
DATA BASE
MANAGEMENT SYSTEM
 (

(PG

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

DATA BASE
MANAGEMENT SYSTEM

(PGDCA06)

PG - DIPLOMA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

MANAGEMENT SYSTEM

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

Centre for Distance Education Acharya Nagarjuna University1.14

An Introduction to Database Systems

Bipin Desai

Modern Database Management

F. McFadden, J. Hoffer

An Introduction to Database Systems

C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.
GUNTUR.

Database Management System 1.13 Introduction

1.14. Summary:

A database management system (DBMS) is a computer program designed to manage a database;
a large set of structured data, and run operations on the data requested by numerous users.
Typical examples of DBMS use include accounting, human resources and customer support
systems. The primary goal of a DBMS is to provide an environment that is both convenient and
efficient for the people to use in retrieving and storing information. The three levels of the architecture
are three different views of the data. The design of each such level is considered as a schema and
hence the whole design is referred as three-schema architecture. Level internal, view and external
level.

Data model is a model that describes in an abstract way as to how data is represented in an
information system or a database management system. Important data models are: entity-
relationship, relational, network and hierarchical data models. A database administrator (DBA) is a
person who is responsible for the environmental aspects of a database. A transaction is a collection
of operations that performs a single logical function in a database application. Each transaction is
a unit of both atomicity and consistency.

1.15. Technical Terms:

Query: A specific set of instructions for extracting particular data from a database.

Metadata: Data is useful when placed in some context. Metadata are data that describe the
properties or characteristics, such as definitions, structures, and rules or constraints, of other
data.

Data Processing: Systematically performing a series of actions with data. May be done by manual,
mechanical, electromechanical, or electronic (primarily computer) means.

Security: The process of protecting information from unauthorized use. An example is the use of
credit card numbers on the Internet to purchase merchandise and services.

1.16. Model Questions:

1. What is file processing? Explain the major disadvantages of file processing?

2. What is Database management system? Explain the advantages of database
management system?

3. Write about different types of database users?

4. What are five main functions of Database Administrator (DBA)?

1.17. References:

Database System Concepts

Silberschatz, Korth, and Sudarshan

Database Management Systems

Arun K. Majumdar, Pritimoy Bhattacharyya

Centre for Distance Education Acharya Nagarjuna University1.12

1.13. Database System Structure:
A database system is partitioned into modules that deal with each of the responsibilities of the
overall system. The functional components of a database system can be broadly divided into the
storage manager ad the query processor components.

Storage manager is a program module that provides the interface between the low-level data

stored in the database and the application programs and queries submitted to the system.

The query processor helps the database system in simplifying and facilitate to access data.

Database system Structure

Database Management System 1.11 Introduction

End Users:

Persons who add, delete, and modify data in the database and who request and receive information
from it.

1.11. Database Administrator:

The database administrator (DBA) is the person (or group of people) responsible for overall control
of the database system. The DBA would normally have a large number of tasks related to maintaining
and managing the database.

The DBA’s responsibilities include the following:

Deciding and Loading the Database Contents:

The DBA in consultation with senior management is normally responsible for defining the
conceptual schema of the database. The DBA would also be responsible for making changes
to the conceptual schema of the database if and when necessary.

Assisting and Approving Applications and Access:

The DBA would normally provide assistance to end-users interested in writing application
programs to access the database. The DBA would also approve or disapprove access to the
various parts of the database by different users.

Deciding Data Structures:

Once the database contents have been decided, the DBA would normally make decisions
regarding how data is to be stored and what indexes need to be maintained. In addition, a DBA
normally monitors the performance of the DBMS and makes changes to data structures if the
performance justifies them. In some cases, radical changes to the data structures may be
called for.

Backup and Recovery:

Since the database is such a valuable asset, the DBA must make all the efforts possible to
ensure that the asset is not damaged or lost. This normally requires a DBA to ensure that
regular backups of a database are carried out and in case of failure (or some other disaster like
fire or flood), suitable recovery procedures are used to bring the database up with as little down
time as possible.

Monitor Actual Usage:

The DBA monitors actual usage to ensure that policies laid down regarding use of the database
are being followed. The usage information is also used for performance tuning.

1.12. Transaction Management:

A transaction is a collection of operations that performs a single logical function in a database
application. Each transaction is a unit of both atomicity and consistency.

Transaction management component ensures that the database remains in a consistent (correct)
state despite system failures (e.g., power failures and operating system crashes) and transaction
failures.

Concurrency control manager controls the interaction among the concurrent transactions, to ensure
the consistency of the database

Centre for Distance Education Acharya Nagarjuna University1.10

Symbolic representation:

Physical Data Models:

The physical data model is used to describe data at lowest level. Unlike other data models,
physical data models are not much in use. Two widely known ones are:

 Unifying data model.

 Frame-memory data model.

1.9. Database Languages :
A database system provides a data definition language to specify the database schema and a data
manipulation language to express database queries and updates. In practice, the data definition
and data manipulation languages are not two separate languages, instead they simply form parts
of a single database languages, such as widely used SQL language.

1.10. Database Users:

A major goal of a database system is to retrieve information from and store new information in the
database. People who work with a database can be categorized as database users and database
administrators.

Users are differentiated by the way they expect to interact with the system. They are

Naive Users:

Naïve users are unsophisticated users who interact with the system by invoking one of the
application programs that have been written previously.

Application Programmers:

Application programmers are computer professionals who write application programs. Application
programmers can choose from many tools to develop user interfaces.

Sophisticated Users:

Sophisticated users interact with the system without writing programs. Instead, they form their
requests in a database query language.

Specialized Users:

Specialized users are sophisticated users who write specialized database applications that do not
fit into the traditional data processing framework

Database Management System 1.9 Introduction

The three widely acceptable record based data models are:

 Relational data model.

 Hierarchical data model.

 Network data model.

Relational Data Model:

The relational data model uses the concept of relations to represent each and every file of a
system. Relations are nothing but two-dimensional arrays (or tables) that represent data in a most
efficient way. (Or) A relational data model is a collection of tables and associated relationships
among those data. Each table is a combination of multiple rows and columns, and each column
has unique name. In other words a relational data model is exactly, a way of looking at data i.e.,
creation and manipulation of data. In another way, we can say that a database management
system that manages information in terms of tables is nothing but RDBMS.

Symbolic Representation is :

Hierarchical Data Model:

The hierarchical data model is similar to network data model in the sense that data and relationships
among the data are represented as records and links respectively. In this data model, unlike network
data model, records are organized in terms of tree structure.

Symbolic representation:

Network Data Model:

Data in network data model is represented by a collection of records and relationships among
data represented by links, which are viewed as pointers. Literally the records are represented as
graphs.

Centre for Distance Education Acharya Nagarjuna University1.8

Logical or Conceptual Schema:

The conceptual view is the information model of the enterprise and contains the view of the whole
enterprise without any concern for the physical implementation. In this level, we describe what
data are to be stored and what relationships exist among the data. The database administrators
use this level of abstraction.

Internal Schema:

The lowest level of data abstraction describes how the data is actually stored. In this level, complex
data structures of low level are described in detail. In other words, the internal view is the view
about the actual physical storage of data. It tells us what data is stored in the database and how.

1.8. Data Models:

A data model tells about the underlying structure of a database. It is a collection of conceptual
tools like describing the data, data relationships, data semantics and consistency constraints.
The various data models that have been proposed fall into three categories:

 Object based data model.

 Record based data model.

 Physical data model.

Object Based Data Model:

This data model is used in describing data at the logical and view levels and it specify fairly flexible
structures. There is another classification in this model:

 Entity-Relationship model.

 Object- oriented data model.

 Semantic data model.

 Functional data model.

Entity Relationship Data Model:

The entity-relationship (E-R) data model is based on a perception of real world that consists of a
collection of basic objects called entities and relationships among these objects.

An entity is a thing or object or physical construct. An employee, a student, a product are considered
as entities. A relationship is an association of several entities.

Object Oriented Data Model:

Like E-R data model, the object oriented data model is also based on a collection of objects. An
object is an instance, which holds a set of values within itself. An object may contain the body of
the operations that work on the data. The bodies are known to be methods. Unlike E-R data model,
each object has its own unique identity, independent of the values that it contains.

Record Based Data model:

Record based data models are also used for describing data at logical level and view level as well.
These data models are used to specify the overall structure of the database and to provide a
higher-level implementation. Record based data models, as they are named, maintain fixed format
records of several types.

Database Management System 1.7 Introduction

1.7. Views Of Data:
A Database is a collection of interrelated files and set of programs that allow users to access and
modify these files. The main objective of three-schema architecture is to separate database from
application programs.

A commonly used view of data approach is the three-level architecture suggested by ANSI/SPARC
(American National Standards Institute/Standards Planning and Requirements Committee). Under
this approach, a database is considered as containing data about an enterprise.

The three levels of the architecture are three different views of the data. The design of each such
level is considered as a schema and hence the whole design is referred as three-schema
architecture. With the three schemas, program data independency can corresponding operation
independency can be achieved. This process is also referred to as data abstraction.

o Internal Level or Internal Schema or Physical Level.

o Conceptual Level or Conceptual Schema or Logical Level.

o External Level or External Schema or View Level.

The three level database architecture allows a clear separation of the information meaning
(conceptual view) from the external data representation and from the physical data structure layout.

External Schema:

The highest level of data abstraction is nothing but external schema. It describes only a part of the
entire database. It is basically presentation level. Several users of the database have their own
view of data. Each has a separate design of approach. In general, the end users and even the
application programmers are only interested in a subset of the database. For example, a department
head may only be interested in the departmental finances and student enrolments but not the
library information. The librarian would not be expected to have any interest in the information
about academic staff. The payroll office would have no interest in student enrolments.

Three Levels Of Data Abstraction

Centre for Distance Education Acharya Nagarjuna University1.6

Improved Data Accessibility and Responsiveness:

End users without programming experience can retrieve and display data (using SQL).

Reduced Program Maintenance:

Data are independent of the application programs that use them, and either one can be changed
without a change in the other.

Data Integrity:

The term data integrity refers to the degree to which data is accurate and reliable. Integrity
Constraints are rules that all data must follow. For example if month is a field, then a number
greater than 12 is invalid. Similar examples are number of days in a month, number of hours in a
day, etc. Other invalid values could be pay rates, temperatures (too high or too low) etc.

1.6.2. Disadvantages of the Database Approach:

New, Specialized Personnel:

New individuals need to be hired and/or trained, and frequently retrained or upgraded to implement
databases.

Installation, Management Cost and Complexity:

A multi-user DBMS is a large and complex suite of software that has a high initial cost and require
a staff of trained personnel to install and operate. A substantial annual maintenance and support
costs are needed. Hardware and Data Communications systems may need upgrading. Security
software is often required to ensure proper concurrent of shared data.

Conversion Costs:

Old file processing system converted to modern database technology will cost money and time.

Need for Explicit Backup and Recovery:

Data may be damaged or destroyed, due to hardware failure, physical damage caused by fires or
floods, and software or human errors. A backup, or copy, must be made periodically. DBMS’s
include backup routines or rely on system utilities. Recovery is replacing the damaged database
with good backup. Users have to renter data of any transactions lost since the last backup

Organizational Conflict:

Conflicts on data definitions, data formats and coding, rights to update shared data, and associated
issues are difficult to resolve.

Security:

In addition to User ID and password, specific privileges can be assigned to each user, defining that
user’s access to the data. Read-only privilege permits that user only to look at the data; no
changes are allowed. Update privilege allows the user to make changes to the data. DBMS
has privileges at the field level; a user may be able to change some fields, just look at others, and
not even see some fields.

Database Management System 1.5 Introduction

Client/server computing and Internet applications became important in the 1990’s. Multimedia
data, including graphics, sound, images, and video also became more common, and so object-
oriented databases were introduced. Combination of relational and object-oriented databases
known as object-relational databases are now available. In the future multidimensional data will
become more important.

1.6. Database Approach:
In traditional file processing each user defines and implements the files needed for specific
application as part of the programming application. In database approach a single repository of
data is maintained and accessed by various users. It emphasizes the integration and sharing of
the data through out the organization.

1.6.1. Advantages Of The Database Approach:

Program-Data Independence:

The separation of data description (metadata) from the application programs that use the data
leads to data independence. Data descriptions are stored in a central location called the repository.
Organization’s data can change and evolve without changing the application programs that process
the data.

Minimal Data Redundancy:

Traditionally, information systems were developed using a file-processing approach. Each
application had its own files, and data was not shared among applications, resulting in a great deal
of data redundancy, or repetition of the same data value.

The database approach was developed to minimize data redundancy by creating separate files
for each entity. Files are referred to as tables, and a database is a collection of related tables.
Data files are integrated into a single logical structure. While not completely eliminating redundancy,
the designer can control the type and amount of redundancy.

Improved Data Consistency:

Obtained by reducing redundancy. Updating data values is simplified, as each value is stored in
one place only. Storage is not wasted.

Improved Data Sharing:

Database is designed as a shared resource. Authorized users are granted permission to use the
database, and provided with user views to facilitate this use.

Improved Productivity of Application Development:

Reduction of the cost and time for developing new business applications. The programmer can
concentrate on the specific functions required for the new application and DBMS provides a number
of high-level productivity tools such as forms and report generators and high-level languages that
automate some of the activities of database design and implementation.

Enforcement of Standards:

Standards include naming conventions, data quality standards, and uniform procedures for
accessing, updating, and protecting data.

Centre for Distance Education Acharya Nagarjuna University1.4

Atomicity Problem:

In general a transaction is atomic, i.e., it must be either completely done or undone. As the computer
system is an electronic device, it may subject to fail sometimes. If a failure occurred during the
execution of a transaction, it may lead to data inconsistency. For example, consider bank
transaction to transfer an amount of Rs.1000 from account A to account B. If a failure occurred in
the middle, it may be possible that Rs.1000 may be removed from account A and was not credited
to account B. Clearly, we say that while transferring the amount both credit and debit are to be
done simultaneously.

Concurrent Access Anomalies:

Concurrent access may be done to the same transactions in multi-user environments. It may
again lead to inconsistency. For example, consider bank account A containing Rs.5000. If two
customers withdraw funds (say Rs.1000 and Rs.2000 respectively) from the account at the same
time, the transaction may leave incorrect data. The system may show the same balance Rs.5000
to both the customers and they may feel that they can withdraw a maximum amount of Rs.4500
leaving the remaining amount as minimum balance. It may lead to inconsistent data.

Security Problem:

The entire database must not be available to all the database users. If the access is provided,
improper and illegal operations may be performed over the database, which in turn leave inconsistent
data. Hence certain security measures like individual user and their respective passwords are to
be imposed over the database.

1.4. What is Database Management System [DBMS] :
A Database Management System (DBMS) is a software package to facilitate the creation and
maintenance of a computerized database. A Database System (DB) is a DBMS together with the
data itself.

(Or)

A Database Management system consists of a collection of interrelated data and a set of programs
to access those data. The collection of data usually referred as database. Here a database holds
information regarding an enterprise.

(Or)

A Database Management System is a general-purpose software system that facilitates the
processes defining, constructing and manipulating databases for various applications.

(Or)

A Database Management System is a computerized record keeping system that lets the user to
perform various operations over the database.

1.5 Evaluation of Database Systems :

DBMS were first introduced during the 1960’s. This was called “proof-off-concept” period in
which the feasibility of managing vast amounts of data with DBMS was demonstrated.

The DBMS became a commercial reality in the 1970’s. The Hierarchical and network models
were introduced in this decade. The relational model was first defined by E. F. Codd an IBM
research fellow in 1970, and became commercially successful in the 1980’s.

Database Management System 1.3 Introduction

Database applications are widely used. Here are some representative applications:

 Banking

 Airlines

 Universities

 Credit card Transactions

 Telecommunications

 Finance

 Sales

 Manufacturing

 Human Resources.

1.3. Traditional File Processing System :

In the beginning of computer-based data processing, there were no databases. To be useful for
business applications, computers must be able to store, manipulate, and retrieve large files of
data. So, an organization’s information was stored as groups of records in separate files. Computer
file processing systems were developed for this purpose.

A file is a collection of records. A record in turn is a collection of several interrelated data items. In
early days, user data is managed in terms of physical files in disks.

1.3.1 Disadvantages of File Processing System :

The file processing system has several disadvantages. They are:

Data Redundancy:

Data redundancy means duplication of data. As the data may be stored in several files, it may be
repeated in multiple files, which leads to memory wastage and access cost. It in turn leads to data
inconsistency, i.e., in various copies of the same data, one updating may lead to the necessary
changes in all the remaining copies. It becomes tedious for the user.

Difficulty In Accessing Data:

As no special application programs are available at that time, it becomes tedious for the user to
access the data in this system. In other words we can say that the conventional file processing
system does not allow us to access needed data in convenient and efficient manner.

Data Isolation:

Because the data are scattered over the memory in terms of various files, and the files may be in
various format, it is difficult to write new application programs to retrieve the necessary data.

Integrity Problems:

Data validity is the most vital aspect in DBMS. To check the validity of the data, certain consistency
constraints are to be imposed. Such constraints are difficult to be enforced in traditional file
processing system. For example, salary of an employee should not be less than or equal to zero

Centre for Distance Education Acharya Nagarjuna University1.2

1.1 INTRODUCTION
Any organization uses a computer to store and process information because it hopes for speed,
accuracy, efficiency, economy etc., beyond what could be achieved using clerical methods. The
objectives of using a Database Management System (DBMS) must in essence be the same
although the justifications may be more indirect. Early computer applications were based on existing
clerical methods and stored information was partitioned in much the same way as manual files.
But the computer’s processing speed gave a potential for RELATING data from different sources
to produce valuable management information, provided that some standardization could be imposed
over departmental boundaries.

Data:

Data refers to facts, symbols, events, entities, variable, names or any other, which has little
meaning.

Database that contains the facts like Faculty Name, City, College etc,

For Ex :

Suresh Guntur JKC College

The data may contain facts, text, images, sound and video segments.

Information:

Processed data is known as Information.

Database:

It is an organized collection of logically related data. The data are structured so as to be easily
stored, manipulated and retrieved by users. For better retrieval and sorting, each record is usually
organized as a set of data elements (facts). The items retrieved in answer to queries become
information that can be used to make decisions.

For example a student may maintain a small database, which includes contacts like student
number, name, address, phone no etc, in his computer.

Meta Data:

Meta Data describes the structure of the primary database and it also describes the properties
or characteristics of data. These properties may include data definitions, data structures, rules
or constraints.

(Or)

Data about the data. The metadata describe the properties of data, but not include that data.

1.2. Database System Applications:

Database SystemApplication is an application program that is used to perform a series of database
activities on behalf of database users.

The basic operations or activities are:

 CREATE

 READ

 UPDATE

 DELETE

Database Management System 1.1 IntroductionLesson 1

INTRODUCTION

1.0 Objectives:

The major objective of this lesson is to provide a strong formal foundation in basic database
concepts and technology.

After reading this chapter, you should understand:

 To define data, information and database.

 To define database management system and structure.

 To give an introduction to conventional data processing and database management system.

 Systematic database design approaches covering conceptual design, logical design and
an overview of physical design.

 To describe various database models.

 To introduce the concepts of transactions and transaction processing.

Structure of The Lesson:

1.1. Introduction

1.2. Database System Applications

1.3. Traditional File Processing System

1.3.1. Disadvantages of File Processing System

1.4. What is Database Management System [DBMS]

1.5. Evaluation Of Database Systems

1.6. Database Approach

1.6.1. Advantages of the Database Approach

1.6.2. Disadvantages of the Database Approach

1.7. Views Of Data

1.8. Data Models

1.9. Database Languages

1.10. Database Users

1.11. Database Administrator

1.12. Transaction Management

1.13. Database System Structure

1.14. Summary

1.15. Technical terms

1.16. Model Questions

1.17 References

Database Management System 2.1 Entity Relationship Model-1Lesson 2

Entity Relationship Model-1

2.0 Objectives

The main objective of this lesson is to develop the skills necessary for the design and evaluation

fo database management systems based on the Entity-Relational database model.

After reading this chapter, you should understand :

 What is an entity ?

 What is a Relation ?

 Various types of Attributes

 Relationship sets

 Mapping Cardinalities

Structure of the Lesson:

2.1 Basic Concepts

2.2 Entity Sets

2.3 Relationship sets

2.4 Mapping Constraints

2.5 Summary

2.6 Technical Terms

2.7 Model Questions

2.8 References

2.1 Basic Concepts:

The Entity-Relationship (ER) model was originally proposed by Peter in 1976. A basic component

of the model is the Entity-Relationship diagram, which is used to visually represent data objects.
The entity-relationship model can be used as a basis for unification of different views of data: the
network model, the relational model and the entity set model. Entity-Relationship (ER) modeling is
an important step in information system design and software engineering.

The E-R entity-relationship model is a detailed, logical representation of the data for an organization
or for a business area. The E-R model is expressed in terms of entities in the business environment,
the relationships among the entities, and the attributes of both the entities and the relationship.

The E-R data model employes three basic notations: entity sets, relationship sets, and attributes.

Centre for Distance Education Acharya Nagarjuna University2.2

2.2 Entity Sets
An entity is a person, place, object event or concept in the user environment about which the
organization wishes to maintain data.

(Or)

The Entity-Relationship (ER) model, a high-level data model that is useful in developing a
conceptual design for a database.

(Or)

An entity is an object that exists and is distinguishable from other objects.

For instance, “ramu” with Faculty-ID 3456 is an entity, as he can be uniquely identified as one
particular Faculty in the College.

Person : EMPLOYEE, STUDENT, PATIENT

Place : STORE, WARESHOUSE, STATE

Object : MACHINE, BUILDING, AUTOMOBILE

Event : SALE, REGISTRATION, RENEWAL

Concept: ACCOUNT, COURSE, WORK CENTRE

Consider the example entities shown in below figure:

CUSTOMER_ORDER, CUSTOMER, PRODUCT.

Distinguish between an entity and instance (or occurrence) of an entity for each of the entities
shown in this example.

Entities are the principal data object about which information is to be collected. Entities are usually
recognizable concepts, either concrete or abstract, such as person, places, things, or events,
which have relevance to the database.

Database Management System 2.3 Entity Relationship Model-1

Entities are classified as independent or dependent. An independent entity is one that does not rely
on another for identification. A dependent entity is one that relies on another for identification.

An entity occurrence (also called an instance) is an individual occurrence of an entity.An occurrence
is analogous to a row in the relational table.

Entity sets is a set of entities of the same type that share the same properties, or attributes. The set
of all persons who are students at a given Institute can be defined as the entity set student.

The entity-relationship model is based on a perception of the world as consisting of a collection of
basic objects (entities) and relationships among these objects.

Attribute:

Attributes are also termed Properties. Attributes or Properties are characteristics of an entity.
Examples: CustomerNumber, OrderNumber, OrderDate, ProductNumber.

Attributes describe the entity of which they are associated. A particular instance of an attribute is a
value.

The domain of an attribute is the collection of all possible values an attribute can have. The domain
of Name is a character string.

In the example shown below, attribute names are shown as a combination of upper and lower
case characters inside bubbles. Here customer is an entity. Customer Name, Customer
Number and Phone Number are properties or attributes

The following attribute types, as used in the E-R model can characterize an attribute.

Simple Attributes:

An Attribute is one that cannot be divided into sub parts. (Or) A simple attribute is one component
that is atomic.

Composite Attribute:

A composite attribute has multiple components, each of which is atomic or composite. (Or)

An attribute can be broken down into component parts. The most common example is Name,
which can usually be broken down into the First Name, Middle Name, and Last Name.

CUSTOMER

Custome
rNumber

Customer
Name

Phone

Number

Centre for Distance Education Acharya Nagarjuna University2.4

Name

Middle Name Last
First Name

Another example is the attribute, Address, which can be broken down into Street, City, State, and
ZipCode.

Single Valued Attributes:

An entity attribute that holds exactly one value is a single-valued attribute.

Multivalued Attributes:

A multivalued attribute is an attribute that may take on more than one value for a given entity instance.
For example, the employee entity type in given picture has an attribute name Skill, whose values
record the skill (or skills) for that employee.

Derived Attributes:

An attribute whose values can be calculated from related attribute values. (Or) A derived attribute
can be obtained from other attributes or related entities

For example, the radius of a sphere can be determined from the circumference.

Another Example, you store the STUDENT DateOfBirth attribute. The Age attribute can be
computed by subtracting the current System Date from the DateOfBirth attribute.

2.3. Relationship Sets:
A relationship type is a set of associations among entity types.

For example, the student entity type is related to the team entity type because each student is a

Database Management System 2.5 Entity Relationship Model-1

Hanuman

Ramu

Computers
8261

Electronics 2020

member of a team. In this case, a relationship or relationship instance is an ordered pair of a
specific student and the student’s particular Computers team, such as (Hanuman, Computers),
where computers 8261 is Hanuman’s team number.

We arrange the diagram so that the relationship reads from left to right, “a student is a member
of a team”. Alternatively, we can arrange the components from top to bottom

A relationship set is a set of relationships of the same type.

Formally it is a mathematical relation on 2n (possibly non-distinct) sets. If nEEE ,.....,, 21

are entity sets, then a relationship set R is a subset of

 nnn EcEcEcccc ,...,,...., 221121 where nccc ,...., 21 is a relationship.

For example, consider the two entity sets customer and account. We define the relationship CustAcct
to denote the association between customers and their accounts. This is a binary relationship set.
Going back to our formal definition, the relationship set CustAcct is a subset of all the possible
customer and account pairings.

This is a binary relationship. Occasionally there are relationships involving more than two entity
sets.

The role of an entity is the function it plays in a relationship. For example, the relationship works-for
could be ordered pairs of employee entities. The first employee takes the role of manager, and the
second one will take the role of worker.

A relationship may also have descriptive attributes. For example, date (last date of account access)
could be an attribute of the CustAcct relationship set.

ER diagram notation for relationship type, MemberOf

Centre for Distance Education Acharya Nagarjuna University2.6

2.4. Mapping Constraints:

An E-R scheme may define certain constraints to which the contents of a database must conform.

A mapping cardinality is a data constraint that specifies how many entities an entity can be related
to in a relationship set.

Example: A student can only work on two projects, the number of students that work on one project
is not limited.

A binary relationship set is a relationship set on two entity sets. Mapping cardinalities on binary
relationship sets are simplest.

Consider a binary relationship set R on entity sets A and B. There are four possible mapping
cardinalities in this case:

One-to-One:

An entity in A is related to at most one entity in B, and an entity in B is related to at most

One-to-Many:

An number of entity in B is related to at most one entity in A, and an entity in B is related to at
most

Many-to-One:

An entity in A is related to at most one entity in B, but an entity in B is related to any number of
entities in A.

Database Management System 2.7 Entity Relationship Model-1

Many-to-Many:

An entity in A is related to any number of entities in B, but an entity in B is related to any number
of entities in A.

The appropriate mapping cardinality for a particular relationship set depends on the real world
being modeled.

The Entity-Relationship Model is a conceptual data model that views the real world as consisting of
entities and relationships. The model visually represents these concepts by the Entity-Relationship
diagram. The basic constructs of the ER model are entities, relationships, and attributes. Entities
are concepts, real or abstract, about which information is collected. Relationships are associations
between the entities. Attributes are properties, which describe the entities. Next, we will look at the
role of data modeling in the overall database design process and a method for building the data
model. An attribute may be simple, composite, single valued, multivalued and derived attribute.

2.6. Technical Terms:

Entity: An entity is an object that exists and is distinguishable from other objects.

Attribute: Attributes describe the entity of which they are associated. A particular instance of an
attribute is a value.

Domain: The domain of an attribute is the collection of all possible values an attribute can have.

Simple attribute: An Attribute that cannot be divided into sub parts.

Composite Attribute: A composite attribute has multiple components, each of which is atomic or
composite.

Multivalued Attribute: Amultivalued attribute is an attribute that may take on more than one value
for a given entity instance.

Relationship Type: Relationship type is a set of associations among entity types.

Mapping Cardinality: A mapping cardinality is a data constraint that specifies how many entities
an entity can be related to in a relationship set.

2.7. Model Questions:

1. What is an attribute? Explain various types of attribute?

2. Explain Entity set and Relationship set?

3. Write about mapping Cardinalities?

Centre for Distance Education Acharya Nagarjuna University2.8

2.8. References:

Database System Concepts Silberschatz, Korth, and Sudarshan

Database Management Systems Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database SystemsBipin Desai

Modern Database Management F. McFadden, J. Hoffer

An Introduction to Database SystemsC. J. Date;

AUTHOR:

Y.SURESH BABU., M.Com, M.C.A.,

Lecturer, Dept. Of Computer Science,

JKC College. GUNTUR.

Database Management System 3.1 Entity Relationship Model-2Lesson 3

Entity Relationship Model-2

3.0 Objectives:

The main objective of this lesson is to introduce the concept of keys and symbols for drawing E-
R diagrams.

After reading this chapter, you should understand:

 What is a key?

 Super, candidate and primary keys

 E-R notations

 Generalization and Specialization

 Alternative E-R notations

Structure of the Lesson:
3.1. Keys

3.2. Entity – Relationship Diagram

3.3. Weak and Strong Entity Sets

3.4. Specialization

3.5. Generalization

3.6. Attribute Inheritance

3.7. Aggregation

3.8. Alternative E-R Notations

3.9. Summary

3.10. Technical terms

3.11. Model Questions

3.12. References

3.1. Keys:
A key is an attribute or a combination of attributes, which identifies the record set uniquely. A key
which contains more than one attribute is called composite key.

Super Key:

A superkey is a set of one or more attributes which taken collectively, allow us to identify uniquely
an entity in the entity set

For example, in the entity set customer, customer-name and S.I.N. is a superkey. Note that
customer-name alone is not, as two customers could have the same name. A superkey may
contain extraneous attributes, and we are often interested in the smallest superkey.

Centre for Distance Education Acharya Nagarjuna University3.2

A Candidate Key is an attribute or set of attributes that uniquely identify an instance of an entity,
e.g., a student could be identified by their Social Security Number or by an assigned Student
Identification Number. (Or)

A superkey for which no subset is a superkey is called a candidate key.

Some entities have more than one candidate key. Sometimes it is necessary to combine attributes
to form a composite key out of two or more attributes.

In the above example customer_id, loan_number are candidate keys.

Primary Key:

A primary key is a candidate key (there may be more than one) chosen by the Data Base designer
to identify entities in an entity set.

A primary key is usually a single attribute, but may be a composite key (combination of two or
more attributes). The primary key selection must follow certain criteria.

Database Management System 3.3 Entity Relationship Model-2

Multi valued
Attribute

Derived
Attribute

Composite
attribute

Primary key

E-R Diagram With Composite, Multi-valued, and Derived Attributes:

3.2. Entity Relationship Diagram:
Rectangles represent entity sets.

Diamonds represent relationship sets.

Lines link attributes to entity sets and entity sets to relationship sets.

Ellipses represent attributes

Double ellipses represent multi-valued attributes.

Dashed ellipses denote derived attributes.

Underline indicates primary key attributes.

Centre for Distance Education Acharya Nagarjuna University3.4

An E-R diagram

One-to-many from customer to account

Many-to-one from customer to account

Database Management System 3.5 Entity Relationship Model-2

One-to-one from customer to account:

We express cardinality constraints by drawing either a directed line (), signifying “one,” or an
undirected line (—), signifying “many,” between the relationship set and the entity set. A customer
is associated with at most one loan via the relationship borrower; a loan is associated with at most
one customer via borrower

Go back and review mapping cardinalities; they express the number of entities to which an entity
can be associated via a relationship. The arrow positioning is simple once you get it straight in your
mind, so do some examples. Think of the arrowhead as pointing to the entity that “one” refers to.

3.3. Weak Entity and Strong Entity Sets:

An entity set that does not possess sufficient attributes to form a primary key is called a weak
entity set. One that does have a primary key is called a strong entity set.

A weak entity set does not have a primary key, but we need a means of distinguishing among the
entities.

The primary key of a weak entity set is formed by taking the primary key of the strong entity set
on which its existence depends, plus its discriminator.

Consider the entity set payment, which has the three attributes: payment-number, payment-date,
and payment-amount. Payment numbers are typically sequential numbers, starting from 1, gener-
ated separately for each loan. Thus although each payment entity is distinct, payments for different
loans may share the same payment number. Thus, this entity set does not have a primary key. It is

a weak entity.

Centre for Distance Education Acharya Nagarjuna University3.6

3.4. Specialization:
An entity set may include subgroups of entities that are distinct in some way from other entities in
the set. For instance, a subset of entities set may have attributes that are not shared by all the
entities in the entity set. The E-R model provides a means for representing these distinctive entity
groupings.

Consider a set, a person with attributes name, street, and city. A person may be further divided into
one of the following:

 Customer

 Employee

Each of these person types is described by a set of attributes that includes all the attributes of each
entity set person plus possibly additional attributes. For example customer entities may be
described further by the attribute customer_id, whereas employee entities may be described
further by the attribute employee_Id and salary. The process of designing sub-groupings within an
entity set is called specialization. The specialization of person allows us to distinguish among
persons according to whether they are employees or customers.

3.5. Generalization:

GENERALIZATION is the reverse process (to specialization) in which we suppress the differences
among several entity types, identify their common features and generalize them into a single super
class, of which the original entity types are subclasses.

There are some similarities between the customer entity set and the employee entity set in the
sense that they have several attributes in common. This commonality can be expressed by gen-
eralization, which is containment relationship that exists between a higher-level entity set and one
or more lower level entity sets.

In E-R diagrams, specialization and generalizations, as shown in the figure below.

Database Management System 3.7 Entity Relationship Model-2

3.6. Attributes Inheritance:
A crucial property of the higher and lower-level entities created by specialization and generalization
is attribute inheritance. The attributes of the higher-level entity sets are said to be inherited by the
lower level entity sets. For ex: Customer and employee inherit the attributes of person.

3.7. Aggregation:
Aggregation is an abstraction through which relationships are treated as higher-level entities.

3.8. Alternative E-R Notations:

There is no universal standard for E-R diagrams notation, and different books and E-R diagram
notations. The following figure shows some of the alternative notations that are widely used.

Specialization And Generalization

Centre for Distance Education Acharya Nagarjuna University3.8

3.9. Summary:
Superkey is a set of one or more attributes which, taken collectively, allow us to identify uniquely an
entity in the entity set. For example, in the entity set customer, customer-name and S.I.N. is a
superkey. A superkey may contain extraneous attributes, and we are often interested in the
smallest superkey. A superkey for which no subset is a superkey is called a candidate key. A
primary key is a candidate key (there may be more than one) chosen by the Database designer to
identify entities in an entity set.

We can express the overall logical structure of a database graphically with an E-R diagram. Its

Database Management System 3.9 Entity Relationship Model-2

components are: rectangles representing entity sets, Ellipses representing attributes and Diamonds
representing relationship sets. Lines linking attributes to entity sets and entity sets to relationship
sets. An entity set that does not possess sufficient attributes to form a primary key is called a
weak entity set. One that does have a primary key is called a strong entity set. Generalization is
the reverse process (to specialization) in which we suppress the differences among several entity
types, identify their common features and generalize them into a single super class, of which the
original entity types are subclasses.

3.10. Technical Terms:
Relationship: Association between two entities in an ERD. Each end of the relationship shows
the degree of how the entities are related and the optionality.

Generalization: It is the reverse process (to specialization) in which we suppress the differences
among several entity types, identify their common features and generalize them into a single
super class, of which the original entity types are subclasses.

Aggregation: Aggregation is an abstraction through which relationships are treated as higher-
level entities.

Weak Entity: An entity set that does not possess sufficient attributes to form a primary key is
called a weak entity set.

Strong Entity: An entity that does have a primary key is called a strong entity set.

Centre for Distance Education Acharya Nagarjuna University3.10

3.11. Model Questions:
1. Explain the distinction among the terms of primary key, candidate key and super key.

2. Define the concept of Aggregation?

3. Explain the difference between the strong entity and weak entity?

4. Write about the alternative E- R notations?

5. Explain the concept of Generalization and Specialization?

3.12. References:

Database System Concepts

Silberschatz, Korth, and Sudarshan

Database Management Systems

Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems

Bipin Desai

Modern Database Management

F. McFadden, J. Hoffer

An Introduction to Database Systems

C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 4.1 Relational ModelLesson 4

Relational Model

4.0 Objectives:

The major objective of this lesson is to provide

Structure of the Lesson:

4.1. Introduction

Introduction:
The relational model was formally introduced by Dr. E. F. Codd in 1970 and has evolved since then,
through a series of writings. The model provides a simple, yet rigorously defined, concept of how
users perceive data. The relational model represents data in the form of two-dimension tables.
Each table represents some real-world person, place, thing, or event about which information is
collected.

A relational database is a collection of two-dimensional tables. The organization of data into rela-
tional tables is known as the logical view of the database. That is, the form in which a relational
database presents data to the user and the programmer. The way the database software physi-
cally stores the data on a computer disk system is called the internal view. The internal view
differs from product to product and does not concern us here.

Basic Structure:

A Relational database consists of a collection of tables, each of which is assigned a unique name.
A row in a table represents a relationship among a set of values.

A relational database is a finite set of relation schemas (called a database schema) and a corre-
sponding set of relation instances (called a database instance).

The relational database model represents data as a two-dimensional tables called a relations and
consists of three basic components:

1. A set of domains and a set of relations

2. Operations on relations

3. Integrity rules

In the relational model, data is represented as a two-dimensional table called a relation. Relations
have names and the columns have names called attributes. The elements in a column must be
atomic - an elementary type such as a number, string. Date, or timestamp and from a single
domain.

A relation r(R) is a mathematical relation of degree n on the domains dom (A
1
), dom (A

2
)... dom (A

n
)

which is a subset of the Cartesian product of the domains that define R:

r(R)? (dom(A
1
)×dom(A

2
)×... ×dom(A

n
))

Centre for Distance Education Acharya Nagarjuna University4.2

Example: An employee relation is a table of names, birth dates, social security numbers, ...
The contents of a relation are rarely static thus the addition or deletion of a row must be efficient.

Database Schema:

A database schema is a set of relation schemas for the relations in a design. Changes to a
schema or database schema are expensive thus careful thought must go into the design of a
database schema.

Relation Schema - relationName (attribute
1
:dom

1
, ..., attribute

n
:dom

n
)

A relation schema e.g. employee (name, birthDate, ss#), consists of

1. The name of the relation. Relation names must be unique across the database.

2. The names of the attributes in the relation along with there associated domain names. An
attribute is the name given to a column in a relation instance. All columns must be named and
no two columns in the same relation may have the same name. A domain name is a name
given to a well-defined set of values. Column values are referenced using its attribute name (A)
or alternatively, the relation name followed by the attribute name (R.A)

3. The integrity constraints (IC). Integrity constraints are restrictions on the relational instances
of this schema.

Relation Instance:

A relation instance is a table with rows and named columns. The rows in a relation instance (or
just relation) are called tuples. The cardinality of the relation is the number of tuples in it. The
names of the columns are called attributes of the relation. The number of columns in a relation is
called the arity of the relation. The type constraint that the relation instance must satisfy is

1. The attribute names must correspond to the attribute names of the corresponding schema
and

2. The tuple values must correspond to the domain values specified in the corresponding
schema.

.
Database Instance

A database instance is a finite set of relation instances.
Database schema example:

Movie (title, year, length, filmType)
Employee (name, birthDate, ss#, ...)
Department(deptName, empSSNo, employeeName, function)

Keys:
It is frequently the case that within a given relation there is one attribute with values that are unique
within the relation and thus can be used to identify the tuples of that relation. For example, attribute
P# of the PART relation has this property-each PART tuple contains a distinct P# value, and this
value may be used to distinguish that tuple from all others in the relation. P# is said to be the
primary key for PART.

Database Management System 4.3 Relational Model

Not every relation will have a single-attribute primary key. However, every relation will have some
combination of attributes that, when taken together, have the unique identification property; a “com-
bination” consisting of a single attribute is merely a special case. In the following relation SP for
example, the combination (S#, P#) has this property.

SP

S# P# QTY

S1 P1 300

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S1 P6 100

S2 P1 300

S2 P2 400

S3 P2 200

S4 P2 200

S4 P4 300

S4 P5 400

Occasionally we may encounter a relation in which there is more than one attribute combination
possessing the unique identification property, and hence more than one candidate key. SUPPLIER
is such a relation. Here the situation is that, for all time, each supplier has a unique supplier number
and a unique supplier name. In such a case we may arbitrarily choose one of the candidates, say
S#, as the primary key for the relation. A candidate key that is not the primary key, such as SNAME
in the example, is called an alternate key

PART SUPPLIER

P# PNAME COLOR WEIGHT CITY S# SNAME STATUS CITY

P1 Nut Red 12 London S1 Smith 20 London

P2 Bolt Green 17 Paris S2 Jones 10 Paris

P3 Screw Blue 17 Rome S3 Blake 30 Paris

P4 Screw Red 14 London S4 Clark 20 London

P5 Cam Blue 12 Paris S5 Adams 30 Athens

P6 Cog Red 19 London

So far we have considered the primary key from a purely formal point of view, that is, purely as an
identifier for tuples in a relation, without paying any heed to how those tuples are interpreted.
Typically, however, those tuples represent entities in the real world, and the primary key really
serves as a unique identifier for those entities. For example, the tuples in the SUPPLIER relation
represent individual suppliers, and values of the S# attribute actually identifies those suppliers, not
just the tuples that represent them. This interpretation leads us to impose the following rule.

Centre for Distance Education Acharya Nagarjuna University4.4

Integrity Rule 1 (Entity Integrity)

No component of a primary key value may be null.

The rationale behind this rule is as follows. By definition all entities must be distinguishable-that is,
they must have a unique identification of some kind. Primary keys perform the unique identification
function in a relational database. An identifier (primary key value) that was wholly null would be a
contradiction in terms; in effect, it would be saying that there was some entity that did not have any
unique identification-i.e., was not distinguishable from other entities (and if two entities are not
distinguishable from each other, then by definition there are not two entities but only one). Analogous
arguments suggest that partially null identifiers should also be prohibited.

Similar considerations lead us to a second integrity rule. It is common for one relation to include
references to another. For example, relation SP includes references to both the SUPPLIER relation
and the PART relation, via its S# and P# attributes. It is clear that if a tuple of SP contains a value for
S#, say s, then a tuple for suppliers should exist in SUPPLIER (otherwise, the SP tuple would
apparently be referring to an nonexistent supplier); and similarly for parts. We can make these
notions precise as follows.

First, we introduce the notion of primary domain. A given domain may optionally be designated as
primary if and only if there exists some single-attribute primary key defined on that domain. Second,
any relation including an attribute that is defined on a primary domain (for example, relation SP)
must obey the following constraint.

Integrity Rule 2 (Referential Integrity)

Let D be a primary domain, and let R1 be a relation with an attribute A that is defined on D. Then, at
any given time, each value of A in R1 must be either (a) null, or (b) equal to V, say, where V is the
primary key value of some tuple in some relation R2 (R1 and R2 not necessarily distinct) with
primary key defined on D.

(We note that R2 must exist, by definition of primary domain. We also note that the constraint is
trivial satisfied if A is the primary key of R1.)

An attribute such as A is sometimes called a foreign key. For example attribute P# of relation SP
is a foreign key, since its values are values of the primary key of the PART relation. Keys, primary
and foreign, provide a means of representing relationships between tuples; note, however that not
all such “relationship” attributes are keys).

Query Languages:

A query language is a language in which a user requests information from the database. These
languages are typically of a level higher than that of a standard programming language. Query
language can be categorized as being either procedural or non procedural. In a procedural language,
the user instructs the system to perform a sequence of operations on the database to compute the
desired result. In a non procedural language, the user describes the information desired without
giving a specific procedure for obtaining that information.

Most commercial relational-database systems offer a query language that includes elements of
both the procedural and non-procedural approaches. The relational algebra is procedural, whereas
the tuple relational calculus and the domain relational calculus are non-procedural.

Database Management System 4.5 Relational Model

Relational Algebra:

A Relational algebra is a notation for representing the types of operations, which can be performed
on relational databases. It is used in a RDBMS as the intermediate language for query optimization.
Thus an understanding of it is useful for database implementation and for database tuning.

A relation is a set of k-tuples, for some k called the arity of the relation. In general, names are given
to the components of the tuple (a tuple corresponds to a record - Pascal or structure - C with fields
corresponding to the names of the components). Note: this definition implies that each tuple is
unique. Each relation is described by a schema which consists of a relation name and a list of
attribute names - relation-name(attribute-list). R(A

1
, ..., A

n
), R.A

i
.

A relational algebra is an algebraic language based on a small number of operators, which operate
on relations (tables). It is the intermediate language used by a RDBMS. Queries are expressed by
applying special operators to relations.

Fundamental Operations:

The Select Operation:

The Select Operating selects the tuples that satisfy a given condition or predicate

A Greek Letter Sigma can denote the Select operation

For example, find all employees born after 1st Jan 1950:

 SELECT
dob 01/JAN/1950'

(employee)

The Project Operation:

The project operation is a unary operation that returns its argument relation, with the specified

attributes only. The resultant relation does not have any duplicate rows.

Project is denoted by Greek letter pi.

The Union Operation:

The union operation allows combining the data from two relations.

It is denoted by U
It creates the set union of two compatible relations.
For a union operation r U s to be valid, we require that the following conditions hold.

 Both relations must have the same number of columns.

 The names of the attributes are the same in both relations.

 Attributes with the same name in both relations have the same domain.

Set Difference:
The set difference operation, denoted by -, allows to find tuples that are in one relation but are not
in another. The expression r-s results in a relation containing those tuples in r but not in s. for set

Centre for Distance Education Acharya Nagarjuna University4.6

difference operations, we must ensures that the set difference are taken between compatible rela-
tions. Therefore, for a set difference operation r-s to be valid, we require that the relations r and s be
of the same arity and that the domain of the I’th attribute of r and I’th attribute of s be the same.

Cartesian product:

Cartesian product operation, denoted by a cross (X), allows us to combine information from any
two relations.

Renaming:

The attribute names in the attribute list replace the attribute names of the relation.

Derived operators:

Set intersection:

Finds the common tuples in two relations with like attributes.

Divide:

Takes two relations, with attributes {X
1
...X

N
,Y

1
...Y

M
} and {Y

1
...Y

M
} respectively, and returns a relation

with attributes {X
1
...X

N
} representing all the tuples in the first with matched every tuple in the second

relation.

Join:

Creates new relation from all combinations of tuples in two relations with some matching, While
this relation has the potential to be computationally expensive the join-condition typically allows the
operation to be relatively inexpensive.

 The join defined above is called a theta-join.

 Equijoins are joins where the join-condition only involves equalities.

Natural Joins:

The natural join of two relations R and S, denoted R|><|S is only those tuples of R×S that agree on
some list of attributes.

The natural join may be defined by

1. Compute R×S

2. For each attribute A that names both a column in R and a column in S, select from R×S
those tuples whose values agree in the columns for R.A and S.A.

3. For each attribute A above, project out the column S.A and call the remaining column R.A,
simply A. (example: employee(id,name), salary(id,salary); the natural join employee-
salary(id,name,salary)

The theta join of two relations R and S denoted R|><|<|
CS is only those

tuples of R×S that satisfy the
condition C.

1. Compute R×S

2. Select from the product only those tuples that satisfy the condition.

Database Management System 4.7 Relational Model

Renaming

ñS(A1,...,An)(R) is the same relation as R but its name is S with the attributes named. A1,...,An.

Relational Calculus:

The relational calculus is based on the first order logic. There are two variants of the relational
calculus:

 The Domain Relational Calculus (DRC), where variables stand for components (attributes)
of the tuples.

 The Tuple Relational Calculus (TRC), where variables stand for tuples.

Tuple Relational Calculus:

The queries used in TRC are of the following form: x (A) ∣ F (x) where x is a tuple variable A is
a set of attributes and F is a formula. The resulting relation consists of all tuples t (A) that satisfy F
(t).

The SQL language is based on the tuple relational calculus, which in turn is a subset of classical
predicate logic. Queries in the TRC all have the form:

{QueryTarget | QueryCondition}

The QueryTarget is a tuple variable, which ranges over tuples of values. The QueryCondition is a
logical expression such that

 It uses the QueryTarget and possibly some other variables.

 If a concrete tuple of values is substituted for each occurrence of the QueryTarget in
QueryCondition, the condition evaluates to a Boolean value of true or false.

The result of a TRC query with respect to a database instance is the set of all choices of values for
the query variable that make the query condition a true statement about the database instance. The
relation between the TRC and logic is in that the QueryCondition is a logical expression of classical
first-order logic.

Domain Relational Calculus:

Queries in the DRC have the form:

{X
1
, ..., X

n
| Condition}

The X
1
, ..., X

n
are a list of domain variables. The condition is a logical expression of classical

first-order logic.

Relational Algebra vs. Relational Calculus:

The relational algebra and the relational calculus have the same expressive power; i.e. all queries
that can be formulated using relational algebra can also be formulated using the relational calculus
and vice versa. E. F. Codd first proved this in 1972. This proof is based on an algorithm by which an
arbitrary expression of the relational calculus can be reduced to a semantically equivalent
expression of relational algebra.

Centre for Distance Education Acharya Nagarjuna University4.8

It is sometimes said that languages based on the relational calculus are “higher level” or “more
declarative” than languages based on relational algebra because the algebra (partially) specifies
the order of operations while the calculus leaves it to a compiler or interpreter to determine the
most efficient order of evaluation.

Summary:

Technical terms:

Relation - a set of tuples.

Tuple - a collection of attributes, which describe some real world entity.

Attribute - a real world role played by a named domain.

Domain - a set of atomic values.

Set - a mathematical definition for a collection of objects, which contains no duplicates.

References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 5.1 S Q L - 1Lesson 5

SQL - 1

5.0 Objectives:

The objective of this chapter is to introduce the main concepts of data storage and retrieval in the

context of database information systems using Structured Query Language (SQL).

After reading this chapter, you should understand:

 What is SQL?

 To define features of SQL

 Structure of SQL

 Use various functions based on the data types to perform calculations on data.

 Basic clauses including SELECT, WHERE, FROM

 String Operations

 Set Operations

 Aggregate Functions

 Nested Subqueries.

Structure of the Lesson:

5.1. Introduction

5.2. Features of SQL

5.3. Basic Structure

5.3.1. Rename Operation

5.3.2. Tuple Variable

5.3.3. String Operators

5.3.4. Ordering the display of Tupels

5.3.5. Duplicates

5.4. Set Operations

5.5. Aggregate functions

5.6. Null Values

5.7. Nested Subqueries

5.8. Summary

5.9. Technical Terms

5.10. Model Questions

5.11 References

Centre for Distance Education Acharya Nagarjuna University5.2

5.1. Introduction:
Oracle is a Relational Database Management System (RDBMS). Oracle being RDBMS, stores
data in tables called relations. These relations are two-dimensional representation of data, where
rows called tuples represent records and columns called attributes represent pieces of information
contained in the record.

Oracle provides a rich set of tools to allow design and maintenance of the database. Major tools
are,

RDBMS Kernel : Database Engine
SQL : Structured Query Language
SQL * PLUS : Addition to SQL

PL / SQL : Procedural Language SQL, allows
Procedural processing of SQL statements

SQL * DBA : Database Administrator’s tool set
DEVELOPER 2000 : ORACLE’S GUI tool for Forms.

5.2. Features of SQL:
SQL (pronounced “ess-que-el”) stands for Structured Query Language. SQL is used to communicate
with a database.According toANSI (American National Standards Institute), it is the standard language
for relational database management systems. SQL statements are used to perform tasks such as
update data on a database, or retrieve data from a database. Some common relational database
management systems that use SQL are: Oracle, Sybase, Microsoft SQL Server, Access, Ingres,
etc. Although most database systems use SQL, most of them also have their own additional
proprietary extensions that are usually used on their system only. However, the standard SQL
commands such as “Select”, “Insert”, “Update”, “Delete”, “Create”, and “Drop” can be used to
accomplish almost everything that one needs to do with a database. This tutorial will provide you
with the instruction on the basics of each of these commands as well as allow you to put them to
practice using the SQL Interpreter.

Features:

 SQL is an English like language.

 SQL is a non-procedural language.

 SQL processes set of records rather than a single record at a time.

 SQL provides commands for a variety of tasks including
querying data.

 Inserting, Updating and Deleting rows in a table.

 Creating, Modifying and Deleting database objects.

 Controlling access to a database and database objects.

 A range of users including DBA, Application programmer, management personal
and types of end users can use SQL.

Database Management System 5.3 S Q L - 1

Database Objects:

Each user owns a single schema. Schema Objects can be created and maintained with SQL.

The following are the list of schema objects:

 Tables

 Indexes

 Views

 Clusters

 Sequences

 Database triggers

 Stored functions and procedures

 Packages.

5.3. Basic Structure:
The Basic structure of an SQL expression consists of select, from and where clauses.

Select clause lists attributes to be copied - corresponds to relational algebra project. From clause
corresponds to Cartesian product - lists relations to be used. Where clause corresponds to
selection predicate in relational algebra.

Typical query has the form

select nAAA, 21

from nTTT, 21

where p

Where each iA represents an attribute, each ir relation, and P is a predicate. This is equivalent to

the relational algebra expression

 mAAA rrrp
n

 ...21,....., 21

If the where clause is omitted, the predicate P is true.

The list of attributes can be replaced with a * to select all. SQL forms the Cartesian product of the
relations named, performs a selection using the predicate, then projects the result onto the attributes
named. The result of an SQL query is a relation. SQL may internally convert into more efficient
expressions

The relation schemes for the banking example used throughout the textbook are:

 Branch-scheme = (bname, bcity, assets)

 Customer-scheme = (cname, street, ccity)

 Depositor-scheme = (cname, account#)

Centre for Distance Education Acharya Nagarjuna University5.4

 Account-scheme = (bname, account#, balance)

 Loan-scheme = (bname, loan#, amount)

 Borrower-scheme = (cname, loan#)

Finding the names of all branches in the account relation.
select bname

from account

distinct vs. all: Elimination or non-elimination of duplicates. For example, finding the names
of all branches in the account relation.

select distinct bname
from account

By default, duplicates are not removed. We can state it explicitly using all.

For example

select all bname

from account
select * means select all the attributes.

Arithmetic operations can also be in the selection list. The predicates can be more complicated,
and can involve:

 Logical connectives and, or and not.

 Arithmetic expressions on constant or tuple values.

 The between operator for ranges of values.

For example to find account number of accounts with balances between $90,000 and $100,000.

select account#
from account
where balance between 90000 and 100000.

5.3.1. Rename Operation:

SQL provides a mechanism for renaming both relations and attributes. It uses the as clause,
taking the form

Old-name as new-name

The as clause can appear in both the select and from clauses.

Database Management System 5.5 S Q L - 1

EX:
select distinct cname, borrower.loan# as loan_id

from borrower, loan

where borrower.loan# = loan.loan# and bname= “SFU”

5.3.2. Tuple Variables:
A tuple variable in SQL must be associated with a particular relation. Tuple variables are defined in
the form clause by way of the as clause.

select distinct cname, T.loan#
from borrower as S, loan as T
where S.loan# = T.loan#

We define a tuple variable in the from clasue by placing it after the name of the relations with which
it is associated, with the keyword as inbetween .

