
BASICS OF IT
 (

(PG

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

BASICS OF IT
(PGDIT01)

PG - DIPLOMA)

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

NAGARJUNA NAGAR,

GUNTUR

ANDHRA PRADESH

ACHARYA NAGARJUNA UNIVERSITY

CENTRE FOR DISTANCE EDUCATION

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 6

C O N T E N T S

HISTORY

Chapter –1 INTRODUCTION ... 1.1 - 1.24

1.1 Algorithm definition ... 1.1

1.2 Characteristics of an Algorithm .. 1.1

1.3 How to develop an algorithm .. 1.2

1.4 How to analyze an algorithm .. 1.3

1.4.1 General plan for analyzing efficiency of
recursive algorithms ... 1.4

1.5 How to validate of algorithm ... 1.4

1.6 Time & Space Complexities ... 1.4

1.6.1 Space complexity .. 1.4

1.6.2 Time complexity .. 1.4

1.7 Order of Magnitude .. 1.5

1.8 Asymptotic Notations... 1.8

1.8.1 Optimality .. 1.11

1.8.2 Reduction ... 1.12

1.8.3 Profiling ... 1.12

1.9 Amortized Analysis .. 1.13

1.9.1 Aggregate Analysis ... 1.13

1.9.2 Accounting Method .. 1.14

1.9.3 Potential Method ... 1.15

1.10 Worst-Case Average-Case and Randomized Algorithms 1.19

1.10.1 The Basics of Probabilistic Analysis 1.21

1.10.2 Linearity of Expectation ... 1.23

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 7

Chapter – 2 DIVIDE AND CONQUER 2.1 - 2.21

2.1 Introduction .. 2.1

2.2 Binary Search using DAC .. 2.5

2.3 Max–Min problem using DAC ... 2.7

2.4 Merge Sort ... 2.13

2.5 Quick Sort.. 2.17

2.6 Stressens Matrix Multiplicatin ... 2.19

Chapter – 3 GREEDY METHOD .. 3.1 - 3.21

3.1 Introduction .. 3.1

3.2 Optimal Storage on Tapes ... 3.2

3.3 Knapsack Problem .. 3.3

3.4 Job Sequencing ... 3.7

3.5 Optimal Merg Pattern ... 3.9

3.6 Minimum Spanning Tree .. 3.11

3.7 Single Source Shortest path .. 3.17

Chapter–4 DYNAMIC PROGRAMMING 4.1 - 4.27

4.1 Introduction .. 4.1

4.2 Principle of Optimality .. 4.1

4.3 Developing a Dynamic Programming algorithm 4.2

4.4 Multistage graph problem ... 4.3

4.5 Reliability design .. 4.7

4.6 All pairs shortest path .. 4.8

4.7 Traveling sales person problem ... 4.10

4.8 Optimal Binary Search Tree ... 4.13

4.9 0/1 Knapsack Problem... 4.19

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 8

4.10 Matrix Chain Multiplication .. 4.22

4.10.1 Direct matrix multipliction on of 3 matrices 4.22

4.11 Chain Matrix Multiplication .. 4.23

Chater – 5 BASIC SEARCH AND
TRAVERSAL TECHNIQUES 5.1 - 5.15

5.1 Introduction .. 5.1

5.2 Binary Tree Traversals ... 5.3

5.3 Graph Traversals ... 5.7

5.3.1 Breadth first search .. 5.9

5.3.2 Depth first search ... 5.10

5.4 AND/OR Graphs .. 5.11

5.5 Game Trees ... 5.12

5.6 Biconnected Components ... 5.13

Chapter – 6 BACK TRACKING ... 6.1 - 6.14

6.1 Introduction .. 6.1

6.2 Control Abstract for Back Tracking ... 6.2

6.3 Queens Problem ... 6.3

6.3.1 4- Queens problem ... 6.3

6.3.2 8- Queens problem ... 6.8

6.4 Graph Coloring ... 6.10

6.5 Sum of Subsets ... 6.13

Chapter – 7 BRANCH AND BOUND................................... 7.1 - 7.18

7.1 Introduction .. 7.1

7.2 Least Cost (LC) Search .. 7.2

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 9

7.3 Bounding ... 7.7

7.4 FIFO Branch & Bound ... 7.10

7.5 LC Branch & Bound ... 7.12

7.6 Traveling Sales Men Problem... 7.13

Chapter - 8 NP HARD AND NP COMPLETE
 PROBLEMS... 8.1 - 8.6

8.1 Introduction .. 8.1

8.2 Classes of Problems ... 8.1

8.3 Reducibility .. 8.3

8.4 Non Deterministic Algorithms ... 8.3

8.5 NP Completeness ... 8.3

8.6 Cook’s Theorem .. 8.5

Chapter – 9 SETS AND UNIONS ... 1 - 9.6

9.1 Fundamentals of Sets .. 9.1

9.2 Union & Find .. 9.1

9.3 Weighting Rule for union .. 9.4

Chapter – 10 BALANCED SEARCH TREES 10.1 - 10.16

10.1 AVL Trees .. 10.1

10.2 2-3 Trees ... 10.5

10.3 Dictionary .. 10.10

10.4 Priority Queue .. 10.10

10.5 Heap .. 10.11

10.6 Heap Sort .. 10.14

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 10

MODEL OBJECTIVE QUESTIONS (QUIZ) Q1-Q16

QUIZ -1 ... Q1

QUIZ -2 ... Q4

QUIZ -3 ... Q7

QUIZ -4 ... Q11

QUIZ -5 ... Q14

MODEL QUESTION PAPERS.. M1- M14

SET NO -1 ... M1

SET NO -2 ... M3

SET NO -3 ... M4

SET NO -4 ... M6

SET NO -5 ... M7

SET NO -6 ... M8

SET NO -7 ... M9

SET NO -8 ... M10

SET NO -9 ... M12

SET NO -10 ... M14

SOLVED PROBLEMS (from previous papers) S1-S10

UNIT WISE IMPORTANT QUESTIONS
(from previous papers) ... U1-U4

Tostore\Madhu\daa\daa Front Pages - Final - Page No. 11

A WORD ABOUT ALGORITHM IN
HISTORY

“That fondness for science, .. . that affability and
condescension which God shows to the learned, that promptitude
with which he protects and supports them in the elucidation of
obscurities and in the removal of difficulties, has encouraged me to
compose a short work on calculating by al-jabr and al-muqabala ,
confining it to what is easiest and most useful in arithmetic.”

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi
[Born: about 780 in Baghdad (now in Iraq). Died: about 850]

[al-jabr means “restoring”, referring to the process of moving a sub-
tracted quantity to the other side of an equation; al-muqabala is “com-
paring” and refers to subtracting equal quantities from both sides of
an equation
An algorithm, named after the ninth century scholar Abu Jafar Muhammad
Ibn Musu Al-Khowarizmi, is defined as follows: [Roughly speaking]:

l An algorithm is a set of rules for carrying out calculation either by
hand or on a machine.

l An algorithm is a finite step-by-step procedure to achieve a required
result.

l An algorithm is a sequence of computational steps that transform
the input into the output.

l An algorithm is a sequence of operations performed on data that
have to be organized in data structures.

l An algorithm is an abstraction of a program to be executed on a
physical machine (model of Computation).

The most famous algorithm in history dates well before the time of the
ancient Greeks: Euclid’s algorithm for calculating the greatest common
divisor of two integers.

DCS/DIT 314 : DESIGN AND ANALYSIS OF ALGORITHMS

UNIT-I

Introduction, Divide and Conquer , The Greedy Method - Knapsack Problem, True vertex splitting, Job
sequencing, Minimum-cost spanning trees, Kruskal’s algorithm, Optimal storage on tapes, Optimal merge
pattern, Single source shortest paths.

UNIT-II

Dynamic Programming - General method, Multistage graph, All pairs shortest path,

Single-source shortest path, Optimal Binary search trees, String Editing, 0/1 Knapsack, Reliability design,
The traveling salesman problem, Flow shop scheduling.

UNIT-III

Basic traversal & search techniques - Techniques for binary trees, techniques for graphs, connected
components & spanning trees, Bi-connected components & DFS.

Back tracking - The General Method, The 8-Queens Problem, Sum of subsets, Graph coloring,
Hamiltonian cycle, Knapsack problem.

UNIT-IV

Branch and Bound - The method, 0/0 Knapsack problem, Traveling salesperson, Efficiency
considerations.

NP hard and NP Complete Problems - Basic concepts, Cook’s Theorem, NP-Hard Graph problems, NP-
Hard Scheduling problem, Some simplified NP-Hard problems.

Textbook:

1. L Ellis Horwitz, Sartaj Sahni, ‘Fundamentals of Computer Algorithms’, Galgotia Pubs.

Reference Books:

1. Aho, Hopcroft & Ullman, ‘The Design and Analysis of Computer Algorithms’,Addison Wesley.
2. Thomas H.Corman et al, ‘Introduction to Algorithms’, PHI.

1.1

NOTES

Design and Analysis of Algrorithms

1.1 Algorithm, Definition :
It is a sequence of unambiguous instructions for solving a

problem to obtain a required output for any legitimate input in a finite time.

PROBLEM

ALGORITHM

 INPUT CPU OUTPUT

An algorithm is a step by step procedure to represent the solution
for a given problem. It consists of a sequence of steps representing a
procedure defined in a simple language to solve the problem.

It was first proposed by a Persian mathematician, ABU JAFAR
MOHAMMED IBN MUSA AL KHWARIZMI IN 825 A.D.

1.2 Characteristics of an Algorithm:
1. An algorithm must have finite number of steps.

2. An algorithm must be simple and must not be ambiguous.

3. It must have zero or more inputs

4. It must produce one or more outputs.

5. Each step must be clearly defined and must perform a specific function.

6. There must be relationship between every two steps.

7. It must terminate after a finite number of steps

Ex: Algorithm for Towers of HANOI

Problem: The objective of the game is to transfer n disks from leftmost
pole to right most pole, without ever placing a larger disk on top of a smaller
disk. Only one disk must be moved at a time.

Algorithm TOH (n, x, y, z)

//Move n disks from tower x to tower y//

{ if (n>=1) then

{ TOH(n-1, x, z, y);

INTRODUCTION

 UNIT I

1.2

Design and Analysis of Algrorithms

NOTESprintf(“move top disk from”, x “to” y);

 TOH(n-1, z, y, x);

}

 }

1.3 How to develop an algorithm:
1. The problem for which an algorithm is being precisely and clearly

defined.

2. Develop a mathematical model for the problem. In modeling
mathematical structures that are best suited are selected.

3. Data structures and program structures used to develop a solution
are planned.

4. The most common method for designing an algorithm is step wise
refinement. Step wise refinement breaks the logic into series of steps.
The process starts from converting the specifications of the module
into an abstract description of an algorithm containing a few abstract
statements.

5. Once algorithm is designed, its correctness should be verified. The
most common procedure to correct an algorithm is to run the algorithm
on various number of test cases. An ideal algorithm is characterized
by its run time and space occupied.

1.4 How to analyze an algorithm:
Analysis of algorithm means estimating the efficiency of algorithm

in terms of time and space that an algorithm requires.

1. First step is to determine what operations must be done and what
are their relative cost. Basic operations such as addition, subtraction,
comparison have constant time.

2. Second task is to determine number of data sets which cause
algorithm to exhibit all possible patterns.

It requires to understand the best and worst behavior of an algorithm
for different data configurations.

1.4.1 General plan for analyzing efficiency of recursive
algorithms

1. Decide a parameter indicating an input size

2. Identify the algorithms basic operation

3. Check whether the number of times the basic operation is executed
can vary on different inputs of the same size . If it can the worst case,

1.3

NOTES

Design and Analysis of Algrorithms

average case, and best case efficiencies must be investigated separately

4. Set up a recurrence relation with an appropriate initial condition for the
number of times the basic operation is executed

5. Solve the recurrence or at least ascertain the order of growth of its solution

The analysis of algorithm has two phases:

1. Priori analysis: In this analysis we find some functions which bounds
algorithm time and space complexities. By the help of these functions it
is possible to compare the efficiency of algorithms.

2. Posterior Analysis: Estimating actual time and space when an algorithm
is executing is called posterior analysis.

Priori analysis depends only on the number of inputs and operations
done, Where as posterior analysis depends on both machine and language
used, which are not constant. Hence analysis of most of the algorithms is
made through priori analysis.

1.5 How to validate algorithm:
 The process of producing correct answer to given legal inputs is called

algorithm validation.

 The purpose of validation is to prove an algorithm works independent of
language.

 Validation process contains two forms – one is producing respective
outputs for given inputs and the other is specification, whether it is
producing outputs according to specified requirements.

 These two forms are shown equivalent for a given input.

The purpose of the validation of an algorithm is to assure that this
algorithm will work correctly independently of the issues such as machine,
language, platform etc. If an algorithm is according to given specifications and
is producing the desired outputs for a given input then we can say it is valid.

1.6 Time & Space complexities :
1.6.1 Space complexity:
 It is defined as the amount of memory need to save and execute an

algorithm.

The memory space needed for an algorithm has two parts.

 One is fixed part, such as memory needed for local variables, constants,
instructions etc.

 Second one is variable part, such as space needed for reference
variables, stack space etc. They depend upon the problem instance.

 The space requirement S(P) of an algorithm P can be written as S(P)
= c + Sp, were c is a constant (representing fixed part). Thus while
analyzing an algorithm Sp (variable part) is estimated.

1.4

Design and Analysis of Algrorithms

NOTES1.6.2 Time complexity:
 The time taken by a program is the sum of the compile time and the

run time.

 Compile time does not depend on the algorithm.

 Run time depends on the algorithm

 The time complexity of an algorithm, is given by the number of steps
taken by the algorithm to compute the function it was written for.

 The number of steps will be computed as a function of the number of
inputs and the magnitude of inputs.

The time T(P) taken by a program is the sum of compile and run time.
The compile time does not depend upon the instance characteristics,
hence it is fixed. Where as run time depends on the characteristics and it
is variable. Thus while analyzing an algorithm run time T(P) is estimated.

1.7 Order of Magnitude
It refers to the frequency of execution of an instruction / statement.

The order of magnitude of an algorithm is sum of all frequencies of all
statements. The running time of an algorithm increases with size of input
and number of operations.

Example (1):
In linear search, if the element to be found is in the first position,

number of basic operation done is one. If the element is some where in
array, basic operation (comparison) is performed n times.

If in an algorithm, the basic operations are performed same number
of times every time then it is called ‘Every time complexity analysis’ T(n).

Example (2):
Addition of n numbers

Input : n

Alg: for 1 to n

Sum = sum + n;

T(n) = n;

Example (3):
Matrix multiplication

Input : n

Alg : for i = 1 to m

for j = 1 to n for k = 1 to n

c[i] [j] = c[I] [j] + a[i] [k] * b[k] [j]

1.5

NOTES

Design and Analysis of Algrorithms

T(n) = n3

Worst case w(n):
It is defined as maximum number of times that an algorithm will ever do.

Example(1):
Sequential search / Linear search

Inputs : n

Alg : comparison

If x is the last element, basic operation is done n times.

w(n) = n

Best case B(n):
It is defined as minimum number of times algorithm will do its basic operation.

Example(1):
Sequential search

If x is first element B(n) = 1

Average case A(n):
It is average number of times algorithm does basic operations for n.

Example(1):
 Sequential search

Inputs: n

Case 1:
If x is in array

Let probability of x to be in kth slot = 1/n

If x is in kth slot, number of times basic operation done is K.

2

1n
2

)1n(n

n
1"

1k n
1K)n(A

Case 2:
If x is not in array

Probability that x is in Kth slot = p/n

Probability that x is not in array = 1 – P

2
p

n
p1n)P1(n2

)1n(n
n
P)P1(n"

1k n
PK)n(A

1.6

Design and Analysis of Algrorithms

NOTES

T(n)
O(2n)

O(n2)

Onlogn)

O(n)

O(logn)

n

ORDER NAME EXAMPLES
O(1) Constant Few algorithms without any loops

O(log n) Logarithmic Searching algorithms

O(n) Linear Algorithms that scan a list of size n
O(n log n) n-log-n Divide and conquer algorithms

O(n2) Quadratic Operations on n by n matrices

O(n3) Cubic Nontrivial algorithms from linear algebra

O(2 n) Exponential Algorithms that generate all subsets of a set

O(n!) Factorial Algorithms that generate permutations of set

1. Algorithms with time complexities of O(n) and 100n are called linear
time algorithms since time complexity is linear with input size.

2. Algorithm such as O(n2), 0.001 n2 are called quadratic time algorithms.

3. Any linear time algorithm is efficient than quadratic time algorithm.

If algorithm is run on same complexity on same type of data, but with
higher magnitude of n, the resulting time is less than some constant time
f(n).

Thus

O(1) < O(log n) < O (n) < O (nlogn) < O(n2) <O(2n) for a given n.

1.8 Asymptotic Notations:
The limiting behaviour of the complexxity w.r.t. parameters like size,

time etc., is known as Asymptomic complexity. In priori analysis, all fac-
tors regarding machine and language are ignored and only number of
inputs, size of input and the number of operations are taken into account.
The principle indicator of the algorithm’s efficiency is the order of growth
of an algorithms basic operations. Three notations O (big oh), W (big
omega) and q (big theta) are used for this purpose.

1.7

NOTES

Design and Analysis of Algrorithms

Big O:
Definition: A function f(n) is said to be in O(g(n)), denoted by f(n)O(g(n)),

if f(n) is bounded above by some constant multiple of g(n) for all large n, I.e., iff
there exists some positive constant C and N such that

f(n) C*g(n) for all n>=N

It puts an asymptotic upper bound on a function.

Example (1):
If 100n +5 O(n2) , find C and N.

For all n>= 5
100n + 5 <=100n + n

 = 101n <=101n2

thus C =101 and N =5
Example (2):
If n2 + 10 n O(n2) , find C and N

 f(n) = n2 + 10 n , g(n) = n2

f(n)Î O(g(n))

When C = 2 and N = 10

If n <= 10 then c* g(n) f(n)

Thus N = 10 keeps an upper bound complexity of above function

Theorem 1:
If P(n) = a0 + n a1 +…………………+ nm am show that P(n) = O(nm)

Proof:
P(n) |a0| + |a1|n + ……………… |am| nm

m
m1m

10
na

n

a

n

a

m10 a...........naa

n

T(n)
g(n)

f(n)

N

f(n)

1.8

Design and Analysis of Algrorithms

NOTES

 T(n) g(n)

n

cf(n)

N

f(n)

g(n)

Where n 1
let C = |a0| + |a1| + …………|am|

P(n) Cnm

P(n) = O(nm)

If g(n) = q(f(n)) then f(n) is both upper and lower bounds.

Small O: f(n)~o(g(n)) iff limit)n(g
)n(f

 1 as n

Example:

If f(n) = aknk + …………..a0

then f(n)= O(nk) and f(n) ~ O(aknk).

Big :

Definition: A function f(n) is said to be in W (g(n)) , denoted f(n) W (g(n)),
if f(n) is bounded below by some positive constant multiple of g(n) for all
large n i.e., iff there exists positive constants C and N such that

f(n) >= C * g(n) for all n > = N

Example (1):
Show that n3 W (n2)

n3 >= n2 for all n > = 0

\ for C=1 and N =0 we can say n3 W(n2)

Theorem 2:
If P(n) = a0 + n a1 +…………………+ nm am and if am >0 then show

that P(n) = W(nm)

Big :

Definition: A function f(n) is said to be in q(g(n)) denoted by f(n) Î
q(g(n)), if f(n) is bound both above and below by some positive constant
multiples of g(n) for all large n i.e., iff there exists some positive constants
C1 and C2 and some positive integer N such that

C1(g(n)) f(n) C2 (g(n))

1.9

NOTES

Design and Analysis of Algrorithms

 (f(n)) = O(f(n)) (f(n))

Example (1):
If we say n(n-1)/2 Î q(n2), find C1, C2 and N

To prove upper bound

n(n-1)/2 = n2/2 - 1/2n <= n2/2 for all n>=0

To prove lower bound

n(n-1)/2 = n2/2 - 1/2n >= n2/2 - n2/4 = n2/4, for all n>=2

hence C1 = ½, C2 =1/4 and N =2

 (g) functions that grow at least as fast as g

 (g) functions that grow at the same rate as g

O(g) functions that grow no faster than g

Theorem 3:
If f1(n) O(g1(n)) and f2(n) O(g2(n)), then f1(n) + f2(n) O(max{ g1(n) ,
g2(n)})

Proof:

Let a1, a2,b1,b2 be real numbers and if a1 <=, b1 and a2 < = b2

then a1 + a2 <=2 max(b1,b2)

if f1(n) O(g1(n))

then f1(n) < = C1 * (g1(n)) for n > = N1

and if f2(n) O(g2(n))

then f2(n) < = c2 *(g
2
(n)) for n >= N2

Let C3 = max {C1, C2} and N >= max{ N1, N2}

f1(n) + f2(n) < = C1 * (g1(n)) + C2 * (g2(n))

 < = C3 * (g1(n)) + C3 * (g2(n))

 < = C3 { (g1(n)) + (g2(n)) } = C3 * 2 max { (g1(n)) , (g2(n))

 T(n)

O(n)

n

T(n)

g(n)

n

T(n)

(n)

n

O(n) O(n) O(n)

(1) (2)

(n)

(3)

1.10

Design and Analysis of Algrorithms

NOTES}

hence f1(n) + f2(n) O(max{ g1(n) , g2(n)})

with the constants C and N required by O definition being 2C3 = 2 max {C1,
C2} and max { N1, N2}

1.8.1 Optimality

Once the complexity of an algorithm has been estimated, the question
arises whether this algorithm is optimal. An algorithm for a given problem is
optimal if its complexity reaches the lower bound over all the algorithms
solving this problem. For example, any algorithm solving “the intersection
of n segments” problem will execute at least n2 operations in the worst
case even if it does nothing but print the output. This is abbreviated by
saying that the problem has (n2) complexity. If one finds an O(n2) algo-
rithm that solve this problem, it will be optimal and of complexity (n2).

1.8.2 Reduction:
Another technique for estimating the complexity of a problem is the trans-
formation of problems, also called problem reduction. As an example, sup-
pose we know a lower bound for a problem A, and that we would like to
estimate a lower bound for a problem B. If we can transform A into B by a
transformation step whose cost is less than that for solving A, then B has
the same bound as A.

