
COMPUTER
ORGANISATION

 (
(PG

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

COMPUTER
ORGANISATION

(PGDCA03)

PG - DIPLOMA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

ORGANISATION

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

 Computer Organisation

 NOTES

1

UNIT - I

1. INTRODUCTION TO COMPUTERS

Structure

1.1 Introduction
1.2 What is a Computer?
1.3 History of Computers
1.4 Classification of Computers

1.4.1 Mainframe Computers
1.4.2 Minicomputers

 1.4.3 Microcomputers

1.4.4 Supercomputers
1.5 Computer Tasks
1.6 Memory
1.7 Central Processing Unit (CPU)
1.8 Telecommunications
1.9 Computer Software

1.9.1 System Software
1.9.2 Application software
1.9.3 Program Software

1.10 Emerging Trends
1.11 Data Representation

1.11.1 Bits and Bytes
1.11.2 Binary Numbers
1.11.3 Hexadecimal Numbers
1.11.4 Parity Check Bit

1.12 Input Devices
1.12.1 Key Board
1.12.2 Mouse
1.12.3 Magnetic Ink Character Recognition (MICR)
1.12.4 Optical Mark Reading and Recognition (OMR)
1.12.5 Optical Character Recognition (OCR)
1.12.6 Bar Coding
1.12.7 Speech Input Unit

1.13 Output Devices
1.14 Summary
1.15 Key words
1.16 Exercise
1.17 References

 Computer Organisation

 NOTES

2

Objectives

At the end of the lesson you will be able to:

 Defination Of computer

 History Of Computers

 Discuss Classification Of Computers

 Discuss about I/P and I/O devices

 Explanation about storage devices

 Types of computer software

1.1 Introduction

In today‟s information age, computers are being used in every
occupation. They are used by people of all age and profession, in their
work as well as their leisure. This new social age has changed the basic
concept of „Computing‟. Computing, in today‟s information age, is no more
limited to computer programmers and computer engineers. Rather than
knowing how to program a computer, most computer users simply need to
understand how a computer functions so in this chapter I will be discussing
with you about this versatile tool, why is it so powerful and useful, its history
and you will also be briefed about the classification of computers.

1.2 What is a Computer?

A computer is an electronic machine that accepts information,
stores it until the information is needed, processes the information
according to the instructions provided by the user, and finally returns the
results to the user. The computer can store and manipulate large
quantities of data at very high speed, but a computer cannot think. A
computer makes decisions based on simple comparisons such as one
number being larger than another. Although the computer can help solve a
tremendous variety of problems, it is simply a machine. It cannot solve
problems on its own.

1.3 History of Computers

Since civilizations began, many of the advances made by science
and technology have depended upon the ability to process large amounts
of data and perform complex mathematical calculations. For thousands of
years, mathematicians, scientists and businessmen have searched for
computing machines that could perform calculations and analyze data
quickly and efficiently. One such device was the abacus.

 Computer Organisation

 NOTES

3

The abacus was an important counting machine in ancient Babylon,
China, and throughout Europe where it was used until the late middle ages.
It was followed by a series of improvements in mechanical counting
machines that led up to the development of accurate mechanical adding
machines in the 1930‟s. These machines used a complicated assortment
of gears and levers to perform the calculations but they were far to slow to
be of much use to scientists. Also, a machine capable of making simple
decisions such as which number is larger was needed. A machine capable
of making decisions is called a computer.

The first computer like machine was the Mark I developed by a
team from IBM and Harvard University. It used mechanical telephone
relays to store information and it processed data entered on punch cards.
This machine was not a true computer since it could not make decisions.

In June 1943, work began on the world‟s first electronic computer.
It was built at the University of Pennsylvania as a secret military project
during World War II and was to be used to calculate the trajectory of
artillery shells. It covered 1500 square feet and weighed 30 tons. The
project was not completed until 1946 but the effort was not wasted. In one
of its first demonstrations, the computer solved a problem in 20 seconds
that took a team of mathematicians three days. This machine was a vast
improvement over the mechanical calculating machines of the past
because it used vacuum tubes instead of relay switches. It contained over
17,000 of these tubes, which were the same type tubes used in radios at
that time.

The invention of the transistor made smaller and less expensive
computers possible. Although computers shrank in size, they were still
huge by today‟s standards. Another innovation to computers in the 60‟s
was storing data on tape instead of punched cards. This gave computers
the ability to store and retrieve data quickly and reliably.

1.4 Classification of Computers

· Mainframe Computers

· Minicomputers

· Microcomputers

· Supercomputers

1.4.1 Mainframe Computers

Mainframe Computers are very large, often filling an entire room.
They can store enormous of information, can perform many tasks at the
same time, can communicate with many users at the same time, and are
very expensive. . The price of a mainframe computer frequently runs into
the millions of dollars. Mainframe computers usually have many terminals
connected to them. These terminals look like small computers but they are
only devices used to send and receive information from the actual

 Computer Organisation

 NOTES

4

computer using wires. Terminals can be located in the same room with the
mainframe computer, but they can also be in different rooms, buildings, or
cities. Large businesses, government agencies, and universities usually
use this type of computer.

1.4.2 Minicomputers

Minicomputers are much smaller than mainframe computers and
they are also much less expensive. The cost of these computers can vary
from a few thousand dollars to several hundred thousand dollars. They
possess most of the features found on mainframe computers, but on a
more limited scale. They can still have many terminals, but not as many as
the mainframes. They can store a tremendous amount of information, but
again usually not as much as the mainframe. Medium and small
businesses typically use these computers

1.4.3 Microcomputers

Microcomputers are usually divided into desktop models and laptop
models. They are terribly limited in what they can do when compared to
the larger models discussed above because they can only be used by one
person at a time, they are much slower than the larger computers, and they
cannot store nearly as much information, but they are excellent when used
in small businesses, homes, and school classrooms. These computers are
inexpensive and easy to use. They have become an indispensable part of
modern life.

1.4.4 Supercomputers

Supercomputers are very expensive and are employed for
specialized application that requires immense amounts of mathematical
calculations. For example, weather forecasting requires a supercomputer.
Other uses of supercomputers include animated graphics, fluid dynamic
calculations, nuclear energy research, and petroleum exploration. The chief
difference between a supercomputer and a mainframe is that a
supercomputer channels all its power into executing a few programs as fast
as possible, whereas a mainframe uses its power to execute many
programs concurrently.

1.5 Computer Tasks

· Input
· Storage
· Processing
· Output

When a computer is asked to do a job, it handles the task in a very special
way.

1. It accepts the information from the user. This is called input.

 Computer Organisation

 NOTES

5

2. It stored the information until it is ready for use. The computer has
memory chips, which are designed to hold information until it is
needed.

3. It processes the information. The computer has an electronic brain
called the Central Processing Unit, which is responsible for
processing all data and instructions given to the computer.

4. It then returns the processed information to the user. This is called
output.

Every computer has special parts to do each of the jobs listed
above. Whether it is a multi-million dollar mainframe or a thousand dollar
personal computer, it has the following four components, Input, Memory,
Central Processing, and Output. The central processing unit is made up of
many components, but two of them are worth mentioning at this point.
These are the arithmetic and logic unit and the control unit. The control
unit controls the electronic flow of information around the computer. The
arithmetic and logic unit, ALU, is responsible for mathematical calculations
and logical comparisons.

1.6 Memory
 The Internal storage areas in the computer represent as memory.

The term memory identifies data storage that comes in the form chips, and
the word storage is used for memory that exists on tapes disks. Moreover,
the term memory is usually used as shorthand for physical memory, which
refers to the actual chips capable of holding data. Some computers also
use virtual memory, which expands physical memory onto a hard disks.

Every computer comes with a certain amount of physical memory,
usually referred to as main memory or RAM. A computer that has 1
megabyte of memory, therefore, can hold about 1 million bytes (or
characters) of information.

There are several different types of memory:

 RAM (random-access memory): This is the same as main
memory. When used by itself, the term RAM refers to read and write
memory; that is, you can both write data into RAM and read data
from RAM. This is in contrast to ROM, which permits you only to
read data. Most RAM is volatile, which means that it requires a
steady flow of electricity to maintain its contents. As soon as the
power is turned off, whatever data was in RAM is lost.
 ROM (read-only memory): Computers almost always contain a
small amount of read-only memory that holds instructions for
starting up the computer. Unlike RAM, ROM cannot be written to.
 PROM (programmable read-only memory): A PROM is a
memory chip on which you can store programs. But once the PROM
has been used, you cannot wipe it clean and use it to store
something else. Like ROMs, PROMs are non-volatile.

 Computer Organisation

 NOTES

6

 EPROM (erasable programmable read-only memory): An
EPROM is a special type of PROM that can be erased by exposing
it to ultraviolet light.
 EEPROM (electrically erasable programmable read-only
memory): An EEPROM is a special type of PROM that can be
erased by exposing it to an electrical charge.

1.7 Central Processing Unit (CPU)

The central processing unit is one of the two most important
components of your microcomputer. It is the electronic brain of your
computer. In addition to processing data, it controls the function of all the
other components. The most popular microprocessors in IBM compatible
computers are made by Intel. The generations of microprocessors are
listed below.

 1981 8088
 1984 80286
 1987 80386
 1990 80486
 1993 Pentium
 1996 P-1
 2002 P-4

1.8 Telecommunications

Telecommunications means that you are communicating over long
distances usually using phone lines. This enables you to send data to and
receive data from another computer that can be located down the street, in
another town, or in another country. Telecommunications requires a
communication device called a modem, which connects your computer to a
standard phone jack. A modem converts the digital signals that your
computer uses into analog signals that can be transmitted over the phone
lines. To use a modem, you must also have communication software to
handle the transmission process.

1.9 Computer Software

Software is a generic term for organized collections of computer
data and instructions, often broken into two major categories: system
software that provides the basic non-task-specific functions of the
computer, and application software which is used by users to accomplish
specific tasks.

1.9.1 System Software

System software is responsible for controlling, integrating, and
managing the individual hardware components of a computer system so
that other software and the users of the system see it as a functional unit

 Computer Organisation

 NOTES

7

without having to be concerned with the low-level details such as
transferring data from memory to disk, or rendering text onto a display.
Generally, system software consists of an operating system and some
fundamental utilities such as disk formatters, file managers, display
managers, text editors, user authentication (login) and management tools,
and networking and device control software.

1.9.2 Application software

Application software, on the other hand, is used to accomplish
specific tasks other than just running the computer system. Application
software may consist of a single program, such as an image viewer; a
small collection of programs (often called a software package) that work
closely together to accomplish a task, such as a spreadsheet or text
processing system; a larger collection (often called a software suite) of
related but independent programs and packages that have a common user
interface or shared data format, such as Microsoft Office, which consists of
closely integrated word processor, spreadsheet, database, etc.; or a
software system, such as a database management system, which is a
collection of fundamental programs that may provide some service to a
variety of other independent applications.

1.9.3 Program Software

Program software is software used to write computer programs in
specific computer languages. Software is created with programming
languages and related utilities, which may come in several of the above
forms: single programs like script interpreters, packages containing a
compiler, linker, and other tools; and large suites (often called Integrated
Development Environments) that include editors, debuggers, and other
tools for multiple languages.

1.10 Emerging Trends

The components of a computer are connected by using buses. A
bus is a collection of wire that carry electronic signals from one component
to another. There are standard buses such as Industry Standard
Architecture (ISA), Extended Industry Standard Architecture (EISA), Micro-
Channel Architecture (MCA), and so on. The standard bus permits the user
to purchase the components from different vendors and connect them
easily.

The various input and output devices have a standard way of
connecting to the CPU and Memory. These are called interface standards.
Some popular interface standards are the RS-232C and Small Computer
System Interconnect (SCSI). The places where the standard interfaces are
provided are called ports.

 Computer Organisation

 NOTES

8

1.11 Data Representation

1.11.1 Bits and Bytes

Data in Computers are represented using only two symbols „0‟ & „1‟.
These are called “Binary digits” (or) “BITS” for short. A set of 8 bits is called
a byte and each byte stores one character. 2n

 unique strings are
represented using n bits only. For example, Using 2 bits we can represent
4 = (22) unique strings as 00, 01, 10, 11. ASCII (American Standards Code
for Information Interchange) codes are used to represent each character.
The ASCII code includes codes for English Letters (Both Capital & Small),
decimal digits, 32 special characters and codes for a number of symbols
used to control the operation of a computer which are non-printable.

1.11.2 Binary Numbers

Binary numbers are formed using the positional notation. Powers of
2 are used as weights in the binary number system. A binary number
10111 has a decimal value equal to 1X24 +0X23 +1X21 +1X20 =23. A
decimal number is converted into an equivalent binary number by dividing
the number by 2 and storing the remainder as the least significant bit of the
binary number.

1.11.3 Hexadecimal Numbers

High valued binary numbers will be represented by a long sequence
of 0‟s and 1‟s. A more concise representation is using hexadecimal
representation. The base of the hexadecimal system is 16 and the symbols
used in this system are 0,1,2,4,5,6,7,8,9,A,B,C,D,E,F. Strings of 4 bits have
an equivalent hexadecimal value. For example, 6B is represented by 0110
1011 or 110 1011, 3E1 is represented by 0011 1110 0001 or 11 1110 0001
and 5DBE34 is represented by 101 1101 1011 1110 0011 0100. Decimal
fractions can also be converted to binary fractions.

1.11.4 Parity Check Bit

Errors may occur while recording and reading data and when data
is transmitted from one unit to another unit in a computer Detection of a
single error in the code for a character is possible by introducing an extra
bit in its code. This bit, know as the parity check bit, is appended to the
code. The user can set the parity bit either as even or odd. the user
chooses this bit so that the total number of ones („1‟) in the new code is
even or odd depending upon the selection. If a single byte is incorrectly
read or written or transmitted, then the error can be identified using the
parity check bit.

 Computer Organisation

 NOTES

9

1.12 Input Devices

1.12.1 Key Board

The most common input device is the Keyboard. It is used to input letters,
numbers, and commands from the user.

1.12.2 Mouse

Mouse is a small device held in hand and pushed along a flat
surface. It can move the cursor in any direction. In a mouse a small ball is
kept inside and the ball touches the pad through a hole at the bottom of the
mouse. When the mouse is moved, the ball rolls. This movement of the ball
is converted into electronic signals and sent to the computer. Mouse is very
popular in the modern computers that use Windows and other Graphical
User Interface (GUI) applications.

1.12.3 Magnetic Ink Character Recognition (MICR)

In this method, human readable characters are printed on
documents such in this method, human readable characters are printed on
documents such as cheque using special magnetic ink. The cheque can be
read using a special input unit, which can recognize magnetic ink
characters. This method eliminates the need to manually enter data from
cheques into a floppy. Besides saving time, this method ensures accuracy
of data entry and improves security.

1.12.4 Optical Mark Reading and Recognition (OMR)

In this method, special pre-printed forms are designed with boxes
which can be marked with a dark pencil or ink. Such a document is read by
a document reader, which transcribes the marks into electrical pulses
which are transmitted to the computer. These documents are applicable in
the areas where responses are one out of a small number of alternatives
and the volume of data to be processed is large. For example:
· Objective type answer papers in examinations in which large number of
candidates appear.
· Market surveys, population survey etc.,
· Order forms containing a small choice of items.
· Time sheets of factory employees in which start and stop times may be
marked.

The advantage of this method is that information is entered at its source
and no further transcription is required.

1.12.5 Optical Character Recognition (OCR)

An optical scanner is a device used to read an image, convert it into
a set of 0‟s and 1‟s and store it in the computer‟s memory. The image may
be hand-written document, a typed or a printed document or a picture.

 Computer Organisation

 NOTES

10

1.12.6 Bar Coding

In this method, small bars of varying thickness and spacing are
printed on packages, books, badges, tags etc., which are read by optical
readers and converted to electrical pulses. The patterns of bars are unique
an standardized. For example, each grocery product has been given
unique 10-digit code and this is represented in bar code form on every
container of this product.

1.12.7 Speech Input Unit

A unit, which takes spoken words as its input, and converts them to
a form that can be understood by a computer is called a speech input unit.
By understanding we mean that the unit can uniquely code (as a sequence
of bits) each spoken word, interpret the word and initiate action based on
the word.

1.13 Output Devices

1.13.1 Monitor or Video Display Unit (VDU)
Monitor or Video Display Unit (VDU) Monitors provide a visual display of
data. It looks like a television. Monitors are of different types and have
different display capabilities. These capabilities are determined by a special
circuit called the Adapter card. Some popular adapter cards are,

· Color Graphics Adapter (CGA)
· Enhanced Graphics Adapter (EGA)
· Video Graphics Array (VGA)
· Super Video Graphics Array (SVGA)

1.14 Summary

A computer system may be viewed from the perspective of end

users, system and application programmers and hardware designers. In
this chapter, we provided a brief historical background for the development
of computer systems, starting from the first recorded attempt to build a
computer, Mainframe Computers, Minicomputers, Microcomputers, and
Supercomputers. We then provided a discussion on the memory and Input
and out put devices.

1.15 Key words

Mainframe Computers: mainframe is a high-performance computer used
for large-scale computing purposes that require greater availability and
security than a smaller-scale machine can offer.

Minicomputers: A mid-sized computer, usually fitting within a single
cabinet about the size of a refrigerator that has less memory than a
mainframe.

 Computer Organisation

 NOTES

11

Microcomputers: A microcomputer is a computer with a microprocessor
as its central processing unit. Another general characteristic of these
computers is that they occupy physically small amounts of space when
compared to mainframe and minicomputers.

Supercomputers: The fastest type of computer. Supercomputers are very
expensive and are employed for specialized applications that require
immense amounts of mathematical calculations.

Memory: Memory is an organism's ability to store, retain, and subsequently
retrieve information.

RAM: Random-access memory (usually known by its acronym, RAM) is a
form of computer data storage. The word random thus refers to the fact
that any piece of data can be returned in a constant time, regardless of its
physical location and whether or not it is related to the previous piece of
data.

 ROM: Computers almost always contain a small amount of read-only
memory that holds instructions for starting up the computer. Unlike RAM,
ROM cannot be written to.

EPROM: An EPROM is a special type of PROM that can be erased by
exposing it to ultraviolet light.

CPU: It is the electronic brain of computer. In arithmetic processing data, it
controls the function of all the other components.

MICR: Magnetic Ink Character Recognition

OMR: Optical Character Recognition

1.16 Exercise:

1. When u switch on your computer which software you see first and what
is the utility of that software.

2. Suppose on fine day you are working on your computer and power goes
off, again u switch on your computer, what type of booting is done by
that computer.

3. Write the essential parts of your computer system without which u cant
work and also list that parts which are optional

4. How many types of storage are normally there in storage unit of a
computer system? Justify the need for each storage type. Explain them.

5. What are the basic components of the CPU of a computer system?
Describe the roles of each of the components in the functioning of a
computer system.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Minicomputer
http://www.webopedia.com/TERM/S/computer.html
http://www.webopedia.com/TERM/S/application.html
http://en.wikipedia.org/wiki/Acronym
http://en.wikipedia.org/wiki/Computer_data_storage
http://en.wikipedia.org/wiki/Constant_time

 Computer Organisation

 NOTES

12

6. Suppose an entrance exam is held and thousands of students appeared
in that exam, which device u will use to evaluate the answer sheets and
why?

 7. Hardware and software are like two sides of a coin. Do you agree or
disagree, Give reasons.

1.17 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation And Architecture By: William Stallings Prentice
—Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

13

2. REGISTER TRANSFER LOGIC

Structure

2.1 Introduction
2-2 Register Transfer Language
2.3 Register Transfer
2-4 Bus and Memory Transfers

2-4-1 Three-State Bus Buffers

2-4-2 Memory Transfer
2-5 Summary
2-6 Keywords
2-7 Exercise

2-8 References

Objectives

At the end of the lesson you will be able to:

 Describe the register transfer language

 Define what is a register transfer

 Define what are bus and memory transfers

2.1 Introduction

A digital system is a sequential logic system constructed with flip-
flops and gates. It was shown in previous chapters that a sequential circuit
can be specified by means of a state table. To specify a large digital
system with a state table would be very difficult, if not impossible, because
the number of states would be prohibitively large. To overcome this
difficulty, digital system are invariably designed using a modular approach.
The system is partitioned into modular subsystems, each of which performs
some functions task. The modules are constructed from such digital
functions as registers, counters, decoders, multipliers, arithmetic elements,
and control logic. The various modules are interconnected with common
data and control paths to form a digital computer system. A typical digital
system module would be the processor unit of a digital computer.

The interconnection of digital functions to form a digital system
module cannot be described by means of combinational or sequential logic
techniques. These techniques were developed to describe a digital system
at the gate and flip-flop level and are not suitable for describing the system
at the digital function level. To describe a digital system in terms of
functions such as adders, decoders, and registers, it is necessary to
employ a higher-level mathematical notation. The register-transfer logic
method fulfills this requirements. In this method, the registers are selected

 Computer Organisation

 NOTES

14

to be the primitive components in the digital system, rather than the gates
and flip-flops as in sequential logic. In this way it is possible to describe, in
a concise and precise manner, the information flow and processing tasks
among the data stored in the registers. The register-transfer logic method
uses a set of expressions and statements which resemble the statements
used in programming languages. This notation provides the necessary
tools for specifying a prescribed set of interconnections between various
digital functions. An important characteristic of the register transfer logic
method of presentation is that it is closely related to the way people would
prefer to specify the operations of a digital system.

The binary information stored in registers may be binary numbers,
binary coded decimal numbers, alphanumeric characters, control
information, or any other binary-coded information. The operations that are
performed on the data stored in registers depend on the type of data
encountered. Numbers are manipulated with arithmetic operations,
whereas control information is usually manipulated with logic opera tions
such as setting and clearing specified bits in the register. The operations
performed on the data stored in registers are called micro operations. The
control functions that initiate the sequence of operations consist of timing
signals that sequence the operations one at a time. Certain conditions
which depend on results of previous operations may also determine the
state of control functions. A control function is a binary variable that, when
in one binary state, initiates an operation and, when in the other binary
state, inhibits the operation. operation that can be performed in parallel
during one clock pulse period. The result of the operation may replace the
previous binary information of a register or may be transferred to another
register. Examples of microoperations are shift, count, add, clear, and
load. A counter with paralled load is capable of performing the
microoperations increment and load. A bidirectional shift register is
capable of performing the shift-right and shift-left microoperations. A
binary parallel adder is useful for implementing the add microoperation on
the contents of two registers that hold binary numbers. A microoperation
requires only one clock pulse for execution if the operation is done in
parallel. In serial computers, a microoperation requires a number of pulse
equal to the word time in the system. This is equal to the number of bits in
the shift registers that transfer the information serially while a
microoperation is being executed.

2.2 Register Transfer Language

A digital system is an interconnection of digital hardware modules
that accomplish a specific information-processing task. Digital systems vary
in size and complexity from a few integrated circuits to a complex of
interconnected and interacting digital computers. Digital system design
invariably uses a modular approach. The modules are constructed from
such digital components as registers, decoders, arithmetic elements, and
control logic. The various modules are interconnected with common data
and control paths to form a digital computer system.

 Computer Organisation

 NOTES

15

Digital modules are best defined by the registers they contain and
the operations that are performed on the data stored in them. The
operations executed on data stored in registers are called
microoperations. A microoperation is an elementary operation performed
on the information stored in one or more registers. The result of the
operation may replace the previous binary information of a register or
may be transferred to another register. For example, a counter with
parallel load is capable of performing the microoperations increment and
load. A bidirectional shift register is capable of performing the shift right
and shift left microoperations.

The basic components of this method are those that describe a
digital system from the operation al level. The operation of a digital
system is best described by specifying :

1. The set of registers it contains and their function.

2. The binary-coded information stored in the registers.

3. The sequence of microoperations performed on the binary
information stored in the registers.

4. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of microoperations in a
computer by explaining every operation in words, but this procedure usually
involve a lengthy descriptive explanation. It is more convenient to adopt a
suitable symbology to describe the sequence of transfers between registers
and the various arithmetic and logic microoperations associated with the
transfers. The use of symbols instead of a narrative explanation provides
an organized and concise manner for listing the microoperation sequences
in registers and the control functions that initiate them.

The symbolic notation used to describe the microoperation transfers
among registers is called a register transfer language. The term "register
transfer" implies the availability of hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same
or another register. The word "language" is borrowed from programmers,
who apply this term to programming languages. A programming language
is a procedure for writing symbols to specify a given computational
process. Similarly, a natural language such as English is a system for
writing symbols and combining them into words and sentences for the
purpose of communication between people. A register transfer language is
a system for expressing in symbolic form the microoperation sequences
among the registers of a digital module. It is a convenient tool for
describing the internal organization of digital computers in concise and
precise manner. It can also be used to facilitate the design process of
digital systems.

The register transfer language adopted here is believed to be as
simple as possible, so it should not take very long to memorize. We will
proceed to define symbols for various types of microoperations, and at the

 Computer Organisation

 NOTES

16

same time, describe associated hardware that can implement the stated
microoperations. The symbolic designation introduced in this lesson will be
utilized in subsequent lessons to specify the register transfers, the
microoperations and the control functions that describe the internal
hardware organization of digital computers. Other symbology in use can
easily be learned once this language has become familiar, for most of the
differences between register transfer languages consist of variations in
detail rather than in overall purpose.

2.3 Register Transfer

Computer registers are designated by capital letters (sometimes
followed by numerals) to denote the function of the register. For example,
the register that holds an address for the memory unit is usually called a
memory address register and is designated by the name MAR. Other
designations for registers are PC (for program counter), IR (for instruction
register, and R\ (for processor register). The individual flip-flops in an n-bit
register are numbered in sequence from 0 through n - 1, starting from 0 in
the rightmost position and increasing the numbers toward the left. Figure 2-
1 shows the representation of registers in block diagram form. The most
common way to represent a register is by a rectangular box with the name
of the register inside, as in Fig. 2-l(a). The individual bits can be
distinguished as in (b). The numbering of bits in a 16-bit register can be
marked on top of the box as shown in (c). A 16-bit register is partitioned
into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low
byte) and bits 8 through 15 are assigned the symbol H(for high byte). The
name of the 16-bit register is PC. The symbol PC(0-7) or PC(L) refers to
the low-order byte and PC(8-15) or PC[H] to the high-order byte.

Figure 2-1 Block diagram of register.

Information transfer from one register to another is designated in
symbolic form by means of a replacement operator.

R2 R1

 The statement denotes a transfer of the content of register R1 into
register R2. It designates a replacement of the content of R2 by the content
of R1. By definition, the content of the source register R1 does not change

after the transfer.

 Computer Organisation

 NOTES

17

A statement that specifies a register transfer implies that circuits are
available from the outputs of the source register to the inputs of the
destination register and that the destination register has a parallel load
capability. Normally, we want the transfer to occur only under a
predetermined control condition. This can be shown by means of an if-then

statement.

If (P = 1) then (R2 R1)

where P is a control signal generated in the control section. It is sometimes
convenient to separate the control variables from the register transfer
operation by specifying a control function. A control function is a Boolean
variable equal to 1 or 0. The control function is included in the statement as
follows:

P: R2 R1

The control condition is terminated with a colon. It symbolizes the
requirement that the transfer operation be executed by the hardware only if
P=1

Every statement written in a register transfer notation implies a
hardware construction for implementing the transfer. Figure 2-2 shows the
block diagram that depicts the transfer from R1 to R2. The n outputs of
register R1are connected to the n inputs of register R2. The letter n will be
used to in any number of bits for the register. It will be replaced by an
actual number when the length of the register is known. Register R2 has a
load input activated by the control variable P. It is assumed that the control
variable is synchronized with the same clock as the one applied to the
register. As shown in the timing diagram, P is activated in the control
section by the rising edge of a clock pulse at time t. The next positive
transition of the clock at time t + 1 finds the load input active and the data
inputs of R2 are then loaded into the register in parallel. P may go back to 0
at time t + 1; otherwise, the transfer will occur with every clock pulse
transition while P remains active.

(a) Block diagram

 Computer Organisation

 NOTES

18

(b) Timing diagram

Figure 2-2 Transfer from R1 to R2 when P=1

Note that the clock is not included as a variable in the register
transfer statements. It is assumed that all transfers occur during a clock
edge transition. Even though the control condition such as P becomes
active just after time t, the actual transfer does not occur until the register is
triggered by the next positive transition of the clock at time t + 1.

The basic symbols of the register transfer notation are listed in
Table 2-1. Registers are denoted by capital letters, and numerals may
follow the letters. Parentheses are used to denote a part of a register by
specifying the range of bits or by giving a symbol name to a portion of a
register. The arrow denotes a transfer of information and the direction of
transfer. A comma is used to separate two or more operations that are
executed at the same time. The statement

T: R2 R1, R1 R2

denotes an operation exchanges the contents of two registers during one
common clock pulse provided that T = 1. This simultaneous operation is
possible with registers that have edge-triggered flip-flops.

TABLE 2-1 Basic Symbols for Register Transfers

Symbols Description Examples

Capital letters &
numerals

Denotes a register MAR, R2

Parentheses () Denotes a part of a register
R2(0-7),

R2(L)

Arrow Denotes transfer of information R2 R1

Colon :
Denotes termination of control

function
P:

Comma , Separates two micro-operations
A B, B

A

 Computer Organisation

 NOTES

19

2-4 Bus and Memory Transfers

A typical digital computer has many registers, and paths must be
provided to transfer information from one register to another. The number
of wires will be excessive if separate lines are used between each register
and all other registers in the system. A more efficient scheme for
transferring information between registers in a multiple-register
configuration is a common bus system. A bus structure consists of a set of
common lines, one for each bit of a register, through which binary
information is transferred one at a time. Control signals determine which
register is selected by the bus during each particular register transfer.

One way of constructing a common bus system is with multiplexers.
The multiplexers select the source register whose binary information is then
placed on the bus. The construction of a bus system for four registers is
shown in Fig. 2-3. Each register has four bits, numbered 0 through 3. The
bus consists of four 4X1 multiplexers each having four data inputs, 0
through 3, and two selection inputs, .S1 and S0. In order not to complicate
the diagram with 16 lines crossing each other, we use labels to show the
connections from the outputs of the registers to the inputs of the
multiplexers. For example, output 1 of register A is connected to input 0 of
MUX 1 because this input is labeled A1. The diagram shows that the bits in
the same significant position in each register are connected to the data
inputs of one multiplexer to form one line of the bus. Thus MUX 0
multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1
bits of the registers, and similarly for the other two bits.

 Computer Organisation

 NOTES

20

Figure 2-3 Bus system four registers

The two selection lines S1 and S0 are connected to the selection
inputs of all four multiplexers. The selection lines choose the four bits of
one register and transfer them into the four-line common bus. When
S1S0= 00, the 0 data inputs of all four multiplexers are selected and
applied to the outputs that form the bus. This causes the bus lines to
receive the content of register A since the outputs of this register are
connected to the 0 data inputs of the multiplexers. Similarly, register B is
selected if S1S0= 01, and so on. Table 2-2 shows the register that is
selected by the bus for each of the four possible binary values of the
selection lines.

TABLE 2-2 Function Table for Bus of Fig. 2-3

S1 S0 Register selected

0 O A

0 1 B

1 0 C

1 1 D

In general, a bus system will multiplex k registers of n bits each to
produce an n-line common bus. The number of multiplexers needed to
construct the bus is equal to n, the number of bits in each register. The size
of each multiplexer must be k X 1 since it multiplexes k data lines. For
example, a common bus for eight registers of 16 bits each requires 16
multiplexers, one for each line in the bus. Each multiplexer must have eight
data input lines and three selection lines to multiplex one significant bit in
the eight registers.

The transfer of information from a bus into one of many destination
registers can be accomplished by connecting the bus lines to the inputs of
all destination registers and activating the load control of the particular
destination register selected. The symbolic statement for a bus transfer
may mention the bus or its presence may be implied in the statement.

 Computer Organisation

 NOTES

21

When the bus is includes in the statement, the register transfer is
symbolized as follows:

The content of register C is placed on the bus, and the content of
the bus is loaded into register R1 by activating its load control input. If the
bus is known to exist in the system, it may be convenient just to show the
direct transfer.

From this statement the designer knows which control signals must be acti-
vated to produce the transfer through the bus.

2-4-1 Three-State Bus Buffers

A bus system can be constructed with three-state gates instead of
multiplexers. A three-state gate is a digital circuit that exhibits three states.
Two of the states are signals equivalent to logic 1 and 0 as in a
conventional gate. The third state is a high-impedance state. The high-
impedance state behaves like an open circuit, which means that the output
is disconnected and does not have logic significance. Three-state gates
may perform any conventional logic, such as AND or NAND. However, the
one most commonly used in the design of a bus system is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 2-4.
It distinguished from a normal buffer by having both a normal input and a
control input. The control input determines the output state. When the
control input is equal to 1, the output is enabled and the gate behaves like
any conventional buffer, with the output equal to the normal input. When
the control input is 0, the output is disabled and the gate goes to a high-
impedance state, regardless of the value in the normal input. The high-
impedance state of a three-state gate provides a special feature not
available in other gates. Because of this feature, a large number of three-
state gate outputs can be connected with wires to form a common bus line
without endangering loading effects.

Figure 2-4 Graphic symbol for three-state buffer

 Computer Organisation

 NOTES

22

The construction of a bus system with three-state buffers is
demonstrated in Fig. 2-5. The outputs of four buffers are connected
together to form a single bus line. (It must be realized that this type of
connection cannot be done with gates that do not have three-state
outputs.) The control inputs to the buffers determine which of the four
normal inputs will communicate with the bus line. No more than one buffer
may be in the active state at any given time. The connected buffers must
be controlled so that only one three-state buffer has access to the bus line
while all other buffers are maintained in a high-impedance state.

Figure 2-5 Bus line with three state buffers

One way to ensure that no more than one control input is active at
any given time is to use a decoder, as shown in the diagram. When the
enable input of the decoder is 0, all of its four outputs are 0, and the bus
line is in a high-impedance state because all four buffers are disabled.
When the enable input is active, one of the three-state buffers will be
active, depending on the binary value in the select inputs of the decoder.
Careful investigation will reveal that Fig. 2-5 is another way of constructing
a 4 X 1 multiplexer since the circuit can replace the multiplexer in Fig. 2-3

 Computer Organisation

 NOTES

23

To construct a common bus for four registers of n bits each using
three-state buffers, we need n circuits with four buffers in each as shown in
Fig. 2-5. Each group of four buffers receives one significant bit from the
four registers. Each common output produces one of the lines for the
common bus for a total of n lines. Only one decoder is necessary to select
between the four registers.

2-4-2 Memory Transfer

The transfer of information from a memory word to the outside
environment is called a read operation. The transfer of new information to
be stored into the memory is called a write operation. A memory word will
be symbolized by the letter M. The particular memory word among the
many available is selected by the memory address during the transfer. It is
necessary to specify the address of M when writing memory transfer
operations. This will be done by enclosing the address in square brackets
following the letter M.

Consider a memory unit that receives the address from a register,
called the address register, symbolized by AR. The data are transferred to
another register, called the data register, symbolized by DR. The read
operation can be stated as follows:

This causes a transfer of information into DR from the memory word M
selected by the address in AR.

 The write operation transfers the content of a data register to a
memory word M elected by the address. Assume that the input data are in
register R1 and the address is in AR. The write operation can be stated
symbolically as follows:

2-5 Summary

In this lesson, we have discussed in detail about the register
transfer longuage and register transfer of the system.after this we have
discussed in detail bus and memory transfer and their implementaion in
hardware using simple logic circuites.

2-6 Keywords

Microoperation: In computer central processing units, micro-operations,
also known as a micro-ops or μops, are detailed low-level instructions used
in some designs to implement complex machine instructions

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Central_processing_unit

 Computer Organisation

 NOTES

24

Register: In computer architecture, a processor register is a small amount
of storage available on the CPU whose contents can be accessed more
quickly than storage available elsewhere.

Register transfer language: In computer system, register transfer
language (RTL) is a term used to describe a kind of intermediate
representation (IR) that is very close to assembly language, such as that
which is used in a compiler.

Control function: In computer system, a control operation (control
function) is an operation that affects the recording, processing,
transmission, or interpretation of data.

Common bus: Computer System for controlling access to a common bus
in a computer system.

High impedance: It means that the signal is neither driven to a logical high
nor low level - hence "tri-stated". Such a signal can be seen as an open
circuit.

Buffer: In computing, a buffer is a region of memory used to temporarily
hold data while it is being moved from one place to another.

2-7 Exercise:

1. Explain the Register transfer logic?

2. Explain Memory transfer?

3. Explain the inter register transfer?

4. An instruction at address 021 in the basic computer has I =0, an
operation code of the AND instruction, and an address part equal to 083
(all numbers are hexadecimal). The memory word at address 083 contains
the operand B8F2 and the content of AC is A937. Go over the instruction
cycle and determine the contents of the following registers at the end of the
execute phase: PC, AR, DR, AC and IR. Repeat the problem six more
times starting with an operation code of another memory reference
instruction.

5. Show the contents in hexadecimal of registers PC, AR, DR, IR and SC of
the basic computer when ISZ indirect instruction is fetched from memory
and executed. The initial content of PC is 7FF. the content of memory at
address 7FF is EA9F. The content of memory at address A9F is 0C35. The
content of memory at address C35 is FFFF. Give the answer in a table with
five columns, one for each register and a row for each timing signal. Show
the contents of the registers after the positive transaction of each clock
pulse.

6. A computer uses a memory of 65, 536 words with eight bits in each
word. It has the following registers: PC, AR, TR (16 bits each), and AC,
DR, IR (eight bits each). A memory reference instruction consists of three

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Intermediate_representation
http://en.wikipedia.org/wiki/Intermediate_representation
http://en.wikipedia.org/wiki/Intermediate_representation
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Open_circuit
http://en.wikipedia.org/wiki/Open_circuit
http://en.wikipedia.org/wiki/Open_circuit
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Memory_%28computers%29
http://en.wikipedia.org/wiki/Data

 Computer Organisation

 NOTES

25

words: an 8-bit operation-code (one word) and a 16-bit address (in the next
two words). All operands are eight digits. There is no direct bit.

a) Draw a block diagram of the computer showing the memory and
registers (Do not use a common bus).

b) Draw a diagram showing the placement in memory of a typical three-
word instruction and corresponding 8 bit operand.

c) List the sequence of micro operations for fetching a memory reference
instruction and then placing the operand in DR start from timing signal T0

2-8 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes.

 Computer Organisation

 NOTES

26

3. MICRO-OPERATIONS

Structure

3-1 Arithmetic Microoperations
3-1-1 Binary Adder
3-1-2 Binary Adder-Subtractor
3-1-3 Binary Incrementer
3-1- 4 Arithmetic Circuit

3-2 Logic Microoperations
3-2-1 List of Logic Microoperations
3 -2-2 Hardware Implementation

3-2-3 Some Applications
3-3 Shift Microoperations

3-3-1 Hardware Implementation
3-4 Arithmetic Logic Shift Unit
3-5 Summary
3-6 Keywords
3-7 Exercise
3-8 References

Objectives

At the end of the lesson you will be able to:

 Discuss about various arithmetic microoperations

 Discuss about various logic microoperations

 Discuss about various shift microoperations

 Discribe various arithmetic logic shift unit

3-1 Arithmetic Microoperations

A microoperation is an elementary operation performed with the
data stored in registers. The microoperations most often encountered in
digital computer are classified into four categories:

1. Register transfer microoperations transfer binary information from on
register to another.

2. Arithmetic microoperations perform arithmetic operation on numeric data
stored in registers.

3. Logic microoperations perform bit manipulation operations on non
numeric data stored in registers.

 Computer Organisation

 NOTES

27

4. Shift microoperations perform shift operations on data stored registers.

The register transfer microoperation was introduced in lesson 2-2.
This type of microoperation does not change the information content when
the binary information moves from the source register to the destination
register. The other three types of microoperations change the information
content during the transfer. In this section we introduce a set of arithmetic
microoperation. In the next two sections we present the logic and shift

microoperations.

The basic arithmetic microoperations are addition, subtraction,
increment, decrement, and shift. Arithmetic shifts are explained later in
conjunction with the shift microoperations. The arithmetic microoperation
defined by the statement.

specifies an add microoperation. It states that the contents of register R1
added to the contents of register R2 and the sum transferred to register R3.
To implement this statement with hardware we need three registers and the
digital component that performs the addition operation. The other basic
arithmetic microoperations are listed in Table 3-1. Subtraction is most often
implemented through complementation and addition. Instead of using the
operation minus operator, we can specify the subtraction by the following
statement:

 is the symbol for the 1's complement of R2. Adding 1 to the 1's comple-
ment produces the 2's complement. Adding the contents of R1 to the 2's
complement of R2 is equivalent to R1 - R2.

TABLE 3-1 Arithemetic Microoperations

Symbol designation Description

 Contents of R1 plus R2 transferred to R3

 Contents of R1 minus R2 transferred to R3

 Complement the content of R2 (1’s
complement)

 2’s complement the contents of R2 (negate)

 R1 plus the 2’s complement of R2 (subtraction)

 Computer Organisation

 NOTES

28

 Increment the contents of R1 by one

 Decrement the contents of R1 by one

The increment and decrement microoperations are symbolized by
plus-one and minus-one operations, respectively. These microoperations
are implemented with a combinational circuit or with a binary up-down
counter.

The arithmetic operations of multiply and divide are not listed in
Table 3-1. These two operations are valid arithmetic operations but are not
included in the basic set of microoperations. The only place where these
operations can be considered as microoperations is in a digital system,
where they are implemented by means of a combinational circuit. In such a
case, the signals that perform these operations propagate through gates,
and the result of the operation can be transferred into a destination register
by a clock pulse as soon as the output signal propagates through the
combinational circuit. In most computers, the multiplication operation is
implemented with a sequence of add and shift microoperations. Division is
implemented with a sequence of subtract and shift microoperations.

3-1-1 Binary Adder

To implement the add microoperation with hardware, we need the
registers that hold the data and the digital component that performs the
arithmetic addition. The digital circuit that forms the arithmetic sum of two
bits and a previous carry is called a full-adder. The digital circuit that
generates the arithmetic sum of two binary numbers of any length is called
a binary adder. The binary adder is constructed with full-adder circuits
connected in cascade, with the output carry from one full-adder connected
to the input carry of the next full-adder. Figure 3-1 shows the
interconnections of four full-adders (FA) to provide a 4-bit binary adder. The
augend bits of A and the addend bits of B are designated by subscript
numbers from right to left, with subscript 0 denoting the low-order bit. The
carries are connected in a chain through the full-adders. The input carry to
the binary adder is Co and the output carry is C4. The S outputs of the full-
adders generate the required sum bits.

 Computer Organisation

 NOTES

29

Figure 3-1 4 bit binary adder

An n-bit binary adder requires n full-adders. The output carry from
each full-adder is connected to the input carry of the next-high-order full-
adder. The n data bits for the A inputs come from one register (such as R1),
and the n data bits for the B inputs come from another register (such as
R2). The sum can be transferred to a third register or to one of the source
registers (R1 or R2), replacing its previous content.

3-1-2 Binary Adder-Subtractor

Remember that the subtraction A - B can be done by taking the 2's
complement of B and adding it to A. The 2’s complement can be obtained
by taking the 1's complement and adding one to the least significant pair of
bits. The 1's complement can be implemented with inverters and a one can
be added to the sum through the input carry.

The addition and subtraction operations can be combined into one common
circuit by including an exclusive-OR gate with each full-adder. A 4-bit
adder-subtractor circuit is shown in Fig. 3-2. The mode input M controls the
operation. When M = 0 the circuit is an adder and when M = 1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of

the inputs of B. When M = 0, we have B 0 = B. The full-adders receive
the value of B, the input carry is 0, and the circuit performs A plus B. When

M = we have B 1 = B' and Co = 1, The B inputs are all complemented and
a 1 added through the input carry. The circuit performs the operation A plus
the 2's complement of B. For unsigned numbers, this gives A - B if A ≥ B or
the 2's complement of (B - A) if A < B. For signed numbers, the result is A -
B provided that there is no overflow.

 Computer Organisation

 NOTES

30

Figure 3-2 4-bit adder-subtractor

3-1-3 Binary Incrementer

The increment microoperation adds one to a number in a register.
For example, if a 4-bit register has a binary value 0110, it will go to 0111
after it is incremented. This microoperation is easily implemented with a
binary counter. Every time the count enable is active, the clock pulse
transition increments the content of the register by one. There may be
occasions when the increment microoperation must be done with a
combinational circuit independent of a particular register. This can be
accomplished by means of half-adders connected in cascade.

The diagram of a 4-bit combinational circuit incrementer is shown in
Fig. 3-3. One of the inputs to the least significant half-adder (HA) is
connected to logic-1 and the other input is connected to the least significant
bit of the number to be incremented. The output carry from one half-adder
is connected to one of the inputs of the next-higher-order half-adder. The
circuit receives the four bits from A0 through A3, adds one to it, and
generates the incremented output in So through S3. The output carry C4 will
be 1 only after incrementing binary 1111. This also causes outputs S0

through S3 to go to 0.

The circuit of Fig. 3-3 can be extended to an n-bit binary
incrementer by extending the diagram to include n half-adders. The least
significant bit must have one input connected to logic-1. The other inputs
receive the number to be incremented or the carry from the previous stage.

 Computer Organisation

 NOTES

31

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Figure 3-3 4 bit binary incrementer

3-1- 4 Arithmetic Circuit

The arithmetic microoperations listed in Table 3-1 can be
implemented in one composite arithmetic circuit. The basic component of
an arithmetic circuit is the parallel adder. By controlling the data inputs to
the adder, it is possible to obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 3-4. It has
four full-adder circuits that constitute the 4-bit adder and four multiplexers
for choosing different operations. There are two 4-bit inputs A and B and a
4-bit output D. The four inputs from A go directly to the X inputs of the
adder. Each of the four inputs from B are connected to the data inputs
multiplexers. The multiplexers data inputs also receive the complement of
B. The other two data inputs are connected to logic-0 and logic-1. Logic-0 is
a fixed voltage value (0 volts for TTL integrated circuits) and the logic-
1signal can be generated through an inverter whose input is 0. The four
multiplexers are controlled by two selection inputs, S1 and So. The input
carry Cin goes to the carry input of the FA in the least significant position.
The other carries a connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic
sum:

 Cin

 Computer Organisation

 NOTES

32

Figure 3-4 4-bit arithmetic circuit

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary
number at the Y inputs of the binary adder. Cin is the input carry, which can
be equal to 0 or 1. Note that the symbol + in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection inputs S1
and S0 and making Cin equal to 0 or 1, it is possible to generate the eight
arithmetic microoperations listed in Table 3-2.

TABLE 3-2 Arithmetic Circuit Functions Table

Select

S0 S1 Cin

Input

Y

Output

D= A + Y + Cin

Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 D = A + Subtract with borrow

0 1 1 D = A + + 1 Subtract

1 0 0 0 D = A Transfer A

 Computer Organisation

 NOTES

33

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

When S1So = 00,the value of B is applied to the Y inputs of the
adder. If Cin = 0, the output D = A + B. If Cin = 1, output D = A + B + 1. Both
cases perform the add microoperation with or without adding the input
carry.

When S1So = 01, the complement of B is applied to the Y inputs of

the adder. If Cin = 1, then D = A + + 1. This produces A plus the 2's
complement of B, which is equivalent to a subtraction of A - B. When Cin =

0, then D = A + . This is equivalent to a subtract with borrow, that is, A - B
– 1.

When S1So
 = 10, the inputs from B are neglected, and instead, all 0's

are inserted into the Y inputs. The output becomes D = A + 0 + Cin. This
gives D = A when Cin = 0 and D = A + 1 when Cin = 1. In the first case we
have a direct transfer from input A to output D. In the second case, the
value of A is incremented by 1.

When S1So =11, all 1's are inserted into the Y inputs of the adder
produce the decrement operation D = A - 1 when Cin = 0. This is because a
number with all 1's is equal to the 2's complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A to the 2's complement of 1
produces F = A + 2's complement of 1 = A - 1. When Cin = 1, then D = A -1
+ 1= A, which causes a direct transfer from input A to output D. Note that
the microoperation D = A is generated twice, so there are only seven
microoperations in the arithmetic circuit.

3-2 Logic Microoperations

Logic microoperations specify binary operations for strings of bits
stored in registers. These operations consider each bit of the register
separately and treat them as binary variables. For example, the exclusive-
OR microoperation with the contents of two registers R1 and R2 is
symbolized by the statement

P: R1 ← R1 R2

It specifies a logic microoperation to be executed on the individual bits of
the registers provided that the control variable P = 1. As a numerical
example, assume that each register has four bits. Let the content of R1 be
1010 and the content of R2 be 1100. The exclusive-OR microoperation
stated above symbolizes the following logic computation:

 Computer Organisation

 NOTES

34

1010 Content of R1
1100 Content of R2

 0110 Content of R1 after P = 1

The content of R1, after the execution of the microoperation, is equal to the
bit-by-bit exclusive-OR operation on pairs of bits in R2 and previous values
of R1. The logic microoperations are seldom used in scientific
computations, but they are very useful for bit manipulation of binary data
and for making logical decisions.

Special symbols will be adopted for the logic microoperations OR,
AND, and complement, to distinguish them from the corresponding symbols
used to express Boolean functions. The symbol ⋁ be used to denote an OR

microoperation and the symbol ∧ to denote an AND microoperation. The
complement microoperation is the same as the 1's complement and uses a
bar on top of the symbol that denotes the register name. By using different
symbols, it will be possible to differentiate between a logic microoperation
and a control (or Boolean) function. Another reason for adopting two sets of
symbols is to be able to distinguish the symbol +, when used to symbolize
an arithmetic plus, from a logic OR operation. Although the + symbol has
two meanings, it will be possible to distinguish between them by noting
where the symbol occurs. When the symbol + occurs in a microoperation, it
will denote an arithmetic plus. When it occurs in a control (or Boolean)
function, it will denote an OR operation. We will never use it to symbolize
an OR microoperation. For example, in the statement

P + Q: R1 ← R2 + R3 , R4 ← R5 ⋁ R6

the + between P and Q is an OR operation between two binary variables of
a control function. The + between R2 and -R3 specifies an add
microoperation. The OR microoperation is designated by the symbol V
between registers R5 and R6.

3-2-1 List of Logic Microoperations

There are 16 different logic operations that can be performed with
two binary variables. They can be determined from all possible truth tables
obtained with two binary variables as shown in Table 3-3. In this table, each
of the 16 columns F0 through F15 represents a truth table of one possible
Boolean function for the two variables x and y. Note that the functions are
determined from the 16 binary combinations that can be assigned to F.

TABLE 3-3 Truth Table for 16 Function of Two Variables

X Y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

 Computer Organisation

 NOTES

35

 0 0

 0 1

 1 0

 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The 16 Boolean functions of two variables x and y are expressed in
algebraic form in the first column of Table 3-4. The 16 logic microoperations
are derived from these functions by replacing variable x by the binary
content of register A and variable y by the binary content of register B. It is
important to realize that the Boolean functions listed in the first column of
Table 3-4 represent a relationship between two binary variables x and y.
The logic microoperations listed in the second column represent a
relationship between the binary content of two registers A and B. Each bit
of the register is treated as a binary variable and the microoperation is
performed on the string of bits stored in the registers.

TABLE 3-4 Sxteen Logic Microoperations

 Binary
 value

Boolean
Function

Microoperations

Name

3-2-2 Hardware Implementation

The hardware implementation of logic microoperations requires that
logic gates be inserted for each bit or pair of bits in the registers to perform
the required logic function. Although there are 16 logic microoperations,
most computers use only four-AND, OR, XOR (exclusive-OR), and
complement-from which all others can be derived.

 Computer Organisation

 NOTES

36

Figure 3-5 shows one stage of a circuit that generates the four basic
logic microoperations. It consists of four gates and a multiplexer. Each of
the four logic operations is generated through a gate that performs the
required logic. The outputs of the gates are applied to the data inputs of the
multiplexer. The two selection inputs S1 and So choose one of the data
inputs of the multiplexer and direct its value to the output. The diagram
shows one typical stage with subscript i. For a logic circuit with n bits, the
diagram must be repeated n times for i= 0, 1, 2,..., n — 1. The selection
variables are applied to all stages. The function table in Fig. 3-5(b) lists the
logic microoperations obtained for each combination of the selection
variables.

