4 2 4    

117 264 128 19   

   
2 41 1 1 1 1 1

4 4 3 1 2 1 14 6 3         

       2 4
560 4 117 4 6 22 4 3 4       

560 936 212 768   

= 968

(ii) Moments about origin

We know that first moment about origin is mean

i.e. 1
1 x 1  

 
21 1

2 2 1 6 1 7      

 
31 1 1

3 3 2 1 13      

    319 3 6 1 1  

= 38

   
2 41 1 1 1

4 4 3 1 2 1 14 6          

       2 4
968 4 19 1 6 6 1 1   

968 76 36 1   

= 1071
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Ex 6 : In a frequency distibution coefficient of skewness based upon the quartiles is 0.6. If the
sum of the upper and lower quartiles are 100 and median is 38. Find the values of upper
and lower quantites.

Sol : Coefficient of SK
3 1

3 1

Q Q 2 Median

Q Q

 




Given that 3 1Q Q 100,Median 38   and coefficient of skawness = 0.6

3 1

100 2 38
0.6

Q Q

 
 



3 1
100 76

Q Q 40
0.6


   

3 1Q Q 100  

3 1Q Q 40  32Q 140 

3Q 70 

1 3Q 100 Q 100 70 30    

1 3Q 30 and Q 70  

Ex 7 : A frequency distribution gives the following results. C.V. = 5, Karl Pearsons SK = 0.5 and

2. Find mean and mode of the distribution.

Sol : Given that

C.V. = 5

100 5
x


  

2
100 5

x
  

2 100
x 40

5


  

Karl Pearson's Coefficient of sk = 0.5
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Mean Mode
0.5

S.D


 

40 Mode
0.5

2


 

40 Mode 2 0.5 1    

 Mode = 40 -1 = 39

 Mean = 40, Mode = 39.

EXERCISE:

1. Define central and non-central moments. Define central moments interms of non-central
moments.

2. Define skewness and explain the various measures of coefficient of skewness.

3. Define kurtosis and give its various measures and curves.

4. Show that for any frequency distribution coefficient of Kurtsis is grater than unity.

5. Show that Bowley's coefficient of skewness lies between -1 and +1.

6. What are Shappard's corrections ? Explain them.

7. Show that moments are not effected by origin but effected by scale.

8. The first four moments of a distribution about the value 4 of the variable are -1.5, 17, -30 and

108. Find the moments about mean, 1 and 2 . Also find the moments about origin.

9. The first four moments of a distribution about 4 are 1, 4, 10 and 45. Obtain the moments

about mean, 1 and 2 . Comment on their values.

10. For a distribution the mean is 10, variance is 16, 1 is + 1 and 2 is 4. Obtain the first four

raw moments.

11. The first four central moments of a distribution are 0, 2.5, 0.7 and 18.75. Compute coefficient
of skewness and kurtosis and comment.

12. The first three moments about the origin are

     21 1 1
1 2 3

n 1 n 1 2n 1 n n 1
, ,

2 6 4

   
     

obtain the variance and 1 coefficient.
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13. Prove that      
rr1 1 1 1

r r 1 r 1 1 1rc .......... 1         .

14. Obtain Karl Pearson's coefficient of skewness for the following data.

Class : 5 - 15 15 - 25 25 - 35 35 - 45 45 - 55

Frequency : 14 22 36 18 10

Answers :

8. mean = 2.5, 2 = 14.75, 3 = 39.75, 4 = 142.3125

1
1 = 2.5, 1

2 21  , 1
3 = 166, 1

4 = 1132132

9. mean = 5, 2 = 3, 3 = 0, 4 = 26

1
1 = 5, 1

2 = 28, 1
3 = 170, 1

4 = 1101101

1 20, 2.889   

The distribution is symmetric and platykurtic.

10. 1 1 1 1
1 2 3 410, 116, 1544, 23184       

11. 1 20.0314, 3   

12. Variance
2

2 1
n 1

, 0
12


    .

13. mean = 216, mode = 22,  = 7.137

Karl Pearson coefficient of skewness = -0.056

14. 2 3 4134.56 126.144 41853.26     

1 0.006531  the distribution is positively skewed

2 2.31151  the distribution is Leptokurtic Curve.
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ANALYSIS OF CATEGORICAL DATA

Syllabus:
Consistency of categorical data, independene and association of attributes, various meaures

of association for two way data with real life examples.

Objectives:

After studying the lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of consistency of categorical data, independence
and association of attributes, various measures of association for two way data with real life
examples.

Structure of The Lesson:

This lesson consists of sections as detailed below:

3.1 Introduction

3.2 Notations

3.3 Class and Class Frequencies

3.4 Order of Class Frequencies

3.5 Ultimate Class Frequencies

3.6 Consistnecy

3.7 Independence of Attributs

3.8 Association of Attributs

3.9 Examples

3.10 Exercises

3.11 Answers

3.12 Summary

3.13 Technical Terms

3.1 Introduction:

The statistical data my be classified as two catagiries, they are quantitative data and qualitative
data. Quantitative data means the data which is measured in terms of numbers.
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Ex: Weight in Kgs of a man, height of a person in inches etc...

The data obtained in this way are known as statistics of variable. The other type of statistical
data is called statistics of attributes. Literally an attribute means a quality or characteristic. Theory
of attributes deals with qualitative characteristics which are not quantitatively measurable. Examples
of such situations arise when one deals with characters like smoking, health, honesty etc. In this
case, it is not possible to measure the extent of smoking or honesty but one can covert the number
of persons who possess a particular quality and who do not possess it.

3.2 Notations:

To understand the theory of attributes, it is necessary to introduce some notations for the
classes formed and the number of observations assigned to each. The capital letters A,B,C,.........

will be used to denote the presence or posses the several attributes. The greek letters , , ,            

are generally used to represent the absence of the attributes A,B,C, ................. respectively. For
example if A represents the blindness then  represent not blindness, if B represents smoker then

 represents not smoker etc.

If A denotes the attribute of being blind, B represents the attribute of smoking then the
combination of attributes will be represented by grouping together the letters that indicate the attributes
concerned.

Thus AB stands for blind and smoker

A stands for blind and non-smoker

B stands for not blind and smoker

 stands for not blind and non-smoker

If a third attribute C be included to represent, say male, then ABC will stand for male blind

smokers. Similarly AB , A C, A etc       

3.3 Class and Class - Frequencies:

Different attributes and their combinations are called different classes and the number of
observations assigned to them are called class frequencies. The class frequencies are denoted
by putting the letter or letters within brackets.

If class of the certain attribute can be denoted by letter A then the class frequency can be
denoted as (A).

i.e. (A) means the number of objects belonging to class A.

(AB) means number of objects passessingthe attributes A and B.

Similarly        A , , A , ABC   etc are the number of objects possessing the attributes

A , , AB , ABC   respectively..
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A class frequency of capital letters or positive attributes only is called positive class frequency
and greek letters or nagative attributes are called the negative class frequencies.

Ex:  AB is a positive class frequency

  is a negative class frequency

For conveniance total frequency "N" is taken as a positive class frequency.

3.4 Order of Class Frequencies:

A class containing " r " attributes then it is taken as of thr order class and a class frequecny

containing " r " attributes init is taken as of thr order class frequecny..

Ex: AB, BC, CA are the second order classes and their frequencies      AB , BC , CA are the

second order class frequencies.

Similarly      A , AB , ABC are respectively first, second, third order class frequencies.

Note: Conventionally, total frequency N is taken as the class frequency of order zero.

Class frequency in terms higher order class frequencies:

All the class frequencies of various orders are not indipendent of each other and any class
frequency can always be expressed in terms of class frequencies of higher order.

Thus            N A B C         .

The numbers of A's is equal to the number of A's which are B's added to the number of A's
which are not B's.

i.e.      A AB A  

     B   

Similarly      AB ABC AB  

     A A C A    

     BC B     

     C     and so on

     A AB A   
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       ABC AB A C A      

     B    

       BC B C        

Also    N A  

       AB A B      

               ABC AB A C A BC B C               

3.5 Ultimate Class Frequencies:

Any class frequency is expressable in terms of class frequencies of higher order are called
the ultimate class frequencies. Thus in case of n attributes the ultimate class frequencies will be

the frequency of thn order..

Note:

(1) In case of n attributes, the ultimate class frequencies each contain n symbols and
since each symbol may be written in two ways there are positive part and negative

part, for example A or , B or  etc. Hence the total of ultimate class frequencies of

n attributes is n2 .

If A, B, C are three attributes then the total number of ultimate class frequencies

are
32 8 .

(2) Any class frequency can express as the sum of some of the n2 ultimate class
frequencies.

(3) The total of number of ultimate class frequencies specify the data completely.

Classification:

The objects or individuals possessing or not possessing a particular attribute for two distinct
classes. They are (i) Dichotomy, (ii) Manifold Classifications.

Dichotomy: The process of dividing the collection of individuals into two classes according to the
presence or absence of an attribute is called Dichotomy.

Ex: Total population can be classified into two classes as blind and not blind people.

Manifold Classification: If the number of sub classes are more than two then the grouping is
called manifold classification.
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Ex: Grouping of university students into three classes as fail, second class, first class is a manifold
classification.

Theorem 1: Prove that the total number of class frequencies with 3 attributes is 27.

Proof: Let A, B, C are three attributes. The following are the various orders and their class
frequences.

Order Frequencies Number of frequencies

0 N 1

1            A , B , C , , ,   6

2      AB , AC , BC

     A , A , B  

     B , C , C  

     , ,   12

3        ABC , AB , A C , A  

       BC , B , C ,      8

27

Hence the total number of class frequencies with 3 attributes is 27.

Theorem 2: Prove that total number of class frequencies with n attributes are n3 .

Proof: Suppose the " n " attributes are A, B, C, ,M           

of order zero number of class frequencies = 1

of order 1 number of class frequences = 12 nC

[Since out of n attributes one can be selected in 1nC ways and for each of the 1nC first

order classes there would be two class frequencies Ex: (A) and   for A, (B) and  
for B etc]

of order 2 number of class frequencies 2
2nC 2
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[Since out of n attributes 2 can select 2nC ways and for each of 2nC combinations of

two attributes we can form 4 class frequencies Ex: with two attributes A and B we form

       AB , A , B ,    are 22 class frequencies]

Similarly of order 3 number of class frequencies 3
3nC 2

and so on

of order n the number of class frequencies n
nnC 2

Hence the total number of class frequencies with " n "

Attributes 2 3 n
1 2 3 n1 nc 2 nc 2 nc 2 nc 2             

 n1 2 

n3

Theorem 3: Prove that the total number of positive class frequencies with n attributes in n2 .

Proof: Suppose there are n attributes A, B, C, ,M         

N is the only positive class frequency of order zero.

 number of positive class frequencies of order zero = 1

number of positive class frequencies of order one = 1nc

[since one attribute will give only one positive class freuency, Ex. for A only (A)].

number of positive class frequencies of order 22 nc

[ Out of two attributes 2 can select in 2nc ways and combination of any two attributes will

give only one positive class frequency for example  AB for A and B].

Similary number of positive class frequencies of order 3 = 3nc 1 and so on.

number of positive class frequencies of order nn nc 1 

 The total number of positive class frequencies of with n attributes

1 2 n1 nc nc nc         

 n1 1 

n2
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Note: The total number of negative class frequencies with n attributes are n2 1 .

Class Symbols as Operators:

Usually the some of attributes will be given and remaining must be found by using them. It
is not easy to remember always. For finding the unknown attributes without errors the easy method
is as follows:

Let us write symbolically

 AN A

 N  

Adding we get    AN N A    

 A N N  

A 1   

1 A   

(or) A 1  

Thus in symbolic expression we can replace A by 1   and  by  1 A . Similarly B can

be replaced by  1 and  can be replaced by  1 B etc.

Dichotomising (B) according to A,

Let us write

   A B AB

Similarly    B A BA

     A B B A AB AB N    

These are operators only, they are not numbers. By using these operators we can express
any formula easily.

Ex:   N  

   1 A 1 B N  

N AN BN ABN   

     N A B AB   
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 AB AB N  

 AB 1 C N 

ABN ABCN 

   AB ABC 

  N  

    1 A 1 B 1 C N   

N AN BN CN ABN ACN BCN ABCN       

             N A B C AB AC BC ABC       

 A A N  

   A 1 B 1 C N  

AN ABN ACN ABCN   

       A AB AC ABC   

and so on.

Theorem: Prove that for n attributes 1 2 nA , A , ,A         as

         1 2 n 1 2 nA A A A A A n 1 N                          

where N is the total number of observations.

Proof: This can be proved by mathematical induction.

We have

 1 2 1 2 N    

   1 21 A 1 A N  

1 2 1 2N A N A N A A N   

     1 2 1 2N A A A A   

Since the class frequency is always non - negative.
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 1 2 0   

     1 2 1 2N A A A A 0    

       1 2 1 2A A A A N 1                

Hence the theorem is true for n 2

By substituting 2 3A A in place of 2A in (1) we have

     1 2 3 1 2 3A A A A A A N  

     1 2 3A A A N N    

       1 2 3 1 2 3A A A A A A 2N    

Hence the theorem is true for n 3 .

Let us suppose that the theorem is true for n r .

that is            1 2 r 1 2 rA A A A A A r 1 N 2                                  

Replacing the attribute rA by r r 1A A  in (2) we get

         1 2 r r 1 1 2 r r 1A A A A A A A A r 1 N                         

          1 2 r r 1A A A A N r 1 N                    

       1 2 r r 1A A A A rN             

Thus the theorem is true for n r 1  .

Hence by induction, the theorem istrue for all positive integer values of n.

3.6 Consistencey:

Definition:

Consistency of a set of class frequencies may be defined as the property that none of them
is negative, otherwise the data for class frequencies are said to be inconsistent.

Sine any class frequency can be expressed as the sum of some ultimate class frequencies
it is necesarily non-negative if all the ultimate class frequencies are non-negative.
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Result:

The necessary and sufficient condition for the consistency of a set of independent class
frequencies is that no ultimate class frequency is negative.

Conclusion:

To determine whether the given frequencies are consistent or inconsistent, the given
frequencies are to be expressed in ultimate class frequencies. If any of them is negative then the
data are inconsistent otherwise the data are consistent.

3.6.1 Consistency Conditions: Consistency conditions for a single attribute A are

 A 0

   0 A N    (3.6.1.1)

Consistency Conditions for two attributes A and B are

 AB 0

     A 0 AB A   

     B 0 AB B   

       0 AB A B N      

Consistency Conditions for three attributes A, B and C are

(i)  A BC 0

(ii)      A B 0 ABC AB   

(iii)      A C 0 A BC AC   

(iv)      BC 0 ABC BC   

(v)          A 0 ABC AB AC A     

(vi)          B 0 ABC AB BC B      

(vii)          C 0 ABC AC BC C      

(viii)                0 A BC AB BC AC A B C N           
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From (i) and (viii) we get

           AB BC AC A B C N     

From (ii) and (vii) we get

       AC BC AB C  

From (iii) and (vi) we get

       AB BC AC B  

From (iv) and (v) we get

       AB AC BC A  

3.7 Independence of Attributes:

Two attributes A and B are said to be independent if there exists no relationship of any kind
between them.

If A and B are independent we would expect (i) The same proportion of A's amongst B's as

amongst  's (ii) The proportion of B's amongst A's same as that amongst the 's .

Criterion of Independence:

1. If A and B are independent then from (i)

 
 

 
 

 
 

 
 

 
AB AB B

3.6.2.1
B B

 
                 

 

Similarly from (ii) we have

 
 

 
 

 
 

 
 

 
AB B A

3.6.2.2
A A

  
               

 

from equation (3.6.2.1)

 
 

 
 

   
   

 AB AB AB A A

B B N

 
  

  

It becomes easier to grasp the nature of the above relations if the frequencies
are supposed to be grouped into a table with two rows and two columns as follows:
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     

     

   

A total

B AB B B

A

total A N





   



From table we express as

(i)
 
 

 
 

 AB B B

A N


 



(ii)
 
 

 
 

 A

A N

  
 



(iii)
 
 

 
 

 AB A A

B N


 



(iv)
 
 

 
 

 B

B N

   
 



(v)
 
 

 
 

 
 

AB B B

A


 

  

(vi)
 
 

 
 

 
 

AB A A

B


 

  

2. The criterion of independence may be obtained in terms of class frequencies of first
order and it is given by

 
   A B

AB
N



     AB A B

N N N
  
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which leads to the following fundamental rule.

If the attributes A and B are independent, the proportion of AB's in the population
is equal to te product of proportions of A's and B's in the population.

3. We may obtain the third criterion of independene in terms of second order class
frequencies as follows:

       AB A B   

3.8 Asociation of Attributes:

Two attributes A and B are said to be associated if they are not independent but are related
in some way or the other.

The association are of two types they are (i) positive association, (ii) Negative association.

Positive Association:

Two attributes A and B are said to be positively associated or simply associated if

 
   A B

AB
N

 .

Negative Association:

Two attributes A and B are said to be Negatively Associated or disassociated if

 
   A B

AB
N



Complete Association:

If all A's are B's or all B's are A's then A and B are said to be completely associated. So A

and B are completely associated if either    AB A or    AB B which even is less.

Complete Disassociation:

If none of the A's are B's that is  AB 0 or more of the 's are 's that is   0  tthen

A and B are said to be completely negatively associated.

Thus when A and B are completely disassociated if  AB 0 or      AB A B N,  

whichever is more.

3.8.1 Coefficient of Association:

To measure the intensity of association, we use the two measures of coefficients,
they are
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1. Yule's coefficient of Association

2. Coefficient of colligation

1. Yule's Coefficient of Association: For measuring the intensity of association
between two attributes A and B G. Vdny Yule gave the coefficient of association Q
defined as follows:

       
     
AB A B

Q
AB A B

   


   

Properties:

i) When A and B are independent then Q = 0

ii) If A and B are completely associated Q then Q = 1

iii) If A and B are completely disassociated then Q = -1

iv) The range of Q is -1 to +1

v) Yule's coefficient of association will not change if the terms containing any of the
attributes are multiplied by the same constant.

3.8.2 Coefficient of Colligation: The coefficient of colligation between A and B are given by

      

       

AB A B
Y

AB A B

   


    

Propertions:

1. If A and B are independent then Y 0

2. If A and B are completely associated then Y 1 

3. If A and B are completely dissassociated then Y 1 

4. The range of colligation in 1 to 1

5. The relation between Q and Y is
2

2Y
Q

1 Y




6. The value of Y will not change if all the terms containing any of the attributes are
multiplied by the same constant.

Theorem 3.8.2: Prove that in the usual notations
2

2Y
Q

1 Y




Proof: The coefficient of colligation Y is given by
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   
   

   
   

A B
1

AB
Y

A B
1

AB

 





 




Let
   
   
A B

K
AB

 



then we have

1 K
Y

1 K






2 1 K 2 K
Y

1 K 2 K

 


 

i.e. 2 1 K 2 K
1 Y 1

1 K 2 K

 
  

 

1 K 2 K 1 K 2 K

1 K 2 K

    


 

 2 1 K

1 K 2 K




 

 

 
2

2 1 K

1 K






   

 
22

2 1 K 2 1 K2Y

1 K1 Y 1 K

 
 

 

   1 K 1 K

1 K

 




1 K

1 K





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   
   
  
  

A B
1

AB

A B
1

AB

 





 




Q

2

2Y
Q

1 Y
 



3.9 Examples:

Example 1: Find the remainiing class frequencies, given the following data for two attributes A
and B.

       A B 250, A 120, B 200, 70      

Solution: Here        N A B A B      

250 120 200 70   

640

     A AB A  

250 120 370  

     B A B  

250 200 450  

   N A 640 370 270     

   N B 640 450 190     

Example 2: Find the remaining class frequencies, given the following data.

     A 50, B 40, AB 30, N 100   

Solution:      A A AB  

50 30 20  
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     B B A B 40 30 10     

   N B 100 40 60     

   N A 100 50 50     

       N A B AB 100 50 40 30 40          

Example 3: Find the remaining class frequencies, given the following data.

       A BC 57, BC 78, A B 281, B 620,       

       A C 86, C 65, A 453, 8310           .

Solution: For three attributes there are
33 27 , class frequencies given 8 class frequencies,

so we have to find the remaining 19 class frequencies.

Order 2:      AB A BC A B  

57 281 

338

     AC ABC A C 57 86 143     

     BC ABC BC 57 78 135     

     B B C B 78 670 748        

     C B C C 78 65 143        

     C 65 8310 8375          

     B 670 8310 8980           

     A A C A 86 453 539       

     A A B A 281 453 734        

     B A B B 281 670 951        

     C A C C 86 65 151       

     A 453 8310 8763           
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Order 1:      A AB A 338 539 877     

     B AB B 338 748 1086     

     C BC C 135 151 286     

     B 748 8375 9123       

     A 539 8375 8914       

     A 734 8980 9714       

Order 0:    N A  

877 9123 

10000

Example 4: Given the following positive class frequencies, findthe ultimate class frequencies.

     N 12000, A 977, B 1185, C 596,   

       AB 153, AC 284, BC 250, ABC 127.   

Solution: The ultimate class frequencies are

 ABC 127 (given)

     BC BC ABC  

250 127 123  

     A C AC ABC  

284 127 157  

     A B AB ABC  

453 127 326  

         B B BC AB ABC     

596 50 284 127 189    
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         A A AB AC ABC     

977 453 284 127 367    

               N A B C AB BC AC ABC          

12000 977 1185 596 453 284 250 127       

10102

Example 5: If 598 men in a locality exposed to cholera 147 in all were attacked. 137 were
inoculated and of these only 14 were atttacked. Find the number of persons not
inoculated not attacked, inoculated not attacked and not inoculated attacked.

Solution: Let A be the attribute of attacked.

Let B be the attribute of inoculated.

Given that      N 598, A 147, B 137, AB 14,   

So we have to obtain the values of      , B and A   .

       N A B AB     

598 147 137 14 328    

     B B AB  

137 14 123  

     A A AB  

147 14 133  

Example 6: Given that      
N

A B C
2

   and 80% of A's are B's, 75% of A's are C's. Find

the limits to the percentage of B's that are C's.

Solution: Let      
N

A B C 100
2

   

then    AB 80, AC 75  .

We have to find the limits of  BC .
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By using the conditions for consistency, we have

           AB BC AC A B C N     

           BC A B C N AB AC      

100 100 100 200 80 75     

   BC 55 1              which is wrong

       AC BC AB C  

       BC C AB AC   

100 80 75  

   BC 105 2            which is wrong

       AB BC AC B      BC B

       BC B AC AB   

100 75 80  

   BC 95 3          

       AB AC BC A  

       AB AC A BC   

 80 75 100 BC   

   55 BC 4         

From (1), (2), (3), (4) we get  55 BC 95 

Hence  BC lies between 55% and 95%.

Example 7: Given that      
N

A B C 50
2

    and    AB 30, AC 25  . Find the limits

within which  BC will lie.

Solution: By using conditions consistency we have
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           AB BC AC A B C N     

           BC A B C N AB AC      

50 50 50 100 30 25     

   BC 5 1              which is wrong

       AB AC BC A  

       AB AC A BC   

 30 25 50 BC   

   5 BC 2          

       AB BC AC B  

       BC B AC AB   

 BC 50 25 30   

   BC 45 3            

       AC BC AB C  

       BC C AB AC   

50 30 25  

   BC 55 4            which is wrong since    BC B

 5 BC 45  

Example 8: If A and B are two independent attributes and    N 1024, A 144, B 384   then

find      AB , A , B  and    values.

Solution:    N A  

1024 144 880  
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   N B  

1024 384 640  

Since A and B are independent attributes

then  
   A B 144 384

AB 54
N 1024


  

 
   A 144 640

A 95
N 1024

 
   

 
   B 880 384

B 330
N 1024

 
   

 
    880 640

550
N 1024

  
    

Example 9: Can vaccination be regarded as a preventive measure for small pox from the data
given below? Of 1482 persons in a locality exposed to small Pox 368 in all were
attacked. of 1482 persons, 343 had been vaccinated and of these only 35 were
attacked.

Solution: Let A denote the attribute of vaccination and B denote attack. Then the given data is

     N 1482, A 368, B 343, AB 35    .

       N A B AB     

1482 368 343 35 806    

     A A AB 368 35 333     

     B B AB 343 35 308     

 Yules coefficient of association Q is given by

       
      
A B A B

Q
AB A B

    


    

35 806 333 308

35 806 333 308

  


  

0 5  
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 There is a negative association between A and B.

i.e. there is positive association between not attacked and vaccinated.

Hence vaccination can be regarded as a preventive measure for small pox.

Example 10: Find the association between proficiency in English and in Hindi among candidates
at a certain test if 245 of them passed in Hindi, 285 failed in Hindi, 190 failed in
Hindi but passed in English and 147 passed in both.

Solution: Let A denotes attribute of passed in English

B denotes attribute of passed in Hindi

given that  B 245

  285 

 A 190 

 A B 147

 A 190 

   A A B 190  

   A 190 AB  

190 147 337  

   N B 245 285 530     

     B B AB 245 147 98     

       N A B A B     

530 337 245 147   

95

 Yules coefficient of association is given by

       
      
AB A B

Q
AB A B

   


    
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147 95 190 98

147 95 190 98

  


  

0 142857  

Hence association between English and Hindi is 0 142857  .

Example 11: The male population of a state is 250 lakhs. The number of literate males is 20
lakhs and total number of male criminals is 26 thousands. The number of literates
male criminals is 2 thousands. Do you find any association between literacy and
criminality.

Solution: Let attribute A denote literate males and B denotes male criminals.

Thus given that N 2,50,00000

 A 20,00000

 B 26000

 A B 2000

     AB A AB 2000000 2000 1998000    

     B B A B 26000 2000 24000     

       N A B AB    

25000000 2000000 26000 2000   

2,29,76,000

       
       

A B A B
Q

A B A B

    


    

2000 22976000 1998000 24000

2000 22976000 1998000 24000

  


  

45952 47952

45952 47952






0 0213  

Hence literacy and criminality are negatively associated.
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3.10 Exercises:

1. Define class and class frequency.

2. Explain the following (i) order of a class, (ii) Ultimate class.

3. What do you understand by consistency of given data.

4. What do you mean by independence of attributes? Give a criteria of independence
for attributes A and B.

5. What are te various methods of finding whether two attributes are associated,
dissociated or independent ?

6. What is association of attributes ? Give the measure of coefficient of association.

7. Define Yule's coefficient of association (Q) and colligation (Y). Prove that

 2Q 2Y 1 Y  .

8. Given the following ultimate class frequencies, find the frequencies of positive class,

       A BC 149, A B 738, A C 225, A 1196,       

       BC 204, B 1762, C 171, 21842            .

9. Show that for n attributes 1 2 nA , A , ,A          .

         1 2 n 1 2 nA , A , ,A A A A n 1 N                       

where N is the total number of observations.

10. Among the adult population of a certain town 50% are male, 60% are wage - earners
and 50% are 45 years of age or over 10% of the males are not wage earners and
40% of the males are under 45 make the best possible inference about the limits
within which the percentage of persons of 45 years or over are wage - earners.

11. If        
2 1

1000 N 1 A 2 B 2 C 5 A B
3 2

     and    AC BC , what should be

the minimum value of  BC ?

12. Investigate the association between darkness of eye colour in father and son from
the following data:

Fathers with dark eyes and sons with dark eyes : 50

Fathers with dark eyes and sons with not dark eyes : 79

Father with not dark eyes and sons with dark eyes : 89

Father with not dark eyes and sons with not dark eyes : 782
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3.11 Answers:

8.      A 2308, B 2853, C 749,  

     A B 887, AC 374, BC 353, N 26287    .

10.  25 BC 45 

11. 150

12. Q 0 6951 

Y 0 4052 

3.12 Summary:

In statistical data, the concept of non numerical data called qualitative characteristic is
defined. construction of frequency distributions of such a data is given. Notion of consistency,
independence, association are introduced. These concepts are applied in analysis of qualitative
data.

3.13 Technical Terms:

Altribute

Independence

Association

Contigency Table

Consistency of Data

Class Frequency
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PROBABILITY

Syllabus:

Definition of probability, classical and relative frequency approach to probability, merits and
demerits of these approaches, random experiment sample point and sample space, definition of
an event, operation of events, properties of probability based on axioamatic approach, addition
theorem for 'n' events.

Objective:

This lesson is prepared in such a way that after studying the material the student is expected
to have a thorough comprehension of the concept "probability" - the breath of any statistical
investigation and analysis. The student would be equipped with theoretical as well as practical
aspects of probability of an event or combination of events.

Structure of the lesson:

4.1 Introduction

4.2 Basic pre-requisites

4.3 Relative frequency approach

4.4 Classical Definition

4.5 Axiomatic Approach

4.6 Addition Theorem

4.7 Examples

4.8 Exercises

4.9 Summary

4.10 Technical Terms

4.1 Introduction:

Quite often we come across statements that are not always true and not always false. The
weather forecast in news bulletins. The announcements about arrivals and departures of trains in
a railway station, the results of pre-poll surveys in general elections etc. are some situations. In all
these examples we see an element of uncertainity associated with them that would prevent us
from taking an appropriate decision. Therefore if there is a method of expressing uncertainity in
numerical quantity, depending on the magnitude of the numerical quantity one can decide whether
are not to go ahead with a decision.
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For example, let us take the news presentation in weather fore cast in TV/ Radio. It generally
says that in a particular place heavy rains are likely to be experienced, as per the satelite pictures.
The word 'likely' in the news presentation makes an individual to become alert and take an umbrella/
rain coat while going outor post-pone his/her out door works and so on. That is, the importance is
for rain rather than no rain. The above narration indicates that the weather forecast people have
some method that quantities the uncertain incident rain or no rain to say in the news. Effectively
this is the phenomenon called probability. Hence a descriptive explanation for the concept probability
can be given as 'quantification of uncertainty'. In this lesson we discuss at length the notion of
probability, the various developments in its definition, some standared theorem results along with
spectific applications.

4.2 Basic Prerequisites :

In this section we present some concepts required to expalin probability.

4.2.1 Definition : Random Experiment : An experiment whose result is not known with certainity,
unless the experiment is performed completely.

Example : 1. Applying for an admission in a college

2. Trying to catch a bus in a bus station

3. Winning or losing a match

4. Hitting a target in a shooting test and of course - tossing a coin throwing a dice.
etc.

In all these examples some action is performed with an intended result. But the expected
result may or may not happen. Infact we experience many random experiments in daily observations.

4.2.2 Definition : Sample Space : In a random experiment, though we can not say exactly -
guess out come of the action, with some enlightened vision we can say the various possible
results, for the experiment. The set of all possible out comes of a random experiment
without any omission is called sample space. In the examples of the definition 4.2.1 the
following sets are sample spaces respectively.

{ admission, no admission}

{Catching the Bus, Missing the Bus}

{Win, lose, dran}

{hitting the target, missing the target}

{head, tail}

{1,2,3,4,5,6}

Sample space is similar to the universal set in set theory and is denoted by  . The elements

of  are called sample points are also called simple events. Combination of simple events is
called an event. That is sub sets of  are called events. For example in a die throwing example

the signleton sets {1}, {2}, {3}, {4}, {5}, {6} are called sample points. The subset {1,3,5} is an
event - denoting getting an odd number and the set {3, 6} denotes the event getting a multiple of 3.
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Hence we can think of a parallel between set theory and events in sample space. If A and B

are any two subsets of  .

1A A is called compumentary event to A

A B = Occurence of either of the events

A B = Occurence of both the events A, B

In particular if A B  - the null set then A, B are specifically called muthally exclusive

events.

4.3 Relative Frequency Approach:

Let us consider the repelitions of a random experment say 'n' times. Suppose the event 'E'

in which we are interested appears say r times. Then
r

n
is called relative frequency of the event

E, which can be regarded as sequence of real fractions based on 'n' limit of
r

n
as n approaches to

infinity (i.e. limiting value of relative frequency as the number of repetitions becomes larger and
larger) iscalled probability of the event 'E'.

The relative frequency approach to the definition of probability is basically a limit of a sequence.
Hence unless the sequence is convergent, we cannot get the probability. Even if it is convergent,
one may have to do a number of repetitions of the experiment, which may be a costly affair.
Therefore this remains more of a theoretical proposition than a practically adaptable definition.

4.4 Classical Definition:

Let the sample space  of a random experiment contain 'n' simple events all of which are
mutually exclusive, exhaustive and equally likely. Let m (m < n) of these are in favour of the occurence

of an event E. Then the ratio
m

n
is called the probability of the event E.

Example 4.4.1 : In a die throwing the sample space  1,2,3,4,5,6  . Suppose we are

intenested in getting a prime number. Then the set {2,3,5} is the interested event say E. Here 

contains 6 elements and E contains 3 elements i.e. m = 3, n = 6. According to classical definition

the probability of the event E is   3
P E

6
 .

In this definition, if the number points in thesample space is not finite, if the elements of  are
not equally likely we can not use classical definition. More over, the phrase equally likely events is
not clear. It hints that the elements of  should have equal chance of happening which in turn

means that they should have the same probability of occurence. That is, the notion of probability is
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imposed on the events to define the concept probability in classical approach. Hence this approach
is not totally admissible. Over coming all the demerits of relative frequency approach and classical
approach, probability is defined in axiomatic approach by A.N. Kolmogrov in the early part of 20th
century. We explain this approach in section 4.5.

4.5 Axiomatic Definition of Probability:

Let the sample space  of a random experiment be considered. Let to be the collection of

all subsets of  . Let P be a function to [0, 1] of the real line. such a trans formation P is called a
set function. The set function P is called a probability set function or simply probability if it obeys
the following rules - (also called axioms).

(i)  0 P A 1 A    C

(ii)    P 1, P 0   

(iii)    
n

n

i 1

P Ai P Ai


 i=1 where Ai Aj   for all i j

4.6 Addition Theorem:

For any two events A and B

       P A B P A P B P A B   

Proof : Let the events A and B be represented as the sets show in the figure.

I II III

A BA B

The regions I, II, III in the figure are mutually disjoint.

Also I II III A B  

I II A

II III B

 by the third rule in the axiomatic definition of the probability we get the following identities.

         P A B P I P II P III 1                   

       P A P I P II 2           
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       P B P II P III 3            

Subtracting the sum of equations (2) and (3) from (1) we set

         P A B P A P B P II 4             

But region II is A B

 equation (4) becomes

       P A B P A P B P A B   

4.7 Examples:

1. Prove that the probability of obtaining a total of 7 in a single thron with two dice is 1/9.

Sol. When two dice are thrown once we get a sample space contains 36 pairs points
givenly

  i, j i 1,2,3,4,5,6; j 1,2,3,4,5,6 

The total of the two digits that appear is i + j. When we want i + j = 9, the pairs
(3,6), (4,5), (5,4), (6,3) are favour of giving a total 9.

 four points in the sample space of 36 points are in favour of getting a total '9'.

Hence by classical definition the probability =
4 1

36 9
 .

2. Show that in a single throw with two dice, the chance of throwing more than 7 is equal
to that of throwing lessthan 7.

Sol. Of the (36) poissible pairs the following pairs give the totals written against the
repective groups of pairs.

(1,1) : 2

(1,2) ; (2,1) : 3

(1,3), (2,2), (3,1) : 4

(1,4), (2,3), (3,2), (4,1) : 5

(1,5), (2,4),(3,3),(4,2),(5,1) : 6

(2,6), (3,5), (4,4), (5,3), (6,2) : 8

(3,6), (4,5), (5,4), (6,3) : 9

(4,6), (5,5), (6,4) : 10
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(5,6), (6,5) : 11

(6,6) : 12

In the above the number of pairs that give a total of 2 or 3 or 4 or 5 or 6 i.e. a total

less than 7 is 15. Hence probability of getting a total less than 7 is
15

36
similarly the total

number of pairs to set a total of 8 or 9, or 10 or 11 or 12 i.e. a total of more than 7 is 15.

 The probability of setting a total of more than 7 is also
15

36
, because these two

probabilities are equal the result follows.

3. In a single throw with two dice what is the number such that it is a total with minimum
probability.

Ans: We know that when two dice are thrown once weget the following totals with
corresponding pairs of results.

Total Pairs of Observations

2 (1,1) = 1 pair of out 36 pairs

3 (1,2), (2,1) = 2 Pairs out of 36 pairs

4 (1,3), (2,2), (3,1) = 3 Pairs out of 36 pairs

5 (1,4), (2,3), (3,2), (4,1) = 4 Pairs out of 36 pairs

6 (1,5), (2,4), (3,3), (4,2), (5,1) = 5 Pairs out of 36 pairs

7 (1,6), (2,5), (3,4), (4,3), (5,2) = 5 Pairs out of 36 pairs

8 (2,6), (3,5), (4,4), (5,3), (6,2) = 5 Pairs out of 36 pairs

9 (3,6), (4,5),(5,4), (6,3) = 4 Pairs out of 36 pairs

10 (4,6), (5,5), (6,4) = 3 Pairs out of 36 pairs

11 (5,6), (6,5) = 2 Pairs out of 36 pairs

12 (6,6) = 1 Pairs out of 36 pairs

The probability of setting a total 2 is 1
36 .

Also the probabilites getting a total 6 is 1
36

Which isthe minimum probability

4. Two different digits are chosen at random from the set 1,2,3,........,8. Show that the
probability that the sum of the digits will be equal to 5 is the same asthe probability that

their sum will exceed 13. Also show that the chance of both digits exceeding 5 is 3
28 .
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Ans : If both the digits were to add up to 5, they should be one of the following pairs (1,4),

(2,3). Two different digits our of 8 can be taken in 8
2C ways.

 probability of getting 5 as the total = 8
2

2 2 1 2

8 7C

 




1

14


In order to get a total of more than 13, the required pairs are (8,6), (8,7).