The tuple varaibles are most useful for comparing two tuples in same relation.

5.3.3. String Operators:
The most commonly used operation on strings is pattern matching using the operator like. String
matching operators % (any substring) and _ (underscore, matching any character).

Ex : “___%” matches any string with at least 3 characters.

Patterns are case sensitive, e.g., “Jim” does not match “jim”. Use the keyword escape to define
the escape character.

Ex : like “ab%tely\% \” escape “\” matches all the strings beginning with “ab” followed by a sequence
of characters and then “tely” and then “% \”.

Backslash overrides the special meaning of these symbols. We can use not like for string
mismatching.

Ex : Find all customers whose street includes the substring “Main”.
select cname
from customer
where street like “%Main%”

SQL also permits a variety of functions on character strings, such as concatenating (using “||”),
extracting substrings, finding the length of strings, converting between upper case and lower case,
and so on.

Centre for Distance Education Acharya Nagarjuna University5.6

5.3.4. Ordering the Display of Tuples
SQL allows the user to control the order in which tuples are displayed. order by makes tuples
appear in sorted order (ascending order by default). desc specifies descending order. asc specifies
ascending order.

select *
from loan

order by amount desc, loan# asc

Sorting can be costly, and should only be done when needed.

5.3.5. Duplicates:
Formal query languages are based on mathematical relations. Thus no duplicates appear in relations.
As duplicate removal is expensive, SQL allows duplicates. To remove duplicates, we use the

distinct keyword. To ensure that duplicates are not removed, we use the all keyword.

Multiset (bag) versions of relational algebra operators.

If there are 1c copies of tuples 1t in 1r and 1t satisfies selection then there are 1c copies of 1t in

)(1r

for each copy of tuple 1t in 1r there is a copy of tuple 1tA in 1rA

If there are 1c copies of tuple 1t in 1r and 2c copies of tuple 2t in 2r , there is 21 cc copies of

tuple 21.tt in 21 rr

An SQL query of the form

Select nAAA ,..., 21

from mTTT ,..., 21

Where P
is equivalent to the algebra expression

 mAAA TTTP
n

 ...21,...2,1

using the multiset versions of the relational operators 1 and

5.4. Set Operations:

SQL has the set operations union, intersect and except operate on relations and correspond to

the relational-algebra operations , and

We shall now construct queries involving the UNION, INTERSECT and EXCEPT operations of
two sets; the set of all customers who have an account at the bank which can be derived by

Database Management System 5.7 S Q L - 1

Select customer-name from depositor

And the set of customers who have a loan at the bank, which can be derived by

Select customer-name from borrower

1. Union:
Return all distinct rows retrieved by either of the queries.
Ex: select job from emp union select desg from employee;

2. Union All:

Returns all rows (including duplicate) retrieved by either of the queries.

3. Intersect:
Returns only rows retrieved by both of the queries.

5.6. Aggregate Functions:
The aggregate functions are the functions that take a collection (a set or multiset) of values as
input and return a single value.

 Average value — avg

 Minimum value — min

 Maximum value — max

 Total sum of values — sum

 Number in group — count

The input to sum and avg must be collection of numbers, but the other operators can operate on
collections of nonnumeric data types, such as strings.

Ex: select bname, avg (balance) from account
group by bname

select bname, count (distinct cname) from account, depositor
where account.account# = depositor.account#
group by bname

select bname, avg (balance) from account
group by bname having avg (balance) > 1200

select depositor.cname, avg (balance)

Centre for Distance Education Acharya Nagarjuna University5.8

from depositor, account, customer
where depositor.cname = customer.cname and

account.account# = depositor.account#
and ccity=“Vancouver” group by depositor.cname

having count (distinct account#) ³ 3

If a where clause and a having clause appear in the same query, the where clause predicate is
applied first. Tuples satisfying where clause are placed into groups by the group by clause. The
having clause is applied to each group. Groups satisfying the having clause are used by the
select clause to generate the result tuples. If no having clause is present, the tuples satisfying the
where clause are treated as a single group.

5.7. Null Values:
With insertions, we saw how null values might be needed if values were unknown. Queries
involving nulls pose problems. If a value is not known, it cannot be compared or be used as part
of an aggregate function.

All comparisons involving null are false by definition. However, we can use the keyword null to
test for null values:

select distinct loan# from loan

where amount is null

5.8. Nested Sub Queries:
SQL provides a mechanism for nesting subqueries. Asubquery is a select-from-where expression
that is nested with in another query. A common use of subqueries is to perform the tests for set
membership, make set comparisons and determine set cardinality.

SET MEMBERSHIP: The in connective tests for set membership, where the set is a
collection of values produced by a select clause. The not in connective tests for the absence of
set membership.

Examples:
select distinct cname from borrower where cname in
(select cname from account where bname= “SFU’’)

we use the not in construct in the similar way.

SET COMPARISON: (SOME/ANY or ALL)
These operators may be used in WHERE or HAVING clauses for sub-queries, that returns more
than one row. These Operators compares a value with each value returned by a sub-query and
returns a value.

Database Management System 5.9 S Q L - 1

Example : To compare set elements in terms of inequalities, we can write
select distinct T.bname

from branch T,branch S
where T.assets > S.assets

and S.bcity=“Burnaby”

or we can write
select bname

from branch
where assets > some

(select assets
from branch

where bcity=“Burnaby”)

We can use any of the equality or inequality operators with some. If we change > some to > all,
we find branches whose assets are greater than all branches in Burnaby

TEST FOR EMPTY RELATIONS: (EXISTS)

This operator tests whether a value is present in the list or not. If the value exists it returns True,

otherwise it returns False.

Example : To Find all customers who have a loan and an account at the bank.

select cname from borrower where exists
(select * from depositor

where depositor.cname = borrower.cname)

TEST FOR THE ABSENCE OF DUPLICATE TUPLES : (unique)

The unique construct returns the value true if the argument subquery contains no duplicate

rows.

Example : To Find all customers who have only one account at the SFU branch.

select T.cname from depositor as T

where unique (select R.cname

from account, depositor as R

where T.cname = R.cname and

R.account# = account.account# and

account.bname = “SFU”)

Centre for Distance Education Acharya Nagarjuna University5.10

5.9. Summary:
SQL is a query language that allows access to data residing in relational database management
systems (RDBMS), such as Sybase, Oracle, Informix, DB2, Microsoft SQL Server, Access and
many others. To retrieve information users execute ‘queries’ to pull the requested information from
the database using criteria that is defined by the user. SELECT is the most important and the most
complex SQL statement. You can use it and the SQL statements INSERT, UPDATE, and DELETE
to manipulate data. You can use the SELECT statement to retrieve data from a database, as part
of an INSERT statement to produce new rows, or as part of an UPDATE statement to update
information. A query, in its simplest form is constructed using the following basic query statements
SELECT, FROM, WHERE and ORDER BY. The SELECT clause defines what columns or fields
you want to see in your results, the FROM clause defines from what table the columns reside in,
the WHERE clause defines any special criteria that must be met in order to be displayed, and
finally the ORDER BY clause in which you define the sequence you want to display the results.
While the only two query clauses that are required are SELECT and FROM, they are almost always
accompanied by the WHERE and ORDER BY clauses to restrict the amount of data retrieved and
to present it in an orderly fashion. Oracle SQL supports the following four set operations: UNION,
MINUS, INTERSECT.

5.10. Technical terms:
SQL: SQL (Structured Query Language) is a standard interactive and programming language for
getting information from and updating a database.

Schema: A description of the data represented within a database.

Attribute: Characteristic of an entity/object, eg: the name of a person.

Data Definition Language: Language sub-system of a data management system that is used
to define the structure of the database.

Domain: A domain is the set of allowable values for one or more attributes.

Degree: The degree of a relation is the number of attributes it contains.

Nested Query: Nested query is when a SELECT statement embedded within another SELECT
statement.

5.11. Model Questions:

1. What is SQL? Explain Features of SQL?

2. Write about structure of SQL?

3. What are various string operations?

4. What are various Set operations?

5. Explain various Aggregate functions with example queries?

Database Management System 5.11 S Q L - 1

5.12. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 6.1 S Q L - 2Lesson 6

SQL - 2
6.0 Objectives:
The objective of this chapter is to introduce the main concepts of data storage and retrieval in the
context of database information systems using Structured Query Language (SQL).

After reading this chapter, you should understand:

 What is View?

 Understand how to create views

 Structure of complex queries

 Joined relations

 Understand Data Definition Language

 What is Dynamic SQL?

Structure of the Lesson:

6.1. Views

6.2. Complex Queries

6.3. Modifications of the Database

6.4. Joining relations

6.5. Data Definition Language

6.6. Embedded SQL

6.7. Dynamic SQL

6.8. Summary

6.9. Technical Terms

6.10. Model Questions

6.11. References

6.1. Views:

A view is like a window through which data on tables can be viewed or changed. A view is derived
from another table or view, which is referred as the base table. A view is stored as a SELECT
statement only but has no data of its own. It manipulates data in the underlying base table.

A view in SQL is defined using the create view command:

Create view v as (query expression)

Where (query expression) is any legal query expression.

Centre for Distance Education Acharya Nagarjuna University6.2

Ex: To create a view all-customer of all branches and their customers:
create view all-customer as

(select bname, cname
from depositor, account
where depositor.account# = account.account#)

union
(select bname, cname from borrower, loan

where borrower.loan# = loan.loan#)

6.2. Complex Queries:

Complex queries are often hard or impossible to write as a single SQL block or a union/intersection/
difference of SQL blocks. An SQL block consists of a single select from where statement,
possibly with group by and having clauses. There is a way composing multiple SQL blocks to
express a complex query:

Derived Relations: SQL allows a sub query expression to be used in the from clause. If we use
such an expression, then we must give the result relation a name, and we can rename the attribute.
We do this renaming by using the as clause. For example to find average account balance of
those branches where the average account balance is greater than $1,000.

select bname, avg-balance
from (select bname, avg(balance)

from account group by bname)
as result(bname, avg-balance)
where avg-balance > 1000

6.3. Modifications of the Database:

Deletion:

Deletion is expressed in much the same way as a query. Instead of displaying, the selected tuples
are removed from the database. We can only delete whole tuples.

A deletion in SQL is of the form

delete from r where P

Tuples in r for which P is true are deleted. If the where clause is omitted, all tuples are deleted.
A delete command operates on only relation. If we want to delete tuples from several relations,
we must use one delete command for each relation.

1. Delete all of Smith’s account records.

delete from depositor
where cname=“Smith”

2. Delete all loans with loan numbers between 1300 and 1500.

delete from loan
where loan# between 1300 and 1500

3. Delete all accounts at branches located in Surrey.

Database Management System 6.3 S Q L - 2

delete from account
where bname in
(select bname from branch
where bcity=“Surrey”)

Insertion:

To insert data into a relation, we either specify a tuple, or write a query whose result is the set of
tuples to be inserted. Attribute values for inserted tuples must be members of the attribute’s do-
main.

Examples:

1. To insert a tuple for Smith who has $1200 in account A-9372 at the SFU branch.
insert into account

values (“SFU’’, “A-9372'’, 1200)
2. To provide each loan that the customer has in the SFU branch with a $200 savings

account.
insert into account
select bname, loan#, 200

from loan where bname=“SFU”

We can prohibit the insertion of null values using the SQL DDL.

Update:
We may wish to change a value in a tuple without changing the values in the tuple. For this
purpose update statement is used.

Example: To increase all balances by 5 percent.

update account
set balance=balance * 1.05

This statement is applied to every tuple in account.

In general, where clause of update statement may contain any legal construct in a where clause of
a select statement (including nesting). A nested select within an update may reference the relation
that is being updated. As before, all tuples in the relation are first tested to see whether they should
be updated, and the updates are carried out afterwards.

Example: To pay 5% interest on account whose balance is greater than average, we have

update account
set balance=balance * 1.05
where balance >

select avg (balance) from account

Transactions:

A transaction consists of a sequence of query and/or update statements. The SQL standard
specifies that a transaction begins implicitly when an SQL statement is executed.

Commit work: Commits the current transaction; i.e., it makes the updates performed by the
transaction become permanent in the database. After the transaction is committed, a new
transaction is automatically started.

Centre for Distance Education Acharya Nagarjuna University6.4

Rollback work: Causes the current transaction to be rolled back; i.e., it undoes all the
updates performed by the SQL statements in the transaction. Thus the database state is

restored to what it was before the first statement of the transaction was executed.

6.4. Joined Relations:

SQL provides the basic Cartesian-product mechanism for joining tuples of relations, and it also
provides other mechanism for joining relations, including condition joins and natural joins.

Examples: Here there are two relations, named loan and borrower.

Loan borrower

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 Hayes L-155

join:

loan inner join borrower on
loan.loan# = borrower.loan#

Notice that the loan# will appear twice in the inner joined

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230

Result of loan inner join borrower

left outer join:

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 null null

loan left outer join borrower on loan.loan# = borrower.loan#

 Result of loan left outer join borrower.

natural inner join:

loan natural inner join borrower

bname loan# amount cname

Downtown L-170 3000 Jones
Redwood L-230 4000 Smith

Database Management System 6.5 S Q L - 2

Result of loan natural inner join borrower.

Join Types : inner join, left outer join, right outer join, full outer join.

The keyword inner and outer are optional since the rest of the join type enables us to deduce
whether the join is an inner join or an outer join. It also provides two other join types, These are

cross join : an inner join without a join condition.
union join: a full outer join on the “false” condition, i.e., where the inner join is empty.

nAAA, 21

Join conditions: natural, on predicate, using .
The use of join condition is mandatory for outer joins

but is optional for inner joins (if it is omitted, a Cartesian product results).

6.5. Data-Definition Language:

The SQL DDL (Data Definition Language) allows specification of not only a set of relations, but
also the following information for each relation:

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints.

 The set of indices for each relation.

 Security and authorization information.

 Physical storage structure on disk.

Domain Types in SQL:

The SQL-92 standard supports a variety of built-in domain types:

 char(n): Fixed-length character string, with user-specified length.

 varchar(n): Variable-length character string, with user-specified maximum length.

 int: an integer (length is machine-dependent).

 smallint: A small integer (length is machine-dependent).

 numeric(p, d): Afixed-point number with user-specified precision, consists of p digits (plus
a sign) and d of p digits are to the right of the decimal point. E.g., numeric(3, 1) allows 44.5
to be stored exactly but not 444.5.

 real, double precision: Floating-point or double-precision floating-point numbers, with
machine-dependent precision.

 float(n): Floating-point, with user-specified precision of at least n digits.

 date: A calendar date, containing four digit year, month, and day of the month.

 time: The time of the day in hours, minutes, and seconds.

Centre for Distance Education Acharya Nagarjuna University6.6

 timestamp: Acombination of date and time. A variant, timestamp(p) can be used to specify
the number of fractional digits for seconds.

Schema Definition in SQL: An SQL relation is defined by:

Create table nn DADADA ,....,,, 2211

Integrity Constraint1

.....
Integrity Constraint1)

where r is the relation name, iA is the name of an attribute, and

iD is the domain of that attribute. The allowed integrity-constraints are

primary key : jmj AA1 The primary key specification says that attributes jmj AA1

from the primary key for the relation. The primary key attributes are required to be non-
null and unique.

Example: create table branch (bname char(15) not null

bcity char(30)
assets integer
primary key (bname)
check (assets >= 0))

Check(P): The check clause specifies a predicate P that must be satisfied by every tuple in
the relation.

Example :

create table student (name char(15) not null

student-id char(10) not null

degree-level char(15) not null

check (degree-level in

(“Bachelors”, “Masters”, “Doctorate”)))

6.6. Embedded SQL:

SQL provides a powerful declarative query language. However, access to a database from a
general-purpose programming language is required because,

o SQL is not as powerful as a general-purpose programming language. There are
queries that cannot be expressed in SQL, but can be programmed in C, Fortran,
Pascal, Cobol, etc.

o Non-declarative actions such as printing a report, interacting with a user, or sending
the result to a GUI — cannot be done from within SQL.

The SQL standard defines embedding of SQL as embedded SQL and the language in which SQL
queries are embedded is referred as host language. The result of the query is made available to the
program one tuple (record) at a time. To identify embedded SQL requests to the preprocessor, we
use EXEC SQL statement:

Database Management System 6.7 S Q L - 2

EXEC SQL embedded SQL statement END-EXEC

A semi-colon is used instead of END-EXEC when SQL is embedded in C or Pascal.

Embedded SQL statements: declare cursor, open, and fetch

EXEC SQL

declare c cursor for
select cname, ccity
from deposit, customer
where deposit.cname = customer.cname
and deposit.balance > :amount

END-EXEC

where amount is a host-language variable.

EXEC SQL open c END-EXEC

This statement causes the DB system to execute the query and to save the results within a
temporary relation.

A series of fetch statement are executed to make tuples of the results available to the program.

EXEC SQL fetch c into :cn, :cc END-EXEC

The program can then manipulate the variable cn and cc using the features of the host
programming language.

A single fetch request returns only one tuple. We need to use a while loop (or equivalent) to
process each tuple of the result until no further tuples (when a variable in the SQLCA is set).

We need to use close statement to tell the database system to delete the temporary relation that
held the result of the query.

EXEC SQL close c END-EXEC

Embedded SQL can execute any valid update, insert, or delete statements

6.7. Dynamic SQL:

BDL includes basic SQL instructions in the language syntax, but only a limited number of SQL
instructions are supported this way. Dynamic SQL Management allows you to execute any kind of
SQL statement, hard coded or created at runtime, with or without SQL parameters, returning or not
returning a result set.

In order to execute an SQL statement with Dynamic SQL, you must first prepare the SQL

statement to initialize a statement handle, then
When you no longer need the prepared statement, you can free the statement handle to release

allocated resources:

When using insert cursors or SQL statements that produce a result set (like SELECT), you
must declare a cursor with a prepared statement handle.

Centre for Distance Education Acharya Nagarjuna University6.8

Prepared SQL statements can contain SQL parameters by using ? placeholders in the SQL text.
In this case, the EXECUTE or OPEN instruction supplies input values in the USING clause.

To increase performance efficiency, you can use the PREPARE instruction, together with an EX-
ECUTE instruction in a loop, to eliminate overhead caused by redundant parsing and optimizing.
For example, an UPDATE statement located within a WHILE loop is parsed each time the loop
runs. If you prepare the UPDATE statement outside the loop, the statement is parsed only once,
eliminating overhead and speeding statement execution.

Database Management System 6.9 S Q L - 2

6.8. Summary:

SQL View is a virtual table, which is based on SQL SELECT query. Essentially a view is very close

to a real database table except for the fact that the real tables store data, while the views don’t. The

view’s data is generated dynamically when the view is referenced.

Most database applications do a specific job. For example, a simple program might prompt the

user for an employee number, then update rows in the EMP and DEPT tables. In this case, you

know the makeup of the UPDATE statement at pre-compile time. That is, you know which tables

might be changed, the constraints defined for each table and column, which columns might be

updated, and the data type of each column.

However, some applications must accept (or build) and process a variety of SQL statements at run

time. For example, a general-purpose report writer must build different SELECT statements for the

various reports it generates. In this case, the statement’s makeup is unknown until run time. Such

statements can, and probably will, change from execution to execution. They are aptly called dynamic

SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your source program.

Instead, they are stored in character strings input to or built by the program at run time. They can be

entered interactively or read from a file.

Dynamic SQL allows you to write SQL that will then write and execute more SQL for you. This can

be a great time saver because you can: Automate repetitive tasks, write code that will work in any

database or server and write code that dynamically adjusts itself to changing conditions

6.9. Technical Terms:

View: A logical table whose data are not physically stored. You define a view to access a subset of

the columns stored in a row. Access a set of columns stored in different rows or avoid creating a

redundant copy of data that is already stored.

Join:

The JOIN is a SQL command used to retrieve data from two or more database tables with existing

relationship based upon a common attribute.

DDL:

DDL Data Definition Language. A language used by a database management system which allows

users to define the database, specifying data types, structures and constraints on the data. Examples

are the CREATE TABLE, CREATE INDEX, ALTER, and DROP statements. Note: DDL statements

will implicitly commit any outstanding transaction.

Dynamic SQL:

SQL statements are created, prepared, and executed while a program is executing. It is, therefore,

possible with dynamic SQL to change the SQL statement during program execution and have

many variations of a SQL statement at run time.

Centre for Distance Education Acharya Nagarjuna University6.10

6.10. Model Questions:

1. What is a view? How to create views in SQL?
2. Write short notes on Complex Queries?
3. Explain the concept of modifications of the Database?
4. How to joining relations in SQL? Explain?
5. Write short notes Embedded SQL and Dynamic SQL?

6.11. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems

C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 7.1 Integrity and SecuirtyLesson 7

Integrity and Security

7.0 Objectives:

After reading this chapter, you should understand:

 What is Domain Constraint

 What is Referential Integrity

 What are Assertion

 Various Security Issues

Structure of the Lessons

7.1. Domain Constraints

7.2. Referential Integrity

7.2.1. Referential Integrity in E-R Model

7.2.2. Database Modification

7.2.3. Referential Integrity in SQL

7.3. Assertions

7.4. Triggers

7.4.1. Need For Triggers

7.4.2. Triggers in SQL

7.4.3.

7.5. Security and Authorization

7.5.1. Security Violations

7.5.2. Authorization

7.5.3. Authorization and Views

7.5.4. Granting Of Privileges

7.5.5. Privileges in SQL

7.5.6. Roles

7.5.7. Limitations of SQL Authorization

7.6. Encryption and Authentication

7.7. Summary

7.8. Technical Terms

7.9. Model Questions

7.10. References

Centre for Distance Education Acharya Nagarjuna University7.2

7.1. Domain Constraints:
A domain of possible values must be associated with every attribute. The number of standard
domain types, such as integer types, characters types, and date/type times are defined in SQL.
Declaring an attribute to be of a particular domain acts as a constraint on the values that it can take.
Domain constraints are the most elementary form of integrity constraints. They are tested easily
by the system whenever a new data item is entered into the database.

The definition of domain constraints not only allows us to test values inserted in the database, but
also permits us to test queries to ensure that the comparisons made make sense. The create
domain clause can be used to define new domains.

create domain Dollars numeric(12,2)

create domain Pounds numeric(12,2)

We cannot assign or compare a value of type Dollars to a value of type Pounds. However, we can
convert type as below

(cast r.A as Pounds)
(Should also multiply by the dollar-to-pound conversion-rate)

SQL provides drop domain and alter domain clauses to drop or modify domains that have been
created with create domain.

The check clause in SQL permits domains to be restricted in powerful ways that most programming
language type systems do not permit. The check clause permits the schema designer to specify
a predicate that must be satisfied by any value assigned to a variable whose type is the domain.

create domain hourly-wage numeric(5,2)

constraint value-test check(value > = 4.00)

 The domain has a constraint that ensures that the hourly-wage is greater than 4.00.

 The clause constraint value-test is optional; useful to indicate which constraint an update
violated.

The check clause can also be used to restrict a domain not to contain any null values;

create domain AccountNumber char(10) constraint

account-number-null-test check(value not null)

The domain can be restricted to contain only a specified set of values by using the in clause.

Create domain AccountType char(10)
constraint account-type-test

check(value in (‘Checking’,’Saving’))

7.2. Referential Integrity:

Ensures, a value that appears in one relation for a given set of attributes also appears for a certain
set of attributes in another relation. This condition is called referential integrity.

Example: If “Perryridge” is a branch name appearing in one of the tuples in the account relation,
then there exists a tuple in the branch relation for branch “Perryridge”.

Definition:

Let r1(R1) and r2(R2) be relations with primary keys K1 and K2 respectively. The subset a of R2 is
a foreign key referencing K1 in relation r1, if for every t2 in r2 there must be a tuple t1 in r1 such
that t1[K1] = t2[a].

Database Management System 7.3 Integrity and Secuirty

Referential integrity constraint also called subset dependency since its can be written as

 112 rKIra

7.2.1 Referential Integrity:

Referential-integrity constraints arise frequently. If we derive our relational-database schema by
constructing tables from E-R diagrams, then every relation arising from a relationship set has
referential-integrity constraints.

Consider relationship set R between entity sets E1 and E2. The relational schema for R includes
the primary keys K1 of E1 and K2 of E2. Then K1 and K2 form foreign keys on the relational
schemas for E1 and E2 respectively

Another source of referential-integrity constraints is weak entity sets. The relation schema for a
weak entity set must include the primary key attributes of the entity set on which it depends. The
relation schema for each weak entity set includes a foreign key that leads to a referential-integrity
constraint.

7.2.2. Database Modification:

Database modifications can cause violations of referential integrity. We list here the test that we
must make for each type of database modification to preserve the following referential-integrity
constraint.

 (r
2
)

K
(r

1
)

Insert:

If a tuple t2 is inserted into r2, the system must ensure that there is a tuple t1 in r1 such that t1[K]

= t
2
[] that is

t
2
[]

K
(r

1
)

Delete:

If a tuple, t1 is deleted from r1, the system must compute the set of tuples in r2 that reference t1:

= t1[K]

(r
2
)

If this set is not empty, either the delete command is rejected as an error, or the tuples that reference
t1 must themselves be deleted. The latter solution may lead to cascading deletions, since tuples
may reference tuples that reference t1, and so on.

Update:

We must consider two cases for update; updates to the referencing relation r2 and updates to the
referenced relation r1.

If a tuple t2 is updated in relation r2 and the update modifies values for foreign key a, then a test
similar to the insert case is made: Let t2’ denote the new value of tuple t2.

The system must ensure that

t
2
’[]

K
(r

1
)

RE
1

E
2

Centre for Distance Education Acharya Nagarjuna University7.4

If a tuple t
1

is updated in r
1
, and the update modifies values for the primary key (K), then a test

similar to the delete case is made. The system must compute

sa
= t1[K]

(r
2
)

using the old value of t
1
(the value before the update is applied). If this set is not empty, the

update may be rejected as an error, or the update may be cascaded to the tuples in the set, or
the tuples in the set may be deleted.

7.2.3. Referential Integrity in SQL

Foreign keys can be specified as part of the SQL create table statement by using the foreign key
clause. We illustrate foreign key declarations by using the SQL DDL definitions of part of our bank
database shown in table below

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch

(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name))

create table account

(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor

(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer

The primary key clause lists attributes that comprise the primary key. The unique key clause
lists attributes that comprise a candidate key. The foreign key clause lists the attributes that
comprise the foreign key and the name of the relation referenced by the foreign key. A foreign key
references the primary key attributes of the referenced table. SQL supports a version of the
references clause where a list of attributes of the referenced relation can be specified explicitly.
The specified list of attributes must be declared as a candidate key of the referenced relation. We

Database Management System 7.5 Integrity and Secuirty

can use the following short form as part of an attribute definition to declare that the attribute forms
a foreign key.

Branch-name char(15) references branch

When a referential-integrity constraint is violated, the normal procedure is to reject the action that
caused the violation.

Consider this definition of an integrity constraint on the relation account:

create table account

. . .
foreign key(branch-name) references branch
on delete cascade
on update cascade

. . .)

Due to the on delete cascade clauses, if a delete of a tuple in branch results in referential-integrity
constraint violation, the delete “cascades” to the account relation, deleting the tuple that refers to
the branch that was deleted. The cascading updates are similar.

If there is a chain of foreign-key dependencies across multiple relations, with on delete cascade
specified for each dependency, a deletion or update at one end of the chain can propagate across
the entire chain. If a cascading update to delete causes a constraint violation that cannot be handled
by a further cascading operation, the system aborts the transaction. As a result, all the changes
caused by the transaction and its cascading actions are undone.

Referential integrity is only checked at the end of a transaction. Intermediate steps are allowed to
violate referential integrity provided later steps remove the violation. Otherwise it would be impossible
to create some database states, e.g. insert two tuples whose foreign keys point to each other.

The Null values in foreign key attributes complicate SQL referential integrity semantics, and are
best prevented using not null. If any attribute of a foreign key is null, the tuple is defined to satisfy
the foreign key constraint.

An assertion is a predicate expressing a condition that we wish the database always to satisfy.
The domain constraints and referential-integrity constraints are special forms of assertions.

An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

Here is how the two examples of constraints can be written. Since SQL does not provide a “for all
X, P(X)” construct (where P is predicate), we are forced to implement the construct by the equivalent
“not exists” X such that not P(X)” construct, which can be written in SQL. We write

create assertion sum-constraint check
(not exists (select * from branch

where (select sum(amount) from loan
where loan.branch-name =

branch.branch-name)
>= (select sum(amount) from account

where loan.branch-name =
branch.branch-name)))

Centre for Distance Education Acharya Nagarjuna University7.6

Every loan has at least one borrower who maintains an account with a minimum balance or $1000.00.

create assertion balance-constraint check
(not exists (

select * from loan
where not exists (

select *
from borrower, depositor, account
where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number
and account.balance >= 1000)))

When an assertion is made, the system tests it for validity, and tests it again on every update that
may violate the assertion. This testing may introduce a significant amount of overhead; hence
assertions should be used with great care.

7.4. Triggers :
A trigger is a statement that is executed automatically by the system as a side effect of a modification
to the database. To design a trigger mechanism

1. Specify the conditions under which the trigger is to be executed.

2. Specify the actions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-action model for triggers. The
database stores triggers just as if they were regular data, so that they are persistent and are
accessible to all database operations. Once we enter a trigger into the database, the database
system takes on the responsibility of executing it whenever the specified event occurs and
corresponding condition is satisfied.

7.4.1. Need For Triggers :

Triggers are useful mechanisms for altering humans or for doing certain tasks automatically when
certain conditions are met. For example a warehouse wishes to maintain a minimum inventory of
each item; when the inventory level of an item falls below the minimum level, an order should be
placed automatically. This is how the business rule can be implemented by triggers. On an update
of the inventory level of an item, the trigger should compare the level with the minimum inventory
level for the item, and if the level is at or below the minimum, a new order is added to an order
relation.

7.4.2. Triggers in SQL :

The trigger definition specifies that the trigger is initiated after any update of the relation account is
executed. An SQL update statement could update multiple tuples of the relation, and the for each
row clause in trigger code would then explicitly iterate over each updated row. The referencing

row as clause creates a variable nrow (called a transition variable), which stores the value of
an updated row after the update.

create trigger overdraft-trigger after update on account
referencing new row as nrow

for each row

Database Management System 7.7 Integrity and Secuirty

when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =

depositor.account-number);
insert into loan values

(n.row.account-number, nrow.branch-name,
– nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end

The when statement specifies a condition, namely nrow.balance<0. The system executes the
rest of the trigger body only for the tuple that satisfy the condition. The begin atomic … end
clause serves to collect multiple SQL statements into a single compound statement. The two
insert statements with the begin … end structure carry out the specific tasks of creating new
tuples in the borrower and loan relations to represent the new loan. The update statement serves
to set the account balance back to 0 from its earlier negative value.

The triggering event and actions can take many forms:

Triggering event can be insert, delete or update. Triggers on update can be restricted to
specific attributes.

Example : create trigger overdraft-trigger after update of balance on account

Values of attributes before and after an update can be referenced

referencing old row as : for deletes and updates

referencing new row as : for inserts and updates

Triggers can be activated before an event, which can serve as extra constraints. Example,
convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row

when nrow.phone-number = ‘ ‘
set nrow.phone-number = null

7.5. Security and Authorization:

The data stored in the database need protection from unauthorized access and malicious destruction
or alteration, in addition to the protection against accidental introduction of inconsistency that integrity
constraints provide.

7.5.1. Security Violations:

The forms of malicious access are:

 Unauthorized reading of data (theft of information)

 Unauthorized modification of data

 Unauthorized destruction of data

Centre for Distance Education Acharya Nagarjuna University7.8

Database security refers to protection from malicious access. Absolute protection of the database
from malicious abuse is not possible, but the cost to the perpetrator can be made high enough to
deter most if not all attempts to access the database without proper authority.

We must take several security levels to protect the database, these are

Database system: Some database system users may be authorized to access only a limited
protection of the database. Other user may be allowed to issue queries only. It is the responsibility
of the database system to ensure that these authorization restrictions are not violated.

Operating System: The weakness in the operating-system security may serve as a means of
unauthorized access to the database.

Network: Since almost all database systems allow remote access through terminals or networks,
software-level security within the network software is as important as physical security, both on the
Internet and in private networks.

Physical: Sites with computer systems must be physically secured against armed or surreptitious
entry by intruders.

Human: Users must be authorized carefully to reduce the chance of any user giving access to an
intruder in exchange for a bribe or other favors.

Security at all these levels must be maintained if database security is to be ensured. A weakness
at a low level of security (physical or human) allows circumvention of strict high-level (database)
security measures.

7.5.2. Authorization:

We may assign a user several forms of authorization on parts of the database. For example,

 Read authorization - allows reading, but not modification of data.

 Insert authorization - allows insertion of new data, but not modification of existing data.

 Update authorization - allows modification, but not deletion of data.

 Delete authorization - allows deletion of data.

In addition to these forms authorization for access to data, we may grant a user authorization to
modify the database schema:

 Index authorization - allows creation and deletion of indices.

 Resources authorization - allows creation of new relations.

 Alteration authorization - allows addition or deletion of attributes in a relation.

 Drop authorization - allows deletion of relations.

7.5.3. Authorization and Views :

Users can be given authorization on views, without being given any authorization on the relations
used in the view definition. Ability of views to hide data serves both to simplify usage of the system
and to enhance security by allowing users access only to data they need for their job. Acombination
or relational-level security and view-level security can be used to limit a user’s access to precisely
the data that user needs.

For example, a bank clerk needs to know the names of the customers of each branch, but is not
authorized to see specific loan information. Thus, the clerk must be denied to have access to the
loan relation, but grant access to the view cust-loan, which consists only of the names of customers

Database Management System 7.9 Integrity and Secuirty

and the branches at which they have a loan. This can be defined as

create view cust-loan as
select branchname, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number

The clerk is authorized to see the result of the query:

select *
from cust-loan

When the query processor translates the result into a query on the actual relations in the database,
we obtain a query on borrower and loan. Authorization must be checked on the clerk’s query before
query processing replaces a view by the definition of the view.

Creation of view does not require resources authorization since no real relation is being created.
The creator of a view gets only those privileges that provide no additional authorization beyond that
he already had. For example, if creator of view cust-loan had only read authorization on borrower
and loan, he gets only read authorization on cust-loan.

7.5.4. Granting of Privileges:

A user who has been granted some form of authorization may be allowed to pass on this
authorization to others users. However, we must be careful how authorization may be passed
among users, to ensure that such authorization can be revoked at some future time.

The passage of authorization from one user to another may be represented by an authorization
graph. The nodes of this graph are the users. The root of the graph is the database administrator.
Consider graph for update authorization on loan.

An edge Ui Uj indicates that user Ui has granted update authorization on loan to Uj.

for update

A user has an authorization if and only if there is a path from the root of the authorization graph
down to the node representing the user.

Suppose if Database Administrator decides to revoke the authorization of user U1, since U4 has
authorization from U1, that authorization should be revoked as well. However, U5 was granted
authorization by both U1 and U2. If U2 eventually revokes authorization from U5, U5 loses the
authorization.

U1
U4

U2 U5

U3

DBA

Centre for Distance Education Acharya Nagarjuna University7.10

7.5.5. Privileges in SQL :

SQL offers a fairly powerful mechanism for defining authorizations. Privileges is one of the
mechanism which includes delete, insert, select and update. The select privilege corresponds
to the read privilege. SQL also includes a reference privileges that permits a user/role to declare
foreign keys when creating relations.

The SQL data definition language includes commands to grant and revoke privileges. The grant
statement is used to confer authorization. The basic form of the statement is

grant <privilege list>

on <relation name or view name> to <user list>

<user list> is a user-id and it is public, which allows all valid users the privilege granted. Granting
a privilege on a view does not imply granting any privileges on the underlying relations. The grantor
of the privilege must already hold the privilege on the specified item (or be the database administrator).

The following grant statement grants users U
1
, U

2
, and U

3
select authorization on the relation. It

allows read access to relation, or the ability to query using the view. For example,

grant users U
1
, U

2
, and U

3
select authorization on the branch relation:

grant select on branch to U
1
, U

2
, U

3

insert: The ability to insert tuples.

update: The ability to update using the SQL update statement.

delete: The ability to delete tuples.

references: Ability to declare foreign keys when creating relations.

usage: Authorizes a user to use a specified domain

all privileges: Used as a short form for all the allowable privileges

7.5.6. Roles:

Roles permit common privileges for a class of users, can be specified just once by creating a
corresponding “role”. Privileges can be granted to or revoked from roles, just like user. Roles can
be assigned to users, and even to other roles. Roles can be created by SQL 1999 as follows:

create role teller
create role manager

grant select on branch to teller
grant update (balance) on account to teller
grant all privileges on account to manager
grant teller to manager
grant teller to alice, bob
grant manager to

Thus the privileges of a user or a role consists of

 All privileges directly granted to the user/role.

 All privileges granted to roles that have been granted to the user/role.

Database Management System 7.11 Integrity and Secuirty

7.5.7. Limitations of SQL Authorization:

The current SQL standards for authorization have some shortcomings. Suppose, we cannot restrict
students to see only (the tuples storing) their own grades, but not the grades of anyone else,
authorization must then be at the level of individual tuples, which is not possible in the SQL standards
authorization.

Furthermore, with the growth in Web access to databases, database accesses come primarily
from application servers. End users don’t have database user id’s, they are all mapped to the
same database user id. All end-users of an application (such as a web application) may be mapped
to a single database user. The task of authorization in above cases on the application program has
no support from SQL.

 Benefit: Fine grained authorizations, such as to individual tuples, can be implemented by
the application.

 Drawback: Authorization must be done in application code, and may be dispersed allover
an application

 Checking for absence of authorization loopholes becomes very difficult since it requires
reading large amounts of application code

7.6. Encryption and Authentication :

The various provisions that a database system may take for authorization may still not provide
sufficient protection for highly sensitive data. In such cases, data may be stored in encrypted form.
It is not possible for encrypted data to be read unless the reader knows how to decipher (decrypt)
them. Encryption also forms the basis of good schemes for authenticating user to a database.

Encryption: There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for an unauthorized user to
break the code. As an example of a weak encryption technique, consider the substitution of each
character with the next character in the alphabet, thus

Perryridge

Becomes

Qfsszsjehf

Properties of good encryption technique:

 Relatively simple for authorized users to encrypt and decrypt data.

 Encryption scheme depends not on the secrecy of the algorithm but on the secrecy of a
parameter of the algorithm called the encryption key.

 Extremely difficult for an intruder to determine the encryption key.

Data Encryption Standard (DES) substitutes characters and rearranges their order on the basis
of an encryption key which is provided to authorized users via a secure mechanism. Scheme is no
more secure than the key transmission mechanism since the key has to be shared.

Advanced Encryption Standard (AES) is a new standard replacing DES, and is based on the
Rijndael algorithm, but is also dependent on shared secret keys.

Public-key encryption is based on each user having two keys:

 public key – publicly published key used to encrypt data, but cannot be used to decrypt
data.

Centre for Distance Education Acharya Nagarjuna University7.12

 private key — key known only to individual user, and used to decrypt data.

Encryption scheme is such that it is impossible or extremely hard to decrypt data given only the
public key. The RSA public-key encryption scheme is based on the hardness of factoring a very
large number (100’s of digits) into its prime components.

Authentication: Authentication refers to the task of verifying the identity of a person/software
connecting to a database. The simplest from of Authentication consists of a secret password,
which must be presented when a connection is opened to a database. Password based
authentication is widely used, but is susceptible to sniffing on a network. If an eavesdropper is
able to “sniff” the data being sent over the network, she may be able to find the password as it is
being sent across the network. Once the eavesdropper has a user name and password, she can
connect to the database, pretending to be the legitimate user.

A more secure scheme involves a challenge-response system. The database system sends a
challenge string to the user. The user encrypts the challenge string using a secret password as
encryption key, and then returns the result. The database system can verify the authenticity of the
user by decrypting string with the same secret password, and checking the result with the original
challenge string. This scheme ensures that no passwords travel across the network. User can
use public-key encryption system by DB sending a message encrypted using user’s public key,
and user decrypting and sending the message back.

The interesting application of public-key encryption is in digital signatures to verify authenticity of
data; digital signatures play the electronic role of physical signatures on documents. The private
key is used to sign data, and the signed data can be made public. Anyone can verify them by the
public key, but no one could have generated the signed data without having the private key.

7.7. Summary:

In earlier chapters, we considered several forms of constraints, including key declarations and the
declaration of the form of a relationship. In this chapter, we considered several additional forms of
constraints, and discussed mechanisms for ensuring the maintenance of these constraints. Domain
constraints specify the set of possible values that may be associated with an attribute. Such
constraints may also prohibit the use of null values for particular attributes. Referential-integrity
constraints ensure a value that appears in one relation for a given set of attributes also appears for
a certain set of attributes in another relation.

A user may have several forms of authorization on parts of the database. Authorization is a means
by which the database system can be protected against malicious or unauthorized access. A user
who has been granted some form of authority may be allowed to pass on this authority to other
users. However, we must be careful about how authorization can be passed among users if we
are to ensure that such authorization can be revoked at some future time.

7.8. Technical Terms:

Referential Integrity: An integrity constraint specifying that the value (or existence) of an attribute
in one relation depends on the value (or existence) of an attribute in the same or another relation.

Primary Key: A set of one or more columns in a database table whose values, in combination, are
required to be unique within the table.

Trigger: A set of Structured Query Language (SQL) statements that automatically “fires off” an
action when a specific operation, such as changing data in a table, occurs.

Database Management System 7.13 Integrity and Secuirty

Encryption: The process of coding data so that a specific code or key is required to restore the
original data, used to make transmissions secure from unauthorized reception.

Authorization: The process of determining what types of activities are permitted. Usually,
authorization is in the context of authentication: once you have authenticated a user, they may be
authorized different types of access or activity.

7.9. Model Questions:
1. Write about Referential Integrity?

2. Explain the concept of Assertions?

3. What are triggers? How to create triggers in SQL?

4. Write about Security and Authorization?

7.10. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,

JKC College.

GUNTUR.

Database Management System 8.1 Normalization-1Lesson 8

Normalization - 1

8.0 Objectives:

The basic objective of this Lesson is gaining knowledge of information and database design
process.

Students will learn the general principles involved in designing a database that complies with the
relational database model.

After reading this chapter, you should understand:

 To learn what is the purpose of database design?

 To learn basic Normal Forms

 To learn how to remove redundancies and anomalies

 To Define what a Functional Dependency is

 To learn about the Decomposition

Structuer of the Lesson :
8.1.1. Introduction

8.1.2. Rules For Data Normalization

8.1.3. First Normal Form

8.1.4. Pitfalls in Relational – Database Design

8.1.5. Functional Dependencies

8.1.5.1. Basic Concepts

8.1.5.2. Closure Set of Functional Dependencies

8.1.5.3. Closure Of Attribute Sets

8.1.5.4. Canonical Cover

8.1.6. Desirable Properties Of Decomposition

8.1.6.1. Loss Less Decomposition

8.1.6.2. Dependency Preservation

8.1.7. Third Normal Form

8.1.8. Decomposition Algorithm

8.1.9. Summary

8.1.10. Technical Terms

8.1.11. Model Questions

8.1.12. References

Centre for Distance Education Acharya Nagarjuna University8.2

8.1. Introduction:

Whenever we design databases we are faced with a number of problems relating to things like
data integrity, security, efficiency. We are also faced with problems relating to the structure of the
data we are planning to use.

Normalization is a design technique that is widely used as a guide in designing relational databases.
Normalization is essentially a two-step process that puts data into tabular form by removing repeating
groups and then removes duplicated data from the relational tables. Normalization theory is based
on the concepts of normal forms. A relational table is said to be a particular normal form if it
satisfied a certain set of constraints. There are currently five normal forms that have been defined.
In this section, we will cover the first three normal forms that were defined by E. F. Codd.

Normalization theory is built around the concept of normal forms. Arelation is said to be in a particular
normal form if it satisfies a certain specified set of constraints.

For example, a relation is said to be in first normal form (abbreviated 1NF) if and only if it satisfies
the constraint that it contains atomic values only (thus every normalized relation is in 1NF, which
accounts for the “first”). Numerous normal forms have been defined.

8.2. Rules For Data Normalization :

1NF:

Eliminate Repeating Groups - Make a separate table for each set of related attributes, and give
each table a primary key.

2NF

Eliminate Redundant Data - If an attribute depends on only part of a multi-valued key, remove it to
a separate table.

3 NF:

Eliminate Columns Not Dependent On Key - If attributes do not contribute to a description of the
key, remove them to a separate table.

BCNF:

Boyce-Codd Normal Form - If there are non-trivial dependencies between candidate key attributes,
separate them out into distinct tables.

4 NF:

Isolate Independent Multiple Relationships - No table may contain two or more 1:n or n:m
relationships that are not directly related.

5 NF:

Isolate Semantically Related Multiple Relationships - There may be practical constraints on
information that justify separating logically related many-to-many relationships.

8.3. First Normal Form:
The first of the normal forms that we study, first normal, imposes a very basic requirement on
relations; unlike the other normal forms, it does not require additional information such as functional
dependencies.

Database Management System 8.3 Normalization-1

A domain is atomic if elements of the domain are considered to be indivisible units. We say that a
relation schema R I in first normal form (1NF) if the domains of all attributes of R are atomic.

A set of names is an example of a non atomic value. For example, if the schema of a relation
employee included an attribute children whose domain elements are sets of names, the schema
would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street and city, also
have non atomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; the set of all sets of
integers is a non atomic domain. The distinction is that we do not normally consider integers to
have subparts, but we consider sets of integers to have subparts—namely, the integers making up
the set. But the important issue is not what the domain itself is, but rather how we use domain
elements in our database.

The domain of all integers would be non atomic if we considered each integers to be an ordered list
of digits.

As a practical illustration of the point, consider an organization that assigns employees identification
numbers of the following form: The first two letters specify the department and the remaining four
digits are a unique number within the department for the employee. Examples of such numbers
would be CS0012 and EE1127. Such identification numbers can be divided into smaller units, and
are therefore non atomic. If a relation schema had an attribute whose domain consists of
identification numbers encoded as above the schema would not be in first normal form.

When such identification numbers are used, the department of an employee can be found by
writing code that breaks up the structure of an identification number. Doing so requires extra
programming, and information gets encoded in the application program rather than in the database.
Further problems arise if such identification numbers are used as primary keys: When an employee
changes department, the employees identification number must be changed everywhere it occurs,
which can be a difficult task, or the code that interprets the number would give a wrong results.

The use of set valued attributes can lead to designs with redundant storage of data, which in turn
can result inconsistencies. For instance, instead of the relationship between accounts and
customers being represented as a separate relations depositor, a database designer may be
tempted to store a set owners with each account, and a set of accounts with each customer.
Whenever an account is created, or the set of owners of an account is updated, the update has to
be performed at two paces; failure to perform both updates can leave the database in an inconsistent
state. Keeping only one of these sets would avoid repeated information, but would complicate
some queries. Set valued attributes are also more complicated to write queries with, and, or
complicated to reason about.

8.4. Pitfalls in Relational -Database Design:

Before we continue our discussion of normal forms, let us look at what can go wrong in bad
database design. Among the undesirable properties that a bad design may

 Repetition of information

 Inability to represent certain information

Centre for Distance Education Acharya Nagarjuna University8.4

We shall discuss these problems with the help of a modified database design for our banking
example: suppose the information concerning loans is kept in one single relation, lending, which is
defined over the relation schema

Lending-schema = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

Below table, shows an instance of the relation lending(lending-schema). A tuple t in the lending
relation has the following intuitive meaning:

 t[assets] is the asset figure for the branch named t[branch-name].

 t[branch-city] is the city in which the branch named t[branch-name] is located.

 t[loan-number] is the number assigned to a loan made by the branch named.

 t[branch-name] to the customer named t[customer-name].

 t[amount] is the amount of the loan whose numbers is t[loan-name].

Suppose that we wish to add a new loan to our database. Say, the loan is made by the Perryridge
branch to Adams an amount of $1500. Let the loan-number be L-31. In our design, we need a tuple
with values on all the attributes of lending-schema. Thus, we must repeat the asset and city data
for the Perryridge branch, and must ass the tuple. (Perryridge, Horseneck, 1700000,Adams,

L-31,1500)

Sample Lending Relation

To the lending relation in general, the set and city data for a branch must appear once for each loan
made by that branch.

The repetition of information in our alternative design is undesirable. Repeating information wastes
space. Furthermore, it complicates updating the database. Suppose, for example, that the assets
of the Perryridge branch change from 1700000 to 1900000. Under our original design, one tuple of
the branch relations needs to be changed. Under our alternative design, may tuples of the lending
relations need to be changed. Thus, updates are more costly under the alternative design than
under the original design. When we perform the update in the alternative database, we must
ensure that every tuple pertaining to the Perryridge branch is updated, or else our database will
show two different asset values for the Perryridge branch.

Database Management System 8.5 Normalization-1

That observation is central to understanding why the alternative design is bad. We know that a
bank branch has a unique value of assets, so given a branch name we can uniquely identify the
assets value. On the other hand, we know that a branch may make many loans, so given a branch
name we cannot uniquely determine a loan number.

In other words, we say that the functional dependency

Branch-name- assets

Holds on Lending-schema, but we do not except the functional dependency branch-name loan-
number to hold. The fact that a branch has a particular value of assets, and the fact that a branch

makes a loan are independent.

8.5. Functional Dependencies:

Functional dependencies play a key role in differentiating good database designs from bad database
designs.A functional dependency is a type of constraint that is a generalization of the notion

8.5.1. Basic Concepts:

Functional dependencies are constraints on the set of legal relations. They allow us to express
facts about the enterprise that we are modeling with our database. We defined the notion of a
superkey as follows. Let R be a relation schema. A subset K of R is a superkey of R if, in any legal
relation r(R), for all pairs t1 and t2 of tuples in such that t

1
¹ t

2
, then t

1
[k] ¹ t

2
[k]. That is, no two tuples

in any legal relation r(R) may have the same value on attribute set k.

The notion of functional dependency generalizes the notion of super key. Consider a relation schema

R, let R and R . The functional dependency

Holds on schema R if, in any legal relations r(R), for all pairs of tuple t
1

and t
2

in r such that

],[][21 tt it is also the case that],[][21 tt

Using the functional-dependency notation, we say that K superkey of R if RK . That is K is a

super key if, whenever],[][21 ktkt it is also the case that],[][21 RtRt (that is , t
1
=t

2
).

Functional dependencies allow us to express constraints that we cannot express with super keys.
Consider the schema

Loan-info-schema = (customer-name, loan-number,

branch-name, amount)

Which is simplification of the lending-schema that we saw earlier. The set of functional
dependencies that we expect to hold on this relation schema is

loan-numberàamount

loan-numberàbranch0-name

We would not, however, expect the functional dependency

loan-numberàcustomer-name

to hold, since, in general, a given loan can be made to more than one customer (for example to
both members of a husband-wife pair).

Centre for Distance Education Acharya Nagarjuna University8.6

1. To test relations to see whether they are legal under a given set of functional dependencies.
If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern ourselves with
only those relations that satisfy a given set of functional dependencies. If we wish to constrain
ourselves to relations on schema R that satisfy a set F of functional dependencies, we say
that F holds on R.

Consider a relation R, attribute Y of R is functionally dependent on attribute X of R if and only if each
X-value in R has associated with it precisely one Y-value in R (at any one time). It is represented by
R.X R.Y

The concept of functional dependencies is the basis for the first three normal forms. A column, Y, of
the relational table R is said to be functionally dependent upon column X of R if and only if each
value of X in R is associated with precisely one value of Y at any given time. X and Y may be
composite. Saying that column Y is functionally dependent upon X is the same as saying the
values of column X identify the values of column Y. If column X is a primary key, then all columns in
the relational table R must be functionally dependent upon X.

A shorthand notation for describing a functional dependency is:

R.x R.y

Which can be read as in the relational table named R, column x functionally determines (identifies)
column y.

Full functional dependence applies to tables with composite keys. Column Y in relational table R
is fully functional on X of R if it is functionally dependent on X and not functionally dependent upon
any subset of X. Full functional dependence means that when a primary key is composite, made of
two or more columns, then the other columns must be identified by the entire key and not just
some of the columns that make up the key.

8.5.2 Closure Set of Functional Dependencies:

We need to consider all functional dependencies that hold. Given a set F of functional
dependencies, we can prove that certain other ones also hold. We say these ones are logically
implied by F.

Suppose we are given a relation scheme R=(A,B,C,G,H,I), and the set of functional dependencies:

BA

CA

HCG

ICG

HB

Then the functional dependency HA is logically implied.

To see why, let 1t and 2t be tuples such that

][][21 AtAt

As we are given BA it follows that we msut also have

][][21 BtBt

Further, since we also have HB we must also have

][][21 HtHt

Database Management System 8.7 Normalization-1

Thus, whenever two tuples have the same value on A
they must also have the same value on H and we can say that HA

The closure of a set F of functional dependencies is the set of all functional dependencies logically

implied by F .

We denote the closure of F by F . To compute F , we can use some rules of inference called

Armstrong’s Axioms:

 Reflexivity rule: if is a set of attributes and , then holds.

 Augmentation rule: if holds, and is a set of attributes, then

holds.

 Transitivity rule : if holds, and holds, and holds.

These rules are sound because they do not generate any incorrect functional dependencies. They

are also complete as they generate all of F .

To make life easier we can use some additional rules, derivable from Armstrong’s Axioms:

 Union rule: if and , then holds.

 Decomposition rule: if holds, then and both hold

 Pseudotransitivity rule : if holds, then holds, then holds.

Applying these rules tot he scheme and set F mentioned above, we can derive the following

 HA as we saw by the transitivity rule

 HICG by the union rule.

 IAG by several steps:

 Note that CA holds

 Then CGAG by the augmentation rule

 Now by transitivity, IAG

8.5.3. Closure of Atributes Sets :

To test whether a set of attributes is a superkey, we need to find the set of attributes
functionally determined by

1. Let be a set of attributes. We call the set of attributes determined by under a

set of F functional dependencies the closure of under F, denoted .

2. The following algorithm computes
result =
while (changes to result) do

for each functional dependency

in F do
begin

if result

then result:= result U

end

Centre for Distance Education Acharya Nagarjuna University8.8

3. If we use this algorithm on our example to calculate AG then we find;

 We start with result = AG

 causes result to become ABCG

 causes result to become ABCGH

 I causes result to become ABCGHI.

 The next time we execute the while loop, no new

attributes are added, and the algorithm terminates.

8.5.4. Canonical Cover:

To minimize the number of functional dependencies that need to be tested in case of an update

we may restrict F to a canonical cover eF

A canonical cover for F is a set of dependencies such that F logically implies all dependencies in

eF and vice versa.

eF must also have the following properties:

Every functional dependency in in eF contains of extraneous attributes in (ones that can

be removed from without changing
eF). So A is extraneous in if A and

 AFe)(

logically implies eF

Every functional dependency in eF contains no extraneous attributes in (ones that can

be removed from without changing
eF). So A is extraneous in if A

 AUFe

logically implies eF

Each left side of a functional dependency in eF is unique. That is there are no two dependencies

11 and 22 in eF such that 21 .