Figure 3-5 (a) One storage of logic circuit

 S1 S0 Output Operation

Figure 3-5 (b) Function table

3-2-3 Some Applications

Logic microoperations are very useful for manipulating individual
bits or a portion of a word stored in a register. They can be used to change
bit values, delete a group of bits, or insert new bit values into a register. The
following examples show how the bits of one register (designated by A) are
manipulated by logic microoperations as a function of the bits of another
register (designated by B). In a typical application, register A is a processor

 Computer Organisation

 NOTES

37

register and the bits of register B constitute a logic operand extracted from
memory and placed in register B.

The selective-set operation sets to 1 the bits in register A where there
are corresponding 1's in register B. It does not affect bit positions that have
0's in B. The following numerical example clarifies this operation:

The selective-set operation sets to 1 the bits in register A where there
are corresponding 1's in register B. It does not affect bit positions that have
0's in B. The following numerical example clarifies this operation:

1010 A before
 1100 B (logic operand)

1110 A after

The two leftmost bits of B are 1's, so the corresponding bits of A are
set to 1. One of these two bits was already set and the other has been
changed from 0 to 1. The two bits of A with corresponding 0's in B remain
unchanged. The example above serves as a truth table since it has all four
possible combinations of two binary variables. From the truth table we note
that the bits of A after the operation are obtained from the logic-OR
operation of bits in B and previous values of A. Therefore, the OR
microoperation can be used to selectively set bits of a register.

The selective-complement operation complements bits in A where
there are corresponding 1's in B. It does not affect bit positions that have
0's in B. For example:

1010 A before
1100 B (logic operand)
0110 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of
A are complemented. This example again can serve as a truth table from
which one can deduce that the selective-complement operation is just an
exclusive-OR microoperation. Therefore, the exclusive-OR microoperation
can be used to selectively complement bits of a register.

The selective-clear operation clears to 0 the bits in A only where
there are corresponding 1's in B. For example:

1010 A before
 1100 B (logic operand)

 0010 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of
A are cleared to 0. One can deduce that the Boolean operation performed
on the individual bits is AS. The corresponding logic microoperation is

A ← A ∧

The mask operation is similar to the selective-clear operation except
that the bits of A are cleared only where there are corresponding 0's in B.

 Computer Organisation

 NOTES

38

The mask operation is an AND micro operation as seen from the following
numerical example:

1010 A before
 1100 B (logic operand)

 1000 A after masking

The two rightmost bits of A are cleared because the corresponding
bits of B are 0's. The two leftmost bits are left unchanged because the
corresponding bits of B are 1's. The mask operation is more convenient to
use than the selective-clear operation because most computers provide an
AND instruction, and few provide an instruction that executes the
microoperation for selective-clear.

The insert operation inserts a new value into a group of bits. This is
done by first masking the bits and then ORing them with the required value.
For example, suppose that an A register contains eight bits, 0110 1010. To
replace the four leftmost bits by the value 1001 we first mask the four
unwanted bits:

0110 1010 A before
 0000 1010 B (mask)

 0000 1010 A after masking

and then insert the new value:
0000 1010 A before
1001 0000 B (insert)

 1001 1010 A after insert

The mask operation is an AND microoperation and the insert
operation is an OR microoperation.

The clear operation compares the words in A and B and produces
an all 0's result if the two numbers are equal. This operation is achieved by
an exclusive-OR microoperation as shown by the following example:

1010 A
1010 B

 0000 A ← A B

When A and B are equal, the two corresponding bits are either both 0 or
both 1. In either case the exclusive-OR operation produces a 0. The all-0's
result is then checked to determine if the two numbers were equal.

3-3 Shift Microoperations

Shift microoperations are used for serial transfer of data. They are
also used in conjunction with arithmetic, logic, and other data-processing
operations. The contents of a register can be shifted to the left or the right.

 Computer Organisation

 NOTES

39

At the same time that the bits are shifted, the first flip-flop receives its binary
information from the serial input. During a shift-left operation the serial input
transfers a bit into the rightmost position. During a shift-right operation the
serial input transfers a bit into the leftmost position. The information
transferred through the serial input determines the type of shift. There are
three types of shifts: logical, circular, and arithmetic.

A logical shift is one that transfers 0 through the serial input. We will
adopt, the symbols shl and shr for logical shift-left and shift-right
microoperations. For example:

R1 ← shl R1
R2← shr R2

are two microoperations that specify a 1-bit shift to the left of the content of
register Rl and a 1-bit shift to the right of the content of register R2. The
register symbol must be the same on both sides of the arrow. The bit
transferred to the end position through the serial input is assumed to be 0
during a logical shift.

The circular shift (also known as a rotate operation) circulates the
bits of the register around the two ends without loss of information. This is
accomplished by connecting the serial output of the shift register to its serial
input. We will use the symbols cil and cir for the circular shift left and right,
respectively. The symbolic notation for the shift microoperations is shown in
Table 3-5

TABLE 3-5 Shift Microoperation

Symbolic designation Description

R ← shl R
R← shr R
R← cil R
R← cir R

R← ashl R
R← ashr R

Shift-left register R
Shift-right register R

Circular Shift-left register R
Circular Shift-right register R
Arithmetic Shift-left register R

Arithmetic Shift-right register R

An arithmetic shift is a microoperation that shifts a signed binary
number to the left or right. An arithmetic shift-left multiplies a signed binary
number by 2. An arithmetic shift-right divides the number by 2. Arithmetic
shifts must leave the sign bit unchanged because the sign of the number
remains the same when it is multiplied or divided by 2. The leftmost bit in a
register holds the sign bit, and the remaining bits hold the number. The sign
bit is 0 for positive and 1 for negative. Negative numbers are in 2's
complement form. Figure 3-6 shows a typical register of n bits. Bit Rn-1 in
the leftmost position holds the sign bit. Rn-1 is the most significant bit of the
number and Ro is the least significant bit. The arithmetic shift-right leaves
the sign bit unchanged and shifts the number (including the sign bit) to the

 Computer Organisation

 NOTES

40

right. Thus Rn-1 remains the same, Rn-2 receives the bit from Rn-1, and so on
for the other bits in the register. The bit in R0 is lost.

Rn-1 Rn-2 R1 R2

Figure 3-6 Arithmetic shift right

The arithmetic shift-left inserts a 0 into R0, and shifts all other bits to
the left. The initial bit of Rn-1 is lost and replaced by the bit from Rn-2 . A sign
reversal occurs if the bit in Rn-1 changes in value after the shift. This
happens if the multiplication by 2 causes an overflow. An overflow occurs
after an arithmetic shift left if initially, before the shift, Rn-1 is not equal to Rn-

2. An overflow flip-flop Vs can be used to detect an arithmetic shift-left
overflow.

Vs = Rn-1 Rn-2

If Vs = 0, there is no overflow, but if Vs = 1, there is an overflow and a sign
reversal after the shift. V, must be transferred into the overflow flip-flop with
the same clock pulse that shifts the register.

3-3-1 Hardware Implementation

A possible choice for a shift unit would be a bidirectional shift

register with parallel load. Information can be transferred to the register in
parallel and then shifted to the right or left. In this type of configuration, a
clock pulse is needed for loading the data into the register, and another
pulse is needed to initiate the shift. In a processor unit with many registers it
is more efficient to implement the shift operation with a combinational
circuit. In this way the content of a register that has to be shifted is first
placed onto a common bus whose output is connected to the combinational
shifter, and the shifted number is then loaded back into the register. This
requires only one clock pulse for loading the shifted value into the register.

A combinational circuit shifter can be constructed with multiplexers
as shown in Fig. 3-7. The 4-bit shifter has four data inputs. Ay through Ay,
and four data outputs, H0 through H3. There are two serial inputs, one for
shift left (IL) and the other for shift right (IL). When the selection input S = 0,
the input data are shifted right (down in the diagram). When S = 1, the input
data are shifted left (up in the diagram). The function table in Fig. 3-7 shows
which input goes to each output after the shift. A shifter with n data inputs
and outputs requires n multiplexers. The two serial inputs can be controlled
by another multiplexer to provide the three possible types of shifts.

 Computer Organisation

 NOTES

41

Figure 3-7 4-bit combinational circuit shifter

3-4 Arithmetic Logic Shift Unit

Instead of having individual registers performing the
microoperations directly, computer systems employ a number of storage
registers connected to a common operational unit called an arithmetic logic
unit, abbreviated ALU. To perform a microoperation, the contents of
specified registers are placed in the inputs of the common ALU. The ALU
performs an operation and the result of the operation is then transferred to
a destination register. The ALU is a combinational circuit so that the entire
register transfer operation from the source registers through the ALU and
into the destination register can be performed during one clock pulse
period. The shift microoperations are often performed in a separate unit, but
sometimes the shift unit is made part of the overall ALU.

The arithmetic, logic, and shift circuits introduced in previous
sections can be combined into one ALU with common selection variables.
One stage of an arithmetic logic shift unit is shown in Fig. 3-8. The subscript
i designates a typical stage. Inputs Ai and Bi, are applied to both the
arithmetic and logic units. A particular microoperation is selected with inputs
S1 and S0. A 4 X 1 multiplexer at the output chooses between an arithmetic
output in Ei and a logic output in Hi. The data in the multiplexer are selected
with inputs S3 and S2. The other two data inputs to the multiplexer receive
inputs Ai-1 for the shift-right operation and Ai+1 for the shift-left operation.
Note that the diagram shows just one typical stage. The circuit of Fig. 3-8
must be repeated n times for an n-bit ALU. The output carry Ci+1 of a given

 Computer Organisation

 NOTES

42

arithmetic stage must be connected to the input carry Ci, of the next stage
in sequence. The input carry to the first stage is the input carry Cin, which
provides a selection variable for the arithmetic operations.

Figure 3-8 One stage of arithmetic logic shift unit

The circuit whose one stage is specified in Fig. 3-8 provides eight
arithmetic operation, four logic operations, and two shift operations. Each
operation is selected with the five variables S0, S1, S2, S3, and Cin. The input

carry Cin is used for selecting an arithmetic operation only.

Table 3-6 lists the 14 operations of the ALU. The first eight are
arithmetic operations (see Table 3-2) and are selected with S3S2 = 00. The
next four are logic operations (see Fig. 3-5) and are selected with S3S2 =
01. The input carry has no effect during the logic operations and is marked
with don't-care X's. The last two operations are shift operations and are
selected with S3S2 = 10 and 11. The other three selection inputs have no
effect on the shift.

Table 3-6 Function Table for Arithmetic Logic Shift Unit

 Computer Organisation

 NOTES

43

3-5 Summary

In this lesson we have discuss in details about the microoperations
and their implementation in hardware using simple logic circuits. While
discussing about micro-operations our main emphasis was on simple
arithmetic, logic and shift micro-operations, in addition to register transfer
and memory transfer.

3-6 Keywords

Add-Microoperation: The arithmetic microoperation defined by the
statement specifies an add microoperation

Full-Adder: The full-adder circuit adds three one-bit binary numbers (C A B) and
outputs two one-bit binary numbers, a sum (S) and a carry (C).

Shifters: Shift are used for serial transfer of data.

 Computer Organisation

 NOTES

44

Microoperations: In computer central processing units, micro-operations,

also known as a micro-ops or μops, are detailed low-level instructions used
in some designs to implement complex machine instructions.

3-7 Exercise

1. Show the block diagram of the hardware that implements the following
register transfer statement:

yT2: R2 ← R1, R1 ← R2

2. Represent the following conditional control statement by two register
transfer statements with control functions.

If (P = 1) then (R1 ← R2) else if (Q= 1) then (R1 ← R3)

3. A digital computer has a common bus system for 16 registers of 32 bits
each. The bus is constructed with multiplexers.

a. How many selection inputs are there in each multiplexer?

b. What size of multiplexers is needed?

c. How many multiplexers are there in the bus?

4. Design a 4-bit combinational circuit decrementer using four full-adder cir-
cuits.

5. Assume that the 4-bit arithmetic circuit of Fig. 3-4 is enclosed in one 1C
package. Show the connections among two such ICs to form an 8-bit
arithmetic circuit.

6. Design a digital circuit that performs the four logic operations of
exclusive-OR, exclusive-NOR, NOR, and NAND. Use two selection
variables. Show the logic diagram of one typical stage.

7. Register-A holds the 8-bit binary 11011001. Determine the B operand
and the logic microoperation to be performed in order to change the value
in A to:

a. 01101101 b. 11111101

8. An 8-bit register contains the binary value 10011100. What is the register
value after arithmetic shift right? Starting from the initial number 10011100,
determine the register value after an arithmetic shift left, and state whether
there is an overflow.

9. Starting from an initial value of R = 11011101, determine the sequence
of binary values in R after a logical shift-left, followed by a circular shift-
right, followed by a logical shift-right and a circular shift-left.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Central_processing_unit

 Computer Organisation

 NOTES

45

3-8 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

46

4. BASIC COMPUTER ORGANIZATION AND
 DESIGN

Structure

4-1 Instruction Codes

4-1-1 Stored Program Organization
4-1-2 Indirect Address

4-2 Computer Registers
4-2-1 Common Bus System

4-3 Computer Instructions
4-3-1 Instruction Set Completeness

4-4 Timing and Control
4-5 Instruction Cycle

4-5-1 Fetch and Decode
4-5-2 Determine the Type of Instruction
4-5-3 Register-Reference Instructions

4-6 Memory-Reference Instructions
4-6-1 AND to AC
4-6-2 ADD to AC
4-6-3 LDA: Load to AC
4-6-4 STA: Store AC
4-6-7 BUN: Branch Unconditionally
4-6-8 BSA: Branch and Save Return Address
4-6-9 ISZ: Increment and Skip if Zero
4 -6-10 Control Flowchart

4-7 Input-Output and Interrupt
4-7-1 Input-Output Configuration
4-7-2 Input-Output Instructions
4-7-3 Program Interrupt

4-7-4 Interrupt Cycle
4-8 Summary
4-10 Keywords
4-11 Exercise
4-12 Reference

Objectives

At the end of the lesson you will be able to:

 Discuss about various instruction codes

 Distinguish various types of computer instructions

 Discuss about timing and control

 Computer Organisation

 NOTES

47

 Define Instruction Cycle

 Define terms of memory-reference I, Input-Output and Interrupt

4-1 Instruction Codes

In this lesson we introduce a basic computer and show how its
operation can be specified with register transfer statements. The
organization of the computer is defined by its internal registers, the riming
and control structure, and the set of instructions that it uses. The design of
the computer is then carried out in detail. Although the basic computer
presented in this lesson is very small compared to commercial computers, it
has the advantage of being simple enough so we can demonstrate the
design process without too many complications.

The internal organization of a digital system is denned by the
sequence of microoperations it performs on data stored in its registers. The
general-purpose digital computer is capable of executing various
microoperations and, in addition, can be instructed as to what specific
sequence of operations it must perform. The user of a computer can control
the process by means of a program. A program is a set of instructions that
specify the operations, operands, and the sequence by which processing
has to occur. The data-processing task may be altered by specifying a new
program with different instructions or specifying the same instructions with
different data.

A computer instruction is a binary code that specifies a sequence of
microoperations for the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary code of
the instruction and proceeds to execute it by issuing a sequence of
microoperations. Every computer has its own unique instruction set. The
ability to store and execute instructions, the stored program concept, is the
most important property of a general-purpose computer.

An instruction code is a group of bits that instruct the computer to
perform a specific operation. It is usually divided into parts, each having its
own particular interpretation. The most basic part of an instruction code is
its operation part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement.
The number of bits required for the operation code of an instruction
depends on the total number of operations available in the computer. The
operation code must consist of at least n bits for a given 2n (or less) distinct
operations. As an illustration, consider a computer with 64 distinct
operations, one of them being an ADD operation. The operation code
consists of six bits, with a bit configuration 110010 assigned to the ADD
operation. When this operation code is decoded in the control unit, the
computer issues control signals to read an operand from memory and add
the operand to a processor register.

 Computer Organisation

 NOTES

48

At this point we must recognize the relationship between a computer
operation and a microoperation. An operation is part of an instruction stored
in computer memory. It is a binary code that tells the computer to perform a
specific operation. The control unit receives the instruction from memory
and j interprets the operation code bits. It then issues a sequence of control
signals to initiate microoperations in internal computer registers. For every
operation | code, the control issues a sequence of microoperations needed
for the hardware implementation of the specified operation. For this reason,
an operation code is sometimes called a microoperation because it
specifies a set of micro-operations.

The operation part of an instruction code specifies the operation to be
performed. This operation must be performed on some data stored in
processor registers or in memory. An instruction code must therefore
specify not only the operation but also the registers or the memory words
where the operands are to be found, as well as the register or memory
word where the result is to be stored. Memory words can be specified in
instruction codes by their address. Processor registers can be specified by
assigning to the instruction another binary code of k bits that specifies one
of 2k registers. There are many variations for arranging the binary code of
instructions, and each computer has its own particular instruction code
format. Instruction code formats are conceived by computer designers who
specify the architecture of the computer. In this chapter we choose a
particular instruction code to explain the basic organization and design of
digital computers.

4-1-1 Stored Program Organization

The simplest way to organize a computer is to have one processor
register and an instruction code format with two parts. The first part
specifies the operation to be performed and the second specifies an
address. The memory address tells the control where to find an operand in
memory. This operand is read from memory and used as the data to be
operated on together with the data stored in the processor register.

Figure 4-1 depicts this type of organization. Instructions are stored
in one section of memory and data in another. For a memory unit with 4096
words we need 12 bits to specify an address since 212 = 4096. If we store
each instruction code in one 16-bit memory word, we have available four
bits for the operation code (abbreviated opcode) to specify one out of 16
possible operations, and 12 bits to specify the address of an operand. The
control reads a 16-bit instruction from the program portion of memory. It
uses the 12-bit address part of the instruction to read a 16-bit operand from
the data portion of memory. It then executes the operation specified by the
operation code. Computers that have a single-processor register usually
assign to it the name accumulator and label it AC. The operation is
performed with the memory operand and the content of AC.

 Computer Organisation

 NOTES

49

 15 12 11 0

Opcode Address

Instruction format

15 0

Binary operand

Memory
4096 X 16

Instructions

(program)

Operand

(data)

15 0
Processor register

(accumulator or AC)

Figure 4-1 Stored program organization

If an operation in an instruction code does not need an operand
from memory, the rest of the bits in the instruction can be used for other
purposes. For example, operations such as clear AC, complement AC, and
increment AC operate on data stored in the A C register. They do not need
an operand from memory. For these types of operations, the second part of
the instruction code (bits 0 through 11) is not needed for specifying a
memory address and can be used to specify other operations for the
computer.

4-1-2 Indirect Address

It is sometimes convenient to use the address bits of an instruction
code not as an address but as the actual operand. When the second part of
an instruction code specifies an operand, the instruction is said to have an
immediate operand. When the second part specifies the address of an
operand, the instruction is said to have a direct address. This is in contrast
to a third possibility called indirect address, where the bits in the second
part of the instruction designate an address of a memory word in which the
address of the operand is found. One bit of the instruction code can be
used to distinguish between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code
format shown in Fig. 4-2 (a). It consists of a 3-bit operation code, a 12-bit

 Computer Organisation

 NOTES

50

address, and an indirect address mode bit designated by I. The mode bit is
0 for a direct address and 1 for an indirect address. A direct address
instruction is shown in Fig. 4-2 (b). It is placed in address 22 in memory.
The I bit is 0, so the instruction is recognized as a direct address
instruction. The opcode specifies an ADD instruction, and the address part
is the binary equivalent of 457. The control finds the operand in memory at
address 457 and adds it to the content of AC. The instruction in address 35
shown in Fig. 4-2(c) has a mode bit I = 1. Therefore, it is recognized as an
indirect address instruction. The address part is the binary equivalent of
300. The control goes to address 300 to find the address of the operand.
The address of the operand in this case is 1350. The operand found in
address 1350 is then added to the content of AC. The indirect address
instruction needs two references to memory to fetch an operand. The first
reference is needed to read the address of the operand; the second is for
the operand itself. We define the effective address to be the address of the
operand in a computation-type instruction or the target address in a branch-
type instruction. Thus the effective address in the instruction of Fig. 4-2(b)
is 457 and in the instruction of Fig 4-2(c) is 1350.

Figure 4-2 Demonstration of direct and indirect address

 Computer Organisation

 NOTES

51

The direct and indirect addressing modes are used in the computer
presented in this lesson. The memory word that holds the address of the
operand in an indirect address instruction is used as a pointer to an array of
data. The pointer could be placed in a processor register instead of memory
as done in commercial computers

4-2 Computer Registers

Computer instructions are normally stored in consecutive memory
locations and are executed sequentially one at a time. The control reads an
instruction from a specific address in memory and executes it. It then
continues by reading the next instruction in sequence and executes it, and
so on. This type of instruction sequencing needs a counter to calculate the
address of the next instruction after execution of the current instruction is
completed. It is also necessary to provide a register in the control unit for
storing the instruction code after it is read from memory. The computer
needs processor registers for manipulating data and a register for holding a
memory address. These requirements dictate the register configuration
shown in Fig. 4-3. The registers are also listed in Table 4-1 together with a
brief description of their function and the number of bits that they contain.

The memory unit has a capacity of 4096 words and each word
contains 16 bits. Twelve bits of an instruction word are needed to specify
the address of an operand. This leaves three bits for the operation, part of
the instruction and a bit to specify a direct or indirect address. The data
register (DR) holds the operand read from memory. The accumulator (AC)
register is a general-purpose processing register. The instruction read from
memory is placed in the instruction register (IR). The temporary register
(TR) is used for holding temporary data during the processing.

Figure 4-3 Basic computer registers and memory

 Computer Organisation

 NOTES

52

TABLE 4-1 List of Registers for the Basic Computer

Register
Symbol

Number
of bits

Register name Function

DR 16 Data Register Holds memory operand

AR 12
Address
Register

Holds address for memory

AC 16 Accumulator Processor register

IR 16
Instruction
Register

Holds instruction code

PC 12
Program
Counter

Holds address of instruction

TR 16
Temporary
Register

Holds temporary data

INTR 8 Input Register Holds input character

OUTR 8
Output

Register
Holds output character

The memory address register (AR) has 12 bits since this is the width
of a memory address. The program counter (PC) also has 12 bits and it
holds the address of the next instruction to be read from memory after the
current instruction is executed. The PC goes through a counting sequence
and causes the computer to read sequential instructions previously stored
in memory. Instruction words are read and executed in sequence unless a
branch instruction is encountered. A branch instruction calls for a transfer to
a nonconsecutive instruction in the program. The address part of a branch
instruction is transferred to PC to become the address of the next
instruction. To read an instruction, the content of PC is taken as the
address for memory and a memory read cycle is initiated. PC is then
incremented by one, so it holds the address of the next instruction in
sequence.

Two registers are used for input and output. The input register
(INPR) receives an 8-bit character from an input device. The output register
(OUTR) holds an 8-bit character for an output device.

4-2-1 Common Bus System

The basic computer has eight registers, a memory unit, and a
control unit (to be presented in Sec. 4-4). Paths must be provided to
transfer information from one register to another and between memory and
registers. The number of wires will be excessive if connections are made
between the outputs of each register and the inputs of the other registers. A
more efficient scheme for transferring information in a system with many
registers is to use a common bus. The connection of the registers and
memory of the basic computer to a common bus system is shown in
Fig. 4-4.

The outputs of seven registers and memory are connected to the
common bus. The specific output that is selected for the bus lines at any

 Computer Organisation

 NOTES

53

given time is determined from the binary value of the selection variables S2,
S1, and So. The number along each output shows the decimal equivalent of
the required binary selection. For example, the number along the output of
DR is 3. The 16-bit outputs of DR are placed on the bus lines when S2 S1So
=011 since this is the binary value of decimal 3. The lines from the common
bus are connected to the inputs of each register and the data inputs of the
memory. The particular register whose LD (load) input is enabled receives
the data from the bus during the next clock pulse transition. The memory
receives the contents of the bus when its write input is activated. The
memory places its 16-bit output onto the bus when the read input is
activated and S2 S1So = 111.

Four registers, DR, AC, IR, and TR, have 16 bits each. Two
registers, AR and PC, have 12 bits each since they hold a memory
address. When the contents of AR or PC axe applied to the 16-bit common
bus, the four most significant bits are set to 0's. When AR or PC receive
information from the bus, only the 12 least significant bits are transferred
into the register.

The input register INPR and the output register OUTR have 8 bits
each and communicate with the eight least significant bits in the bus. INPR
is connected to provide information to the bus but OUTR can only receive
information from the bus. This is because INPR receives a character from
an input device which is then transferred to AC. OUTR receives a character
from AC and delivers it to an output device. There is no transfer from OUTR
to any of the other registers.

The 16 lines of the common bus receive information from six
registers and the memory unit. The bus lines are connected to the inputs of
six registers and the memory. Five registers have three control inputs: LD
(load), INR (increment), and CLR (clear). The increment operation is
achieved by enabling the count input of the counter. Two registers have

only a LD input.

The input data and output data of the memory are connected to the
common bus, but the memory address is connected to AR. Therefore, AR
must always be used to specify a memory address. By using a single
register for the address, we eliminate the need for an address bus that
would have been needed otherwise. The content of any register can be
specified for the memory data input during a write operation. Similarly, any
register can receive the data from memory after a read operation except AC

 Computer Organisation

 NOTES

54

Figure 4-4 Common Bus System

The 16 inputs of AC come from an adder and logic circuit. This
circuit has three sets of inputs. One set of 16-bit inputs come from the
outputs of AC. They are used to implement register microoperations such
as complement AC and shift AC. Another set of 16-bit inputs come from the
data register DR. The inputs from DR and AC are used for arithmetic and
logic microoperations, such as add DR to AC or AND DR to AC. The result
of an addition is transferred to AC and the end carry-out of the addition is
transferred to flip-flop E (extended AC bit). A third set of 8-bit inputs come
from the input register INPR. The operation of INPR and OUTR is explained
in Sec. 4-7.

Note that the content of any register can be applied onto the bus
and an operation can be performed in the adder and logic circuit during the
same clock cycle. The clock transition at the end of the cycle transfers the
content of the bus into the designated destination register and the output of
the adder and logic circuit into AC. For example, the two microoperations

DR ← AC and AC ← DR

 Computer Organisation

 NOTES

55

can be executed at the same time. This can be done by placing the content
of AC on the bus (with S2 S1So = 100), enabling the LD (load) input of DR,
transferring the content of DR through the adder and logic circuit into AC,
and enabling the LD (load) input of AC, all during the same clock cycle. The
two transfers occur upon the arrival of the clock pulse transition at the end
of the clock cycle.

4-3 Computer Instructions

The basic computer has three instruction code formats, as shown in
Fig. 4-5. Each format has 16 bits. The operation code (opcode) part of the
instruction contains three bits and the meaning of the remaining 13 bits
depends on the operation code encountered. A memory-reference
instruction uses 12 bits to specify an address and one bit to specify the
addressing mode I. I is equal to 0 for direct address and to 1 for indirect
address (see Fig. 4-2). The register-reference instructions are recognized
by the operation code 111 with a 0 in the leftmost bit (bit 15) of the
instruction. A register-reference instruction specifies an operation on or a
test of the .4 C register. An operand from memory is not needed; therefore,
the other 12 bits are used to specify the operation or test to be executed.
Similarly, an input-output instruction does not need a reference to memory
and is recognized by the operation code 111 with a 1 in the leftmost bit of
the instruction. The remaining 12 bits are used to specify the type of input-
output operation or test performed.

Figure 4-5 Basic Computer Instruction Format

The type of instruction is recognized by the computer control from
the four bits in positions 12 through 15 of the instruction. If the three opcode
bits in positions 12 though 14 are not equal to 111, the instruction is a
memory-reference type and the bit in position 15 is taken as the addressing
mode I. If the 3-bit opcode is equal to 111, control then inspects the bit in

 Computer Organisation

 NOTES

56

position 15. If this bit is 0, the instruction is a register-reference type. If the
bit is 1, the instruction is an input-output type. Note that the bit in position
15 of the instruction code is designated by the symbol / but is not used as a

mode bit when the operation code is equal to 111.

Only three bits of the instruction are used for the operation code. It
may seem that the computer is restricted to a maximum of eight distinct
operations. However, since register-reference and input-output instructions
use the remaining 12 bits as part of the operation code, the total number of
instructions can exceed eight. In fact, the total number of instructions
chosen for the basic computer is equal to 25.

The instructions for the computer are listed in Table 4-2. The symbol
designation is a three-letter word and represents an abbreviation intended
for programmers and users. The hexadecimal code is equal to the
equivalent hexadecimal number of the binary code used for the instruction.
By using the hexadecimal equivalent we reduced the 16 bits of an
instruction code to four digits with each hexadecimal digit being equivalent
to four bits. A memory-reference instruction has an address part of 12 bits.
The address part is denoted by three x's and stand for the three
hexadecimal digits corresponding to the 12-bit address. The last bit of the
instruction is designated by the symbol I. When I = 0, the last four bits of an
instruction have a hexadecimal digit equivalent from 0 to 6 since the last bit
is 0. When I = 1, the hexadecimal digit equivalent of the last four bits of the

instruction ranges from 8 to E since the last bit is 1.

 Hexadecimal code

 Synbol I = 0 I = 1 Description

 Computer Organisation

 NOTES

57

Register-reference instructions use 16 bits to specify an operation. The
leftmost four bits are always 0111, which is equivalent to hexadecimal 7.
The other three hexadecimal digits give the binar) equivalent of the
remaining 12 bits. The input-output instructions also use all 16 bits to
specify an operation. The last four bits are always 1111, equivalent to
hexadecimal F.

4-3-1 Instruction Set Completeness

Before investigating the operations performed by the instructions, let
us discuss the type of instructions that must be included in a computer. A
computer should have a set of instructions so that the user can construct
machine language programs to evaluate any function that is known to be
computable. The set of instructions are said to be complete if the computer
includes a sufficient number of instructions in each of the following
categories:

1. Arithmetic, logical, and shift instructions

2. Instructions for moving information to and from memory and
processor registers

3. Program control instructions together with instructions that check
status conditions

4. Input and output instructions

Arithmetic, logical, and shift instructions provide computational
capabilities for processing the type of data that the user may wish to
employ. The bulk of the binary information in a digital computer is stored in
memory, but all computations are done in processor registers. Therefore,
the user must have the capability of moving information between these two
units. Decision making capabilities are an important aspect of digital
computers. For example, two numbers can be compared, and if the first is
greater than the second, it may be necessary to proceed differently than if
the second is greater than the first. Program control instructions such as
branch instructions are used to change the sequence in which the program
is executed. Input and output instructions are needed for communication
between the computer and the user. Programs and data must be
transferred into memory and results of computations must be transferred
back to the user.

 Computer Organisation

 NOTES

58

The instructions listed in Table 4-2 constitute a minimum set that
provides all the capabilities mentioned above. There is one arithmetic
instruction, ADD, and two related instructions, complement AC(CMA) and
increment AC(INC). With these three instructions we can add and subtract
binary numbers when negative numbers are in signed-2's complement
representation. The circulate instructions, CIR and CIL; can be used for
arithmetic shifts as well as any other type of shifts desired. Multiplication
and division can be performed using addition, subtraction, and shifting.
There are three logic operations: AND, complement AC (CMA), and clear
AC (CLA). The AND complement provide a NAND operation. Moving
information from memory to AC is accomplished with the load AC(LDA)
instruction. Storing information from AC into memory is done with the store
AC (STA) instruction. The branch instructions BUN, BSA, and ISZ, together
with the four skip instructions, provide capabilities for program control and
checking of status conditions. The input (INP) and output (OUT) instructions
cause information to be transferred between the computer and external
devices.

Although the set of instructions for the basic computer is complete, it
is not efficient because frequently used operations are not performed
rapidly. An efficient set of instructions will include such instructions as
subtract, multiply, OR, and exclusive-OR. These operations must be
programmed in the basic computer. By using a limited number of
instructions it is possible to show the detailed logic design of the computer.
A more complete set of instructions would have made the design too
complex. In this way we can demonstrate the basic principles of computer
organization and design without going into excessive complex details.

4-4 Timing and Control

The timing for all registers in the basic computer is controlled by a
master clock generator. The clock pulses are applied to all flip-flops and
registers in the system, including the flip-flops and registers in the control
unit. The clock pulses do not change the state of a register unless the
register is enabled by a control signal. The control signals are generated in
the control unit and provide control inputs for the multiplexers in the
common bus, control inputs in processor registers, and microoperations for
the accumulator.

There are two major types of control organization: hardwired control
and microprogrammed control. In the hardwired organization, the control
logic is implemented with gates, flip-flops, decoders, and other digital cir-
cuits. It has the advantage that it can be optimized to produce a fast mode
of operation. In the microprogrammed organization, the control information
is stored in a control memory. The control memory is programmed to initiate
the required sequence of microoperations. A hardwired control, as the
name implies, requires changes in the wiring among the various compo-
nents if the design has to be modified or changed. In the microprogrammed
control, any required changes or modifications can be done by updating the
microprogram in control memory. A hardwired control for the basic com-
puter is presented in this section.

 Computer Organisation

 NOTES

59

The block diagram of the control unit is shown in Fig. 4-6. It consists
of two decoders, a sequence counter, and a number of control logic gates.
An instruction read from memory is placed in the instruction register (IR).
The position of this register in the common bus system is indicated in Fig.
4-4. The instruction register is shown again in Fig. 4-6, where it is divided
into three parts: the I bit, the operation code, and bits 0 through 11. The
operation code in bits 12 through 14 are decoded with a 3 X 8 decoder. The
eight outputs of the decoder are designated by the symbols Do through D7.
The subscripted decimal number is equivalent to the binary value of the
corresponding operation code. Bit 15 of the instruction is transferred to a
flip-flop designated by the symbol I. Bits 0 through 11 are applied to the
control logic gates. The 4-bit sequence counter can count in binary from 0
through 15. The outputs of the counter are decoded into 16 timing signals
T0 through T15. The internal logic of the control gates will be derived later
when we consider the design of the computer in detail.

Figure 4-6 Control unit of Basic Computer

The sequence counter SC can be incremented or cleared
synchronously. Most of the time, the counter is incremented to provide the
sequence of timing signals out of the 4 X 16 decoder. Once in awhile, the
counter is cleared to 0, causing the next active timing signal to be TO. As
an example, consider the case where SC is incremented to provide timing

 Computer Organisation

 NOTES

60

signals To, T1, T2, T3, and T4 in sequence. At time T4, SC is cleared to 0 if
decoder output D3 is active. This is expressed symbolically by the
statement

D3T4: SC ← 0

The timing diagram of Fig. 4-7 shows the time relationship of the
control signals. The sequence counter SC responds to the positive
transition of the clock. Initially, the CLR input of SC is active. The first
positive transition of the clock clears SC to 0, which in turn activates the
timing signal To out of the decoder. To is active during one clock cycle. The
positive clock transition labeled To in the diagram will trigger only those
registers whose control inputs are connected to timing signal To. SC is
incremented with every positive clock transition, unless its CLR input is
active. This produces the sequence of timing signalsT0, T1, T2, T3, T4 and
so on, as shown in the diagram. (Note the relationship between the timing
signal and its corresponding positive clock transition.) If SC is not cleared,
the timing signals will continue with T5, T6, up to T15, and back to To.

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

Figure 4-7 Examples of control timing signals

The last three waveforms in Fig. 4-7 show how SC is cleared when
D3T4 = 1. Output D3 from the operation decoder becomes active at the end
of timing signal T2. When timing signal T4 becomes active, the output of the
AND gate that implements the control function D3T4 becomes active. This
signal is applied to the CLR input of SC. On the next positive clock
transition (the one marked 74 in the diagram) the counter is cleared to 0.
This causes the timing signal To to become active instead of 75 that would
have been active SC were incremented instead of cleared.

 Computer Organisation

 NOTES

61

A memory read or writes cycle will be initiated with the rising edge of
timing signal. It will be assumed that a memory cycle time is less than clock
cycle time. According to this assumption, a memory read or writes cycle
initiated by a timing signal will be completed by the time the next clock
through its positive transition. The clock transition will then be used to load
the memory word into a register. This timing relationship is not valid in many
computers because the memory cycle time is usually longer than the
processor clock cycle. In such a case it is necessary to provide wait cycles
in the processor until the memory word is available. To facilitate the
presentation, we will assume that a wait period is not necessary in the basic
computer.

 To fully comprehend the operation of the computer, it is crucial that
one understands the timing relationship between the clock transition and
the timing signals. For example, the register transfer statement

T0: AR ← PC

specifies a transfer of the content of PC into AR if timing signal To is active.
T0 is active during an entire clock cycle interval. During this time the content
of PC is placed onto the bus (with S2S1S0 = 010) and the LD (load) input of
AR is enabled. The actual transfer does not occur until the end of the clock
cycle when the clock goes through a positive transition. This same positive
clock transition increments the sequence counter SC from 0000 to 0001.
The next clock cycle has T1 active and T0 inactive.

4-5 Instruction Cycle

A program residing in the memory unit of the computer consists of a
sequence of instructions. The program is executed in the computer by
going through a cycle for each instruction. Each instruction cycle in rum is
subdivided into a sequence of sub-cycles or phases. In the basic computer
each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an
indirect address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch,
decode, and execute the next instruction. This process continues
indefinitely unless a HALT instruction is encountered.

4-5-1 Fetch and Decode

 Computer Organisation

 NOTES

62

Initially, the program counter PC is loaded with the address of the
first instruction in the program. The sequence counter SC is cleared to 0,
providing a decoded timing signal T0. After each clock pulse, SC is
incremented by one, so that the timing signals go through a sequence T0,
T1, T2, and so on. The microoperations for the fetch and decode phases
can be specified by the following register transfer statements.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0…D7 ← PC Decode IR(12-14), AR ←IR(0-11), I ← IR(15)

Since only AR is connected to the address inputs of memory, it is
necessary to transfer the address from PC to AR during the clock transition
associated with timing signal To. The instruction read from memory is then
placed in the instruction register IR with the clock transition associated with
timing signal 71. At the same time, PC is incremented by one to prepare it
for the address of the next instruction in the program. At rime T2, the
operation code in IR is decoded, the indirect bit is transferred to flip-flop I,
and the address part of the instruction is transferred to AR. Note that SC is
incremented after each clock pulse to produce the sequence To, T1,, and T2.

Figure 4-8 shows how the first two register transfer statements are
implemented in the bus system. To provide the data path for the transfer of
PC to AR we must apply timing signal T0 to achieve the following
connection:

 Computer Organisation

 NOTES

63

Figure 4-8 Register transfers for the fetch phase

1. Place the content of .PC onto the bus by making the bus selection
inputs S2S1So equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR

The next clock transition initiates the transfer from PC to AR since T0 = 1. In
order to implement the second statement

T1: IR ← M [AR], PC ← PC + 1

it is necessary to use timing signal T1 to provide the following connections
in the bus system.

1. Enable the read input of memory.

2. Place the content of memory onto the bus by making S2S1So =111.

3. Transfer the content of the bus to IR by enabling the LD input of IR.

4. Increment PC by enabling the INR input of PC.

 Computer Organisation

 NOTES

64

The next clock transition initiates the read and increment operations since
T1= 1

Figure 4-8 duplicates a portion of the bus system and shows how T0
and T1 are connected to the control inputs of the registers, the memory, and
the bus selection inputs. Multiple input OR gates are included in the
diagram because there are other control functions that will initiate similar
operations.

4-5-2 Determine the Type of Instruction

The timing signal that is active after the decoding is T3. During time
T3, the control unit determines the type of instruction that was just read from
memory. The flowchart of Fig. 4-9 presents an initial configuration for the
instruction cycle and shows how the control determines the instruction type
after the decoding. The three possible instruction types available in the
basic computer are specified in Fig. 4-5.

Decoder output D7 is equal to 1 if the operation code is equal to
binary 111. From Fig. 4 -5 we determine that if D7= 1, the instruction must
be a register-reference or input-output type. If D7= 0, the operation code
must be one of the other seven values 000 through 110, specifying a
memory-reference instruction. Control then inspects the value of the first bit
of the instruction which is now available in flip-flop I. If D7 = 0 and I = 1, we
have a memory reference instruction with an indirect address. It is then
necessary to read the effective address from memory. The microoperation
for the indirect address condition can be symbolized by the register transfer
statement

AR ← M[AR]

Initially, AR holds the address part of the instruction. This address is
used during the memory read operation. The word at the address given by
AR is read from memory and placed on the common bus. The LD input of
AR is then enabled to receive the indirect address that resided in the 12
least significant bits of the memory word.

The three instruction types are subdivided into four separate paths.
The selected operation is activated with the clock transition associated with
timing signal T3. This can be symbolized as follows:

D’7IT3 : AR ← M[AR]

 D’7IT3 : nothing

D7I’T3 : Execute a register reference instruction

D7IT3 : Execute an input-output reference instruction

When a memory-reference instruction with I = 0 is encountered, it is
not necessary to do anything since the effective address is already in AR.

 Computer Organisation

 NOTES

65

However, the sequence counter SC must be incremented when D’7T3= 1,
so that the execution of the memory-reference instruction can be continued
with timing variable T4. A register-reference or input-output instruction can
be executed with the clock associated with timing signal T3. After the
instruction is executed, SC is cleared to 0 and control returns to the fetch
phase with To = 1.

Figure 4-9 Flowchart for instruction cycle

Note that the sequence counter SC is either incremented or cleared
to 0 with every positive clock transition. We will adopt the convention that if
SC is incremented, we will not write the statement SC ← SC + 1, but it will
be implied that the control goes to the next timing signal in sequence. When
SC is to be cleared, we will include the statement SC ← 0.

The register transfers needed for the execution of the register-
reference instructions are presented in this section. The memory-reference
instructions are explained in the next section. The input-output instructions
are included in Sec. 4-7.

 Computer Organisation

 NOTES

66

4-5-3 Register-Reference Instructions

Register-reference instructions are recognized by the control when
D7 = 1 and I = 0. These instructions use bits 0 through 11 of the instruction
code to specify one of 12 instructions. These 12 bits are available in IR (0-
11). They were also transferred to AR during time T2.

The control functions and microoperations for the register-reference
instructions are listed in Table 4-3. These instructions are executed with the
clock transition associated with timing variable T3. Each control function
needs the Boolean relation D7I’T3 , which we designate for convenience by
the symbol r. The control function is distinguished by one of the bits in IR(0-
11). By assigning the symbol B, to bit i of IR, all control functions can be
simply denoted by rBi. For example, the instruction CLA has the hexa-
decimal code 7800 (see Table 4-2), which gives the binary equivalent 0111
1000 0000 0000. The first bit is a zero and is equivalent to I'. The next three
bits constitute the operation code and are recognized from decoder output
D7. Bit 11 in IR is 1 and is recognized from B11. The control function that ini-
tiates the microoperation for this instruction is D7I’T3B11

= rB11 the execution
of a register-reference instruction is completed at time T3. The sequence
counter SC is cleared to 0 and the control goes back to fetch the next
instruction with timing signal To.

The first seven register-reference instructions perform clear,
complement, circular shift, and increment microoperations on the A C or E
registers. The next four instructions cause a skip of the next instruction in
sequence when a stated condition is satisfied. The skipping of the
instruction is achieved by incrementing PC once again (in addition, it is
being incremented during the fetch phase at time T1). The condition control
statements must be recognized as part of the control conditions. The AC is
positive when the sign bit in AC (15) = 0; it is negative when AC (l5) = 1.
The content of AC is zero (AC = 0) if all the flip-flops of the register are
zero. The HLT instruction clears a start-stop flip-flop S and stops the
sequence counter from counting. To restore the operation of the computer,
the start-stop flip-flop must be set manually.

 Computer Organisation

 NOTES

67

TABLE 4-3 Execution Register- Reference Instruction

4-6 Memory-Reference Instructions

In order to specify the microoperations needed for the execution of
each instruction, it is necessary that the function that they are intended to
perform be defined precisely. Looking back to Table 4-2, where the
instructions are listed, we find that some instructions have an ambiguous
description. This is because the explanation of an instruction in words is
usually lengthy, and not enough space is available in the table for such a
lengthy explanation. We will now show that the function of the memory-
reference instructions can be defined precisely by means of register
transfer notation.

Table 4-4 lists the seven memory-reference instructions. The
decoded output Di, for i = 0,1,2,3,4,5, and 6 from the operation decoder that
belongs to each instruction is included in the table. The effective address of
the instruction is in the address register AR and was placed there during
timing signal T3 when I = 0, or during timing signal T2 when I = 1. The
execution of the memory-reference instructions starts with timing signal T4.
The symbolic description of each instruction is specified in the table in
terms of register transfer notation. The actual execution of the instruction in
the bus system will require a sequence of microoperations. This is because
data stored in memory cannot be processed directly. The data must be
read from memory to a register where they can be operated on with logic
circuits. We now explain the operation of each instruction and list the
control functions and microoperations needed for their execution. A

 Computer Organisation

 NOTES

68

flowchart that summarizes all the microoperations is presented at the end of
this section.

TABLE 4-4 Memory-Reference Instructions

4-6-1 AND to AC

This is an instruction that performs the AND logic operation on pairs
of bits in AC and the memory word specified by the effective address. The
result of the operation is transferred to AC. The microoperations that
execute this instruction are:

D0T4: DR M[AR] Read operand

 D0T5: AC AC DR, SC 0 AND with AC

The control function for this instruction uses the operation decoder
Do since this output of the decoder is active when the instruction has an
AND operation whose binary code value is 000. Two tuning signals are
needed to execute the instruction. The clock transition associated with
timing signal T4 transfers the operand from memory into DR. The clock
transition associated with the next timing signal T5 transfers to AC the result
of the AND logic operation between the contents of DR and AC. The same
clock transition clears SC to 0, transferring control to timing signal To to
start a new instruction cycle.

4-6-2 ADD to AC

This instruction adds the content of the memory word specified by
the effective address to the value of AC. The sum is transferred into AC and
the output carry Cout is transferred to the E (extended accumulator) flip-flop.
The micro-operations needed to execute this instruction are

D1T4: DR M[AR] Read operand

 D1T5: AC AC + DR, E Cout, SC 0 Add to AC and store carry in E

The same two timing signals, T4 and T5, are used again but with
operation decoder D1 instead of Do, which was used for the AND

 Computer Organisation

 NOTES

69

instruction. After the instruction is fetched from memory and decoded, only
one output of the operation decoder will be active, and that output
determines the sequence of microoperations that the control follows during
the execution of a memory reference instruction.

4-6-3 LDA: Load to AC

This instruction transfers the memory word specified by the effective
address to AC. The microoperations needed to execute this instruction are

D2T4: DR M[AR]

 D2T5: AC DR, SC 0

Looking back at the bus system shown in Fig. 4-4 we note that there is no
direct path from the bus into AC. The adder and logic circuit receive
information from DR which can be transferred into AC. Therefore, it is
necessary to read the memory word into DR first and then transfer the
content of DR into AC. The reason for not connecting the bus to the inputs
of AC is the delay encountered in the adder and logic circuit. It is assumed
that the time it takes to read from memory and transfer the word through
the bus as well as the adder and logic circuit is more than the time of one
clock cycle. By not connecting the bus to the inputs of AC we can maintain
one clock cycle per microoperation.

4-6-4 STA: Store AC

This instruction stores the content of AC into the memory word
specified by the effective address. Since the output of AC is applied to the
bus and the data input of memory is connected to the bus, we can execute
this instruction with one microoperation:

D3T4: M[AR] AC, SC 0

4-6-7 BUN: Branch Unconditionally

This instruction transfers the program to the instruction specified by
the effective address. Remember that PC holds the address of the
instruction to be read from memory in the next instruction cycle. PC is
incremented at time T1 to prepare it for the address of the next instruction in
the program sequence. The BUN instruction allows the programmer to
specify an instruction out of sequence and we say that the program
branches (or jumps) unconditionally. The instruction is executed with one
microoperation:

D4T4: PC AR, SC 0

The effective address from AR is transferred through the common
bus to PC. Resetting SC to 0 transfers control T0. The next instruction is
then fetched and executed from the memory address given by the new
value in PC.

 Computer Organisation

 NOTES

70

4-6-8 BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program
called a subroutine or procedure. When executed, the BSA instruction
stores the address of the next instruction in sequence (which is available in
PC) into a memory location specified by the effective address. The effective
address plus one is then transferred to PC to serve as the address of the
first instruction in the subroutine. This operation was specified in Table 4-4
with the following register transfer:

M [AR] PC, PC AR + 1

A numerical example that demonstrates how this instruction is used
with a subroutine is shown in Fig. 4-10. The BSA instruction is assumed to
be in memory at address 20. The I bit is 0 and the address part of the
instruction has the binary equivalent of 135. After the fetch and decode
phases, PC contains 21, which is the address of the next instruction in the
program (referred to as the return address). AR holds the effective address
135. This is shown in part (a) of the figure. The BSA instruction performs
the following numerical operation:

M [135] 21, PC 135 + 1 =136

The result of this operation is shown in part (b) of me figure. The
return address 21 is stored in memory location 135 and control continues
with the subroutine program starting from address 136. The return to the
original program (at address 21) is accomplished by means of an indirect
BUN instruction placed at the end of the subroutine. When this instruction is
executed, control goes to the indirect phase to read the effective address at
location 135, where it finds the previously saved address 21. When the
BUN instruction is executed, the effective address 21 is transferred to PC.
The next instruction cycle finds PC with the value 21, so control continues
to execute the instruction at the return address. The BSA instruction
performs the function usually referred to as a subroutine call. The indirect
BUN instruction at the end of the subroutine performs the function referred
to as a subroutine return. In most commercial computers, the return
address associated with a subroutine is stored in either a processor register
or in a portion of memory called a stack.

 Computer Organisation

 NOTES

71

Figure 4-10 Example of BSA instruction execution

It is not possible to perform the operation of the BSA instruction in
one clock cycle when we use the bus system of the basic computer. To use
the memory and the bus properly, the BSA instruction must be executed
with a sequence of two microoperations:

 D5T4: M[AR] PC, AR AR + 1

D5T5: PC AR, SC 0

Timing signal T4 initiates a memory write operation, places the
content of PC onto the bus, and enables the INR input of AR. The memory
write operation is completed and AR is incremented by the time the next
clock transition occurs. The bus is used at T5 to transfer the content of AR
to PC.

4-6-9 ISZ: Increment and Skip if Zero

These instruction increments the word specified by the effective
address, and if the incremented value is equal to 0, .PC is incremented by
1. The programmer usually stores a negative number (in 2's complement) in
the memory word. As this negative number is repeatedly incremented by
one, it eventually reaches the value of zero. At that time PC is incremented
by one in order to skip the next instruction in the program.

Since it is not possible to increment a word inside the memory, it is
necessary to read the word into DR, increment DR, and store the word
back into memory. This is done with the following sequence of
microoperations:

 Computer Organisation

 NOTES

72

D6T4: DR M[AR]

 D6T5: DR DR + 1

 D6T4: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

4-6-10 Control Flowchart

A flowchart showing all microoperations for the execution of the
seven memory-reference instructions is shown in Fig. 4-11. The control
functions are indicated on top of each box. The microoperations that are
performed during time T4, T5, or T6 depend on the operation code value.
This is indicated in the flowchart by six different paths, one of which the
control takes after the instruction is decoded. The sequence counter SC is
cleared to 0 with the last timing signal in each case. This causes a transfer
of control to timing signal To to start the next instruction cycle.

Note that we need only seven timing signals to execute the longest
instruction (ISZ). The computer can be designed with a 3-bit sequence
counter. The reason for using a 4-bit counter for SC is to provide additional
timing signals for other instructions that are presented in the problems
section.

Figure 4-11 Flowchart for memory-reference instructions

 Computer Organisation

 NOTES

73

4-7 Input-Output and Interrupt

A computer can serve no useful purpose unless it communicates
with the external environment. Instructions and data stored in memory must
come from some input device. Computational results must be transmitted to
the user through some output device. Commercial computers include many
types of input and output devices. To demonstrate the most basic
requirements for input and output communication, we will use as an
illustration a terminal unit with a keyboard and printer.

4-7-1 Input-Output Configuration

The terminal sends and receives serial information. Each quantity of
information has eight bits of an alphanumeric code. The serial information
from the keyboard is shifted into the input register INPR. The serial
information for the printer is stored in the output register OUTR. These two
registers communicate with a communication interface serially and with the
AC in parallel. The input-output configuration is shown in Fig. 4-12. The
transmitter interface receives serial information from the keyboard and
transmits it to INPR. The receiver interface receives information from OUTR
and sends it to the printer serially.