Hence the required probability is again
8

2

2 1

14C


Hence the two probabilitis are the same

The chance of both the digits exceeding 5 is as follows. The pairs should be

from 6,7,8 which can be in 3
2C ways.

Hence the required probability
3

2
8

2

C 3 2 3

8 7 28C


  



5. Four persons are chosen at random from a group containing 3 men, 2 women and 4

children, show that the chance that exactly two of them will be children is
10

21

Ans : Total number of persons in the group = 9

4 persons out of these 9 can be drawn in 9
4C ways.

Among these 2 should come from the 4 children and 2 should come from out of
5 persons of a mixture of men and women.

These two can be done 4 5
2 2C C ways.

Hence the required probability by applying classical definition =

4 5
2 2
9

4

C C

C



4 3 5 4 9 8 7 6

1 2 1 2 1 2 3 4

     
   

     

6 10 60 10

9 7 2 126 21


  

 
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6. Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. A ticket is drawn at
random five times being replaced each time. Find the probability that the sum of the
numbers or the tickets drawn is 23.

Ans : The problem is equivalent to finding how many times each of the tickets 00, 01,
10, 11 out of 5 draws are to be obtained to get a total of 23 for the numbers 00, 01, 10,
11.

It can be earily seen that

00 : once, 01 : twice, 10 : once, 11 : once

or

00 : twice, 01 : once, 10 : none , 11 : twice

or

00 : none, 0.1 : twice, 10 : twice, 11 : none

Only will given a total of 23 in 5 draws.

The probabilities according to these are

1 2 1 1 2 1 2 3 2

5 5 5 5 5 5 5 5 5

     
            

     

 2 1 2 2 1 10 75
3

25 25 5 25 25

  
      

2 86 172

25 25 625


 



7. If A, B and C are three events express the following in appropriate symbols.

(a) Simuntaneous occurence of A, B and C

(b) Occurence of at least one of them

(c) A, B and C are mutualy exclisive events

(d) Every point of A is contained in B

(e) The event 'B' but not A occurs

Ans : (a) A B C 

(b) A B C 

(c) A B C  

(d) A B

(e) 1A B B A 
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8. A sample space S contains four points 1 2 3 4x , x , x and x and the value of a set function

P(A) are known for the following sets

   1 1 2 2 3 4A x ,x , A x ,x 

   3 1 2 3 4 2 3 4A x ,x ,x , A x ,x ,x 

       1 2 3 4
4 6 4 7

P A , P A , P A , P A
10 10 10 10

   

(i) Find the total number of sets including the null set

(ii) Although the set contains no sample point has the probability, bring out an example
to show that the converse is not true.

Ans : (i) We have  1 2 3 4x ,x ,x ,x

 contains 4 ponts. The sub sets along with the number of points in each set is

as follows.

null set =   = non of points / sets one

single ton sets =        1 2 3 4x , x , x , x 4

number of sets having two elements = 4
2C 6

number of sets with 3 elements = 4
3C 4

number of sets having all the fourth = 1

Total number of sets = 1 + 4 + 6 + 4 + 1 = 16

(ii) Consider the set of points that contain elements of 3A but not of 1A

i.e.  3 1 3A A x 

i.e. 3 1A A is not a null set

since 1 3A A we know that      3 1 3 1P A A P A P A  

4 4
0

10 10
  

i.e. from the given information  3 1P A A 0 
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But 3 1A A is not a null set. Hence this is an example to show that zero probability

doesnot imply that the set whole considaration not necessarily a null set.

9. If A and B are two muthally exclusive events and    1 1
P A , P B

2 3
  find

   P A B , P A B  .

Ans : Since A and B are mutually exclusive events.

A B 

 P A B 0

Also      P A B P A P B 


1 1 5

2 3 6
  

  
5

P A B
6



 P A B 0

10. A man forget the last digit of a telephone number and dails the last digit at random.
What is the probability of not calling more than 3 wrong numbers.

Ans : The last digit would be one omons the 10 digits 0,1,2,3,4,5,6,7,8,9.

Probability of choosing a correct digit
1

10


Hence probability of choosing a wrong digit
1

1
10

 

9

10


The probability of not making more than three wrong calls is obetained as follows.
In a series of 10 trails, either the first or the second or the third call should be a correct
call. It is explained as follows :

(i) First call may be correct call

(or)
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(ii) First wrong and second correct call

(or)

(iii) First and second one wrong calls and the third is correct calls

Probability according to (i)
1 1

10 10
 

Probability according to (ii)
9 1 9

10 10 100
  

Probability according to (iii)
9 9 1 81

10 10 10 1000
   

Hence required probability
1 9 81

10 100 1000
  

271

1000


11. Cet A and B be two possible out comes of an expairment and suppose that P(A) = 0.4,

 P A B 0.7 and  P B p .

For what choice of p are A and B muthally exclusive.

Ans : If A and B were to be mutually exclusive then      P A B P A P B 

i.e. 0.7 = 0.4 + p

 p = 0.7 - 0.4 = 0.3

12. Suppose A and B are any two events and      1 2 3P A p , P B p , P A B p   prove the

following identities.

(i)   3P A B 1 p  (ii)   1 2 3P A B 1 p p p   

(iii)   1 3P A B p p  (iv)   2 3P A B p p 

(v)   3P A B 1 p  (vi)    1 3P A B 1 p p  

(vii)   1 2 3P A B 1 p p p    (viii)    2 3P A A B p p  

(ix)    1 2 3P A A B p p p   
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Ans : From the results of set then we know that

(i) A B A B 

      3P A B P A B P A B 1 p      

(ii)    A B AUB P A B P A B    

i.e.   1 2 3P A B 1 p p p     1 P A B 

      1 P A P B P A B   

(iii) A B can be interpreted as follows :

   A B A B A  

Also A B and A B are muthally exclusive events.

     P A P A B P A B   

i.e.  1 3p P A B p 

i.e.   1 3P A B p p 

(iv) Consider    A B A B B  

Also A B, A B  are mutually exclusive

      P A B A B P B   

     P A B P A B P B  

  3 2P A B p p 

  2 3P A B p p  

(v)     3P A B 1 P A B 1 p    

(vi) Consider  A B A B 

     P A B 1 P A B 1 P A B     
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 1 31 p p   from (iii)

1 31 p p  

(vii)    P A B 1 P A B  

      1 P A P B P A B    

 1 2 31 p p p   

= 1 2 31 p p p  

(viii) Consider  A A B 

   A A A B   

 A B A B    

from (iv) we know that   2 3P A B p p 

2 3P A (A B p p     

(ix) Consider  A A B 

Applying addition law of probabilities to the sets A and A B we get

        P A A B P A P A B P A A B      

   P A P A B   since A, A B are dispoint set s

 1 2 3 1 2 3p p p p p p     

(because we know from (iv) that   2 3P A B p p 

13. Two six fased unbaised dice are thrown. Find the probability that the sum of the numbes
shown is 7 or their product is 12.

Ans : The sample space of int comes when two unbioned dice are thrown once can be
represented in the following matrix form :

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
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(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The set of pairs that give a total 7 is

A = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} : 6 events

The set of pairs that give a produt 12 is

B = {(2,6), (3,4) (6,2), (4,3)} : 4 Elements

    A B 3,4 , 4,3 : 2 elements

Total points in the sample space = 36 elements.

We konw that   6
P A

36


  4
P B

36


 
2

P A B
36



Probability of setting a total 7 or a product 12 for the numbers on the two dice.

       
6 4 2 8 2

P A B P A P B P A B
36 36 36 36 9

         

14. Defects are Clasified as A, B or C and the following probabilities have been determined
from available production data.

       P A 20, P B 0.16, P C 0.14, P A B 0.08   

     P B C 0.04, P A C 0.05, P A B C 0.02     

What is the probability that a randomly selected lot exhibits at least one one type
of defect? What is the probability that it exhibits A and B defects but is free from type C
defect.

Ans : Probability that the selected product to exhibit at least one defect

   P A or B or C P A B C  
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(i) We know that        P A B C P A P B P C   

     P AiB P B C P A C   

 P A B C  

= 0.20 + 0.16 + 0.14 - 0.08 - 0.04 - 0.005 + 0.02

= 0.35

(ii) Probability that the product exhibits both A and B defects but is free from type C
defect

 P A B C  

Considertive events    A B C A B C A B     

Also the events A B C  and A B C  are muthally exclusive. Hence

     P A B C A B C P A B        

     P A B C P A B C P A B     

0.02 +  P A B C 0.08 

 P A B C 0.08 0.02 0.06    

22. Out of 110 students interviewed at a job fair, 22 were taking a finance couse, 20 were
taking an accounting course. One of these 110 students is selected at random. What
is the probability that the student is

(a) not taking an accounting course

(b) Taking both a finance and an accounting course

(c) neither taking a finance course nor an accounting course

Let A, F respectively denote the events that the student takes an accounting,
finance course respectively. Given that

     
20 22 30

P A , P F , P A F
110 110 110

  

(a) We are asked to find     20 110 20
P A 1 p A 1

110 110


    

90 9

110 11
 
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(b) We are asked to find  P A F

We know that        P A F P A P F P A F   

i.e.
3 0

110

2 0


110

22


11

110
 

55

P A F 

i.e.  
2 11 3

P A F
11 55 11

  

11 1 11 5 6

55 11 55 55 55
    

(c) We are asked to find  P A F

We know that  A F A F 

     P A F P A F 1 P A F     

 30 80 8
1

110 110 11
   

4.8 Exercises:

1. Two cards are drawn at randim from a well shuffled pack of cards show that the probability

of drawing two aces is
1

221
.

2. Among the digits 1,2,3,4,5 at first one is closen and then a second selection is made
among we remaining four digits. Assuming that all 20 possible out comes have equal
probabilite find the probability that an odd digit will be selected (i) the first time, (ii) the
second time, (iii) both times.

(Ans: (i)
3

5
, (ii)

3

5
, (iii)

3

10
)

3. A committee of 4 people is to be appointed from 3 offians of the production department,
4 officers of the purchase department, two officers of the sales department and 1
charted accountant. Find the probability of formming in the following manner.

(i) There must be one from each catesam

(ii) It should have at least one from the purchase department
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(iii) The chartered accountant must be in the committee

(Ans : (i)
8

70
, (ii)

13

14
, (iii)

2

5
)

4. Each coefficient of the equation 2ax bc c 0   is dethmined by throwing an ordinary

die. Find the probability that the equation will have real roots.

(Ans :
43

216
)

5. Out of (2n + 1) tickets conseclrtinady numbered three are drawn at random. Find the
chance that the numbers are in A.P.

(Ans :  2
3n

4n 1

6. A, B and C are three ordinary events. Find expression for the events noted below in the
context of A, B and C (i) only A occurs, (ii) Both A and B but not C occur, (iii) All three
events occur, (iv) At one occurs, (v) At least two occur, (vi) one and no more occurs,
(vii) Two and no more occur, (viii) none occurs.

(Ans : (i) A B C  , (ii) A B C  , (iii) A B C  , (iv) A B C 

(v)        A B C A B C A B C A B C          

(vi)      A B C A B C A B C       

(vii)      A B C A B C A B C       

(viii) A B C or A B C   

7. If two dice are thrown what is the probability that sumes (a) greater than 8, (b) neither
7 nor 11.

(Ans : (a)
5

18
, (b)

7

9
)

8. A box contains 6 red, 4 white and 5 black balls. A person draws 4 balls from the box at
random. Find the probability that among the balls drawn there is at least one ball of
each colour.

(Ans : 0.5275)

9. IF A B  then show that    P A P B
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10. If A and B are two events such that

   3 5
P A , P B

4 8
  show that

(a)  
3

P A B
4

 , (b)  
3 5P A B

88
 

11. A special dice is prepared such that the probabilities of throwing 1, 2, 3, 4, 5, 6 are
respectively

1 k 1 2k 1 k 1 k 1 2k 1 k
, , , , ,

6 6 6 6 6 6

     
respectively..

If two such dice are thrown find the probability of getting a sum equal to 9.

(Ans :   1 k 2 3k
18

  )

12. In these of probabilities      1 2 3P A p . P B p , P A B p  

Express    P A B P A B  under the condition that A and B are mutually

exclusive.

13. Let A and B be the possible and comes of an experiments and suppose P(A) = 0.4,

 P A B 0.7 , P(B) = p. For what choice of o are A and B be muthally exclusive ?

(Ans : p = 0.3)

4.9 Summary:

The concept 'probability' is defined in various ways starting from the classical definition to the
most moden way the axiomatic approach. Some general laws of probability upto the concept of
additive law for two and more than two events are estabilished besides showing the applications of
these laws in a number of examples. Some exercices in the answers one also provided for the
students to try on their own.

4.10 Technical Terms:

Relative Frequency, Random Experment, Sample Space, Simple Event, Compound Event,
Axious Operations on sets.
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CONDITIONAL PROBABILITY

Syllabus:

Conditional Probability, multiplication rule of probability for n events, Broole's inequality,

independence of events, Baye's Theorem and its applications (with examples in real life).

Objective:

After studying this lesson the student is expected to have a clear notion of probabilities of
dependent events. Its application in making decision about conditional events and the principle be
find BAye's Theorem in assessing the performance of devices with builtin structural probability.

Structure of the lesson:

5.1 Introduction

5.2 Conditional Probability

5.3 Multiplication Rule

5.4 Broole's inequality

5.5 Independence of events

5.6 Baye's Theorem

5.7 Examples

5.8 Exercises

5.9 Summary

5.10 Technical Terms

5.1 Introduction:

In the theory of probability if we consider the probability of occurence of more than one
event in succession some times the sequence of order in which the events occur makes a difference
and some times it will not make any difference. For example from a box containging '9' cards of
identical size marked with the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, let us draw two cards one after the other.
This is suggested in two ways.

(i) The card drawn in the 1st draw is placed back into the box before the second draw.

(ii) The card drawn in the first draw is not placed back into the box before the second
draw.
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According to the first scheme the probability of drawing '9' in the second draw will be the
same what ever may be the result of the first draw, where as according to the second scheme,
probability of drawing 9 in the second draw depends on the result of the first draw. The second
scheme gives rise to the notion of conditional probabilities. In this lesson we discuss the need for
conditional probability, its definition, independent events, applications, the Bayer's Theorem its
importance in evaluating probabilities.

5.2 Conditional Probability:

As defined in lesson - 4, let us consider a probability space. ( , C, p). Let A and B be any

two subsets of  . Then the conditional probability of occurrence of A after the occurence of B is

demoted by  P A B . (to be read as probability of A given B). It is defined as

 
 
 

P A B
P A B

P B



.

For the above definition to be valid,  P B 0 . Similarly the conditional probability of

occurence of B after the occurence of A is denoted by  P B A and is defined as

 
 
 

P B A
P B A

P A



where  P A 0

Since A B is same as B A we can write that

 
 
 

 
P A B

P A B P B 0
P B

, 


 
 
 

 
P A B

P B A P A 0
P A

, 


.

Example:

A bag contains 10 gold and 8 silver coins. Two successive draws of one coin in each draw
are made such that the coin drawn in the first draw is not replaced before the second draw is
made. Find the probability that both the draws give gold coins.

Let A, B be the events of drawing a gold coin in the first draw and second draw respectively

we are to find      P A B P A P B A  .

We know that,   10
P A

18
 .
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 P B A  probability of drawinga gold coin in the second draw given that a gold coin is

drawn in the first draw. Since the coin drawn is not replaced we will have a total of 17 coins of
which 9 would be gold and hence the probability of drawing a gold coin in the second draw given

that a gold coin is drawn in the first draw
9

17
 .

i.e.  
9

P B A
17



     
10 9 5

P A B P A P B A
18 17 17

    

5.3 Multiplication Rule:

Let A, be any two events such that    P A 0 P B 0,  . Then by definition we know that

 
 
 

P A B
P A B

P B




 
 
 

P A B
P B A

P B




By cross multiplication we get

     P A B P B P A B

     P A B P A P B A

These two equations are called multiplication rule of probability for two events. We can
establish multiplication rule of probability for n events, as a theorem.

5.3.1 Theorem: If 1 2 nA A A, , ,     are events. Then

       1 2 3 n 1 3 1 2 n 1 2 n 1P A A A A P A P A A A P A A A A                  

Proof: we prove the result by the principle of mathematical induction. It is obvious that
the minimum number of events for the definition of conditional probability is 2. Therefore in

our theorem n 2 . For two events the statement of the theorem is

     1 2 1 2 1P A A P A P A A  and this follows from the definition and cross

multiplication of conditional probability.
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Let n 3 . Then L.H.S. is

   1 2 3 1P A A A P A B   where 2 3B A A 

But      1 1 1P A B P A P B A since the statement is time for two events.

i.e.       1 2 3 1 2 3 1P A A A P A P A A A      

 
 

 
2 3 1

1
1

P A A A
P A

P A

 
   

  

 

 
 

 
 

 
2 3 1 1 2

1
1 2 1

P A A A P A A
P A

P A A P A

 
   

  

  



     1 3 1 2 2 1P A P A A A P A A  

     1 2 1 3 1 2P A P A A P A A A   

Hence the result is proved for 3 events.

In a similar maner suppose the result istrue for n k .

i.e.

         1 2 3 k 1 2 1 3 1 2 k 1 2 k 1P A A A A P A P A A P A A A P A A A A             

we shall prove it for n k 1 

consider

 1 2 3 k 1P A A A A        

 k 1P B A   where  1 2 kB A A A    

i.e.      k 1 k 1P B A P B P A B  

   1 2 3 k k 1 1 2 kP A A A A P A A A A           

Since we have assumed that the result is true for n k the above becomes
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     1 2 1 3 1 2P A P A A P A A A      

   k 1 2 k 1 k 1 1 2 kP A A A A P A A A A              

Therefore the result if true for any natural number 'n' by the principle of mathematical
induction.

5.4 Boole's Inequality:

It 1 2 nA A A, , ,      are n events then

 i    
nn

i i
i 1 i 1

P A P A n 1
 

 
    

 


 ii  
nn

i i
i 1 i 1

P A P A
 

 
  

 


Proof: We shall prove both the inequalities by the principle of mathematical induction.

(i) suppose n 2 , then by addition theorem for two events, we know that

       1 2 1 2 1 2P A A P A P A P A A   

Since L.H.S. is a probability it is 1

 R.H.S. is also 1 i.e.

     1 2 1 2P A P A P A A 1  

           1 2 1 2 1 2P A A P A P A 1 P A P A 2 1       

Hene we have        1 2 1 2P A A P A P A 2 1   

i.e. the result is true for n 2

Suppose the result is true for n k

i.e.          1 2 3 k 1 2 kP A A A A P A P A P A k 1              

Let us shown that the result is true for n k 1  . The L.H.S. of the 'to be shown'

experssion is
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   1 2 k k 1 k 1P A A A A P B A           where

1 2 3 kB A A A A     

Applying the result fortwo events k 1B A,  we get

     k 1 k 1P B A P B P A 1   

i.e.      1 2 k 1 1 2 k k 1P A A A P A A A P A 1               

In the R.H.S. of the above  1 2 kP A A A       is greater than or equal to

       1 2 kP A P A P A k 1      since we assumed that the result is true for k

events.

Hence the above inequality be comes

           1 2 k 1 1 2 k k 1P A A A P A P A P A k 1 P A 1               

 
k 1

i
i 1

P A k 1 1




   

   
k 1

1 2 k 1 i
i 1

P A A A P A k





        

Hence by the principle of mathematical induction theresult is for any natural number.

5.5 Independence of Events:

5.5.1 Definition: Two events A, B are said to be statistically independent if the probability of
their joint occurence is same as the product of the probabilities of their individul occurances.

Symbolically      P A B P A P B 

5.5.2 Definition: In the case of three events 1 2 3A A A, , the concepts of independence is of

two types.

Pairwise independence and mutual independence.

If the events are independent taken two at time a we say that they are pairwise independent.
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In the case of three events this means

     1 2 1 2P A A P A P A 

     2 3 2 3P A A P A P A 

     1 3 3 1P A A P A P A 

In addition to this if the events are independent taken all at a time (in the case of three
events).

       1 2 3 1 2 3P A A A P A P A P A   

If all the above fourconditions are true we say that a set of three events 1 2 3A A A, ,

are mutually independent.

In general if we have n events say 1 2 nA A A, , ,     we say that hese are pair wise

independent if

     i j i jP A A P A P A for all i j i j 1 2 3 n, , , , ,   

These conditions are
2Cn in number..

These n events shall be mutually independent if in addition to the above
2Cn

conditions the following are also true.

       i j k i j kP A A A P A P A P A i j k   

         i j k i j kP A A A A P A P A P A P A i j k       



       1 2 n 1 2 nP A A A P A P A P A       

These sets of conditions are respectively
2 3 nC C Cn n n, , ,     in number..

Hence total number of conditions required for the mutual independence of n events

is  
2 3 n 1 0

n n
C C C C Cn n n 1 1 n n 2 n 1            .
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On the other hand number of conditions required for pairwise independence of n

events is only
2Cn . This is true for n 2 .

It can be seen that mutually independent events are always passwise independent
while the converse is not true as can be explained by the following example.

5.5.3 Example: Consider box containing 4 cards marked wit the digits 100, 010, 001, 111. Let
A, B, C - be the events representing drawing a card at random with 1 in hundredth place, 1
in 10th place, 1 in 1st place respectively. Then it can be seen that

  2 1P A
24

 

  1P B
2



  1P C
2



     1 1 1 1
P A B P A P B

4 2 2 4
     

     1 1 1 1
P B C P B P C

4 2 2 4
    

       1 1
P A B C P A P B P C

4 8
     

Hence the events A, B, C are pairwise independent but not mutually independent.

5.5.4 Example: If A nad B are independent then A and B , A and B are also independent

where A B, are complementary events for A, B respectively..

Solution: Given      P A B P A P B 

To show that      P A B P A P B 

We know that    P B 1 P B 

Multiplying with  P A we get

         P A P B P A P A P B   

     P A P A B 1   A B, are independent
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 P A A B  

  P A A B 

 P A B  using propertis of sets

In a similar way we can prove that

     P A B P A P B 

5.5.5 Example: Given that      21 2 1 2
5 1 1

P A A P A A P A
6 3 2

, ,     Find  1P A ,

 2P A . Hence show that 1 2A A, are independent.

Solution:

   2 2
1 1P A P A

22
  

we know that

       1 2 1 2 1 2P A A P A P A P A A   

 1
5 1 1

P A
6 2 3
  

 1
5 1 1 4 2

P A
6 2 3 6 3

     

   1 2
2 1 2 1

P A P A
3 2 6 3

    

Given that

 1 2
1

P A A
3



Hence

     1 2 1 2P A A P A P A 

1 2A A, are independent.
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5.6 Baye's Theorem:

Let 1 2 nE E E, , ,        be mutually disjoint exhaustive events with  iP E 0 . If A is any

event that can occur with any of 1 2 nE E E, , ,        then

 
   

   

i i
i n

i i
i 1

P A E P E
P E A

P A E P E






The L.H.S. is called posterior or inverse probability. In the numerator of R.H.S. namely

 iP E is prior probability..

Proof:

Given that

n

i
i 1

E


  - the sample space and i jE E   for i j . i j 1 2 n, , , ,    

n

i
i 1

A A A E


 
    

 
 

  

       
n n

i i i
i 1 i 1

P A P A E P E P A E
 

   

Consider      i iP A E P A P E A

 
 
 

   

   

i i i
i n

i i
i 1

P A E P E P A E
P E A

P A
P E P A E




  





i.e.,  
   

   

i i
i n

i i
i 1

P E P A E
P E A

P E P A E







Hence the theorem is proved.
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5.6.1 Example: In a factory machines A and B are producing springs of the same type of this
production machineA and B produce 5% and 10% defective springs respectively. Machines
A and B produce 40 % and 60% of the total output of the factory. One spring is selected at
randim and it is found to be defective. What is the probability that this defective spring is
produced by machine A.

Solution:

Given   40
P A 0 4

100
  

  60
P B 0 6

100
  

 
5

P D A 0 05
100

   D: stands for defective

 
10

P D B 0 1
100

  

we have to find  P A D

 
   

       

P D A P A
P A D

P D A P A P D B P B




  

   
0 05 0 4 020

0 05 0 4 0 1 0 6 020 06

.

. .

  
 

      

0 020 2 1

0 080 8 4


  


.

5.7 Examples:

5.7.1 Example: Let

2 n
1 1 1

S 1
2 2 2

, , , ,
     

          
     

be a classical event space. A, B be

events given by

k
1 1

A 1 B K is an even positive eger
22

, ; int
     

      
     

f ind

 P A B
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Solution: We know that  A B A B 

     P A B P A B 1 P A B     

        1 P A P B P A B 1     

Given

0 2 4
1 1 1 1

A 1 B
2 2 2 2

, , , ,
         

          
         

 A B 1

 
1

P A B
n 1




 since S contains n 1 elements.

   
 

2 n 2
P A P B

n 1 2 n 1


 

 
if n is even

  1
P B

2
 if n is odd

Suppose n is even using (1)

 
 

2 n 2 1
P A B 1

n 1 2 n 1 n 1

 
    

   


 

   
4 n 2 2 n 4

1 1
2 n 1 2 n 1

    
    

  

 
   

2n 2 n 4 n 2
P A B

2 n 1 2 n 1

   
 

 


Suppose n is even then

  2 1 1
P A B 1

n 1 2 n 1

 
    

  


 
4 n 1 2

1
2 n 1

   
   

 

     
n 3 2n 2 n 3 n 1

1
2 n 1 2 n 1 2 n 1

    
   

  
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5.7.8 Example: If    P B A P B A , then A and B are independent

Proof:    P B A P B A

i.e.
 
 

 
 

P B A P B A

P Ap A


 

i.e.        P A P B A P A B P A  

            P A P B P A P A B P A B P A     

               P A P B P A P A P A P A B P A B P A      

             P A P B P A B P A P A B P A   

i.e.              P A P A B P B P A P A P A B    

          P A P A P A B P A P B  

         P A P A B 1 P A P B  

          P A 1 P A B P B P A P B   

     P A B P A P B  

Hence it is proved that A and B are independent.

5.7.9 Example: The chances of X, Y, Z becoming managers of a company are 4 2 3: : . The

probabilities that bonus sheme will be introduced if X, Y, Z become managers are respectively

are 0 3 0 5 0 8, ,   . If the bonus scheme has been introduced what is the probability that X

is appointed as the manager.

Solution: Given      4 2 3
P X P Y P Z

9 9 9
, ,  

Also      P B X 0 3 P B Y 0 5 P B Z 0 8, ,      .

where B stands for bonus. We have to find  f X B .
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Baye's Theorem gives as

 
   

           

P B X P X
P X B

P B X P X P B Y P Y P B Z P Z


 

4
0 3

9
4 2 3

0 3 0 5 0 8
9 9 9

 


       

1 2 1 2 0 6
0 218

1 2 1 0 2 4 4 6 2 3

  
    

      

5.7 Exercises:

1. Show that in a single throw with two dice the chance of throwing more than seven is equal
to that of throwing less than seven.

2. Two different digits are chosen at random from the set 1, 2, 3, ...... 8. Show that the probability
that the sum of the digits will be equal to 5 is the same as the probability that their sum will

exceed 13 each being
1

14
.

3. A coin is tossed until there are either two consecutive heads or two consecutive tails or the
number of tosses become 5. Describe the sample space.

4. Let A and B be two events, neither of which has probability zero. Then show that if A and
B are disjoint then A and B are independent.

5. If A and B are two mutually exclusive events then show that  
 

 
P A

P A B
1 P B




6. A man takes advice regarding one of two possible courses of action from three advisers,
who arrived at their recommendations independently. He follows the recommendation of
the majority the probability that the individual advisers are wrong are 0.1, 0.5 and 0.05
respectively. What is the probability that the man takes incorrect advice.

7. A person takes four tests in succession. There probability of this passing the first test is p,

that of his passing each succeeding test is p or p 2 according as he passes or fails the

preceding one. He qualifies provided he passes atleast three tests. What is the chance of
his qualifying.



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @5 . 15 Conditional ProbabilityProbability And Distributions

8.      P A 0 7 P B 0 5 P A B 0 6, ,      find  P A B .

9. A certain drug manufactured by a comapny is tested chemically for its toxic nature. Let the
event the drug is toxic be denoted by E. The event the chemical test reveals that the drug

is toxic be denoted by F. Let  P E   ,    P F E P F E 1   . Then show that

probability of the drug not being toxic when the chemical test reveals that it is toxic is 1
2 .

5.9 Summary:

In this lesson an attempt is made to explain the concepts of conditional probability and
related aspects along with examples. The most important aspect isthe Baye's Theorem and inverse
probabilities. A number of examples are worked out and a good number of exercises are also
given.

5.10 Technical Terms:

Dependent events

Independent events

Product law

Pairwise independece

Mutual independence

Prior probability

Posterior / Inverse probability

Mathematical induction

Restricted sample space

Relative probability
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RANDOM VARIABLES

Syllabus:

Notion of a random variable, distribution function and its properties, discrete random variable,

probability mass function, Cnlinum random variable, probability density function, transformation of

one dimensional random variable (simple 1 -1 functions only)

Objective of The Lesson:

After studying this lesson the student is expect to have a clear comprehension of the theory

and the practical utility about the concepts of Random variable, distribution function - its properties,

Discrete random variable, probability mass function, continuous random variable, probability denisty

function and transformation of one dimensional random variable.

Structure of The Lesson:

6.1 Notion of Random variable

6.2 Distribution function and its properties

6.3 Discrete Random variable

6.4 Probability Mass Function

6.5 Continuous Random Variable

6.6 Probability Density function

6.7 Transformation of one Dimensional Random Variable

6.8 Worked Examples

6.9 Exercises

6.10 Summary

6.11 Technical Terms

6.1 Notion of Random Variable:

When a statistical experiment is conducted, all the possible outcomes of it will generate a

set, called the sample space, denoted by S. We are often much interested in its numerical description

rather than its specific outcomes. For example when we toss a coin three times, we get the following

outcomes.
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TTT, HTT, THT, TTH, HHT, HTH, THH, HHH

which generates a sample space S. Suppose we are interested in number of heads then a

numerical value 0, 1, 2, or 3 will be assigned to each sample points. The numerical values 0, 1, 2,

3 are random observations which may be assumed by some random variable, denoted by X. In the

example, the random variable X represents the number of heads The value sof different sample

points of the sample space S are denoted by W. Also from the example i.e., three tosses of a fair

coin the sample points in S are

           1 2 3 4 5 6W T T T , W H T T , W T H T , W T T H , W H HT ,W H T H ,     

 7W T H H ,  8W H H H

Since we define a function X, which denotes the number of heads, we note that

               1 2 3 4 5 6 7 8X W 0, X W X W X W 1, X W X W X W 2,X W 3       

The inverse image

 1
iX W is the event  0 X 1  for i 1

 1
iX W is the event  1 X 2  for i 2,3,4

 1
iX W is the event  2 X 3  for i 5, 6,7

 1
iX W is the event  X 3 for i 8

Hence X, which denotes the number of heads in three tosses, is called a random variable.

Hence a real valued function defined on a sample space S associated with a given random

experiment and taking values in  R ,  is called a random variable.

6.2 DISTRIBUTION FUNCTION AND ITS PROPERTIES

Let X be a random variable then the function  F x defined for all real x,

      F x P X x P , xw:X w x     

is called the distribution function  d.f of X.

Properties of Distribution function :

Property 1 : If  F x is the distribution function of random variable X, and if x y then (a)

 0 F x 1 x R, F    is bounded (b)    F x F y , F is monotonically non-decreasing.
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Proof :

(a) Since probability is a non-negative quantity and lies between 0 and 1, i.e., 0 P 1 

therefore we can write  0 P X x 1  

 0 F x 1       P X x F x 

(b) As  F x is a monotonically non-decreasing function of x and x, y be any value in R,

such that x y . Since  , x is a subset of  , y we can write

     x, y , y , x   

     P x, y P , y P , x    

   P X y P X x   

       P x, y F y F x 1    

Also since  P x, y 0 we have

   F y F x 0  ( from (1))

   F x F y  .

Property 3: If  F x is distribution function of random variable X, then

(a).    
x

im F x F 0


   , (b).    
x

im F x F 1


   .

Proof: (a) Let us define that the sequence of events  nA x n  . Here the sequence  nA

is a decreasing sequence of events with

 n
n

im A 1


    

Therefore by the continuity axiom on probability we have

     n n
n n

im P A P im A P 0
 

     ( from (1)) -------- (2)

But      nP A P X n F n     (by defition of d.f.)
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   n
n n

im P A im F n 0
 

     ( from (2))

i.e.,  F 0 

(b) Similarly define that the sequences of events  nA X n  , the sequence  nA is a

increasing sequence of events with

 n
n

im A S 1


   

Hence by the continuity axiom on probability we have

     n n
n n

im P A P im A P S 1
 

    ( from (1))  2  

     nP A P X n F n    (by defn. of d.f.)

   n
n n

im P A im F n 1
 

    ( from (2))

i.e.,  F 0 

Property 4 : If  F x is the distribution function of the random variable X and if x y then

     P x X y F y F x    .

Proof : Since the events x X y  and X x are disjoint and their union is the event X y .

Hence by addition theorem of probability

     P x X y P X x P X y     

     P x X y P X y P X x               P X x F x & P X y F y   

We have      P x X y F y F x   

Property 5 :  F x is continuous from the right i.e.,    F x 0 F x  for each x.

Proof : Let n
1

A X x
n

 
   
 

be a sequence of events and for a fixed value of x, sequence of

events and for a fixed value of x, sequence  nA is a decreasing sequence of events with

     n
n

im P A P X x F x


  
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or  
n

1
im P X x F x

n 

 
   

 
 n

1
A X x

n

  
    
  



 
n

1
im F x F x

n 

 
  

 


or  
1

F x F x
 

  
 

or    F x 0 F x 

6.3 Discrete Random Variable:

If the sample space S contains a finite number of points or countably infinite number of

points, it is called a discrete sample space. A random variable X defined over a discrete sample

space is called a discrete random variable.

For example if we collect data about number of persons in families of certain town, then it is

certain that number of persons in each family would be in whole numbers. Therefore there would

be no family with 2.5 or 2.67 or 1.97 persons. The variable i.e., the number of persons in a family,

in this case is a discrete random variable - some max examples of discrete random variable are

given below.

Example 1 : The number of heads in tossing of a coin.

Example 2 : The number of points on the dice when it is rolled.

Example 3 : The number of insects survived when an insecticide is sprayed.

Example 4 : The number of accidents occured in a year.

Example 5 : The number of defective items in a sample of size 'n'.

6.4 Probability Mass Function:

If 'X' is a discrete random variable defined on the sample space S which takes the values

1 2x , x ,      with each possible outcome ix , then a number is associated that is

   i i ip p x x p x ,   called the probability of ix , the numbers  ip x ,i 1,2,      must satisfy the

following conditions.

(i)  ip x 0 i  (ii)  i
i 1

p x 1





the function p is called the probability mass function of the random variable X and the set

  i ix , p x is called the probability distribution of the random variable X.
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6.5 Continuous Random Variable:

If sample space S contains an infinite number of points or continuity of points on a line
segment or with more than one interval of points is called continuous sample space. A random
variable defined over the continuous sample space is called a continuous random variable.

For example 1 : The weight of middle aged people in India lying between 40 Kg and 150 Kg is a
continuous variable.

i.e.,    X x x:40 x 150  

2 : The maximum breaking strength 250 Kg of a wire is a continous variable.

i.e.,    X x x:0 x 250  

6.6 Probability Density Function:

Since in dealing with the distriction of a continuous random variable will be necessary to

express the probabilities in the form of intervals. So with the help of an example continuous probability

distribution is explained as follows.

Y

X
O (1,0)

(1,1)(0,1)

Let us consider a squared target of one unit dimensions and a riffled is aimed at it which is

triggered several times and after some fixings it will appear as shown in figure 6.6. Whenever a

bullet is fixed it is equally likely to strike any where on the squared target. Let us consider the left

side of the target as Y - axis and the bottom as X - axis, obviously the variate X would defined

horizontal distance of a hit from the vertical axis (X = 0) and as such it may have any value between

0 and 1 and will be called as continuous random variable.

From Geometric probability it can be seen that the chance of a hit into any internal is equal

to the horizontal length of that interval divided by the total length of the board which will be equal to

one. For instance the probability that the hit strikes between 0.3 and 0.8, horizontal distance
0.5

0.5
1.0

 .

Since for the continuous distribution it is not possible to have a finite probability associated with

single point as in the discrete distribution.
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6.7 Transofrmation of One Dimenssional Random Variable:

Let X be a random variable defined on the event sace S and let  g be a function such that

 Y g X is also a.r.v. defined on S. This can be shown by following theorem.

Theorem : Let X be a continuous r.v. with p.d.f.  Xf x . Let  y g x be strictly monotonic increasing

(or decreasing) function of x. Assume that  g x is differentiable and hence continuous for all x.

Then the p.d.f. of the r.v. y is given by

   y X
dx

h y f x
dy



where x is expressed in terms of y.

Proof :

Case (i):  y g x is strictly increasing function of x

i.e.,
dy

0
dx

 . The d.f. of y is given by

       1
YH y P Y y P g X y P X g y           

the inverse exists and is unique, since  g  is strictly increasing.

   1
Y XH y F g y ,  

  where F is the d.f. of X.