The Convex hull problem nicely illustrates “reduction” technique. A
lower bound of Convex-hull problem established by reducing the sorting
problem (complexity: (nlogn)) to the Convex hull problem.

1.8.3 Profiling:
Profiling is the process of executing a correct program on data sets

and measuring the time and space which takes to compute the result

Algorithm of profiling:

Procedure PROFILE

Repeat

{

Read(DATA)

If DATA = end of file then exit

Printf (A new data set = DATA)

1.11

NOTES

Design and Analysis of Algrorithms
CALL STIME(t)

CALLSOLUTION(DATA,OUTPUT)

printf (time =s-t)

}

1.9 Amortized Analysis :
Given a data structure that supports certain operations amortized

analysis provides an upper bound on the average cost of each operation for
any sequence of a given length n (i.e., an upper bound for a worst-case
sequence). By convention, amortized cost is specified as cost per operation,
and not as cost of a sequence of operations of a given length. Although we talk
about the ‘average cost per operation’, no probility involved. While performing
amortized analysis, we usually assume that the data structure starts from a
canonical start configuration, which is typically that corresponding to the empty
set. Sometimes we analyze amortized cost per operation by type of operation.

There are three methods commonly used for amortized analysis.

l Aggregate method •Accounting method •Potenital method

All three methods give the same solution (except that the solution returned
by the aggregate method does not allow for different amortized costs for
different types of operations), but they approach it in different ways.

Example. Consider a data structure MStack that supports the following 3
operations:

l Push(S,x): add element x to set S

l Pop(S) : remove the most recently added element from S

l Muttipop (S,k): let l = min(k, ISI); remove the I most recently added
elements from S We implement Mstack as a standard stack. Then, Push
and Pop take constant time. But the third operation takes (1) time, since
the Multipop operation takes units of time to remove the I elements plus
a constant time to access the stack and determine the value of .

1.9.1 Aggregate Analysis :
In this type of analysis, we obtain an upper bound T(n) on the time
needed to execute any sequence of n operations, and hence derive the
amortized cost per operation as T(n)/n.

For the MStack we argue as follows :

Although a single Multipop operation can take as much as F(n) time in
the worst case, over all Pop and Multipop operations, no more than n–
1 elements can be removed from S since there are only n operations in
total, and each Push operation can add exactly one element to S. Hence
the total number of additions and removals of elements during these n
operations is < 2n. Besides these addition/removal of elements we

1.12

Design and Analysis of Algrorithms

NOTESonly spend constant time per operation. Hence for any sequence of
n operations the total time needed to execute it is O(n). Hence
amortized cost per operation is O(n)/n, which is a constant.

1.9.2 Accounting Method:
In the accounting method, we assign an amortized cost Ci to each
operation ahead of time and we establish that these are vaild
amortized cost by showing that for all sequences.

n

li
i

n

li

^

i CC

where is the actual cost of the ith operation. The difference between
the sum of the amortized costs and the actual costs is stored as
credit on the elements in the data structure and this credit is used
to pay for future costly operations.

For the MStack, the actual costs of Push and Pop are 1 (i.e., a
constant), and the cost of a Multipop is l.

We will use amortized costs of 2 for Push and 1 each for Pop and
Multipop.

We now argue that the assigned amortized costs are vaild. Each
Push operation uses one unit of its amortized cost to execute the
operation, and leaves the second unit as credit on the element
placed on the stack. Thus each element in S resides on the stack
with one unit of credit on it.

The Pop operation uses its one unit of amortized cost to test if the
stack is empty or not.

Similarly, the Multipop operation uses its one unit of amortized cost
to compute to test the stack and compute the value of l. Other than
this, each Pop and Multipop operation uses the credit on the element
being removed to pay for the cost of removing it. Thus, the sum of
the amortized costs is always at least as large as the sum of the
actual costs, (and the excess of the sum of the amortized costs
over the actual sum is stored as credit on the elements in S).

Note that we used the value 1 to represent the constant cost of a
Pop or Multipop operation. This is a convention that is common in
amortized analysis, where we ignore constant factors and simply
use 1 (which represents the largest constant among the constants
that may appear for different operations).

1.9.3 Potential Method:
In the potential method we assign a potential F to the evolving data
structure. Let Di be the data structure after the ith operation, with

1.13

NOTES

Design and Analysis of Algrorithms

Do the initial data structure.

The potential function we pick should satisfy F(Di) ³F(Do), for all
i > 0. Usually. we pick a Fwith F(Do)=0 and F (Di) ³0, for all i.

A potential function - that satisfies the above property induces an

amortized cost Ci

 for the ith operation, for each i>0, by

)lDi()Di(CiCi
^

where Ci is the actual cost of the ith operation.

We observe that the induced amortized costs are valid since

n

li

n

li

^
Ci)Do()Dn(CiCi

For the MStack example, we use F(Di) = number of elements on the
stack. We can then observe the amortized costs of Push and Pop
remain constant since both the actual cost and the change in potential
are constant for both operations, and the amortized cost of Multipop is
also a constant since the drop in potential cancels out the actual cost
of deleting multiple elements.

Example : Incrementing a k-bit binary counter

Let A[0..k-1] be an array of bits representing a number X

A[0]-low order bit, so

1k

10j

J2]J[AX

length[A]=k

Start with X = 0

Increment (A)

J=0

while j < length [A] and A[J] = I do

A[J] =0

J = J + 1

end while

if J < length[A] then

A[J] = 1

end if

end Increment

1.14

Design and Analysis of Algrorithms

NOTESCount bits flipped

Worst Case

Increment flips k bits in worst case

Sequence of n Increment operations takes O(nk)

Aggregate Method
T(n) = all work done in worst case in sequence of n operations

Amortized cost per operation is T(n)/n

X A[4] A[3] A[2] A[1] A[0] Total cost

0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 1 0 3
3 0 0 0 1 1 4
4 0 0 1 0 0 7
5 0 0 1 0 1 8
6 0 0 1 1 0 10
7 0 0 1 1 1 11
8 0 1 0 0 0 15
9 0 1 0 0 1 16

A[0] flips each time Increment is called n

A[1] flips every other time
2
n

A[1] flips every fourth time

22
n

A[J] flips every 2**J time

J2
n

Total number of flips is:

]n[lg

0J 0J
JJ n2

2
1n

2
n

So amortized cost of each operation is 2 = O(1)

Accounting Method
Assign an a mortized cost to each operation

Amortized cost may be more or less than the actual cost

If amortized cost is more than the actual cost of the operation assign the
difference to part of the data structure as a credit

No negative credit allowed

1.15

NOTES

Design and Analysis of Algrorithms

Total amortized cost is >=total worst case cost

Example : Binary counter
Amortized cost of setting bit to 1 2 units

1 unit to pay for setting bit to 1

1 unit stored with bit

Amortized cost of setting bit to 0 0 units

Only a 1-bit is set to 0,

All 1-bits have credit of one unit

This pays for setting bit to 0

Increment(A)

J = 0

while J < length [A] and A[J] = = 1 do

 A(J) = 0

J = J + 1

end while

if J < length [A] then

 A[J] = 1

end if

end Increment

X A[4] A[3] A[2] A[1] A[0] Amortized cost

0 0 0 0 0 0 0
1 0 0 0 0 1 (1) 2
2 0 0 0 1 (1) 0 4
3 0 0 0 1 (1) 1 (1) 6
4 0 0 1 (1) 0 0 8
5 0 0 1 (1) 0 1 (1) 10
6 0 0 1 (1) 1 (1) 0 12
7 0 0 1 (1) 1 (1) 1 (1) 14

8 0 1 (1) 0 0 0 16
9 0 1 (1) 0 0 1 (1) 18

Example - Move-to-Front
Assume we have a list of n = 2k items: a1, a2,....,an

Will perform n accesses on the list

Will access item a1 n/2 times

1.16

Design and Analysis of Algrorithms

NOTES
Amortized costs:

First access of a

initial location of a <=n

All other access of a

1

Accessing a non-a item

actual cost + q <=n+1
assign credit to a

a, b, c, d, e Amortized cost
b, a(1), c, d, e accessed b 2
c, b, a(2), d, e accessed c 4
a, c, b, d, e accessed a 1
e, a(1), c, b, d accessed e 6
a, c, b, d, e accessed a 1
a, c, b, d, e accessed a 1

(Amortized cost of all accessed of a) < = n+n/2-1=3n/2-1

(Amortized cost of accessing all non-a-items) <=n*(n+1)/2

(Total Cost) <= (4n+n*n)/2-1, (average Cost/access) <=4+n/2

Linked List vs. Dynamic Array Unordered List
Amortized Costs per operation over n operations

linked List Dynamic Array

Insertion 1 call to new 1g(n)/n call to new

set two links 3 data moves

Deletion after find two links 3 data moves

1 delete 1g(n)/n call to new

Probabilistic Analysis and Randomized Quicksort
1.10 Worst-case, average-case, and randomized algorithms:

The last le disenssed the notions of 0. and bounds, and how
to compute them using recurrences. We begin this lecture with a difference
.... worst-case versus average ease bounds.Note that for comparison
based algorthms like and Mergesort, we express running time in
terms of the number of comparisons made.

1.17

NOTES

Design and Analysis of Algrorithms

Say I is some input and T(i)is running time of algorthm on input I.
We can then define:

Tworstcase(n) =)I(Tmax

nsizeofinput

avg
)I(Tnsizeofinput)n(seTaverageca

For instance, Mergesort lias both worst-case and average-case time
Q(n log ..). It doesn’t really depend on the input at all. On the other haud for
some algorithms, the running time depends critically on the input. One example
is Quicksort.

Quicksort : Given array of some length n,

1. Pick an element p of the array as the pivot (or halt if the array has size
0 or 1)

2. Split the array into sub-arrays LESS, EQUAL, and GREATER by
comparing each element to the pivot. (LESS has all elements less
than p, EQUAL has all elements equal to p, and GREATER has all
elements greater than p).

3. recursively sort LESS and GREATER

The Quicksort algrithm given above is not yet..... specified because
we have not stated how we will pick the pivot element p. For the first
version of the algorithm, let’s always choose the leftmost element.

Basic-Quicksort : Run the Quicksort alg...... given above, always
choosing the leftmost element in the array as the pivot.

What is worst-case running time of Basic-Quicksort? we can see that
if the arry is already sorted, then in Step 2 all the elements (except p1) will go in
to the GREATER bucket Fuurthermore since the GREATER array is in sorted
order, this process will continue recursively, resulting in time (n2). We can
also see that the running time is W(n2) on any array of n elements because
Step 1 can be executed at most a times, and step 2 take mostn steps to
perform. Thus the worst-case running time is (n2).

On the other hand if turns out (and we will that the average-case
running time for Basic Quicksort (averaging over all different initial ordermes
of the n elements in the array) is O(n log n). So, Basic-Quicksort has good
average case performance but not good worst-case performance.

The fact that algorithm works well on most inputs may be small
consolation if the inputs we are faced with are the bad ones (e.g., if our lists
.........sorted already). One way we can try to get around this problem is to add
randomization to the algorithm itself:

1.18

Design and Analysis of Algrorithms

NOTESRandomized-Quickosrt: Run the Quicksort algorthm as given above,
each time picking a random element in the array as the pivot.

We will prove that for any given array input of n elements,
the expected time of this algorithm E(T(I)) is O(n log n). This is called a
Worst-case Expected-Time bound. Notice that this is bctter than an average-
case bound because we are no louger assuming any special properties of
the input. E.g. it could be that in our desisive application the input arrays
tend to be inostly sorted or in some special order, and this does not affect
our bound because it is a worst-case bound with respect to the input. It is
a little peculia......... making the algorithm probabilstic gives us more control
over the running time.

To prove these bounds, we first detour into the basies of probabilistic
analysis.

1.10.1 The Basics of Probabilistic Analysis

Consider rolling two dice and observing the resalts. There are 36
possible out comes it could be that the first die comes up 1 and the
second comes up 2, or that the first comes up 2 and the second
comes up 1, and so on. Each of these outcomes has probability
1/36 (assuning these are fair dice). Suppose we care about some
quantity such as ‘what is the probability the sum of the dice cquals7?’
We can compute that by adding up the probilities of all the outcomes
satisfying this condition (there are six of them, for a total probability
of 1/6).

In the language of probability theory, any probabilistic setting is
defined by sample space S and a probability measure p. The points
of the sample space are called elementary events. E.g., in our case,
the elementary events are the 36 possible outcomes for the pain of
dice. In a discrete probability distribution (as opposed to a one),
the probability is a function p(e) over elemenatary events e
such that p(e) > 0 for all eÎS, and .1)e(spe We will also use
Pr(e) interchangeably with p(e).

An event is a subsct of the sample space. For instance, one event
we might care about is the event that the first die comes up 1.
Another is the event that the two dice sum to 7. The probability of an
event is just the sum of the probabilites of the elementary events
contained inside it (again, this is just for discrete distributions2).

A random cariable is a function from elementary events to integers
or reals For instance, another way we can talk formally about these
dice is to define the random variable X1 representing the result of

1.19

NOTES

Design and Analysis of Algrorithms

the first die X2 representing the result of the second die, and X=X1+X2
representing the sum of the two. We could then ask what is the
probability that X=7’

One property of a random variable we often care about is its expectation.
For a discrete random variable X over sample space S, the expected
value of X is:

Se

)e(X)ePr(]X[E

In other words, the expectation of a random variable X is just its average
value over S, where cach elementary event e is weighted according to
its probability. For instance it we roll a single die and look at the outcome,
the expected value is 3.5, because all six elementary events have equal
probability. Often one groups together the elementary events according
to the different values of the random variable and rewrites the definition
like this:

e

.a)aXPr(]X[E

More genearlly for any partition of the probability space into disjoint
events A1,A2.....we can rewrite the expectation of random variable X as:

i Ae i

ii).A)X(E)APr()e(X)ePr(]X[E

where E(X)Ai) is the expected value of X given Ai, defined to be

 ,Ae)AiPr(
1

Pr(e)X(e). The formula (3.3) will be useful when we

analyze Quicksort. In particular, note that the running time of Randonized
Quicksort is a random variable, and our goal is to analyze its
expectation.

1.10.2 Linearity of Expectation:

An important fact about expected values is Linearity of Expectation: for
any two random variables X and Y, E(X+Y)=E(X)+E(Y). This fact is
incredibly important for analysis of algorithms because it allows us to
analyze a complicated random variable by writing it as a sum of simple
random variables and then separately analyzing these simple RVs.
Let’s first prove this fact and then see how it can be used.

Example 1: Card shuffing

1.20

Design and Analysis of Algrorithms

NOTESSuppose we unwrap a fresh deck of cards and shuffle it until the cards
are completely random. How many cards do we expect to be in the same
position as they were at the start? To solve this, let’s think formally about
what we are asking. We are looking for the expected value of a random
variable X denoting the number of cards that end in the same position as
they started. We can write X as a sum of random variables Xi one for
each card, where Xi=1 if the ith card ends in position/and Xi=0 otherwise.
These Xi are easy to analyze: Pr(Xi=1)= 1/n where n is the number of
cards. Pr(xi=1) is also E(Xi). Now we use linearity of expectation

1]X[E...]X[E]X...X[E]X[E n1n1

So, this is interesting: no matter how large a deck we are considering the
expected number of cards that end in the same position as they started
is1.

1.21

NOTES

Design and Analysis of Algrorithms

2.1 Introduction:
The strategy of divide and conquer which was successfully employed by

British rulers in India may also be applied to develop efficient algorithms for
complicated problems.

Divide-and-conquer is a top-down technique for designing algorithms
that consists of dividing the problem into smaller subproblems hoping that the
solutions of the subproblems are easier to find and then composing the partial
solutions into the solution of the original problem.

Little more formally, divide-and-conquer paradigm consists of following major
phases:

 Breaking the problem into several sub-problems that are similar to the
original problem but smaller in size,

 Solve the sub-problem recursively (successively and independently),
and then

 Combine these solutions to subproblems to create a solution to the
original problem.

It is similar to top down approach but, TD approach is a design methodology
(procedure) where as DAC is a plan or policy to solve the given problem. TD
approach deals with only dividing the program into modules where as DAC
divides the size of input..

In DAC approach the problem is divided into sublevels, where it is abstract.
This process continues until we reach concrete level, where we can conquer(get
solution). Then combine to get solution for the original problem. The problem
containing ‘n’ inputs is divided into into K distinct sets, yielding k sub problems.
These sub problems must be solved and sub solutions are combined to form
solution.

DIVIDE AND CONQUER

 Problem of size n

Problem of size n/2 Problem size of n/2

Solution to original
Problem

1.22

Design and Analysis of Algrorithms

NOTES n

n/2 n/2

Conquer for the solution
Control Abstraction:
Procedure DAC(p, q)

{

if RANGE(p, q) is small

Then return G(p, q)

Else

{

 m = DIVIDE(p, q)

return (COMBINE (DAC(p, m), DAC(m + 1, q)))

}

}

Step 1: If input size (range) (q – p + 1) is small, find solution G(p, q)

Step 2: If input size is large split range into two data sets (p, m) and (m +
1, q) and repeat.

Step 3: Repeat the process until sub problem is small enough to solve.

Time complexity of DAC:

T(n) =

 otherwisenfnT
smallisnng

)()2/(2
)(

where f(n) is time taken to divide and combine

g(n) is time taken for conquer

} Divide

Fig : 2.1

1.23

NOTES

Design and Analysis of Algrorithms

let n = 2m

)n(f
2
nT2)n(T

 m
m

2f
2

2T2

m

m

m

1mm

2
)2(f

2
)2(T2

m2
)2(T

 m

m

1m

1m

2
2.k

2
)2(T

1
2

)2(T
1m

1m

 11
2

)2(
2m

2m

m
2

)2(T
mm

mm

= T(1) + m

= m + 1

 T(2m) = 2m(m + 1)

 T(n) = n(logn + 1)

= O(nlogn)

Example (1):
 Find time complexity for DAC

a) If g(n) = O(1) and f(n) = O(n),

b) If g(n) = 0(1) and f(n) = O(1)

a) It is the same as above case

i.e., O(n) = k.2m = f(n)

T(n) = nlogn

b) T(n) = 2T(n/2) + f(n)

 = 2
2
T(n/2) + O(1)

 = 2(2T(n/4) + 1) + 1

 = 2T(n/4) + 2 + 1

 = 2kT(n/2k) + 2k – 1 + …………..+ 2 + 1

1.24

Design and Analysis of Algrorithms

NOTES let n=2
k

1k

0i

i2)1(nT

1
k

0i

i 22n

= n + (n – 1 – ½)

 = 2n – 3/2

T(n) = O(n)

2.2 Binary search using DAC:

Problem:

To search whether an element x is present in the given list. If x is preset, the
value j must be displayed such that aj = x

Algorithm:
Step 1: DAC suggests to break the input ‘n’ elements I = (a1, a2, ……..an)
into

I1 = (a1, a2, …………ak – 1), I2 = ak and

I3 = (ak + 1, ak + 2,……….an) into data sets.

Step 2: If x = ak no need of searching I1, I3,

Step 3: If x < ak only I1 is searched

Step 4: If x < ak only I3 is searched

Step 5: Repeat the steps 2 to 4.

Every time K is chosen such that ak is middle of ‘n’ elements k = n + 1/2.

Control abstraction:
Procedure BINSRECH (1, n)

{

mid = n+1/2

if A(mid) = x then

{

loc = mid;

return;

1.25

NOTES

Design and Analysis of Algrorithms

}

 Else

if A(mid) > x then

BINSRCH (1, mid – 1)

 Else

BINSRCH(mid + 1, n)

}

Time complexity:

The given data set is divided into two half and search is done in only one
half wither left half or right half depending on the value of x

T(n) =

1)()2/(
1)(

nngnT
isnng

T(n) = T(n/2) + g(n)

)n(g2
2

2/nT

= T(n/22) + 2g(n)

= T(n/2k) + k g(n)

 If n = 2k and g(n) =1

T(n)= T(1) + k

= k + 1 = O(log n)
 It is valid if n is 2k – 1 n 2k

Example (1):
Take instances 12 14 18 22 24 38

 1 2 3 4 5 6
The element to be found is the key for searching and let Key = 24

Initially mid = (1+6)/2 = 3
 low high mid

 1 6 3 Key > 18
4 6 5 Key = 24

Thus number of comparisons needed are two.
Theorem 1:
 Prove that E = I + 2n, for a binary search tree.

E = sum of all lengths of external nodes
I = sum of all lengths of internal nodes
n = internal nodes
for level 2 for n = 3

1

2

4 5

3

6 7

1.26

Design and Analysis of Algrorithms

NOTESE = 22.2 = 8 E = I + 2n
I = 21> ! + 2 8 = 2 + 6 = 8

By induction if we add these branches to form a tree it satisfied E = I + 2n

Theorem 2:
Prove average successful search time S is equal to average

unsuccessful search time U, if n
It Savg=Itn Uavg

1
n
1S

1n
EU avgavg

n
n21

1n
n21Uavg

avgE
n

n212
n
1

1n
n21U

1=U(n+1)–2

1
n

n2)1n(uS

It a S=U – 2 + 1 = U – 1 U

1
n

lengthspathenalintTotalSavg

1n
lengthspathexternalTotalUavg

2.3 Max-Min Problem using DAC :
Problem:
To find out maximum and minimum elements in a given list of elements.
Analysis:

According to divide and conquer algorithm the given instance is divided
into smaller instances.

Step 1:For example an instance I=(n,A(1),A(2)…..A(n)) is divided into I1=(n/
2,A(1),A(2),….A(n/2)) and I2=(n-n/2, A(n/2 +1),…..A(n)).

Step 2: If Max(I) and Min(I) are the maximum and minimum of the eements
in I the Max(I) = the larger of Max(I1) and Max(I2) and Min(I)=the smaller of
Min(I1) and Min(I2).

Step 3:The above procedure is repeated until I contains only one element
and then the answer is computed.

 Example:Let us consider an instance 22,13,-5,-8,15,60,17,31,47 from
which maximum and minimum elements to be found.