Figure 4-12 Input-Output Configuration

The input register INPR consists of eight bits and holds
alphanumeric input information. The 1-bit input flag FGl is a control flip-flop.
The flag bit is set to 1 when new information is available in the input device
and is cleared to 0 when the information is accepted by the computer. The
flag is needed to synchronize the timing rate difference between the input
device and the computer. The process of information transfer is as follows.
Initially, the input flag FGl is cleared to 0. When a key is struck in the
keyboard, an 8-bit alphanumeric code is shifted into INPR and the input flag
FGl is set to 1. As long as the flag is set, the information in INPR cannot be
changed by striking another key. The computer checks the flag bit; if it is 1,
the information from INPR is transferred in parallel into AC and FGl is

 Computer Organisation

 NOTES

74

cleared to 0. Once the flag is cleared, new information can be shifted into
INPR by striking another key.

The output register OUTR works similarly but the direction of
information flow is reversed. Initially, the output flag FGO is set to 1. The
computer checks the flag bit; if it is 1, the information from AC is transferred
in parallel to OUTR and FGO is cleared to 0. The output device accepts the
coded information, prints the corresponding character, and when the
operation is completed, it sets FGO to 1. The computer does not load a
new character into OUTR when FGO is 0 because this condition indicates
that the output device is in the process of printing the character.

4-7-2 Input-Output Instructions

Input and output instructions are needed for transferring information
to and from AC register, for checking the flag bits, and for controlling the
interrupt facility. Input-output instructions have an operation code 1111 and
are recognized by the control when D7 = 1 and I=1. The remaining bits of
the instruction specify the particular operation. The control functions and
microoperations for the input-output instructions are listed in Table 4-5.
These instructions are executed with the clock transition associated with
timing signal Tg. Each control function needs a Boolean relation D7IT3,
which we designate for convenience by the symbol p. The control function
is distinguished by one of the bits in IR(6-11). By assigning the symbol Bi to
bit i of IR, all control functions can be denoted by pBi, for i = 6 though 11.
The sequence counter SC is cleared to 0 when p = D7IT3= 1.

The INP instruction transfers the input information from INPR into
the eight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of AC into the output
register OUTR and clears the output flag to 0. The next two instructions in
Table 4-5 check the status of the flags and cause a skip of the next
instruction if the flag is 1. The instruction that is skipped will normally be a
branch instruction to return and check the flag again. The branch instruction
is not skipped if the flag is 0. If the flag is 1, the branch instruction is
skipped and an input or output instruction is executed. The last two
instructions set and clear an interrupt enable flip-flop IEN. The purpose of
IEN is explained in conjunction with the interrupt operation.

TABLE 4-5 Input-Output Instructions

 Computer Organisation

 NOTES

75

4-7-3 Program Interrupt

The process of communication just described is referred to as
programmed control transfer. The computer keeps checking the flag bit,
and when it finds it set, it initiates an information transfer. The difference of
information flow rate between the computer and that of the input-output
device makes this type of transfer inefficient. To see why this is inefficient,
consider a computer that can go through an instruction cycle in 1 μs.
Assume that the input-output device can transfer information at a maximum
rate of 10 characters per second. This is equivalent to one character every
100,000 μs. Two instructions are executed when the computer checks the
flag bit and decides not to transfer the information. This means that at the
maximum rate, the computer will check the flag 50,000 times between each
transfer. The computer is wasting time while checking the flag instead of
doing some other useful processing task.

An alternative to the programmed controlled procedure is to let the
external device inform the computer when it is ready for the transfer. In the
meantime the computer can be busy with other tasks. This type of transfer
uses the interrupt facility. While the computer is running a program, it does
not check the flags. However, when a flag is set, the computer is
momentarily interrupted from proceeding with the current program and is
informed of the fact that a flag has been set. The computer deviates
momentarily from what it is doing to take care of the input or output transfer.
It then returns to the current program to continue what it was doing before
the interrupt.

The interrupt enable flip-flop IEN can be set and cleared with two
instructions. When lEN is cleared to 0 (with the IOF instruction) the flag
cannot interrupt the computer. When lEN is set to 1 (with the ION
instruction) the computer can be interrupted. These two instructions provide
the programmer with the capability of making a decision as to whether or
not to use the interrupt facility.

The way that the interrupt is handled by the computer can be
explained by means of the flowchart of Fig. 4-13. An interrupt flip-flop R is
included in the computer. When R = 0, the computer goes through an
instruction cycle. During the execute phase of the instruction cycle IEN is
checked by the control. If it is 0, it indicates that the programmer does not
want to use the interrupt, so control continues with the next instruction
cycle. If IEN is 1, control checks the flag bits. If both flags are 0, it indicates
that neither the input nor the output registers are ready for transfer of
information. In this case, control continues with the next instruction cycle. If
either flag is set to 1 while IEN = 1, flip-flop R is set to 1. At the end of the
execute phase, control checks the value of R, and if it is equal to 1, it goes
to an interrupt cycle instead of an instruction cycle.

The interrupt cycle is a hardware implementation of a branch and
saves return address operation. The return address available in PC is
stored in a specific location where it can be found later when the program
returns to the instruction at which it was interrupted. This location may be a

 Computer Organisation

 NOTES

76

processor register, a memory stack, or a specific memory location. Here we
choose the memory location at address 0 as the place for storing the return
address. Control then inserts address 1 into PC and clears lEN and R so
that no more interruptions can occur until the interrupt request from the flag
has been serviced.

Figure 4-13 Flowchart for interrupt cycle

An example that shows what happens during the interrupt cycle is
shown in Fig. 4-14. Suppose that an interrupt occurs and R is set to 1 while
the control is executing the instruction at address 255. At this time, the
return address 256 is in PC. The programmer has previously placed an
input-output service program in memory starting from address 1120 and a
BUN 1120 instruction at address 1. This is shown in Fig. 4-14(a).

When control reaches timing signal To and finds that R = 1, it
proceeds with the interrupt cycle. The content of PC (256) is stored in
memory location 0, PC is set to 1, and R is cleared to 0. At the beginning of
the next instruction cycle, the instruction that is read from memory is in
address 1 since this is the content of PC. The branch instruction at address
1 causes the program to transfer to the input-output service program at
address 1120. This program checks the flags, determines which flag is set,
and then transfers the required input or output information. Once this is
done, the instruction ION is executed to set lEN to 1 (to enable further
interrupts), and the program returns to the location where it was interrupted.
This is shown in Fig. 4-14(b).

 Computer Organisation

 NOTES

77

Figure 4-14 Demonstration of the interrupt cycle

The instruction that returns the computer to the original place in the
main program is a branch indirect instruction with an address part of 0. This
instruction is placed at the end of the I/O service program. After this
instruction is read from memory during the fetch phase, control goes to the
indirect phase (because I = 1) to read the effective address. The effective
address is in location 0 and is the return address that was stored there
during the previous interrupt cycle. The execution of the indirect BUN
instruction results in placing into PC the return address from location 0.

4-7-4 Interrupt Cycle

We are now ready to list the register transfer statements for the
interrupt cycle. The interrupt cycle is initiated after the last execute phase if
the interrupt flip-flop R is equal to 1. This flip-flop is set to 1 if IEN = 1 and
either FGI or FGO are equal to 1. This can happen with any clock transition
except when timing signals T0, T1, or T2 are active. The condition for setting
flip-flop R to 1 can be expressed with the following register transfer
statement:

T0T1T2 (IEN)(FGI + FGO): R 1

The symbol + between FGI and FGO in the control function

designates a logic OR operation. This is ANDed with IEN and T0T1T2 .

e now modify the fetch and decode phases of the instruction cycle.
Instead of using only timing signals T0, T1, and T2 (as shown in Fig. 4-9) we
will AND the three timing signals with R so that the fetch and decode
phases will be recognized from the three control functions R'T0, R'T1, and
R'T2. The reason for this is that after the instruction is executed and SC is
cleared to 0, the control will go through a fetch phase only if R = 0.
Otherwise, if R = 1, the control will go through an interrupt cycle. The
interrupt cycle stores the return address (available in PC) into memory
location 0, branches to memory location 1, and clears IEN, R, and SC to 0.
This can be done with the following sequence of microoperations:

 Computer Organisation

 NOTES

78

RT0: AR 0, TR PC

 RT1: M[AR] TR, PC 0

 RT2: PC PC + 1, IEN 0, R 0, SC 0

 During the first timing signal AR is cleared to 0, and the content of PC is
transferred to the temporary register TR. With the second timing signal, the
return address is stored in memory at location 0 and PC is cleared to 0. The
third timing signal increments PC to 1, clears IEN and R, and control goes
back to To by clearing SC to 0. The beginning of the next instruction cycle
has the condition RTo and the content of PC is equal to 1. The control then
goes through an instruction cycle that fetches and executes the BUN
instruction in location 1.

4-9 Summary

 In this lesson, we have introduced you to vrious concepts relative to
an instruction. We have discussed about basic instruction codes, operation
codes, type of operands and operation in instructions and various
addressing modes. We have also hihlighted the basic issue while desing
instruction formats and presented details on the instruction sets. We have
also discuss the inerrupt cycle.

4-10 Keywords

Instruction code: An instruction code is a group of bits that instruct the
computer to perform a specific operation.

Operation code: The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement.

Opcode: operation code abbreviated as opcode.

Accumulator: Computers that have a single-processor register usually
assign to it the name accumulator and label it AC.

Effective address: An effective address is the value which is used by a
fetch or store operation to specify which memory location is to be accessed
by the operation from the perspective of the entity issuing the operation.

Program counter: A register in the central processing unit that contains the
address of the next instruction to be executed. The PC is automatically
incremented after each instruction is fetched to point to the following
instruction.

Memory address: In computer science, a memory address is an identifier
for a memory location, at which a computer program or a hardware device
can store a piece of data for later retrieval.

http://www.everything2.com/title/value
http://www.everything2.com/title/fetch
http://www.everything2.com/title/store
http://www.everything2.com/title/operation
http://www.everything2.com/title/memory
http://www.everything2.com/title/location
http://www.everything2.com/title/entity
http://burks.brighton.ac.uk/burks/foldoc/69/97.htm
http://burks.brighton.ac.uk/burks/foldoc/40/18.htm
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Computer_program

 Computer Organisation

 NOTES

79

Hardwired control: Hardwired control is a control mechanism to generate
control signals by using appropriate finite state machine

4-11 Exercise

1. A computer uses a memory unit with 256K words of 32 bits each; A
binary instruction code is stored in one word of memory. The instruction has
four parts: an indirect bit, an operation code, a register code part to specify
one of 64 registers, and an address part.

a. How many bits are there in the operation code, the register code part,
and the address part?

b. Draw the instruction word format and indicate the number of bits in each
part.

c. How many bits are there in the data and address inputs of the memory?

2. What is the difference between a direct and an indirect address
instruction? How many references to memory are needed for each type of
instruction to bring an operand into a processor register?

3. The following register transfers are to be executed in the system of Fig.
4-4. For each transfer, specify: (1) the binary value that must be applied to
bus select inputs S2, S1, and S0; (2) the register whose LD control input
must be active (if any); (3) a memory read or write operation (if needed);
and (4) the operation in the adder and logic circuit (if any).

a. AR←PC

b. IR←M[AR]

c. M[AR] ← TR

d. AC ← DR, DR ← AC (done simultaneously)

4. The content of A C in the basic computer is hexadecimal A937 and the
initial value of E is 1. Determine the contents of AC, E, PC, AR, and IR
hexadecimal after the execution of the CLA instruction. Repeat 11 more
times, starting from each one of the register-reference instructions. The
initial value of PC is hexadecimal 021.

5. An instruction at address 021 in the basic computer has /= 0, an
operation code of the AND instruction, and an address part equal to 083 (all
numbers are in hexadecimal). The memory word at address 083 contains
the operand B8F2 and the content of AC is A937. Go over the instruction
cycle and determine the contents of the following registers at the end of the
execute phase: PC, AR, DR, AC, and IR. Repeat the problem six more
times starting with an operation code of another memory-reference
instruction.

 Computer Organisation

 NOTES

80

4-12 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation And Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

81

5. COMPUTER DESCRIPTION

Structure

5-1 Introduction
5-2 Design of Basic Computer

5-2-1 Control Logic Gates
5-2-2 Control of Registers and Memory
5-2-3 Control of Single Flip-flops
5-2-4 Control of Common Bus

5-3 Design of Accumulator Logic
5-3 -1Control of AC Register
5-3 -2 Adders and Logic Circuit

5-4 Summary
5-5 Keywords
5-6 Exercise

5-7 References

Objectives

At the end of the lesson you will be able to:

 Discuss the basic organisation of computer

 Discuss the organisation of accumulator logic

5-1 Introduction

Instead of using a flowchart, we can describe the operation of the
computer with a list of register transfer statements. This is done by
accumulating all the control functions and microoperations in one table.
The entries in the table are taken from Figs. 4-11 in lesson 4 and Fig. 5-1,
and Tables 4-3 and 4-5.

The control functions and microoperations for the entire computer
are summarized in Table 5-1. The register transfer statements in this table
describe in a concise form the internal organization of the basic computer.
They also give all the information necessary for the design of the logic
circuits of the computer. The control functions and conditional control
statements listed in the table formulate the Boolean functions for the gates
in the control unit. The list of microoperations specifies the type of control
inputs needed for the registers and memory. A register transfer language is
useful not only for describing the internal organization of a digital system
but also for specifying the logic circuits needed for its design.

 Computer Organisation

 NOTES

82

Figure 5-1 Flowchart for computer operation

5-2 Design of Basic Computer

The basic computer consists of the following hardware components:

1. A memory unit with 4096 words of 16 bits each

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

3. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO

4. Two decoders: a 3 X 8 operation decoder and a 4 X 16 timing decoder

5. A 16-bit common bus

 Computer Organisation

 NOTES

83

6. Control logic gates

7. Adder and logic circuit connected to the input of AC

The memory unit is a standard component that can be obtained
readily from a commercial source. The flip-flops can be either of the D or
JK type, The common bus system can be constructed with sixteen 8x1
multiplexers in a configuration. We are now going to show how to design
the control logic gates. The next section deals with the design of the adder
and logic circuit associated with AC.

5-2-1 Control Logic Gates

The block diagram of the control logic gates is shown in Fig. 4-6. The
inputs to this circuit come from the two decoders, the I flip-flop, and bits 0
through 11 of IR. The other inputs to the control logic are: A C bits 0
through 15 to check if AC = 0 and to detect the sign bit in AC (15); DR bits
0 through 15 to check if DR = 0; and the values of the seven flip-flops. The
outputs of the control logic circuit are:

1. Signals to control the inputs of the nine registers

2. Signals to control the read and write inputs of memory

3. Signals to set, clear, or complement the flip-flops

4. Signals for S2 S1 and S0 to select a register for the bus

5. Signals to control the A C adder and logic circuit

The specifications for the various control signals can be obtained
directly from the list of register transfer statements in Table 5-1.

5-2-2 Control of Registers and Memory

The registers of the computer connected to a common bus system
are shown in Fig. 4-4. The control inputs of the registers are LD (load), INR
(increment), and CLR (clear). Suppose that we want to derive the gate
structure associated with the control inputs of AR. We scan Table 5-1 to
find all the statements that change the content of AR:

 Computer Organisation

 NOTES

84

The first three statements specify transfer of information from a
register or memory to AR. The content of the source register or memory is
placed on the bus and the content of the bus is transferred into AR by
enabling its LD control input. The fourth statement clears AR to 0 and last
statement increments AR by 1. The control functions can be combined into
three Boolean expressions as follows

where LD (AR) is the load input of AR, CLR(AR) is the clear input of AR,
and INR(AR) is the increment input of AR. The control gate logic
associated with AR is shown in Fig. 5-2

Figure 5-2 Control gates associated with AR

 Computer Organisation

 NOTES

85

TABLE 5-1 Control Functions and Microoperations for the Basic

Computer

 Computer Organisation

 NOTES

86

In a similar fashion we can derive the control gates for the other
registers as well as the logic needed to control the read and write inputs of
memory. The logic gates associated with the read input of memory is
derived by scanning Table 5-1 to find the statements that specify a read
operation. The read operation is recognized from the symbol ←M [AR].

Read = R'T1 + D'7IT3 + (D0 + D1 + D2 +D6)T4

The output of the logic gates that implement the Boolean
expression above must be connected to the read input of memory.

5-2-3 Control of Single Flip-flops

The control gates for the seven flip-flops can be determined in a
similar manner. For example, Table 5-1 shows that lEN may change as a
result of the two instructions ION and IOF.

If we use a JK flip-flip for IEN, the control gate logic will be as
shown in Fig. 5-3

.

Figure 5-3 Control input for IEN

 Computer Organisation

 NOTES

87

5-2-4 Control of Common Bus

The 16-bit common bus shown in Fig. 4-4 is controlled by the
selection inputs S2,S1, and S0. The decimal number shown with each bus
input specifies the equivalent binary number that must be applied to the
selection inputs in order to select the corresponding register. Table 5-2
specifies the binary numbers for S2S1S0 that select each register. Each
binary number is associated with a Boolean variable x1 through x7,
corresponding to the gate structure that must be active in order to select
the register or memory for the bus. For example, when x1 = 1, the value of
S2S1S0 must be 001 and the output of AR will be selected for the bus. Table
5-2 is recognized as the truth table of a binary encoder. The placement of
the encoder at the inputs of the bus selection logic is shown in Fig. 5-3. The
Boolean functions for the encoder are

S0 = x1 + x3 + x5 + x7

S1 = x2 + x3 + x6 + x7

S1 = x4 + x5 + x6 + x7

To determine the logic for each encoder input, it is necessary to find
the control functions that place the corresponding register onto the bus. For
example, to find the logic that makes x1 = 1, we scan all register transfer
statements in Table 5-1 and extract those statements that have AR as a
source.

Therefore, the Boolean function for x1 is

Figure 5-4 Encoder for bus selection inputs

 Computer Organisation

 NOTES

88

TABLE 5-2 Encoder for Bus Selection Circuit

The data output from memory are selected for the bus when X7 = 1
and S2S1S0 =111. The gate logic that generates X7 must also be applied to
the read input of memory. Therefore, the Boolean function for XJ is the
same as the one derived previously for the read operation.

X7 = R'T1 + D'7IT3 + (D0 + D1 + D2 +D6)T4

In a similar manner we can determine the gate logic for the other registers.

5-3 Design of Accumulator Logic

The circuits associated with the reregister are shown in Fig. 5-4.
The adder and logic circuit has three sets of inputs. One set of 16 inputs
comes from the outputs of AC. Another set of 16 inputs comes from the
data register DR. A third set of eight inputs comes from the input register
INPR. The outputs of the adder and logic circuit provide the data inputs for
the register. In addition, it is necessary to include logic gates for controlling
the LD, INR, and CLR in the register and for controlling the operation of the
adder and logic circuit.

In order to design the logic associated with AC, it is necessary to go
over the register transfer statements in Table 5-1 and extract all the
statements that change the content of AC.

 Computer Organisation

 NOTES

89

From this list we can derive the control logic gates and the adder
and Logic circuit.

Figure 5-4 Circuit associated with AC

5-3 -1 Control of AC Register

The gate structure that controls the LD, INR, and CLR inputs of AC
is shown in Fig. 5-5. The gate configuration is derived from the control
functions in the list above. The control function for the clear microoperation
is rB11, where r = D7I'T3 and rB11 = IR (11). The output of the AND gate that
generates this control function is connected to the CLR input of the register.
Similarly, the output of the gate that implements the increment
microoperation is connected to the INR input of the register. The other
seven microoperations are generated in the adder and logic circuit and are
loaded into AC at the proper time. The outputs of the gates for each control
function are marked with a symbolic name. These outputs are used in the
design of the adder and logic circuit.

 Computer Organisation

 NOTES

90

Figure 5-5 Gate structures for controlling the LD, INR, and CLR of A

5-3 -2 Adder and Logic Circuit

The adder and logic circuit can be subdivided into 16 stages, with
each stage corresponding to one bit of AC. The load (LD) input is con-
nected to the inputs of the AND gates. Figure 5-6 shows one such AC reg-
ister stage (with the OR gates removed). The input is labeled Ii, and the
output AC (i). When the LD input is enabled, the 16 inputs I, for i= 0, 1, 2,. .
. , 15 are transferred to AC (0-15).

One stage of the adder and logic circuit consists of seven AND
gates, one OR gate and a full-adder (FA), as shown in Fig. 5-6. The inputs
of the gates with symbolic names come from the outputs of gates marked
with the same symbolic name in Fig. 5-5. For example, the input marked
ADD in Fig. 5-5 is connected to the output marked ADD in Fig. 5-5.

The AND operation is achieved by ANDing AC (i) with the
corresponding bit in the data register DR (i). One stage of the adder uses a
full-adder with the corresponding input and output carries. The transfer
from INPR to AC is only for bits 0 through 7. The complement
microoperation is obtained by inverting the bit value in AC. The shift-right

 Computer Organisation

 NOTES

91

operation transfers the bit from AC (i+ 1), and the shift-left operation
transfers the bit from AC (i - 1). The complete adder and logic circuit
consists of 16 stages connected together.

Figure 5-6 One stage of Adder and Logic circuit

5-4 Summary

In this lesson, we have discussed about two main components of

the organisation, the design of basic computer and design of accumulator

logic unit. We have explained the concept of the memory unit, registers,

flip-flops and decoders. We have also introduce the concept of accumulator

Logic unit

5-5 Keywords

Flow chart: A flowchart is common type of chart, represents an algorithm
or process, showing the steps as boxes of various kinds, and their order by
connecting these with arrows.

Control unit: The control unit is the circuitry that controls the flow of
information through the processor, and coordinates the activities of the
other units within it

Flip-Flops: In digital circuits, a flip-flop is a term referring to an electronic
circuit (a bistable multivibrator) that has two stable states and thereby is
capable of serving as one bit of memory.

http://en.wikipedia.org/wiki/Chart
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Process_%28general%29
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Bistable
http://en.wikipedia.org/wiki/Multivibrator
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Computer_storage

 Computer Organisation

 NOTES

92

Control logic: Control logic is the part of a software architecture that
controls what the program will do. This part of the program is also called
the controller.

5-6 Exercise

1. A digital computer has a memory unit with a capacity of 16,384 words, 40

bits per word. The instruction code format consists of six bits for the
operation part and 14 bits for the address part (no indirect mode bit). Two
instructions are packed in one memory word, and a 40-bit instruction
register IR is available in the control unit. Formulate a procedure for
fetching and executing instructions for this computer.

2. Derive the control gates associated with the program counter PC in the
basic computer.

3. Derive the control gates for the write input of the memory in the basic
computer.

4. Show the complete logic of the interrupt flip-flops R in the basic
computer. Use a JK flip-flop and minimize the number of gates.

5. Derive the Boolean logic expression for x2 (see Table 5-1). Show that x2
can be generated with one AND gate and one OR gate.

6. Derive the Boolean expression for the gate structure that clears the
sequence counter SC to 0. Draw the logic diagram of the gates and show
how the output is connected to the INR and CLR inputs of SC. Minimize the
number of gates.

5-7 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

http://en.wikipedia.org/wiki/Software_architecture

 Computer Organization

 NOTES

93

UNIT - II

1. MICROPROGRAMMED CONTROL

Structure

1-1 Introduction
1-2 Address Sequencing
 1-2-1 Conditional Branching
 1-2-2 Mapping of Instruction
 1-2-3 Subroutines
1-3 Microprogram Examples
 1-3-1 Computer Configuration
 1-3-2 Microinstruction Format
 1-3-3 Symbolic Microinstructions
 1-3-4 The Fetch Routine
 1-3-5 Symbolic Microprogram
 1-3-5 Binary Microprogram
1-4 Summary
1-5 Keywords
1-6 Exercise
1-7 References:

Objectives

At the end of the lesson you will be able to:

 Define the microprogrammed control unit

 Identify types and formats of microinstruction

 Explain the working of a microprogrammed control unit

 Discuss microprogram example

1-1 Introduction

 The major functional parts in a digital computer are Central
Processing Unit (CPU), Memory, and Input-output. The main digital
hardware functional units of CPU are control unit, arithmetic and logic unit,
and registers. The function of the control unit in a digital computer is to
initiate sequences of microoperations. The number of different types of
microoperations that are available in a given system is finite. The
complexity of the digital system is derived from the number of sequences of
microoperations that are performed. Two methods of implementing control
unit are hardwired control and microprogrammed control. The design of

 Computer Organization

 NOTES

94

hardwired control involves the use of fixed instructions, fixed logic blocks of
and/or arrays, encoders, decoders, etc. The key characteristics of
hardwired control logic are high-speed operation, expensive, relatively
complex, and no flexibility of adding new instructions. Example CPUs with
hardwired logic control are Intel 8085, Motorola 6802, Zilog 80, and any
RISC (Reduced Instruction Set Computer) CPUs. When the control signals
are generated by hardware using conventional logic design techniques, the
control unit is said to be hardwired. Microprogramming is a second
alternative for designing the control unit of a digital computer. The principle
of microprogramming is an elegant and systematic method for controlling
the microoperation sequences in a digital computer. For example, CPUs
with microprogrammed control unit are Intel 8080, Motorola 68000, and any
CISC (Complex Instruction Set Computer) CPUs.

 The control function that specifies a microoperation is a binary
variable. When it is in one binary state, the corresponding microoperation is
executed. A control variable in the opposite binary state does not change
the state of the registers in the system. The active state of a control
variable may be either the 1 state or the 0 state, depending on the
application. In a bus-organized system, the control signals that specify
microoperations are groups of bits that select the paths in multiplexers,
decoders, and arithmetic logic units.

 The control unit initiates a series of sequential steps of
microoperations. During any given time, certain microoperations are to be
initiated, while others remain idle. The control variables at any given time
can be represented by a string of 1's and 0's called a control word. As
such, control words can be programmed to perform various operations on
the components of the system. A control unit whose binary control
variables are stored in memory is called a microprogrammed control unit.
Each word in control memory contains within it a microinstruction. The
microinstruction specifies one or more microoperations for the system. A
sequence of microinstructions constitutes a microprogram. Since
alterations of the microprogram are not needed once the control unit is in
operation, the control memory can be a read-only memory (ROM). The
content of the words in ROM are fixed and cannot be altered by simple pro-
gramming since no writing capability is available in the ROM. ROM words
are made permanent during the hardware production of the unit. The use of
a microprogram involves placing all control variables in words of ROM for
use by the control unit through successive read operations. The content of
the word in ROM at a given address specifies a microinstruction.

 A more advanced development known as dynamic
microprogramming permits a microprogram to be loaded initially from an
auxiliary memory such as a magnetic disk. Control units that use dynamic
microprogramming employ a writable control memory. This type of memory
can be used for writing (to change the microprogram) but is used mostly for
reading. A memory that is part of a control unit is referred to as a control
memory.

 Computer Organization

 NOTES

95

 A computer that employs a microprogrammed control unit will have
two separate memories: a main memory and a control memory. The main
memory is available to the user for storing the programs. The contents of
main memory may alter when the data are manipulated and every time that
the program is changed. The user's program in main memory consists of
machine instructions and data. In contrast, the control memory holds a
fixed microprogram that cannot be altered by the occasional user. The
microprogram consists of microinstructions that specify various internal
control signals for execution of register microoperations. Each machine
instruction initiates a series of microinstructions in control memory. These
microinstructions generate the microoperations to fetch the instruction from
main memory; to evaluate the effective address, to execute the operation
specified by the instruction, and to return control to the fetch phase in order
to repeat the cycle for the next instruction.

 The general configuration of a microprogrammed control unit is
demonstrated in the block diagram of Fig. 1-1. The control memory is
assumed to be a ROM, within which all control information is permanently
stored. The control memory address register specifies the address of the
microinstruction, and the control data register holds the microinstruction
read from memory.

Figure 1-1 Microprogrammed control organisation

 Computer Organization

 NOTES

96

 The microinstruction contains a control word that specifies one or
more micro-operations for the data processor. Once these operations are
executed, the control must determine the next address. The location of the
next microinstruction may be the one next in sequence, or it may be
located somewhere else in the control memory. For this reason it is
necessary to use some bits of the present microinstruction to control the
generation of the address of the next microinstruction. The next address
may also be a function of external input conditions. While the
microoperations are being executed, the next address is computed in the
next address generator circuit and then transferred into the control address
register to read the next microinstruction. Thus a microinstruction contains
bits for initiating microoperations in the data processor part and bits that
determine the address sequence for the control memory.

 The next address generator is sometimes called a microprogram
sequencer, as it determines the address sequence that is read from control
memory. The address of the next microinstruction can be specified in
several ways, depending on the sequencer inputs. Typical functions of a
microprogram sequencer are incrementing the control address register by
one, loading into the control address register an address from control
memory, transferring an external address, or loading an initial address to
start the control operations.

 The control data register holds the present microinstruction while
the next address is computed and read from memory. The data register is
sometimes called a pipeline register. It allows the execution of the
microoperations specified by the control word simultaneously with the
generation of the next microinstruction. This configuration requires a two-
phase clock, with one clock applied to the address register and the other to
the data register.

 The system can operate without the control data register by
applying a single-phase clock to the address register. The control word and
next-address information are taken directly from the control memory. It
must be realized that a ROM operates as a combinational circuit, with the
address value as the input and the corresponding word as the output. The
content of the specified word in ROM remains in the output wires as long
as its address value remains in the address register. No read signal is
needed as in a random-access memory. Each clock pulse will execute the
microoperations specified by the control word and also transfer a new
address to the control address register. In the example that follows we
assume a single-phase clock and therefore we do not use a control data
register. In this way the address register is the only component in the con-
trol system that receives clock pulses. The other two components: the
sequencer and the control memory are combinational circuits and do not
need a clock.

 The main advantage of the microprogrammed control is the fact that
once the hardware configuration is established there should be no need for
further hardware or wiring changes. If we want to establish a different

 Computer Organization

 NOTES

97

control sequence for the system, all we need to do is specify a different set
of microinstructions for control memory. The hardware configuration should
not be changed for different operations; the only thing that must be

changed is the microprogram residing in control memory.

1-2 Address Sequencing

 Microinstructions are stored in control memory in groups, with each
group specifying a routine. Each computer instruction has its own
microprogram routine in control memory to generate the microoperations
that execute the instruction. The hardware that controls the address
sequencing of the control memory must be capable of sequencing the
microinstructions within a routine and be able to branch from one routine to
another. To appreciate the address sequencing in a microprogram control
unit, let us enumerate the steps that the control must undergo during the
execution of a single computer instruction.

 An initial address is loaded into the control address register when
power is turned on in the computer. This address is usually the address of
the first microinstruction that activates the instruction fetch routine. The
fetch routine may be sequenced by incrementing the control address
register through the rest of its microinstructions. At the end of the fetch
routine, the instruction is in the instruction register of the computer.

 The control memory next must go through the routine that
determines the effective address of the operand. A machine instruction
may have bits that specify various addressing modes, such as indirect
address and index registers. The effective address computation routine in
control memory can be reached through a branch microinstruction, which is
conditioned on the status of the mode bits of the instruction. When the
effective address computation routine is completed, the address of the
operand is available in the memory address register.

 The next step is to generate the microoperations that execute the
instruction fetched from memory. The microoperation steps to be
generated in processor registers depend on the operation code part of the
instruction. Each instruction has its own microprogram routine stored in a
given location of control memory. The transformation from the instruction
code bits to an address in control memory where the routine is located is
referred to as a mapping process. A mapping procedure is a rule that
transforms the instruction code into a control memory address. Once the
required routine is reached, the microinstructions that execute the
instruction may be sequenced by incrementing the control address register,
but sometimes the sequence of microoperations will depend on values of
certain status bits in processor registers. Microprograms that employ
subroutines will require an external register for storing the return address.
Return addresses cannot be stored in ROM because the unit has no writing
capability.

 Computer Organization

 NOTES

98

 When the execution of the instruction is completed, control must
return to the fetch routine. This is accomplished by executing an
unconditional branch microinstruction to the fast address of the fetch
routine. In summary, the address sequencing capabilities required in a
control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit
conditions.

3. A mapping process from the bits of the instruction to an address for
control memory.

4. A facility for subroutine call and return.

 Figure 1-2 shows a block diagram of a control memory and the
associated hardware needed for selecting the next microinstruction
address. The microinstruction in control memory contains a set of bits to
initiate microoperations in computer registers and other bits to specify the
method by which the next address is obtained. The diagram shows four
different paths from which the control address register (CAR) receives the
address. The incrementer increments the content of the control address
register by one, to select the next microinstruction in sequence. Branching
is achieved by specifying the branch address in one of the fields of the
microinstruction. Conditional branching is obtained by using part of the
microinstruction to select a specific status bit in order to determine its
condition. An external address is transferred into control memory via a
mapping logic circuit. The return address for a subroutine is stored in a
special register whose value is then used when the microprogram wishes
to return from the subroutine.

Figure 1-2 Selection of address for control memory

 Computer Organization

 NOTES

99

1-2-1 Conditional Branching

 The branch logic of Fig. 1-2 provides decision-making capabilities in
the control unit. The status conditions are special bits in the system that
provide parameter information such as the carry-out of an adder, the sign
bit of a number, the mode bits of an instruction, and input or output status
conditions. Information in these bits can be tested and actions initiated
based on their condition: whether their value is 1 or 0. The status bits,
together with the field in the microinstruction that specifies a branch
address, control the conditional branch decisions generated in the branch
logic.

 The branch logic hardware may be implemented in a variety of
ways. The| simplest way is to test the specified condition and branch to the
indicated address if the condition is met; otherwise, the address register is
incremented. This can be implemented with a multiplexer. Suppose that
there are eight status| bit conditions in the system. Three bits in the
microinstruction are used to specify any one of eight status bit conditions.
These three bits provide the selection variables for the multiplexer. If the
selected status bit is in the 1 state, the output of the multiplexer is 1;
otherwise, it is 0. A 1 output in the multiplexer genera a control signal to
transfer the branch address from the microinstruction into t control address
register. A 0 output in the multiplexer causes the address register to be
incremented. In this configuration, the microprogram follows one of two
possible paths, depending on the value of the selected status bit.

 An unconditional branch microinstruction can be implemented by
loading the branch address from control memory into the control address
register. This can be accomplished by fixing the value of one status bit at
the input of the multiplexer, so it is always equal to 1. A reference to this bit
by the status bit select lines from control memory causes the branch
address to be loaded into the control address register unconditionally.

1-2-2 Mapping of Instruction

 A special type of branch exists when a microinstruction specifies a
branch to the first word in control memory where a microprogram routine
for an instruction is located. The status bits for this type of branch are the
bits in the operation code part of the instruction. For example, a computer
with a simple instruction format as shown in Fig. 1-3 has an operation code
of four bits which can specify up to 16 distinct instructions. Assume further
that the control memory has 128 words, requiring an address of seven bits.
For each operation code there exists a microprogram routine in control
memory that executes the instruction. One simple mapping process that
converts the 4-bit operation code to a 7-bit address for control memory is
shown in Fig. 7-3. This mapping consists of placing a 0 in the most
significant bit of the address, transferring the four operation code bits, and
clearing the two least significant bits of the control address register. This
provides for each computer instruction a microprogram routine with a
capacity of four microinstructions. If the routine needs more than four

 Computer Organization

 NOTES

100

microinstructions, it can use addresses 1000000 through 1111111. If it
uses fewer than four microinstructions, the unused memory locations would
be available for other routines.

Figure 1-3 Mapping from instruction code to microinstruction
address

 One can extend this concept to a more general mapping rule by
using a ROM to specify the mapping function. In this configuration, the bits
of the instruction specify the address of a mapping ROM. The contents of
the mapping ROM give the bits for the control address register. In this way
the microprogram routine that executes the instruction can be placed in any
desired location in control memory. The mapping concept provides
flexibility for adding instructions for control memory as the need arises.

The mapping function is sometimes implemented by means of an inte-
grated circuit called programmable logic device or PLD. A PLD is similar to
ROM in concept except that it uses AND and OR gates with internal
electronic fuses. The interconnection between inputs, AND gates, OR
gates, and outputs can be programmed as in ROM. A mapping function
that can be expressed in terms of Boolean expressions can be
implemented conveniently with a PLD.

1-2-3 Subroutines

 Subroutines are programs that are used by other routines to
accomplish a particular task. A subroutine can be called from any point
within the main body of the microprogram. Frequently, many
microprograms contain identical sections of code. Microinstructions can be
saved by employing subroutines that use common sections of microcode.
For example, the sequence of microoperations needed to generate the
effective address of the operand for an instruction is common to all memory
reference instructions. This sequence could be a subroutine that is called
from within many other routines to execute the effective address
computation.

 Microprograms that use subroutines must have a provision for
storing the return address during a subroutine call and restoring the
address during a subroutine return. This may be accomplished by placing
the incremented out-subroutine register put from the control address

 Computer Organization

 NOTES

101

register into a subroutine register and branching to the beginning of the
subroutine. The subroutine register can then become the source for
transferring the address for the return to the main routine. The best way to
structure a register file that stores addresses for subroutines is to organize
the registers in a last-in, first-out (LIFO) stack.

1-3 Microprogram Example

 Once the configuration of a computer and its microprogrammed
control unit, is established, the designer's task is to generate the microcode
for the control, memory. This code generation is called microprogramming
and is a process similar to conventional machine language programming.
To appreciate this process, we present here a simple digital computer and
show how it is microprogrammed.

1-3-1 Computer Configuration

 The block diagram of the computer is shown in Fig. 1-4. It consists
of two memory units: a main memory for storing instructions and data, and
a control memory for storing the microprogram. Four registers are
associated with the processor unit and two with the control unit. The
processor registers are program counter PC, address register AR, data
register DR, and accumulator register AC. The control unit has a control
address register CAR and a subroutine register SBR. The control memory
and its registers are organized as a microprogrammed control unit, as
shown in Fig. 1-4.

Figure 1-4 Computer hardware Configuration

 Computer Organization

 NOTES

102

 The transfer of information among the registers in the processor is
done through multiplexers rather than a common bus. DR can receive
information from AC, PC, or memory. AR can receive information from .PC
or DR. PC can receive information only from AR. The arithmetic, logic, and
shift unit performs microoperations with data from AC and DR and places
the result in AC. Note that memory receives its address from AR. Input
data written to memory come from DR, and data read from memory can go
only to DR.

 The computer instruction format is depicted in Fig. 1-5 (a). It
consists of three fields: a 1-bit field for indirect addressing symbolized by I,
a 4-bit operation code (opcode), and an 11-bit address field. Figure 1-5 (b)
lists four of the 16 possible memory-reference instructions. The ADD
instruction adds the content of the operand found in the effective address
to the content of AC. The BRANCH instruction causes a branch to the
effective address if the operand in AC is negative. The program proceeds
with the next consecutive instruction if AC is not negative. The AC is
negative if its sign bit (the bit in the leftmost position of the register) is a 1.
The STORE instruction transfers the content of AC into the memory word
specified by the effective address. The EXCHANGE instruction swaps the
data between AC and the memory word specified by the effective address.

 It will be shown subsequently that each computer instruction must
be microprogrammed. In order not to complicate the microprogramming
example, only four instructions are considered here. It should be realized
that 12 other instructions can be included and each instruction must be
microprogrammed by the procedure outlined below.

(a) Machine instruction format

(b) Four computer instructions

Figure1-5 computer instruction format

 Computer Organization

 NOTES

103

1-3-2 Microinstruction Format

 The microinstruction format for the control memory is shown in
Fig.1-6. 20 bits of the microinstruction are divided into four functional parts.
The fields Fl, F2, and F3 specify microoperations for the computer. The CD
field selects status bit conditions. The BR field specifies the type or branch
to be used. The AD field contains a branch address. The address field is
seven bits wide, since the control memory has 128 = 27 words.

Figure 1-6 Macroinstruction code format (20 bits)

 The microoperations are subdivided into three fields of three bits
each. The three bits in each field are encoded to specify seven distinct
microoperations as listed in Table 1-1. This gives a total of 21
microoperations. No more than three microoperations can be chosen for a
microinstruction, one from each field. If fewer than three microoperations
are used, one or more of the fields will use the binary code 000 for no
operation. As an illustration, a microinstruction can specify two
simultaneous microoperations from F2 and F3 and none from Fl.

 Computer Organization

 NOTES

104

 Computer Organization

 NOTES

105

TABLE 1-1 Symbols and Binary Code for Microinstruction Fields

DR M [AR] with F2 =100

 PC PC + 1 with F3 =101

 The nine bits of the micro-operation fields will then be 000 100 101.
It is important to realize that two or more conflicting microoperations cannot
be specified simultaneously. For example, a microoperation field 010 001
000 has no meaning because it specifies the operations to clear AC to 0
and subtract DR from AC at the same time.

 Each microoperation in Table 1-1 is defined with a register transfer
statement and is assigned a symbol for use in a symbolic microprogram.
All transfer-type micro-operations symbols use five letters. The first two
letters designate the source register, the third letter is always a T, and the
last two letters designate the destination register. For example, the

microoperation that specifies the transfer AC DR (Fl = 100) has the

symbol DRTAC, which stands for a transfer from DR to AC.

 The CD (condition) field consists of two bits which are encoded to
specify four status bit conditions as listed in Table 1-1. The first condition is
always a 1, so that a reference to CD = 00 (or the symbol U) will always
find the condition to be true. When this condition is used in conjunction with
the BR (branch) field, it provides an unconditional branch operation. The
indirect bit I is available from bit 15 of DR after an instruction is read from
memory. The sign bit of AC provides the next status bit. The zero value,
symbolized by Z, is a binary variable whose value is equal to 1 if all the bits
in AC are equal to zero. We will use the symbols U, I, S, and Z for the four
status bits when we write microprograms in symbolic form.

 The BR (branch) field consists of two bits. It is used, in conjunction
with the address field AD, to choose the address of the next
microinstruction. As shown in Table 7-1, when BR = 00, the control
performs a jump (JMP) operation (which is similar to a branch), and when
BR = 01, it performs a call to subroutine (CALL) operation. The two
operations are identical except that a call microinstruction stores the return
address in the subroutine register SBR The jump and call operations
depend on the value of the CD field. It the status bit condition specified in
the CD field is equal to 1, the next address in the AD field is transferred to
the control address register CAR. Otherwise, CAR is incremented by 1.

 The return from subroutine is accomplished with a BR field equal to
10. This causes the transfer of the return address from SBR to CAR. The
mapping from the operation code bits of the instruction to an address for
CAR is accomplished when the BR field is equal to 11. This mapping is as
depicted in Fig. 1-3. The bits of the operation code are in DR (ll-14) after an
instruction is read from memory. Note that the List two conditions in the BR
field are independent of the values in the CD and AD fields.

 Computer Organization

 NOTES

106

1-3-3 Symbolic Microinstructions

 The symbols defined in Table 1-1 can be used to specify
microinstructions in symbolic form. A symbolic microprogram can be
translated into its binary equivalent by means of an assembler. The
simplest and most straightforward way to formulate an assembly language
for a microprogram is to define symbols for each field of the microinstruc-
tion and to give users the capability for defining their own symbolic
addresses.

 Each line of the assembly language microprogram defines a
symbolic microinstruction. Each symbolic microinstruction is divided into
five fields: label, microoperations, CD, BR, and AD. The fields specify the
following information:

1. The label field may be empty or it may specify a symbolic address. A
label is terminated with a colon (:).

2. The microoperation’s field consists of one, two, or three symbols, sepa-
rated by commas, from those defined in Table 1-1. There may be no more
than one symbol from each F field. The NOP symbol is used when the
microinstruction has no microoperations. This will be translated by the
assembler to nine zeros.

3. The CD field has one of the letters U, I, S, or Z.

4. The BR field contains one of the four symbols defined in Table 1-1.

5. The AD field specifies a value for the address field of the microin-
struction in one of three possible ways:

a. With a symbolic address, this must also appear as label.

b. With the symbol NEXT to designate the next address in sequence.

c. When the BR field contains a RET or MAP symbol, the AD field is
left empty and is converted to seven zeros by the assembler.

We will use also the pseudo instruction ORG to define the origin, or first
address, of a microprogram routine. Thus the symbol ORG 64 informs the
assembler to place the next microinstruction in control memory at decimal
address 64, which is equivalent to the binary address 1000000

1-3-4 Fetch Routine

 The control memory has 128 words, and each word contains 20
bits. To microprogram the control memory, it is necessary to determine the
bit values of each of the 128 words. The first 64 words (addresses 0 to 63)
are to be occupied by the routines for the 16 instructions. The last 64 words
may be used for any other purpose. A convenient starting location for the

 Computer Organization

 NOTES

107

fetch routine is address 64. The microinstructions needed for the fetch
routine are

 AR PC

 DR M [AR], PC PC + 1

 AR DR (0-10), CAR (2-5) DR (11-14), CAR (0, 1, 6) 0

 The address of the instruction is transferred from PC to AR and the
instruction is then read from memory into DR. Since no instruction register
is available, the instruction code remains in DR. The address part is
transferred to AR and then control is transferred to one of 16 routines by
mapping the operation code part of the instruction from DR into CAR.

 The fetch routine needs three microinstructions, which are placed in
control memory at addresses 64, 65, and 66. Using the assembly language
conventions defined previously, we can write the symbolic microprogram
for the fetch routine as follows:

 The translation of the symbolic microprogram to binary produces
the following binary microprogram. The bit values are obtained from Table
1-1.

 The three microinstructions that constitute the fetch routine have
been listed in three different representations. The register transfer
representation shows the internal register transfer operations that each
microinstruction implements. The symbolic representation is useful for
writing microprograms in an assembly language format. The binary
representation is the actual internal content that must be stored in control
memory. It is customary to write microprograms in symbolic form and then
use an assembler program to obtain a translation to binary.

1-3-5 Symbolic Microprogram

 The execution of the third (MAP) microinstruction in the fetch
routine results in a branch to address OxxxxOO, where xxxx are the four
bits of the operation code. For example, if the instruction is an ADD
instruction whose operation code is 0000, the MAP microinstruction will
transfer to CAR the address 0000000, which is the start address for the
ADD routine in control memory. The first address for the BRANCH and
STORE routines are 0 0001 00 (decimal 4) and 0 0010 00 (decimal 8),
respectively. The first address of the other 13 routines is at address values
12, 16, 20, . . . , 60. This gives four words in control memory for each
routine.

 Computer Organization

 NOTES

108

 In each routine we must provide microinstructions for evaluating the
effective address and for executing the instruction. The indirect address
mode is associated with all memory-reference instructions. A saving in the
number of control memory words may be achieved if the microinstructions
for the indirect address are stored as a subroutine. This subroutine,
symbolized by INDRCT, is located right after the fetch routine, as shown in
Table 1-2. The table also shows the symbolic microprogram for the fetch
routine and the microinstruction routines that execute four computer
instructions.

 To see how the transfer and return from the indirect subroutine
occurs, assume that the MAP microinstruction at the end of the fetch
routine caused a branch to address 0, where the ADD routine is stored.
The first microinstruction in the ADD routine calls subroutine INDRCT,
conditioned on status bit I. If I = 1, a branch to INDRCT occurs and the
return address (address 1 in this case) is stored in the subroutine register
SBR. The INDRCT subroutine has two microinstructions:

 INDRCT: READ U JMP NEXT

 DRTAR U RET

TABLE 1-2 Partial Symbolic Microprogram

 Remember that an indirect address considers the address part of
the instruction as the address where the effective address is stored rather

 Computer Organization

 NOTES

109

than the address of the operand. Therefore, the memory has to be
accessed to get the effective address, which is then transferred to AR. The
return from subroutine (RET) transfers the address from SBR to CAR, thus
returning to the| second microinstruction of the ADD routine.

 The execution of the ADD instruction is carried out by the
microinstructions at addresses 1 and 2. The first microinstruction reads the
operand from memory into DR. The second microinstruction performs an
add microoperation with the content of DR and AC and then jumps back to
the beginning of the fetch routine.

 The BRANCH instruction should cause a branch to the effective
address if AC < 0. The AC will be less than zero if its sign is negative,
which is detected from status bit 5 being a 1. The BRANCH routine in
Table 1-2 starts by checking the value of S. If S is equal to 0, no branch
occurs and the next microinstruction causes a jump back to the fetch
routine without altering the content of PC. If S is equal to 1, the first JMP
microinstruction transfers control to location OVER. The microinstruction at
this location calls the INDRCT subroutine if I = 1. The effective address is
then transferred from AR to .PC and the microprogram jumps back to the
fetch routine.

 The STORE routine again uses the INDRCT subroutine if I= 1. The
content of AC is transferred into DR. A memory write operation is initiated
to store the content of DR in a location specified by the effective address in
AR.

 The EXCHANGE routine reads the operand from the effective
address and places it in DR. The contents of DR and AC are interchanged
in the third microinstruction. This interchange is possible when the registers
are of the edge-triggered type. The original content of AC that is now in DR
is stored back in memory.

 Note that Table 1-2 contains a partial list of the microprogram. Only
four out of 16 possible computer instructions have been microprogrammed.
Also, control memory words at locations 69 to 127 have not been used.
Instructions such as multiply, divide, and others that require a long
sequence of microoperations will need more than four microinstructions for
their execution. Control memory words 69 to 127 can be used for this
purpose.

1-3-5 Binary Microprogram

 The symbolic microprogram is a convenient form for writing
microprograms in a way that people can read and understand. But this is
not the way that the microprogram is stored in memory. The symbolic
microprogram must be translated to binary either by means of an
assembler program or by the user if the microprogram is simple enough as
in this example.

 Computer Organization

 NOTES

110

 The equivalent binary form of the microprogram is listed in Table 1-
3. The addresses for control memory are given in both decimal and binary.
The binary-content of each microinstruction is derived from the symbols
and their equivalent binary values as defined in Table 1-1.

 Note that address 3 has no equivalent in the symbolic
microprogram since the ADD routine has only three microinstructions at
addresses 0, 1, and 2. The next routine starts at address 4. Even though
address 3 is not used, some binary value must be specified for each word
in control memory. We could have specified all 0's in the word since this
location will never be used. However, if some unforeseen error occurs, or if
a noise signal sets CAR to the value of 3, it will be wise to jump to address
64, which is the beginning of the fetch routine.

 The binary microprogram listed in Table 1-3 specifies the word
content of the control memory. When a ROM is used for the control
memory, the microprogram binary list provides the truth table for fabricating
the unit. This fabrication is a hardware process and consists of creating a
mask for the ROM so as to produce the 1's and 0's for each word. The bits
of ROM are fixed once the internal links are fused during the hardware
production. The ROM is made of 1C packages that can be removed if
necessary and replaced by other packages. To modify the instruction set of
the computer, it is necessary to generate a new microprogram and mask a
new ROM. The old one can be removed and the new one inserted in its
place.

TABLE 1-3 Binary Microprogram for Control Memory (partial)

 Computer Organization

 NOTES

111

 If a writable control memory is employed, the ROM is replaced by a
RAM. The advantage of employing a RAM for the control memory is that
the| microprogram can be altered simply by writing a new pattern of 1's and
0's without resorting to hardware procedures. A writable control memory
possesses the flexibility of choosing the instruction set of a computer
dynamically by changing the microprogram under processor control.
However, most microprogrammed systems use a ROM for the control
memory because it is cheaper and faster than a RAM and also to prevent
the occasional user from changing the architecture of the system.

1-4 Summary

 In this lesson, we have discussed about the micro-programmed
control unit. The key to such a unit is a microinstruction. A microinstruction
has been defined in the unit. In addition we have also explained a basic
microprogrammed control unit. The two basic functions of
microprogrammed control: macroinstruction sequencing and
macroinstruction execution has also discussed in this lesson.

1-5 Keywords

Control word: The control variables at any given time can be represented
by a string of 1's and 0's called a control word.

Microinstruction: The microinstruction specifies one or more
microoperations for the system.

Microprogram: A microprogram is a small program that is usually put onto
a computer chip. It has instructions on how to do simple things.

Control memory: A memory that is part of a control unit is referred to as a
control memory

Sequencer: The next address generator is called sequencer.

Pipeline: An instruction pipeline is a technique used in the design of
computers and other digital electronic devices to increase their instruction
throughput (the number of instructions that can be executed in a unit of
time).

Mapping: The transformation from the instruction code bits to an address
in control memory where the routine is located is referred to as a mapping
process. A mapping procedure is a rule that transforms the instruction code
into a control memory address.

Microoperations: The operations on the data in registers are called
microoperations.

http://en.wikipedia.org/wiki/Computer

 Computer Organization

 NOTES

112

1-6 Exercise

1. What is the difference between a microprocessor and a microprogram?
Is it possible to design a microprocessor without a microprogram? Are all
microprogrammed computers also microprocessors?

2. Explain the difference between hardwired control and microprogrammed
control. Is it possible to have a hardwired control associated with a control
memory?