 XF x    1y g x g y x   
 


Differentiating w.r.t. 'y', we get

     Y X X
d d dx

h y F x F x
dy dx dy

        

   
X

dx
f x 1

dy
   

Case (ii):  y g x is strictly monotonic decreasing

     YH y P Y y P g X y      
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 1P X g y  
 

 11 P X g y   
 

 1
X1 F g y  
 

 X1 F x 

where  1x g y , the inverse exists and is unique. Differentiating w.r.t. 'y', we get

         Y x X X
d dx dx dx

h y 1 F x f x f x 2
dx dy dy dy

            

the algebraic sign (-ve) obtained in (2) is since y is a decreasing function of x x is a

decreasing function of
dx

y 0
dy

  .

By combining equation (1) & (2) gives

   Y X
dx

h y f x
dy



6.8 Workedout Examples:

Example 1 : A random variable X has the following probability distribution.

 

x : 0 1 2 3 4 5 6 7 8

P x : K 3K 5K 7K 9K 11K 13K 15K 17K

a. determine the value of K.

b. find the distribution function.

c. find the smallest value of x for which  P X x 0.5 

Solution :

(a)    iP x 1 K 1 3 5 7 9 11 13 15 17 1           

1
81 K 1 K

81
   
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(b)            0 1 2 3P X 4 P p p p pX 0 X 1 X 2 X 3          

16
K 3K 5K 7K 16K

81
     

          P X 5 P X 5 X 6 X 7 X 8       

5 6 7 8
56

p p p p 11K 13K 15K 17K 56K
81

         

         1 2 3
15

P 0 X 4 P p p p 3K 5K 7K 15KX 1 X 2 X 3
81

             

(c) the distribution is    F t P x t 

   F 0 P X 0 K  

   F 1 P X 1 4K  

   F 2 P X 2 9K  

   F 3 P X 3 16K  

   F 4 P X 4 25K  

   F 5 P X 5 36K  

   F 6 P X 6 49K  

   F 7 P X 7 64K  

   F 8 P X 8 81K  

We observe that      p X 4 p X 3 F 3 16K,     etc...

     
86

P X 5 1 P X 5 1 P X 4 1 25K
81

         

       4
15

P 0 X 4 F 4 F 0 P 25 1 9 K 15K
81

         
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(d)      
1 36 49

F x ; F 5 0.44; F 6 0.61
2 81 81

    

then the smallest value of x for which  
1

F x
2

 is x 6 .

Example 2 : Consider the distribution function

 F t 0, t 0

t , 0 t 1 

1 , t 1

Find the density function and compute

(a) 1 3
P t

4 4

 
   

(b)
1

1 t
2

 
    

Solution : The derivative of F(t) at t = x is given by

   
d

f x F t at t x
dt

 
   

f(x) = 0, x < 0

= 1, 0 x 1 

= 0, x 1

Hence we define the density function

f(x) = 1 0 < x < 1

= 0 otherwise

As the derivative  d
F t

dt
does not exist at t = 0 and t = 1, so we take the range 0 t 1  as

0 < t < 1

(a)  

3
34

4
1

1 4
4

1 3 3 1 10 P x 1 dx x
24 4 4 4

 
          


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(b)      

1 1 1
0 02 2 2

1 1 0 1 0

1
P 1 x f x dx f x dx f x dx 0 dx 1 dx

2   

 
           

    

 
1

2
0

1 1x 0
22

   

Example 3 : Verify that F(t) = 0 t < 0

= 2t
10 t

2
 

 21 3 1 t   1 t 1
2

 

= 1 t 1

is a distribution function and derive the density funtion of X.

Solution : 1. It satisfies that  0 F t 1 t  

2. It satisfies that  F 0  and  F 1 

3. F(t) is a non-decreasing funtion and it is right continuous for all t

Hence it is a distribution function

the derivative of F(t) at t = x

   d
f x F t at t x

dt

 
   

f(x) = 0, x < 0

= 2x, 10 x
2

 

= 6x, 1 x 1
2
 

= 0 x 1

the density function is f(x) = 2x, 10 x
2

 

= 6x, 1 x 1
2
 

= 0, otherwise
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Example 4: Check whether the function given by

  x 2
f x

25


 for x = 1,2,3,4,5 is a p.d.t of desuete random variable.

Solution : The given function is    x 2
f x 1

25


   

Now substituting the different values of x we get from (1) x = 1,2,3,4,5

  3f 1
25

 ,   6f 4
25



  4f 2
25

 , and   7f 5
25



  5f 3
25



Since these values are all non negative.

f(1) + f(2) + f(3) + f(4) + f(5) =
3 4 5 6 7

1
25 25 25 25 25

    

 f x 0 and  f n 1 conditions are satisfied thus, the given function is
x
a p.d.f. of a

random variable hairing the range {1,2,3,4,5}.

Example 5 : Find the distribution function of the total number of heads obtained in four tosses of
a balanced coin.

Solution : Given          61 4 4 1f 0 , f 1 , f 2 , f 3 , f 4
16 16 16 16 16

    

Which follows

    1F 0 f 0
16

 

      4 51F 1 f 0 f 1
16 1616

    

        1 4 6 11
F 2 f 0 f 1 f 2

16 16 16 16
      

          1 4 6 4 15
F 3 f 0 f 1 f 2 f 3

16 16 16 16 16
        

            1 4 6 4 1
F 4 f 0 f 1 f 2 f 3 f 4 1

16 16 16 16 16
          
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Hence the distribution function is given by

 

0 for x 0

1
for 0 x 1

16

5
for 1 x 2

16
F x

11
for 2 x 3

16

15
for 3 x 4

16

1 for x 4



  



 


 
  


  

 

This distribution function is defined not only for the values taken on by the given random

variable, but for all real numbers is observed. For example we can write   5
F 1 7

16
  and  F 100 1

although the probabilities of getting "atmost 1.7 heads" or "atmost 100 heads" in four tosser of a
balanced coin may not be of any real significance.

Example 6 : If X has probability density

 
3xk e , for x 0

f x
0 otherwise

  
 


Since the given function is continuous we have

 
3x

3x 3x 0

0 0

e
f x dx k.e dx k. e dx k

3

  
 



     

 0k k
e e 1 k 3

3 3
 

     

and

 
1 13x 3x 3 1.5

0.5
0.5

P 0.5 x 1 3e dx e e e 0.173         

For x > 0,

   
x x x3t 3t 3x

0
0

F x f t dt 3e dt e 1 e  



     
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and since F(x) = 0 for x 0 we can write

 
3x

0 for x 0
F x

1 e for x 0




 

     P 0.5 x 1 F 1 F 0.5   

   3 1.51 e 1 e    

= 0.173

Example 7 : Let f(x) = 2x, 0 < x < 1 and 0, otherwise, be the p.d.f. of x. Find the distribution

function of p.d.f. of y x .

Solution :      2P Y y P x y P x y    

   
2y

x
0

F y f x dx  

2
2 2 y2y y

4

00 0

2 x
2xdx 2 xdx y , 0 y 1

2


       

This gives the distribution function of y. the p.d.f. of y is

   1 3
y yf y F Y 4y , 0 y 1   

Example 8 : A variate x has p.d.f.  
2

1f x , x 1
x

  ;

f(x) = 0, x < 1 find the p.d.f. of xe .

Solution : Let xy e and use the transformation
xy e

x log y 

this gives  dx 1 1; x 1 y
edy y

   

Further y > 0
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   x y
dy

f x f y
dx

 we get

     2 1
y yf y y log y 0 y e , f y 0

     otherwise

Example 9 : Variate X has the p.d.f.  
 2

1
f x , x

1 x
   
 

Find the p.d.f. of
1y tan x

Solution : 1Y tan x x tan y  so that 2dx
sec y 0

dy
 

Thus the function is encreasing. Also

2 2 21 x 1 tan y sec y   

hence    
2

y x 2
y

dx sec y 1
f Y f x , y

dy 2 2sec y

   
       

Example 10 : If Y X . Show that

 
     x x

y
F y F y P x y , y 0

F Y
0 y 0

      




Solution :    yF Y P Y y 

 P 1 1 y  

 P y x y   

    P y x y x y     

   P y x y P x y      

     x xF y F y P x y     

( By using distribution properties)
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6.9 Exercise:

1. An experiment consists ofthree independent to uses of a fair win. Let x = the number of
heads, y = the number of head runs, z = the length of head runs. A head run being defined
as consewtive occurrence together in three tosses of the win. Find the probability function
of (i) X, (ii) Y, (iii) Z, (iv) X + Y and (v) XY and construct probability tables and draw their
probability charts.

2. A random variable X has the following probability function

x 0 1 2 3 4 5 6 7

p(x) 0 k 2k 2k 3k 2k 22k
27k k

(i) Find k,

(ii) Evaluate P(x < 6),  P x 6 and P(0 < x < 5)

(iii) If   1
P x k

2
  , find the minimum value of k and

(iv) Determine the distribution function of X.

(Ans: (i) 1k
10

 , (ii)
81 19 4, ,

5100 100
, (iii) k = 4)

3. The diameter of an electric cable say X ; is assumed to be a continuous random variable

with p.d.f. f(x) = 6x (1-x), 0 x 1 

(i) check that above is p.d.f.

(ii) Determine a number of such that    P x b P x b  

(Ans: (i) p.d.f., (ii) b=1/2)

4. A continuous random variable X has a p.d.f.   2f x 3x , 0 x 1  

Find a and b such that (i)    P x a P x a   , (ii)  P x b 0.05 

(Ans: (i)

1
31

a
2

 
  
 

, (ii)

1
319

b
20

 
  
 

)

5. Let x be a continuous random variate with p.d.f.

f(x) = ax, 0 x 1 

= a, 1 x 2 
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= -ax + 3a, 2 x 3 

= 0 otherwise

(i) Determine the constant a

(ii) Compute  P x 1.5

(Ans: (i) a = 1/2, (ii) a = 1/2)

6. The milege C in thousands of miles which car owners get with a certain kind of type is a
random variable having probability density function

 
x

201
f x e

20


 , for x > 0

= 0 for x 0 .

Find the probability that one of these tyres will last

(i) at most 10,000 miles

(ii) any where form 16,000 to 24,000 miles

(iii) at least 30,000 miles.

(Ans: (i) 0.3935, (ii) 0.1481, (iii) 0.2231)

7. Verify that the following function is a distrilention function

 

0 x a

1 x
F x 1 a x a

2 a

1 x a

 

  

      
 

 

8. A petrol pump is sopplied with petrol once a day. If its daily volume X of sales in thousands
of litres is distrilented by

   4f x 5 1 x ; 0 x 1   

What must be the capacity of its tank in order that the probability that its supply will be
exhansted in a given day shall be 0.01 ?

(Ans : a = 0.6019, 601.9 litres)

9. If the comulative distribution function of X if F(x), Find the c.d.f. of

(i) Y = x+a, (ii) Y = x - b, (iii) y = ax, (iv) 3y x , (v) 2y x

What are corresponding probability density functions ?
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10. Let  
1

1 x 1
f x 2

0 otherwise


  




be the p.d.f. of the r.u.x. Find distribution function and the p.d.f. of 2Y x ?

6.10 Summary :

The conceproja random variable, its associated distribution function are defined and a

number of example, are given prigunction of random variables into discrate and continution types

- the associated mass functions and density functions are presulted.

6.11 Technical Terms :

Random, Variables, Distribution function, Probabilites mass function, Probability density

function.
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MATHEMATICAL EXPECTATION

Objective of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of mathematical expectation, moments, M.G.F.,
C.G.F., P.G.F. definitions, properties and their applications.

Structure of The Lesson:

7.1 Introduction

7.2 Mathematical expectation of random variable

7.2.1 Definition

7.2.2 Properties

7.3 Moments and Central Moments

7.4 Moment Generating Function

7.5 Cumulant Generating Function

7.6 Probability Generating Function

7.7 Characteristic Function

7.8 Tchebyshev's Inequality and Its Application

7.9 Worked Examples

7.10 Exercise

7.1 Introduction:

When real variable is associated with a probability distribution, no value of the variable is a
certainty and accordingly one is not since of what value is assumed us the real variable. In situations
like temperature in atmosphere, rainfall in monsoon, profits / losses in business, sensex in share
market etc. We can talk of only average value rater than exact value. If the probability distribution
of the underlying variable is known / specified the average value can be calculated by a concept
called Mathematical Expectation. This lesson is devoted to introduce this concept in a theoretical
way and present its practical utility along with its other related concepts in the following sections.

7.2 Mathematical Expectation of Random Variable:

7.2.1 Definition: Let X be a random variable defined on a probability space. Suppose if X be a

discrete and Let  ix be the countable set of its possible values, such that  i ip x x p 
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the mathematical expectation of X, (or the mean of X) written as  E X , is a real number

defined by

  i iE X p x , i   1              

Provided the series i ip x is convergent.

 f x x dx




 

i.e., convergent, the expectation of X, written as  E x , is the real number defined by

   E X x f x dx




   2               

If the series (1), or integral (2) is conditionally convergent,  E X does not exist.

Therefore the series (1) or integral (2) must be absolute convergent and hence  E X exist.

Thus  E X exists iff  E X exists.

Illustration 1:

For example if the random variable X takes the values 0!1! 2!            with probability

law

 
1e

P X x! , x 0,1,2
x!



         

then   1

x 0 x 0
x! P X x! e 1

 


 
  

Which is a divergnt series. In this case  E X does not exist.

For example if the random variable X which takes the values

   i 1
ix 1 i 1 ; i 1,2,3,


             

with the probability law  
 i i

1
p P X x ; i 1,2,3,

i i 1
          


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Here    
n n i 1

i i
i 1 i 1

1 1 1 1x p X x 1 1
2 3 4i



 

 
                  

 

The series on R.M.S. is conditionally convergent since the terms alternate in sign, are
monotonically decreasing and converge to zero when we use leibnitz test for alternating

series. By conditional convergence although i i
i 1

p x



 converges, i i

i 1
p x




 does not

converge. So in the above example  E X does not exist even though i i
i 1

p x



 is finite i.e.,

2
elog .

Illustration 2:

Let us consider the r.u.X. which takes te values

 t t

t

1 2
x ; t 1,2,3,

t

 
          

with probabilities
t

tp 2

Here also we get
 t

t t
t 1 t 1

1
x p

t

 

 


 

2
e

1 1 1
1 log

2 3 4

 
               

 

and t t
t 1 t 1

1
x p

t

 

 
 

Which is a divergent series. Hence in this case also expectation does not exist.

Illustration 3:

Let us consider a continuous r.v. 'X' and p.d.f. is

 
 2

1 1
f x ; x

1 x
     
 

which isthe p.d.f. of standard cauchy distribution
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 
2 2

0

x1 2 x
x f x dx dx dx

1 x 1 x

 
 
 



 





 
  

( Integrand is an even function of X)

 2

0

1
log 1 x


   


Since this integral does not converge to a finite limit. Hene  E X does not exist.

7.2.2 Properties:

Expectation of a Function of a Random Variable:

Consider a r.v. X with p.d.f. (p.m.f.)  f x and distribution  F x . If  g x is a function

such that  g x is a r.v. and   E g x exists, then

           E g x g x dF x g x f x dx 1
 

 

                   

(for continuous r.v.)

     
x

g x f x 2                

(for discrete r.v.)

Case 1: If we take   2g x x , r being a positive integer, in (1) we get

     2rE x f x dx 3X







             

which isdefined as 1
r , the thr moment (about origin) of the probability distrilention.

thus    1 r
r about origin E X 

   1
1 about origin E X 
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   1 2
2 about origin E X 

Hence Mean      1
1x about origin E X 4           

and      
2 21 1 2

2 2 1 E E X 5X                    

Case 2: If      
22

g x X E X X X      

then from equation (1) we get

            
22r

E X E X x E X f x dx x x f x dx 6


 
 
 









                 

which is r , the thr moment about mean.

In particular if r 2 , we get

       
22

2 E X E X x x f x dx 7








                  

Equations (5) and (7) gives the variance of the probability distribution of a r.v. X in
terms of expectation.

Case 3: Taking    g x cons tan t C say  in (1) we get

       E C C f x dx C f x dx C 8
 

 

               

   E C C 9           

Addition theorem of Expectation:

Statement: If X and Y are random variables then

     E X Y E X E Y    1               

Provided all the exectations exists.
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Proof: Let X and Y be continuous r.v.'s with joint p.d.f.  x,yf x, y and marginal p.d.f's

 xf x and  yf y respectively. Then by definition

   xE X x f x dx




   2               

   yE Y y f y dy






   3               

     xyE X Y x y f x, y dxdy

  









  

   x, y xyx f x, y dx dy y f x, y dx dy
 
    
 



 
 




   

   xy xyx f x, y dy dx y f x, y dx dy

 
 

   
  

 
 

 

 

 

 

   
     
   
   

   x yx f x dx y f y dy




 

 

   E X E Y  [From equations (2) & (3)]

The above result can be extended to n variables also by mathematical induction.

Multiplication theorem of Expectation:

Statement: If X and Y are independent random variables, then      E X Y E X E Y  .

Proof: By definition of Mathematical expectation if X, Y are continuous r.v.'s then
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   xyE xy xy f x, y dx dy

  











   x yxy f x f y dy dx

  









   ( x and y are independent)

   x yx f x dx y f y dy




 

  

   E X E Y         x yx f x dx E X , y f y dy E Y




 

 
   
 
 



The above result can be extended to n variables also by mathematical induction.

Theorem:

If X is a random variable and 'a' is constant then

(i)     E a X a E x     (ii)     E X a E X a      

where  x , a function of X, is a r.v. and all the expectations exist.

Proof:

(i)             E a X a X f x dx a X f x dx a E X
 

 

             

(ii)      E x a X a f x dx






         

     X f x dx a f x dx
 

 

    

 E X a    
 f x dx 1





 
 

  


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Corollary: (i) If  X x  then    E aX A E X and    E X a E X a  

(ii) If  X 1  , then  E a a

Theorem: If X is a random variable and a and b are constants, then

   E ax b aE X b   . Provided all the expectations exists.

Proof: By definition of mathematical expectation we have

     E aX b ax b f x dx




  

   a x f x dx b f x dx
 

 

     

 a E X b  

Corollary: 1. If b 0 , then we get    E aX a E X 

2. Taking  a 1, b X E X     , we get  E X X 0 

Theorem: If X 0 then  E X 0 .

Proof: If X is a continuous r.v. s.t. x 0 then

     
0

E X x f x dx x f x dx 0
 



      if X 0, P x 0 for x 0     

 E X 0 

Provided the expectation exists.

Theorem: Let X and Y betwo random variables such that Y X then

   E Y E X

Provided the expectation exists.

Proof: Since Y X , we have the r.v..

Y X 0 X Y 0    
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Hence      E X Y 0 E X E Y 0    

       E X E Y E Y E X   

Theorem:    E X E X provided the expectation exist.

Proof: Since X X we have by theorem     i.e. E Y E X

 E X E X  1               

Again since X X  again by theorem     i.e., E Y E X

 E X E X 

 E X E X   2               

From (1) & (2) we get  E X E X

Theorem: If X is a random variable, then    2V aX b a V X  

where a and b are constants.

Proof: Let  Y aX b 1                 

Taking expectation on both sides of equation (1) we get

   E Y E aX b 

   E Y aE X b  

    Y E Y a X E X   

Squaring and taking expectation of both sides, we get

     2 22E Y E Y a E X E X  

         2 2V Y a V X V aX b a V X 2              from equation (1)
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If b 0 , then    2V aX a V X 

 Variance is not independent of change of scale.

If a 0 , then  V b 0

 Variance of a constant is zero

If a 1 then    V X b V X   variance is independent of change of origins.

7.3 Moments and Central Moments:

As explained in section 7.2 we can set the expectation any function  g x of a random

variable X with the help of the probability model of that random variable. Specifically if we take

   kg x X a  where 'a' is any constant and k is a natural number i.e.

    kE g x E X a 

then we call this k-th moment of X about 'a' and denote is by 1
k . In particular if a 0 then

it is called k-th raw moment. If 'a' is taken as  E X itself then it is called k-th central moment and

is denoted by k .

In all we introduce the following in terms of mathematical expectation.

k-th moment bout an arbitrary constant:

 k1
k E X a  

k-th raw moment  k
km E X

k-th central moment   kk E X E X  

It can be seen that first raw moment is mean of the random variable, first central moment is

zero always, second central moment is variance of the random variable.

7.4 Moment Generating Function:

The moment generating funtion (m.g.f.) of a random variable X (about origin) haing the

probability density function  f x is given by
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     tX tX
XM t E e e f x dx


   . (for continuous probability distribution)

 tx

x
e f x  (for descrete probability distribution)  1  

Here the integration or summation being extended to the entire range of x, t being a real
number and it is being assumed that the R.H.S. of (1) is absolvetely convergent for some positive

number h such that h t h   . Thus

   
2 2 r 2

tX
X

t X t X
M t E e E 1 tX

2 r!

 
                      

  

     
2 2

2 2t t
1 t E X E X E X

2! r !
                    

 
2 2

1 1 1
1 2 r

t t
1 t 2

2! r !
                                  

where    1 r 2
r E X x f x dx


    , for continuous distribution.

 2

x
x p x  , for discrete distribution.

is the thr moment of X about origin. Thus the coefficient of
2t

r !
in  XM t gives 1

r . Since

 XM t generates moments it is known as moment generating function.

Differentiating w.r.t. 't' and then putting t 0 we get

  
1r 2

1 1r
X r 1 r 2r

t 0 t 0

d t
M t r! t

r! 2!d t
 

 


               

    
r

1
r Xr

t 0

d
M t 3

d t


                  

In general, the moment generating function of X about the point X a is defined as
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     t X a
XM t about X a E e

  
  

     
2 2

2 2t t
E 1 t X a X a X a

2! r!

 
                         

  

     
2 2

2 2t t
1 t E X a E X a X a

2 ! r!

 
                       
  

 
2 2

1 1 1
1 2 2

t t
1 t 4

2! r!
                             

Properties of M.G.F.:

1.    CX XM t M Ct , C beinga constant  1               

By definition of M.C.F. we have

   tX
Xi.e., M t E e

 From L.H.S. of (1) is    tCX
CXM t E e

From R.H.S. of (1) is    CtX
XM Ct E e L H S.   

Hene    CX XM t M Ct

2. The moment generating funtion of the sum of a number of independent random
variables is equal to the product of their respective moment gnerating functions.

Symbolically, if 1 2 nX , X , ,X        are independent random variables, then the

moment generating function of their sum 1 2 nX X X           is given by

         
1 2 n 1 2 nX X X X X XM t M t M t M t 1                      

By definition of M.G.F. we have

   1 2 n

1 2 n

t X X X
X X XM t E e

 
 

   

1 2 ntX tX tXE e e e             
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     1 2 ntX tX tXE e e e                

 1 2 nX ,X , ,X are independent      

     
1 2 nX X XM t M t M t         

3. Effect of change of origin and scale on M.G.F.

By definition of M.G.F. we have

     tX
XM t E e 1                 

Let us transform X to the new variable U by changing both theorigin and scale in X as

X a
U

h


 , a, h are constants.

M.G.F. of U (about origin) is given by

     tU
U

t x a
M t E e E exp

h

   
    

   

tX h at hE e e   

 tX
at h he E e 

 at h
Xe M t h   [from equation (1)]  2               

where  XM t is the m.g.f. of X about origin

Also if  a E X   (say) and Xh     (say), then

 

X

X E X X
U Z

 
  

 
(say)

is known as a standard variate. Thus the m.g.f. of a standard variate Z is given by

     t
Z XM t e M t 3                   

Remark:    
X 1

E Z E E X
 

   
  
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    
1 1

E X 0       
 

and    
2

X 1
V Z V V X

 
   

  

 
2

1
V X



2
2

1
 


1

 E Z 0 and  V Z 1 i.e., the mean and vareaince of a standard variate are

0 and 1 respectively.

Limitations of Moment Generating Function:

Moment Generating Function is restricted its use in statistics. Here the deficiencies of
m.g.f's with illustrations are explained.

1. A random variable X may have no moments although its m.g.f. exists for example let
us consider a discrete random variable with probability function.

 
 

1
f x ; x 1,2,

x x 1

0 , otherwise


          




 

Here    
 x 1 x 1

1
E X x f x

x 1

 

 
  



1 1 1

2 3 4
                

x 1

1

x




 
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Since
x 1

1

x




 is a divergent series  E X does not exist and consequently no

moment of X exists. However, m.g.f. of X is given by

   
 

tx
tX

X
x 1 x 1

e
M t e f x

x x 1

 

 
   



     
x

t

x 1

Z
, Z e 1

x x 1




              



2 3 4Z Z Z Z

1 2 2 3 3 4 4 5
              

   

2 3 41 1 1 1 1 1 1
Z 1 Z Z Z

2 2 3 3 4 4 5

       
                       

       

2 3 4 2 3 4Z Z Z Z Z Z Z
Z

2 3 4 2 3 4 5

 
                        
  

 
2 3 41 Z Z Z

log 1 Z
2 2 3 4

 
              

  

   
1

log 1 Z 1 log 1 Z , Z 1
2

      

 
1

1 1 log 1 Z , Z 1
Z

 
     

 

   t t1 e 1 log 1 e , t 0    

  tfrom 1 Z 1 e 1 t 0           


 XM t 1 , for t 0

while for  Xt 0, M t does not exist.
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2. A random variable X can have m.g.f. and some (or all) moments, yet the m.g.f. does
not generate the moments.

For example consider a discrete r.v. with probability function

 
1

x e
P X 2 ; x 0,1,2,

x!



          

Here        xrrr x 1x

x 0 x 0

2E X P x 2 e2
x !

 


 
    

   1 r re exp exp2 2 1
   

Hence all the moments of X exist.

The m.g.f. of X, if it exusts is given by

   
1

x
X

x 0

e
M t exp t 2

x !





 
   

 
 

 1 x

x 0

1
e exp t 2

x !





   

By D'Alemborts ratio test, the series on the R.H.S. converges for t 0 and

diverges for t 0 . Hence  XM t cannot be differentiated at t 0 and has no

Mactaurin's expansion and lonsequently it does not generate moments.

3. A r.v. X can have all or some moments, but m.g.f. does not exist except perhaps at
one point.

For example Let X be a r.v. with probability function.

 
1

x e
P X 2 ; x 0,1,2,

2x!



           

0 , otherwise.

Since the distribution is symmetric about the line X 0 , all moments of odd

order about origin vanish.

i.e.,  2r 1
2r 1E 0 0X 
   
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   
 x2r2rx2r

x 0 x 0

1 1 2
E 2X

2e x! e x !

 

 
    



   2r 2r
1

exp exp2 2 1e
   

Thus all the moments of X exist. The m.g.f. of X, if it exists is given by

 
x xt 2 t 2

X
x 0

1
M t e e

ex!


  



      
 

 x
1

x 0

cos t 2
e

x !






 
   

  

wich converges only for t 0 .

In case of continuous probability distribution consider Poneto distribution with p.d.f.

 
1

a
P x ; x a ; 1

x





 
   

 
r

r 1r

a a

x
E a x dx aX r


        

 

which is finite iff r 0 r      and then

 
2 2

r
a a

E a 0 ; rX r r

    

       
    

However, the m.g.f. is given by

 
tx

X 1

a

e
M t a dx

x











   

The integral is not convergent since txe dominates 1x and  tx 1e x  

as x   , hece  XM t does not exist.
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7.5 Cumulant Generating Function:

Cumulants generating function  K t is defined as

   X e XK t log M t  1               

The R.H.S. of above equation (1) can be expanded as a convergent series in powers of t.
Thus

   
2 r

X 1 2 r X
t t

K t K t K K log M t
2! r!

                       

 
2 3 2

1 1 1 1
1 2 3 r

t t t
log 1 t 2

2! 3! r!

 
                                           

  

Where rK  coefficient of

rt

r !
in  XK t is called the thr cumulant.

Hene

2 3 4

1 2 3 4
t t t

K t K K K
2! 3! 4!

               [

2 3 4
1 1 1 1
1 2 3 4

t t t
t

2! 3! 4!

 
              
  

2 32 3 2
1 1 1 1 1
1 2 3 1 2

1 t t 1 t
t t

2 2! 3! 3 2 !

   
                           

      

42
1 1
1 2

1 t
t

4 2 !

 
                         

  
]

Comparing the coefficients of like powers of 't' on both sides, we get the relationship between
the moments and cumulants. Hence we have

2
2

1 1
1 1 12 2 1

1 1 2 2 1 2
K

K Mean, K
2! 2! 2!

 
           

3
3

1 1 1 1
1 1 1 13 3 1 2 1

3 3 2 1 1 3
K 21

K 3 2
3! 3! 2 2! 3

   
            
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2 2
4 2 2 4

1 11 1 1 1
1 1 1 1 1 1 1 11 34 4 1 1 2
1 4 4 2 1 3 1 2 1

2K 31 1
K 3 4 12 6

4 ! 4 2 4 3 ! 3 2

                        
  

2 4 2 2 41 1 1 1 1 1 1 1 1 1
4 4 3 1 2 1 1 2 2 1 1K 4 6 3 3 2                       

   

2 2
1 1 2 2

4 2 1 4 2 4 23 3 3K              
 

 2 2K 

2
4 4 2K 3K  

Hence Mean K

2
2 2 3 3 4 4 2K Variance, K , K 3K       

 3             

If we differentiate both sides of (2) w.r.t. 't' 'r' times and then put t 0 , we get

 
2

r X2
t 0

d
K K t

d t


 
  
  

 4               

Additive Property of Cumulants:

The thr cumulant of the sum of independent random variables is equal to the sum of

the thr cumulants of the individual variables.

i.e.,          r 1 2 n r 1 r 2 r nK X X X K X K X K X 1                                

Where iX ; i 1,2, ,n           are independent random variables.

Proof: Since iX 's are independent we have

       
1 2 n 1 2 nX X X X X XM t M t M t M t           

Taking logarithm on both sides we get

       
1 2 n 1 2 nX X X X X Xlog M t log M t M t M t 

          
 
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       
1 2 n 1 2 nX X X X X Xlog M t log M t log M t log M t            

         
1 2 n 1 2 nX X X X X XK t K t K t K t 2                       

Differentiating both sides w.r.t. 't' 'r' times and putting t 0 , we get

       
1 2 n 1 2 n

2 2 r 2

X X X X X X2 2 r 2
t 0 t 0 t 0 t 0

d d d d
K t K t K t K t

st dt dt dt
 

   

       
                

              

       r 1 2 n r 1 2 2 r nK X X X K X K X K X                     

Effect of Change of origin and scale on cumulants:

If we take
X a

U
h


 , then

     U XM t exp at h M t h 

   U X
at

K t K t h
h


  

 
   2 22 2

1 1 1 1
1 1 2 2 1 2 r

t h t ht t at
K K t K K K t h K K

2! r! h 2! r!


                              

Where 1
rK and rK are the thr cumulants of U and X respectively..

Comparing the coefficients, we get

1 1
1

K a
K

h


 and

1 r
1 r

K
K ; r 2, 3,

h
            

Hence we see that except the first cumulant, all cumulants are independent of change

of origin. But the cumulants are not invariant of change of scale as the thr cumulant of U is

 21 h times the thr cumulant of the distribution of X.
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7.6 Probability Generating Function:

If 0 1a , a ,           is a sequence of real numbers and if

  2 i
0 1 2 i

i 0
G s a a S a S a S




                    1               

Converges in some interval 0 0S S S   , when the sequence is infinite then the function

 G s is known as the generating function of the sequence  ia .

The variable S has no significance of its own and is introduced to identify ia as the coefficient

of iS in the expansion  G S . If thesequence  ia is bounded, then the comparison with the

geometric series shows that  A S converges at least for S 1 .

The case when ia is the probability that an integral valued discrete ariable X takes the value

i,

i.e.,  i ia p P X i ; i 0,1,2,              with ip 1 , then the probability generating

function (p.g.f.) of r.v. X is defined as

   X x
x

x 0
G S E S S P




    2               

Effect of linear transformation on P.G.F.:

   a aG s :a bX s G s : X 

Proof:    a bXG s : a bX E s   (By definition)

     
Xa bX a b a bE s s s E s s G s : X

 
       

Additive Property:

If X, Y are independent variates, then for constants a, b

     a bG s : a X bY G s : X G s : Y  

Proof:    aX bYG s : aX bY E s   (By definition)

 aX bYE s s 
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 aX bYE s E s    ( X and Y are independent)

   a bG s : X G s : Y 

In general      G s : X Y G s : X G s : Y  

Relation between the P.G.F. and M.G.F.:

     tXM t : X E e 1             

     xG s : X E s 2                

Thus (1) is obtainable from (2) by changing s to te and conversely to obtain (2)

from (1) changing te to s.

   tM t : X G e : X ; 

   G s : X M log s : X

For example (1) if    
ntM t : X q pe 

then    nG s : X q ps 

(2) if    m s 1
G s : X e




then  
 tm e 1M t : X e 

7.7 Characteristic Function:

For some distributions m.g.f. does not exist, since the series  tX

x
e P x or the integral

 tXe f x dx


does not converge for real values of the auxiliary parameter t. As such the m.g.f. of

such discrete or continuous distribution fails to exist.  
2

K
P x , x 0,1,2, ,n

x
           (distribution)

or  
 n2

K
f x , x

1 x

     



(continuous distribution) can be cited as example of such cases

out of many. In this type of situations there is a more useful generating function, known as the
characteristic function and is defined as under.

     itX itX
X

x
t E e e f x    (for descrete distribution i 1  )
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 itXe f x dx






 for continuous distribution

Also    itX
X t e d F x







     1f x F x 
 


Here      tX itx
X t e f x dx e f x dx 

 
   

i.e.,  cos tx i sin tx f x dx 

   2 2cos tx sin tx f x dx



 

 f x dx 

1  2 2cos tx sin tx 1 

 X t 1  so the characteristic funtion always exists though  XM t may not exist.

Thisis an advantage with the characteristic function over the m.g.f.

Properties of Characteristic Function:

1.  
2 3 4

1 1 1 1
X 1 2 3 4

t it t
t 1 it

2 3 ! 4!
                   

where    
r

r1
r X2

t 0

i t
t





 
    

  

Since by definition of  X t we have

     itX
X t e f x dx 1







                 

Differentiating r times w.r.t. 't' and putting t 0 we get from equation (1)
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 
   

r
2 itxX

2
t 0 t 0

t
ix e f x dx

t







 

   
    
     

   r ri x f x dx








   r r r 1
ri E X i    

 
r 2

1
1 X2

t 0

1
t

i t


  
     

    

   
r

r
Xr

t 0

i t
t



 
    

   2

1 i
i

i i

 
   

 


Thus, the coefficient of
 rit

r !
in the expansion of  X t gives the thr moment

about zero 1
r  . So like m.g.f. about zero  X t also generates the raw or crude

moments.

2.  X t is defined or exists always with limite modulus This is the prominent advantage

of the characteristic function over the m.g.f., as the later does not exists always.

For example cauchy distribution

3.  X t is a uniformly continuous function of t.

4.    X
x

0 f x dx 1   , we have          itx 0
X Xt E e 0 E e E 1 1      

5.  X t and  X t  are conjugate quantities and    X Xt t   

     itX
X t E e E cos tX i sin tX   

   X t E cos t X i sin t X  

   E cos t i sin t X       

   itX
XE e t   
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6. The characteristic function of the sum of two independent random variates is equal to
the product of their individual characteristic functions.

Let  
1X t and  

2X t be the c.f.'s of two independent random variates 1X and

2X and let  
1 2X X t be te c.f. of 1 2X X , then

            1 2 1 2 1 2

1 2 1 2

it X X itX itX itX itX
X X X Xt E e E e e E e E e t t


        

which also can be extended to any number of variates iX , i 1,2, ,n        as

       
1 2 n 1 2 nX X X X X Xt t t t                .

7. Effect of changing the origin and scale.

We have    itX
X t E e 

Changing the origin and scale by introducing a new variate U such that

X a
U

h


 i.e., X a hU  , we have

       it a hU ait ithU
X a hUt t E e e E e




       

   i th Uait iat
Ue E e e th     

or    iat
U Xth e t  

Replacing ' t ' by t h , this results

         iat h iat h
U X Xx a

n

t e t h or t e t h
      

If a m, h   then

  
 

t
int

X

x M
e t 

    


8. If  F x and  t be respectively, the distribution and characteristic functions, then

density of the function is given by
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     1 itx
X

1
f x F x e t dt

2








  


Provided  t is integrable.

9. Uniqueness theorem of characteristic functions.

The characteristic function uniquely determines the distribution function and
conversely a particular distribution has unique characteristic function.

7.8 Tchebyshev's Inequality:

It is well known that the standard deviation is a measure of dispersion. Thus if the variance
is small, large deviations from the mean are improbable. Hene this role of standard deviation is
made quite obvious by a well - known Tchebyshev's inequality.

In equality: If X be random variable taking only non negative values, possess a finite mean 

and variance  2 Var X  , then for any t 0 .

 
2

2
P X M t

t


  

Proof: We shall prove this inequality for a continuous variable we have for any k 0 .

   
0

E X x f x dx


   

   
K

0 K

x f x dx x f x dx


   

     
K 0

x f x dx K f x dx K P X K
 

      

 
 E X

P X K
K

  

Now let us consider the random variable  2Y X  

then    2 2E Y E X    

Applying the result above, we get
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 
2

2
2

P Y t
t


  where 2K t

or   
2

2 2
2

P X t
t


  

i.e.,  
2

2
P X t

t


   

or  
2

2
P X t 1

t


    

Known as Tchebeyshev's inequality.