1.27

NOTES

Design and Analysis of Algrorithms

22, 13, -5, -8, 15, 60, 17, 31, 47

1 2 3 4 5 6 7 8 9

Algorithm 1:

Procedure:

Max – Min (A[1]………..A[n])

{ for i = 2 to n do

if A[i] > max

then min = A[i]

endif

if A[i] < min

then min = A[i]

endif

endfor

}

 1, 9, 60, -8
i, j, max,min

8, 9, 47, 31
i, j, max,min

1, 5, 22, -8
i, j, max,min

6, 9, 60, 17
i, j, max,min

6, 7, 60, 17
i, j, max,min

1, 3, 22, -8
i, j, max,min

4, 5, 15, -8
i, j, max,min

1, 2, 22, 13
i, j, max,min

3, 3, -5, -5
i, j, max,min

1.28

Design and Analysis of Algrorithms

NOTESThis algorithm requires (n–1) comparisons for finding largest number and (n–
1) comparisons for smallest number.

T(n) = 2(n – 1)

Algorithm 2:
If the above algorithm is modified as

If A[i] > max

then max = A[i]

Else

A[i] < min

then min = A[i]

Best case occurs when elements are in increasing order. Number of
comparisons for this case is (n – 1). Worst case occurs when elements are
in decreasing order. Number of comparisons for this case is 2(n-1).

Average number of comparisions= 1
2
n3

2
)1n(2)1n(

ALGORITHM BASED ON DAC

Step 1: I = (a[1], a[2]……………..a[n]) is divided into

I1 = (a[1], a[2]………………..a[n/2])

I2 = (a[n/2 + 1],……….a[n])

Step 2: Max(I) = large of (Max(I1); Max(I2))

Min(I) = Small of (Min(I1); Min(I2))

Procedure MAX – MIN(i, j, Max,Min)

{

If i = j then

Max = Min = A[I]

else

If j – i = 1

If A[i] < A[j]

max = A[j]

min = A[j]

1.29

NOTES

Design and Analysis of Algrorithms

else

max = A[j]

min = A[I]

else

{

2
jip

MAX – MIN ((i, p, hmax, hmin)

MAX – MIN ((p + 1, j, Lmax, Lmin)

Max = large (hmax, Lmax)

Min = small (hmin, Lmin)

}

}

Time complexity:

2n2)2/n(T2
2n1
1n0

)n(T

f(n) = 2 since there are two operations 1. Merging for largest 2. Merging for
smallest

Thus T(n) = 2T 2
2
n

2}2
2

2/nT2{2

= 22 T(n/22) + 22 + 2

= 2k – 1T(n/2k-1) + 2k-1 +………………+…………+ 2

let n = 2k

1`22
1k

)n(

1k

1.30

Design and Analysis of Algrorithms

NOTES
butT(2) = 1

1`22
1k

)n(

1k

= 2k –1 + 2k –1 –1

= 2k/2 + 2k – 2

= 3/2 2k – 2 = 3/2 n – 2

 T(n) = O(3/2 n)

Theorem 3:
Prove that T(n) = O(nlogm) if T(n) = m(Tn/2) + an2

Ans: T(n) = nT(n/2) + an2

 = m(mT(n/2/2) + an2)an2

 = m2T(n/2k) + (m +1)an2

k

)n(

1i2kk man)2/n(Tm

n = 2k

 llmmanm
k

1i

1i2k

m
1

1m
manm

11k2k

m
1

1m
1manm

k2k

mk(1+an2/m)

If m>>n

=mk = mlogn

but O(mlogn)=O(nlogn)

since(xlogy = ylogx)

2.4 Merge Sort:
Problem:

Sorting the given list of elements in ascending or decreasing order.

1.31

NOTES

Design and Analysis of Algrorithms

Analysis:

Step 1: Given a sequence of n elements, A(1),A(2),….A(n). Split them into two
sets A(1)…..A(n/2) and A(n/2+1)…..A(n).

Step 2: Splitting is carried over until each set contain only one element.

Step 3: Each set is individually sorted and merged to produce a single sorted
sequence.

Step 4:Step 3 is carried over until a single sequence of n elements is produiced

Example: Let us consider the instances 10, 285, 179, 652, 351, 423, 861, 254,
450, 520

310, 285, 179, 652, 351, 423, 861, 254, 450, 520

1 2 3 4 5 6 7 8 9 10

For first recursive call left half will be

sorted (310) and (285) will be merged,

then (285, 310) and 179 will be merged

and at last (179, 285, 310) and (652,

351) are merged to give 179, 285, 310,

351, 652 Similarly, for second recur

sive call right half will be sorted to give

254, 423, 520, 681

A partial view of merge sorting is

shown in fig

Finally merging of these two lists produces

179, 254, 285, 310, 351, 423, 450, 520, 652, 820

Algorithm:

Step 1: Given list of elements

I = {A(1), A(2) ……………A(n)} is divided into two sets

I1 = {A(1), A(2)…………….A(n/2)}

I2 = {A(n/2 + 1…………..A(n)}

9,10

1,2 3,3

 1,10

1,5 6,10

1,3 4,5 6,8 9,10

1,2 3,3

1,1 2,2

1,2 3,3

9.10

6,7 8,8 9,9 10,10

1,2 3,3 6,6 7,7

1.32

Design and Analysis of Algrorithms

NOTES
Step 2: Sort I1 and sort I2 separately

Step 3: Merge them

Step 4: Repeat the process

Procedure merge sort (p, q)

{

if p < q

mid = p + q/2:

merge sort (p, mid);

merge sort (mid + 1, q);

merge (p, mid, q);

endif

}

Procedure Merge (p, mid, q)

{

let h = p; I = p; j = mid + 1

while (h < mid and j < q)

do

{

if A(h) < A(j)

B(I) = A(h);

h = h + 1;

else

B(i) = A(j);

1.33

NOTES

Design and Analysis of Algrorithms

j = j + 1;

end if

 I = I + 1;

}

if h > mid

for k = j to q

B(i) = A(k);

I = I + 1;

repeat

else

 if j > q

for k = h to mid

B(i) = A(k);

I = I + 1;

repeat

endif

for k = p to q

A(k) = B(k);

Repeat

}

Time Complexity:

 1ncn

2
nT2

1na
)n(T

 = 2(2T(n/4) + 2cn

= 4T(n/4) + 2cn

= 2kT(n/2k) + kcn

 Let n = 2k

1.34

Design and Analysis of Algrorithms

NOTES= n.a + kcn

= na + cn logn

= O(n logn)

2.5 QUICK SORT :
Problem: Arranging all the elements in a list in either acending or descend-
ing order.

Analysis:

File A(1……n) was divided into subfiles, so that sorted subfiles does not
need merging. This can be achieved by rearranging the elements in A(1…n)
such that A(i)<=A(j) for all 1<I<m and all m+1<j<n for some m, 1<=m<=n.
Thus the lements in A(1….m) and A(m+1,…..n)may be independently sorted.

Step 1: Select first element as pivot in the given sequence A(1…n)

Step 2: Two variables are initialized

Lower = a + 1 upper = b

Lower scans from left to right

Upper scans from right to left

Step 3: If lower< right

Corresponding elements are swapped. When lower and upper
cross each other, process is stopped.

Step 4: Pivot is swapped with A(upper) which becomes new pivot and
repeat the process.

Algorithm:

Procedure Quick sort (a, b)

{

if a < b then

k = partition (a, b);

quick sort (a, k – 1);

quick sort (k + 1, b);

}

1.35

NOTES

Design and Analysis of Algrorithms

Procedure partition (m, p)

{

let x = A[m], I = m;

while (I < p)

{

do

I = I + 1;

Until (A[i] >=x)

Do

p=p-1;

until (A(x)<=x)

If I < p

Swap(A[I], A[P])

}

A[m] = A[p];

A[p] = x

}

Time complexity:
Let us assume file size n is 2m, m = log2n

Also assume position of pivot is exactly in the middle of array.

In first pass (n – 1) comparisons are made.

In second pass (n/2 – 1) comparisons are made.

In average case, the total number of comparisons are given by (n – 1) + 2*(n/2
– 1) + 4(n/4 – 1) + …n*(n/2m – 1) mn

1.36

Design and Analysis of Algrorithms

NOTES T(n) = O(n logn)

In the worst case, if the original file is already sorted, the file is split into sub
files of size into 0 and n = 1.

Total comparisons = (n – 1) + (n – 2) + (n – 3) ………..(n – n) nn= 0(n2)

2.6 Stressen’s Matrix Multiplication:
Let A and B be two n´n matrix whose i, jth element is formed by taking the
elements in the ith row of A and the jth column of B and multiplying them to
get

C(I, j) = A (i, k) B(k, j)

For all I and j between l to n. To compute C(i, j) using this formula we need n
multiplications. As the matrix has n2 elements, the time for the resulting
matrix multiplication algorithm has a time complexity of q(n3).

According to divided and conquer the given matrices A and B are divided
into four square sub matrices each of dimension n/2 and n/2. The product
AB can be computed using the product of 2´2 matrices.

2221

1211

2221

1211

2221

1211
CC
CC

BB
BB

AA
AA

C11 = A11B11 + A12B12

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

To find AB we need 8 multiplications and 4 additions, Since two matrices
can be added in time cn2 for a constant c.

Stressen’s equations are:

P = (A11 + A12) (B11 + B22) Q = (A21 + A22)B11

R = A11(B12 – B22) S = A22(B21 – B11)

T = (A11 + A12)B22 U = (A21 – A11) (B11 + B12)

V = (A12 – A22) (B21 + B22)

1.37

NOTES

Design and Analysis of Algrorithms

C11 = P + S – T + V C12 = R + T
C21 = Q + S C22 = P + R – Q + U

The recurrence relation is T(n) = 7T(n/2) + 18*n2

 2ncn)2/n(T8

2nb)n(T 2

Where b and c are constants
This recurrence can be solved in the same way as earlier recurrences

to obtain T(n) + O(n3). Hence no improvement over the conventional method
has been made. Since matrix multiplications are more expensive than matrix
addition O(n3) versus O(n2), we can attempt to reformulate the equations for Cij
so as to have fewer multiplications and possibly more additions. Volker Stressen
has discovered a way to compute the Cij’s of using only 7 multiplications and 18
additions or subtractions. This method involves first computing the seven n/2 ́
n/2 matrices P, Q, R, S, T, U and V. Then the Cij’s are computed using the
formulas, as can be seen, P, Q, R, S, T, U and V can be computed using 7
matrix multiplications and 10 matrix additions or subtractions. The Cij’s require
an additional 8 additions or subtractions.

P = (A11 + A22) (B11 + B22)

Q = (A21 + A22) B11

R = A11(B12 – B22)

S = A22(B21 – B11)

T = (A11 + A12)B22

U = (A21 – A11) (B11 + B22)

V = (A12 – A22) (B21 + B22)

C11 = P + S – T + V

C12 = R + T

C21 = Q + S

C22 = P + R – Q + U

The resulting recurrence relation for T(n) is

 2nan)2/n(T7

2nb)n(T 2

Where a and b are constants. Working with this formula, we get

T(n) = an2[1 + 7/4 + (7/4)2 + ……………+ (7/4)k – 1] + 7kT(1)
 cn2 (7/4)logn + 7logn, c a constant

=0(n
log7

) O(n
2.81

).

1.38

Design and Analysis of Algrorithms

NOTES

1.39

NOTES

Design and Analysis of Algrorithms

Design and Analysis of Algorithms 2.19

1.40

Design and Analysis of Algrorithms

NOTES

3.1 Introduciton:
Greedy method is a general design technique despite the fact that it is

applicable to optimization problems only. It suggests constructing a solution
through a sequence of steps each expanding a partially constructed solution
obtained so far until a complete solution is reached.

According to greedy method an algorithm works in stages. At each
stage a decision is made regarding whether an input is optimal or not.

To find an optimal solution two parameters must be considered. They are

1. Feasibility: Any subset that satisfies some specified constraints, then
it is said to be feasible.

2. Objective function: This feasible solution must either maximize or
minimize a given function to achieve an objective.

3. Irrevocable: Once made, it cannot be changed on subsequent stages.

Step 1: A decision is made regarding whether or not a particular input is in
an optimal solution. Select an input

Step 2: If inclusion of input results infeasible solution, then delete from
solution.

Step 3: Repeat until optimization is achieved.

Control abstract:

Procedure GREEDY(A[], n)

{

Solution = null;

for i = 1 to n do

{

x = select (A(i))

if FEASIBLE (solution, x)

Solution = UNION(solution, x)

}

GREEDY METHOD

1.41

NOTES

Design and Analysis of Algrorithms

return(solution);

}

3.2 Optimal storage On Tapes:
Problem 1:
To store n programs on a tape of length L such that mean retrieval time is
minimum.

Solution:

Let each program is of length Li, (1 £ i £ n), such that the length of
all tapes must be £ L. If the programs are in the order I = i1, i2…………….in,

then the time tj to retrieve a program is proportional to
 jkl

ikl

If all the programs are retrieved with equal probabilities, mean retrieval

time MRT=
 nkl

jt
n
1

To minimize MRT, we must store the programs such

that their lengths are in non decreasing order l1 < l2 < ln.

nji jki

ikl
n
1MRT

Example 1:
 There are 3 programs of length I = (5, 10, 3)

1, 2, 3 5 + 15 + 18 = 38

1, 3, 2 5 + 5 + 18 = 31

3, 1, 2 3 + 8 + 18 = 29 is the best case where retrieval time is minimized,
if the next program of least length is added.

Time complexity:

If programs are assumed to be in order, then there is only one loop in
algorithm, thus

Time complexity = O(n). If we consider sorting also, sorting requires O(nlogn)

T(n) = O(nlogn) + O(n)

 = O(nlogn)

Problem 2:

To store different programs of length l1, l2, l3……….ln with different
frequencies f1, f2…………fn on a single tape so that MRT is less.

1.42

Design and Analysis of Algrorithms

NOTES
Solution:

If frequencies are taken into account then MRT, tj =
ksji ik

ik

l
f

 The programs

must be arranged such that ratio of frequency and length must be in non
increasing order.

l1 l2 l3…………..ln
f1 ³ f2 ³ f3…………..fn

n

n

2

2

1

1

l
f...........l

f
l
f

3.3 Knapsack problem:
Given n objects and a knapsack, object i has a weight wi and knapsack

has capacity of M. If a fraction xi, 0 £ xj £ 1 of object i is placed into knapsack
then a profit pixi is earned.

Problem: To fill the knapsack so that total profit is maximum and satisfies
two conditions.

1) Objective imummaxxp
n

1i
ii

2) imummaxxw

n

1i
ii

Types of knapsack:
1. Normal knapsack: in normal knapsack, a fraction of the last object is

included to maximize the profit.

i.e.,o x 1 so that Mxw ii
2. O/I knapsack: In 0/1 knapsack, if the last object is able to insert

completely, then only it is selected otherwise it not selected.

i.e., x = 1/0 so that Mxw ii
Control Abstract for Normal Knapsack:
Let P(l : n), w(l : n) contains profits & weights of n objects are ordered so

that
1i

1i

1

i

w
P

w
P

 and (l : n) is the solution vector..

Normal knapsack (p, w, m, x, n)
{

x = 0; c = M;

for i = 1 to n do

1.43

NOTES

Design and Analysis of Algrorithms

if w[I] £ c then

{

x[i] = l;

c = c – w[i];

}

else

{

x[i] = c/w[i]

return;

}

}

Algorithm for O/l knapsack:

0/1 knapsack (p, w, m, x, n)

{

x = 0;c = M;

for I = 1 to n do

{

if w[i] > c then return

else

x[i] = 1

c = c – w[I]

}

}

1.44

Design and Analysis of Algrorithms

NOTESExample: Find an optimal solution to the knapsack instance n = 7 objects
and the capacity of knapsack m = 15. The profits and weights of the objects
are given below.

P1,…………P7 = 10 5 15 7 6 18 3

W1,…………P7 = 2 3 5 7 1 4 1

Solution:

P1/W1…………P7/W7 = 5 1.6 3 1 6 4.5 3

Arrange in non increasing order of Pi/W I

Order = 5 1 6 3 7 2 4

P/w = 6 3 4.5 3 3 1.6 1

C = 15 x = 0

1) x[1] = 1 x = 0 2) x[2] = 1 c = 15 – 1 = 14

3) x[3] = 1 c = 14 – 2 = 12 4) x[4] = 1 c = 12 – 4 = 8

5) x[5] = 1 c = 8 – 5 = 3 6) x[6] = 2/3 c = 3 – 1 = 2

7) x[7] = 0 c = 2 – 2/3.3 = 0

X = 1 1 1 1 1 2/3 0

Rearranging into original form

X = 1 2/3 1 0 1 1 1

Solution vector for O/I knapsack is X = 1010111

Total profit ii xp =10 + 15 + 0 + 6 + 18 + 3 = 52
Theorem:
If p1/w1>p2/w2>……..> pn/wn then greedy knapsack generate optimal
solution.

Proof: Let X = (x1 = (x1,…………..x2) be solution vector, let j be the least
index such that xj 1

Xi = 1 for 1 i j

Xi = 0 for j i n

Xi = 0 for 0 xj 1

Let y = (y1 ………..yn) be optimal solution

Mxw 11
let k be least index such that yk ¹ xk and yk < xk

1) if k < j then xk = 1, but yk < xk

1.45

NOTES

Design and Analysis of Algrorithms

2) if k = j then Mxw ii yI = xI for 1 < i < j, yk < xk

if k > Mxw ii which is not possible.
If we increase yk to xk and decrease as many of (yk + 1………..yn), this results a
new solution.

Z = (z1,…………zn) with z1 = xi,1 i k and wi(yi - zi) = wk(zk – yk)

 pIzI = 1 < i < n piyi + (zk – yk)wkpk/wk - k < i < n (yi – zi)wIpi/wi

= 1 < i < n piyi + [(zk – yk)wk - k < i < n (yi – zi)wi] pk/wk

= 1 < i < n piyi

3.4 Job Sequencing:
Let there are n jobs, for any job i, profit Pi is earned if it is completed in dead line
di.

Object: Obtain a feasible solution j = (j1, j2…..) so that the profits i.e.,
 ji

ip is

maximum.

The set of jobs J is such that each job completes within deadline.

Problem: There are n jobs, for any job I a profit PI is earned iff it is completed in
a dead line di.

Feasibility: Each job must be completed in the given dead line.

Objective: The sum of the profits of doing all jobs must be minimum, i.e. IP
maximum.

Solution: Try all possible permutations and check if jobs in J, can be processed
in any of these permutations without violating dead line. If J is a set of K jobs and
s = i1, i2,………ik a permutation of jobs in J such that di1 <= di2 <=………..dik.
Then J is a feasible solution.

Control abstract:
Procedure JS(D, J, N, K)

{

D(0) = J(0) = 0;

K = 1, J(1) = 1

For I = 2 to n do

{

1.46

Design and Analysis of Algrorithms

NOTESr = k

while D(J(r)) > max (D(i), r)

{

r = r – 1;

}

if D(i) > r then

for (l = k; i = r + 1, i = i – 1)

J(i + i) = J(i)

}

J(r + 1) = i;

k = k + 1;

}

}

}

Example: Given 5 jobs, such that they have the profits and should be
complete within dead lines as given below. Find and optimal sequence to
achieve maximum prodit.

P1………..P58 = 20 15 10 5 1
D1………d5 = 2 2 1 3 3

1.47

NOTES

Design and Analysis of Algrorithms

Optimal solution is 1, 2, 4

Try all possible permutations and if J can be produced in any of these
permutations without violating dead line.

If J is a set of k jobs and s = i1, i2,……….ik, such that di1 £ di2 £ ……..dik
then j is a feasible solution.

3.5 Optimal Merge Pattern:
Merging of an ‘n’ record file and ‘m’ record file requires n + m records to
move. At each step merge smallest size files. Two way merge pattern
is represented by a merge tree. Leaf nodes (squares) represent the
given files. File obtained by merging the files is a parent file(circles).
Number in each node is length of file or number of records.

Problem: To merge n sorted f i les, a t the cost o f minimum
comparisons.

Objective: To merge given field.

If di is the distance from root to external node for file f i, qi is the length of

f i, then total number of record moves in a tree = i

n

1i
iqd

 known as

weighted external path length

Example:

 Feasible solution Processing sequence Value

1) 1, 2 2, 1 or 1, 2 35

2) 1, 3 3, 1 30

3) 1, 4 1, 4 25

4) 1, 2, 3 - -

5) 1, 2, 4 1, 2, 4 40

102 3 5 7 9 3

5 7 9 135

2 3

13

5

32

39

23

10

5

2 3

5

16

7 9

16

97
13

5

1.48

Design and Analysis of Algrorithms

NOTESAlgorithm:
Procedure Tree(l, n)

For I = l to n

{

Call GETNODE(T)

L CHILD(T) = LEAST(L);

R CHILD(T) = LEAST (L);

WEIGHT(T)

WEIGTH(LCHILD(T)) + WEIGHT(RECHILD(T));

Call INSERT(L, T);

}

return(LEAST(L))

}
ANALYSIS:
Main loop is executing (n – 1) times. If L is in non decreasing order

LEAST(L) requires only O(l) and INSERT(L, T) can be done in O(n) times.

Total time taken = O(n2)

3.6 Minimum Spanning Tree:
Let G = (V, E) is an undirected connected graph. A sub graph T = (V, E) of
G is a spanning tree iff T is a tree.

Any connected graph with n vertices must have at least n – 1 edges and
all connected graphs with n – 1 edge are trees. Each edge in the graph
is associated with a weight. Such a weighted graph is used for
construction of a set of communication links at a minimum cost.
Removal of any one of the links in the graph if it has cycles will result a
spanning tree with minimum cost. The cost of minimum spanning tree
is sum of costs of edges in that tree.

A greedy method is to obtain a minimum cost spanning tree. The next
edge to include is chosen according to optimization criteria in the sum

of costs of edges so far included.

1) If A is the set of edges in a spanning tree.

1.49

NOTES

Design and Analysis of Algrorithms

2) The next edge (u, v) to be included in A is a minimum cost edge and A U(u,
v) is also a tree.

PRIMS algorithm:
The edge (i, j) to be is such that i is a vertex already included in the tree, j is a
vertex not included and cost of (i, j) must be minimum among all edges (k, l)
such that k is in the tree and l is not in the tree.

Example.