3. Define the following: (a) microoperation; (b) microinstruction; (c)
microprogram; (d) microcode.

4. The microprogrammed control organization shown in Fig. 1-1 has the

following propagation delay times. 40ns to generate the next address, 10
ns to transfer the address into the control address register, 40ns to access
the control memory ROM, 10 ns to transfer the microinstruction into the
control data register, and 40ns to perform the required microoperations
specified by the control word. What is the maximum clock frequency that
the control can use? What would the clock frequency be if the control data
register is not used?

5. The system shown in Fig. 1-2 uses a control memory of 1024 words of
32 bits each. The microinstruction has three fields as shown in the
diagram. The micro-operations field has 16 bits.

a. How many bits are there in the branch address field and the select field?

b. If there are 16 status bits in the system, how many bits of the branch
logic are used to select a status bit?

c. How many bits are left to select an input for the multiplexers?

6. The control memory in Fig. 2-2 has 4096 words of 24 bits each.

a. How many bits are there in the control address register?

b. How many bits are there in each of the four inputs, shown going into the
multiplexers?

1-7 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings
—Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

113

2. DESIGN OF CONTROL UNIT

Structure

2-1 Introduction
2-2 Microprogram Sequencer
2-4 Basics of the Microarchitecture
2-5 Hardwired Control
2-6 Summary
2-7 Keywords
2-8 Exercise
2-9 References

Objective

At the end of the lesson you will be able to:

 Describe about microprogram sequencer

 Discuss basics of the microarchitecture

 Discuss about hardwired control

2-1 Introduction

 The bits of the microinstruction are usually divided into fields, with
each field defining a distinct, separate function. The various fields
encountered in instruction formats provide control bits to initiate
microoperations in the system, special bits to specify the way that the next
address is to be evaluated, and an address field for branching. The number
of control bits that initiate microoperations can be reduced by grouping
mutually exclusive variables into fields and encoding the k-bits in each field
to provide 2* microoperations. Each field requires a decoder to produce the
corresponding control signals. This method reduces the size of the
microinstruction bits but requires additional hardware external to the control
memory. It also increases the delay time of the control signals because
they must propagate through the decoding circuits.

 The encoding of control bits was demonstrated in the programming
example of the preceding section. The nine bits of the microoperation field
are divided into three subfields of three bits each. The control memory out-
put of each subfield must be decoded to provide the distinct
microoperations. The outputs of the decoders are connected to the
appropriate inputs in the processor unit.

 Figure 2-1 shows the three decoders and some of the connections
that must be made from their outputs. Each of the three fields of the
microinstruction presently available in the output of control memory are
decoded with a 3 X 8 decoder to provide eight outputs. Each of these
outputs must be connected to the proper circuit to initiate the

 Computer Organisation

 NOTES

114

corresponding microoperation as specified in Table 1-1in lesson1. For
example, when F1 = 101 (binary 5), the next clock pulse transition transfers
the content of DR (0-10) to AR (symbolized by DRTAR in Table 1-1).
Similarly, when F1 = 110 (binary 6) there is a transfer from PC to AR
(symbolized by PCTAR). As shown in Fig. 2-1, outputs 5 and 6 of decoder
Ft are connected to the load input of AR so that when either one of these
outputs is active, information from the multiplexers is transferred to AR.
The multiplexers select the information from DR when output 5 is active
and from PC when output 5 is inactive. The transfer into AR occurs with a
clock pulse transition only when output 5 or output 6 of the decoder is
active. The other outputs of the decoders that initiate transfers between
registers must be connected in a similar fashion.

Figure 2-1 Decoding of microoperation fields

 Computer Organisation

 NOTES

115

2-2 Microprogram Sequencer

 The basic components of a microprogrammed control unit are the
control memory and the circuits that select the next address. The address
selection part is called a microprogram sequencer. A microprogram
sequencer can be constructed with digital functions to suit a particular
application. However, just as there are large ROM units available in
integrated circuit packages, so are general-purpose sequencers suited for
the construction of microprogram control units. To guarantee a wide range
of acceptability, an integrated circuit sequencer must provide an internal
organization that can be adapted to a wide range of applications.

 The purpose of a microprogram sequencer is to present an address
to the control memory so that a microinstruction may be read and
executed. The next-address logic of the sequencer determines the specific
address source to be loaded into the control address register. The choice
of the address source is guided by the next-address information bits that
the sequencer receives from the present microinstruction. Commercial
sequencers include within the unit an internal register stack used for
temporary storage of addresses during microprogram looping and
subroutine calls. Some sequencers provide an output register which can
function as the address register for the control memory.

 To illustrate the internal structure of a typical microprogram
sequencer we will show a particular unit that is suitable for use in the
microprogram computer example developed in the preceding section. The
block diagram of the microprogram sequencer is shown in Fig. 2-2. The
control memory is included in the diagram to show the interaction between
the sequencer and the memory attached to it. There are two multiplexers in
the circuit. The first multiplexer selects an address from one of four sources
and routes it into a control address register CAR. The second multiplexer
tests the value of a selected status bit and the result of the test is applied to
an input logic circuit. The output from CAR provides the address for the
control memory. The content of CAR is incremented and applied to one of
the multiplexer inputs and to the subroutine register SBR. The other three
inputs to multiplexer number 1 come from the address field of the present
microinstruction, from the output of SBR, and from an external source that
maps the instruction. Although the diagram shows a single subroutine
register, a typical sequencer will have a register stack about four to eight
levels deep. In this way, a number of subroutines can be active at the same
time. A push and pop operation, in conjunction with a stack pointer, stores
and retrieves the return address during the call and return
microinstructions.

 The CD (condition) field of the microinstruction selects one of the
status bits in the second multiplexer. If the bit selected is equal to 1, the T
(test) variable is equal to 1; otherwise, it is equal to 0. The T value together
with the two bits from the BR (branch) field goes to an input logic circuit.
The input logic in a particular sequencer will determine the type of
operations that are available in the unit. Typical sequencer operations are:
increment, branch or jump, call and return from subroutine, load an

 Computer Organisation

 NOTES

116

external address, push or pop the stack, and other address sequencing
operations. With three inputs, the sequencer can provide up to eight
address sequencing operation. Some commercial sequencers have three
or four inputs in addition to the T input and thus provide a wider range of
operations.

 The input logic circuit in Fig. 2-2 has three inputs, I0,I1, and T, and
three outputs. So, S1, and L. Variables So and S1 select one of the source
addresses for CAR. Variable L enables the load input in SBR. The binary
values of the two selection variables determine the path in the multiplexer.
For example, with S1,So = 10, multiplexer input number 2 is selected and
establishes a transfer path from SBR to CAR. Note that each of the four
inputs as well as the output of MUX 1 contains a 7-bit address.

 The truth table for the input logic circuit is shown in Table 2-1.
Inputs I0 and I1 are identical to the bit values in the BR field. The function
listed in each entry was defined in Table 1-1 in lesson 1. The bit values for
S1 and So are determined from the stated function and the path in the
multiplexer that establishes the required transfer. The subroutine register is
loaded with the incremented value of CAR during a call microinstruction
(BR = 01) provided that the status bit condition is satisfied (T= 1). The truth
table can be used to obtain the simplification fled Boolean functions for the
input logic circuit:

 S0 = I0

 S1 = I0I1 + I0’T

 L = I0’I1T

The circuit can be constructed with three AND gates, an OR gate, and an
inverter.

TABLE 2-1 Input Logic Truth Table for Microprogram Sequencer

Note that the incrementer circuit in the sequencer of Fig. 2-2 is not a
counter constructed with flip-flops but rather a combinational circuit con-
structed with gates. A combinational circuit incrementer can be designed
by cascading a series of half-adder circuits. The output carry from one
stage must be applied to the input of the next stage. One input in the first

 Computer Organisation

 NOTES

117

least significant stage must be equal to 1 to provide the increment-by-one
operation.

Figure 2-2 Microprogram sequence for a control memory

2-4 Basics of the Microarchitecture

 The functionality of the microarchitecture centers around the fetch-
execute cycle, which is in some sense the “heart” of the machine, the steps
involved in the fetch-execute cycle are:

 Computer Organisation

 NOTES

118

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory or registers, if any.

4) Execute the instruction and store results.

5) Go to Step 1.

 It is the microarchitecture that is responsible for making these five
steps. The microarchitecture fetches the next instruction to be executed,
determines which instruction it is, fetches the operands, and executes the
instruction, stores the results, and then repeats. The microarchitecture
consists of a data section which contains registers and an ALU, and a
control section, as illustrated in Figure 2-3. The data section is also referred
to as the datapath. Microprogrammed control uses a special purpose
microprogram, not visible to the user, to implement operations on the
registers and on other parts of the machine. Often, the microprogram
contains many program steps that collectively implement a single (macro)
instruction. Hardwired control units adopt the view that the steps to be
taken to implement an operation comprise states in a finite state machine,
and the design proceeds using conventional digital design methods In
either case, the datapath remains largely unchanged, although there may
be minor differences to support the differing forms of control. In designing
the ARC control unit, the microprogrammed approach will be explored first,
and then the hardwired approach, and for both cases the datapath will
remain unchanged.

Figure 2-3 High level view of microarchitecture.

2-5 Hardwired Control

 An alternative approach to a microprogrammed control unit is to use
a hardwired approach, in which a direct implementation is created using
flip-flop and logic gates, instead of using a control store and a micro-word

 Computer Organisation

 NOTES

119

selection mechanism. States in a finite state machine replace steps in the
microprogram.

 In order to manage the complexity of design for a hardwired
approach, a hardware description language (HDL) is frequently used to
represent the control structure. One example of an HDL is VHDL, which is
an acronym for VHSIC Hardware Description Language (in which VHSIC is
yet another acronym for Very High Speed Integrated Circuit). VHDL is used
for describing architecture at a very high level, and can be compiled into
hardware designs through a process known as silicon compilation. For the
hardwired control unit we will design here, a lower level HDL that is
sometimes referred to as a register transfer language (RTL) is more
appropriate.

 We will defined a simple HDL/RTL in this section that loosely
resembles Hill & Peterson’s A Hardware Programming Language (AHPL)
(Hill and Peterson, 1987). The general idea is to express a control
sequence as a series of numbered statements, which can then be directly
translated into a hardware design. Each statement consists of a data
portion and a transfer portion, as shown below:

 The statement is labeled “5,” which means that it is preceded by
statement 4 and is succeeded by statement 6, unless an out-of-sequence
transfer of control takes place. The left arrow (←) indicates a data transfer,
to register A for this case. The “ADD (B, C)” construct indicates that
registers B and C are sent to a combinational logic unit (CLU) that performs
the addition. Comments begin with an exclamation mark (!) and terminate
at the end of the line. The GOTO construct indicates a transfer of control.
For this case, control is transferred to statement 10 if bit 12 of register IR is
true, otherwise control is transferred to the next higher numbered
statement (6 for this case).

 Figure 2-4 shows an HDL description of modulo 4 counters. The
counter produces the output sequence: 00, 01, 10, 11 and then repeats as
long as the input line x is 0. If the input line is set to 1, then the counter
returns to state 0 at the end of the next clock cycle. The comma is the
catenation operator, and so the statement “Z ← 0,0;” assigns the two-bit
pattern 00 to the two-bit output Z.

 Computer Organisation

 NOTES

120

Figure 2-4 HDL sequence for a resettable modulo 4 counters.

 The HDL sequence is composed of three sections: the preamble,
the numbered statements, and the epilogue. The preamble names the
module with the “MODULE” keyword and declares the inputs with the
“INPUTS” keyword, the outputs with the “OUTPUTS” keyword, and the
parity (number of signals) of both, as well as any additional storage with the
“MEMORY” keyword (none for this example). The numbered statements
follow the preamble. The epilogue closes the sequence with the key phrase
“END SEQUENCE.” The key phrase “END MOD_4_COUNTER” closes the
description of the module. Anything that appears between “END
SEQUENCE” and “END MOD_4_COUNTER” occurs continuously,
independent of the statement number. There are no such statements for
this case.

 In translating an HDL description into a design, the process can be
decomposed into separate parts for the control section and the data
section. The control section deals with how transitions are made from one
statement to another. The data section deals with producing outputs and
changing the values of any memory elements.

 We consider the control section first. There are four numbered
statements, and so we will use four flip-flops, one for each statement, as
illustrated in Figure 2-5. This is referred to as a one-hot encoding
approach, because exactly one flip-flop holds a true value at any time.
Although four states can be encoded using only two flip-flops, studies have
shown that the one-hot encoding approach results in approximately the
same circuit area when compared with a more densely encoded approach;
but more importantly, the complexity of the transfers from one state to the
next are generally simpler and can be implemented with shallow
combinational logic circuits, which means that the clock rate can be faster
for a one-hot encoding approach than for a densely encoded approach.

 Computer Organisation

 NOTES

121

Figure 2-5 Logic design for a modulo 4 counter described in HDL.

 In designing the control section, we first draw the flip-flops, apply
labels as appropriate, and connect the clock inputs. The next step is to
simply scan the numbered statements in order and add logic as
appropriate for the transitions. From statement 0, there are two possible
transitions to statements 0 or 1, conditioned on x or its complement,
respectively. The output of flip-flop 0 is thus connected to the inputs of flip-
flops 0 and 1, through AND gates that take the value of the x input into
account. Note that the AND gate into flip-flop 1 has a circle at one of its
inputs, which is a simplified notation that means x is complemented by an
inverter before entering the AND gate.

 A similar arrangement of logic gates is applied for statements 1 and
2, and no logic is needed at the output of flip-flop 3 because statement 3
returns to statement 1 unconditionally. The control section is now complete
and can execute correctly on its own. No outputs are produced, however,
until the data section is implemented.

 We now consider the design of the data section, which is trivial for
this case. Both bits of the output Z change in every statement, and so there
is no need to condition the generation of an output on the state. We only
need to produce the correct output values for each of the statements. The
least significant bit of Z is true in statements 1 and 3, and so the outputs of
the corresponding control flip-flops are ORed to produce Z[0]. the most
significant bit of Z is true in statements 2 and 3, and so the outputs of the
corresponding control flip-flops are ORed to produce Z[1]. The entire circuit
for the mod 4 counter is now complete, as shown in Figure 2-5.

2-6 Summary

 In this lesson, we have discussed about the micro-programmed
sequences. The key to such a unit is a microinstruction. A microinstruction
has been defined in the unit. In addition we have also explained a basic
hardware control unit.

 Computer Organisation

 NOTES

122

2-7 Keywords

Decoding: Decoding is the reverse of encoding, which is the process of
transforming information from one format into another.

HDL: Hardware Description Language.

VHDL: Verilog Hardware Description Language.

VHSIC: Very High Speed Integrated Circuit.

RTL: Register Transfer Language

2-8 Exercise

1. Insert an exclusive-OR gate between MUX 2 and the input logic of Fig.
2-2 one input to the gate comes from the test output of the multiplexer. The
other input to the gate comes from a bit labeled p (for polarity) in the
microinstruction from control memory. The output of the gate goes to the
input T of the input logic. What does the polarity control P accomplish?

2. Design a 7-bit combinational circuit incrementer for the microprogram
sequencer of Fig. 2-2. Modify the incrementer by including a control input
D. When D = 0, the circuit increments by one, but when D = 1, the circuit
increments by two.

3. A computer has 16 registers, an ALU (arithmetic logic unit) with 32
operations, and a shifter with eight operations, all connected to a common
bus system.

 a. Formulate a control word for a microoperation.

 b. Specify the number of bits in each field of the control word and
give a general encoding scheme.

 c. Show the bits of the control word that specify the microoperation

R4 ← R5 + R6.

2-9 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —Prentice
Publications

4. Computer Architecture and Organisation By: J.P.Hayes.

 Computer Organisation

 NOTES

123

3. CENTRAL PROCESSING UNIT

Structure

3-1 I n t r oduc t i on
3-2 Reg i s t e r set
 3-2-1 Memory Access Registers
 3-2-2 Instruction Fetching Registers
 3-2-3 Condition Registers

3-2-4 Special-Purpose Address Registers
3-2-5 8 0 3 8 6 Registers
3-2-6 MIPS Registers

3-3 Data path
3-3-1 One-Bus Organization
3-3-2 Two-Bus Organization
3-3-3 Three-Bus Organization

3-4 CPU instruction cycle
3-4-1 Fetch Instructions
3-4-2 Execute Simple Arithmetic Operation
3-4-3 Interrupt Handling

3-5 Control unit
3-5-1. Hardwired Implementation
3-5-2. Microprogrammed Control Unit

3-6 Summary
3-7 Keywords
3-8 Exercise
3-9 References

Objectives

At the end of lesson you will be able to:

 Discuss about CPU basics

 Discuss different register sets

 Describe datapath

 Define instruction cycle.

3-1 Introduction

A typical CPU has three major components: (1) register set, (2)
arithmetic logic unit (ALU), and (3) control unit (CU). The register set
differs from one computer architecture to another. It is usually a
combination of general-purpose and special- purpose registers. General-
purpose registers are used for any purpose, hence the name general
purpose. Special-purpose registers have specific functions within the
CPU. For example, the program counter (PC) is a special-purpose

 Computer Organisation

 NOTES

124

register that is used to hold the address of the instruction to be
executed next. Another example of special-purpose registers is the
instruction register (IR), which is used to hold the instruction that is
currently executed. The ALU provides the circuitry needed to perform the
arithmetic, logical and shift operations demanded of the instruction set.
The control unit is the entity responsible for fetching the instruction to
be executed from the main memory and decoding and then executing
it. Figure 3.1 shows the main components of the CPU and its
interactions with the memory system and the input/output devices.

Figure 3-1 Central processing unit main components and interactions
with the memory and I/O

The CPU fetches instructions from memory, reads and writes data

from and to memory, and transfers data from and to input/output
devices. A typical and simple execution cycle can be summarized as
follows:

1. The next instruction to be executed, whose address is obtained from

the PC, is fetched from the memory and stored in the IR.

2. The instruction is decoded.

3. Operands are fetched from the memory and stored in CPU registers,
if needed.

4. The instruction is executed.

5. Results are transferred from CPU registers to the memory, if
needed.

The execution cycle is repeated as long as there are more
instructions to execute. A check for pending interrupts is usually included

 Computer Organisation

 NOTES

125

in the cycle. Examples of interrupts include I/O device request, arithmetic
overflow, or a page fault. When an interrupt request is encountered, a
transfer to an interrupt handling routine takes place. Interrupt handlings
routines are programs that are invoked to collect the state of the currently
executing program, correct the cause of the interrupt, and restore the
state of the program.

The actions of the CPU during an execution cycle are defined by
micro-orders issued by the control unit. These micro-orders are individual
control signals sent over dedicated control lines. For example, let us
assume that we want to execute an instruction that moves the contents of
register X to register Y. Let us also assume that both registers are
connected to the data bus, D. The control unit will issue a control signal to
tell register X to place its contents on the data bus D. After some delay,
another control signal will be sent to tell register Y to read from data bus D.
The activation of the control signals is determined using either hardwired
control or microprogramming. These concepts are explained later in this
chapter.

3 -2 Register set

Registers are essentially extremely fast memory locations within
the CPU that are used to create and store the results of CPU operations
and other calculations. Different computers have different register sets.
They differ in the number of registers, register types, and the length of
each register. They also differ in the usage of each register. General-
purpose registers can be used for multiple purposes and assigned to a
variety of functions by the programmer. Special-purpose registers are
restricted to only specific functions. In some cases, some registers are
used only to hold data and cannot be used in the calculations of operand
addresses. The length of a data register must be long enough to hold
values of most data types. Some machines allow two contiguous
registers to hold double-length values. Address registers may be
dedicated to a particular addressing mode or may be used as address
general purpose. Address registers must be long enough to hold the
largest address. The number of registers in a particular architecture
affects the instruction set design. A very small number of registers may
result in an increase in memory references. Another type of registers is
used to hold processor status bits, or flags. These bits are set by the
CPU as the result of the execution of an operation. The status bits can
be tested at a later time as part of another operation.

3-2-1 Memory Access Registers

Two registers are essential in memory write and read operations:

the memory data register (MDR) and memory address register (MAR).
The MDR and MAR are used exclusively by the CPU and are not directly
accessible to programmers.

In order to perform a write operation into a specified memory location,
the MDR and MAR are used as follows:

 Computer Organisation

 NOTES

126

1. The word to be stored into the memory location is first loaded by the

CPU into MDR.

2. The address of the location into which the word is to be stored is
loaded by the CPU into a MAR.

3. A write signal is issued by the CPU.

Similarly, to perform a memory read operation, the MDR and MAR are
used as follows:

1.The address of the location from which the word is to be read is

loaded into the MAR.

2. A read signal is issued by the PU.

3.The required word will be loaded by the memory into the MDR ready
for use by the CPU.

3-2-2 Instruction Fetching Registers

Two main registers are involved in fetching an instruction for

execution: the program counter (PC) and the instruction register (IR).
The PC is the register that contains the address of the next instruction
to be fetched. The fetched instruction is loaded in the IR for execution.
After a successful instruction fetch, the PC is updated to point to the next
instruction to be executed. In the case of a branch operation, the PC is
updated to point to the branch target instruction after the branch is
resolved, that is, the target address is known.

3-2-3 C o n d i t i o n Registers

Condition registers, or flags, are used to maintain status

information. Some architecture contains a special program status word
(PSW) register. The PSW contains bits that are set by the CPU to indicate
the current status of an executing program. These indicators are typically
for arithmetic operations, interrupts, memory protection information, or
processor status.

3-2-4 Special-Purpose Address Registers

 The address of the operand is obtained by adding a
constant to the content of a register, called the index register. The index
register holds an address displacement. Index addressing is
indicated in the instruction by including the name of the index register in
parentheses and using the symbol X to indicate the constant to be
added.

Segment Pointers In order to support segmentation, the address
issued by the processor should consist of a segment number (base) and a
displacement (or an offset) within the segment. A segment register holds
the address of the base of the segment.

 Computer Organisation

 NOTES

127

Stack Pointer A stack is a data organization mechanism in which the
last data item stored is the first data item retrieved. Two specific
operations can be performed on a stack. These are the Push and the
Pop operations. A specific register, called the stack pointer (SP), is used
to indicate the stack location that can be addressed. In the stack push
operation, the SP value is used to indicate the location (called the top of
the stack). After storing (pushing) this value, the SP is incremented (in
some architectures, e.g. X86, the SP is decremented as the stack
grows low in memory).

3-2-5 8 0 3 8 6 Registers

The Intel basic programming model of the 386, 486, and the Pentium

consists of three register groups. These are the general-purpose registers,
the segment registers, and the instruction pointer (program counter) and
the flag register.

Figure 3.2 shows the three sets of registers. The first set consists
of general purpose registers A, B, C, D, SI (source index), DI (destination
index), SP (stack pointer), and BP (base pointer). The second set of
registers consists of CS (code segment), SS (stack segment), and four
data segment registers DS, ES, FS, and GS. The third set of registers
consists of the instruction pointer (program counter) and the flags
(status) register. Among the status bits, the first five are identical to those
bits introduced as early as in the 8085 8-bit microprocessor. The next 6 –
11 bits are identical to those introduced in the 8086. The flags in the bits
12 – 14 were introduced in the 80286 while the 16 – 17 bits were
introduced in the 80386. The flag in bit 18 was introduced in the 80486.

3-2-6 MIPS Registers

The MIPS CPU contains 32 general-purpose registers that are
numbered 0 – 31. Register x is designated by $x. Register $zero
always contains the hardwired value 0. Table 3.1 lists the registers
and describes their intended use. Registers $at (1), $k0 (26), and $k1
(27) are reserved for use by the assembler and operating system.
Registers $a0 – $a3 (4 – 7) are used to pass the first four arguments to
routines (remaining arguments are passed on the stack). Registers $v0
and $v1 (2, 3) are used to return values from functions. Registers $t0 –
$t9 (8 – 15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers
$s0 – $s7 (16 – 23) are caller saved registers that hold long-lived
values that should be preserved across calls.

 Computer Organisation

 NOTES

128

Figure 3-2 the main register sets in 80 86 (80386 and above extended
all 16 bit registers Except segment registers)

TABLE 3.1 MIPS General-Purpose Registers

 Computer Organisation

 NOTES

129

3-3 Datapath

The CPU can be divided into a data section and a control section.
The data section, which is also called the datapath, contains the registers
and the ALU. The datapath is capable of performing certain operations on
data items. The control section is basically the control unit, which issues
control signals to the datapath. Internal to the CPU, data move from
one register to another and between ALU and registers. Internal data
movements are performed via local buses, which may carry data,
instructions, and addresses. Externally, data move from registers to
memory and I/O devices, often by means of a system bus. Internal
data movement among registers and between the ALU and registers
may be carried out using different organizations including one-bus,
two-bus, or three-bus organizations. Dedicated datapaths may also be
used between components that transfer data between them- selves
more frequently. For example, the contents of the PC are transferred to
the MAR to fetch a new instruction at the beginning of each instruction
cycle. Hence, a dedicated datapath from the PC to the MAR could be
useful in speeding up this part of instruction execution.

3-3-1 One-Bus Organization

Using one bus, the CPU registers and the ALU use a single bus to
move outgoing and incoming data. Since a bus can handle only a
single data movement within one clock cycle, two-operand operations
will need two cycles to fetch the operands for the ALU. Additional
registers may also be needed to buffer data for the ALU. This bus
organization is the simplest and least expensive, but it limits the
amount of data transfer that can be done in the same clock cycle, which
will slow down the overall performance. Figure 3.3 shows a one-bus
datapath consisting of a set of general-purpose registers, a memory
address register (MAR), a memory data register (MDR), an instruction
register (IR), a program counter (PC), and an ALU.

Figure 3.3 One-bus datapath

 Computer Organisation

 NOTES

130

3-3-2 Two-Bus Organization

Using two buses is a faster solution than the one-bus organization.
In this case, general purpose registers are connected to both buses. Data
can be transferred from two different registers to the input point of the
ALU at the same time. Therefore, a two- operand operation can fetch
both operands in the same clock cycle. An additional buffer register may
be needed to hold the output of the ALU when the two buses are busy
carrying the two operands. Figure 3.4a shows a two-bus organization.
In some cases, one of the buses may be dedicated for moving data
into registers (in-bus), while the other is dedicated for transferring
data out of the registers (out-bus). In this case, the additional buffer
register may be used, as one of the ALU inputs, to hold one of the
operands. The ALU output can be connected directly to the in-bus, which
will transfer the result into one of the registers. Figure 3.4b shows a
two-bus organization with in-bus and out-bus.

3-3-3 Three-Bus Organization

In a three-bus organization, two buses may be used as source
buses while the third is used as destination. The source buses move
data out of registers (out-bus), and the destination bus may move data
into a register (in-bus). Each of the two out-buses is connected to an ALU
input point. The output of the ALU is connected directly to the in-bus. As
can be expected, the more buses we have, the more data we can move
within a single clock cycle. However, increasing the number of buses will
also increase the complexity of the hardware. Figure 3.5 shows an
example of a three-bus datapath.

 Computer Organisation

 NOTES

131

Figure 3.4 Two-bus organizations. (a) An Example of Two-Bus Datapath.
(b) Another Example of Two-Bus Datapath with in-bus and out-bus

Figure 3.5 Three-bus datapath

 Computer Organisation

 NOTES

132

3-4 CPU INSTRUCTION CYCLE

The sequence of operations performed by the CPU during its
execution of instructions is presented in Fig. 3.6. As long as there are
instructions to execute, the next instruction is fetched from main
memory. The instruction is executed based on the operation specified
in the opcode field of the instruction. At the completion of the instruction
execution, a test is made to determine whether an interrupt has
occurred. An interrupt handling routine needs to be invoked in case of an
interrupt.

Figure 3.6 CPU Functions

The basic actions during fetching an instruction, executing an
instruction, or handling an interrupt are defined by a sequence of micro-
operations. A group of control signals must be enabled in a prescribed
sequence to trigger the execution of a micro- operation. In this section, we
show the micro-operations that implement instruction fetch, execution of
simple arithmetic instructions, and interrupt handling.

3-4-1 Fetch Instructions

The sequence of events in fetching an instruction can be summarized
as follows:

1. The contents of the PC are loaded into the MAR.

2. The value in the PC is incremented. (This operation can be done
in parallel with a memory access.)

3. As a result of a memory read operation, the instruction is loaded into
the MDR.

4. The contents of the MDR are loaded into the IR.

Let us consider the one-bus datapath organization shown in Fig. 3.3. We
will see that the fetch operation can be accomplished in three steps as
shown in the table below, where t0 < t1 < t2 Note that multiple operations

separated by ―;‖ imply that they are accomplished in parallel.

 Computer Organisation

 NOTES

133

Using the three-bus datapath shown in Figure 3.5, the following table
shows the steps needed.

3-4-2 Execute Simple Arithmetic Operation

Add R1, R2, R0: This instruction adds the contents of source registers R1
and R2, and stores the results in destination register R0. This addition can

be executed as follows:

1. The registers R0, R1, R2, are extracted from the IR.

2. The contents of R1 and R2 are passed to the ALU for addition.

3. The output of the ALU is transferred to R0.

Using the one-bus datapath shown in Figure 3.3, this addition will take three
steps as shown in the following table, where t0 < t1 < t2 .

Using the two-bus datapath shown in Figure 3.4a, this addition will take two
steps as shown in the following table, where t0 < t1.

Using the two-bus datapath with in-bus and out-bus shown in Figure 3.4b,
this addition will take two steps as shown below, where t0 < t1.

 Computer Organisation

 NOTES

134

Using the three-bus datapath shown in Figure 3.5, this addition will take
only one step as shown in the following table.

Add X, R0 This instruction adds the contents of memory location X to

register R0 and stores the result in R0. This addition can be executed as

follows:

1. The memory location X is extracted from IR and loaded into MAR.

2. As a result of memory read operation, the contents of X are loaded
into MDR.

3. The contents of MDR are added to the contents of R0.

Using the one-bus datapath shown this addition will take five steps as
below, where t0 < t1 < t2 < t3 < t4.

Using the two-bus datapath shown in this addition will take four Steps,
where t0 < t1 < t2 < t3.

Using the two-bus datapath with in-bus and out-bus shown this addition will
take four steps, where t0 < t1 < t2 < t3.

Using the three-bus datapath shown this addition will take three steps,
where t0 < t1 < t2.

 Computer Organisation

 NOTES

135

3-4-3 Interrupt Handling

After the execution of an instruction, a test is performed to check for
pending interrupts. If there is an interrupt request waiting, the following
steps take place:

1. The contents of PC are loaded into MDR (to be saved).

2. The MAR is loaded with the address at which the PC contents are to
be saved.

3. The PC is loaded with the address of the first instruction of the
interrupt hand ling routine.

4. The contents of MDR (old value of the PC) are stored in memory.
The following table shows the sequence of events, where t1 < t2 <

t3.

3-5 Control unit

 The control unit is the main component that directs the system
operations by sending control signals to the datapath. These signals control
the flow of data within the CPU and between the CPU and external units
such as memory and I/O. Control buses generally carry signals between
the control unit and other computer components in a clock-driven
manner. The system clock produces a continuous sequence of pulses in
a specified duration and frequency. A sequence of steps t0, t1, t2... (t1 <

t2 < t3…..) used to execute certain instruction. The op-code field of a

fetched instruction is decoded to provide the control signal generator with
information about the instruction to be executed. Step information
generated by a logic circuit module is used with other inputs to
generate control signals. The signal generator can be specified simply
by a set of Boolean equations for its output in terms of its inputs. Figure
3.7 shows a block diagram that describes how timing is used in generating
control signals.

 Computer Organisation

 NOTES

136

Figure 3.7 Timing of control signals

There are mainly two different types of control units:
microprogrammed and hardwired. In microprogrammed control, the
control signals associated with operations are stored in special memory
units inaccessible by the programmer as control words. A control word
is a microinstruction that specifies one or more micro-operations. A
sequence of microinstructions is called a microprogram, which is
stored in a ROM or RAM called a control memory CM.

In hardwired control, fixed logic circuits that correspond directly to

the Boolean expressions are used to generate the control signals.
Clearly hardwired control is faster than microprogrammed control.
However, hardwired control could be very expensive and complicated
for complex systems. Hardwired control is more economical for small
control units. It should also be noted that microprogrammed control could
adapt easily to changes in the system design. We can easily add new
instructions without changing hardware. Hardwired control will require a
redesign of the entire systems in the case of any change.

Example 1 Let us revisit the add operation in which we add the
contents of source registers R1 , R2 , and store the results in destination

register R0 . We have shown earlier that this operation can be done

 Computer Organisation

 NOTES

137

in one step using the three-bus datapath shown in Figure 3.5.

Let us try to examine the control sequence needed to accomplish
this addition at step t0 . Suppose that the op-code field of the current

instruction was decoded to Inst-x type. First we need to select the
source registers and the destination register, then we select Add as
the ALU function to be performed. The following table shows the
needed step and the control sequence.

Figure 3.8 shows the signals generated to execute Inst-x during time
period t0. The AND gate ensures that these signals will be issued when

the op-code is decoded into Inst-x and during time period t0. The

signals (R1 out-bus 1), (R2 out-bus2), (R0 in-bus), and (Add) will select

R
1 as a source on out-bus1, R

2 as a source on out-bus2, R0 as

destination on in-bus, and select the ALUs add function, respectively.

Figure 3.8 Signals generated to execute Inst-x on three-bus datapath
during time period t0

Example 2 Let us repeat the operation in the previous example using
the one-bus datapath shown in Fig. 3.3. We have shown earlier that this
operation can be carried out in three steps using the one-bus datapath.

 Computer Organisation

 NOTES

138

Suppose that the op-code field of the current instruction was decoded to
Inst-x type. The following table shows the needed steps and the control
sequence.

Figure 3.9 shows the signals generated to execute Inst-x during time
periods t0 , t1 , and t2 . The AND gates ensure that the appropriate signals
will be issued when the op-code is decoded into Inst-x and during the
appropriate time period. During t0, the signals (R1 out) and (A in) will be
issued to move the contents of R1 into A. Similarly during t1, the signals (R2
out) and (B in) will be issued to move the contents of R2 into B. Finally, the
signals (R0 in) and (Add) will be issued during t2 to add the contents of A
and B and move the results into R0 .

3-5-1. Hardwired Implementation

In hardwired control, a direct implementation is accomplished
using logic circuits. For each control line, one must find the Boolean
expression in terms of the input to the control signal generator as shown
in Figure 3.7. Let us explain the implementation using a simple example.
Assume that the instruction set of a machine has the three instructions:
Inst-x, Inst-y, and Inst-z; and A, B, C, D, E, F, G, and H are control lines.
The following table shows the control lines that should be activated for the
three instructions at the three steps t0 , t1 , and t2 .

The Boolean expressions for control lines A, B, and C can be obtained as
follows:

Figure 3.10 shows the logic circuits for these control lines. Boolean
expressions for the rest of the control lines can be obtained in a similar

 Computer Organisation

 NOTES

139

way. Figure 3.11 shows the state diagram in the execution cycle of these
instructions.

3-5-2. Microprogrammed Control Unit

The idea of microprogrammed control units was introduced by M. V.
Wilkes in the early 1950s.Microprogramming was motivated by the desire
to reduce the complexities involved with hardwired control. As we studied
earlier, an instruction is implemented using a set of microoperations.
Associated with each micro-operation is a set of control lines that must be
activated to carry out the corresponding micro-operation. The idea of
microprogrammed control is to store the control signals associated with the
implementation of a certain instruction as a microprogram in a special
memory called a control memory (CM). A microprogram consists of a
sequence of microinstructions. A microinstruction is a vector of bits, where
each bit is a control signal, condition code, or the address of the next
microinstruction Microinstructions are fetched from CM the same way
program instructions are fetched from main memory (Fig. 3.12).

Figure 3.10 Logic circuits for control lines A, B, and C

 Computer Organisation

 NOTES

140

Figure 3.11 Instruction execution state diagram.

When an instruction is fetched from memory, the op-code field of
the instruction will determine which microprogram is to be executed. In
other words, the op-code is mapped to a microinstruction address in the
control memory. The microinstruction processor uses that address to fetch
the first microinstruction in the microprogram. After fetching each
microinstruction, the appropriate control lines will be enabled. Every control
line that corresponds to a ―1‖ bit should be turned on. Every control line that
corresponds to a ―0‖ bit should be left off. After completing the execution of
one microinstruction, a new microinstruction will be fetched and executed.
If the condition code bits indicate that a branch must be taken, the next
microinstruction is specified in the address bits of the current
microinstruction. Otherwise, the next microinstruction in the sequence will
be fetched and executed. The length of a microinstruction is determined
based on the number of micro-operations specified in the microinstructions,
the way the control bits will be interpreted, and the way the address of the
next microinstruction is obtained. A microinstruction may specify one or
more micro-operations that will be activated simultaneously.

The length of the microinstruction will increase as the number of
parallel micro-operations per microinstruction increases. Furthermore,
when each control bit in the microinstruction corresponds to exactly one
control line, the length of microinstruction could get bigger. The length of a
microinstruction could be reduced if control lines are coded in specific fields
in the microinstruction. Decoders will be needed to map each field into the
individual control lines. Clearly, using the decoders will reduce the number
of control lines that can be activated simultaneously. There is a tradeoff

 Computer Organisation

 NOTES

141

between the length of the microinstructions and the amount of parallelism.
It is important that we reduce the length of microinstructions to reduce the
cost and access time of the control memory. It may also be desirable that
more micro-operations be performed in parallel and more control lines can
be activated simultaneously.

Figure 3.12 Fetching microinstructions (control words)

Horizontal Versus Vertical Microinstructions can be classified as
horizontal or vertical. Individual bits in horizontal microinstructions
correspond to individual control lines. Horizontal microinstructions are long
and allow maximum parallelism since each bit controls a single control line.
In vertical microinstructions, control lines are coded into specific fields
within a microinstruction. Decoders are needed to map a field of k bits to 2k
possible combinations of control lines. For example, a 3-bit field in a
microinstruction could be used to specify any one of eight possible lines.
Because of the encoding, vertical microinstructions are much shorter than
horizontal ones. Control lines encoded in the same field cannot be
activated simultaneously. Therefore, vertical micro-instructions allow only
limited parallelism. It should be noted that no decoding is needed in
horizontal microinstructions while decoding is necessary in the vertical
case.

3-6 Summary

In this lesson, we have discussed in detail about register organisation and
simple structure of CPU. We have also discussed in detail about the data
path and their implementation in hardware using simple circuits and CPU
instruction cycle and control unit.

3-7 Keywords

Arithmetic logic unit: An arithmetic-logic unit (ALU) is the part of a
computer processor (CPU) that carries out arithmetic and logic operations
on the operands in computer.

Memory Data Register (MDR): The memory data register (MDR) is the
register of a computer's control unit that contains the data to be stored in the
computer storage (e.g. RAM), or the data after a fetch from the computer
storage.

Memory Address Register (MAR): The memory address register holds
the address of the next memory location where the next instruction is to be
executed.

http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Control_unit
http://en.wikipedia.org/wiki/Computer_storage

 Computer Organisation

 NOTES

142

MIPS: Million instructions per second

Datapath: The CPU can be divided into a data section and a control
section. The data section, which is also called the datapath, contains the
registers and the ALU.

Instruction cycle: The time period during which one instruction is
fetched from memory and executed when a computer is given an
instruction in machine language.

3-8 Exercise

1. How many instruction bits are required to specify the following:

(a) Two operand registers and one result register in a machine that
has 64 general-purpose registers?

(b) Three memory addresses in a machine with 64 KB of main
memory?

2. Show the micro-operations of the load, store, and jump instructions
using:

 (a) One-bus system

 (b) Two-bus system

 (c) Three-bus system

3. Data movement within the CPU can be performed in several different
ways. Contrast the following methods in terms of their advantages
and disadvantages:

(a) Dedicated connections

(b) One-bus datapath

(c) Two-bus datapath

(d) Three-bus datapath

4. Find a method of encoding the microinstructions described by the
following table so that the minimum number of control bits is used and all
inherent parallelism among the microoperations is preserved.

 Computer Organisation

 NOTES

143

5. Suppose that the instruction set of a machine has three instructions: Inst-
1, Inst-2, and Inst-3; and A, B, C, D, E, F, G, and H are the control lines.
The following table shows the control lines that should be activated for the
three instructions at the three steps T0, T1, and T2.

(a) Hardwired approach:

(i) Write Boolean expressions for all the control lines A–G.

(ii) Draw the logic circuit for each control line.

(b) Microprogramming approach:

(i) Assuming a horizontal representation, write down the
microprogram for instructions Inst-1. Indicate the microinstruction
size.

(ii) If we allow both horizontal and vertical representation, what
would be the best grouping? What is the microinstruction size?
Write the microprogram of Inst-1

6. A certain processor has a microinstruction format containing 10 separate
control fields C0 : C9 . Each Ci can activate any one of ni distinct control
lines, where ni is specified as follows:

(a) What is the minimum number of control bits needed to represent the 10
control fields?

(b) What is the maximum number of control bits needed if a purely
horizontal format is used for all control information?

 Computer Organisation

 NOTES

144

3-9 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

145

4. INSTRUCTION SET ARCHITECTURE

4.1 Introduction

In this lesson we tackle a central topic in computer architecture:

the language understood by the computer‟s hardware, referred to as its

machine language. The machine language is usually discussed in terms

of its assembly language, which is functionally equivalent to the

corresponding machine language except that the assembly language

uses more intuitive names such as Move, Add, and Jump instead of the

actual binary words of the language. (Programmers find con-structs such

as “Add r0, r1, r2” to be more easily understood and rendered with-out

error than 0110101110101101.)

In order to describe the nature of assembly language and

assembly language programming, we choose as a model architecture the

ARC machine, which is a simplification of the commercial SPARC

architecture common to Sun computers. (Additional architectural models

are covered in The Computer Architecture Companion volume.)

We illustrate the utility of the various instruction classes with

practical examples of assembly language programming, and we conclude

with a Case Study of the Java bytecodes as an example of a common,

portable assembly language that can be implemented using the native

language of another machine.

4.2 Hardware Components of the Instruction Set

Architecture

The ISA of a computer presents the assembly language

programmer with a view of the machine that includes all the programmer-

accessible hardware, and the instructions that manipulate data within the

hardware. In this section we look at the hardware components as viewed

by the assembly language programmer. We begin with a discussion of

the system as a whole: the CPU interacting with its internal (main)

memory and performing input and output with the outside world.

4.2.1 THE SYSTEM BUS MODEL REVISITED

Figure 4-1 revisits the system bus model. The purpose of the bus

is to reduce the number of interconnections between the CPU and its

subsystems. Rather than have separate communication paths between

memory and each I/O device, the CPU is interconnected with its memory

and I/O systems via a shared system bus. In more complex systems

 Computer Organisation

 NOTES

146

there may be separate busses between the CPU and memory and CPU

and I/O.

Not all of the components are connected to the system bus in the

same way. The CPU generates addresses that are placed onto the

address bus, and the memory receives addresses from the address bus.

The memory never generates addresses, and the CPU never receives

addresses, and so there are no corresponding connections in those

directions.

In a typical scenario, a user writes a high level program, which a

compiler translates into assembly language. An assembler then translates

the assembly language program into machine code, which is stored on a

disk. Prior to execution, the machine code program is loaded from the

disk into the main memory by an operating system.

During program execution, each instruction is brought into the

ALU from the memory, one instruction at a time, along with any data that

is needed to execute the instruction. The output of the program is placed

on a device such as a video display, or a disk. Communication among the

three compoents (CPU, Memory, and I/O) is handled with busses.

An important consideration is that the instructions are executed

inside of the ALU, even though all of the instructions and data are initially

stored in the memory. This means that instructions and data must be

loaded from the memory into the ALU registers, and results must be

stored back to the memory from the ALU registers.

Figure 4-1 The system bus model of a computer system.

4-3 CPU

Now that we are familiar with the basic components of the system

bus and memory, we are ready to explore the internals of the CPU. At a

minimum, the CPU consists of a data section that contains registers and

 Computer Organisation

 NOTES

147

an ALU, and a control section, which interprets instructions and effects

register transfers, as illustrated in Figure 4-2. The data section is also

referred to as the datapath.

Figure 4-2 High level view of a CPU.

The control unit of a computer is responsible for executing the program

instructions, which are stored in the main memory. There are two

registers that form the interface between the control unit and the data

unit, known as the program counter (PC) and the instruction register

(IR). The PC contains the address of the instruction being executed. The

instruction that is pointed to by the PC is fetched from the memory, and is

stored in the IR where it is interpreted. The steps that the control unit

carries out in executing a program are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to step 1.

This is known as the fetch-execute cycle.

The control unit is responsible for coordinating these different units

in the execution of a computer program. It can be thought of as a form of

a “computer within a computer” in the sense that it makes decisions as to

how the rest of the machine behaves. The datapath is made up of a

collection of registers known as the register file and the arithmetic and

logic unit (ALU), as shown in Figure 4-3.

 Computer Organisation

 NOTES

148

Figure 4-3 An example datapath

The register file in the figure can be thought of as a small, fast memory,

separate from the system memory, which is used for temporary storage

during computation. Typical sizes for a register file range from a few to a

few thousand registers. Like the system memory, each register in the

register file is assigned an address in sequence starting from zero. These

register “addresses” are much smaller than main memory addresses: a

register file containing 32 registers would have only a 5-bit address, for

example. The major differences between the register file and the system

memory is that the register file is contained within the CPU, and is

therefore much faster. An instruction that operates on data from the

register file can often run ten times faster than the same instruction that

operates on data in memory. For this reason, register-intensive programs

are faster than the equivalent memory intensive programs, even if it takes

more register operations to do the same tasks that would require fewer

operations with the operands located in memory.

Notice that there are several busses inside the datapath of Figure

4-3. Three busses connect the datapath to the system bus. This allows

data to be transferred to and from main memory and the register file.

Three additional busses connect the register file to the ALU. These

busses allow two operands to be fetched from the register file

simultaneously, which are operated on by the ALU, with the results

returned to the register file.

The ALU implements a variety of binary (two-operand) and unary

(one-operand) operations. Examples include add, and, not, or, and

multiply. Operations and operands to be used during the operations are

 Computer Organisation

 NOTES

149

selected by the Control Unit. The two source operands are fetched from

the register file onto busses labeled “Register Source 1 (rs1)” and

“Register Source 2 (rs2).” The output from the ALU is placed on the bus

labeled “Register Destination (rd),” where the results are conveyed back

to the register file. In most systems these connections also include a path

to the System Bus so that memory and devices can be accessed. This is

shown as the three connections labeled “From Data Bus”, “To Data Bus”,

and “To Address Bus.”

4-4 Instruction Set

The instruction set is the collection of instructions that a processor

can execute, and in effect, it defines the processor. The instruction sets

for each processor type are completely different one from the other. They

differ in the sizes of instructions, the kind of operations they allow, the

type of operands they operate on, and the types of results they

provide.This incompatibility in instruction sets is in stark contrast to the

compatibility of higher level languages such as C, Pascal, and Ada.

Programs written in these higher level languages can run almost

unchanged on many different processors if they are re-compiled for the

target processor.

Because of this incompatibility among instruction sets, computer

systems are often identified by the type of CPU that is incorporated into

the computer system. The instruction set determines the programs the

system can execute and has a significant impact on performance.

Programs compiled for an IBM PC (or compatible) system use the

instruction set of an 80x86 CPU, where the „x‟ is replaced with a digit that

corresponds to the version, such as 80586, more commonly referred to

as a Pentium processor. These programs will not run on an Apple

Macintosh or an IBM RS6000 computer, since the Macintosh and IBM

machines execute the instruction set of the Motorola PowerPC CPU. This

does not mean that all computer systems that use the same CPU can

execute the same programs, however. A PowerPC program written for

the IBM RS6000 will not execute on the Macintosh without extensive

modifications, however, because of differences in operating systems and

I/O conventions.

4-5 Software for generating machine language

programs

A compiler is a computer program that transforms programs

written in a high-level language such as C, Pascal, or Fortran into

machine language. Compilers for the same high level language generally

 Computer Organisation

 NOTES

150

have the same “front end,” the part that recognizes statements in the

high-level language. They will have different “back ends,” however, one

for each target processor. The compiler‟s back end is responsible for

generating machine code for a specific target processor. On the other

hand, the same program, compiled by different C compilers for the same

machine can produce different compiled programs for the same source

code, as we will see. In the process of compiling a program (referred to

as the translation process), a high-level source program is transformed

into assembly language, and the assembly language is then translated

into machine code for the target machine by an assembler. These

translations take place at compile time and assembly time, respectively.

The resulting object program can be linked with other object programs, at

link time. The linked program, usually stored on a disk, is loaded into

main memory, at load time, and executed by the CPU, at run time.

Although most code is written in high level languages, programmers may

use assembly language for programs or fragments of programs that are

time or space-critical. In addition, compilers may not be available for

some special purpose processors, or their compilers may be inadequate

to express the special operations which are required. In these cases also,

the programmer may need to resort to programming in assembly

language.

High level languages allow us to ignore the target computer

architecture during coding. At the machine language level, however, the

underlying architecture is the primary consideration. A program written in

a high level language like C, Pascal, or Fortran may look the same and

execute correctly after compilation on several different computer systems.

The object code that the compiler produces for each machine, however,

will be very different for each computer system, even if the systems use

the same instruction set, such as programs compiled for the PowerPC but

running on a Macintosh vs. running on an IBM RS6000. Having discussed

the system bus, main memory, and the CPU, we now examine details of

a model instruction set, the ARC.

4-6 ARC, RISC ,CISC Computer

A model architecture that is based on the commercial Scalable

Processor Architecture (SPARC) processor that was developed at Sun

Microsystems in the mid-1980‟s. The SPARC has become a popular

architecture since its introduction, which is partly due to its “open” nature:

the full definition of the SPARC architecture is made readily available to

the public (SPARC, 1992). In this chapter, we will look at just a subset of

the SPARC, which we call “A RISC Computer” (ARC). “RISC” is yet

 Computer Organisation

 NOTES

151

another acronym, for reduced instruction set computer. “CISC “for

Complex instruction set computer

The ARC has most of the important features of the SPARC

architecture, but without some of the more complex features that are

present in a commercial processor.

4-7 CISC to RISC

Historically, when memory cycle times were very long and when

memory prices were high, fewer, complicated instructions held an

advantage over more, simpler instructions. There came a point, however,

when memory became inexpensive enough and memory hierarchies

became fast and large enough, that computer architects began

reexamining this advantage. One technology that affected this

examination was pipelining that is, keeping the execution unit more or

less the same, but allowing different instructions (which each require

several clock cycles to execute) to use different parts of the execution unit

on each clock cycle. For example, one instruction might be accessing

operands in the register file while another is using the ALU.

We will cover pipelining in more detail later in the chapter, but the

important point to make here is that computer architects learned that

CISC instructions do not fit pipelined architectures very well. For

pipelining to work effectively, each instruction needs to have similarities to

other instructions, at least in terms of relative instruction complexity. The

reason can be viewed in analogy to an assembly line that produces

different models of an automobile. For efficiency, each “station” of the

assembly line should do approximately the same amount and kind of

work. If the amount or kind of work done at each station is radically

different for different models, then periodically the assembly line will have

to “stall” to accommodate the requirements of the given model.

CISC instruction sets have the disadvantage that some instructions, such

as register-to-register moves, are inherently simple, whereas others, such

as the MVC instruction and others like it are complex, and take many

more clock cycles to execute.

The main philosophical underpinnings of the RISC approach are:

• Prefetch instructions into an instruction queue in the CPU before they

are needed. This has the effect of hiding the latency associated with the

instruction fetch.

• With instruction fetch times no longer a penalty, and with cheap memory

to hold a greater number of instructions, there is no real advantage to

 Computer Organisation

 NOTES

152

CISC instructions. All instructions should be composed of sequences of

RISC in structions, even though the number of instructions needed may

increase (typically by as much as 1/3 over a CISC approach).

• Moving operands between registers and memory is expensive, and

should be minimized.

• The RISC instruction set should be designed with pipelined

architectures in mind.

• There is no requirement that CISC instructions be maintained as

integrated wholes; they can be decomposed into sequences of simpler

RISC instructions.

The result is that RISC architectures have characteristics that distinguish

them from CISC architectures:

• All instructions are of fixed length, one machine word in size.

• All instructions perform simple operations that can be issued into the

pipeline at a rate of one per clock cycle. Complex operations are now

composed of simple instructions by the compiler.

• All operands must be in registers before being operated upon. There is

a separate class of memory access instructions: LOAD and STORE. This

is referred to as a LOAD-STORE architecture.

• Addressing modes are limited to simple ones. Complex addressing

calculations are built up using sequences of simple operations.