7.9 Worked Examples:

Example 1: A boy throws a coin four times an guesses ach time whether the head or the tail has
been thrown. He was not allowed to see the results. He is to recieve 6 rupees for 2
heads, 1 rupee for 3 heads and 50 paise for 4 heads. Find his expectation.

Solution: The probability of getting x heads in 4 throws

x 4 x
4

x
1 1

C ; x 0,1,2,3,4.
2 2


   

     
   

 1p q
2

 

 the probability of getting 2 heads in 4 throws is

2 4 2
4

2
1 1 3

C
2 2 8


   

    
   

the probability of getting 3 heads in 4 throws is

3 4 3
4

3
1 1 1

C
2 2 4


   

     
   

the probability of getting 4 heads in 4 throws is

4 4 4
4

4
1 1 1

C
2 2 16


   

     
   

Theexpectation is, the boy is to recieve 6 Rs for 2 heads 1 Rs for 3 heads and
0.50 Rs for 4 heads.
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 The expectation
3

8
 of 6 Rs +

1

4
of 1 Rs +

1

16
of 0.50 Rs.

81
Rs.

32


Example 2: Find  E X if a random variable X takes the values
 

 
K K

K

1 2
x K 1,2,

K


          

with probabilities
K K

1
p

2


Solution: Since X is a random variable and takes te values.

 K K

K

1 2
x

K


 (given)  K 1,2,          

   2 2

1 2

1 2 1 2 4
x 2, x 2

1 2 2

 
     

 3 3

3

1 2 8
x ,

3 3

 
              and probabilities 1 2 32 3

1 1 1
p , p , p ,

2 2 2
            

we have   1 1 2 2 3 3E X p x p x p x             

   
2 3

1 1 1 8
2 2

2 32 2

 
                 

 

1 1
1

2 3
                  

\  
1 1 1

1 log 1 1 log 2 log
2 3 2

 
                   

Example 3: If n dice are tossed and X denotes sum of the numbers on them, then find  E X .

Solution: Denoting the number of thi dice by ix we have the sum of the numbers on n dice

1 2 nX x x x            
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         1 2 n 1 2 nE X E x x x E x E x E x                    

But for the thi dice, the variate ix can take the values as 1,2,3,4,5,6 each with

probability 1
6 thus

 i 3
1 1 1 1 1 1

E x 1 2 4 5 6
6 6 6 6 6 6

          

21 7

6 2
 

Hence  
7 7

E X n
2 2

           times
7n

2


Example 4: A box contains ' a ' white and ' b ' black balls, ' c ' balls are drawn. Find the expectation
of the number of white balls drawn.

Solution: Let 'X' we the number of whites among the a balls drawn then dejining a variate ix

such that

th
i

th

x 1 if i ball drawn is white
i 1,2,3, c

0 y i ball drawn is black

 
          

 

then 1 2 cX x x x            and    1 2 cE X E x x x           

i.e.,        1 2 cE X E x E x E x            

ix takes values 1 and 0 with probabilities a a b and b a b .

 i
a b a

E x 1 0
a b a b a b

     
  

Hene  
a a ac

E X c times
a b a b a b

               
  
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Example 5: Find the m.g.f. of mean of ' n ' independent observations of the variate X in terms of
the m.g.f. of X.

Solution: Suppose the variate X assumes values 1 2 nX X X          . Distribution of each

 iX i 1,2, ,n            would be the same as that of the variate itself. Hence m.g.f. of

each iX would be equal to  XM t .

1
X

X t
m.g.f . of M ; for i 1,2, ,n

n n

 
             

 

also  1 2 n
X X

X X X t tm.g.f . of M M n times
nn n

            
              

 

 
n

X
tm.g.f . of X M
n

 
 

Example 6: Find the m.g.f. of a random variable whose moments are  1 r
r r 1 ! 2  

Solution: Sine  
2 2

1 1 1
X 1 2 r

t t
M t 1 t

2! r !
                         

2
1
r

r 0

t

r !




 

     
2

rr

r 0 r 0

t
r 1 ! 2 r 1 2 t

r !

 

 
     

     2 3
1 2 2 t 3 2 t 4 2 t               

   2
X1 2t M t


  

Example 7: Find  XM t when the c.d.f. of X is  XF x 0, x 0  ,   x
X

1
F x 1 e , x 0

2
   .

Solution: Here  F x 0 , when   1x 0, F 0
2

  ;

hene  
1

P X 0
2

  for    1 x1
x 0, f x F x e

2
   ,
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Hence

   t X o t t x x
X

0

1 1
M t E e e e e dx

2 2








  

1 1 1

2 2 1 t
  



 
2 t

, t !
2 1 t


 



Example 8: Show that  X t is a uniformly continuous function of t.

Solution: Since          i t h xi t x
X Xt e f x dx t h e f x dx 

 




 

     

        i t h x i t x
X Xt h t e e d F x









    

 i t x ih xe e 1 d F x







 

 i h x i t xe 1 d F x as e 1







  

   ihx ih x i h xe 1 d F x as e 1 e 1







    

  i h x2 d F x as e 1







 

 2 d F x 1 for p.d.f




 
   
 


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i.e.,  X t is bounded.

Also      i h x
X X

h 0 h 0
im t h t im e 1 d F x 0








 


       

   X X
h 0

im t h t t


     

Hence  X t is a uniformly continuous function of t.

Example 9: Find the characteristic function of the random variate X which assums, values

1 2x 1 and x 1  with probabilities
1 1

,
2 2

each.

Solution: Let 1 2x , x be the values assumes by random variate X with probabilities 1 2p , p then

by definition of characteristic function we have

    1 2i t x i t xi t x
X 1 2t E e p e p e   

i t i t1 1
e e cos t

2 2
  

 1 2 1 2
1 1x 1, x 1, p , p given

2 2
    

Example 10: Arandom variable x has the density function xe for x 0 show that Tchelochev's

inequality gives  
1

P X 1 2
4

   and show that the actual probability is 3e .

Solution: Here t 2,

Mean is given by

   1 x 2 1 x
1

0 0

E X x e dx x e dx 2 1  
 

 
         

 1 2 x 3 1 x
2

0 0

x e dx x e dx 3 2 
 


       
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22 1 1
2 1 2 1 1        

Substituting the values of t, mean and variance on Tchebychev's inequality we get

  1P 1 11 2
4

   

Since x 0, x 1 2 x 2 x 3      

Hence the actual probability is given by

x x 3 3 3

3
3

p e dx e e e e 0 e


              
 

Example 11: A variate X has mean 50 and variance 100. Find the following

(i)    P X 65 P X 35   , (ii)  P X 50 20  , (iii)  P 30 X 70  , (iv) Values

of t that make  P X 50 t 0 01    .

Solution: If  Z x M   is standard r.v. then Techebychev's in equality is

     2
2

1P Z K 1 K , or P Z K 1 1
K

                     
 

Here
 X 50

Z
10




(i)      3 3 3 4P Z P Z P Z
2 2 2 9

     

(ii)   31P Z 2 1
4 4

   

(iii)     3P 2 Z 2 P Z 2
4

     

(iv)    22
2 2

100t 100P Z 0 01 t 100 , i.e., t 100
10 t t

 
        

 

Example 12: A sample of size n is drawn from a population whose mean is 5 and S.D.I. prove

that

 
610

P X 5 0 001 1
n

 
      

 
 
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Solution: Here    
2

31
E X 5, Var X , K 10

n n


     

By using Tchebychev's inequality we have

 
2

2
P X M K 1

K

 
     

 
 

 
6

3 0
P X 5 10 1

n
 

    

 
610

P X 5 0 001 1
n

     

Example 13: A discrete variate X is specified by     1f a f a
8

   ,   3f 0
4

 compute

 P X 2  and compare it with Techychev's inequality bound.

Solution: Here  
a a 0 3

E X 0
8 8 4

 
   

 
2 2

2 2a a 1
E X a

8 8 4
  

      
2 222 2 a a0, V X E X E X 0

44
        

or
2a a

4 2
  

Now by Techebychev's inequality we have

    1P X 2 P X M a
4

     

Actually      p P X 2 1 X a 1 P a X a          

  3 11 P X 0 1
4 4

     

Hene Techychev's upper bound coincides with actual values and so the upper bound
is atttained.
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7.10 Exercise:

1. Let X be a random variable with the following probability distribution.

x : -3 6 9

 P X x : 1
6

1
2

1
3

Find  E X and  2E X and using the laws of expectation evaluate  2E 2X 1 .

11 93
Ans : , , 209

2 2

 
 
 

2. Find the expectation fo the number on a die when thrown and also find the expected
values of the sum of numbers of points when two unbiased dice are throuwn.

   1
Ans : E X , E X 7

2

 
  

 

3. Let X be r.v. with man  and variance 2 . Show that  2E X b , as a function of b, is

minimised when b   .

4. If t is any positive real number, show that the function defind by

   x 1t tP x e 1 e
  

can represent a probability function of a random variable X assuming the values

1,2,3,         find the  E X and  Var X of the distribution.

     t t tAns : E X e , V X e e 1     

5. Let the random variable X assume the value ' r ' with the probability law

  r 1P X r q p ; r 1,2,3,             

Find the m.g.f. of X and hence its mean and variance.

  1
X 1 2 2

pet 1 qAns : M t , ,
1 qet p p

 
     

 
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6. The probability density funtion of the random variable X follows the following probability
law.

 
x1

P x exp , x
2

   
     

  

Find the m.g.f. of X. Hence or otherwise find  E X and  V X .

 
2 2

1 2
X 1 2

3 t
Ans : M t 1 t , , 2

2!

 
                

  

7. For a distribution, the cymmulants are given by

 rK n r 1 ! , n 0     

Find the characteristic function.

8. Find the density function  f x corresponding to the characteristic function defined as

follows:

 
1 t , t 1

t
0 , t 1

  
  



9. Let X be a random variable with generatingfunction  P S . Find the generating funtion

of (a) X 1 , (b) 2X .

       2Ans : a S P S , b P S 
  

10. Find the generating function of (a)  P X n , (b)  P X n and (c)  P X 2n .

11. If  P S is the probability generating function for X, find the generating function for

 X a b .  a b 1 bAns : S P S  

12. For geometric distribution   xP x 2 ; x 1,2,3,        prove that Theloychev's

inequality gives

  1P X 2 2
2

  

while the actual probability is 15
16 .
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13. Does there exist a variate X for which  x xP 2 X 2 0 6         

14. If X is the number scored in a throw of a fair die, show that the Tchetycev's inequality

gives  P X 5 0 47     where  is the mean of X, while the actual probability is

zero.

15. Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that

  35P X 7 3
54

   . Compare this with the actual probability..

16. A symmetric die is throiwn 600 times. Find the where bound for the probability of
getting 80 to 120 sixes.

  19Ans : P 80 S 120
24

   
 

17. Use Tchebychev's inequality to determine how many times a fair win must be bassed
in order that the probability will be at least 0.90 that the ratio of the observed number of
heads to the number of tosses will lie between 0.4 and 0.6

 Ans : n 250

18. Thirteen eards are drawn simultaneously from a pack of 52. If aces count 1, face
cards 10 and other according to their denominations, find the expectation of the total

score on the 13 cards.  Ans : E X 85  
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WEAK LAW OF LARGE NUMBERS &
CENTRAL LIMIT THEOREM

Object of Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of weak law of large numbers, central limit
theorem and their applications.

Structure of The Lesson:

This consists of sections as detailed below :

8.1 Introduction

8.2 Elements of Weak Law of Large Numbers

8.3 Elements of Central Limit Theorem

8.4 Workedout Examples

8.5 Exercise

8.1 Introduction:

In repeated experimentation, the observations of the experiment start stabilizing at some
value or around some value thus giving regularities of the experiment. This phenomenon can be
explained by law called Law of Large Numbers.

8.2 Elements of Weak Law of Large Numbers:

Let 'X' be random variable with density  f X and let its expected value be  E X   . Then

 E X is an average of an infinite number of values. Here the problem is that using a finite number

of values of x say n, can a reliable conclusion be made about  E X , the average of an infinite

number of values of X. For this answer is given by the weak law of large numbers which states

that, if a random sample of size n or larger is taken from a population with density  f x , the

probability that the sample mean X will deviate from  E X   , the population mean, by any

arbitary small quantity can be made as near to one as desired, or in other words, for an 0  and

0 1   , there exists an integer 'n' such that for m n .

 mP X E 1      as n  
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Such types of weak law of large numbers are of different variaties proposed by different
persons by changing the hypothetical conditions. The statements and proofs of all such results
are beyond the scope of this study material. However if we want to know the applications, a few of
them are -

1. The converging limit of the arithmatic means of a series of observations such as the average
temperature of a resion the average rainfall in a monsoon the average height to which an
individual can grow etc. In all these cases the mean of the first 'n' observations will be
calculated and the limiting behaviour of all these means as 'n' becomes larger can be assessed
through probability distributions and expectations.

8.3 Elements of Central Limit Theorem:

In a collection of indefinitely many observations for a randim variables. The arithmatic mean
is calculated the distribution of the arithmatic mean may not be known exactly in an analytic form.
But as the size of the sample increases the graph of the distribution function for the arithmatic
mean is likely to follow a definite shape and stabilizes to that shpae ultimately. In statistical science
we always consider mean as the best average and standard deviation as the best dispersion
method given these two measures a complete discription of the distribution spread over the entire
real line is given by only normal distribution. Hence if the limiting distribution of the arithmatic mean
of the sample whatever may be its parent is modelled by a normal distribution we say that central
limit property holds good for that data.

In literature central limit theorem proved for all the cases of i.i.d. random variables. This
result can be used by various practitioners in this hypotesis testing, analysis of variance interval
estimation etc., whenever use of normal distribution rises the only requiremet is the data should be
sufficiently large.

8.4 Workedout Examples:

Example 1: If the variable kX assumes the value r 2 log r2  with probability r2 ; r 1,2,        

examine whether WLLN holds in this case.

Solutionl: Putting k 1,2,3,      the values of the identical variables 1 2 3X , X , X ,         are

respectively
1 2 31 2 log , 2 2log 3 2 log2 2 , 2 ,              with probabilit ies

2 3

1 1 1
, , , ;

2 2 2
        so that

         r 1 2 3 1 2 3E X E X X X E X E X E X                       

1 2 31 2 log 2 2 log 3 2log
2 3

1 1 1
2 2 2

2 2 2

                

rn
r 2 log r

r 1
2 2 


 
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r2 log2 log r
r 1 r 1 log 2

1 1

2
e

 

 
    log kk e

r 4 4 r r 4log log log log log logr 1 r 1 r 1

1 1 1

e e e

  

   
    

4logr 1

1

r




 

4 4log log

1 1
1

2 3
            

where the R.H.S. is a convergent series since
4
elog 1 (In the test

p1 n , p 1 ),

there by showing that the mathematical expectation of variates rX , r 1,2,      exists

and hence the weak law of large numbers holds in this case (Due to Khintchine
theorem).

Example 2: If  iX be mutually independent and identically distributed random variables with

mean  and finite variance and if n 1 2 nS X X X            , then prove that the

law of large numbers does not hold for the sequence nS .

Solution: Since n 1 2 nS X X X           

1 1 2 1 2 3 1 2 3S X ; S X X ; S X X X ;                 etc.

Thus the variates are 1 2 nS , S , , S       

 n 1 2 nB Var S S S              

    1 1 2 1 2 nVar X X X X X X                      

  1 2 n 1 nVar n X n 1 X 2X X           

         22 2 2
1 2 n 1 nn Var X n 1 Var X 2 Var X 1 Var X            

Also, variables being identically distributed,

      2
1 2 nVar X Var X Var X          



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @8 . 4 Acharya Nagarjuna UniversityCentre for Distence Education

 22 2 2 2
nB n n 1 2 1                

  

   2n n 1 2n 1

6

 
 

or
    2

2

n 1 2n 1Bn

6nn

  


giving
2n

Bn
im 0

n
  

Hence the law of large numbers does not hold for the sequence  nS .

Example 3: Show that the following sequence does not obey WLLN:

  1
2

k
1P X 2k 1

2
   

Solution: We have

     1 2 1 2
k

1 1E X 2k 1 2k 1 0
22

    

     
22

k k kVar X E X E X    

 2kE X 0    kE X 0

     2
k

1 1
E X 2k 1 2k 1 2k 1

2 2
      

   
n n

2
n k

k 1 k 1
B V X 2k 1 n

 
    

n
2n

B
im 1 0

n
   it follows that for  nX the WLLN does not hold.
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Example 4: Avariate kX has the distribution

       2k 2k k
k k k2k 2

2P X 0 1 , P X 3 p X 3 3
3

 


         
 

Does the WLLN hold for the sequence  kX ?

Solution: Here      2k 2 2k 2k k
kE X 3 3 3 3 0

   
    

 2 2k 2k 2 2k 2k 2
k

2
E X 3 3 3 3

9
       

     
22

k k kVar X E X E X     

   2
k k

2
Var X E X

9
 

 n i
2

B Var X i 1,2, ,n
9n

 
              

 

As n
2

B 2
0

9nn

 
  
 

as n   it follows that WLLN holds for the sequence  nX .

Example 5: Let  nX be a sequence of mutually independent variates such that

     n n n 1
n n

1
P X 1 1 2 , P X 2 2

2
         

Does the WLLN hold for this sequence ?

Solution: Here        n n n n 1 n n 1
n

1 1
E X 1 2 1 2 2 2 2 2 0

2 2
              

     2 n n 2n n 1 2n n 1
n

1 1
E X 1 2 1 2 2 2 2 2

2 2
              

 n 3n
n1 2 2 Var X    

     
n n

2 2 3r n n
n r

r 1 r 1

1
B 1 2 2 n 1 2 1 8

7
   

 
          
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 r 1,2, ,n            

n
2 n 2 2 n 2

B 1 1 6 7 1 1 1
0

n 7n 2 n n 8 n
     


as n  

It follows that the WLLN holds for the given sequence.

Example 6: Prove that the WLLN is applicable to the arithmetic mean of a sequence of

independent variates kX specified by

 k
1P X log k

2
  

Solution: Here      1 2 1 2
k

1 1
E X log K log k 0

2 2
  

Var        22 2
k k k kX E X E X E X    

1 1
log k log k log k

2 2
  

2
n 1B log 1 log 2 log n log n !                

Using Stirlings approximation to n!,

 n n 1 2

2 2 2

log e n 2Bn 1 1
n log n log 2

2n n n

      
      

  

 
 1 n

2

log 2 n1
1 log n

2n n

  
   
 

Now as
1 nn , n 1   , so that each term 0 .

Hence
2n

Bn
im 0, as n

n
   .

This proves the apllicability of the weak law of large numbers.

Example 7: If 1 nX , ,X           are i.i.d. variaties, with p.m.t.  i
1P X 1

2
   show that central

limit theorem holds for this sequence.
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Solution: Here        1 1E X 1 1 0
2 2

   

   2Var X E X 1 

Let
 1 2 nX X X1

n n

         


     1
n n nE Y 0, Var Y n Var S 1     nVar S n   

   it Xt : X E e 

it it1 1
e e cos t

2 2
  

   
n

n i X
tt : Y : X t n

n
            

 iX are i.i.d.

   
nn 2t 1cos t n 1 O

2n n
            

as n  

   
2

n
2 1 2

n
t 1im t : Y im 1 O e

2n n

          
 

Which is the characteristic function of  N 0, 1 . It follows that  nY N 0, 1

as n   , thus showing that L.L.T. holds for the sequence  nX .

8.5 Exercise:

1. Examine whether the weak law of large numbers holds for the sequence  kX of

independent random variables defined as follows:

 2k 1k
kP X 2 2

    
 

  2k
kP X 0 1 2  
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2. If nX takes the values 1 and 0 with corresponding probabilities np and n1 p , examine

whether the weak law of large numbers can be applied to the sequence  nX where

the variables nX , n 1,2,          are independent.

3.  iX , i 1,2,          is a sequence of independent random variables with expected

value of iX equal to im and variance of iX is 2
i . If

n
2
i2

i 1

1

n 
 tends to zero as n

tends to infinity, show that the weak law of large numbers holds good to the sequence.

4. Examine whether the weak law of large numbers holds good for the sequence nX of

independent random variables, where

n n
1 2 1 1

P X , P X
3 3n n

   
      

   
.

5. If 1 2 nX X X           be r.v.'s with means 1 2 n, , ,             and standard

deviations 1 2 n, , ,              and if n 0  as n   , show that n nX   convergs

to zero stochastically.

6. Show that if m is the number of successes in n independent trials, the probability of

success at the thi tr ial being ip then m
n converges in probability to

 1 2 np p p
n

       
.
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UNIFORM AND BINOMIAL

DISTRIBUTIONS

Objectives:

After studying the lesson the student is expected to have clear comprehension of the theory
and practical utility about the concepts of discrete Uniform Distribution and Biononial Distribution.

Structure of The Lesson:

This lesson consists of 3 sections as detailed below:

9.1 Discrete Uniform Distribution

9.1.1 Moments

9.1.2 Moment Generating Function

9.1.3 Characteristic Function

9.2 Bernoulli's Distribution

9.2.1 Mean and Variance of Bernoulli Distribution

9.2.2 Moment Generating Function

9.2.3 Characteristic Function

9.3 Binomial Distribution

9.3.1 Moments of Binomial Distribution

9.3.2 Moment Generating Function

9.3.3 Cumulant Generating Function

9.3.4 Characteristic Function

9.3.5 Probability Generating Function

9.3.6 Recurrence ralation for the moments of Binomial Distribution

9.3.7 Recurrence relation for the probabilities of Binomial Distribution

9.3.8 Additive Property (or) Reproductive Property

9.3.9 Mode of The Binomial Distribution

9.3.10 Worked Examples

9.4 Exercise

9.5 Answers
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9.1 Discrete Uniform Distribution:

Definition: A random variable X is said to have a discrete uniform distribution over the range

 1, n if its p.m.f. is given as follows:

 
1

P X x ; x 1,2, ,n
n

         (9.1.1)

0 otherwise

Here n is known as the parameter of the distribution and it takes the set of all positive integers.
Equation (9.1.1) is also called a discrete rectangular distribution.

9.1.1 Moments:

   Mean E X x P x  

n

x 1

1
x

n 
 

 n n 1

2n




n 1

2




   2 2E X x P x 

n
2

x 1

1
x

n 
 

   n n 1 2n 11

n 6

   
  

 

   n 1 2n 1

6

 


Variance      
22V X E X E X     

     2n 1 2n 1 n 1

6 4

  
 

2n 1

12



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9.1.2 Moment Generating Function:

The M.G.F. of uniform distribution is given by

     
n

tX tx
X

x
M t E e e P x

 
  

n
tx

n

1
e

n  
 

 
 

t nt

t

e 1 e

n 1 e






9.1.3 Characteristic Function:

The c.f. of uniform distribution is given by

   itX
Xd t E e

 
n

itX

x 1
e P x


 

n
itx

x 1

1
e

n 
 

 
 

it n it

it

e 1 e

n 1 e






9.2 Bernoull's Distribution:

Definition: A random variable X is said to have a Bernoulli distribution with parameter p if its
p.m.f. is given by

  x 1 xP X x P q ; x 0, 1,          

0 otherwise where q 1 p 

The parameter p always lies btween 0 and 1.

A random experiment whose outcomes are of two types they are success (S) and failure (F)
occurring with probabilities of p and q respectively is called a Bernoulli experiment. In this experiment
r.v. X takes the values 1 and 0 respectively with occurance of S and F.
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9.2.1 Mean and Variance of Bernoulli Distribution:

   Mean E X x P x  

0 q 1 p p    

   2 2E X x P x 

2 20 q 1 p   

p

      22Variance V X E X E X   

2p p 

 P 1 P 

Pq

 Mean = p and Variance = Pq

9.2.2 Moment Generating Function:

If X is a Bernoulli variate with parameter p then its M.G.F. is given by

   tX
XM t E e

 tXe P x 

       t 0 t 1e P X 0 e P X 1   

t1 q e p  

tq Pe 

9.2.3 Characteristic Function:

The c.f. of Bernoulli Distribution is given by

  itX
Xd t E e   

 
1

itx

x 0
e P x


 
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       it 0 it 1e P X 0 e P X 1    

it1 q e p   

itq Pe 

9.3 Binomial Distribution:

Introduction:

Binomial distribution was discovered by James Bernoulli in the year 1700 and was first
published in 1713. Let a random experiment be performed repeatedly and let the occurrence of an
event in a trial be called a success (S) andits non-occurrence is called failure (F). Let a set of n
independent Bernoulli trials in which the probability of success (p) in any trial is constant for each
trial and q is the probability of failure in any trial. Let the random variable X be the number of

successes in "n" Bernoulli trails. The possible values of X are 0,1,2, ,n       . This probability

model is the most widely used model and it is appropriate in the following experimental situations.

1. The result of each trial can be classified into one of the two mutually exclusive outcomes
say success and failure.

2. Probability of success (p) remais constant for each trail.

3. The outcomes of all trials are independent of each other.

Then such experimental situation is called Binomial.

If X denotes the exact number of sucess in "n" trials then X takes the values

0,1, 2, , n           . If they are exactly x successes then the remaining  n x are failures. Since,

the probability of success is p and that of a failure is q. The probability of x successes and

consequently  n x failures in n independent trials in a specified order is given by the compound

probability theorem by the expression x n xp q  . But x successes in n trials can occur in  x
n

ways. Hence the requised probability is   x n x

x
n p q 

.

The probability distribution of the number of success so obtained is called the Binomial

Probability distribution, the reason is obvious that the probabilities of 0,1,2, ,n       successes are

the successive terms of the binomial expansion of  nq p .

Definition: A random variable X is said to follow binomial distribution if it assumes only non -
negative integer values and its p.m.f. is given by

     
x n x

x
n p q ; x 0,1,2, ,n

P X x P x

0 otherwise ; q 1 p

        
   

  
(9.3.1)
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The two constants n and p are known as the parameters of the distribution. Any random
variable which follows binomial distribution is known as binomial variate.

Note: 1. If r.v. X follows binomial distribution with parameters n and p then it is denoted as

 X ~ B n, p .

2. Total probability      
n n

nx n x

xx 0 x 0

p x n p q q p 1


 

     

9.3.1 Moments of Binomial Distribution: The first four moments about origin of binomial
distribution are obtained as follows:

   
n

1
1

x 0

E X x p x


   

 
n

x n x

xx 0

x n p q




 

n
x 1 n x

x 1

n 1
np p q

x 1

 



 
  

 


 n 1
np q p


   x

n n 1
n

x 1x

 
  

 


n p
n n 1 n 2

x 1 x 2x

      
              

      

 Mean of B.D. is n p

 1 2
2 E X 

 E X X 1 X    

    E X X 1 2 X  

     
n n

x 0 x 0

x x 1 P x x P x
 

   
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 
n

x n x

x 2

n n 1 n 2
x x 1 p q n p

x 2x x 1





     
       

     


 
n

2 x 2 n x

x 2

n 2
n n 1 p p q n p

x 2

 



 
   

 


 
n

2 x 2 n x

x 2

n 2
n n 1 p p q n p

x 2

 



 
   

 


   n 22
n n 1 p q p n p


   

  2n n 1 p n p  

 1 3
3 E X 

     E X x 1 X 2 3X X 1 X       

       E X X 1 X 2 3E X X 1 E X       

        
n n

x n x x n x

x xx 0 x 0

x x 1 x 2 n p q 3 x x 1 n p q n p
 

 

      

    
n n

3 x 3 n x 2 x 2 n x

x 3 x 2

n 3 n 2
n n 1 n 2 p p q 3n n 1 p p q n p

x 3 x 2

   

 

    
        

    
 

         n 3 n 23 2
n n 1 n 2 p q p 3n n 1 p q p n p

 
       

    1 3 2
3 n n 1 n 2 p 3n n 1 p n p      

Similarly         4x x x 1 x 2 x 3 6x x 1 x 2 7x x 1 x         

 1 4
4 E X  

         E X X 1 X 2 X 3 6X X 1 X 2 7X X 1 X         
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             E X X 1 X 2 X 3 X X 1 X 2 7E X X 1 E X         

        4 3 2
n n 1 n 2 n 3 p 6n n 1 n 2 p 7n n 1 p n p         

[After simplification]

Central Moments:

The first four central moments are given by

1 0 

 
21 1

2 2 1    

  2 2 2
n n 1 p np n p   

2 2 2 2 2n p np np n p   

 np 1 p 

2var iance n pq  

 
31 1 1 1

3 3 2 1 13 2       

         33 2 2
n n 1 n 2 p 3n n 1 p np 3 n n 1 p n p n p 2 n p         

  2n p 3n p 1 p 2p 3p 1 3n pq       

  2n p 3n p 1 p 2p 3p 1 3n pq       

 2
np 2p 3p 1  

 2
n p 2p 2p q  

   n p 1 p 1 2p  

 n pq 1 2p 

 n pq q p 2p  
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 n p q q p 

 3 n pq q p  

   
2 41 1 1 1 1 1

4 4 3 1 2 1 14 6 3          

        4 3 2
n n 1 n 2 n 3 p 6n n 1 n 2 p 7n n 1 p n p         

          2 43 2 2
4 n n 1 n 2 p 3n n 1 p n p n p 6 n n 1 p n p n p 3 n p               

 n pq 1 3 n 2 p q    

Coefficient of Skewness
   2 22 2 2 2

3
1 3 3 3 3

2

n p q q p q p

n pqn p q

  
   



Coefficient of Kurtosis

   4
2 2 2 2 2

2

n pq 1 3 n 2 p q 1 3 n 2 p q

n pqn p q

      
   



 1 6p q
3

n p q


 

Measure of Skewness 1 1

q p 1 2p

n pq n pq

 
    

Measure of Kurtosis 2 2
3   

1 6pq

n pq




9.3.2 Moment Generating Function:

If  X ~ B n, p then its p.m.f. is given by

  x n x
x

p x nc p q ; x 0,1,2, ,n


       .

The M.G.F. of X is given by

   tX
X

M t E e
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 
n

tx

x 0

e p x


 

 
n

tx x n x

xx 0

e n p q




 

   
n xt n x

xx 0

n pe q




 

 
nt

q pe 

   
n

t
X

M t q pe  

Calculation of Mean and Variance using M.G.F.

The M.G.F. of Binomial distribution is given by

   
n

t
X

M t q pe 

 1
1 X

t 0

d
M t

dt 

 
   

 

 
nt

t 0

d
q pe

dt 

 
  
 

 n 1
n q p p


 

n p p q 1 

1
1

Mean n p  

 2
1 X
2 2

t 0

d M t

dt 

 
  
  

 
n 1t t

t 0

d
n q pe pe

dt





 
  
 
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    
n 2 n 1

t t t t t
t 0

n p n 1 q pe p.e .e q pe e
 



 
      

 n p n 1 p 1    

  2n n 1 p n p  

 
21 1

2 2 1
Variance     

  2 2 2n n 1 p n p n p   

2 2 2 2 2
n p np np n p   

 n p 1 p 

n p q

 Mean of B.D. is n p

Variance of B.D. is n p q

9.3.3 Cumulant Generating Function:

We know that    
nt

X
M t q pe 

By defination C.G.F. of r.v. X is given by

   
X X

K og Mt t 

 
ntog q pe

    


 tn log q pe 

2 3
t t

n og q p 1 t
2! 3!

  
                   



2 3
t t

n og 1 p t
2! 3!

  
                 


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n


 


222 3 4 2 3pt t t t t
p t t22! 3! 4! 2! 3!

   
                             

   

3 43 42 3 2 3p pt t t t
t t3 42! 3! 2! 3!

   
                                

   





 Mean
1
1 1

k   The coefficient of
t

1!
in  

X
K n pt 

Variance 2 2
k   The coefficient of

2t

2 !
in    2

X
K nt p p 

 n p 1 p 

n pq

3
K  The coefficient of

3
t

3!
in   2 3

X
K nt p 3p 2p    

 2n p 1 3p 2p  

   n p 1 p 1 2p  

 n p q 1 2p 

   
3 3

K n pq n p q q p1 2p     

4
K  The coefficient of

4t

4!
in   2 3 4

X
K nt p 7p 12p 6p     

2 3n p 1 7p 12p 6p     

   2n p 1 p 1 6p 6p   

   n pq n pq1 6p 1 6pq1 p    
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2
4 4 2

K 3 K  

  2 2 2
n pq 3n p q1 6pq 

 n pq 1 6pq 3n pq  

  n pq 1 3pq n 2  

9.3.4 Characteristic Function:

By definition   itX
X

d Et e   

 
n

itX

x 0

e p x


 

 
n

itX x n x

xx 0

e n p q




 

  
n x n xit

xx 0

n qpe




 

 
nit

q pe 

 C.F. of B.D. is given by

   
nit

X
d t q pe 

9.3.5 Probability Generating Function:

By definition P.G.F. of r.v. X is given by

  X
X

p E SS    

 
n

X

x 0

S p x


 

 
n

x x n x

xx 0

S n p q




 
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   
n

x n x

xx 0

n PS q




 

 nq PS 

 P.G.F. of B.D. is    nP S q PS 

9.3.6 Recurrence Relation for The Moments of Binomial Distribution:

By defination the thr moment about mean is given by

  r
r

E X E X  

   
n

r

x 0

x n P P x


 

   
n

r x n x

xx 0

x n P n P q




  q 1 P 

Differentiating w.r.t. P we get

 
       

       

r 1 n x rxn
r

n xn x 1x x 1xx 0

d r x n P n P 1 P x nP
n

dP P n x 1 P 1 1 p xP

 

  


      
 
 

     



               
n n

r 1 n x r n x 1x x

x xx 0 x 0

n r x nP n P 1 P x nP n P 1 P n x
   

 

        

     
n

n x rx

xx 0

x
n P 1 P x nP

P





  

       
 

 
 

n xn n
r 1 r x

xx 0 x 0

1 P
nr x nP P x x nP n P n x

1 P




 


     


 

     
n

r n xx

xx 0

x
x nP n P 1 P

P





 
   

 

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     
 

     
n n n

r 1 r r

x 0 x 0 x 0

n x x
nr x nP P x x nP P x x nP P x

q P



  


         

       
n n

rr 1

x 0 x 0

n x x
nr x nP P x x n P P x

q P



 

 
      

 
 

   
n

r

r 1
x 0

nP xP xq
n r x nP P x

P q


  
      

 


   
 n

rr
r 1

x 0

d n P x p q
nr x nP P x

dP P q


   
       

  


   
n

r

r 1
x 0

n P x
nr x n P P x

P q


 
      

 


   
 n

r

r 1
x 0

x n P
n r x n P P x

P q



     

   
n

r 1

r 1
x 0

1
nr x n P P x

Pq






    

r 1 r 1

1
n r

Pq 
    

r
r 1 r 1

d1
n r

Pq d P 


    

r
r 1 r 1

d
P q n r ; r 1,2,

d P 

 
               

 

we know that 0 1
1, 0   

If r 1 then  1
2 0

d
Pq n 1

d p

 
    

 
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 Pq 0 n 

n P q

2
n P q 

If r 2 then 2
3 1

d
P q 2n

d P

 
    

 

   
d

Pq n Pq 2n 0
d P

 
  

 

   n Pq P 1 q 1     q 1 P 

 n Pq q P 

 
3

n Pq q P   

If r 3 , then  3
4 2

d
Pq 3 n

d P

 
    

 

    
d

Pq n Pq q P 3n n Pq
d P

 
   

 

   
d

n Pq P 1 P 1 2P 3n Pq
d P

 
    

 

  2d
n Pq P P 1 2P 3n Pq

d P

 
    

 

 n Pq 1 6Pq 3n Pq  

 n Pq 1 6Pq 3n Pq  

 n Pq 1 6Pq 3n Pq  

 n Pq 1 3Pq n 2    
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9.3.7 Recurrence Relation For The Probabilities of Binomial Distribution:

By definition P.M.F. of Binomial Distribution is    
x n x

x
P x n P q ; x 0,1,2, ,n


         

We have
 

 

 
 

x 1 n x 1

x 1

x n x

x

n P q
P x 1

P x n p q

  








   

 n! x! n x ! P

x 1 ! n x 1 ! n! q


  

  

n x P

x 1 q

 
  

 

 The required recurrence formula for the probabilities of Binomial Distribution is

   
n x P

P x 1 P x ; x 0,1,2, ,n 1
x 1 q

 
           

 

This formula is very convenient to obtain probabilities of Binomial Distribution for the

given data. The only probability we need to calculate is  P 0 which is given by   n
P 0 q .

Where q is estimated from the given data by equating the mean x of the distribution

to n P , the mean of B.D.

Thus P̂ x n

ˆq̂ 1 P 

The remaining probabilities      P 1 , P 2 , ,P n              can be obtained using

recurrence formula on substitution of x 0,1,2, ,n 1         respectively..

9.3.8 Additive Property (or) Reproductive Property:

Statement: If
1

X and
2

X are two independent random variables with parameters  1
n , P

and  2
n , P respectively then

1 2
X X also follows Binomial Distribution with parameters

 1 2
n n , P .
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Proof: Given that  1 1
X ~ B n , P then its M.G.F. is given by     1

1

n
t

X
M t q Pe 

Also  2 2
X ~ B n , P then its M.G.F. is given by     2

2

n
t

X
M t q Pe 

If
1

X and
2

X are independent then from the properties of M.G.F. we have

     
1 2 1 2

X X X X
M t M t M t


 

   1 2
n nt tq Pe q Pe  

  1 2
n nt

q Pe


 

Which is the M.G.F. of a Binomial Variate with parameters  1 2
n n , P . Hence by

uniqueness theorem of M.G.F.'s  1 2 1 2
X X ~ B n n , P  .