To compute a canonical cover eF for ,F

 Use the union rule to replace dependencies of the form 11 and 21

with 21

 Test each functional dependency to see if there is an extraneous attribute in

 Continue until there are no changes occuring in the loop.

An example: for the relational scheme CBAR ,, , and the set F of functional dependencies.

BCA

CB

BA

CAB

We will compute eF

Database Management System 8.9 Normalization-1

We have two dependencies with the same left hand side.

BCA

BA

We can replace these two with just BCA

A is extraneous in CAB because CB logically implies CAB

Then our set is

BCA

CB

We still have an extraneous attribute on the right-hand side of the first dependency. C is extraneous

in BCA because BA and CB logically imply that BCA

 So we end up with

BA

CB

Consider a schema

Lending-schema = (bname, assets, bcity, loan#, cname, amount)

which we saw was a bad design.

The set of functional dependencies we required to hold on this schema was:
bname assets bcity

loan# amount bname

If we decompose it into

Branch-schema = (bname, assets, bcity)

If we decompose it into

Branch-schema = (bname, assets, bcity)

Loan-info-schema = (bname, loan#, amount)

Borrow-schema = (cname, loan#)

we claim this decomposition has several desirable properties

8.6.1. Loss Less Decomposition:

We claim the above decomposition is lossless. How can we decide whether decomposition is

lossless?

 Let R be a relation scheme.

 Let F be a set of functional dependencies on R.

 Let R
1

and R
2
form a decomposition of R.

 The decomposition is a lossless-join decomposition of R if at least one of the

following functional dependencies are in F

221

121

.2

.1

RRR

RRR

Centre for Distance Education Acharya Nagarjuna University8.10

Why is this true? Simply put, it ensures that the attributes involved in the natural join 21 RR

are a candidate key for at least one of the two relations.

This ensures that we can never get the situation where spurious tuples are generated; as for any
value on the join attributes there will be a unique tuple in one of the relations.

We’ll now show our decomposition is loss less-join by showing a set of steps that generate the
decomposition:

 First we decompose Lending-scheme into

Branch-scheme = (bname, assets, bcity)

Borrow-scheme = (bname, loan#, cname, amount)

 Since bname assets bcity, the augmentation rule for functional dependencies

implies that

bname bname assets bcity

 Since Branch-scheme Borrow -scheme = bname, our decomposition is

lossless join.

 Next we decompose Borrow-scheme into

Loan-info-schem = (bname, loan#, amount)

Cust-loan-scheme = (cname, loan#)

 As loan# is the common attribute, and

loan # amount bname

This is also a loss less-join decomposition

8.6.2. Dependency Preservation:

Another desirable property in database design is dependency preservation.

We would like to check easily that updates to the database do not result in illegal relations being
created.

It would be nice if our design allowed us to check updates without having to compute natural joins.

To know whether joins must be computed, we need to determine what functional dependencies
may be tested by checking each relation individually.

Let F be a set of functional dependencies on schema R.

Let nRRR, 21 be a decomposition of R.

The restriction of F to iR is the set of all functional dependencies in F that include only

attributes of iR .

Functional dependencies in a restriction can be tested in one relation, as they involve attributes
in one relation schema.

The test of restrictions nFFF, 21 is the set of dependencies that can be checked efficiently..

We need to know whether testing only the restrictions is sufficient.

Let nFFFF 21
'

Database Management System 8.11 Normalization-1

'F is a set of functional dependencies on schema R, but in general FF ' .

However, it may be that FF '

If this is so, then every functional dependency in F is implied by 'F , and if 'F is satisfied, then F

must also be satisfied.

A decomposition havign the property that FF ' is a dependency-preserving decomposition.

The algorithm for testing dependency preservation follows this method:

compute F

for each schema iR in D do

begin

iF = the restriction of F to iR

end

Rather than compute F and 'F , and see whether they are equal, we can do this:

Find 'FF the functional dependencies not checkable in one relation.

See whether this set is obtainable from 'F by using Armstrong’s Axioms.

This should take a great deal less work, as we have (usually) just a few functional dependencies
to work on.

8.7. Third Normal Form:
A relation R is in third normal form (3NF) with respect to a set F of functional dependencies id, for

all functional dependencies in F+ of the form , where R <R and R, at least one
of the following holds:

 Is trivial (i.e.,)

 Is a super key for R

Each attribute A in – is contained in a candidate key for R

8.8. Decomosition Algorithm:

Let cF be a canonical cover for F ;

i : =0;

for each functional dependency in cF do

if none of the schemas ijR j 1, contains

then begin

i: = i + 1

R
i
=

end

Centre for Distance Education Acharya Nagarjuna University8.12

if none of the schemas ijR j 1, contains a candidatekey for R

then begin

i:= i+1;

:iR any candidate key for R;

end

return iRRR ,...,, 21

'F

for each restriction iF do

begin

iFUFF ''

end

compute ;'F

if FF ' then return (true)

else return (false);

We can now show that our decomposition of Lending-schema is dependency preserving.

The functional dependency

bname assets bcity

can be tested in one relation on Branch-schema.

The functional dependency

loan# amount bname

can be tested in Loan-schema.

As the above example shows, it is often easier not to apply the algorithm shown to test

dependency preservation, as computing F takes exponential time.

An Easier Way To Test For Dependency Preservation

Really we only need to know whether the functional dependencies in F and not in F’ are implied by
those in F’.

In other words, are the functional dependencies not easily checkable logically implied by those that
are?

8.9. Summary :

The main purpose of normalization is to maintain well-organized data in terms of tables by reducing
redundancy, update anomalies and to simplify the enforcement of integrity constraints. Last but
not least, to provide a good design that is easy to understand and provides base to extensibility.

First normal form: A table is in the first normal form if it contains no repeating columns.

Second normal form: A table is in the second normal form if it is in the first normal form and
contains only columns that are dependent on the whole (primary) key.

Database Management System 8.13 Normalization-1

Third normal form: A table is in the third normal form if it is in the second normal form and contains
only columns that are no transitively dependent on the primary key.

When you follow these rules, the tables of the model are in the third normal form, according to E. F.
Codd, the inventor of relational databases. When tables are not in the third normal form, either
redundant data exists in the model, or problems exist when you attempt to update the tables.

8.10. Technical Terms:

Normalization: A series of steps followed to obtain a database design that allows for efficient
access and storage of data. These steps reduce data redundancy and the chances of data becoming
inconsistent.

Transitive dependency: Let R be a relation and let a, b and c are the attributes of R then we say
that R satisfies transitive dependency if there exists ab and bc and consequently ac.

Functional Dependency: many-to-one relationship shared by columns of values in database
tables. A functional dependency from column X to column Y is a constraint that requires two rows
to have the same value for the Y column if they have the same value for the X column.

Non-Loss Decomposition: without losing of data, dividing the relation into multiple number of
relations called Non loss Decomposition.

8.11. Model Questions:
1. What does Data Normalization mean? What are the rules for Normalization?
2. Explain the First normal Form [1NF] with an example?
3. Explain the concept of functional Dependency?
4. What is Decomposition? Write about Loss-less Decomposition?

8.12. References:
Database System Concepts

Silberschatz, Korth, and Sudarshan
Database Management Systems

Arun K. Majumdar, Pritimoy Bhattacharyya
An Introduction to Database Systems

Bipin Desai
Modern Database Management

F. McFadden, J. Hoffer
An Introduction to Database Systems

C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 9.1 Normalization-2Lesson 9

Normalization-2

9.0 Objectives:

After reading this chapter, you should understand:

 To learn about advanced Normal Forms

 To differentiate 3NF and BCNF

 To learn about Fourth Normal form

 To know about Multivalued Dependencies

 To introduce more normal forms fifth and domain-key NF

Structure Of the Lesson:

9.1. Advanced Normalization

9.2. Comparison Between 3 NF and BCMF

9.3. Fourth Normal Form

9.3.1. Multivalued Dependencies

9.3.2. Definition of Fourth Normal Form

9.4. More Normal Forms

9.5. Summary

9.6. Technical Terms

9.7. Model Questions

9.8. References

9.1. Advanced Normalization:

After 3NF, all normalization problems involve only tables, which have three or more columns, and
all the columns are keys. Many practitioners argue that placing entities in 3NF is generally sufficient
because it is rare that entities that are in 3NF are not in 4NF and 5NF. They further argue that the
benefits gained from transforming entities into 4NF and 5NF are so slight that it is not worth the
effort. However, advanced normal forms are presented because there are cases where they are
required.]

9.2. Comparison Between 3 NF and BCMF:

Of the two normal forms for relational-database schemas, 3NF and BCNF, there are advantages to
3NF in that we know that it is always possible to obtain a 3NF design without sacrificing a loss less
join or dependency preservation. Nevertheless, there are disadvantages to 3NF: If we do not
eliminate all transitive relations schema dependencies, we may have to use null values to

Centre for Distance Education Acharya Nagarjuna University9.2

represent some of the possible meaningful relationships among the data items, and there is the
problem, consider again the Banker-schema and its associated functional dependencies. Since
banker-name-branch-name, we may want to represent the relationship between values for
banker-name and values for branch-name in our database. If we are to do so, however, either
there must be a corresponding value for customer-name, or we must use a null value for the
attribute customer-name.

An instance of Banker-schema.

As an illustration of the repetition of information problem, consider the instance of Banker-schema
in the Banker-schema relation. Notice that the information indicating that Johnson is working at the
Perryridge branch is repeated.

Recall that our goals of database design with functional dependencies are:

1. BCNF

2. Loss less join

3. Dependency preservation

Since it is not always possible to satisfy all three, we may be forced to choose BCNF and dependency
preservation with 3NF.

It is worth noting that SQL does not provide a way of specifying functional dependencies, except for
the special case of declaring super keys by using the primary key or unique constraints. It is possible,
although a little complicated, to write assertions that enforce a functional dependency- preserving
decomposition; if we use standard SQL we would not be able to efficiently test a functional
dependency whose left-hand side is not a key.

Although testing functional dependencies may involve a join if the decomposition is not
dependency preserving, we can reduce the cost by using materialized views, which many
database systems support. Given BCNF decomposition that is not dependency preserving, we
consider each dependency in a minimum cover F

c
that is not preserved in the decomposition. For

each such dependency we define materialized views that computes a join of all relations in

the decomposition, and projects the results on The functional dependency can be easily tested

on the materialized view, by means of a constraint unique)(On the negative side there is a

space and time overhead due to the materialized view, but on the positive side, the application
programmer need not worry about

writing code to keep redundant data consistent on updates. It is the job of the database system to
maintain the materialized view, keep up to date when the database is updated.

Database Management System 9.3 Normalization-2

Thus, in case we are not able to get a dependency-preserving BCNF decomposition, it is
generally preferable to opt for BCNF, and use techniques such as materialized views to reduce the
cost of checking functional dependencies.

9.3. Fourth Normal Form:

Some relation schemas, even though they are in BCNF, do not seem to be sufficiently normalized,
in the sense that they still suffer from the problem of repetition of information. Consider again our
banking example: Assume that, in an alternative design for the bank database schema, we have
the schema:

BC-schema=(loan-number, customer-name, customer-street, customer-city)

The astute reader will recognize this schema as a non-BCNF schema because of the functional
dependency.

Customer- name customer—street customer-city

That we asserted earlier, and because customer- name is not a key for BC-schema. However,
assume that our bank is attracting wealthy customers who have several addresses. (Say a winter
home and a summer home). Then we no longer wish to enforce the functional dependency
Customer- name customer—street customer-city. If we remove this functional dependency, we
find BC-schema to be in BCNF with respect to our modified set of functional dependencies. Yet,
even though BC-schema is now in BCNF, we still have the problem of repetition of information that
we had earlier.

To deal with this problem, we must define a new form of constraint, called a multivalued
dependency. As we did for functional dependencies, we shall use multivalued dependencies to
define a normal form for relation schemas. This normal form, called fourth normal form (4NF), is
more restrictive than BCNF. We shall see that every 4 NF schema is also in BCNF, but there are
BCNF schemas that are not in 4 NF.

9.3.1. Multivalued Dependencies:

Functional dependencies rule out certain tuples from being in a relation. If AB, then we cannot
have two tuples with the same A value but different B values. Multivalued dependencies, on the
other hand, don’t rule out the existence of certain tuples. Instead, they require that other tuples of a
certain form be present in the relation.

For this reason, functional dependencies sometimes are referred to as equality-generating
dependencies, and multivalued dependencies are referred to as tupel-generating
dependencies.

Let R be a relation schema and let

 and R The multivalued dependency

 holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r such that

][][21 tt there exist tuples t3 and t4 in r such that

][][4321 tttt

][][13 tt

Centre for Distance Education Acharya Nagarjuna University9.4

][][23 RtRt

][][24 tt

][][14 RtRt

Tabular representation of

This definition is less complicated than it appears to be. Figure gives a tabular picture of t
1
,t

2,
t
3
and

t
4
. Intuitively, the multivalued dependency

 says that the relationship between and is independent of the relationship between

 Rand If the multivalued dependency is a trivial multivalued dependency on schema

R then is trivial if Ror

To illustrate the difference between functional and multivalued dependencies, we consider the BC-
schema again, and the relation bc. We must repeat the loan number once for each address, for
each loan a customer has.

This repetition is unnecessary, since the relationship between a customer and his address is
independent of the relationship between that customer and a loan. If a customer (say, smith) has a
loan (say, loan number l-23). We want that loan to be associated with all Smiths addresses. Thus,
the relation of figure is illegal. To make this relation legal. We need to add the tuples (L-23, smith,
main, Manchester) and (L-27, smith, north, rye) to the bc relation of figure.

Comparing the preceding example with our definition of multivalued dependency, we see that we
want the multivalued dependency

Customer-name -àà customer -street customer -city

To hold (The multivalued dependency customer-nameàà loan-number will do as well. We shall
soon see that they are equivalent).

As with functional dependencies, we shall use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of functional and
multivalued dependencies.

2. To specify constraints on the set on legal relations; we shall thus concern ourselves with
only those relations that satisfy a given set of functional and multivalued dependencies.

Database Management System 9.5 Normalization-2

Relation bc: Am example of redundancy in a BCNF relation.

An illegal bc relation.

Note that, if a relation r fails to satisfy a given multivalued dependency, we can construct a relation
rl that does satisfy the multivalued dependency by adding tuples to r.

Let D denote a set of functional and multivalued dependencies. The closure D+ of D is the set of
all functional and multivalued dependencies logically implied by D. As we did for functional
dependencies, we can compute D+ from D, using the formal definitions of functional dependencies
and multivalued dependencies. We can manage with such reasoning for very simple multivalued
dependencies. Luckily, multivalued dependencies that occur in practice appear to be quite simple.
For complex dependencies, it is better to reason about sets of dependencies by using a system of
inference rules.

For the definition of multivalued dependency, we can derive the following rule:

If and

In other words, every functional dependency is also a multivalued dependency

9.3.2. Definition of Fourth Normal Form:

Consider again our BC-schema example in which the multivalued dependency customer-name
customer-street customer-city hold, but no nontrivial functional dependencies hold, although
BC- schema is in BCNF, the deign is not ideal, since we must repeat a customers address
information for each loan. We shall see that we can use the given multivalued dependency to
improve the database design by decomposing BC-schema into a fourth normal form
decomposition.

A relation schema R is in fourth normal form (4NF) with respect to a set D of functional and

multivalued dependencies if, for all multivalued dependencies in D+ of the form where R

and R at least one of the following holds

 is a trivial dependency

 is a super key for schema R

Centre for Distance Education Acharya Nagarjuna University9.6

A database design is in 4NF if each member of the set of relation schemas that constitutes the
design is in 4 NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use of multivalued
dependencies instead of functional dependencies. Every 4NF schema is in BCNF. To see this fact,
we note that, if a schema R is not in BCNF then, there is

result := {R};

done := false;

compute F+;

while (not done) do

if (there is a schema R
i
in result that is not in BCNF)

then begin

let be a nontrivial functional

dependency that holds on R
i

such that R
i
is not in F+,

and = ;

result := (result – R
i
) (R

i
–) (,);

end

else done := true;

Note: Each R
i
is in BCNF, and decomposition is loss less join.

A nontrivial functional dependency

holding on R, where is not a super key. Since implies R cannot be in 4NF..

Let R be a relation schema, and let R
1,

R
2,

R
3,………….,

R
n

be a decomposition of R. To check if each relation schema R
i
in the decomposition is in 4NF, we

need to find what multivalued dependencies hold on each R
i
. Recall that, for a set F of functional

dependencies, the restriction F
i
of F to R

i
is all functional dependencies in F+ that include only

attributes of R
i.

Now consider a set D of not functional and multivalued dependencies. The restriction
of D to R

i
is the set D

i
consisting of

1. All functional dependencies in D+ that include only attributes of R
i
.

2. All multivalued dependencies of the form iR

9.4. More Normal Forms:

The fourth normal form is by no means the “ultimate” formal form. As we saw earlier, multivalued
dependencies help us understand and tackle some forms of repetition of information that cannot
be understood in terms of functional dependencies. There are types of constraints called join
dependencies that generalize multivalued dependencies, and lead to another normal form called
project-normal form (PJNF) (PJNF called fifth normal form in some books). There is a class of
even more general constraints, which leads to a normal form called domain-key normal form.

Database Management System 9.7 Normalization-2

A practical problem with the use of these generalized constraints is that they are not only hard to
reason with, but there is also no set of sound and complete inference rules of r reasoning about the
constraints. Hence PJNF and domain-key normal form are used quite rarely. Appendix C provides
more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second normal form (2NF).
We have not discussed it, because it is of historical interest only.

9.5. Summary:
The third normal form requires that all columns in a relational table are dependent only upon the
primary key. A more formal definition is: A relational table is in third normal form (3NF) if it is already
in 2NF and every non-key column is non transitively dependent upon its primary key. In other words,
all nonkey attributes are functionally dependent only upon the primary key. The advantage of having
relational tables in 3NF is that it eliminates redundant data, which in turn saves space and reduces
manipulation anomalies.

Boyce-Codd normal form (BCNF) is a more rigorous version of the 3NF dealing with relational
tables that had (a) multiple candidate keys, (b) composite candidate keys, and (c) candidate keys
that overlapped.

Fourth normal form (4NF) is based on the concept of multivalued dependencies (MVD).AMultivalued
dependency occurs when in a relational table containing at least three columns, one column has

multiple rows whose values match a value of a single row of one of the other columns.

9.6. Technical Terms:

Domain: A domain is the set of allowable values for one or more attributes.

Functional Dependency: A many-to-one relationship shared by columns of values in database
tables. A functional dependency from column X to column Y is a constraint that requires two rows
to have the same value for the Y column if they have the same value for the X column.

Multivalued Dependency: Multi-valued dependency (MVD) is a generalization of functional
dependency (FD), in the sense that every FD is a MVD. (A—>> B)

Centre for Distance Education Acharya Nagarjuna University9.8

Join Dependency?

Let R be a relation, and let A, B,…..Z be arbitrary subsets of the set of attributes of R. Then we say
that R satisfies the JD if and only if R is equal to the join of its projections on A, B,……Z.

9.7. Model Questions:

1. Compare third normal form and BCNF?
2. What is meant by Multivalued Dependency? Explain with an example?

3. Write about Fourth Normal form?

9.8. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com, M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.
GUNTUR.

Database Management System 10.1 Object Oriented DatabasesLesson 10

ObjectOrientedDatabases

10.0 Objectives:

The Lesson introduces a variety of modern techniques in database. Here, we introduce the concepts

of object-oriented programming and then consider the use of these concepts in database systems.

The objective of this course is to give an advanced introduction to the concepts for modeling,
designing, querying and managing large databases.

After reading this chapter, you should understand:

Structure Of the Lesson:

10.1. Introduction

10.2. Need for Complex Data Types

10.3. The Object-Oriented Data Model

10.3.1. Object Structure

10.3.2. Object Classes

10.3.3. Inheritance

10.3.4. Multiple Inheritance

10.3.5. Object Identity

10.3.6. Object Containment

10.4. Object-Oriented Languages

10.5. Persistent Programming Languages

10.5.1. Persistent of Objects

10.5.2. Object Identity and Pointers

10.6. Summary

10.7. Technical Terms

10.8. Model Questions

10.9. References.

10.1. Introduction:

As database systems were applied to a wider range of applications including computer-aided design.
Limitations imposed by the relational model emerged as obstacles.As a result, database researchers
invented new data models that overcame the relational model’s restrictions.

The object-oriented approach to programming was first introduced by the language Simula 67,

Centre for Distance Education Acharya Nagarjuna University10.2

which was designed for programming simulations. Smalltalk awesome of the early object-oriented
programming languages for general applications. Today, the languages C++ and Java are the
most widely used object-oriented programming languages.

10.2. Need for Complex Data Types:

Traditional database applications consist of data processing tasks, such as banking and payroll
management. Such applications have conceptually simple data types. The basic data items are
records that are fairly small and whose fields are atomic, i.e., they are not further structured, and
the first normal form holds. Further there are only a few record types.

In recent years, demand has grown for ways to deal with more complex data types. Consider for
example address, while an entire address could be viewed as an atomic data item of type string.
This view would hide details such the street address, city, state and postal code, which could be of
inertest to queries. On the other hand if an address were represented by breaking it into the
components. A better alternative is to allow structured data types, which allow a type, address with
sub parts street address, city, state and postal code

10.3. The Object-Oriented Data Model:

In this section we present the main concepts of the object-oriented data model: the structure of
objects and the notions of classes, inheritance, an object identity.

10.3. 1. Object Structure:

An object corresponds to an entity in the E-R model. The object-oriented paradigm is based on
encapsulation of data and code related to an object into a single unit, whose contents are not
visible to the outside world. Conceptually, all interactions between an object and the rest of the
system are via messages. Thus the interface between an object and the rest of the system is
defined by a set of allowed messages

In general, an object has associated with it

 A set of variables that contain the data for the object; variables correspond to attributes in
the E-R model.

 A set of messages to which the object responds; each message may have zero, one or
more parameters.

 A set of methods each of which is a body of code to implement a message; a method
returns a value as the response to the message.

The term message in an object –oriented context does not imply the use of a physical message in
a computer network. Rather, it refers to the passing of requests among objects without regard to
specific implementation details. The term invoke a method is sometimes used to denote the act
of sending a message to an object and the execution of the corresponding method.

We can illustrate the motivation for using this approach by considering employee entities in a bank
database. Suppose the annual salary of an employee is calculated in different ways for different
employees. For instance, managers may get a bonus depending on the bank’s performance; while
tellers may get a bonus depending on how many hours they have worked. We can encapsulate the
code for computing the salary with each employee as a method that is executed in response to an
annual-salary message.

Database Management System 10.3 Object Oriented Databases

All employee objects respond to the annual-salary message, but they do so in different ways. By
encapsulating with in the employee object itself the information about how to compute the annual
salary, all employee objects present the same interface. Since the only external interface presented
by an object is the set of messages to which that object responds. This ability to modify the definition
of an object with out affecting the rest of the system is one of the major advantages of the object-
oriented-programming paradigm.

Methods of an object can be classified as either read only or update. A read-only method does not
affect the values of the variables in an object, where as an update method may change the values
of the variables. The messages to which an object responds can be similarly classified as read-
only or update, depending on the method that implements the message.

In the object-oriented model, we express derived attributes of an E-R model entity as read-only
messages. For example, we can express the derived attribute employment length of an employee
entity as an employment length message of an employee object. The method implementing the
message may determine the employment length by subtracting the start-date of the employee
from the current date.

In other words, every attribute of an entity must be expressed as a variable and a pair of messages
of the corresponding object in the object-oriented model. We use the variable to store the value of
the attribute, one message to read the value of the attribute, and other message to update the
value.

10.3. 2. Object Classes:

Usually there are many similar objects in a database. By similar, we mean that they respond to the
same messages, use the same methods, and have variables of the same name and type.

Class employee {

/*Variables*/

String name;

String address;

Date start-date;

Int salary;

/*Messages*/

Int annual-salary ();

String get-name ();

String get-address ();

Int set-address (string new-address);

Int employment-length ();

};

Definition of the class employee.

Centre for Distance Education Acharya Nagarjuna University10.4

We group similar objects to form a class. Each such object is called an instance of its class. All
objects in a class share a common definition, although they differ in the values assigned to the
variables.

The notion of a class in the object-oriented data model corresponds to the notion of an entity set in
the E-R model. Examples of classes in our bank database are employees, customers, accounts,
and loans.

The class employee in pseudo code. The definition shows the variables and the messages to
which the objects of the class respond. In this definition, each object of the class employee contains
the variables name and address, both of which are strings; start-date, which is a date; and salary,
which is an integer. Each object responds to the five messages, namely annual-salary, get-name,
get-address, set-address, and employment-length. The type name before each message name
indicates the type of the response to the message. Observe that the message set-address takes
a parameter new-address, which specifies the new value of the address. Although we have not
shown them here, the class employee would also support messages that set the name, salary,
and start date.

The methods for handling the messages are usually defined separately from the class definition.
The methods get-address() and set-address() would be defined, for example, by the pseudo code:

String get-address (){

return address;

}

int set-address (string new-address)

{

Address=new-address;

}

While the method employment –length () would be defined as:

Int employment-length (){

Return today ()-start-date

}

Here we assume that today() is a function that returns the current date, and the operation on dates
returns the interval between the two dates.

The concept of classes is similar to the concept of abstract data types. However, there are several
additional aspects to the class concept, beyond those of abstract data types. To represent these
additional properties, we treat each class as itself being an object. A class object includes

 A set-valued variable whose value is the set of all objects that are instances of the class.

 Implementation of a method for the message new, which creates a new instance of the
class.

10.3. 3. Inheritance:

An object oriented database schema usually requires a large number of classes. Often, however,
several classes are similar.

For example, assume that we have an object-oriented database for our bank application. We would

Database Management System 10.5 Object Oriented Databases

expect the class of bank customers to be similar to the class of bank employees, in that both define
variables for name, address, and so on. However, there are variables specific to customers
(credit-rating, for example). It would be desirable to define one, only if we combine employees and
customers into one class.

To allow the direct representation of similarities among classes, we need to place classes in
specialization hierarchy for the entity relationship model. For instance, we say that the employee is
a specialization of person, because the set of all employees is a subset of the set of all persons,
i.e., every employee is a person. Similarly customer is a specialization of a person.

The concept of a class hierarchy is similar to the concept of specialization hierarchy in the entity-
relationship model. Classes that are specializations of a person class can represent employees
and customers. Variables and methods specific to employees are associated with employee class.
Variables and methods specific customers are associated with the customer class. Variables and
methods that apply both to employees and to customers are associated with the person class

An object representing an officer contains all the variables of class officer; in addition the object
representing an officer also contains all the variables of classes employee and person. This is
because every officer is defined to be an employee, and since in turn every employee is defined to
be a person, we can infer that every officer is also a person. We refer to this property that objects
of a class contain variables defined in its super classes, as the inheritance of variables.

Messages and methods are inherited in the same way that variables are inherited. An important
benefit of inheritance in object-oriented systems is substitutability. Any method of a class say, A
can equally well be invoked with any object belonging to any sub class B of A. This characteristic
leads to code reuse. Since the messages, methods, and functions do not have to be written again
for objects of class B. For instance, the message get name() is defined for the class person, and
it can be invoked with a person object, or with any object belonging to any subclass of person, such
as customer or officer.

Usually we make the latter choice in object-oriented systems. It is possible to determine the set of
all employee objects, in this case by taking the union of those objects associated with all subclasses
of employee. Most object-oriented systems allow the specialization to be partial, i.e., they allow
objects that belong to a class such as employee, but that do not belong to any of that class’s sub
classes

10.3.4. Multiple Inheritance:

In most cases, a tree-structured organization of classes is adequate to describe applications in
tree-structured organizations, each class can have at most one super class. However, there are
situations that cannot be represented by a direct a cyclic graph (Dag) in which a class can have
more than one super class.

For example, suppose employees can be either temporary or permanent. We may then create
subclasses temporary and permanent, of the class employee. The subclass temporary would
have an attribute termination-date specifying when the employment term ends. The subclass
permanent may have a method for computing contributions to a company pension plan, which is
not applicable to temporary employees.

An example of multiple inheritance, consider a university database, where a person can be a
student or teacher. The university database may have class’s student and teacher, which are sub
classes of person, to model this situation. Now, there is also a category of students who also work

Centre for Distance Education Acharya Nagarjuna University10.6

as teaching assistants; to model this situation, a class teaching-assistant may be created as a
subclass of student as well as of teacher.

When multiple inheritance is used, there is potential ambiguity if the same variable or method can
be inherited from more than one super class. For instance, the student class may have a variable
dept identifying a student’s department, and the teacher class may correspondingly have a variable
dept identifying a teacher’s department.

The class teaching-assistant inherits both these definitions of the variable dept, thus the use of the
variable dept in the context of teaching assistants becomes ambiguous.

The result of using dept varies, depending on the particular implementation of the object-oriented
model.

For example, the implementation may handle dept in one of these ways:

 Include both variables, renaming them to student.dept teacher.dept.

 Choose one or other, according to the order in which the class’s student and teacher were
created.

 Force the user to make a choice explicitly in the definition of the class teaching assistant.

 Treat the situation as an error.

Many object-oriented programming languages insist that an object must have a most-specific
class, i.e., if the object belongs to many classes, it must belong to one class that is a sub class of
all the other classes to which the object belongs. For example, if an object belongs to the person
and teacher classes, it must belong to some class that is a sub class of both these classes. We
must then use multiple inheritance to create all required sub classes such as teaching –assistant,
student-council-member, teaching-assistant-council-member, and so on, to model the possibility
of an object simultaneously having multiple roles.

10.3. 5. Object Identity:

Objects in an object-oriented database usually correspond to an entity in the enterprise being
modeled by the database. An entity retains its identity even if some of its properties change over
time. Likewise, an object retains its identity even if some or all of the values of variables or definitions
of methods change over time. This concept of identity does not apply to tuples of a relational
database. In relational systems, the tuples of a relation are distinguished only by the values that
they contain.

Object identity is a stronger notion of identity than that usually found in programming languages or
in data models not based on object orientation. We will illustrate several forms of identity next.

 Value: A data value is used for identity. This form of identity is used in relational
systems. For instance, the primary key value of a tuple identifies the tuple.

 Name: A user-supplied name is used for identity. This form of identity is used for
files in file systems. The user gives each file a name that uniquely identifies it,
regardless of its contents.

 Built-in: A notion of identity is built into the data model or programming language,
and user-supplied identifier is required. This form of identity is used in object-oriented
systems. The system automatically gives each object an identifier when that object
is created.

Database Management System 10.7 Object Oriented Databases

The identity of objects is a conceptual notion. Actual systems require a physical mechanism to
identify objects uniquely. For identifying humans, names along with other information, such as date
and place of birth, are often used as identifiers. Object-oriented systems use an object identifier
to identify objects. Object identifiers are unique, i.e., each object has a single identifier, and no two
objects have the same identifier. Object identifiers are not necessarily with which humans are
comfortable. They could be long numbers, for example: The ability to store the identifier of an
object as a field of another object is more important than having a name that is easy to remember.

10.3. 5. Object Containment:

References between objects can be used to model different real-world concepts. One such concept
is that of object containment. For an illustration of containment, consider the simplified bicycle-
design database. Each bicycle design contains wheels, a frame, brakes and gears. Wheels, in
turn contain a rim, a set of spokes, and a tire. Each of the components of the design can be
modeled as an object, and the containment of components can be modeled as containment of
objects.

Objects that contain other objects are called complex objects or composite objects. There can
be multiple levels of containment as shown in the figure. This situation creates a containment
hierarchy among objects.

The hierarchy of figure shows the containment relationship among objects in a schematic way by
listing class names, rather than individual objects. The links between classes must be interpreted
as is-part-of, rather than the is-a interpretation of links in an inheritance hierarchy.

Containment Hierarchy for bicycle-design database

The above tree hierarchy does not show the variables of the various classes. Consider the
bi-cycle. It may include variables, such as brand name, containing descriptive data about an
instance of the class bicycle. In addition, class bi-cycle includes variables that contain a reference,
or a set of references, to objects from the classes wheel, brake, gear, and frame

Containment is an important concept in object-oriented systems because it allows different users
to view data at different granularities. A wheel designer can focus on instances of the class wheel
without much, concern about the objects of a class gear or brake. A marketing-staff person,
attempting to price an entire bicycle, can reference all data pertaining to the bicycle by referencing
the appropriate instance of class bicycle.

In certain applications, an object may be contained in several objects. In such cases, the containment
relationship is represented by a DAG, rather than by a hierarchy.

Centre for Distance Education Acharya Nagarjuna University10.8

10.4. Object-Oriented Languages:
Until now, we have covered the basic concepts of object orientation at an abstract level. To use
the concepts in practice in a database system, however, we have to express them in some
language. We can do this in either of two ways:

1. We use the concepts of object orientation purely as a design tool, and encode them into, for
example, a relational database. We follow this approach when we use entity-relationship
diagrams to model data, and we then manually convert the diagrams into a set of relations.

2. We incorporate the concepts of object orientation into a language that we use to manipulate
the database. With this approach, there are several possible languages into which the concepts
can be integrated:

 One choice is to extend a data-manipulation language such as SQL by adding complex
types and object orientation. Systems that provide object-oriented extensions to relational
systems are called object-relational systems. We describe object-relational systems,
and in particular object-oriented extensions to SQL.

 Another choice is to take an existing object-oriented programming language and to
extend it to deal with databases. Such languages are called persistent programming
languages.

10.5. Persistent Programming Languages:

Database languages differ from traditional programming languages in that they directly manipulate
data that are persistent, i.e., data that continue to exist even after the program that created it has
terminated. A relation in a database and tuples in a relation are examples of persistent data. In
contrast, the only persistent data that traditional programming languages directly manipulate are
the files.

Access to a database is only one component of any real world application. While a data manipulation
language like SQL is quite effective for accessing data, a programming language is required for
implementing other components of the application such as user interfaces or communication with
other computers. The traditional way of interfacing database languages to programming languages
is by embedding SQL with in programming language.

A persistent programming language is a programming language extended with constructs to
handle persistent data. Persistent programming languages can be distinguished from languages
with embedded SQL in at least two ways:

1. With an embedded language, the type system of the host language usually differs from the
type system of the data manipulation language. The programmer is responsible for any type
conversions between the host language and SQL. Having the programmer carry out this task
has several drawbacks:

 The code to convert between objects and tuples operates outside the object-oriented
type system, and hence has a higher chance of having undetected errors.

 Conversion between the object-oriented format and the relational format of tuples in
the database takes a substantial amount of code. The format translation code, along
with the code for loading and unloading data from a database, can form a significant
percentage of the total code required for an application.

Database Management System 10.9 Object Oriented Databases

2. The programmer using an embedded query language is responsible for writing explicit code to
fetch data from the database into memory. If any updates are performed, the programmer must
write code explicitly to store the updated data back in the database.

10.5.1. Persistent Of Objects:

Object-oriented programming languages already have a concept of objects, a type system to define
object types, and constructs to create objects. However, these objects are transient. They vanish
when the program terminates, just as variables in a Pascal or C program vanish when the program
terminates. If we wish to use such a language into a database programming language, the first
step is to provide a way to make objects persistent. Several approaches have been proposed.

 Persistent by class: The simplest, but least convenient, way is to declare that a class is
persistent. All objects of the class are then persistent objects by default. Objects of non-
persistent classes are all transient.

 Persistent by creation: In this approach, new syntax is introduced to create persistent
objects, by extending the syntax for creating transient objects. Thus, an object is either
persistent or transient, depending on how it was created. Several object-oriented database
systems follow this approach.

 Persistence by marking: A variant of preceding approach is to mark objects as persistent
after they are created. All objects are created as transient objects, but, if an object is to
persist beyond the execution of the program, it must be marked explicitly as persistent
before the program terminates. This approach, unlike the previous one, postpones the
decision on persistence or transience until after the object is created.

 Persistent by reach ability: One or more objects are explicitly declared as persistent
objects. All other objects are persistent if they are referred to directly, or indirectly, from a
root persistent object.

Thus, all objects referred from the root persistent objects are persistent. But also, all objects
referred from these objects are persistent, and objects to which they refer are in turn persistent,
and so on.

A benefit of this scheme is that it is easy to make entire data structures persistent by merely
declaring the root of such structures as persistent. However, the database system has the burden
of following chains of references to detect, which objects are persistent, and that can be expensive.

10.5.2. Object Identity and Pointers:

In an object-oriented programming language that has not been extended to handle persistence,
when an object is created, the system returns a transient object identifier. Transient object identifiers
are valid only when the program that created them is executing. After that program terminates, the
objects are deleted and the identifier is meaningless. When the persistent object is created, it is
assigned a persistent object identifier.

The notion of object identity has an interesting relationship to pointers in programming languages.
A simple way to achieve built-in identity is through pointers to physical locations in storage. In
particular, many object-oriented languages such as c++ a transient object identifier is actually an
in-memory pointer.

Centre for Distance Education Acharya Nagarjuna University10.10

However, the association of an object with physical location in storage may change over
time. There are several degrees of permanence of identity

 Intraprocedure: Identity persists only during the execution of a single procedure. Examples
of intraprogram identity are local variables with in procedures.

 Intraprogram: Identity persists only during the execution of a single program or query.
Examples of intraprogram identity are global variables in programming languages. Main-
memory or virtual memory pointers offer only intraprogram identity.

 Interprogram: Identity persists from one program execution to another. Pointers to file-
system data on disk offer interprogram identity, but they may change if the way data is
stored in the file system is changed.

 Persistent: Identity persists not only among program structural reorganizations of the data.
It is the persistent form of identity that is required for object-oriented systems.

In persistent extensions of languages such as c++, object identifiers for persistent objects are
implemented as ” persistent pointers”. Apersistent pointer is a type of pointer that, unlike in-memory
pointers, remains valid even after the end of a program execution, and across some forms of data
reorganization. A programmer may use a persistent pointer in the same way that she may use an
in-memory pointer in a programming language. Conceptually, we may think of a persistent pointer
as a pointer to an object in the database.

10.6. Summary:

The object oriented data model is an adaptation to database systems of the object oriented

programming paradigm. It is based on the concept of encapsulating in an object, the data and the
code that operated on those data. There are two approaches to creating an object-oriented database.
We can add the concept of object orientation to existing database languages, or we can extend
existing object oriented languages to deal with the database by adding concepts such as persistence
and collections. Extended relational databases take the former approach. Persistent programming
languages follow the latter approach.

10.7. Technical Terms:
Object: An element that combines data and behavior in a single container of code.

Encapsulation: In object-oriented programming, the grouping of data and the code that manipulates
it into a single object. If a change is made to an object class, all instances of that class (i.e., all
objects) are changed. Encapsulation is one of the benefits of object-oriented programming.

Method: The software that implements the behavior specified by an operation.

Inheritance: An inheritance is a way to form new classes (instances of which will be objects)
using pre-defined objects or classes where new ones simply take over old one’s implementations
and characteristics. It is intended to help reuse of existing code with little or no modification.

Subclass: A subclass is a class that inherits some properties from its superclass.

SuperClass: A superclass is a class from which other classes are derived. A superclass is also

called a parent class or base class

Database Management System 10.11 Object Oriented Databases

10.8. Model Questions:
1. Explain the Object Oriented Data Model?

2. Write About Object Oriented Languages?

3. What are the features of Object Oriented Languages?

10.9. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com., M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College.

GUNTUR.

Database Management System 11.17 Object Oriented Databases

11.10. Model Questions:
1. What does nested relation mean? Explain with an example?

2. Explain the concept of Complex Types?

3. Write about Inheritance and various types?

4. What are Reference types?

5. Write Short notes on functions and Procedures?

11.11. References:

Database System Concepts
Silberschatz, Korth, and Sudarshan

Database Management Systems
Arun K. Majumdar, Pritimoy Bhattacharyya

An Introduction to Database Systems
Bipin Desai

Modern Database Management
F. McFadden, J. Hoffer

An Introduction to Database Systems
C. J. Date;

AUTHOR:
Y.SURESH BABU., M.Com., M.C.A.,
Lecturer,
Dept. Of Computer Science,

JKC College.

GUNTUR.

Centre for Distance Education Acharya Nagarjuna University11.16

11.7.2. External Language Routines:

SQL1999 allows us to define functions in a programming language such as c or c++. Functions
defined in this fashion can be more efficient than defined in SQl, and computations that cannot be
carried out in SQL can be executed in these functions. An example of the use of such functions
would be to perform a complex arithmetic computation on the data in a tuple.

External procedures and functions can be specified in this way:

Create procedure author-count-proc(in title varchar(20),out count integer)

Language c

External name ‘ / usr/avi/bin/author-count-proc

Create function author-count(title varchar(20))

Returns integer

Language c

External name ‘/usr/avi/bin/author-count

The external language procedures need to deal with null values and exceptions. They must therefore

have several extra parameters: an SQL state value to indicate failure/success status, a parameter

to store the return value of the function, and indicator variables for each parameter/function result

to indicate if the value is null. An extra line parameter style generally added to the declaration above

indicates that the external procedures/functions take only the arguments shown and do not deal

with null values or exceptions.

11.8. Summary:
The object-relational data model extends the relational data model by providing a richer type system
including collection types, and object orientation. Object orientation provides inheritance with
subtypes and sub tables, as well as object references. Collection types include nested relations,
sets, multi sets and arrays. The object relational model permits attributes of a table to be collections.

Object-relational database systems provide a convenient migration path for users of relational
databases who wish to use object oriented- features.

11.9. Technical Terms:
Object: Instance of a Class.

Arrays: Collection of elements of the same data type.

Function: A function is a sequence of code, which performs a specific task, as part of a larger
program.

Relational database: A database system in which the database is organized and accessed
according to the relationships between data items without the need for any consideration of physical
orientation and relationship. Relationships between data items are expressed by means of tables.

Exceptions: Exception is an unusual situation in a program.

Database Management System 11.15 Object Oriented Databases

11.7.1. SQL Functions And Procedures:

Suppose that we want a function that, given the title of a book, returns the count of the number of
authors, using the 4NF schema. We can define the function this way:

Create function author-count(title varchar(20))
Returns integer
Begin
Declare a-count integer

Select count (author) into a-count
From authors
Where authors.title=title

Return a-count
End

This function can be used in a query that returns the titles of all books that have more than one
author:

Select title
From books4
Where author-count(title)>1

Functions are particularly useful with specialized data types such as images and geometric objects.
For instance a polygon data type used in a map database may have an associated function that
checks if two polygons overlap, and an image data type may have associated functions to compare
two images for similarity. Functions may be written in an external language such as C. Some
database systems also supports functions that return relations, that is multi sets of tuples, although
such functions are not supported by SQL 1999

The functions, which we saw in STRUCTURED TYPES can be viewed as functions associated
with structured types. They have an implicit first parameter called self, which is a set to the structured
type value on which the method is invoked. Thus, the body of the method can refer to an attribute a
of the value by using self.a. These attributes can also be updated by the method.

SQL1999 also supports procedures. The author-count function could instead be written as a
procedure:

Create procedure author-count- proc(in title varchar(20), out a-count integer)

Begin

Select count(author) into a-count

From authors

Where authors.title=title

End

Procedures can be invoked either from an SQL procedure or from embedded SQL by the call
statement:

Declare a-count integer;

Call author –count-proc(‘data base systems concepts’, a-count);

SQL 1999 permits more than one procedure of the same name, so long as the number of arguments,
of the procedures with same name is different. The name along with the number of arguments is
used to identify the procedure. SQL 1999 also permits more than one function with the same
name, so long as the different functions with the same name either have different numbers of
arguments, or for functions with the same number of arguments, differ in the type of at least one
argument.

Centre for Distance Education Acharya Nagarjuna University11.14

A partially nested version of the flat books relation.

Select title,set(author) as author-set,publisher(pub-name,pub-branch) as publisher,

Set(keyword) as keyword-set

From flat-books

Groupby title,publisher
Another approach to creating nested relations is to use subquries in the select clause. The following
query which performs the same task as the previous query:

Select title,
(select author
from flat-books as M
where M.title=O.title) as author-set,
publisher(pub-name, pub-branch) as publisher,

(select keyword
from flat-books as N
where N.title=O.title) as keyword-set,
from flat-books as O

The system executes the nested sub queries in the select clause for each tuple generated by the
from and where clause of the outer query. Observe that the attribute O.title from the outer query is
used in the nested queries, to ensure that the only correct sets of authors and keywords are
generated for each title. An advantage of this approach is that an orderby clause can be used in
the nested query, to generate results in a desired order. A array or a list could be constructed from
the result of the nested query. Without such an ordering, arrays and lists would not be uniquely
determined.

We note that while un-nesting of array-valued attributes can be carried out in SQL 1999. The
reverse processing of nesting is not supported by SQL 1999

11.7. Functions And Procedures:

SQL 1999 allows the definition of functions, procedures, and methods. These can be defined either
by the procedural component of SQL 1999 or by external programming languages such as java, c
and c++. We look at definitions of SQL 1999 first, and then see how to use definitions in external
languages. Several database systems support their own procedural languages, such as pl/sql in
oracle and transact SQL in Microsoft SQL Server. These resemble the procedural part of SQL
1999, but there are differences in syntax and semantics.

Database Management System 11.13 Object Oriented Databases

Select title

From books

Where ‘database’ in(unnest(key word-set))

Note that we have used unnest(keyword-set) in a position where SQL without nested relations
would have required a select-from-where sub-expression.

If we know that a particular book has three authors, we could write:

Select author-array[1],author-array[2],author[3]

From books

Where title=’Database System Concepts’

Now, suppose that we want a relation containing pairs of the form ”title, author-name” for
each book. We can use this query:

Select B.title,A.name

From books as B,unnest(B.author-array) as A

Since the author-array attribute of books is a collection valued field, it can be used in a from
clause, where a relation is expected

11.6.3. Nesting And Un-Nesting:

The transformation of a nested relation into a form with fewer (or no) relation-valued attributes is
called un-nesting. The books relation has two attributes, title and publisher, that are not. Suppose,
if we want to convert the relation into a single flat relation, with no nested relations or structured
types as attributes, we can use the following query to carry out the task:

Select title, A as author,publisher.name a name,publisher.branch

As pub-branch ,k as keyword

From books as B, unnest (B.author-array) as A, unnest(b.key word-set) as k

The variable B in the from clause is declared to range over books. The variable A is declared
to rage over the authors in author array from the book B, and k is declared to range over the
keywords in the keyword-set of the book B. Fig 9.1 shows an instance books relation, and figure
9.2 shows the 1NF relation that is the result of the preceding query.

The reverse process of transforming 1NF relation into a nested relation is called nesting.
Nesting can be carried out by an extension of grouping in SQL, a temporary multiset relation is
(logically) created for each group, and an aggregate function is applied on the temporary relation.
By returning the multiset instead of applying the aggregate function, we can create a nested relation.
Suppose that we are given a 1NF relation flat-books, as in figure 9.2, the following query nests the
relation on the attribute keyword:

Select title, author, publisher(pub-name, pub-branch) as publisher,

Set(keyword) as keyword-set

From flat-books

Groupby title,author,publisher

If we want to nest the author attribute as well, and there by to convert the 1NF table.

Centre for Distance Education Acharya Nagarjuna University11.12

Create type person

(name varchar(20) primary key,

address varchar(20))

ref from(name)

create table people of person

ref is oid derived

Note that the table definition must specify that the reference is derived, and must still specify a self-
referential attribute name. When inserting a tuple for departments, we can then use:

Insert into departments

Values(‘cs’, ‘ jhon’)

11.6. Querying With Complex Types:

In this section we represent extensions of the SQL query language to deal with complex types. Let
us start with a simple example: Find the title and the name of the publisher of each book. This query
carries out the task:

Select title,publisher.name

From books

Notice that, the field name of the composite attribute publisher is referred to by a dot notation.

11.6.1. Path Expression:

References are de referenced in SQL 1999 the symbol . Consider the departments table
defined earlier. We can use this query to find the names and addresses of the heads of all
departments:

Select head name,head address

From departments

An expression such as “headname” is called a path expression.

Since, head is a referenced to a tuple in the people table, the attribute name in the preceding query
is the name attribute of the tuple from the people table. References can be used to hide join operations.
In the preceding example, without the references, the head field of department would be declared
a foreign key of the table people. To find the name and address of the head of a department, we
would require an explicit join of the relations departments and people. The use of references simplifies
the query considerably.

11.6.2. Collection – Values Attributes:

Arrays are the only collection type supported by SQL 1999, but we use the same syntax for the
relation-valued attributes also. An expression evaluating to a collection can appear anywhere that a
relation name may appear such as in a from clause as the following paragraphs illustrate. We use
the table, books which we defined earlier.

If we want to find all books that have the word “database” as one of their key words, we can
use this query:

Database Management System 11.11 Object Oriented Databases

Insert into departments

Values(‘cs’,null)

Update departments

Set head=(select ref(p)

From people as p

Where name=’john’)

Where name=’cs’

This syntax for accessing the identifier of a tuple is based on the oracle syntax. SQL 1999 adopts
a different approach, one where the referenced table must have an attribute that stores the identifier
of a tuple. We declare this attribute called the self-referential attribute, by adding a ref is clause to
the create table statement:

Create table people of person

Ref is oid system generated

Here, oid is an attribute name, not a keyword. The subquery above would then use

Select p.oid

Instead of select ref(p).

An alternative to system-generated identifier is to allow users to generate identifiers. The type of
the self-referential attribute must specify that the reference is user generated:

Create type person

(name varchar(20),

address varchar(20))

ref using varchar(20)

create table people of person

ref is oid user generated

When inserting a tuple in people, we must provide a value for the identifier:

Insert into people values

(‘01284567’,’jhon’,’23 Coyote Run’)

No other tuple for people or its super tables can have the same identifier. We can then use the
identifier value when inserting a tuple into departments, without the need for a separate query to
retrieve the identifier:

Insert into departments

Values(‘cs’,’01284567’)

It is even possible to use an existing primary key value as the identifier, by including the ref from
clause in the type definition:

Centre for Distance Education Acharya Nagarjuna University11.10

For each entity to have exactly one most-specific type, we would have to cerate a sub type for
every possible combination of the super types. In the preceding example, we would have sub types
such as Foreign Under graduate student, Foreign graduate Student foot ballplayer, and so on.
Unfortunately, we would end up with an enormous number of sub types of person.

A better approach in the context of database systems is to allow an object to have multiple types,
without having a most-specific type. Object-relational systems can model such a feature by using
inheritance at the level of tables, rather than of types, and allowing an entity to exist in more than
one table at once.

For example, suppose we again have the type person, with sub types student and teacher, and the
corresponding table people, with sub tables teachers and students. We can then have a tuple in
teachers and a tuple in students corresponding to the same tuple in people.

There is no need to have a type teaching assistant unless we wish to store extra attributes or

redefine methods in a manner specific to people who are both students and teachers.

We note that however SQL 1999 prohibits such a situation, because of consistency requirement.

Since SQL 1999 also does not support multiple inheritance, we cannot use inheritance to model a

situation where a person can be both a student and a teacher. We can of course create separate

tables to represent the information without using inheritance. We would have to add appropriate

referential integrity constraints to ensure that students and teachers are also represented in the

people table.

11.5. Reference Types:

Object oriented languages provide the ability to refer to objects. An attribute of a type can be a
reference to an object of a specified type. For example, in SQL 1999 we can define a type department
with a field name and a field head, which is a reference to the type person, and a table departments
of type department as follows:

Create type Department(

name varchar(20),

head ref(person) scope people

)

create table departments of department

Here the reference is restricted to tuples of the table people. The restriction of the scope of a
reference to tuples of a table is mandatory in SQL 1999, and it makes references behave like
foreign keys.

We can omit the declaration scope people from the type declaration and instead we make an
addition to the create table statement:

Create table departments of Department

(head with options scope people)

In order to initialize a reference attribute, we need to get the identifier of the tuple that is to be
referenced. We can get the identifier value of a tuple by means of a query. Thus, to create a tuple
with the reference value, we may first create the tuple with a null reference and then set the reference
separately:

Database Management System 11.9 Object Oriented Databases

There are some consistency requirements for sub tables. Before we state the constraints, we
need a definition: We say that tuples in a sub table corresponds to tuples in a parent table if they
have the same values for all inherited attributes. Thus, corresponding tuples represent the same
entity.

The consistency requirements for sub tables are:
1. Each tuple of the super table can correspond to at most one tuple in each of its immediate

sub tables.

2. SQL 1999 has an additional constraint that all the tuples corresponding to each other
must be derived from one tuple.

For example, without the first condition, we could have two tuples in students (or teachers) that
correspond to the same person.

The second condition rules out a tuple in people corresponding to both a tuple in students and a
tuple in teachers unless all these tuple was inserted in a table, teaching assistants, which is a sub
table of both teachers and students.

Since SQL 1999 does not support multiple inheritance, the second condition actually prevents a

person from being both a teacher and a student. The same problem would arise if the sub table

teaching-assistants is absent, even if multiple inheritance were supported. Obviously it would be

useful to model a situation where a person can be a teacher and a student, even if, a common sub

table teaching-assistants is not present. Thus, it can be useful to remove the second consistency

constraint.

Sub tables can be stored in an efficient manner without replication of all inherited fields, in one of
two ways:

 Each table stores the primary key (which may be inherited from a parent table) and the
attributes defined locally. Inherited attributes (other than the primary key) do not need to
be stored, and can be derived by means of a join with the super table, based on the
primary key.

 Each table stores all inherited and locally defined attributes. When a tuple is inserted, it
is stored only in the table in which it is inserted, and its presence is inferred in each of
the super tables. Access to all attributes of a tuple is faster, since a join is not required.
However, in case the second consistency constraint is absent, i.e., an entity can be
represented in two sub tables with out being present in a common subtle of both this
representation can result in replication of information.

11.4.3. Overlapping Sub tables:
Inheritance of types should be used with care. A university database may have many sub types of
person, such as student, teacher, football player, foreign citizen, and so on.

Student may it self have sub types such as undergraduate student, graduate student, and part time
student. Clearly, a person can belong to several of these categories at once. Each of these categories
is sometimes called a role.

Centre for Distance Education Acharya Nagarjuna University11.8

Create type teaching assistant
Under student, teacher

Teaching assistant would inherit all the attributes of student and teacher. There is a problem, however,
since the attributes name, address, and department are present in student, as well as in teacher.

The attributes name and address are actually inherited from common source, person. So there is
no conflict caused by inheriting them from student as well as teacher. However, the attribute
department is defined separately in student and teacher.