• There should be a large number of general registers for arithmetic

operations so that temporary variables can be stored in registers rather

than on a stack in memory.

4-8 Pipelining the Datapath

The flow of instructions through a pipeline follows the steps

normally taken when an instruction is executed. In the discussion below

we consider how three classes of instructions: arithmetic, branch, and

load-store, are executed, and then we relate this to how the instructions

are pipelined.

4-8-1 ARITHMETIC, BRANCH, AND LOAD-STORE INSTRUCTIONS

Consider the “normal” sequence of events when an arithmetic instruction

is executed in a load-store machine:

1) Fetch the instruction from memory;

 Computer Organisation

 NOTES

153

2) Decode the instruction (it is an arithmetic instruction, but the CPU has

to find that out through a decode operation);

3) Fetch the operands from the register file;

4) Apply the operands to the ALU;

5) Write the result back to the register file.

There are similar patterns for other instruction classes. For branch

instructions the sequence is:

1) Fetch the instruction from memory;

2) Decode the instruction (it is a branch instruction);

3) Fetch the components of the address from the instruction or register

file;

4) Apply the components of the address to the ALU (address arithmetic);

5) Copy the resulting effective address into the PC, thus accomplishing

the branch.

The sequence for load and store instructions is:

1) Fetch the instruction from memory;

2) Decode the instruction (it is a load or store instruction);

3) Fetch the components of the address from the instruction or register

file;

4) Apply the components of the address to the ALU (address arithmetic);

5) Apply the resulting effective address to memory along with a read

(load) or write (store) signal. If it is a write signal, the data item to be

written must also be retrieved from the register file.

The three sequences above show a high degree of similarity in

what is done at each stage: (1) fetch, (2) decode, (3) operand fetch, (4)

ALU operation, (5) result writeback. These five phases are similar to the

four phases discussed in chapters 4 and 6 except that we have refined

the fourth phase, “execute,” into two subphases: ALU operation and

writeback, as illustrated in Figure 4-4. A result writeback is not always

needed, and one way to deal with this is to have two separate subphases

(ALU and writeback) with a bypass path for situations when a writeback is

not needed. For this discussion, we take a simpler approach, and force all

 Computer Organisation

 NOTES

154

instructions to go entirely through each phase, whether or not that is

actually needed.

Figure 4-4 Four-stage instruction pipeline.

4-9 PIPELINING INSTRUCTIONS

In practice, each CPU designer approaches the design of the

pipeline from a different perspective, depending upon the particular

design goals and instruction set. For example the original SPARC

implementation had only four pipeline stages, while some floating point

pipelines may have a dozen or more stages.

Each of the execution units performs a different operation in the

fetch-execute cycle. After the Instruction Fetch unit finishes its task, the

fetched instruction is handed off to the Decode unit. At this point, the

Instruction Fetch unit can begin fetching the next instruction, which

overlaps with the decoding of the previous instruction. When the

Instruction Fetch and Decode units complete their tasks, they hand off

the remaining tasks to the next units (Operand Fetch is the next unit for

Decode). The flow of control continues until all units are filled.

4-10 KEEPING THE PIPELINE FILLED

Notice an important point: although it takes multiple steps to

execute an instruction in this model, on average, one instruction can be

executed per cycle as long as the pipeline stays filled. The pipeline does

not stay filled, however, unless we are careful as to how instructions are

ordered. We know from Figure 4-4 that approximately one in every four

instructions is a branch. We cannot fetch the instruction that follows a

branch until the branch completes execution. Thus, as soon as the

pipeline fills, a branch is encountered, and then the pipeline has to be

flushed by filling it with no-operations (NOPs). These NOPs are

sometimes referred to as pipeline bubbles. A similar situation arises with

the LOAD and STORE instructions. They generally require an additional

clock cycle in which to access memory, which has the effect of expanding

the Execute phase from one cycle to two cycles at times. The “wait”

cycles are filled with NOPs. Figure 4-5 illustrates the pipeline behavior

during a memory reference and also during a branch for the ARC

 Computer Organisation

 NOTES

155

instruction set. The addcc instruction enters the pipeline on time step

(cycle) 1. On cycle 2, the ld instruction, which references memory, enters

the pipeline and addcc moves to the Decode stage. The pipeline

continues filling with the srl and subcc instructions on cycles 3 and 4,

respectively. On cycle 4, the addcc instruction is executed and leaves the

pipeline. On cycle 5, the ld instruction reaches the Execute level, but does

not finish execution because an additional cycle is needed for memory

references. The ld instruction finishes execution during cycle 6.

Figure 4-5 Pipeline behavior during a memory reference and a

branch.

4-11 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation And Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

156

UNIT - III

1. NUMBER SYSTEMS

Structure

1-1 Introduction

1-2 Decimal Number Systems
1-3 Binary Number Systems
1-4 Binary Arithmetic

1-4-1 Binary Addition
1-4-2 Binary Subtraction

 1-4-3 Binary Multiplication
1-4-4 Binary Multiplication by shifting left
1-4-5 Binary Division
1-4-6 Binary Division by shifting right
1-4-7 Signed and Unsigned Binary Numbers
1-4-8 Range of Signed and Unsigned Binary numbers
1-4-9 Range of Numbers and Overflow

1-5 Floating-point numbers
1-5-1 Decimal Number Floating-Point Format
1-5-2 Floating number in 32-bit Single-Precision
1-5-3 64-bit Double-Precision Floating Point format

1-6 Summary
1-7 Keywords
1-8 PROBLEMS

Objectives

At the end of lesson you will be able to:

 Describe the decimal number system

 Describe the binary number system

 Discuss the binary arithmetic operations

 Describe the floating-point number

1-1 Introduction

This lesson is dedicated to a discussion on computer

arithmetic. Our goal is to introduce the reader to the fundamental

issues related to the arithmetic operations and circuits used to

support computation in computers. Our coverage starts with an

 Computer Organisation

 NOTES

157

introduction to number systems. In particular, we introduce issues

such as number representations and base conversion. This is

followed by a discussion on integer arithmetic. In this regard, we

introduce a number of algorithms together with hardware schemes

that are used in performing integer addition, subtraction,

multiplication, and division. We end this chapter with a discussion

on floating point arithmetic. In particular, we introduce issues such as

floating-point representation, floating-point operations, and floating-

point hardware schemes.

1.2 Decimal Number System

The decimal number system has ten unique digits 0, 1, 2, 3…
9. Using these single digits, ten different values can be represented.
Values greater than ten can be represented by using the same digits in
different combinations. Thus ten is represented by the number 10; two
hundred seventy five is represented by 275 etc. Thus same set of
numbers 0, 1, 2… 9 are repeated in a specific order to represent larger
numbers.

The decimal number system is a positional number system as
the position of a digit represents its true magnitude. For example, 2 is
less than 7, however 2 in 275 represents 200, whereas 7 represents
70. The left most digit has the highest weight and the right most digit
has the lowest weight. 275 can be written in the form of an expression
in terms of the base value of the number system and weights.

2 x 10
2

+ 7 x 10
1

+ 5 x 10
0

= 200 + 70 + 5 = 275

Where, 10 represent the base or radix

10
2
, 10

1
, 10

0
represent the weights 100, 10 and 1 of the

numbers 2, 7 and 5

1-3 Binary Number System

The Caveman Number system is a hypothetical number
system introduced to explain that number system other than the
Decimal Number system can exist and can be used to represent and
count numbers. Digital systems use a Binary number system.
Binary as the name indicates is a Base-2 number system having only
two numbers 0 and 1. The Binary digit 0 or 1 is known as a ‘Bit’. Table

Decimal
Number

Binary Number Decimal Number Binary Number

0 0 10 1010

1 1 11 1011

2 10 12 1100

 Computer Organisation

 NOTES

158

3 11 13 1101

4 100 14 1110

5 101 15 1111

6 110 16 10000

7 111 17 10001

8 1000 18 10010

9 1001 19 10011

 20 10100

Counting in Binary Number system is similar to counting in
Decimal or Caveman Number systems. In a decimal Number system a
value larger than 9 has to be represented by 2, 3, 4 or more digits. In
the Caveman Number System a value larger than 4 has to be
represented by 2, 3, 4 or more digits of the Caveman Number
System. Similarly, in the Binary Number System a Binary number
larger than 1 has to be represented by 2, 3, 4 or more binary digits.

1-4 Binary Arithmetic

Digital systems use the Binary number system to represent
numbers. Therefore these systems should be capable of performing
standard arithmetic operations on binary numbers.

1-4-1 Binary Addition

Binary Addition is identical to Decimal Addition. By adding
two binary bits a Sum bit and a Carry bit are generated. The only
difference between the two additions is the range of numbers used. In
Binary Addition, four possibilities exist when two single bits are added
together. The four possible input combinations of two single bit
binary numbers and their corresponding Sum and Carry Outputs are
specified in table.

First Number Second Number Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The first three additions give a result 0, 1 and 1

respectively which can be represented by a single binary digit (bit).
The fourth addition results in the number 2, which can be
represented in binary as 102. Thus two digits (bits) are required.

This is similar to the addition of 9 + 3 in decimal. The answer is 12
which can not be represented by a single digit, thus two digits are
required. The number 2 is the sum part and 1 is the carry part.

Any number of binary numbers having any number of

 Computer Organisation

 NOTES

159

digits can be added together. Thus the number 1011, 110, 1000
and 11 can be added together. Most significant digits (bits) of
second and fourth numbers are assumed to be zero.

Carry 1 10 1 Decimal
Equivalent

1
st

Number
 1 0 1 1 (11)

2
nd

Number
 1 1 0 (06)

3
rd

Number
 1 0 0 0 (08)

4
th

Number
 1 1 (03)

Result 1 1 1 0 0 (28)

1-4-2 Binary Subtraction

Binary Subtraction is identical to Decimal Subtraction.
The only difference between the two is the range of numbers.
Subtracting two single bit binary numbers results in a difference bit
and a borrow bit. The four possible input combinations of two single
bit binary numbers and their corresponding Difference and Borrow
Outputs are specified in table. It is assumed that the second number
is subtracted from the first number.

First Number Second Number Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

The second subtraction subtracts 1 from 0 for which a Borrow is
required to make the first digit equal to 2. The Difference is 1. This is
similar to decimal subtraction when 17 is subtracted from 21. The first
digit 7 can not be subtracted from 1, therefore 10 is borrowed from
the next significant digit. Borrowing a 10 allows subtraction of 7 from 11
resulting in a Difference of 4.

1-4-3 Binary Multiplication

Binary Multiplication is similar to the Decimal multiplication
except for the range of numbers. Four possible combinations of two
single bit binary numbers and their products are listed in table

First Number Second Number Product

0 0 0

0 1 0

1 0 0

1 1 1

 Computer Organisation

 NOTES

160

Multiplying two binary numbers such as 1101 x 101 is
performed by a shift and add operation. The binary multiplication shifts
and adds partial product terms.

1101
 X 101

 1101 1
st

product term

 0000 2
nd

product term

 1101 3
rd

product term
 1000001

1-4-4. Binary Multiplication by shifting left

Binary Multiplication can be performed by shifting the binary
number towards left. A left shift by a single bit is equivalent to
multiplication by 2. A left shift by two bits is equivalent to multiplication

by 4. Generally, the multiplication factor is determined by 2
n

where n is
the number of bit shifts.

00011 (3) original binary number

00110 (6) binary number shifted left by 1 bit

01100 (12) binary number shifted left by 2 bits

11000 (24) binary number shifted left by 3 bits

1-4-5. Binary Division

Division in binary follows the same procedure as in the division of
decimal numbers. An example illustrates the division of binary numbers

10
 101|1101
 101
 011
 000
 11

1-4-6. Binary Division by shifting right

Binary Division can be performed by shifting the binary number
towards right. A right shift by a single bit is equivalent to division by
2. A right shift by two bits is equivalent to division by 4. Generally,

the division factor is determined by 2
n

where n is the number of bit
shifts.

 Computer Organisation

 NOTES

161

10100 (20) original binary number

01010 (10) binary number shifted right by 1 bit

00101 (5) binary number shifted right by 2 bits

1-4-7 Signed and Unsigned Binary Numbers

Digital systems not only handle positive numbers but both
positive and negative numbers. In the decimal number system positive
numbers are identified by the + sign and negative numbers are
represented by the – sign.

In a digital system which uses the Binary number system,
the positive and negative signs can not be represented as + and -. As
mentioned in the Overview all forms of numbers, text, punctuation
marks etc. are represented in the form of 1s and 0s. Thus the positive
and negative signs are also presented in terms of binary 0 and 1.

To handle positive and negative binary numbers, the digital
system sets aside the most significant digit (bit) to represent the sign

• MSB set to 1 indicates a negative number

• MSB set to 0 indicates a positive number

Thus +13 and -13 are represented as 01101and 11101
respectively. The bits 1101 represent the number 13 and the MSBs 0
and 1 represent positive and negative signs respectively. Thus binary
numbers having the MSB signifying the Sign bit are treated as Signed
B i n a r y N u m b e r s . This r e p r e s e n t a t i o n i s k n o w n a s t h e
S i g n e d Magnitude representation.

Digital systems also handle binary numbers which are assumed
to be positive and therefore do not have the most significant sign bit.
Such numbers are known as unsigned numbers. Digital system thus
have to handle two different types of binary numbers, signed and
unsigned. Thus 111012 represent -13 in signed binary and 29 in

unsigned binary. How should a Digital System treat a binary number?
Should it consider it as a signed or unsigned number? A digital
system on its own can not decide how to handle a binary number. The
digital system has to be notified beforehand to deal with a certain
binary representation as signed or unsigned.
1’s & 2’s
complement

Informing the digital system how to treat a binary number is not
very efficient. A better way is to represent negative signed numbers in
their 2’s complement form. Using 2’s Complement form to represent
signed numbers, allows direct manipulation of positive as well as
negative numbers without having to worry about setting the most
significant sign bit to indicate positive and negative numbers.

 Computer Organisation

 NOTES

162

A 2’s complement of a number is obtained by first taking the 1’s
complement of a number and then adding a 1 to change the 1’s
complement to 2’s complement. 1’s complement of a number is
obtained by simply inverting all its bits. Obtaining the 2’s complement
of 13 is described in the example below.

01101 The number 13
10010 1’s complement of 13 is obtained by inverting all the five bits.
 +1
10011 2’s complement of 13 is obtained by adding a 1 to its 1’s
complement.

 In a 2’s complement number system all negative numbers are
represented in their 2’s complement form and all positive numbers are
represented in their actual form. Negative numbers can be readily
identified by their MSBs which are set to 1. Thus in a 2’s complement
representation +13 is represented as 01101 and -13 is represented
as 10011.

By having numbers represented in their 2’s complement
form addition and subtraction operations can easily be performed
without having to worry about the sign bits. Thus +13 added to -13
should result in a zero value. This can be verified by directly adding the
+13 and -13 in their 2’s complement forms.

01101
10011

100000

The most significant carry bit is discarded; retaining only the first
5 bits proves that adding +13 and -13 results in a zero value.
Similarly it can be shown that adding the numbers +7 and -13 results
in -6.

10011 (-13)
00111 (+7)
11010 (-6)

The binary 2’s complement number 11010 has its most
significant bit set to 1 indicating that the number is negative. The
actual magnitude of the negative number is determined by taking the
2’s complement of 11010.

11010 Original number
00101 1’s complement of Original number
 + 1
00110 2’s complement of Original number is equal to 6.

1-4-8 Range of Signed and Unsigned Binary numbers

Three d i f f e r e n t t y p e s o f B i n a r y r e p r e s e n t a t i o n s
h a v e b e e n discussed. The Unsigned Binary representation can

 Computer Organisation

 NOTES

163

only represent positive binary numbers. The Sign- Magnitude can
represent both positive and negative numbers. The 2’s complement
signed representation also allows positive and negative numbers to be
handled.

Each of the three binary number representations can
represent certain range of binary numbers determined by the total
number of bits used.

The maximum range of values that can be represented in
any number system depends upon the number of digits assigned
to represent the value. A 5-digit car odometer can only count up to
99,999 and then it rolls back to 00000. Similarly an 8-digit calculator can
only handle integer numbers of the magnitude 99,999,999. A
calculator that reserves the most significant digit to write + or – can
only handle a maximum range of integer numbers from -9,999,999 to
+9,999,999.

A 3-bit unsigned binary number can have values ranging
between 000 and 111. Adding 100 and 111 unsigned numbers results
in 1011, this result is considered to be out of range as 4 bits are
required. Similarly a 4-bit sign magnitude number can handle a
number range between -7 and +7. -8 can not be represented as 5-bits
are required 11000. A 4-bit 2’s complement based signed number range
is between -8 to +7.

The table shows the range of values that can be represented
by the three Binary representations using 4-bits.

Decimal
Number

Sign-Magnitude
form

2’s complement
form

Unsigned form

-8 1000

-7 1111 1001

-6 1110 1010

-5 1101 1011

-4 1100 1100

-3 1011 1101

-2 1010 1110

-1 1001 1111

0 0000 0000 000

1 0001 0001 001

2 0010 0010 010

3 0011 0011 011

4 0100 0100 100

5 0101 0101 101

6 0110 0110 110

7 0111 0111 111

 Computer Organisation

 NOTES

164

• Signed Magnitude representation can represent positive and

negative numbers in the range (2
n-1

-1) and - (2
n-1

-1) where n
represents the number of bits.

• 2’s complement signed representation can represent positive and

negative numbers in the range (2
n-1

-1) and - (2
n-1

) where n
represents the number of bits.

• The unsigned representation can represent positive numbers in

the range 0 to 2
n
-1, where n represents the number of bits.

1-4-9 Range of Numbers and Overflow

When arithmetic operation such as Addition, Subtraction,
Multiplication and Division are performed on numbers the results
generated may exceed the range of values specified by the Binary
representations. The values that exceed the specified range can not
be correctly represented and are considered as Overflow values.

For example, a 3-bit Unsigned representation can correctly

represent Unsigned Binary values in the range 0 to 2
3
-1 (0 to 7).

Adding 3-bit Unsigned 010 (2) to another 3- bit Unsigned 111 (7)
results in 1001 (9) which exceeds the 3-bit unsigned range and is
considered to be an Overflow. Similarly, 1011 (-5) and 1100 (-4) values
represented in 4- bit 2’s complement form when added together result
in 10111 (-9) which exceeds the 4- bit 2’s complement range of values

(2
4-1

-1) and - (2
4-1

) (7 to -8) and is considered as an Overflow.

1-5 Floating-point numbers

The floating-point number system, based on scientific
notation is capable of representing very large and very small numbers
without having to increase the number of bits. Numbers having an
integer part and a fraction part are also easily represented using the
Floating-Point representation.

Floating point numbers are defined using certain standards.
The ANSI/IEEE Standard 754 defines a 32-bit Single-Precision Floating
Point format for binary numbers. The 32-bit Single-Precision F.P. format
is shown in Figure

 S Exponent Mantissa

• The single Sign (S) bit represents the sign of the number (0=positive
1=negative)

• The Exponent (E) 8 bits represent the exponent

 Computer Organisation

 NOTES

165

• The Mantissa 23 bits represent the magnitude of the number

1-5-1 Decimal Number Floating-Point Format

To help understand how numbers are represented in the 32-
bit Single Precision Floating Point format. Consider a similar 15 digit
Decimal Number format to represent very large and very small
decimal numbers. The 15-digit floating point format to represent
decimal numbers is shown in Figure 3.2.

S E E M M M M M M M M M M M M

• The Sign (S) 1 digit represents the sign of the number (+/–)

• The Exponent (E) 2 digits represent the exponent

• The Mantissa 12 digits represent the magnitude of the number

The number 6918.3125 can be written as 6.9183125 x 10
3
.

• 69183125 represents the magnitude of the number (mantissa)

• 3 represents the exponent

• The decimal point is moved to the extreme left of the number
(normalized) so that the magnitude is represented by a fraction part.

The number 0.69183125 x 10
4

is represented in decimal floating point.
notation as

+ 0 4 6 9 1 8 3 1 2 5 0 0 0 0

• Using this 15 digit (including the sign digit) notation the largest

number that can be represented is 0.999,999,999,999 x 10
99

Representing Negative Exponent Values

The 15-digit decimal floating-point format does not allow
negative exponents to be represented. There are two options available

• Increase the Exponent field by one digit to allow for the sign to
represent positive and negative exponents. The total number of
digits increases to 16.

• Used a Biased Exponent scheme. Instead of writing the exponent
value directly add the value 50 to the exponent and write the
result in the exponent field. Using this biased scheme the

 Computer Organisation

 NOTES

166

maximum positive exponent value that can be represented is 49
(49 + 50 = 99). The smallest exponent that can be represented is -
50 (-50 + 50 = 0).

After allowing positive and negative exponent values to be
represented, the range of positive and negative decimal numbers that
can be represented using the decimal floating point notation is

0.999,999,999,999 x 10
49

to 0.999,999,999,999 x 10
-50

Representing Zero and Infinity Values

How should the number Zero and the value Infinity be
represented using the 15- digit decimal floating point format?

• The number zero can be represented by setting al the Mantissa
digits to 0. The Biased exponent field can be set to any number and
the sign field can be set to + or –

• The number infinity can not be represented.

The solution to represent infinity is to set aside a biased
exponent value to represent infinity. There are two options available

• Allow numbers having the maximum and minimum exponent values
to be 48 and -49 instead of 49 and -50. Thus the Biased exponent
values would range between 98 (50 + 48 = 98) and 01 (-49 + 50 =
1). The biased exponent value 00 can be used to represent the
number zero whatever the value of the mantissa. The biased exponent
value 99 can be used to represent the number infinity what ever the
value of mantissa.

• Allow numbers having the maximum and minimum exponent values
to be 49 and -48 instead of 49 and -50 and selecting 49 as the
biased number. Thus the Biased exponent values would range
between 98 (49 + 49 = 98) and 01 (-48 + 49 = 1). The biased
exponent value 00 can be used to represent the number zero
whatever the value of the mantissa. The biased exponent value
99 can be used to represent the number infinity what ever the
value of mantissa. This approach is perhaps better as the range of
maximum positive exponent remains 49 and the range of values
having a negative exponent have been reduced to -48.

1-5-2 Floating number in 32-bit Single-Precision

Floating Point format

The 32-bit Single Precision Floating Point format represents
the Exponent value as a Biased Number, reserving the exponent
values 0 and 255 to represent the value zero and infinity respectively.
The range of exponent value is from +127 to -126.

 Computer Organisation

 NOTES

167

The step wise representation of a decimal number 6918.3125
in 32-bit Floating

Point format

• Convert Decimal number into equivalent Binary representation:
Binary equivalent of

Decimal number 6918.3125 is 1101100000110.0101

• Normalizing the binary number: 1.1011000001100101 x 2
12

• Representing the exponent in Biased 127: exponent is 12 + 127
=139 = 10001011

 0 10001011 10110000011001010000000

• The Mantissa is 10110000011001010000000 instead of
110110000011001010000000 as all binary numbers that are normalized
always have a leading 1. In the floating point format the leading 1 is not

written, however it is taken into account in all calculations. The leading
1 which is not written is known as a hidden 1.

1-5-3 64-bit Double-Precision Floating Point format

The 32-bit Single precision floating point representation can

represent largest positive or negative number of the order of 2
127

and the smallest positive or negative number of the order of 2
-126

.

To represent numbers larger than 2
127

and numbers smaller than

2
-126

, 64- bit Double Precision floating point format is used.

The 64-bit Double-Precision format sets aside 11 bits to
represent the exponent as Biased-1023 and a mantissa of 52 bits. A
single bit, the most significant bit, is set aside for the sign.

1-6 Summary

A number of issues related to computer arithmetic. Our
discussion started with an introduction to number representation and
radix conversion techniques. We then discussed integer arithmetic and,
in particular, we discussed the four main operations, that is, addition,
subtraction, multiplication, and division. In each case, we have shown
basic architectures and organization. The last topic discussed in this
lesson has been floating-point representation.

1-7 Keywords

Decimal Number: The decimal (base ten or occasionally denary)
numeral system has ten as its base. It is the most widely used numeral
system, perhaps because humans have ten digits over both hands.

http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/10_%28number%29
http://en.wikipedia.org/wiki/Base_%28mathematics%29

 Computer Organisation

 NOTES

168

Binary Number: The binary numeral system, or base-2 number system,
is a numeral system that represents numeric values using two symbols,
usually 0 and 1.

Binary Arithmetic: Arithmetic in binary is much like arithmetic in other
numeral systems. Addition, subtraction, multiplication, and division can be
performed on binary numerals.

Floating-point number: The term floating point refers to the fact that the
radix point (decimal point, or, more commonly in computers, binary point)
can "float": that is, it can be placed anywhere relative to the significant
digits of the number.

Radix : In mathematical numeral systems, the base or radix is usually the
number of unique digits, including zero, that a positional numeral system
uses to represent numbers.

1-8 Exercise

1. Show the results of adding the following pairs of five-bit (i.e. one sign
bit and four data bits) two’s complement numbers and indicate whether
or not overflow occurs for each case:

2. One way to determine that overflow has occurred when adding two
numbers is to detect that the result of adding two positive numbers is
negative, or that the result of adding two negative numbers is positive.
The overflow rules are different for subtraction: there is overflow if the
result of subtracting a negative number from a positive number is
negative or the result of subtracting a positive number from a negative
number is positive. Subtract the numbers shown below and determine
whether or not an overflow has occurred. Do not form the two’s
complement of the subtrahend and add: perform the subtraction bit by
bit; showing borrows generated at each position:

3. Add the following two’s complement and one’s complement binary
numbers as indicated. For each case, indicate if there is overflow.

http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/0_%28number%29
http://en.wikipedia.org/wiki/1_%28number%29
http://en.wikipedia.org/wiki/Radix_point
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Numerical_digit
http://en.wikipedia.org/wiki/Positional_notation
http://en.wikipedia.org/wiki/Numeral_system

 Computer Organisation

 NOTES

169

2. COMPUTER ARITHMETIC

Structure

2-1 Introduction
2-2 Hardware implementation of Adder and Subtractor

2-2-1 Ripple-Carry Addition and Ripple-Borrow Subtraction

2-3 Fixed Point Multiplication and Division
2-3-1Unsigned Multiplication
2-3-2 Unsigned Division

2- 4 Signed Multiplication and Division
2- 5 Floating Point Arithmetic

2-5-1 Floating Point Addition subtractor
2-5-2 Floating point multiplication and division

2-6 Summary
2-7 Keywords
2-8 PROBLEMS

Objectives

At the end of lesson you will be able to:

 Discuss about hardware implementation of adder and subtractor

 Discuss about Fixed Point Multiplication and Division

 Discuss about Signed Multiplication and Division

 Discuss about Floating Point Arithmetic

2-1Introduction

In the previous lesson we explored a few ways that numbers can be

represented in a digital computer, but we only briefly touched upon
arithmetic operations that can be performed on those numbers. In this
chapter we cover four basic arithmetic operations: addition, subtraction,
multiplication, and division. We begin by describing how these four
operations can be performed on fixed point numbers, and continue with a
description of how these four operations can be performed on floating point
numbers.

2-2 Hardware implementation of Adder and Subtractor

Up until now we have focused on algorithms for addition and
subtraction. Now we will take a look at implementations of simple adders and
subtractors.

 Computer Organisation

 NOTES

170

 2-2-1 Ripple-Carry Addition and Ripple-Borrow Subtraction

 The adder is modeled after the way that we normally perform decimal
addition by hand, by summing digits in one column at a time while moving
from right to left. In this section, we review the ripple-carry adder, and then
take a look at a ripple-borrow subtractor. We then combine the two into a
single addition/subtraction unit.

Figure 2-1 4-bit ripple-carry adder

Figure 2-1 shows a 4-bit ripple-carry adder that is developed in Appendix
A. Two binary numbers A and B are added from right to left, creating a sum
and a carry at the outputs of each full adder for each bit position.

Four 4-bit ripple-carry adders are cascaded in Figure 2-2 to add two 16-

bit numbers. The rightmost full adder has a carry-in of 0. Although the

rightmost full adder can be simplified as a result of the carry-in of 0, we will
use the more general form and force c0 to 0 in order to simplify subtraction

later on.

Figure 2-2 A 16-bit adder is made up of a cascade of four 4-bit ripple-carry

adders.

Subtraction of binary numbers proceeds in a fashion analogous to addition. We
can subtract one number from another by working in a single column at a time,
subtracting digits of the subtrahend bi, from the minuend ai, as we move from

right to left. As in decimal subtraction, if the subtrahend is larger than the
minuend or there is a borrow from a previous digit then a borrow must be
propagated to the next most significant bit. Figure 2-3 shows the truth
t ab le and a “black-box” circuit for subtraction.

 Computer Organisation

 NOTES

171

Figure 2-3 Truth table and schematic symbol for a ripple-borrow subtractor.

Full subtractors can be cascaded to form ripple-borrow subtractors in the same
manner that full adders are cascaded to form ripple-carry adders. Figure 2--4
illustrates a four-bit ripple-borrow subtractor that is made up of four full
subtractors.

Figure 2-4 Ripple-borrow subtractor.

As discussed above, an alternative method of implementing

subtraction is to form the two’s complemented negative of the subtrahend

and add it to the minuend. The circuit that is shown in Figure 2-5 performs

both addition and subtraction on four-bit two’s complement numbers by

allowing the bi inputs to be complemented when subtraction is desired. An

(ADD)’ /SUBTRACT control line determines which function is performed.

The bar over the ADD symbol indicates the ADD operation is active when

the signal is low. That is, if the control line is 0, then the ai and bi inputs are

passed through to the adder, and the sum is generated at the si outputs. If

the control line is 1, then the ai inputs are passed through to the adder, but

the bi inputs are one’s complemented by the XOR gates before they are

passed on to the adder. In order to form the two’s complement negative, we

must add 1 to the one’s complement negative, which is accomplished by

setting the carry - in line (c0) to 1 with the control input. In this way, we can

share the adder hardware among both the adder and the subtractor.

 Computer Organisation

 NOTES

172

Figure 2-5 Addition / subtraction unit.

2-3 Fixed Point Multiplication and Division

Multiplication and division of fixed point numbers can be
accomplished with addition, subtraction, and shift operations. The sections
that follow describe methods for performing multiplication and division of fixed
point numbers in both unsigned and signed forms using these basic
operations. We will first cover unsigned multiplication and division, and then

we will cover signed multiplication and division.

2-3-1Unsigned Multiplication

Multiplication of unsigned binary integers is handled similar to the way
it is carried out by hand for decimal numbers. Figure 2-7 illustrates the
multiplication process for two unsigned binary integers. Each bit of the
multiplier determines whether or not the multiplicand, shifted left according to
the position of the multiplier bit, is added into the product. When two unsigned
n-bit numbers are multiplied, the result can be as large as 2n bits. The
example shown in Figure 2-7 multiplication of two four bit operands results in
an eight-bit product. When two signed n-bit numbers are multiplied, the result
can be as large as only 2(n-1) +1 = (2n-1) bits, because this is equivalent to
multiplying two (n-1)-bit unsigned numbers and then introducing the sign bit.

Figure 2-7 Multiplication of two unsigned binary integers.

 Computer Organisation

 NOTES

173

A hardware implementation of integer multiplication can take a similar
form to the manual method. Figure 2-8 shows a layout of a multiplication unit
for four-bit numbers, in which there is a four-bit adder, a control unit, three
four-bit registers, and a one-bit carry register. In order to multiply two
numbers, the multiplicand is placed in the M register, the multiplier is placed
in the Q register, and the A and C registers are cleared to zero. During
multiplication, the rightmost bit of the multiplier determines whether the
multiplicand is added into the product at each step. After the multiplicand is
added into the product, the multiplier and the A register are simultaneously
shifted to the right. This has the effect of shifting the multiplicand to the left
(as for the manual process) and exposing the next bit of the multiplier in
position q0.

Figure 2-8 A serial multiplier

Figure 2-9 illustrates the multiplication process. Initially, C and A are
cleared, and M and Q hold the multiplicand and multiplier, respectively. The
rightmost bit of Q is 1, and so the multiplier M is added into the product in the
A register. The A and Q registers together make up the eight-bit product, but
the A register is where the multiplicand is added. After M is added to A, the A
and Q registers are shifted to the right. Since the A and Q registers are linked
as a pair to form the eight-bit product, the rightmost bit of A is shifted into the
leftmost bit of Q. The rightmost bit of Q is then dropped, C is shifted into the
leftmost bit of A, and a 0 is shifted into C.

 Computer Organisation

 NOTES

174

Figure 3-12 An example of multiplication using the serial multiplier

The process continues for as many steps as there are bits in the
multiplier. On the second iteration, the rightmost bit of Q is again 1, and so
the multiplicand is added to A and the C/A/Q combination is shifted to the
right. On the third iteration, the rightmost bit of Q is 0 so M is not added to A,
but the C/A/Q combination is still shifted to the right. Finally, on the fourth
iteration, the rightmost bit of Q is again 1, and so M is added to A and the
C/A/Q combination is shifted to the right. The product is now contained in the
A and Q registers, in which A holds the high-order bits and Q holds the low-
order bits.

2-3-2 Unsigned Division

In longhand binary division, we must successively attempt to subtract
the divisor from the dividend, using the fewest number of bits in the dividend
as we can. Figure 2-10 illustrates this point by showing that (11)2 does not
“fit” in 0 or 01, but does fit in 011 as indicated by the pattern 001 that starts
the quotient.

Figure 2-10 Example of base 2 division.

Computer-based division of binary integers can be handled similar to
the way that binary integer multiplication is carried out, but with the
complication that the only way to tell if the dividend does not “fit” is to actually
do the subtraction and test if the remainder is negative. If the remainder is
negative then the subtraction must be “backed out” by adding the divisor back
in, as described below. In the division algorithm, instead of shifting the

 Computer Organisation

 NOTES

175

product to the right as we did for multiplication, we now shift the quotient to
the left, and we subtract instead of adding. When two n-bit unsigned numbers
are being divided, the result is no larger than n bits.

Figure 2-11 shows a layout of a division unit for four-bit numbers in
which there is a five bit adder, a control unit, a four-bit register for the
dividend Q, and two five-bit registers for the divisor M and the remainder A.
Five-bit registers are used for A and M, instead of 4-bit registers as we might
expect, because an extra bit is needed to indicate the sign of the intermediate
result. Although this division method is for unsigned numbers, subtraction is
used in the process and negative partial results sometimes arise, which
extends the range from −16 through +15, thus there is a need for 5 bits to
store intermediate results.

Figure 2-11 A serial divider

In order to divide two four-bit numbers, the dividend is placed in the Q
register, the divisor is placed in the M register, and the A register and the high
order bit of M are cleared to zero. The leftmost bit of the A register
determines whether the divisor is added back into the dividend at each step.
This is necessary in order to restore the dividend when the result of
subtracting the divisor is negative, as described above. This is referred to as
restoring division, because the dividend is restored to its former value when
the remainder is negative. When the result is not negative, then the least
significant bit of Q is set to 1, which indicates that the divisor “fits” in the
dividend at that point.

Figure 2-12 illustrates the division process. Initially, A and the high
order bit of M are cleared, and Q and the low order bits of M are loaded with
the dividend and divisor, respectively. The A and Q registers are shifted to
the left as a pair and the divisor M is subtracted from A. Since the result is
negative, the divisor is added back to restore the dividend, and q0 is cleared
to 0. The process repeats by shifting A and Q to the left, and by subtracting M
from A. Again, the result is negative, so the dividend is restored and q0 is
cleared to 0. On the third iteration, A and Q are shifted to the left and M is
again subtracted from A, but now the result of the subtraction is not negative,

 Computer Organisation

 NOTES

176

so q0 is set to 1. The process continues for one final iteration, in which A and
Q is shifted to the left and M is subtracted from A, which produces a negative
result. The dividend is restored and q0 is cleared to 0. The quotient is now
contained in the Q register and the remainder is contained in the A register.

Figure 2-12 an example of division using the serial divider.

2- 4 Signed Multiplication and Division

If we apply the multiplication and division methods described in the
previous sections to signed integers, then we will run into some trouble.
Consider multiplying −1 by +1 using four-bit words, as shown in the left side
of Figure 2-13 The eight-bit equivalent of +15 is produced instead of −1. What
went wrong is that the sign bit did not get extended to the left of the result.
This is not a problem for a positive result because the high order bits default
to 0, producing the correct sign bit 0.

Figure 2-13 Multiplication of signed integers.

 Computer Organisation

 NOTES

177

A solution is shown in the right side of Figure 2-13, in which each
partial product is extended to the width of the result, and only the rightmost
eight bits of the result are retained. If both operands are negative, then the
signs are extended for both operands, again retaining only the rightmost eight
bits of the result.

Signed division is more difficult. We will not explore the methods here,
but as a general technique, we can convert the operands into their positive
forms, perform the division, and then convert the result into its true signed
form as a final step.

2- 5 Floating Point Arithmetic

Arithmetic operations on floating point numbers can be carried out
using the fixed point arithmetic operations described in the previous sections,
with attention given to maintaining aspects of the floating point
representation. In the sections that follow, we explore floating point arithmetic
in base 2 and base 10, keeping the requirements of the floating point
representation in mind.

2- 5 - 1 Floating Point Addition subtractor

Floating point arithmetic differs from integer arithmetic in that
exponents must be handled as well as the magnitudes of the operands. As in
ordinary base 10 arithmetic using scientific notation, the exponents of the
operands must be made equal for addition and subtraction. The fractions are
then added or subtracted as appropriate, and the result is normalized.

This process of adjusting the fractional part and also rounding the
result can lead to a loss of precision in the result. Consider the unsigned
floating point addition (.101 × 23 + .111 × 24) in which the fractions have three
significant digits. We start by adjusting the smaller exponent to be equal to
the larger exponent and adjusting the fraction accordingly. Thus we have
.101 × 23 = .010 × 24, losing .001 × 23 of precision in the process. The
resulting sum is

(.010 + .111) × 24 = 1.001 × 24 = .1001 × 25,

and rounding to three significant digits, .100 × 25, and we have lost another
0.001 × 24 in the rounding process.

Why do floating point numbers have such complicated formats?

We may wonder why floating point numbers have such a complicated
structure, with the mantissa being stored in signed magnitude representation,
the exponent stored in excess notation, and the sign bit separated from the
rest of the magnitude by the intervening exponent field. There is a simple
explanation for this structure. Consider the complexity of performing floating
point arithmetic in a computer. Before any arithmetic can be done, the
number must be unpacked from the form it takes in storage. The exponent
and mantissa must be extracted from the packed bit pattern before an

 Computer Organisation

 NOTES

178

arithmetic operation can be performed; after the arithmetic operation(s) are
performed, the result must be renormalized and rounded, and then the bit
patterns are re-packed into the requisite format.

The virtue of a floating point format that contains a sign bit followed by
an exponent in excess notation, followed by the magnitude of the mantissa, is
that two floating point numbers can be compared for >, <, and = without
unpacking. The sign bit is most important in such a comparison, and it
appropriately is the MSB in the floating point format. Next most important in
comparing two numbers is the exponent, since a change of ± 1 in the
exponent changes the value by a factor of 2 (for a base 2 format), whereas a
change in even the MSB of the fractional part will change the value of the
floating point number by less than that.

In order to account for the sign bit, the signed magnitude fractions are
represented as integers and are converted into two’s complement form. After
the addition or subtraction operation takes place in two’s complement, there
may be a need to normalize the result and adjust the sign bit. The result is
then converted back to signed magnitude form.

2-5-2 Floating point multiplication and division

Floating point multiplication and division are performed in a manner
similar to floating point addition and subtraction, except that the sign,
exponent, and fraction of the result can be computed separately. If the
operands have the same sign, then the sign of the result is positive. Unlike
signs produce a negative result. The exponent of the result before
normalization is obtained by adding the exponents of the source operands for
multiplication, or by subtracting the divisor exponent from the dividend
exponent for division. The fractions are multiplied or divided according to the
operation, followed by normalization.

Consider using three-bit fractions in performing the base 2
computation: (+.101× 22) × (−.110 × 2-3). The source operand signs differ,
which means that the result will have a negative sign. We add exponents for
multiplication, and so the exponent of the result is 2 + −3 = −1. We multiply
the fractions, which produces the product .01111. Normalizing the product
and retaining only three bits in the fraction produces −.111 × 2−2. Now
consider using three-bit fractions in performing the base 2 computation:
(+.110 × 25) / (+.100 × 24). The source operand signs are the same, which
means that the result will have a positive sign. We subtract exponents for
division, and so the exponent of the result is 5 – 4 = 1. We divide fractions,
which can be done in a number of ways. If we treat the fractions as unsigned
integers, then we will have 110/100 = 1 with a remainder of 10. What we
really want is a contiguous set of bits representing the fraction instead of a
separate result and remainder, and so we can scale the dividend to the left by
two positions, producing the result: 11000/100 = 110. We then scale the
result to the right by two positions to restore the original scale factor,
producing 1.1 Putting it all together, the result of dividing (+.110 × 25) by
(+.100 × 24) produces (+1.10 × 21). After normalization, the final result is
(+.110 × 22).

 Computer Organisation

 NOTES

179

2-6 Summary

In this unit we have discuss about the hardware implementation of
adder and subtractor by different techniques. We also discuss multiplication
and division in fixed and signed numbers. Finally we focus on floating point
arithmetic operations.

2-7 Keywords

Ripple-Carry: It is possible to create a logical circuit using multiple full
adders to add N-bit numbers. Each full adder inputs a Cin, which is the Cout of
the previous adder. This kind of adder is a ripple carry adder, since each
carry bit "ripples" to the next full adder. Note that the first (and only the first)
full adder may be replaced by a half adder.

Serial adder: The serial binary adder is a digital circuit that performs binary
addition bit by bit. The serial full adder has three single bit inputs for the
numbers to be added and the carry in.

Floating point numbers: The term floating point refers to the fact that the
radix point (decimal point, or, more commonly in computers, binary point) can
"float": that is, it can be placed anywhere relative to the significant digits of
the number.

2-8 Exercise

1. Show the results of adding the following pairs of five-bit (i.e. one sign bit
and four data bits) two’s complement numbers and indicate whether or not
overflow occurs for each case:

2. Show the process of serial unsigned multiplication for 1010 (multiplicand)
multiplied by 0101 (multiplier). Use the form shown in Figure 2-9.

3. Show the process of serial unsigned division for 1010 divided by 0101. Use
the form shown in Figure 2-12.

4. Show the process of serial unsigned division for 1010 divided by 0100, but
instead of generating a remainder, compute the fraction by continuing the
process. That is, the result should be 10.12.

5. The 16-bit adder shown below uses a ripple carry among four-bit carry
lookahead adders.

http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Full_adder
http://en.wikipedia.org/wiki/Radix_point
http://en.wikipedia.org/wiki/Significant_figures

 Computer Organisation

 NOTES

180

(a) What is the longest gate delay through this adder?

(b) What is the shortest gate delay through this adder, from any input to any
output?

(c) What is the gate delay for s12?

 Computer Organisation

 NOTES

181

3. HIGH PERFORMANCE ARITHMETIC

Structure

3-1 Introduction
3-2 High Performance Addition
3-3 High Performance Multiplication

3-3-1 Booth Algorithm
3-3-2 Modified Booth Algorithm
3-3-3 Array Multipliers

3-4 High Performance Division
3-5 Residue Arithmetic
3-6 Summary
3-7 Keywords
3-8 Exercise

Objectives

At the end of this lesson you should be able to:

 Describe the high performance addition, multiplication, and
division

 Discuss about Residue Arithmetic

3-1 Introduction

For many applications, the speed of arithmetic operations is the
bottleneck to performance. Most supercomputers, such as the Cray, the
Tera, and the Intel Hypercube are considered “super” because they excel
at performing fixed and floating point arithmetic. In this section we discuss
a number of ways to improve the speed of addition, subtraction,
multiplication, and division.

3-2 High Performance Addition

The ripple-carry adder that we reviewed in lesson 2 may introduce
too much delay into a system. The longest path through the adder is from
the inputs of the least significant full adder to the outputs of the most
significant full adder. The process of summing the inputs at each bit
position is relatively fast (a small two-level circuit suffices) but the carry
propagation takes a long time to work its way through the circuit. In fact,
the propagation time is proportional to the number of bits in the operands.
This is unfortunate, since more significant in an addition translates to
more time to perform the addition. In this section, we look at a method of
speeding the carry propagation in what is known as a carry lookahead
adder.

 Computer Organisation

 NOTES

182

In reduced Boolean expressions for the sum (si) and carry outputs
(ci+1) of a full adder are created. These expressions are repeated below,
with subscripts added to denote the relative position of a full adder in a
ripple-carry adder:

We can factor the second equation and obtain:

which can be rewritten as:

where: Gi = aibi and Pi = ai + bi

The Gi and Pi terms are referred to as generate and propagate
functions, respectively, for the effect they have on the carry. When Gi = 1,
a carry is generated at stage i. When Pi = 1, then a carry is propagated
through stage i if either ai or bi is a 1. The Gi and Pi terms can be created
in one level of logic since they only depend on an AND or an OR of the
input variables, respectively.

The carries again take the most time. The carry c1 out of stage 0 is
G0 + P0c0, and since c0 = 0 for addition, we can rewrite this as c1 = G0.
The carry c2 out of stage 1 is G1 + P1c1, and since c1 = G0, we can rewrite
this as: c2 = G1 + P1G0. The carry c3 out of stage 2 is G2 + P2c2, and since
c2 = G1 + P1G0, we can rewrite this as: c3 = G2 + P2G1 + P2P1G0.
Continuing one more time for a four-bit adder, the carry out of stage 3 is
G3 + P3c3, and since c3 = G2 + P2G1 + P2P1G0, we can rewrite this as: c4 =
G3 + P3G2 + P3P2G1 + P3P2P1G0. We can now create a four-bit carry
lookahead adder as shown in Figure 3-1. We still have the delay through
the full adders as before, but now the carry chain is broken into
independent pieces that require one gate delay for Gi and Pi and two
more gate delays to generate ci+1. Thus, a depth of three gate delays is
added, but the ripple-carry chain is removed. If we assume that each full
adder introduces a gate delay of two, then a four-bit carry lookahead
adder will have a maximum gate delay of five, whereas a four-bit ripple-
carry adder will have a maximum gate delay of eight. The difference
between the two approaches is more pronounced for wider operands.
This process is limited to about eight bits of carry-lookahead, because of
gate fan-in limitations. For additions of numbers having more than eight
bits, the carry-lookahead circuits can be cascaded to compute the carry in
and carry out of each carry-lookahead unit. (See the EXAMPLE at the
end of the lesson.)

 Computer Organisation

 NOTES

183

Figure 3-1 Carry-lookahead adder.

3-3 High Performance Multiplication

A number of methods exist for speeding the process of
multiplication. Two methods are described in the sections below. The first
approach gains performance by skipping over blocks of 1’s, which
eliminates addition steps. A parallel multiplier is described next, in which
a cross product among all pairs of multiplier and multiplicand bits is
formed. The result of the cross product is summed by rows to produce the
final product.

3-3-1 Booth Algorithm

The Booth algorithm treats positive and negative numbers
uniformly. It operates on the fact that strings of 0’s or 1’s in the multiplier
require no additions just shifting. Additions or subtractions take place at
the boundaries of the strings, where transitions take place from 0 to 1 or
from 1 to 0. A string of 1’s in the multiplier from bit positions with weights
2u to 2v can be treated as 2u+1 – 2v. For example, if the multiplier is
001110 (+14)10, then u = 3 and v = 1, so 24 – 21 = 14.

In a hardware implementation, the multiplier is scanned from right
to left. The first transition is observed going from 0 to 1, and so 21 is
subtracted from the initial value (0). On the next transition, from 1 to 0, 24
is added, which results in +14. A 0 is considered to be appended to the
right side of the multiplier in order to defined the situation in which a 1 is
in the rightmost digit of the multiplier. If the multiplier is recoded according
to the Booth algorithm, then fewer steps may be needed in the
multiplication process. Consider the multiplication example shown in
Figure 3-2. The multiplier (14)10 contains three 1’s, which means that
three addition operations are required for the shift/add multiplication

 Computer Organisation

 NOTES

184

procedure that is described in lesson 2. The Booth recoded multiplier is
obtained by scanning the original multiplier from right to left, and placing a
−1 in the position where the first 1 in a string is encountered, and placing
a +1 in the position where the next 0 is seen. The multiplier 001110 thus
becomes 0 +1 0 0 −1 0. The Booth recoded multiplier contains just two
nonzero digits: +1 and −1, which means that only one addition operation
and one subtraction operation are needed, and so a savings is realized
for this example.

.

Figure 3-2 Multiplication of signed integers.

A savings is not always realized, however, and in some cases the
Booth algorithm may cause more operations to take place than if it is not
used at all. Consider the example shown in Figure 3-3, in which the
multiplier consists of alternating 1’s and 0’s. This is the same example
shown in Figure 3-2 but with the multiplicand and multiplier swapped.
Without Booth recoding of the multiplier, three addition operations are
required for the three 1’s in the multiplier. The Booth recoded multiplier,
however, requires six addition and subtraction operations, which is clearly
worse. We improve on this in the next section.

Figure 3-3 A worst case Booth recoded multiplication example

 Computer Organisation

 NOTES

185

3-3-2 Modified Booth Algorithm

One solution to this problem is to group the recoded multiplier bits
in pairs, known as bit pair recoding, which is also known as the modified
Booth algorithm. Grouping bit pairs from right to left produces three “+1,
−1” pairs as shown in Figure 3-4. Since the +1 term is to the left of the −1
term, it has a In a similar manner, the pair −1, +1 is equivalent to −2 + 1 =
−1. The pairs +1, +1 and −1,−1 cannot occur. There are a total of seven
pairs that can occur, which are shown in Figure 3-5. For each case, the
value of the recoded bit pair is multiplied by the multiplicand and is added
to the product. In an implementation of bit pair recoding, the Booth
recoding and bit pair recoding steps are collapsed into a single step, by
observing three multiplier bits at a time, as shown in the corresponding
multiplier bit table.

Figure 3-4 Multiplication with bit-pair recoding of the multiplier.

Figure 3-5 Recoded bit pairs.

The process of bit pair recoding of a multiplier guarantees that in
the worst case, only w/2 additions (or subtractions) will take place for a w-
bit multiplier.

3-3-3 Array Multipliers

The serial method we used for multiplying two unsigned integers
in lesson 2(2-2-1) requires only a small amount of hardware, but the time
required to multiply two numbers of length w grows as w2. We can speed
the multiplication process so that it completes in just 2w steps by

 Computer Organisation

 NOTES

186

implementing the manual process shown in Figure 2-7 in parallel. The
general idea is to form a one-bit product between each multiplier bit and
each multiplicand bit, and then sum each row of partial product elements
from the top to the bottom in systolic (row by row) fashion. The structure
of a systolic array multiplier is shown in Figure 3-6. A partial product (PP)
element is shown at the bottom of the figure. A multiplicand bit (mi) and a
multiplier bit (qj) are multiplied by the AND gate, which forms a partial
product at position (i,j) in the array. This partial product is added with the
partial product from the previous stage (bj) and any carry that is
generated in the previous stage (aj). The result has a width of 2w, and
appears at the bottom of the array (the high order w bits) and at the right
of the array (the low order w bits).

Figure 3-6 Parallel pipelined array multiplier.

 Computer Organisation

 NOTES

187

3-4 High Performance Division

We can extend the unsigned integer division technique of lesson
to produce a fractional result in computing a/b. The general idea is to
scale a and b to look like integers, perform the division process, and then
scale the quotient to correspond to the actual result of dividing a by b.

A faster method of division makes use of a lookup table and
iteration. An iterative method of finding a root of a polynomial is called
Newton’s iteration, which is illustrated in Figure 3-7. The goal is to find
where the function f(x) crosses the x axis by starting with a guess xi and
then using the error between f (xi) and zero to refine the guess.

Figure 3-7 Newton’s iteration for zero finding.

The tangent line at f(xi) can be represented by the equation:

The tangent line crosses the x axis at:

The process repeats while f(x) approaches zero.