Algorithm:
Procedure PRIM(E, COST, n, mincost, int NEAR(n)< [n] [n], i, j, k, l)

{ (k, 1) = edge with mini cost

min cost = cost(k, 1)

10
1

30

4

20

40
45

5

3

2

35

35

Edge Cost ST

(1, 2) 10

(1, 4) 30

(4, 5) 20

(5, 3) 35

1 2

1 2

4

10

30

1 2

4

10

30
5

20

1 2

4

10

30

20
5 3

35

1 2

21

4

1

4 5

2

10

30

30

1 10
2

3

4

5 3520

30

20

10

1.50

Design and Analysis of Algrorithms

NOTES
(T(1, 1), T(1, 2)) = (k, 1)

for i = 1 to n

{ if COST (i, l) < cost (i, k)

then NEAR(i) = 1

else

NEAR(i) = k

}

}

NEAR(k) = NEAR(l) = 0

For j = 2 to n – 1

{

If Near(j) = 0 find cost(j, NEAR(j)) which is mini

T(i, l), T(i, 2) = (j, NEAR(j))

NEAR(j) = 0

For k = 1 to n

{ If NEAR(k) ! = 0 and cost (k, NEAR(k)) >COST(k, j)

Then NEAR(k) = j;

}

}

Time complexity:

The total time required for the algorithm is o(n2).

Krushkal’s algorithm:

If E is the set of all edges of G, determine an edge with minimum.

1.51

NOTES

Design and Analysis of Algrorithms

Cost(v, w) and delete from E. If the edge(v, w) does not create any cycle in the
tree T, add(v, w) to T. Resent the process until all edges are covered.

Algorithm:

Procedure KRUSKAL(E, COST, n, T)

{

construct a heap with edge costs

I = 0

Min cost = 0

Parent (l, n) = -1

While I < n – 1 and heap not empty

Delete minimum cost edge (u, v)

From heap;

ADJUST heap;

J = FIND(u)

K = FIND(v)

If j ! = k

{

I = I + 1;

T(I, 1) = u;

T(1, 2) = v;

Mincost = mincost + cost(u, v)

UNION (j, k)

}

}

}

1.52

Design and Analysis of Algrorithms

NOTESProcedure FIND(i)

{

J =I

While PARENT(j) > 0

{

J = PARENT(j)

}

K = I;

While K! = j

{

T = PARENT(k);

PARENT(k) = j;

K = T

}

Return(j)

}

Procedure UNION(i, j)

{

1.53

NOTES

Design and Analysis of Algrorithms

x = PARENT(i) + PARENT(j)

If PARENT(i) > PARENT(j)

{

PARENT(i) = j

PARENT(j) = x

Else

PARENT(j) = i

PARENT(i) = x

}

}

Time Complexity:

To develop a heap the time taken is O(n). To adjust the heap it takes a time
complexity of O(logn). The set of edges to be included in minimum cost
spanning tree is n, hence it is O(n).

Total time complexity is in the order of O(nlogn)

Krushkals Alg

Example:

1 2

4 5

3

6

10

30 45 40
50

35
55 15 20

25

1.54

Design and Analysis of Algrorithms

NOTES

 3, 5 35

3.7 Single Source Shortest Paths:
Graphs may be used to represent highway structure in which vertices
represent cities and edges represent sections of highway. The edges are
assigned with weight which might be distance or time.

Now the problem of single source shortest path is to find shortest path
between given source and distination. In the problem a directed graph
G = (V, E), a weighting function C(e) for the edges of G and source vertex
V0 are given. So we must find the shortest paths from v0 to all remaining
vertices of G.

Greedy algorithm for single source shortest path

Step 1 : shortest paths are build one by one so that the problem becomes
multisage solution problem

Step 2 : For optimization, at every stage sum of the lengths all paths so
far generated is minimum.

The greedy way to generate shortest paths from v0 to remaining vertices
woulbe be to generate these paths in non-decreasing order of path length.

The algorithm for the single source shortest paths using greedy method
leads to a simple algorithm called Dijkstras algorithm.

Procedure SHORTEST – PATHS (v, COST, DIST, n)

1 2

SF

1 2

1 2

4 6

3

6

3

Edge Cost

1, 2 10

3, 4 15

4, 6 20

2, 6 25

1, 4 30

1 2

1 2

6
4 3 3

6

34

1.55

NOTES

Design and Analysis of Algrorithms

{

for i = 1 to n

{

S[i] = 0

DIST [i] = COST[v] [i]

{

S[v] = 1

DIST[v] = 0

For num = 2 to n – 1

{

Choose a vertex u such that

DIST(u) = min{DIST(w)}.

S[w] = 0

S[u] = 1

For all w with s[w] = 0

S[u] = 1

For all w with S[w] = 0

{

DIST(w) = min(DIST[w], DIST[u] + COST[u] [w])

}

}

}

Example: Let us consider 8 vertex digraph shown below
For this graph the cost adjacency matrix is given below

1.56

Design and Analysis of Algrorithms

NOTES
2 4 3 5

9 6

7

8 1700

1000 300 1000

1400

1000

1500 1200
250

900

800

87654321

01700
10000
140090001000

25001500
01200

08001000
0300

0

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

1.57

NOTES

Design and Analysis of Algrorithms

S
Vertex

Selected
1 2 3 4 5 6 7 8

5 6 1250 0 250

5, 6 7 1250 0 250 1150 1650

5, 6, 7 4 1250 0 250 1150 1650

5, 6, 7,4 8 2450 1250 0 250 1150 1650

5, 6, 7, 4, 8 3 3350 2450 1250 0 250 1150 1650

5, 6, 7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650

Analysis of SHORTEST PATH Algorithm

The edges on the shortest paths from a vertex v to all remaining vertices in a
graph G form a spanning tree. This spanning tree is called shortest path span-
ning tree

Time Complexity:
The algorithm must examine each edge in the graph, since any of the edges
could be in a shortest path. Therefore the minimum possible time is O(n), if n
edges are there. The cost of adjacent matrix takes a time of O(n2) to determine
which edges are in G. So the algorithm takes O(n2).

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 67

2.67

NOTES

Design and Analysis of Algrorithms

4.1 Introduction :
Dynamic programming is a stage-wise search method suitable for optimization
problems whose solutions may be viewed as the result of a sequence of
decisions. The most attractive property of this strategy is that during the search
for a solution it avoids full enumeration by pruning early partial decision solutions
that cannot possibly lead to optimal solution. In many practical situations, this
strategy hits the optimal solution in a polynomial number of decision steps.
However, in the worst case, such a strategy may end up performing full
enumeration. It was first introduced by Richard Bellman in 1957.

Dynamic programming takes advantage of the duplication and arrange to solve
each subproblem only once, saving the solution (in table or something) for
later use. The underlying idea of dynamic programming is: avoid calculating
the same stuff twice, usually by keeping a table of known results of subproblems.
Unlike divide-and-conquer, which solves the subproblems top-down, a dynamic
programming is a bottom-up technique.

Bottom-up means

i. Start with the smallest subproblems.

ii. Combining theirs solutions obtain the
solutions to subproblems of increasing
size.

iii. Until we arrive at the solution of the
original problem.

4.2 The Principle of Optimality
The dynamic programming relies on a principle of optimality. This principle
states that in an optimal sequence of decisions or choices, each subsequence
must also be optimal. For example, in matrix chain multiplication problem, not
only the value we are interested in is optimal but all the other entries in the table
are also represent optimal.
The principle can be related as follows: the optimal solution to a problem is a
combination of optimal solutions to some of its subproblems.
The difficulty in turning the principle of optimally into an algorithm is that it is not
usually obvious which subproblems are relevant to the problem under
consideration.

The major difference between greedy method and dynamic programming is
that in the greedy method only one decision sequence is ever generated. Where

DYNAMIC PROGRAMMING

 UNIT - II

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 68

2.68

Design and Analysis of Algrorithms

NOTESas in dynamic programming many decision sequences may be generated.
Another important feature of dynamic programming is that optimal solutions
to sub problems are retained so as to avoid recomputing their values.

The main advantage of this method was that it replaced an
exponential time computation by a polynomial time computation. It is well
suited to problems where a recursive algorithm would solve many of the
sub problems repeatedly.

4.3 Developing a Dynamic Programming Algorithm
1. It is use full to tackle the problem by top down approach as if we

were going to develop a recursive algorithm. Large problem is
reduced to small problems’

2. A dictionary is defined for saving results to avoid repeated
computation.

3. Based on number of sub problems and the number of edges in the
sub problem graph , the complexity of the dynamic programming
procedure can be analyzed by its relationship to depth first search
on the sub problem graph.

4. Decide an appropriate data structure for the dictionary.
5. Find a simple order in which the dictionary entries can be computed.
6. Determine how to get the solution to the problem from the data in

the dictionary.
7. Since the dictionary has data for all sub problems in the sub problem

graph , usually only a small subset of the data is related to the final
optimum solution.

Dynamic program model may be written as

Fn (R) = max {Pn(R) + Fn-1 (R – Rn}

Where n= 2,3,4….

F0 (R) = 0 , F1 (R) = P1 (R)

4.4 Multistage Graph Problem:
A multistage graph G = (V, E) is a directed graph in which the vertices

are partitioned into two or more disjoint sets as shown in figure.

The multistage graph problem is to find the minimum cost path
from a source to target. Let c(i, j) be the cost of edge <i, j>. The cost of a
path from source to target is the sum of the costs of edges on the path.

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 69

2.69

NOTES

Design and Analysis of Algrorithms

FORWARD APPROACH:
Dynamic programming formulation for a K-stage graph problem is

obtained by first noticing k that every source to target path is the result of a
sequence of k-2 decisions. The ith decision involves determining which vertex
in level i+1 , 1<=i<=k-2 is to be on the path.

 1

Let p(i,j) be a minimum cost path form vertex j in stage i to vertex target. Let
cost(I,j) be the cost of its path, then Cost(i, j) = min{c(j, l) + cost(i + 1, l)} where
<j,l> is an intermediate edge, where c(j, l) is cost of edge with vertices (j, l) and
COST(i + 1, l) is the cost to reach a node l in level i + 1, the

1) COST(1, 1) = min {9 + COST(2, 2), 7 + COST(2, 3), 3 + COST(2, 4), 2 +
COST(2, 5)} = 16

2) COST(2, 2) = min {4 + COST(3, 6), 2 + COST(3, 7), 1 + COST
(3, 8)} = 7

COST (2, 3) = min {2 + COST(3, 6), 2 + COST(3, 7)} = 12

COST (2, 4) = 11 + COST(3, 8)} = 18

COST(2, 5) = min {11 + COST (3, 7), 8 + COST(3, 8)} = 16

3) COST (3, 6) = min{6 + COST (4, 9), 5 + COST (4, 10)} = 7

COST (3, 7) = min{4 + COST (4, 9), 3 + COST (4, 10)} = 5

COST (3, 8) = min{5 + COST (4, 10), 6 + COST (4, 11)} = 7

4) COST (4, 9) = 4 + COST(5, 12) = 4

COST (4, 10) = 2 + COST(5, 12) = 2

COST (3, 8) = 5 + COST(5, 12) = 5

Minimum of 4th stage , Min(4) = cost (4, 10) = 2

Minimum of 3rd stage, Min(3) = cost (3, 7) = 5

2
6

9

3
7

10

4
8

11

L2
L3

L4

5

L1 L5

12 1 7

9

2
3

4

2
2

7

11

11
8

6
5

3

4
5
6

4

2

5

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 70

2.70

Design and Analysis of Algrorithms

NOTESMinimum of 2nd stage, Min(2) = cost (2, 2) = 7

Minimum of 1st stage, Min(1) = cost (1, 1) = 16

Therefore minimum path cost = 16 and the path is 1 ® 2 ® 7 ® 10 ® 12

Procedure FGRAPH(E, k, n, p)

{

float COST(n), integer D(n – 1), p(k), r, j, k, n;

Cost(n) = 0.0;

For j = n – 1 down to 1

{

let r be a vertex and E be set of edges

if < j, r > Î E and c(j, r) + COST(r) is minimum

COST(j) = c(j, r) + COST(r)

D(j) = r
}

P(1) = 1; p(k) = n

For j = to 2 k – 1

{

P(j) = D(p(j – 1))

}

}

Time Complexity :
The complexity of above algorithm is O(n). If the graph G has E edges and
V vertices, then the time taken for the algorithm is q(V + E).

T(n) = O(n)

BACKWARD APPROACH :
The multistage graph problem can also be solved using the backward
approach. Let Bp(i, j) be a minimum cost path from vertex source to a
vertex j in stage i. Let Bcost(i, j) be the cost of Bp(i, j) from the backward
approach we obtain

Bcost(i, j) = mini Îvi – 1 {Bcost(i –1, i + c(l, j)}

< i, j > Î E

Procedure BGRAPH(E, k, n, p)

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 71

2.71

NOTES

Design and Analysis of Algrorithms

{

BCOST(1) = 0

For j = 2 to n

{

Let r be a vertex and E set of edges

If < r, j > Î and BCOST(r) + c[r, j] is minimum.

BCOST(j) = BCOST(r) + c[r, j]

D(j) = r

}

P(1) = 1; P(k) = n

For j = k – 1 to 2

{

P(j) = D(p(j + 1)

}

}

Backward approach
For the previous example shown in forward approach,

1. BCOST(5, 12) = min {BCOST(4, 9) + 4, BACOST (4, 10) + 2, BACOST (4,
11) + 5}

2. BCOST(4, 9) = min {BCOST(3, 6) + 6, BACOST (3, 7) + 4}

BCOST(4, 10) = min {BCOST(3, 7) + 3, BACOST(3, 8) + 5, BACOST (3, 6)
+ 5}

BCOST(4, 11) = min {BCOST(3, 8) + 6}

3. BCOST(3, 6) = min {BCOST (2, 2) + 4, BACOST(2, 3) + 2}, BCOST (3, 7)}

 = min {BCOST (2, 2) + 2, BACOST (2, 3) + 7, BACOST (2, 5)
+ 11}

BCOST(3, 8) = min {BCOST (2, 2) + 1, BACOST(2, 4) + 11, BACOST (2,
5) + 8}

4. BCOST(2, 2) = min {BCOST (1, 1) + 9} = 9

Since BCOST(1, 1) = 0

 BCOST(2, 3) = 7

 BCOST(2, 4) = 3

 BCOST(2, 5) = 2

Substituting these values in the above equations and going back

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 72

2.72

Design and Analysis of Algrorithms

NOTES BCOST(3, 8) = 10

 BCOST(3, 7) = 11

 BCOST(3, 6) = 9

 BCOST(4, 9) = 15

 BCOST(4, 10) = 14

 BCOST(4, 11) = 16

 BCOST(5, 12) = 16

This algorithm also has same time complexity as that of forward approach

4.5 Reliability Design:
Reliability design problem is concerned with the design of a system

using several devices connected in series with high reliability. Let ri be the
reliability of device Di. Then the reliability of entire system is pri. Even the
reliability of individual device is good the reliability of entire system may not
be good.

Example: If n = 10, ri = 0.99

 ri = 0.904

Hence it is desirable to use multiple
copies of devices in parallel in each
stage to improve the reliability.

If stage i contains mi copies of device Di

then the probability that all mi have a malfunction is (1 – ri)mi

Hence reliability of stage i is 1 – (1 – ri)mi

Device duplication is to maximize reliability. This maximization is carried
under a cost constraint.

If ci is the cost of device i and C is maximum allowable cost., then

Maximize i(mi) subjected to cimi<C

Where I is reliability 1 i nof stage i. Once a value mn has choosen the
remaining decisions must be such that to use remaining funds in C – Cnmn
in an optimal way. We can generalize that for any Fi(x) = max (1 mi ui)
{ I(mi)fi – 1(c – cimi)}

 D1 D2 D3

 D1
D1
D1

D2
D2

D3

Dn
Dn
Dn

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 73

2.73

NOTES

Design and Analysis of Algrorithms

Example:
Design a 3 stage system with devices types D1, D2, D3. The costs and reliabilities
of the devices are 30, 15, 20 and 0.9, 0.8, 0.5 respectively. Maximum number
of devices available are Di = 2, D2 = 3 and D3 = 3. The cost of system must not
exceed

Solution:
If stage i has mi devices of type i in parallel then fI (mi) = 1 – (1 – ri)mi

Let Sj
i represent all combinations obtainable from Si – 1 by choosing mi = j

2
1S = {0.9, 30}
2
1S = {(0.9, 30); (0.99, 0.60)}
2
1S = {(0.72, 45); (0.792, 75)}
2
1S = {(0.864, 60); (0.9504, 90)}

The triple (0.9504, 90) is eliminated since we cannot insert D3

2
3S = {(0.8928, 75)}

\S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}
3
1S = {(0.36, 65), (0.432, 80), (0.4464, 95)}
3
2S = {(0.54, 85), (0.648, 100)}
3
3S = {(0.63, 105)}

\S3 = {(0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and cost of 100

\m1 = 1, m2 = 2 and m3 = 2

4.6 All pairs shortest path:
Let G = (V, E) be a directed graph with n vertices. Let c be a cost adjacency
matrix for G such that c(i, i) = 0 and c(i, j), is the length of edge (i, j) if < i, j > Î E
and C(i, j) = a if < i, j > Ï E. The all pairs shortest path problem is to determine a
matrix a such that A(i, j) is the length of shortest path form i to j.

The solution for the problem can be obtained from

A (i, j) = min{ min(1<=k<=n){Ak-1(i, k) + Ak-1(k, j)}+cost(i,j)}

Where Ak(i, j) is length of shortest path from i to j through no vertex has index
greater than k.

Algorithm:
For I ¬ 1 to n

{

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 74

2.74

Design and Analysis of Algrorithms

NOTES

 1 2 3

1 - 4 11

2 6 - 2

3 3 1

for j ¬ 1 to n

{

A(i, j) ¬ cost(i, j)

}

}

For k ¬ 1 to n

{

For I ¬ 1 to n

{

For J ¬ 1 to n

A(i, j) = min{A(i, j), (A(i, k) +
A(k, j)}

}

}

Example: Let us consider the graph whose cost matrix is shown.

A(0)

A(1)

(3, 2) = (3, 1) + (1, 2)

 1 2 3

1 - 4 11

2 6 - 2

3 3 7 -

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 75

2.75

NOTES

Design and Analysis of Algrorithms

A(2)

(1, 1) = (2, 3) + (3, 1)

The time complexity of APSP is q(n3).

4.7 Traveling sales person problem:
Let G = (v, E) be a directed graph with edge costs cij.

Cij > 0 for all I and j if (I, j) Î E cij = µ if (I, j) Ï E. A tour of G is a directed cycle
that includes every vertex in V. The cost of tour is the sum of the cose of
edges on the tour and must be minimum.

Let us assume the tour starts from vertex 1 and ends at vertex 1. Every tour
consists of an edge (1, k) for some k Î v – {1}. The path from k to 1 goes
through each vertex v – {1, k}.

Let g(i, s) be the length of shortest path starting from i going through verties in
s and terminating at vertex 1.

g(1, v – {1}) = min{c1k + g(k, v – [1, k})

Where v is total number of vertices.

In general.

g(i, s) = min(cij + g(j, s – {j})

where S = v – {I}

Example: Let us consider a graph with five nodes. Cost matrix of the graph is
given below.

Solution:
When |s| = f

g(2,) = c21 = 5

 1 2 3

1 - 4 6

2 6 - 2

3 3 7 0

 1 2 3 4 5

1 - 10 15 20 15

2 5 - 9 10 15

3 6 13 - 12 7

4 8 8 9 - 4

5 2 5 7 10 -

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 76

2.76

Design and Analysis of Algrorithms

NOTESg(3,) = c31 = 6

g(4,) = c41 = 8

g(5,) = c51 = 2

When |s| = I

g(2, {3}) = c23 + g(3,) = 9 + 6 = 15

g(2, {4}) = c24 + g(4,) = 10 + 8 = 18

g(2, {5}) = c25 + g(5,) = 15 + 2 = 17
g(3, {2}) = 18, g(4{2}) = 13
g(3, {4}) = 20, g(4{3}) = 15
g(3, {5}) = 9, g(4{5}) = 6

g(5, {2}) = 10 = c52 + g(2,) = 5 + 5

g(5, {3}) = 13 = c53 + g(3,) = 7 + 6

g(5, {4}) = 18 = c54 + g(4,) = 10 + 8
When |s| = 2

g(2, {3, 4}) = min(c23 + g(3, {4}) = 29 or c24 + g(4, {3}) = 25
 = 25

g(2, {3, 5}) = min(c23 + g(3, {5}) = 18 or c25 + g(5, {3}) = 28

 = 18

g(2, {4, 5}) = 16 g(3, {2, 5}) = 17

g(3, {2, 4}) = 25 g(3, {4, 5}) = 23

g(5, {2, 4}) = 23 g(4, {2, 3}) = 23

g(4, {3, 5}) = 17 g(5, {3, 4}) = 25

g(4, {2, 5}) = 14 g(5, {2, 3}) = 20

When |s| = 3

g(2, {3, 4, 5}) = min 9 + 23, 10 + 17, 15 + 25 = 27

g(3, {2, 4, 5}) = min 13 + 16, 12 + 14, 7 + 23 = 26

g(5, {2, 3, 4}) = min 5 + 25, 7 + 25, 10 + 23 = 30

g(4, {2, 3, 5}) = min 8 + 18, 9 + 17, 4 + 20 = 24

When |s| = 4

g(1, {2, 3, 4, 5}) = min {10 + 27, 15 + 26, 20 + 24, 15 + 30} = 37

minimum cost path

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 77

2.77

NOTES

Design and Analysis of Algrorithms

vertices 1 ® 2 ® 4 ® 5 ® 3 ® 1

cost 10 10 4 7 6

Time complexity
N be the number of g(i, s)’s to be computed. For each of S there are

(n – 1) choices for i.

Number of sets s if size k (excluding 1 and i) =

k

zn

2n2n

ok
2)1n(2n

k)1n(N

Therefore time complexity of the algorithm is (n22n) and space complexity
O(n2n)

4.8 Optimal Binary search Tree:
A BST is a binary tree, either empty or each node is an identifier and

i) All identifiers in LST are less than identifier at root node.

ii) All identifiers in RST are greater than identifier at root node.

To find whether an identifier X is present are not.

1) X is compared with root

2) If X is less than identifier at root, then search continues in left sub tree.

3) If X is greater than id at root, then search continues in right sub tree.