In fact, a teaching assistant may be a student of one department and a teacher in another department.
To avoid a conflict between the two occurrences of department, we can rename them by using an
as clause, as in this definition of the type Teaching Assistant:

Create type Teaching Assistant

Under student with(department as student-dept),

Teacher with(department as teacher-dept)

11.4.2. Table Inheritance:

Sub tables in SQL 1999 correspond to the E-R notion of specialization/generalization. For instance,
suppose we define the people table as follows:

Create table people of person

We can then define tables students and teachers as subtables of people, as follows:

Create table students of student

Under people

Create table teachers of teacher

Under people

The types of the sub tables must be subtypes of the type of the table. Thereby, every attribute
present in people is also present in the sub tables.

Further, when we declare students and teachers as sub tables of people, every tuple present in
students or teachers also implicitly present in people. Thus, if a query uses the table people, it will
find not only tuples directly inserted into that table, but also tuples inserted into its sub tables,
namely students and teachers. However, only those attributes that are present in people can be
accessed.

Multiple inheritance is possible with tables, just as it is possible with types. For example, we can
create a table of type Teaching Assistant:

Create table teaching-assistants

Of Teaching Assistant

Under students, teachers

As a result of the declaration, every tuple present in the teaching assistants table is also implicitly
present in the teachers and in the students table, and in turn in the people table.

SQL 1999 permits us to find tuples that are in people but not in its sub tables by using ”only people”
in place of people in a query.

Database Management System 11.7 Object Oriented Databases

Insert into books
Values

(‘compilers’,array[‘Smith’,’jones’],publisher(‘McGraw-
Hill’,’NewYork),set(‘parsing’, ’analysis’))

11.4. Inheritance:

Inheritance can be at the level of types, or at the level of tables. We first consider inheritance of
types, then inheritance at the level of tables.

11.4.1. Type Inheritance:
Suppose that we have the following type definition for people:

Create type person

(name varchar(20),

address varchar(20))

We may want to store extra information in the database about people:

create type person

(name varchar(20),

address varchar(20))

We may want to store extra information in the database about people who are students, and about
people who are students, and about people who are teachers. Since students and teachers are
also people, we can use inheritance to define the student and teacher types in SQL 1999.

‘ create type student

under person

(degree varchar(20),

department varchar(20))

create type teacher

under person

(salary integer,

department varchar(20))

Both student and teacher inherit the attributes of person namely, name and address. Student and
teacher are said to be subtypes of person, and person is a super type of student as well as teacher

Methods of structured type are inherited by its subtypes, just as attributes are. However a sub type
can redefine the effect of a method by declaring the method again, using overriding method in
place of method in method declaration.

Now, suppose if we want to store information about teaching assistants who are simultaneously
students and teachers, perhaps even in different departments. We can do this by using multiple
inheritances. SQL 1999 standard does not support multiple inheritances.

For instance, if our type system supports multiple inheritances, we can define a type for teaching
assistants as follows:

Centre for Distance Education Acharya Nagarjuna University11.6

With the above declaration, there is no explicit type for rows of the table.
A structured type can have methods defined on it. We declare methods as part of the type definition
of a structured type:

Create type Employee as (
Name varchar(20),
Salary integer)

Method giveraise (percent integer)

We create method body separately:

Create method giveraise(percent integer) for Employee
Begin
Setself.salary=self.salary+(self.salary*percent)/100;
End

The variable self refers to the structured type instance on which the method is invoked. The body
of the method can contain procedural statements.

11.3.3. Creation Of Values Of Complex Types:

In SQL 1999 constructor functions are used to create values of structured types. A function with
same name as structured type is a constructor function for the structured type. For instance, we
could declare a constructor for the type publisher like this:

Create function publisher (n varchar(20),b varchar(20))

Returns publisher

Begin

Set name=n;

Set branch=b;

End

In SQL 1999,unlike in object-oriented databases, a constructor creates a value of the type, not an
object of the type, i.e., the value the constructor creates has no object identity. In SQL 1999 objects
corresponds to tuples of a relation, and are created by inserting a tuple in a relation.

By default every structured type has a constructor with no arguments, which sets the attributes to
their default values. Any other constructors have to be created explicitly. There can be more than
one constructor for the same structured type; although they have the same name, they must be
distinguishable by the number of arguments and types of their arguments.

We create set-valued attributes, such as keyword-set, by enumerating their elements within
parentheses following the keyword set. We can create multiset values just like set values, by
replacing set by multiset.

Here we have created a value for the attribute publisher by invoking a constructor function for
publisher with appropriate arguments.

If we want to insert the preceding tuple into the relation books, we could execute the statement:

Database Management System 11.5 Object Oriented Databases

Sets are an instance of collection types. Other instances of collection types include arrays and
multisets (i.e., unordered collections, where an element may occur multiple times). The following
attribute definitions illustrate the declaration of an array:

Author-array varchar(20) array[10]

Here, author-array is an array of 10 author names to the maximum. We can access elements of an
array by specifying the array index, for example author-array[1].

Arrays are the only collection type supported by SQL: 1999 the syntax used is as in the preceding
declaration. SQL 1999 does not support unordered sets or multisets, although they may appear in
future versions of SQL.

11.3.2. Structured Types:

Structured types can be declared and used in SQL 1999 as in the following example:

Create type publisher as

(name varchar(20),

branch varchar(20))

create type book as

(title varchar(20),

author-array varchar(20)array[10],

pub-date date,

publisher publisher,

keyword-set setoff(varchar(20))

create table books of book

The first statement defines a type called publisher, which has two components: a name and a
branch. The second statement defines a structured type Book, which contains a title, an author-
array, which is an array of authors, a publication date, a publisher(of type publisher), and a set of
keywords. (The declaration of keyword-set as a set uses our extended syntax, and is not supported
by the SQL 1999 standard). The types illustrated above are called structured types in SQL 1999
Structured types allow composite attributes of E-R diagrams to be represented directly. Unnamed
row types can also be used in SQL 1999 to define composite attributes. For instance, we could
have defined an attribute publisher1 as:

Publisher1 row(name varchar(20),
Branch varchar(20))

instead of creating a named type publisher.
We can of course create tables without creating an intermediate type for the table.
For example, the table books could also be defined as follows:

Create table books
(title varchar(20),
author-array varchar(20)array[10],
pub-date date,
publisher publisher,
keyword-set setoff(varchar(20)))

Centre for Distance Education Acharya Nagarjuna University11.4

Although our example book database can be adequately expressed without using nested relations,
the use of nested relations leads to an easier-to-understand model. The typical user of an
information-retrieval system thinks of the database in terms of books having sets of authors, as the
non-1NF design models. The 4NF design would require users to include joins in their queries, there
by complicating interaction with the system.

We could define a non-nested relational view (whose contents are identical to flat-books) that
eliminates the need for users to write joins in their query. In such a view, however, we lose the one-
to-one correspondence between tuples and books.

11.3. Complex Types:
Nested relations are just one example of extensions to the basic relational model. Other non-
atomic data types, such as nested records, have also proved useful. The object-oriented data
model has caused a need for features such as inheritance and references to objects. With complex
types systems and object orientation, we can represent E-R model concepts, such as identity of
entities, multi-valued attributes, and generalization and specialization directly, without a complex
translation to the relational model.

4NF version of the relation flat-books
In this section, we describe extensions to SQL to allow complex types including, nested relations
and object-oriented features. Our presentation is based on the SQL: 1999 standard, but we also
outline features that are not currently in the standard but may be introduced in future versions of
SQL standards.

11.3.1. CollectionAnd Large Object Types:
Consider this fragment of code.

Create table books (
……

keyword-set setoff(varchar(2));

This table definition differs from table definitions in ordinary relational databases, since it allows
attributes that are sets, there by permitting multi-valued attributes of E-R diagrams to be represented
directly.

Database Management System 11.3 Object Oriented Databases

We can see that, if we define a relation for the preceding information, several domains will be non-
atomic.

 Authors: A book may have a set of authors. Nevertheless, we may want to find all books of
which Jones was one of the authors. Thus we are interested in a sub-part of the domain
element ”set of authors”.

 Keywords: If we store a set of keywords for a book, we expect to be able to retrieve all
books whose keywords include one or more keywords as non-atomic.

 Publisher: Unlike keywords and authors, publisher does not have a set-valued domain.
However, we may view publisher as consisting of the sub fields name and branch. This

view makes the domain of publisher non-atomic.

Figure shows an example relation, books. The books relation can be represented in 1NF, as in
figure 9.2 since we must have atomic domains in 1NF, yet want access to individual authors and to
individual keywords, we need one tuple for each (keyword, author) pair. The publisher attribute is
replaced in the 1NF version by two attributes: one for each sub field of publisher.

Flat-books, a 1NF version of non-1NF relational

Much of the awkwardness of the flat-books relation in the above figure disappears if we assume
that the following multi-valued dependencies hold:

 Title ->->author

 Title ->->keyword

 Title ->->pub-name, pub-branch

Then, we can decompose the relation into 4NF using the schemas:

 Authors (title, author)

 Keywords (title, keyword)

 Books4 (title, pub-name, pub-branch)

Centre for Distance Education Acharya Nagarjuna University11.2

11.1. Introduction:
Programming languages add persistence and other database features to existing programming
languages by using an existing object-oriented type system. In contrast, object-relational data model,
by providing a richer type system including complex data types and object orientation. Relational
query languages, in particular SQL need to be correspondingly extended to deal with the richer type
system. Such extensions attempt to preserve the relational foundations in particular, the declarative
access to data while extending the modeling power. Object-relational database systems (i.e.,
database systems based on the object-relational model) provide a convenient migration path for
users of relational databases who wish to use object-oriented features.

We first present the motivation for the nested relational model, which allows relations that are not
in first normal form, and allows direct representation of hierarchical structures. We then show how
to extend SQL by adding a variety of object-relational features.

11.2. Nested Relations:
We know that first normal form contains all attributes with atomic domains, i.e., the elements of the
domain are indivisible units.

The assumption of 1NF is a natural one in the bank example we have considered. However, not all
applications are best modeled by 1NF relations. For example, rather than view a database as a set
of records, users of certain applications view it as a set of objects. These objects may require
several records for their representation. We shall see that a simple, easy-to-use interface requires
a one-to-one correspondence between the user’s intuitive notion of an object and the database

system’s notation of data item.

Non-1NF books relation, books
The nested relational model is an extension of the relational model in which domains may be

either atomic or relation valued. Thus the value of a tuple on an attribute may be a relation, and
relations may be contained with in relations. A complex object thus can be represented by a single
tuple of a nested relation. If we view a tuple of a nested relation as a data item, we have a one-to-
one correspondence between data items and objects in the user’s view of the database.

We illustrate nested relations by an example from library. Suppose we store for each book the
following information:

 Book title

 Set of authors

 Publisher

 Set of keywords

Database Management System 11.1 Object Oriented DatabasesLesson 11

ObjectOrientedDatabases

11.0 Objectives:

The Lesson introduces a variety of modern techniques in database. The major topics include,
object-oriented database systems.

After reading this chapter, you should understand:

 To define the concept of Nested Relations

 Various Complex Types

 Explain the concept of Inheritance

 Various Reference Types

 What is Querying with complex types?

 What are Functions and Procedures?

Structure Of the Lesson:

11.1. Introduction

11.2. Nested Relations

11.3. Complex Types

11.3.1. Collection And Larger Object types

11.3.2. Structured Types

11.3.3. Creation of Values of complex types

11.4. Inheritance

11.4.1. Type Inheritance

11.4.2. Table Inheritance

11.4.3. Overlapping Sub tables

11.5. Reference Types

11.6. Querying with complex types

11.6.1. Path Expression

11.6.2. Collection – values attributes

11.6.3. Nesting and Unnesting

11.7. Functions and Procedures

11.7.1. SQL functions and Procedures

11.7.2. External Language Routines

11.8. Summary

11.9. Technical Terms

11.10. Model Questions

11.11. References.

Database Management System 12.1 XMLLesson 12

XML

12.0 Objectives:

To:

 Learn about XML

 Understand the structure of XML documents

 Explore the XML Schema

 Discover how to write queries on XML documents

 Learn about the XMLAPIs and XML applications.

Structure Of the Lesson:
12.1. Introduction

12.2. XML Document Schema

12.3. Querying and Transformation

12.4. Application Program Interfaces to XML

12.5. Storage of XML data

12.6. XML Applications

12.7. Summary

12.8. Technical terms

12.9. Model questions

12.10. References

12. 1. Introduction
Markup means a part of the document that is not part of the printed output. A Markup language is a
formal description of what part of the document is content, what part is markup, and what the
markup means. Markup languages use tags to specify markup. Tags are enclosed in angular
brackets, <>, and used in pairs. The beginning portion of a tag is written as <tag> and the ending
portion as </tag>. These two delimit the tag. For example: <title> XML NOTES </title>. XML does
not prescribe the set of tags allowed. Tags in an XML document, may be chosen as needed by the
application. XML provides a standard way of tagging the data. Data can be efficiently exchanged
between two organizations using XML provided they agree upon what tags appear in an XML
document and what they mean. XML is also useful for storing structured information in files. The
XML representation of the data has the following advantages:

1. The XML tags make the message self-documenting.

2. The format of the document is not rigid. The ability to recognize and ignore unexpected tags
allows the format of the data to evolve over time without invalidating existing applications.

3. XML allows nested structures.

4. XML is widely accepted and tools to process XML documents are evolving faster.

Centre for Distance Education Acharya Nagarjuna University12.2

Structure of XML data:

The fundamental construct in an XML document is the element. An element is a pair of matching
start and end tags, and the text that appears between them. The XML documents must have a
single root element that encompasses all other elements in the document. XML elements must
nest properly. An example of XML elements is shown below.

<account> ….<balance> ….</balance> …. </account>

<bank>

<account>

<account_number>A-101</account_number>

<branch_name>Downtown</branch_name>

<balance>500</balance>

</account>

<account>

<account_number>A-102</account_number>

<branch_name>Perryridge</branch_name>

<balance>400</balance>

</account>

<account>

<account_number>A-201</account_number>

<branch_name>Brighton</branch_name>

<balance>900</balance>

</account>

<customer>

<customer_name>Johnson</customer_name>

<customer_street>Alma</customer_street>

<customer_city>Palo Alto</customer_city>

</customer>

<customer>

<customer_name>Hayes</customer_name>

<customer_street>Main</customer_street>

<customer_city>Harrison</customer_city>

</customer>

<depositor>

<account_number>A-101</account_number>

<customer_name>Johnson</customer_name>

</depositor>

<depositor>

<account_number>A-201</account_number>

Database Management System 12.3 XML

<customer_name>Johnson</customer_name>

</depositor>

<depositor>

<account_number>A-102</account_number>

<customer_name>Hayes</customer_name>

</depositor>

</bank>

Fig. 12. 1

<bank-1>

<customer>

<customer_name>Johnson</customer_name>

<customer_street>Alma</customer_street>

<customer_city>Palo Alto</customer_city>

<account>

<account_number>A-101</account_number>

<branch_name>Downtown</branch_name>

<balance>500</balance>

</account>

<account>

<account_number>A-201</account_number>

<branch_name>Brighton</branch_name>

<balance>900</balance>

</account>

</customer>

<customer>

<customer_name>Hayes</customer_name>

<customer_street>Main</customer_street>

<customer_city>Harrison</customer_city>

<account>

<account_number>A-102</account_number>

<branch_name>Perryridge</branch_name>

<balance>400</balance>

</account>

</customer>

</bank-1>

Fig. 12. 2

Centre for Distance Education Acharya Nagarjuna University12.4

XML allows us to give attributes to an element. For example the type of an account can be represented
as an attribute. The attributes appear as name=value pairs before the closing ‘>’ of a tag. The
attributes of an element can appear only once. Since XML documents are designed to be exchanged
between applications, a namespace mechanism has been introduced to allow organizations to
specify globally unique names to be used as element tags in documents. The idea of a namespace
is to prepend each tag or attribute with a universal resource identifier. Organizations may prefer
their web URL as namespace, as they are unique. XML not only allows long namespace identifiers
but also abbreviations for them. Adocument can have more than one namespace, declared as part
of the root element. However a default namespace can be defined by using the xmlns attribute. The
following example shows how a namespace can be defined.

<bank xmlns:FB=http://www.FirstBank.com>

…

<FB:branch>

<FB:branch_name> Downtown </FB:branch_name>

<FB:branch_city> Brooklyn </FB:branch_city>

</FB:branch>

…

</bank>

Sometimes we need to store values containing tags without the tags interpreted as XML tags. This
can be done as <![CDATA[<account> … </account>]]>. Here CDATA stands for character data.

Because <account> is enclosed in CDATA it is interpreted as normal text, not as a tag.

12. 2. XML Document Schema:

Like databases, XML document data can be constrained by a schema. A schema constrains the
type and value of data to be stored in a document or a database. Document Type Definition (DTD)
is included as a schema definition language in XML standard. DTD constrains the appearance of
sub-elements and attributes within an element. It is a list of rules that specifies the sub-elements
and attributes. An example of DTD is given in the following picture.

<!DOCTYPE bank [

<!ELEMENT bank ((account | customer | 60

depositor)+)>

<!ELEMENT account (account_number branch_name balance)>

<!ELEMENT customer (customer_name customer_street customer_city)>

<!ELEMENT depositor (customer_name account_number)>

<!ELEMENT account_number (#PCDATA)>

<!ELEMENT branch_name (#PCDATA)>

<!ELEMENT balance (#PCDATA)>

<!ELEMENT customer_name (#PCDATA)>

<!ELEMENT customer_street (#PCDATA)>

<!ELEMENT customer_city (#PCDATA)>

]>

Fig. 12. 3

Database Management System 12.5 XML

The above picture defines a schema for an XML document prepared as part of a bank application.
In that document a bank element consists of one or more account, customer, or depositor elements.
The | operator specifies “or”. The + operator specifies “one or more”. The * operator may be used
to specify “zero or more”. One of the types used in DTD is #PCDATA, which stands for “parsed
character data”. The above picture shows the allowable attributes for each element, and imposes
no order for them. Attributes may be specified to be of type CDATA, ID, IDREF, or IDREFS. ID type
attribute provides a unique identifier for the element. An element of type IDREF is a reference to an
element, and it contains a value, which is given in ID attribute of some element. IDREFS type
attribute allows references to multiple elements. These references are separated by spaces. The
ID and IDREF attributes serve the same purpose as reference mechanism in object-oriented and
object-relational databases. They allow construction of complex data relationships. An example of
XML data with ID and IDREF type attributes is shown in the following picture.

<bank-2>

<account account_number=”A-401” owners=”C100 C102”>

<branch_name>Downtown</branch_name>

<balance>500</balance>

</account>

<account account_number=”A-402” owners=”C102 C101”>

<branch_name>Perryridge</branch_name>

<balance>900</balance>

</account>

<customer customer_id=”C100” accounts=”A-401”>

<customer_name>Joe</customer_name>

<customer_street>Monroe</customer_street>

<customer_city>Madison</customer_city>

</customer>

<customer customer_id=”C101” accounts=”A-402”>

<customer_name>Lisa</customer_name>

<customer_street>Mountain</customer_street>

<customer_city>Murray Hill</customer_city>

</customer>

<customer customer_id=”C102” accounts=”A-401 A-402”>

<customer_name>Mary</customer_name>

<customer_street>Erin</customer_street>

<customer_city>Newark</customer_city>

</customer>

</bank-2>

Fig. 12. 4

Despite its flexibility and ease of use, the DTD has some deficiencies. To overcome those
deficiencies, XML Schema language was introduced. This language defines a number of built-in
types such as string, integer, decimal, date, and Boolean. It allows user-defined types using
constructors such as complexType and sequence. The following figure gives the XML schema

Centre for Distance Education Acharya Nagarjuna University12.6

version of DTD, which is given in the previous example

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”bank” type=”BankType”/>

<xs:element name=”account”>

<xs:complexType>

<xs:sequence>

<xs:element name=”account_number” type=”xs:string”/>

<xs:element name=”branch_name” type=”xs:string”/>

<xs:element name=”balance” type=”xs:decimal”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”customer”>

<xs:element name=”customer_number” type=”xs:string”/>

<xs:element name=”customer_street” type=”xs:string”/>

<xs:element name=”customer_city” type=”xs:string”/>

</xs:element>

<xs:element name=”depositor”>

<xs:complexType>

<xs:sequence>

<xs:element name=”customer_name” type=”xs:string”/>

<xs:element name=”account_number” type=”xs:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name=”BankType”>

<xs:sequence>

<xs:element ref=”account” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”customer” minOccurs=”0” maxOccurs=”unbounded”/>

<xs:element ref=”depositor” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Fig. 12. 5

The first element is the root element. Other elements definitions follow the root element.Any element
type that has either attributes or nested subelements must be specified to be a complex type. An
XML schema can define minimum and maximum number of occurrence of subelements by using
minOccurs and maxOccurs.

Database Management System 12.7 XML

The attributes of elements can also be specified using xs:attribute tag, where xs is a namespace.
An attribute can be made a compulsory attribute for an element by adding use=”require” to its
definition. The default value of use is optional. Such definitions would appear directly under the
enclosing complexType specification.

In addition to defining types, an XML schema allows the specification of keys and references. The
XML schema has several advantages over DTD. They are listed below.

1. It allows user-defined types.

2. It allows the text that appears in elements to be constrained to specific types.

3. It allows uniqueness and foreign-key constraints.

4. It is integrated with namespaces to allow different parts of a document to conform to different
schemas.

5. It allows types to be restricted to create specialized types.

6. It allows complex types to be extended to by using a form of inheritance.

12. 3. Querying and Transformation
The need for efficient XML data management tools increased with the increase in the number of
applications using it. Several languages provide querying and transformation capabilities:

1. XPath: It is a language for path expressions.

2. XQuery: It is the standard language for querying XML data.

3. XSLT: This language was designed to be a transformation language, as part of the style
sheet system, XSL, which is used to control the formatting of XML data into HTML or other
print or display languages.

XPath

This language addresses parts of an XML document by means of path expressions. Its current
version is 2.0. A path expression in XPath is a sequence of location steps separated by “/”. The
result of a path expression is a set of nodes. It is evaluated from left to right. The initial “/” indicates
the root of the document. The result of a path at any point consists of an ordered set of nodes from
the document. Attribute values may also be accessed using @ symbol. The “text ()” function is
used to extract just the values between the tags in the final set of nodes. XPath has lot of features.
Some of them are listed below.

1. This path expression results three nodes from the previous example.

/bank-2/customer/customer.name

2. The expression /bank-2/customer/customer.name/text() would return the same names,
but without the enclosing tags.

3. Selection predicates may follow any step, and are contained in square brackets. For example:
/bank-2/account [balance > 400] returns account elements with balance greater than 400.

4. XPath provides several functions that can be used as part of predicates. For example
count(), not(…), etc.

5. The function id(“foo”) returns the node with an attribute of type ID and value “foo”.

6. The | operator allows expression results to be unioned. For example

/bank-2/account/id(@owner)|/bank-2/loan/id(@borrower) gives customers with

either accounts or loans.

Centre for Distance Education Acharya Nagarjuna University12.8

7. An XPath expression can skip multiple levels of nodes by using “//”.

8. A step in the path need not just select from the children of the nodes in the current node set.

9. The built-in function doc(name) returns the root of a named document. For example, if
“bank.xml” contains the bank example data, then the following path expression would return
all accounts at the bank.

doc(“bank.xml”)/ bank/account

XQuery

XQuery is the standard query language for XML. This language derives from an XML query language
called Quilt. Quilt includes features from XPath and other XML query languages, XQL and XML-QL.
XQuery queries are modeled after SQL queries. They are organized into five sections: for, let,
where, order by, and return. They are referred to as “FLWOR” expressions.

for clause: It is like the from clause of SQL. It specifies variables that range over the results of
XPath expressions. When more than one variable is specified, the results include the Cartesian
product of the possible values the variables can take.

let clause: It allows the results of XPath expressions to be assigned to variable names for simplicity
of representation.

where clause: It performs additional tests on the joined tuples from the for clause.

order by clause: It allows sorting of the output of the query.

return clause: This clause allows the construction of results in XML.

The following is an example of a FLWOR expression.

This XML query returns the account numbers for checking accounts.

for $x in /bank-2/account

let $acctno := $x/@account_number

where $x/balance > 400

return <account<number> {$acctno} </account_number>

In the above XML query, the text in curly brackets (“ { } “) is treated as expression to be evaluated.
Another example of XQuery that gives a way of constructing elements is given below.

This XML query returns the account numbers for checking accounts.

for $x in /bank-2/account

let $acctno := $x/@account_number

where $x/balance > 400

return element account {

attribute account_number {$x/@account_number},

attribute branch_name {$x/branch_name},

element balance {$x/balance}

Joins

Joins can be specified in XQuery. The join of depositor, account, and customer elements in fig.1,
can be written in XQuery this way

for $a in /bank/account,

$c in /bank/customer,

Database Management System 12.9 XML

$d in /bank/depositor

Where $a/account_number =$d/account_number

and $c/customer_name = $d/customer_name

return <cust_acct> {$c $a } </cust_acct>

Path expressions in XQuery are the same as path expressions in XPath. Path expressions may
return a single value or element, or a sequence of values or elements. In the absence of schema
information it may not be possible to infer whether a path expression returns a single value or a
sequence of values. Such path expressions may participate in comparison operations such as =,
<, and >. These operations are specially defined in XQuery. For example in the expression $x/
balance > 400, if the $x/balance returns sequence containing multiple values, then the expression
evaluates to true if at least one of the values is greater than 400. This behavior of the comparison
operators is opposite to that of the following operators: eq, ne, lt, gt, le, ge.

Nested Queries

XQuery FLWOR expressions can be nested in the return clause, in order to generate element
nestings that do not appear in the source document. This feature is similar to nested subqueries in
the “from” clause of SQL. XQuery provides a variety of aggregate functions such as sum() and
count() that can be applied on sequences of elements or values. The function distinct-values()
applied on a sequence returns a sequence without duplicate values. XQuery does not provide a
group by construct. The following are two examples on nested queries.

A query on bank XML schema to find total balance on all accounts owned by each customer:

for $c in /bank/customer

return

<customer-total-balance>

<customer_name> {$c/customer_name} </customer_name>

<total_balance> {fn:sum(

for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number = $d/account_number]

return $a/balance)}

</total_balance>

</customer-total-balance>

An XML query to generate bank XML structure so that account elements are nested within customer
elements:

<bank-1> {

for $c in /bank/customer

return

<customer>

{$c/*}

{ for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number = $d/account_number]

Return $a}

</customer>

}</bank-1>

Centre for Distance Education Acharya Nagarjuna University12.10

Sorting of Results

Results can be sorted in XQuery by using the order by clause. The default order is ascending
order. To sort the result in descending order we can use “order by attribute-name descending”.
Sorting can be done at multiple levels of nesting. The following example gives a nested representation
of bank information sorted in customer name order, with accounts of each customer sorted by
account number.

<bank-1>{

for $c in /bank/customer

order by $c/customer_name

return

<customer>

{$c/*}

{for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number = $d/account_number]

order by $a/account_number

return <account> {$a/*} </account>}

</customer>

} </bank-1>

Note: $c/* refers to all the children of the node (or sequence of nodes) bound to the variable $c.

Functions and Types

XQuery provides a variety of built-in functions, such as numeric functions and string matching and
manipulation functions. In addition, XQuery supports user-defined functions. The following user-
defined function returns a list of all balances of a customer with a specified name:

define function balances(xs:string $c) as xs:decimal* {

for $d in /bank/depositor[customer_name = $c],

$a in /bank/account[account_number = $d/account_number]
return $a/balance

}

The type specifications for function arguments and return values are optional, and may be omitted.
XQuery uses the type system of XML schema. The namespace prefix xs: used in the above example
is predefined by XQuery. Types can be suffixed with a * to indicate a sequence of values of that
type. Types can also be partially specified. XQuery performs conversion automatically whenever
required. XQuery also provides functions to convert between types. For example number(x) converts
a string x, to a number.

XSLT

Astyle sheet is a representation of formatting options for a document. The XML Stylesheet Language
(XSL) is a logical extension of HTML style sheets. The language includes a general-purpose
mechanism, called XSL Transformations (XSLT). This mechanism is used to transform one
XML document into another XML document, or to other formats such as HTML.

Database Management System 12.11 XML

XSLT transformations are expressed as a series of recursive rules, called templates. The templates
allow selection of nodes in an XML tree by an XPath expression. Templates can also generate new
XML content. With this selection and content generation can be mixed. A simple template for XSLT
consists of a match part and a select part. The following XSLT example can be used to wrap
results in new XML elements.

<xsl:template match=”/bank-2/customer”>

<xsl:value-of select=”customer_name”/>

</xsl:template>

<xsl:template match=”*”/>

<xsl:template match=”/bank-2/customer”>

<customer>

<xsl:value-of select=”customer_name”/>

</customer>

</xsl:template>

<xsl:template match=”*”/>

The match statement in the above example contains an XPath expression that selects one or
more nodes. The first template matches customer elements that occur as children of the ank-2
root element. The xsl: value-of statement enclosed in the match statement outputs values from the
nodes in the result of the XPath expression. The first template outputs the value of the
customer_name subelement.

Structural recursion is a key part of XSLT. This means, when a template matches an element in
the tree structure, XSLT can use structural recursion to apply template rules recursively on subtrees,
instead of just outputting a value. It applies rules recursively by the xsl:apply-templates directive,
which appears inside other templates. The following example shows recursive application of rules.

<xsl:template match=”/bank”>

<customers>

<xsl:apply-templates/>

</customers>

</xsl:template>

<xsl:template match=”/customer”>

<customer>

<xsl:value-of select=”customer_name”/>

</customer>

</xsl:template>

<xsl:template match=”*”/>

XSLT provides a feature called keys that permit lookup of elements by using values of subelements

Centre for Distance Education Acharya Nagarjuna University12.12

or attributes. This feature permits, attributes other than the ID attributes, to be used. Keys are
defined by an xsl:key directive. The directive has three parts as shown in the following example.

<xsl:key name=”acctno” match=”account” use=”account_number”/>

The name attribute is used to distinguish different keys. The match attribute specifies which nodes
the key applies to. The use attribute specifies the expression to be used as the value of the key. The
keys can be used in templates as part of any pattern through the key function. For example:
key(“acctno”, “A-401”) references to the XML node for account “A-401”. Keys can be used to
implement some types of joins, as in the following figure. In this example the key function joins the
depositor elements with matching customer and account elements

<xsl:key name=”acctno” match=”account” use=”account_number”/>

<xsl:key name=”custno” match=”customer” use=”customer_name”/>

<xsl:template match=”depositor”>

<cust_acct>

<xsl:value-of select=key(“custno”, ”customer_name”)/>

<xsl:value-of select=key(“acctno”, ”account_number”)/>

</cust_acct>

</xsl:template>

<xsl:template match=”*”/>

Fig. 12. 6

12. 4. Application program Interfaces to XML

XML got wide acceptance as data representation and exchange format. Software tools are widely
available for manipulation of XML data. There are two standard models for programmatic manipulation
of XML. Both these APIs can be used to parse an XML document and create an in-memory
representation of the document. One of the standard APIs for manipulating XML is based on the
document object model (DOM), which treats XML content as a tree, with each element represented
by a node, called a DOM node.

DOM libraries are available for most common programming languages and are even present in
web browsers. DOM provides a variety of functions for updating the document by adding and
deleting attribute and element children of a node, setting node values, and so on. DOM can be used
to access XML data stored in databases, and an XML database can be built with DOM. The DOM
interface does not support any form of declarative querying. Some of the interfaces and methods in
Java API for DOM are given in the following list.

 The java DOMAPI provides an interface called Node, and interfaces Element and Attribute,
which inherit from the Node interface.

 The Node interface provides methods such as getParentNode(0, getFirstChild(), and
getNextSibling() to navigate the DOM tree, starting with the root node.

 Subelements of an element can be accessed by name using
getElementsByTagName(name).

 Attribute values of an element can be accessed by name, using the method
getAttribute(name).

 The text value of an element is modeled as a Text node, which is a child of the element
node. An element node with no subelements has only one such child node. The method
getData() on the Text node returns the text contents.

Database Management System 12.13 XML

The second commonly used programming interface is the Simple API for XML (SAX). It is an event
model, designed to provide a common interface between parsers and applications. This API is built
on the concept of event handlers. Parsing events correspond to the recognition of parts of a
document. The SAX application developer creates handler function for each event, and registers
them. When the SAX parser reads a document in, as each event occurs, the handler function is
called with parameters describing the event. The handler functions then carry out their task. SAX
generally requires more programming effort than DOM. It does not need the creation of DOM tree,
where the application needs to create its own data representation.

CH. 5. Storage of XML data

Many applications need to store XML data. The different ways of XML data storage are given in the
following list.

Non-relational Data Stores

 Store in flat files.

 Create an XML database.

Relational Databases

 Store as String

 Tree Representation.

 XML-enabled database.

 Native Storage within a Relational Database.

XML data may be stored in a file. This approach has drawbacks. This approach lacks data isolation,
atomicity, concurrent access, and security. For small applications this storage is sufficient, if proper
tools are used. An alternative is to create an XML database. Early XML databases implemented the
Document Object Model on a C++ based object-oriented database. The addition of XQuery or
other XML query languages provides declarative querying. However building a full-featured XML
data storage and querying but also other database features like security is a very complex task. So
it is better to use an existing database system.

Relational databases are widely used in existing applications. So it is wise to convert XML data to
relational form, which is a straightforward task if the data were generated from a relational database.
When the XML data is not generated from a relational schema, the task of converting it to relational
form is not straightforward. In such cases alternative approaches are taken. One alternative is to
store small XML documents as string (clob) values in tuples in a relational database. Large XML
documents with the top-level element having many children can be handled by storing each child
element as a string in a separate tuple. A refined alternative is to store different types of elements in
different relations, and also store the values of some critical elements as attributes of the relation to
enable indexing. Some database systems such as Oracle, support function indices, which can
help avoid replication of attributes between the XML string and relation attributes.

Tree Representation

Arbitrary XML data can be modeled as a tree and stored using a pair of relations:

nodes (id, type, label, value)

child (child_id, parent_id)

Each element and attribute in the XML data is given a unique identifier. A tuple is inserted in the
nodes relation for each element and attribute with its identifier (id), its type, the name of the element
or attribute (label), and the text value of the element or attribute (value). The relation child is used to
record the parent element of each element and attribute. To preserve order information an extra

Centre for Distance Education Acharya Nagarjuna University12.14

attribute “position” can be added to the child relation to indicate the relative position among the
children of the parent.

Map to Relations

In this approach, XML elements whose schema is known are mapped to relations and attributes.
Elements whose schema is unknown are stored as strings or as a tree. A relation is created for
each element type, whose schema is known. The attributes of the relation are defined as follows.

 All attributes of these elements are stored as string-valued attributes of the relation.

 If a subelement of the element is a simple type, an attribute is added to the relation and its
type defaults to string.

 Otherwise, a relation is created corresponding to the subelement.

 An identifier attribute is added to the relations representing the element.

 An attribute parent_id is added to the relation representing the subelement, with its
value set to its parent identifier.

 If ordering is to be preserved, an attribute position is added to relation representing
the subelement.

XML-enabled database

XML is used to exchange data between business applications. Most often this data originates in
relational databases. Data in Relational databases is published to XML form and incoming data is
shredded. An XML-enabled database supports an automatic mechanism for publishing relational
data as XML. This mechanism may use a simple and straightforward mapping or a more
complicated mapping. At the simplest, each row of a table might be mapped to an XML element
and each column in that row a subelemet of the XML element. A more complicated mapping would
allow nested structures to be created. SQL extension queries with nested queries in the select
clause are used for easy creation of nested XML output.

Native Storage within a Relational Database

Some Relational databases have begun to support native storage of XML. They store XML data as
strings or in binary representations, without converting the data to relational form. A new data type
xml is provided to represent XML data. A relation with an attribute of type xml can be used to store
a collection of XML documents. Each document is stored as a value of xml in a separate tuple.

SQL / XML

The SQL / XML is a standard that defines the extensions of SQL, allowing the creation of nested
XML output. This standard includes ways to map SQL types to XML schema types, and relational
schemas to XML schemas. For example the following picture shows the SQL / XML representation
of the bank schema containing the relations account, customer, and depositor.

<bank>

<account>

<row>

<account_number>A-101</account_number>

<branch_name>Downtown</branch_name>

<balance>500</balance>

Database Management System 12.15 XML

</row>

<row>

<account_number>A-102</account_number>

<branch_name>Perryridge</branch_name>

<balance>400</balance>

</row>

<row>

<account_number>A-201</account_number>

<branch_name>Brighton</branch_name>

<balance>900</balance>

</row>

</account>

<customer>

<row>

<customer_name>Johnson</customer_name>

<customer_street>Alma</customer_street>

<customer_city>Palo Alto</customer_city>

</row>

<row>

<customer_name>Hayes</customer_name>

<customer_street>Main</customer_street>

<customer_city>Harrison</customer_city>

</row>

</customer>

<depositor>

<row>

<account_number>A-101</account_number>

<customer_name>Johnson</customer_name>

</row>

<row>

<account_number>A-201</account_number>

<customer_name>Johnson</customer_name>

</row>

<row>

<account_number>A-102</account_number>

<customer_name>Hayes</customer_name>

</row>

</depositor>

</bank>

Centre for Distance Education Acharya Nagarjuna University12.16

Fig. 12. 7

This standard adds several operators and aggregate operations to SQL, to allow the construction
of XML output directly from the extended SQL. The following list describes a few such functions
and operators.

xmlelement function: Used to create XML elements.

xmlattributes function: Used to create attributes

xmlagg function: Used to create a forest (collection) of XML elements from the collection of values
on which it is applied.

xmlforest operator: Used to simplify the construction of XML structures. It is similar to xmlattributes
function.

xmlconcat operator: Used to concatenate elements created by sub-expressions into a forest.

An example query to create an XML element for each account is given below.

select xmlelemnet(name “account”,

xmlattributes(account_number as account_number),

xmlelement(name “branch_name”, branch_name),

xmlelement(name “balance”, balance))

from account

12. 6. XML Applications
XML is useful in several applications like storing data with complex structures, exchanging data,
web applications, and data mediation. Standard have been developed based on XML for
representation of data for various applications. Protocols have been defined for invoking procedures,
using XML for representing the procedure input and output. In many web applications XML is becoming
the default tool for data mediation. The following four points briefly discuss the uses of XML.

Standardized Data Exchange Formats

XML based standards, for data representation, have been developed for a variety of specialized
applications. Some sample areas are listed below:

 ChemML is a standard for representing information needed by chemical industry. This
standard allows representation of information about chemicals, such as their molecular
structure, boiling and melting points, solubility in various solvents, calorific values etc.

 In shipping, customs and tax officials need shipment records containing detailed
information about the goods being shipped, from whom and to where they were sent,
to whom and to where they are being shipped, the monetary value of the goods and so
on.

 The RosettaNet standards for e-business applications define XML schemas and
semantics for representing data as well standards for message exchange.

Storing Data with Complex Structure

Many applications need to store data that are structure, but are not easily modeled as relations.
Such applications prefer to store the data in XML format. The XML format is simple and can
represent any complex structured data. XML-based representations have been proposed as
standards for storing documents, spreadsheet data and other data that are part of office application
packages. XML is used to represent data with complex structure that must be exchanged between
different parts of an application.

Database Management System 12.17 XML

Web Services

A common requirement of organizations is to require data from outside of the organization or from
another department of the same organization that uses a different database. In such cases XML is
a useful format for exchange of data between organizations or intra-organization data exchange.
When the information is to be used directly by a human, organizations provide web-based forms,
where uses input some values and get the desired information in HTML format. When a software
program needs such information, then the results can be provided in XML format.

The Simple Object Access Protocol (SOAP) defines a standard for invoking procedures, using
XML for representing the procedure input and output. A site providing such a collection of SOAP
procedures is called a Web Service. To invoke a web service, a client must prepare an appropriate
SOAP XML message and send it to the service. As a result, the client gets the response in XML
format, which the client must process to extract the information contained in it.

Data Mediation

Data mediation applications extract information from various resources and aggregate the
information to present it to a user. For such applications the task will be simple if all the resources
provide data in standard XML format. A mediator is an application used to combine the extracted
information under a single schema. The mediator defines a single schema that represents all

required information, and provides code to transform data between different representations.

12. 7. Summary

XML stands for Extensible Markup Language. It is a descendant of the Standard Generalized Markup
Language (SGML). It was originally invented for providing functional markup for web documents,
but has become the de facto standard for data exchange between applications. XML documents
contain matching tags that indicate the beginning and end of an element. Elements may have
subelements nested within them, to any level of nesting. Elements may also have attributes. One
of the attributes of an element may be of type ID that stores unique identifier for the element.
Elements may have attributes that point to other elements.

XML data can be represented as tree structures, with nodes corresponding to elements and
attributes. Nesting of elements is reflected by the parent-child structure of the tree representation.
The XQuery language is the standard language for querying XML data. It has a structure similar to
SQL. It has for, let, where, order by and return clauses. It supports nested queries and userdefined
functions.

The DOM and SAX APIs are widely used for programmatic access to XML data. These APIs are
available with a variety of programming languages

12. 8. Technical Terms

HTML: Hyper Text Markup Language.

SGML: Standard Generalized Markup Language.

XML: Extensible Markup Language.

XPath: A standard notation for specifying the path of an element in an XML document.

XQuery: A query used to extract desired information from an XML document.

SQL: Structured Query Language.

Centre for Distance Education Acharya Nagarjuna University12.18

DOM: Document Object Model.

SOAP: Simple Object Access Protocol.

API: Application Program Interface.

Schema: A part of the document that describes the structure and content of the document.

XSL: XML stylesheet language.

12. 9. Model Questions
1. Define XML. Describe XML document structure.

2. Describe the XML Schema.

3. Explain XPath and XQuery with examples.

4. Explain how XML became the de facto standard for data exchange.

5. Discuss the similarities between XML queries and SQL queries.

6. Give a detailed description of different clauses available in XML.

7. Write an XML query on the bank data given in this chapter, to extract all the accounts of a
customer at a brach of the bank along with the balance.

12. 10. References

Database System Concepts by Henry F. Korth & S. Sudarshan. Fifth Edition

Database Management System 13.1 Storage StructureLesson 13

StorageStructure
13.0 Objectives:

After completion of this lesson the student will be able to know about:

 Classification of storage media.

 Different characteristics of storage media.

 To define data structures that will allow fast access to data.

 Alternative structures to different kinds of access to data.

Structure Of the Lesson:

13.1 Overview of Physical Storage Media

13.2 Magnetic Disks

13.2.1 Physical Characteristics of Disks
13.2.2 Performance Measures of Disks
13.2.3 Optimization of Disk-Block Access

13.3 RAID

13.3.1 Improvement of Reliability and Redundancy
13.3.2 Improvement in Performance via

Parallelism
13.3.3 RAID Levels
13.3.4 Choice of RAID level
13.3.5 Hardware Issues

13.4 Tertiary Storage

13.4.1 Optical Disks
13.4.2 Magnetic Tapes

13.5 Storage Access

13.5.1 Buffer Manager
13.5.2 Buffer-Replacement Policies

13.6 Summary
13.7 Technical terms
13.8 Model questions
13.9 References

Centre for Distance Education Acharya Nagarjuna University13.2

13.1. Overview of Physical Storage Media

The storage media are classified by the speed with which data can be accessed, cost per unit of
data, reliability. Among the media typically available are:

Cache: Cache is the fastest and most costly form of storage. Cache is small and is managed by
the computer system hardware.

Main Memory: The storage medium used for data that are available to be operated on is main
memory. General-purpose instructions operate on main memory. Even though it contains many
megabytes of data, main memory is too small to (or too expensive) store the entire database. The
contents of main memory are usually lost if a power failure or system crash occurs.

Flash Memory: Differs from main memory, in that data survive power failure. Reading data from
flash memory takes less than 100 nano seconds, which is roughly as fast as reading data from
main memory. In flash memory data can be written at a location only once, but location can be
erased and then ready to be written again. A drawback of flash memory is it can support only a
limited number of write/erase cycles and erasing of memory has to be done to an entire bank of
memory. Reading data is roughly as fast as main memory but writing is slow, erasing is slower.

Cost per unit of storage is roughly similar to main memory. Widely used in embedded devices
such as digital cameras also known as EEPROM (Electrically Erasable Programmable Read-
Only Memory).

Magnetic Disk storage: The primary storage medium for the long-term storage of data is the
magnetic disk. The entire database is stored on magnetic disk. Data is stored on spinning disk,
read/written magnetically. Data must be moved from disk to main memory for access, and data
that have been modified must be written back for storage. Disk storage is referred as direct-access
storage because it is possible to read data from any location on disk. Magnetic disk has much
slower access than main memory. Capacities range up to roughly 100 GB currently. Much larger
capacity and cost/byte than main memory/flash memory. Growing constantly and rapidly with
technology improvements (factor of 2 to 3 every 2 years). Survives power failures and system
crashes. Disk failure can destroy data, but is very rare.

Optical Storage: Non-volatile, data is read optically from a spinning disk using a laser CD-ROM
(640 MB) and DVD (4.7 to 17 GB) most popular forms. Write-once, read-many (WORM) optical
disks used for storage (CD-R and DVD-R). Multiple write versions are also available (CD-RW,
DVD-RW, and DVD-RAM). Reading and writing is slower than with magnetic disk. Jukebox
systems, with large numbers of removable disks, a few drives, and a mechanism for automatic
loading/unloading of disks available for storing large volumes of data.

Tape Storage: Non-volatile, used primarily for backup (to recover from disk failure), and for archival
data. Tape storage is referred as sequential storage. Much slower than disk. Very high capacity (40
to 300 GB tapes available). Tape can be removed from drive so, storage costs much cheaper than
disk, but drives are expensive. Tape jukeboxes available for storing massive amounts of data.

The various storage media can be organized in a hierarchy (Figure 1) according to their speed
and their cost. The higher levels are expensive, but are fast. As we move down the hierarchy, the
cost per bit decreases, where as the access time increases.

Database Management System 13.3 Storage Structure

Figure: 1 Storage Device Hierarchy

Primary Storage: The fastest storage media but volatile (cache, main memory).

Secondary Storage: The next level in hierarchy, non-volatile, moderately fast access time also
called on-line storage. Secondary storage devices are flash memory, magnetic disks etc.

Tertiary Storage: Lowest level in hierarchy, non-volatile, slows access time also called off-line
storage.Tertiary storage devices are magnetic tape, optical storage etc.

13.2 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern computer systems. Disk capacities
have been growing at over 50 percent per year, but the storage requirements of large applications

have also been growing very fast.

13.2.1 Physical Characteristics of Disks

Physically, disks are relatively simple (Figure 2) each platter has a flat circular shape. Its two
surfaces are covered with a magnetic material, and information is recorded on the surfaces. Platters
are made from rigid metal or glass

Figure: 2 Magnetic Hard Disk Mechanisms

Centre for Distance Education Acharya Nagarjuna University13.4

When the disk is in use, a drive motor spins it at a constant high speed. There is a Read-write
head positioned very close to the platter surface (almost touching it). The disk surface is logically
divided into circular tracks, which are subdivided into sectors.

A sector is the smallest unit of data that can be read from or written to the disk. Sector sizes are
typically 512 bytes; there are about 50,000 to 100,000 tracks per platter, and 1 to 5 platters per disk.
The inner tracks are of smaller length and outer tracks contain more sectors than the inner tracks.
Typical sectors per track: 200 (on inner tracks) to 400 (on outer tracks).

The read-write head stores information on a sector magnetically as reversals of the direction of
magnetization of the magnetic material. To read-write a sector, disk arm swings to position head
on right track platter spins continually; data is read/written as sector passes under head. The disk
platters mounted on a spindle and the heads mounted on a disk arm are together known as head-
disk assemblies. Since the heads on all the platters move together, when the head on one platter is
on the ith track, the tracks on all the other platters are also on the ith track. Hence the ith tracks of all
the platters together are called the ith cylinder. Earlier generation disks were susceptible to head-
crashes. Surface of earlier generation disks had metal-oxide coatings, which would disintegrate on
head crash and damage all data on disk. Current generation disks are less susceptible to such
disastrous failures, although individual sectors may get corrupted.

A Disk controller Interfaces between the computer system and the actual hardware of the disk
drive. A disk controller accepts high-level commands to read or write a sector, and initiates actions,
such as moving the disk arm to the right track and actually reading or writing the data. Disk controllers
also attach checksums to each sector to verify whether data is read back correctly. If data is
corrupted, with very high probability stored checksum won’t match recomputed checksum. If such
an error occurs, the controller will retry the read several times; if the error continues to occur, the
controller will signal a read failure.

Another task that disk performs is remapping of bad sectors. If the controller detects that a sector
is damaged when the disk is initially formatted or when an attempt is made to write the sector, it
can logically map the sector to a different physical location. Figure 3 shows how disks are
connected to a computer system. There are a number of common interfaces for connecting disks
to personal computers and workstations:

Figure: 3 Disk Subsystem.

Database Management System 13.5 Storage Structure

1. The AT attachment (ATA) interface.

2. The new version of ATA, which is STA serial ATA.

3. The small-computer-system-interconnect (SCSI).

13.2.2 Performance Measures of Disks

The main measures of the qualities of disk are capacity, access time, data-transfer rate, and

reliability.

Access time is the time it takes from when a read or write request is issued to when data transfer
begins. To access data on a given sector of a disk, the arm must move so that it is positioned over
the correct track, and then must wait for the sector to appear under it as the disk rotates.

Seek time is the time it takes to reposition the arm over the correct track.

Average seek time is the average of seek times. If all tracks have the same number of tracks and
we discard the time required for the head to start moving and to stop moving the average seek time
is 1/3. Taking these factors into account, the average seek time is 1/2 of maximum seek time.
Average seek time range between 4 to 10 milliseconds on typical disks.

Rotational latency is the time spent waiting for the sector to be accessed to appear under the
head. Average latency time is 1/2 the time for a full rotation of the disk. Rotational speeds of disks
range from 4 to 11 milliseconds on typical disks. The access time is the sum of the seek time and
the rotational latency. Ranging from 8 to 20 milliseconds.

Data-transfer rate is the rate at which data can be retrieved from or stored to the disk. Current
disks support maximum transfer rates of 25 to 100 megabytes per second. Transfer rates are
lower than the maximum transfer rates for inner tracks of the disk, since they have fewer sectors.

Mean Time To Failure (MTTF), which is a measure of the reliability of the disk. The mean time to
failure of a disk is the amount of time on average; we can expect the system to run continuously
without any failure. The mean time to failure of disks ranges from 57 to 136 years. Probability of
failure of new disks is quite low, corresponding to a “theoretical MTTF” of 30,000 to 1,200,000
hours for a new disk.

13.2.3 Optimization of Disk-Block Access

Requests for disk I/O are generated both by the file system and by the virtual memory manger
found in most operating systems. Each request specifies the address on the disk to be referenced;
that address is in the form of a block number.

A Block is a logical unit consisting of a fixed number of contiguous sectors. Data is transferred
between disk and main memory in blocks. Block sizes range from 512 bytes to several kilobytes.
Data are transferred between disk and main memory in units of blocks. The lower levels of the file-
system manager convert block addresses into the hardware level cylinder, surface, and sector
number.

Scheduling: If several blocks from a cylinder need to be transferred from disk to main memory, we
may be able to save access time by requesting the blocks in the order in which they will pass under
the heads. If the desired blocks are on different cylinders, it is advantageous to request the blocks
in an order that minimizes disk-arm movement. Disk-arm-scheduling algorithms attempt to order
accesses to tracks in a fashion that increases the number of accesses that can be processed.

Centre for Distance Education Acharya Nagarjuna University13.6

Elevator algorithm move disk arm in one direction (from outer to inner tracks or vice versa),
processing next request in that direction, till no more requests in that direction, then in reverse
direction and repeat.

File Organization: Optimize block access time by organizing the blocks to correspond closely to
how data will be accessed. For example, store related information on the same or nearby cylinders.

Some operating systems such as UNIX and Windows operating systems hide the disk organization
from users, and manage the allocation internally. However over time sequential files may get
fragmented. For example, if data is inserted/deleted from the file or free blocks on disk are scattered,
and newly created file has its blocks scattered over the disk, sequential access to a fragmented file
results in increased disk arm movement. Some systems have utilities to that, scan the disk and
then move blocks to decrease the fragmentation.

Nonvolatile Write Buffers: The contents of main memory are lost in a power failure. Information
about database updates has to be recorded on disk to survive possible system crashes. We can
use nonvolatile random-access memory to speed up disk writes by writing blocks to a non-volatile
RAM buffer immediately. The contents of NV-RAM are not lost in power failure. The common way to
implement NV- RAM is to use battery backed up RAM. Even if power fails, the data is safe and will
be written to disk when power returns. The controller writes to disk whenever the disk has no other
requests or buffer becomes full.

Log Disk: A disk devoted to writing a sequential log of block updates. Used exactly like nonvolatile
RAM. Writing to log disk is very fast since no seeks are required. No need for special hardware
(NV-RAM). File systems typically reorder writes to disk to improve performance. File systems that
support log disks are called Journaling file systems. Journaling file systems can be implemented

even without a separate log disk, keeping data and the log on the same disk.

13.3. RAID

The data-storage requirements of some applications (Web, database and multimedia applications)
have been growing so fast that a large number of disks are needed to store their data, even though
disk drive capacities have been growing very fast. A variety of disk-organization technique called
Redundant Arrays of Independent Disks (RAID), have been proposed to achieve improved
performance and reliability.

13.3.1 Improvement of Reliability and Redundancy

Reliability: The chance that some disks out of a set of N disks will fail is much higher than the
chance that a specific single disk will fail. Suppose that the mean time to failure of a disk is 1,00,000
hours, or slightly over 11 years. Then, the mean time to failure of some disk in an array of 100 disks
will be 100,000/100=1000 hours, or around 42 days, which is not long at all. If we store only one
copy of the data, then each disk failure will result in loss of a significant amount of data. Such a high
rate of data loss is unacceptable. The solution to the problem of reliability is to introduce redundancy.

Redundancy: Store extra information that can be used to rebuild information lost in a disk failure.

Mirroring (or shadowing): The simplest way to achieve redundancy is duplicate every disk. This
technique is called mirroring or shadowing. A logical disk then consists of two physical disks and
every write is carried out on both disks. Reads can take place from either disk. If one disk in a pair
fails, data is still available in the other. Data loss would occur only if the disk and its mirror disk also
fails before the system is repaired. Probability of combined event is very small. Mean time to data

Database Management System 13.7 Storage Structure

loss depends on mean time to failure, and mean time to repair.

Eg: MTTF (mean time to failure) of 100,000 hours, mean time to repair of 10 hours gives mean

time to data loss of 500*106 hours (or 57,000 years) for a mirrored pair of disks (ignoring dependent

failure modes).

13.3.2 Improvement in Performance via Parallelism

With disk mirroring, the rate at which read requests could be handled is doubled, since read requests

can be sent to either disk. The transfer rate of each read is the same as in a single-disk system, but

the number of reads per unit time has doubled.

With multiple disks we can improve the transfer rate as well by striping data across multiple disks.

In its simplest form, data striping consists of splitting the bits of each byte across multiple disks;

such striping is called bit-level striping.