Remark:

If
1

X and
2

X are two independent random variables with parameters  1 1
n , P and

 2 2
n , P respectively then

1 2
X X does not follow Binomial Distribution.

Since  1 1 1
X ~ B n , P and  2 2 2

X ~ B n , P then M.L.F.'s are     1

1

n
t

X 1 1
M t q P e 

and     2

2

n
t

X 2 2
M t q P e  .

Using the property of M.G.F. we have

     
1 2 1 2

X X X X
M t M t M t


 

   1 2
n nt t

1 1 2 2
q P e q P e   

Which cannot be expressed in the form  
nt

q Pe
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Hence
1 2

X X is not a Binomial Variate.

Hence in general the sum of two independent binomial variates is not a binomial
variate.

9.3.9 Mode of The Binomial Distribution:

We have
 

 

 

 

n x

x
x 1 n x 1

x 1

n P qP x

P x 1 n P q



  






 

   n! x 1 ! n x 1 ! P

x! n x ! n! q

  
  



 n x 1 P

x q

 
 

 xq n x 1 P x q

x q

   


   n 1 P x P q
1

x q

  
 

 n 1 P x
1

x q

 
  (9.3.9.1)

Mode is the value of x for which  P x is maximum.

Case (i): If  n 1 P is not an integer..

Let  n 1 P m f   , where m is an integral part and f is fraction part of  n 1 P

where 0 f 1  .

Substituting in (9.3.9.1) we get

 

 

 P x m f x
1 ; x 1,2, ,n

P x 1 x q

 
            


(9.3.9.2)

from (9.3.9.2) it is obvious that
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 

 

P x
1

P x 1



for x 1,2, ,m       and

 

 

P x
1

P x 1



for x n 1, n 2, ,n       

 

 

 

 

 

 

 

 

 

 

 

 

P 1 P 2 P m P m 1 P m 2 P n
1, 1, , 1, 1, 1, , 1

P 0 P 1 P m 1 P m P m 1 P n 1

 
                  

  

               P 0 P 1 P 2 P m 1 P m P m 1 P m 2 P n                  

 P x is maximum at x m .

 Mode m int egral part of n 1 P   

Case (ii): If  n 1 P is an integer

Let  n 1 P m 

Substituting in (9.3.9.1) we get

 

 

P x
1

P x 1



for  x 1,2, m 1    

 

 

P x
1

P x 1



for x m

 

 

P x
1

P x 1



for x m 1, m 2, , n     

Now proceeding as in case (i), we have

             P 0 P 1 P 2 P m 1 P m P m 1 P n               

Thus maximum probability is at    P m 1 & P m

Therefore m and m 1 are two modes.

9.3.10 Worked Examples:

Example 1: The mean and variance of Binomial Variate X with parameters n and P are 16 and 8.

Find (i)  P X 0 , (ii)  P X 1 , (iii)  P X 2

Solution: If  X ~ B n, P then its mean n P and Variance n Pq

Given that n P 16
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n Pq 8

n Pq 8

n P 16
 

1
q

2
 

P 1 q  

1
1

2
 

1

2


Also n P 16

 
16

n 32
1

2

  

 The parameters of B.D. are
1

n 32, P
2

 

It P.M.F. is given by  

x 32 x

x

1 1
P X x 32 C ; x 0,1, ,32

2 2


   

            
   

(i)  
0 32 0 32

0 32

1 1 1 1
P X 0 32 C

2 2 2 2


     

        
     

(ii)  
1 32 1 32

32

1 1 1 32
P X 1 32C, 32

2 2 2 2


     

        
     

(iii)    P X 2 1 P X 2   

   1 P X 0 P X 1      
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32 32
1 1

1 32
2 2

    
      
     

32

33
1

2
 

Example 2: In a certain town 50% of the population is literates and assume that 100 investigators
take a sample of 10 individuals each to see would you expect to report that three
people or less are literates in the sample ?

Solution: The probability of literates
50 1

p 50%
100 2

   

1
q

2
 

Given that n 10, N 100  .

Let X denotes no of literates

 Probability that three people or less are literates out of 10 samples  P X 3 

       P X 0 P X 1 P X 2 P X 3       

 
0 10 0 1 2 10 2 3 10 3

10 110 10 10 10
0 1 2 3

1 1 1 1 1 1 1
1C C C C

22 2 2 2 2 2 2

  
             

                
             

10 10 10
1 2 310

1
1 C C C

2

     

 
10

1
1 10 45 120

2
   

176

1024


 No. of investigators expect to report that there or less people are literates

 100 P X 3 
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176
100

1024
 

17 8 

 17 are the investigators.

Example 3: In 256 sets of twelve tosses of a fair coin in how many cases may one expect eight
heads and four tails.

Solution: P  Probability of getting head
1

2


1
q

2
 

given that n 12, N 256  .

Let X denotes no of heads.

  n x n x
xP x C P q ; x 0,1,2, ,n


     

The probability of getting eight heads  P X 8 

8 12 8
12

8

1 1
C

2 2


   

    
   

12

495

2


495

4096


Out of 256 sets, the no of cases of getting 8 heads

495
256

4096
 

31

 Expected no. of case is 31.
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Example 4: A perfect cubic die is throw a large number of times in sets of 8. The occurence of
a 5 or 6 is called a success. In what proportion of the sets would you expect 3
successes?

Solution: The probability of getting a 5 or 6 with a die
2 1

P
6 3

  

1 2
q 1

3 3
   

given that n 8

If X denotes no. of success then
1

X ~ B 8,
3

 
 
 

 

x 8 3
8

x

1 2
P x C ; x 0,1,2, ,8

3 3


   

        
   

The probability of 3 successes in one set of  8 P X 3 

3 5
8

3

1 2
C

3 3

   
    

   

1 32
56

27 243
  

1792

6561


0 2731 

 The proportion of the sets giving 3 successes 100 0 2731  

27 31 

27

Example 5: Obtain the M.G.F. of Binomial distribution with n 7 and P 0 6  . Find the first

three central moments.
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Solution: If  X ~ B n, P then its M.G.F. is given by    
nt

XM t q Pe 

given that n 7, P 0 6, q 1 P 0 4      

 M.G.F. of given B.D. is    
7t

XM t 0 4 0 6e   

Mean  n P 7 0 6 4 2    

Variance    
2 n Pq 7 0 6 0 4 1 68       

 3 n P q q P  

    7 0 6 0 4 0 4 0 6     

0 336  

Example 6: With the usual notation, find P for a Binomial r.v. X if n 6 and if    9P X 4 P X 2   .

Solution: Given that n 6

and    9 P X 4 P X 2  

4 6 4 2 6 2
4 29 6 C P q 6 C P q

 
  

4 2 2 49 15 P q 15 P q  

2 4 2

4 2 2

P q q
9

P q P
  

q
3

P
 

q 3 P 

1 P 3P  

4P 1 

1
P

4
 
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q 1 P  

1
1

4
 

3

4


 parameters of B.D. are n 6 and
1

P
4



Example 7: If X is a r.v. following B.D. with mean 2.4 and variance 1.44. Find  P X 5 and

 1 X 4  .

Solution: Given that n P 2 4 

n Pq 1.44

n P q 1 44 3
q

n P 2 4 5


   



3 2
P 1 q 1

5 5
     

 
2 4 2 4

n 6
2P

5

 
   

The parameters of B.D. are 2n 6, P
5

  .

Its P.M.F. is given by  

x 6 x

x

2 3
P x 6C ; x 0,1, ,6

5 5


   

             
   

Now      P X 5 P X 5 P X 6    

5 1 6

5 6

2 3 2
6C 6C

5 5 5

     
      

     
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5 6

6 6

6 3 2 2

5 5

 
 

 5

6

2 18 2 128

31255


 

       P 1 X 4 P X 2 P X 3 P X 4       

2 4 3 3 4 2

2 3 4

2 3 2 3 2 3
6C 6C 6C

5 5 5 5 5 5

           
             

           

4 3 3 4 2
6

1
15 4 3 20 2 3 15 2 3

5

          



Example 8: For a binomial distribution, mean = 20, S.D. = 4. Calculate mode value.

Solution: Given that mean n P 20

S.D. n Pq 4

2n P q 4 16  

n Pq 16 4
q 0 8

n P 20 5
     

P 1 q 1 0 8 0 2      

20 20
n 100

P 0 2
   



 Mode = Integral of    n 1 P 100 1 0 2 20 2     

 Mode = 20

9.4 Exercise:
1. Obtain the moment generating function of B.D. and hence find its mean and variance.

2. Show that relation between moments about origin is

1
r1 1

r 1 r

d
P n q

d P

 
    
  
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3. Obtain the probability generating function of a Binomial Distribution. Hence or otherwise
obtain the mean and variance of the distribution.

4. State and Prove the reproductive property of B.D.

5. Define Binomial Distribution and derive its mean and variance.

6. Obtain the characteristic function of B.D. hence or otherwise find its mean and variance.

7. Derive the mode of the Binomial Distribution.

8. Derive the cumulant generating function of B.D. and hence find the first four central
moments.

9. Determine the Binomial Distribution for which the mean is 4 and variance 3 and find its
mode.

10. In a shooting competition, the probability of a man hitting a target is
1

5
. If he shoots 5

times, what is the probability of hitting the target at least twice.

11. In a Binomial Distribution consisting of 5 independent trials, probabilities of 1 and 2
successes are 0.4096 and 0.2048 respectively. Find the parameter P of the distribution.

12. Ten coins are thrown simultaneously. Find the probability of getting at least seven
heads.

13. A and B play a game in which their chances of winning are in the ratio 3 : 2. Find A's
chance of winning at least three games out of the five games played.

14. Define discrete uniform distribution and hence find its mean and variance.

15. Define Bernoulli Distribution. Find its M.G.F. and hence find its mean and variance.

9.5 Answers:

9.
1

n 16, P , Mode 4
4

  

10.  P X 2 0 2634  

11. P 0 2 

12.  
176

P X 7
1024

 

13.  P X 3 0 68  
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POISSON DISTRIBUTION

Objective:

After studying this lesson the student is expected to have clear comprehencsion of thetheory
and practical utility about the concepts of poisson distribution and its properties.

Structure of The Lesson:

This lesson consists of sections as detailed below:

10.1 Introduction

10.2 Defination

10.3 Uses or Live examples of Poisson Distribution

10.4 Poisson distribution is a limiting case of Binomial Distribution

10.5 Moments of Poisson Distribution

10.6 Recurrence Relation for Moments of The Poisson Distribution

10.7 Moment Generating Function of Poisson Distribution

10.8 Characteristic Function of The Poisson Distribution

10.9 Cumulants of The Poisson Distribution

10.10 Probability Generating Function of Poisson Distribution

10.11 Additive or Reproductive Property of Poisson Distribution

10.12 Mode of The Poisson Distribution

10.13 Recurence Relation for The Probabilities of P.D.

10.14 Worked Examples

10.15 Exercise

10.16 Answers

10.1 Introduction:

Poisson Distribution was discovered by the French mathematician and Physicist Simeon
Denis Poisson in 1837. Some times we come across a rare event which occurs once in number
of trials. For example, consider the event of a recieving telephone calls at a particular telephone
exchange in some specified time. If we consider a trial as a number of calls on particular time and
the outcome of the trial as to recieve a call or not to recieve a call, then clearly, "n" represents the
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number of calls during a particular time period is very large and it is difficult to find it exactly. Also,
the probability "p" of recieving a call is very small. However, the mean number of calls in the time

period is n p   (say) is finite constant. In these situations if X denotes umber of calls then the

probability function of randim variable in the given time period can be given by  
xep X x

x!

    .

Where e is a constant with approximate value 2.7183. Thisdistribution of X is called Poisson
Distribution and the variable X is called a poisson variate.

10.2 Defination:

A random variable X is said to follow a Poisson Distribution if it assumes only non - negative
integer values and its probability mass function (p.m.f.) is given by

 

x
e

; x 0,1,2,
x!p X x

0

0 ; otherwise

 
        


  
 




Here  is called as the paramter of the distribution.

Remarks: 1. If X is a Poisson Variate with parameter  then it is denoted as  X ~ p 

2. The total probability  
x

x 0 x 0

e
x

x !

 

 

 
  

x

x 0

e
x !







  

e e
 

 

1

3. Distribution function of Poisson Distribution is given by

     
x

r 0

F x p X x p r


   

rx

r 0

e

r!





 
 

rx

r 0

e

r!





 
  ; x 0,1,2,          
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10.3 Uses or Live Examples of Poisson Distribution:

The poisson distribution may be useful in the following some instances.

1. Number of sucides reported in a particular city.

2. Number of deaths from a disease such as heart attack or due to snake bite.

3. Number of faulty blads in as acket of large number of blades.

4. Number of air accidents in some unit of time.

5. Number of printing mistakes at each page of the book.

6. Number of telephone calls received at a particular telephone exchage in some unit of
time.

7. The number of defective material in a packing manufactured by a company.

10.4 Poisson Distribution is a Limiting Case of Binomial Distribution:

The poisson distribution is a limiting case of Binomial Distribution under the following
conditions.

(i) The number of trials "n" is large, i.e. n  

(ii) The constant probability of success "p" for each trial is very small, i.e. p 0

(iii) n p is finite, say n p 

p
n


  and q 1

n


 

By definition the p.m.f. of Binomial Distribution is

    x n x

x
np x p q x 0,1,2, ,n


        

     x n x
n n 1 n 2 n x 1

1
x ! n n


               

    
   

     

n x

x

x x

1n n 1 n 2 n x 1 n

x ! n
1

n


 

                   
 

 
 

 

n

x

x

1n 1 2 x 1 n1 1 1
x ! n n n n

1
n

 
                            

         
 

 
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 
 

n

x
n

xn x

n

im 1
1 2 x 1 n

im p x im 1 1 1
x ! n n n

im 1
n



   



 
         

                 
        

 
 



 



x e

x ! 1




xe
; x 0,1,2,

x !

  
         

n

n
im 1 e

n



 

 
  

 
 

x

n
im 1 1

n

 
  

 


Hence poisson distribution is a limiting case of B.D.

10.5 Moments of Poisson Distribution:

The p.m.f. of Poisson Distribution with parameter  is given by

 
xe

p x
x!

  
 ; x 0,1,2, ,        

Moments about origin:

   1
1

x 0

E X x p x




   

x

x 0

e
x

x !





 
 

 

x 1

x 1

e
x 1 !







 




e e   

 
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 Mean of The Poisson distribution is  .

 1 2
2 E X 

     E X X 1 X 2 3X X 1 X     

    
x x

x 0 x 0

e e
x x 1 x 2 3 x x 1

x! x!

  

 

 
       

  
   

 
  

x 3 x 2
3 2

x 3 x 2

e x x 1 x 2 3e x x 1
x x 1 x 2 x 3 ! x x 1 x 2 !

  
 

 

 
         

    
 

   

x 3 x 2
3 2

x 3

e 3 e
x 3 ! x 2 !

 
 



 
     

 
 

3 2
e e 3 e e
   

     

3 2
3     

1 3 2
3 3       

 1 4
4 E X 

         E X X 1 X 2 X 3 6X X 1 X 2 7X X 1 X         

1 4 3 2
4 6 7        

Central Moments:

 
2

1 1
2 2 1    

2 2
     

 

 Variance of P.D. is 
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Thus Poisson Distribution is a discrete distribution in which mean and variance are equal.

 
3

1 1 1 1
3 3 2 1 13 2       

 3 2 2 33 3 2            

 

   
2 4

1 1 1 1 1 1
4 4 3 1 2 1 14 6 3          

   4 3 2 3 2 2 2 46 7 4 3 6 3                     

2
3   

Coefficient of skewness

2 2
3

1 3 3
2

1 
   

 

Coefficinet of kurtosis

2
4

2 2 2
2

3 1
3

   
    

 

Measure of skewness 1 1

1
V   



Measure of kurtosis 2 2V 3  

1
3 3  



1



Note: As 1, 0     and 2 3  . Hence for large  poisson distribution tends to normal

distribution.



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @10 . 7Probability and Distributions Poisson Distribution

10.6 Recurrence Relation for Moments of The Poisson Distribution:

The p.m.f. of Poisson Distribution with parameter  is given by

 
xe

p x ; x 0,1,2,
x !

 
       

 E X T

By definition    r
r E X E X  

   r

x 0

x p x




  

 

x
r

x 0

e
x

x !







   

Defferentiate w.r.t.  , we get

   
 

  
r

x x 1r 1r

x 0 x 0

d x
r x 1 e 1 e x

d x !

 
  

 

  
           

 
   

x r
x 1 xr 1

x 0 x 0

e x
r x x e e

x! x!


 

  

 

  
       

     
x

r 1 r

x 0 x 0

e x
r x p x x 1

x !

 


 

  
        

 
 

       
 r 1 r

x 0 x 0

x
r x p x x p x

 


 


      


 

       r 1 r 1

x 0 x 0

1
r x p x x p x

 
 

 

     


 

r 1 r 1

1
r      


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r
r 1 r 1

d 1
r

d
 


     

 

r
r 1 r 1

1 d
r

d
 


    

 

r
r 1 r 1

d
r

d
 

 
      

 

Hence the recurrence relation for the moments is r
r 1 r 1

d
r

d
 

 
     

 

Putting r 1 , we get 1
2 0

d

d

 
     

  

 0 1   1 0 

  0 1 

For r 2 , we get
2

3 1

d
2

d

 
     

  

 
d

0
d

 
    

  

 1 0  

 

for r 3 , we get
3

4 2

d
3

d

 
     

  

 
d

3
d

 
     

  

 1 3   

2
3   
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10.7 Moment Generating Function of Poisson Distribution:

If X follows P.D. with parameter  then its p.m.f. is given by

 
x

e
p x ; x 0,1,2,

x !




         

The M.G.F. of X is given by

  tX
XM t E e   

 tx

x 0

e p x




 

x
tx

x 0

e
e

x !






 

 
x

tn

x 0

e
e

x !






 

 
x

t

x 0

e
e

x !







 

t
e

e e
 

 

 t
e 1

e
 



Hence M.G.F. of P.D. is  
 t
e 1

XM t e
 



Mean and variance using M.G.F.

 1
1 X

t 0

d
M t

dt 

 
   

 
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 t
e 1t

t 0
e e

 



 
   

0 0
e e 

0
e 1

 

1
1Mean   

 2
1 X
2 2

t 0

d M t

d t


 
  
 
 

 t
t e 1

t 0

d
e e

d t

 



 
   
  

0 0 0 0 0
e e e e e       

 1  

2
   

1 2
2    

 Variance  
21 1

2 2 1    

2 2
     

 

10.8 Characteristic Function of The Poisson Distribution:

By definition   i t X
Xd t E e   

 i t x

x 0

e p x




 
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x
i t x

x 0

e
e

x!






 

 
x

i t

x 0

e
e

x!







 

i t
e

e e
 

 

 i t
e 1

e
 



 c. f. of P.D. is  
 i t
e 1

Xd t e
 



Mean and Variance using c.f.

 
 1 X

1

t 0

d t
i

t


 
    

  

 
 i t
e 1i t

t 0
i i e e

 



 
     

 
0 0

i i e e    

2
i  

  2
i 1 

1
1Mean   

 
 2

1 2 X
2 2

t 0

d t
i

t


 
   
  

 
 i t
e 1i t2

t 0

i i e e
t

 



 
   

  
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  i t 0 0 0 02
i i e i e e e i e        

   2
i i i i    

   2
i i i i    

   22
i i 1    

 4
i 1   

2
   

2
i 1 

1 2
2     

 
21 1

2 2 1var iance     

2 2
     

 

10.9 Cumulants of The Poisson Distribution:

By definition    
X XK t og M t 

 t
e 1

og e
  

   

 t
e 1  

2 3
t t

1 t 1
2! 3 !

 
                 
  

2 3 r
t t t t

1! 2 ! 3 ! r !

 
                      
  
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 The th
r cumulant rk  The Coefficient of

r
t

r !
in  

XK t  

Hence all the cumulants of P.D. are equal to 

1
1 1Mean k     

2 2Variance k   

3 3k   

2
4 4 2k 3k  

2
3   

2 2
3

1 3 3
2

1 
   

 

2
4

2 2 2
2

3 1
3

   
    

 

10.10 Probability Generating Function of Poisson Distribution:

By definition P.G.F. of P.D. is given by

   X
p S E S

x
x

x 0

e
S

x!






 

 x

x 0

S
e

x !







  

S
e e
 

 

 S 1
e
 





@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @10 . 14 Acharya Nagarjuna UniversityCentre for Distence Education

10.11 Additive or Reproductive Property of Poisson Distribution:

Statement: Prove that sum of independent poisson variates is also a Poisson variate.

Proof: Let 1 2 nX ,X , ,X       are independent poisson variates with parameters

1 2 n, , ,        respectively..

i.e.  i iX ~ P ; i 1,2, ,n        

then its M.G.F. is given by  
 t

i

i

e 1

XM t e
 

 ; i 1,2, ,n      

 The M.G.F. of sum of poisson variates are given by

       
1 2 n 1 2 nX ,X , ,X X X XM t M t M t M t          

iX 's are ind...

     t t t
1 2 ne 1 e 1 e 1

e e e
     

           

   t
1 2 n e 1

e
   



Which is the M.G.F. of a Poisson Variate with parameters 1 2 n            .

Hence by uniqueness theorem of M.G.F.'s
n

i
x 1

X

 is also a Poisson Variate with

parameter
n

i
i 1

 .

Hence sum of the independent Poisson Variates is also a Poisson Variate.

Note: The difference of two independent Poisson Variates is not a Poisson Variate.

10.12 Mode of The Poisson Distribution:

If  X ~ p  then its p.m.f. is given by

 
x

e
p x ; x 0,1,2,

x !




         
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Consider
 

 

 

 

 

x

x

x 1 x 1

e

p x e x 1 !x !

p x 1 x x 1 !e e

x 1 !





   



 
  

  



 

 

p x

p x 1 x






Case (i): If  is not an integer, then m t   where m is an integral part and  t 0 t 1  is a

fractional part of the  .

 

 

p x m t

p x 1 x





; x 0,1,2, ,m, m 1,               

It is clear that

 

 

 

 

 

 

 

 

p 1 p 2 p m p m 1
1, 1, , 1, 1,

p 0 p 1 p m 1 p m


                   



             p 0 p 1 p 2 p m 1 p m p m 1 p m 2                          

Which shows that  p m is the maximum value.

m is the mode and which is an integral part of  .

Case (ii): If  is an integer say m  then

 

 

p x m

p x 1 x



; x 0,1,2, ,m, m 1,                  

 

 

 

 

 

 

 

 

 

 

p 1 p 2 p m 1 p m p m 1
1, 1, , 1, 1, 1,

p 0 p 1 p m 2 p m 1 p m

 
                     

 

           p 0 p 1 p 2 p m 1 p m p m 1                        

In this case we have two maximum values they are  p m 1 and  p m .

 Mode values are m and m 1 when  is integer..
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10.13 Recurrence Relation For The Probabilities of P.D.:

If  X ~ p  then its p.m.f. is given by

 
x

e
p x

x !




 ; x 0,1,2,        

 
 

x 1
e

p x 1
x 1 !

 


  


; x 0,1,2,        

 

   

x 1

x

p x 1 e x !

p x x 1 ! e

 



 
  

 

x 1






   p x 1 p x
x 1

 
    

 

Hence recurrence relation between probability of P.D. is

   p x 1 p x
x 1

 
     

This formula is very convenient to calculate the probability of P.D. The value of 0P given

by  p 0 e


 . Where  is the mean of the given frequency distribution. The other probabilities

can be obtained by using above recurrence relation.

10.14 Worked Examples:

Example 1: If the probabilities of a Poisson Variate taking the values 3 and 4 are equal, calculate
the probabilities of the variable taking the values 0 and 2.

Solution: If  X ~ p X the its p.m.f. is given by

 
x

e
p X x

x!


 

  ; x 0,1,2,        

Given that    p x 3 p x 4  
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3 4
e e

3! 4 !

 
 

 

3 4

6 24

 
 

4  

 
4 0

4e 4
p X 0 e 0 0183

0 !




     

 
4 2

4e 4
p x 2 e 8 0 146

2!




     

Example 2: The probability of getting no misprint in a page of a book is
4

e


. Determine the

probability that a page of a book contains more than 2 misprints.

Solution: Given that  
4

p x 0 e


 

4
e e
 

 

4  

   p X 2 1 p X 2    

     1 p X 0 p X 1 p X 2        

4 0 4 1 4 2
e 4 e 4 e 4

1
0 ! 1! 2 !

     
    
  

4 16
1 e 1 4

2

  
    

 

4
1 e 13


  

1 13 0 0183   

7620 
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Example 3: A telephone switch board receives 20 calls on an average during an hour. Find the
probability that during a period of 5 minutes (i) no calls is received, (ii) exactly 3
calls are received, (iii) more than 5 calls are received.

Solution: We assume that the number of incoming cells during any time period follows Poisson
Process. 20 calls per hour is equivalent to 0.33 calls perminute, which is the mean
rate of occurrance. Hence number of cells in 5 minute period follows a Poisson

Dostribution with parameter 1 65  

t 0 33 5 1 65     

(i) p (no calls in a 5 minute period)
165

e 0 192
 

  

(ii) p (3 calls in a 5 minute period)
 165 3

e 1 65
0 144

3 !

 


  

(iii) p (more than 5 calls in a 5 minute period)
 165 x

x 6

e 1 65
0 007

x !

 




  

Example 4: Assuming that one in 80 births is a case of twins, calculate the probability of 2 or
more births of twins on a day when 30 births occur using (i) Binomial Distribution,
(ii) Poisson Approximation.

Solution: (i) Assuming X to be a Binomial Variate.

p  probability of twin births
1

0 0125
80

  

q 1 p 

0 9875 

given n 30

     x 30 x
xp X x 30 C 0 0125 0 9875


    

 Probability of 2 or more births of twins on a day is

   p X 2 1 p X 2   

   1 p X 0 p X 1      
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       0 30 1 29
0 11 30C 0 0125 0 9875 30C 0 0125 0 9875        

2
e 2

e
2 3




  

2
3 4   

4

3
  

 
0 4

3e
p X 0 e e

0 !

 
 

    

 

3
4

4 3
3 3 4

3e e 64
p X 3 e

3 ! 6 27 6

 
  

     
   



4
332

e
81





10.15 Exercise:

1. Derive Poisson distribution as a limiting form of a Binomial Distribution.

2. State and prove reproductive property of Poisson Distribution.

3. Derive the recurrence relation between the moments of Poisson Distribution and hence
obtain the Skewness and Kurtosis.

4. If X is a Poisson variate with parameter  and r is a non - negative integer then prove

that

1
1 1 r
r 1 r

d

d


 
      

 
where  1 r

r E X 

5. Show that all the Cumulants are equal to the parameter  .

6. Derive M.G.F. of Poisson Distribution and hence find its mean and variance.

7. Derive P.G.F. of Poisson Distribution and hence find its mean and variance.

8. Find the cumulant generating function of Poisson Distribution. Using cumulants find
the first form Central Moments.
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9. Derive the characteristic function fo poisson distribution and find the mean and variance
from it.

10. Derive mode of Poisson Distribution.

11. Assuming that the probability that a bomb dropped from an aeroplane will hit a largest

is
1

5
. If 6 bombs are dropped, find the probability that

(i) Exactly two will hit the target.

(ii) Atleast two will hit the target.

12. If X and Y are independent Poisson Variates having means 1 and 3 respectively, find

the mean and variance of 3X Y .

13. Show that for a Poisson Distribution  
1 2 1
1 2 13 1      .

14. In a book of 520 pages, 390 typo - graphical errors occur. Assuming Poisson law for
the number of errors per page, find the probability that a random sample of 5 pages
will contain no error.

15. If X is a Poisson variate such that

     p X 2 9p X 4 90 p X 6    

Find X value, mean, variance and coefficient of skewness.

10.16 Answers:

11. (i) 0 24576 (ii) 0 34464

12. 6, 12.

14.  
5 3 75

p X 0 e
 

   

15. 11, mean 1, var iance 1, p 1    
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NEGATIVE BINOMIAL DISTRIBUTION

Objective:

After studying the material of this lesson, the student supposed to have a clear concept
about the negative binomial distribution, its dualities with the ordinary binomial distribution, the
situations where if works well.

Structure of The Lesson:

11.1 Introduction

11.2 Definition

11.3 Moments of Negative Binomial Distribution

11.4 Moment Generating Function of Negative Binomial Distribution

11.5 Characteristic Function of Negative Binomial Distribution

11.6 Probability Generating Function

11.7 Poisson Distribution as a Limiting Case of The Negative Binomial Distribution

11.8 Recurrence Relation Between Central Moments of NBD

11.9 Recurrence Relation For The Probabilities of NBD

11.10 Workedout Examples

11.11 Exercise

11.12 Answers

11.1 Introduction:

The important characteristic of the Binomial Distribution is mean value is always greater
than the variance. The Negative Binomial Distribution obtained by the same process that gives
rise to Binomial Distribution, but its mean is always less than the variance. In Binomial Distribution,
no of successes "X" varies from 0 to n where n is number of trials and is fixed, where as in Negative
Binomial Distribution x is fixed and n is allowed to vary. Some of such sitvations are (i) Death of
insects, (ii) Number of insects bites, (iii) Bacterial clustering etc are leads to the Negative
Binomial Distribution.

The random experiment with the following properties lead to Negative Binomial Distribution.

1. The result of each trial can be classified into one of the two mutvally exclusive out
comes say success and failure.

2. Probability of success "p" remains constant for each trial.
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3. The outcomes of all trials are independent of each other.

4. The series of thetrials is performed until a fixed number of success in achieved.

1.2 Defination:

A random variable X is said to follow a negative Binomial Distribution with parameters r and
p if its p.m.f. is given by

 
r xx r 1

p q ; x 0,1,2,
P x r 1

0 otherwise

   
           




Simplified form of Negative Binomial Distribution

x r 1 x r 1

r 1 x

      
   

   

    x r 1 x r 2 r 1 r

x !

            


        x
1 r r 1 r x 2 r x 1

x!

                 


 x
r

1
x

 
   

 

   
r xr

P x p q
x

 
   

 
; x 0,1,2,        

which is the  thx 1 term in the expansion of  
r r

p 1 q


 , a binomial expansion with negative

index. Hence the distribution is known as negative binomial distribution.

The relation which establishes a similarity to Binomial Distribution:

If
1

P
Q

 and
p

q
Q

 so that Q P 1  p q 1  

 The p.m.f. of NBN becomes

 
x

rr p
p x Q

x Q

    
    
   

; x 0,1,2,        
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This is the general term in the Negative Binomial expansion   r
Q P


 .

That is the relation with B.D. is p P 

n r 

11.3 Moments of Negative Binomial Distribution:

   1
1

x 0

E X x p x




   

r x

x 1

x r 1
x p q

x





  
   

 


     

 

r x

x 1

x r 1 x r 2 r 1 r
x p q

x x 1 !





          





r x 1

x 0

x r 1
r p q q

x 1






  
  

 


 
 r r 1

r p q 1 q
 

 

 

r r

r 1 r 1

r p q r p q

1 q p
 

 


r q

p


1
1

r qMean
p

   

1 2
2 E X    

  E X X 1 X  

    E X X 1 E X   (11.3.1)
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Now      

x 0

E X X 1 x x 1 p x




     

  r x

x 2

x r 1
x x 1 p q

x





  
   

 


 
    

 

x 2
r 2

x 2

x r 1 x r 2 r 2 q
p r r 1 q

x 2 !





            
 




  r 2 x 2

x 2

x r 1
r r 1 p q q

x 2






  
   

 


   
 r 2 r 2

r r 1 p q 1 q
 

  

 

 

r 2

r 2

r r 1 p q

1 q







     r 2 r 2 2

r 2 r 2 2

r r 1 p q r r 1 p q r r 1 q

p p p p


  
   (11.3.2)

substituting (11.3.2) in (11.3.1) we get

 
2

1
2 2

q r qr r 1
p

p
      r qE X

p


 
21 1

2 2 1     

 
2 2 2

2 2

q rq r q
r r 1

pp p
   

2 2 2 2 2

2 2 2

r q r q r q r q

pp p p
   
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r q q
1

p p

 
   

 

r q q p

p p

 
   

 

r q 1

p p

 
   

 

2

r q

p
 q p 1  

 variance 2 2
r q

p
 

Note: Mean < variance, which is a special feature of the NBD.

11.4 Moment Generating Function of Negative Binomial Distribution:

The p.m.f. of Negative Binomial Distribution is given by

  r xx r 1
p x p q

x

  
  
 

; x 0,1,2,        

The M.G.F. of NBD is given by

  tX
XM t E e   

 tX

x 0

e p x




 

tX r x

x 0

x r 1
e p q

x





  
  

 


 
x

r t

x 0

x r 1
p q e

x





  
  

 

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 
r

r t
p 1 qe


 

 
x r

x 0

x r 1
q 1 q

x






  
  

 


   
r

r t
XM t p 1 qe


  

Mean and variance using M.G.F.

 1 X
1

t 0

d M t

dt 

 
   

 

 
rr t

t 0

d
p 1 qe

dt





 
  

 

   
r 1

r t t

t 0
p r 1 q e q e

 



 
     

   r r 1
p r q 1 q

    

r

r 1

r q
p

p




q
r

p


1
1

r qMean
p

   

 2
1 X
2 2

t 0

d M t

d t


 
  
 
 

 
r 1

r t t

t 0

d
p r q e 1 qe

d t

 



         

   
        r r 1 r 2t tt tt

t 0
r q p e er 11 qe qe1 qe

   



       
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          r r 1 r 2rq p q1 q 1 qr 1
      

 r
r 1 r 2

1 qr 1
rq p

p p
 

 
  

  

 

2

2

r q q
r r 1

p p
  

 
21 1

2 2 1
Variance     

 
2 2 2

2 2

r q q r q
r r 1

p p p
  

2
r q

p


11.5 Characteristic Function of Ngative Binomial Distribution:

If X follows Negative Binomial Distribution with parameters p and r then its p.m.f. is given by

 
r xx r 1

p p qx
x

  
  
 

; x 0,1,2,        

The c.f. of X is given by

  itX
Xd Et e   

 
itX

x 0

e p x




 

itX r x

x 0

x r 1
e p q

x





  
  

 


 
xr i t

x 0

x r 1
p q e

x





  
  

 

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 
rr i tp 1 q e


 

 

 

r

X r
i t

p
d t

1 q e

 



11.6 Probability Generating Function:

If X follows NBD with parameter r and p then its p.m.f. is given by

 
r xx r 1

p p qx
x

  
  
 

; x 0,1,2,        

The P.G.F. of X is given by

   x
P E SS 

 
x

x 0

S p x




 

x r x

x 0

x r 1
S p q

x





  
  

 


 
r x

x 0

x r 1
p qS

x





  
  

 


 
r xx r 1

p qS
x

  
  

 


   
r r

P p 1 qSS


  

Mean and variance using P.G.F.

   1
1

s 1

d
pmean E sX

ds


 
     

  

 
r r

s 1

d
p 1 qs

ds





 
  

  
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 
r r

s 1

d
p 1 qs

ds





 
  

  

   r r 1p r q 1 q
    

 

r

r 1

r q p

1 q





r

r 1

r q p

p




r q

p


1
1

r q
Man

p
  

We know that    
1 11 1
2 s 1

p ps s 
    

   
11 1d

p ps s
ds

   

   r r 1
d

r p q 1 qs
ds

    

       
r r 2

s 1
p r q 1 qs qr 1

 


     

       
r r 2p r q 1 q qr 1

      

 

 

 
r 2 r 2

r 2 r 2

p r q p r qr 1 r 1

1 q p
 

 
 


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 

2

2

q
r r 1

p
 

 
2

1
2 2

q rq
r r 1

pp
     

1
s 1

r q
p s p
   

 
21 1

2 2 1
Var iance     

 

2 2 2

2 2

q rq r q
r r 1

pp p
  

2 2 2 2 2

2 2 2

r q r q r q r q

pp p p
   

qr q
1

pp

 
   

 

q pr q

pp

 
   

 

2

r q

p
 q p 1  

Hence mean r q
p

 and variance 2
r q

p


11.7 Poisson Distribution As A Limiting Case of The Neagative
Binomial Distribution:

Negative Binomial Distribution tends to Poisson Distribution under the following conditions.

1. P 0

2. r  

3. r P   , finite
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The p.m.f. of NBD is given by

 
r xx r 1

P p qx
x

  
  
 

x
r Px r 1

Q
x Q

    
     
   

       
x

rr
p

1 px r 1 x r 2 r 1
1 p

x !

  
               

 
x

x x r

x 1 x 2 1
1 1 1

1r r r
r p 1 p

1 px !



         
                                     

   
x

x r

x 1 x 2 1
1 1 1

1r r r
r p 1 p

1 px!



         
                                      

Now proceeding to the limits, we get

 

r x
x

r r r r

1 x 1 x 2 1
im P im 1 1 im im1 1 1x

x! r r r r r

 

       

                 
                        

              
   

x1
e 1

x!


   

x
e

x!