Procedure SEARCH(T, X, I)

{

i ¬ T

While i ! = 0

{

case

: X < IDENT(i) : ¬ LCHILD(i)

: X < IDENT(i) : return

: X < IDENT(i) : i ¬ RCHILD(i)

endcase

}

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 78

2.78

Design and Analysis of Algrorithms

NOTES}

Let us assume that given set of identifiers is {a1, a2,………..an} and let P(i)
be the probability of successful search of an identifier ai, and let Q(i) be the
probability unsuccessful search of ai.

Therefore p(i) + Q(i) = 1

To obtain a cost function for binary tree, it is useful to add a fictions node in
place of every empty node.

If n identifiers are there, there will be n internal nodes and n + 1 external
nodes. Every external node represents an unsuccessful search.

The identifiers not in binary tree are partitioned into n + 1 equivalence classes
Ei.

E0 contains identifier X < a1

E1 contains identifier a1 < X < a2

E1 contains identifier a1 < X < ai + 1

If a failure node for Ei is at level 1 then only 1 – 1 iterations are made.

Cost of failure node is

Q(i)*(level(Ei) – I)

Cost of binary search tree = p(i)*level(ai) + Q(i)*(level(Ei – l)

Where P(i) is probability of successful search

Q(i) is probability of unsuccessful search

Example: Find OBST for a set (a1, a2, a3) = (do, if, stop) if
p(1) = 0.5, P(2) = 0.1, P(3) = 0.05 and q(0) = 0.15,
q(1) = 0.1, q(2) = 0.05, q(3) = 0.05

The possible binary search trees are

Cost (tree a) :
Cost: = 0.05 + 0.1 ́ 2 +0.5 ́ 3 +0.05 ́
 2 + 0.1 ´ 3 +0.15 ´ 3

 = 0.05 + 0.2 +1.5 + 0.05 + 0.1 +
 0 .3 + 0.45

 = 1.75 +0.9 = 2.65

Cost(tree b) :
Cost: = 0.1 + 0.05 ´ 2 +0.5 ´ 2

 +(0.15 + 0.1 + 0.05 + 0.05) 2

 = 1.2 + 0.7 = 1.9

Stop
P(3)

E
3P(2)If

a
2

E
2doa

1

E
0

E
1

P(1)

a
2If

doP(1)

P(2)

stop
a

3

P(3)

E
3

E
2

E
1E

0

a
3

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 79

2.79

NOTES

Design and Analysis of Algrorithms

Cost (tree c) :
Cost : = 0.5 + 0.1 ´ 2 +0.05 ´ 3

 +0.15 + 0.1 ´ 2 +0.05 ´ 3 +

 0.05 ´ 3

 = 0.5 + 0.2 + 0.15 + 0.15 +
0.2 + 0.15 + 0.15 = 1.5

Cost(tree d) :
Cost : = 0.05 + 0.5 ´ 2 +0.1 ´ 3 +0.05 + 0.15 ´

2 +0.1 ´ 3 + 0.05 ´ 3 = 1.35 + 0.8 = 2.15

Cost(tree e):
Cost: = 0.5 + 0.05 ´ 2 +0.15 + 0.05 ´ 2 + 0.1 ´ 3

 + 0.05 ´ 3 + 0.9

= 0.9 + 0.25 + 0.45 = 1.6

Hence OBST is the tree in figure C.

Analysis :
If ak is the root node, all the nodes a1, a3………….ak-1 and E0, E1,………. Ek-1
will lie in left sub tree L and remaining in right sub tree R.

 Cost(L) = 1bi£k p(i)* level(ai) + obi£k Q(i)* (level(Ei)–1)

Cost(R) = k£i£n p(i)* level(ai) + k£i£n Q(i)* (level(Ei) – 1)

Cost of tree = p(k) + cost(L) + cos(R) + w(0, k – 1) + w(k, n)

Where w(i, j) = Q(i) +

lil

p(l))(Q(l)
i

Where w(0, k – 1) = Q(0) +

1l

P(l)Q(l)

If T is optimal then cost must be minimum. K must be chosen such that P(k) +
c(0, k – 1) + c(k, n) + w(0, k – 1) + w(k, n) is minimum

Hence for c(0, n) = min1£k £j {c(0, k – 1) + c(k, n) + p(k) + w(0, k – 1) +
w(k, n)}

In general

C(i, j) = min1 k j {c(i, k – 1) + c(k, j) + p(k) + w(i, k – 1) + w(k, j)}

= w(i, j) + min1 k j {c(i, k – 1) + c(k, j)}

stop a
3

a
1 do

E
3

E
0

If a
2

E
1

E
2

do

P(1)

a
1

If
a

2

Stop
E

1

E
0

E
3

a
3

P(2)

E
2

do
E

3

stop

If

E
1

E
2

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 80

2.80

Design and Analysis of Algrorithms

NOTESExample: Let there are 4 identifiers, so n = 4 and their probabilities are

P(1 : 4) = (3, 3, 1, 1)

Q(0 : 4) = (2, 3, 1, 1, 1)

Initially w(I , I) = Q(i), c(I , I) = 0, R(I , I) = 0

We have W(I , j) = P(j) + Q(j) + w(I , j – 1)

\W(0, 1) = P(1) + Q(1) + w(0, 0) = 8

C(0, 1) = W(0, 1) + min{c(0, 0) + c(1, 1)} = 8

R(0, 1) = 1

W(1, 2) = P(2) + Q(2) + w(1, 1) = 7

C(1, 2) = W(1, 2) + min{c(1, 1) + c(2, 2)} = 7

R (0, 2) = 2

W(i, j) = P(j) + Q(j) + w(Ij – 1)

W(2, 3) = P(3) + Q(3) + w(2, 2) = 3

C(2, 3) = W(2, 3) + min{c(2, 2) + c(3, 3)} = 3

R(2, 3) = 3

W(I, j) = P(j) + Q(j) + w(Ij – 1)

W(3, 4) = P(4) + Q(4) + w(3, 3) = 3

C(3, 4) = W(3, 4) + min{c(3, 3) + c(4, 4)} = 3

R(3, 4) = 4

W(0, 2) = P(2) + Q(2) + W(0, 1) = 3 + 13 + 8 = 12

C(0, 2) = w(0, 2) + min{C(0, 1) + C(2, 2) or c(0, 0) + c(1, 2)

= 14 + MIN{8 + 0) or {0 + 7} = 12 + 7 = 19

w(2, 4) = w(2, 4) + min{c(2, 3) + c(3, 4) = 6 or c(2, 2) + (3, 4) = 3} = 8

w(1, 3) = P(3) + P(3) + W(1, 2) = 2 + 7 = 9

C(1, 3) = W(1, 3) + min{C(1, 1) + C(2, 3) = 3 or C(1, 2) + C(3, 3) = 7} = 12

R(1, 3) = 2

W(0, 3) = P(3) + Q(3) + w(0, 2) = 14

C(0, 3) = w(0, 3) + min{c(0, 1) + c(2, 3) C(0, 2) + c(3, 3)}

= 14 + min

 11

19 = 25

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 81

2.81

NOTES

Design and Analysis of Algrorithms

First solve all c(i, j) such that j – I = 1 next compute c(I, j) such that j – 1 = 2
and so on during the computation record R(I, j) root of tree Tij. By observation
we have w(I, j) = P(j) + Q(j) + W(i, j – 1)

C(0,4) = 32 is minimum

The tree with root as 2 node is OBST.

Algorithm:
Procedure OBST(P, Q, n)

{Real P(1 : n), Q(O : n), C(O : n, O : n),

W(O : n, O : n)

Int R (O : n, O : n)

For I = 0 to n – 1

{

{w(i, i), R(i, i), c(i, i) ¬ (Q(i), 0, 0)

(W(i, i + 1), R(i, i + 1), c(i, i +1) ¬ (Q(i) + Q(i +1) + P(i +1), i + 1, Q(i) + Q(i
+1) + P(i +1)

}

(w(n, n), R(n, n), C(n, n) ¬ Q(n), 0, 0)

For m : 2 to n

{

For I : 0 to n – m

{

j + i + m

w(i, j) = W(i, j – 1) + P(j) + Q(i)

k = l

 0 1 2 3 4

0 2, 0, 0 3, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0

j-i=1 8, 8, 1 7, 7, 2 3, 3, 3 3, 3, 4

2 12, 19, 1 9, 12, 2 5, 8, 3

3 16, 25, 2 11, 19, 2

4 16, 32, 2

Cos
Row

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 82

2.82

Design and Analysis of Algrorithms

NOTES
where R(i, j – 1) £ 1 £ R(i +1, j) that minimize c(i, j)

C(i, j) = w(i, j) + c(I , k – 1) + c(k, j)

R(i, j) = k

}

}

Time Complexity :
Each C(i, j) can be computed in the time O(m)

There are (n – m + 1) C(i, j)s

Total time = O(m) ´ O(n – m + 1)

For evaluating

All c(i, j) = O(nm – m2 + m) with (j – i) = m

Total Time =

nil

)3(n)2mO(nm

=O(n
3
)

4.9 0/1Knapsack Problem

Given n objects and a knapsack, object i has a weight wi and knapsack
has capacity of M. If a fraction xi, 0 £ xj £ 1 of object i is placed into knapsack
then a profit pjxI is earned.

Problem: To fill the knapsack so that total profit is maximum and satisfies
two conditions.

1) imummaxxpObjective
ni1

ii

2) mxwyFeasibilit
ni1

ii

Types of knapsack :
1. Normal knapsack: in normal knapsack, a fraction of the last object is

included to maximize the profit.

i.e., 0 x 1 so that i wixi = M
2. O/I knapsack: In 0/1 knapsack, if the last object is able to insert

completely, then only it is selected otherwise it is not selected.

i.e., x =1/0 so that i wixi = M
According to dynamic programming, solution for 0/1 knapsack is Fn (M) =
max {Fn-1(M) + Fn-1 (M – wn) +Pn }
Where M is the size of the knapsack

 When xn =1 then the size of the bag is reduced by wn which is theweight

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 83

2.83

NOTES

Design and Analysis of Algrorithms

of the nth item. As we are placing the nth item we should add the profitfor the
last item. Similarly we find for Fn-1 (M) and so on upto F1 (M)

S1
i = { (Pi, wi) / (P-Pi, w-wi) Î Si-1 }

If we try to remove the ith item then the profit of ith item is reduced from the total
profit and wiehgt of ith item is removed from the total weight which belongs to
the profit and weight of (i –1)th item.

S0
0 = {0,0}

S1
i = Si-1 + (Pi , wi) addition

Si = S1
i + Si-1

Ex: Let us consider a knapsack problem in which n= 3, M = 6, (W1,W2,W3) =
2,3,4 and (P1,P2,P3) = 1,2,5

S0
0 = {0,0}

S1
i = Si-1 + (Pi , wi)

S1
1 = S0 + (P1,w1)

= {(0,0) } + {(1,2)}= {(1,2)}

S1 = {(0,0),(1,2)}

S1
2 = S1 + (P2,w2)

={(0,0),(1,2)} +{(2,3)}

= {(2,3), (3,5)}

S2 =S1+S1
2

= {(0,0)(1,2)(2,3)(3,5)}+(5,4)

={(5,4)(6,6)(7,7)(8,9)}

S3 =S2+S1
3

= {(0,0)(1,2)(2,3)(3,5)(5,4)(6,6)(7,7)(8,9)}

Purging Rule(Dominance rule):

If one of Si-1 and Si
1 has a pair of (Pj,Wj) and other has a pair(Pk,Wk)

and Pj<=Pk while Wj>=Wk then the pair (Pj,Wj)is discarded.

S3 = {(0,0)(1,2)(2,3)(5,4)(6,6)(7,7)(8,9)}

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 84

2.84

Design and Analysis of Algrorithms

NOTESAfter applying purge rule , we will check following condition inorder
to find solution. If (Pi,Wi) Ï Sn and (Pi,Wi) Ï Sn-1

Then xn =1

Otherwise xn =0

(6,6) S3

and (6,6) S2

x3 = 1

(6,6) –(5,4) = (1,2) Î S2

(6,6) S1 which is false

x2 = 0

(1,2) S1

(1,2) S0 which is true

x1 = 1

Maximum profit is PiXi =P1X1 +P2X2 +P3X3= 1x1 +2x0 +5X1 = 6
0/1 Knapsack Problem Algorithm:

Procedure DKP(p,w,n,M)

{

S0 = (0,0)

For(I=1, I++;I=n-1)

{

Si
1={(pi, wi)(P- pi,W- wi) Î Si+1}

Si = MERGE PURGE(Si-1 Si
1)

}

(Px,Wx) = last tuple in Sn-1

(Py, Wy)=(Pi+Pn, Wi+Wn) where W1 is the largest W in
any tuple in Sn-1

such that W + Wn <=M

If Px>Py then Xn =0

Else

Xn = 1

 }

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 85

2.85

NOTES

Design and Analysis of Algrorithms

Time complexityof knapsack problem is O(n). Time complexity of 0/1 knapsack
problem is O(2n/2).
4.10. Matrix Chain Multiplication:

An nxm matrix A = [a(i,j)] is a 2D array

)m,n(a...)1,n(a

)m,l(a...)1,1(aA

and m´r matrix B = [b(i,j)]

)r,m(b...)1,m(b

)r,l(b...)1,1(bB

C = AB of n´r size

where

m

1k

]j,k[b]k,i[a]j,i[C

for l£i£n and l£j£r

Draw back of above algorithm

 If AB is defined, BA may not be defined

 AB ¹ BA

 Multiplication is recursively defined

A1A2A3........A5-1A5

=A1 (A2(A3..... (A5-1 A0))

 Matrix multiplication is associative

A1A2A3= (A1A2) A3 =A1 (A2A3) so parenthe nization does not change result.

Complexitny of direct Matrix Multiplicatiuon
The C has n´r entries and each entry takes q(m) time to compute so the
total procedure takes q(nmr) time.

4.10.1 Direct matrix multipliction on of 3 matrices:
Given a p´q matrix A, a q´r matix B and a r´s matrix C then ABC can be
computed in two ways (AB)C and A(BC).

The number of multiplications needed are:

mult+[(AB) C] = pqr+prs

mult+[A(BC)]=qrs+pqs

mult+[(AB)C] ¹ mult [A(BC)]

 While multiplication, sequence is important

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 86

2.86

Design and Analysis of Algrorithms

NOTES4.11 Chain Matrix Multiplication:
Given dimensions Po, Pl.....pn corresponding to matrix sequence
A1, A2,..... An where Ai has dimension Pi–l ´ Pi determine the
multiplication sequence that minimizes the number of Scalar
multiplications in computing A1,A2....An.

A1 A2 A3 A4 = (A1 A2) (A3 A4)

= A1 (A2(A3A4)) =

= A1 ((A2 A3) A4) =

= ((A1 A2) A3) (A4) =

= (A1 (A2 A3)) (A4)

Time taken for above algorithm is 23n n4

To reduce the time complexity we can use dynamic programming
strategy

Algorithm for MCM using DP
Step 1 : Find the structure of an optimal solution

Decompose the probleam into rulgroblems. For each pair 1£i£j£n,
determine the multiplication sequence for Ai....j=Ai Ai+l....Aj that
minimizer the number of multiplications

Clearly, Ai....j is a Pi-j ´Pj matrix.

For any optimal multiplication sequence at the last step you are
multiplyis two matrices Ai...k and Aa+l....j for somek.

Ai....j = (Ai....Ak) (Akj.....Aj)

= Ai.....k Ak+1.....j

Ex : A3...6 = (A3(A4A5)) (A6)

=A3-5 A6-6

Where k = 5 for optimal sequence of multiplication k must be decide
and paranthe sizing the subchains must be decided
Optimal Substrudure Property : If Final optimal solution of Ai...j involves
splitting into Ai...k and Ak+1...j at final step then paran thesization of
Ai....u and Ax+i...j in final optimal solution must also be optimal for the
sub problems standing above
If paren the sization of Ai....n was not optimal we could replace it by a
better parenthe sization and get a cheaper final solution leading to
contridiction.
Similarly, if parent sization of Ak+l....j was not optimal we could replace
it by a better parenthe sization and get chegree solution, which is
also a contradiction

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 87

2.87

NOTES

Design and Analysis of Algrorithms
Step 2: Recursively define the value of an optimal solution.

for l£i£j£n, let m[i,j] denote the minimum number of multiplications nuded
to compute Ai....j
Optimum cost can be described by for c = j

for i=j

)PPP]j,lk[m]x,i[m(min]j,i[m jklijisk
0

{ for i<j

Proof : Any optimal sequence of multiplication for Ai....j is equivalint to
some choice of splitting
Ai....j - Ai....x Ak+l....j

for some k, where the sequences of multiplications for Ai...x and Ak+l...j
also are optimal. Hence
m[i,j] = m[i,k] + m[k+l, j]+pi-l PxPj
we know that for somek
m [i, j] = m[i,k] + m[k+l, j]+ pi-l pxpj

For k, there j-i possible values and find one which returns a smalest
cost.

for i=j

 jkli PPP]j,lk[m]x,i[m(jki
mino

]j,i[m for i < j

Step 3 : Compute the value of an optimal solution in a bottom up fashion.

To calculate m[i,j] we can use m [i,j]=min(m[i,k] +m[k+l, j]+Pi-l PuPj
 i£x£j

and we have already evaluatid m[i,k] and m[x+1,j]

For both the cases, length of the matrix chain are both less than j-i+l.
Thus we must calculate in the increasing order of length of matrix chain

m [1,2], n [2,3], m[3,4]............m[n+n]

m [1,3], m[2,4], m[3,5]............m[n-z,n]

m[1,4], m[2,5].....

m[l,n-l], m[2,n]

n[1,n]

When designing a dynamic program algorthm there are two parts

1. Finding an appropriate optimal substracture property and
corresponding recurrence relation

2. Filling in the table properly. This requires finding an ordering of the
table elements so that when a table item is calculated using the
recurrence relations all the table values needed by the recurrence
retation have already been calculated

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 88

2.88

Design and Analysis of Algrorithms

NOTESExample for botton up computation
Example : Given a chain of four matrices A1, A2, A3, A4 with Po = 5,
P1= 4, P2=6, P3=2 and P4=?

Find m[1,4]

So: Initializations

Step 1 : Compute m[1,2]

m[1,2]=min (m[1,x]+m[k+1,2]+Po Px P2)

= m[1,1]+m[2,2]+PoP1P2=120

Step 2: Compute m[2,3]

m[2,3] = min (m(2, 1]+m[k+1,3]+ 2£k<3 P1P2P3)

=m[2,2]+m[3,3]+P1P2P3=106

Step 3: Compute m[3,4]

m[3,4] = min (m(3, 4]+m[k+1,4]+P2P3P4)
 3£k<4

=m[3,3]+m[4,4]+P2P3P4=84

Step 4: Compute m[1,3]

m[1,3] = min (m[1, k]+m[k+1,3]+P0P4P3)

 1

 2

3

4

 1
 2

3

 4

5 4 6 2 7

® ® ® ® ®A1 A2 A3 A4

Po P1 P2 P3 P4

m [i,j]

 1

j 2

3

4

 1
 2

3

 4

5 4 6 2 7

® ® ® ® ®A1 A2 A3 A4

Po P1 P2 P3 P4

m [i,j]

Tostore\Madhu\daa\daa 4th Unit - Final - Page No. 89

2.89

NOTES

Design and Analysis of Algrorithms

 1£k<3

 =m[1,1]+m[2,3]+P0P1P3

 m[1,2]+m[3,3]+P0P1P3=88

 =88

Step 5: Compute m[2,4] = 104

 m[1,4] = 158

Construct an optimal solution from computed information extract the
actual sequence

Maitain an array S(l...n, i....o] where S[i,j] denotes k for the optimal splitting
in computing

Ai...j = Ai....k Ak+1....j

The array S[l....n, l....n] can be used recursively to recover the sequence.

 1

2

3

4

 1
 2

3

 4

5 4 6 2 7

® ® ® ® ®A1 A2 A3 A4

Po P1 P2 P3 P4

m [i,j]

120 48 84

}= min

 1

2

3

4

 1
 2

3

 4

5 4 6 2 7

120

88

48 84

120

88

48 84

158

104

3.81

NOTES

Design and Analysis of Algrorithms

5.1 Introduction:
The solution of many problems involves the manipulation of trees and
graphs. The manipulation requires to search an object in a tree or graph
by systematically examining their vertices according to a given property.
When searching involves examining every vertex then it is called tra-
versal.
Tree traversals:
Tree: A tree is a finite
set of one or more
nodes such that there
is a special node
ca lled roo t and
remaining are
partitioned into ‘disjoint
sets T1 , ………Tnwhere each of these
sets are called as sub
trees.
Degree of a Node: Number of sub trees of a node is called degree of
node.
The degree of node A is 3,

B is 2,
C is 1

Leaf Nodes: Nodes that have degree O are called leaf nodes or
terminal nodes.
The nodes K, L, F, G, M, I, J are leaf nodes

Siblings : Children of same parent are said to be siblings.
Degree of a tree : It is the maximum degree of the nodes in a tree.
Level of a node : The root is assumed at level 1 and its children level

are incremented by one if a node is at level P, then
its children are a + p + 1

Height or depth of a tree: It is defined to be the maximum level of any
node in the tree.

Forest : It is the set of n disjoint trees.

Binary tree : It is a finite set of nodes which is either empty or
consists of a root and two disjoint binary trees called
left and right sub trees.

A

C B D

E F

G
H I J

K L M

1

2

3

4

level

 UNIT III

 BASIC SEARCH AND TRAVERSAL
 TECHNIQUES

3.82

Design and Analysis of Algrorithms

NOTES
Example:

The maximum number of nodes
on level i of a binary tree is 2i – 1.

The maximum number of nodes
in a binary tree of depth k is 2k –
1.

Full binary tree: The binary tree of depth k which has exactly 2k – 1 nodes is
called full binary tree.

Complete Binary tree: A binary tree with n nodes and of depth k is complete
iff its nodes

Fully binary tree of depth 3

corresponds to the nodes which are
numbered 1 to n in the full binary tree of
depth k.
Binary search tree: If the value present at
left child is less than that of root and value
present at right child is greater than that of
root, at every stage in a tree, then it is called
BST

Heap: A heap is a complete binary tree with
the property that the value at each node is
as large as the values at its children

5.2 Binary Tree Traversals:
If L, D, R stand for moving left, printing data and moving right, there are six
possible combinations of traversals
LDR, LRD, DLR, DRL, RDL and RLD.
If we adopt a convention that we traverse left before right, then we have only
3 traversals.