Block-level striping stripes blocks across multiple disks. It treats the array of disks as a single large

disk, and it gives blocks logical numbers. Block-level striping is the most commonly used form of

data striping. There are two main goals of parallelism in a disk system:

1. Load-balance multiple small accesses (block accesses),

so that the throughput of such accesses increases.

2. Parallelism large accesses so that the response time of a large access is reduced.

13.3.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer rates, but

does not improve reliability. Various alternative schemes aim to provide redundancy at lower cost

by combining disk striping. These schemes have different cost-performance trade-offs. These

schemes are classified into RAID levels. Different RAID organizations have differing cost,

performance and reliability characteristics.

RAID Level 0: This level refers to disk arrays with striping at the level of blocks, but without any

redundancy. Figure 4a shows an array of size 4.

RAID Level 1: This level refers to disk mirroring with block striping. Figure 4b shows a mirrored

organization that holds four disks worth of data.

RAID Level 2: This level is known as memory-style error-correcting-code (ECC) organization,

employs parity bits. Memory systems have long used parity bits for error detection and correction.

Each byte in a memory system may have a parity bit associated with it that records whether the

number of bits in the byte that are set to 1 is even (parity=0) or odd (parity=1). If one of the bits in the

byte gets damaged, the parity of the byte changes and thus will not match the stored parity. Similarly

if the stored parity bit gets damaged, it will not match the computed parity. Thus all 1-bit errors will

be detected by the memory system. Error-correcting schemes store two or more extra bits, and

can reconstruct the data if a single bit gets damaged. The idea of error correcting codes can be

used directly in disk arrays by striping bytes across disks. Figure 4c shows the level 2 scheme.

For example, the first bit of each byte could be stored in disk 1, the second bit in disk 2, and so on

until the eighth bit is stored in disk 8, and the error-correction bits are stored in further disks.

Centre for Distance Education Acharya Nagarjuna University13.8

Figure: 4 RAID levels.
RAID Level 3: Bit-Interleaved Parity
Organization. Improves on level 2 by exploiting the fact that disk controllers unlike memory systems
can detect whether a sector has been read correctly, so a single parity can be used for error
correction as well as detection. The idea is if one of the sectors gets damaged, the system knows
exactly which sector it is. Figure 4d shows the level 3 scheme. For each bit in the sector, the

system can figure out whether it is 1 or 0 by computing the parity of corresponding bits from
sectors in the other disks. If the parity of the remaining bits is equal to the stored parity, the missing
bit is 0, otherwise, it is 1.

Database Management System 13.9 Storage Structure

RAID Level 4: Block-Interleaved Parity, uses block-level striping, and keeps a parity block on a
separate disk for corresponding blocks from N other disks. This scheme is shown pictorially in
figure 4e. If one of the disks fails, the parity block can be used with the corresponding blocks from
the other disks to restore the blocks of the failed disk.

A block read accesses only one disk, allowing other requests to be processed by other disks.
Thus, the transfer rate for each access is slower, but multiple read accesses can proceed in
parallel, leading to higher I/O rates for independent block reads than Level 3. The transfer rates for
larger reads is high, since all disks can be read in parallel. A write of a block has to access the disk
on which the block is stored, as well as the parity disk, since the parity block has to be updated.

RAID Level 5: Block-Interleaved Distributed Parity; partitioning data and parity among all N + 1
disks, rather than storing data in N disks and parity in one disk. Figure 4f shows the setup. The P’s
are distributed across all the disks. For example, with an array of 5 disks, the parity block for nth set
of blocks is stored on disk (n mod 5) + 1, with the data blocks stored on the other 4 disks. Higher I/
O rates than Level 4. Block writes occur in parallel if the blocks and their parity blocks are on
different disks. The pattern shown gets repeated on further blocks.

RAID Level 6: P+Q Redundancy scheme: Similar to level 5, but stores extra redundant information
to guard against multiple disk failures. Level 6 uses error-correcting codes instead of using parity.
In the scheme in figure 4g, 2 bits of redundant data are stored for every 4 bits of data.

13.3.4 Choice of RAID level

The factors to be taken into account in choosing a RAID levels are:

 Monetary cost of extra disk-storage requirements.

 Performance requirements in terms of number of I/O operations.

 Performance when disk has failed.

 Performance during rebuilds.

RAID 0 is used only when data safety is not important. For example, data can be recovered quickly
from other sources. Level 2 and 4 are never used since 3 and 5 subsumes them. Level 3 is not
used anymore since bit-striping forces single block reads to access all disks, wasting disk arm
movement, which block striping (level 5) avoids. Level 6 is rarely used since levels 1 and 5 offer
adequate safety for almost all applications. So competition is between 1 and 5 only.

Level 1 provides much better write performance than level 5. Level 5 requires at least 2 blocks
reads and 2 blocks writes to write a single block, whereas Level 1 only requires 2 block writes.
Level 1 preferred for high update environments such as log disks.

Centre for Distance Education Acharya Nagarjuna University13.10

13.3.5 Hardware Issues

Another issue in the choice of RAID implementations is at the level of hardware. RAID can be
implemented with no change at the hardware level, using only software modification. Such RAID
implementations are called software RAID.

However, there are significant benefits to be had by building special purpose hardware to support
RAID, which we outline below; systems with special hardware support are called hardware RAID
systems.

Some hardware RAID implementation permit hot swapping; that is, faulty disks can be removed
and replaced by new ones without turning power off. Hot swapping reduces the mean time of
repair.

13.4 Tertiary Storage

In a large database system, some of the data may have to reside on tertiary storage. The two
most common tertiary storage media are optical disks and magnetic tapes.

13.4.1 Optical Disks

Compact disks have been a popular medium for distributing software, multimedia data such as
audio and images, and other electronically published information. They have a fairly large capacity
(640 mega bytes), and they are cheap.

Digital video disks (DVDs) have now replaced compact disks in applications that require larger
amounts of data. Disks in the DVD-5 format can store 4.7 Giga Bytes(Gb) of data (in one recording
layer), while disks in the DVD-9 format can store 8.5 GB of data (in two recording layers). Recording
on both sides of a disk yields even larger capacities; DVD-10 and DVD-18 formats, which are the
two-sided versions of DVD-5 and DVD-9, can store 9.4 Gb and 17 Gb, respectively. CD and DVD
drives have much longer sought times (100 milliseconds is common) than do magnetic disk drives,
since the head assembly is heavier.

Rotational speeds are typically lower than those of magnetic disks, although the faster CD and
DVD drives have rotation speeds of about 3000 rotations per minute, which is comparable to
speeds of lower-end magnetic-disk derives. Rotational speeds of CD drives originally correspond
to the audio CD standards, and the speeds of DVD drives originally corresponded to the DVD video
standards, but current-generation drives rotate many times the standard rate.

Data transfer rates are somewhat less than for magnetic disks. Current CD drives read at around
3 to 6 Mbps(Mega bytes per second) and current DVD drives read at 8 to 20 Mbps. Like magnetic-
disk drives, optical disks store more data in outside tracks and less data in inner tracks. The
transfer rate of optical derives is characterized as nx, which means the derive supports transfers
at n times the standard rate; rates of around 50x for CD and 16x for DVD are now common.

The record-once version of optical disks (CD-R, and ,DVD-R) are popular for distribution of data
and particularly for archival storage of data because they have a high capacity, have a longer
lifetime than magnetic disks, and can be removed and stored at a remote location. Since they
cannot be over written, they can be used to store information that should not be modified, such as
audit trails. The multiple-write versions (CD-RW, DVD-RW, DVD+RW, and DVD-RAM) are also
used for archival purposes. Jukeboxes are devices that store a large number of optical disks (up to
several hundred) and load them automatically on demand to one of a small number of drives
(usually 1 to 10).

Database Management System 13.11 Storage Structure

13.4.2 Magnetic Tapes:

Although magnetic tapes are relatively permanent, and can hold large volumes of data, they are
slow in comparison to magnetic and optical disks. Even more important, magnetic tapes are limited
to sequential access. Thus, they cannot provide random access for secondary-storage
requirements, although historically, prior to the use of magnetic disks, tapes were used as a
secondary-storage medium.

Tapes are used mainly for backup, for storage of infrequently used information, and as an off-line
medium for transferring information from one system to another. Tapes are also used for storing
large volumes of data, such as video or image data that either, do not need to be accessible quickly
or are so voluminous that magnetic-disk storage would be too expensive.

A tape is kept in a spool, and is wound or rewound past a read/write head. Moving to the correct
spot on a tape can take seconds or even minutes, rather than milliseconds; once positioned,
however, tape drives can write data at densities and speeds those of disk drives. Capacities vary,
depending on the length and width of the tape and on the density at which the head can read and
write. The market is currently fragmented among a wide variety of tape formats. Currently available
tape capacities range from a few gigabytes with the Digital Audio Tape (DAT) format, 10 to 40Gb
with the Digital Linear Tape (DLT) format, 100 gigabytes and higher with the Ultrium format, to
330 Gb (with Ampex helical scan tape formats). Data-transfer rates are of the order of a few to
tens of Mbps.

3.5 Storage Access

A database is mapped into a number of different files that are maintained by the underlying operating
system. These files reside permanently on disks, with backups on tapes. Each file is partitioned
into fixed-length storage units called blocks, which are the units of both storage allocation and data
transfer.

A block may contain several data items. The form of physical data organization being used
determines the exact set of data items that a block contains. We shall assume that no data item
spans two or more blocks. This assumption is realistic for most data processing applications.

A major goal of the database system is to minimize the number of block transfers between the disk
and memory. One way to reduce the number of disk accesses is to keep as many blocks as
possible in main memory. The goal is to maximize the chance that, when a block is accessed, it is
already in main memory, and thus, no disk access is required. The subsystem responsible for the
allocation of buffer space is called the buffer manager.

13.5.1 Buffer Manager

If you are familiar with operating-system concepts, you will note that the buffer manager appears to
be nothing more than a virtual-memory manager, like those found in most operating systems. One
difference is that the size of the database may be much more than the hardware address space of
machine, so memory addresses are not sufficient to address all disk blocks. Further, to serve the
database system well, the buffer manager must use techniques more sophisticated than typical
virtual-memory management schemes:

Centre for Distance Education Acharya Nagarjuna University13.12

Buffer Replacement Strategy: When there is no room left in the buffer, a block must be removed
from the buffer before a new one can be read in. Most operating systems use Least Recently
Used (LRU) scheme, in which the block that was referenced least recently is written back to disk
and is removed from the buffer. This simple approach can be improved on for database applications.

Pinned Blocks: For the database system to be able to recover from crashes, it is necessary to
restrict those times when a block may be written back to disk. For instance, most recovery systems
require that a block should not be written to disk while an update on the block is in progress. A block
that is not allowed to be written back to disk is said to be pinned. Although many operating systems
do not support pinned blocks, such a feature is essential for a database system that is resilient to
crashes.

Forced output of blocks: There are situations in which it is necessary to write back the block to
disk, even though the buffer space that it occupies is not needed. This write is called the forced
output of a block.

13.5.2 Buffer-Replacement Policies

The goal of a replacement strategy for blocks in the buffer is to minimize accesses to the disk. For
general-purpose programs, it is not possible to predict accurately which blocks will be referenced.
Therefore, operating systems use the past pattern of block references as a predictor of future
references. The assumption generally made is that blocks that have been referenced recently are
likely to be referenced again. Therefore, if a block must be replaced, the least recently referenced
block is replaced. This approach is called the Least Recently Used (LRU) block-replacement
scheme.

LRU is an acceptable replacement scheme in operating systems. However, a database system
is able to predict the pattern of future references more accurately than an operating system. A
user request to the database system involves several steps. The database system is often able
to determine in advance which blocks will be needed by looking at each of the steps required to
perform the user-requested operation. Thus unlike operating systems, which must rely on the
past to predict the future, database systems may have information regarding at least the short-
term future.

To illustrate how information about future block access allows us to improve the LRU strategy,
consider the processing of the relational-algebra expression

Borrower X customer

Assume that the pseudocode program shown in Figure 5 gives the strategy chosen to process
this request.

For each tuple b of borrower do

For each tuple c of customer do

If b[customer_name]=c[customer_name]

Then begin

Let x be a tuple defined as follows:

x[customer_name]:=b[customer_name]

x[loan_number]:=b[loan_number]

x[customer_street]:=c[customer_street]

Database Management System 13.13 Storage Structure

x[customer_city]:=c[customer_city]

Include tuple x as part of result of borrower X customer

End
End
End

Figure:5 Procedure for computing join.

Assume that the two relations of this example are stored in separate files. In this example, we can
see that, once a tuple of borrower has been processed, that tuple is not needed again. Therefore,
once processing of an entire block of borrower tuples is completed, that block is no longer needed
in main memory, even though it has been used recently. The buffer manager should be instructed
to free the space occupied by a borrower block as soon as the final tuple has been processed. This
buffer-management strategy is called the toss-immediate strategy.

Now consider blocks containing customer tuples. We need to examine every block of customer
tuples once for each tuple of the borrower relation. When processing of a customer block is
completed, we know, that block will not be accessed again until all other customer blocks have
been processed. Thus, the most recently used customer block will be the final block to be re-
referenced, and the least recently used customer block is the block that will be referenced next.
This assumption set is the exact opposite of the one that forms the basis for the LRU strategy.
Indeed, the optimal strategy for block replacement for the above procedure is the Most Recently
Used (MRU) strategy. If a customer block must be removed from the buffer, the MRU strategy
chooses the most recently used block (blocks are not eligible for replacement while they are being
used).

13.6 SUMMARY

Several types of data storage exist in most computer systems. They are classified by speed with
which they can access data, by either cost per unit of data to buy the memory, and by their reliability.
Among the media available are cache, main memory, flash memory, magnetic disks, optical disks,
and magnetic tapes.

Two factors determine the reliability of storage media: whether a power failure or system crash
causes data to be lost, and what the likelihood is of physical failure of the storage devise.

We can reduce the likelihood of physical failure by retaining multiple copies of data. For disks, we
can use mirroring. Or we can use more sophisticated methods based on redundant arrays of
independent disks (RAID).

By striping data across disks, these methods offer high throughput rates on large accesses; by
introducing redundancy across disks, they improve reliability greatly. Several different RAID
organizations are possible, each with different cost, performance and reliability characteristics.
RAID level 1 and RAID level 5 are the most commonly used.

Centre for Distance Education Acharya Nagarjuna University13.14

13.7 Technical Terms

Cache Memory: High-speed memory closely attached to a CPU, containing a copy of the most

recently used memory data. When the CPU’s request for instructions or data can be satisfied from

the cache, the CPU can run at full rated speed. In a multiprocessor or when DMA is allowed, a bus-

watching cache is needed.

Main Memory: Refers to physical memory that is internal to the computer. The word main is used

to distinguish it from external mass storage devices such as disk drives. Another term for main

memory is RAM.

Flash Memory: Flash memory is a non-volatile memory device that retains its data after the power

is removed.

Optical Storage: the generic name given to a series of optical disks of which CD ROMs, CD-R i.e.

CD-Recordable drive which has read and write capacity. Using this device about 650Mb of data

can be written in about 15 minutes. Standard CD-R disks can only be written to once (WORM …

Write Once, Read Many) but there is a type of disk called CD-RW. With suitable drives these disks

can be written, erased and rewritten. DVD (Digital Versatile Disks) are also examples of Optical

Disks

Platter: The actual disk inside of a disk drive. Its surface is coated with a magnetic material that

records data. Both sides of the platter are used, and a typical disk drive has several platters,

stacked like pancakes

Seek Time: The length of time required to move a disk drive’s read/write head to a particular

location on the disk. The major part of a hard disk’s access time is actually seek time.

RAID: Redundant Array of Independent (or inexpensive) Disks; a collection of storage disks with a

controller (or controllers) to manage the storage of data on the disks.

Access Time: The amount of time it takes a computer to locate an area of memory for data

storage or retrieval.

Disk Controller: The hardware that controls the writing and reading data to and from and to a disk

drive. It can be used with floppy disks or hard drives. It can be hard-wired or built into a plug-in

interface board.

Checksums: Achecksum is a form of redundancy check, a very simple measure for protecting the

integrity of data by detecting errors in data that is sent through space (telecommunications) or time

(storage). It works by adding up the basic components of a message, typically the bytes, and

storing the resulting value.

Database Management System 13.15 Storage Structure

13.8 Model Questions
1. List the physical storage media available on the computers you use routinely. Give the speed

with which data can be accessed on each media.

2. How does the remapping of bad sectors by disk controllers affect data retrieval rates?

3. Define RAID. Explain all the RAID levels in brief.

4. Give an example of a database application in which the reserved space method of representing
variable length records is preferable to the pointer method.

5. Give an example of a database application in which the pointer method of representing variable
length records is preferable to the reserved space method.

13.9 References

Database System Concepts”, 4th edition by Abraham Silberscatz, Henry F.Korth and S. Sudarshan.

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe.

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College,
GUNTUR

Database Management System 14.1 File StructureLesson 14

FileStructure
14.0 Objectives:

After completion of this lesson the student will be able to know about:

 Structure our files to accommodate multiple lengths of records.

 How records are organized in files.

 Storage for object-oriented databases.

Structure Of the Lesson:

14.1 File Organization

14.2 Organization of Records in Files

14.3 Data-Dictionary Storage

14.4 Storage for Object Oriented databases

14.5 Summary

14.6 Technical terms

14.7 Model questions

14.8 References

14.1 File Organization

A file is organized logically as a sequence of records. These records are mapped onto disk blocks.
Files are provided as a basic construct in operating system, so we shall assume the existence of
an underlying file system. We need to consider ways of representing logical data models in terms
of files.

Although blocks are of fixed size determined by the physical properties of the disk and by the
operating system, record sizes vary. In a relational database, tuples of distinct relations are generally
of different sizes.

One approach to mapping the database to files is to use several files, and to store records of only
one fixed length in any given file. An alternative is to structure our files so that we can accommodate
multiple lengths for records; however, files of fixed-length records are easier to implement than are
files of variable-length records. Many of the techniques used for the former can be applied to the
variable-length case. Thus we begin by considering a file of fixed-length records.

14.1.1 Fixed-Length Records

As an example, let us consider a file of account records for our bank database. Each record of this
file is defined (in pseudo code) as:

Centre for Distance Education Acharya Nagarjuna University14.2

Type deposit = record
Account_number: char(10);
Branch_name: char(22);
Balance: real;

End

If we assume that each character occupied 1byte and that numeric(12,2) occupies 8 bytes, our
account record is 40 bytes long. A simple approach is to use the first 40 bytes for the first record,
the next 40 bytes for the second record, and so on (Fig.1).

Figure: 1 File containing account records.

However, there are two problems with this simple approach:

1. It is difficult to delete a record from this structure. The space occupied by the record to be
deleted must be filled with some other record of the file, or we must have a way of marking
deleted records so that they can be ignored.

2. Unless the block size happens to be a multiple of 40 (which is unlikely), some records will
cross, block boundaries, i.e., part of the record will be stored in one block and remaining
part in another. It would thus require two block accesses to read or write such a record.

When a record is deleted, we could move the records that came after it into the space formerly
occupied by the deleted record, and so on, until every record following the deleted record has been
moved ahead(figure 2).

Figure: 2 File of Figure 1, with record 2 deleted and all records moved.

A-102 Perryridge 400
A-305 Round Hill 350
A-101 Downtown 700
A-222 Redwood 500
A-201 Perryridge 700
A-217 Brington 900
A-110 Downtown 750
A-218 Perryridge 600

Record 0
Record 1
Record 3
Record 4
Record 5
Record 6
Record 7
Record 8

Database Management System 14.3 File Structure

Such an approach requires moving a large number of records. It might be easier simply to move
the final record of the file into the space occupied by the deleted record (Fig.3).

Figure:3 File of Figure 1, with record 2 deleted and final record moved.

It is undesirable to move records to occupy the space freed by a deleted record, since doing so
requires additional block accesses. Since insertions tend to be more frequent than deletions, it is
acceptable to leave open the space occupied by the deleted record, and to wait for a subsequent
insertion before reusing the space. A simple marker on a deleted record is not sufficient, since it is
hard to find this available space when an insertion is being done. Thus, we need to introduce an
additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file header. The header will
contain a variety of information about the file. For now, all we need to store the address of the first
record whose contents are deleted. We use this first record to store the address of the second
available record, and soon. Intuitively, we can think of these stored addresses as pointers, since
they point to the location of a record. The deleted records thus form a linked list, which is often
referred to as a free list.

Figure: 4 File of Figure 1, with free list afterdeletion of records 1, 4, and 6.

Fig.4 shows the file of Fig.1, with the free list, after records 1,4, and 6 have been deleted.

A-102 Perryridge 400
A-305 Round Hill 350
A-101 Downtown 700
A-222 Redwood 500
A-201 Perryridge 700
A-217 Brington 900
A-110 Downtown 750
A-218 Perryridge 600

Record 0
Record 1
Record 3
Record 4
Record 5
Record 6
Record 7
Record 8

Centre for Distance Education Acharya Nagarjuna University14.4

On insertion of a new record, we use the record pointed to by the header. We change the header
pointer to point to the next available record. If no space is available, we add the new record to the
end of the file.

Insertion and deletion for files of fixed-length records are simple to implement, because the space
made available by a deleted record is exactly the space needed to insert a record. If we allow
records of variable length in a file, this match no longer holds. An inserted record may not fit in the
space left free by a deleted record, or it may fill only part of that space.

14.1.2 Variable-Length Records

Variable-length records arise in database systems in several ways:

 Storage of multiple record types in a file.

 Record types that allow variable lengths for one or more fields.

 Record types that allow repeating fields.

Different techniques for implementing variable-length records exist. For purposes of illustration,
we shall use one example to demonstrate the various implementation techniques. We shall consider
a different representation of the account information stored in the file of Fig.11.6, in which we use
one variable length record for each branch name and for all the account information for that branch.
The format of the record is:

Type account-list =record

Branch-name: char(22);

Account-info: array [1..] of record;

Account-number :char(10);

Balance: real;

End

End

We define account-info as an array with an arbitrary number of elements, i.e., the type definition
does not limit the number of elements in the array.

14.1.2.1 Byte-string Representation

A simple method for implementing variable-length records is to attach a special end-of-record ()
symbol to the end of each record. We can then store each record as a string of consecutive bytes.
Fig.5 shows such an organization to represent the file of fixed-length records of fig.1 as variable-
length records

1. Perryridge A-102 400 A201 900 A218 700
2. Round Hill A-305 350
3. Mianus A-215 700
4. Downtown A-101 500 A110 600
5. Redwood A-222 700
6. Brighton A-217 750

Figure: 5 Byte-string representation of variable-length records.

Database Management System 14.5 File Structure

An alternative version of the byte-string representation stores the record length at the beginning of
each record, instead of using end-of-record symbols. The byte-string representation as described

in Fig.5 has some disadvantages:

It is not easy to reuse space occupied formerly by a deleted record. Although techniques exist to
manage insertion and deletion, they lead to a large number of small fragments of disk storage that
are wasted.

There is no space, in general, for records to grow longer. If a variable-length record becomes
longer, it must be moved––movement is costly if pointers to the record are stored elsewhere in the
database (e.g., in indices, or in other records), since the pointers must be located and updated.

Thus, the basic byte-string representation described here not usually used for implementing variable-
length records. However, a modified form of the byte-string representation, called the slotted-page
structure is commonly used for organizing records within a single block.

Fig.5 Byte-string representation of variable-length records. The slotted-page structure appears
in Fig.6

Figure: 6 Slotted-page structure.

There is a header at the beginning of each block containing the following information:

1. The number of record entries in the header

2. The end of free space in the block

3. An array whose entries contain the location and size of each record

The actual records are allocated contiguously in the block, starting from the end at the block. The
free space in the block is contiguous, between the final entry in the header array, and the first
record. If a record is inserted, space is allocated for it at the end of free space, and an entry
containing its size and location is added to the header.

14.1.2.2 Fixed-Length Representation

Another way to implement variable-length records efficiently in a file system is to use one or more

fixed-length records to represent one variable-length record. There are two ways of doing this:

Centre for Distance Education Acharya Nagarjuna University14.6

1. Reserved space. If there is a maximum record length that is never exceeded, we can use

fixed-length records of that length. Unused space (for records shorter than the maximum
space) is filled with a special null, or end-of-record, symbol.

2. List representation. We can represent variable-length records by list of fixed-length records,
chained together by pointers.

If we choose to apply the reserved-space method to our account example, we need to select a
maximum record length. Fig.7 shows how the file of Fig.5 would be represented if we allowed a
maximum of three accounts per branch.

Figure: 7 File of Fig.5, using the reserved-space method.

A record in this file is of the account-list type, but with the array containing exactly three elements.
Those branches with fewer than three accounts (for example, Round Hill) have records with null

fields. We use the symbol to represent this situation in Fig.7. In practice, a particular value that
can never represent real data is used (for example, an account number that is blank, or a name
beginning with “*”).

The reserved-space method is useful when most records have a length close to the maximum.
Otherwise, a significant amount of space may be wasted. In our bank example, some branches
may have many more accounts than others. This situation leads us to consider the linked list
method. To represent the file by the linked list method, we add a pointer field as we did in Fig.4. The
resulting structure appears in Fig.8.

Figure: 8 File of Figure 5 using linked lists.

Database Management System 14.7 File Structure

The file structures of Figures 4 and 8 both use pointers; the difference is that, in Fig.4, we use
pointers to chain together only deleted records, whereas in Fig.8, we chain together all records
pertaining to the same branch.

A disadvantage to the structure of Fig.8 is that we waste space in all records except the first in a
chain. The first record needs to have the branch-name value, but subsequent records do not.
Nevertheless, we need to include a field for branch-name in all records, lest the records not be of
fixed length. This wasted space is significant, since we except, in practice, that each branch has a
large number of accounts. To deal with this problem we allow two kinds of blocks in our file:

1. Anchor block, which contains the first record of a chain

2. Overflow block, which contains records other than those that are the first record of a chain

Thus, all records within a block have the same length, even though not all records in the file have
the same length. Fig.9 shows this file structure.

Figure: 9 Anchor-block and overflow-block structures

Centre for Distance Education Acharya Nagarjuna University14.8

14.2 Organization of Records in Files

So far, we have studied how records are represented in a file structure. A relation is a set of records.
Given a set of records, the next question is how to organize them in a file. Several of the possible
ways of organizing records in files are:

Heap file organization: Any record can be placed anywhere in the file where there is space for the
record. There is no ordering of records. Typically, there is a single file for each relation.

Sequential file organization: Records are stored in sequential order, according to the value of a
“search key” of each record.

Hashing file organization: A hash function is computed on some attribute of each record. The
result of the hash function specifies in which block of the file the record should be placed.

14.2.1 Sequential File Organization

A sequential file is designed for efficient processing of records in sorted order based on some
search key. A search key is any attribute or set of attributes; it need not be the primary key, or even
a super key. To permit fast retrieval of records in search-key order, we chain together records by
pointers. The pointer in each record points to the next record in search-key order. Furthermore, to
minimize the number of block accesses in sequential file processing, we store records physically
in search-key order, or as close to search-key order as possible.

Fig.10 shows a sequential file of account records taken from our banking example.

Figure: 10 Sequential file for account records.

In that example, the records are stored in search-key order, using branch_name as the search key.

The sequential file organization allows records to be read in sorted order; that can be useful for
display purposes, as well as for certain query-processing algorithms.

It is difficult, however, to maintain physical sequential order as records are inserted and deleted,
since it is costly to move many records as a result of a single insertion or deletion. We can manage
deletion by using pointer chains, as we saw previously. For insertion, we apply the following rules:

Database Management System 14.9 File Structure

1. Locate the record in the file that comes before the record to be inserted in search-key order.

2. If there is a free record (that is, space left after a deletion) within the same block as this record,
insert the new record there. Otherwise, insert the new record in an overflow block. In either
case, adjust the pointers so as to chain together the records in search-key order.

Fig.11 shows the file of Fig.10 after the insertion of the record (north Town, A-888, 800).

Figure: 11 Sequential file after an insertion.

The structure in Fig.11 allows fast insertion of new records, but forces sequential file-processing
applications to process records in an order that does not match the physical order of the records.

14.2.2 Clustering File Organization

Many relational database systems store each relation in a separate file, so that they can take full
advantage of the file system that the operating system provides. Usually, tuples of a relation can be
represented as fixed-length records. Thus, relations can be mapped to a simple file structure. This
simple implementation of a relational database system is well suited to low-cost database
implementations, for example, embedded systems or portable devices. In such systems, the size
of the database is small, so little is gained from a sophisticated file structure. Furthermore, in such
environments, it is essential that the overall size of the object code for the database system be
small. A simple file structure reduces the amount of code needed to implement the system.

This simple approach to relational database implementation becomes less satisfactory as the size
of the database increases. We have seen that there are performance advantages to be gained
from careful assignment of records to blocks, and from careful organization of the blocks
themselves. Clearly, a more complicated file structure may be beneficial, even if we retain the
strategy of storing each relation in a separate file.

Centre for Distance Education Acharya Nagarjuna University14.10

However, many large-scale database systems do not rely directly on the underlying operating system
for file management. Instead, one large operating-system file is allocated to the database system.
The database system stores all relations in this one file, and manages the file itself. To see the
advantage of storing many relations in one file, consider the following SQL query for the bank
database:

Select account-number, customer-name, customer-street, from depositor, customer

where depositor.customer_name=

customer.customer_name

This query computes a join of the depositor and customer relations. Thus, for each tuple of depositor,
the system must locate the customer tuples with the same value for customer_name. Ideally,
these records will be located with the help of indices. However, they need to be transferred from
disk into main memory. In the worst case, each record will reside on a different block, forcing us to
do one block read for each record required by the query

Customer_name Account_number

Hayes A-102

Hayes A-220

Hayes A-503

Turner A-305

Figure: 12 The depositor relation.

Customer_name Customer_street Customer_city

Hayes Main Brooklyn

Turner Putnam Stamford

Figure: 13 The customer relation.
As a concrete example, consider the depositor and customer relations of Fig.12 and 13, respectively.
In Fig.14, we show a file structure designed for efficient executing of queries involving depositor X
customer.

Figure: 14 Clustering file structure.

The depositor tuples for each customer_name are stored near the customer tuple for the
corresponding customer_name. This structure mixes together tuples of two relations, but allows
for efficient processing of the join. When a tuple of the customer relation is read, the entire block
containing that tuple is copied from disk into main memory. Since the corresponding depositor
tuples are stored on the disk near the customer tuple, the block containing the customer tuple

Database Management System 14.11 File Structure

contains tuples of the depositor relation needed to process the query. If a customer has so many
accounts that the depositor records do not fit in one block, the remaining records appear on nearby
blocks.

A clustering file organization is a file organization, such as that illustrated in fig.14, which stores
related records of two or more relations in each block. Such a file organization allows us to read
records that would satisfy the join condition by using one block read. Thus, we are able to process
this particular query more efficiently.

Our use of clustering of multiple tables into a single file has enhanced processing of a particular
join(depositor X customer), but it results in slowing processing of other types of query. For example,

Select *

from customer

Requires more block accesses than it did in the scheme under which we stored each relation in a
separate file. Instead of several customer records appearing in one block, each record is located in
a distinct block. Indeed, simply finding all the customer records is not possible without some additional
structure. To locate all tuples of the customer relation in the structure of fig.14, we need to chain
together all the records of that relation using pointers, as in fig.15

Figure: 15 Clustering file structure with pointer chains.

14.3 Data-Dictionary Storage

So far, we have considered only the representation of the relations themselves.Arelational database
system needs to maintain data about the relations, such as the schema of the relations. This
information is called the data dictionary or system catalog. Among the types of information that the
system must store are these:

 Names of the relations

 Names of the attributes of each relation

 Domains and lengths of attributes

 Name of the views defined on the database, and definitions of those views

 Integrity constraints (for example, key constraints)

In addition, many systems keep the following data on users of the system:

 Names of authorized users

Centre for Distance Education Acharya Nagarjuna University14.12

 Authorization and accounting information about users

 Passwords or other information used to authenticate users

Further, the database may store statistical and descriptive data about the relations, such as:

 Number of tuples in each relation

 Method of storage for each relation (for example, clustered or nonclustered)

The data dictionary may also note the storage organization (sequential, hash, or heap) of relations,
and the location where each relation is stored:

 If relations are stored in operating system files, the dictionary would note the names of the
file (or files) containing each relation.

 If the database stores all relations in a single file, the dictionary may note the blocks containing

records of each relation in a data structure such as a linked list.

14.4 Storage for Object-Oriented

The file-organization techniques such as the heap, sequential, hashing and clustering organizations
can also be used for storing objects in an object-oriented database. However, some extra features
are needed to support object-oriented database features, such as set-valued fields and persistent
pointers.

14.4.1 Mapping of Objects to Files

The mapping of objects to files is in many ways like the mapping of tuples to files in a relational
system. At the lowest level of data representation, both tuples and the data parts of objects are
simply sequences of bytes. We can therefore store object data in the file structures described in
this chapter, with some modifications, which we note next.

Objects in object-oriented databases may lack the uniformity of tuples in relational databases. For
example, fields of records may be sets; in relational databases, in contrast, data are typically
required to be (at least) in first normal form. Furthermore, objects may be extremely large. Such
objects have to be managed differently from records in a relational system.

We can implement set-valued fields that have a small number of elements using data structures
such as linked lists. Set-valued fields that have a larger number of elements can be implemented
as relations in the database. Set-valued fields of objects can also be eliminated at the storage level
by normalization: A relation is created containing one tuple for each value of a set-valued field of an
object. Each tuple also contains the object identifier of the object. However, this relation is not
made visible to the upper levels of the database system. The storage system gives the upper
levels of the database system the view of a set-valued field, even though the set-valued field has
actually been normalized by creating a new relation.

14.4.2 Implementation of Object Identifiers

Since objects are identified by object identifiers (OIDs), an object-storage system needs a mechanism
to locate an object, given an OID. If the OIDs are logical OIDs, i.e., they do not specify the location
of the object––then the storage system must maintain an index that maps OIDs to the actual
location of the object. If the OIDs are physical OIDs, i.e., they encode the location of the object––
then the object can be found directly. Physical OIDs typically have the following three parts:

1. A volume or file identifier
2. A block identifier within the volume or file
3. An offset within the block

Database Management System 14.13 File Structure

A volume is a logical unit of storage that usually corresponds to a disk.

In addition, physical OIDs may contain a unique identifier, which is an integer that distinguishes
the OID from the identifiers of other objects that happened to be stored at the same location earlier,
and were deleted or moved elsewhere. The unique identifier is also stored with the object, and the
identifiers in an OID and the corresponding object should match. If the unique identifier in a physical
OID does not match the unique identifier in the object to which that OID points, the system detects
that the pointer is a dangling pointer, and signals an error. (A dangling pointer is a pointer that
does not point to a valid object.) Fig.16 illustrates this scheme.

Physical Object Identifier

Volume. Block. Offset Unique-Id

Object

Unique-Id Date

a) General structure
Location Unique-Id Date

519.56850.1200 51 ————-

Good OID 519.56850.1200 51

Bad OID 519.56850.1200 50

(b) example of use

Figure: 16 Unique identifiers in an OID

Such pointer errors occur when physical OIDs corresponding to old objects that have been deleted
are used accidentally. If the space occupied by the object had been reallocated, there may be a
new object in the location, and it may get incorrectly addressed by the identifier of the old object. If
a dangling pointer is not detected, it could cause corruption of a new object stored at the same
location. The unique identifier helps to detect such errors, since the unique identifiers of the old
physical OID and the new object will not match.

Suppose that an object has to be moved to a new block, perhaps because the size of the object
has increased, and the old block has no extra space. Then, the physical OID will point to the old
block, which no longer contains the object. Rather than change the OID of the object (which involves
changing every object that points to this one), we leave the object, it finds the forwarding address
instead of the object; it then uses the forwarding address to locate the object.

14.4.3 Management of Persistent Pointers

We implement persistent pointers in a persistent programming language by using OIDs. In some
implementations, persistent pointers are physical OIDs; in others, they are logical OIDs.An important
difference between persistent pointers and in-memory pointers is the size of the pointer. In-memory
pointers need to be only big enough to address all virtual memory. On most current computers, in-
memory pointers are usually 4 bytes long, which is sufficient to address 4 gigabytes of memory.
The most recent computer architectures have pointers that are 8 bytes long.

Persistent pointers need to address all the data in a database. Since database systems are often
bigger than 4 gigabytes, persistent pointers are usually at least 8 bytes long. Many object-oriented

databases also provide unique identifiers in persistent pointers, to catch dangling references.

Centre for Distance Education Acharya Nagarjuna University14.14

The action of looking up an object, given its identifier, is called dereferencing. Given an in-memory
pointer (as in C++), looking up the object is merely a memory reference. Given a persistent pointer,
dereferencing an object has an extra step––finding the actual location of the object in memory by
looking up the persistent pointer in a table. If the object is not already in memory, it has to be loaded
from disk. We can implement the table lookup fairly efficiently by using a hash table data structure,
but the lookup is still slow compared to a pointer dereference, even if the object is already in
memory.

14.4.4 Hardware Swizzling

A simple way to merger persistent and in-memory pointer types is just to extend the length of
in-memory pointers to the same size as persistent pointers, and to use 1 bit of the identifier to
distinguish between persistent and in-memory pointers. However the storage cost of longer
persistent pointers will have to be borne by I-memory pointers as well; understandably, this scheme
is unpopular.

We shall describe a technique called hardware swizzling, which uses the virtual-memory-
management hardware present inmost current computer systems to address this problem. When
data in a virtual memory page are accessed, and the operating system detects that the page does
not have real storage allocated for it, or has been access protected, then a segmentation violation
is said to occur. Many operating systems provide a mechanism to specify a function to be called
when a segmentation violation occurs, and a mechanism to allocate storage for a page in virtual
address space, and to set that page’s access permissions.

Hardware swizzling has two major advantages over software swizzling:

1. It is able to store persistent pointers in objects in the same amount of space as memory pointers
require (along with extra storage external to the object).

2. It transparently converts between persistent pointers and in-memory pointers in a clever and
efficient way. Software written to deal with in-memory pointers can thereby deal with persistent
pointers as well, without any changes.

14.4.4.1 Pointer Representation

Hardware swizzling uses the following representation of persistent pointers contained in objects
that are on disk. A persistent pointer is conceptually split into two parts: a page identifier in the
database, and an offset within the page.

The page identifier in a persistent pointer is actually a small indirect pointer, which we call the short
page identifier. Each page (or other unit of storage) has a translation table that provides a mapping
from the short page identifiers to full database page identifiers. The system has to look up the short
page identifier in a persistent pointer, in the translation table to find the full-page identifier.

The translation table, in the worst case, will be only as big as the maximum number of pointers that
can be contained in objects in a page; with a page size of 4096, and a pointer size of 4 bytes, the
maximum number of pointers is 1024. In practice, the translation table is likely to contain much
less than the maximum number of elements (1024 in our example) and will not consume excessive
space. The short page identifier needs to have only enough bits to identify a row in the table; with a
maximum table size of 1024, only 10 bits are required. Hence, a small number of bits are enough
to store the short page identifier. Thus, the translation table permits an entire persistent pointer to fit
into the same space as an in-memory pointer. Even though only a few bits are needed for the short

Database Management System 14.15 File Structure

page identifier, all the bits of an in-memory pointer other than the page-offset bits are used as the
short page identifier. This architecture facilitates swizzling, as we shall see.

The persistent-pointer representation scheme appears in Figure 17, where there are three objects
in the page, each containing a persistent pointer.

Figure: 17 Page image before swizzling.

The translation table gives the mapping between short page identifiers and the full database page
identifiers for each of the short page identifiers in these persistent pointers. The database page
identifiers are shown in the format volume.page.offset.

Each page maintains extra information so that all persistent pointers in the page can be found. The
system updates the information when an object is created or deleted in the page. The need to
locate all the persistent pointers in a page will become clear later.

14.4.4.2 Swizzling Pointers on a Page

Initially no page of the database has been allocated a page in virtual memory. Virtual memory
pages may be allocated to database pages even before they are actually loaded, as we will see
shortly. Database pages get loaded into virtual memory when the database system needs to
access data on the page. Before a database page is loaded, the system allocates a virtual memory
page to the database page if one has not already been allocated. The system then loads the
database page into the virtual-memory page it has allocated to it.

When the system loads a database page P into virtual memory, it does pointer swizzling on the
page: it locates all persistent pointers contained in objects in page P, using the extra information
stored in the page. It takes the following actions for each persistent pointer in the page. (Let the
value of the persistent pointer be <p

i,
o

I
>, where p

I
is the short page identifier and o

i
is the offset

within the page. Let P
I
be the full-page identifier of p

i
, found in the translation table in page P.)

1. If page P, does not already have a virtual-memory page allocated to it, the system now
allocates a free page in virtual memory to it. The page p

i
will reside at this virtual-memory

location if and when it is brought in. At this point, the page in virtual address space does not
have any storage allocated for it, either in memory or on disk; it is merely a range of addresses
reserved for the database page. The system allocates actual space when it actually loads
the database page P

i
into virtual memory.

2. Let the virtual-memory page allocated (either earlier or in the preceding step) for P
i
be v

i
.

The system updates the persistent pointer being considered, whose value is <p
i
, o

i
>, by

replacing p
i
with v

i
.

Centre for Distance Education Acharya Nagarjuna University14.16

Fig.18 shows the state of the page from Fig.17 after the system has brought that page into memory
and swizzled the pointers in it.

Figure: 18 Page image after swizzling.

Here, we assume that the page whose database page identifier is 679.34278 has been mapped to
page 5001 in memory, whereas the page whose identifier is 519.56850 has been mapped to page
4867 (which is the same as the short page identifier). All the pointers in objects have been updated
to reflect the new mapping, and can now be used as in-memory pointers.

14.4.4.3 Pointer Dereference

Consider the first time that an in-memory pointer to a virtual memory page v
i
is dereferenced,

when storage has not yet been allocated for the page. As we described, a segmentation violation
will occur, and will result in a function call on the database system. The database system takes the
following actions:

It first determines which database page was allocated to virtual memory page v
i
; let the full-page

identifier of the database page be P
i
. (If no database page has been allocated to v

i
, the pointer is

incorrect, and the system flags an error.)

It allocates storage space for page v
i,
and loads the database page P

i
into virtual memory page v

i
.

It carries out pointer swizzling out on page P
i
, as described earlier in “Swizzling Pointer on a Page”.

fter swizzling all persistent pointers in P, the system allows the pointer dereference that resulted in
the segmentation violation to continue. The pointer dereference will find the object for which it was
looking loaded in memory.

14.4.4.4 Optimizations

Several optimizations can be carried out on the basic scheme described here. When the system
swizzles page P, for each page P’ referred to by any persistent pointer in P, it attempts to allocate
P’ to the virtual address location indicated by the short page identifier of P’ on page P. If the system
can allocate the page in this attempt, pointers to it do not need to be updated.

14.4.5 Large Objects

Large objects containing binary data are called binary large objects(blobs), while large objects

containing character data, are called character large objects(clobs). Most relational databases

restrict the size of a record to be no longer than the size of a page, to simplify buffer management

and free-space management. Large objects and long fields are often stored in a special file reserved

for long-field storage. For practical reasons, we may manipulate large objects by using application

programs, instead of doing so within the database:

Database Management System 14.17 File Structure

Text data: Text is usually treaded as a byte string manipulated by editors and formatters.

Image/graphical data: Graphical data may be represented as a bitmap or as a set of lines, boxes,

and other geometric objects. Although some graphical data often are managed within the database

system itself, special application software is used for many cases, such as integrated circuit design.

Audio and video data: Audio and video data are typically a digitized, compressed representation

created and display by separate application software. Data are usually modified with special purpose

editing software, outside the database system.

14.5 Summary

We can organize a file logically as a sequence of records mapped on to disk blocks. One approach
to mapping the database to files is to use several files, and to store records of only one fixed length
In any given file. An alternative is to structure files so that they can accommodate multiple lengths
for records. There are different techniques for implementing variable length records, including the
slotted page method, the pointer method, and the reserved space method.

Since data are transferred between disk storage and main memory in units of a block, it is worthwhile
to assign file records to blocks in such a way that a single block contains related records. If we can
access several of the records we want with only one block access, we can save disk accesses.
Since disk accesses are usually the bottleneck in the performance of a database system, careful
assignment of records to blocks can pay significant performance dividends.

One way to reduce the number of disk accesses is to keep as many blocks as possible in main
memory. Since it is not possible to keep all blocks in main memory, we need to manage the collection
of the space available in main memory for the storage of blocks. The duffer is that part of main
memory available for storage of copies of disk blocks. The subsystem responsible for the allocation
of buffer space is called the buffer manager.

Storage systems for object-oriented database are somewhat different from storage systems for
relational databases. They must deal with large objects, for example, and must support persistent
pointers. There are schemes to detect dangling persistent pointers.

Software and hardware base swizzling schemes permit efficient dereferencing of persistent pointers.
The hardware based schemes use the virtual memory management support implemented in
hardware, and made accessible to user programs by many current generation operating systems.

14.6 Technical Terms

File organization: A technique for physically arranging the records of a file.

Sequential file organization: The rows in the file are stored in sequence according to a primary
key value.

Hashed file Organization: The address for each row is determined using an algorithm.

Free list: A linked list of blocks in a table, cluster, or index that will be examined when space is
required for new or relocated data.

Search key: A piece of data that the File Manager uses when searching through a B*-tree to locate
the information it needs.

Data Dictionary: A file that defines the basic organization of a database. It will contain a list of all
files in the database, the number of records in each file, and the names and types of each field.

Centre for Distance Education Acharya Nagarjuna University14.18

Object identifier: (OID) Aunique specially formatted number that is composed of a most significant
part assigned by an internationally recognized standards organization to a specific owner and a
least significant part assigned by the owner of the most significant part. For example, the unique
alphanumeric/numeric identifier registered under the ISO registration standard to reference a specific
object or object class.

Unique identifier: Data will appear only in a single record in the table; no two fields will be assigned
the same data (Primary Key).

Dangling Pointer: Apointer referring to an area of memory that has been deallocated. Dereferencing
such a pointer usually produces garbage.

Page fault: A page fault is an exception, which is raised by the memory management unit when a
needed page is not mapped in physical memory. This exception is passed on to the operating
system, which will bring the required page into physical memory

14.7 Model Questions

1. Explain why the allocation of records to blocks affects database system performance
significantly.

2. In the sequential file organization, why is an overflow block used even if there is, at the
moment, only one overflow record?

3. Write a short notes on clustering file organization.

4. Briefly explain data-dictionary storage.

5. Define object identifier (OID). How to implement the object identifiers?

14.8 References

Database System Concepts”, 4th edition by Abraham
Silberscatz, Henry F.Korth and S.Sudarshan

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College,
GUNTUR

Database Management System 15.1 IndexingLesson 15

Indexing
15.0 Objectives:

After completion of this chapter the student will be able to know about:

 Index-sequential file organization.

 Algorithms for updating indices.

 How B+-tree is more advantageous than index-sequential file organization.

 Updations on B+ -trees.

Structure Of the Lesson:

15.1 Basic Concepts

15.2 Ordered Indices

15.2.1 Primary Index

15.2.1.1 Dense and Sparse Indices

15.2.1.2 Multilevel Indices

15.2.1.3 Index Update

15.2.2 Secondary Indices

15.3 B+ -Tree Files

15.3.1 Structure of a B+ -Tree

15.3.2 Updates on B+ -Trees

15.3.3 B+ -Tree File Organization

15.4 B+ -Tree Index Files

15.5 Summary

15.6 Technical terms

15.7 Model questions

15.8 References

Centre for Distance Education Acharya Nagarjuna University15.2

15.1 Basic Concepts

An index for a file in a database system works in much the same way as the index in the textbook.
If you want to learn about a particular topic in the textbook, we can search for the topic in the index
at the back of the book, find the pages where it occurs, and then read the pages to find the information
we are looking for. The words in the index are in stored order, making it easy to find the word we are
looking for. Moreover, the index is much smaller than the book, further reducing the effort needed to
find the words we are looking for.

Database system indices play the same role as book indices in libraries. For example, to retrieve
an account record given the account number, the database system would look up an index to find
on which disk block the corresponding record resides, and then fetch the disk block, to get the
account record.

Keeping a stored list of account numbers would not work well on very large databases with millions
of accounts, since the index would itself be very big: further, even though keeping the index stored
reduces the search time, finding an account can still be rather time-consuming. Instead, more
sophisticated indexing techniques may be used. We shall discuss several of these techniques in
this chapter.

There are two basic kinds of indices:

Ordered indices: Based on a sorted ordering of the values.

Hash indices: Based on a uniform distribution of values across a range of buckets. The bucket to
which a value is assigned is determined by a function, called a hash function. We shall consider
several techniques for both ordered indexing and hashing. No one technique is the best. Rather,
each technique is best suited to particular database applications. Each technique must be evaluated
on the basis of these factors:

Access types: The types of access that are supported efficiently. Access types can include finding
records with a specified attribute value and finding records whose attribute values fall in a specified
range.

Access time: The time taken to find a particular data item, or set of items, using the technique in
question.

Insertion time: The time it takes to insert a new data item. This value includes the time it takes to
find the correct place to insert the new data item, as well as the time it takes to update the index
structure.

Deletion time: The time it takes to delete a data item. This value includes the time it takes to find
the item to be deleted, as well as the time it takes to update the index structure.

Space overhead: The additional space occupied by an index structure. Provided that the amount
of additional space is moderate, it is usually worthwhile to sacrifice the space to achieve improved
performance.

We often want to have more than one index for a file. For example, we may wish to search for a
book by author, by subject or by title. An attribute or set of attributes used to look up records in a file
is called a search key. Note that this definition of key differs from that used in primary key, candidate
key and super key. This duplicate meaning for key is (unfortunately) well established in practice.
Using our notion of a search key, we see that if there are several indices on a file, there are several
search keys.

Database Management System 15.3 Indexing

15.2 Ordered Indices
To gain fast random access to records in a file, we can use an index structure. Each index structure
is associated with a particular search key. Just like the index of a book or a library catalog, an
ordered index stores the values of the search keys in sorted order, and associates with each
search key the records that contain it.

The records in the indexed file may themselves be stored in some sorted order, just as books in a
library are stored according to some attribute such as the Dewey decimal number. A file may have
several indices, on different search keys. If the file containing the records is sequentially ordered, a
primary index is an index whose Search key also defines the sequential order of the file. Primary
indices are also called clustering indices. The search key of a primary index is usually the
primary key, although that is not necessarily so. Indices whose search key specifies an order
different from the sequential order of the file are called secondary indices, or non-clustering
indices.

15.2.1 Primary Index

In sections, we assume that all files are ordered sequentially on some search key. Such files, with
a clustering index on the search key, are called index-sequential files. They represent one of the
oldest index schemes used in database systems. They are designed for applications that require
both sequential processing of the entire file and random access to individual records.

Fig.1 shows a sequential file of account records taken from our banking example

Figure: 1 Sequential file for account records.

In the example of Fig.1, the records are stored in search-key order, with branch name used as the
search key.

15.2.1.1 Dense and Sparse Indices

An index record, or index entry consists of a search-key value, and pointers to one or more
records with that value as their search-key value. The pointer to a record consists of the identifier
of a disk block and an offset within the disk block to identify the record within the block. There are
two types of ordered indices that we can use:

1. Dense Index: An index record appears for every search-key value in the file. In a dense
clustering index, the index record contains the search-key value and a pointer to the first
data record with that search-key value. The rest of the records with the same search-key
value would be stored sequentially after the first record, because the index is a clustering

Centre for Distance Education Acharya Nagarjuna University15.4

one, records are sorted on the same search key. Dense index implementations may store
a list of pointers to all records with the same search-key value; doing so is not essential for
clustering indices.

2. Sparse Index: An index record appears for only some of the search key values. As it is true
in dense indices, each index record contains a search key value and a pointer to the first
data record with that search-key value. To locate a record, we find the index entry with the
largest search-key value that is less than or equal to the search-key value for which we are
looking. We start at the record pointed by that index entry, and follow the pointers in the file
until we find the desired record.

Fig.2 and Fig.3 show dense and sparse indices, respectively, for the account file. Suppose that we
are looking up records for the Perryridge branch. Using the dense index of Fig.2, we follow the
pointer directly to the first Perryridge record.

Figure: 2 Dense Index.
We process this record, and follow the pointer in that record to locate the next record in search-
key (branch name) order. We continue processing records until we encounter a record for a branch
other than Perryridge

Figure: 3 Sparse Index.
If we are using the sparse index (Fig.3), we do not find an index entry for “Perryridge”. Since the
last entry (in alphabetical order) before “Perryridge” is “Mianus”, we follow that pointer. We then
read the account file in sequential order until we find the first Perryridge record, and begin processing
at that point.

Database Management System 15.5 Indexing

As we have seen, it is generally faster to locate a record if we have a dense index rather than a
sparse index. However, sparse indices have advantages over dense indices in that they require
less space and they impose less maintenance overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time and sparse overhead.
Although the decision regarding this trade-off depends on the specific application, a good
compromise is to have a sparse index with one index entry per block. The reason that this design
is a good trade-off is that the dominant cost in processing a database request is the time that it
takes to bring a block from disk into main memory. Once we have brought in the block, the time to
scan the entire block is negligible. Using this sparse index, we locate the block containing the
record that we are seeking.

15.2.1.2 Multilevel Indices

Even if we use a sparse index, the index itself may become too large for efficient processing. It is
not unreasonable, in practice, to have a file with 100,000 records, with 10 records in each block. If
we have one index record per block, the index has 10,000 records. Index records are smaller than
data records, so let us assume that 100 index records fit on a block. Thus, our index occupies 100

blocks. Such large indices are stored as sequential files on disk.

If an index is sufficiently small to be kept in main memory, the search time to find an entry is low.
However, if the index is so large that it must be kept on disk, a search for an entry requires several
disk-block reads. Binary search can be used on the index file to locate an entry, but the search still
has a large cost. If the index occupies b blocks, binary search requires as many as +log

2
(b) +blocks

to read (+ x + denotes the least integer that is greater than or equal to x; i.e., we round upward.) For
our 100-block index, binary search requires seven blocks reads. On a disk system where a block

Figure: 4 Two-level sparse indexes.

Centre for Distance Education Acharya Nagarjuna University15.6

read takes 30milliseconds, the search will take 210milliseconds, which is long. Note that, if overflow
blocks have been used, binary search will not be possible. In that case, a sequential search is
typically used, and that requires b block reads, which will take even longer. Thus, the process of
searching a large index may be costly.

To deal with this problem, we treat the index just as we would treat any other sequential file, and
construct a sparse index on the clustering index, as in

To locate a record, we first use binary search on the outer index to find the record for the largest
search-key value less than or equal to the one that we desire. The pointer points to a block of the
inner index. We scan this block until we find the record that has the largest search-key value less
than or equal to the one that we desire. The pointer in this record points to the block of the file that
contains the record for which we are looking.