The number of bits of precision doubles on each iteration, and so if we
are looking to obtain 32 bits of precision and we start with a single bit of
precision, then five iterations are required to reach our target precision.
The problem now is to cast division in the form of finding a zero for f(x).
Consider the function 1/x − b which has a zero at 1/b. If we start with b,
then we can compute 1/b by iteratively applying Newton’s method. Since f
’(x) = −1/x2, we now have:

 Computer Organisation

 NOTES

188

Thus, we only need to perform multiplication and subtraction in order to
perform division. Further, if our initial guess for x0 is good enough, then
we may only need to perform the iteration a few times. Before using this
method on an example, we need to consider how we will obtain our initial
guess. If we are working with normalized fractions, then it is relatively
easy to make use of a lookup table for the first few digits. Consider
computing 1/.101101 using a 16-bit normalized base 2 fraction in which
the leading 1 is not hidden. The first three bits for any binary fraction will
be one of the patterns: .100, .101, .110, or .111. These fractions
correspond to the base 10 numbers 1/2, 5/8, 3/4, and 7/8, respectively.
The reciprocals of these numbers are 2, 8/5, 4/3, and 8/7, respectively.
We can store the binary equivalents in a lookup table, and then retrieve
x0 based on the first three bits of b. The leading 1 in the fraction does not
contribute to the precision, and so the leading three bits of the fraction
only provide two bits of precision. Thus, the lookup table only needs two
bits for each entry, as shown in Figure 3-8

Figure 3-8 A three-bit lookup table

Figure 3-8 A three-bit lookup table for computing x0 now consider
computing 1/.1011011 using this floating point representation. We start by
finding x0 using the table shown in Figure 3-8. The first three bits of the
fraction b are 101, which corresponds to x0 = 01. We compute x1 = x0(2 −
x0b) and obtain, in unsigned base 2 arithmetic: x1 = 01(10 −
(01)(.1011011)) = 1.0100101. Our two bits of precision have now become
four bits of precision. For this example, we will retain as much
intermediate precision as we can. In general, we only need to retain at
most 2p bits of intermediate precision for a p-bit result. We iterate again,
obtaining eight bits of precision:

 x2=x1(2 − x1b) = 1.0100101(10 − (1.0100101)(.1011011))

 = 1.011001011001001011101.

We iterate again, obtaining our target 16 bits of precision:

x3 = x2(2 − x2b)

 =(1.011001011001001011101)(2-(1.011001011001001011101)(.1011011))

 = 1.011010000001001 = (1.40652466)10.

The precise value is (1.40659341)10, but our 16-bit value is as close to the
precise value as it can be.

 Computer Organisation

 NOTES

189

3-5 Residue Arithmetic

Addition, subtraction, and multiplication can all be performed in a single,
carry-less step using residue arithmetic. The residue number system is
based on relatively prime integers called module. The residue of an
integer with respect to a particular modulus is the least positive integer
remainder of the division of the integer by the modulus. A set of possible
moduli are 5, 7, 9, and 4. With these moduli, 5 × 7 × 9 × 4 = 1260 integers
can be uniquely represented. A table showing the representation of the
first twenty decimal integers using moduli 5, 7, 9, and 4 is shown in Figure
3-9.

Figure 3-9 First twenty decimal integers in the residue number system
for the given moduli

Addition and multiplication in the residue number system result in valid
residue numbers provided the size of the chosen number space is large
enough to contain the results. Subtraction requires each residue digit of
the subtrahend to be complemented with respect to its modulus before
performing addition. Addition and multiplication examples are shown in
Figure 3-10. For these examples, the moduli used are 5, 7, 9, and 4.
Addition is performed in parallel for each column, with no carry
propagation. Multiplication is also performed in parallel for each column,
independent of the other columns.

Figure 3-10 Examples of addition and multiplication in the residue
number system.

Although residue arithmetic operations can be very fast, there are
a number of disadvantages to the system. Division and sign detection are
difficult, and a representation for fractions is also difficult. Conversions

 Computer Organisation

 NOTES

190

between the residue number system and weighted number systems are
complex, and often require involved methods such as the Chinese
remainder theorem. The conversion problem is important because the
residue number system is not very useful without being translated to a
weighted number system so that magnitude comparisons can be made.
However, for integer applications in which the time spent in addition,
subtraction, and multiplication outweighs the time spent in division,
conversion, etc., the residue number system may be a practical
approach. An important application area is matrix-vector multiplication,
which is used extensively in signal processing.

3-6 Summary

Performance can be improved by skipping over 1’s in the Booth
and bit-pair recoding techniques. An alternative method of improving
performance is to use carryless addition, such as in residue arithmetic.
Although carryless addition may be the fastest approach in terms of time
complexity and circuit complexity, the more common weighted position
codes are normally used in practice in order to simplify comparisons and
represent fractions.

3-7 Keywords

Booth algorithm: Booth's algorithm involves repeatedly adding one of
two predetermined values A and S to a product P, then performing a
rightward arithmetic shift on P. Let x and y be the multiplicand and
multiplier, respectively; and let x and y represent the number of bits in x
and y.

High performance arithmetic: The goal is to improve the speed of
arithmetic operation.

Residue arithmetic: The residue number system is based on relatively
prime integers called module. The residue of an integer with respect to a
particular modulus is the least positive integer remainder of the division of
the integer by the modulus.

3-8 Exercise

1. Use the Booth algorithm (not bit pair recoding) to multiply 010011
(multiplicand) by 011011 (multiplier).

2. Use bit pair recoding to multiply 010011 (multiplicand) by 011011
(multiplier).

3. Compute the maximum gate delay through a 32-bit carry lookahead
adder.

4. In a carry-select adder a carry is propagated from one adder stage to
the next, similar to but not exactly the same as a carry lookahead adder.
As with many other adders, the carry out of a carry-select adder stage is

http://en.wikipedia.org/wiki/Arithmetic_shift

 Computer Organisation

 NOTES

191

either 0 or 1. In a carry-select adder, two sums are computed in parallel
for each adder stage: one sum assumes a carry-in of 0, and the other
sum assumes a carry-in of 1. The actual carry-in selects which of the two
sums to use (with a MUX, for example). The basic layout is shown below
for an eight-bit carry-select adder:

Assume that each four-bit adder (FBA) unit uses carry lookahead
internally. Compare the number of gate delays needed to add two eight-
bit numbers using FBA units in a carry-select configuration vs. using FBA
units in which the carry is rippled from one FBA to the next.

(a) Draw a diagram of a functionally equivalent eight-bit carry lookahead
configuration using the FBAs shown above.

(b) Show the number of gate delays for each adder configuration, by both
the 8-bit carry-select adder shown above and the adder designed in part
(a) above.

5. The path with the maximum gate delay through the array multiplier
shown in Figure 3-6 starts in the top right PP element then travels to the
bottom row, then across to the left. The maximum gate delay through a
PP element is three. How many gate delays are on the maximum gate
delay path through an array multiplier that produces a p-bit result?

6. Given multiplication units that each produce a 16-bit unsigned product
on two unsigned 8-bit inputs, and 16-bit adders that produce a 16-bit sum
and a carry-out on two 16-bit inputs and a carry-in, connect these units so
that the overall unit multiplies 16-bit unsigned numbers, producing a 32-
bit result.

7. Using Newton’s iteration for division, we would like to obtain 32 bits of
precision. If we use a lookup table that provides eight bits of precision for
the initial guess, how much iteration need to be applied?

.

 Computer Organisation

 NOTES

192

4. MEMORY ORGANIZATION

Structure

4-1 Memory Hierarchy
4-2 Main Memory

4-2 -1 RAM and ROM Chips
4-2 -1 Memory Address Map
4-2 -2 Memory Connections to CPU

4-3 Auxiliary Memory
 4-3 -1 Magnetic Disks

4-3 -1 Magnetic Tape
4- 4 Associative Memory

4-4-1 Hardware Organization
4-4-1 Match Logic
4-4-2 Read Operation
4-4-3 Write Operation

4-5 Summary
4-6 Keywords
4-7 Exercise

Objectives

At the end of this lesson you should be able to:

 Discuss about Memory Hierarchy

 Discuss about Main Memory

 Define the Auxiliary Memory

 Define the Associative Memory

4-1 Memory Hierarchy

The memory unit is an essential component in any digital computer
since it is needed for storing programs and data. A very small computer with
a limited application may be able to fulfill its intended task without the need
of additional storage capacity. Most general-purpose computers would run
more efficiently if they were equipped with additional storage beyond the
capacity of the main memory. There is just not enough space in one memory
unit to accommodate all the programs used in a computer. Moreover, most
computer users accumulate and continue to accumulate large amounts of
data-processing software. Not all accumulated information is needed by the

 Computer Organisation

 NOTES

193

processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage
are called auxiliary memory. The most common auxiliary memory devices
used in computer systems are magnetic disks and tapes. They are used for
storing system programs, large data files, and other backup information.
Only programs and data currently needed by the processor reside in main
memory. All other information is stored in auxiliary memory and transferred
to main memory when needed.

The total memory capacity of a computer can be visualized as being
a hierarchy of components. The memory hierarchy system consists of all
storage devices employed in a computer system from the slow but high-
capacity auxiliary memory to a relatively faster main memory, to an even
smaller and faster cache memory accessible to the high-speed processing
logic. Figure 4-1 illustrates the components in a typical memory hierarchy. At
the bottom of the hierarchy are the relatively slow magnetic tapes used to
store removable files. The main memory occupies a central position by
being able to communicate directly with the CPU and with auxiliary memory
devices through an I/O processor. When programs not residing in main
memory are needed by the CPU, they are brought in from auxiliary memory.
Programs not currently needed in main memory are transferred into auxiliary
memory to provide space for currently used programs and data.

 Computer Organisation

 NOTES

194

Figure 4-1 Memory hierarchy in a computer system

 A special very-high-speed memory called a cache is
sometimes used to increase the speed of processing by making current
programs and data available to the CPU at a rapid rate. The cache memory is
employed in computer systems to compensate for the speed differential
between main memory access time and processor logic. CPU logic is usually
faster than main memory access time, with the result that processing speed
is limited primarily by the speed of main memory. A technique used to
compensate for the mismatch in operating speeds is to employ an extremely
fast, small cache between the CPU and main memory whose access time is
close to processor logic clock cycle time. The cache is used for storing
segments of programs currently being executed in the CPU and temporary
data frequently needed in the present calculations. By making programs and
data available at a rapid rate, it is possible to increase the performance rate
of the computer.

While the I/O processor manages data transfers between auxiliary
memory and main memory, the cache organization is concerned with the
transfer of information between main memory and CPU. Thus each is
involved with a different level in the memory hierarchy system. The reason
for having two or three levels of memory hierarchy is economics. As the
storage capacity of me memory increases, the cost per bit for storing binary
information decreases and the access time of the memory becomes longer.
The auxiliary memory has a large storage capacity, is relatively inexpensive,
but has low access speed compared t0 main memory. The cache memory is
very small, relatively expensive and has very high access speed. Thus as
the memory access speed increases, so does its relative cost. The overall
goal of using a memory hierarchy is to obtain the highest-possible average
access speed while minimizing the total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The
cache holds those parts of the program and data that are most heavily used,
while the auxiliary memory holds those parts that are not presently used by
the CPU. Moreover, the CPU has direct access to both cache and main
memory but not to auxiliary memory. The transfer from auxiliary to main
memory is usually done by means of direct memory access of large blocks of

 Computer Organisation

 NOTES

195

data. The typical access time ratio between cache and main memory is about
1 to 7. For example, a typical cache memory may have an access time of 100
ns, while main memory access time may be 700 ns. Auxiliary memory
average access time is usually 1000 times that of main memory. Block size in
auxiliary memory typically ranges from 256 to 2048 words, while cache block
size is typically from 1 to 16 words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro-
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep all
parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an
I/O transfer is required. The CPU initiates the I/O processor to start executing
the transfer. This leaves the CPU free to execute another program. In a
multiprogramming system, when one program is waiting for input or output
transfer, there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs,
for varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the
program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality of
information stored in a computer system. It is the task of the operating system
to maintain in main memory a portion of this information that is currently
active. The part of the computer system that supervises the How of
information between auxiliary memory and main memory is called the
memory management system.

4-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static
RAM consists essentially of internal flip-flops that store the binary information.
The stored information remains valid as long as power is applied to the unit.
The dynamic RAM stores the binary information in the form of electric
charges that are applied to capacitors. The capacitors are provided inside the
chip by MOS transistors. The stored charges on the capacitors tend to
discharge with time and the capacitors must be periodically recharged by
refreshing the dynamic memory. Refreshing is done by cycling through the
words every few milliseconds to restore the decaying charge. The dynamic

 Computer Organisation

 NOTES

196

RAM offers reduced power consumption and larger storage capacity in a
single memory chip. The static RAM is easier to use and has shorter read
and write cycles. One of the major applications of the static RAM is in
implementing the cache memories. The dynamic RAMs are used for
implementing the main memory. Most of the desktop personnel computer
systems are dynamic RAMs with improved performance characteristics such
as multibank DRAM, extended dataout DRAM, synchronous DRAM, and
Direct RAM bus DRAM.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish it
from a read-only memory, although ROM is also random access. RAM is
used for storing the bulk of the programs and data that are subject to change.
ROM is used for storing programs that are permanently resident in the
computer and for tables of constants that do not change in value once the
production of the computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power is
turned on, the hardware of the computer sets the program counter to the first
address of the bootstrap loader. The bootstrap program loads a portion of the
operating system from disk to main memory and control is then transferred to
the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is
necessary to combine a number of chips to form the required memory size.
To demonstrate the chip interconnection, we will show an example of a 1024
X 8 memory constructed with 128 X 8 RAM chips and 512 X 8 ROM chips.

4-2 -1 RAM and ROM Chips

A RAM chip is better suited for communication with the CPU if it has
one or more control inputs that select the chip only when needed. Another
common feature is a bidirectional data bus that allows the transfer of data
either from memory to CPU during a read operation or from CPU to memory
during a write operation. A bidirectional bus can be constructed with three-
state buffers. A three-state buffer output can be placed in one of three
possible states: a signal equivalent to logic 1, a signal equivalent to logic 0, or
a high-impedance state. The logic 1 and 0 are normal digital signals. The

 Computer Organisation

 NOTES

197

high-impedance state behaves like an open circuit, which means that the
output does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 4-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-
bit address and an 8-bit bidirectional data bus. The read and write inputs
specify the memory operation and the two chips select (CS) control inputs are
for enabling the chip only when it is selected by the microprocessor. The
availability of more than one control input to select the chip facilitates the
decoding of the address lines when multiple chips are used in the
microcomputer. The read and write inputs are sometimes combined into one
line labeled R/W. When the chip is selected, the two binary states in this line
specify the two operations of read or write.

(a) Typical RAM chip

(b) Function table

Figure 4-2 Typical RAM chip

The function table listed in Fig. 4-2 (b) specifies the operation of the

RAM chip. The unit is in operation only when CS1 = 1 and = 0. The bar
on top of the second select variable indicates that this input is enabled when
it is equal to 0. If the chip select inputs are not enabled, or if they are enabled
but the read or write inputs are not enabled, the memory is inhibited and its

data bus is in a high-impedance state. When CS1 = 1 and = 0, the
memory can be placed in a write or read mode. When the WR input is
enabled, the memory stores a byte from the data bus into a location specified
by the address input lines. When the RD input is enabled, the content of the
selected byte is placed into the data bus. The RD and WR signals control the

 Computer Organisation

 NOTES

198

memory operation as well as the bus buffers associated with the bidirectional
data bus.

A ROM chip is organized externally in a similar manner. However,
since a ROM can only read, the data bus can only be in an output mode. The
block diagram of a ROM chip is shown in Fig. 4-3. For the same-size chip, it
is possible to have more bits of ROM than of RAM, because the internal
binary cells in ROM occupy less space than in RAM. For this reason, the
diagram specifies a 512-byte ROM, while the RAM has only 128 bytes.

Figure 4-3 Typical ROM chip

The nine address lines in the ROM chip specify any one of the 512

bytes stored in it. The two chip select inputs must be CS1 = 1 and = 0 for
the unit to operate. Otherwise, the data bus is in a high-impedance state.
There is no need for a read or write control because the unit can only read.
Thus when the chip is enabled by the two select inputs, the byte selected by
the address lines appears on the data bus.

4-2 -1 Memory Address Map

The designer of a computer system must calculate the amount of
memory required for the particular application and assign it to either RAM or
ROM. The interconnection between memory and processor is then
established from knowledge of the size of memory needed and the type of
RAM and ROM chips available. The addressing of memory can be
established by means of a table that specifies the memory address assigned
to each chip. The table, called a memory address map, is a pictorial
representation of assigned address space for each chip in the system.

To demonstrate with a particular example, assume that a computer
system needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM
chips to be used are specified in Figs. 4-2 and 4-3. The memory address map
for this configuration is shown in Table 4-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The
address bus lines are listed in the third column. Although there are 16 lines in
the address bus, the table shows only 10 lines because the other 6 are not
used in this example and are assumed to be zero. The small x's under the

 Computer Organisation

 NOTES

199

address bus lines designate those lines that must be connected to the
address inputs in each chip. The RAM chips have 128 bytes and need seven
address lines'. The ROM chip has 512 bytes and needs 9 address lines. The
x's are always assigned to the low-order bus lines: lines 1 through 7 for the
RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish
between four RAM chips by assigning to each a different address. For this
particular example we choose bus lines 8 and 9 to represent four distinct
binary combinations. Note that any other pair of unused bus lines can be
chosen for this purpose. The table clearly shows that the nine low-order bus
lines constitute a memory space for RAM equal to 29 = 512 bytes. The
distinction between a RAM and ROM address is done with another bus line.
Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects
a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from
the information under the address bus assignment. The address bus lines are
subdivided into groups of four bits each so that each group can be
represented with a hexadecimal digit. The first hexadecimal digit represents
lines 13 to 16 and is always 0. The next hexadecimal digit represents lines 9
to 12, but lines 11 and 12 are always 0. The range of hexadecimal addresses
for each component is determined from the x's associated with it. These x's
represent a binary number that can range from an all-0's to an all-l's value.

4-2 -2 Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and
address buses. The low-order lines in the address bus select the byte within
the chips and other lines in the address bus select a particular chip through
its chip select inputs. The connection of memory chips to the CPU is shown in
Fig. 4-4. This configuration gives a memory capacity of 512 bytes of RAM
and 512 bytes of ROM. It implements the memory map of Table 4-1. Each
RAM receives the seven low-order bits of the address bus to select one of
128 possible bytes. The particular RAM chip selected is determined from
lines 8 and 9 in the address bus. This is done through a 2 X 4 decoder whose
outputs go to the CS1 inputs in each RAM chip. Thus, when address lines 8
and 9 are equal to 00, the first RAM chip is selected. When 01, the second
RAM chip is selected, and so on. The RD and WR outputs from the
microprocessor are applied to the inputs of each RAM chip.

The selection between RAM and ROM is achieved through bus line
10. The RAMs are selected when the bit in this line is 0, and the ROM when
the bit is 1. The other chip select input in the ROM is connected to the RD
control line for the ROM chip to be enabled only during a read operation.
Address bus lines 1 to 9 are applied to the input address of ROM without
going through the decoder. This assigns addresses 0 to 511 to RAM and 512
to 1023 to ROM. The data bus of the ROM has only an output capability,
whereas the data bus connected to the RAMs can transfer information in both
directions.

 Computer Organisation

 NOTES

200

The example just shown gives an indication of the interconnection
complexity that can exist between memory chips and the CPU. The more
chips that are connected, the more external decoders are required for
selection among the chips. The designer must establish a memory map that
assigns addresses to the various chips from which the required connections
are determined.

Figure 4-4 Memory connection to the CPU

 Computer Organisation

 NOTES

201

4-3 Auxiliary Memory

The most common auxiliary memory devices used in computer
systems are magnetic disks and tapes. Other components used, but not as
frequently, are magnetic drums, magnetic bubble memory, and optical disks.
To understand fully the physical mechanism of auxiliary memory devices one
must have knowledge of magnetic, electronics, and electromechanical
systems. Although the physical properties of these storage devices can be
quite complex, their logical properties can be characterized and compared by
a few parameters. The important characteristics of any device are its access
mode, access time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices
with moving parts such as disks and tapes, the access time consists of a
seek time required to position the read-write head to a location and a transfer
time required to transfer data to or from the device. Because the seek time is
usually much longer than the transfer time, auxiliary storage is organized in
records or blocks. A record is a specified number of characters or words.
Reading or writing is always done on entire records. The transfer rate is the
number of characters or words that the device can transfer per second, after
it has been positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist
of high-speed rotating surfaces coated with a magnetic recording medium.
The rotating surface of the drum is a cylinder and that of the disk, a round flat
plate. The recording surface rotates at uniform speed and is not started or
stopped during access operations. Bits are recorded as magnetic spots on
the surface as it passes a stationary mechanism called a write head. Stored
bits are detected by a change in magnetic field produced by a recorded spot
on the surface as it passes through a read head. The amount of surface
available for recording in a disk is greater than in a drum of equal physical
size. Therefore, more information can be stored on a disk than on a drum of
comparable size. For this reason, disks have replaced drums in more recent
computers.

4-3 -1 Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic
coated with magnetized material. Often both sides of the disk are used and
several disks may be stacked on one spindle with read/write heads available,
on each surface. All disks rotate together at high speed and are not stopped
or started for access purposes. Bits are stored in the magnetized surface in
spots along concentric circles called tracks. The tracks are commonly divided
into sections called sectors. In most systems, the minimum quantity of
information which can be transferred is a sector. The subdivision of one disk
surface into tracks and sectors is shown in Fig. 4-5.

 Computer Organisation

 NOTES

202

Some units use a single read/write head for each disk surface. In this
type of unit, the track address bits are used by a mechanical assembly to
move the head into the specified track position before reading or writing. In
other disk systems, separate read/write heads are provided for each track in
each surface. The address bits can then select a particular track
electronically through a decoder circuit. This type of unit is more expensive
and is found only in very large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and
recognize the sectors. A disk system is addressed by address bits that
specify the disk number, the disk surface, the sector number and the track
within the sector. After the read/write heads are positioned in the specified
track, the system has to wait until the rotating disk reaches the specified
sector under the read/write head. Information transfer is very fast once the
beginning of a sector has been reached. Disks may have multiple heads and
simultaneous transfer of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track
near the center of the disk. If bits are recorded with equal density, some
tracks will contain more recorded bits than others. To make all the records in
a sector of equal length, some disks use a variable recording density with
higher density on tracks near the center than on tracks near the
circumference. This equalizes the number of bits on all tracks of a given
sector.

Disks that are permanently attached to the unit assembly and cannot
be removed by the occasional user are called hard disks. A disk drive with
removable disks is called a floppy disk. The disks used with a floppy disk
drive are small removable disks made of plastic coated with magnetic
recording material. There are two sizes commonly used, with diameters of
5.25 and 3.5 inches. The 3.5-inch disks are smaller and can store more data
than can the 5.25-inch disks. Floppy disks are extensively used in personal
computers as a medium for distributing software to computer users.

(a) Information Organization on Magnetic Tapes

 Computer Organisation

 NOTES

203

Figure 4-5 magnetic disks

4-3 -1 Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and
electronic components to provide the parts and control mechanism for a,
magnetic-tape unit. The tape itself is a strip of plastic coated with a magnetic
recording tracks. Usually, seven or nine bits are recorded simultaneously to
form a character together with a parity bit. Read/write heads are mounted one
in each track so that data can be recorded and read as a sequence of
characters.

Magnetic tape units can be stopped, started to move forward or in
reverse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is
recorded in blocks referred to as records. Gaps of unrecorded tape are
inserted between records where the tape can be stopped. The tape starts
moving while in a gap and attains its constant speed by the time it reaches
the next record. Each record on tape has an identification bit pattern at the
beginning and end. By reading the bit pattern at the beginning, the tape
control identifies the record number. By reading the bit pattern at the end of
the record, the control recognizes the beginning of a gap. A tape unit is
addressed by specifying the record number and the number of characters in
the record. Records may be of fixed or variable length.

 Computer Organisation

 NOTES

204

4- 4 Associative Memory

Many data-processing applications require the search of items in a
table stored in memory. An assembler program searches the symbol address
table in order to extract the symbol's binary equivalent. An account number
may be searched in a file to determine the holder's name and account status.
The established way to search a table is to store all items where they can be
addressed in sequence. The search procedure is a strategy for choosing a
sequence of addresses, reading the content of memory at each address, and
comparing the information read with the item being searched until a match
occurs. The number of accesses to memory depends on the location of the
item and the efficiency of the search algorithm. Many search algorithms have
been developed to minimize the number of accesses while searching for an
item in a random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the
data itself rather than by an address. A memory unit accessed by content is
called an associative memory or content addressable memory (CAM). This
type of memory is accessed simultaneously and in parallel on the basis of
data content rather than by specific address or location. When a word is
written in an associative memory, no address is given. The memory is
capable of finding an empty unused location to store the word. When a word
is to be read from an associative memory, the content of the word, or part of
the word, is specified. The memory locates all words which match the
specified content and marks them for reading.

Because of its organization, the associative memory is uniquely suited
to do parallel searches by data association. Moreover, searches can be done
on an entire word or on a specific field within a word. An associative memory
is more expensive than a random access memory because each cell must
have storage capability as well as logic circuits for matching its content with
an external argument. For this reason, associative memories are used in
applications where the search time is very critical and must be very short.

4-4-1 Hardware Organization

The block diagram of an associative memory is shown in Fig. 4-6. It
consists of a memory array and logic for m words with n bits per word. The
argument register A and key register K each have n bits, one for each bit of a
word. The match register M has m bits, one for each memory word. Each
word in memory is compared in parallel with the content of the argument
register. The words that match the bits of the argument register set a
corresponding bit in the match register. After the matching process, those bits
in the match register that have been set indicate the fact that their
corresponding words have been matched. Reading is accomplished by a
sequential access to memory for those words whose corresponding bits in
the match register have been set.

 Computer Organisation

 NOTES

205

Figure 4-6 Block diagram of associative memory

The key register provides a mask for choosing a particular field or key
in the argument word. The entire argument is compared with each memory
word if the key register contains all 1's. Otherwise, only those bits in the argu-
ment that have 1's in their corresponding position of the key register are com-
pared. Thus the key provides a mask or identifying piece of information which
specifies how the reference to memory is made. To illustrate with a numerical
example, suppose that the argument register A and the key register K have
the bit configuration shown below. Only the three leftmost bits of A are
compared with memory words because K has 1's in these positions.

A 101 111100

K 111 000000

 Word1 100 111100 no match

 Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 4-7. The cells in the array are marked by
the letter C with two subscripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell Cij is the cell for bit
j in word i. A bit A. in the argument register is compared with all the bits in
column j of the array provided that Kj= 1. This is done for all columns j = 1, 2,
. . . , n. If a match occurs between all the unmasked bits of the argument and
the bits in word i, the corresponding bit Mi in the match register is set to 1. If

 Computer Organisation

 NOTES

206

one or more unmasked bits of the argument and the word do not match, Mi is
cleared to 0.

The internal organization of a typical cell Cij is shown in Fig. 4-8. It
consists of a flip-flop storage element Fij and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The
match logic compares the content of the storage cell with the corresponding
unmasked bit of the argument and provides an output for the decision logic
that sets the bit in Mi.

Figure 4-7 Associative memory of m word, n cells per word

 Computer Organisation

 NOTES

207

Figure 4-8 One cell of associative memory

4-4-1 Match Logic

The match logic for each word can be derived from the comparison
algorithm for two binary numbers. First, we neglect the key bits and compare
the argument in A with the bits stored in the cells of the words. Word i is
equal to the argument in A if Aj = Fij for j = 1, 2, . . . ,n. Two bits are equal if
they are both 1 and 0. The equality of two bits can be expressed logically by
the Boolean function

Xj = AjFij + A’jF’ij

where Xj = 1 if the pair of bits in position j are equal; otherwise Xj = 0.

For a word i to be equal to the argument in A we must have all Xj vari-
ables equal to 1. This is the condition for setting the corresponding match bit
Mi to 1. The Boolean function for this condition is

Mi = x1 x2 x3 …xn

and constitutes the AND operation of all pairs of matched bits in a word.

We now include the key bit Kj in the comparison logic. The requirement
is that if Kj = 0, the corresponding bits of Aj, and Fij need no comparison. Only
when K, = 1 must they be compared. This requirement is achieved by ORing
each term with K’j thus:

Xj+ k’j = xj if Kj = 1

 = 1 if Kj = 1

 Computer Organisation

 NOTES

208

When Kj = 1, we have Kj = 0 and Xj+ 0 = xj When Kj = 0, then K’j = 1and Xj+
1 = 1. A term (Xj+ k’j) will be in the 1 state if its pair of bits is not compared.
This is necessary because each term is ANDed with all other terms so that an
output of 1 will have no effect. The comparison of the bits has an effect only
when Kj = 1.

The match logic for word i in an associative memory can now be
expressed by the following Boolean function:

Mi = (x1 + k’1) (x2 + k’2) (x3 + k’3)….. (xn + k’n)

Each term in the expression will be equal to 1 if its corresponding Kj =
0. If Kj = 1, the term will be either 0 or 1 depending on the value of xj. A match
will occur and Mi will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x., the Boolean function above
can be expressed as follows:

Mi= AjFij + A’jF’ij)

where is a product symbol designating the AND operation of all n terms.

We need m such functions, one for each word i = 1, 2, 3, . . . , m.

The circuit for matching one word is shown in Fig. 4-9. Each cell
requires two AND gates and one OR gate. The inverters for Aj and Kj. are
needed once for each column and are used for all bits in the column. The out-
put of all OR gates in the cells of the same word go to the input of a common
AND gate to generate the match signal for Mi. Mi will be logic 1 if a match
occurs and 0 if no match occurs. Note that if the key register contains all 0's,
output Mi, will be a 1 irrespective of the value of A or the word. This occur-
rence must be avoided during normal operation.

 Computer Organisation

 NOTES

209

Figure 4-9 Match logic for one word of associative memory

4-4-2 Read Operation

If more than one word in memory matches the unmasked argument
field, all the matched words will have 1's in the corresponding bit position of
the match register. It is then necessary to scan the bits of the match register
one at a time. The matched words are read in sequence by applying a read
signal to each word line whose corresponding Mi bit is a 1.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output Mi directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

4-4-3 Write Operation

An associative memory must have a write capability for storing the
information to be searched. Writing in an associative memory can take
different forms, depending on the application. If the entire memory is loaded

 Computer Organisation

 NOTES

210

with new information at once prior to a search operation then the writing can
be done by addressing each location in sequence. This will make the device
a random-access memory for writing and a content addressable memory for
reading. The advantage here is that the address for input can be decoded as
in a random-access memory. Thus instead of having m address lines, one for
each word in memory, the number of address lines can be reduced by the
decoder to d lines, where m = 2d.

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all 0's if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the K. bits) with the argument word
so that only active words are compared.

4-5 Summary

Thus, we have taken a complete view of the memory system of
computer along with the various technologies. The unit has outlined the
importance of memory system, the memory hierarchy, the main memory and
its technologies, the secondary memories and its technologies and high-
speed memories. We have also discussed the key characteristic of these
memories and the technologies, which are used for constructing these
memories.

4-6 Keywords

Auxiliary memory: A high-speed memory that is in a large main frame or
supercomputer is not directly.

Cache memory: A special very high speed memory called cache.

Multiprogramming: Multiprogramming refers to the existence of two or
more programs in different parts of the memory hierarchy at the same time.

Bootstrap loader: The bootstrap loader is a program whose function is to
start the computer software operating when power is turned on.

 Computer Organisation

 NOTES

211

4-7 Exercise

1. a. How many 128 X 8 RAM chips are needed 10 provide a memory capac-
ity of 2048 bytes?

b. How many lines of the address bus must be used to access 2048 bytes of
memory? How many of these lines will be common to all chips? c. How
many lines must be decoded for chip select? Specify the size of the
decoders.

2. A computer uses RAM chips of 1024 X 1 capacities.

a. How many chips are needed, and how should their address lines be con-
nected to provide a memory capacity of 1024 bytes?

b. How many chips are needed to provide a memory capacity of 16K bytes?
Explain in words how the chips are to be connected to the address bus.

3. A ROM chip of 1024 X 8 bits has four select inputs and operates from a 5
volt power supply. How many pins are needed for the 1C package? Draw a
block diagram and label all input and output terminals in the ROM.

4. Extend the memory system of Fig. 4-4 to 4096 bytes of RAM and 4096
bytes of ROM. List the memory-address map and indicate what size
decoders are needed.

5. A computer employs RAM chips of 256 X 8 and ROM chips of 1024 X 8.
The computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped I/O configuration
is used. The two highest-order bits of the address bus are assigned 00 for
RAM, 01 for ROM, and 10 for interface registers.

a. How many RAM and ROM chips are needed?

b. Draw a memory-address map for the system. c. Give the address range in
hexadecimal for RAM, ROM, and interface.

6. An 8-bit computer has a 16-bit address bus. The first 15 lines of the
address are used to select a bank of 3 2K bytes of memory. The high-order
bit of the address is used to select a register which receives the contents of
the data bus. Explain how this configuration can be used to extend the
memory capacity of the system to eight banks of 32K bytes each, for a total
of 256K bytes of memory.

7. a. Draw the logic diagram of all the cells of one word in an associative
memory. Include the read and write logic of Fig. 2-8 and the match logic of
Fig. 4-9.

 Computer Organisation

 NOTES

212

b. Draw the logic diagram of all cells along one vertical column (column f) in
an associative memory. Include a common output line for all bits in the same
column.

c. From the diagrams in (a) and (b) show that if output Mj is connected to the
read line of the same word, then the matched word will be read out, provided
that only one word matches the masked argument.

8. What additional logic is required to give a no-match result for a word in an
associative memory when all key bits are zeros?

 Computer Organisation

 NOTES

213

5. INTERNAL MEMORY

Structure

5-1 Cache Memory
5-1-1 Associative Mapping

5-1-2 Direct Mapping
5-1-2 Set-Associative Mapping
5-1-3 Writing into Cache
5-1-4 Cache Initialization

5-2 Virtual Memory
5-2-1 Address Space and Memory Space
5-2-2 Address Mapping Using Pages
5-2-3 Associative Memory Page Table
5-2-4 Page Replacement

5-3 Memory Management Hardware
5-3 -1Segmented-Page Mapping
5-3 -2 Memory Protections

5-4 Summary
5-5 Keywords

5-6 Exercise

Objectives

At the end of this lesson you should be able to:

 Describe the importance of Cache Memory and other high speed
memory.

 Discuss about Memory mapping

 Describe the Virtual Memory

 Describe the Memory Management Hardware

5-1 Cache Memory

Analysis of a large number of typical programs has shown that the
references to memory at any given interval of time tend to be confined
within a few localized areas in memory. This phenomenon is known as the
property of locality reference. The reason for this property may be
understood considering that a typical computer program flows in a straight-
line fashion with program loops and subroutine calls encountered
frequently. When a program loop is executed, the CPU repeatedly refers to
the set of instructions in memory that constitute the loop. Every time a given
subroutine is called, its set of instructions is fetched from memory. Thus
loops and subroutines tend to localize the references to memory for
fetching instructions. To a lesser degree, memory references to data also
tend to be localized. Table-lookup procedures repeatedly refer to that

 Computer Organisation

 NOTES

214

portion in memory where the table is stored. Iterative procedures refer to
common memory locations and array of numbers are confined within a local
portion of memory. The result of all these observations is the locality of
reference property, which states that over a short interval of time, the
addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast
small memory, the average memory access time can be reduced, thus
reducing the total execution time of the program. Such a fast small memory
is referred to as a cache memory. It is placed between the CPU and main
memory as illustrated in Fig. 4-1(lesson 4). The cache memory access time
is less than the access time of main memory by a factor of 5 to 10. The
cache is the fastest component in the memory hierarchy and approaches
the speed of CPU components.

The fundamental idea of cache organization is that by keeping the
most frequently accessed instructions and data in the fast cache memory,
the average memory access time will approach the access time of the
cache. Although the cache is only a small fraction of the size of main
memory, a large fraction of memory requests will be found in the fast cache
memory because of the locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU
needs to access memory, the cache is examined. If the word is found in the
cache, it is read from the fast memory. If the word addressed by the CPU is
not found in the cache, the main memory is accessed to read the word. A
block of words containing the one just accessed is then transferred from
main memory to cache memory. The block size may vary from one word
(the one just accessed) to about 16 words adjacent to the one just
accessed. In this manner, some data are transferred to cache so that future
references to memory find the required words in the fast cache memory.

The performance of cache memory is frequently measured in terms
of a quantity called hit ratio. When the CPU refers to memory and finds the
word in cache, it is said to produce a hit. If the word is not found in cache, it
is in main memory and it counts as a miss. The ratio of the number of hits
divided by the total CPU references to memory (hits plus misses) is the hit
ratio. The hit ratio is best measured experimentally by running
representative programs in the computer and measuring the number of hits
and misses during a given interval of time. Hit ratios of 0.9 and higher have
been reported. This high ratio verifies the validity of the locality of reference
property.

The average memory access time of a computer system can be
improved considerably by use of a cache. If the hit ratio is high enough so
that most of the time the CPU accesses the cache instead of main memory,
the average access time is closer to the access time of the fast cache
memory. For example, a computer with cache access time of 100ns, a main

 Computer Organisation

 NOTES

215

memory access time of 1000ns, and a hit ratio of 0.9 produces an average
access time of 200 ns. This is a considerable improvement over a similar
computer without a cache memory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time.
Therefore, very little or no time must be wasted when searching for words in
the cache. The transformation of data from main memory to cache memory
is referred to as a mapping process. Three types of mapping procedures
are of practical interest when considering the organization of cache
memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a
specific example of a memory organization as shown in Fig. 5-1. The main
memory can store 32K words of 12 bits each. The cache is capable of
storing 512 of these words at any given time. For every word stored in
cache, there is a duplicate copy in main memory. The CPU communicates
with both memories. It first sends a 15-bit address to cache. If there is a hit,
the CPU accepts the 12-bit data from cache. If there is a miss, the CPU
reads the word from main memory and the word is then transferred to
cache.

Figure 5-1 Example of cache memory

5-1-1 Associative Mapping

The fastest and most flexible cache organization uses an
associative memory. This organization is illustrated in Fig. 5-2. The
associative memory stores both the address and content (data) of the
memory word. This permits any location in cache to store any word from
main memory. The diagram shows three words presently stored in the
cache. The address value of 15 bits is shown as a five-digit octal number
and its corresponding 12-bit word is shown as a four-digit octal number. A
CPU address of 15 bits is placed in the argument register and the
associative memory is searched for a matching address.

If the address is found, the corresponding 12-bit data is read and
sent to the CPU. If no match occurs, the main memory is accessed for the

 Computer Organisation

 NOTES

216

word. The address-data pair is then transferred to the associative cache
memory. If the cache is full, an address-data pair must be displaced to
make room for a pair that is needed and not presently in the cache. The
decision as to what pair is replaced is determined from the replacement
algorithm that the designer chooses for the cache. A simple procedure is to
replace cells of the cache in round-robin order whenever a new word is
requested from main memory. This constitutes a first-in first-out (FIFO)
replacement policy.

Figure 5-2 Associative mapping cache

5-1-2 Direct Mapping

Associative memories are expensive compared to random-access
memories because of the added logic associated with each cell. The
possibility of using a random-access memory for the cache is investigated
in Fig. 5-3. The CPU address of 15 bits is divided into two fields. The nine
least significant bits constitute the index field and the remaining six bits form
the tag field. The figure shows that main memory needs an address that
includes both the tag and the index bits. The number of bits in the index
field is equal to the number of address bits required to access the cache
memory.

In the general case, there are 2k words in cache memory and 2n words
in main memory. The n-bit memory address is divided into two fields: k bits
for the index field and n - k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-
bit index to access the cache. The internal organization of the words in the
cache memory is as shown in Fig. 5-4 (b). Each word in cache consists of
the data word and its associated tag. When a new word is first brought into

 Computer Organisation

 NOTES

217

the cache, the tag bits are stored alongside the data bits. When the CPU
generates a memory request, the index field is used for the address to
access the cache. The tag field of the CPU address is compared with the
tag in the word read from the cache. If the two tags match, there is a hit and
the desired data word is in cache. If there is no match, there is a miss and
the required word is read from main memory. It is then stored in the cache
together with the new tag, replacing the previous value. The disadvantage
of direct mapping is that the hit ratio can drop considerably if two or more
words whose addresses have the same index but different tags are
accessed repeatedly. However, this possibility is minimized by the fact that
such words are relatively far apart in the address range (multiples of 512
locations in this example).

Figure 5-3 Addressing Relationships between main memory and
cache memories

 (a) Main Memory (b) Cache memory

Figure 5-4 direct mapping cache organization

 Computer Organisation

 NOTES

218

To see how the direct-mapping organization operates, consider the
numerical example shown in Fig. 5-4. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the
CPU now wants to access the word at address 02000. The index address is
000, so it is used to access the cache. The two tags are then compared.
The cache tag is 00 but the address tag is 02, which does not produce a
match. Therefore, the main memory is accessed and the data word 5670 is
transferred to the CPU. The cache word at index address 000 is then
replaced with a tag of 02 and data of 5670

The direct-mapping example just described uses a block size of one
word. The same organization but using a block size of 8 words is shown in
Fig. 5-5

.

Figure5-5 Direct mapping cache with block size of 8 words

The index field is now divided into two parts: the block field and the
word field. In a 512-word cache there are 64 blocks of 8 words each, since
64 X 8 = 512. The block number is specified with a 6-bit field and the word
within the block is specified with a 3-bit field. The tag field stored within the
cache is common to all eight words of the same block. Every time a miss
occurs, an entire block of eight words must be transferred from main
memory to cache memory. Although this takes extra time, the hit ratio will
most likely improve with a larger block size because of the sequential
nature of computer programs.

5-1-2 Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping
is that two words with the same index in their address but with different tag
values cannot reside in cache memory at the same time. A third type of
cache organization, called set-associative mapping, is an improvement over
the direct-mapping organization in that each word of cache can store two or
more words of memory under the same index address. Each data word is
stored together with its tag and the number of tag-data items in one word of

 Computer Organisation

 NOTES

219

cache is said to form a set. An example of a set-associative cache
organization for a set size of two is shown in Fig. 5-6. Each index address
refers to two data words and their associated tags. Each tag requires six
bits and each data word has 12 bits, so the word length is 2(6 + 12) = 36
bits. An index address of nine bits can accommodate 512 words. Thus the
size of cache memory is 512 X 36. It can accommodate 1024 words of
main memory since each word of cache contains two data words. In
general, a set-associative cache of set size k will accommodate k words of
main memory in each word of cache.

Figure 5-6 Two-way set-associative mapping cache

The octal numbers listed in Fig. 5-6 are with reference to the main
memory contents illustrated in Fig. 5-4 (a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index
address 000. Similarly, the words at addresses 02777 and 00777 are stored
in cache at index address 777. When the CPU generates a memory
request, the index value of the address is used to access the cache. The
tag field of the CPU address is then compared with both tags in the cache
to determine if a match occurs. The comparison logic is done by an
associative search of the tags in the set similar to an associative memory
search: thus the name "set-associative." The hit ratio will improve as the set
size increases because more words with the same index but different tags
can reside in cache. However, an increase in the set size increases the
number of bits in words of cache and requires more complex comparison
logic.

When a miss occurs in a set-associative cache and the set is full, it
is necessary to replace one of the tag-data items with a new value. The
most common replacement algorithms used are: random replacement, first-
in, first-out (FIFO), and least recently used (LRU). With the random
replacement policy the control chooses one tag-data item for replacement
at random. The FIFO procedure selects for replacement the item that has
been in the set the longest. The LRU algorithm selects for replacement the
item that has been least recently used by the CPU. Both FIFO and LRU can
be implemented by adding a few extra bits in each word of cache.

5-1-3 Writing into Cache

An important aspect of cache organization is concerned with
memory write requests. When the CPU finds a word in cache during a read

 Computer Organisation

 NOTES

220

operation, the main memory is not involved in the transfer. However, if the
operation is a write, there are two ways that the system can precede.

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being
updated in parallel if it contains the word at the specified address. This is
trough called the write-through method. This method has the advantage
that main memory always contains the same data as the cache. This
characteristic is important in systems with direct memory access transfers.
It ensures that the data residing in main memory are valid at all times so
that an I/O device communicating through DMA would receive the most
recent updated data.

The second procedure is called the writs-back method. In this
method only the cache location is updated during a write operation. The
location is then marked by a flag so that later when the word is removed
from the cache it is copied into main memory. The reason for the write-back
method is that during the time a word resides in the cache, it may be
updated several times; however, as long as the word remains in the cache,
it does not matter whether the copy in main memory is out of date, since
requests from the word are filled from the cache. It is only when the word is
displaced from the cache that an accurate copy need be rewritten into main
memory. Analytical results indicate that the number of memory writes in a
typical program ranges between 10 and 30 percent of the total references
to memory.

5-1-4 Cache Initialization

One more aspect of cache organization that must be taken into
consideration is the problem of initialization. The cache is initialized when
power is applied to the computer or when the main memory is loaded with a
complete set of programs from auxiliary memory. After initialization the
cache is considered to be empty, but in effect it contains some non-valid
data. It is customary to include with each word in cache a valid bit to
indicate whether or not the word contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit
of a particular cache word is set to 1 the first time this word is loaded from
main memory and stays set unless the cache has to be initialized again.
The introduction of the valid bit means that a word in cache is not replaced
by another word unless the valid bit is set to 1 and a mismatch of tags
occurs. If the valid bit happens to be 0, the new word automatically replaces
the invalid data. Thus the initialization condition has the effect of forcing
misses from the cache until it fills with valid data.

5-2 Virtual Memory

In a memory hierarchy system, programs and data are first stored in
auxiliary memory. Portions of a program or data are brought into main
memory as they are needed by the CPU. Virtual memory is a concept used

 Computer Organisation

 NOTES

221

in some large computer systems that permit the user to construct programs
as though a large memory space were available, equal to the totality of
auxiliary memory. Each address that is referenced by the CPU goes
through an address mapping from the so-called virtual address to a physical
address in main memory. Virtual memory is used to give programmers the
illusion that they have a very large memory at their disposal, even though
the computer actually has a relatively small main memory. A virtual memory
system provides a mechanism for translating program-generated addresses
into correct main memory locations. This is done dynamically, while
programs are being executed in the CPU. The translation or mapping is
handled automatically by the hardware by means of a mapping table.

5-2-1 Address Space and Memory Space

An address used by a programmer will be called a virtual address,
and the set of such addresses the address space. An address in main
memory is called a location or physical address. The set of such locations is
called the memory space. Thus the address space is the set of addresses
generated by programs as they reference instructions and data; the
memory space consists of the actual main memory locations directly
addressable for processing. In most computers the address and memory
spaces are identical. The address space is allowed to be larger than the
memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity
of 32K words (K = 1024). Fifteen bits are needed to specify a physical
address in memory since 32K = 215. Suppose that the computer has
available auxiliary memory for storing 220 = 1024K words. Thus auxiliary
memory has a capacity for storing information equivalent to the capacity of
32 main memories. Denoting the address space by N and the memory
space by M, we then have for this example N = 1024K and M= 32K.

In a multiprogram computer system, programs and data are
transferred to and from auxiliary memory and main memory based on
demands imposed by the CPU. Suppose that program 1 is currently being
executed in the CPU. Program 1 and a portion of its associated data are
moved from auxiliary memory into main memory. Portions of programs and
data need not be in contiguous locations in memory since information is
being moved in and out, and empty spaces may be available in scattered
locations in memory.

In a virtual memory system, programmers are told that they have the
total address space at their disposal. Moreover, the address field of the
instruction code has a sufficient number of bits to specify all virtual
addresses. In our example, the address field of an instruction code will
consist of 20 bits but physical memory addresses must be specified with
only 15 bits. Thus CPU will reference instructions and data with a 20-bit
address, but the information at this address must be taken from physical
memory because access to auxiliary storage for individual words will be
prohibitively long. (Remember that for efficient transfers, auxiliary storage

 Computer Organisation

 NOTES

222

moves an entire record to the main memory.) A table is then needed, as
shown in Fig. 5-7, to map a virtual address of 20 bits to a physical address
of 15 bits. The mapping is a dynamic operation, which means that every
address is translated immediately as a word is referenced by CPU.

Figure 5-7 Memory table for mapping a virtual address

The mapping table may be stored in a separate memory as shown
in Fig. 5-7 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the
table takes space from main memory and two accesses to memory are
required with the program running at half speed. A third alternative is to use
an associative memory as explained below.

5-2-2 Address Mapping Using Pages

The table implementation of the address mapping is simplified if the
information in the address space and the memory space are each divided
into groups of fixed size. The physical memory is broken down into groups
of equal size called blocks, which may range from 64 to 4096 words each.
The term page refers to groups of address space of the same size. For
example, if a page or block consists of 1K words, then, using the previous
example, address space is divided into 1024 pages and main memory is
divided into 32 blocks. Although both a page and a block are split into
groups of 1K words, a page refers to the organization of address space,
while a block refers to the organization of memory space. The programs are
also considered to be split into pages. Portions of programs are moved from
auxiliary memory to main memory in records equal to the size of a page.
The term "page frame" is sometimes used to denote a block.

Consider a computer with an address space of 8K and a memory
space of 4K. If we split each into groups of 1K words we obtain eight pages

 Computer Organisation

 NOTES

223

and four blocks as shown in Fig. 5-8. At any given time, up to four pages of
address space may reside in main memory in any one of the four blocks.

Figure 5-8 Address space and memory space split into groups of
1K words

The mapping from address space to memory space is facilitated if
each virtual address is considered to be represented by two numbers: a
page number address and a line within the page. In a computer with 2p
words per page, p bits are used to specify a line address and the remaining
high-order bits of the virtual address specify the page number. In the
example of Fig. 5-8, a virtual address has 13 bits. Since each page consists
of 210 = 1024 words, the high-order three bits of a virtual address will
specify one of the eight pages and the low-order 10 bits give the line
address within the page. Note that the line address in address space and
memory space is the same; the only mapping required is from a page
number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 5-9. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and
the content of the word gives the block number where that page is stored in
main memory. The table shows that pages 1, 2, 5, and 6 are now available
in main memory in blocks 3, 0, 1, and 2, respectively. A presence bit in
each location indicates whether the page has been transferred from
auxiliary memory into main memory. A 0 in the presence bit indicates that
this page is not available j in main memory. The CPU references a word in
memory with a virtual | address of 13 bits. The three high-order bits of the
virtual address specify a j page number and also an address for the
memory-page table. The content of the word in the memory page table at
the page number address is read out into the memory table buffer register.
If the presence bit is a 1, the block number thus read is transferred to the
two high-order bits of the main memory address register. The line number
from the virtual address is transferred into the 10 low-order bits of the
memory address register. A read signal to main memory transfers the
content of the word to the main memory buffer register ready to be used by
the CPU. If the presence bit in the word read from the page table is 0, it
signifies that the content of the word referenced by the virtual address does
not reside in main memory. A call to the operating system is then generated

 Computer Organisation

 NOTES

224

to fetch the required page from auxiliary memory and place it into main
memory before resuming computation.

Figure 5-9 Memory table in a paged system

5-2-3 Associative Memory Page Table

A random-access memory page table is inefficient with respect to
storage utilization. In the example of Fig. 5-9 we observe that eight words of
memory are needed, one for each page, but at least four words will always
be marked empty because main memory cannot accommodate more than
four blocks. In general, a system with n pages and m blocks would require a
memory-page table of n locations of which up to m blocks will be marked
with block numbers and all others will be empty. As a second numerical
example, consider an address space of 1024K words and memory space of
32K words. If each page or block contains 1K words, the number of pages
is 1024 and the number of blocks 32. The capacity of the memory-page
table must be 1024 words and only 32 locations may have a presence bit
equal to 1. At any given time, at least 992 locations will be empty and not in
use.

A more efficient way to organize the page table would be to
construct it with a number of words equal to the number of blocks in main
memory. In this way the size of the memory is reduced and each location is
fully utilized. This method can be implemented by means of an associative
memory with each word in memory containing a page number together with
its corresponding block number. The page field in each word is compared

 Computer Organisation

 NOTES

225

with the page number in the virtual address. If a match occurs, the word is
read from memory and its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the
example of Fig. 5-9. We replace the random access memory-page table
with an associative memory of four words as shown in Fig. 5-10. Each entry
in the associative memory array consists of two fields. The first three bits
specify a field for storing the page number. The last two bits constitute a
field for storing the block number. The virtual address is placed in the
argument register. The page number bits in the argument register are
compared with all page numbers in the page field of the associative
memory. If the page number is found, the 5-bit word is read out from
memory. The corresponding block number, being in the same word, is
transferred to the main memory address register. If no match occurs, a call
to the operating system is generated to bring the required page from
auxiliary memory.

Figure 5-10 An associative memory page table

5-2-4 Page Replacement

A virtual memory system is a combination of hardware and software
techniques. The memory management software system handles all the
software operations for the efficient utilization of memory space. It must
decide (1) which page in main memory ought to be removed to make room
for a new page, (2) when a new page is to be transferred from auxiliary
memory to main memory, and (3) where the page is to be placed in main
memory. The hardware mapping mechanism and the memory management
software together constitute the architecture of a virtual memory.