LDR, LRD and DLR

Inorder Traversal (LDR):

Moving down the tree towards left until you cannot go further, then print the data

A

B C

D E F G

1

2

3

level

1

6

3

754

2

90

100

120

1508560

80

120

110

118

110105100

119

3.83

NOTES

Design and Analysis of Algrorithms

root

left righr i g h t

at that node and move on to right and continue.
If you cannot move to right and continue
go back one more node and repeat.

Example:
In order Traversal for the tree is
F D H G I B E A C

Recursive Algorithm for INORDER TRAVERSAL
Procedure INORDER(T)
{

If T ! = 0
{
Call INORDER(LCHILD(T))
___ Call PRINT(T)
___ Call INORDER(RCHILD(T))
}

}

For the example shown in previous slide algorithm works as shown
here

A

B

D

F

H

G

I

E

C

3.84

Design and Analysis of Algrorithms

NOTES

Non recessive Algorithm for INORDER
Procedure INORDER (T)
{

integer stack (m), i, m
if T = 0 then return

P = T, i = 0;
Loop

{
While (LCHILD(P)! = 0)

{
i = i + 1;

if (i > m) then print “Stack overflow”;
Stack(i) = P;

P = LCHILD(P)
}

Call of INORDER Value in root Action

Main A
1 B
2 D
3 F
4 - Print F
4 - Print D
3 G
4 H
5 - Print H
5 - Print G
4 1
5 - Print I
5 - Print B
2 E
3 - Print E
3 - Print A
1 C
2 - Print C
2 -

3.85

NOTES

Design and Analysis of Algrorithms

A

B

D

F

H

G

I

E

C

loop
{

Call print (P)
P = RCHILD(P)

If (Pj = 0) exist;
If (i = 0) return;

P = stac k(i);
i = i – 1;

}

}

PREORDER TRAVERSAL (DLR)
First visit the root node(print the data at root node),then visit the left subtree
and then right subtree. After printing the data at a root node move down
to left subtree, if we cannot continue further then move to right sub tree.

Procedure P REORDER(T)
{

if{T! = 0)
{

Call PRINT(T)
Call PREORDER(LCHILD(T))
Call PREORDER(RCHILD(T)

}

}

Example:

Preorder of above tree
A B D F G H I E C

3.86

Design and Analysis of Algrorithms

NOTESPOSTORDER TRAVERSAL(LRD):
Procedure POSTORDER(T)
{

If (T1 = 0)
{

then call POSTORDER(LCHILD(T))
call POSTORDER9RCHILD(T))

call PRINT(T)
}

}

Example:

The post order traversal of the tree shown is

F H I G D E B C A

Time and space complexities of tree traversals:

If the time and space needed to visit a node is
(n) then t(n) = (n) and S(n) = 0(n)

TRAVERSAL TECHNIQUES

5.3 Graph traversals
Graph:
A graph G is defined as a set containing of two sets called the verices V and
edges E.

G = {V, E}

A

B

D

F

H

G

I

E

C

A

B

D

C

3.87

NOTES

Design and Analysis of Algrorithms

Directed graph:

If the pairs are ordered i.e., <i, j>, <j, i> it is called directed graph.

Adjacent vertices:
If a vertex i is connected to j i.e., there exists an edge <i, j> then we call i and
j are adjacent.

In the figure (A, B), (B, C), (A, C) are adjacent

Path:

A path from vertex vp to vq is a sequence of vertices vp, vi1, vi2……….vin, vq
such that (vp, vi1), (vi1, vi2)……..(vin, vq) are edges.

In the figure ABCDA is a path

Simple path:

Is a path in which all vertices except first and last are distinct

In the figure ABC is a simple path

Cycle:

It is a path in which first and last vertices are same

In the figure ABCA is a cycle

Connected graph:

If for every pair of vertices there exists a path between them, then it is
connected.

The graph shown in above figure is connected

Strongly connected graph:

If for every pair of vertices, i, j there exists a path from i to j and a path
from j to i then we say it is strongly connected.

Adjacency Matrix:

An undirected graph is represented by a 2D matrix, G[n] [n] whose
number of rows and columns are equal to vertices of graph and the
elements of matrices are 0 and 1. If there is an edge between <i, j> = 1
otherwise G[i] [j] = 0.

Weighted graph:

For a weighted graph each edge has a weight and adjacency matrix is
initialized with these weights.

Example 1:

G[4] [4] =

3.88

Design and Analysis of Algrorithms

NOTES

Example 2:

G[4] [4] =

There are two types of traversal techniques for a graph. They are
1. Breadth first search

2. Depth first search

5.3.1 Breadth first search:

Step 1 : Start at vertex v and mark it as visited

Step 2 : The v is unexplored (its children or its adjacent vertices are not
visited). Now visit all adjacent vertices of V, then v is explored.

Step 3 : Now the adjacent vertices of v are unexplored vertices. All these
vertices are entered into a queue

Step 4 : Now explore the first vertex in the queue.

Step 5 : Repeat the process until no unexplored vertex is left

Example

Algorithm for BFS

Procedure BFS(v)

{

VISITE D(v) = 1;

u = v

Q is made empty

Loop

{

for all vertices adjacent fromle do

if (VISITED(w) = 0)

{

Call INSERT (w, Q)

VISITED(w) = 1

 1 2 3 4
1 – 1 1 0
2 1 - 1 1
3 1 1 - 1
4 - 1 1 -
 1 2 3 4
1 - 5 1
2 - 3
3 6 2 -
4 4 -

1

2

3

4

1

2

3

4

3

4

6

5

2

2

1

3.89

NOTES

Design and Analysis of Algrorithms

}

}

If Q is empty then return

Call DELETE(Q)

}

}

Analysis:

Let t(n, e) and S(n, e) be maximum time and space needed by algorithm
BFS on any graph with n vertices and e edges

If G is represented by adjacency matrix

t(n, e) = q(n2)

S(n, e) = q(n)

If G is represented by adjacency list

t(n, e) = q(n + e)

s(n, e) = q(n)

5.3.2 Depth first search:

Step 1 : Start at a vertex v and mark it as visited.

Step 2 : Try to explore v and exploration of v is suspended as soon as
new vertex is reached.

Step 3 : Now try to explore u. the new vertix

Step 4 : If u is explored, continue to explore v.

Step 5 : Repeat the process until all the vertices are explored.

Example:
Algorithm:
Procedure DFS(v)

{

VISITED(v) = 1

For(each vertex w adjacent from v)

{

if(VISITED(w) = 0)

{

Call DFSw)

3.90

Design and Analysis of Algrorithms

NOTES
}

}

}

Analysis:

It also takes a time complexity

t(n, e) = q(n + e) when adjacency lists are used and

t(n, e) = q(n2) when adjacency matrix is used.

Space complexity S(n, e) = q(n)

5.4 AND/OR Graphs:
Many problems are broken into reach such problems until they are solvable.
This breakdown can be represented by directed graphs, in which nodes represent
problems and descendents of a node represent sub problems.

Example:

Square nodes represent terminal node which does not have descendents
circular nodes has descendents

AND nodes:

Groups of sub problems that must be solved to produce a solution to parent
node are called AND nodes.

OR nodes:

If either all descendents or only one descendent is sufficient to solve, then they
are called OR nodes.

Example: A and A² are OR nodes

A’ is AND node

When problem is reduced two different problems may generate a common sub
problem. Therefore graph is no longer a tree.

Example: A solution graph is a sub graph of solvable nodes that shows that
problem is solved.

5.5 Game Trees:

There trees are used to represent games like chess, checkers etc.

Every game has some legal movements, board configuration at a given time.

3.91

NOTES

Design and Analysis of Algrorithms

5.6 Biconnected Components:
Articulation Point: If a vertex v in a connected graph G is deleted with all edges
incident on it. so that the graph is divided into two or more non empty components,
then the vertex v is called as articulation point.

Biconnected Graph : If a graph doesn’t contain articulation points then it is said
to be biconnected.

Ex :

Biconnected graph Non biconnected graph
Node 2 is articulation point

We can assume graph is a simulation of communication network such as
LAN. The articulation point may be assumed as centralized server. If it fails then
the entire network will fail. On the other hand if there is no centralized server
(articulation point) and all nodes are of same configuration even if one fails there
is no problem for communication.

To identify articulation points and biconnected components, depth first
spanning trees can be used. If (u,v) is any edge in G then the relative to the depth
first spanning tree T either u is an ancestor of v or v is an ancestor of u. So there
are not cross edges relative to a depth first spanning tree, (u,v) is a cross edge
relative to T iff neither u is an ancestor of v nor v an ancestor of u. So (u.v) must
be a back edge.

Depth first number is the order in which a depth first search visits these
vertices. DFN(1) = 1, DFN (2) = 2 in the below graph.

1

5 2

4 3

1 3

54

2

Finite game:

It is one in which there are no valid sequences of infinite length.

Instance of game:

A valid sequence of board configuration with a terminal configuration is an instance
of game.

Now we can define a game tree as possible instances of a finite game.

Example: The game tree for nim with n = 6 is shown below. Each node of the
tree represents a board configuration Terminal configurations are leaf nodes,
leaf. nodes have been labeled by name of the player who wins.

3.92

Design and Analysis of Algrorithms

NOTES
We can assume DFN(u)< DFN (v) in the above discussion. For each vertex u
define L(u) lowest depth first number that can be reached from u.

L(u) = min {DFN(u), min {L(w)/w is child of u},
 min {DFN(w)/(u,w) is back edge}

Example:
Algorithm:
Procedure DFS(v)

{

Proc_articulation (u,v)

{

global DFN(n),L(n),num,n;

DFN(u)=num; L(u) = num; num=num+1;

for each vertex w adjacent from u

{

if (DFN(w) = n)
articulation (u,w);

L(u) = min (L(u),L(w));
Else

If w! = v
L(u) = min(L(u),DFN(w)

}

}

The above procedure performs depth first search of G. Each newly visited
vertex gets assigned its depth first number. L(i) is computed for each vertex in
the tree. Once L(n) is computed articulation point can be identified in O(e) of
time, where is the number of edges. Time taken to find articulation point is
O(n+e).

To find the biconnected components the algorithm is
Procedure _ biconnected (u,v)

{

1

2 3

3.93

NOTES

Design and Analysis of Algrorithms

6.1 Introduction
 Problems dealing with larger search space use back tracking to find

out optimal solution in a set of solutions.
 It was first proposed by D.H. Lehmer in 1950. Algorithmic approach

was given by R.J. Walker. It was clearly described by Baumet
 If the solution is expressible as an n-tuple(x1, x2,.......xn) where the xi

are chosen from some finite set Si, then we can apply backtracking
 All the solutions using backtrack must satisfy two constraints, they

are explicit and implicit constraints.
 Explicit Constraints: These are the rules which restrict each xi to take

on values only from a given set.
 All tuples which satisfy those constraints define solution space.
 Implicit Constraints; These determine the tuples in the solution space

that actually satisfy the objective function.
 The search process using back track is a systematci approach and

forms a tree structure.
 Each node in this tree defines a problem state.

global S, DFN(n),L(n), num,n;
DFN(u)=num; L(u)=num;num=num+1;

for each vertex w adjacent from u

{

if v!=w and DFN(w)<DFN(u)
add (u,w) to stack S;

if (DFN(w) = 0n)
articulation (u,w);
ifL(w)>=DFN(u) then print (‘new biconnected component’)
do
{delete an edge (x,y) from the to of the stack S
print(x,y)
} while ((x,y) = (u,w) || (w,u))
}
L(u) = min (L(u),L(w));
Else
If w! = v
L(u) = min (L(u), DFN(w))

}
}

The time complexity of the above algorithm is O(n+e)

 BACK TRACKING

3.94

Design and Analysis of Algrorithms

NOTES
 All paths from the root to other nodes defines state space.
 Solution states are the problems states S for which the path from

the root to s defines a tuple in the solution space.
 Answer states are those solution states S for which the path from

the root to S defines a tuple which is a member of the set of solutions
of the problem.

 The tree organization of the solution space will be referred to as the
state space tree.

 Once a state space tree is generated, the given problem is solved
by generating the problem states, determining which of these are
solution state and finally answer state.

 We begin with root node and generate other nodes.
 A node which has been generated and all of whose children have not

yet been generated is called a live node.
 The live node whose children are currently being generated is called

E node.
 A dead node is a node whose children have been generated or not to

be expanded further.
 Bounding functions will be used to kill live nodes without generating

all their children.
 Depth first node generation with bounding function is called

BACKTRACKING.
In many applications, the desired solution is expressible as n tuple

(x1..........xn) where xi are chosen from some finite set si. If mi is the size of
set Si. Then there are m tuples which are possible solutions for satisfying
criteria function, P. If it is realized that a partial vector can no way possible,
then test vectors may be ignored completely.

BT algrithm searches solution space systematically in a tree
organization. Each node in this tree defines a probles state. All paths from
the root to other nodes define the state space of the problem. Solution
states are that problem states s for which the path from the root to s defines
a tuple in the solution space. In the tree all nodes are solution states whereas
leaf nodes are solution states. Answer states are that solution states s for
which the path from the root to s defines a tuple that is a member of the
set of solutions of the problem. The tree organization of the solution space
is referred as the state space tree.
1) Time to generate X(k)
2) Number of X(k) satisfying constraints
3) Time for calculating bounding function Bi.
4) Number of X(k) satisfying Bi for all i.

The first three factors are independent of the problem instance; fourth
one varies from problem to problem.

If the number of nodes in a solution space is n! or 2n. Therefore
worst case time complexity will be in the order of (p(n)2n) or (q(n)n!).

3.95

NOTES

Design and Analysis of Algrorithms

6.2 CONTROL ABSTRACT FOR BACKTRACKING:
Proc_backtrack(n)

{

integer k, n, local X[n];
while (k > 0)
{ if there remains an untried x(k)

i f x (k) Î T (x(1) , x (2) , .x (k -1) an d
(x(1) ,x(2)x(k))= true

do if (x(1),..........x(k)) is path to an answer node then print (x(1),
x(2),........x(k)),

endif.
k = k + 1

else k = k - 1, endif.
{
{

6.3 QUEENS PROBLEM :
Let us assume that there are 8 columns and 8 rows on a chess

board. Eight queens are given and each queen must be placed on a different
row so that no two queens will lie on same row, same column and same
diagonal. Hence we can assume queen i is to be 8 queens problem is
represented by 8 tuples (x1, x2............x8) where xi is column on which queen
i is placed.
The solution space consists of 88, 8-tuples. The constraint for the problem
is no two xi s, must be on same row, on same column and no two queens
must be on same diagonal.
According two these two constraints all solutions are permutations of 8 tuple
(1, 2, 3, 4, 5, 6, 8). This reduces the solution space from 88 to 8! Tuples.
Before going to 8 queens let us analyze 4-queens problem for better
understanding.
6.3.1 4- Queens problem :
Problem : A 4´4 chess is given and we must place 4 queens on the chess
boad so that no two queens must be placed on same row, same column
and same diagonal.
Solution :
Let 4-queens be represented as (x1, x2, x3, x4). Thus a queen xi means, the
queen placed in the row. The value of xi gives the column number in ith row.
Since row number of all xi’s are different there is no need to verify whether
the queens are on same row. There fore if we verify column and diagonals
we can obtain solution.
If we observe the total search space of the problem, it is a tree having 65
nodes shown in the figure.

3.96

Design and Analysis of Algrorithms

NOTES

2

3
8

13

4
6

9
11

14
16

5
7

10
12

15
17

18

19
24

29

20
22

25
27

30
32

21
23

26
28

31
33

34

35
40

45

36
38

41
43

46
48

37
39

42
44

47
49

50

51
56

61

52
54

57
59

62
64

53
55

58
60

63
65

Se
ar

ch
 s

pa
ce

 tr
ee

 o
f 4

-q
ue

en
s

pr
ob

le
m

 :

3.97

NOTES

Design and Analysis of Algrorithms

2

1
x

x x2 = 2 x2 = 3

1

2

3 8

 x1 = 1

Analysis :
Step 1 : We start at root node as live node. This node becomes E

node and path is ()

Step 2 : Generate one child node 2, now the path is

(1). This corresponds to place queen x1 in column 1.

\ x1 = 1

Step 3 : Now node 2 becomes Enode. Node 3 is generated and killed,
since it doesnot satisfy conditions hence back track to node
2.

Step 4 : Still node 2 is Enode, generate node 8 and now path is
(1, 3). Now 8 becomes E-node.

1 x1 x2 x3 x4

2

1
x

x

2

1
 x1 = 1 1x

1

2

3

 x1 = 1

 x2 = 2

3.98

Design and Analysis of Algrorithms

NOTESStep 5 : The children of node 8 cannot satisfy the conditions hence they
are killed, since they are killed node 8 is back tracked to node 2

Step 6 : Still node 2 is E node and next node generated is 13. Now the
pa.... is (1, 4)

1

2

83

9 11

 x1 = 1

 x2 = 3
 x2 = 2

 x3 = 2
 x3 = 4

33

2

1

xx
x

x

1

2

83

9 11

 x1 = 1
 x2 = 4

 x2 = 2

 x3 = 2
 x3 = 4

13
 x3= 3

2

1
x

x

3.99

NOTES

Design and Analysis of Algrorithms

6.3.2 8- Queens problem :
If the squares of chess board are represented as 2D array A(1 : n, 1 :n).

1) For every element on same diagonal which runs form UL to LR
has same ‘row-col’ value.

2) Every element on same diagonal which runs from UR to LL has
same ‘row+col’ value.

Suppose two queens are placed at (i, j) and (k, l), then they are
on same diagonal, if i - j = k - l

(or)

i + j = k + l

Therefore j - l = k – i and j – l - k - i

Therefore two queens lie on the same diagonal if and only if

 | j - l | = | i - k|
Procedure placed (k)

{

1 x1 = 1

2
 x2 = 4

 x2 = 2

8

 x2 = 3

18 x2 = 4

 x1 = 2

2419 29

119

13

1614

3

15 31

30

x3=1

x4=3

1x
2

1
x

x

3

2

1

x
x

x

4

3

2

1

x
x

x
x

Step 7 : In this way back tracking algorithm goes to find a solution
given below.

3.100

Design and Analysis of Algrorithms

NOTES

global X(l : k), int i, k

 for i = l to k

 {

if X(i) = X(k) or abs (x(i)–x(x))=abs(i–k)

 then return (false)

end if

}

return (true)
}

Procedure N queens
{

integer k, n, X(l : n)

X(1) ¬ 0; k ¬ l

while K > 0

 {

X(k) = X(k) + 1

While X(k) £ n and not place (k)

{

 X(k) ¬ x (k +1)

{

If x(k) £ n

Then if k = n

then print (X)

else k ¬ k + 1; x(k) ¬ 0

End if

 Else k ¬ k – 1

End if

}

}

8

7

6

4

3

2

1

x
x

x

x
x

x
x

3.101

NOTES

Design and Analysis of Algrorithms
Analysis of 8 queens
The analysis of 8-queens is also same as that of 4- queens. The search
space tree is of 8-queens also similar to that of 4-queens.

Solution vector

X = (4, 6, 8, 2, 7, 1, 3, 5)

The total number of nodes in 8 queens state space tree is

7

0j

)i8(1 = 69, 281

6.4 Graph Coloring:
If G is a graph, nodes of G must be colored such that no two adjacent nodes
have same color (among m colors). This is known as m-colorability decision.
D smallest m for the problem.

A graph is said to be planar if not two edges cross each other. Each can be
converted into a graph. Each region of map becomes a node and if two
regions are adjacent they are joined by an edge.

A graph can be represented as adjacent matrix G (1 : n, 1 : n)

G (i : j) = true if (i , j) is an edge of G

Else

G (i,j) = false

Procedure MCOLORING(k)

{

Global int m,n X(1 : n);

 Boolean GRAPH (1 : n, 1 : n)

Integer k

 {

Call NEXT VALUE (k)

If X(k) = 0 then exit

 If k = n

Then print (X)

 Else call MCOLORING(K+1)

Endif

}

}

Procedure NEXTVALUE produces the possible colors for X(k) after X(1)
through X(k-1). Main loop MCOLORING picks an element from set of

3.102

Design and Analysis of Algrorithms

NOTES
possibilities, assigns to X(k).

Procedure :
NEXTVALUE(k)

{

Global integer m, n , X(1:n)

Boolean (l : n, l : n)

Integer j, k

{

 X(k) ¬ (X(k) + 1) mod (m + 1)

If X(k) = 0 then return

For j = 1 to n

{

If GRAPH (K,J) and

X(k) = X(j)

Then exit

}

If j = n+1 then return

}

}

Time Complexity :

The number of internal nodes in state space tree is

1h

0i

im At each internal

node O(MN) time is spent by NEXTVALUE.

Total time nm
n

li

i

 = n(mn+l)/(m - 1)

= O(nmn)

6.5 Sum of Subsets :
Given n distinct positive numbers and must find all combinations of these
numbers whose sum is M
If n = 4, (w1, w2, w3, w4) = (11, 13, 24, 7) and M = 31 then the desired
subsets are (11, 13, 7) and (24, 7). The two solutions are described by
(1,2,4) and (3,4).
Each solution is a n tuple (x1, x2.......xn) such that xi Î (0, 1), 1 £ i £ n. xi = 0

3.103

NOTES

Design and Analysis of Algrorithms

2

3

4
6

4
6

5

3

4
6

4
6

5

2

3

4
6

4
6

5

3

4
6

4
6

5

2

3

4
6

4
6

5

3

4
6

4
6

5

x 1 =
 1

x 1 =
 3

x 1 =
2

x 2 =
 2

x 2 =
 1

x4 = 2

3
 2

2

 3

 3

 1

3
 3

 3

1

3

 1

 1

2

 2

1

 2

3

1

 2

2

3

 1

 2

2

3

 1

3

x 2 =
 3

3

41
2

1 3
4

E
xa

m
pl

e
: L

et
 u

s
co

ns
id

er
 a

 4
-n

od
e

gr
ap

h
co

lo
rin

g
w

ith
 3

 c
ol

or
s.