Which is the p.m.f. of the Poisson Distribution with parameter  .
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11.8 Recurrence Relation Betwen Central Moments of NBD:

Theorem: Show that the recurrence relation between central moments of NBD is

k
k 1k 1 2

k r d
q

d pp


 
    

  

Proof: By definition, p.m.f. of NBD is given by

 
r xx r 1

P p qx
x

  
  
 

 

k

k
x 0

r q
x p x

p





 
     

 


k
r x

x 0

r q x r 1
x p q

xp





    
     

  


Differentiating w.r.t. p we get

  
k k 1

r x 1 x r 1 r xk

2
x 0

d r q r qx r 1 r
x xp x q q r p p q k1

xd p p p p


 



        
                   



k k 1
r x r x

2
x 0 x 0

r q r qr x k rx r 1 x r 1
x xp q p q

x xp pp q p

 

 

                                
 

k k 1
r x r x

2
x 0 x 0

r q r q r q1 r kx r 1 x r 1
x x xp q p q

x xp p pq p

 

 

           
                 

        
 

   

k 1 k 1

2
x 0 x 0

r q r q1 r k
x xp px x

p pq p

  

 

   
         

   
 

k 1 k 12

1 r k

q p
     



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @11 . 13Probability and Distributions Negative Binomial ...

k
k 1 k 12

d 1 r k

d p q p
 


     

k
k 1 k 12

1 r k d

q d pp
 


    

k
k 1k 1 2

r k d
q

d pp


 
     

  

In particular if k 1 then

0 12 2

n d
q

d pp

 
     

  

r
q

p

 
  

  
0 11, 0   

r q
p



If k 2 we get

1 23 2

2r d
q

d pp

 
     

  

r qd
q

pd p

  
    
   

3 2

2 1
r q

p p

 
    

 

3 3

2r q q p

p p


 

 
3

r q
1 1 p

p
  
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 3 3

r q
1 q

p
  

Similarly if k 3 , then  
2

4 4

r q
p 3q r 2

p

     

11.9 Recurrence Relation For The Probabilities of NBD:

By definition  
r xx r 1

P p qx
r 1

  
  

 
; x 0,1,2,        

 
r x 1x r

p p qx 1
r 1

 
   

 

 

 

r x 1

r x

x r
p q

p r 1x 1

x r 1p x p q
r 1

 
 

   
  

 
 

   

     

! ! x! x rx r r 1
q q

! ! ! x 1r 1 x 1 x r 1

  
   

    

   
x r

p q px 1 x
x 1

 
   

 

Hence recurrence relation between probabilities of Negative Binomial Distribution is

   
x r

p q px 1 x
x 1

 
  

 

11.10 Workedout Examples:

Example 1: What is the probability that we need 5 trials to get the two successes, if the probability

of success is
1

4
.

Solution: Given that
1

p
4


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3
q

4


r 2

 
2 3

1 33 2 1
p r 2

2 1 4 4

      
      

     

2 3

1

1 3
4C

4 4

   
    

   

4 27

45




27

256


0 1054 

Example 2: If a boy is throwing stones at a target, what is the probability that his
th

10 throw is

his
th

5 hit, if the probability of hitting the target at any trial is 0.5 ?

Solution: Given that p 0 5 

q 0 5 

r 5 x r 10 

     5 55 5 1
p x 5 0 5 0 5

5 1

  
    

 

 109
0 5

4

 
  
 

 10126 0 5  

0 12305 

Example 3: If the probability is 0.40 that a child exposed to a certain contagious diseas will
catch it, what is the probability that the tenth child exposed to the disease will be
third to catch it.
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Solution: Given that p 0 4 

q 0 6 

r 3 x r 10 

     3 77 3 1
p r 3 0 4 0 6

3 1

  
    

 

   3 79
0 4 0 6

2

 
   
 

0 0645 

Example 4: If the probability of getting a head is
1

2
, find the probability that a fourth toss is the

getting of head first time.

Solution: Given that
1

p
2



1
q

2


r 1 x r 4 

 
1 3

1 13 1 1
p r 1

1 1 2 2

      
     

     

4
13

0 2

  
   
   

1

16


0 0625 

Example 5: If the probability is 0.75 that a person will believe a rumour about the corruption of
certain politicians, find the probabilities that

(i) The eighth person to hear the rumour will be the fifth to believe it.

(ii) The fifteenth person to hear the rumour will be the tenth to believe it.
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Solution: (i) Given that p 0 75 

q 0 25 

r 5

     5 35 3 1
p r 5 0 75 0 25

5 1

  
    

 

   5 37
0 75 0 25

4

 
   
 

0 1298 

(ii)      10 514
p r 10 0 75 0 25

9

 
   

 

0 1101 

Example 6: Obtain the characteristic function of the Negative Binomial Distribution given in the

form  

x1
p x

x 1 1


     

            
; x 0,1,2,         and hence evaluate its first

two moments.

Solution: The c.f. of X is given by

  itX
Xd Et e   

xi t

x 0

1 e

x 1 1





     
             



 
i t

e1


     

 i t
1 e


  

 i t1 e 1


     



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @11 . 18 Acharya Nagarjuna UniversityCentre for Distence Education

 
 

 2i t i t
1

1 e 1 e 1
2


                

     
22 2

2i t i t1i t i t
1 1 1 1 1

21! 2! 1! 2!

     
                                   
      

 
       2 3 2

2
X

1i t i t i t
d 1 i t i tt

2!2! 3! 2!

     
                     
      

1
1   The coefficient of

 i t

1!
in  Xd t  

1
2  The coefficeint of

 2i t

2!
in    

2
Xd t 1       

2 2 2
      

 
21 1

2 2 1
     

2 2 2 2 2
         

2
   

 1    

 Mean , Variance 1       .

11.11 Exercise:

1. Define Negative Binomial Distribution and find its mean and variance.

2. Obtain M.G.F. of Negative Binomial Distribution and hence find its mean and
variance.

3. Obtain c.f. of Negative Binomial Distribution and hence find its mean and
variance.

4. Obtain P.G.F. of Negative Binomial Distribution and hence find its mean and
variance.
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5. Obtain cumulant generating function of Negative Binomial Distribution and hence
find its mean and variance.

6. Show that Poisson Distribution is a limiting case of Negative Binomial Distribution.

7. If X is Negative Binomial Variate with p.m.f.

 
r xx r 1

p p q ; x 0,1,2,x
x

  
         
 

then show that the recurrence relation between central moments is

k
k 1k 1 2

d r k
q

dq p


 
    

  
.

8. Deduce the moments of Negative Binomial Distribution from those of Binomial
Distribution.

9. An item is produced in large numbers. The machine is known to produce 5%
defectives. A quality control inspector is examining the items by taking them at
random. What is the probability that at least 4 items are to be examined in order
to get 2 defectives?

10. Find the probability that a person tossing 3 coins will get either all heads or all
tails, for the second time on the fifth toss.

11.12 Answers:

9.      2 x 2

x 4

x r
p 0.9928x 4 0 05 0 95

2 1






 
    

 


10.  
2 3

1 34
p 0 103X 2

1 4 4

    
       
     
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GEOMETRIC DISTRIBUTION

Objective:

After study this lesson the students are expected to have clear comprehension of the
theory and practical utility about the concepts of mean, variance, moments, generating functions
and properties of Geometric Distribution.

Structure of The Lesson:

12.1 Introduction

12.2 Defination

12.3 Derivation of Geometric Distribution

12.4 Moments of Geometric Distribution

12.5 Moment Geometric Function

12.6 Characteristic Function

12.7 Probability Generating Function

12.8 Recurrence Relation For The Moments of Geometric Distribution

12.9 Lack of Memory Property of Geometric Distribution

12.10 Recurrence Relation For The Probabilities of G.D.

12.11 Additive Property of G.D.

12.12 Workedout Examples

12.13 Exercise

12.14 Answers

12.1 Introduction:

Suppose we have a series of independent trials or repetitions and on each trial or repetition
the probability of success "p" remains fixed. In Geometric Distribution X can be defind as the
number of failures before the first success. It can also be defined as number of trials required for
getting the first success. The probability that there are X failures prceding the first success is given

by x
q p . Some of the situations where the Geometric Distribution are as follows:

1. Suppose a man is hitting the torget. Number of failures before hitting the target.

2. Number of balls required for a cricket bowler to make the batsman out on the
assumption of probability that the bats man will be out for any ball is same.
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12.2 Defination:

A random variable X is said to have a Geometric Distribution if it assumes only non -
negative values and its p.m.f. is given by

 
x

q p ; x 0,1,2,
p x

0 otherwise ; p q 1

         
 

 

Note: (i) Since the various probabilities for x 0,1,2,         are the various terms of

Geometric progression, hene the distribution named as Geometric Distribution.

(ii) Total Probability  
x 0

p x




 

x

x 0

q p




 

 2
p 1 q q          

  1
p 1 q


 

p

1 q




p

q


1

Hence total probability is one.

12.3 Derivation of Geometric Distribution:

If X denotes the number of failures before the first success then X can take any one of the

values 0,1,2,        if the probability of success is p then probability of failure will be q 1 p  .

Now  p X 0  Probability of zero failures

= Probability of success in the first trial

p
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   p pX 1 one failure

p {failure in the first trial and success in the next trial}

q p

 p px 2  [ two failures preceeding first success]

2
q p

Proceding in the similar manner, we get

 
x

p q p ; x 0,1,2,X x         

It is a Geometric Progression with common ratio q - hene the distribution is Geometric
Distribution.

12.4 Moments of Geometric Distribution:

The p.m.f. of Geometric Distribution is given by

 
x

p q p ; x 0,1,2,x          

By defination    
1
1

x 0

E x pX x




   

x

x 0

x q p




  

x 1

x 1

p q x q






 

2p q 1 2q 3q            

  2
p q 1 q


 

 2
pq

1 q



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2

p q

p


q

p


1
1

qMean
p

   

 1 2
2 E X 

  E X XX 1 

    E EX XX 1 

Now       
x 2

E x pX x 1 xX 1




  

 
x

x 2

x q px 1




 

 
2 x 2

x 2

pq x qx 1






 

2 2 3pq 2 3 x 2q 4x 3q 5x4q              

2 2 32pq 1 3q 6q 10q                

 
2 3

2pq 1 q


 

 

2

3

2pq

1 q




2

3

2pq

p

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2

2

2q

p


2
1
2 2

2q q
p

p
      qE X p



 
21 1

2 2 1
    

2 2

2 2

2q qq
p

p p
  

2

2

q q
p

p
 

qq
1

pp

 
  

 

q pq

pp

 
  

 

2

q

p
 q p 1 

Hence variance 2 2
q

p
 

 1 3
3 E X 

     E X X 1 X 2 3X X 1 X     

       E X X 1 X 2 3E X X 1 E X        (12.4.1)

Now         x

x 0

E X X 1 X 2 x x 1 x 2 q p




       
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  3 x 3

x 3

x 1 x 2
3! pq x q

3!






 
 

 3 2 3
6pq 1 4q 10q 20q          

 3 4
6p q 1 q


 

 

3

4

6pq

1 q




3

4

6pq

p


3

3

6q

p
 (12.4.2)

We know that   
2

2
2qE X X 1

p
  and   qE X

p
 (12.4.3)

Substituting (12.4.2) and (12.4.3) in (12.4.1) we get

3 2
1
3 3 2

6q 3X2q q
p

p p
   

2

2

q 6q 6q
1

p pp

 
   
 
 

Similarly  1 4
4 E X 

        E X X 1 X 2 X 3 X 1 X 2 7X X 1 X          

4 3 2

4 3 2

24q 36q 14q q
p

p p p
    on simplification
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12.5 Moment Generating Function:

The p.m.f. of G.D. is given by

  x
p x q p ; x 0,1,2,         

The M.G.F. of G.D. is given by

   tX
XM t E e

 t x

x 0

e p x




 

t x x

x 0

e q p




 

 
x

t

x 0

p q e




 

 
1

t
p 1 qe


 

 t

p

1 qe




 
 X t

p
M t

1 qe
 



Mean and variance using M.G.F.

Mean
 1 X

1
t 0

d M t

d t


 
   

 

 
1

t

t 0

d
p 1 qe

d t





 
  
 

     
2t t

t 0
p 1 1 q e q e





 
     
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  2
p q 1 q


 

2

pq

p


q
p

 1 q p 

1
1

qMean
p

  

 2
1 X
2 2

t 0

d M t

d t


 
  
 
 

 
2

t t

t 0

d
pq 1 qe e

d t





 
  
 

     
2 3t t t t t

t 0
pq 1 q e e 2 1 q e q e e

 



 
      

2 3

1 2q
p q

p p

 
  

  

2

2

q 2q

p p
 

 
21 1

2 2 1var iance     

2 2

2 2

q 2q q

p p p
  

2

2

q q

p p
 
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q q
1

p p

 
  

 

q p q

p p

 
  

 

2

q

p
 p q 1 

2
qvar iance

p
 

12.6 Characteristic Function:

If X follows G.D. then its c.f. is given by

  itX
Xd t E e   

 itX

x 0

e p x




 

itX x

x 0

e q p




 

 
x

i t

x 0

p q e




 

 
1

i t
p 1 q e


 

 
 X i t

p
d t

1 q e
 



Mean and Variance using C.F.

We know that  
 1 X

1
t 0

d t
i

t


 
    

 



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @12 . 10 Acharya Nagarjuna UniversityCentre for Distence Education

   
1

i t

t 0

i p 1 q e
t





 
   

 

       
2

i t i t

t 0
i p 1 1 q e iq e





 
      

   
2

i t it

t 0
i pq i 1 q e e





 
    

 
2 2

i p q 1 q


  
2

i 1 

 

2

1 pq

p


q
p



1
1

qMean
p

  

 
 2

1 2 X
2 2

t 0

d t
i

t


 
   
  

   
2

i t i t2

t 0

i i pq e 1 qe
t





 
   

 

        
3

i t i t i t i t2 2

t 0
i i pq ie 1 q e 1 q e 2 q e i






 
        

     2 32
i i pq i 1 q 2qi 1 q

       

4

2 3

1 2q
i pq

p p

 
  

  

 
2 3

1 2q
1 pq

p p

 
  

  
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2

2 3

pq 2 p q

p p
 

2

2

q 2q

p p
 

 
21 1

2 2 1     

2 2

2 2

q 2q q

p p p
  

2
q

p


 2 2
qvar iance

p
  

12.7 Probability Generating Function:

If X follows G.D. then its P.G.F. is given by

   X
P S E S

 x

x 0

S P x




 

x x

x 0

S q P




 

 x

x 0

P q S




 

  1
P 1 qS


 

 
 

P
P S

1 q S
 


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Mean and Variance using P.G.F.

   1
1

s 1

d
E X p s

ds


 
    

 

  1

s 1

d
p 1 qs

ds





 
  
 

   2

s 1
p 1 1 qs qs




     

  2
p q 1 q


 

2

p q

p


q
p



1
1

qMean
p

  

 2
1
2 2

s 1

d p s

s s


 
  
 
 

  2

s 1

d
pq s 1 qs

ds





 
  

 

     2 3

s 1
pq 1 qs 1 2 1 qs qs s

 


      

   2 3
pq 1 q 2q 1 q

      

2 3

1 2q
p q

p p

 
  

  

2

2 3

pq 2q p

p p
 
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2

2

q 2q

p p
 

 
21 1

2 2 1     

2 2

2 2

q 2q q

p p p
  

2
q

p


 
2 2

qvar iance V X
p

   

12.8 Recurrence Relation For The Moments of Geometric
Distribution:

The p.m.f. of G.D. is given by

  x
p x q p ; x 0,1,2,         

and we know that   qE X
p



The
th

r moment about mean is given by

  r
r E X E X    

   
r

x 0

qx p x
p





 

 
r x

x 0

qx q p
p





 

Differentiating w.r.t. q we get

     
r 1 rx x 1 xr

x 0

d d d pq q qr x x pq x p x q q
p p pdq dq dq

  



   
       

  

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   
rr 1 x x 1 x

2
x 0

1 qqr x p q x x pq q
p pp

  



    
             



     
r 1 r x

2
x 0 x 0

r x 1q qx p x x pq
p p q pp

 

 

  
     

 
 

       
r 1 r x

2
x 0 x 0

r 1q q qx p x x pq x
p p pqp

 

 


     

   
r 1

r 12
x 0

r 1 qx p x
pqp

 





   

r 1 r 12

r 1

qp
 


   

r
r 1 r 12

d1 r

q d q p
 


    

r
r 1 r 12

d r
q

dq p
 

 
     

  

Hence the recurrence relation between moments is r
r 1 r 12

d r
q

dq p
 

 
    

  

If r 1 , then 1
2 0 22

d r qq
dq pp

 
     

  
0 11, 0    .

If r 2 , then
 2

3 1 2 32

d 2 d q 1 qqq q
dq dq p pp

              
      

If r 3 , then
3

4 22

d 3
q

d q p

 
    

  
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 
23 2

d q 1 q 3 qq
dq pp p

          
      

 2

4

q
p 3 q 3

p

   

 2

4

q
p p q

p
 

 2

4 4

q p pq

p


  

12.9 Lack of Memory Property of Geometric Distribution:

The special property of Geometric Distribution is lack of memory. It means that the
probability of additional number of failures before the first success is equal to "t", given that the
number of failures preceding the first success is greater than or equal to "k" is the same as the
unconditional probability of the number of failures before the first success is "t".

By definition  
t

p X t pq ; t 0,1,2,          

We have to show that  X k tp p X t
X k

    
  

Consider,

 
 

p X k t X kX k tp
X k p X k

     
   



 
 

p X k t

p X k

 


 (12.9.1)

Now  
x

x k

p X k p q




  

k k 1 k r
p q q q

              
  

 k 2
p q 1 q q         
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 
k 1

p q 1 q


 

k
kpq

q
p

  (12.9.2)

Substituting (12.9.2) in (12.9.1) we get

 
k t

k

pqX k tp
X k

q


  



t
p q

 p X t 

Hence  X k tp P X t
X k

    
  

Hence G.D. lacks memory.

12.10 Recurrence Relation For The Probabilities of G.D.:

The p.m.f. of G.D. is given by

 
x

p x q p ; x 0,1,2,         

 
x 1

p x 1 q p


  

 
 

x 1

x

p x 1 q p
q

p x q p




  

   p x 1 q p x ; x 0,1,2,          

For apply this recurrence relation we need  P 0 p

The other probabilities    P 1 , P 2 ,          can be easily obtained by using recurrence

relation.
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12.11 Additive Property of G.D.:

If 1X and 2X are two independent Geometric variables with parameter p.

i.e.  1X ~ G D p  and  2X ~ G D p 

The M.G.F. of 1 2X & X are given by

   1

1t
XM t p 1 q e


     2

1t
XM t p 1 q e


 

     
1 2 1 2X X X XM t M t M t  

   1 2

22 t
X XM t p 1 q e



  

This is M.G.F. of Negative Binomial Distribution with r 2 .

Hence by uniqueness theorem of M.G.F.'s 1 2X X follows Negative Binomial Distribution.

12.12 Workedout Examples:

Example 1: If the probability that a target is destroyed on any shot is 0.5. What is the probability

that is would be destroyed on th
6 attempt?

Solution: Given that p 0 5 

q 1 p 0 5   

The probability that target would be destroyed on th
6 attempt

 
5

P X 5 q P  

   5
0 5 0 5  

 60 5 

Example 2: An unbiased dice is tossed until the occurrence of a six. Find probability that the
number of trials required in all is more than 6.

Solution: Let x be the number of trials required in all

 P X x   P [  x 1 trials does not give six and
th

x trial gives 6]
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x 1
5 1

; x 1,2,
6 6


   

            
   

   
x 1

x 7

5 1
P X 6 P X 7

6 6





   
        

   


6 7
1 5 5

6 6 6

    
                
     

6 2
1 5 5 5

1
6 6 6 6

      
                  
       

6 1
1 5 5

1
6 6 6


     

      
     

6
1 5

6 6

1

6

   
   
   

 
 
 

 
6

5
P X 6

6

 
    

 

Example 3: Assume that a student is waiting for school bus. The probability that exactly X
buses will pass the student before the school bus arrives is given by

 
x

1 2
P X x ; x 0,1,2,

3 3

 
           

 

(i) What is the probability that five buses will pass the student before the school
bus arrives ?

(ii) What is the probability tht additional five buses will pass before the school bus
arrives given that more than three have already passed?
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Solution: Given that  
x

1 2
P X x ; x 0,1,2,

3 3

 
           

 

(i)  
5

1 2 32
P X 5

3 3 729

 
    

 

(ii)    
 

8 5
5

3

P X 8 q 2x 8P q
x 3 P X 3 3q

           

     X 8 X 8 X 9P P P
x 3 X 3 X 3

    
  

5 6
q q 

 
5

q 1 q 

5
q p

5
2 1

3 3

   
    
   

32

729


12.13 Exercise:

1. Define Geometric Distribution and state where the distribution is useful.

2. Find the M.G.F. of Geometric Distribution and hence find its mean and variance.

3. Find the characteristic function of Geometric Distribution and hence find its mean
and variance.

4. Find the probability generating function of Geometric Distribution and hence find its
mean and variance.

5. Explain memory less property of Geometric Distribution.

6. Obtain the recurrence relation between moments of Geometric Distribution.



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @12 . 20 Acharya Nagarjuna UniversityCentre for Distence Education

7. If the probability is 0.75 that an applicant for a driver's licence will pass the road
test on ny given try, what is the probability that an applicant will finally pass the test
on the fourth try.

8. If the probability that a target is destroyed on any one shot is 0.5. What is te

probability that it would be destroyed on
th

8 attempt?

9. A die is cost until 6 appeons. What is the probability that it must be cast more than
five times.

12.14 Answers:

7. 0.1055

8.  80 5

9.

5
5

6

 
 
 
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HYPERGEOMETRIC DISTRIBUTION

Objective:

After studying the lesson the students are expected to have clear comprehension of the
theory and practicl utility about the concepts of mean, variance, limiting case, recurrence relation
of Hypergeometric Distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

13.1 Introduction

13.2 Defination

13.3 Mean and Variance of Hypergeometric Distribution

13.4 Hypergeometric Distribution Tends to Binomial Distribution

13.5 Recurrence Relation Between Probabilities of H.G.D.

13.6 Workedout Examples

13.7 Exercise

13.8 Answers

13.1 Introduction:

Hypergeometric Distribution is used when sampling conducted without replacement from
a finite population. In this distribution, the rpobability of an outcome in any trial is not same as in any
other trial. Consider a box with N balls, M of which are white and N - m are red. Suppose that we
draw a sample of n balls at random by without replacement from the box. then the probability of

getting x white balls out of n balls  x n is
M N M N

x n x n

     
          

.

Since x white balls can be drawn from "m" white balls in
M

x
 
 
 

ways and out of the

remaining N m red balls,  n x balls can be choosen in
N M

n x

 
  

ways.

i.e. favourable number of cases
M N M

x n x

   
       
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total possible number of cases
N

n
 

  
 

 probability of getting x white balls  

M N M
x n x

P X x
N
n

   
      

  
 
 
 

13.2 Defination:

A discrete random variable X is said to follow the Hypergeometric Distribution with
parameter N, m and n if it assumes only non - negative values and its probability mass function is
given by

 
 

M N M

x n x
; x 0,1,2, ,min n, M

NP X x

n

0 otherwise

    
    
                   

   
 




Where N is a positive integer, m is a positive integer not exceeding N and n is a positive
integer that is at most N.

Note: Total probability  
n

x 0

P x


 

n

x 0

M N M

x n x

N

n


   
   

   
 
 
 



N

n

N

n

 
 
 
 
 
 

1

Here N, m, n are parameters of Hypergeometric Distribution.
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13.3 Mean and Variance of Hypergeometric Distribution:

The p.m.f. of Hypergeometric Distribution (H.G.D.) is given by

 

M N M

x n x
P x ; x 0,1,2, ,n

N

n

   
   

           
 
 
 

By defination  
n

x 0

M N M

x n x
E X x

N

n


   
   

    
 
 
 



n

x 0

1 M M 1 N M
x

N x 1 n xx

n


    
    

      
 
 



n

x 1

M M 1 N M

N x 1 n x

n


    
    

      
 
 



M N 1

N n 1

n

 
  

   
 
 

n

x 1

M 1 N M N 1

x 1 n x n 1


       
     

       


M N 1

N N 1 n 1

n 1n

 
       

 
 

 
n M

E X
N

 

Hence mean of HGD is
n M

N

    2
E X E X X 1 X  

   E X X 1 E X     (13.3.1)
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Consider       
n

x 0

E X X 1 x x 1 P x


  

 
n

x 2

M N M

x n x
x x 1

N

n


   
   

    
 
 
 



 
n

x 2

1 M M 1 M 2 N M
x x 1

N x 2 n xx x 1

n


     
       

      
 
 



 M M 1 N 2

N n 2

n

  
  

   
 
 

 M M 1 N 2

N N 1 N 2 n 2

n 2n n 1

  
         

  

   

 

n n 1 M M 1

N N 1

 



(13.3.2)

Substituting (13.3.2) in (13.3.1) we get

     

 
2 n n 1 M M 1 n M

E X
N N 1 N

 
 


 

n M
E X

N


      22
V X E X E X  

   

 

2 2

2

n n 1 M M 1 n M n M

N N 1 N N

 
  



  n M n 1 M 1 n M
1

N N 1 N

  
   

 
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      

 

n M N n 1 M 1 N N 1 N 1 n M

N N N 1

      
  

 

 

2

2

n M
N M n N M N n N N M n M n N N

N N 1

         


 
   

2

n M
N N M n N M

N N 1
     



   

 
2

N n N M n M

N N 1

 




 variance  
   

 
2

n M N n N M
V X

N N 1

 




13.4 Hypergeometric Distribution Tends To Binomial Distribution:

Hypergeometric Distribution tends to Binomial Distribution, under the following conditions.

(i) N 

(ii)
M

p
N



The p.m.f. of H.G.D. is given by

 

M N M

x n x
P X x

N

n

   
   

    
 
 
 

   

 

   

 M! N M ! N n ! n!

M x ! x! N M n x ! n x ! N!

 
  

    

     

 

     

   

M M 1 M x 1 M x ! N M N M 1 N M n x 1 N M n x !

x! M x! n x ! N M n x !

                        


    

 

     

n! N n !

N N 1 N 2 N n 1 N n !




          
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 

       

   

n! M M 1 M 1 N M N M 1 N M n x 1

x! n x ! N N 1 N n 1

                 


         

M M 1 M x 1 N M N M 1 N M n x 1n

x n N N N N N

N N 1 N n 1

N N N

                   
                     

          
       

               
     

Proceeding to the limit as N  and putting
M

p
N

 we get

        
 

N
x times n x times

nim P x p q p 1 p 1 p 1 p
x



                 
 

  x n xn p q
x


 q 1 p 

Hence HGD tends Binomial Distribution.

13.5 Recurrence Relation Between Probabilities of HGD:

By definition  

M N M

x n x
p x ; x 0,1,2, ,n

N

n

   
   

          
 
 
 

 

M N M

x 1 n x 1
p x 1

N

n

   
   

       
 
 
 

 

 

M N M N

p x 1 x 1 n x 1 n

N M N Mp x

n x n x

     
               

     
     

     

   

 

   

M! N M !

x 1 ! M x 1 ! n x 1 ! N M n x 1 !


 

        
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     

 

x! M x ! n x ! N M n x !

M! N M !

    




       

        

x! M x M x 1 ! N M n x ! n x n x 1 !

x 1 x! M x 1 ! n x 1 ! N M n x 1 N M n x !

        


           

   

   

M x n x

x 1 N M n x 1

 


    

 
   

   
 

M x n x
p x 1 p x ; x 0,1,2,

x 1 N M n x 1

 
            

    

which is the required recurrence relation.

13.6 Workedout Eamples:

Example 1: If p.m.f. of HGD is  
 

M n
x r x

M n
r

C C
p x ; x 0,1,2, , r

C




         then find its mean

and variane.

Solution:    
r

x 0

Mean E X x p x


  

r

x 0

M n

x r x
x

M n

r


   
   

   
 

 
 



 
  

r

x 0

M M 1 n
x 1 r xM n

r



  

M M n 1
r 1M n

r

  
      
 
 

r

x 0

M 1 n M n 1

r 1 r x r 1


       
            


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M n 1
M

r 1

M n M n 1
r 1r

  
  

    
      

M r
Mean

M n
 



    2
E X E X X 1 X  

      E X X 1 E X 1     

Now

    
r

x 2

M n
x r x

E X X 1 x x 1
M n

r


   
        

 
 
 



 
 

 

r

x 2

M 2 n
M M 1 x 2 r x

x x 1
M nx x 1

r


  
        

  
 
 



  r

x 2

M M 1 M 2 n
x 2 r xM n

r


    
          

 
 



 M M 1 M n 2
r 2M n

r

   
      

 
 

  M n 2
M M 1

r 2

M n M n 1 M n 2
r 2r r 1

  
   

        
          
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   

   
 

r r 1 M M 1
2

M n M n 1

 
   

  

Substituting (2) in (1) we get

     

  
2 r r 1 M M 1 M r

E X
M n M n 1 M n

 
 

   
 

M r
E X

M n





      22
var iance V X E X E X  

   

     

2 2

2

M M 1 r r 1 M r M r

M n M n 1 M n M n

 
  

    

 

        

   

M r M n M 1 r 1 M n M n 1 M r M n 1

M n M n M n 1

          
  

    

   

2 2 2

2 2 2

M r M r M n r M r n r M M n n n M

M n M n 1 2M n n n n M r M n r M r

         
 
          

   

2

2

M r
M n n r n

M n M n 1

    
  

 

   2

M n r M n r
Variance

M n M n 1

 
 

  

Example 2: As part of an air pollution survey, an inspector decides to examine the exhavst of 6
of a company's 24 trucks. If 4 of the company's trucks emit excessive amounts of
pollutants, what is the probability that none of them will be included in the inspector's
sample?

Solution: n 6, N 24, M 4   .

 

4 20

0 6
p X 0 0 2880

24

6

   
   
       
 
 
 
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Example 3: Among the 16 applicants for a job, ten have college degrees. If three of the applicants
are randamly choosen for interviews, what are the probabilities that

(i) none has a college degree

(ii) one has a college degree

(iii) two have college degree

(ig) All three have college degree

Solution: Given that N 16, M 10, n 3   .

Using HGD

(i)  

10 6
20 10 3

P X 0
16 560 28
3

   
   
      
 
 
 

(ii)  

10 6
10 15 151 2

P X 1
16 560 56
3

   
          
 
 
 

(iii)  

10 6
45 6 272 1

P X 2
16 560 56
3

   
          
 
 
 

(iv)  

10 6
120 1 33 0

P X 3
16 560 14
3

   
          
 
 
 

Example 4: What is the probability that an IRS avditor will catch only two incometax returns with
illegitimate deductions, if she randomly select five returns from among 15 returns of
which 9 contain illegitmate deductions?

Solution: Given that N 15, M 9, n 5, X 2    .

Substituting X 2 in HGD we get

 

9 6
36 20 2402 3

P X 2
15 3003 1001
5

   
          
 
 
 
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Example 5: A box consists of 15 red balls and 5 black balls. 5 balls are drawn at random what
is the probability that drawn balls consists of 2 black balls.

Solution: Using HGD we can get probability

Given that N 20, n 5, M 5, X 2    .

 

5 15

2 3
P X 2

20

5

   
   
     
 
 
 

10 455

15504




0 29 

Example 6: A bag contains 4 white balls and 3 green balls. 3 balls are drawn. What is the
probability in that 2 are white.

Solution: N 4 3 7, M 4, n 3, X 2      .

 

4 3
182 1

P X 2
7 35
3

   
   
      
 
 
 

13.7 Exercise:

1. Define Hypergeometric Distribution.

2. Obtain the mean and variane of Hypergeometric Distribution.

3. Obtain the recurrence relation between probabilities of Hypergeometric Distribution.

4. Show that Binomial Distribution as a limiting case of Hypergeometric Distribution.

5. In a group of 10 people there are 5 drinkers. Find te probability distribution of the
number of drinkers X, in a random sample of 6 people selected. Hence find its
mean and variance.

6. A taxi cab company has 12 ambassadors and 8 fiats. If 5 of these cabs are in the
shop for repairs and Ambassador is as likely to be in for repairs as a fiat. What is
the probability

(i) 3 of them are Ambassadors and 2 are Fiats.

(ii) At least 3 of them are Ambassadors.
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7. A basket consists of 5 Apples and 4 Mangoes. If 4 fruits are randomly drawn, find
the probability that

(i) no mangoes were selected

(ii) exactly two mangoes were selected.

8. From a group of 10 boys and 6 girls, a committee of 5 students is to be formed at
random

(i) Find the probability that the committee consists of 2 boys and 3 girls.

(ii) How many girls are expected in the committee.

9. A box contains 7 black and 4 white balls. If 5 balls are drawn, find the probability
that they consists of 2 white balls.

10. A Jury of 12 members is drawn at random from a voters list of 1000 persons out of
which 700 are non-graduates and 300 are graduates. What is the probability that
the Jury will consists of all graduates?

(i) Compute the probability by Hypergeometric Distribution.

(ii) Compute the probability by Binomial Distribution.

13.8 Answers:

5. mean = 2.9991, variance = 0.6.

6. (i) 0.3973

(ii) 0.7038

7. (i) 0.03968

(ii) 0.47619

8. (i) 0.20604

(ii) 2

9. 5
11

10. (i) 0.000000454

(ii) 0.00000053
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NORMAL DISTRIBUTION

Object of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of definition, properties, importance in statistics
of Normal Distribution and as limiting case of Binomial and Poisson Distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

14.1 Introduction

14.2 Definition

14.3 Properties of Normal Distribution

14.4 Moment Generating Function

14.5 Cumulant Generating Function

14.6 Characteristic Function

14.7 Moments

14.8 Normal Distribution as Limiting Case of Binomial Distribution

14.9 Normal Distribution as Limiting Case of Poisson Distribution

14.10 Importance in Statistics

14.11 Workedout Examples

14.12 Exercise

14.1 Introduction:

The Normal Distribution was introduced in 1733 by Mathematician De-Moivre, who obtained
this continuous distribution as a limiting case of the binomial distribution and applied it to problems
arising in the game of chance. Later Laplace and Gauss derived it independently of each other as
the distribution of erross in physical measurements. Thus the normal distribution has got wide
applications in the theory of statistics.

14.2 Definition:

A random variable X is said to have a Normal Distribution with parameters  , called mean

and
2

 the variance if its density function is given by the probability law
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 
2

1 1 x
f x ; , exp

22

   
      
   

or  

 2

2

x

2
1

f x ; , e
2

 




   


x , , 0           

Therefore, A random variable X with mean  and variance 2
 following the Normal

Distribution is expressed as  2
X ~ N ,  . If  2

X ~ N ,  , then
X

Z





is a standard normal

variate with mean 0 i.e.,  E Z 0 and variance 1 i.e.,  V Z 1 and is denoted by  Z ~ N 0, 1 .

Hence the probability density function of standard normal variate Z is given by

 

2
Z

21
Z e , Z

2



      


and the corresponding distribution function, denoted by  Z is given by

     

2ZZ u
21

Z P Z Z u d u e d u
2



 

     






Here below two important results on the distribution function  Z of standard normal

variate.

Result 1: To show that    Z 1 Z   

Proof:      Z P Z Z P Z Z       (By symmetry)

 1 P Z Z  

 1 Z  

Result 2: To show that  
b a

P a X b
    

        
    

where  2
X ~ N , 
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Proof:  
a b

P a X b P Z
  

     
  

X
Z

 
 

 


b a
P Z P Z

    
      

    

b a    
      

    

14.3 Properties of Normal Distribution:

The normal probability curve with mean  and standard deviation  is given by the equation

 

 2
2

x

21
f x e , x

2

 




    



and has the following properties

1. The curve is bell shaped and symmetrical about the line x   .

2. Mean, median and mode of the distribution coincide.

Mean of Normal Distribution:

 

 2

2

x

21
E X x e d x

2


 







 








put
x

Z x Z, d x d Z
 

     


x , Z , x , Z       .
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   

2
Z

21
E Z Z e d Z

2







     
 






22 ZZ
2 2e d Z Z e d Z

2 2









 
   

 









2 2Z Z
2 2e d Z Z e d Z

2 2

  



 
  

 

 



1 0  

 

[

2
Z

21
e d Z 1

2













 and the second integral

2
Z

21
Z e d Z 0

2






 






is an

odd function].

Median of Normal Distribution:

If M is the median of the Normal Distribution we have

   

M
1

f x d x 1
2



   



But  

 2

2

x

21
f x e , x

2

 




    



Substituting the value of  f x in equation (1) we get
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 2

2

M
x

21
1e d x

2
2

 
















   

 

2 2

2 2

x xM

2 21 1 1
e d x e d x 2

22 2

    

 

 

 

     
 

 
 
 
 

But

 2
2

2

x
0

z
2 21 1

1e d x e d Z
2

22

  









 



 

 


 from (2) we get

 2

2

xM

21 1
1e d x

22 2

 







 







 2

2

xM

21
e d x 0

2

 







 







M  

Hence for the Normal Distribution Mean = Median.

Mode of Normal Distribution:

Mode is the value of x for which  f x is maximum that is mode is the solution

of  f x 0  and  f x 0  . For Normal Distribution with mean  and standard

deviation   f x is given by

 

 2

2

x

21
f x e , x

2

 




    


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Taking logarithms on both sides of above equation becomes

 

 2

2

x

2
e

1
og f x og e

2

 





 
 
 
 

 

 

 2

2

x

2
e e

1
og og e

2

 





 
  

  

 

 2 e
e2

x
K og

2


 




e
e e

1
og 1, K og

2

 
  

  

 

 
 2

2

x
og f x K

2


 


 K is constant.