When a program starts execution, one or more pages are
transferred into main memory and the page table is set to indicate their
position. The program is executed from main memory until it attempts to
reference a page that is still in auxiliary memory. This condition is called
page fault. When page fault occurs, the execution of the present program is

 Computer Organisation

 NOTES

226

suspended until the required page is brought into main memory. Since
loading a page from auxiliary memory to main memory is basically an I/O
operation, the operating system assigns this task to the I/O processor. In
the meantime, control is transferred to the next program in memory that is
waiting to be processed in the CPU. Later, when the memory block has
been assigned and the transfer completed, the original program can
resume its operation.

When a page fault occurs in a virtual memory system, it signifies
that the page referenced by the CPU is not in main memory. A new page is
then transferred from auxiliary memory to main memory. If main memory is
full, it would be necessary to remove a page from a memory block to make
room for the new page. The policy for choosing pages to remove is
determined from the replacement algorithm that is used. The goal of a
replacement policy is to try to remove the page least likely to be referenced
in the immediate future.

Two of the most common replacement algorithms used are the first-
in, first-out (FIFO) and the least recently used (LRU). The FIFO algorithm
selects for replacement the page that has been in memory the longest time.
Each time a page is loaded into memory, its identification number is pushed
into a FIFO stack. FIFO will be full whenever memory has no more empty
blocks. When a new page must be loaded, the page least recently brought
in is removed. The page to be removed is easily determined because its
identification number is at the top of the FIFO stack. The FIFO replacement
policy has the advantage of being easy to implement. It has the
disadvantage that under certain circumstances pages are removed and
loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more
attractive on the assumption that the least recently used page is a better
candidate for removal than the least recently loaded page as in FIFO. The
LRU algorithm can be implemented by associating a counter with every
page that is in main memory. When a page is referenced, its associated
counter is set to zero. At fixed intervals of time, the counters associated
with all pages presently in memory are incremented by 1. The least recently
used page is the page with the highest count The counters are often called
aging registers, as their count indicates their age, that is, how long ago their
associated pages have been referenced.

5-3 Memory Management Hardware

In a multiprogramming environment where many programs reside in
memory it becomes necessary to move programs and data around the
memory, to vary the amount of memory in use by a given program, and to
prevent a program from changing other programs. The demands on
computer memory brought about by multiprogramming have created the
need for a memory management system. A memory management system
is a collection of hardware and software procedures for managing the
various programs residing in memory. The memory management software

 Computer Organisation

 NOTES

227

is part of an overall operating system available in many computers. Here we
are concerned with the hardware unit associated with the memory
management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory ref-
erences into physical memory addresses

2. A provision for sharing common programs stored in memory by different
users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process
similar to the paging system described in Sec. 5-2. The fixed page size
used in the virtual memory system causes certain difficulties with respect to
program size and the logical structure of programs. It is more convenient to
divide programs and data into logical parts called segments. A segment is a
set of logically related instructions or data elements associated with a given
name. Segments may be generated by the programmer or by the operating
system. Examples of segments are a subroutine, an array of data, a table of
symbols, or a user's program.

The sharing of common programs is an integral part of a
multiprogramming system. For example, several users wishing to compile
their Fortran programs should be able to share a single copy of the compiler
rather than each user having a separate copy in memory. Other system
programs residing in memory are also shared by all users in a
multiprogramming system without having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user's unauthorized copying of another user's program. Another aspect
of protection is concerned with preventing the occasional user from
performing operating system functions and thereby interrupting the orderly
sequence of operations in a computer installation. The secrecy of certain
programs must be kept from unauthorized personnel to prevent abuses in
the confidential activities of an organization.

The address generated by a segmented program is called a logical
address. This is similar to a virtual address except that logical address
space is associated with variable-length segments rather than fixed-length
pages. The logical address may be larger than the physical memory
address as in virtual memory, but it may also be equal, and sometimes
even smaller than the length of the physical memory address. In addition to
relocation information, each segment has protection information associated
with it. Shared programs are placed in a unique segment in each user's
logical address space so that a single physical copy can be shared. The

 Computer Organisation

 NOTES

228

function of the memory management unit is to map logical addresses into
physical addresses similar to the virtual memory mapping concept.

5-3 -1Segmented-Page Mapping

It was already mentioned that the property of logical space is that it
uses variable-length segments. The length of each segment is allowed to
grow and contract according to the needs of the program being executed.
One way of specifying the length of a segment is by associating a number
of equal-size pages. To see how this is done, consider the logical address
shown in Fig.5-11. The logical address is partitioned into three fields. The
segment field specifies a segment number. The page field specifies the
page within the segment and the word field gives the specific word within
the page. A page field of k bits can specify up to 2k pages. A segment
number may be associated with just one page or with as many as 2k pages.
Thus the length of a segment would accord the number of pages that are
assigned to it.

The mapping of the logical address into a physical address is done
by means of two tables, as shown in Fig. 5-11 (a). The segment number of
the logical address specifies the address for the segment table. The entry in
the segment table is a pointer address for a page table base. The page
table base is added to the page number given in the logical address. The
sum produces a pointer address to an entry in the page table. The value
found in the page table provides the block number in physical memory. The
concatenation of the block field with the word field produces the final
physical mapped address.

The two mapping tables may be stored in two separate small
memories or in main memory. In either case, a memory reference from the
CPU will require three accesses to memory: one from the segment table,
one from the page table, and the third from main memory. This would slow
the system significantly when compared to a conventional system that
requires only one reference to memory. To avoid this speed penalty, a fast
associative memory is used to hold the most recently referenced table
entries. (This type of memory is sometimes called a translation look-aside
buffer, abbreviated TLB.) The first time a given block is referenced, its value
together with the corresponding segment and page numbers are entered
into the associative memory as shown in Fig. 5-11(b). Thus the mapping
process is first attempted by associative search with the given segment and
page numbers. If it succeeds, the mapping delay is only that of the
associative memory. If no match occurs, the slower table mapping of Fig. 5-
11(a) is used and the result transformed into the associative memory for
future reference.

 Computer Organisation

 NOTES

229

(a) Logical to physical address mapping

Figure 5-11 Mapping in segmented-page memory management unit

5-3 -2 Memory Protection

Memory protection can be assigned to the physical address or the
logical address. The protection of memory through the physical address can
be done by assigning to each block in memory a number of protection bits
that indicate the type of access allowed to its corresponding block. Every
time a page is moved from one block to another it would be necessary to
update the block protection bits. A much better place to apply protection is
in the logical address space rather than the physical address space. This

 Computer Organisation

 NOTES

230

can be done by including protection information within the segment table or
segment register of the memory management hardware.

The content of each entry in the segment table or a segment
register is called a descriptor. A typical descriptor would contain, in addition
to a base address field, one or two additional fields for protection purposes.
A typical format for a segment descriptor is shown in Fig. 5-12. The base
address field gives the base of the page table address in a segmented-
page organization or the block base address in a segment register
organization. This is the address used in mapping from a logical to the
physical address. The length field gives the segment size by specifying the
maximum number of pages assigned to the segment. The length field is
compared against the page number in the logical address. A size violation
occurs if the page number falls outside the segment length boundary. Thus
a given program and its data cannot access memory not assigned to it by
the operating system.

Figure 5-12 Format of a typical segment descriptor

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization,
each entry in the page table may have its own protection field to describe
the access rights of each page. The protection information is set into the
descriptor by the master control program of the operating system. Some of
the access rights of interest that are used for protecting die programs
residing in memory are:

1. Full read and write privileges

2. Read only (write protection)

3. Execute only (program protection)

4. System only (operating system protection)

Full read and write privileges are given to a program when it is
executing its own instructions. Write protection is useful for sharing system
programs such as utility programs and other library routines. These system
programs are stored in an area of memory where they can be shared by
many users. They can be read by all programs, but no writing is allowed.
This protects them from being changed by other programs.

The execute-only condition protects programs from being copied. It
restricts the segment to be referenced only during the instruction fetch
phase but not during the execute phase. Thus it allows the users to execute
the segment program instructions but prevents them from reading the
instructions as data for the purpose of copying their content.

 Computer Organisation

 NOTES

231

Portions of the operating system will reside in memory at any given
time. These system programs must be protected by making them
inaccessible to unauthorized users. The operating system protection
condition is placed in the descriptors of all operating system programs to
prevent the occasional user from accessing operating system segments.

5-4 Summary

In this lesson, we have discussed about cache memory maintains. A
paged virtual memory augments a main memory with disk storage. The
physical memory serves as a window on the paged virtual memory, which is
maintained in its entirety on a hard magnetic disk. Cache and paged virtual
memories are commonly used on the same computer, but for different
reasons. A cache memory improves the average access time to the main
memory, whereas a paged virtual memory extends the size of the main
memory. Our discussion on virtual memory started with the issues related to
address translation. Three address translation techniques were discussed
and compared. These are the direct, associative, and the set-associative
techniques.

5-5 Keywords

Locality of reference: Analysis of a large number of typical programs has
shown that the references to memory at any given interval of time tend to
be confined within a few localized areas in memory.

Hit ratio: The performance of cache memory is frequently measured in
terms of a quantity called hit ratio. When the CPU refers to memory and
finds the word in cache, it is said to produce a hit.

Mapping process: The transformation of data from main memory to cache
memory is referred to as a mapping process.

Write-through: The simplest and most commonly used procedure is to
update main memory with every memory write operation, with cache
memory being updated in parallel if it contains the word at the specified
address.

Write-back: The cache location is updated during a write operation. The
location is then marked by a flag so that later when the word is removed
from the cache it is copied into main memory.

5-6 PROBLEMS

1. The logical address space in a computer system consists of 128
segments. Each segment can have up to 32 pages of 4K words in each.
Physical memory consists of 4K blocks of 4K words in each. Formulate the
logical and physical address formats.

 Computer Organisation

 NOTES

232

2. A virtual memory system has an address space of 8K. words, a memory
space of 4K words, and page and block sizes of 1K words (see Fig. 5-8).
The following page reference changes occur during a given time interval.
(Only page changes are listed. If the same page is referenced again, it is
not listed twice.) 420126140102357. Determine the four pages that are
resident in main memory after each page reference change if the
replacement algorithm used is (a) FIFO; (b) LRU

3. An address space is specified by 24 bits and the corresponding memory
space by 16 bits.

a. How many words are there in the address space?

b. How many words are there in the memory space?

c. If a page consists of 2K words, how many pages and blocks are
there in the system?

4. A digital computer has a memory unit of 64K X 16 and a cache memory
of 1K words. The cache uses direct mapping with a block size of four
words.

a. How many bits are there in the tag, index, block, and word fields
of the address format?

b. How many bits are there in each word of cache, and how are they
divided into functions? Include a valid bit.

c. How many blocks can the cache accommodate?

5. A four-way set-associative cache memory has four words in each set. A
replacement procedure based on the least recently used (LRU) algorithm is
implemented by means of 2-bit counters associated with each word in the
set. A value in the range 0 to 3 is thus recorded for each word. When a hit
occurs, the counter associated with the referenced word is set to 0, those
counters with values originally lower than the referenced one are
incremented by 1, and all others remain unchanged. If a miss occurs, the
word with counter value 3 is removed, the new word is put in its place, and
its counter is set to 0. The other three counters are incremented by 1. Show
that this procedure works for the following sequence of word reference: A,
B, C, D, B, E, D, A, C, E, C, E. (Start with A, B, C, D as the initial four
words, with word A being the least recently used.)

 Computer Organisation

 NOTES

233

UNIT – IV

1. INPUT-OUTPUT INTERFACE

Structure

1-1 Introduction
1-1-1 ASCII Alphanumeric Characters
1-1-2 The EBCDIC Character set

1-1-3 Unicode Character set

1-2 Input-Output Interfaces
1-2-1 I/O Bus and Interface Modules
1-2-1 I/O versus Memory Bus
1-2-2 Isolated versus Memory-Mapped I/O
1-2-3 Example of I/O Interface

1-3 Summary
1-4 Keywords
1-5 Exercise
1-6 Reference

Objectives

At the end of this lesson you should be able to:

 Describe varies types of Character codes

 Discuss about Input-Output Interfaces

1-1 Introduction

The input-output subsystem of a computer, referred to as I/O,
provides an efficient mode of communication between the central system
and the outside environment. Programs and data must be entered into
computer memory for processing and results obtained from computations
must be recorded or displayed for the user. A computer serves no useful
purpose without the ability to receive information from an outside source
and to transmit results in a meaningful form.

The most familiar means of entering information into a computer is
through a typewriter-like keyboard that allows a person to enter
alphanumeric information directly. Every time a key is depressed, the
terminal sends a binary coded character to the computer. The fastest
possible speed for entering information this way depends on the person's
typing speed. On the other hand, the central processing unit is an
extremely fast device capable of performing operations at very high speed.

 Computer Organisation

 NOTES

234

When input information is transferred to the processor via a slow keyboard,
the processor will be idle most of the time while waiting for the information
to arrive. To use a computer efficiently, a large amount of programs and
data must be prepared in advance and transmitted into a storage medium
such as magnetic tapes or disks. The information in the disk is then
transferred into computer memory at a rapid rate. Results of programs are
also transferred into a high-speed storage, such as disks, from which they
can be transferred later into a printer to provide a printed output of results.

Devices that are under the direct control of the computer are said to
be connected on-line. These devices are designed to read information into
or out of the memory unit upon command from the CPU and are
considered to be part of the total computer system. Input or output devices
attached to the computer are also called peripherals. There are three types
of peripherals such as input, output, and input-output peripherals. These
peripherals may be analog or digital and serial or parallel. Among the most
common peripherals are keyboards, display units, and printers. Peripherals
that provide auxiliary storage for the system are magnetic disks and tapes.
Peripherals are electromechanical and electromagnetic devices of some
complexity. Only a very brief discussion of their function will be given here
without going into detail of their internal construction.

Video monitors are the most commonly used peripherals. They
consist of a keyboard as the input device and a display unit as the output
device. There are different types of video monitors, but the most popular
use a cathode ray tube (CRT). The CRT contains an electronic gun that
sends an electronic beam to a phosphorescent screen in front of the tube.
The beam can be deflected horizontally and vertically. To produce a pattern
on the screen, a grid inside the CRT receives a variable voltage that
causes the beam to hit the screen and make it glow at selected spots.
Horizontal and vertical signals deflect the beam and make it sweep across
the tube, causing the visual pattern to appear on the screen. A
characteristic feature of display devices is a cursor that marks the position
in the screen where the next character will be inserted. The cursor can be
moved to any position in the screen, to a single character, the beginning of
a word, or to any line. Edit keys add or delete information based on the
cursor position. The display terminal can operate in a single-character
mode where all characters entered on the screen through the keyboard are
transmitted to the computer simultaneously. In the block mode, the edited
text is first stored in a local memory inside the terminal. The text is
transferred to the computer as a block of data.

Printers provide a permanent record on paper of computer output
data or text. There are three basic types of character printers: daisywheel,
dot matrix, and laser printers. The daisywheel printer contains a wheel with
the characters placed along the circumference. To print a character, the
wheel rotates to the proper position and an energized magnet then presses
the letter against the ribbon. The dot matrix printer contains a set of dots
along the printing mechanism. For example, a 5 X 7 dot matrix printer that
prints 80 characters per line has seven horizontal lines, each consisting of

 Computer Organisation

 NOTES

235

5 X 80 = 400 dots. Each dot can be printed or not, depending on the
specific characters that are printed on the line. The laser printer uses a
rotating photographic drum that is used to imprint the character images.
The pattern is then transferred onto paper in the same manner as a
copying machine.

 Magnetic tapes are used mostly for storing files of data: for example,
a company's payroll record. Access is sequential and consists of records
that can be accessed one after another as the tape moves along a
stationary read-write mechanism. It is one of the cheapest and slowest
methods for storage and has the advantage that tapes can be removed
when not in use. Magnetic disks have high-speed rotational surfaces
coated with magnetic material. Access is achieved by moving a read-write
mechanism to a track in the magnetized surface. Disks are used mostly for
bulk storage of programs and data.

Other input and output devices encountered in computer systems
are digital incremental plotters, optical and magnetic character readers,
analog-to-digital converters, and various data acquisition equipment. Not all
input comes from people, and not all output is intended for people.
Computers are used to control various processes in real time, such as
machine tooling, assembly line procedures, and chemical and industrial
processes. For such applications, a method must be provided for sensing
status conditions in the process and sending control signals to the process
being controlled.

The input-output organization of a computer is a function of the size
of the computer and the devices connected to it. The difference between a
small and a large system is mostly dependent on the amount of hardware
the computer has available for communicating with peripheral units and the
number of peripherals connected to the system. Since each peripheral
behaves differently from any other, it would be prohibitive to dwell on the
detailed interconnections needed between the computer and each
peripheral. Certain techniques common to most peripherals are presented
in this lesson.

1-1-1 ASCII Alphanumeric Characters

Input and output devices that communicate with people and the
computer are usually involved in the transfer of alphanumeric information to
and from the device and the computer. The standard binary code for the
alphanumeric characters is ASCII (American Standard Code for Information
Interchange). It uses seven bits to code 128 characters as shown in Table
1-1. The seven bits of the code are designated by b1 through b7, with b7
being the most significant bit. The letter A, for example, is represented in
ASCII as 1000001 (column 100, row 0001). The ASCII code contains 94
characters that can be printed and 34 nonprinting characters used for
various control functions. The printing characters consist of the 26
uppercase letters A through Z, the 26 lowercase letters, the 10 numerals 0
through 9, and 32 special printable characters such as %, * , and $.

 Computer Organisation

 NOTES

236

00 NUL

01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E SO
0F SI

10 DLE

11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F US

20 SP

21 !
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29)
2A *
2B +
2C ´
2D -
2E .
2F /

30 0

31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @

41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P

51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D]
5E ^
5F _

60 `

61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o

70 p

71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL

TABLE 1-1 American Standard Code for Information Interchange (ASCII)

The 34 control characters are designated in the ASCII table with
abbreviated names. They are listed again below the table with their
functional names. The control characters are used for routing data and
arranging the printed text into a prescribed format. There are three types of
control characters: format effectors, information separators, and
communication control characters. Format effectors are characters that
control the layout of printing. They include the familiar typewriter controls,
such as backspace (BS), horizontal tabulation (HT), and carriage return
(CR). Information separators are used to separate the data into divisions
like paragraphs and pages. They include characters such as record
separator (RS) and file separator (FS). The communication control char-
acters are useful during the transmission of text between remote terminals.

ASCII is a 7-bit code, but most computers manipulate an 8-bit
quantity as a single unit called a byte. Therefore, ASCII characters most
often are stored one per byte. The extra bit is sometimes used for other
purposes, depending on the application. For example, some printers
recognize 8-bit ASCII characters with the most significant bit set to 0.
Additional 128 8-bit characters with the most significant bit set to 1 are
used for other symbols, such as the Greek alphabet or italic type font.

 Computer Organisation

 NOTES

237

When used in data communication, the eighth bit may be employed to
indicate the parity of the binary-coded character.

1-1-2 The EBCDIC Character set

A problem with the ASCII code is that only 128 characters can be
represented, which is a limitation for many keyboards that have a lot of
special characters in addition to upper and lower case letters. The Extended
Binary Coded Decimal Interchange Code (EBCDIC) is an eight-bit code that
is used extensively in IBM mainframe computers. Since seven-bit ASCII
characters are frequently represented in an eight-bit modified form (one
character per byte), in which a 0 or a 1 is appended to the left of the seven-
bit pattern, the use of EBCDIC does not place a greater demand on the
storage of characters in a computer. For serial transmission, however, (see
Chapter 8), an eight-bit code takes more time to transmit than a seven-bit
code, and for this case the wider code does make a difference.

The EBCDIC code is summarized in table 1-2. There are gaps in the

table, which can be used for application specific characters. The fact that

there are gaps in the upper and lower case sequences is not a major

disadvantage because character manipulations can still be done as for

ASCII, but using different offsets.

TABLE 1-2 Extended Binary Coded Decimal Interchange Code (EBCDIC)

00 NUL

01 SOH

02 STX

03 ETX

04 PF

05 HT

06 LC

07 DEL

08

09

0A SMM

0B VT

0C FF

0D CR

0E SO

0F SI

10 DLE

11 DC1

12 DC2

13 TM

14 RES

15 NL

16 BS

17 IL

18 CAN

19 EM

1A CC

1B CU1

1C IFS

1D IGS

1E IRS

1F IUS

20 DS

21 SOS

22 FS

23

24 BYP

25 LF

26 ETB

27 ESC

28

29

2A SM

2B CU2

2C

2D ENQ

2E ACK

2F BEL

30

31

32 SYN

33

34 PN

35 RS

36 UC

37 EOT

38

39

3A

3B CU3

3C DC4

3D NAK

3E

3F SUB

40 SP

41

42

43

44

45

46

47

48

49

4A ¢

4B

4C <

4D (

4E +

4F |

50 &

51

52

53

54

55

56

57

58

59

5A !

5B $

5C .

5D)

5E ;

5F ¬

60 –

61 /

62

63

64

65

66

67

68

69

6A ‘

6B ,

6C %

6D _

6E >

6F ?

70

71

72

73

74

75

76

77

78

79

7A :

7B #

7C @

7D '

7E =

7F "

80

81 a

82 b

83 c

84 d

85 e

86 f

87 g

88 h

89 i

8A

8B

8C

8D

8E

8F

90

91 j

92 k

93 l

94 m

95 n

96 o

97 p

98 q

99 r

9A

9B

9C

9D

9E

9F

A

0

A1 ~

A2 s

A3 t

A4 u

A5 v

A6 w

A7 x

A8 y

A9 z

AA

AB

AC

AD

AE

AF

B0

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

C0 {

C1 A

C2 B

C3 C

C4 D

C5 E

C6 F

C7 G

C8 H

C9 I

CA

CB

CC

C

D

CE

CF

D0 }

D1 J

D2 K

D3 L

D4

M D5

 N

D6 O

D7 P

D8 Q

D9 R

DA

DB

DC

DD

DE

E0

\ E1

E2 S

E3 T

E4 U

E5 V

E6 W

E7 X

E8 Y

E9 Z

EA

E

B

EC

E

D

EE

EF

F0 0

F1 1

F2 2

F3 3

F4 4

F5 5

F6 6

F7 7

F8 8

F9 9

FA

| FB

FC

 Computer Organisation

 NOTES

238

1-1-3 Unicode Character set

The ASCII and EBCDIC codes support the historically dominant

(Latin) character sets used in computers. There are many more character

sets in the world, and a simple ASCII-to-language-X mapping does not

work for the general case, and so a new universal character standard was

developed that supports a great breadth of the world’s character sets, called

Unicode.

Unicode is an evolving standard. It changes as new character sets are

introduced into it, and as existing character sets evolve and their

representations are refined. In version 2.0 of the Unicode standard, there

are 38,885 distinct coded characters that cover the principal written

languages of the Americas, Europe, the Middle East, Africa, India, Asia, and

Pacifica.

The Unicode Standard uses a 16-bit code set in which there is a one-

to-one correspondence between 16-bit codes and characters. Like ASCII,

there are no complex modes or escape codes. While Unicode supports many

more characters than ASCII or EBCDIC, it is not the end-all standard. In

fact, the 16-bit Unicode standard is a subset of the 32-bit ISO 10646

Universal Character Set (UCS-4).

Glyphs for the first 256 Unicode characters are shown in Table 1-2,

according to Unicode version 2.1. Note that the first 128 characters are

the same as for ASCII.

1-2 Input-Output Interfaces

Input-output interface provides a method for transferring information
between internal storage and external I/O devices. Peripherals connected
to a computer need special communication links for interfacing them with
the central processing unit. The purpose of the communication link is to
resolve the differences that exist between the central computer and each
peripheral. The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and
their manner of operation is different from the operation of the CPU
and memory, which are electronic devices. Therefore, a conversion
of signal values may be required.

 Computer Organisation

 NOTES

239

2. The data transfer rate of peripherals is usually slower than the
transfer rate of the CPU, and consequently, a synchronization
mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special
hardware components between the CPU and peripherals to supervise and
synchronize all input and output transfers. These components are called
interface units because they interface between the processor bus and the
peripheral device. The word "Interface" is a general term for the point of
contact between two parts of a system. In digital computer system the
interface is referred as a complementary set of signal connection points
between two parts of a system. Therefore, "to interface" means to attach
two or more components or systems, via their respective interface points,
for data exchanges between them. Two main types of interface are CPU
interface that corresponds to the system bus and input-output interface that
depends on the nature of input-output device. To attach an input-output
device to CPU and input-output interface, circuit is placed between the
device and the system bus. This circuit is meant for matching the signal
formats and timing characteristics of the CPU interface to those of the
input-output device interface. The main function of input-output interface
circuit is data conversion, synchronization and device selection. Data
conversion refers to conversion between digital and analog signals, and
conversion between serial and parallel data formats. Synchronation refers
to matching of operating speeds of CPU and other peripherals. Device
selection refers to the selection of I/O device by CPU in a queue manner. In
addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

1-2-1 I/O Bus and Interface Modules

A typical communication link between the processor and several
peripherals is shown in Fig. 1-1. The I/O bus consists of data lines, address
lines, and control lines. The magnetic disk, printer, and terminal are
employed in practically any general-purpose computer. The magnetic tape
is used in some computers for backup storage. Each peripheral device has
associated with it an interface unit. Each interface decodes the address
and control received from the I/O bus, interprets them for the peripheral,
and provides signals for the peripheral controller. It also synchronizes the
data flow and supervises the transfer between peripheral and processor.
Each peripheral has its own controller that operates the particular
electromechanical device. For example, the printer controller controls the
paper motion, the print timing, and the selection of printing characters. A

 Computer Organisation

 NOTES

240

controller may be housed separately or may be physically integrated with
the peripheral.

Figure 1-1 Connection of I/O bus to input-output devices

The I/O bus from the processor is attached to all peripheral
interfaces. To communicate with a particular device, the processor places a
device address on the address lines. Each interface attached to the I/O bus
contains an address decoder that monitors the address lines. When the
interface detects its own address, it activates the path between the bus
lines and the device that it controls. All peripherals whose address does not
correspond to the address in the bus are disabled by their interface.

At the same time that the address is made available in the address
lines, the processor provides a function code in the control lines. The
interface selected responds to the function code and proceeds to execute
it. The function code is referred to as an I/O command and is in essence an
instruction that is executed in the interface and its attached peripheral unit.
The interpretation of the command depends on the peripheral that the
processor is addressing. There are four types of commands that an
interface may receive. They are classified as control, status, data output,
and data input.

A control command is issued to activate the peripheral and to inform
it what to do. For example, a magnetic tape unit may be instructed to
backspace the tape by one record, to rewind the tape, or to start the tape
moving in the forward direction. The particular control command issued
depends on the peripheral, and each peripheral receives its own
distinguished sequence of control commands, depending on its mode of
operation.

A status command is used to test various status conditions in the
interface and the peripheral. For example, the computer may wish to check
the status of the peripheral before a transfer is initiated. During the transfer,
one or more errors may occur which are detected by the interface. These

 Computer Organisation

 NOTES

241

errors are designated by setting bits in a status register that the processor
can read at certain intervals.

A data output command causes the interface to respond by
transferring data from the bus into one of its registers. Consider an
example with a tape unit. The computer starts the tape moving by issuing a
control command. The processor then monitors the status of the tape by
means of a status command. When the tape is in the correct position, the
processor issues a data output command. The interface responds to the
address and command and transfers the information from the data lines in
the bus to its buffer register. The interface then communicates with the tape
controller and sends the data to be stored on tape.

The data input command is the opposite of the data output. In this
case the interface receives an item of data from the peripheral and places it
in its buffer register. The processor checks if data are available by means
of a status command and then issues a data input command. The interface
places the data on the data lines, where they are accepted by the
processor.

1-2-1 I/O versus Memory Bus

In addition to communicating with I/O, the processor must communicate
with the memory unit. Like the I/O bus, the memory bus contains data,
address and read/write control lines. There are three ways that computer
buses can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and I/O but have separate
control lines for each.

3. Use one common bus for memory and I/O with common control lines.

In the first method, the computer has independent sets of data,
address, and control buses, one for accessing memory and the other for
I/O. This is done in computers that provide a separate I/O processor (IOP)
in addition to the central processing unit (CPU). The memory
communicates with both the CPU and IOP through a memory bus. The
IOP communicates also with the input and output devices through a
separate I/O bus with its own address, data and control lines. The purpose
of the IOP is to provide an independent pathway for the transfer of
information between external devices and internal memory. The I/O
processor is sometimes called a data channel.

1-2-2 Isolated versus Memory-Mapped I/O

Many computers use one common bus to transfer information
between memory or I/O and the CPU. The distinction between a memory
transfer and I/O transfer is made through separate read and write lines.
The CPU specifies whether the address on the address lines is for a

 Computer Organisation

 NOTES

242

memory word or for an interface register by enabling one of two possible
read or write lines. The I/O read and I/O write control lines are enabled
during an I/O transfer. The memory read and memory write control lines
are enabled during a memory transfer. This configuration isolates all I/O
interface addresses from the addresses assigned to memory and is
referred to as the isolated I/O method for assigning addresses in a common
bus.

 In the isolated I/O configuration, the CPU has distinct input and
output instructions, and each of these instructions is associated with the
address of an interface register. When the CPU fetches and decodes the
operation code of an input or output instruction, it places the address
associated with the instruction into the common address lines. At the same
time, it enables the I/O read (for input) or I/O write (for output) control line.
This informs the external components that are attached to the common bus
that the address in the address lines is for an interface register and not for
a memory word. On the other hand, when the CPU is fetching an
instruction or an operand from memory, it places the memory address on
the address lines and enables the memory read or memory write control
line. This informs the external components that the address is for a
memory word and not for an I/O interface.

 The isolated I/O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment
since each has its own address space. The other alternative is to use the
same address space for both memory and I/O. This is the case in
computers that employ only one set of read and write signals and do not
distinguish between memory and I/O addresses. This configuration is
referred to as memory-mapped I/O. The computer treats an interface
register as being part of the memory system. The assigned addresses for
interface registers cannot be used for memory words, which reduce the
memory address range available.

 In a memory mapped I/O organization there are no specific inputs
or output instructions. The CPU can manipulate I/O data residing in
interface registers with the same instructions that are used to manipulate
memory words. Each interface is organized as a set of registers that
respond to read and write requests in the normal address space. Typically,
a segment of the total address space is reserved for interface registers, but
in general, they can be located at any address as long as there is not also
a memory word that responds to the same address.

 Computers with memory mapped I/O can use memory type
instructions to access I/O data. It allows the computer to use the same
instructions for either input-output transfers or for memory transfers. The
advantage is that the load and store instructions used for reading and
writing from memory can be used to input and output data from I/O
registers. In a typical computer, there are more memory reference

 Computer Organisation

 NOTES

243

instructions than I/O instructions. With memory mapped I/O all instructions
that refer to memory are also available for I/O.

1-2-3 Example of I/O Interface

 An example of an I/O interface unit is shown in block diagram form
in Fig. 1.2. It consists of two data registers called parts, a control register,
a status register, bus buffers, and timing and control circuits. The interface
communicates with the CPU through the data bus. The chip select and
register select inputs determine the address assigned to the interface. The
I/O read and write are two control lines that specify an input or output,
respectively. The four registers communicate directly with the I/O device
attached to the interface.

Figure 1-2 Example of I/O interface

 The I/O data to and from the device can be transferred into either
port A or port B. The interface may operate with an output device or with
an input device, or with a device that requires both input and output. If the
interface is connected to a printer, it will only output data, and if it services
a character reader, it will only input data. A magnetic disk unit transfers
data in both directions but not at the same time, so the interface can use
bidirectional lines. A command is passed to the I/O device by sending a

 Computer Organisation

 NOTES

244

word to the appropriate interface register. In a system like this, the function
code in the I/O bus is not needed because control is sent to the control
register, status information is received from the status register, and data
are transferred to and from ports A and B registers. Thus the transfer of
data, control, and status information is always via the common data bus.
The distinction between data, control, or status information is determined
from the particular interface register with which the CPU communicates.

The control register receives control information from the CPU. By
loading appropriate bits into the control register, the interface and the I/O
device attached to it can be placed in a variety of operating modes. For
example, port A may be denned as an input port and port B as an output
port. A magnetic tape unit may be instructed to rewind the tape or to start
the tape moving in the forward direction. The bits in the status register are
used for status conditions and for recording errors that may occur during
the data transfer. For example, a status bit may indicate that port A has
received a new data item from the I/O device. Another bit in the status
register may indicate that a parity error has occurred during the transfer.

The interface registers communicate with the CPU through the
bidirectional data bus. The address bus selects the interface unit through
the chip select and the two register select inputs. A circuit must be provided
externally (usually, a decoder) to detect the address assigned to the
interface registers. This circuit enables the chip select (CS] input when the
interface is selected by the address bus. The two register select inputs RS1
and RSO are usually connected to the two least significant lines of the
address bus. These two inputs select one of the four registers in the
interface as specified in the table accompanying the diagram. The content
of the selected register is transfer into the CPU via the data bus when the
I/O read signal is enabled. The CPU transfers binary information into the
selected register via the data bus when the I/O write input is enabled.

1-3 Summary

This completes our discussion on the Character codes, such as
ASCII, EBCDIC, and Unicode, have finite sizes and can thus be completely
represented in a finite number of bits. The number of bits used for
representing numbers is also finite, and as a result only a subset of the real
numbers can be represented. This leads to the notions of range, precision,
and error. Input, output, and communication involve the transfer of
information between transmitters and receivers. The transmitters,
receivers, and methods of communication are often mismatched in terms of
speed and in how information is represented, and so an important
consideration is how to match input and output devices with a system using
a particular method of communication. This lesson focused on the I/O
system and the way the processor and the I/O devices exchange data in a
computer system.

 Computer Organisation

 NOTES

245

1-4 Keywords

CRT: Cathode Ray Tube

ASCII: American Standard Code for Information Interchange. It uses
seven bits to code 128 characters

EBCDIC: Extended Binary Coded Decimal Interchange Code (EBCDIC) is
an eight-bit code that is used extensively in IBM mainframe computers.

Memory mapped I/O: In this case there is no deference between memory
and I/O address.

I/O mapped I/O: In this case there is deference between memory and I/O
address (separate address locations).

1-5 Exercise

1. The addresses assigned to the four registers of the I/O interface of Fig.
1-2 are equal to the binary equivalent of 12, 13, 14, and 15. Show the
external circuit that must be connected between an 8-bit I/O address from
the CPU and the CS, RSl, and RSO inputs of the interface

2. Six interface units of the type shown in Fig. 1-2 are connected to a CPU
that uses an I/O address of eight bits. Each one of the six chip select (CS)
inputs is connected to a different address line. Thus the high-order address
line is connected to the CS input of the first interface unit and the sixth
address line is connected to the CS input of the sixth interface unit. The two
low-order address lines are connected to the RSl and RSO of all six inter-
face units. Determine the 8-bit address of each register in each interface.

3. List four peripheral devices that produce an acceptable output for a
person to understand. Write your full name in ASCII using eight bits per
character with the leftmost bit always 0. Include a space between names
and a period after middle initial.

4. What is the difference between isolated I/O and memory-mapped I/O?
What are the advantages and disadvantages of each?

1-6 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha — BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes.

 Computer Organisation

 NOTES

246

2. ASYNCHRONOUS DATA TRANSFER

Structure

2-1 Introduction

2-2 Asynchronous Data Transfer
2-3 Strobe Control
2-4 Handshaking
2-5 Asynchronous Serial Transfer

2-6 Asynchronous Communication Interface
2-7 First-In, First-Out Buffer
2-8 Summary
2-9 Keywords
2-10 Exercise
2-11 Reference

Objectives

At the end of this lesson you should be able to:

 Discuss about the asynchronous data transfer

 Describe the strobe control

 Describe the handshaking

 Discuss about the Asynchronous Serial Transfer

 Discuss about the Asynchronous Communication Interface

 Discuss First-In, First-Out Buffer

2-1 Introduction

The internal operations in a digital system are synchronized by
means of clock pulses supplied by a common pulse generator. Clock
pulses are applied to all registers within a unit and all data transfers among
internal registers occur simultaneously during the occurrence of a clock
pulse. Two units, such as a CPU and an I/O interface, are designed
independently of each other. If the registers in the interface share a
common clock with the CPU registers, the transfer between the two units is
said to be synchronous. In most cases, the internal timing in each unit is
independent from the other in that each uses its own private clock for
internal registers. In that case, the two units are said to be asynchronous to
each other. This approach is widely used in most computer systems.

2-2 Asynchronous Data Transfer

Asynchronous data transfer between two independent units
requires that control signals be transmitted between the communicating
units to indicate the time at which data is being transmitted. One way of
achieving this is by means of a strobe pulse supplied by one of the units to
indicate to the other unit when the transfer has to occur. Another method

 Computer Organisation

 NOTES

247

commonly used is to accompany each data item being transferred with a
control signal that indicates the presence of data in the bus. The unit
receiving the data item responds with another control signal to
acknowledge receipt of the data. This type of agreement between two
independent units is referred to as handshaking.

The strobe pulse method and the handshaking method of
asynchronous data transfer are not restricted to I/O transfers. In fact, they
are used extensively on numerous occasions requiring the transfer of data
between two independent units. In the general case we consider the
transmitting unit as the source and the receiving unit as the destination. For
example, the CPU is the source unit during an output or a write transfer
and it is the destination unit during an input or a read transfer. It is
customary to specify the asynchronous transfer between two independent
units by means of a timing diagram that shows the timing relationship that
must exist between the control signals and the data in the buses. The
sequence of control during an asynchronous transfer depends on whether
the transfer is initiated by the source or by the destination unit.

2-3 Strobe Control

The strobe control method of asynchronous data transfer employs a
single control line to time each transfer. The strobe may be activated by
either the source or the destination unit. Figure 2-1 (a) shows a source-
initiated transfer. The data bus carries the binary information from source
unit to the destination unit. Typically, the bus has multiple lines to transfer
an entire byte or word. The strobe is a single line that informs the
destination unit when a valid data word is available in the bus.

As shown in the timing diagram of Fig. 2-1(b), the source unit first
places the data on the data bus. After a brief delay to ensure that the data
settle to a steady value, the source activates the strobe pulse. The
information on the data bus and the strobe signal remain in the active state
for a sufficient time period to allow the destination unit to receive the data.
Often, the destination unit uses the falling edge of the strobe pulse to
transfer the contents of the data bus into one of its internal registers. The
source removes the data from the bus a brief period after it disables its
strobe pulse. Actually, the source does not have to change the information
in the data bus. The fact that the strobe signal is disabled indicates that the
data bus does not contain valid data. New valid data will be available only
after the strobe is enabled again.

Figure 2-2 shows a data transfer initiated by the destination unit. In
this case the destination unit activates the strobe pulse, informing the
source to provide the data. The source unit responds by placing the
requested binary information on the data bus. The data must be valid and
remain in the bus long enough for the destination unit to accept it. The
falling edge of the strobe pulse can be used again to trigger a destination
register. The destination unit then disables the strobe. The source removes
the data from the bus after a predetermined time interval.

 Computer Organisation

 NOTES

248

(a) Block Diagram

(b) Timing Diagram

Figure 2-1 Source-Initiated Strobe for Data Transfer

(a) Block Diagram

(b) Timing Diagram

Figure 2-2 Destination-Initiated Strobe for Data Transfer

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs
the external units how to transfer data. For example, the strobe of Fig. 2-1
could be a memory-write control signal from the CPU to a memory unit.
The source, being the CPU, places a word on the data bus and informs the
memory unit, which is the destination, that this is a write operation.
Similarly, the strobe of Fig. 2-2 could be a memory-read control signal from
the CPU to a memory unit. The destination, the CPU, initiates the read
operation to inform the memory, which is the source, to place a selected
word into the data bus.

 Computer Organisation

 NOTES

249

The transfer of data between the CPU and an interface unit is similar
to the strobe transfer just described. Data transfer between an interface
and an I/O device is commonly controlled by a set of handshaking lines.

2-4 Handshaking

The disadvantage of the strobe method is that the source unit that
initiates the transfer has no way of knowing whether the destination unit
has actually received the data item that was placed in the bus. Similarly, a
destination unit that initiates the transfer has no way of knowing whether
the source unit has actually placed the data on the bus. The handshake
method solves this problem by introducing a second control signal that
provides a reply to the unit that initiates the transfer. The basic principle of
the two-wire handshaking method of data transfer is as follows. One control
line is in the same direction as the data flow in the bus from the source to
the destination. It is used by the source unit to inform the destination unit
whether there are valid data in the bus. The other control line is in the other
direction from the destination to the source. It is used by the destination
unit to inform the source whether it can accept data. The sequence of
control during the transfer depends on the unit that initiates the transfer.

Figure 2-3 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by
the source unit, and data accepted, generated by the destination unit. The
timing diagram shows the exchange of signals between the two units. The
sequence of events listed in part (c) shows the four possible states that the
system can be at any given time. The source unit initiates the transfer by
placing the data on the bus and enabling its data valid signal. The data
accepted signal is activated by the destination unit after it accepts the data
from the bus. The source unit then disables its data valid signal, which
invalidates the data on the bus. The destination unit then disables its data
accepted signal and the system goes into its initial state. The source does
not send the next data item until after the destination unit shows its
readiness to accept new data by disabling its data accepted signal. This
scheme allows arbitrary delays from one state to the next and permits each
unit to respond at its own data transfer rate. The rate of transfer is
determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown
in Fig. 2-4. Note that the name of the signal generated by the destination
unit has been changed to ready for data to reflect its new meaning. The
source unit in this case does not place data on the bus until after it receives
the ready for data signal from the destination unit. From there on, the
handshaking procedure follows the same pattern as in the source-initiated
case. Note that the sequence of events in both cases would be identical if
we consider the ready for data signal as the complement of data accepted.
In fact, the only difference between the source-initiated and the destination-
initiated transfer is in their choice of initial state.

 Computer Organisation

 NOTES

250

(a) Block Diagram

(b) Timing Diagram

(c) Sequence of Events

Figure 2-3 Source-Initiated transfer using handshaking

The handshaking scheme provides a high degree of flexibility and
reliability because the successful completion of a data transfer relies on
active participation by both units. If one unit is faulty, the data transfer will
not be completed. Such an error can be detected by means of a timeout
mechanism, which produces an alarm if the data transfer is not completed
within a predetermined time. The timeout is implemented by means of an
internal clock that starts counting time when the unit enables one of its
handshaking control signals. If the return handshake signal does not
respond within a given time period, the unit assumes that an error has
occurred. The timeout signal can be used to interrupt the processor and
hence execute a service routine that takes appropriate error recovery
action.

 Computer Organisation

 NOTES

251

(a) Block Diagram

(b) Timing Diagram

(c) Sequence of Events

Figure 2-4 Destination-Initiated transfer using handshaking

2-5 Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or
serial. In parallel data transmission, each bit of the message has its own
path and the total message is transmitted at the same time. This means
that an n bit message must be transmitted through n separate conductor
paths. In serial data transmission, each bit in the message is sent in
sequence one at a time. This method requires the use of one pair of
conductors or one conductor and common ground. Parallel transmission is
faster but requires many wires. It is used for short distances and where
speed is important. Serial transmission is slower but is less expensive
since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In
synchronous transmission, the two units share a common clock frequency

 Computer Organisation

 NOTES

252

and bits are transmitted continuously at the rate dictated by the clock
pulses. In long-distant serial transmission, each unit is driven by a separate
clock of the same frequency. Synchronization signals are transmitted
periodically between the two units to keep their clocks in step with each
other. In asynchronous transmission, binary information is sent only when it
is available and the line remains idle when there is no information to be
transmitted. This is in contrast to synchronous transmission, where bits
must be transmitted continuously to keep the clock frequency in both units
synchronized with each other.

 A serial asynchronous data transmission technique used in many
interactive terminals employs special bits that are inserted at both ends of
the character code. With this technique, each character consists of three
parts: a start bit, the character bits, and stop bits. The convention is that the
transmitter rests at the 1-state when no characters are transmitted. The first
bit, called the start bit, is always a 0 and is used to indicate the beginning of
a character. The last bit called the stop bit is always a 1. An example of this
format is shown in Fig. 2-5

Figure 2-5 Asynchronous serial transmission

A transmitted character can be detected by the receiver from knowledge of
the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit,
which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when
the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the
line goes from 1 to 0. A clock in the receiver examines the line at proper
bit times. The receiver knows the transfer rate of the bits and the number
of character bits to accept. After the character bits are transmitted, one or
two stop bits are sent. The stop bits are always in the 1-state and frame
the end of the character to signify the idle or wait state.

 Computer Organisation

 NOTES

253

 At the end of the character the line is held at the 1-state for a period
of at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends
on the amount of time required for the equipment to resynchronize. Some
older electromechanical terminals use two stop bits, but newer terminals
use one stop bit. The line remains in the 1-state until another character is
transmitted. The stop time ensures that a new character will not follow for
one or two bit times.

 As an illustration, consider the serial transmission of a terminal
whose transfer rate is 10 characters per second. Each transmitted
character consists of a start bit, eight information bits, and two stop bits, for
a total of 11 bits. Ten characters per second means each character takes
0.1sec for transfer. Since there are 11 bits to be transmitted, it follows that
the bit time is 9.09msec. The baud rate is defined as the rate at which
serial information is transmitted and is equivalent to the data transfer in bits
per second. Ten characters per second with an 11-bit format have a
transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is
depressed, the terminal sends 11 bits serially along a wire. To print a
character in the printer, an 11-bit message must be received along another
wire. The terminal interface consists of a transmitter and a receiver. The
transmitter accepts an 8-bit character from the computer and proceeds to
send a serial 11-bit message into the printer line. The receiver accepts a
serial 11-bit message from the keyboard line and forwards the 8-bit
character code into the computer. Integrated circuits are available which
are specifically designed to provide the interface between computer and
similar interactive terminals. Such a circuit is called an asynchronous
communication interface or a universal asynchronous receiver-transmitter
(UART).

2-6 Asynchronous Communication Interface

The block diagram of an asynchronous communication interface is
shown in Fig. 2-6. It functions as both a transmitter and a receiver. The
interface is initialized for a particular mode of transfer by means of a control
byte that is loaded into its control register. The transmitter register accepts
a data byte from the CPU through the data bus. This byte is transferred to a
shift register for serial transmission. The receiver portion receives serial
information into another shift register, and when a complete data byte is
accumulated, it is transferred to the receiver register. The CPU can select
the receiver register to read the byte through the data bus. The bits in the
status register are used for input and output flags and for recording certain
errors that may occur during the transmission. The CPU can read the
status register to check the status of the flag bits and to determine if any
errors have occurred. The chip select and the read and write control lines
communicate with the CPU. The chip select (CS) input is used to select the
interface through the address bus. The register select (RS) is associated
with the read (RD) and write (WR) controls. Two registers are write-only

 Computer Organisation

 NOTES

254

and two are read-only. The register selected is a function of the RS value
and the RD and WR status, as listed in the table accompanying the
diagram.

Figure 2-6 Block Diagram of a typical asynchronous communication
interface

The operation of the asynchronous communication interface is initial-
ized by the CPU by sending a byte to the control register. The initialization
procedure places the interface in a specific mode of operation as it defines
certain parameters such as the baud rate to use, how many bits are in each
character, whether to generate and check parity, and how many stop bits
are appended to each character. Two bits in the status register are used as
flags. One bit is used to indicate whether the transmitter register is empty
and another bit is used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows.
The CPU reads the status register and checks the flag to see if the
transmitter register is empty. If it is empty the CPU transfers a character to
the transmitter register and the interface clears the flag to mark the register
full. The first bit in the transmitter shift register is set to 0 to generate a start
bit. The character is transferred in parallel from the transmitter register to
the shift register and the appropriate number of stop bits is appended into
the shift register. The transmitter register is then marked empty. The

 Computer Organisation

 NOTES

255

character can now be transmitted one bit at a time by shifting the data in
the shift register at the specified baud rate. The CPU can transfer another
character to the transmitter register after checking the flag in the status
register. The interface is said to be double buffered because a new
character can be loaded as soon as the previous one starts transmission.

 The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a
start bit. Once a start bit has been detected, the incoming bits of the
character are shifted into the shift register at the prescribed baud rate. After
receiving the data bits, the interface checks for the parity and stop bits. The
character without the start and stop bits is then transferred in parallel from
the shift register to the receiver register. The flag in the status register is set
to indicate that the receiver register is full. The CPU reads the status
register and checks the flag, and if set, it reads the data from the receiver
register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register
at any time to check if any errors have occurred. Three possible errors that
the interface checks during transmission are parity error, framing error, and
overrun error. Parity error occurs if the number of 1's in the received data is
not the correct parity. A framing error occurs if the right number of stop bits
is not detected at the end of the received character. An overrun error
occurs if the CPU does not read the character from the receiver register
before the next one becomes available in the shift register. Overrun error
results in a loss of characters in the received data stream.

2-7 First-In, First-Out Buffer

A first-in, first-out (FIFO) buffer is a memory unit that stores
information in such a manner that the item first in is the item first out. A
FIFO buffer comes with separate input and output terminals. The important
feature of this buffer is that it can input data and output data at two different
rates and the output data are always in the same order in which the data
entered the buffer. When placed between two units, the FIFO can accept
data from the source unit at one rate of transfer and deliver the data to the
destination unit at another rate. If the source unit is slower than the
destination unit, the buffer can be filled with data at a slow rate and later
emptied at the higher rate. If the source is faster than the destination, the
FIFO is useful for those cases where the source data arrive in bursts that
fill out the buffer but the time between bursts is long enough for the
destination unit to empty some or all the information from the buffer. Thus a
FIFO buffer can be useful in some applications when data are transferred
asynchronously. It piles up data as they come in and gives them away in
the same order when the data are needed.

The logic diagram of a typical 4X4 FIFO buffer is shown in Fig. 2-7.
It consists of four 4-bit registers RI, I = 1,2, 3, 4, and a control register with
flip-flops Fi, i = 1, 2, 3,4, one for each register. The FIFO can store four

 Computer Organisation

 NOTES

256

words of four bits each. The number of bits per word can be increased by
increasing the number of bits in each register and the number of words can
be increased by increasing the number of registers.

Figure 2-7 Circuit diagram of 4 X 4 FIFO buffer

A flip-flop Fi in the control register that is set to 1 indicates that a 4-
bit data word is stored in the corresponding register RI. A 0 in Fi indicates
that the corresponding register does not contain valid data. The control
register directs the movement of data through the registers. Whenever the
F, bit of the control register is set Fi = 1) and the Fi+1 bit is reset (F’i+1 = 1), a
clock is generated causing register R(I+ 1) to accept the data from register
RI. The same clock transition sets Fi+1 to 1 and resets Fi to 0. This causes
the control flag to move one position to the right together with the data.
Data in the registers move down the FIFO toward the output as long as
there are empty locations ahead of it. These ripple-through operation stops
when the data reach a register RI with the next flip-flop Fi+1 being set to 1,
or at the last register R4. An overall master clear is used to initialize all
control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal
is enabled. This occurs when the first control flip-flop F1 is reset, indicating
that register Rl is empty. Data are loaded from the input lines by enabling
the clock in Rl through the insert control line. The same clock sets F1 which
disables the input ready control, indicating that the FIFO is now busy and
unable to accept more data. The ripple-through process begins provided
that R2 is empty. The data in Rl are transferred into R2 and F1 is cleared.
This enables the input ready line, indicating that the inputs are now
available for another data word. If the FIFO is full, F1 remains set and the
input ready line stays in the 0 state. Note that the two control lines input
ready and insert constitute a destination-initiated pair of handshake lines.

The data falling through the registers stack up at the output end.
The output ready control line is enabled when the last control flip-flop F4 is
set, indicating that there are valid data in the output register R4:. The
output data from R4: are accepted by a destination unit, which then

 Computer Organisation

 NOTES

257

enables the delete control signal. This resets F4 causing output ready to
disable, indicating that the data on the output are no longer valid. Only after
the delete signal goes back to 0 can the data from R3 move into R4. If the
FIFO is empty, there will be no data in R3 and F4 will remain in the reset
state. Note that the two control lines output ready and delete constitute a
source-initiated pair of handshake lines.

2-8 Summary

 In this lesson, we have introduced communication of peripheral
devices to the system. We have mainly focus on asynchronous transfer in
between of the devices using hand shaking signals. In an asynchronous
transfer, there is no common clock and the master and slave can follow
some sort of acknowledgement protocol during data transfer sequence.