3.104

Design and Analysis of Algrorithms

NOTES
if wi is chosen.
For a node at level, the left child correspond to X(i) = 1 and right child
corresponds to X(i) = 0

B(X(i)...........X(k)) is true if

k

li

k

1i

M)i(w)i()i(w

if w(i) are initially in non decreasing order, we can rewrite

Bk(X(1),.......X(k) = true if

k

li

k

1i

k

1i

k

1i

M)1k(w)i()i(wandM)i(w)i()i(w

Example : Let us take n = 6, M = 30 and w(1:6) = (5, 10, 12, 13, 15, 18) The
state space tree for n=6 contains 26 - 1 = 63 nodes. A part of the space
tree is given below.

Procedure SUMOFSUB (s, k, r)

{

Global integer M, n;

Global real w (1 : n);

Boolean k,j; real r, s

X(k) ¬ 1

If s + w(k) = M

Then print (X(i), j ¬ 1 to k)

0.1.7.3

x1 = 1 x1 = 0

0.2.6.85.2.6.8

x2 = 1 x2 = 0

15.3.58 5.3.58

x3 = 1 x3 =0

27.4.46 15.4.46

15.5.33

x4 =0

A x5 =1 X = (1 1 0 0 1 0)

3.105

NOTES

Design and Analysis of Algrorithms

Else

If S = w(k) + w(k=1) £ M then

Call SUMOFSUB (S + W(k), k + 1, r - w(k))

Endif

Endif

If s+r - w(k) ³ M and

S + w(k + 1) £ M

Then x(k) ¬ 0

Call SUMOFSUB (s, k, + 1, v - w(k)

Endif}

3.123

NOTES

Design and Analysis of Algrorithms

7.1 Introduction:
The concept behind B & B is, all the children of E-node are generated
before any other live node becomes E-node. This type of exploration
can be seen in BFS and D search (is same as BFS but, the next node
to explore is the most recently reached unexplored node).

In B & B algorithm a number is computed to determine whether the
node is promising or not. The number is a bound on the value of the
solution that could be expanding beyond the node. If the bound is no
better than the value of the best solution found so far then the node is
non-promising.

Instead of using a bound, we can compare the bounds of promising
nodes and visit the children of the one with the best bound. This approach
is called best first search with B & B pruning and faster optimal solution.
BFS is implementation of breadth first search with B & B or FIFO B &
B. Where as D-search B & B is called LIFO B & B.

Example: Let us take 4-queens problem using FIFO B & B algorithm.

Initially there is only one live node i.e. node 1. This will becomes E-node. It
is explored and its children, node 2, 18, 34 and 50 are
generated.

Now the E-node is
node 2. It is expanded
and node 3, 8, 13 are
generated.

Node 3 is immediately killed by using
bounding function. Nodes 8 and 13 are
added to queue. Now 18 will become
E-node. Nodes 19, 24, 29 are gener-
ated..

Now node 19 and 24 are killed since they do not satisfy bounding function.
Node 29 is added to queue.

BRANCH AND BOUND

 UNIT IV

1

2

18 34

50

1

2

24 8 13

18 34 50

 1

34 18 2 50

29 24 19 13 5

3.124

Design and Analysis of Algrorithms

NOTES

Now 34 is the next E-node and it is explored. This process continues and
at the time of answer node 31 is reached, the only live nodes are 38 and
54. Entire search space tree is shown in figure.

Particularly for this problem Backtracking is superior than Branch and Bound.

7.2 Least cost(LC) search :
In FIFO & LIFO search B & B, the selection rule for next E-node is blind. The
rigid FIFO rule requires expansion of all live nodes before answer node was
expanded. Thus an intelligent ranking function C’(.) is needed to select the next
E-node.

Let g’(x) be the additional effort needed to reach answer node from x. x is
assigned a rank using a function c’ (.) such that c’(x) = f(h(x)) + g’(x))

Where h(x) is cost for reaching x from root. A live node with least C’(.) is selected
as next E-node. Hence it is called LC search.

1) If g(x) = 0 and f(h(x)) = level of node x x then it is called BFS.

2) If f(h(x)) = 0 and g(x) > g(y) where y is the child of x then it is called as D-
search.

Example: Let us consider the problem of 15 puzzle.

A square frame with 16 tiles in which 15 numbered tiles are there and is empty.
An initial arrangement is given. By using legal moves arrange them into goal
arrangement (a legal move is moving a tile adjacent to the empty spot ES is
moved to ES).

Initial arrangement

From this 4 moves are possible. We can move 2, 3, 5, 6 to ES.
Each move creates a new arrangement. These arrangements
are called states. There are 16! Such arrangements.

Let position (I) be the number in the initial state of the title numbered i. Therefore
position (16) is zero in goal arrangement.

1

34 18 2 50

13 8 3 29 24
3

 45 40
3

 13 8
3

11 16 38 32 54 59

Answer node

35

36

19 51

9 14 30 52 57

1

 4 3 2 5

8

7

6 11 10
3

14 13
3

17 16
3

19 21 25 23 27 29 28

33

12

24

9 15

18 20 22 26
B B B B B B B B B B

31

0

 1 3 4 5
2 5 12
7 6 11 14
8 9 10 13

3.125

NOTES

Design and Analysis of Algrorithms

For any state let less (I) be number of tiles j such that j < i and position (j) > position
(I).

Example: if i = 12, j = 6

Therefore less(12) = 6 since position (6) > position(12)

3.126

Design and Analysis of Algrorithms

NOTESEach node x in the space tree, a cost function C(x) is associated. C(x) is the
length of a path from the root to a nearest goal node.

Let us say C(I) = C(4) = C(10) = C(23) = 3 such a cost function is available,
efficient searching is performed. From root node, nodes 2, 3, 5 are
eliminated and only one node 4 becomes a live node. Node 4 becomes live
node.

Its first child node 10 has C(10) = C(4) = 3. The remaining node 10 is
greater than 3 except node 23. Next E-node is 23.

But it is difficult to estimate such a cost function. Thus we can compute an
estimate C’[x) of C(x). We can write C’(x) = f(x) + g’(x) where f(x) is the
length of the path from the root to node x and g’(x) is an estimate of the
length of the shortest path from x to a goal node in the subtree with root x.

Therefore we can assume g’(x) = number of non blank tiles not in their
goal position.

Thus at least g’(x) moves will have to be made to transform state x to goal
state.

For example in the figure shown g’(x) = 1
since only tile 7 is not in its position.

But number of moves to reach goal state is more than 1.

According to LC search we begin at node 1 and its children are generated.

Now live nodes are 2, 3, 4 and 5.

C’(x) for 2, 3, 4 and 5 nodes is

C’(2) = 1 + 4

C’(3) = 1 + 4

C’(4) = 1 + 2

C’(5) = 1 + 4

Therefore node 4 becomes E-node

Now the children of node 4 are generated. The live nodes at this time are 10,
11 and 12.

C’(10) = 2 + 1

C’(11) = 2 + 3

C’(12) = 2 + 3

 1 2 3 4
5 6 8
9 10 11 12

13 14 15 7

3.127

NOTES

Design and Analysis of Algrorithms

Therefore the live node is 10 and its children are 22 and 23 are generated and 23
is goal node

Algorithm LC search(t)

{

E node = t

Repeat

{

for each child x of E do

{

if x is answer node then output the path from x to t return

add(x),

x ® parent = E

}

If there are no more live nodes

{

write “no answer”, return

}

E = least();

}

until (false);

}

The algorithm uses two functions Least(x) and add(x). Least(x) finds the live node
with least C’() and Add(x) to delete and add a live node with least C(). When the
answer node G is found then the function parent(x) is used to follow sequence
from current E-node G to the root node.

1) Root node is first E-node.

2) The children of E-node are examined. If one of the children x is answer node,
then the path from x to target is printed.

3) If a child is not an answer node it becomes live node. Using add(x) it is
entered into list of live nodes.

4) The present field of x is set to E. When all the children of E have been
generated E becomes a dead node.

5) If there is no live node left search was completed.

6) Otherwise by using least(), next Enode is selected and search continues.

3.128

Design and Analysis of Algrorithms

NOTES7.3 Bounding :
Let us assume each answer node x has a cost C(x), and minimum cost
answer node is to be found.

Every node x has a cost function C’(x) associated with it, such that C’(x)
<= C(x) is used to provide lower bound on solution. If U is upper bound on
the cost of minimum cost solution then all live nodes x with C’(x) > U are
killed as all answer nodes reachable from x have cost C(x) ³ C”(x) > U.

If an answer node with cost U has already reached then all live nodes with
C’(x) >= U may be killed.

The starting value of U may be set to a. Each time a new answer node is
found, the value of U may be updated.

Thus only minimum cost answer nodes will correspond to optimal solution.

Example: Job sequence problem.

Each job I is associated with a 3 tuple Pi, Di, TI. Job I requires Ti processing
time if not completed in a dead line Di a penalty Pi is to be payed.

Given n = 4 jobs

Pi (penalty) 5 10 6 3

Di(deadline) 1 3 2 1

Process time) 1 2 1 1

Let Sx be the subset of jobs selected for j at node x

xsi

Pi)x(uPi)x(C
mi
xsi

Where m = max {i/iÎSx }

 1

4 3 2 5

 x1 =1 x1 = 2 x1= 3 x1 = 4

1

2 3 4 5

3.129

NOTES

Design and Analysis of Algrorithms

1) U = µ

2) Node 1 as Enode.

3) Next live nodes are 2, 3, 4, 5

U(2) = 19 (10 + 6 + 3)

U(3) = 14 (6 + 3 + 5)

U(4) = 18 (3 + 5 + 10)

U(5) + 21 (5 + 10 + 6)

When node 3 is generated U is updated to 14. Thus all other nodes except 2
and 3 are killed and u is updated to14.

4) Next Enode is 2 its children are 6, 7, 8 U(6) = 9 and U is updated to U = 9

C’(7) > U

C’(7) = 10 >(U = 9) it is killed,
parallely c(8) > U is also
killed (infeasible)

5) Next Enode is 3 its children are 9, 10

U(9) = 8 hence u = 8

C’(10) = 11 hence it is killed

6) Next Enode is 6 its children are 12, 13

C(12) = 0

C(13) = 6 both are infeasible

1

3 4 52

6 7 8

x
1
=1

x
2
= 2 x

2
= 3 x

2
= 3

8
 = 3 x2 = 3

8 7 6

1

10 9

2 3

x1=1

x1=2

x2=2

x2=4

109876

2 3

1

3.130

Design and Analysis of Algrorithms

NOTES1

2

0 7 8

12 13

3

9 10

1

x
2
= 4x

2
= 3

x
3
= 4x

3
= 4x

3
= 3

x
2
= 2

x
1
= 1

Node 9’s only child is
also infeasible. The mini-
mum cost answer node
is 9. It has a cost of 8.

7.4 FIFO Branch & Bound:
All live nodes are in the queue in the order in which they were generated.
Hence nodes with C’(x) > U are distributed randomly. Live nodes with C’(x) > U
are killed when the are about to become E-nodes.

So a small positive constant e is used so that if for any two feasible nodes x
and y, U(x) < U(y) then U(x) < U(y) + e <U(y). This e is needed to distinguish
between the case when a solution has with costU(x) has been found and the
case when such a solution has not been found.

If the later is the case U is updated to min{U, U(x) + e}. When U is updated in
this way, live nodes y with C’(y) >= U may be killed. This does not kill the node
that promised to lead to a solution with value <= U.

Procedure FIFOBB(T, C’, U, e, cost)

{

E = T; Parent (E) = 0;

If t is a solution node then

U = min (cost(T), U(T) + e); ans = T

Else

U = U(T) + e; ans = T

Endif

Initialize queue to be empty

Repeat for each child x of E

{

If C’(x) < U then call ADD(x);

Parent(x) = E

3.131

NOTES

Design and Analysis of Algrorithms

Case

: x is a solution node and cost(x) < U;

U = min(cost(x), U(x) + e)

Ans = x;

: U(x) + e < U;

U = U(x) + e;

Endcase

Endif

}

loop

{

if queue is empty then print “least cost = U”;

while ans! = 0 do

{ print ans;

ans = Parent(ans);

}

endif

}

Call DELETE Q(E)

if C’(E) < U then exit

}
}

}

7.5 LC Branch & Bound:
It also operates on the same assumptions as FIFOBB. Here we use two functions
ADD and LEAST to add a node to a min heap and delete a node from a min heap.
An LC branch and bound algorithm will terminate when the next E node E has
c’(E) >= U.

Initially here also U = a and node 1 s first E node. Node 1 is expanded and its
children 2, 3, 4 and 5 are generated and so on

Procedure LCBB(T, C’, U, e, cost)

{

E + T: Parent(E) +):

3.132

Design and Analysis of Algrorithms

NOTES
If t is a solution node then

U = min(cost(T), U(T) + e): ans = T

Else

U = U(T) + e; ans = 0;

Endif

Initialize the list of live nodes to be empty

Repeat for each child x of E

{

If C’(x) < U then call ADD(x):

Parent(x) = E

Case

 : x is a solution node and cost(x) < U;

U = min(cost(x), U(x) + e)

 : U(x) + e < U;

U = U(x) + e;

Endif

}

loop

{

if list is empty or the next E node has C’>= U, then print “least cost = U’

While ans! = 0 do

{

print ans;

ans = Parent(ans);

}

endif

}

Call LEAST(E)

}

}

}

3.133

NOTES

Design and Analysis of Algrorithms
7.6 TRAVELLING SALES MEN PROBLEM:
The time complexity of travelling sales men problem is O(n2 2n) can be reduced by
using good bounding function in B & B algorithms.

LCBB approach for Travelling sales men Problem:
Let us define cost function C(x) such that C’(x) < = C(x) < = U(x) for all nodes x.

C(x) = length of tour defined by the path from root to A, if A is leaf/cost of minimum
cost leaf in the subtree A, if A is not a leaf.

A simple C’() such that C’(A) < C(A) for all A is obtained by defining C’(A) to be the
length of the path defined at node A. A better C’() may be obtained by sing the
reduced cost matrix of a given graph G.

Subtracting a constant t from every entry in one column or one row of the cost
matrix reduces the length of every tour by exactly t. If t is chosen to be minimum
entry in row i, then subtracting it from all entries in row I will introduce a 0 into row
i.

The total amount subtracted from all the columns and rows is a lower bound on
the length of a minimum cost tour and maybe used as the C’ value for rows 1, 2, 3,
4, 5 and columns 1 and 3 of matrix shown here

Cost Matrix Reduced cost matrix

Let A be the reduced cost matrix for node R. Let S be the child of R such that the
tree edge (R, S) corresponds to including edge <I, j> in the tour.
If S is not a leaf then reduced cost matrix for S may be obtained as

1. Change all entries in row I and column j of A to a. This prevents the use of
any more edge leaving vertex I or entering j.

2) Set A(j, 1) to a. This prevents the use of edge <J, 1>

3) Reduce all rows and columns in the resulting matrix except for rows and
columns containing only a.

If r is the total amount subtracted then C’(s) = C’(R) + A(I, j) + r

The initial reduced matrix is

120011
012315
2030
021112
101710

167416
318619
4253
241615

11103020

120011
012315
2030
021112
101710

3.134

Design and Analysis of Algrorithms

NOTES
Initially U = a, the state space tree starts at
root node and its children 2, 3, 4 and 5 are

generated.

By setting all entries in row 1 and column 2 to a we get

12011
01215
200
0211

a) path 1, 2; node 2

By setting all entries in row 1 and column 3 to a we get

1200
034
203
021

b) path 1, 3; node 3

By setting all entries in row 1 and column 4 to a we get

0011
0123
230
01112

 c) path 1, 4; node 4

By setting all entries in row 1 and column 5 to a we get

1

4 3 2 5

i1 =2

i1=3

i1=4

i1=5

35 53 25 31

25

3.135

NOTES

Design and Analysis of Algrorithms

25)4(C
^

31)5(C
^

 c) path 1, 4; node 4

By setting all entries in row 1 and column 5 to a we get

0011
0123
230
01112

1200
9012

030
0910

d) path 1, 5; node 5

Now the next E node is node 4.

By setting all entries in row 4 and column 2 to a we get

8 7 6

1

4 3 2 5

i1 =2

i1=3

i1=4

i1=5

50
28 36

25

i2=2

i2=5

i2=3

011

20
011

e) path 1, 4, 2; node 6

By setting all entries in row 4 and column 3 to a we get

3.136

Design and Analysis of Algrorithms

NOTES

Now the next E node is node 6.

By setting all entries in row 2 and column 3 to a we get

0

0

h) path 1, 4, 2, 3; node 9

By setting all entries in row 2 and column 5 to a we get

8 7 6

1

4 3 2 5

i1 =2

 3

 4

 5

i2=2

 5

 3

10

11

9 28

i3=3
 i3=5

i4=3

52)9(C
^

50)7(C
^

36)8(C
^

00

01
01

 f) path 1, 4, 3; node 7

By setting all entries in row 4 and column 5 to a we get

00

30
01

g) path 1, 4, 5; node 8

3.137

NOTES

Design and Analysis of Algrorithms

28)10(C
^

0

0

i) path 1, 4, 2, 5; node 10

Thus the minimum cost path is 1, 4, 2, 5, 3, 1.

Tostore\Madhu\daa\daa 8th Unit - Final - Page No. 141

4.141

NOTES

Design and Analysis of Algrorithms

8.1 Introduction :
An algorithm is analyzed by studying the frequesncy of execution of its

statements. If T(n) is time for an algorithm on inputs, and if T(n) = O(f(n)
mean that time is bounded by a function ((n). If T(n) = g(n) then the time
is bounded below the function g(n).

If f(n) is a polynomial, some problems are bounded by polynomial time
algorithm and some for which no polynomial time known g(n) is larger than
any polynomial.

Thus we can group algorithms into two groups :-

1. Problems whose solution is bounded by a polynomial of small
degree.

Ex : ordered search O(logn) sorting O(nlogn) etc.

2. Problems whose solution is not bounded by a polynomial

Ex : Traveling sales person O(n22n). knapsack problem O (2n/2).

8.2 Classes of Problems:
(1) P Problems (P: Polynomial): the set of all poly nomially solveable
problems

l P. Problems that can be solved in polynomial time. (“P” stands for
polynomial)

l P is closed under addition. multipatlicaton and and composition.

l P is independent of particular formal models of computation or
implementations.

l Any problem not in P is hard.

l A problem in P does not necessarily has an efficient algorithm.

(2) NP Problems (NP: Nondeterministic Polynomial); the set of all problems
that can be solved if we always guess correctly what computation path we
should follow.

 Roughly speaking: include problems with exponential algorithms
but have not proved that they cannot have polynomial time
algorithms.

 Alternate definition (e.g. Corman): the set of all problems those
answers can be verified in poly nominal time.

 NP problems thus deal with decision problems as opposed to
aptimization problems.

 P is a subset of NP, but we don’t know whether P = NP.
(2”) NP-hard problems the set of all problems such that any NP problems

NP HARD AND NP COMPLETE PROBLEMS

Tostore\Madhu\daa\daa 8th Unit - Final - Page No. 142

4.142

Design and Analysis of Algrorithms

NOTES
can be reduced to L in polynominal times.

(2”) NP-Complete problems; the set of problems that are both NP and NP-Hard.

l NP-complete problems are equivalent in the sense that if one problem
has an efficient algorithm (i.e. in P), then all NP-complete problems
have efficient algorithms.

(3) Intractable problems: the set of problems that have been proven not to have
polynomial algorithms.

A problem is in NP if you can quickly (in polynomial time) test whether a
solution is correct (without worrying about how hard it might be to find the
solution). Problems in NP are still relatively easy: if only we could then
quickly test it.

NP does not stand for “non-polynomial”. There are many complexity classes
that are much harder than NP.

 PSPACE. Problems that can be solved using a reasonable amount of
memory (again defined formally as a polynominal in the input size) without
regard to how much time the solution takes.

 EXPTIME. Problems that can be solved in exponential time. This class
contains most problems you are likely to run into, including everything in
the previous three classes. It may be suprising that this class is not all-
inclusive; there are problems for which the best algorithms take even
more than exponential time.

 Undecidable. For some problems, we can prove that there is no
algorithm that always solves them, no matter how much time or space
is allowed. One very uniformative proof of this is based on the fact that
there are as many problems as there real numbers and only as many
programs as there are inregers, so there are not enough programs to
solve all the problems. But we can also define explicit and useful
problems which can’t be solved.

8.3 Reducibility:
 A problem P1 is polynomial time reducible to P2

(P1 > P2), if
 There exists a one to one mapping from of imput 11 of P1 to input 12 of

P2.
 P1(1) if and only if P2(12)

Note that if P1 ->P2, then
l If P2 is in P, then P1 is in P, but
l If P1 is in P, it does not follow that P2 is in P.

Tostore\Madhu\daa\daa 8th Unit - Final - Page No. 143

4.143

NOTES

Design and Analysis of Algrorithms

8.4 Non deterministic algorithms:
If the result of every operation is uniquely defined, then the algorithm is called

as determinsitic algorithm. Some algorithms contain operations whose outcome
are not uniquely defined but are limited to set off possibilities. Subjected to termination
condition any one of these outcomes is selected.

A non deterministic algorthm terminates unsuccessfully if and only if there exists
not set of choices leading to a successful outcome.
Ex: Searching an element x in a given set. If we ae required to search an element x
which is not in set with an index I = -1, non deterministci algorithm for this is
For(j=-I;j<n;j++)
: if A((j) = x then print(j)
else print (‘failure’);
:
The above algorithm is of nondeterministic complexity of O(1).

8.5 NP-Completeness:
To prove that a problem P is NP-complete:
Method 1 (direct proof) :
(a) P is in NP

(b) All problems in NP-Complete can be reduced to P.

Example : Conjunctive Normal Form (CNF) Satisfiability problem

Variable: true of false.

Literal: positive or negative literals.

Clause literals or’ed together

CNF : clauses and’ed together.

CNF-Satisfiability problem: given a CNF are there assignments (of truth values) to
variable in the CNF to make the CNF true.

Method 2 (equally general but potentially easier):
(a) P is in NP

(b) Find a problem P’ that has already been proven to be in NP-Complete

(c) Show that P’ ->P.

Method 3 (restriction; simple but not always available to all problems):
(a) P is in NP.

(b) Find a special case of P is in NP-Complete.
Example: Subgraph isomorphism: Given two graphs G(VI.E1) and H(V2,E2), does
G contain s a subgraph isomorphic to H? That is, can we find subset V of VI and E

Tostore\Madhu\daa\daa 8th Unit - Final - Page No. 144

4.144

Design and Analysis of Algrorithms

NOTESof E1 such that [V] = [V2] and [E] = [E2] and there exists a one to one function f:
V2 ->V such that {u, v} in E2 if and only if {f(u), f(v)} is in E?