Differentiating w.r.t. 'x' above equation becomes

 
         

2 2

1 1 1
f x x f x x f x

f x

 
      

 

Also        
2

1
f x 1 f x x f x


      



   
 2

2 2

1 f x
f x x
   

     
    

     
2

1
f x x f x

 
   

 


 
 

 
2

2 2

1 x
f x f x
  
  
   

   2

2 2

f x x
1
  
  
   

As      
2

1
f x 0 x f x 0


    


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 x 0  

x  

At the point x   we have from equation

    x2 2

1 1 1
f x f x 0

2
 

 
    

  

Hence x   is the mode of the Normal Distribution. Therefore mean , median

and mode coincide at x   .

3. Mean deviation about mean is
2 4

5
   


(approximately)

Quartile deviation   3 1Q Q 2
Q D

2 3


     (approximately)

or
2 4 2 4

Q D : M D : S D :: : : : : : :1 Q D : M D : S D ::10 :12 :15
3 5 3 5

               

Let X be a  2
N ,  . If 1Q and 3Q are the first and third quartiles respectively

then by definition.

 1P X Q 0 25   and  3P X Q 0 25  

The points 1Q and 3Q are located as shown in the figure given below..

0.25 0.25 0.250.25

Z = 0

X = Q1

Z = Z 1

3
X = Q

Z = - Z1

X  
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When    3
3 1

Q
X Q , Z Z say 1


     



and when 1
1 1

Q
X Q , Z Z

 
   


(as from the figure)  2  

Substracting (1) & (2) we get

3 1
1

Q Q
2 Z






The quartile deviation is given by 3 1
1

Q Q
Q D Z

2


    

From the figure

 1 1P 0 Z Z 0 25 Z 0 67       (approximately) (From Normal Tables)

1

2
Q D Z 0 67

3
         

For Normal Distribution mean deviation about mean is given by

2 4
M D

5
     



Also for Normal Distribution standard deviation S D   

Hence
2 4 2 4

Q D : M D : S D :: : : :: : :1 : :10 : 12 :15
3 5 3 5

        

4. As x increases numerically,  f x decreases rapidly, the maximum probability

occurring at the point x   and given by

  max

1
P x

2




5. Area under the normal curve is unity

As area

 

 

2

2

x

21
A e d x 1

2


 







   







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Put
x

Z


 


x , Z

x , Z

   

   

d Z dx 

Substituting in equation (1) we get

22 Zz
2 2

0

1 1
A e d Z 2 e d Z

2 2






 
 




 
 

(from properties of Integral)

Fake

2 1
2z 1

t z 2 t , d z 2 t d t
2 2


    

z 0 , t 0

z , t

 

   

1
t2

0

1 1
A 2 2 t e d t

22





    







1
11

t t2 2

0 0

1 1
t e d t t e d t

 
 

   
 


 

 
1

1A
2

  


 
1 1 t2

0

1t e d t
2


 

 
   
 
 







1




    1
2

  

A 1

 Area under the normal curve is unity..
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6. Since  f x being the probability, which will never be negative therefore no portion of

the curve lies below the x - axis.

7. x - axis is an asymptok to the curve.

8. The distribution has points of inflexion at x    

At the points of inflexion of normal curve, we should have

 f x 0  and  f x 0 

For normal curve we get

 
   2

2 2

f x x
f x 1

  
   
   

 
   2

2 2

f x x
f x 0 1 0

  
     
   

 2

2

x
1 0


  



x     .

Thus the points of inflexion of the normal curve are given by x     and

 
1

21
f x e

2







. That is they are equidistant (at a distance  ) from the mean.

9. Mean Deviation from the mean for Normal Distribution:

Mean Deviation about mean  x f x d x




 

 2

2

x

21
x e d x

2

 







 






(  

 2

2

x

21
f x e

2

 







 for

Normal Distribution)
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Put
x

z d Z d x,


   


also x z  

x , z

x , z

   

   

2
z

2z e d z
2















2
z

2

0

2
z e d z

2









 (By property of Integrales)

Since in the above equation the integrand

2
z

2z e


is an even function of z.

Also in  0, , z z  we have

 
2

z
2

0

2
M D about mean z e d z




     






t

0

2
e d t




  
 

2
z

putting t
2

 
  
 

t

0

2 e

1

 

  
  

 02
e e
 

    


2
  



4

5
  (approximately)
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10. Area property of Normal Distribution:

If  2
X ~ N ,  then the probability that random value of X will lew between

X   and 1X x is given by

   

 211
2

x xx

2
1

1
P X x f x d x e d x

2

 





 

    



  

Put
x

z





, i.e., X z, d x d z     

When  1
1 1

x
X , Z 0 ; X x , z z say

 
     



     

21
1

z zz
2

1 1
00

1
P X x P 0 Z z e d z z d z

2


         





 

Where  

2
z

21
z e

2



  


is the probability density function of standard

normal variate. The deinite integral  
1z

0

z d z is known as normal probability integral

and it gives the area under standard normal curve between the ordinates at z 0

and 1Z z . These areas have been tabulated for different values of 1z , at internals

of 0 01 .

3X   2X   X X  X 2X   3X 

3Z 2Z 1Z 0Z 1Z 2Z  3Z 
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Probability that a random value of X lies in the internal  ,      is given

by

   P X f x d x





       

 
1

1

x
P 1 z 1 z d z



  
        

  

   
1

0

P 1 z 1 z z d z       (By symmetry)

   2 1 0      

2 0 3413   (  1 0 3413   are taken from tables)

0 6826 

Similarly

     
2

2

P 2 x 2 P 2 z 2 z d Z



            

 
2

0

2 z d Z  

   2 2 0 2 0 4772 0 9544                2 0 4772, 0 0    

     
3

3

P 3 X 3 P 3 z 3 z d Z



            

 
3

0

2 z d Z  

   2 3 0     
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2 0 49865  
 

 

3 049865,

0 0

  
    



0 9973 

Therefore the probability that a normal variate X lies outside the range 3  

is given by

     P X 3 P Z 3 1 P 3 z 3 1 0 9973            

0 0027 

Thus the probability of normal variate lie with in the range 3   , though

theoritically, it may range from to   .

11. Linear combination of independent normal variates is also a normal variate.

Let  iX , i 1,2, ,n        be n independent normal variates with mean i and

variance
2
i respectively. Then

     
i

2 2
X i i

2
M t exp t t 1      

The m.g.f. of their linear combimation
n

i i
i 1

a X

 , where 1 2 na , a , ,a  

are constatns, is given by

   
i i 1 1 2 2 n n

i

a X a X a X a XM t M t     

     
1 1 2 2 n na X a X a XM t M t M t    

(
'
iX s are independent)

       
1 2 nX 1 X 2 X nM a t M a t M a t 2       

    CX XM t M C t

From equation (1) we have



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @14 . 15Probability and Distributions Normal Distribution

 
i

2 2 2
i iX i

i i
t aM a t exp a t

2

    
 

Equation (2) gives

 
i i

i

2 2 2 2 2 2
1 1 2 2

a X 1 1 2 2

2 2 2
n n

n n

t a t a
M t exp a t exp a t

2 2

t a
exp a t

2

                  

       
 

 

n
2 2
i in

2 i 1
i i

i 1

a

exp a t t 3
2





  
  

           
    




Equation (3) is the m.g.f. of a normal variate with mean
n

i i
i 1

a


 and variance

n
2 2
i i

i 1

a


 . Hence by uniqueness theorem of m.g.f.

n n
2 2

i i i i
i 1 i 1

a X ~ N a
 

 
 

  
 

Hence linear combination of independent normal variates is also a normal
variate.

14.4 Moment Generating Function of Normal Distribution:

The m.g.f. (about origin) is given by

   t x
XM t e f x d x





 

 2t x
2

1 x
e exp d x

22







   
   

   




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   2
2

1 x
f x exp

22

    
    
     



  
21 zexp t z exp d z

2
2





     
 







x
z x z & d x d z

 
        

 


 
t

2e 1
exp z 2 t z d z

22





 
   

 





 t 2 2 2 2 21 1
e exp z t 2 t z t d z

22







 
     

 





 
t 2 221 1

e exp z t t d z
22







 
   

 





 22 2
t 1 z tte exp exp d z

2 22







              





2 2
t

2t
2 1

e exp d u
2

2

 
 



   
 







 z t u, d z d u  

 

2 2
22t

t t t
2 2

XM t e 1 e


   

   ( Area under normal curve is unity)
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Note: M.G.F. of standard Normal Variate. If  2
X ~ N ,  then standard normal

variate is given by
 X

Z





.

Now    

22 2 t
2

2

t t
et t

2

z X
tM t e M e e

 
   

     


14.5 Cumulant Generating Function:

The c.g.f. of Normal Distribution is given by

   

2 2 2 2 2 2tt e2
X e X e e

t t
K t og M t og e t og t

2 2

 
                  

 
  

 e
eog 1 

 Mean = 1K = Coefficient of t in  
XK t  

Variance = 2K = Coefficient of

2
t

2!
in   2

XK t  

and rK = coefficient of

2
t

r !
in  

XK t 0 ; for r 3,4,       

3 3K 0   and
2 4

4 4 2K 3K 3    

Hene

 

2
3

1 3 32
2

0
0


   

 

and

4
4

2 2
2

3 
  

  22


3

14.6 Characteristic Function of Normal Distribution:

From the definition Characteristic Function we have

     itX i t X
X t E e e f x d x





   
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 2

2

x

itX 21
e e d x

2


 







 








put
x

z x z ; d x d z


      


 
  2i t z z

2
z

e
t e d z

2


 



   







2
zi t i t z
2e

e d z
2

   



 






    2 221i t z 2i t z i t i t
2e

e d z
2

       



 






 

2 2
2

1
t 1i t 2 z i t

2e e
e d z

2


    




 







put z i t K, d z d K   

 

2 2
2

1
i t t

2 k
2

z

e
t e d k

2


  





   






22 21
ki t t

2 2

0

2
e e d k

2


 

  








@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @14 . 19Probability and Distributions Normal Distribution

put

2
k

h
2

 i.e.,
d h

d k
2h



 

2 21
1i t t

h2 2
z

0

1
t e h e d h

  


    





 
2 21

i t t
21 1

1e
2

 
    

 

2 21
i t t

2e
 

  

2 21
i t t

2e
  

   1
2

  

14.7 Moments of Normal Distribution:
Odd order moments about mean are given by
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Since the integrand  22n 1 zz exp
2

  is an odd function of z.
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Even order moments about mean are given by
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( Integrand is an even function of z)
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Changing  n og n 1 in the above expression we get
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2 n 1
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    
 

    
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  
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                              
 

  
 

1
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 
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 
     n n 1 n 1      

   2
2n 2n 22n 1 2        

Which gives the recurrence relation for the moments of Normal Distribution. From equation
(2) we get

   2 2
2n 2n 42n 1 2n 3 

            

     
2 2 2

2n 62n 1 2n 3 2n 5 
                 

                                                        

         2 2 2 2 2
02n 1 2n 3 2n 5 3 1                     

   2n
1 3 5 2n 1 3          

From equations (1) & (2) we conclude that for the Normal Distribution all odd order
moments about mean vanish and the even order moments are given by equation (3).
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14.8 Normal Distribution as Limiting Case of Binomial Distribution:

If  X ~ B n, p , then the m.g.f. is    
n

t
XM t q pe 

The m.g.f. of standard binomial variate is
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2
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Where  3
1 20 n


and  3

11 20 n


involve terms containing
3

2n and higher powers of n in

the denominator.
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   
2 3

2
Z

t
og M t n og 1 0 n

2n

 
     
  

   n
og m n og m  

   
22 23 3

2 2t 1 tn 0 n 0 n
2n 2 2n

 
                   
       

 
2 3 4

x x x
og 1 x x

x 3 4

 
         
  
 

 
2 1

111 2t
0 n

2


 

Where  1
111 20 n


involve terms with

1
2n and higher powers of n in the denominator. AsAs

n   we get

 
2

Z
n

t
im og M t

2
 

     
2

Z
n

tim M t exp 1
2

    

The above expression (1) is the m.g.f. of standard normal variate. Hence by uniqueness
theorem of moment generating functions standard binomial variate tends to standard normal variate

as n   . In otherwords, binomial distribution tends to normal distribution as n   .
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14.9 Normal Distribution as Limiting Case of Poisson Distribution:

X X
Let Z

 
 



Where mean    and
2

       for poisson distribution.

i.e.,    E Z , Var Z    .

     
X 1

E Z E E X E X 0
  

                 

      
22

22 X T X
V Z E Z E Z E E

             
         

2
X

E
 

  
  

X
E 0

  
      



 2 2

1 1 1
E X 1      

  
  2 V Z   

M.G.F. of      t Xt Z
ZZ M t E e E

e




 

     

t X t
E

e e

 

 
 

   

t X
tE

e e
 

 
   

t X
t

e E e
  

 
 

   

t xx
t m

x 0

e
e e

x!


 




     

x 0

E X x P x,




 
   

 
 



xt
m

t

x 0

e
e e

x!


  



 
  

  



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @14 . 25Probability and Distributions Normal Distribution

 
2t t

t e e
e 1

1! 2!

 
  

 
 

          
  

t
t

e exp e
  

 
     

t
exp

t e 
 

       

2 3

3
2

t t t
exp t 1

2!
3!

  
              
      

 
2

2
Z

1 1 t
M t exp t

2 3!

 
      
  

As    , we get
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Above expression (1) is the m.g.f. of standard normal variate. Therefore by uniqueness

theorem of m.g.f.'s standard poisson variate tends to standard normal variate as    . Hence

Poisson Distribution tends Normal Distribution for large values of parameter.

14.10 Importance of Normal Distribution in Statistics:

This was an important distribution which was initially discovered for studying the random
errors of measurements, that isduring the calculations of orbits of celestial bodies. It happened
because of a remarkable coincidence that normal distribution follows all the basic principles of
errors. It is mainly for this quality that the distribution has a wide range of application these days in
the theory of statistics. To count a few are industrial quality control, testing of significance, sampling
distributions of various statistics, graduation of non-normal curves etc. Length of the leaves from
a particular point of time, weights of trees of the same variety, weights taken for a group of students
taken of the same age, intelligence, proportion of male to female births for some particular
geographical region over a period of years and many other examples from variousfields can be
given which are studied through normal distribution. Some facts of Normal Distribution we given
below:

1. Normal Distribution approximates the p.d.f's of most of the commonly occurring
distributions such as Binomial, Poisson, Hyper - Geometric ... etc.
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2. Many of the sampling distributions such as students t, Snedecor's F, Pearson's

2
X etc. are asynptotically normal. Also most of sampling distributions tend to

normality as n   .

3. Sometimes a non - normal variate begins to exhibit normality properties under
suitable transformations.

4.  P Z 1 96 0 05    and  P Z 3 0 0027   , if Z is  N 0, 1 . These properties

of  N 0, 1 form the basis of "Large Sample Theory".

5. For large number  30 of variate observations the sample can always be treated

as normal, even though the parent population is non - normal (central limit theorem).

6. In tests of significance the posent population is assumed to be normal.

7. Normal distribution finds large applications in statistical quality control in industries

and graduation of non - normal curves.

14.11 Workedout Examples:

Example 1: Let X be a random variable with the Standard Normal Distribution  .

Find (i)  P 0 X 1 42   (ii)  P 0 73 X 0    (iii)  P X 1 13 

(iv) Determine the value of t if  P X t 0 7967  

Solution: (i) Here  P 0 X 1 42   is equal to the area under the standard normal curve

between 0 and 1.42. Thus in Table of areas under standard normal curve,
page ( ) look down the first column until 1.4 reached, and then continue right to

column 2. The entry is 0.4222. Hence  P 0 X 1 42 0 4222     .

0 1.42

(ii)    P 0 73 X 0 P 0 X 0 73        (By symmetry) is equal to the area under

the standard normal curve between 0 and 0.73. Thus in Table of areas under
standard normal curve, page look down the first column until 0.73 reached
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and then continue right to column 2. The entry is 0.2673, hence

 P 0 X 0 73 0 2673     .

0- 0.73

(iii)  P X 1 13  which can be written as

     P X 1 13 P X 0 P 0 X 1 13       

0 5000 0 3708 0 1292     

From table of area under the standard normal curve gives the value of 1.13 as

0.3708 &  P X 0 0 5000   .

0 1.13

(iv)  P X t 0 7967  

Here t must be positive since the probability is greater than 1
2 . Therefore

we write     1P 0 X t P X t
2

    

0 7967 0 5000      P X t 0 7967  

 P 0 X t 0 2967   

Now observing the value 0.2967 in Table of areas under standard normal curve

which lies at t 0 83  .

Therefore we obtain the value of t as 0.83
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Example 2: In a Normal Distribution 31 percent of the items are under 45 and 8 percent are over

64. Find the mean and standard deviation of the distribution. Given  0 5 0 19,   

 1 405 0 42    .

Solution:

Example 3: If   x
f x e , 0 x


    then find (i)  P 1 x 2  , (ii)  F x , x 0 . Show tht it is a

p.d.f. and obtain its mean 2 3,  and 4 .

Solution: Given   x
f x e , 0 x


   

(i)    

2
2 2x x 1 2

1 2 2
1

1

1 1 e 1
P 1 x 2 f x dx e d x e e e

e e e

                






(ii)    

xx xx x x
0

0 0

F x f x dx e dx e 1 e
         





(iii) Since  f x 0 x  in  0,  and   x

0 0

f x d x e d x 1
 


  

 f x is a p.d.f.

Now mean  1 2 x 2 1 x
1

0 0

x e d x x e d x 2 1
 

  
         

 1 2 x
2

0

x e d x 3 2



     

   1 1 1
1 3 4& 4 6, 5 24        

2
1 1

2 2 1 2 1 1        

     
3

1 1 1 1 3
3 3 2 1 13 2 6 3 2 1 2 1 2           

and        
2 4

1 1 1 1 1 1 2 4
4 4 3 1 2 1 14 6 3 24 4 6 1 6 2 1 3 1 9               
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Example 4: The water consumption of a city, in excess of 20,000 gallons, is exponentially

distributed with mean 20,000  . The city's water works has a daily stock of

4,00,000 gallons. What is the probability that the stock is in sufficient for atleast two
of the three days selected at random?

Solution: If Y is the total consumption in a day, then X Y 20,000  has an exponential

distribution with mean 20,000 i.e., with the probbaility density function

 
x

20,0001
f x e ,

20,000



 for 0 X   .

 The stock will be proved insufficient, if the demand exceeds 40,000 gallons,

i.e., X 40,000 20,000  , i.e., 20,000 .

 The probability that the stock remains insufficient on any particular day

 
x

1020,000

20,000

1
p X 20,000 e dx e

20,000





    





 The probability that the stock is insufficient for atleast two or three days
selected at random = probability that it is insufficient for all the three days + probability
that it is insufficient for two or the three days.

     
3 210 10 10

2e 3C e 1 e
  

  

    20 10 10 20 10
e e 3 1 e e 3 2e
    

    

Example 5: Suppose that X has an exponentil distribution with parameter  . What is the

probbaility that X exceeds its expected value ?

Solution: Since X has an exponential distribution with parameter 

we have

  x
f x e , x 0


  

then     x

0 0

1
E X x f x d x x e d x

 


     
 

and

1

11 1
p X 1 p X e e


   

        
    



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @14 . 30 Acharya Nagarjuna UniversityCentre for Distence Education

Example 6: Cars arrive at a petrol bunk randomly every 2 minutes on the average. Determine
the probability that the arrival time of cars does not exceed 1 minute.

Solution: Here we have to find  P X 1 . Since here X is the arrival time of cars follows an

exponential distribution with parameter  .

  x
f x e , 0, x 0


     

0 , otherwise

the c.d.f. of exponential distribution is   x
F x 1 e


 

 p X x 

Since the rate of arrival is
1

2
  arrival per minute.

then  
 

1 1
1

2 2P X 1 1 e 1 e 0 39

 

      

Example 7: If X is normally distributed with 0  nd variance 1 what is the expectation and

variance of (i)  2
X , (ii)

ax
e ?

Solution: Since  X ~ N 0, 1 we have the p.d.f.

   
2

1 x
f x exp dx 1

22

 
     
 

(i) Mean value of
2

X is given by

   2 1 2
2E X x f x dx





   

2
2 1 x

x exp dx
22





 
     
 






  form 1
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2
2

0

2 x
x exp dx

22


 
    
 





(By properties of Integrals)

Putting

2
x

t
2



2
x 2 t x 2t x 0, t 0    

1
dx d t x , t

2 2 t
     

 
2

0

2 1 1 1
2 t exp t d t

2 t22



    






1 1 2 t

0

2
t e dt


 





1 2 t

0

2
t e dt




 



3
1

t2

0

2
t e d t





 







   2 2 2 1 1 1
3E X 1

2 2 2

 
           

   

 2 1
1E X 1    i.e., Mean of

2
X

Also
1
2 of

2
X is given by

    22 4
E X E X
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 4
x f x dx





 

2
4 1 x

x exp dx
22





 
     
 





  from 1

 
2

24 4

0

1 2 x
xx exp dx x exp dx

x 22 2





 
       
  




 

 
14 t 2

0

2 1
2 t e 2 t dt

22





   







3
t2

0

4
t e d t




  





2

2

x
t 1 x 2 t

2

1
dx 2 dt

t

 
   
 
 
 
 
 



3 1 t2

0

4
t e d t


 

  





5 1 t2

0

4
t e d t




 



 (x 0, t 0,

x , t )

 

   

     
4 4 3 4 3 1

5 3 15
2 2 22 2 2

          
  

3
3   


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  1
2

  

     
2 2

2 1 1 4 2
2 2 1var iance of X E X E X          

3 1 2   .

(ii) Mean value of
ax

e

 
2

1 ax ax
1

1 x
E e exp e dx

22





 
      
 






 2 2 21 1
exp x 2ax a a dx

22





 
     

 





 2 21
a x a

2 21
e e dx

2



 



 







 
2 21

a x a
2 21

e e dx
2



 











2
a

1 2
1 e 

1
2 of  ax 2a x

e E e

2
x

2a x21
e e dx

2






 






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 2 2 21
x 4a x 2a 2a

21
e

2


 

    











 
2

2a 21 1
e exp x 2a d x

22





 
   

 





2
2a

e

a x
var iance of e is

 
2

a x 1 1
2 2 1V e      

2 2
2a a

e e 

Example 8: If X is a normal variate with mean 1 and variance 4, Y is another normal variate

independent of X with mean 2 and variance 3. What isthe distribution of X 2Y ?

Solution: We are given  X ~ N 1, 4

i.e., given    E X 1, V X 4  .

Again  Y ~ N 2, 3

i.e., given    E Y 2, V Y 3  .

Here X, Y are independent.

     E X 2Y E X 2 E Y 1 2 2 1 4 5          

         V X 2Y V X V 2Y V X 4 V Y 4 4 3        

4 12 16  

 x 2Y ~ N 5, 16 
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Example 9: If two normal populations have the same total frequency but the standard deviation
of one is K times that of the other, show that the maximum frequency of the first is

1
k that of the other..

Solution: If  and K are standard deviations of the two populations and Let N be the total

frequency. Then we have

 
 

2

2

N x
Y exp 1

2 2

  
     
    

&
 

 
2

2 2

N x M
Y exp 2

K 2 2K

  
     
    

But for the normal distribution the maximum frequency is obtained against
mode which is m here in both the cases.

 In case of eqution (1) we have

 
 

2

2

N x m
Y exp 3

2 2

  
    
    

&
 

 
2

2 2

N x m
Y exp 4

K 2 2 K

  
    
    

 In case of equation (3), the maximum frequency is  0

N
Y say

2
 
 

In case of equation (4) the maximum frequency is 0

N 1
Y

KK 2
 

 

Hence the result

Example 10: If X and Y are independent normal variates with means 3, 4 and variances 4, 9

respectively, find the value of  and show that

   P 3x 2y P 5X 3Y 3      .

Solution: Let U 3X 2Y  and V 5X 3Y 



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @14 . 36 Acharya Nagarjuna UniversityCentre for Distence Education

Since X and Y are independent normal variates, Hence U and V are also normally

distributed with    X ~ N 3, 4 , Y ~ N 4, 9 .

   E U 3 3 2 4 17, E V 5 3 3 4 15 12 3            

     2 2
Var U 3 V X 2 V Y 9 4 4 9 36 36 72        

     2 2
Var V 5 V X 3 V Y 25 4 9 9 100 81 181        

   
U 17 17

P 3X 2Y P U P
72 72

   
         

  

17
P Z

72

  
  

  

Where  Z ~ N 0, 1

   
V 3 3 3

P 5X 3Y 3 P V 3 P
181 181

   
        

  

3 3
P Z

181

  
  

  

From the given condition

 
17 3 3

P Z P Z 1
72 181

      
        

   
   

Since    P Z a P Z b   then a b 

17 3 3

72 181

   
 

13 45 228 71 25 456 25 456         

203 254
16 929

12 006

 
     


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Using the value  in (1) we have

 
33 929

P Z P Z 3 9987
8 485

  
     

 

 P Z 3 9987     By symetry

   3 9987 0 500 2       

 from Tables

Thly  
53 786

P Z P Z 3 9979
13 4536

  
     

 

 1 P Z 3 9979    

 1 P Z 3 9979   

 1 3 9979   

1 0 5  

 0 5 3    

from (2) & (3) we get

   P 3X 2Y P 5X 3Y 3      

Example 11: The linear measurements of the items of a product are approximately normally
distributed with a mean of 20 cms and standard deviation of 4 cms. Items which
measure between 18 cms and 23 cms are sold at 50p each and the other items at
30p, each. Findthe total amount collected if in all 10,000 items are sold. How
many items are of measurements 26 cms or more?

Solution: Let X be the linear measures of the items of a product which is normally distributed

with mean 20 cms  and S D 4 cms    .

So when X 18 cms the corresponding standard normal variate Z is given by

X 18 20
Z 0 5

4

 
    


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Again for X 23 cms the standard normal variate Z is given by

X 23 20
Z 0.75

4

 
  



 
18 20 X 23 20

P 18 X 23 P
4 4

   
      

 

 P 0 5 Z 0 75     

   P 0 Z 0 5 P 0 Z 0 75       

0 1915 0 2734   

0 4649 

The area under the curve between Z 0 5 00 5 0 3830       . Since

   Z Z Z ,   i.e.,    0 5 2 0 5      and the area between Z 0 75 00 75    

is 0 5468 .

 The number of items which measure between 18 cms and 23 cms

 10,000 P 18 X 23 10,000 0 4649      

4649

The other items 10,000 4649 5351  

Out of 10,000 items sold the total amount collected is

4649 50 5351 30 232450 160530     

Rs. 3929.80

Since the items measured between 18 cms and 23 cms are sold at 50
paise and the other items are sold at 30 paise each.

The number of items having measurement 26 cms or more

     
X 26 20

P X 26 P P Z 1 5 P 1 5 Z
4

  
            

 

   1 5 1 0 4332 0 5668          
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Since the probability greater than 0 5 we have

 P X 26 0 5668 0 5 0 0668      

 The number of items 0 0668 10,000 668   

Example 12: In a normal distribution 31% of the items are under 45 and 8% are over 64. Find
the mean and S.D. of the distribution.

Solution: If  be the mean and  be the standard deviation of the distribution and given that

31% of items are under 45.

i.e.,  P X 45 0 31  

 P X 45 1 0 31 0 69      

But probability greater than 0.5 therefore

 P X 45 0 69 0 5 0 19      

Also 8% are over 64.

Example 13: Assume the mean height of soldurs to be 68.22 inches with variance of 10.8 square
inches, how many soldurs in a reginent of 1000 would you expect to be of 6 feet

tall? Given that the area under the standard normal curve between x 0 and

x 0 35  is 0 1368 and between x 0 and x 1 15  is 0 3746 .

Solution: Let X denote the height of an individual then by hypothesis  X ~ N 68 22, 10 8  . If

p denotes the probability that an individual is over 6 feet (i.e., 72 inches) then

 
X 68 22 72 68 22

p P X 72 P
3 2810 8

           

 p P Z 1 15  

or  p 1 P Z 1 15   

1 0 3749 0 5    

p 0 1254 

From this we can say that the number of soldurs with height over 6 feet is

N 1000 p 1000 0 1254 125 4 125      
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Example 14: If X and Y are independent normal variates with the same mean  (known to be

less than 2) and standard deviatiors 1 and 2 respectuvely. Such that

   P 4X 3Y 6 P 5X 12Y 30 1      and

   P 4X 3Y 12 P 5X 12Y 20 1      

determine the common mean and the ratio of the variances.

Solution: Let us suppose that

  2
1V X   and   2

2V Y   ;    E X E Y  

 2 2
1 24X 3Y ~ N , 16 9     

 2 2
1 25X 12 Y ~ N 17 , 25 144    

2 2
1 24X 3Y ~ N 7 , 16 9      

 2 2
1 25X 12Y ~ N 7 , 25 144     

Let us denote
2 2
1 216 9   by

2
 and

2 2
1 225 144   by

2
 .

   P 4X 3Y 6 P 5X 12Y 30     

6 30 17
P Z P Z 1

     
       

    

and    P 4X 3Y 12 P 5X 12 20     

12 7 20 7
P Z P Z 1

       
       

    

6 30 17
P Z 1 P Z

     
       

    
and

12 7 23 7
P Z 1 P Z

       
      

    

Also
6 30 17 12 7 20 7

P Z P Z & P Z P 2
              

           
         

Hence  
6 30 17

1
  

   
 

 
12 7 20 7 20 7

2
      

    
  
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Solving (1) & (2)

6 12 7

30 17 20 7

   
 

    

2
112 352 240 0     

i.e.,    1 112 240 0    

1   and
240

2
112

 

But we are given the 2  . So the permissible value of 1 

6 1 56
1

30 17 30 17 13

  
     

   

2

2

25
0 15

169


  



14.12 Exponential Distribution - Exercise:

1. If 1 2 nX ,X , ,X       are independent r.v.'s iX haivng an exponential distribution with

parameter
i , i 1,2, ,n       . Then prove that  1 2 nZ min X ,X , ,X        has an

exponential distribution with parameter

n

i
i 1

 .

2. X and Y are independent with a common p.d.f.

 
x

e , x 0
f x

0 , x 0

 
 



Find a p.d.f. for X Y . (Ans:  
u1

g u e , u
2


     )

3. Let X and Y having common p.d.f.
x

e , 0 x , 0


       . Find the p.d.f. of

(i)
3

X (ii) 3 2X (iii) X Y and (iv) X Y
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Ans: (i)  
2

3 1
3x x

3
exp




 (ii)

 x 3

2e x 3
2

,
 




(iii)
xe x

2
,
 and (iv) xe x 0  

4. If X has exponential distribution with mean 2. Find  P X 1 X 2  .

5. Supose that during rainy season on a tropical island the length of the shower has an

exponential distribution, with parameter 2 , time being measured in minutes. What

is the probability that a shower will last more than three minutes ? If a shower has
already lasted for 2 minutes, what is the probability that it will last for atleast one
more minute?

6. A continuous random variable X has the probability density function  f x given by

 
x

5f x A e , x 0


  

0 , otherwise

Find the value of A and show that for any two positive numbers s and t,

 X S tP P X t
X S

    
  

.

7. If  X ~ Expo  , find the value ax such that  
 

a

a

P X x
a

P X x






.

8. Show that    1Y og F X 

 is  Expo  .

9. Suppose the life of automobile batteries is exponentially distributed with parameter

0 001   days.

(a) What is the probability that a battery will last more than 1200 days?

(b) What is the probability that a battery will last more than 1200 days given that it
has already served 1000 days?

[Ans: (a) 0.301, (b) 0.819]

10. The life time X in hours of a TV tube of certain type obeys an exponential distribution

with 0 001   hrs. Find

(a)  P X 1000

(b)  P 700 X 1000  [Ans: (a) 0.368, (b) 0.129]
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RECTANGULAR DISTRIBUTION

Objectives:

After studying this lesson the student is expected to have a clear comprehension of thetheory
and the practical utility about the concepts of definition and properties such as m.g.f., c.g.f.
characteristic function, moments upto fourth order of Rectangular Distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

15.1 Introduction

15.2 Definition

15.3 Properties

15.4 Applications in Real Life

15.5 Workedout Examples

15.6 Exercise

15.1 Introduction:

The simplest of all continuous random variables is the one in which the probability of its
values is constant every where over an interval of the real line called uniform or rectangular
distribution. We study this in the present lesson.

15.2 Definition:

The random variable 'X' with a p.d.f. given by

 
 

1
f x , X ,

1

0 , otherwise


        

            
 

is said to be a uniform (or) rectangul;ar variable on the interval  ,  and  f x given by

(1) is called uniform or rectangular density function. If X has the density function (1), it is expressed

as  X ~ U ,  .  and  are called parameters of the distribution the distribution is said to be

rectangular because it takes the rectangular space and as the p.d.f. remains uniform for all the
variate values within the range it is called uniform distribution.
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O
X

Y

O
X

Y

 

f (x)
F (x)

F
(x

)
=

0

F (x) = 1

 c d f at U ,    p d f of U ,    








 
1
  

Distribution Function:

 F x is given by  

0 , if x

x
F x , if x

0 , if x

   
 

    
 

    

Since  
 

 1 d F x 1
F x f x 0

d x
   

  
in x   

 f x 0 , for X   and for X   , that is the density function is discontinuous at

x & x    .

15.3 Properties:

1. Moments:

If
1
r and r denote

th
r moment about origin and central moments, then

 
2 r 1

1 r 2
r

x 1 1 x
E X d x x d x

r 1


 

 


      
       





 

 
 

r 1 r 1
1
r

1
r 1,2,3, 1

r 1

    
      
   
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For r 1,2,3,    in equation (1) we get

 
 

 2 2
1
1

1
mean E X

2

    
    

  

 

 

  

 2

1
1 2

  
 

 
 

   3 3
1 2
2

1
E X

3

 
   



 
 

2 2
  

 3

2 2
1
2 3

     
 

        
222 1 1

2 1Variance V X E X E X      

 
 

2 2 2

V X
3 4

   
 

2 2 2 2 3
4 4 4 3 3 64

12

         


2 2
2

12

    


 2

12

  


 
 

 4 4
1 3
3

1
E X

4

     
   



  
 

2 2
    

 4

3 3 2 2

4

      

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For finding 3 we have

3
1 1 1 1

3 3 2 1 13 2       

Now substituting thevalues of
1 1 1
3 2 1, ,   and after simplification we get

     
3 3 2 2 2 2 3

3

3 2

4 3 2 8 4

          
   

3 3 2 2 3 2 2 3 3 3 2 2
3 3 2 2

4 4 2

                     
  

3 3 2 2 3 3 2 2
2 2 4 4 2 2

4 2

                
 

3
4



3
4 

2
8  

2
8 

3
4 

3
4 

2
8  

2
8 

8

0

 
 

 5 5
1 4
4

1
E X

5

  
  



2 4
1 1 1 1 1 1

4 4 3 1 2 1 14 6 3          

Now substituting the values of
1 1 1 1
4 3 2 1, , ,    and after simplification we get

 4

4 80

  
 

2. Pearson's Coefficient Skewness:

For uniform or rectangular distribution the skewness is

2
3

1 3
2

0


  


 2

3 20,
12

      
 

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or 1 0   

Since 1 0  , the distribution  U ,  is symmetric.

3. Pearson's Coefficient Kurtosis:

For uniform or rectangular distribution the Kurtosis is

4
2 2

2

9
5


  



   4 2

4 2,
80 12

  
    
 


2 2

9
63 3

55
      

Since 2 0  the distribution  U ,  is platycurtic.

4. Moment Generating Function:

Accoridng to the definition of m.g.f. we have

   t X
XM t e f x d x 

If  X ~ U ,  we have

  t X
X

1
M t e d x





 






 

t X
1 e

t





 
 

 
 

 

t t
t t1 e e

e e
t t

 
  

  
 

5. Characteristic Function:

According to definition of characteristic function we have

   i t X
X t e f x d x  
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If  X ~ U ,  we have

  i t X
X

1
t e d x





  






 
1

f x
 

 
 



 

i t i t
1 e e

i t

 





 
 

i t i t

X

e e
t

i t

 


 


6. Mean Deviation About Mean:

Mean deviation about mean for rectangular distribution is given by

 
 

 

1
M D E 1X M x d x

2






      







 

C

C

1
Z d Z




  (

 
Z x ,

2

  
 

 
x , C

2

 
   ,

 
x , C

2


  .)

       

C C
2 2 2

0 0

2 2 Z C 0 C
Z d Z

2


   

   

 
  
 

 
C

2




We have
 

 

 

2 2
C 1

M D
4


    

   

 
4






@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @15 . 7Probability and Distributions Rectangular ...

7. Median:

If m is the median then

 

m
1

f x d x
2







m
1

1d x
2



 






 
1

f x
 

 
 



m
1 1

d x
2



 






m
1 1

x
2



 






 
1 1

m
2

  


 
1

m
2

    

8. Mode:

Since in the rectangular distribution     1
b a b a


   each point in the internal

 a, b has the maximum probability it follows that each point of  a, b is a mode.

9. If X and Y are independently and identically distributed (i. i. d.) rectangular or uniform

 U 0, 1 , the distribution of the variates    x y , x y , xy  and x
y are as follows:

 
 
x y, 0 x y 1

f x y
2 x y , 1 x y 2

   
       

 
 

x y 1, 1 x 0
f x y

1 x y , 0 x y 1

     
       
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   f x y og x y , 0 x y 1   

  2

2

1 x, 0 1
2 y

xf
y y x, 1

y2x

  


 
   


15.5 Worked Examples:

Example 1: Obtain the m.g.f. for the rectangular distribution

 f x 1

Hence obtain mean, variance, mean deviation.