Using the two levels of indexing, we have read only one index block, rather than the seven we read
with binary search, if we assume that the outer index is already in main memory. If our file is
extremely large, even the outer index may grow too large to fit in main memory. In such a case, we
can create yet another level of index. Indeed, we can repeat this process as many times as necessary.
Indices with two or more levels are called multilevel indices. Searching for records with a multilevel
index requires significantly fewer I/O operations than does searching for records by binary search.
Each level of index could correspond to a unit of physical storage. Thus, we may have indices at
the track, cylinder and disk levels.

A typical dictionary is an example of a multilevel index in the non-database world. The header of
each page lists the first word alphabetically on that page. Such a book index is a multilevel index:
the words are at the top of each page of the book index from a sparse index on the contents of

dictionary pages.

Multilevel indices are closely related to tree structures, such as the binary trees used for in-memory
indexing.

15.2.1.3 Index Update

Regardless of what form of index is used, every index must be updated, and a record is either

inserted into or deleted from the file. We first describe algorithms for updating single level indices.

Insertion. First, the system performs a lookup using the search key value that appears in the
record to be inserted. The action the system takes next depends on whether the index is dense or
sparse:

Dense Indices:

1. If the search-key value does not appear in the index, the system inserts an index record with
the search-key value in the index at the appropriate position.

2. Otherwise the following actions are taken:

a. If the index record stores pointers to all records with the same search-key value, the system
adds a pointer to the new record to the index record.

b. Otherwise, the index record stores a pointer to only the first record with the search-key
value. The system then places the record being inserted after the other records with the
same search-key values.

Sparse Indices: We assume that the index stores an entry for each block. If the system creates a
new block, it inserts the first search-key value (in search-key order) appearing in the new block into

Database Management System 15.7 Indexing

the index. On the other hand, if the new record has the least search-key value in its block, the
system updates the index entry pointing to the block; if not, the system makes no change to the
index.

Deletion: To delete a record, the system first looks up the record to be deleted. The actions the
system takes next depend on whether the index is dense or sparse:

Dense Indices:

1. If the deleted record was the only record with its particular search-key value, then the system
deletes the corresponding index record from the index.

2. Otherwise the following actions are taken:

a. If the index record stores pointers to all records with the same search-key value, the
system deletes the pointer to the deleted record from the index record.

b. Otherwise, the index record stores a pointer to only the first record with the search-key
value. In this case, if the deleted record was the first record with the search-key value,
the system updates the record to point to the next record.

Sparse Indices:

1. If the index does not contain an index record with the search-key value of the deleted record,
nothing needs to be done to the index.

2. Otherwise the system takes the following actions:

a. If the deleted record was the only record with its search-key, the system replaces the
corresponding index record with an index record for the next search-key value (in search-
key order). If the next search-key value already has an index entry, the entry is deleted
instead of being replaced.

b. Otherwise, if the index record for the search-key value points to the record being deleted,
the system updates the index record to point to the next record with the same search-
key value.

Insertion and deletion algorithms for multilevel indices are simple extension of the scheme just

described. On deletion or insertion, the system updates the lowest-level index as described. As far

as the second level is concerned, the lowest level index merely is a file containing records, thus, if

there is any change in the lowest -level index, the system updates the second-level index as

described. The same technique applies to further levels of the index, if there are any.

15.2.2 Secondary Indices

Secondary indices must be dense, with an index entry for every search-key value, and a pointer to

every record in the file. A clustering index may be sparse, storing only some of the search-key

values, since it is always possible to find records with intermediate search-key values by a sequential

access to a part of the file, as described earlier. If a secondary index stores only some of the

search-key values, records with intermediate search-key values may be anywhere in the file and,

in general, we cannot find them without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering index, except that the

records pointed to by successive values in the index are not stored sequentially. In general, however,

secondary indices may have a different structure from clustering indices. If the search-key of the

Centre for Distance Education Acharya Nagarjuna University15.8

clustering index is not a candidate key, if suffices if the index points to the first record with a particular

value for the search key, since the other records can be fetched by a sequential scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it is not enough to point

to just the first record with each search-key value. The remaining records with same search-key

value could be anywhere in the file, since the records are ordered by the search key of the clustering

index, rather than by the search key of the secondary index. Therefore, a secondary index must

contain pointers to all the records.

We can use an extra level of indirection to implement secondary indices on search keys that are

not candidate keys. The pointers in such a secondary index do not point directly to the file. Instead,

each points to a bucket that contains pointers to the file.

Figure: 5 Secondary index an account file, on Non-candidate key balance.

Fig.5 shows the structure of a secondary index that uses an extra level of indirection on the account
file, on the search key balance.

A sequential scan in clustering index order is efficient because records in the file are stored physically
in the same order as the index order. However, we cannot (except in rare special cases) store a file
physically ordered by both the search key of the clustering index and the search key of a secondary
index. Because secondary key order and physical key order differ, if we attempt to scan the file
sequentially in secondary-key order, the reading of each record is likely to require the reading of a
new block from disk, which is very slow.

The procedure described earlier for deletion and insertion can also be applied to secondary indices;
the actions taken are those described for dense indices storing a pointer to every record in the file.

If a file has multiple indices, whenever the file is modified, every index must be updated.

Secondary indices improve the performance of queries that use keys other than the search-key of
the clustering index.

However, they impose a significant overhead on modification of the database. The designer of a
database decides which secondary indices are desirable on the basis of an estimate of the relative
frequency of queries and modifications.

Database Management System 15.9 Indexing

15.3 B+ -Tree Index Files

The main disadvantage of the index-sequential file organization is that performance degrades as
the file grows, both for index lookups and for sequential scans through the data.

The B+ -tree index structure is the most widely used of several index structures that maintain their
efficiency despite insertion and deletion of data. A B+ -tree index takes the form of a balanced tree
in which every path from the root of the tree to a leaf of the tree is of the same length. Each non-leaf

node in the tree has between [n/2] and n children, where n is fixed for a particular tree.

15.3.1 Structure of a B+ - tree structure

A B+ -tree index is a multilevel index, but it has a structure that differs from that of the multilevel
index sequential file

Figure: 6 Typical node of a B+ -tree.

Fig.6 shows a typical node of a B+ -tree. It contains up to n-1 search key values k
1
, K

2
…k

n-1
,

and n pointers p
1
, p

2,
…,p

n
. The search key values within a node are kept in sorted order;

thus, if i<j, then k
i
< k

j
.

We consider first the structure of the leaf nodes. For i=1,2,…., n-1, pointer p
i
points to either a file

record with search-key value k
i
or bucket of pointers, each of which points to a file record with

search key value k
i.

The bucket structure is used only if the search key does not form a candidate
key, and if the file is not sorted in the search key value order.

Figure: 7 A leaf node for account B+ - tree index(n=3).

Fig.7 shows one leaf node of a B+ - tree for the account file, in which we have chosen n to be 3,and
the search key is branch-name. Note that, since the account file is ordered by branch-name, the
pointers in the leaf node point directly to the file.

Now that we have seen the structure of a leaf node, let us consider how search key values are
assigned to a particular node. Each leaf can hold up to n-1 values. We allow leaf nodes to contain
as few as [(n-1)/2] values. The range of values in each leaf does not overlap. Thus, if L

i
and L

j
are

leaf nodes and i<j, then every search -key value in L
i
is less than every search-key value in L

j
. If the

B+ -tree index is to be a dense index, every search key value must appear in some leaf node.

Centre for Distance Education Acharya Nagarjuna University15.10

Now, we can explain the tree of the pointer P
n
. Since there is a linear order on the leaves based on

the search key values that they contain, we use P
n

to chain together the leaf nodes in search-key
order. This ordering allows for efficient sequential processing of the file.

The non-leaf nodes of the B+ -tree form a multilevel (sparse) index on the leaf nodes. The structure
of the non-leaf nodes is the same as that for leaf nodes, except that all pointers are pointers to tree
nodes. A leaf node may hold upto n pointers, and must hold at least [n/2] pointers. The number of
pointers in a node is called the fan out of the node.

Let us consider a node containing m pointers. For i=2,3,…,m-1, pointer P
i

points to the subtree
that contains search-key values less than K

i
and greater than or equal to the K

i-1
. Pointer P

m

points to the part of the subtree that contains those key values greater than or equal to K
m-1

and
pointer P

1
points to the part of the subtree that contains those search-key values less than K

1
.

The root node can hold fewer than [n/2] pointers; however, it must hold at least two pointers, unless
the tree consists of only one node. It is always possible to construct a B+ -tree, for any n, that
satisfies the proceeding requirements

Figure: 8 B+ -Tree for account file (n=3)

Fig.8 shows a complete B+ -tree for the account file(n=3). For simplicity, we have omitted both
the pointers to the file itself and the null pointers. Fig.9 shows a B+ -tree for the account file
with n=5.

Figure: 9 B+-tree for account file with n=5.

15.3.2 Updates on B+ -Trees
Insertion and deletion are more complicated, since it may be necessary to split a node that becomes
too large as the result of an insertion, or to coalesce node (that is, combine nodes) if node becomes
too small (fewer than [n/2] pointers). Furthermore, when a node is split or a pair of nodes is
combined, we must ensure that balance is preserved. To introduce the idea behind insertion and

Database Management System 15.11 Indexing

deletion in a B+ -tree, we shall assume temporarily that nodes never become too large or too small.
Under this assumption, insertion and deletion are performed as defined next.

 Insertion- First we find the leaf node in which the search-key value would appear. If the
search-key value already appears in the leaf node, we add the new record to the file and, if
necessary, add to the bucket a pointer to the record. If the search-key value does not appear,
we insert the value in the leaf node and position it such that the search keys are still in order.
We then insert the new record in the file and, if necessary, create a new bucket with the
appropriate pointer.

 Deletion- First we find the record to be deleted, and remove it from the file. We remove the
search-key value from the leaf node if there is no bucket associated with that search-key
value or if the bucker becomes empty as a result of the deletion.

We now consider an example in which a node must be split. Assume that we wish to insert a
record with a branch-name value of “Clearview” into the B+ -tree. We find that “Clearview” should
appear in the containing “Brighton” and “Downtown”. There is no room to insert the search-key
value “Clearview”. Therefore, the node is split into two nodes. Fig.10 shows the two leaf nodes that
result from inserting “Clearview” and splitting the node containing “Brighton” and “Downtown”.

Figure: 10 Split of leaf node on insertion of “Clearview”.

In general, we take the n search-key values (the n-1 values in the leaf node plus the value being
inserted), and put the first [n/2] in the existing node and the remaining values in a new node.

Having spilt a leaf node, we must insert the new leaf node into the B+ -tree structure. In our example,
the new node has “Downtown “as its smallest search-key value. We need to insert this search-key
value into t he parent of the leaf node that was split. The B+ -tree of fig.11 shows the result of the
insertion

Figure: 11 Insertion of “Clearview” into the B+ -tree of figure 8.

The search-key value “Downtown” was inserted into the parent. It was possible to perform this
insertion because there was room for added search-key value. If there were no room, the parent
would have had to be spilt. If the root itself is split, proceed recursively up the tree until either an
insertion does not cause a split or a new root is created.

Centre for Distance Education Acharya Nagarjuna University15.12

We now consider deletions that cause tree node s to contain too few pointers, first, let us delete
“Downtown” from the B+ -tree of fig.11. We locate the entry for “Downtown” by using our lookup
algorithm. When we delete the entry for “Down town” from its leaf node, the leaf becomes empty.
Since, in our example n = 3 and 0< [“(nm-1)/2], this node must be eliminated from the B+ -tree. To
delete a leaf node, we must delete the pointer to it from its parent. In our example, this deletion

leaves the parent node, which formerly contained three pointers, with only two pointers. Since 2
[n/2], the node is still sufficiently large, and the deletion operation is complete. The resulting B+ -tree
appears in fi.12.

Figure: 12 Deletion of “Downtown” from the B+ -tree of Fig.11

When we make a deletion from a parent of a leaf node, the parent node itself may become too
small. That is exactly what happens if we delete “Perryridge” from the B+ -tree of fig.12. Deletion of
the Perryridge entry causes a leaf node to become empty. When we delete the pointer to this node
in the latter’s parent. The parent is left with only one pointer. Since n=3, [n/2] = 2, only one pointer
is too few. However, since the parent node contains useful information, we cannot simply delete it.
Instead, we look at the sibling node (the nonleaf node containing the one search key, Mianus). This
sibling node has room to accommodate the information contained in our now-too-small node, so
we coalesce these nodes, such that the sibling node now contains the keys “Mianus” and “Redwood”.
The other node (the node containing only the search key “Redwood”) now contains redundant
information and can be deleted from its parent (which happens to be the root in our example);
fig.13 shows the result.

Figure: 13 Deletion of “Perryridge” from the B+ -tree of Fig.12

Notice that the root has only one child pointer after the deletion, so it is deleted and its sole child
becomes the root. So the depth of the B+ -tree has been decreased by1.

Database Management System 15.13 Indexing

It is not always possible to coalesce nodes. As an illustration, delete “Perryridge” from the B+ -tree
of fig.11. In this example, the “Down town” entry is still part of the tree. Once again, the leaf node
containing “Perryridge” becomes empty. The parent of the leaf node becomes too small (only one
pointer). However, in this example, the sibling node already contains the maximum number of
pointers, three. Thus it cannot accommodate an additional pointer. The solution in this case is to
redistribute the pointers such that each sibling has two pointers. The result appears in fig.14.

Figure: 14 Deletion of “Perryridge” from the B+ -tree of Fig.11.

Note that the redistribution of values necessitates a change of a search-key value in the parent of
the two siblings.

Although insertion and deletion operations on B+ -trees are complicated, they require relatively few
I/O operations, which is an important benefit since I/O operations are expensive. It can be shown
that the number of I/O operations needed for a worst-case insertion of deletion is proportional to
log[n/2] (K), where n is the maximum number of pointers in anode, and K is the number of search-
key values. In other words, the cost of insertion and deletion operations is proportional to the height
of the B+ -tree, and is therefore low. It is the speed of operation on B+ -tree that makes them a
frequently used index structure in database implementations.

15.3.3 B+ -Tree File Organization

The main drawback of index sequential files organization is the degradation of performance as the
file grows: with growth, an increasing percentage of index records and actual records become out
of order, and are stored in overflow blocks. We solve the degradation of index lookups by using B+

-tree indices on the file. We solve the degradation problem for storing the actual records by using
the leaf level of the B+ -tree to organize the blocks containing the actual records. We use the B+ -
tree structure not only as an index, but also as an organizer for records in a file. In a B+ -tree file
organization, the leaf nodes of the tree store records, instead of storing pointers to records.

Fig.15 shows an example of a B+ -tree file organization.

Figure: 15 B+ -Tree file organization.

Centre for Distance Education Acharya Nagarjuna University15.14

Since records are usually larger than pointers, the maximum number of records that can be stored

in a leaf node is less than the number of pointers in a non-leaf node. However, the leaf nodes are

still required to be at least half full.

Insertion and deletion of records from a B+ -tree file organization are handled in the same way as

insertion and deletion of entries in a B+ -tree index. When a record with a given key value v is

inserted, the system locates the block that should contain the record by searching the B+ -tree

insertion, the system splits the block in two, and redistributed the records in it (in the B+ -tree-key

order) to create space for the new record. The split propagates up the B+ -tree in the normal

fashion. When we delete a record, the system first removes it from the block containing it. If a block

B becomes less than half full as result, the records in B are redistributed with the records in an

adjacent block B’. Assuming fixed-sized records, each block will hold at least one-half as many

records as the maximum that it can hold. The system updates the nonleaf nodes of the B+ -tree in

the usual fashion.

When we use a B+ -tree for file organization, space utilization is particularly important since the

space occupied by the records is likely to be much more than the space occupied by keys and

pointers. We can improve the utilization of space in a B+ -tree by invoking more sibling nodes in

redistribution during splits merges. The technique is applicable to both leaf nodes and internal

nodes, and works as follows:

During insertion, if a node is full the system attempts to redistribute some of its entries to one of the

adjacent nodes, to make space for a new entry. If this attempt fails because the adjacent nodes are

themselves full, the system splits the node, and splits the entries evenly among one of the adjacent

nodes and the two nodes that it obtained by splitting the original node. Since the three nodes

together contain one more record than can fit in two nodes, each node will be about two-thirds full.

More precisely, each node will have at least [2n/3] entries, where n is the maximum number of

entries that the node can hold. ([x] denotes the greatest integer that is less than or equal to x; that

is, we drop the fractional part, if any)

During deletion of a record, if the occupancy of a node falls below [2n/3], the system attempts to

borrow an entry form one of the sibling nodes. If both sibling nodes have [2n/3] records, instead of

borrowing an entry, the system redistributes the entries in the node and in the two siblings evenly

between two of the nodes, and deletes the third node. We can use this approach because the total

number of entries is 3[2n/3]-1, which is less than 2n. With three adjacent nodes used for

redistribution, each node can be guaranteed to have [2n/4] entries. In general, if m nodes (m-

1siblings) are involved in redistribution, each node can be guaranteed to contain at least [(m-1) n/

m] entries. However, the cost of update becomes higher as more sibling nodes are involved in the

redistribution.

15.4 B -Tree Index Files

B -tree indices are similar to B+ - tree indices. the primary distinction between the two approaches

is that a B+ - tree eliminates the redundant storage of search-key values. In the B+ - tree of a fig.11,

the search keys “downtown” “mianus” “Redwood,”and “perryridge” appear twice. Every search

key value appears in some leaf node; several are repeated in the non-leaf node.

A B -tree allows search-key values to appear only once. Fig.16 shows a B -tree that represents

the same keys as the B+ -tree of fig.11.

Database Management System 15.15 Indexing

Figure: 16 B -tree equivalent of B+ -tree in fig.12.

Since search keys are not repeated in the B+ -tree, we may be able to store the index in fewer tree
nodes than in the corresponding B+ -tree index.

However, since search keys that appear in non-leaf nodes appear nowhere else in the B+ -tree ,we
are forced to include an additional pointer field for each search key in a non-leaf node. These
additional pointers point to either file records or buckets for the associated search key.

A generalized B -tree leaf node appears in fig.17a; a non-leaf node appears in fig.17b. Leaf nodes
are the same as in B+ -trees.

Figure: 17 Typical nodes of a B+ -tree. (a) Leaf node.
(b) Nonleaf node

In non-leaf nodes, the pointers P
i
are the tree pointers that we used also for B+ -tree, while the

pointers B
i
are bucket or file–record pointers.

In the generalized B -tree in the figure, there are discrepancy keys in the leaf node, but there are m-
1 keys in the non-leaf node. This discrepancy occurs because non-leaf nodes must include pointers
B

i
, thus reducing the number of search keys that can be held in these nodes. Clearly, m<n, but the

exact relationship between m and n depends on the relative size of search keys and pointers.

15.5 Summary :
Many queries reference only a small portion of the records in a file. To reduce the overhead in
searching for these records, we can construct indices for the files that store the database.

Index-sequential files are one of the oldest index schemes used in database systems. To permit
fast retrieval of records in search-key order, records are stored sequentially, and out-of-order records

are chained together. To allow fast random access, we use an index structure.

Centre for Distance Education Acharya Nagarjuna University15.16

There are two types of indices that we can use: dense indices and sparse indices. Dense indices

contain entries for every search-key value, whereas sparse indices contain entries only for some
search-key values.

If the sort order of a search key matches the sort order of a relation, an index on the search key is
called a primary index. The other indices are called secondary indices. Secondary indices improve
the performance of queries that use search keys other than the primary one. However, they impose
an overhead on modification of the database.

The primary disadvantage of the index-sequential file organization is that performance degrades
as the file grows. To overcome this deficiency, we can use a B+ -tree index.

We can use B+ -trees for indexing a file containing records, as well as to organize records into a
file.

15.6 Technical Terms:

Access Time: The average time interval between a storage peripheral (usually a disk drive or
semiconductor memory) receiving a request to read or write a certain location and returning the
value read or completing the write.

Primary Index: An index used to improve performance on the combination of columns most
frequently used to access rows in a table.

Secondary Index: An index that is maintained for a data file, but not used to control the current
processing order of the file. For example, a secondary index could be maintained for customer
name, while the primary index is set up for customer account number.

Clustering Index: The index that determines how rows are physically ordered in a tablespace.

Tree: A hierarchical structure like an organization chart.

B -tree: Also called a multiway tree, a B-tree is a fast data-indexing method that organizes the
index into a multi-level set of nodes. Each node contains a sorted array of key values (the indexed
data).

B -tree index: A type of index that uses a balanced tree structure for efficient record retrieval. B-
tree indexes store key data in ascending or descending order.

15.7 Model Questions

1. When it is preferable to use a dense index rather than a Sparse index? Explain your answer.

2. What is the difference between a primary index and a Secondary index?

3. Construct a B+ -tree for the following set of key values:

(2,3,5,7,11,17,19,23,29,31)

4. Since indices speed query processing, why might they not be kept on several search keys?
List as many reasons as possible.

5. It is possible in general to have two primary indices on the same relation for different search
keys? Explain your answer.

Database Management System 15.17 Indexing

15.8 References

“Database System Concepts”, 4th edition by Abraham
Silberscatz, Henry F.Korth and S.Sudarshan

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept.Of Computer Science,
JKC College,
GUNTUR

Database Management System 16.1 HashingLesson 16

Hashing

16.0 Objectives:
After completion of this lesson the student will be able to know about:

 Implementation of static hashing

 Implementation of dynamic hashing

 How to compare ordered index and hashing

 Usefulness of multiple-key access

Structure Of the Lesson:
16.1 Static Hashing

16.2 Dynamic Hashing

16.3 Comparison Of Ordered Indexing And Hashing

16.4 Index Definition In SQL

16.5 Multiple-Key Access

16.6 Summary

16.7 Technical Terms

16.8 Model Questions

16.9 References

16.1 Static Hashing

One disadvantage of sequential file organization is that we must access an index structure to
locate data, or must use binary search and that results in more I/O operations. File organizations
based on the technique of hashing allow us to avoid accessing an index structure

16.1.1 Hash File Organization

In a hash file organization, we obtain the address of the disk block containing a desired record
directly by computing a function on the search key value of the record. In our description of hashing,
we shall use the term bucket to denote a unit of storage that can store one or more records. A
bucket is typically a disk block, but could be function.

To insert a record with search key K
i
, we compute h(K

i
), which gives the address of the bucket for

that record. Assume for now that there is space in the bucket to store the record. Then, the record
is stored in that bucket.

To perform a lookup on a search key value K
i
, we simply compute h(K

i
), and then search the

bucket with that address. Suppose that two search keys, K
5
and K

7,
have the same hash value,

i.e., h(K
5
) = h(K

7
). If we perform a lookup on K

5
the bucket, to verify that the record is one that we

want.

Centre for Distance Education Acharya Nagarjuna University16.2

Deletion is equally straightforward. If the search key value of the record to be deleted is K
i
, we

compute h(K
i
), then search the corresponding bucket for that record, and delete the record from

the bucket.

16.1.1.1 Hash Functions

The worst possible function maps all search key values to the same bucket. Such a function is

undesirable because all the records have to be kept in the same bucket. A lookup has to examine

every such record to find the one desired. An ideal hash function distributes the stored keys uniformly

across all the buckets, so that every bucket has the same number of records.

Since we do not know at design time precisely which search key values will be stored in the file, we

want to choose a hash function that assigns search key values to buckets in such a way that the

distribution has these qualities.

 The distribution is uniform. That is, the hash function assigns each bucket the same number

of search key values from the set of all possible search key values.

 The distribution is random. That is, in the average case, each bucket will have nearly the

same number of values assigned to it, regardless of the actual distribution of search key

values. More precisely, the hash value will not be correlated to any externally visible ordering

on the search key values, such as alphabetic ordering or by the length of the search keys.

The hash function will appear to be random.

As an illustration of these principles, let us choose a hash function for the account file using the

search key branch–name. The hash function that we choose must have the desirable properties

not only on the example account file that we have been using, but also an account file of realistic

size for a large bank with many branches.

Assume that we decided to have 26 buckets, and we define a hash function that maps names

beginning with the ith letter of the alphabet to the ith bucket. This hash function has the virtue of

simplicity, but it fails to provide a uniform distribution. Since we expect more branch names to

begin with such letters as B and R than Q and X, for example.

Now suppose that we want a hash function on the search key balance. Suppose that the minimum

balance is 1 and the maximum balance is 100,000 and we use a hash function that divides the

values in to 10 ranges, 1-10,000 ,10,001 -20,000 and so on. The distribution of search key values

is uniform (since each bucket has the same number of different balance values), but it is not

random. But records with balance between 1 and 10,000 are far more common than are records

with balances between 90,001 and 100,000. As a result the distribution of records is not uniform,

some buckets receive more records than others do. If the function has a random distribution, even

if there are such correlations in the search keys, the randomness of the distribution will make it

very likely that all buckets will have roughly the same number of records, as long as each search

key occurs in only a small fraction of the records.

Typically hash functions perform computation on the internal binary machine representation of

characters in the search key. A simple hash function of this type first computes the sum of the

binary representations of the characters of a key, and then returns the sum module on the number

of buckets. Fig.1 shows the application of such a scheme, with 10 buckets, to the account file,

under the assumption that the ith letter in the alphabet is represented by the integer i.

Database Management System 16.3 Hashing

Figure: 1 Hash organization of account file, with branch–name as the key.

16.1.1.2 Handling of Bucket Overflows

So far, we have assumed that, when a record is inserted, the bucket to which it is mapped has
space to store the record. If the bucket does not have enough space, a bucket overflow is said to
occur. Bucket overflow can occur for several reasons:

 Insufficient buckets- The number of buckets, which we denote n
B
, must be chosen such

that n
B
>n

r
/f

r
, where n

r
denotes the total number of records that will be stored, and f

r
denotes

the number of records that will fit in a bucket.

 Skew- Some buckets are assigned more records than are others, so a bucket may overflow

even when other buckets still have space. This situation is called bucket skew. Skew can
occur for two reasons:

1. Multiple records may have the same search key.

2. The chosen hash function may result in non uniform distribution of search keys.

So that the probability of bucket overflow is reduced, the number of buckets is chosen to be (n
r
/

f
r
)*(1+d), where d is a fudge factor, typically around 0.2. Some space is wasted. About 20 percent

of the space in the buckets will be empty. But the benefit is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can still occur. We
handle bucket overflow by using overflow buckets. If a record must be inserted into a bucket b, and
b is already full, the system provides an overflow bucket for b, and inserts the record into the
overflow bucket. If the overflow bucket is also full, the system provides another overflow bucket,
and so on. All the overflow buckets of a given bucket are chained together in a linked list, as in fig.2.
Overflow handling using such a linked list is called overflow chaining.

Centre for Distance Education Acharya Nagarjuna University16.4

Figure: 2 Overflow chaining in a hash structure.

We must change the lookup algorithm slightly to handle overflow chaining. As before, the system
uses the hash function on the search key to identify a bucket b. The system must examine all the
records in the buckets b to see whether they match the search key, as before. In addition, if a
bucket b has overflow buckets, the system must examine the records in all the overflow buckets
also.

The form of a hash structure that we have just described is sometimes referred to as closed
hashing. Under an alternative approach, called open hashing, the set of buckets is fixed, and there
are no overflow chains. Instead, if a bucket is full, the system inserts records in some other bucket
in the initial set of buckets B. One policy is to use the next bucket (in cyclic order) that has space;
this policy is called linear probing. Other policies, such as computing further hash functions, are
also used. Open hashing has been used to construct symbol tables for compilers and assemblers,
but closed hashing is preferable for database systems. The reason is that deletion under open
hashing is troublesome. Usually, compilers and assemblers perform only lookup and insertion
operations on their symbol tables. However, in a database system, it is important to be able to
handle deletion as well as insertion. Thus, open hashing is of only minor importance in database

implementation.

An important drawback to the form of hashing that we have described is that we must choose the

hash function when we implement the system, and it cannot be changed easily thereafter if the file
being indexed grows or shrinks. Since the function H maps search –key values to a fixed set B of
a bucket addresses, we want space if B is made large to handle future growth of the file. If B is too
small, the buckets contain records of many different search-key values, and bucket overflows can

occur. As the file grows, performance suffers.

16.1.2 Hash Indices

Hashing can be used not only for file organization, but also for index structure creation. A hash

index organizes the search keys, with their associated pointers, into a hash file structure. We
construct a hash index as follows. We apply a hash function on a search key to identify a bucket,
and store the key and its associated pointers in the bucket (or in overflow buckets). Fig.3 shows a

Database Management System 16.5 Hashing

secondary hash index on the account file, for the search key account –number.

The hash function in the fig.3 computes the sum of the digits of the account number modulo 7. The
hash index has seven buckets, each of size 2(realistic indices would, of course, have much larger
bucket sizes). Fig.3 hash index on search key account –number of account file. One of the buckets
has three keys mapped to it, so it has an overflow bucket. In this example, account number is a
primary key for account, and so each search key has only one associated pointer. In general,

multiple pointers can be associated with each key.

Figure: 3 Hash index on search key account-number of account file.

16.2 Dynamic Hashing

As we have seen, the need to fix the set B of bucket addresses present a serious problem with the
static hashing technique of the previous section. Most databases grow larger overtime. If we are to
use static hashing for such a database; we have three classes of options:

1) Choose a hash function based on the current file size. This option will result in performance

degradation as the database grows.

2) Choose a hash function based on the anticipant size of the file at some point in the future.
Although performance degradation is avoided, a significant amount of space may be wasted
initially.

3) Periodically recognize the hash structure in response to file growth. Such reorganization
involves choosing a new hash function, recomputing the hash function on every record in
the file, and generating new bucket assignments. This reorganization is a massive, time
consuming operation. Furthermore, it is necessary to forbid access to the file during
reorganization.

Centre for Distance Education Acharya Nagarjuna University16.6

Several dynamic hashing techniques allow the hash function to be modified dynamically to
accommodate the growth or shrinkage of the database. In this section we describe one form of
dynamic hashing called extendable Hashing.

16.2.1 Data structure

Extendable hashing copes changes in the database size by splitting and coalescing buckets as
the database grows and shrinks. As a result, space efficiency is retained. Moreover, since the
reorganization is performed on only one bucket at a time, the resulting performance overhead is
acceptably low.

With extendable hashing, we choose a hash function h with the desirable properties of uniform
and randomness. However, this hash function generates values over a relatively large range namely,
b-bit binary integers. A typical value for b is 32.

We do not create a bucket for each for hash value. Indeed, 223 is over 4 billion, and that many
buckets is unreasonable for all but the largest databases. Instead, we create buckets on the
demand, as records as inserted into the file. We do not use the entire b bits of the hash value
initially. At any point, we use I bits, where 0 =i =b. These i grow and shrink with the size of the
database. Fig.4 shows a general extendable hash structure.

Figure: 4 General extendable hash structure.

The i appearing above the bucket address table in the figure indicates that i bits of the hash value
h(K) are required to determine the correct bucket for K. this number will, of course, change as the
file grows. Although i bits are required to find the correct entry in the bucket address table, several
consecutive table entries may point to the same bucket. All such entries will have a common hash
prefix, but the length of this prefix may be less than i.

Therefore, we associate with each bucket an integer giving the length of the common hash prefix.
In fig.4 the integer associated with bucket j is shown as i

j
.The number of bucket –address –table

entries that point to bucket j is 2 (I-I j)

Database Management System 16.7 Hashing

16.2.2 Queries and Updates

We now see how to perform lookup, insertion, and deletion on an extendable hash structure.

To locate the bucket-containing search –key value K
l
, the system takes the first high order bits of

h(K
l
), looks at the corresponding table i entry for this bit string, and follows the bucket pointer in the

table entry .

To insert a record with search key value K
l
, the system follows the same procedure for lookup as

before, ending up in some bucket say, j, if there is room in the bucket, the system inserts the record

in the bucket. If on the other hand, the bucket is full, it must split the bucket and redistribute the

current records, plus the new one. To split the bucket, the system must first determine from the

hash value whether it needs to increase the number of bits that it uses.

 If i=i
j
, only one entry in the bucket addresses table points to bucket j. Therefore, the system

needs to increase the size of the bucket address table so that it can include pointers to the

two buckets that result from splitting bucket j. It does so by considering an additional bit of

hash value. It increments the value of i by 1. Thus doubling the size of the bucket address

table. It replaces each entry by two entries, both of which contain the same pointer as the

original entry. Now two entries in the bucket address table point to bucket j. The system

allocates a new bucket (bucket z), and sets the second entry to point new bucket. It sets i
j

and i
z
to i. next, it rehashes each record in the bucket either keeps in the bucket j or allocates

it to the newly created bucket.

The system now re-attempts the insertion of the new record. Usually, the attempt will succeed.

However, if all the records in the bucket j, as well as the new record, have the same hash value

prefix, it will be necessary to split a bucket again, since all the record in the bucket j and the new

record are assigned to the same bucket. If the hash function has been chosen carefully, it is unlikely

that a single insertion will require that a bucket be split more than once, unless there are a large

number of records with the same search key. If all the records in the bucket j have the same search

key value, no amount of splitting will help. In such cases, overflow buckets are used to store the

records as I
j
static hashing.

 If i>i
j
, then more than one entry in the bucket address table points to bucket j. Thus the

system can split bucket j without increasing the size of the bucket address table. Observe

that all the entries that point to bucket j correspond to hash prefixes that have the same

value on the leftmost i
j
bits .The system allocates a new bucket (bucket z), and set i

j
and i

z

to the value that results from adding 1 to the original i
j
value. Next, the system needs to

adjust the entries in the bucket addressee table that previously pointed to bucket j. The

system leaves the first half of the entries as they were (pointing to bucket j), and sets all the

previous case, the system rehashes each record in bucket j, and allocates it either to

bucket j or to the newly created bucket z.

The system then re-attempts the insert. In the unlikely case that it again fails, it applies one of the

two cases, i=i
j
or i>j as appropriate

Centre for Distance Education Acharya Nagarjuna University16.8

A-217 Brighton 750

A-101 Downtown 500

A-110 Downtown 600

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

A-218 Perryridge 700

a-222 Redwood 700

A-305 Roundhill 350

Figure: 5 Sample account file.

Our example account file in fig.5 illustrates the operation of insertion. The 32 –bit hash values on
branch name appear in fig.6.

Figure: 6 Hash functions for branch-name.

Assume that, initially the file is empty, as empty as in fig.7.

We insert the records one by one. To illustrate all the features of extendable hashing in a small
structure, we shall make the unrealistic assumption that a bucket can hold only two records

Figure: 7 Initial extendable hash structures.

Database Management System 16.9 Hashing

We insert the record (A-217 Brighton, 750). The bucket address table contains a pointer to the one
bucket, and the system inserts the record. Next, we insert the record (A-101 Downtown ,500). The
system also places this record in the one bucket of our structure.

When we attempt to insert the next record (Downtown, A-110 ,600), we find that the bucket is full.
Since i=i

0
, we need to increase the number of bits that we use from the hash value. We now use 1

bit, allowing us 21=2 buckets. This increase in the number of bits necessitates doubling the size of
the bucket address table to two entries. The system splits the bucket, placing in the new bucket
those records whose search-key has a hash value beginning with 1, and leaving in the original
bucket the other records

Figure: 8 Hash structure after three insertions.

Fig.8 shows the state of our structure after the split. Next, we insert (A-215, Mianus, 700). Since
the first bit of h(Mianus) is 1, we must insert this record into the bucket pointed to by the “1” entry in
the bucket address table. Once again, we find the bucket full and i= i

1
. We increase the number of

bits that we use from the hash to 2.

Figure: 9 Hash structure after four instructions.

This increase in the number of bits necessities doubling the size of the bucket address table to
four entries, as in Figure 9. Since the bucket of figure 8 for hash prefix 0 was not split, the two
entries of the bucket address table of 00 and 01 both point to this bucket.

For each record in the bucket of fig.8 for hash prefix 1 (the bucket being split), the system examines
the first 2 bits of the hash value to determine which bucket of the new structure should hold it.

Centre for Distance Education Acharya Nagarjuna University16.10

Next, we insert (A-102, Perryridge, 400), which goes in the same bucket as Mianus. The following
insertion, of (A201, Perryridge, 900), results in a bucket overflow, leading to an increase in the
number of bits, and a doubling of the size of the bucket address table. The insertion of the third
Perryridge record, (A-218,Perryridge, 700), leads to another overflow. However, this overflow cannot
be handled by increasing the number of bits, since there are three records with exactly the same

hash value. Hence the system uses an overflow bucket, as in Fig.10.

Figure: 10 Hash structure after seven insertions.

We continue in this manner until we have inserted all the account records of Fig.5. The resulting
structure appears in Fig.11.

Figure: 11 Extendable hash structure for the account File.

16.2.3 Comparison With Other Schemes

We now examine the advantages and disadvantages of extendable hashing, compared with other
schemes that we have discussed. The main advantage of extendable hashing is that performance
does not degrade as the file grows. Furthermore, there is minimal space overhead. Although the
bucket address table incurs additional overhead, it contains one pointer for each hash value for the

Database Management System 16.11 Hashing

current prefix length. This table is thus small. The main space saving of extendable hashing over
other forms of hashing is that no buckets need to be reserved for future growth; rather, buckets can
be allocated dynamically.

A disadvantage of extendable hashing is that lookup involves an additional level of indirection, since
the system must access the bucket address table before accessing the bucket itself. This extra
reference has only a minor effect on performance.

Thus, extendable hashing appears to be highly attractive technique, provided that we are willing to
accept the added complexity involved in its implementation. The bibliographical notes reference
more detailed descriptions of extendable hashing implementation.

16.3 Comparison Of Ordered Indexing And Hashing

We have seen several ordered-indexing schemes and several hashing schemes. We can organize
files of records as ordered files by using index-sequential organization or B+ -tree organizations.
Alternatively, we can organize the files by using hashing. Finally, we can organize them as heap
files, where the records are not ordered in any particular way.

Each scheme has advantage in certain situations. A database-system implementer could provide
many schemes, leaving the final decision of which schemes to use to the database designer.
However, such an approach requires the implementer to write more code, adding both to the cost
of the system and to the space that the system occupies. Most database systems support B+ -

trees and may additionally support some form of hash file organization or hash indices.

To make a wise choice of file organization and indexing techniques for a relation, the implementer
or the database designer must consider the following issues:

 Is the cost of periodic organization of the index or the hash organization acceptable?

 What is the relative frequency of insertion and deletion?

 Is it desirable to optimize average access time at the expense of increasing the worst-case
access time?

 What types of queries are users likely to pose?

We have already examined the first three of these issues, first in our review of the relative merits of
specific indexing techniques, and again in our discussion of hashing techniques. The fourth issue,
the expected type of query, is critical to the choice of ordered indexing or hashing.

If most queries are of the form

select A
1
, A

2
……A

n

from r

where A
i
= c

Then, to process this query, the system will perform a lookup on an ordered index or hash structure
for attribute A

i
, for value c. For queries of this form, a hashing scheme is preferable. An ordered-

index lookup requires time proportional to the log of the number of values in r for A
i
. In a hash

structure, however, the average lookup time is a constant independent of the size of the database.
The only advantage to an index over hash structure for this form of query is that the worst-case
lookup time is proportional to the log of the number of values in r for A

i
. By contrast, for hashing, the

worst-case lookup time is proportional to the number of values in r for A
i
. However, the worst-case

lookup time is unlikely to occur with hashing and hashing is preferable in this case.

Centre for Distance Education Acharya Nagarjuna University16.12

Ordered-index techniques are preferable to hashing in cases where the query specifies a range of
values. Such a query takes the following form:

select A
1
, A

2
……A

n

from r

where A
i
=c

2
and A

i
=c

1

In other words, the preceding query finds all the records with A
i
values between c

1
and c

2
.

Let us consider how we process this query using an ordered index, we have a hash structure, we
can perform a lookup on c

1
. Once we have found the bucket for value c

1
, we follow the pointer

chain in the index to read the next bucket in order, and we continue in this manner until we reach c
2

If, instead of an ordered index, we have a hash structure, we can perform a lookup on c
1
and locate

the corresponding bucket-but it is not easy, in general, to determine the next bucket that must be
examined. The difficulty arises because a good hash function assigns values randomly to buckets.
Thus, there is no simple notion of “next bucket in sorted order”. The reason we cannot chain
buckets together in sorted order on A

i
is that each bucket is assigned many search-key values.

Since values are scattered randomly by the hash function, the values in the specified range are
likely to be scattered across many or all of the buckets. Therefore, we have to read all the buckets
to find the required search keys.

16.4 Index Definition In SQL

The SQL standard does not provide any way for the database user or administrator to
control what indices are created and maintained in the database system.

We create an index by the create index command, which takes the form:

Create index <index-name> on <relation-name> (<attribute-list>)

The attribute-list is the list of attributes that form the search key for the index.

To define an index name b-index or branch relation with branch-name as the search key, we write

create index b-index on branch (branch-name)

If we wish to declare that the search key is a candidate key, we add the attribute unique to the
index definition. Thus, the command

create unique index b-index on branch (branch -name)

declares branch-name to be a candidate key for branch. If, at the time we enter the create unique
index command, branch-name is not a candidate key, the system will display an error message,
and the attempt to create the index will fail. If the index creation attempt succeeds, any sub-sequent
attempt to insert a tuple that violates the key declaration will fail.

The index name we specified for an index is required to drop an index. The drop index
command takes the form:

drop index <index name>

16.5 Multiple-Key Access

Until now, we have assumed implicitly that only one index (or hash table) is used to process a
query on a relation. However, for certain types of queries, it is advantageous to use multiple indices
if they exist.

Database Management System 16.13 Hashing

16.5.1 Using Multiple Single Key Indices

Assume that the account file has two indices: one for branch-name and one for balance. Consider
the following query: “Find all account numbers at the Perryridge branch with balances equal to

$1000”. We write

Select loan_number

from account

where branch-name=”Perryridge”

and balance=1000

There are three strategies possible for processing this query:

1. Use the index on branch-name to find all records pertaining to the Perryridge branch. Examine
each such record to see whether balance=1000.

2. Use the index on branch-name to find all records pertaining to accounts with balance of $1000.
Examine each such record to see whether branch-name=”Perryridge”.

3. Use the index on branch-name to find pointers to all records pertaining to the perryridge branch.
Also, use the index on balance to find pointers to all records pertaining to accounts with a
balance of $1000. Take the intersection of these two sets of pointers. Those pointers that are in
the intersection point to records pertaining to both Perryridge and accounts with balance of
$1000.

The third strategy is the only one of the three that takes advantage of the existence of multiple
indices. However, even this strategy may be a poor choice if all of the following hold:

 There are many records pertaining to the Perryridge branch.

 There are many records pertaining to accounts with a balance4 of $1000.

 There are only a few records pertaining to both the Perryridge branch and accounts with a
balance of $1000.

If these conditions hold, we must scan a large number of pointers to produce a small result. An
index structure called a “bitmap index” greatly speeds up the intersection operation used in the
third strategy.

16.5.2 Indices on Multiple Keys

An alternative strategy for this case is to create and use an index on a search key (branch-name,
balance), i.e., the search key consisting of the branch-name concatenated with the account balance.
The structure of the index is the same as that of any other index, the only difference being that the
search key is not a single attribute, but rather is a list of attributes. The search key can be represented
as a tuple of values, of the form (a

1
…….a

n
), where the indexed attributes are A

1
,……, A

n
. the

ordering of search key values is the lexicographic ordering. For example, for the case of two attribute
search keys, (a

1
, a

2
) < (b

1
, b

2
) if either a

1
<b

1
or a

1
= b

1
and a

2
< b

2
. Lexicographic ordering is

basically the same as alphabetic ordering of words.

The use of an ordered-index structure on multiple attributes has a few shortcomings. As an
illustration, consider the query

select loan-number
from account

where branch-name= “Perryridge” and balance=1000

Centre for Distance Education Acharya Nagarjuna University16.14

We can answer this query by using an ordered index on the search key (branch-name, balance):
for each value of branch-name that is less than “Perryridge” in alphabetic order, the system locates
records with a balance value of 1000. However, each record is likely to be in a different disk block,
because of the ordering of records in the file, leading to many I/O operations. The difference between
this query and the previous one is that the condition on branch-name is a comparison condition,
rather than an equality condition.

16.5.3 Grid Files

Fig.12 shows part of a grid file for the search keys branch-name and balance on the account file.
The two dimensional array in the figure is called the grid array, and the one-dimensional arrays are
called linear scales. The grid file has a single grid array, and one linear scale for each search-key
attribute.

Figure: 12 Grid file on keys branch-name and balance of the account file.

Search keys are mapped to cells in this way. Each cell in the grid array has a pointer to a bucket
that contains the search-key values and pointers to records. Only some of the buckets and pointers
from the cells are shown in the figure. To conserve space, multiple elements of the array can point
to the same bucket. The dotted boxes in the figure indicate which cells point to the same bucket.

Suppose that we want to insert in the grid-file index a record whose search-key value is (“Brighton”,
500000). To find the cell to which the key is mapped, we independently locate the row and column
to which the cell belongs.

We first use the linear scales on branch-name to locate the row of the cell to which the search key
maps. To do so, we search the array to find the least element that is greater than “Brighton”. In this
case, it is the first element, so the search key maps to the row marked 0. If it were the ith element,
the search key would map to row i-1. If the search key is greater than or equal to all elements in the
linear scale, it maps to the final row. Next, we use that linear scale on balance to find out similarly
to which column the search key maps. In this case, the balance 500000 maps to column 6.

Thus, the search-key value (“Brighton”, 500000) maps to the cell in the row 0 column 6. Similarly,
(“Downtown”, 600000) would map to the cell in row 1 column 5. Cells point to the same bucket (as
indicated by the dotted box), so, in both cases, the system store the search-key values and the
pointer to the record in the bucket labeled B

j
in the figure.

Database Management System 16.15 Hashing

To perform a lookup to answer our example query, with the search condition of

branch-name <“Perryridge” and balance=1000

We find all rows that can contain branch names less than “Perryridge”, using the linear scale on

branch-name. In this case, these rows are 0, 1 and 2. Rows 3 and beyond contain branch names

greater than or equal to “Perryridge”. Similarly, we find that only column 1 contain a balance value

of 1000. In this case, only column 1 satisfies this condition. Thus, only the cells in column 1, rows

0, 1 and 2, can contain entries that satisfy the search condition. The grid structure is suitable also

for queries involving one search key. Consider this query:

select *

from account

where branch-name= “Perryridge”

The linear scale on branch-name tells us that only cells in row 3 can satisfy this condition. Since

there is no condition on balance, we examine all buckets pointed to by cells in row 3 to find entries

pertaining to Perryridge. Thus, we can use a grid-file index on two search keys to answer queries

on either search key by itself, as well as to answer queries on both search keys. Thus, a single

grid-file index can serve the role of three separate indices. If each index were maintained separately,

the three together would occupy more space, and the cost of updating them would be high. Grid

files provide a significant decrease in processing time for multiple-key queries.

16.5.4 Bitmap Indices

Bitmap indices are specialized type of index designed for easy querying on multiple keys, although

each bitmap index is built on a single key.

For bitmap indices to be used, records in a relation must be numbered sequentially, starting from,

say 0. Given a number n, it must be easy to retrieve the record numbered n. This is particularly

easy to achieve if records are fixed in size, and allocated on consecutive blocks of a file. The

record number can then be translated easily into a block number and a number that identifies the

record within the block. Consider the relation r, with an attribute A that can take on only one of a

small number (for example, 2 to 20) values. For instance, a relation customer-info may have an

attribute gender, which can take only values m (male) or f (female).

16.5.4.1 Bitmap Index Structure

A bitmap is simply an array of bits. In its simplest form, a bitmap index on the attribute A of relation

r consists of one bitmap for each value that A can take. Each bitmap has as many bits as the

number of records in the relation. The ith bit of the bitmap for value v
j
is set to 1 if the record

numbered i has the value v
j
for attribute A. all other bits of the bitmap are set to 0.

In our example, there is one bitmap for the value m and one for f. The ith bit of bitmap for m is set to

1 if gender value of the record numbered i is m. All other bits of the bitmap for m are set to 0.

Similarly, the bitmap for f has the value 1 for bits corresponding to records with the value f for the

gender attribute; all other bits have the value 0. Fig.13 shows an example of bitmap indices on a

relation customer-info.

Centre for Distance Education Acharya Nagarjuna University16.16

Figure: 13 Bitmap indices on relation customer-info.

We now consider when bitmaps are useful. The simplest way of retrieving all records with value m
(or value f) would be to simply read all records of the relation and select those records with value
m(or f respectively). The bitmap index doesn’t really help to speed up such a selection.

In fact, bitmap indices are useful for selections mainly when there are selections on multiple keys.
Suppose we create a bitmap index on attribute income-level, which we described earlier, in addition
to the bitmap index on gender.

16.5.4.2 Efficient implementation of bitmap operations

We can compute the intersection of two bitmaps easily by using a for loop: the ith iteration of the
loop computes the and of the ith bits of the two bitmaps. We can speed up computation of the
intersection greatly by using bit-wise and instructions supported by most computer instruction
sets. A word usually consists of 32 or 64 bits, depending on the architecture of computer. A bit-wise
and instruction takes two words as input and outputs a word where each bit is the logical and of
the bits in the corresponding positions of the input words. What is important to note is that single
bit-wise and instruction can compute the intersection of 32 or 64 bits at once.

16.5.4.3 Bitmaps and B+ -Trees

Bitmaps can be combined with regular B+ -tree indices for relations where a few attribute values

are extremely common, and other values also occur, but much less frequently. In a B+ -tree index

leaf, for each value would normally maintain a list of all records with that value for the indexed

attribute. Each element of the list would be a record identifier, consisting of at least 32 bits, and

usually more. For a value that occurs in many records, we store a bitmap instead of a list of

records.

16.6 Summary

Static hashing uses hash functions in which the set of bucket addresses is fixed. Such hash

functions cannot easily accommodate databases that grow significantly larger over time. There

are several dynamic hashing techniques that allow the hash function to be modified. One example

is extendable hashing, which copes with changes in database size by splitting and coalescing

buckets as the database grows and shrinks.

We can also use hashing to create secondary indices; such indices are called hash indices. For

notational convenience, we assume hash file organizations have an implicit hah index on the search

key used for hashing.

Database Management System 16.17 Hashing

Ordered indices such as B+ -trees and hash indices can be used for selections based on equality
conditions involving single attributes. When multiple attributes are involved in a selection condition,
we can intersect record identifiers retrieved from multiple indices. Grid files provide a general means
of indexing on multiple attributes.

Bitmap indices provide a very compact representation for indexing attributes with very few distinct
values. Insertion operations are extremely fast on bitmaps, making them ideal for supporting queries
on multiple attributes.

16.7 Technical Terms

Hashing: The conversion of a column’s primary key value to a database page number on which
the row will be stored. Retrieval operations that specify the key column value use the same hashing
algorithm and can locate the row directly. Hashing provides fast retrieval for data that contains a
unique key value.

Directory hashing: Directory hashing is a method of indexing file locations on a disk so the time
needed to locate a file is reduced.

Bucket: A bucket is most commonly a type of data buffer or a type of document.

Hash Function: A formula that is applied to each value of a table column or a combination of
several columns, called the index key, to get the address of the area in which the row should be
stored. When locating data, the database uses the hash function again to get the data’s location.

Skew: When the superstructure is not perpendicular to the substructure, a skew angle is created.
The skew angle is the acute angle between the alignment of the superstructure and the alignment
of the substructure.

Bitmap index: An index that uses a string of bits that corresponds to rows in a table to indicate
whether the indexed value is stored in the row.

Primary key: Acolumn in a table whose values uniquely identify the rows in the table. Aprimary key
value cannot be NULL.

16.8 Model Questions

1. Explain the distinction between closed and open hashing. Discuss the relative merits of

each technique in database applications?

2. What are the causes of bucket overflow in a hash file organization? What can be done to
reduce the occurrence of bucket overflows?

3. Why is a hash structure not the best choice for a search key on which range queries are
likely?

4. Show how to compute existence bitmaps from other bitmaps.

5. How does data encryption affect index schemes?

Centre for Distance Education Acharya Nagarjuna University16.18

16.9 References

“Database System Concepts”, 4th edition by Abraham

Silberscatz, Henry F.Korth and S.Sudarshan.

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe.

AUTHOR:

M.V.BHUJANGA RAO. M.C.A.,

Lecturer,

Dept. Of Computer Science,

JKC College,

GUNTUR

Database Management System 17.1 TransactionsLesson 17

Transactions

17.0 Objectives:

After completion of this lesson the student will be able to know about:

 Different transaction concepts.

 Different states of a transaction.

 Atomicity and durability of transactions.

 Concurrent executions.

 Serializability and how conflicts can be eliminated in serializability.

 Recoverability.

Structure Of the Lesson:

17.1 Transaction concepts

17.2 Transaction state

17.3 Implementation of Atomicity and Durability

17.4 Concurrent Executions

17.5 Serializability

17.6 Recoverability

17.7 Implementation of Isolation

17.8 Transaction Definition in SQL

17.9 Testing for Serializability

17.10 Summary

17.11 Technical terms

17.12 Model questions

17.13 References

Centre for Distance Education Acharya Nagarjuna University17.2

17.1 Transaction concepts
A transaction is a unit of program execution that accesses and possibly updates various data
items. Usually, a user program written in a high-level data manipulated languages initiates a
transaction. The transaction consists of all operations executed between the begin transaction
and end transaction.

To ensure integrity of the data, we require that the database system maintain the following properties
of the transaction:

Atomicity
Consistency
Isolation
Durability

Atomicity: Either all operations of the transaction are reflected properly in the database, or none
are.

Consistency: Execution of a transaction in isolation (that is, with no other transaction executing
concurrently) preserves the consistency of the database.

Isolation: Even though multiple transactions may execute concurrently, the system guarantees
that, for every pair of transactions Ti and Tj, it appears to T

i
that T

j
finished execution before T

i

started, or T
j

started execution after T
i
finished. Thus, each transaction is unaware of other

transactions executing concurrently in the system.

Durability: After a transaction completes successfully, the changes it has made to the database
persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from the first letter of
each of the four properties.

17.2 Transaction state

Every transaction must be in one of the following states.

Active, the initial state; the transaction stays in this state while it is executing.

Partially committed, after the final statement has been executed.

Failed, after the discovery that normal execution can no longer proceed.

Aborted, after the transaction has been rolled back and the database has been restored to its
state prior to the start of the transaction.

Committed, after successful completion.

The state diagram corresponding to a transaction appears in figure 1 .we say that a transaction
has committed only if it has entered the committed state. Similarly, we say that a transaction has
aborted only if it has entered the aborted state. A transaction is said to have terminated if has either
committed or aborted.

Database Management System 17.3 Transactions

A transaction starts in the active state. When it finishes its final statement, it enters the partially
committed state. At this point, the transaction has completed its execution, but it is still possible
that it may have to be aborted, since the actual output may still be temporarily residing in main
memory, and thus a hardware failure may preclude its successful completion.

Figure 1 State diagram of a transaction

The database system then writes out enough information to disk that, even in the event of a failure,
the updates performed by the transaction can be re-created when the system restarts after the
failure. When the last of this information is written out, the transaction enters the committed state.