(a) Subgraph isomorphim is in NP

(b) k-clique is a special case of subgraph isomorphim when H is a clique with k
nodes.

Solving NP-Complete Problems
Given a NP-Complete Problems, what should you do?

 Use brute force: may be the algorithm performance is acceptable for
saml input sizes.

 Use time limit: terminates the algorithm after time limit.

 Use approximate algorithms for optimization problems: find a good
solution, but not necessary the best solution.

How to mesure the performance of an approximate algorithms?

P: Problem

l: Input

FS(I): the set of all feasible solution of P for input 1.

V(I): FS(I) -> N; mesure how good a feasible solution is.

opt(I): V(I) for the optimal solution for the input I.

For a feasible solution (provided by an approximate algorithm). A(I). we can
measure:

r(A.1)=max(opt(I) V((A(I), V(A(I))/ opt(I))

Note that r(A.I) = 1.

Thus. A(I) is optimal for I if r(A.I) = 1.

How good an approximate algorithm can be measure by worst case analysis
with respect to opt(I) or input size.

R(A.m) = max {r(A,I) | opt(I) = m}

S(A, n) = max {r(A,I)I is fof size n}

Example: the knapsack problem.

8.6 Cook’s Theorem:
S.A. Cook raised a fundamental question: Is there a problem in NP that is a

hard (up to plynomial factors) as every other problem in NP? In other words, is
there a problem C in NP such that if A is any problem in NP, then A C? If such
a problem exists than it is called NP-complete (Note that all NP-complete
problems are automatically polynomially equivalent to one another.) In one of the
most celebrated results in theoretical computer science. Cook showed in 1971
that the satisfiability problem for Boolean expressions (as defined presently) is

Tostore\Madhu\daa\daa 8th Unit - Final - Page No. 145

4.145

NOTES

Design and Analysis of Algrorithms

NP-complete. About the same time. Levin in showed that a certain tiling problem
was NP-complete. The following propostion follows easily from the transitivity of the
relation . Suppose A is in NP. and B is NP-complete. If B A. then A is NP-complete.
If any NP- complete problem A also belongs to P, then P= NP

A problem A (not necessarily a decision problem) is NP-hard if it is as hard to solve
as any problem in NP. More precisely. A is NP-hard if a polynomial time solution for A
would imply P = NP.

For example, if the decision version of an optimization problem is NP-complete,
then the optimization problem itself is NP-hard. Note that the NP-complete problems
are precisely those problems in NP that are NP-hard.

To describe Cook’s result, we need to recall some terms from order Logic. As with
out pseudocode conventions. a Boolean (logical) variable is a variable that can only
take on two values, true (T) of false (F). Given a Boolean variable x we denote by x
the variable has that the value T if and only if x has the value F. Boolean variables can
be combined using logical operators and (denoted by and called conjunction), or
(denoted by and called disjunction), not (denoted by and called negation), and
arenthesization, to form Boolean expressions (formulas). A literal in a Boolean formula
is of the form x ir x, where x is a Boolean variable. Note x has the same truth value
as x. A Boolean formula is said to be in Conjunctive Normal Form (CNF) if it has the
from C1 C2 ... Cm, where each clause Ci is a disjunction of n(i) literals.
i=1...m.

A Boolean formula is called satisfiable if there is an assignment of truth values to the
literals occurring in the formula that makes the foumula evaluate to true. For example
the CNF formula (x2 x3) (x1 x3) (x1 x3) is satisfiable (x1 = x2 = x2 = T).
whereas the CNF formula (x2 x3) (x1 x2) (x1 x2) (x1 x3) (x1 x2
 x3) is not satisfiable.

The CNF-satisfiablility problem (CNF SAT) is the problem of determining whether
a given CNF formula is satisfiable. CNF SAT is a fundamental problem in mathematical
logic and computer science, with numerous applications. The input size of CNF
formula can be difined as the toral number of literals (countin reptitions) occurring in
the formula. Clearly CNF SAT NP NP, since a linear scan of the formula determines
whether a cancidate assignment to the literals occuring in the formula results in the
fomula avaluation to true. CNF SAT was the first example shown to be complete.

4.126

Design and Analysis of Algrorithms

NOTES9.1 Fundamentals of Sets:
MEMBER(a,s): Determines whether a is a member of S , if so print yes otherwise
no.

INSERT(a,S); It is used to insert the given element a into the set S

DELETE(a,S): It is used to delete an element a from set S.

UNION(S1,S2); It is sued to merge two disjoint sets S1 and S2.

FIND(a) It is used to find the set for which a belongs

9.2 UNION & FIND:
Makeset(x) : creates a one element set (x) . Is is assumed that this operation can be
applied to each of the elements of set S only once

UNION

It constructs the union of the disjoint subsets. If there are two sets I and j then the
UNION (I,J) is the set containing both the set elements of I and j. In the case of a tree
UNION is represented as UNION (I,J) is means I is the parent and j is the child.

Ex: Let S ={1,2,3,4,5,6}Then make (i) creates the set {I} and applying this operation
six times initializes the structure to the collection of six singleton sets.

{1},{2},{3},{4},{5},{6}

Performing union (1,4) and union of (5,2) yields

{1,4},{5,2},{3},{6}

And if followed by union (4,5) and union (3,6)

 1 5

4 2

Sets and Unions

 1
4

5
2

 3

6

4.127

NOTES

Design and Analysis of Algrorithms

3

1

Again if we perform union (1,3)

Algorithm for UNION

UNION (I,j)

{

 integer I,j;

 PARENT(j) = I;

 }

Quick union:

Union (x,y) appends the y’s list to the end of the x’s list , update information
about their representative for all the elements in the y’s list and then delete the
y’s list from the collection. The sequence of union operations

Union(2,1),union(3,2)….union(I+1,I)…union(n,n-1) runs in q(n2)

To improve the efficiency of a sequence of union operations is to always
append the shorter of the two lists to the longer one, with ties broken arbitrarily.
This is called as Union by size. The worst case time of the union by size is
O(nlogn).

Since union operation attaches a smaller tree to the root of a larger one,
the size of the tree can be measured either by the number of nodes or by its
height of the tree. Since height of the tree is O(logn) each find requies O(logn)
and thus union requires at most n-1 unions and m finds , to lead a time complexity
of O(nlogn).

FIND

Find(i) returns a subset containing i. It finds the root node of ith node.

Ex: UNION of (1,3)

FIND (3) =1

 1

3 4

5 6

2

4.128

Design and Analysis of Algrorithms

NOTES
Algorithm for FIND(i)

FIND(i)

{

integer I,j;

j=I;

while (PARENT (j)>0)

{

j=PARENT(j);

}

return j;

}

Ex: FIND (5), I=5, j=I=5

While P(j)>0

J=P(j)=2

Again P(2) >0

J=P(2)=1

P(1) >0 is false return j i.e., 1. Thus the root node of node 5 is 1.

Time complexity

Each FIND requires following a chain of PAREBT links from node 1 to the root. The
time required to process FIND for an element at level I of the tree is O(i). Hence the
total time needed to process n-2 finds is O(n2).

9.3 Weighting Rule for UNION:
If the number of nodes on tree I is less than the number in tree j, then make j the
parent of I, otherwise make I the parent of j.

UNION(I,j)

{

 integer I,j,x;

x =PARENT(i) + PARENT(j);

if (PARENT(i)>PARENT(j))

{

5
3

2

 1

4.129

NOTES

Design and Analysis of Algrorithms

 1 2 3 n

 2

1

1

2

3

4 n

 2

3 1 4

PARENT(i)=j;

PARENT (j)=x;

Else
PARENT(j)= I;

PARENT(i) =x;
}

}

Ex: Let there are n sets

Union (1,2) the number of nodes in tree 1 equal to number of nodes
in tree 1 equal to number of nodes in tree 2

Union(1,2) number of nodes in tree2 is 2, number of nodes in tree 3 is 1 , so
2>1 make parent as 2 and 3 as child

UNION(FIND(3),4)

4.130

Design and Analysis of Algrorithms

NOTESCOLLAPSING RULE

If j is a node on the path from I to its root then set PARENT (j) = root(i).

FIND(i)

{

j=I;

while PARENT(j) >0

{

j == PARENT(j);

}

k=I;

while k!= j

{

t=PARENT(k);

PARENT(k) =j;

K=1

}

return j;

}

4.131

NOTES

Design and Analysis of Algrorithms

Binary trees which are used to implement dictionaries have a time
efficiency of searching, insertion and deletion in the average case (logn). In the
worst case it is (n), because the tree can degenerate into a severely unbalanced
one with height equal to n-1.

Thus a structure is needed to preserve the properties of binary search
tree and also to avoid its worst case degeneracy.

1.The first approach is, transforming an unbalance tree into balanced tree.
Examples are AVL trees and red-black trees.

2. The second approach is allowing more than one element in a node of a searcht
ree.. Examples are B-trees and 2-3-4 trees.

10.1 AVL Trees:

These are invented in 1962 by G.M.Adelson-Velsky and E.M.Landis.

AN AVL tree is a binary search tree in which the balance factor of every node
which is defined as the difference between the heights of the nodes left and right
subtrees is either 0 or +1 or –1.

A tree T is said to be height balanced if and only if

1. TL and TR are height balanced

2. hL - hR <=1 where hl and hr are heights of left and right subtrees.

Rotations:

If an insertion a new node makes an AVL tree unbalanced we transform the tree
by a rotation. A rotation in an AVL tree is a local transformation fo its subtree
rooted ata a node whose balance has become either +2 or -2.

There are obnly 4 types of rotations. Two of them are mirror images of the other
two. They are

1. Single R rotation

2. Single L rotation

3. Double LR rotation

4. Double RL rotation

BALANCED SEARCH TREES

4.132

Design and Analysis of Algrorithms

NOTES
Single R Rotation:

This is performed after a new key is inserted into the left subtree of the left
child of a tree whose root had the balance of +1 before the insertion .

Single L rotation:

It is performed after a new key is inserted into the right subtree of the right
child of a tree whose root had the balance of –1 before the insertion.

Double left right rotation or LR rotation:

We perform L rotation of the left subtree of root r followed by the R rotation of
the new tree rooted at r. It is performed after a new key is inserted into the right
subtree of the left child of a tree whose root had the balance
of +1 before the insertion.

Double right left rotation or RL rotation:

It is the mirror image of double LR rotation. It is performed after a new key is inserted
into the left subtree of the right child of a tree whose root had the balance of +1
before the insertion.

1

2
3 1

2

 3

 2 1

 2

 1

 3

3

1
1 3

2

2

1

3
3 1

2

2

4.133

NOTES

Design and Analysis of Algrorithms

 a

b

c

a

b c a

b

Time complexity:
The height h of any AVL tree with n nodes satisfies

Log n <= h <= 1.4405log(n+2)-1.3277

The operations of searching and insertion are (logn) in worst case. On an average
AVL tree requires same number of comparisions as searching ins a sorted array
by bunary search.

Algorithm to create an AVL TREE:

1. Find the place to insert a new element from root. Keep track the most
recently seen node with balance factor –1 or +1.Let it be node x.

2. If there is no node x, then make another pas from the root , updating
balance factors.

3. If BF(x)=1 and the new node was inserted in the right subtree of x or if
BF(x)=-1 and the insertion tool place in the left subtree, then the new
balance factor of x is 0.In this case update balance factors on the path
from x to the new node and terminate.

4. Classify the imbalance at x and perform the appropriate rotation. Change
balalnce factors as required by the rotation as well as those of nodes on
the path from the new subtree root to the newly inserted node.

Ex: Let us construct an AVL tree with following elements a,b,c,d,e,f,g,h.

Inserting a and b results bst shown in fig 1

When c is inserted into the tree , the height of the right sub tree of a becomes 2
and left subtree is 0. To rebalance the tree a rotation is performed.

Again introducing d and e makes tree unbalanced. To rebalance the tree another
rotation is performed. b

e

d
c

a

e

d

b

a

c

4.134

Design and Analysis of Algrorithms

NOTES
10.2 2 - 3TREES:

It is a tree that can have nodes of two kinds:2-nodes and 3-nodes.

A 2 node contains a single key K and has two children: the left child serves as
the root of a subtree whose keys are less than K and the right child serves as
the root of subtree whose keys are greater than K.

A 3-node contains two ordered keys K1,and K2 and has three children. The left
most child serves as the root of a subtree with key less than k1 , the middle child
serves as the root of a subtree with keys between K1 and K2, and the right most
child serves as the root of a subtree with keys greater than K2.

Also all its leaves must be on the same level i.e., a 2-3 tree is always height
balanced : the length of a path from the root of the tree to a leaf must be the
same for every leaf.

Ex:

In the above example a non leaf node 1:3 can be obtained as follows. It has 3
children 1,3,6 among which , largest left subtree value is 1, middle subtree value
is 3, so we will get 1:3 similarly 7:11 obtained. Next we will get 6:11 the largest
elft subtree value is 6 largest middle subtree value is 11 no right subtree exists.

Searching in 2-3 tree:
For example if we want to search an element is present in 2-3 tree or not, first 7
is compared with root node, i.e, 7 is greater than 6 and less than 11. So move
down the middle branch again 7 is compared with 7:11 node, here 7 is less than
or equal to first value i.e., 7 , so move down the elft subtree. Now here node is
leaf node, the value of leaf node i.e., 7 is compared with 7, so matching occurs.

Algorithm

1. Repeat while not a leaf node

2. If key <= the first search value in the node

Then move down the left branch

6:11

7:11 1:3

6 3 1 11 7

4.135

NOTES

Design and Analysis of Algrorithms

Else if key<=the second search value in the node

Then move down the middle branch

Else if a right branch exists

Then move down the right branch

Else unsuccessful search and return

 3. If the key has been found

then successful search and return

else unsuccessful search and return.

Insertion in AVL Tree:

When we are inserting there are 4 cases,

Case 1: The tree before insertion is empty. In this case we create the node to be
inserted, and make this the root of the tree.

Ex: Insert 4, initially 2-3 tree is empty, so node is created.

Case 2: The tree contains just one node. In this case a non leaf node is created,
with the previous root node and the node being inserted as the new nodes children.

Ex: Insert 9 in above 2-3 tree. So we have to create a non leaf node with first
value as 4, second value as 9 i.e., 4:9.

Case 3:If the parent has two children, insert the new node into its proper position
below the parent. If its key value is less than that of the left child, the new node
becomes the left child; if its key value is greater than that of the middle child, the
new node becomes the right child, otherwise, it becomes the middle child.

Ex: Insert 7 in the above tree. Here for non leaf node , largest left subtree value is
4, largest middle subtree value is 7. so it is 4:7

child, in its proper position, of the parent. A new non leaf node is created and it
becomes a brother to the immediate right of the parent node. The two right most
children of the parent node now become the offspring of the new non leaf node.
If the addition of the new non leaf node causes its parent to have four children the

 4

9 4

4:9

 4:7

4 7 9

4.136

Design and Analysis of Algrorithms

NOTES
process is repeated on this node.

Ex: Insert 11 in above 2-3 tree

Any non leaf node in 2-3 tree can have either 2 or 3 leaf nodes, so we have to
split the nodes

Algorithm

INSERT(V)

{

create a new vertex v;

make the two right most sons of v the elft and right sons of v;

if v has no father then

{

create a new root r;

make v the left son and v the right son of r

}

else

{

let f be the father of v;

make v a son of f immediately to the right of v

if f now has four sons then INSERT(f)

}

}

 4:7

7 4 9 11

7:1

 4:7 9:11

4 7 19

4.137

NOTES

Design and Analysis of Algrorithms
Deletion of 2-3 Tree:

While deleting a node from 2-3 tree there are 3 cases

Case1: If X is the root remove x.

Case 2: If x is the son of a vertex having three sons remove x.

Case 3: If x is the son of a vertex f having two sons s and x then there are two
possibilities:

a) f is the root. Remove x and f and leave the remaining son s as the
root.

b) F is not the root. Suppose f has a brother g to its left. A brother to the
right is handled similarly. If g has only two sons , make s the rightmost
son of g, remove x and call the selection procedure recursively to
delete f. If g has 3 sons, make the rightmost son of g be the left son of
f and remove x from tree.

Time Complexity

A 2-3 tree of height h with the smallest number of keys is a full tree of 2 nodes .
Therefore for any 2-3 tree of height h with n nodes ,

n>= 1+2+….2 h = 2 h+1 -1 and hence h<= log2(n+1) –1

On the other hand 2-3 tree of height h with the largest number of keys is a full
tree of 3 nodes each with two keys and three children. For any 2-3 tree with n
nodes

n<= 2.1+2.3+….2.3 h = 2(1+3+….+3 h)= 3h+1 -1 and hence h<= log3(n+1)
–1

Thus searching , insertion and deletion are all in (logn)

 1:2

1 2 3

1:3

1 3

 1:3

3 1

1

4.138

Design and Analysis of Algrorithms

NOTES10.3 DICTIONARY:
A data structure that implements adding a new item, deleting an item and

searching for a given item from a collection is called dictionary. A dictionary is a
storage structure, having an identifier and information. The information is
associated with the identifier.

The important aspect of the dictionary is that nay stored information can
be retrieved at any time. We can create an empty dictionary then store pairs (id,
inf) in it. The dictionary is very useful in the design of dynamic programming.

10.4 PRIORITY QUEUE:
A priority queue is a structure with some aspects of a FIFO but in which element
order is related to each elements priority rather than its chronological arrival
time.

Each element is inserted into a priority queue , conceptually it is inserted in oreder
of its priority. The one element that can be removed is the most important element
currently in the priority queue.

The principal operations on a priority queue are finding largest/smallest element,
deleting its largest/smallest element and adding a new element. The largest/
smallest element can be found in O(logn) time. Therefore any sequence of n
INSERT, DELETE operations can be done in O(nlogn) steps. Two other data
structures that can be used to implement an O(nlogn) priority queue are the
heap and AVL tree.

10.5 HEAP:

A heap can be defined as a binary tree with keys assigned to its nodes provided
the following conditions are met

1.It must be essentially complete, all its levels are full except possibly the last
level, where only some right most leaves may be missing.

2. The key at each node is greater than or equal to the keys at its children. The
key values in a heap are ordered top down.

Properties of heap

1. There exists exactly one complete binary tree with n nodes. Its height is
log n.

4.139

NOTES

Design and Analysis of Algrorithms

2. The root of a heap always contains its largest element.

3. A node of a heap considered with all its descendants is also a heap.

Ex: let us consider the elements 26, 5,77,1,61,11 from which a binary tree is
constructed as shown below

Applying heap properties for all nodes in this tree, we get

Insertion into a Heap
Each new element is added at the bottom of the heap and then compares it with
its parent, grant parent and so on until it is less than or equal to one of these
values.

Algorithm for Insertion
INSERT(A,n)

{

integer I,j,n;

j=n;

I=n/2;

Item=A(n);

While(I>0and A(i)<item)

{

A(j)=A(i);

J=I;

I=i/2;

26

77
5

1 11

26

5
77

1 1161

26
61

5 1 11

77

8

4 7

2 3 5 9

 8

9 4

2 5 3 7

 9

4 8

2 3 5 7

4.140

Design and Analysis of Algrorithms

NOTES

}

A(j)=item;

}

Time complexity:

There are at most 2i-1 nodes on level I of a coplete binary tree, 1<=I<=log(n+1).
For a node on level I the distance to the root is I-1. Thus the worst case time for heap
creation is

)1nlog(2)1nlog(1i2)1I(

= log(n+1)(n+1)

=logn(n+1)
=nlogn+logn= O(nlogn)

Deletion from a heap
Since we are deleting largest element from the heap, the element at the root is
removed. After removing the root element , it is replaced by last element and again
heap is adjusted using below algorithm.

HEAP Adjust
ADJUST(A,i,n)
{

integer j,k;
k=A(i)
j=2i;
while(j<=n)
{
if(j<n)
if (A(j)<A(j+1) then j=j+1;
If(k>=A(j)) exit;
Else
{
A(j/2)=A(j);
J=2j;
}
}

}

4.141

NOTES

Design and Analysis of Algrorithms

10.6 HEAP SORT:
Sorting can be performed using heap. IF we delete every time root element

and adjust the heap until all the elements in the heap are deleted, we get a
sequence of elements arranged in descending order.

HEAPSORT(A,n)

{

integer i,t;

for (I=n/2;i>0;i—)

ADJUST(A,i,n);

For(i=n-1;i>0i—)

{

t=A(i+1);

A(I+1) =A(i);

A(i)=t;

ADJUST(A,1,i);

}

}

Time complexity

In the above algorithm , every time adjust function is called, the time required for
this procedure is logn.

So time complexity T(n) = (n-1)logn

= nlogn-logn

=O(nlogn)

MERGEABLE HEAP

In this heap insertion, deletions are executed in O(nlogn) time. The smallest
element in the set S can be found by starting at the root of T and walking down
the tree as follows.

If we are at an interior vertex v, we next visit the son of v with the lowest
value of SMALLEST. Then if T has n leaves the instruction MIN requires O(logn).

To merge two sets S1 and S2 we call the procedure IMPLANT(T1,T2) where T1
and T2 are the 2-3 trees representing S1 and S2.

4.142

Design and Analysis of Algrorithms

NOTES
Let us suppose that H1, the height of T1 is greater than or equal to H2 the height of
T2 IMPLANT find on the right most path in T1, the vertex v which is of height H2 and
makes the root of t2 the right most brother of v, f be a father of v, now f have four sons
IMPLANT calls the function of INSERT(f).

Time complexity

The procedure IMPLANT combines T1 and T2 into a single 2-3 tree in time O(h1-
h2)

Algorithm IMPLANT

IMPLANT(T1,T2)

{

if HEIGHT(T1)=HEIGHT(T2)

{

create a new root r;

make ROOT(T1) and ROOT(T2) the left and right sons of r

}

else

assume HEIGHT(T1)>HEIGHT(T2) otherwise interchange T1 and T2

{

let v be the vertex on the right most path of T1 such that

DEPTH (v)=HEIGHT(T1)-HEIGHT(T2)

Let f be a father of v;

Make ROOT(T2) a som of f immediately to the right of v;

If f now has four sons then INSERT(f)

}