Solution: The p.d.f. of the rectangular distribution is

   f x 1 1   

By the definition of m.g.f., we have

     t X t
XM t E e e x f x d x  

If  X ~ U 0, 1 we have

   

1 1
t X t 0 t

t X
X

0 0

e e e e 1
M t e d x 2

t t t

 
      
 
 
 

for mean we have

 

1 1
2 2

1
1

0 0

x 1 0
1E X x dx

2x 2


     

 
 
 

&  
1 1

3 3
1 2 2
2

0 0

x 1 0 1
E X x d x

3 3 3


     

 
 
 
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Hence variance 2 is given by

 
221 1

2 2 1

1 1 1 1 1

3 2 3 4 12

 
          

 

Mean deviation about the mean is

   

1
1 121

0 10 0
2

1 1 1
E X M x M f x d x x d x x d x x d x

2 2 2

   
            

   

  
  
  



1 1
2 2 12 2 1

1
1 20 0 2

1 x x 1
x x

2 2 2 2
    

  
 
 



1 1 1

4 8 2
  

1 1

8 2
 

1

4


1 1
1

42 4
  

Example 2: A circular is marked from 1 to 10. It has a balanced pointer pivoted at the centre
such that when it is whirled and allowed to stop, it is equally likely to stop any where.
What is the probbility that in 2 out of 3 trials the pointer stops in between 2 and 3?

Solution: Let X be the distance of the stopping point measured from the zero point, implies
that X has rectangular distribution with the p.d.f.

 
 

1
f x , 0 x 10

110

0 , otherwise


   

  
 

 The probability that the pointer stops in between 2 and 3 at any single trial is

 

3
3

2
2

1
f x d x d x

10



   from 1
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3

2

1
1d x

10
 

   
3

2

1 1 1
x 3 2 p say

10 10 10
    

If the following of the pointer between 2 & 3 gives probability of success as 'p',
then it will be same for all the trials.

 The probability of 2 successes out of 3 trials

 
2

3 23
2

1
1C 1
1010

 
   

 

1 1 9
3

10 10 10
   

27

1000


0 027 

Example 3: If X is  U 1, 2 find Z such that  x
1P X Z M

4
  

Solution: Since  X ~ U 1, 2 its p.d.f. is given by

 
 

f x 1, 1 x 2
1

0 , otherwise

  
  

 

 

2
2 22

X
1

1

x 2 1 4 1
3E X x d x

22 2 2

 
      







Also given that  X

1
p X z M

4
  

 
2

3z
2

1
3 1p X z d x Z

2 42


 
       

 





1 1 1 1
1Z or Z

22 4 2 4
     



@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @15 . 11Probability and Distributions Rectangular ...

Example 4: If X is  U b, b , determine b if   3P 1 1 2
4

   .

Solution: Since  X ~ U b, b its p.d.f. is

  1f x , b x b
2b

   

0 , otherwise

So      
3

P X 2 1 P X 2 1 P 2 X 2
4
         

   

2

2
2

2

d x 1 1 4 2
1 1 x 1 2 2 1

2b 2b 2b 2 b




           




3 2 2 3 2 1
11 1 or b 8

44 b b 4 b 4
        

Example 5: Let X an Y be i.i.d.  U a, b variates and  K a, b . Find the number K such that

the probability that at least one of X and Y exceeds K is p.

Solution: Let    A X K , B Y K    ; then

       

b

K

d x b K K a
P A P B ; P A 1

b a b a b a

 
      

  





       
 

2
K ap p A B 1 p A p B 1

b a
      
  



 
 

 K a 1 p K a b a 1 p
b a

       
 .

Example 6: A variate X has the uniform distribution with the density function given by

 
1

f x , 0 x 100
100

0 , otherwise

  



compute  p X 60 and  P 20 x 40 
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Solution: Variate X has the uniform distribution with the density function given by

 
 

1
f x , 0 100

1100

0 , otherwise


   

  
 

       
100

60

100
100

60
60

1 1 1
P X 60 f x d x d x x 100 60

100 100 100
     





40
0 4

100
  

       
40

20

40
40

20
20

1 1 1
P 20 x 40 f x dx d x x 40 20

100 100 100
      







20
0 20

100
  

Example 7: The variates a nad b are independently and uniformly distributed in the intervals

 0, 6 and  0, 9 respectively. Find the probability that
2

x ax b 0   has two real

roots.

Solution: Solving the given quadratic equation we get

21
x a a 4b

2

 
    

The roots are imaginary if
2

ab
4



2

6

9
2

a
40

a 1
P b da d b

4 4

 
    
 


 
 
 



     
1 1

f a, b f a f b
6 9

 
    

 


 1 21
3 3

  

   
2

a 1P b P Roots are real
4 3

   
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15.6 Exercise:

1. If X is a random variable with a continuous distributuion function F, then  F X has a

uniform distribution on  0, 1 .

2. Show that for the rectangular distribution

 
1

f x , a x a
2a

   

The m.g.f. about origin is
1

a t
(sinhaf). Also show that moments of even order

are given by
 

2n

2n

a

2n 1
 


.

3. If X is uniformly distributed with mean 1 and variance 4
3 find  P X 0 .

 1Ans :
4

4. If X has a uniform distribution in  0, 1 find the distribution (p.d.f.) of 2 og X  . Identify

the distribution also.

5. Subway trains on a certain line run every 1
2 hour between mid - night and six in the

morning. What is the probability that a man entering the station at a random time
during this period will have to wait at least twenty minutes ?

6. For the rectangular distribution

d F K d x, 1 x 2  

Show that Arithmetic Mean > Geometric Mean > Harmonic Mean.
7. Assume a string, 1 meter long, is to be cut in two at a random point along its length.

Let X be the point where cut occurs and let its p.d.f. be

 f x 1, 0 x 1  

what is the probability that the longer piece is at least twice the length of the shorter?

8. If X is  U 3, 3 find K such that   1P X K
3

  . Also compute   P X 2 ;

   P X 2 2 , P X 2   and  P X 2 .

9. Suppose that X is uniformly distributed over  ,  where 0  determine  so

that    P X 1 P X 1   .    1 1P X 1 , P X 0 3
3 2

     .

 5Ans : 2, 3,
6

   
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EXPONENTIAL DISTRIBUTION

Object of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts, properties of exponential distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

16.1 Introduction

16.2 Definition

16.3 Properties

16.4 Workedout Examples

16.5 Applications in Real Life

16.6 Exercise

16.1 Introduction:

In the theory of continuous distributions we commonly say normal distribution is an example

of model for any data. Because its range is spread over  ,  , for data that is generally

positive valued, application of normal distribution is not suitable sometimes. Then the simple model
that can be useful is exponential distribution. The random variable of exponential distribution is
positive valued. Like normal distribution it has many smooth properties. It can be used on a good
model for life time of a number of industrial products. In this lesson we study a number of theoretical
aspects of exponential distribution.

16.2 Definition:

The continuous random variable X which is distributed according to the probability law

   x
f x e , 0 x , 0 1


         

0, otherwise

is called the exponential variate with parameter  , f x is called the probability density

function of exponential distribution. Any variate having the p.d.f. (1) is expressed as  X ~ Expo  .
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0
X

Y

f (x)

x

Exponenutial Curve

The cumulative distribution function  F x is given by

 
x

t x

0

F x e d t 1 e , x 0
 

    

 
x

1 e , x 0
F x

0 otherwise

  
  



0

F (x)

Y

1 2
x

X

Exponential Distribution Function
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16.3 Properties:

1. Mean of exponential distribution is 1
 .

We have    
1

0

E x x f x d x


   

x

0

x e d x



      x

f x e


  

x

0

x e d x



   

x x

0
0

d
x e d x x e d x d x

d x




 

 
   

       
   

 





 

x x

0
0

x e e
d x


 

 
 

    
  

 







 
x x

0

00

e e 1
0 d x e e

  
 

      
  

 



 
1

1E x  
 .

2. Variance of Exponential Distribution is 2
1


We know       22
V x E x E x 

or  
21 1

2 2 1    

But      21E x 1 & E x   


is given by
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   2 1 2 2 x
2

0 0

E x x f x d x x e d x
 


      

2 x 2 x 2

0 0 0
0

d
x e d x x e d x x e d x d x

d x


  

  

 
   
          
    

  






  

 
2 x x

2 x x
0

0 0
0

x e 2x e
d x x e 2 x e d x


   

 
  

           
   

 





 

x x

0
0

d
0 2 x e d x x e d x dx

dx




 
 

   
           

 





 

x x x

2
0 0

0

x e e e
2 2 d x 0 2


   

    
  





 

       2 0
2 22

2
2 2E x e e 1 2


       

 

 1 2
2 2

2E x   


Hence       22
22 2

2 1
1V x E x E x    
 

(from (1) & (2))

 
2 2

1V x   


3. Moments of all order exist.

The
th

r moment about origin is given by
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 1 r x r
r

0

E X e x d x



    

 r 1 1x

0

e x d x


 
   

 
r 1

r 1



 
  



 ky n 1

n

0

n
e y d y

k



 
 

 
 

 
 







 
r

r 1 




1
r r

r!
 


    n n 1 !  

thus for r 1,2,3,4 are

2
1 1 1 1
1 2 2 2 12 22 2

1 2 1
2 1, ,           

   

3
1 1 1 1 1
3 3 3 2 1 13 3 2 3

6 6 2 1 1
, 3 2 3 2               

   

3 3 33 3

6 6
2 2    
  

2 4
1 1 1 1 1 1 1
4 4 4 3 1 2 1 14

24
, 4 6 3            



4 3 2 2 4

24 6 1 2 1 1
4 6 3        

    

4

24



4

24



4 44

12
3 9  
 
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5. Characteristic Function:

The characteristic function of a random variable X having the probability

function  f x is given by

   i t x
X t e f x d x  

 X ~ Expo  we have

  i t x x
X

0

t e e d x



   

 i t x

0

e d x


 
   

 

 

i t x

0

e

i t


 

  
 



 0
e e

i t


 
   0

e 0, e 1


 

 
 

 
1

X
i tt 1

i t


   



6. Cumulant Generating Function:

The cumulatn generating function of a random variable 'X' is given by

   
X XK t og M t 

If  X ~ Expo 

   
1

X
tK t og 1


 


    

1

X
1 tM t

  
 



 
2 3 4

2 3 4

t t 1 t 1 t 11 t1 og 1
2 3 4

               
      


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2 3 4

2 3 4

t 1 t 1 t 1
t

2 3 4
          


  

1 2 3 42 3 4
91 1 2, , ,        

   

If 1  , mean is greater than variance

1  , mean is less than variance

1  , mean is equal to variance

This is an important feature of this distribution.

7. Moment Generating Function:

The moment generating function (.g.f.) of a random variable X (about origin)

having the probability function  f x is given by

     t x t x
XM t E e e f x d x  

 X ~ Expo  we have

  t x x
X

0

M t e e d x



   

 t x

0

e d x


 
   

 

 

t x

0

e

t

  

  
  

 
 0
e e

t


 
 

   
1

t1
t


  


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Using the binomial expansion we get

 
r

X
r 0

t
M t





 
  

 


   
r

1 2
r X

t
E X coefficient of in M t

r !
  

r

r!
; r 1,2,        



 
2 3 4 r

X

t t 1 t 1 t 1 t 1
K t

2 3 4 r

        
                         
             

 
 2 3 4 rr

x x x 1 x
og 1 x x

2 3 4 r

 
                    
 
 

 
2 3 r

X

t t 1 t 1 t 1
K t

2 3 r

     
                         
        

 
rr

r
r 1 r 1

t 1 r 1 ! t

r r !

 

 

 
    

  
 

 coefficient of

r
t

r !
in the above expression is  

 
r r

r 1 !
K t






Thus        
1 2 3 42 3 4

1 1 2 6
K t , K t , K t , K t        

   

8. Therelationship between central moments and cumulants are

         2
1 1 2 2 3 3 4 4 2K t , K t , K t , K t 3 K t         
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9 (a). Pearson's Measure of Skewness:

Since    
1 1 2 2 2

1 1K t , K t ,     
 

     2
3 3 4 4 23 4

92K t , K t 3K t      
 

We have

 
 

2
2 3
3

1 3 3 6
2 2

2
4

1

    
 



6


 4
1



or 1 1 4 2    

(b). Pearson's Measure of Kurtosis:

We have  
4

4
2 2 2 4

2 2

9
p

1

    
 



4


 9
1



 4 24 2
9 1,   
 



or 2 2 3 9 3 6      

The values of 1 or 1 and 2 or 2 clearly staks that exponential distribution

is positively skewed and is teptokurtic.

10. Median of exponential distribution:

If m is the median of exponential distribution then

m
x m

0

1
e dx 1 e

2

 
    

m 1e
2


 

1 2
em og


     .
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11. Relation with uniform distribution

If  X ~ Expo , then
x

Y e


 is  U 0, 1

i.e., consider the robbaility differential of exponential variate

   x
1d F x e d x , 0 x 1


       

Put
x x

y e , d y e d x
 

     

if x 0 ; y 1 

x ; y 0  

Hence changing the sign  2d F y 1dy, 0 y 1  

i.e.,  Y ~ U 0, 1

12. Memory - less Property:

The p.d.f. of the exponential distribution with parameter  is

  x
f x e 0, 0 x


       

We have

   P Y x X a P X a x X a        Y X a 

 P X a x X a   

 P a X a x   

a x
x

a

e d x




  

x a x

a

e
 

   
  

  a x a
e e
  

  

 a x
e 1 e
  

 
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and   x

a

P X a e d x



    

 
x

a a

a

e
e e e

 
    

      
  

   
 

a
eP Y x X aY xp

X a P X a

 
   

 

  x

a

1 e

e



 



   x
1 e 1


    

Also    
x

x x

0

P X x e d x 1 e 2
 

        

 from (1) & (2) we get

   Y xP P X x
X a

  


i.e., exponential distribution lacks memory.

16.4 Workedout Examples:

Example 1: Show that for the exponential distribution

 
x

0 0d P x y e d x , 0 x ; 0 , y


       is a constant.

mean and variance are equal. Also obtain the interquantile range of the distribution.

Solution: In order to change the given distribution into probability density function, we must
have

x

0

0

y e d x 1

 
 


 ( the total area under curve is unity)

x

0

0

y e d x 1

 
  


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0y   
x

0
e




 
    0

01 y e e 1
        

0 0
1y 1 y     


Hence the p.d.f.  
x1

f x e , 0 x , 0


      


Mean    
x

1
1

0
0

1
E X x f x d x x e d x




       








x

0
0

xe1 e 1
x d x

1 1

 


  
      

   
  






( By integrating by parts)

x

0

0 e d x

 
  



 
x

0

0

e
e e

1






 
 

       
 
 

 0
e 0, e 1


 

 1
1 1      

Similarly  
x

1 2 2
2

0
0

1
x f x d x x e d x




     








x
2

0

1
x e d x

 
 




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x x

2

0
0

0

1 e 1 e
x 2x d x

1 1

 
 

 
 

    
   
  









x

0

0 2 x e d x

 
  



x x

0

0

e e
2 x 2 d x

1 1


 

 

     
 
 









x

0

0 2 e d x

 
    



   

x

1 2 0 2
2

0

e
2 2 e e 2 2

1




              




 
2

1 1 2 2
2 2 1V x 2               from 1 & 2

Hence    2
S D V x 3         

Therefore the mean and S.D. are equal to  .

Interquartile Range

If 1 3Q , Q be the first and the third qurtiles then

1 1
xQ Q

x

00

1 1 1 e 1
e d x

14 4


 

    
 


 


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1Q
0 1e e

4




 
     

1 1Q Q

31 11 e e 1
4 4 4

 
       

1 1
1

Q Q
3 4 4og og or Q og

4 3 3


     

 
  

Also

3 3
xQ Q

x

00

1 1 e 3
3e d x

4 1 4


 

     
 


 



3 3Q Q
0 3 3e e 1 e

4 4

 
 

 
        

3Q
3

3

Q
1 1e og or Q og 4

4 4


 

     


 

 Interquartile range is 3 1
4Q Q og 4 og

3
       

og 4   og 4   3
eog 3 og    

Example 2: The water consumption of a city, in excess of 20,000 gallons, is exponentially
distributed with mean 20,000. The city's water works has a daily stock of 4,00,000
gallons. What is the probability that the stock is insufficient for atleast two of the
three days selected at random ?

Solution: If Y is the total consumption in a day, then X Y 20,000  has an exponential

distribution with mean 20,000 with the probability density function

 
x

20,0001
f x e , for 0 X

20,000



   

 If the demand exceeds 40,000 gallons then the stock will be proved insufficient.

i.e., X 40,000 20,000 

X 20,000 
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The probability that the stock remains insufficient on any particular day is given
by

 
x

1020,000

20,000

1
P X 20,000 e d x e

20,000





   





The probability that the stock is insufficient for atleast two of three days selected
at random is equal to sum of probability that it is insufficient for all the three days and
p[robability that it is insufficient for two of the three days.

     
3 210 10 10

2e 3C e 1 e
  

  

 30 20 10
e 3 e 1 e
  

   

    20 10 10 20 10 10
e e 3 1 e e e 3 3e
    

     

 20 10
e 3 2e
 

 
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GAMMA DISTRIBUTION

Objecti of The Lesson:

After studying this lesson the student expect to have a clear comprehension of the theory
and the practical utility about the definition, properties and applications of Gamma Distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

17.1 Introduction

17.2 Definition

17.3 Properties

17.4 Workedout Examples

17.5 Exercise

17.1 Introduction:

We studied exponential distribution lesson 16. One of the properties of exponential
distribution is that sum of the i dependent and identically distribution exponential variates follows a
distribution, whose probability density function is given by a mathematical expression involving a
gamma function. Even directly also we can define the gamma distribution from the improper
integrals of mathematics. In this lesson we consider such a distribution and discuss its properties
and applications.

17.2 Definition:

The continuous variate X which is distributed according the probability law

 
 

 
x n 1

e x
f x ; n 0, 0 x 1

n

 


       


0 , otherwise

is known as a Gamma variate with parameter n,  f x is called the probability density

function of Gamma Distribution. Any variate having the p.d.f. (1) is expressed as  X ~ n . The

function  f x defined above represents a probability function since
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 
   

 x n 1

0 0

1 1
f x d x e x dx n 1

n n

 
 

     
  

Also a continuous random variable X having the following p.d.f. is said to have a Gamma
Distribution with two parameters  and n is

 
 

 
n

x n 1
f x e x ; 0, n 0 ; 0 x 2

n

 
          


0 , otherwise

If X has this density we express it as  X ~ , n  . Taking a 1 in (2) we get (1). Hence

we may denote it as    X ~ n 1, n  .

The cumulative distribution function of gamma variate x is

   
 

x x
u n 1

0 0

1
F x u d u e u d u , x 0

n

 
    

 

0 , otherwise

17.3 Properties - Moments:

Moments about origin is given by      1 r 2
r E X X f x d x 1





      

It  X ~ n then from equation (1)

 
 

1 r r x n 1
r

0

1
E X x e x d x

n



 
     







 
x n r 1

0

1
e x d x

n



  
 







 
x n r 1

0

1
e x d x

n


  

 
 
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 
 

1
r

1
n r

n
   


   x n 1

0

n e x d x 2


  
      
 
 



for r 1,2,3,    th result (2) gives

 
 

 
 

1
1

n 1 n 1 1 !
r 1,

n n 1 !

   
   

 
    n n 1 !  

 

n!
n

n 1 !
 



 

 

 
 

 
 

 
1
2

n 2 n 2 1 ! n 1 !
r 2, n n 1

n n 1 ! n 1 !

    
      

  

 
2

1 1 2 2
2 2 1 n n 1 n n         

2
n n  n

 
 

 
 

 
 

  1
3

n 3 n 3 1 ! n 2 !
r 3, n n 1 n 2

n n 1 ! n 1 !

    
       

  

     
3

1 1 1 1 3
3 3 2 1 13 2 n n 1 n 2 3n n 1 n 2 n               

 

 

 

 

 

 
     1

4

n 4 n 4 1 ! n 3 !
n n 1 n 2 n 3

n n 1 ! n 1 !

    
       

  

2 4
1 1 1 1 1 1

4 4 3 1 2 1 14 6 3          

           2 4
n n 1 n 2 n 3 4n n 1 n 2 n 6 n n 1 n 3n           

2
3n 6n 

 
2 22
3 4

1 23 3 2 2
2 2

2n 4 3n 6n
6, 3

nnn n

  
        

 

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Harnonic Mean:

For Harnonic Mean H we evaluate

 
 

n 1 x

0 0

1 1 1 1 1
E E f x d x x e d x

H X X n x

 
    

         
   

 
 
 

   
 n 1 1n 2 x x

0 0

1 1
x e d x x e d x

n n

 
   

   
  

 
 

 
 

1 n 1 n 2 ! 1
E

H n n 1 ! n 1

   
   

   

H n 1  

Mode:

If  X ~ n then  
 

x n 11
f x e x , n 0, 0 x

n

 
      


 Mode 0M is obtained by taking  1
f x 0

   
      1 x n 1 x n 1 x n 2d d 1 1

f x f x e x e x e x n 1
d x d x n n

      
         

  

 
  

x n 2
e x

x n 1
n

 


   


 
 

  
x n 2

1 e x
f x 0 x n 1 0

n

 


      


 x n 1 0     or x n 1  .

Giving the possible value of mode n 1  . Also for x n 1  ,  1
f x is negative,

which confirms that x n 1  is the modal value of the distribution.

If 1 2 nX ,X , ,X       are i.i.d.  Expo  variates, then n 1 2 nS X ,X , ,X      is a

gamma  , n variate.
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Proof: If  X ~ Expo  , then its m.g.f. is given by

   
1

X
tM t 1 1


     

 

Now          
n 1 2 n 1 2 nS X ,X , ,X X X XM t M t M t M t M t     


     

1 1 1

n times

t t t1 1 1
  

      
  

 
n

t1


 
   '

iX s are i i d Expo   

The shows that  nS ~ gamma , n variate.

Limiting form of Gamma Distribution as n   :

If  X ~ n , then    E n sayX    and  
2

Var nX    (say).

Then standard gamma variate is given by

X X n
Z

n

 
 



But      
t t

n

Z X
t tM e M e 1t

 
    

 

 
n t

n
n t1e

n




 

 
nn t t1e

n

   

     
nn t

z z
t1K og M ogt t e

n

  
    

 
 

 t1n t n og
n

   
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2 3

3
2

t t 1 t 1
n t n

n 2 3n n

 
          
 
 

 32
2tn t n t 0 n

2



    

Where  1
20 n



are terms containing
1

2
and higher powers of n in the denaminator..

   

22 t
2

z z
n n 8

t
im K t im M t e

2 
    

Which is the m.g.f. of a standard normal variate therefore Gamma Distribution
tends to Normal Distribution for large values of parameter n.

Moment Generating Function:

According to definition of Moment Generating Function we have

     t X t X
XM t E e e f x d x  

If  X ~ n then we have

 
 

x n 1
t X

X

0

e x
M t e d x

n


 


 







 
 1 t x n 1

0

1
e x d x

n


  

  
 

 

 

 n
1 n

, t 1
n 1 t


  
 

 k y n 1

n

0

n
e y d y

k



 
 

 
  

 
 







 
 

      2
2n

n

1 n n 1 n n 1 n r 1 t
1 t 1 n t t

2! r!1 t

       
           


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Which gives
1
r  the coefficience of    

2
t

n n 1 n r 1
r!

      

    n
XM t 1 t t 1


     r 1,2,3,4,   

Mean         1 1 1 1
1 2 3 4 2n, n n 1 , n n 1 n 2 , n n 1 n 2 n 3 , n                .

Cumulant Generating Function of Gamma Distribution:

By definition of cumulant generating function

We have

     
X XK t og M t 1   

If  X ~ n , then we have     n
XM t 1 t , t 1


  

 substituting the value of  
XM t in (1) we get

    n
XK t og 1 t


 

 n og 1 t  

2 3 4
t t t

n t
2 3 4

 
          
  

 
2 3 4

x x x
og 1 x x

2 3 4

 
          
 
 

   
2 3 4

X

t t t
K t n t 2

2 3 4

 
           
  

 
r

X
r 1

tK t n
r





 

     
r

X
r 1

t
K t n r 1 ! 3

r!





      
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 Mean = 1K is obtained by taking coefficient of t in  
XK t

i.e., 1K n

2 2K  is obtained by taking coefficient of

2
t

2!
in  

XK t

i.e., 2K n

3 3K  is obtained by taking coefficient of

3
t

3!
in  

XK t

i.e., 3K 2n

is obtained by tking coefficient of

4
t

4!
in  

XK t

i.e., 4K 6n

2 2
4 4 2K 3K 6n 3n     

Like Poisson Distribution, the mean and variance of the Gamma Distribution are
equal.

Pearson's Measure of Skewness:

Since       2 2
1 1 2 2 3 3 4 4 2K t n, K t n, K t 2n, K 3K 6n 3n             

We have
 

2 22
3

1 3 3 3
2

2n 4n
4

n
n n


    



or 1 1

2
4 0

n
n

     
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Pearson's Measure of Kurtosis:

We have
   

2
4

2 2 2 2
2

6n 3n n 3n 6
63

n
n n

  
     



or 2 2

6
63 3 3 0

nn
        

Since 1 0  , the Gamma Distribution is positively skewed and 2 0  implies that

it is leptokurtic. Obviously, the point  1 2,  lies on the straight line 2 12 3 6 0     .

Additive Property of Gamma Distribution:

The sum of independent gamma variate is also a gamma variate. More specifically,

if 1 2 KX ,X , ,X       are independent gamma variates with parameters 1 2 kn , n , ,n         

respectively then 1 2 kX X X         is also a gamma variate with parameter

1 2 kn n n         .

Proof: Since iX is gamma variate with parameters in .

i.e.,  i iX ~ n

Then according to m.g.f. of Gamma Distribution we have

    i
i

n
XM t 1 t


 

The m.g.f. of the sum 1 2 kX X X         is given by

       
1 2 k 1 2 kX X X X X XM t M t M t M t               

 1 2 kX ,X , ,X are independent      

     1 2 kn n n
1 t 1 t 1 t

  
             

   1 2 kn n n
1 t

  
 

Which is again the m.g.f. of a gamma variate with parameter  1 2 kn n n          .

Hence by the uniqueness theorem of m.g.f. the sum of independent gamma variates is
also a gamma variate.
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17.4 Workedout Examples:

Example 1: Show that the Harnonic mean of the variate which ranges from 0 to  with p.d.f.

 
n x

x e
f x

n!




 is n. Where n is positive.

Solution: Given    
n x

x e
f x , 0 x 1

n!




      

Then we have Harmonic mean of the variate as

 

0

1 1
f x d x

H x



 



n x

0

1 1 x e
d x

H x n !





 





  from 1

n 1 x

0

1
x e d x

n!


 

 

 
1

n
n!

  ( By definition of p.d.f. of gamma function)

 n 1 !

n!


     n n 1 !  

1 1
H n

n
  



 The Harnonic mean of the variate which ranges from 0 to  with p.d.f.
n x

x e

n !




is n.
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Example 2: Prove that the sum of two independent gamma variates with parameters  1 1n , 

and  2 2n ,  is a gamma variate with parameter 1 2n n provided 1 2   .

Solution: Let 1X and 2X betwo independent gamma variates with parameters  1 1n ,  and

 2 2n ,  respectively. The moment generating function of their sum 1 2X X is

given by

   1 2 1 2

1 2

t X X t X t X

X XM t E e E e e



        

1 2t X t X
E e E e       

   
1 2X XM t M t 

Since  
XM t for gamma variate   n

1 t


  

Hence      1 2
1 2

n n
X X 1 2M t 1 t 1 t

 
      

If
1 2     , then

     1 2

1 2

n n
X XM t 1 t 1 t

 
    

   1 2n n
1 t

 
 

Which is the moment generating function of gamma variate with parameter

 1 2n n . Provided 1 2     .

Example 3: Consumer demand for milk in a certain locality, per month is known to be a gamma
variate. If the average demand is 'a' litres and the most likely demand is 'b' litres

 b a what isthe variand of the demand?

Solution: If  X ~ n then we have

 E X n, Mode n 1  

Since the average demand is 'a' litres i.e.,  a n 1   

The most likely demand is 'b' litres i.e.,  b n 1 2    

Thus a - b gives,  a b n n 1 1 3       
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But the variance of X is given by  V X n

 V X can be written as    V X n 1 a a b   

      from 1 & 3 i.e., a n, a b 1  

Example 4: A random sample of size n is taken from population. If X is the sample, show that

n X is  1, n and that E of X is
1

n .

Solution: If  X ~ Expo  then m.g.f. is given by

   
1

X
tM t 1


 



         
1 2 n i

n n
X X X Xn X

M t M t M t 1 t 1


 
          
 

 iX are i.i.d.

This shows that  n X ~ 1, n 

Let Y n X  and expanding equation (1) we get

   
2

Y

t
M t 1 n t n n 1

2
           

     
n

1E Y n E n X n or E X
n

     


   2
E Y n n 1  i.e., coefficient of

2
t

2

         2 2 2 2

22 2

n n 1 n 1
E n X n n 1 or E X

nn

 
     



     
22

Var X E X E X     

 
 

2 2 2 2

n 1 1 1 n 1 n 1
Var X

nn n

   
    

     

   
2

1 1
S E X Var X

nn
     


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17.5 Exercise:

1. Prove that    
2 2x 2

x x 2 2

0

1 1
x e d x x e 1 2x 2x

3 3 5

   
         

 



2. Show that the function  
 

x n 1
e x

f x , n 0, 0 x
n

 


    


and '0' otherwise is a

p.d.f.

3. Find the M.G.F. of a  n variate, i.e., a gamma variate with parameter n, w.r.t.

oxigin.

4. Show that the sum of two gamma variates, with parameters  and m is a gamma

variate with parameter m .

5. Show that for the distribution  
 

x n 11
f x e x , 0 x , n 0

n

 
     


mean and

variance are equal.

6. If X be a normal variate with mean  and S.D.  , then
 2

2

x

2

 


is a gamma variate

with parameter 1
2 .

7. Show that the mean value of positive square root of a  n variate is  
 

1n
2

n

 



.

Hence prove that the mean deviation of a normal variate from its mean is 2 , 


being the S.D. of the distribution.

8. If a random variable X has a gamma distribution with n 2 and 1  , find

 P 1 8 X 2 4    . 18 2 4
Ans : 2 8e 3 4e , 1545

       

9. In a certain city the daily consumption fo water (in millions of gallons) follows

approximately a Gamma Distribution with n 2 & 3   . If the daily capacity of

this city is 9 million gallons of water what is the probability that on any given day the

water supply is inadequate? 3
Ans : 4e 0 1992

   
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CAUCHY DISTRIBUTION

Object of The Lesson:

After studying this lesson the student is expected to have a clear comprehension of the
theory and the practical utility about the concepts of definition, properties and applications of Cauchy
Distribution.

Structure of The Lesson:

This lesson consists of the following sections as detailed below:

18.1 Introduction

18.2 Definition

18.3 Properties

18.4 Applications in real life

18.5 Workedout Examples

18.6 Exercise

18.1 Introduction:

In mathematics it is well known that, to prove any result a logical construction is essential.
On the other hand to disprove a statement a counter example is enough. The same is true in
statistics also. One such distribution to disprove a number of theoretical propositions is the Cauchy

Distribution. It is infact the probability of a random angle with uniform probability in  2 2
, 

described by a distribution. After being converted into Cartesian coordinates it becomes the Cauchy
Distribution. In this lesson we explain the development and properties of a Cauchy Distribution.

18.2 Definition:

Probbability Denisity Function:

A random variable X having the p.d.f.

     2 2
f x x , x , 0 1

                

is said to be Cauchy Distribution with location parameter  and scale parameter

0  . A variate with density (1) is expressed as  X ~ C ,  . The case

0, 1    equation (1) gives
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 
 

 
2

1 1
f x , x 2

1 x
        
 

and if a variate with density (2), is expressed as  X ~ C 0, 1

0 1 2- 1- 2

0.3

0.2

0.1

f (x)

x

Cauchy Distribution

Cumulative Distribution Function:

 

 

x

2 2

d t
F x

t





   





 
 1 11 x

P X x tan
2

    
      

 

The shape of Cauchy Distribution generally is similar to normal curve, but it
decreases more slowly for large values of x, more specifically using c.d.f. we observe
that

         1 1 1 11 1 1
P X F F tan 1 tan 1 0 5

2 2 2

      
                     

   

       1 1
P X 2 F 2 F 2 2 tan 2 0 706

 
              

       1 1
P X 3 F 3 F 3 2 tan 3 0 795

 
            
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For  2
N ,  the corresponding values are

     P X 0 6826, P X 2 0 9544, P X 3 0 9973              

The higher values for  2
N ,  indicate a larger concentration of area close to 

than for Cauchy  with implications their rate of fall is slow - the following figure indicates

this situation.

X

Y

Normal

Cauchy

18.3 Properties:

Moments:

   
 

2 2

y
E y y f y d y d y

y








  

   







 

 
2 2

y
d y

y





   


   





 

 

 
2 22 2

d y y
d y

y y



 

  
   

      


 

 
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2 2

1 z
1 d z

z





  
  





Although the integral
2 2

z
d z

z




 





is not completely convergent.

i.e.,

1

1

n

2 2
n

nn

z
im d z

z



 





 does not exist its principal value,

n

2 2
n

n

z
im d z

z



 





 exists and is equal to zero. Thus, in general mean of

Cauchy Distribution does not exist. But, if we assume that the mean of Cauchy Distribution
exists (by taking the principal value), then it is located at x   . Also the probability curve

is symmetrical about the point x   . Hence for this distribution, the mean, median and

mode coincide at the point x   .

     
 

 

2
2 2

2 2 2

y
E y y f y d y d y

y







 
     

   








Which does not exist since the integral is not convergent thus for the Cauchy's

Distribution  r r 2  do not exist.

Moment Generating Function:

The m.g.f. of Cauchy Distribution does not exist for t 0 . According to definition of

m.g.f.
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   
t x t x

X 2 2 2 2

0

e e
M t d x d x 1

x x

 



 
    
    

 
 
 
 

(By taking 0  in  f x )

Since  t x
e 1 t x 0 t   , where  0 t 0

for b 0 , the above equation (1) gives  
 

 X 2 2

0

1 t x
M t d x

x



 
  

  





From this it follows that no moments of Cauchy variate exist.

Characteristic Function:

If X is Laplace  ,  , its p.d.f. and characteristic function are

   x1
f x e , x 1

2

 
        

 
 

 
2

t i

2 2
t e 2

t

 
     

 

By using the Inversion formula

    i t x1
f x t e d t

2





  
 

t i 2 i t x
x

2 2

1 1 e e
e d t

2 2 t


 

 



  
   

  






( from equations (1) & (2))
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or

i t z
z

2 2

e
e d t

t









  






 z x  

Now transforming variable t to y & taking z   we get

 

 

i y

2 2

e
e d y

y


 

 





   






 

i y
i

2 2

e d y
e

y




 






     






Againing rewritting  to t we have

 
 

i t y
t i t i t y

2 2

e d y
e e g y d y

y




  






 

     








where    
2 2

g y y , y
          

Which follows that  g y is  C ,  density and hence  
i t t

t : y e
  

 

Mode and Points of Inflexion:

Let
2 2

1
y , z x

z

  
   
   

Taking logarithm on bothe sides and differentiating twice we get w.r.t. 'z'
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 
 1

2 2

1 2z
y 1

y z


   

 

1 d y
y

d z

 
 

 


 

 
 

21 2 2
11

2
2 2

1 y 2 z
y 2

y y
z

    
      
 

 

2
11

2

d y
y

d z

 
 
 
 



1
y 0 z 0   and

11
y 0 at z 0

Thus z 0, i.e., x   gives the modal value, which means  C ,  has unique

maximum at x   .

Now taking
11

y 0 and eliminating
1

y betwen (1) and (2) which gives

 2 2
3z 0 577

3
           . These are the two points of inflexion of  C , 

and    is the two points of inflexion of  2
N ,  are compared.

Median:

The c.d.f. of  C ,  is given by

 
 1 11 x

F x tan
2

   
    

 

If m is the median of  C ,  then

  1 11 1 m 1
F m tan

2 2 2

    
     

 

1 1 m
tan 0

   
   

 

1 m
tan 0

   
  

 

m
0

 
 


 0

tan 0 0
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m 0   

m  

Reproductive Property:

Statement: If  1 1 1X ~ C ,  and  2 2 2X ~ ,  are independent, then

   1 2 1 2 1 2X X ~ C ,      .

Proof: From the definition of characteristic function    i t X
X t E e 

If     1 1

1

i t t

1 1 1 XX ~ , t e
  

    

    2 2

2

i t t

2 2 2 XX ~ C , t e
  

    

Since 1 2X , X are independent as stated we have

     
1 2 1 2X X X Xt t t    

1 1 2 2i t t i t t
e e

     
 

i t t
e

  
  1 2 1, 2         

By uniqueness theorem, if follows that  1 2 1 2 1 2X X ~ C ,      

Distribution of The Mean of Cauchy Variates:

Statement: If 1 2 nX ,X , ,X       are i.i.d.  C ,  variates then

 
 1 2 nX X X

X ~ C ,
n

          
  

Proof: If  X ~ C ,  then we have

 
 

 i t t
X t e 1

  
    
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 
   

1 2 n1 2 n X X XX X X

n

tt
n  

  

     
1 2 nX X X

t t t
n n n

                 

 
i

n

X
t
n

      '
iX s are i i d  

=

n
i t t

n ne

 


 
 
 

[by equation (1)]

i t t
e
  



This shows that  X ~ C ,  .