A transaction enters the failed state after the system determines that the transaction can no longer
proceed with its normal execution (for example, because of logical or hardware errors). Such a
transaction must be rolled back. Then it enters the aborted state. At this point, the system has two

opinions.

1. It can restart the transaction, but only if the transaction was aborted as a result of some
hardware or software error that was not created through the internal logic of the transaction.
A restarted transaction is considered to be a new transaction.

2. It can kill the transaction. It usually does so because of some internal logical error that can
be corrected only by rewriting the application program, or because the input was bad, or
because the desired data were not found in that database.

We must be cautious when dealing with observable external writes, such as writes to a terminal or
printer. Once such a write has occurred, it cannot be erased, since it may have been seen external
to the database system. Most systems allow such writes to take place only after the transaction
has entered the committed state. One way to implement such a scheme is for the database system
to store any value associated with such external writes temporarily in nonvolatile storage, and to
perform the actual writes only after the transaction entered the committed state, but before it could
complete the external writes, the database system will carry out the external writes (using the
nonvolatile storage) when the system is restarted.

Centre for Distance Education Acharya Nagarjuna University17.4

Handling external writes can be more complicated in some situations. For example suppose the
external action is that of dispensing cash at an automated teller machine, and the system fails just
before the cash is actually dispensed (we assume that cash can be dispensed automatically). It
makes no sense to dispense cash when the system is restarted, since the user may have left the
machine. In such a case a compensating transaction, such as depositing the cash back in the
users account, needs to be executed when the system is restarted.

17.3 Implementation of Atomicity And durability

The recovery management component of a database system can support atomicity and durability
by a variety of schemes. We first consider a simple, but extremely inefficient, scheme called the
shadow copy scheme. This scheme, which is based on making copies of the database, called
shadow copy, assumes that the database is simply a file on disk. A pointer called db-pointer is
maintained on disk; it points to the current copy of the database.

In the shadow-copy scheme, a transaction that wants to update the database first creates copy of
the database. All updates are done on the new database copy, leaving the original copy, the shadow
copy, untouched. If at any point the transaction has to be aborted, the system merely deletes the
new copy. The old copy of the database has not been affected.

If the transaction completes, it is committed as follows. First, the operating system is asked to
make sure that all pages of the new copy of the database have been written out to disk. After the
operating system has written all the pages to the disk, the database system updates the pointer
db-pointer to point to the new copy of the database; the new copy then becomes the current copy
of the database. The old copy of the database is then deleted. Figure 2 depicts the scheme,
showing the database state before and after the update.

The transaction is said to have been committed at the point where the updated db pointer is written
to disk.

Figure 2 Shadow-copy technique for atomicity and durability

We now consider how the technique handles transaction and system failures. First, consider
transaction failure. If the transaction fails at any time before db-pointer is updated, the old contents
of the database are not affected. We can abort the transaction by just deleting the new copy of the
database. Once the transaction has been committed, all the updates that are performed are in the
database pointed to by db-pointer. Thus, either all updates of the transaction are reflected, or none

of the effects are reflected, regardless of transaction failure.

Now consider the issue of system failure. Suppose that the system fails at any time before the
updated db-pointer is written to disk. Then, when the system restarts, it will read db-pointer and will
thus see the original contents of the database, and none of the effects of the transaction will be

Database Management System 17.5 Transactions

visible on the database. Next, suppose that the system fails after db-pointer has been updated on
disk. Before the pointer is updated, all pages of the new copy of the database were written to disk.
Again, we assume that, once a file is written on disk, its contents will not be damaged even if there
is a system failure. Therefore, when the system restarts, it will be read db-pointer and will thus see

the contents of the database after all the updates performed by the transaction.

The implementation actually depends on the write to db-pointer being atomic, that is either all its
bytes are written or none of its bytes are written. If some of the bytes of the pointer were updated by
the write, but others were not, the pointer is meaningless, and neither old nor new versions of the
database may be found when the system restarts. Luckily, disk systems provide atomic updates to
entire blocks, or at least to a disk sector. In other words, the disk system guarantees that it will be
update db-pointer automatically, as long as we make sure that db-pointer at the beginning of a
block.

Thus, the atomicity and durability properties of transactions are ensured by the shadow copy

implementation of the recovery management component.

17.4 Concurrent executions

Transaction-processing systems usually allow multiple transactions to run concurrently. Allowing
multiple transactions to update data concurrently causes several complications with consistency
of the data, as we saw earlier. Ensuring consistency in spite of concurrent execution of transactions
requires extra work; it is far easier to insist that transactions run serially-that is, one at a time, each
starting only after the previous one has completed. However, there are two good reasons for allowing
concurrency;

Improved throughput and resource utilization: A transaction consists of many steps. Some
involve I/O activity; others involve CPU activity. The cup and the disks in a computer system can
operate in parallel. Therefore, I/O activity can be done in parallel with processing at the CPU. The
parallelism of the CPU and the I/O system can therefore be exploited to run multiple transactions in
parallel. While a read or write on behalf of one transaction is in progress on one disk, another
transaction can be running in the CPU. While another disk may be executing a read or write on
behalf of a third transaction. All of this increases the throughput of the system-that is, the no of
transactions executed in a given amount of time. Correspondingly, the processor and disk utilization
also increase; in other words, the processor and disk spend less time idle, or not performing any
usual work.

Reduced waiting time. There may be a mix of transactions running on a system, some short and
some log. If transactions run serially, a short transaction may have to wait for a preceding long
transaction to complete, which can lead to unpredictable delays in running a transaction. If the
transactions are operating on different parts of the database, it is better to left them run concurrently,
sharing the CPU cycles and disk accesses among them. Concurrent execution reduces the
unpredictable delays in running the transactions. Moreover, it also reduces the average response
time: the average time for a transaction to be completed after it has been submitted.

The motivation for using concurrent execution in a database is essentially the same as the motivation
for using multiprogramming in an operating system. When several transactions run concurrently,
database consistency can be destroyed despite the correctness of each individual transaction. In
this section. We present the concept of schedules to help identify those executions that are

guaranteed to ensure consistency.

Centre for Distance Education Acharya Nagarjuna University17.6

The database system must control the interaction among the concurrent transactions to prevent
them from destroying the consistency of the database. It does so through a variety of mechanisms
called concurrency-control schemes. Consider the simplified banking system, which has several
accounts, and a set of transactions, that access and update those accounts. Let T

1
and T

2
be two

transactions that transfer funds from one account to another. Transactions T
1

transfers $50 from

account A to account B. it is defined as

T
1
: read (A);

A: =A-50;

Write (A);

Read (B);

B: =B+50;

Write(B)

Transactions T
2

transfers 10 percent of the balance from account A to account B. it is defined as

T
2
: read (A);

Temp: =A*0.1;

A:=A-temp;

Write (A);

Read (B);

B: =B+temp;

Write(B)

Suppose the current values of accounts A and B are $1000 and $2000, respectively. Suppose also

that the two transactions are executed one at a time in the order T
1

followed by T
2
. This execution

sequence appears in fig 15.3.In the figure; the sequence of instruction steps in the chronological
order from top to bottom. With instructions of T

1
appearing in the left column and instructions of T

2

appearing in the right column. The final values of accounts A and B, after the execution in figure 3
takes place, are $855 and $2145, respectively. Thus, the total amount of money in accounts A and

B – that is, the sum of A+B is preserved after the execution of both transactions.

T
1

T
2

read(A) read(A)

A:=A-50 temp:=A*0.1

Write(A) A:=A-temp

read(B) write(A)

B:=B+50 read(B)

write(B) B:=B+ temp

write(B)

Figure 3 Schedule 1-a serial schedule in which T
1

is followed by T
2
.

Database Management System 17.7 Transactions

Similarly, if the transactions are executed one at a time in the order followed by T
2

followed by T
1
,

then the corresponding execution sequence is that of figure 4 Again, as expected, the sum A+B is
preserved, and the final values of accounts A and B are $850 and $2150,respectively.

The execution sequences just described are called schedules. They represent the chronological
order in which instructions are executed in the system. clearly, a schedule for a set of transactions
must consist of all instructions of those transactions, and must preserve the order in which the
instructions appear in each individual transaction. For, example, in transaction T

1
, the instruction

write (A) must appear before the instruction read (B), in any valid schedule. In the following
discussion, we shall refer to the fist execution sequence (T

1
followed by T

2
) as schedule 1,and to

the second execution sequence (T
2
followed by T

1
) as schedule 2.

T
1

T
2

read(A) read(A)

A:=A-50 temp:=A*0.1

Write(A) A:=A-temp

read(B) write(A)

B:=B+50 read(B)

write(B) B:=B+ temp

write(B)

Figure 4 Schedule 2-a serial schedule in which T
2

is followed by T
1
.

These schedules are serial. Each serial schedule consists of a sequence of instructions from

various transactions, where the instructions belonging to one single transaction appear together in

that schedule. Thus, for a set of n transactions, there exist n! Different valid serial schedules.

When database system executes several transactions concurrently, the corresponding schedule

no longer needs to be serial. If two transactions are running concurrently, the operating system

may execute one transaction for a little while, then perform a context switch, execute the second

transaction for some time, and then switch back to the first transaction for some time, and so on.

With multiple transactions, the CPU time is shared among all the transactions.

Several execution sequences are possible, since the various instructions from both transactions

may now be interleaved. In general, it is not possible to predict exactly how many instructions of a

transaction will be executed before the CPU switches to another transaction. Thus, the number of

possible schedules for a set of n transactions is much larger than n! .

Returning to our previous example, suppose that two transactions are executed concurrently. One

possible schedule appears in figure 5. After this execution takes place, we arrive at the same state

as the one in which the transactions are executed serially in the order T
1
followed by T

2
. The sum

A + B is indeed preserved.

Centre for Distance Education Acharya Nagarjuna University17.8

T
1

T
2

read(A)

A: =A-50

write(A)

read(A)

temp: =A*0.1

A:=A-temp

write(A)

read(B)

B:=B+50

Write(B)

read(B)

B:=B+ temp

write(B)

Figure 5 Schedule 3-a Concurrent Schedule equivalent to schedule 1.

Not all concurrent executions result in a correct state. To illustrate, consider the schedule of
figure 6.

T
1

T
2

read(A)
A: =A-50

read(A)
temp: =A*0.1
A:=A-temp
write(A)

read(B)
write(A)
read(B)
B:=B+50
Write(B)

B:=B+ temp
write(B)

Figure 6 Schedule 4-a concurrent schedule.

Database Management System 17.9 Transactions

After the execution of this schedule, we arrive at a state where the final values of accounts Aand B
are $950 and $2100,respectively. This final state is inconsistent state, since we have gained $50 in
the process of the concurrent execution. Indeed, the sum A + B is not preserved by the execution
of the two transactions.

If control of concurrent execution is left entirely to operating systems, many possible schedules,
including ones that leave the database in an inconsistent state, such as the one just described, are
possible. It is the job of the database system to ensure that any schedule that gets executed will
leave the database in a consistent state. The concurrency-control component of the database
system carries out this task.

We can ensure consistency of the database under concurrent execution by making sure that any
schedule that executed has the same effect as a schedule that could have occurred without any
concurrent execution. That is, the schedule should, in some sense, be equivalent to a serial schedule.

17.5 Serializability
The database system must control concurrent execution of transactions, to ensure that the database
state remains consistent. Before we examine how the database system can carry out this task, we
must first understand which schedules will ensure consistency, and which schedules will not.

Since transactions are programs, it is computationally difficult to determine exactly what operations
a transaction performs and how operations of various transactions interact. For this reason, we
shall not interpret the type of operations that a transaction can perform on data item. Instead, we
consider only two operations: read and write. We thus assume that, between a read (Q) instruction
and a write (Q) instruction on a data item Q, a transaction may perform an arbitrary sequence of
operations on the copy of Q that is residing in the local buffer of the transaction. Thus, the only
significant operations of a transaction, from a scheduling point of view, are its read and write
instructions. We shall therefore usually show only read and write instructions in schedules, as we
do in schedule 3 in figure 7

T
1

T
2

read(A)
write(A)

read(A)
write(A)

read(B)
Write(B)

read(B)
write(B)

Figure 7 Schedule 3-showing only the read and write instructions.

In this section, we discuss different forms of schedule equivalence; they lead to the notions of
conflict serializability and view serializability.

Centre for Distance Education Acharya Nagarjuna University17.10

17.4.1 Conflict serializability:

Let us consider a schedule s in which there are two consecutive instructions Ii and Ij refer to

different data items, and then we can swap Ii and Ij without affecting the results of any instruction in

the schedule. However if Ii and Ij refer to the same data item Q, then the order of the two steps may

matter. Since we are dealing with only read and write instructions, there are four cases that we

need to consider:

1) I
i
=read (Q), I

j
=read (Q). The order of I

i
and I

j
does not matter, since T

i
and T

j
read the same

value of Q, regardless of the order.

2) I
i
=read (Q), I

j
=write (Q). If Ii comes before I

j
, then T

i
does not read the value of Q that is

written by T
j
in instruction I

j
. if I

j
comes before I

i
, then T

i
reads the value of Q that is written

by T
j
. Thus, the order of I

i
and I

j
matters.

3) I
i
=write (Q), I

j
=write (Q) .the order of I

i
and I

j
matters for reasons similar to those of the

previous case.

4) I
i
=write (Q), I

j
=write (Q). Since both instructions are write operations, the order of these

transactions does not affect either T
i
or T

j
. However, the value obtained by the next read (Q)

instruction of S is affected. Since the result of only the latter of the two write instructions is

preserved in the database .If there is no other write (Q) instruction after I
i
and I

j
in s, then the

order of I
i
and I

j
directly affects the final value of Q in the database state that results from

schedule S.

Thus, only in the case where both I
i
and I

j
are read instructions does the relative order of their

execution not matter.

We say that I
i
and I

j
conflict if they are operations by different transactions on the same data, and

at least one of these instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider schedule 3, in figure 7. The write

(A) instruction of T
1
conflicts with the read (A) instruction of T

2
. However, the write (A) instruction of

T
2

does not conflict with the read (B) instruction of T
1
, because the two instructions access same

data items.

Let I
i
and I

j
be consecutive instructions of a schedule S. if I

i
and I

j
are instructions of different

transactions and I
i
and Ij do not conflict, then we can swap the order of I

i
and I

j
to produce a new

schedule S‘. We expect S to be equivalent to S‘, since all instructions appear in the same order in

both schedules except for I
i
and I

j
, whose order does not matter.

Since the write (A) instruction of T
2

in schedule 3 of figure 7 does not conflict with the read (B)

instruction of T
1
, we can swap these instructions to generate an equivalent schedule, schedule 5,

in figure 8.

Database Management System 17.11 Transactions

T
1

T
2

read(A)

write(A)
read(A)

read(B)
write(A)

Write(B)

read(B)
write(B)

Figure 8 Schedule 5-schedule 3 after swapping of a pair of instructions.

Regardless of the initial system state, schedules 3 and 5 both produce the same final system
state:

We continue to swap no conflicting instructions:

 Swap the read (B) instruction of T
1

with the read (A) instruction of T
2
.

 Swap the write (B) instruction of T
1

with the write (A) instruction of T
2
.

 Swap the write (B) instruction of T
1

with the read (A) instruction of T
2
.

The final result of these swaps, schedule 6 of figure 9, is a serial schedule.

T
1

T
2

read(A)
write(A)
read(B)
write(B)

read(A)

write(A)

read(B)
write(B)

Figure 9 Schedule 6 – a serial schedule that is equivalent to schedule 3.

Thus, we have shown that schedule 3 is equivalent to a serial schedule. This equivalence implies

that, regardless of the initial system state, schedule 3 will produce the same final state as will
some serial schedule.

If a schedule S can be transformed into a schedule S‘ by a series of swaps of non-conflicting
instructions, we say that S and S’ is conflict equivalent.

Centre for Distance Education Acharya Nagarjuna University17.12

In our previous examples, schedules 1 is not conflict equivalent to schedule 2. However, schedule

1 is conflict equivalence to schedule 3,because the read (B) and write (B) instruction of T
1
can be

swapped with the read (A) and write (A) instruction of T
2
.

The concept of conflict equivalence leads to the concept of conflict serializability. We say that a

schedule s is conflict serializable if it is conflict equivalent to a serial schedule. Thus, schedule 3 is

conflict serializable, since it is conflict equivalent to a serial schedule. Thus, schedule 3 is conflict

serializable, since it is conflict equivalent to the serial schedule 1.

Finally, consider schedule 7 of figure 10; it consists of only the significant operations (that is, the

read and write) of transactions T
3

and T
4
. This schedule is not conflict serializable, since it is not

equivalent to either the serial schedule <T
3
, T

4
> or the serial schedule <T

4
, T

3
>

T
1

T
2

read(Q)
write(A)

write(QB)

Figure 10 Schedule 7.

It is possible to have two schedulers that produce the same outcome, but that are not conflict
equivalent. For example, consider transaction T

5
, which transfers $10 from account B to A.

Let schedule 8 be as defined in figure 11 .we claim that schedule 8 is not conflict equivalent to the
serial schedule <T

1
, T

5
>,

T
1

T
2

read(A)
A: =A-50
write(A)

read(A)
B:=B-10
write(B)

read(B)
B:=B+50
Write(B)

read(B)

A:=A+10
write(A)

Figure 11 Schedule 8.

Database Management System 17.13 Transactions

Since, in schedule 8, the write (B) instruction of T
5
conflicts with the read (B) instruction of T

1
.Thus,

we cannot move all the instructions of T
1
before those of T

5
by swapping consecutive nonconflicting

instructions. However, the final values of accounts A and B after the execution of either schedule 8
or the serial schedule <T

1
, T

5
> are the same -$960 and $2040 respectively.

We can see from this example that there are less stringent definitions of schedule equivalence
than conflict equivalence. For the system to determine that schedule 8 produces the same outcome
as the serial schedule<T

1
, T

5
>, it must analyze the computation performed by T

1
and T

2
, rather

than just the read and write operations. In general, such analysis is hard to implement and is
computationally expensive. However, there are other definitions of schedule equivalence based
purely on the read and write operations. We will consider one such definition in the next section.

17.5.2 view serializability

In this section, we consider a form of equivalence that is less stringent than conflict equivalence,
but that, like conflict equivalence, is based on only the read and write operations of transactions.
Consider two schedules S and S’, where the same set of transactions participates in both schedules.
The schedules Sand S’ are said to be view equivalent if three conditions are met.

1. For each data item Q, if transaction T, reads the initial value of Q in schedule s, then
transaction T, must, in schedule S’, also read the initial value of Q.

2. For each data item Q, if transaction T, executes read (Q) in schedule S, and if that value
was produced by a write (Q) operation executed by transaction T

3
, then the read (Q)

operation of transaction T
i
must, in schedule s

1
, also read the value of Q that was produced

by the same write (Q) operation of transaction T
j
.

3. For each data item Q, the transaction (if any) that performs the final write (Q) operation in
schedule s must perform the final write (Q) operation in schedule s‘.

Condition 1 and 2 ensure that each transaction reads the same values in both schedules and,
therefore, performs the same computation. Condition 3,coupled with conditions 1 and 2, ensures
that both schedules result in the same final system state.

In our previous examples, schedule 1 is not view equivalent to schedule 2, since, in schedule 1,the
value of account a read by transaction T

2
was produced by T

1
, whereas this case does not hold in

schedule 2. However, schedule 1 is view equivalent to schedule 3, because the values of account
A and B read by transaction T

2
were produced by T

1
in both schedules.

The concept of view equivalence leads to the concept of view serializability .we say that a schedule
s is view serializable if it is view equivalent to a serial schedule.

As an illustration, suppose that we augment schedule 7 with transaction T
6
, and obtain schedule 9

in figure 12. Schedule 9 is view serializable. Indeed, it is view equivalent to the serial schedule <T
3
,

T
4
, and T

6
>, since the one read (Q) instruction reads the initial value of Q in both schedules, and to

T
6

performs the final value of Q in both schedules.

T
3

T
4

T
6

read (Q)
write (Q) write (Q)

write(Q)
Figure 12 Schedule 9-a view-serializable schedule

Centre for Distance Education Acharya Nagarjuna University17.14

Every conflict serializable schedule is also view serializable, but there are view serializable schedules

that are not conflict serializable, since every pair of consecutive instructions conflicts, and, thus, no

swapping of instructions is possible.

Observe that, in schedule 9, transactions T
4

and T
6

perform write (Q) operations without having

performed a read (Q) operation. Writes of this sort are called blind writes. Blind writes appear in

any view-serializable schedule that is not conflict serializable

17.6 Recoverability

So far, we have studied what schedules are acceptable from the viewpoint of consistency of the

database, assuming implicitly that there are no transaction failures. We now address the effect of

transaction failures during concurrent execution.

If a transaction T
i
fails, for whatever reason, we need to undo the effect of this transaction to

ensure the atomic property of the transaction .In a system that allows concurrent execution, it is

necessary also to ensure that any transactions T
j
that is dependent on T

i
is also aborted. To

achieve this surety, we need to place transactions on the type of schedules permitted in the system

17.4.1 Recoverable schedules

Consider schedule 11 in figure 13 in which T
9

is a transaction that performs only one instruction:

read (A). Suppose that the system allows T
9
to commit immediately after executing the read (A)

instruction. Thus, T
9

commits before T
8

does. Now, suppose that T
8

fails before it commits. Since

T
9
has read the value of data item a written by T

8
, we must abort T

9
to ensure transaction atomicity.

However, T
9

has already committed and cannot be aborted. Thus, we have a situation where it is

impossible to recover correctly from the failure of T
8
.

T
8

T
9

read(A)

write(A) read(A)

read(B)

Figure 13 Schedule 10.

Schedule 10, with the commit happening immediately after the read (A) instruction, is an example

of a non-recoverable schedule, which should not be allowed. Most database system requires that

all schedules be recoverable. A Recoverable schedule is one where, for each pair of transactions

T
i
and T

j
such that T

j
reads a data item previously written by T

i
, the commit operation of T

i
appears

before the commit operation of T
j
;

17.4.1 Cascades Schedules

Even if a schedule is recoverable, to recover correctly from the failure of a transaction T
i
, we may

have to roll back several transactions. Such situations occur if transactions have read data written

by T
i
. As an illustration, consider the partial schedule of figure 14.

Database Management System 17.15 Transactions

T
10

T
11

T
12

read(A)

read(B)

write(A)

read(A)

write(A)

read(A)

Figure: 14 Schedule 11.

Transaction T
10

writes a value of A that is read by transaction T
11

.Transaction T
11

writes a value of

A that is read by transaction T
12

.suppose that, at this point, T
10

fails. T
10

must be rolled back. Since

T
12

is dependent on T
11

, T
12

must be a rolled back. This phenomenon, in which a single transaction

failure leads to a series of transaction rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant amount of work. It is

desirable to restrict the schedules to those where cascading rollbacks cannot occur. Such schedules

are called cascade less schedules. Formally, a cascade less schedule is one where, for each pair

of transactions T
i
and T

j
appear before the read operation of T

j
. It is easy to verify that every

cascadeless schedule is also recoverable.

17.7 Implementation of isolation

So far, we have seen what properties a schedule must have if it is to leave the database in a

consistent state and allow transaction failures to be handled in a safe manner. Specifically, schedules

that are conflict or view serializable and cascadeless satisfy these operations.

There are various concurrency- control schemes that we can use to ensure that, even when multiple

transactions are executed concurrently, only acceptable schedules are generated, regardless of

how the operating-system time –shares resources among the transactions.

As a trivial example of a concurrency control scheme, consider this scheme; a transaction acquires

a lock on the entire database before it starts and releases the lock after it has committed. While a

transaction holds a lock, no other transaction is allowed to acquire the lock, and all must therefore

wait for the lock to be released. As a result of the locking policy, only one transaction can execute at

a time. Therefore, only serial schedules are generated. These are trivially serializable, and it is

easy to verify that they are casacdeless as well.

A concurrency control scheme such as this one leads to poor performance, since it forces

transactions to wait for preceding transactions to finish before they can start. In, other words, it

provides a poor degree of concurrency. As explained in sec 15.4 concurrent execution has several

performance benefits.

The goal of concurrency control schemes is to provide a high degree of concurrency, while ensuring

that all schedules that can be generated are conflict or view serializable, and are cascadeless.

Centre for Distance Education Acharya Nagarjuna University17.16

17.8 Transaction Definition in SQL

A data-manipulation language must include a construct for specifying the set of actions that constitute
a transaction. The SQL standard specifies that a transaction begin implicitly. Transactions ended
by one of these SQL statements.

Commit work commits the current transaction and begins a new one.

Rollback work causes the current transactions to abort.

The keyword work is optional in both the statements. If a program terminates with out either of
these commands, the updates are either committed or rolled back which of the two happens is not
specified by the standard and depends on the implementation.

The standard also specifies that the system must ensure both serializability and freedom from
cascading rollback. The definition of serializability used by the standard is that a schedule must
have the same effect, as would some serial schedule. Thus, conflict and view serializability are
both acceptable.

This SQL-92 standard also allows a transaction to specify that it may be executed in a manner that
causes it to become nonserializable with respect to other transactions

17.9 Testing for serializability

When designing concurrency control schemes, we must show that schedules generated by the

scheme are serilaizable. To do that, we must first understand how to determine, given a particular

schedule s, whether the schedule is serializable.

We not present a simple and efficient method for determining conflict serializability of a schedule.

Consider a schedule S. we construct a directed graph, called a precedence graph, from sties

graph consists of a pair G=(V, E), where V is a set of vertices and E is a set of edges. This set of

vertices consists of all the transactions participating in the schedule. The set of edges consists of

all edges T
i
->T

j
for which one of three condition blocks.

1) T
i
executes write (Q) before T

j
executes read (Q)

2) T
i
executes read (Q) before T

j
executes write (Q)

3) T
i
executes write (Q) before T

j
executes write (Q)

In an edge T
i
->T

j
exists in the precedence graph, and then in any serial schedule s

1
equivalent to s,

T
i
must appear before T

j
.

For example, the precedence graph for schedule 1 in figure 15a contains the single edge T
1
->T

2
,

since all the instructions of T
1

are executed before the first instruction of T
2

is executed

Figure 15 Precedence graph for (a) schedule 1 and (b) schedule 2.

Database Management System 17.17 Transactions

Similarly, Figure 15b shows the precedence graph for schedule 2 with the single edge T
2
->T

1
,

since all transactions of T
2
are executed before the first instruction of T

1
is executed. The precedence

of graph for schedule 4 appears in figure 16.

Figure 16 Precedence graph for schedule 4.

It contains the edge T
1
->T

2
, because T

1
executes read (A) before T

2
executes write (A). It also

contains the edge T
2
->T

1
, because T

2
executes read (B) before T

1
executes Write (B).

If the precedence graph for s has a cycle, then schedule s is not conflict serializable. If the graph
contains no cycles, then the schedule s is not serializable.

A serializability order of the transactions can be obtained through topological sorting, which
determines a linear order consistent with the partial order of the precedence graph. There are, in
general, several possible linear orders that can be obtained through topological sorting. For example,
the graph of figure 17a has the two acceptable linear orderings shown in figures 17b and 17c.

Figure 17. Illustration of topological sorting.

Centre for Distance Education Acharya Nagarjuna University17.18

Thus, to test for conflict serializability, we need to construct the preceding graph and to invoke a
cycle detection algorithm. Cycle-detection algorithms can be found in standard textbooks on
algorithms. Cycle –detection algorithms, such as those based on depth-first search, require on the
order of n2 operations, where n is the number of vertices in the graph. Thus, we have a practical
scheme for determining conflict serializability.

Returning to out previous examples, note that the precedence graphs for schedules 1 and 2 indeed
do not contain cycles. The precedence graph for schedule 4, on the other hand, contains a cycle,
indicating that this schedule is not conflict serializability.

Testing for view serializability is rather complicated. In fact, it has been shown that the problem of
testing, for view serializability is itself NP-complete. Thus, almost certainly there exists there exists
no efficient algorithm to test for view serializability .see the bibliographical notes for references on
testing for view serializability.however, concurrency-control schemes can still use sufficient
conditions for view serializablity. That is, if the sufficient conditions are satisfied, the schedule is
view serializable, but there may be view-serializable schedules that do not satisfy the sufficient
condition.

17.10 Summary

A transaction is a unit of program execution that accesses and possibly updates various data
items. Understanding the concept of a transaction is a critical for understanding and implementing
updates of data in a database in such a way those concurrent executions and failures of various
forms do not result in the database becoming inconsistent.

Transactions are required to have the ACID properties: atomicity, consistency, isolation, and durability.

Concurrent execution of transaction improves throughput to transactions and system utilization,
and also reduces waiting time of transaction. When several transactions execute concurrently in
the database, the consistency of data may no longer be preserved. It is therefore necessary for the
system to control the interaction among the concurrent transactions.

Serializability of schedules generated by concurrently executing transactions can be ensured through
one of a variety of mechanisms called concurrency-control schemes. Schedules must be
recoverable, to make sure that if transaction A sees the effects of transaction B, and B then aborts,
then B also gets aborted.

The concurrency-control-management component of the database is responsible for handling the
concurrency-control schemes. The recovery-management component of a database responsible
for ensuring the atomicity and durability properties of transactions.

17.11 Technical Terms

1. Transaction: The term transaction refers to a collection of operations that forma single logical
unit of work. For instance, transfer of money from one account to another is a transaction consisting
of two updates, one to each account.

2. Concurrent Execution: We say that two programs are executed concurrently when they are in
effect executed simultaneously. This can be accomplished by actually executing them simultaneously,
or by interleaving the actions of one with the actions of the other.

3.Recoverability: The measure of ease and time to repair facilities to operational status.

Database Management System 17.19 Transactions

4. Topological sorting: In graph theory, a topological sort of a directed acyclic graph (DAG) is a
linear ordering of the nodes of the graph such that x comes before y if there’s a directed path from
x to y in the DAG. An equivalent definition is that each node comes before all nodes to which it has
edges. Any DAG has a topological sort, and in fact most have many.

5. Precedence graph: Away of representing the order constraints among a collection of statements.
The nodes of the graph represent the statements, and there is a directed edge from node A to node
B if statement A must be executed before statement B. Aprecedence graph with a cycle represents
a collection of statements that cannot be executed without deadlock.

6. Lock: In computer science, a lock is a mechanism for enforcing limits on access to a resource
in an environment where there are many threads of execution. Locks are one way of enforcing
concurrency control policies.

7. Isolation: In database systems, isolation is a property that the changes made by an operation
are not visible to other simultaneous operations on the system until its completion. This is one of
the ACID properties.

8. Durability: In computer science, durability is theACID property that guarantees that transactions
that are successfully committed will survive permanently and will not be undone by system failure.

17.12 Model Questions
1. List the AICD properties. Explain the usefulness of each.

2. Suppose that there is a database system that never fails. Is a recovery manager required
for this system?

3. Explain the distinction between the terms serial schedule and serializable schedule.

4. During its execution, a transaction passes through several states, until it finally commits or
aborts. List all possible sequences of states through which a transaction may pass.

5. What is a recoverable schedule? Why is recoverability of schedules desirable?

17.13 References

“Database System Concepts”, 4th edition by Abraham Silberscatz, Henry F.Korth and S.Sudarshan.

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College,

GUNTUR

Database Management System 18.1 Concurrency ControlLesson 18

ConcurrencyControl

18.0 Objectives:

After completion of this lesson the student will be able to know about:

 Various modes in locking.

 Constraints for granting a lock.

 Using Two-Phase locking protocol for ensuring serializability.

 How locking system is maintained.

 Various models that are used to acquire information for the protocols other than

two phase.

Structure Of the Lesson:

18.1 Lock-Based Protocols

18.2 Summary

18.3 Technical terms

18.4 Model Questions

18.5 References

18.1 Lock-Based Protocols
The most common method used to implement this requirement is to allow a transaction to access
a data item only if it is currently holding a lock on that item.

18.1.1 Locks

There are various modes in which data item may be locked. In this section, we restrict our attention
to two modes:

 Shared: If a transaction T
i
has obtained a shared-mode lock (denoted by S) on item Q,

then T
i
can read, but cannot write, Q.

 Exclusive: If a transaction T
i
has obtained an exclusive-mode lock (denoted by X) on

item Q, then T
i
can both read and write Q.

We require that every transaction request a lock in an appropriate mode on data item Q, depending
on the types operations that it will perform on Q. The transactions make the request to the
concurrency-control manager. The transactions can proceed with the operation only after the
concurrency–control manager grants the lock to the transaction.

Centre for Distance Education Acharya Nagarjuna University18.2

Given a set of lock modes; we can define a compatibility function on them as follows. Let A and B
represent arbitrary lock modes. Suppose that a transaction T

i
request a lock of mode A on item Q

on which transaction T
j
(T

i
?T

j
) currently holds a lock of mode B. If transaction T

i
can be granted a

lock on Q immediately, in spite of the presence of the mode B lock, then we say mode A is compatible
with mode B, such a function can be represented conveniently by a matrix.

The compatibility relation between the two modes of locking discussed in this section appears in
the matrix comp of fig.1. An element comp (A, B) of the matrix has the value true if and only if
mode A is compatible with mode B

S X

S True False

X False False

Figure: 1 Lock- Compatibility Matrix Comp.

Atransaction requests a shared lock on data item Q by executing the lock–S(Q) instruction. Similarly,
a transaction requests exclusive lock through the lock-X(Q) instruction. A transaction can unlock a
data item Q by the unlock(Q) instruction.

To access a data item, transaction T
i
must first lock that item. If the data item is already locked by

another transaction in an incompatible mode, the concurrency-control manager will not grant the
lock until all incompatible locks held by other transactions have been released. Thus T

i
is made to

wait until all incompatible locks held by other transactions have been released.

Transaction T
i
may unlock a data item that it had locked at some earlier point. Note that a transaction

must hold a lock on a data item as long as it accesses that item. Moreover, for a transaction to

unlock a data item immediately after its final access of that data item is not always desirable, since

serializability may not be ensured.

Let us take banking system is an example in that system, A and B is two accounts that are accessed

by transaction T
1

and T
2.

Transaction T
1

transfers $50 from account B to account A (Fig.2).

T
1:

lock –X (B);

Read (B);

B: =b-50;

Write (B);

Unlock (B);

Lock-X (A);

Read (A);

A: =A+50;

Write (A);

Unlock (A).

Figure: 2 Transaction T
1
.

Database Management System 18.3 Concurrency Control

Transaction T
2
displays the total amount of money in accounts A and B, i.e., the sum A+B (Fig.3).

T
2
: lock-S (A);

read (A);

unlock (A);

lock-S (B);

read (B);

unlock (B);

display (A+B);

Figure: 3 Transaction T
2
.

Suppose that the values of the accounts A and B are $100 and $200, respectively. If these two

transactions are executed in the order T
1,

T
2
or the order T

2
, T

1
then transaction T

2
will display the

value $300. If, however, these transactions are executed concurrently, then schedule1, in Fig.4 is
possible. In this case, transaction T

2
displays $250,which is incorrect. The reason for this mistake

is that that the transaction T
1

unlocked data item B too early, as a result of which T
2

saw an
inconsistent state.

T
1

T
2

Concurrency

control manager

lock-X(B)

grant-X (B, T
1
)

read (B)

B:=B-50

write (B)

unlock(B)

lock-S(A)

grant S (A, T
2
)

read(A)

unlock (A)

lock-S(B)

grant S (B, T
2
)

read(B)

unlock (B)

display(A+B)

lock X(A)

grant S (A, T
2
)

read (A)
A: =A+50
write (A)
unlock(A)

Figure: 4 Schedule 1

Centre for Distance Education Acharya Nagarjuna University18.4

Suppose now that unlocking is delayed to the end of the transaction. Transaction T
3
corresponds

to T
1

with unlocking delayed (Fig.5).

T
3
: lock-x (B);
read (B);
B: =B-50;
write (B);
lock-X (A);
read (A);
A: =A+50;
write (A);
unlock (B);
unlock (A).

Figure: 5 Transaction T
3
.

Transaction T
4

corresponds to T
2

with unlocking delayed (Fig.6).

T
4
: lock-S (A);
read (A);
lock-S (B);
read (B);
display (A+B);
unlock (A);
unlock (B).

Figure: 6 Transaction T
4
.

You should verify that the sequence of reads and writes in schedule 1, which leads to an incorrect
total of $250 being displayed, is no longer possible with T

3
and T

4
. Other schedules are possible,

T
4

will not print out an inconsistent result in any of them.

T
3

T
4

lock –X(B)

read (B)
B: =B-50
write (B)

lock-S(A)
read (A)
lock-S(B)

lock-X (A)

Figure: 7 Schedule 2.

Database Management System 18.5 Concurrency Control

Unfortunately, locking can lead to an undesirable situation. Consider the partial schedule of Fig.7
for T

3
and T

4
. Since T

3
is holding an exclusive-mode lock on B and T

4
is requesting a shared –

mode lock on B, T
4

is waiting for T
3

to unlock B. Similarly, since T
4

is holding a shared-mode lock
on A and T

3
is requesting an exclusive –mode lock on A, T

3
is waiting for T

4
to unlock A. Thus, we

have arrived at a state where neither of these transactions can ever proceed with its normal
execution. This situation is called Deadlock.

When deadlock occurs, the system must roll back one of the two transactions. Once a transaction
has been rolled back, the data items that were locked by that transaction those are unlocked.

These data items are then available to other transaction, which can continue with its execution.

We shall require that each transaction in the system follow a set of rules, called a locking protocol,
indicating when a transaction may lock and unlock each of the data items. Locking protocols restrict
the number of possible schedules. The set of all such schedules is a proper subset of all possible
serializable schedules.

18.1.2 Granting Of Locks

When a transaction requests a lock on a data item in a particular mode, and no other transaction
has a lock on the same data item in a conflicting mode, the lock can be granted. However, care
must be taken to avoid the following scenario. Suppose a transaction T

2
has a shared-mode lock

on a data item and another transaction T
1

requests an exclusive-mode lock on the data item.
Clearly, T

1
has to wait for T

2
to release the shared-mode lock. Meanwhile, a transaction T

3
may

request a shared-mode lock on the same data item. The lock request is compatible with the lock
granted to T

2
, so T

3
may be granted the shared-mode lock. At this point T

2
may release the lock,

but still T
1

has to wait for T
3
to finish. But again, there may be a new transaction T

4
that requests a

shared-mode lock on the same data item, and is granted the lock before T
3
releases it. In fact, it is

possible that there is a sequence of transactions that each requests a shared-mode lock on the
data item, and each transaction releases the lock a short while after it is granted, but T

1
never gets

the exclusive-mode lock on the data item. The transaction T
1
may never progress, and is said to be

starved.

We can avoid starvation of transactions by granting locks in the following manner. When a
transaction T

i
requests a lock on a data item Q in a particular mode M, the concurrency-control

manager grants the lock provided that:

1. There is no other transaction holding a lock on Q in a mode that conflict with M.

2. There is no other transaction that is waiting for a lock on Q, and that made its lock request
before T

i
.

Thus, a lock request that is made later will never block a lock request.

18.1.3 The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This protocol requires
that each transaction issue lock and unlock requests in two phases:

1. Growing phase: A transaction may obtain locks, but may not release any lock.

2. Shrinking phase: A transaction may release locks, but may not obtain any new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the

transaction releases a lock, it enters the shrinking phase, and it can issue no more lock requests.

Centre for Distance Education Acharya Nagarjuna University18.6

For example, transactions T
3
and T

4
are two phases. On the other hand, transactions T

1
and T

2
are

not two phases. Note that the unlock instructions do not need to appear at the end of the transaction.
For example, in the case of transaction T

3
, we could move the unlock(B) instruction to just after

the lock-X(A) instruction, and still retain the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializiability. Consider any
transaction; the point in the schedule where the transaction has obtained its final lock (the end of its
growing phase) is called the lock point of the transaction.

Two-phase locking does not ensure freedom from deadlock. Observe that transactions T
3

and T
4

are two phases, but, in schedule 2 (Fig.7), they are deadlocked.

Cascading rollback may occur under two-phase locking. As an illustration, consider the partial
schedule of fig.8.

T
5

T
6

T
7

lock-X (A)

read (A)

lock-S(B)

read(B)

write(A)

unlock(A)
lock-X(A)
read(A)
write(A)
unlock(A)

lock-S(A)
read(A)

Figure: 8 Partial schedules under two-phase locking.

Each transaction observes the two-phase locking protocol, but the failure of T
5

after the read (A)

step of T
7

leads to cascading rollback of T
6

and T
7
.

Cascading rollbacks can be avoided by a modification of two-phase locking called the strict two-
phase locking protocol. This protocol requires not only that locking be two phase, but also that all
exclusive-mode locks taken by a transaction be held until that transaction commits. This requirement
ensures that any data written by an uncommitted transaction are locked in exclusive mode until the
transaction commits, preventing any other transaction from reading the data.
Another variant of two-phase locking is the rigorous two-phase locking protocol, which requires
that all locks be held until the transaction commits. We can easily verify that, with rigorous two-
phase locking, transactions can be serialized in the order in which they commit. Most database

systems implement either strict or rigorous two-phase locking.

Consider the following two transactions, for which we have shown only some of the significant,

read and write operations:

Database Management System 18.7 Concurrency Control

T
8
: read(a

1
);

read (a
2
);

. . .
read(a

n
);

write(a
1
);

T
9
: read(a

1
);

read(a
2
);

display(a
1
+a

2
).

If we employ the two-phase locking protocol, then T
8

must lock a
1

in exclusive mode. Therefore,

any concurrent execution of both transactions amounts to o serial execution. Notice, however, that
T

8
needs an exclusive lock on a

1
in only at the end of its execution, when it writes a

1
. Thus, if T

8

could initially lock a
1

in shared mode, and then could later change the lock to exclusive mode, we
could get more concurrency, since T

8
and T

9
could access a

1
and a

2
simultaneously.

This observation leads us to a refinement of the basic two-phase locking protocol, in which lock
conversions are allowed. We shall provide a mechanism for upgrading a shared lock to an exclusive
lock, and downgrading an exclusive lock to a shared lock. We denote conversion from shared to
exclusive modes by upgrade, and from exclusive to shared by downgrade. Lock conversion
cannot be allowed arbitrarily. Rather, upgrading can take place in only the growing phase, whereas
downgrading can take place in only the shrinking phase.

Returning to our example, transactions T
8
and T

9
can run concurrently under the refined two-

phase locking protocol, as shown in the incomplete schedule of Fig.9, where only some of the

locking instructions are shown.

T
8

T
9

lock-S(a
1
)

lock-S(a
1
)

lock-S(a
2
)

lock-S(a
2
)

lock-S(a
3
)

lock-S(a
4
)

unlock (a
1
)

unlock (a
2
)

lock-S(a
n
)

upgrade(a
1
)

Figure: 9 Incomplete Schedules with a Lock conversion.
Note that a transaction attempting to upgrade a lock on an item Q may be forced to wait. This
enforced wait occurs if Q is currently locked by another transaction in shared mode.

Just like the basic two-phase locking protocol, two phase locking and lock conversion generates
only conflict-serializable schedules and their lock points can serialize transactions. Further, if
exclusive locks are held until the end of the transaction, the schedules are cascade less.

Centre for Distance Education Acharya Nagarjuna University18.8

For a set of transactions, there may be conflict-serializable schedules that cannot be obtained
through the two-phase locking protocol. However, to obtain conflict-serializable schedules through
non-two-phase locking protocols, we need either to add additional information about the transactions
or to impose some structure or ordering on the set of data items in the database. In the absence of
such information, two-phase locking is necessary for conflict serializability——if T

i
is a non—

two—phase transaction, it is always possible to find another transaction T
j
that is two-phases that

there is a schedule possible for T
i
and T

j
that is not conflict serializable.

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used

extensively in commercial database systems.

A simple but widely used scheme automatically generates the appropriate lock and unlocks

instructions for a transaction, on the basis of read and writes requests from the transaction:

 When a transaction T
i
issues a read(Q) operation, the system issues a lock S(Q) instruction

followed by the read(Q) instruction.

 When T
i
issues a write(Q) operation, the system checks to see whether T

i
already holds

a shared lock on Q. If it does, then the system issues an Upgrade(Q) instruction, followed
by the write(Q) instruction. Otherwise, the system issues a lock-X (Q) instruction, followed

by the write(Q) instruction.

 All locks obtained by a transaction are unlocked after that transaction commits or aborts.

18.1.4 Implementation of Locking

A lock manager can be implemented as a process that receives messages from transactions and
sends messages in reply. The lock manager process replies to lock-request messages with lock-
grant messages, or with messages requesting rollback of the transaction (in case of dead locks).
Unlock messages require only an acknowledgement in response, but may result in a grant message
to another waiting transaction.

The lock manager uses this data structure: For each data item that is currently locked, it maintains
a linked list of records, one for each request, in the order in which the requests arrived. It uses a
hash table, indexed on the name of data item, to find the linked list (if any) for a data item; this table
is called the lock table. Each record of the linked list for a data item notes which transaction made
the request, and what lock mode it requested. The record also notes if the request has currently
been granted.

Figure: 10 Lock Table

Database Management System 18.9 Concurrency Control

Fig.10 shows an example of a lock table. The table contains locks for five different data
items I4, I7, I23, I912. The lock table uses overflow of chaining, so there is a linked list of data items
for each entry in the lock table. There is also a list of transactions that have been granted locks, or
are waiting for locks, for each of the data items. Granted locks are the filled-in (black) rectangles,
while waiting requests are the empty rectangles. We have omitted the lock mode to keep the figure
simple. It can be seen, for example, that T23 has been granted locks on I912 and I7, and is waiting

for a lock on I4.

Although the figures does not show it, the lock table should also maintain an index on transaction
identifiers, so that it is possible to determine efficiency the set of locks held by a given transaction.

The lock manager processes requests this way:

 When a lock request message arrives, it adds a record to the end of the linked list for the
data item, if the linked list is present. Otherwise it creates a new linked list, containing only
the record for the request.

It always grants the first lock request on a data item. But if the transaction requests a lock on an
item on which a lock has already been granted, the lock manager grants the request only if it is
compatible with all earlier requests, and all earlier requests have been granted already. Otherwise
the request has to wait.

 When the lock manager receives an unlock message from a transaction, it deletes the
record for that data item in the linked list corresponding to that transaction. It tests the
record that flows, if any, as described in the previous paragraph, to see if that request can
now be granted. If it can, the lock manager grants that request, and processes the record
following it, if any, similarly, and so on.

 If a transaction aborts, the lock manager deletes any waiting request made by the transaction.
Once the database system has taken appropriate actions to undo the transaction, it releases
all locks held by the aborted transaction.

This algorithm guarantees freedom from starvation for lock requests, since a request can never be
granted while a request received earlier is waiting to be granted.

18.1.5 Graph-Based Protocols

The two-phase locking protocol is both necessary and sufficient for ensuring serializability in the
absence of information concerning the manner in which data items are accessed. But, if we wish
to develop protocols that are not two-phase, we need additional information on how each transaction
will access the database. There are various models that can give us the additional information,
each differing in the amount of information provided. The simplest model requires that we have
prior knowledge about the order in which the database items will be accessed. Given such
information, it is possible to construct locking protocols that are not two-phase, nevertheless, ensure
conflict serializability.

To acquire such prior knowledge, we impose a partial orderingon the set D= {d
1
, d2… d

h
} of all

data items. If d
i
d

j
, then any transaction accessing both d

i
and d

j
must access d

i
before accessing

d
j
. This partial ordering may be the result of either the logical or the physical organization of the

data, or it may be imposed solely for the purpose of concurrency control.

Centre for Distance Education Acharya Nagarjuna University18.10

The partial ordering implies that the set D may now be viewed as a directed a cyclic graph, called

a database graph. We will present a simple protocol, called the tree protocol, which is restricted
to employ only exclusive locks. References to other, more complex, graph-based locking protocols
are in the bibliographical notes.

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction T
i
can lock a data

item at most once, and must observe the following rules:

1. The first lock by T
i
may be on any data item.

2. Subsequently, a data item Q can be locked by T
i
only if

the parent of Q is currently locked by T
i
.

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by T
i

cannot subsequently be relocked by T
i
.

All schedules that are legal under the tree protocol are conflict serializable.

To illustrate this protocol, consider the database graph of Fig.11.

Figure: 11 Tree-structured database graph.

The following four transactions follow the tree protocol on this graph. We show only the lock and

unlock instructions:

T
10

: lock-X(B);lock-X(D);unlock(B);unlock(E);lock-X(G);

unlock(D);unlock(G)
T

11
: lock-X (D); lock-X (H); unlock (D); unlock (H).

T
12

: lock-X (B); lock-X (E); unlock (E); unlock (B).
T

13
: lock-X (D); lock-X (H); unlock (D); unlock (H).

Database Management System 18.11 Concurrency Control

One possible schedule in which these four transactions participated appears in Fig.12. Note that,
during its execution, transaction T

10
holds locks on two disjoint sub trees.

Observe that the schedule of Fig.12 is conflict serializable. It can be shown not only that the tree

protocol ensures conflict serializability also this protocol ensures freedom from deadlock.

T
10

T
11

T
12

T
13

lock-X(B)
lock-X(D)
lock-X(H)
unlock-X(D)

lock-X(E)
lock-X(D)
unlock(B)
unlock(E)

lock-X(B)
lock-X(E)

unlock(H)
lock-X(G)
unlock(D)

lock-X(D)
lock-X(H)
unlock(D)
unlock(H)

unlock(E)
unlock(B)

unlock (G)

Figure: 12 Serializable schedule under the tree protocol.

The tree protocol in Fig.12 does not ensure recoverability and cascadelessness. To ensure
recoverability and cascadelessness, the protocol can be modified not to permit release of exclusive
locks until the end of the transaction reduces concurrency. Here is an alternative that improves
concurrency but ensures only recoverability: For each data item with an uncommitted write we
record which transaction performed the last write to the data item. Whenever a transaction T

i

performs a read of an uncommitted data item, we record a commit dependency of T
i
on the

transaction that performed the last write to the data item. Transaction T
i
is then not permitted to

commit until the commit of all transactions on which it has a commit dependency. If any of these
transactions aborts, T

i
must also be aborted.

The tree-locking protocol has an advantage over the two-phase locking protocol in that, unlike two-
phase locking, it is deadlock-free, so no rollbacks are required. The tree-locking protocol has another
advantage over the two-phase locking protocol in that unlocking may occur earlier. Earlier unlocking
may lead to shorter waiting times, and to an increase in concurrency.

However, the protocol has the disadvantage that, in some cases a transaction may have to lock
data items that it does not access. For example, a transaction that needs to access data items A
and J in the database graph of figure 11 must lock not only A and J, but also data items B, D, and

Centre for Distance Education Acharya Nagarjuna University18.12

H. This additional locking results in increased locking overhead, the possibility of additional waiting
time, and a potential decrease in concurrency. Further, without prior knowledge of what data items
will need to be locked, transactions will have to lock the root of the tree, and that can reduce
concurrency greatly.

For a set of transactions, there may be conflict-serializable schedules that cannot be obtained
through the tree protocol. Indeed, there are schedules possible under the two-phase locking protocols

that are not possible under the tree protocol, and vice versa.

18.2 Summary

When several transactions execute concurrently in the database, the consistency of data may no
longer be preserved. It is necessary for the system to control the interaction among the concurrent
transactions, and this control is achieved through one way of a variety of mechanisms called
concurrency-control schemes.

To ensure serializability, we can use various concurrency control schemes. All these schemes
either delay an operation or abort the transaction that issued the operation.

A locking protocol is a set of rules that state when a transaction may lock and unlock each of the
data items in the database.

The two-phase locking protocol allows a transaction to lock a new data item only if that transaction
has not yet unlocked any data item. The protocol ensures serializability, but not deadlock freedom.
In the absence of information concerning the manner in which data items are accessed, the two-

phase locking protocol is both necessary and sufficient for ensuring serializability.

18.3 Technical Terms

Concurrency Control: concurrency control is a method used to ensure that database transactions
are executed in a safe manner (i.e., without data loss). Concurrency control is especially applicable
to database management systems, which must ensure that transactions are executed safely and
that they follow the ACID rules.

Shared-mode (S) Locks: No other transactions can modify the data while shared (S) locks exist
on the resource. Shared (S) locks on a resource are released as soon as the read operation
completes, unless the transaction isolation level is set to repeatable read or higher, or a locking hint
is used to retain the shared (S) locks for the duration of the transaction.

Exclusive (X) Locks: Exclusive (X) locks prevent access to a resource by concurrent transactions.
With an exclusive (X) lock, no other transactions can modify data; read operations can take place
only with the use of the NOLOCK hint or read uncommitted isolation level.

Starvation: In computer science, starvation is a multitasking-related problem, where a process is
perpetually denied necessary resources. Without those resources, the program can never finish
its task.

Two-phase Locking: A mechanism for preventing deadlock; a process is blocked from allocating
resources until it can get all the resources it needs.

Strict Two-phase Protocol: In computer science, strict two-phase locking (Strict 2PL) is a locking
method used in database management systems.

Database Management System 18.13 Concurrency Control

18.4 Model Questions

1. Show that the two-phase locking protocol ensures conflict serializability, and that transactions
can be serialized according to their lock point.

2. What benefit does strict two-phase locking provide? What disadvantages result?

3. What benefit does rigorous two-phase locking provide? How does it compare with other
forms of two-phase locking?

4. What are the reasons for the popularity of strict two-phase locking?

18.5 References

Database System Concepts”, 4th edition by Abraham
Silberscatz, Henry F.Korth and S.Sudarshan

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept.Of Computer Science,
JKC College,
GUNTUR

Database Management System 19.1 Concurrency Control-2Lesson 19

ConcurrencyControl-2

19.0 Objectives:

After completion of this lesson the student will be able to know about:

 Timestamp-ordering protocol for ensuring serializability.

 Validation-Based protocols for reducing the overhead.

 Maintaining multiple versions in Timestamp ordering and Two-phase Locking.

Structure Of the Lesson:
19.1 Timestamp-Based Protocols

19.2 Validation-Based Protocols

19.3 Multiple Granularity

19.4 Multiversion Schemes

19.5 Summary

19.6 Technical Terms

19.7 Model Questions

19.8 References

19.1 Timestamp-Based Protocols

Another method for determining the serializability order is to select an ordering among transactions

in advance. The most common method for doing so is to use a timestamp-ordering scheme.

19.1.1 Timestamps

With each transaction T
i
in the system, we associate a unique fixed timestamp, denoted by TS

(T
i
). This timestamp is assigned by the database system before the transaction T

i
starts execution.

If a transaction T
i
has been assigned timestamp TS (T

i
), and a new transaction T

j
enters the

system, then TS (T
i
) <TS (T

j
). There are two simple methods for implementing this scheme:

 Use the value of the system clock as the timestamp, i.e., a transaction’s timestamp is
equal to the value of the clock when the transaction enters the system.

 Use a logical counter that is incremented after a new timestamp has been assigned, i.e., a
transaction’s timestamp is equal to the value of the counter when the transaction enters the
system.