2-9 Keywords

Strobe Control: One way of achieving this is by means of a strobe pulse
supplied by one of the units to indicate to the other unit when the transfer
has to occur.

Handshaking: The unit receiving the data item responds with another
control signal to acknowledge receipt of the data. This type of agreement
between two independent units is referred to as handshaking.

Asynchronous Communication: The two units share a common clock
frequency and bits are transmitted continuously at the rate dictated by the
clock pulses.

Asynchronous Communication: binary information is sent only when it is
available and the line remains idle when there is no information to be
transmitted.

Chip select: The chip select (CS) input is used to select the interface
through the address bus.

2-10 PROBLEMS

1. A commercial interface unit uses different names for the handshake
lines associated with the transfer of data from the I/O device into the
interface unit. The interface input handshake line is labeled STB
(strobe), and the interface output handshake line is labeled IBF (input
buffer full). A low-level signal on STB loads data from the I/O bus into
the interface data register. A high-level signal on IBF indicates that
the data item has been accepted by the interface. IBF goes low after
an I/O read signal from the CPU when it reads the contents of the
data register.

a. Draw a block diagram showing the CPU, the interface, and the I/O
device together with the pertinent interconnections among the three units.

 Computer Organisation

 NOTES

258

b. Draw a timing diagram for the handshaking transfer. c. Obtain a
sequence-of-events flowchart for the transfer from the device to the
interface and from the interface to the CPU.

2. A CPU with a 20-MHz clock is connected to a memory unit whose
access time is 40 ns. Formulate a read and write timing diagrams
using a READ strobe and a WRITE strobe. Include the address in the
timing diagram.

3. The asynchronous communication interface shown in Fig. 2-6 is
connected between a CPU and a printer. Draw a flowchart that
describes the sequence of operations in the transmitter portion of the
interface when the CPU sends characters to be printed.

4. Give at least six status conditions for the setting of individual bits in
the status register of an asynchronous communication interface.

5. How many bits are there in the transmitter shift register of Fig. 2-7
when the interface is attached to a terminal that needs one stop bit?
List the bits in the shift register when the letter W is transmitted using
ASCII with even parity.

6. How many characters per second can be transmitted over a 1200-
baud line in each of the following modes? (Assume a character code
of eight bits.)

a. Synchronous serial transmission.

b. Asynchronous serial transmission with two stop bits.

c. Asynchronous serial transmission with one stop bit.

7. Information is inserted into a FIFO buffer at a rate of m bytes per
second. The information is deleted at a rate of n byte per second. The
maximum capacity of the buffer is k bytes.

a. How long does it take for an empty buffer to fill up when m > n?

 b. How long does it take for a full buffer to empty when m < n?

c. Is the FIFO buffer needed if m = n?

2-11 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes,.

 Computer Organisation

 NOTES

259

3. MODES OF DATA TRANSFER

Structure

3-1 Introduction
3-2 Example of Programmed I/O
3-3 Interrupt-Initiated I/O
3-4 Software Considerations
3-5 Priority Interrupt

3-5-1 Daisy-Chaining Priority
3-5-2 Parallel Priority Interrupt
3-5-3 Priority Encoder
3-5-4 Interrupt Cycle
3-5-5 Software Routines
3-5-6 Initial and Final Operations

3-6 Summary
3-7 Keywords
3-8 Exercise
3-9 References:

Objectives

At the end of this lesson you should be able to:

 Discuss about the Programmed I/O

 Discuss about the Interrupt-initiated I/O

3-1 Introduction

 Binary information received from an external device is usually stored
in memory for later processing. Information transferred from the central
computer into an external device originates in the memory unit. The CPU
merely executes the I/O instructions and may accept the data temporarily,
but the ultimate source or destination is the memory unit. Data transfer
between the central computer and I/O devices may be handled in a variety
of modes. Some modes use the CPU as an intermediate path; others
transfer the data directly to and from the memory unit. Data transfer to and
from peripherals may be handled in one of three possible modes:

1. Programmed I/O

2. Interrupt-initiated I/O

3. Direct memory access (DMA)

Programmed I/O operations are the result of I/O instructions written
in the computer program. Each data item transfer is initiated by an
instruction in the program. Usually, the transfer is to and from a CPU

 Computer Organisation

 NOTES

260

register and peripheral. Other instructions are needed to transfer the data to
and from CPU and memory. Transferring data under program control
requires constant monitoring of the peripheral by the CPU. Once a data
transfer is initiated, the CPU is required to monitor the interface to see when
a transfer can again be made. It is up to the programmed instructions
executed in the CPU to keep close tabs on everything that is taking place in
the interface unit and the I/O device.

In the programmed I/O method, the CPU stays in a program loop
until the I/O unit indicates that it is ready for data transfer. This is a time-
consuming process since it keeps the processor busy needlessly. It can be
avoided by using an interrupt facility and special commands to inform the
interface to issue an interrupt request signal when the data are available
from the device. In the meantime the CPU can proceed to execute another
program. The interface meanwhile keeps monitoring the device. When the
interface determines that the device is ready for data transfer, it generates
an interrupt request to the computer. Upon detecting the external interrupt
signal, the CPU momentarily stops the task it is processing, branches to a
service program to process the I/O transfer, and then returns to the task it
was originally performing.

Transfer of data under programmed I/O is between CPU and periph-
eral. In direct memory access (DMA), the interface transfers data into and
out of the memory unit through the memory bus. The CPU initiates the
transfer by supplying the interface with the starting address and the number
of words needed to be transferred and then proceeds to execute other
tasks. When the transfer is made, the DMA requests memory cycles the
memory bus. When the request is granted by the memory controller, the
DMA transfers the data directly into memory. The CPU merely delays its
memory access operation to allow the direct memory I/O transfer. Since
peripheral speed is usually slower than processor speed, I/0-memory
transfers are infrequent compared to processor access to memory. DMA
transfer is discussed in more detail in lesson 4.

Many computers combine the interface logic with the requirements
for direct memory access into one unit and call it an I/O processor (IOP).
The IOP can handle many peripherals through a DMA and interrupt facility.
In such a system, the computer is divided into three separate modules: the
memory unit, the CPU, and the IOP. I/O processors are presented in lesson
5

3-2 Example of Programmed I/O

In the programmed I/O method, the I/O device does not have direct
access to memory. A transfer from an I/O device to memory requires the
execution of several instructions by the CPU, including an input instruction
to transfer the data from the device to the CPU and a store instruction to
transfer the data from the CPU to memory. Other instructions may be
needed to verify that the data are available from the device and to count
the numbers of words transferred.

 Computer Organisation

 NOTES

261

An example of data transfer from an I/O device through an interface
into the CPU is shown in Fig. 3-1. The device transfers bytes of data one at
a time as they are available. When a byte of data is available, the device
places it in the I/O bus and enables its data valid line. The interface accepts
the byte into its data register and enables the data accepted line. The
interface sets a bit in the status register that we will refer to as an F or "flag"
bit. The device can now disable the data valid line, but it will not transfer
another byte until this data accepted line is disabled by the interface. This is
according to the handshaking procedure established in Fig. 2-3 in lesson 2.

Figure 3-1 Data transfer from I/O device to CPU

A program is written for the computer to check the flag in the status register
to determine if a byte has been placed in the data register by the I/O device.
This is done by reading the status register into a CPU register and(
checking the value of the flag bit. If the flag is equal to 1, the CPU reads
the(data from the data register. The flag bit is then cleared to 0 by either
the CPU or the interface, depending on how the interface circuits are
designed. Once the flag is cleared, the interface disables the data accepted
line and the device can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown in Fig.
3-2. It is assumed that the device is sending a sequence of bytes that must
be stored in memory. The transfer of each byte requires three instructions:

1. Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step 2
if set.

3. Read the data register.

Each byte is read into a CPU register and then transferred to
memory with a store instruction. A common I/O programming task is to
transfer a block of words from an I/O device and store them in a memory
buffer.

The programmed I/O method is particularly useful in small low-
speed computers or in systems that are dedicated to monitor a device
continuously. The difference in information transfer rate between the CPU
and the I/O device makes this type of transfer inefficient. To see why this is

 Computer Organisation

 NOTES

262

inefficient, consider a typical computer that can execute the two instructions
that read the status register and check the flag in 1μs. Assume that the
input device transfers its data at an average rate of 100 bytes per second.
This is equivalent to on byte every 10,000 μs. This means that the CPU will
check the flag 10,000 times between each transfer. The CPU is wasting
time while checking the flag instead of doing some other useful processing
task.

Figure 3-2 Flowchart for CPU program to input data

3-3 Interrupt-Initiated I/O

An alternative to the CPU constantly monitoring the flag is to let the
interface inform the computer when it is ready to transfer data. This mode of
transfer uses the interrupt facility. While the CPU is running a program, it
does not check the flag. However, when the flag is set, the computer is
momentarily interrupted from proceeding with the current program and is
informed of the fact that the flag has been set. The CPU deviates from what
it is doing to take care of the input or output transfer. After the transfer is
completed, the computer returns to the previous program to continue what it
was doing before the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
(a service routine that processes the required I/O transfer. The way that the
processor chooses the branch address of the service routine varies from
one unit to another. In principle, there are two methods for accomplishing
this One is called vectored interrupt and the other, non-vectored interrupt. In
a non-vectored interrupt, the branch address is assigned to a fixed location
in memory, In a vectored interrupt, the source that interrupts supplies the
branch information to the computer. This information is called the interrupt
vector. In some computers the interrupt vector is the first address of the I/O
service routine. In other computers the interrupt vector is an address that
points to a location in memory where the beginning address of the I/O
service routine is stored.

 Computer Organisation

 NOTES

263

3-4 Software Considerations

The previous discussion was concerned with the basic hardware
needed to interface I/O devices to a computer system. A computer must
also have software routines for controlling peripherals and for transfer of
data between the processor and peripherals. I/O routines must issue control
commands to activate the peripheral and to check the device status to
determine when it is ready for data transfer. Once ready, information is
transferred item by item until all the data are transferred. In some cases, a
control command is then given to execute a device function such as stop
tape or print characters. Error checking and other useful steps often
accompany the transfers. In interrupt controlled transfers, the I/O software
must issue commands to the peripheral to interrupt when ready and to
service the interrupt when it occurs. In DMA transfer, the I/O software must
initiate the DMA channel to start its operation.

Software control of input-output equipment is a complex undertaking.
For this reason I/O routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included
within the operating system. Most operating systems are supplied with a
variety of I/O programs to support the particular line of peripherals offered
for the computer. I/O routines are usually available as operating system
procedures and the user refers to the established routines to specify the
type of transfer required without going into detailed machine language
programs.

3-5 Priority Interrupt

Data transfer between the CPU and an I/O device is initiated by the
CPU. However, the CPU cannot start the transfer unless the device is ready
to communicate with the CPU. The readiness of the device can be
determined from an interrupt signal. The CPU responds to the interrupt
request by storing the return address from PC into a memory stack and
then the program branches to a service routine that processes the required
transfer.

In a typical application a number of I/O devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt.
There is also the possibility that several sources will request service
simultaneously. In this case the system must also decide which device to
service first.

A priority interrupt is a system that establishes a priority over the
various sources to determine which condition is to be serviced first when
two or more requests arrive simultaneously. The system may also
determine which conditions are permitted to interrupt the computer while
another interrupt is being serviced. Higher-priority interrupt levels are
assigned to requests which, if delayed or interrupted, could have serious
consequences. Devices with high speed transfers such as magnetic disks
are given high priority, and slow devices such as keyboards receive low

 Computer Organisation

 NOTES

264

priority. When two devices interrupt the computer at the same time, the
computer services the device, with the higher priority first.

Establishing the priority of simultaneous interrupts can be done by
software or hardware. A polling procedure is used to identify the highest-
priority source by software means. In this method there is one common
branch address for all interrupts. The program that takes care of interrupts
begins at the branch address and polls the interrupt sources in sequence.
The order in which they are tested determines the priority of each interrupt.
The highest-priority source is tested first, and if its interrupt signal is on,
control branches to a service routine for this source. Otherwise, the next-
lower-priority source is tested, and so on. Thus the initial service routine for
all interrupts consists of a program that tests the interrupt sources in
sequence and branches to one of many possible service routines. The
particular service routine reached belongs to the highest-priority device
among all devices that interrupted the computer. The disadvantage of the
software method is that if there are many interrupts, the time required to poll
them can exceed the time available to service the I/O device. In this
situation a hardware priority-interrupt unit can be used to speed up the
operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest
priority, and issues an interrupt request to the computer based on this
determination. To speed up the operation, each interrupt source has its own
interrupt vector to access its own service routine directly. Thus no polling is
required because all the decisions are established by the hardware priority-
interrupt unit. The hardware priority function can be established by either a
serial or a parallel connection of interrupt lines. The serial connection is also
known as the daisy-chaining method.

3-5-1 Daisy-Chaining Priority

The daisy-chaining method of establishing priority consists of a
serial connection of all devices that request an interrupt. The device with
the highest priority is placed in the first position, followed by lower-priority
devices up to the device with the lowest priority, which is placed last in die
chain. This method of connection between three devices and die CPU is
shown in Fig. 3-3. The interrupt request line is common to all devices and
forms a wired logic connection. If any device has its interrupt signal in the
low-level state, the interrupt line goes to the low-level state and enables the
interrupt input in die CPU. When no interrupts arc pending, the interrupt line
stays in die high-level state and no interrupts are recognized by die CPU.
This is equivalent to a negative-logic OR operation. The CPU responds to
an interrupt request by enabling the interrupt acknowledge line. This signal
is received by device 1 at its PI(priority in) input. The acknowledge signal
passes on to the next device through the PO (priority out) output only if
device 1 is not requesting an interrupt. If device 1 has a pending interrupt, it
blocks the acknowledge signal from the next device by placing a 0 in the

 Computer Organisation

 NOTES

265

PO output. It then proceeds to insert its own interrupt vector address (VAD)
into die data bus for the CPU to use during the interrupt cycle.

Figure 3-3 Daisy-chain priorities interrupt

A device with a 0 in its PI input generates a 0 in its PO output to
inform the next-lower-priority device mat the acknowledge signal has been
blocked. A device that is requesting an interrupt and has a 1 in its PI input
will intercept the acknowledge signal by placing a 0 in its PO output. If the
device does not have pending interrupts, it transmits the acknowledge
signal to the next device by placing a 1 in its PO output. Thus the device
with PI = 1 and PO = 0 is the one with the highest priority that is requesting
an interrupt, and this device places its VAD on the data bus. The daisy
chain arrangement gives the highest priority to the device that receives the
interrupt acknowledge signal from the CPU. The farther the device is from
the first position; the lower is its priority.

Figure 3-4 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its
RF flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop
goes through an open-collector inverter, a circuit that provides the wired
logic for the common interrupt line. If PI = 0, both PO and the enable line to
VAD are equal to 0, irrespective of the value of RF. If PI= 1 and RF= 0, then
PO = 1 and the vector address is disabled. This condition passes the
acknowledge signal to the next device through PO. The device is active
when PI = 1 and RF= 1. This condition places a 0 in PO and enables the
vector address for the data bus. It is assumed that each device has its own
distinct vector address. The RF flip-flop is reset after a sufficient delay to
ensure that the CPU has received the vector address.

 Computer Organisation

 NOTES

266

Figure 3-4 One stage of the daisy-chain priority arrangement

3-5-2 Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are
set separately by the interrupt signal from each device. Priority is
established according to the position of the bits in the register. In addition to
the interrupt register, the circuit may include a mask register whose purpose
is to control the status of each interrupt request. The mask register can be
programmed to disable lower-priority interrupts while a higher-priority
device is being serviced. It can also provide a facility that allows a high-
priority device to interrupt the CPU while a lower-priority device is being
serviced.

 The priority logic for a system of four interrupt sources is shown in
Fig. 3-5. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask
register has the same number of bits as the interrupt register. By means of
program instructions, it is possible to set or reset any bit in the mask
register. Each interrupt bit and its corresponding mask bit are applied to an
AND gate to produce the four inputs to a priority encoder. In this way an
interrupt is recognized only if its corresponding mask bit is set to 1 by the
program. The priority encoder generates two bits of the vector address,
which is transferred to the CPU.

 Computer Organisation

 NOTES

267

Figure 3-5 Priority interrupt hardware

Another output from the encoder sets an interrupt status flip-flop 1ST
when an interrupt that is not masked occurs. The interrupt enable flip-flop
lEN can be set or cleared by the program to provide an overall control over
the interrupt system. The outputs of IST ANDed with IEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt
controller and the CPU.

3-5-3 Priority Encoder

The priority encoder is a circuit that implements the priority function.
The logic of the priority encoder is such that if two or more inputs arrive at
the same time, the input having the highest priority will take precedence.
The truth table of a four-input priority encoder is given in Table 3-1. The X's
in the table designate don't-care conditions. Input I0 has the highest priority;
so regardless of the values of other inputs, when this input is 1, the output
generates an output xy = 00. I1 has the next priority level. The output is 01 if
I1 = 1 provided that I0 = 0, regardless of the values of the other two lower-
priority inputs. The output for I2 is generated only if higher-priority inputs are
0, and so on down the priority level. The interrupt status IST is set only
when one or more inputs are equal to 1. If all inputs are 0, IST is cleared to
0 and the other outputs of the encoder are not used, so they are marked
with don't-care conditions. This is because the vector address is not
transferred to the CPU when IST= 0. The Boolean functions listed in the
table specify the internal logic of the encoder. Usually, a computer will have

 Computer Organisation

 NOTES

268

more than four interrupt sources. A priority encoder with eight inputs, for
example, will generate an output of three bits.

The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can
be assigned any value. For example, the vector address can be formed by
appending six zeros to the x and y outputs of the encoder. With this choice
the interrupt vectors for the four I/O devices are assigned binary numbers 0,
1, 2, and 3.

TABLE 3-1 Priority Encoder Truth Table

3-5-4 Interrupt Cycle

The interrupt enable flip-flop IEN shown in Fig. 3-5 can be set or
cleared by program instructions. When lEN is cleared, the interrupt request
coming from IST is neglected by the CPU. The program-controlled IEN bit
allows the programmer to choose whether to use the interrupt facility. If an
instruction to clear IEN has been inserted in the program, it means that the
user does not want his program to be interrupted. An instruction to set IEN
indicates that the interrupt facility will be used while the current program is
running. Most computers include internal hardware that clears lEN to 0
every time an interrupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks IEN and the inter-
rupt signal from IST. If either is equal to 0, control continues with the next
instruction. If both IEN and IST are equal to 1, the CPU goes to an interrupt
cycle. During the interrupt cycle the CPU performs the following sequence
of microoperations:

The CPU pushes the return address from PC into the stack. It then
acknowledges the interrupt by enabling the INTACK line. The priority
interrupt unit responds by placing a unique interrupt vector into the CPU
data bus. The CPU transfers the vector address into PC and clears IEN
prior to going to the next fetch phase. The instruction read from memory
during the next fetch phase will be the one located at the vector address.

 Computer Organisation

 NOTES

269

3-5-5 Software Routines

A priority interrupt system is a combination of hardware and
software techniques. So far we have discussed the hardware aspects of a
priority interrupt system. The computer must also have software routines for
servicing the interrupt requests and for controlling the interrupt hardware
registers. Figure 3-6 shows the programs that must reside in memory for
handling the interrupt system. Each device has its own service program that
can be reached through a jump (JMP) instruction stored at the assigned
vector address. The symbolic name of each routine represents the starting
address of the service program the stack shown in the diagram is used for
storing the return address after each interrupt.

Figure 3-6 Programs in memory for servicing interrupts

To illustrate with a specific example assume that the keyboard sets
it interrupt bit while the CPU is executing the instruction in location 749 of
the main program. At the end of the instruction cycle, the computer goes to
an interrupt cycle. It stores the return address 750 in the stack and then
accepts the vector address 00000011 from the bus and transfers it to PC.
The instruction in location 3 is executed next, resulting in transfer of control
to the KBD routine. Now suppose that the disk sets its interrupt bit when the
CPU is executing the instruction at address 255 in the KBD program.
Address 256 pushed into the stack and control is transferred to the DISK
service program. The last instruction in each routine is a return from
interrupt instruction when the disk service program is completed, the return
instruction pops through stack and places 256 into PC. This returns control
to the KBD routine to continue servicing the keyboard. At the end of the
KBD program, the last instruction pops the stack and returns control to the
main program at address 750. Thus, a higher-priority device can interrupt a
lower-priority device. It is assumed that the time spent in servicing the high-
priority interrupt is short compared to the transfer rate of the low-priority
device so that no loss of information takes place.

3-5-6 Initial and Final Operations

Each interrupt service routine must have an initial and final set of
operations for controlling the registers in the hardware interrupt system.

 Computer Organisation

 NOTES

270

Remember that the interrupt enable lEN is cleared at the end of an interrupt
cycle. This flip-flop must be set again to enable higher-priority interrupt
requests, but not before lower-priority interrupts are disabled. The initial
sequence of each interrupt service routine must have instructions to control
the interrupt hardware in the following manner:

1. Clear lower-level mask register bits.

2. Clear interrupt status bit IST.

3. Save contents of processor registers.

4. Set interrupt enable bit IEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the
interrupt. Although lower-priority interrupt sources are assigned to higher-
numbered bits in the mask register, priority can be changed if desired since
the programmer can use any bit configuration for the mask register. The
interrupt status bit must be cleared so it can be set again when a higher-
priority interrupt occurs. The contents of processor registers are saved
because they may be needed by the program that has been interrupted
after control returns to it. The interrupt enable lEN is then set to allow other
(higher-priority) interrupts and the computer proceeds to service the
interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable bit IEN.

2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has
been serviced.

4. Set lower-level priority bits in the mask register.

5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the
interrupt must be cleared so that it will be available again for the source to
interrupt. The lower-priority bits in the mask register (including the bit of the
source being interrupted) are set so they can enable the interrupt. The
return to the interrupted program is accomplished by restoring the return
address to PC. Note that the hardware must be designed so that no
interrupts occur while executing steps 2 through 5; otherwise, the return
address may be lost and the information in the mask and processor
registers may be ambiguous if an interrupt is acknowledged while executing
the operations in these steps. For this reason lENis initially cleared and
then set after the return address is transferred into PC.

 Computer Organisation

 NOTES

271

The initial and final operations listed above are referred to as
overhead operations or housekeeping chores. They are not part of the
service program proper but are essential for processing interrupts. All
overhead operations can be implemented by software. This is done by
inserting the proper instructions at the beginning and at the end of each
service routine. Some of the overhead operations can be done
automatically by the hardware. The contents of processor registers can be
pushed into a stack by the hardware before branching to the service
routine. Other initial and final operations can be assigned to the hardware.
In this way, it is possible to reduce the time between receipt of an interrupt
and the execution of the instructions that service the interrupt source.

3-6 Summary

One of the major features in a computer system is its ability to
exchange data with other devices and to allow the user to interact with the
system. This lesson focused on the I/O system and the way the processor
and the I/O devices exchange data in a computer system. The lesson
described three ways of organizing I/O: programmed I/O, interrupt-driven
I/O, and DMA. In programmed I/O, the CPU handles the transfers, which
take place between registers and the devices. In interrupt-driven I/O, CPU
handles data transfers and an I/O module is running concurrently. We also
studied two methods for synchronization: polling and interrupts. In polling,
the processor polls the device while waiting for I/O to complete. Clearly
processor cycles are wasted in this method. Using interrupts, processors
are free to switch to other tasks during I/O. Devices assert interrupts when
I/O is complete. Interrupts incurs some delay penalty.

3-7 Keywords

Programmed I/O: Programmed I/O operations are the result of I/O
instructions written in the computer program. Each data item transfer is
initiated by an instruction in the program.

Interrupt: An interrupt is an event inside a computer system requiring some
urgent action by the CPU

DMA: A dedicated hardware unit such as data channel or direct memory
access (DMA) controller takes care of controlling the transfer of data
between memory and I/O controller

Priority interrupts: Interrupt requests from various sources are connected
as input to the interrupt controller. As soon as the interrupt controller senses
the presence of any one or more interrupt requests, immediately it issues
an interrupt signals to the processor.

Polling: One-by-one transfer.

 Computer Organisation

 NOTES

272

3-8 Exercise

1. Show a block diagram similar to Fig. 3-1 for the data transfer
from a CPU to an interface and then to an I/O device.
Determine a procedure for setting and clearing the flag bit.

2. Using the configuration established in Prob.1, obtain a flowchart
(similar to Fig. 3-2) for the CPU program to output data.

3. What is the basic advantage of using interrupt-initiated data
transfer over transfer under program control without an
interrupt?

4. In most computers an interrupt is recognized only after the
execution of the instruction. Consider the possibility of
acknowledging the interrupt at any time during the execution of
the instruction. Discuss the difficulty that may arise.

5. What happens in the daisy-chain priority interrupt shown in Fig.
3-3 when device 1 requests an interrupt after device 2 has sent
an interrupt request to the CPU but before the CPU responds
with the interrupt acknowledge?

6. Consider a computer without priority interrupt hardware. Any
one of many sources can interrupt the computer and any
interrupt request results in storing the return address and
branching to a common interrupt routine. Explain how a priority
can be established in the interrupt service program.

7. Using combinational circuit design techniques, derive the
Boolean expressions listed in Table 3-1 for the priority encoder.
Draw the logic diagram of the circuit.

8. What programming steps are required to check when a source
interrupts the computer while it is still being serviced by a
previous interrupt request from the same source?

3-7 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes.

 Computer Organisation

 NOTES

273

4. DIRECT MEMORY ACCESS (DMA)

Structure

4-1 Introduction

4-2 DMA Controller
4-3 DMA Transfer
4-4 Summary
4-5 Keywords
4-6 Exercise
4-7 References

Objectives

At the end of this lesson you should be able to:

 Describe the DMA Controller

 Describe the DMA Transfer

4-1 Introduction
The transfer of data between fast storage devices such is

magnetic disk and memory is often limited by the speed of the CPU.
Removing the CPU from the path and letting the peripheral device
manage the memory buses directly would improve the speed of transfer.
This transfer technique is called direct memory access (DMA). During
DMA transfer, the CPU is idle and has no control of the memory buses. A
DMA controller takes over the buses to manage the transfer directly
between the I/O device and memory.

The CPU may be placed in an idle state in a variety of ways. One
common method extensively used in microprocessors is to disable the
buses through special control signals. Figure 4-1 shows two control
signals in the CPU that facilitate the DMA transfer. The bus request (BR)
input is used by the DMA controller to request the CPU to relinquish
control of the buses. When this input is active, the CPU terminates the
execution of the current instruction and places the address bus, the data
bus, and the read and write lines into a high-impedance state. The high-
impedance state behaves like an open circuit, which means that the
output is disconnected and does not have logic significance (see Sec. 4-
3). The CPU activates the bus grant (BG) output to inform the external
DMA that the buses are in the high-impedance state. The DMA that
originated the bus request can now take control of the buses to conduct
memory transfers without processor intervention. When the DMA ter-
minates the transfer, it disables the bus request line. The CPU disables
the bus grant, takes control of the buses, and returns to its normal
operation.

 Computer Organisation

 NOTES

274

When the DMA takes control of the bus system, it communicates
directly with the memory. The transfer can be made in several ways. In
DMA burst transfer, a block sequence consisting of a number of memory
words is transferred in a continuous burst while the DMA controller is
master of the memory buses. This mode of transfer is needed for fast
devices such as magnetic disks, where data transmission cannot be
stopped or slowed down until an entire block is transferred. An alternative
technique called cycle stealing allows the DMA controller to transfer one
data word at a time, after which it must return control of the buses to the
CPU. The CPU merely delays its operation for one memory cycle to allow
the direct memory I/O transfer to "steal" one memory cycle.

Figure 4-1 CPU bus signals for DMA transfer

4-2 DMA Controller

 The DMA controller needs the usual circuits of an interface to
communicate with the CPU and I/O device. In addition, it needs an
address register, a word count register, and a set of address lines. The
addresses register and address lines are used for direct communication
with the memory. The word count register specifies the number of words
that must be transferred. The data transfer may be done directly between
the device and memory under control of the DMA.

Figure 4-2 shows the block diagram of a typical DMA controller.
The unit communicates with the CPU via the data bus and control lines.
The registers in the DMA are selected by the CPU through the address
bus by enabling the DS (DMA select) and RS (register select) inputs. The
RD (read) and WR (write) inputs are bidirectional. When the BG (bus
grant) input is 0, the CPU can communicate with the DMA registers
through the data bus to read from or write to the DMA registers. When BG
= 1, the CPU has relinquished the buses and the DMA can communicate
directly with the memory by specifying an address in the address bus and
activating the RD or WR control. The DMA communicates with the
external peripheral through the request and acknowledge lines by using a
prescribed handshaking procedure.

 Computer Organisation

 NOTES

275

Figure 4-2 Block diagram of DMA controller

The DMA controller has three registers: an address register, a
word count register, and a control register. The address register contains
an address to specify the desired location in memory. The address bits go
through bus buffers into the address bus. The address register is
incremented after each word that is transferred to memory. The word
count register holds the number of words to be transferred. This register
is decremented by one after each word transfer and internally tested for
zero. The control register specifies the mode of transfer. All registers in
the DMA appear to the CPU as I/O interface registers. Thus the CPU can
read from or write into the DMA registers under program control via the
data bus.

The DMA is first initialized by the CPU. After that, the DMA starts
and continues to transfer data between memory and peripheral unit until
an entire block is transferred. The initialization process is essentially a
program consisting of I/O instructions that include the address for
selecting particular DMA registers. The CPU initializes the DMA by
sending the following information through the data bus:

1. The starting address of the memory block where data are available (for
read) or where data are to be stored (for write)

 Computer Organisation

 NOTES

276

2. The word count, which is the number of words in the memory block

3. Control to specify the mode of transfer such as read or write

4. A control to start the DMA transfer

 The starting address is stored in the address register. The word
count is stored in the word count register, and the control information in
the control register. Once the DMA is initialized, the CPU stops
communicating with the DMA unless it receives an interrupt signal or if it
wants to check how many words have been transferred.

4-3 DMA Transfer

 The position of the DMA controller among the other components in
a computer system is illustrated in Fig. 4-3. The CPU communicates with
the DMA through the address and data buses as with any interface unit.
The DMA has its own address, which activates the DS and R S lines. The
CPU initializes the DMA through the data bus. Once the DMA receives
the start control command, it can start the transfer between the peripheral
device and the memory.

 When the peripheral device sends a DMA request, the DMA
controller activates the BR line, informing the CPU to relinquish the
buses. The CPU responds with its BG line, informing the DMA that its
buses are disabled. The DMA then puts the current value of its address
register into the address bus, initiates the RD or WR signal, and sends a
DMA acknowledge to the peripheral device. Note that the RD and WR
lines in the DMA controller are bidirectional. The direction of transfer
depends on the status of the BG line. When BG = 0, the RD and WR are
input lines allowing the CPU to communicate with the internal DMA
registers. When BG = 1, the RD and WR are output lines from the DMA
controller to the random-access memory to specify the read or write
operation for the data.

 When the peripheral device receives a DMA acknowledge, it puts
a word in the data bus (for write) or receives a word from the data bus (for
read). Thus the DMA controls the read or write operations and supplies
the address for the memory. The peripheral unit can then communicate
with memory through the data bus for direct transfer between the two
units while the CPU is momentarily disabled.

 Computer Organisation

 NOTES

277

Figure 4-3 DMA transfer in a computer system

For each word that is transferred, the DMA increments its address
registers and decrements its word count register. If the word count does
not reach zero, the DMA checks the request line coming from the
peripheral. For a high-speed device, the line will be active as soon as the
previous transfer is completed. A second transfer is then initiated, and the
process continues until the entire block is transferred. If the peripheral
speed is slower, the DMA request line may come somewhat later. In this
case the DMA disables the bus request line so that the CPU can continue

 Computer Organisation

 NOTES

278

to execute its program. When the peripheral requests a transfer, the DMA
requests the buses again.

If the word count register reaches zero, the DMA stops any further
transfer and removes its bus request. It also informs the CPU of the
termination by means of an interrupt. When the CPU responds to the
interrupt, it reads the content of the word count register. The zero value of
this register indicates that all the words were transferred successfully. The
CPU can read this register at any time to check the number of words
already transferred.

A DMA controller may have more than one channel. In this case, each
channel has a request and acknowledge pair of control signals which are
connected to separate peripheral devices. Each channel also has its own
address register and word count register within the DMA controller. A
priority among the channels may be established so that channels with
high priority are serviced before channels with lower priority.

DMA transfer is very useful in many applications. It is used for fast trans-
fer of information between magnetic disks and memory. It is also useful
for updating the display in an interactive terminal. Typically, an image of
the screen display of the terminal is kept in memory which can be
updated under program control. The contents of the memory can be
transferred to the screen periodically by means of DMA transfer.

4-4 Summary

This lesson was devoted mainly towards I/O of computer system
we have discussed about the DMA module. In a DMA based I/O, a
special unit called Direct Memory Access controller is used as an
intermediary between the I/O interface unit and the main memory. The
CPU after issuing the I/O command proceeds with its activity. When I/O is
ready, DMA controller requests CPU to yield the data and address buses
to it. The DMA controller now directly sends/receives data to/from main
memory. CPU has no role to play in data transfer other than yielding the
buses.

4-5 Keywords

Bus request: The bus request (BR) input is used by the DMA controller
to request the CPU to relinquish control of the buses.

Bus grant: The CPU activates the bus grant (BG) output to inform the

external DMA that the buses are in the high-impedance state

.Burst transfer: A block sequence consisting of a number of memory

words is transferred in a continuous burst while the DMA controller is

master of the memory buses.

Cycle stealing: the DMA controller to transfer one data word at a time,
after which it must return control of the buses to the CPU.

 Computer Organisation

 NOTES

279

4-6 PROBLEMS

1. Why are the read and write control lines in a DMA
controller bidirectional? Under what condition and for what
purpose are they used as inputs? Under what condition
and for what purpose are they used as outputs?

2. It is necessary to transfer 256 words from a magnetic disk to
a memory section starting from address 1230. The transfer
is by means of DMA as shown in Fig. 4-3.

a. Give the initial values that the CPU must transfer to the
DMA controller.

b. Give the step-by-step account of the actions taken
during the input of the first two words.

3. A DMA controller transfers 16-bit words to memory using cycle
stealing. The words are assembled from a device that
transmits characters at a rate of 2400 characters per
second. The CPU is fetching and executing instructions at
an average rate of 1 million instructions per second. By how
much will the CPU be slowed down because of the DMA
transfer?

4. Why does DMA have priority over the CPU when both
request a memory transfer?

4-7 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes

 Computer Organisation

 NOTES

280

5. INPUT-OUTPUT PROCESSOR (IOP)

&

 SERIAL COMMUNICATION

Structure

5-1 Introduction

5-2 CPU-IOP Communication
5-3 Serial Communication

5-3-1 Data can be transmitted between two points in three different

modes

5-3-2 Character-Oriented Protocol
5-3-3 Data Transparency
5-3-4 Bit-Oriented Protocol

5-4 Summary
5-5 Keywords
5-6 PROBLEMS
5-7 References

Objectives

At the end of this lesson you should be able to:

 Define an input-output processor; and

 Identify the Serial Communication.

5-1 Introduction

Instead of having each interface communicate with the CPU, a
computer may incorporate one or more external processors and assign
them the task of communicating directly with all I/O devices. An input-output
processor (IOP) may be classified as a processor with direct memory
access capability that communicates with I/O devices. In this configuration,
the computer system can be divided into a memory unit, and a number of
processors comprised of the CPU and one or more lOPs. Each IOP takes
care of input and output tasks, relieving the CPU from the housekeeping
chores involved in I/O transfers. A processor that communicates with
remote terminals over telephone and other communication media in a serial
fashion is called a data communication processor (DCF).

The IOP is similar to a CPU except that it is designed to handle the
I/O processing details of I/O processing. Unlike the DMA controller that
must be set up entirely by the CPU, the IOP can fetch and execute its own
instructions. IOP instructions are specifically designed to facilitate I/O

 Computer Organisation

 NOTES

281

transfers. In addition, the IOP can perform other processing tasks, such as
arithmetic, logic, branching, and code translation.

The block diagram of a computer with two processors is shown in
Fig. 5-1. The memory unit occupies a central position and can communicate
with each processor by means of direct memory access. The CPU is
responsible for processing data needed in the solution of computational
tasks. The IOP provides a path for transfer of data between various
peripheral devices and the memory unit. The CPU is usually assigned the
task of initiating the I/O program. From then on the IOP operates
independent of the CPU and continues to transfer data from external
devices and memory.

Figure 5-1 Block diagram of a computer with I/o processor

The data formats of peripheral devices differ from memory and CPU
data formats. The IOP must structure data words from many different
sources. For example, it may be necessary to take four bytes from an input
device and pack them into one 32-bit word before the transfer to memory.
Data are gathered in me IOP at the device rate and bit capacity while the
CPU is executing its own program. After the input data are assembled into
a memory word, they are transferred from IOP directly into memory by
"stealing" one memory cycle from the CPU. Similarly, an output word
transferred from memory to the IOP is directed from the IOP to the output
device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it
is similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which
the CPU and IOP communicate depends on the level of sophistication
included in the system. In very-large-scale computers, each processor is
independent of all others and any one processor can initiate an operation.
In most computer systems, the CPU is the master while the IOP is a slave
processor. The CPU is assigned the task of initiating all operations, but I/O
instructions are executed in the IOP. CPU instructions provide operations to
start an I/O transfer and also to test I/O status conditions needed for making
decisions on various I/O activities. The IOP, in turn, typically asks for CPU
attention by means of an interrupt. It also responds to CPU requests by
placing a status word in a prescribed location in memory to be examined

 Computer Organisation

 NOTES

282

later by a CPU program. When an I/O operation is desired, the CPU informs
the IOP where to find the I/O program and then leaves the transfer details
to the IOP.

Instructions that are read from memory by an IOP are sometimes
called commands, to distinguish them from instructions that are read by the
CPU. Otherwise, an instruction and a command have similar functions.
Commands are prepared by experienced programmers and are stored in
memory. The command words constitute the program for the IOP. The CPU
informs the IOP where to find the commands in memory when it is time to
execute the I/O program.

5-2 CPU-IOP Communication

The communication between CPU and IOP may take different
forms, depending on the particular computer considered. In most cases the
memory unit acts as a message center where each processor leaves
information for the other. To appreciate the operation of a typical IOP, we
will illustrate by a specific example the method by which the CPU and IOP
communicate. This is a simplified example that omits many operating
details in order to provide an overview of basic concepts.

The sequence of operations may be carried out as shown in the
flowchart of Fig. 5-2. The CPU sends an instruction to test the IOP path.
The IOP responds by inserting a status word in memory for the CPU to
check. The bits of the status word indicate the condition of the 10P and I/O
device, such as 10P overload condition, device busy with another transfer,
or device ready for I/O transfer. The CPU refers to the status word in
memory to decide what to do next. If all is in order, the CPU sends the
instruction to start I/O transfer. The memory address received with this
instruction tells the 10P where to find it? Program.

The CPU can now continue with another program while the IOP is
busy with the I/O program. Both programs refer to memory by means of
DMA transfer. When the 10P terminates the execution of its program, it
sends an interrupt request to the CPU. The CPU responds to the interrupt
by issuing an instruction to read the status from the 10P. The IOP responds
by placing the contents of its status report into a specified memory location.
The status word indicates whether the transfer has been completed or if
any errors occurred during the transfer. From inspection of the bits in the
status word, the CPU determines if the I/O operation was completed
satisfactorily without errors.

The IOP takes care of all data transfers between several I/O units
and the memory while the CPU is processing another program. The IOP
and CPU are competing for the use of memory, so the number of devices
that can be in operation is limited by the access time of the memory. It is
not possible to saturate the memory by I/O devices in most systems, as the
speed of most devices is much slower than the CPU. However, some very

 Computer Organisation

 NOTES

283

fast units, such as magnetic disks, can use an appreciable number of the
available memory cycles. In that case, the speed of the CPU may
deteriorate because it will often have to wait for the 10P to conduct memory
transfers.

Figure 5-2 CPU-IOP communication

5-3 Serial Communication

A data communication processor is an I/O processor that distributes
and collects data from many remote terminals connected through telephone
and other communication lines. It is a specialized I/O processor designed to
communicate directly with data communication networks. A communication
network may consist of any of a wide variety of devices, such as printers,
interactive display devices, digital sensors, or a remote computing facility.
With the use of a data communication processor, the computer can service
fragments of each network demand in an interspersed manner and thus
have the apparent behavior of serving many users at once. In this way the
computer is able to operate efficiently in a time-sharing environment.

 The most striking difference between an I/O processor and a data
communication processor is in the way the processor communicates with

 Computer Organisation

 NOTES

284

the I/O devices. An I/O processor communicates with the peripherals
through a common I/O bus that is comprised of many data and control lines.
All peripherals share the common bus and use it to transfer information to
and from the I/O processor. A data communication processor
communicates with each terminal through a single pair of wires. Both data
and control information are transferred in a serial fashion with the result that
the transfer rate is much slower. The task of the data communication
processor is to transmit and collect digital information to and from each
terminal, determine if the information is data or control and respond to all
requests according to predetermined established procedures. The
processor, obviously, must also communicate with the CPU and memory in
the same manner as any I/O processor.

The way that remote terminals are connected to a data
communication processor is via telephone lines or other public or private
communication facilities. Since telephone lines were originally designed for
voice communication and computers communicate in terms of digital
signals, some form of conversion must be used. The converters are called
data sets, acoustic couplers, or modems (from "modulator-demodulator"). A
modem converts digital signals into audio tones to be transmitted over
telephone lines and also converts audio tones from the line to digital signals
for machine use. Various modulation schemes as well as different grades of
communication media and transmission speeds are used. A communication
line may be connected to a synchronous or asynchronous interface,
depending on the transmission method of the remote terminal. An
asynchronous interface receives serial data with start and stop bits in each
character as shown in Fig. 2-5. This type of interface is similar to the
asynchronous communication interface unit presented in Fig. 2-6.

Synchronous transmission does not use start-stop bits to frame
characters and therefore makes more efficient use of the communication
link. High-speed devices use synchronous transmission to realize tills
efficiency. The modems used in synchronous transmission have internal
clocks that are set to the frequency that bits are being transmitted in the
communication line. For proper operation, it is required that the clocks in
the transmitter and receiver modems remain synchronized at all times. The
communication line, however, contains only the data bits from which the
clock information must be extracted. Frequency synchronization is achieved
by the receiving modem from the signal transitions that occur in the
received data. Any frequency shift that may occur between the transmitter
and receiver clocks is continuously adjusted by maintaining the receiver
clock at the frequency of the incoming bit stream. The modem transfers the
received data together with the clock to the interface unit. The interface or
terminal on the transmitter side also uses the clock information from its
modem. In this way, the same bit rate is maintained in both transmitter and
receiver.

Contrary to asynchronous transmission, where each character can
be sent separately with its own start and stop bits, synchronous
transmission must send a continuous message in order to maintain
synchronism. The message consists of a group of bits transmitted

 Computer Organisation

 NOTES

285

sequentially as a block of data. The entire block is transmitted with special
control characters at the beginning and end of the block. The control
characters at the beginning of the block supply the information needed to
separate the incoming bits into individual characters.

One of the functions of the data communication processor is to
check for transmission errors. An error can be detected by checking the
parity in each character received. Another procedure used in asynchronous
terminals involving a human operator is to echo the character. The
character transmitted from the keyboard to the computer is recognized by
the processor and retransmitted to the terminal printer. The operator would
realize that an error occurred during transmission if the character printed is
not the same as the character whose key he has struck.

In synchronous transmission, where an entire block of characters is
transmitted, each character has a parity bit for the receiver to check. After
the entire block is sent, the transmitter sends one more character that con-
stitutes a parity over the length of the message. This character is called a
longitudinal redundancy check (LRC) and is the accumulation of the
exclusive-OR of all transmitted characters. The receiving station calculates
the LRC as it receives characters and compares it with the transmitted
LRC. The calculated and received LRC should be equal for error-free
messages. If the receiver finds an error in the transmitted block, it informs
the sender to retransmit the same block once again. Another method used
for checking errors in transmission is the cyclic redundancy check (CRC).
This is a polynomial code obtained from the message bits by passing them
through a feedback shift register containing a number of exclusive-OR
gates. This type of code is suitable for detecting burst errors occurring in
the communication channel.

5-3-1 Data can be transmitted between two points in three different
modes:

Simplex, half-duplex, or full-duplex. A simplex line carries
information in one direction only. This mode is seldom used in data
communication because the receiver cannot communicate with the
transmitter to indicate the occurrence of errors. Examples of simplex
transmission are radio and television broadcasting.

A half-duplex transmission system is one that is capable of
transmitting in both directions but data can be transmitted in only one
direction at a time. A pair of wires is needed for this mode. A common
situation is for one modem to act as the transmitter and the other as the
receiver. 'When transmission in one direction is completed, the role of the
modems is reversed to enable transmission in the reverse direction. The
time required to switch a half-duplex line from one direction to the other is
called the turnaround time.

A full-duplex transmission can send and receive data in both
directions simultaneously. This can be achieved by means of a four-wire
link, with a different pair of wires dedicated to each direction of

 Computer Organisation

 NOTES

286

transmission. Alternatively, a two-wire circuit can support full-duplex
communication if the frequency spectrum is subdivided into two non-
overlapping frequency bands to create separate receive and transmit
channels in the same physical pair of wires.

The communication lines, modems, and other equipment used in
the transmission of information between two or more stations is called a
data link. The orderly transfer of information in a data link is accomplished
by means of a protocol. A data link control protocol is a set of rules that are
followed by interconnecting computers and terminals to ensure the orderly
transfer of information. The purpose of a data link protocol is to establish
and terminate a connection between two stations, to identify the sender and
receiver, to ensure that all messages are passed correctly without errors,
and to handle all control functions involved in a sequence of data transfers.
Protocols are divided into two major categories according to the message-
framing technique used. These are character-oriented protocol and bit-
oriented protocol.

5-3-2 Character-Oriented Protocol

The character-oriented protocol is based on the binary code of a
character set. The code most commonly used is ASCII (American Standard
Code for Information Interchange). It is a 7-bit code with an eighth bit used
for parity. The code has 128 characters, of which 95 are graphic characters
and 33 are control characters. The graphic characters include the upper-
and lowercase letters, the ten numerals, and a variety of special symbols. A
list of the ASCII characters can be found in Table 1-1. The control
characters are used for the purpose of routing data, arranging the test in a
desired format, and for the layout of the printed page. The characters that
control the transmission are called communication control characters.
These characters are listed in Table 1-1. Each character has a 7-bit code
and is referred to by a three-letter symbol. The role of each character in the
control of data transmission is stated briefly in the function column of the
table.

 The SYN character serves as synchronizing agent between the
transmitter and receiver. When the 7-bit ASCII code is used with an odd-
parity bit in the most significant position, the assigned SYN character has
the 8-bit code 00010110 which has the property that, upon circular shifting,
it repeats itself only after a full 8-bit cycle. When the transmitter starts
sending 8-bit characters, it sends a few characters first and then sends the
actual message. The initial continuous string of bits accepted by the
receiver is checked for a SYN character. In other words, with each clock
pulse, the receiver checks the last eight bits received. If they do not match
the bits of the SYN character, the receiver accepts the next bit, rejects the
previous high-order bit, and again checks the last eight bits received for a
SYN character. This is repeated after each clock puise and bit received
until a SYN character is recognized. Once a SYN character is detected,
the receiver has framed a character. From here on the receiver counts
every eight bits and accepts them as a single character. Usually, the
receiver checks two consecutive SYN characters to remove any doubt that

 Computer Organisation

 NOTES

287

the first did not occur as a result of a noise signal on the line. Moreover,
when the transmitter is idle and does not have any message characters to
send, it sends a continuous string of SYN characters. The receiver rec-
ognizes these characters as a condition for synchronizing the line and
goes into a synchronous idle state. In this state, the two units maintain bit
and character synchronism even though no meaningful information is
communicated.

5-3-3 Data Transparency

The character-oriented protocol was originally developed to
communicate with keyboard, printer, and display devices that use
alphanumeric characters exclusively. As the data communication field
expanded, it became necessary to transmit binary information which is not
ASCII text. This happens, for example, when two remote computers send
programs and data to each other over a communication channel. An
arbitrary bit pattern in the text message becomes a problem in the
character-oriented protocol. This is because any 8-bit pattern belonging to a
communication control character will be interpreted erroneously by the
receiver. For example, if the binary data in the text portion of the message
has the 8-bit pattern 10000011, the receiver will interpret this as an ETX
character and assume that it reached the end of the text field. When the
text portion of the message is variable in length and contains bits that are to
be treated without reference to any particular code, it is said to contain
transparent data. This feature requires that the character recognition logic
of the receiver be turned off so that data patterns in the text field are not
accidentally interpreted as communication control information.

Data transparency is achieved in character-oriented protocols by
inserting a DLE (data link escape) character before each communication
control character. Thus, the start of heading is detected from the double
character DLE SOH, and the text field is terminated with the double
character DLE ETX. If the DLE bit pattern 00010000 occurs in the text
portion of the message, the transmitter inserts another DLE bit pattern
following it. The receiver removes all DLE characters and then checks the
next 8-bit pattern. If it is another DLE bit pattern, the receiver considers it as
part of the text and continues to receive text. Otherwise, the receiver takes
the following 8-bit pattern to be a communication control character.

The achievement of data transparency by means of the DLE
character is inefficient and somewhat complicated to implement. Therefore,
other protocols have been developed to make the transmission of
transparent data more efficient. One protocol used by Digital Equipment
Corporation employs a byte count field that gives the number of bytes in the
message that follows. The receiver must then count the number of bytes
received to reach the end of the text field. The protocol that has been mostly
used to solve the transparency problem (and other problems associated with
the character-oriented protocol) is the bit-oriented protocol.

5-3-4 Bit-Oriented Protocol

 Computer Organisation

 NOTES

288

The bit-oriented protocol does not use characters in its control field
and is independent of any particular code. It allows the transmission of
serial bit stream of any length without the implication of character
boundaries. Messages are organized in a specific format called a frame. In
addition to the information field, a frame contains address, control, and
error-checking fields. The frame boundaries are determined from a special
8-bit number called a flag. Examples of bit-oriented protocols are SDLC
(synchronous data link control) used by IBM, HDLC (high-level data link
control) adopted by the International Standards Organization, and ADCCP
(advanced data communication control procedure) adopted by the
American National Standards Institute.

Any data communication link involves at least two participating
stations. The station that has responsibility for the data link and issues the
commands to control the link is called the primary station. The other station
is a secondary station. Bit-oriented protocols assume the presence of one
primary station and one or more secondary stations. All communication on
the data link is from the primary station to one or more secondary stations
or from a secondary station to the primary station.

5-4 Summary

In this lesson, we have discussed about I/O processor and
communication in between of the devices. The I/O Processor with direct
memory access capability that communicates with I/O devices. Channel
accesses memory by cycle stealing. Channel can execute a Channel
Program Stored in the main memory consists of Channel Command Word
(CCW). Each CCW specifies the parameters needed by the channel to
control the I/O devices and perform data transfer operations. CPU initiates
the channel by executing an channel I/O class instruction and once
initiated, channel operates independently of the CPU.

5-5 Keywords

I/O processing: Input and out put devices help us to interact with the
computer in order to give/take the program, data, and results to/from the
computer.

Commands: The main function of the devices controller is to execute a
command transmitted by the CPU/software.

Modem: MOdular-DEModular is communication device, is used for long
distance communication through telephone lin.

Protocol: A protocol is a set of rules that govern all aspects of information
process.

 Computer Organisation

 NOTES

289

5-6 Exercise

1. The address of a terminal connected to a data communication processor

consists of two letters of the alphabet or a letter followed by one of the 10
numerals. How many different addresses can be formulated?

2. List a possible line procedure and the character sequence for the
communication between a data communication processor and a remote
terminal. The processor inquires if the terminal is operative. The terminal
responds with yes or no. If the response is yes, the processor sends a block
of text.

3. Draw a flowchart similar to the one in Fig. 5-2 that describes the in the
IBM CPU-I/O channel communication.

5-7 References:

1. Computer System Architecture By: M.Morris Mano

2. Computer Fundamentals By: Pradeep .K.Sinha and Priti Sinha —BPB
Publications

3. Computer Organisation and Architecture By: William Stallings —
Prentice Publications

4. Computer Architecture and Organisation By: J.P.Hayes.