The timestamps of the transactions determine the serializability order. Thus, if TS(T
i
)< TS(T

j
),

then the system must ensure that the produced schedule is equivalent to a serial schedule in
which transaction T

i
appears before transaction T

j
.

Centre for Distance Education Acharya Nagarjuna University19.2

To implement this scheme, we associate with each data item Q two timestamp values:

 W-timestamp (Q) denotes the largest timestamp of any transaction that executed write(Q)
successfully.

 R-timestamp (Q) denotes the largest timestamp of any transaction that executed read(Q)
successfully.

These timestamps are updated whenever a new read (Q) or write (Q) instruction is executed.

19.1.2 The Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read and write operations are executed
in timestamp order. This protocol operates as follows:

1. Suppose that transaction T
i
issues read (Q).

a. If TS(T
i
)< W-timestamp(Q), then T

i
needs to read a value of Q that was already overwritten.

Hence, the read operation is rejected, and T
i
is rolled back.

b. If TS(T
i
)W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is

set to the maximum of R-timestamp(Q) and TS(T
i
).

2. Suppose that transaction T
i
issues write (Q).

a. If TS(T
i
) <R-timestamp(Q), then the value of Q that is producing was needed previously,

and the system assumed that value would never be produced. Hence, the system rejects
the write operation and rolls T

i
back.

b. If TS(T
i
) < W-timestamp(Q), then T

i
is attempting to write an obsolete value of Q. Hence,

the system rejects this write operation and rolls T
i
back.

c. Otherwise, the system executes the write operation and sets W-timestamp (Q) to TS (T
i
).

If a transaction T
i
is rolled back by the concurrency-control scheme as a result of issuance of

either a read or write operation, the system assigns it a new timestamp and restarts it.

To illustrate this protocol, we consider transactions T
14

and T
15

. Transaction T
14

displays the contents
of accounts A and B.

T
14

: read (B);
read (A);
display (A+B).

Transactions T
15

transfer $50 from account A to account B, and then display the contents of both:

T
15

: read (B);
B: = B-50;
write (B);
read (A);
A: = A+50;
write (A);
display (A+B).

In presenting schedules under the timestamp protocol, we shall assume that a transaction is assigned

Database Management System 19.3 Concurrency Control-2

a timestamp immediately before its first instruction.

T
14

T
15

read (B) read (B)
B:=B-50
write (B)

read (A)
read (A)

display(A+B)
A: = A+50
write (A)
display (A+B)

Figure: 1 schedule 3

Thus, in schedule 3 of Fig.1, TS (T
14

) < TS (T
15

), and the schedule is possible under the timestamp
protocol.

We note that the preceding execution can also be produced by the two-phase locking protocol.
There are, however, schedules that are possible under the two-phase locking protocol, but are not
possible under the timestamp protocol, and vice versa.

The timestamp-ordering protocol ensures conflict serializability. This is because conflicting operations

are processed in timestamp order.

The protocol ensures freedom from deadlock, since no transaction ever waits. However, there is a
possibility of starvation of long transactions if a sequence of conflicting short transactions causes
repeated restarting of the long transaction. If a transaction is found to be getting restarted repeatedly,
conflicting transactions need to be temporarily blocked to enable the transaction need to be

temporarily blocked to enable the transaction to finish.

The protocol can generate schedules that are not recoverable. However, it can be extended to
make the schedules recoverable, in one of several ways.

 Performing all writes together at the end of the transaction can ensure recoverability and
cascadelessness. The writes must be atomic in the following sense: While the writes are
in progress, no transaction is permitted to access any of the data items that have been
written.

 Recoverability and cascadelessness can also be guaranteed by using a limited form of
locking, whereby reads of uncommitted items are postponed until the transaction that
updated the item commits.

 Tracking uncommitted writes can ensure recoverability alone, and allowing a transaction T
i

to commit only after the commit of any transaction that wrote a value that T
i
read.

19.1.3 Thomas’ Write Rule

We now present a modification to the timestamp-ordering protocol that allows greater potential
concurrency than does the protocol of section 19.1.2. Let us consider schedule 4 of Fig.2, and
apply the timestamp-ordering protocol.

Centre for Distance Education Acharya Nagarjuna University19.4

T
16

T
17

read(Q)
write(Q)

write(Q)

Figure: 2 Schedule 4.

Since T
16

starts before T
17

, we shall assume that TS (T
16

) < TS (T
17

). The read (Q) operation of

T
16

succeeds, as does the write (Q) operation of T
17

. When T
16

attempts its write (Q) operation,
we find that TS (T

16
) <W-timestamp (Q) = TS (T

17
). Thus, the write (Q) by T

16
is rejected and

transaction T
16

must be rolled back.

Although the rollback of T
16

is required by the timestamp-ordering protocol, it is unnecessary. Since
T

17
has already written Q, the value that T

16
is attempting to write is one that will never need to be

read. Any transaction Ti with TS (T
i
) < TS (T

17
) that attempts a read (Q) will be rolled back, since

TS (T
i
) < W-timestamp (Q). Any transaction T

j
with TS (T

j
) >TS (T

17
) must read the value of Q

written by T
17

, rather than the value written by T
16

.

This observation leads to a modified version of the timestamp-ordering protocol in which obsolete
write operations can be ignored under certain circumstances. The protocol rules for read operations
remain unchanged.

The modification to the timestamp-ordering protocol, called Thomas’ write rule, is this: Suppose
that transaction T

i
issues write (Q).

1. If TS (T
i
) <R-timestamp (Q), then the value of Q that T

i
is producing was previously needed,

and it had been assumed that the value would never be produced. Hence, the system
rejects the write operation and rolls T

i
back.

2. If TS (T
i
) < W-timestamp (Q), then T

i
is attempting to write an obsolete value of Q. Hence,

this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp (Q) to TS (T
i
).

The difference between these rules and those of section 16.2.2 lies in the second rule. The
timestamp–ordering protocol requires that T

i
be rolled back if T

i
issues write (Q) and TS (T

i
) < W-

timestamp (Q) and TS (T
i
) < W-timestamp (Q). However, here, in those cases where TS (T

i
) R-

timestamp (Q), we ignore the obsolete write.

Thomas’ write rule makes use of view serializability by, in effect, deleting obsolete write operations

from the transactions that issue them. This modification of transactions makes it possible to generate
serializable schedules that would not be possible under the other protocols presented in this chapter.

For example, schedule 4 of Fig.2 is not conflict serializable and, thus, is not possible under any of
two-phase rule, the tree protocol, or the timestamp-ordering protocol. Under Thomas’ write rule,
the write (Q) operation of T

16
would be ignored. The result is a schedule that is view equivalent to

the serial schedule < T
16

, T
17

>.

Database Management System 19.5 Concurrency Control-2

19.2 Validation-Based Protocols

In cases where a majority of transactions are read-only transactions, the rate of conflicts among
transactions may be low. Thus, many of these transactions, if executed without the supervision of
a concurrency-control scheme, would nevertheless leave the system in a consistent state.

A concurrency-control scheme imposes overhead of code execution and possible delay of
transactions. It may be better to use an alternative scheme that imposes fewer overheads.Adifficulty
in reducing the overhead is that we do not know in advance which transactions will be involved in a
conflict. To gain that knowledge, we need a scheme for monitoring the system.

We assume that each transaction T
i
executes in two or three different phases in the lifetime,

depending on whether it is a read-only or an update transaction. The phases are, in order,

1. Read Phase: During this phase, the system executes transaction T
i
. It reads the values of

the various data items and stores them in variables local to T
i
. It performs all write operations

on temporary local variables, without updates of the actual database.

2. Validation Phase: Transaction T
i
performs a validation test to determine whether it can

copy to the database the temporary local variables that hold the results of write operations
without causing a violation of serializability.

3. Write Phase: If transaction T
i
succeeds in validation (step 2), then the system applies the

actual updates to the database. Otherwise, the system rolls back T
i
.

Each transaction must go through the three phases in order shown. However, all three phases of
concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of transactions T
i
took

place. We shall, therefore, associate three different timestamps with transaction T
i
:

1. Start (T
i
), the time when T

i
started its execution.

2. Validation(T
i
), the time when T

i
finished its read phase and started its validation phase.

3. Finish(T
i
), the time when T

i
finished its write phase.

We determine the serializability order by the timestamp-ordering technique, using the value of the
timestamp Validation (T

i
). Thus, the value TS (T

i
) = validation (T

i
) and, if TS (T

j
) < TS (T

YK
), then

any produced schedule must be equivalent to a serial schedule in which transaction T
j
appears

before transaction T
k
. The reason we have chosen Salidation (T

i
), rather than Start (T

i
), as the

timestamp of transaction T
i
is that we can expect faster response time provided that conflict rates

among transactions are indeed low.

The validation test for transaction T
j
requires that, for all transactions T

i
with TS (T

i
) < TS (T

j
), one

of the following two conditions must hold:
1. Finish (T

i
), Start(T

j
). Since T

i
completes its execution before T

j
started, the serializability

order is indeed maintained.

2. The set of data items written by T
i
does not intersect with the set of data items read by T

j
,

and T
i
completes its write phase before T

j
starts its validation phase (Start (T

j
) < Finish

(T
i
) < Validation (T

j
)). This condition ensures that the writes of T

i
and T

j
do not overlap.

Since the writes of T
i
do not affect the read of T

j
, and since T

j
cannot affect the read of T

i
,

the serializability order is indeed maintained.

Centre for Distance Education Acharya Nagarjuna University19.6

The writes of T
i
and T

j
do not overlap. Since the writes of Ti do not effect the read of T

j,
and

since the T
j
cannot affect the read (T

i
), the serializability order is indeed maintained. As an

illustration, consider again transactions T
14

and T
15

.

T
14

T
15

read(B)

read (B)

B:=B-50

Read(A)

A:=A+50

read(A)

<validate>

display(A+B)

<validate>

write(B)

write(A)

Figure: 3 Schedule 5, a schedule produced by using validation.

Suppose that TS (T
14

) <TS (T
15

). Then, the validation phase succeeds in the schedule 5 in fig.3.
Note that the writes to the actual variables are performed only after the validation phase of T

15
.

Thus, T
14

reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the actual writes
take place only after the transaction issuing the write has committed. However, there is a possibility
of starvation of long transactions, due to a sequence of conflicting short transactions that cause
repeated restarts of the long transaction. To avoid starvation, conflicting transactions must be
temporarily blocked, to enable the long transaction to finish.

This validation scheme is called the optimistic concurrency control scheme since transactions
execute optimistically, assuming they will be able to finish execution and validate at the end. In
contrast, locking and timestamp ordering are pessimistic in that they force a wait or a rollback
whenever a conflict is detected, even though there is a chance that the schedule may be conflict
serializable.

19.3 Multiple Granularity

In the concurrency-control schemes described thus far, we have used each individual data item as
the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group several data items,
and to treat them as one individual synchronization unit. For example, if a transaction T

i
needs to

access the entire database, and a locking protocol is used, then T
i
must lock each item in the

database. Clearly, executing these locks is time consuming. It would be better if T
i
could issue a

single lock request to lock the entire database. On the other hand, if transaction T
j
needs to access

Database Management System 19.7 Concurrency Control-2

only a few data items, it should not be required to lock the entire database, since otherwise
concurrency is lost.

What is needed is a mechanism to allow the system to define multiple levels of granularity. We can
make one by allowing data items to be of various sizes and defining a hierarchy of data granularities,
where the small granularities are nested within larger ones. Such a hierarchy can be represented
graphically as a tree. Note that the tree that we describe here is significantly different from that
used by the tree protocol (section 16.1.5).Anon-leaf node of the multiple-granularity tree represents
the data associated with its descendants. In the tree protocol, each node is an independent data
item.

Figure: 4 Granularity Hierarchy.

As an illustration, consider the tree of Fig.4, which consists of four levels of nodes. The highest
level represents the entire database. Below it are nodes of type area; the database consists of
exactly these areas. Each area in turn has nodes of type file as its children. Each area contains
exactly those files that are its child nodes. No file consists of exactly those records that are its child
nodes, and no record can be present in more than one file.

Each node in the tree can be locked individually. As we did in the two-phase locking protocol, we
shall use shared and exclusive lock modes. When a transaction locks a node, in either shared or
exclusive mode, the transaction also has implicitly locked all the descendents of that node in the
same lock mode. For example, if transaction T

i
gets an explicit lock on file F

c
of Fig.16.16, in

exclusive mode, then it has an implicit lock in exclusive mode all the records belonging to that file.
It does not need to lock the individual records of F

c
explicitly.

Suppose that transaction T
j
wishes to lock record r

b6
of file F

b
. Since T

i
has locked F

b
explicitly, it

follows that r
b6

is also locked (implicitly). But, when T
j

issues a lock request for r
b6

, r
b6

is not
explicitly locked! How does the system determine whether T

j
can lock r

b6
? T

j
must traverse the

tree from the root to record r
b6

. If any node in that path is locked in an incompatible mode, then T
j

must be delayed.

Suppose now that transaction T
k
wishes to lock the entire database. To do so, it simply must lock

the root of the hierarchy. Note, however that T
k
should not succeed in locking the root node, since

T
i
is currently holding a lock on part of the tree (specially, on file F

b
). But how does the system

determine if the root node can be locked? One possibility is for it to search the entire tree. This
solution, however, defeats the whole purpose of the multiple-granularity locking scheme. A more
efficient way to gain this knowledge is to introduce a new class of lock modes, called intention lock

Centre for Distance Education Acharya Nagarjuna University19.8

modes. If a node is locked in an intention mode, explicit locking is being done at a lower level of the
tree (that is, at a finger granularity). Intention locks are put on all the ancestors of a node before that
node is locked explicitly. Thus, a transaction does not need to search the entire tree to determine
whether it can lock a node successfully. A transaction wishing to lock a node-say, Q must traverse
a path in the tree from the root to Q. While traversing the tree, the transaction locks the various
nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with exclusive mode. If
a node is locked in intention-shared (IS) mode, explicit locking is being done at a lower level of the
tree, but with only shared-mode locks. Similarly, if a node is locked in intention-exclusive (IX) mode,
then explicit locking is being done at a lower level, with exclusive mode or shared-mode locks.
Finally, if a node is locked in shared and intention-exclusive (SIX) mode, the sub tree rooted by that
node is locked explicitly in shared-mode, and that explicit locking is being done at a lower level with
exclusive-mode locks. The compatibility function for these lock modes is in fig.5.

IS IX S SIX X

IS true true true true false

IX true true false false false

S true false true false false

SIX true false false false false

X false false false false false

Figure: 5 Compatibility Matrix.

The multiple-granularity locking protocol, which ensures serializability, is: each transaction T
i
can

lock a node Q by following these rules:

1. It must observe the lock-compatibility function of Fig.5.

2. It must lock the root of the tree first, and can lock it in any mode.

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q locked in either
IX or IS mode.

4. It can lock a node in X, SIX, or IX mode only if it currently has the parent of Q locked in either
IX or SIX mode.

5. It can lock a node only if it has not previously unlocked any node (hat is, T
i

is
two phase).

6. It can unlock a node Q only if it currently has none of the children of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-down
(root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root) order.

As an illustration of the protocol, consider the tree of Fig.4 and these transactions:

 Suppose that transaction T
18

reads records r
a2

in file F
a
. Then, T

18
needs to lock the

database, area A
1
, and F

a
in IS mode (and in that order), and finally to lock r

a2
in S mode.

Database Management System 19.9 Concurrency Control-2

 Suppose that transaction T
19

modifies record r
a9

in file F
a
. Then, T

19
needs to lock the

database, area A
1
, and file F

a
in IX mode, and finally to lock r

a9
in X mode.

 Suppose that transaction T
20

reads all the records in file F
a
. Then, T

20
needs to lock the

database and area A
1

(in that order) in IS mode, and finally to lock F
a
in S mode.

 Suppose that transaction T
21

reads the entire database. It can do so after locking the
database in S mode.

We note that transactions T
18

, T
20

, T
21

can access the database concurrently. Transaction T
19

can
execute concurrently with T

18
, but not with either T

20
or T

21
.

This protocol enhances concurrency and reduces lock overhead. It is particularly useful in
applications that include a mix of

 Short transactions that access only a few data items.

 Long transactions that produce reports from an entire file or set of files.

There is a similar locking protocol that is applicable to database systems in which data granularities
are organized in the form of a directed acyclic graph. Deadlock is possible in the protocol that we
have, as it is in the two-phase locking protocol. There are techniques to reduce deadlock frequency
in the multiple-granularity protocol, and also to eliminate deadlock entirely

19.4 Multiversion Schemes

In multiversion concurrency control schemes, each write(Q) operation creates a new version
of Q. When a transaction issues a read(Q) operation, the concurrency-control manager selects
one of the versions of Q to be read. The concurrency-control scheme must ensure that the version
to be read is selected in a manner that ensures serializability. It is also crucial, for performance
reasons, that a transaction be able to determine easily and quickly which version of the data item
should be read.

19.4.1 Multiversion Timestamp Ordering

The most common transaction ordering technique used by multiversion schemers is timestamping.
With each transaction T

i
in the system, we associate a unique static timestamp, denoted by TS

(T
i
). The database system assigns this timestamp before the transaction starts execution, as

described in Section 16.2.

With each data item Q, a sequence of versions < Q
1
, Q

2
…Q

m
> is associated. Each version Q

k

contains three data fields:

 Content is the value of version Q
k
.

 W-timestamp(Q
k
) is the timestamp of the transaction that created version Q

k
.

 R-timestamp(Q
k
) is the largest timestamp of any transaction that successfully read version

Q
k
.

The multiversion timestamp-ordering scheme presented next ensures serializability. The scheme
operates as follows. Suppose that transaction T

i
issues a read(Q) or write(Q) operation. Let Q

k

denote the version of Q whose write timestamp is the largest write timestamp less than or equal to
TS (T

i
),

Centre for Distance Education Acharya Nagarjuna University19.10

 If transaction T
i
issues a read(Q), then the value returned is the content of version Q

k
.

 If transaction T
i
issues write(Q), and if TS (T

i
) < R-timestamp(Q

k
), then the system rolls

back transaction T
i
. On the other hand, if TS (T

i
) - W-timestamp(Q

k
), the system overwrites

the contents of Q
k
; otherwise it creates a new version of Q.

The justification for rule 1 is clear. A transaction reads the most recent version that comes before it
in time. The second rule forces a transaction to abort if it is “too late” in doing a write. More precisely,
if T

i
attempts to write a version that some other transaction would have read, then we cannot allow

that write to succeed.

The scheme, however, suffers from two undesirable properties. First, the reading of a data item
also requires the updating of the R-timestamp field, resulting in two potential disk accesses, rather
than one. Second, the conflicts between transactions are resolved through rollbacks, rather than
through waits. This alternative may be expensive. Section 16.5.2 describes an algorithm to alleviate
this problem.

19.4.2 Multiversion Two-Phase Locking

The multiversion two-phase locking protocol attempts to combine the advantages of multiversion
concurrency control with the advantages of two-phase locking. This protocol differentiates between
read-only transactions and update transactions.

Update transactions perform rigorous two-phase locking, i.e., they hold all locks up to the end of
the transaction. Thus, they can be serialized according to their commit order. Each version of a
data item has a single timestamp. The timestamp in this case is not a real clock-based timestamp,
but rather is a counter, which we will call the ts-counter, that is incremented during commit
processing.

Read-only transactions are assigned a timestamp by reading the current value of ts-counter before
they start execution; they follow the multiversion timestamp ordering protocol for performing reads.
Thus, when a read-only transaction T

i
issues a read(Q), the value returned is the contents of the

version whose timestamp is the largest timestamp less than TS (T
i
).

When an update transaction reads an item, it gets a shared lock on the item, and reads the latest
version of that item. When an update transaction wants to write an item, it first gets an exclusive
lock on the item, and then creates a new version of the data item. The write is performed on the
new version, and the timestamp of the new version is initially set to a value greater than that of any
possible timestamp.

When the update transaction T
i
completes its actions, it carries out commit processing: First, T

i

sets the timestamp on every version it has created to 1 more than the value of ts-counter; then, T
i

increments ts-counter by 1. Only one update transaction is allowed to perform commit processing
at a time.

As a result, read-only transactions that start after T
i
increments ts-counter will see the values

updated by T
i
, whereas those that start before T

i
increments ts-counter will see the value before

the updates by T
i
. In either case, read-only transactions never need to wait for locks. Multiversion

two-phase locking also ensures that schedules are recoverable and cascadeless.

Versions are deleted in a manner like that of multiversion timestamp ordering. Suppose there are
two versions, Q

k
and Q

j
, of data item, and both versions have a timestamp less than the timestamp

of the oldest read-only transaction in the system. Then, the older of the two versions Q
k
and Q

j
will

not be used again and can be deleted.

Multiversion two-phase locking or variations of it are used in some commercial database systems.

Database Management System 19.11 Concurrency Control-2

19.5 Summary

A timestamp-ordering scheme ensures serializability by selecting an ordering in advance between

every pair of transactions. A unique fixed timestamp is associated with each transaction in the

system. The timestamps of the transactions determine the serializability order. Thus, if the

timestamp of transaction T
i

is smaller than the timestamp of transaction T
j
, then the scheme

ensures that the produced schedule is equivalent to a serial schedule in which transaction T
i

appears before transaction T
j
. It does so by rolling back a transaction whenever such an order is

violated.

There are circumstances where it would be advantageous to group several data items, and to treat

them as one aggregate data item for purposes of working, resulting in multiple levels of granularity.

We allow data items of various sizes, and define a hierarchy can be represented graphically as a

tree.

Locks are acquired in root-to-leaf order; they are released in leaf-to-root order. The protocol ensures

serializability; but not freedom from deadlock.

A multiversion concurrency-control scheme is based on the creation of a new version of a data

item for each transaction that writes that item

19.6 Technical Terms

Timestamp: A timestamp is the current time of an event that is recorded by a computer. Through

mechanisms such as the Network Time Protocol (NTP), a computer maintains accurate current

time, calibrated to minute fractions of a second. Such precision makes it possible for networked

computers and applications to communicate effectively.

Timestamp-based concurrency control: In computer science, in the field of databases,

timestamp-based concurrency control is a non-lock concurrency control method, used in relational

databases to safely handle transactions, using timestamps.

System clock: An internal time clock maintained by the operating system. This clock is primarily

used to record the time when files were saved to disk.

Locks: Memory objects that represent the exclusive right to use a shared resource. A process that

wants to use the resource requests the lock that (by agreement) stands for that resource. The

process releases the lock when it is finished using the resource.

Multiple granularity locking: In computer science, multiple granularity locking (MGL), sometimes

called the John Rayner locking method, is a locking method used in database management systems

(DBMS) and relational databases.

Centre for Distance Education Acharya Nagarjuna University19.12

19.7 Model Questions
1. When a transactions is rolled back under timestamp ordering, it is assigned a new

timestamp. Why can it not simply keep its old timestamp?

2. Write a short notes on Thomas’ write rule.

3. In multiple-granularity locking, what is the difference between implicit and explicit locking?

4. Although SIX mode is useful in multiple-granularity locking, an exclusive and intend-
shared (XIS) mode is of no use. Why is it useless?

5. What are the advantages of multiversion two-phase locking? Justify your answer.

19.8 References

“Database System Concepts”, 4th edition by Abraham
Silberscatz, Henry F.Korth and S.Sudarshan

Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept.Of Computer Science,
JKC College,
GUNTUR

Database Management System 20.15 Concurrency Control-3

Wound-wait: The wound-wait scheme is a preemptive technique. It is a counterpart to the wait-
die scheme. When transaction T

i
requests a data item currently held by T

j
, T

i
is allowed to wait

only if it has a timestamp larger than that of T
j
(that is, T

i
is younger than T

j
). Otherwise, T

j
is rolled

back (T
j
is wounded by T

i
).

20.7 Model Questions

1. Under what conditions is it less expensive to avoid deadlock than to allow deadlocks to occur
and then to detect them?

2. If deadlock is avoided by deadlock avoidance schemes, is starvation still possible? Explain
your answer.

3. Devise a timestamp-based protocol that avoids the phantom phenomenon.

4. Explain the reasons for the use of degree–two consistencies. What disadvantages does this
approach have?

20.8 References
Database System Concepts”, 4th edition by Abraham

Silberscatz, Henry F.Korth and S.Sudarshan
Fundamentals of database systems, 4th edition by R. Elmasri and B. Navathe

AUTHOR:
M.V.BHUJANGA RAO. M.C.A.,
Lecturer,
Dept. Of Computer Science,
JKC College,
GUNTUR

Centre for Distance Education Acharya Nagarjuna University20.14

Lookup and insertion operations cannot lead to deadlock. Coalescing of nodes during deletion can
cause inconsistencies, since a lookup may have read a pointer to a deleted node from its parent,
before the parent node was updated, and may then try to access the deleted node. The lookup
would then have to restart from the root. Leaving nodes uncoalesced avoids such inconsistencies.
This solution results in nodes that contain too few search-key values and that violate some properties
of B+ -trees. In most databases, however, insertions are more frequent than deletions, so it is likely
that nodes that have too few search-key values will gain additional values relatively quickly.

Instead of locking index leaf nodes in a two-phase manner, some index concurrency control schemes
use key-value locking on individual key values, allowing other key values to be inserted or deleted
from the same leaf. Key-value locking thus provides increased concurrency. Using key-value locking
naively, however, would allow the phantom phenomenon to occur; to prevent the phantom
phenomenon, the next-key locking technique is used. In this technique, every index lookup must
lock not only the keys found within the range (or the single key, in case of a point lookup) but also
the next key value- that is, the key value just greater than the last key value that was within the
range. Also, every insert must lock not only the value that is inserted, but also the next key value.
Thus, if a transaction attempts to insert a value that was within the range of the index lookup of
another transaction, the two transactions would conflict on the key value next to the inserted key
value. Similarly, deletes must also lock the next key value to the value being deleted, to ensure that

conflicts with subsequent range lookups of other queries are detected.

20.5 Summary

Various locking protocols do not guard against deadlocks. One way to prevent deadlock is to use
an ordering of data items, and to request locks in a sequence consistent with the ordering.

Another way to prevent deadlock is to use preemption and transaction rollbacks. To control the

preemption, we assign a unique timestamp to each transaction. The system uses these timestamps

to decide whether a transaction should wait or roll back. If a transaction is rolled back, it retains its

old timestamp when restarted. The wound-wait scheme is a preemption scheme.

A delete operation may be performed only if the transaction deleting the tuple has an exclusive lock

on the tuple to be deleted.

Insertions can lead to the phantom phenomenon, in which an insertion logically conflicts with a

query even though the two transactions may access no tuple in common.

Special concurrency-control techniques can be developed for special data structures. Often, special

techniques are applied in B+ -Trees to allow greater concurrency. These techniques are

nonserializable access to the B+ -tree, but they ensure that the B+ -tree is correct, and ensure that

accesses to the database itself are serializable.

20.6 Technical Terms

Deadlock: A deadlock is a situation in which two computer programs sharing the same resource
are effectively preventing each other from accessing the resource, resulting in both programs
ceasing to function.

Wait-die: The wait-die scheme is a nonpreemptive technique. When transaction T
i
requests a

data item currently held by T
j
, T

i
is allowed to wait only if it has a time stamp smaller than that of T

j

(that is ,T
i
is older than T

j
). Otherwise, T

i
is rolled back (dies).

Database Management System 20.13 Concurrency Control-3

Figure: 4 B+-tree for account file with n=3.

1. Insert “Clearview”
2. Lookup “downtown”

Let us assume that the insertion operation begins first. It does a lookup on “Clearview”, and finds
the node into which “Clearview” should be inserted is full. It therefore converts its shared lock on
the node to exclusive mode, and creates a new node. The original node now contains the search-
key values “Brighton” and “Clearview”. The new node contains the search key value “Downtown”.

Now assume that a context switch occurs that results in control passing to the lookup operation.
This lookup operation accesses the root, and follows the pointer to the left child of the root. It then
accesses that node, and obtains a pointer to the left child. This left-child node originally contained
the search-key values “Brighton” and “Downtown”. Since this node is currently locked by the insertion
operation in exclusive mode, the lookup operation must wait. Note that, at this point, the lookup
operation holds no locks at all!

The insertion operation now unlocks the leaf node and relocks its parent, this time in exclusive
mode. It completes the insertion, leaving the B+ -tree as in Fig.16.22.

Figure: 5 Insertion of “clear view” into the B+ -tree of fig.4

The lookup operation proceeds. However, it is holding a pointer to an incorrect leaf node. It therefore
follows the right-sibling pointer to locate the next node. If this node, too, turns out to be incorrect, the
lookup follows that node’s right-sibling pointer. It can be shown that, if a lookup holds a pointer to an
incorrect node, then, by following right-sibling pointers, the lookup must eventually reach the correct
node.

Centre for Distance Education Acharya Nagarjuna University20.12

Once a particular operation releases a lock on a node, other operations can access that node.

There is a possibility of deadlocks between search operations coming down the tree, and splits,

coalescing or redistribution propagating up the tree. The system can easily handle such deadlocks

by restarting the search operation from the root, after releasing the locks held by the operation.

The second technique achieves even more concurrency, avoiding even holding the lock on one

node while acquiring the lock on another node, by using a modified version of B+ -trees called B-link

trees; B-link trees require that every node (including internal nodes, not only that node but also that

node’s right sibling (if one exists). We shall illustrate this technique with an example later, but we

first present the modified procedures of the B-link-tree locking protocol.

Lookup: Each node of the B+ -tree must be locked in shared mode before it is accessed. A lock on

a nonleaf node is released before any lock on any other node in the B+ -tree is requested. If a split

occurs concurrently with a lookup, the desired search-key value may no longer appear within the

range of values represented by a node accessed during lookup. In such a case, the search-key

value is in the range represented by a sibling node, which the system locates by following the

pointer to the right sibling. However, the system locks leaf nodes following the two-phase locking

protocol, as Section 16.7.3 describes, to avoid the phantom phenomenon.

Insertion and Deletion: The system follows the rules for lookup to locate the leaf node into which

it will make the insertion or deletion. It upgrades the shared-mode lock on this node to exclusive

mode, and performs the insertion or deletion. It locks leaf nodes affected by insertion or deletion

following the two-phase locking protocol, as Section 16.7.3 describes, to avoid the phantom

phenomenon.

Split: If the transaction splits a node, it creates a new node according to the algorithm of Section

12.3 and makes it the right sibling of the original node. The right-sibling pointers of both the original

node and the new node are set. Following this, the transaction releases the exclusive lock on the

parent, so that it can insert a pointer to the new node.

Coalescence: If a node has too few search-key values after a deletion, the node with which it will

be coalesced must be locked in exclusive mode. Once the transaction has coalesced these two

nodes, it requests an exclusive lock on the parent so that the deleted node can be removed. At this

point, the transaction releases the locks on the coalesced nodes. Unless the parent node must be

coalesced also, its lock is released.

Observe this important fact: An insertion or deletion may lock a node, unlock it, and subsequently

relock it. Furthermore, a lookup that runs concurrently with a split or coalescence operation may

find that the desired search key has been moved to the right-sibling node by the split or coalescence

operation.

As an illustration, consider the B+ -tree in Figure 4. Assume that there are two concurrent operations

on this B+ -tree:

Database Management System 20.11 Concurrency Control-3

transactions. For instance, when it is searching for records satisfying some conditions, a
transaction may find some of the records inserted by a committed transaction, but may not
find others.

 Read committed- allows only committed records to be read, but does not require even
repeatable reads. For instance, between two reads of a record by the transaction, the
records may have been updated by other committed transactions. This is basically the
same as degree-two consistency; most systems supporting this level of consistency would
actually implement cursor stability, which is a special case of degree-two consistency.

 Read uncommitted- allows even uncommitted records to be read. It is the lowest level of

consistency allowed by SQL-92.

20.4 Concurrency In Index Structures

It is possible to treat access to index structures like any other database structure, and to apply the
concurrency-control techniques discussed earlier. However, since indices are accessed frequently,
they would become a point of great lock contention, leading to a low degree of concurrency. Luckily,
indices do not have to be treated like other database structures. It is perfectly acceptable for a
transaction to perform a lookup on an index twice, and to find that structure of the index has changed
in between, as long as the index lookup returns the correct set of tuples. Thus, it is acceptable to
have nonserializable concurrent access to an index, as long as the accuracy of the index is
maintained.

We outline two techniques for managing concurrent access to B+-trees. The techniques that we
present for concurrency control on B+ -trees are based on locking, but neither two-phase locking
nor the tree protocol is employed. The first technique is called the crabbing protocol:

When searching for a key value, the crabbing protocol first locks the root node in shared mode.
When traversing down the tree, it acquires a shared lock on the child node to be traversed further.
After acquiring the lock on the child node, it releases the lock on the parent node. It repeats this
process until it reaches a leaf node.

When inserting or deleting a key value, the crabbing protocol takes these actions:

(a). It follows the same protocol as for searching until it reaches the desired leaf node. Up to
this point, it obtains only shared locks.

(b). It locks the leaf node in exclusive mode and inserts or deletes the key value.

(c). If it needs to split a node or coalesce it with its siblings, or redistribute key values between
siblings, the crabbing protocol locks the parent of the node in exclusive mode. After
performing these actions, it releases the locks on the node and siblings.

If the parent requires splitting, coalescing, or redistribution of key values, the protocol retains the
lock on the parent, and splitting, coalescing, or redistribution propagates further in the same manner.
Otherwise, it releases the lock on the parent.

The protocol gets its name from the way in which crabs advance by moving sideways, moving the
legs on one side, then the legs on the other, and so on alternately. The progress of locking while the
protocol both goes down the tree and goes back up (in case of splits, coalescing, or redistribution)
proceeds in a similar crab-like manner.

Centre for Distance Education Acharya Nagarjuna University20.10

T
3

T
4

lock-S(Q)
read(Q)
unlock(Q)

lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)
read(Q)
unlock(Q)

Figure: 3 Nonserializable schedule with degree-two consistency.

The potential for inconsistency due to nonserializable schedules under degree-two consistency
makes this approach undesirable for many applications.

20.3.2 Cursor Stability

Cursor stability is a form of degree-two consistency designed for programs written in host languages,
which iterate over tuples of a relation by using cursors. Instead of locking the entire relation, cursor
stability ensures that

 The tuple that is currently being processed by the iteration is locked in shared mode.

 Any modified tuples are locked in exclusive mode until the transaction commits.

These rules ensure that degree-two consistency is obtained. Two-phase locking is not required.
Serializability is not guaranteed. Cursor stability is used in practice on heavily accessed relations
as a means of increasing concurrency and improving system performance. Applications that use
cursor stability must be coded in a way that ensures database consistency despite the possibility
of nonserializable schedules. Thus, the use of cursor stability is limited to specialized situations
with simple consistency constraints.

20.3.3 Weak Levels of Consistency in SQL

The SQL standard also allows a transaction to specify that it may be executed in such a way that
it becomes nonserializable with respect to other transactions. For instance, a transaction may
operate at the level of read uncommitted, which permits the transaction to read records even if they
have not been committed. SQL provides such features for long transactions whose results do not
need to be precise. For instance, approximate information is usually sufficient for statistics used
for query optimization. If these transactions were to execute in a serializable fashion, they could
interfere with other transactions, causing the others’ execution to be delayed.

The levels of consistency specified by SQL-92 are as follows:

 Serializable is the default.

 Repeatable read- allows only committed records to be read, and further requires that,
between two reads of a record by a transaction, no other transaction is allowed to update
the record. However, the transaction may not be serializable with respect to other

Database Management System 20.9 Concurrency Control-3

 Every relation must have at least one index.

 A transaction T
i
can access tuples of a relation only after finding them through one or more

of the indices on the relation.

 A transaction T
i
that performs a lookup(whether a range lookup or a point lookup) must

acquire a shared lock on all the index leaf nodes that it accesses.

 A transaction T
i
may not insert, delete, or update a tuple t

i
in a relation r without updating all

indices on r. The transaction must obtain exclusive locks on all index leaf nodes that are

affected by the insertion, deletion, or update. For insertion and deletion, the leaf nodes

affected are those that contain(after insertion) or contained (before deletion) the search-

key value of the tuple. For updates, the leaf nodes affected are those that (before the

modification) contained the old value of the search-key, and nodes that (after modification)

contain the new value of the search-key.

 The rules of the two-phase locking protocol must be observed.

Variants of the index-locking technique exist for eliminating the phantom phenomenon under the

other concurrency-control protocols presented in this chapter.

20.3 Weak Levels Of Consistency

Serializability is a useful concept because it allows programmers to ignore issues related to

concurrency when they code transactions. If every transaction has the property that it maintains

database consistency if executed alone, then serializability ensures that concurrent executions

maintain consistency. However, the protocols required to ensure serializability may allow too little

concurrency for certain applications. In these cases, weaker levels of consistency are used. The

use of weaker levels of consistency places additional burdens on programmers for ensuring database

correctness.

20.3.1 Degree-Two Consistency

The purpose of degree-two-consistency is to avoid cascading aborts without necessarily ensuring

serializability. The locking protocol for degree-two consistency uses the same two lock modes that

we used for the two-phase locking protocol: shared(S) and exclusive(X). A transaction must hold

the appropriate lock mode when it accesses a data item.

In contrast to the situation in two-phase locking, S-locks may be released at any time, and locks

may be acquired at any time. Exclusive locks cannot be released until the transaction either commits

or aborts. Serializability is not ensured by this protocol. Indeed, a transaction may read the same

item twice and obtain different results. In fig.3, T
3
reads the value of Q before and after that value

is written by T
4
.

Centre for Distance Education Acharya Nagarjuna University20.8

 If T
29

does not use the tuple newly inserted by T
30

in computing sum(balance), then in a
serial schedule equivalent to S, T

29
must come before T

30
.

The second of these two cases is curious T
29

and T
30

do not access any tuple in common, yet they
conflict with each other! in effect, T

29
and T

30
conflict on a phantom tuple. If concurrency control is

performed at the tuple granularity, this conflict would go undetected. This problem is called the
phantom phenomenon.

To prevent the phantom phenomenon, we allow T
29

to prevent other transactions from creating
new tuples in the account relation with branch-name = ‘Perryridge’.

To find all account tuples with branch-name = ‘perryridge’, T
29

must search either the whole account
relation, or at least an index on the relation. Up to now, we have assumed implicitly that the only
data items accessed by a transaction are tuples. However, T

29
is an example of a transaction that

reads information about what tuples are in a relation, and T
30

is an example of a transaction that
updates that information.

Clearly, it is not sufficient merely to lock the tuples that are accessed; the information used to find
the tuples that are accessed by the transaction must also be locked.

The simplest solution to this problem is to associate a data item with the relation; the data item
represents the information used to find the tuples in the relation. Transactions, such as T

29
, that

read the information about what tuples are in a relation would then lock the data item corresponding
to the relation in shared mode. Transactions, such as T

30
, that update the information about what

tuples are in a relation would have to lock the data item in exclusive mode. Thus, T
29

and T
30

would
conflict on a real data item, rather than on a phantom.

Do not confuse the locking of an entire relation, as in multiple granularity locking, with the locking of
the data item corresponding to the relation. By locking the data item, a transaction only prevents
other transactions from updating information about what tuples are in the relation. Locking is still
required on the tuples. A transaction that directly accesses a tuple can be granted a lock on the
tuples even when another transaction has an exclusive lock on the data item corresponding to the
relation itself.

The major disadvantage of locking a data item corresponding to the relation is the low degree of
concurrency- two transactions that insert different tuples into a relation are prevented from executing
concurrently.

A better solution is the index-locking technique. Any transaction that inserts a tuple into a relation
must insert information into every index maintained on the relation. We eliminate the phantom
phenomenon by imposing a locking protocol for indices. For simplicity we shall only consider B+ -
tree indices.

Every search-key value is associated with an index leaf node. A query will usually use one or more
indices to access a relation. An insert must insert the new tuple in all indices on the relation. In our
example, we assume that there is an index on account for branch-name. Then, T

30
must modify

the leaf containing the key Perryridge. If T
29

reads the same leaf node to locate all tuples pertaining
to the Perryridge branch, then T

29
and T

30
conflict on that leaf node.

The index-locking protocol takes advantage of the availability of indices on a relation, by turning
instances of the phantom phenomenon into conflicts on locks on index leaf nodes. The protocol
operates as follows:

Database Management System 20.7 Concurrency Control-3

 I
j
= insert (Q). I

i
and I

j
conflict. Suppose that data item Q did not exist prior to the execution

of I
i
and I

j
. Then, if I

i
comes before I

j
, a logical error results for T

i
. If I

j
comes before I

i
, then

no logical error results. Likewise, if Q existed prior to the execution of I
i
and I

j
, then a logical

error results if I
j
comes before I

i
, but not otherwise.

We can conclude the following:

 Under the two-phase locking protocol, an exclusive lock is required on a data item before
that item can be deleted.

 Under the timestamp-ordering protocol, a test similar to that for a write must be performed.
Suppose that transaction T

i
issues delete (Q).

 If TS (T
i
) < R-timestamp (Q), then the value of Q that T

i
was to delete has already been

read by a transaction T
j
with TS(T

j
) > TS(T

i
). Hence, the delete operation is rejected, and

T
i
is rolled back.

 If TS (T
i
) < W-timestamp (Q), then a transaction T

j
with TS(T

j
) > TS(T

i
) has written Q.

Hence, this delete operation is rejected, and Ti is rolled back.

 Otherwise, the delete is executed.

20.2.2 Insertion

We have already seen that an insert (Q) operation conflicts with a delete (Q) operation. Similarly,
insert (Q) conflicts with a read (Q) operation or a write (Q) operation; no read or write can be
performed on a data item before it exists.

Since an insert (Q) assigns a value to data item Q, an insert is treated similarly to a write for
concurrency- control purposes:

 Under the two-phase locking protocol, if T
i
performs an insert (Q) operation, T

i
is given an

exclusive lock on the newly created data item Q.

 Under the timestamp-ordering protocol, if T
i
performs an insert (Q) operation, the values

R-timestamp (Q) and W-timestamp (Q) are set to TS (T
i
).

20.2.3 The Phantom Phenomenon

Consider transaction T
29

that executes the following SQL query on the bank database:

select sum(balance)

From account

where branch-name = ‘perryridge’

Transaction T
29

requires access to all tuples of the account relation pertaining to the Perryridge
branch.

Let T
30

be a transaction that executes the following SQL insertion:

insert into account values (A-201, ‘Perryridge’, 900)

Let S be a schedule involving T
29

and T
30

. We expect there to be potential for a conflict for the
following reasons:

 If T
29

uses the tuple newly inserted by T
30

in computing sum(balance), then T
29

read a value
written by T

30
. Thus, in a serial schedule equivalent to S, T

30
must come before T

29
.

Centre for Distance Education Acharya Nagarjuna University20.6

2. Rollback: Once we have decided that a particular transaction must be rolled back, we must
determine how far this transaction should be rolled back.

The simplest solution is a total rollback. Abort the transaction and then restart it. However, it is more
effective to roll back the transaction only as far as necessary to break the deadlock. Such partial
rollback requires the system to maintain additional information about the state of all the running
transactions. Specifically, the sequence of lock requests/grants and updates performed by the
transaction needs to be recorded. The deadlock detection mechanism should decide which locks
the selected transaction needs to release in order to break the deadlock. The selected transaction
must be rolled back to the point where it obtained the first of these locks, undoing all actions it took
after that point. The recovery mechanism must be capable of performing such partial rollbacks.
Furthermore, the transactions must be capable of resuming execution after a partial rollback. See
the bibliographical notes for relevant references.

3. Starvation: In a system where the selection of victims is based primarily on cost factors, it may
happen that the same transaction is always picked as a victim. As a result, this transaction never
completes its designated task, thus there is starvation. We must ensure that transaction can be
picked as a victim only a (small) finite number of times. The most common solution is to include
the number of rollbacks in the cost factor.

20.2 Insert and Delete Operations

Until now, we have restricted our attention to read and write operations. This restriction limits
transactions to data items already in the database. Some transactions require not only access to
existing data items, but also the ability to create new data items. Others require the ability to delete
data items. To examine how such transactions affect concurrency control, we introduce these
additional operations:

 delete (Q) deletes data item Q from the database.

 insert (Q) inserts a new data item Q into the data base and assigns Q an initial value.

An attempt by a transaction T
i
to perform a read (Q) operation after Q has been deleted results in

a logical error in T
i
. Likewise, an attempt by a transaction T

i
to perform a read (Q) operation before

Q has been inserted results in a logical error in T
i
. It is also a logical error to attempt to delete a

nonexistent data item.

20.2.1 Deletion

To understand how the presence of delete instructions affects concurrency control, we must decide
when a delete instruction conflicts with another instruction. Let I

i
and I

j
be instructions of T

i
and T

j
,

respectively that appear in schedule S in consecutive order. Let I
i
= delete (Q). We consider several

instructions I
j
.

 I
j
= read (Q). I

i
and I

j
conflict. If Ii comes before I

j
, T

j
will have a logical error. If I

j
comes

before I
i
, T

j
can execute the read operation successfully.

 I
j
= write (Q). I

i
and I

j
conflict. If I

i
comes before I

j
, T

j
will have a logical error. If I

j
comes

before I
i
, T

j
can execute the write operation successfully.

 I
j
= delete (Q). I

i
and I

j
conflict. If I

i
comes before I

j
, T

i
will have a logical error. If I

j
comes

before I
i
, T

i
will have a logical error.

Database Management System 20.5 Concurrency Control-3

Figure: 2 Wait-for graph with a cycle.

This time, the graph contains the cycle:

T
26
 T

28
 T

27
T

26

implying that transactions T
26

, T
27

, and T
28

are deadlocked consequently, the question arises:
When should we invoke the detection algorithm?

The answer depends on two factors:

1. How often does a deadlock occur?

2. How many transactions will be affected by the deadlock?

If deadlocks occur frequently, then the detection algorithm should be invoked more frequently than
usual. Data items allocated to deadlocked transactions will be unavailable to other transactions
until the deadlock can be broken. In addition, the number of cycles in the graph may also grow. In
the worst case, we would invoke the detection algorithm every time a request could not be granted
immediately.

20.1.3.2 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, the system must recover from the
deadlock. The most common solution is to roll back one or more transactions to break the deadlock.
Three actions need to be taken:

1. Selection of a victim: Given a set of deadlocked transactions, we must determine which
transaction (or transactions) to roll back to break the deadlock. We should roll back those
transactions that will incur the minimum cost. Unfortunately, the term minimum cost is not a precise
one. Many factors may determine the cost of a rollback, including

a. How long the transaction has computed, and how much longer the transaction will compute
before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

Centre for Distance Education Acharya Nagarjuna University20.4

 Provide an algorithm that uses this information to determine whether the system has entered
a deadlock state.

 Recover from the deadlock when the detection algorithm determines that a deadlock exists.

20.1.3.1 Deadlock Detection

Deadlocks can be described precisely in terms of a directed graph called a wait-for graph. This
graph consists of a pair G=(V,E), where V is a set of vertices and E is a set of edges. The set of
vertices consists of all the transactions in the system. Each element in the set E of edges is an

ordered pair T
i
T

j
. If T

i
-T

j
is in E, then there is a directed edge from transaction T

k
to T

j
,

implying that transaction T
i
is waiting for transaction T

j
to release a data item that it needs.

When transaction T
i
requests a data item currently being held by transaction T

j
, then the edge

T
i
 T

j
is inserted in the wait-for graph. This edge is removed only when transaction T

j
is no longer

holding a data item needed by transaction T
i
.

A deadlock exists in the system if and only if the wait-for graph contains a cycle.

Each transaction involved in the cycle is said to be deadlocked. To detect deadlocks, the system
needs to maintain the wait-for graph, and periodically to invoke an algorithm that searches for a
cycle in the graph.

Figure: 1 Wait for graph with no cycle.

To illustrate these concepts, consider the wait-for graph in Fig.1, which depicts the following
situation:

 Transaction T
25

is waiting for transactions T
26

and T
27

.
 Transaction T

27
is waiting for transaction T

26
.

 Transaction T
26

is waiting for transaction T
28

.

Since the graph has no cycle, the system is not in deadlock state.

Suppose now that transaction T
28

is requesting an item held by T
27

. The edge T
28
 T

27
is added

to the wait-for graph, resulting in the new system state in fig.2.

Database Management System 20.3 Concurrency Control-3

2. The wound-wait scheme is a preemptive technique. It is a counterpart to the wait-die scheme.
When transaction T

i
requests a data item currently held by T

j
, T

i
is allowed to wait only if it has

a timestamp larger than that of T
j
(that is , T

i
is younger than T

j
) . Otherwise, T

j
is rolled back

(T
j

is wounded by T
i
) .

Returning to our example, with transactions T
22

,T
23

and T
24

, if T
22

requests a data item held by T
23

,
then the data item will be preempted from T

23
, and T

23
will be rolled back. If T

24
requests a data

item held by T
23

, then T
24

will wait.

Whenever the system rolls back transactions, it is important to ensure that there is no starvation,
i.e., no transaction gets rolled back repeatedly and is never allowed to make progress.

Both the wound-wait and the wait-die schemes avoid starvation: At anytime, there is a transaction
with the smallest timestamp. This transaction cannot be required to roll back in either scheme.
Since time stamps always increase, and since transactions are not assigned new time stamps
when they are rolled back, a transaction that is rolled back repeatedly will eventually have the
smallest timestamp, at which point it will not rolled back again.

There are, however, significant differences in the way that the two schemes operate.

 In the wait-die scheme, an older transaction must wait for a younger one to release its data
item. Thus, the older the transaction gets, the more it tends to wait. By contrasting the
wound-wait scheme, an older transaction never waits for a younger transaction.

 In the wait-die scheme, it a transaction T
1

dies and is rolled back because it requested a
data item held by transaction T

1
,then T

1
may reissue the same sequence of requests when

it is restarted. If the data item is still held by T
j
, then T

i
will die again. Thus, T

i
may die

several times before acquiring the needed data item. Contrast this series of events with
what happens in the wound–wait scheme. Transaction T

i
is wounded a rolled back because

T
j
requested a data item that it holds. When T

i
is restarted and requests the data item now

being held by T
i
, T

j
waits. Thus, there may be fewer rollbacks in the wound-wait wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may occur.

20.1.2 Timeout-Based Schemes

Another simple approach to deadlock handling is based on lock timeouts. In this approach, a
transaction that has requested a lock waits for at most a specified amount of time. If the lock has
not been granted within that time, the transaction is said to timeout, and it rolls itself back and
restarts. If there was in fact a deadlock, one or more transactions involved in the deadlock will
timeout and roll back allowing the others to proceed.

The timeout scheme is particularly easy to implement, and works well if transactions are short
and if long waits are likely to be due to deadlocks.

20.1.3 Deadlock Detection and Recovery

If a system does not employ some protocol that ensures deadlock freedom, then a detection and
recovery scheme must be used. An algorithm that examines the state of the system is invoked
periodically to determine whether a dead lock has occurred. If one has, then the system must
attempt to recover from the deadlock. To do so, the system must:

 Maintain information about the current allocation of data items to transactions, as well as
any outstanding data item requests.

Centre for Distance Education Acharya Nagarjuna University20.2

There are two principal methods for dealing with the deadlock problem. We can use a deadlock
prevention protocol ensure that the system will never enter a dead lock state. Alternatively, we
can allow the system to enter a dead lock state, and then try to recover by suing a deadlock
detection and deadlock recovery scheme. So we shall see, both methods may result in
transaction rollback. Prevention is commonly used if the probability that the system would enter a
dead lock state is relatively high; other wise, detection and recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not only the run-time
cost of maintaining the necessary information and of executing the detection algorithm, but also
the potential losses inherent in recovery from dead lock.

20.1.1 Deadlock Prevention

There are two approaches to deadlock prevention. One approach ensures that no cyclic waits can

occur by ordering the requests for locks, or requiring all locks to be acquired together. The other

approach is closer to deadlock recovery, and performs transaction rollback instead of waiting for a

lock, whenever the wait could potentially result in a deadlock.

The simplest scheme under the first approach requires that each transaction lock all its data items

before it begins execution. Moreover, either all are locked in one step or none are locked. There are

two main disadvantages to this protocol: (1) It is often hard to predict, before the transaction begins,

what data items need to be locked. (2) Data-item utilization may be very low, since many of the

data items may be locked but unused for al long time.

Another approach for preventing deadlocks is to impose an ordering of all data items, and to require

that a transaction lock data items only in a sequence consistent with the ordering. We have seen

one such scheme in the tree protocol, which uses a partial ordering of data items.

A variation of this approach is to use a total order of data items, in conjunction with two-phase

locking. Once a transaction has locked a particular item, it cannot request locks on items that

precede that item in the ordering. This scheme is easy to implement, as long as the set of data

items accessed but a transaction is known when the transaction starts execution. There is no

need to change the underlying concurrency-control system if two-phase locking is used. All that is

needed it to ensure that locks are requested in the right order.

The second approach for preventing deadlocks is to use preemption and transaction rollbacks. In
preemption, when a transaction T

2
requests a lock that transaction holds, the lock granted to T

1

may be preempted by rolling back of T
1
, and granting of the lock to T

2
. To control the preemption we

assign a unique time stamp to each transaction. The system uses these time stamps only to
decide whether a transaction should wait or roll back. Locking is still used for concurrency control.
If a transaction is rolled back, it retains its old time stamp when restarted. Two different deadlock

prevention schemes using timestamps have been proposed:

1. The wait-die scheme is a nonpreemptive technique. When transaction T
i
requests a data

item currently held by T
j
, T

i
is allowed to wait only if it has a time stamp smaller than that of

T
j
(that is ,T

i
is older than T

j
). Otherwise, T

i
is rolled back (dies).

For example, suppose that transaction T
22

,T
23

, and T
24

have timestamps 5,10, and 15
respectively. If T

22
requests a data item held by T

23
, then T

22
will wait. If T

24
requests a data item

held by T
23

, then T
24

will be rolled back.

Database Management System 20.1 Concurrency Control-3Lesson 20

ConcurrencyControl-3

20.0 Objectives:

After completion of this lesson the student will be able to know about:

 Identifying the deadlock situation and prevention.

 Detecting deadlock and recovery from deadlock.

 Insert and delete operations.

 Different weak levels of consistency for ensuring correctness.

 Concurrency in index structures.

Structure Of the Lesson:

20.1 Deadlock Handling

20.2 Insert and Delete Operations

20.3 Weak Levels Of Consistency

20.4 Concurrency in index Structures

20.5 Summary

20.6 Technical Terms

20.7 Model Questions

20.8 References

20.1 Deadlock Handling
A system is in deadlock state if there exists a set of transactions such that every transaction in the
set is waiting for another transaction in the set. More precisely there exists a set of waiting transactions
{T

0
, T

1
,…., T

n
} such that T

0
is waiting for a data item that T

1
holds, and T

1
is waiting for a data item

that T
2

holds, and …, and T
n-1

is waiting for a data item that T
n

holds, and T
n

is waiting for a data
item that T

0
holds. None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke some drastic action, such
as rolling back some of the transactions involved in the deadlock. Rollback of a transaction may be
partial, i.e., a transaction may be rolled back to the point where it obtained a lock whose release
resolves the deadlock.

